
z/OSCryptographic Services
Integrated Cryptographic Service Facility

PKCS #11 Enhancements for IPsec and
Large Keys — APAR OA34403
(May 16, 2011)

���

ii PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Contents

Chapter 1. Overview 1

Chapter 2. Update of z/OS Cryptographic
Services ICSF Writing PKCS #11
Applications, SA23-2231-03, information. 3
Key types and mechanisms supported 3
Objects and attributes supported. 9

Chapter 3. Update of z/OS
Cryptographic Services ICSF
Application Programmer’s Guide,
SA22-7522-14, information 23
PKCS #11 Derive key (CSFPDVK) 23

Format 23
Parameters 23
Authorization 27
Usage Notes 28

PKCS #11 Derive multiple keys (CSFPDMK) . . . 28
Format 29
Parameters 29
Authorization 34
Usage Notes 34

PKCS #11 One-way hash, sign, or verify
(CSFPOWH) 36

Format 36

Parameters 36
Authorization 40
Usage Notes 40

PKCS #11 Private key sign (CSFPPKS) 40
Format 41
Parameters 41
Authorization 43
Usage Notes 43

PKCS #11 Public key verify (CSFPPKV) 43
Format 43
Parameters 43
Authorization 45
Usage Notes 45

Return Codes and Reason Codes 46

Chapter 4. Update of z/OS
Cryptographic Services ICSF System
Programmer’s Guide, SA22-7520-15,
information 47
Format of the token and object records 47

Common section of the token and object records 47
Format of the token-specific section of the token
record 47
Format of the object-specific sections of the token
object records. 48

© Copyright IBM Corp. 2011 iii

iv PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Chapter 1. Overview

This document update describes PKCS #11 enhancements that provide PKCS #11
derived key and RSA signature verify capabilities. This document also describes
support for larger DSA and DH keys, and contains alterations to information
previously presented in the following books:
v z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-02
v z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-12
v z/OS Cryptographic Services ICSF System Programmer's Guide, SA22-7520-15

The preceding books document capabilities provided by FMID HCR7780, and
support z/OS Version 1 Release 12.

Technical changes or additions related to the PKCS #11 enhancements in this
document update are indicated by a vertical line to the left of the change.

These updates relate to the enhancements made to the ICSF product by the
application of the PTF for APAR OA34403.

Systems running with ICSF FMID HCR7770 that will share a TKDS with an
HCR7780 system that has the PTF for APAR OA34403 applied and is using the
new support for larger DSA and DH keys, need to have coexistence support
enabled. This coexistence support can be enabled with the PTF for APAR OA34404.

© Copyright IBM Corp. 2011 1

2 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Chapter 2. Update of z/OS Cryptographic Services ICSF
Writing PKCS #11 Applications, SA23-2231-03, information

This chapter contains updates to the document z/OS Cryptographic Services ICSF
Writing PKCS #11 Applications, SA23-2231-03, for the PKCS #11 enhancements
provided by the PTF for APAR OA34403. Refer to this source document if
background information is needed.

Key types and mechanisms supported
ICSF supports the following PKCS #11 key types (CK_KEY_TYPE). All of these key
types are supported in software. Whether they are also supported in hardware will
depend on the limitations of your cryptographic hardware configuration.
v CKK_AES - key lengths 128, 192, and 256 bits
v CKK_BLOWFISH - key lengths 8 up to 448 bits (in increments of 8 bits)
v CKK_DES
v CKK_DES2
v CKK_DES3
v CKK_DH - key lengths 512 up to 2048 bits (in increments of 64 bits)
v CKK_DSA - key lengths 512 up to 2048 bit prime lengths (in increments of 64

bits)
v CKK_EC (CKK_ECDSA) - key lengths 160 up to 521 bits
v CKK_GENERIC_SECRET - key lengths 8 up to 2048 bits, unless further

restricted by the generation mechanism:
– CKM_DH_PKCS_DERIVE - key lengths 512 up to 2048 bits
– CKM_SSL3_MASTER_KEY_DERIVE - 384-bit key lengths
– CKM_SSL3_MASTER_KEY_DERIVE_DH - 384-bit key lengths
– CKM_SSL3_PRE_MASTER_KEY_GEN - 384-bit key lengths
– CKM_TLS_MASTER_KEY_DERIVE - 384-bit key lengths
– CKM_TLS_MASTER_KEY_DERIVE_DH - 384-bit key lengths
– CKM_TLS_PRE_MASTER_KEY_GEN - 384-bit key lengths

v CKK_RC4 - key lengths 8 up to 2048 bits
v CKK_RSA - key lengths 512 up to 4096 bits

The following table shows the mechanisms supported by different hardware
configurations. All the mechanisms are supported in software, and some may be
available in hardware. If the mechanism is available in hardware, ICSF will use the
hardware mechanism. If the mechanism is not available in hardware, ICSF will use
the software mechanism. The following table also shows the flags returned by the
C_GetMechanismInfo function in the CK_MECHANISM_INFO structure. Whether
or not the CKF_HW flag is returned in the CK_MECHANISM_INFO structure
indicates whether or not the mechanism is supported in the hardware.

Table 1. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_RSA_PKCS_KEY_PAIR_GEN Bits [CKF_HW] CKF_GENERATE_KEY_PAIR

CKM_DES_KEY_GEN not applicable [CKF_HW] CKF_GENERATE

© Copyright IBM Corp. 2011 3

|

Table 1. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO) (continued)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_DES2_KEY_GEN not applicable [CKF_HW] CKF_GENERATE

CKM_DES3_KEY_GEN not applicable [CKF_HW] CKF_GENERATE

CKM_RSA_PKCS6 Bits [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP CKF_SIGN
CKF_VERIFY CKF_SIGN_RECOVER
CKF_VERIFY_RECOVER

CKM_RSA_X_5096, 7 Bits [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_SIGN CKF_VERIFY
CKF_SIGN_RECOVER
CKF_VERIFY_RECOVER

CKM_MD2_RSA_PKCS6, 7 Bits CKF_SIGN CKF_VERIFY

CKM_MD5_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA1_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA224_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA256_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA384_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA512_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_DES_ECB3 not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES_CBC not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES_CBC_PAD not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_DES3_ECB3, 4 not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES3_CBC4 not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES3_CBC_PAD4 not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_SHA_1 not applicable [CKF_HW] CKF_DIGEST

CKM_SHA224 not applicable [CKF_HW] CKF_DIGEST

CKM_SHA256 not applicable [CKF_HW] CKF_DIGEST

CKM_SHA384 not applicable [CKF_HW] CKF_DIGEST

CKM_SHA512 not applicable [CKF_HW] CKF_DIGEST

CKM_RIPEMD160 not applicable CKF_DIGEST

CKM_MD2 not applicable CKF_DIGEST

CKM_MD5 not applicable [CKF_HW] CKF_DIGEST

CKM_AES_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

CKM_AES_ECB4 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_AES_CBC4 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_AES_CBC_PAD4 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_AES_GCM4 Bytes CKF_ENCRYPT CKF_DECRYPT

