
z/OS Cryptographic Services
Integrated Cryptographic Service Facility

TR-31 Optional Data Read Update for CCA
Compliance — APAR OA38616
(March 1, 2012)

���

ii TR-31 Optional Data Read Update for CCA Compliance — APAR OA38616

Contents

Chapter 1. Overview 1

Chapter 2. Update of z/OS Cryptographic
Services ICSF Application Programmer’s
Guide, SA22-7522-15, information. . . . 3
TR-31 Import (CSNBT31I and CSNET31I) 3

Format 3
Parameters 3

Restrictions 9
Usage Notes 9

TR-31 Optional Data Read (CSNBT31R and
CSNET31R) 16

Format 16
Parameters 16
Restrictions 19
Usage Notes 19

© Copyright IBM Corp. 2012 iii

iv TR-31 Optional Data Read Update for CCA Compliance — APAR OA38616

Chapter 1. Overview

The Integrated Cryptographic Service Facility (ICSF) implements the IBM Common
Cryptographic Architecture (CCA) API, which is the lowest available API for
invoking Crypto Express3 (CEX3C) services. ICSF's implementation of the TR-31
Optional Data Read callable service in the Cryptographic Support for z/OS
V1R11-R13 web deliverable (FMID HCR7790) is not fully compatible with the CCA
API. Specifically, the opt_block_length parameter is returned as an array of 31-bit
integers, while the CCA API defines that field as an array of 16-bit integers.

This document describes changes to the ICSF product to make its implementation
of the TR-31 Optional Data Read callable service compatible with the CCA API. In
addition, the description of the cv_source and protection_method parameters of the
TR-31 Import callable service were modified to show the full integer values.

These changes are available through the application of the PTF for APAR OA38616.
This document contains alterations to information previously presented in z/OS
Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-15.

The technical changes made to the ICSF product by the application of the PTF for
APAR OA38616 are indicated in this document by a vertical line to the left of the
change.

© Copyright IBM Corp. 2012 1

2 TR-31 Optional Data Read Update for CCA Compliance — APAR OA38616

Chapter 2. Update of z/OS Cryptographic Services ICSF
Application Programmer’s Guide, SA22-7522-15, information

This chapter contains updates to the document z/OS Cryptographic Services ICSF
Application Programmer’s Guide, SA22-7522-15, for the callable service changes
implemented by the PTF for APAR OA38616. Refer to this source document if
background information is needed.

TR-31 Import (CSNBT31I and CSNET31I)
Use the TR-31 Import callable service to convert a TR-31 key block to a CCA token.
Since there is not always a one-to-one mapping between the key attributes defined
by TR-31 and those defined by CCA, the caller may need to specify the attributes
to attach to the imported key through the rule array.

The callable service name for AMODE(64) is CSNET31I.

Format

CALL CSNBT31I(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
TR31_key_block_length,
TR31_key_block,
unwrap_kek_identifier_length,
unwrap_kek_identifier,
wrap_kek_identifier_length,
wrap_kek_identifier,
output_key_identifier_length,
output_key_identifier,
num_opt_blks,
cv_source,
protection_method)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems.

exit_data_length

© Copyright IBM Corp. 2012 3

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 1, 2, 3, 4, or 5.

rule_array

Direction: Input Type: String

The rule_array contains keywords that provide control information to the
callable service. The keywords are 8 bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keywords for
this callable service are shown in the following table. One keyword from one
CCA output key usage subgroup shown in the following table is required
based on TR-31 input key usage, unless the CV is included in the TR-31 key
block as an optional block. If the CV is included in the TR-31 key block as an
optional block, the included CV will be used in the output key block as long as
it does not conflict with the TR-31 header data.

See Table 3 on page 10 for valid combinations of Usage and Mode

Table 1. Keywords for TR-31 Import Rule Array Control Information

Keyword Meaning

Key Wrapping Method (One Required)

INTERNAL Desired output_key_identifier is a CCA internal key token,
wrapped using the card master key.

EXTERNAL Desired output_key_identifier is a CCA external key token,
wrapped using the key represented by the
unwrap_kek_identifier.

CCA Output Key Usage Subgroups (One keyword from one CCA output key usage
subgroup shown in the following table is required based on TR-31 input key usage,
unless the CV is included in the TR-31 key block as an optional block. If the CV is
included in the TR-31 key block as an optional block, the included CV will be used in
the output key block as long as it does not conflict with the TR-31 header data.)

C0 Subgroup (One Required for this TR-31 key usage)

CVK-CVV Convert TR-31 CVK to a CCA key for use with CVV/CVC.
The CCA key will be a MAC key with subtype CVVKEY-A.

CVK-CSC Convert TR-31 CVK to a CCA key for use with CSC. The
CCA key will be a MAC key with subtype AMEX CSC.

K0 Subgroup (One Required for this TR-31 key usage)

TR-31 Import

4 TR-31 Optional Data Read Update for CCA Compliance — APAR OA38616

Table 1. Keywords for TR-31 Import Rule Array Control Information (continued)

Keyword Meaning

EXPORTER For TR-31 K0-E or K0-B usage+mode keys. Convert TR-31
KEK to a CCA wrapping key. The key will convert to a CCA
EXPORTER key. Note that the K0-B key import has a unique
ACP.

OKEYXLAT For TR-31 K0-E or K0-B usage+mode keys. Convert TR-31
KEK to a CCA wrapping key. The key will convert to a CCA
OKEYXLAT key. Note that the K0-B key import has a unique
ACP.

IMPORTER For TR-31 K0-D or K0-B usage+mode keys. Convert TR-31
KEK to a CCA unwrapping key. The key will convert to a
CCA IMPORTER key. Note that the K0-B key import has a
unique ACP.

IKEYXLAT For TR-31 K0-D or K0-B usage+mode keys. Convert TR-31
KEK to a CCA unwrapping key. The key will convert to a
CCA IKEYXLAT key. Note that the K0-B key import has a
unique ACP.

V0/V1/V2 Subgroup (One Required for these TR-31 key usages)

PINGEN Convert a TR-31 PIN verification key to a CCA PINGEN key.

PINVER Convert a TR-31 PIN verification key to a CCA PINVER key.

E0/E2,F0/F2 Subgroup (One Required for these TR-31 key usages)

DMAC Convert TR-31 EMV master key (chip card or issuer) for
Application Cryptograms or Secure Messaging for Integrity to
CCA DKYGENKY type DMAC

DMV Convert TR-31 EMV master key (chip card or issuer) for
Application Cryptograms or Secure Messaging for Integrity to
CCA DKYGENKY type DMV

E1,F1 Subgroup (One Required for these TR-31 key usages)

DMPIN Convert TR-31 EMV master key (chip card or issuer) for
Secure Messaging for Confidentiality to CCA DKYGENKY
type DMPIN

DDATA Convert TR-31 EMV master key (chip card or issuer) for
Secure Messaging for Confidentiality to CCA DKYGENKY
type DDATA

E5 Subgroup (One Required for this TR-31 key usage)

DMAC Convert TR-31 EMV master key (issuer) for Card
Personalization to CCA DKYGENKY type DMAC.

DMV Convert TR-31 EMV master key (issuer) for Card
Personalization to CCA DKYGENKY type DMV.

DEXP Convert TR-31 EMV master key (issuer) for Card
Personalization to CCA DKYGENKY type DEXP.

Key Derivation Level (One Required with E0, E1, E2 TR-31 key usages unless the CV
is included in the TR-31 key block as an optional block. If the CV is included in the
TR-31 key block, the included CV will be used in the output key block as long as it
does not conflict with the TR-31 header data.)

DKYL0 Convert TR-31 EMV master key (chip card or issuer) to CCA
DKYGENKY at derivation level DKYL0.

DKYL1 Convert TR-31 EMV master key (chip card or issuer) to CCA
DKYGENKY at derivation level DKYL1.

TR-31 Import

Chapter 2. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-15, information 5

Table 1. Keywords for TR-31 Import Rule Array Control Information (continued)

Keyword Meaning

Key Type Modifier (Optional)

NOOFFSET Valid only for V0/V1 TR-31 key usage values. Import the
PINGEN or PINVER key into a key token that cannot
participate in the generation or verification of a PIN when an
offset or the Visa PVV process is requested.

Key Wrapping Method (Optional)
Note: Conflicts between wrapping keywords used and a CV passed in an optional
data block of the TR-31 token will result in errors being returned. The main example
of this is a CV that indicates ‘enhanced-only’ in bit 56 when the user or configured
default specifies ECB for key wrapping.

USECONFG Specifies that the configuration setting for the default
wrapping method is to be used to wrap the key. This is the
default.

WRAP-ENH Specifies that the new enhanced wrapping method is to be
used to wrap the key.

WRAP-ECB Specifies that the original wrapping method is to be used.

Translation Control (One Optional)

ENH-ONLY Specify this keyword to indicate that the key once wrapped
with the enhanced method cannot be wrapped with the
original method. This restricts translation to the original
method. If the keyword is not specified translation to the
original method will be allowed. This turns on bit 56 in the
control vector. This keyword is not valid if processing a zero
CV data key.

Notes:

1. If the TR-31 block contains a CV in the optional data
block that does not have bit 56 turned on, bit 56 will be
turned on in the output token, since with this keyword
the user is asking for this behavior. The exception to this
is for CVs of all 0x00 bytes, for this case no error will be
generated but the CV will remain all 0x00 bytes.

2. Conflicts between wrapping keywords used and a CV
passed in an optional data block of the TR-31 token will
result in errors being returned. The main example of this
is a CV that indicates ‘enhanced-only’ in bit 56 when the
user or configured default specifies ECB for key
wrapping. If the default wrapping method is ECB mode,
but the enhanced mode and the ENH-ONLY restriction
are desired for a particular key token, combine the
ENH-ONLY keyword with the WRAP-ENH keyword.