CKM_DSA_KEY_PAIR_GEN Bits CKF_GENERATE_KEY_PAIR

CKM_DH_PKCS_KEY_PAIR_GEN Bits CKF_GENERATE_KEY_PAIR

4 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 1. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO) (continued)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_EC_KEY_PAIR_GEN Bits CKF_GENERATE_KEY_PAIR CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_DSA_PARAMETER_GEN Bits CKF_GENERATE

CKM_DH_PKCS_PARAMETER_GEN Bits CKF_GENERATE

CKM_BLOWFISH_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

CKM_RC4_KEY_GEN Bits [CKF_HW] CKF_GENERATE

CKM_SSL3_PRE_MASTER_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

CKM_TLS_PRE_MASTER_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

CKM_GENERIC_SECRET_KEY_GEN Bits [CKF_HW] CKF_GENERATE

CKM_BLOWFISH_CBC5 Bytes CKF_ENCRYPT CKF_DECRYPT

CKM_RC45 Bits CKF_ENCRYPT CKF_DECRYPT

CKM_DSA_SHA1 Bits CKF_SIGN CKF_VERIFY

CKM_DSA Bits CKF_SIGN CKF_VERIFY

CKM_ECDSA_SHA1 Bits CKF_SIGN CKF_VERIFY CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_ECDSA Bits CKF_SIGN CKF_VERIFY CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_MD5_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA_1_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA224_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA256_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA384_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA512_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SSL3_MD5_MAC Bits CKF_SIGN CKF_VERIFY

CKM_SSL3_SHA1_MAC Bits CKF_SIGN CKF_VERIFY

CKM_DH_PKCS_DERIVE Bits CKF_DERIVE

CKM_ECDH1_DERIVE Bits CKF_DERIVE CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_SSL3_MASTER_KEY_DERIVE Bytes CKF_DERIVE

CKM_SSL3_MASTER_KEY_DERIVE_DH Bytes CKF_DERIVE

CKM_SSL3_KEY_AND_MAC_DERIVE not applicable CKF_DERIVE

CKM_TLS_MASTER_KEY_DERIVE Bytes CKF_DERIVE

CKM_TLS_MASTER_KEY_DERIVE_DH Bytes CKF_DERIVE

CKM_TLS_KEY_AND_MAC_DERIVE not applicable CKF_DERIVE

CKM_TLS_PRF not applicable CKF_DERIVE

Footnotes for table Table 1 on page 3.

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-03, information 5

1 The PKCS11 standard designates two ways of implementing Elliptic Curve
Cryptography, nicknamed Fp and F2

m. z/OS PKCS11 supports the Fp variety only.

2 ANSI X9.62 has the following ASN.1 definition for Elliptic Curve domain
parameters:

Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve OBJECT IDENTIFIER,
implicitlyCA NULL }

z/OS PKCS11 supports the specification of CKA_EC_PARAMS attribute using the
namedCurved CHOICE. The following NIST-recommended named curves are
supported:
v secp192r1 – { 1 2 840 10045 3 1 1 }
v secp224r1 – { 1 3 132 0 33 }
v secp256r1 – { 1 2 840 10045 3 1 7 }
v secp384r1 – { 1 3 132 0 34 }
v secp521r1 – { 1 3 132 0 35 }

The following Brainpool-defined named curves are supported:
v brainpoolP160r1 – { 1 3 36 3 3 2 8 1 1 1 }
v brainpoolP192r1 – { 1 3 36 3 3 2 8 1 1 3 }
v brainpoolP224r1 – { 1 3 36 3 3 2 8 1 1 5 }
v brainpoolP256r1 – { 1 3 36 3 3 2 8 1 1 7 }
v brainpoolP320r1 – { 1 3 36 3 3 2 8 1 1 9 }
v brainpoolP384r1 – { 1 3 36 3 3 2 8 1 1 11 }
v brainpoolP512r1 – { 1 3 36 3 3 2 8 1 1 13 }

In addition, z/OS PKCS11 has limited support for the ecParameters CHOICE.
When specified, the DER encoding must contain the optional cofactor field and
must not contain the optional Curve.seed field. Also, calls to C_GetAttributeValue
to retrieve the CKA_EC_PARAMS attribute will always return the value in the
namedCurve form regardless of how the attribute was specified when the object
was created. Due to these limitations, the CKF_EC_ECPARAMETERS flag is not
turned on for the applicable mechanisms.

3 Mechanism not present on a CCF system.

4 Mechanism not present on a system that is export controlled.

5 Mechanism limited to 56-bit on a system that is export controlled.

6 In general, z/OS PKCS #11 expects RSA private keys to be in Chinese Remainder
Theorem (CRT) format. However, for Decrypt, Sign, or UnwrapKey (z890, z990 or
higher only) where one of the following is true, the shorter Modulus Exponent
(ME) is permitted:
v There is an accelerator present and the key is less than or equal to 2048 bits in

length.
v There is a coprocessor present and the key is less than or equal to 1024 bits in

length and FIPS restrictions don’t apply.

7 RSA public or private keys that have a public exponent greater than 8 bytes in
length, or a modulus that has an odd number of bits, can only be used when an

6 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

accelerator is present or a coprocessor is present and FIPS restrictions don’t apply.
If only an accelerator is present, the key must be less than or equal to 2048 bits in
length.

The following table lists the mechanisms supported by specific cryptographic
hardware. When a particular mechanism is not available in hardware, ICSF will
use the software implementation of the mechanism.

Table 2. Mechanisms supported by specific cryptographic hardware

Machine type and
cryptographic hardware Mechanisms supported Notes

z800, z900 - CCF CKM_DES_KEY_GEN
CKM_DES2_KEY_GEN
CKM_DES3_KEY_GEN
CKM_RSA_PKCS
CKM_RSA_X_509
CKM_MD5_RSA_PKCS
CKM_SHA1_RSA_PKCS
CKM_DES_CBC
CKM_DES_CBC_PAD
CKM_DES3_CBC
CKM_DES3_CBC_PAD
CKM_SHA_1
CKM_BLOWFISH_KEY_GEN
CKM_RC4_KEY_GEN
CKM_AES_KEY_GEN
CKM_SSL3_PRE_MASTER_KEY_GEN
CKM_TLS_PRE_MASTER_KEY_GEN
CKM_GENERIC_SECRET_KEY_GEN

This is the base set.

RSA private key operations
limited to 1024 bits in length
(maximum) and no key pair
generation capability.

z800, z900 - PCICC Base set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN

RSA private key operations
limited to 2048 bits in length
(maximum).

z890, z990 - PCIXCC Base set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB

RSA private key operations
limited to 2048 bits in length
(maximum).

z890, z990 - CEX2C Base set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB

RSA private key operations
limited to 2048 bits in length
(maximum).

z9® - CEX2C Base set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB
CKM_SHA224_RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA224
CKM_SHA256
CKM_AES_CBC
CKM_AES_CBC_PAD
CKM_AES_ECB

AES key operations limited to 128
bits in length (maximum).