TR31_key_block_length

Direction: Input Type: Integer

This parameter specifies the length of the TR31_key_block parameter, in bytes.
The length field in the TR-31 block is a 4-digit decimal number, so the
maximum acceptable length is 9992 bytes.

TR31_key_block

Direction: Input Type: String

This parameter contains the TR-31 key block that is to be imported. The key

TR-31 Import

6 TR-31 Optional Data Read Update for CCA Compliance — APAR OA38616

block is protected with the key passed in parameter unwrap_kek_identifier.

unwrap_kek_identifier_length

Direction: Input Type: Integer

This parameter specifies the length of the unwrap_kek_identifier parameter, in
bytes. The value in this parameter must currently be 64, since only CCA
internal key tokens are supported for the unwrap_kek_identifier parameter.

unwrap_kek_identifier

Direction: Input/Output Type: String

This parameter contains either the label or the key token for the key that is
used to unwrap and check integrity of the imported key passed in the
TR31_key_block parameter. The key must be a CCA internal token for a KEK
IMPORTER or IKEYXLAT type. If a key token is passed which is wrapped
under the old master key, it will be updated on output so that it is wrapped
under the current master key.

Note: ECB-mode wrapped DES keys (CCA legacy wrap mode) cannot be used
to wrap/unwrap TR-31 version ‘B’/’C’ key blocks that have, or will
have ,‘E’ exportability. This is because ECB-mode does not comply with
ANSI X9.24 Part 1.

wrap_kek_identifier_length

Direction: Input Type: Integer

This parameter specifies the length of the wrap_kek_identifier parameter, in
bytes. If the unwrap_kek_identifier is also to be used to wrap the output CCA
token, specify 0 for this parameter. Otherwise, this parameter must be 64.

wrap_kek_identifier

Direction: Input/Output Type: String

When wrap_kek_identifier_length is 0, this parameter is ignored and the
unwrap_kek_identifier is also to be used to wrap the output CCA token.
Otherwise, this parameter contains either the label or the key token for the
KEK to use for wrapping the output CCA token. It must be a CCA internal
token for a KEK EXPORTER or OKEYXLAT type and must have the same clear
key as the unwrap_kek_identifier. If a key token is passed which is wrapped
under the old master key, it will be updated on output so that it is wrapped
under the current master key.

Note: ECB-mode wrapped DES keys (CCA legacy wrap mode) cannot be used
to wrap/unwrap TR-31 version ‘B’/’C’ key blocks that have/will have
‘E’ exportability. This is because ECB-mode does not comply with ANSI
X9.24 Part 1.

output_key_identifier_length

Direction: Input/Output Type: Integer

This parameter specifies the length of the output_key_identifier parameter, in
bytes. On input, it specifies the length of the buffer represented by the
output_key_identifier parameter and must be at least 64 bytes long. On output, it
contains the length of the token returned in the output_key_identifier parameter.

output_key_identifier

TR-31 Import

Chapter 2. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-15, information 7

Direction: Output Type: String

This parameter contains the key token that is to receive the imported key. The
output token will be a CCA internal or external key token containing the key
received in the TR-31 key block.

num_opt_blocks

Direction: Output Type: Integer

This parameter contains the number of optional blocks that are present in the
TR-31 key block.

cv_source

Direction: Output Type: Integer

This parameter contains information about how the control vector in the
output key token was created. It can be one of the following three values:

X'00000000'
No CV was present in an optional block, and the output CV was
created by the callable service based on input parameters and on the
attributes in the TR-31 key block header.

X'00000001'
A CV was obtained from an optional block in the TR-31 key block, and
the key usage and mode of use were also specified in the TR-31
header. The callable service verified compatibility of the header values
with the CV and then used that CV in the output key token.

X'00000002'
A CV was obtained from an optional block in the TR-31 key block, and
the key usage and mode of use in the TR-31 header held the
proprietary values indicating that key use and mode should be
obtained from the included CV. The CV from the TR-31 token was
used as the CV for the output key token.

Any value other than these are reserved for future use and are currently
invalid.

protection_method

Direction: Output Type: Integer

This parameter contains information about what method was used to protect
the input TR-31 key block. It can have one of the following values:

X'00000000'
The TR-31 key block was protected using the variant method as
identified by a Key Block Version ID value of “A” (0x41).

X'00000001'
The TR-31 key block was protected using the derived key method as
identified by a Key Block Version ID value of “B” (0x42).

X'00000002'
The TR-31 key block was protected using the variant method as
identified by a Key Block Version ID value of “C” (0x43). Functionally
this method is the same as ‘A’, but to maintain consistency a different
value will be returned here for ‘C’.

TR-31 Import

8 TR-31 Optional Data Read Update for CCA Compliance — APAR OA38616

|

|||
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|

|||
|
|
|

|
|
|

|
|
|

|
|
|
|
|

Any value other than these are reserved for future use and are currently
invalid.

Restrictions
This callable service only imports DES and TDES keys.

Proprietary values for the TR-31 header fields are not supported by this callable
service with the exception of the proprietary values used by IBM CCA when
carrying a control vector in an optional block in the header.