RSA private key operations
limited to 4096 bits in length
(maximum).

z10 - CEX2C or CEX3C z9 CEX2C set plus:
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_SHA384
CKM_SHA512

AES key operations limited to 256
bits in length (maximum).

RSA private key operations
limited to 4096 bits in length
(maximum).

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-03, information 7

Table 2. Mechanisms supported by specific cryptographic hardware (continued)

Machine type and
cryptographic hardware Mechanisms supported Notes

z196 - CEX3C z9 CEX2C set plus:
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_SHA384
CKM_SHA512

AES key operations limited to 256
bits in length (maximum).

RSA private key operations
limited to 4096 bits in length
(maximum).

The following table lists the algorithms and uses (by mechanism) that are not
allowed when operating in compliance with FIPS 140-2.

Table 3. Restricted algorithms and uses when running in compliance with FIPS 140-2

Algorithm Mechanisms Usage disallowed

RIPEMD CKM_RIPEMD160 All

MD2 CKM_MD2, CKM_MD2_RSA_PKCS All

MD5 CKM_MD5, CKM_MD5_RSA_PKCS,
CKM_MD5_HMAC

All

SSL3 CKM_SSL3_MD5_MAC,
CKM_SSL3_SHA1_MAC,
CKM_SSL3_MASTER_KEY_DERIVE,
CKM_SSL3_MASTER_KEY_DERIVE_DH,
CKM_SSL3_KEY_AND_MAC_DERIVE

All

TLS CKM_TLS_MASTER_KEY_DERIVE,
CKM_TLS_MASTER_KEY_DERIVE_DH,
CKM_TLS_KEY_AND_MAC_DERIVE

Base key sizes less than 10 bytes

Diffie Hellman CKM_DH_PKCS_DERIVE Prime size less than 1024 bits

CKM_DH_PKCS_PARAMETER_GEN Prime sizes other than 1024 or
2048 bits

DSA CKM_DSA_SHA1, CKM_DSA Prime sizes less than 1024 bits

CKM_DSA_PARAMETER_GEN,
CKM_DSA_KEY_PAIR_GEN or Sign

Combinations other than the
following:

v Prime size = 1024 bits, subprime
size = 160 bits

v Prime size = 2048 bits, subprime
size = 224 bits, or 256 bits

Single DES CKM_DES_ECB, CKM_DES_CBC,
CKM_DES_CBC_PAD

All

Triple DES CKM_DES3_ECB, CKM_DES3_CBC,
CKM_DES3_CBC_PAD

Two key Triple DES

Blowfish CKM_BLOWFISH_KEY_GEN,
CKM_BLOWFISH_CBC

All

RC4 CKM_RC4 All

RSA CKM_RSA_X_509 All

CKM_RSA_PKCS Key sizes less than 1024 bits

CKM_RSA_PKCS_KEY_PAIR_GEN or Sign
without an active accelerator

Key sizes that are less than 1024
bits or not a multiple of 256 bits
or public key exponents less than
0x010001

8 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

|||

||
|

|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|

Table 3. Restricted algorithms and uses when running in compliance with FIPS 140-2 (continued)

Algorithm Mechanisms Usage disallowed

ECC CKM_ECDSA, CKM_ECDSA_SHA1,
CKM_ECDH1_DERIVE

Brainpool curves

HMAC CKM_SHA_1, CKM_SHA224, CKM_SHA256,
CKM_SHA384, CKM_SHA512

Base key sizes less than one half
the output size

AES GCM CKM_AES_GCM GCM encryption or GMAC
generation with externally
generated initialization vectors.
Initialization vector lengths other
than 12 bytes. Tag byte sizes 4 and
8

Objects and attributes supported
ICSF supports the following PKCS #11 object types (CK_OBJECT_CLASS):
v CKO_DATA
v CKO_CERTIFICATE - CKC_X_509 only
v CKO_DOMAIN_PARAMETERS - CKK_DSA and CKK_DH only
v CKO_PUBLIC_KEY - CKK_RSA, CKK_EC (CKK_ECDSA), CKK_DSA, and

CKK_DH only
v CKO_PRIVATE_KEY - CKK_RSA, CKK_EC (CKK_ECDSA), CKK_DSA, and

CKK_DH only
v CKO_SECRET_KEY - CKK_DES, CKK_DES2, CKK_DES3, CKK_AES,

CKK_BLOWFISH, and CKK_RC4, CKK_GENERIC_SECRET only

The footnotes described in Table 4 are taken from the PKCS #11 specification and
apply to the attribute tables that follow.

Table 4. Common footnotes for object attribute tables

Footnote
number Footnote meaning

1 Must be specified when object is created with C_CreateObject.

2 Must not be specified when object is created with C_CreateObject.

3 Must be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

4 Must not be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

5 Must be specified when object is unwrapped with C_UnwrapKey.

6 Must not be specified when object is unwrapped with C_UnwrapKey.

7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to TRUE or its
CKA_EXTRACTABLE attribute set to FALSE.

8 May be modified after object is created with a C_SetAttributeValue call, or in the process of copying
object with a C_CopyObject call. However, it is possible that a particular token may not permit
modification of the attribute, or may not permit modification of the attribute during the course of a
C_CopyObject call.

9 Default value is token-specific, and may depend on the values of other attributes.

10 Can only be set to TRUE by the SO user.

11 May be changed during a C_CopyObject call but not on a C_SetAttributeValue call

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-03, information 9

Table 5. Data object attributes that ICSF supports. For the meanings of the footnotes, see Table 4 on page 9.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the
object is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

An application can specify the value when the
object is created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is TRUE.

An application can specify the value when the
object is created (or generated) only.

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the
object is created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Limited to 32
characters. Default is empty. The string is assumed
to come from the IBM1047 code page.

An application can set or change the value at any
time.

CKA_ID Byte array Key or other identifier. Default is empty.

An application can set or change the value at any
time.

CKA_VALUE Byte array Any value. Default is empty.

An application can set or change the value at any
time.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come
from the IBM1047 code page.

An application can set or change the value at any
time.

CKA_OBJECT_ID Byte array DER-encoded OID. Default is empty.

An application can set or change the value at any
time.

Table 6. X.509 certificate object attributes that ICSF supports. For the meanings of the footnotes, see Table 4 on
page 9.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the
object is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

An application can specify the value when the
object is created (or generated) only.

10 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 6. X.509 certificate object attributes that ICSF supports (continued). For the meanings of the footnotes, see
Table 4 on page 9.

Attribute Data type Notes

CKA_PRIVATE11 CK_BBOOL Default value on create is FALSE.

An application can specify the value when the
object is created (or generated) only.

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the
object is created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Limited to 32
characters. Default is empty. The string is assumed
to come from the IBM1047 code page.

An application can set or change the value at any
time.

CKA_CERTIFICATE_TYPE CK_CERTIFICATE_TYPE Always CKC_X_509.