Usage Notes
Unless otherwise noted, all String parameters that are either written to, or read
from, a TR-31 key block will be in EBCDIC format. Input parameters are converted
to ASCII before being written to the TR-31 key block and output parameters are
converted to EBCDIC before being returned . TR-31 key blocks themselves are
always in printable ASCII format as required by the ANSI TR-31 specification.

If the TR-31 key block is marked as a key component, the resulting CCA key will
have the Key Part bit (bit 44) in the control vector set to 1.

The exportability attributes of the imported CCA token are set based on attributes
in the TR-31 key block as described in the following table.

Table 2. Export attributes of an imported CCA token

TR-31 export attribute
value CCA action on import

Non-exportable ("N") CCA imports the key to an internal CCA key token. CV bit 17
(export) is set to zero to indicate that the key is not exportable.
CV bit 57 (TR-31 export) is set to one to indicate that the key is
not exportable to TR-31.

Exportable under trusted
key ("E")

If the TR-31 token is wrapped with a CCA KEK in the old ECB
format, the request is rejected because that KEK is not a trusted
key. If the CCA KEK is in a newer X9.24 compliant CCA key
block, then the TR-31 key is imported to CCA in exactly the
same way as described below for keys that are exportable
under any key.

Exportable under any
key ("S")

CCA imports the key to an internal CCA key token. CV bit 17
(export) is set to one to indicate that the key is exportable. CV
bit 57 (TR-31 export) is set to zero to indicate that the key is
also exportable to TR-31.

If necessary, use the Prohibit Export, Prohibit Exported Extended, or Restrict Key
Attribute callable service to alter the export attributes of the CCA token after
import.

If the TR-31 key block contains an optional block with a CCA CV of
‘00007D00030000000000000000000000’ for a single length key or
‘00007D0003410000000000000000000000007D00032100000000000000000000’ for a
double length key, the resulting CCA token will be a zero CV DATA token.

The TR-31 key block can contain a CCA control vector in an optional data field in
the header. If the CV is present, the service will check that CV for compatibility
with the TR-31 key attributes to ensure the CV is valid for the key and if there are
no problems it will use that CV in the CCA key token that is output by the service.

TR-31 Import

Chapter 2. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-15, information 9

|
|

If a CV is received, the import operation is not subject to any ACP controlling the
importation of specific key types. The CV may be present in the TR-31 key block in
two different ways, depending on options used when creating that block.
v If the TR-31 Export callable service was called with option INCL-CV, the control

vector is included in the TR-31 key block and the TR-31 key usage and mode of
use fields contain attributes from the set defined in the TR-31 standard. The
TR-31 Import callable service checks that those TR-31 attributes are compatible
with the CV included in the block. It also verifies that no rule array keywords
conflict with the CV contained in the TR-31 block.

v If the TR-31 Export callable service was called with option ATTR-CV, the control
vector is included in the TR-31 key block and the TR-31 key usage and mode of
use fields contain proprietary values (ASCII “10” and “1”, respectively) to
indicate that the usage and mode information is contained in the included
control vector. In this case, the TR-31 Import service uses the included CV as the
control vector for the CCA key token it produces. It also verifies that the CV
does not conflict with rule array keywords passed

SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

The access control points in the ICSF role that control the general function of this
service are:
v TR31 Import – Permit version A TR-31 key blocks
v TR31 Import – Permit version B TR-31 key blocks
v TR31 Import – Permit version C TR-31 key blocks
v TR31 Import – Permit override of default wrapping method

The following table lists the valid attribute translations for import of TR-31 key
blocks to CCA keys along with the access control points which govern those
translations. Any translation not listed here will result in an error. If an individual
cell is blank, it represents the value of the cell immediately above it.

Note: In order to import a TR-31 key block to a CCA key, the appropriate key
block version ACP needs to be enabled in addition to any required
translation specific ACPs from below.

Table 3. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs)

Import T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output CCA
Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

DUKPT Base Derivation Keys

B0 A N T (none) KEYGENKY UKPT (none)

B0 B,C X T (none) KEYGENKY UKPT

B1 B,C (none) (none) (none) (none) (none)

Note: These are the base keys from which DUKPT initial keys are derived for individual devices such as PIN pads.

Card Verification Keys

C0 A,B,C G, C D CVK-CSC MAC AMEX-CSC Permit C0 to
MAC/MACVER:AMEX-CSCA,B,C T CVK-CSC MAC AMEX-CSC

A,B,C V D CVK-CSC MACVER AMEX-CSC

A,B,C T CVK-CSC MACVER AMEX-CSC

TR-31 Import

10 TR-31 Optional Data Read Update for CCA Compliance — APAR OA38616

Table 3. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output CCA
Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

A,B,C G, C T CVK-CVV MAC CVVKEY-A Permit C0 to
MAC/MACVER:CVVKEY-AA,B,C V T CVK-CVV MACVER CVVKEY-A

The card verification keys are keys for computing or verifying (against supplied value) a card verification code with
the CVV, CVC, CVC2 and CVV2 algorithms.