An application can specify the value when the
object is created (or generated) only.

CKA_TRUSTED CK_BBOOL Always set to TRUE.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_SUBJECT Byte array DER-encoding as found in certificate. If not
specified, ICSF sets it from the certificate. If
specified, ICSF enforces that it matches the subject
in the certificate.

An application can specify the value when the
object is created (or generated) only.

CKA_ID Byte array Key identifier. Default is empty.

An application can set or change the value at any
time.

CKA_ISSUER Byte array DER-encoding as found in certificate. If not
specified, ICSF sets from the certificate. If specified,
ICSF enforces that it matches the issuer in the
certificate

An application can specify the value when the
object is created (or generated) only.

CKA_SERIAL_NUMBER Byte array DER-encoding as found in certificate. If not
specified, ICSF sets from the certificate. If specified,
ICSF enforces that it matches the serial number in
the certificate.

An application can specify the value when the
object is created (or generated) only.

CKA_VALUE Byte array This is the DER-encoding of the certificate.
(Required.)

An application can specify the value when the
object is created (or generated) only.

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-03, information 11

Table 6. X.509 certificate object attributes that ICSF supports (continued). For the meanings of the footnotes, see
Table 4 on page 9.

Attribute Data type Notes

CKA_CERTIFICATE_CATEGORY CK_ULONG Categorization of the certificate:
1 Token user
2 Certificate authority
3 Other entity
If not specified, ICSF sets it to 2 if the certificate has
the BasicConstraints CA flag on. Otherwise it is not
set.
Note: If specified (or defaulted) to 2, the certificate
is considered a CA certificate. The user must have
appropriate authority.

An application can set or change the value at any
time.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the
object. Default is empty. The string is assumed to
come from the IBM1047 code page.

An application can specify the value when the
object is created (or generated) only.

CKA_IBM_DEFAULT (vendor
specific attribute - 0x80000002)

CK_BBOOL Default flag. Default is FALSE.

An application can set or change the value at any
time.

Table 7. Secret key object attributes that ICSF supports. For the meanings of the footnotes, see Table 4 on page 9.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the
object is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

An application can specify the value when the
object is created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is TRUE.

An application can specify the value when the
object is created (or generated) only.

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the
object is created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Limited to 32
characters. Default is empty. The string is assumed
to come from the IBM1047 code page.

An application can set or change the value at any
time.

CKA_ID Byte array Default is empty.

An application can set or change the value at any
time.

12 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 7. Secret key object attributes that ICSF supports (continued). For the meanings of the footnotes, see Table 4
on page 9.

Attribute Data type Notes

CKA_KEY_TYPE1, 5 CK_KEY_TYPE Type of key: CKK_DES, CKK_DES2, CKK_DES3,
CKK_BLOWFISH, CKK_RC4,
CKK_GENERIC_SECRET, or CKK_AES.

An application can specify the value when the
object is created (or generated) only.

CKA_START_DATE8 CK_DATE Start date for the key. Default is empty.

An application can set or change the value at any
time.

CKA_END_DATE8 CK_DATE End date for the key. Default is empty.

An application can set or change the value at any
time.

CKA_DERIVE8 CK_BBOOL TRUE if key supports key derivation (other keys can
be derived from this one). Default is TRUE.

An application can set or change the value at any
time.

CKA_LOCAL2, 4, 6 CK_BBOOL TRUE only if key was generated locally.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_GEN_MECHANISM2, 4, 6 CK_MECHANISM_TYPE Identifier of the mechanism used to generate the
key. Always CK_UNAVAILABLE_INFORMATION.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_ENCRYPT8 CK_BBOOL TRUE if key supports encryption9. Default is TRUE.

An application can set or change the value at any
time.

CKA_VERIFY8 CK_BBOOL TRUE if key supports verification where the
signature is an appendix to the data. Default is
TRUE.

An application can set or change the value at any
time.

CKA_WRAP8 CK_BBOOL TRUE if key supports wrapping (can be used to
wrap other keys).9 Default is TRUE.

An application can set or change the value at any
time.

CKA_DECRYPT8 CK_BBOOL TRUE if key supports decryption.9 Default is TRUE.

An application can set or change the value at any
time.

CKA_SIGN8 CK_BBOOL TRUE if key supports signatures where the
signature is an appendix to the data.9 Default is
TRUE.

An application can set or change the value at any
time.

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-03, information 13

Table 7. Secret key object attributes that ICSF supports (continued). For the meanings of the footnotes, see Table 4
on page 9.

Attribute Data type Notes

CKA_UNWRAP8 CK_BBOOL TRUE if key supports unwrapping (can be used to
unwrap other keys)9. Default is TRUE.

An application can set or change the value at any
time.

CKA_EXTRACTABLE8 CK_BBOOL TRUE if key is extractable. Caller can change from
TRUE to FALSE only. Default is TRUE.

An application can set or change the value, as per
PKCS #11 restrictions.

CKA_SENSITIVE8 CK_BBOOL TRUE if key is sensitive. Caller can change from
FALSE to TRUE only. Default is FALSE.

An application can set or change the value, as per
PKCS #11 restrictions.

CKA_ALWAYS_SENSITIVE2, 4, 6 CK_BBOOL TRUE if key has always had the CKA_SENSITIVE
attribute set to TRUE.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_NEVER_EXTRACTABLE2, 4,

6

CK_BBOOL TRUE if key has never had the
CKA_EXTRACTABLE attribute set to TRUE.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_VALUE1, 4, 6, 7 Byte array The key.

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

CKA_VALUE_LEN2, 3 CK_ULONG Length of the key in bytes (AES, Blowfish, RC4, and
Generic secret keys only).

An application can specify the value when the
object is generated only.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come
from the IBM1047 code page.

An application can specify the value when the
object is created (or generated) only.

CKA_IBM_FIPS140 (vendor
specific attribute 0x80000005)

CK_BBOOL TRUE if the key must only be used in a FIPS 140-2
compliant fashion. The default value is FALSE.

An application can specify the value when the
object is created (or generated) only.

14 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 8. Public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 4 on page 9.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the object
is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened to
the TKDS if TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is FALSE.

An application can specify the value when the object
is created (or generated) only.

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Limited to 32
characters. Default is empty. The string is assumed
to come from the IBM1047 code page.

An application can set or change the value at any
time.

CKA_TRUSTED CK_BBOOL Always set to TRUE.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_SUBJECT Byte array DER-encoding. Default empty.

An application can set or change the value at any
time.

CKA_ID Byte array Key identifier. Default empty.

An application can set or change the value at any
time.

CKA_KEY_TYPE1, 5 CK_KEY_TYPE Type of key. CKK_RSA, CKK_EC, CKK_DSA, and
CKK_DH only.

An application can specify the value when the object
is created (or generated) only.

CKA_START_DATE8 CK_DATE Start date for the key. Default empty.

An application can set or change the value at any
time.

CKA_END_DATE8 CK_DATE End date for the key. Default empty.