Notes:

1. In CCA, this corresponds to keys used with two different APIs.

v Visa CVV and MasterCard CVC codes are computed with CVV_Generate and verified with CVV_Verify. Keys
must be DATA or MAC with sub-type (in bits 0-3) “ANY-MAC” , “CVVKEY-A” or “CVVKEY-B”. The GEN bit
(20) or VER bit (21) must be set appropriately.

v American Express CSC codes are generated and verified with the Transaction_Validate verb. The key must be
a MAC or MACVER key with sub-type “ANY-MAC” or “AMEX-CSC”. The GEN bit (20) or VER bit (21) must
be set appropriately.

2. CCA and TR-31 represent CVV keys incompatibly. CCA represents the “A” and “B” keys as two 8 B keys, while
TR-31 represents these as one 16 B key. The CVV generate and verify verbs now accept a 16 B CVV key, using
left and right parts as A and B. Current Visa standards require this.

3. Import and export of the 8 B CVVKEY-A and CVVKEY-B types will only be allowed using the proprietary TR-31
usage+mode values to indicate encapsulation of the IBM CV in an optional block, since the 8 B CVVKEY-A is
meaningless / useless as a TR-31 C0 usage key of any mode.

4. Import of a TR-31 key of usage C0 to CCA key type ‘ANY-MAC’ will not be allowed, although the ANY-MAC
key is also usable for card verification purposes.

5. It is possible to convert a CCA CVV key into a CSC key or vice-versa, since the translation from TR-31 usage
“C0” is controlled by rule array keywords on the import verb. This can be restricted by using ACPs, but if both
of translation types are required they cannot be disabled and control is up to the development, deployment, and
execution of the applications themselves.

CCA does not have a ‘MAC GEN ONLY’ key type, so TR-31 usage of G will translate to a full MAC key.

Data Encryption Keys

D0 A,B,C E D, T (none) ENCIPHER (none) (none)

A,B,C D D, T (none) DECIPHER (none)

A,B,C B D, T (none) CIPHER (none)

Notes:

1. There is asymmetry in the TR-31 to CCA and CCA to TR-31 translation. CCA keys can be exported to TR-31 ‘D0’
keys from CCA type ENCIPHER, DECIPHER, or CIPHER, or type DATA with proper Encipher and Decipher
CV bits on. A TR-31 ‘D0’ key can only be imported to CCA types ENCIPHER, DECIPHER, or CIPHER, not the
lower security DATA key type. This eliminates conversion to the lower security DATA type by export /
re-import.

2. There are no ACPs controlling import since the intent of the TR-31 key’s control is not interpreted, just directly
translated to CCA control.

Key Encrypting Keys

K0 A,B,C E T OKEYXLAT OKEYXLAT (none) Permit K0:E to
EXPORTER/OKEYXLATA,B,C EXPORTER EXPORTER (none)

A,B,C D T IKEYXLAT IKEYXLAT (none) Permit K0:D to
IMPORTER/IKEYXLATA,B,C IMPORTER IMPORTER (none)

A,B,C B T OKEYXLAT OKEYXLAT (none) Permit K0:B to
EXPORTER/OKEYXLATA,B,C EXPORTER EXPORTER (none)

TR-31 Import

Chapter 2. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-15, information 11

Table 3. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output CCA
Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

A,B,C IKEYXLAT IKEYXLAT (none) Permit K0:B to
IMPORTER/IKEYXLATA,B,C IMPORTER IMPORTER (none)

K1 B,C E T OKEYXLAT OKEYXLAT (none) Permit K1:E to
EXPORTER/OKEYXLATB,C EXPORTER EXPORTER (none)

B,C D T IKEYXLAT IKEYXLAT (none) Permit K1:D to
IMPORTER/IKEYXLATB,C IMPORTER IMPORTER (none)

B,C B T OKEYXLAT OKEYXLAT (none) Permit K1:B to
EXPORTER/OKEYXLATB,C EXPORTER EXPORTER (none)

B,C IKEYXLAT IKEYXLAT (none) Permit K1:B to
IMPORTER/IKEYXLATB,C IMPORTER IMPORTER (none)

Notes:

1. K1’ keys are not distinguished from ‘K0’ keys within CCA. The ‘K1’ key is a particular KEK for deriving keys
used in the ‘B’ or ‘C’ version wrapping of TR-31 key blocks. CCA does not distinguish between targeted
protocols currently and so there is no good way to represent the difference; also note that most wrapping
mechanisms now involve derivation or key variation steps.

2. It is possible to convert a CCA EXPORTER key to an OKEYXLAT, or to convert an IMPORTER to an IKEYXLAT
by export / re-import. This can be restricted by using ACPs, but if both translations are required they cannot be
disabled and control is up to the development, deployment, and execution of the applications themselves.

3. It will not be possible to export a CCA key to TR-31 type K0-B, in order to avoid the ability to translate a CCA
EXPORTER to a CCA IMPORTER via export/import to the TR-31 token type. When a TR-31 key block does not
have an included CV as an optional block, the default CV will be used to construct the output token. For
IMPORTER / EXPORTER keys this means that the Key Generate bits will also be on in the KEK.