An application can set or change the value at any
time.

CKA_DERIVE8 CK_BBOOL TRUE if key supports key derivation (if other keys
can be derived from this one). Default is TRUE.

An application can set or change the value at any
time.

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-03, information 15

Table 8. Public key object attributes that ICSF supports (continued). For the meanings of the footnotes, see Table 4
on page 9.

Attribute Data type Notes

CKA_LOCAL2, 4, 6 CK_BBOOL TRUE only if key was generated locally.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_KEY_GEN_MECHANISM2,

4, 6

CK_MECHANISM_TYPE Identifier of the mechanism used to generate the key.
Always CK_UNAVAILABLE_INFORMATION.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_ENCRYPT8 CK_BBOOL TRUE if key supports encryption.9 Default is TRUE.

An application can set or change the value at any
time.

CKA_VERIFY8 CK_BBOOL TRUE if key supports verification where the
signature is an appendix to the data. Default is
TRUE.

An application can set or change the value at any
time.

CKA_VERIFY_RECOVER8 CK_BBOOL TRUE if key supports verification where the data is
recovered from the signature.9 Default is TRUE.

An application can set or change the value at any
time.

CKA_WRAP8 CK_BBOOL TRUE if key supports wrapping (can be used to
wrap other keys).9 Default is TRUE.

An application can set or change the value at any
time.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come
from the IBM1047 code page.

An application can specify the value when the object
is created (or generated) only.

CKA_IBM_FIPS140 (vendor
specific attribute 0x80000005)

CK_BBOOL TRUE if the key must only be used in a FIPS 140-2
compliant fashion. The default value is FALSE.

An application can specify the value when the object
is created (or generated) only.

Table 9. RSA public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 4 on page
9.

Attribute Data type Notes

CKA_MODULUS1, 4 Big integer Modulus n

An application can specify the value when the
object is created (or generated) only.

CKA_MODULUS_BITS2, 3 CK_ULONG Length in bits of modulus n

An application can specify the value when the
object is created (or generated) only.

16 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 9. RSA public key object attributes that ICSF supports (continued). For the meanings of the footnotes, see
Table 4 on page 9.

Attribute Data type Notes

CKA_PUBLIC_EXPONENT1 Big integer Public exponent e

An application can specify the value when the
object is created (or generated) only.

Table 10. DSA public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 4 on
page 9.

Attribute Data type Notes

CKA_PRIME1,3 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_SUBPRIME1,3 Big integer Subprime q (160 bits for p <= 1024 bits, 224 bits or
256 bits for p > 1024 bits)

CKA_BASE1,3 Big integer Base g

CKA_VALUE1,4 Big integer Public value y

Table 11. Diffie-Hellman public key object attributes that ICSF supports. For the meanings of the footnotes, see
Table 4 on page 9.

Attribute Data type Notes

CKA_PRIME1,3 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_BASE1,3 Big integer Base g

CKA_VALUE1,4 Big integer Public value y

Table 12. Elliptic Curve public key object attributes that ICSF supports. For the meanings of the footnotes, see
Table 4 on page 9.

Attribute Data type Notes

CKA_EC_PARAMS1,3

(CKA_ECDSA_PARAMS)

Byte Array DER-encoding of an ANSI X9.62 Parameters value

CKA_EC_POINT1,4 Byte Array DER-encoding of an ANSI X9.62 ECPoint value Q

Table 13. Private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 4 on page 9.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the
object is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

An application can specify the value when the
object is created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is TRUE.

An application can specify the value when the
object is created (or generated) only.

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-03, information 17

|

|||
|

Table 13. Private key object attributes that ICSF supports (continued). For the meanings of the footnotes, see
Table 4 on page 9.

Attribute Data type Notes

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the
object is created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Limited to 32
characters. Default is empty. The string is assumed
to come from the IBM1047 code page.

An application can set or change the value at any
time.

CKA_SUBJECT Byte array DER-encoding.

An application can set or change the value at any
time.

CKA_ID Byte array Default is empty.

An application can set or change the value at any
time.

CKA_KEY_TYPE1, 5 CK_KEY_TYPE Type of key. CKK_EC, CKK_RSA, CKK_DSA, and
CKK_DH only.

An application can specify the value when the
object is created (or generated) only.

CKA_START_DATE8 CK_DATE Start date for the key. Default empty.

An application can set or change the value at any
time.

CKA_END_DATE8 CK_DATE End date for the key. Default empty.

An application can set or change the value at any
time.

CKA_DERIVE8 CK_BBOOL TRUE if key supports key derivation (if other keys
can be derived from this one). Default is TRUE.

An application can set or change the value at any
time.

CKA_LOCAL2, 4 ,6 CK_BBOOL TRUE only if key was generated locally.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_KEY_GEN_
MECHANISM2, 4, 6

CK_MECHANISM_TYPE Identifier of the mechanism used to generate the key
material. Always
CK_UNAVAILABLE_INFORMATION.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_DECRYPT8 CK_BBOOL TRUE if key supports decryption.9 Default is TRUE.

An application can set or change the value at any
time.

18 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 13. Private key object attributes that ICSF supports (continued). For the meanings of the footnotes, see
Table 4 on page 9.

Attribute Data type Notes

CKA_SIGN8 CK_BBOOL TRUE if key supports signatures where the
signature is an appendix to the data.9 Default is
TRUE.

An application can set or change the value at any
time.

CKA_SIGN_RECOVER8 CK_BBOOL TRUE if key supports signatures where the data can
be recovered from the signature.9 Default is TRUE.

An application can set or change the value at any
time.

CKA_UNWRAP8 CK_BBOOL TRUE if key supports unwrapping (can be used to
unwrap other keys).9 Default is TRUE.

An application can set or change the value at any
time.

CKA_EXTRACTABLE8 CK_BBOOL TRUE if key is extractable. Default is TRUE.

An application can set or change the value, as per
PKCS #11 restrictions. Caller can change from TRUE
to FALSE only.

CKA_SENSITIVE8 CK_BBOOL TRUE if key is sensitive. Default is FALSE.

An application can set or change the value, as per
PKCS #11 restrictions. Caller can change from
FALSE to TRUE only.

CKA_ALWAYS_SENSITIVE2,4, 6 CK_BBOOL TRUE if key has always had the CKA_SENSITIVE
attribute set to TRUE.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_NEVER_EXTRACTABLE2,4,

6

CK_BBOOL TRUE if key has never had the
CKA_EXTRACTABLE attribute set to TRUE.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come
from the IBM1047 code page.

An application can specify the value when the
object is created (or generated) only.

CKA_IBM_FIPS140 (vendor
specific attribute 0x80000005)

CK_BBOOL TRUE if the key must only be used in a FIPS 140-2
compliant fashion. The default value is FALSE.

An application can specify the value when the
object is created (or generated) only.

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-03, information 19

Table 14. RSA private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 4 on
page 9.

Attribute Data type Notes

CKA_MODULUS1, 4, 6 Big integer Modulus n

An application can specify the value when the
object is created (or generated) only.