MAC Keys

M0 A,B,C G,C T (none) MAC ANY-MAC Permit M0/M1/M3 to
MAC/MACVER:ANY-MACA,B,C V T (none) MACVER ANY-MAC

M1 A,B,C G,C D, T (none) MAC ANY-MAC

A,B,C V D, T (none) MACVER ANY-MAC

M3 A,B,C G,C D, T (none) MAC ANY-MAC

A,B,C V D, T (none) MACVER ANY-MAC

Notes:

1. M0 and M1 are identical (ISO 16609 based on ISO 9797) normal DES/TDES (CBC) MAC computation, except M1
allows 8 byte and 16 byte keys while M0 allows only 16 byte keys. Mode M3 is the X9.19 style triple-DES MAC.

2. CCA does not support M2, M4, or M5.

3. Although export of DATAM/DATAMV keys to TR-31 M0/M1/M3 key types is allowed, import to
DATAM/DATAMV CCA types is not allowed since they are obsolete types

PIN Keys

P0 A,B,C E T (none) OPINENC (none) Permit P0:E to OPINENC

A,B,C D (none) IPINENC (none) Permit P0:D to IPINENC

A,B,C B –
not
supp

(none) (none) (none) (none)

TR-31 Import

12 TR-31 Optional Data Read Update for CCA Compliance — APAR OA38616

Table 3. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output CCA
Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

V0 A N T PINGEN
[NOOFFSET]

PINGEN NO-SPEC
[+NOOFFSET]

Permit V0 to
PINGEN:NO-SPEC, Permit
V0/V1/V2:N to
PINGEN/PINVER

A,B,C G,C [NOOFFSET] PINGEN NO-SPEC
[+NOOFFSET]

Permit V0 to
PINGEN:NO-SPEC

A N PINVER
[NOOFFSET]

PINVER NO-SPEC
[+NOOFFSET]

Permit V0 to
PINVER:NO-SPEC, Permit
V0/V1/V2:N to
PINGEN/PINVER

A,B,C V [NOOFFSET] PINVER NO-SPEC
[+NOOFFSET]

Permit V0 to
PINVER:NO-SPEC

V1 A N T PINGEN
[NOOFFSET]

PINGEN IBM-PIN
/IBM-PINO

Permit V1 to
PINGEN:IBM-PIN/IBM-PINO,
Permit V0/V1/V2:N to
PINGEN/PINVER

A,B,C G,C [NOOFFSET] PINGEN IBM-PIN
/IBM-PINO

Permit V1 to
PINGEN:IBM-PIN/IBM-PINO

A N PINVER
[NOOFFSET]

PINVER IBM-PIN
/IBM-PINO

Permit V1 to
PINVER:IBM-PIN/IBM-PINO,
Permit V0/V1/V2:N to
PINGEN/PINVER

A,B,C V [NOOFFSET] PINVER IBM-PIN
/IBM-PINO

Permit V1 to
PINVER:IBM-PIN/IBM-PINO

V2 A N T PINGEN PINGEN VISA-PVV Permit V2 to
PINGEN:VISA-PVV, Permit
V0/V1/V2:N to
PINGEN/PINVER

A,B,C G,C PINGEN VISA-PVV Permit V2 to
PINGEN:VISA-PVV

A N PINVER PINVER VISA-PVV Permit V2 to
PINVER:VISA-PVV, Permit
V0/V1/V2:N to
PINGEN/PINVER

A,B,C V PINVER VISA-PVV Permit V2 to
PINVER:VISA-PVV

Notes:

1. NOOFFSET keyword may be passed to specify resultant CCA key to have NOOFFSET bit (bit 37) on in CV.
However this will be automatic if CV is included and has NOOFFSET bit set.

2. NOOFFSET keyword is not supported for V2 usage since VISA-PVV algorithm does not support that concept.

3. There is a subtle difference between TR-31 V0 mode and CCA ‘NO-SPEC’ subtype. V0 mode restricts keys from
3224 or PVV methods, while CCA ‘NO-SPEC’ allows any method.

4. Turning on the ACP(s) controlling export of PINVER to usage:mode V*:N and import of V*:N to PINGEN at the
same time will allow changing PINVER keys to PINGEN keys. This is not recommended. This is possible
because legacy (TR-31 2005-based) implementations used the same mode ‘N’ for PINGEN as well as PINVER
keys.