CKA_PUBLIC_EXPONENT4, 6 Big integer Public exponent e

An application can specify the value when the
object is created (or generated) only.

CKA_PRIVATE_EXPONENT1, 4,6 ,7 Big integer Private exponent d

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

CKA_PRIME_14, 6, 7 Big integer Prime p

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

CKA_PRIME_24, 6, 7 Big integer Prime q

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

CKA_EXPONENT_14, 6, 7 Big integer Private exponent d modulo p-1

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

CKA_EXPONENT_24, 6, 7 Big integer Private exponent d modulo q-1

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

CKA_COEFFICIENT4, 6, 7 Big integer CRT coefficient q-1 mod p

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

Table 15. DSA private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 4 on
page 9.

Attribute Data type Notes

CKA_PRIME1,4,6 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_SUBPRIME1,4,6 Big integer Subprime q (160 bits for p <= 1024 bits, 224 bits or
256 bits for p > 1024 bits)

CKA_BASE1,4,6 Big integer Base g

CKA_VALUE1,4,6,7 Big integer Private value x

20 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

|

|||
|

Table 16. Diffie-Hellman private key object attributes that ICSF supports. For the meanings of the footnotes, see
Table 4 on page 9.

Attribute Data type Notes

CKA_PRIME1,4,6 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_BASE1,4,6 Big integer Base g

CKA_VALUE1,4,6,7 Big integer Private value x

CKA_VALUE_BITS2,6 CK_ULONG Length in bits of private value x. For non-FIPS or
when prime bit size = 1024, the default is 160. For
FIPS prime bit size = 2048, the default is 256

Table 17. Elliptic Curve private key object attributes that ICSF supports. For the meanings of the footnotes, see
Table 4 on page 9.

Attribute Data type Notes

CKA_EC_PARAMS1,4,6

(CKA_ECDSA_PARAMS)

Byte Array DER-encoding of an ANSI X9.62 Parameters value

CKA_VALUE1,4,6,7 Big integer ANSI X9.62 private value d

Table 18. Domain parameter object attributes that ICSF supports. For the meanings of the footnotes, see Table 4 on
page 9.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the
object is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

CKA_PRIVATE11 CK_BBOOL Default value on create is FALSE

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE

CKA_LABEL Printable EBCDIC string Application specific nickname. Limit to 32 chars.
Default is empty. The string is assumed to come
from the IBM1047 code page.

CKA_KEY_TYPE1 CK_KEY_TYPE Type of key the domain parameters can be used to
generate. CKK_DSA and CKK_DH only in this
release

CKA_LOCAL2,4 CK_BBOOL TRUE only if the parameters were generated locally

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come
from the IBM1047 code page.

Table 19. DSA domain parameter object attributes that ICSF supports. For the meanings of the footnotes, see
Table 4 on page 9.

Attribute Data type Notes

CKA_PRIME1,4 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_SUBPRIME1,4 Big integer Subprime q (160 bits for p <= 1024 bits, 224 bits or
256 bits for p > 1024 bits)

CKA_BASE1,4 Big integer Base g

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-03, information 21

|||
|
|

|

|||
|

Table 19. DSA domain parameter object attributes that ICSF supports (continued). For the meanings of the
footnotes, see Table 4 on page 9.

Attribute Data type Notes

CKA_PRIME_BITS2,3 CK_ULONG Length of the prime value

Table 20. Diffie-Hellman domain parameter object attributes that ICSF supports. For the meanings of the footnotes,
see Table 4 on page 9.

Attribute Data type Notes

CKA_PRIME1,4 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_BASE1,4 Big integer Base g

CKA_PRIME_BITS2,3 CK_ULONG Length of the prime value

22 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Chapter 3. Update of z/OS Cryptographic Services ICSF
Application Programmer’s Guide, SA22-7522-14, information

This chapter contains updates to the document z/OS Cryptographic Services ICSF
Application Programmer’s Guide, SA22-7522-14, for the PKCS #11 enhancements
provided by the PTF for APAR OA34403. Refer to this source document if
background information is needed.

PKCS #11 Derive key (CSFPDVK)
Use the PKCS #11 Derive Key callable service to generate a new secret key object
from an existing key object. This service does not support any recovery methods.

The deriving key handle must be a handle of an existing PKCS #11 key object. The
CKA_DERIVE attribute for this object must be true. The mechanism keyword
specified in the rule array indicates what derivation protocol to use. The derive
parms list provides additional input data. The format of this list is dependent on
the protocol being used.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPDVK6.

Format

CALL CSFPDVK(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list,
base_key_handle,
parms_list_length,
parms_list,
target_key_handle)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems.

© Copyright IBM Corp. 2011 23

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes-1). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1.

rule array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 21. Keywords for derive key

Keyword Meaning

Mechanism (required)

PKCS-DH Use the Diffie-Hellman PKCS derivation protocol as defined in the
PKCS #11 standard as mechanism CKM_DH_PKCS_DERIVE.

SSL-MS Use the SSL 3.0 Master Secret derivation protocol as defined in the
PKCS #11 standard as mechanism
CKM_SSL3_MASTER_KEY_DERIVE. The SSL protocol version is
also returned. The base key must have been generated according
to the rules for SSL 3.0

SSL-MSDH Use the SSL 3.0 Master Secret for Diffie-Hellman derivation
protocol as defined in the PKCS #11 standard as mechanism
CKM_SSL3_MASTER_KEY_DERIVE_DH.

TLS-MS Use the TLS Master Secret derivation protocol as defined in the
PKCS #11 standard as mechanism
CKM_TLS_MASTER_KEY_DERIVE. The base key must have been
generated according to the rules for TLS 1.0 or TLS 1.1

TLS-MSDH Use the TLS Master Secret for Diffie-Hellman derivation protocol
as defined in the PKCS #11 standard as mechanism
CKM_TLS_MASTER_KEY_DERIVE_DH.

EC-DH Use the Elliptic Curve Diffie-Hellman derivation protocol as
defined in the PKCS #11 standard as mechanism
CKM_ECDH1_DERIVE

PKCS #11 Derive key

24 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 21. Keywords for derive key (continued)

Keyword Meaning

IKESEED Use the IKEv1 or IKEv2 initial seeding protocol to derive a seed
key using a previously derived secret key as the base key.

Using IKE terminology, this mechanism performs either SKEYID =
prf(Ni_b | Nr_b, g^xy) for IKEv1 or SKEYSEED = prf(Ni | Nr, g^ir)
for IKEv2.

Where:

v Ni_b | Nr_b or Ni | Nr - is the concatenated initiator/responder
nonce string

v g^xy or g^ir - is the base key

IKESHARE Use the IKEv1 initial seeding protocol to derive a seed key using a
pre-shared secret key as the base key.

Using IKE terminology, this mechanism performs SKEYID =
prf(pre-shared-key, Ni_b | Nr_b).