EMV Chip / Issuer Master Keys

TR-31 Import

Chapter 2. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-15, information 13

Table 3. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output CCA
Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

E0 A N T DKYL0
+DMAC

DKYGENKY DKYL0
+DMAC

Permit E0 to
DKYGENKY:DKYL0+DMAC

B,C X DKYL0
+DMAC

DKYL0
+DMAC

A N DKYL0
+DMV

DKYL0
+DMV

Permit E0 to
DKYGENKY:DKYL0+DMV

B,C X DKYL0
+DMV

DKYL0
+DMV

A N DKYL1
+DMAC

DKYL1
+DMAC

Permit E0 to
DKYGENKY:DKYL1+DMAC

B,C X DKYL1
+DMAC

DKYL1
+DMAC

A N DKYL1
+DMV

DKYL1
+DMV

Permit E0 to
DKYGENKY:DKYL1+DMV

B,C X DKYL1
+DMV

DKYL1
+DMV

E1 A N, E,
D, B

T DKYL0
+DMPIN

DKYGENKY DKYL0
+DMPIN

Permit E1 to
DKYGENKY:DKYL0+DMPIN

B,C X DKYL0
+DMPIN

DKYL0
+DMPIN

A N, E,
D, B

DKYL0
+DDATA

DKYL0
+DDATA

Permit E1 to
DKYGENKY:DKYL0+DDATA

B,C X DKYL0
+DDATA

DKYL0
+DDATA

A N, E,
D, B

DKYL1
+DMPIN

DKYL1
+DMPIN

Permit E1 to
DKYGENKY:DKYL1+DMPIN

B,C X DKYL1
+DMPIN

DKYL1
+DMPIN

A N, E,
D, B

DKYL1
+DDATA

DKYL1
+DDATA

Permit E1 to
DKYGENKY:DKYL1+DDATA

B,C X DKYL1
+DDATA

DKYL1
+DDATA

E2 A N T DKYL0
+DMAC

DKYGENKY DKYL0
+DMAC

Permit E2 to
DKYGENKY:DKYL0+DMAC

B,C X DKYL0
+DMAC

DKYL0
+DMAC

A N DKYL1
+DMAC

DKYL1
+DMAC

Permit E2 to
DKYGENKY:DKYL1+DMAC

B,C X DKYL1
+DMAC

DKYL1
+DMAC

E3 A N, E,
D, B,
G

T (none) ENCIPHER (none) Permit E3 to ENCIPHER

B,C X (none) (none)

TR-31 Import

14 TR-31 Optional Data Read Update for CCA Compliance — APAR OA38616

Table 3. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output CCA
Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

E4 A N, B T (none) DKYGENKY DKYL0
+DDATA

Permit E4 to
DKYGENKY:DKYL0+DDATA

B,C X (none) DKYL0
+DDATA

E5 A G, C,
V, E,
D, B,
N

T DKYL0
+DMAC

DKYGENKY DKYL0
+DMAC

Permit E5 to
DKYGENKY:DKYL0+DMAC

B,C X DKYL0
+DMAC

DKYL0
+DMAC

A G, C,
V, E,
D, B,
N

DKYL0
+DDATA

DKYL0
+DDATA

Permit E5 to
DKYGENKY:DKYL0+DDATA

B,C X DKYL0
+DDATA

DKYL0
+DDATA

A G, C,
V, E,
D, B,
N

DKYL0
+DEXP

DKYL0
+DEXP

Permit E5 to
DKYGENKY:DKYL0+DEXP

B,C X DKYL0
+DEXP

DKYL0
+DEXP

Note: EMV Chip Card Master Keys are used by the chip cards to perform cryptographic operations, or in some
cases to derive keys used to perform operations. In CCA, these are:

v Key Gen Keys of level DKYL0 or DKYL1 allowing derivation of operational keys, or

v operational keys.

EMV support in CCA is significantly different. CCA key types do not match TR-31 types.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 4. TR-31 export required hardware

Server

Required
cryptographic
hardware Restrictions

IBM Eserver zSeries
900

This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

TR-31 Import

Chapter 2. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-15, information 15

Table 4. TR-31 export required hardware (continued)

Server

Required
cryptographic
hardware Restrictions

IBM System z10 EC

IBM System z10 BC

This service is not supported.

z196 Crypto Express3
Coprocessor

TR-31 key support requires the Sept. 2011 or
later LIC.

TR-31 Optional Data Read (CSNBT31R and CSNET31R)
A TR-31 key block can hold optional fields which are securely bound to the key
block using the integrated MAC. The optional blocks may either contain
information defined in the TR-31 standard, or they may contain proprietary data. A
separate range of optional block identifiers is reserved for use with proprietary
blocks.

Note that some of the parameters are only used with keyword INFO and others
are only used with keyword DATA.

The callable service name for AMODE(64) is CSNET31R.

Format

CSNBT31R(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
TR31_key_block_length,
TR31_key_block,
opt_block_id,
num_opt_blocks,
opt_block_ids,
opt_block_lengths,
opt_block_data_length,
opt_block_data)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems.

TR-31 Import

16 TR-31 Optional Data Read Update for CCA Compliance — APAR OA38616

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 1

rule_array

Direction: Input Type: String

The rule_array contains keywords that provide control information to the
callable service. The keywords are 8 bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keywords for
this callable service are shown in the following table.

Table 5. Keywords for TR-31 Optional Data Read Rule Array Control Information

Keyword Meaning

Operation – one required

INFO Return information about the optional blocks in the TR-31
key block.

DATA Return the data contained in a specified optional block in the
TR-31 key block.

TR31_key_block_length

Direction: Input Type: Integer

This parameter specifies the length of the TR31_key_block parameter, in bytes.
The parameter may specify a length that is greater than the size of the key
block however it can never be greater than the size of the buffer where the key
block resides. This value must be between 16 and 9992 inclusive.

TR31_key_block

Direction: Input Type: String

This parameter contains the TR-31 key block that is to be parsed. The length of
the TR-31 block is specified using parameter TR31_key_block_length.

opt_block_id

Direction: Input Type: String

This parameter is only used with option DATA. It is ignored for others. It
specifies a 2-byte string which contains the identifier of the block from which
the application is requesting data. The callable service will locate this optional

TR-31 Optional Data Read

Chapter 2. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-15, information 17

block within the TR-31 structure and copy the data from that optional block
into the returned opt_block_data buffer. If the specified optional block is not
found in the TR-31 key block, an error will occur.

num_opt_blocks

Direction: Input Type: Integer

This parameter specifies the number of optional blocks in the TR-31 key block.
The value is compared to the corresponding value in the TR-31 block header
and if they do not match the callable service fails with an error. This parameter
is only used for option INFO and is not examined for any other options.

opt_block_ids

Direction: Output Type: String Array

This parameter contains an array of two-byte string values. Each of these
values is the identifier (ID) of one of the optional blocks contained in the TR-31
key block. The callable service returns a list containing the ID of each optional
block that is in the TR-31 block, and the list is in the order that the optional
blocks appear in the TR-31 header. The total length of the returned list will be
two times the number of optional blocks, and the caller must supply a buffer
with a length at least twice the value it passes in parameter num_opt_blocks.
This parameter is only used for option INFO and is not examined for any
other options.

opt_block_lengths

Direction: Output Type: Array

This parameter contains an array of 16-bit integer values. Each of these values
is the length in bytes of one of the optional blocks contained in the TR-31 key
block. The callable service returns a list containing the length of each optional
block that is in the TR-31 block, and the list is in the order that the optional
blocks appear in the TR-31 header. The total length of the returned list will be
two times the number of optional blocks and the application program must
supply a buffer with a length at least two times the value it passes in
parameter num_opt_blocks. This parameter is only used for option INFO and is
not examined or altered for any other options.

opt_block_data_length

Direction: Input/Output Type: Integer

This parameter specifies the length for parameter opt_block_data. On input it
must be set to the length of the buffer provided by the application program,
and on output it is updated to contain the length of the returned optional
block data, in bytes. It is only used for option DATA.

opt_block_data

Direction: Output Type: String

This parameter contains a buffer where the callable service stores the data it
reads from the specified optional block. The buffer must have enough space for
the data, as indicated by the input value of parameter opt_block_data_length.
If not an error occurs and no changes are made to the contents of the buffer. If
the size of the buffer is sufficient, the data is copied to the buffer and its length
is stored in parameter opt_block_data_length. It is only used for option DATA
and is not examined or altered for any other options.

TR-31 Optional Data Read

18 TR-31 Optional Data Read Update for CCA Compliance — APAR OA38616

|

|||
|
|
|
|
|
|
|
|
|
|

Restrictions
None

Usage Notes
Unless otherwise noted, all String parameters that are either written to, or read
from, a TR-31 key block will be in EBCDIC format. Input parameters are converted
to ASCII before being written to the TR-31 key block and output parameters are
converted to EBCDIC before being returned . TR-31 key blocks themselves are
always in printable ASCII format as required by the ANSI TR-31 specification.

The TR-31 Optional Data Read callable service (CSNBT31R and CSNET31R) can be
used in conjunction with the TR-31 Parse callable service (CSNBT31P and
CSNET31P) to obtain both the standard header fields and any optional data blocks
from the key block. This is generally a three-step process.
1. Use the TR-31 Parse callable service to determine how many optional blocks

are in the TR-31 token. This is returned in the num_opt_blocks parameter.
2. Use keyword INFO with the TR-31 Optional Data Read callable service to

obtain lists of the optional block identifiers and optional block lengths. Your
buffers must be large enough to hold the returned data, but the required size
can be determined from the number of blocks obtained in the step above.

3. Use keyword DATA with the TR-31 Optional Data Read callable service to
obtain the data for a particular optional block, specified by the block identifier.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 6. TR-31 Optional Data Read required hardware

Server

Required
cryptographic
hardware Restrictions

IBM Eserver zSeries
900

None

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None

IBM System z9 EC

IBM System z9 BC

None

IBM System z10 EC

IBM System z10 BC

None

z196 None

TR-31 Optional Data Read

Chapter 2. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-15, information 19

	Contents
	Chapter 1. Overview
	Chapter 2. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-15, information
	TR-31 Import (CSNBT31I and CSNET31I)
	Format
	Parameters
	Restrictions
	Usage Notes

	TR-31 Optional Data Read (CSNBT31R and CSNET31R)
	Format
	Parameters
	Restrictions
	Usage Notes