Where:

v Ni_b | Nr_b - is the concatenated initiator/responder nonce
string

v pre-shared-key - is the base key

IKEREKEY Use the IKEv2 rekeying protocol to derive a new seed key using a
previously derived IKE derivation key as the base key and a
previously derived secret key as an additional key.

Using IKE terminology, this mechanism performs SKEYSEED =
prf(SK_d, g^ir | Ni | Nr).

Where:

v Ni | Nr - is the concatenated initiator/responder nonce string

v SK_d - is the base key

v g^ir - is the additional key

attribute_list_length

Direction: Input Type: Integer

The length of the attributes supplied in the attribute_list parameter in bytes.
The maximum value for this field is 32750.

attribute_list

Direction: Input Type: String

List of attributes for the derived secret key object.

base_key_handle

Direction: Input Type: String

The 44-byte handle of the source key object.

parms_list_length

Direction: Input Type: Integer

The length of the parameters supplied in the parms_list parameter in bytes.

PKCS #11 Derive key

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-14, information 25

||
|

|
|
|

|

|
|

|

||
|

|
|

|

|
|

|

||
|
|

|
|

|

|

|

|

|

parms_list

Direction: Input/Output Type: String

The protocol specific parameters. This field has a varying format depending on
the mechanism specified:

Table 22. parms_list parameter format for PKCS-DH mechanism

Offset Length in
bytes

Direction Description

0 4 Input length in bytes of the other party’s public value, where 64 <= length <= 256

4 <=256 Input binary value representing the other party’s public value.

Table 23. parms_list parameter format for SSL-MS, SSL-MSDH, TLS-MS, and TLS-MSDH mechanisms

Offset Length in
bytes

Direction Description

0 2 Output SSL protocol version returned for SSL-MS and TLS-MS only. For the other
protocols, this field is left unchanged.

2 2 not
applicable

reserved

4 4 Input length in bytes of the client’s random data (x), where 1 <= length <= 32

8 4 Input length in bytes of the server’s random data (y)), where 1 <= length <= 32

12 x Input client’s random data

12+x y Input server’s random data

Table 24. parms_list parameter format for EC-DH mechanism

Offset Length in
bytes

Direction Description

0 1 Input KDF function code, x’01’ = NULL; x’02’ = SHA1. x’05’ = SHA224, x’06’ =
SHA256, x’07’ = SHA384, and x’08’ = SHA512

1 3 not
applicable

reserved

4 4 Input length in bytes of the optional data shared between the two parties. A zero
length means no shared data. For the NULL KDF the length must be zero.
Otherwise, the maximum shared data length 2147483647.

8 8 Input 64-bit address of the data shared between the two parties. The data must reside
in the caller’s address space. High order word must be set to all zeros by
AMODE31 callers. This field is ignored if the length is zero.

PKCS #11 Derive key

26 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 24. parms_list parameter format for EC-DH mechanism (continued)

Offset Length in
bytes

Direction Description

16 4 Input length in bytes of the other party’s public value (x). This length is dependent on
the curve type/size of the base key and on whether the value is DER encoded or
not:

secp192r1 – 49 (51 w/DER)
secp224r1 – 57 (59 w/DER)
secp256r1 – 65 (67 w/DER)
secp384r1 – 97 (99 w/DER)
secp521r1 – 133 (136 w/DER)

brainpoolP160r1 – 41 (43 w/DER)
brainpoolP192r1 – 49 (51 w/DER)
brainpoolP224r1 – 57 (59 w/DER)
brainpoolP256r1 – 65 (67 w/DER)
brainpoolP320r1 – 81 (83 w/DER)
brainpoolP384r1 – 97 (99 w/DER)
brainpoolP512r1 – 129 (132 w/DER)

20 x<=136 Input binary value representing the other party’s public value with or without DER
encoding.

Table 25. parms_list parameter format for IKESEED, IKESHARE, and IKEREKEY mechanisms

Offset Length in
bytes

Direction Description

0 1 Input IKE version code. Must be x’01’ for IKESHARE, x’02’ for IKEREKEY, x’01’ or
x’02’ for IKESEED

1 1 Input PRF function code x'01' = HMAC_MD5, x’02’ = HMAC_SHA1, x’04’ =
HMAC_SHA256, x’05’ = SHA384, and x’06’ = SHA512

2 2 Input Length of concatenated initiator/responder nonce string (n), where 16 <= n <=
512

4 44 Input Key handle of additional key - required for IKEREKEY. Ignored for the other
mechanisms.

48 n Input Concatenated initiator/responder nonce string

target_key_handle

Direction: Output Type: String

Upon successful completion, the 44-byte handle of the secret key object that
was derived.

Authorization
There are multiple keys involved in this service — one or two base keys and the
target key (the new key created from the base key) .
v To use a base key that is a public object, the caller must have SO (READ)

authority or USER (READ) authority (any access).
v To use a base key that is a private object, the caller must have USER (READ)

authority (user access).
v To derive a target key that is a public object, the caller must have SO (READ)

authority or USER (UPDATE) authority.

PKCS #11 Derive key

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-14, information 27

||

||
|
||

||||
|

||||
|

||||
|

||||
|

||||
|

|
|

v To derive a target key that is a private object, the caller must have SO
(CONTROL) authority or USER (UPDATE) authority.

Usage Notes
Key derivation operations are performed in software.

For the IKESEED, IKESHARE, and IKEREKEY mechanisms, the following attribute
rules apply to the derived key:
v The key will have the following attributes which may not be overridden by

other values in the attribute list:
– CKA_CLASS=CKO_SECRET_KEY
– CKA_KEY_TYPE=CKK_GENERIC_SECRET
– CKA_DERIVE=TRUE
– CKA_VALUE_LEN=length of the output of the PRF function

v Other applicable secret key attributes may be specified in the attribute list.
However, an attribute list is not required. Any attribute not specified will be
assigned the default value normally assigned to a newly created secret key. In
particular, CKA_SENSITIVE defaults to FALSE and CKA_EXTRACTABLE
defaults to TRUE.

v CKA_ALWAYS_SENSITIVE is set to FALSE if the CKA_ALWAYS_SENSITIVE
attribute from the base key is FALSE. Otherwise it is set equal to the value of the
CKA_SENSITIVE attribute assigned to the derived key.

v CKA_NEVER_EXTRACTABLE is set to FALSE if the
CKA_NEVER_EXTRACTABLE attribute from the base key is FALSE. Otherwise
it is set opposite to the value of the CKA_EXTRACTABLE attribute assigned to
the derived key.

For the IKEREKEY mechanism, the additional key must be a secret key
(CKA_CLASS=CKO_SECRET_KEY) capable of performing key derivation
(CKA_DERIVE=TRUE). It must also be contained in the same PKCS #11 token as
the base key.

For the IKESEED, IKESHARE, and IKEREKEY mechanisms, the MD5 PRF may not
be specified if the operation is FIPS 140 restricted.

For the IKESHARE and IKEREKEY mechanisms, the length of the base key must
be at least half the length of the output of the PRF function if the operation is FIPS
140 restricted.

For the IKESEED mechanism, the length of the concatenated initiator/responder
nonce value must be at least half the length of the output of the PRF function if
the operation is FIPS 140 restricted.

PKCS #11 Derive multiple keys (CSFPDMK)
Use the PKCS #11 Derive Multiple Keys callable service to generate multiple secret
key objects and protocol dependent keying material from an existing secret key
object. This service does not support any recovery methods.

The key handle must be a handle of a PKCS #11 secret key object. The
CKA_DERIVE attribute for the secret key object must be true. The mechanism

PKCS #11 Derive key

28 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

|
|

|
|

|

|

|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

keyword specified in the rule array indicates what derivation protocol to use. The
derive parms list provides additional input/output data. The format of this list is
dependent on the protocol being used.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPDMK6.

Format

CALL CSFPDMK(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list,
base_key_handle,
parms_list_length,
parms_list)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes-1). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1.

rule array

PKCS #11 Derive multiple keys

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-14, information 29

|

Direction: Input Type: String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 26. Keywords for derive multiple keys

Keyword Meaning

Mechanism (required)

SSL-KM Use the SSL 3.0 Key and MAC derivation protocol as defined in
the PKCS #11 standard as mechanism
CKM_SSL3_KEY_AND_MAC_DERIVE.

TLS-KM Use the TLS 1.0/1.1 Key and MAC derivation protocol as defined
in the PKCS #11 standard as mechanism
CKM_TLS_KEY_AND_MAC_DERIVE.

IKE1PHA1 Use the IKEv1 phase 1 protocol to derive multiple keys using a
previously derived IKE seed key as the base key and a previously
derived secret key as an additional key. 3 keys are derived (one
derivation, one authentication, and one encryption key).

Using IKE terminology, this mechanism performs {SKEYID_d |
SKEYID_a | SKEYID_e} = prf(SKEYID, g^xy | CKY-I | CKY-R)
with key expansion for SKEYID_e, if required. (SKEYID_d,a are
always the size of the prf output.)

Where:

v CKY-I | CKY-R - is the concatenated initiator/responder cookie
string

v SKEYID - is the base key

v g^xy - is the additional key

v SKEYID_d,a,e - are the to-be-derived derivation, authentication
and encryption keys

IKE2PHA1 Use the IKEv2 phase 1 (SA) protocol to derive multiple keys using
a previously derived IKE seed key as the base key. 7 keys are
derived (one derivation, two authentication, two encryption, and
two peer authentication keys).

Using IKE terminology, this mechanism performs {SK_d | SK_ai |
SK_ar | SK_ei | SK_er | SK_pi | SK_pr } = prf+(SKEYSEED, Ni |
Nr | SPIi | SPIr).

Where:

v Ni | Nr | SPIi | SPIr - is the concatenated initiator/responder
nonce and Security Parameter Index string

v SKEYSEED - is the base key

v SK_d,ai,ar,ei,er,pi,pr - are the to-be-derived derivation, initiator
authentication, responder authentication, initiator encryption,
responder encryption, initiator peer authentication, and
responder peer authentication keys

PKCS #11 Derive multiple keys

30 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

||
|
|
|

|
|
|
|

|

|
|

|

|

|
|

||
|
|
|

|
|
|

|

|
|

|

|
|
|
|

Table 26. Keywords for derive multiple keys (continued)

Keyword Meaning

IKE1PHA2 Use the IKEv1 phase 2 (CHILD SA) protocol to derive multiple
keys and salt values using a previously derived IKE derivation key
as the base key and a previously derived secret key as an
additional key (optional). The derivation produces one of the
following key sets:

v One authentication key

v One GMAC key plus salt value

v One authentication key plus one encryption key

v One GCM key plus a salt value

Up to two such sets are produced, one for the sender and one for
the receiver.

Using IKE terminology, this mechanism performs KEYMAT =
prf(SKEYID_d, [g^xy |] protocol | SPI | Ni_b | Nr_b), done in two
passes – once for the sender and once for the receiver.

Where:

v protocol | SPI | Ni_b | Nr_b - is the concatenated Protocol,
Security Parameter Index, and initiator/responder nonce string

v SKEYID_d - is the base key

v g^xy - is the optional additional key

v KEYMAT - is the generated key material which is partitioned
into the key set

IKE2PHA2 Use the IKEv2 phase 2 protocol to derive multiple keys and salt
values using a previously derived IKE derivation key as the base
key and a previously derived secret key as an additional key
(optional). The derivation produces one of the following key sets:

v One authentication key

v One GMAC key plus salt value

v One authentication key plus one encryption key

v One GCM key plus a salt value

Two such sets are produced, one for the initiator and one for the
responder.

Using IKE terminology, this mechanism performs KEYMAT =
prf+(SK_d, [g^ir |] Ni | Nr).

Where:

v Ni | Nr - is the concatenated initiator/responder nonce string

v SK_d - is the base key

v g^ir - is the optional additional key

v KEYMAT - is the generated key material which is partitioned
into the key set

attribute_list_length

Direction: Input Type: Integer

The length of the attributes supplied in the attribute_list parameter in bytes.
The maximum value for this field is 32752.

attribute_list

PKCS #11 Derive multiple keys

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-14, information 31

||
|
|
|
|

|

|

|

|

|
|

|
|
|

|

|
|

|

|

|
|

||
|
|
|

|

|

|

|

|
|

|
|

|

|

|

|

|
|

Direction: Input Type: String

List of attributes for the derived secret key object(s).

base_key_handle

Direction: Input Type: String

The 44-byte handle of the base key object.

parms_list_length

Direction: Input Type: Integer

The length of the parameters supplied in the parms_list parameter in bytes.

parms_list

Direction: Input/Output Type: String

The protocol specific parameters. This field has a varying format depending on
the mechanism specified:

Table 27. parms_list parameter format for SSL-KM and TLS-KM mechanisms

Offset Length in bytes Direction Description

0 1 Input Boolean indicating if “export” processing is
required. Any value other than x’00’ means yes

1 3 Not applicable reserved

4 4 Input length in bytes of the client’s random data (x)),
where 1 <= length <= 32

8 4 Input length in bytes of the server’s random data (y)),
where 1 <= length <= 32

12 4 Input size of MAC to be generated in bits, where 8 <= size
<= 384, in multiples of 8

16 4 Input size of key to be generated in bits, Must match a
supported size for the key type specified in the
attribute list. Zero if no encryption keys are to be
generated.

20 4 Input size of IV to be generated in bits (v), where 0<= size
<= 128, in multiples of 8. Must be zero if no
encryption keys are to be generated.

24 44 Output handle of client MAC secret object created

68 44 Output handle of server MAC secret object created

112 44 Output handle of client key object created

156 44 Output handle of server key object created

200 x Input client’s random data

200+x y Input server’s random data

200+x+y v/8 Output client’s IV

200+x+y+v/8 v/8 Output server’s IV

Table 28. parms_list parameter format for IKE1PHA1 mechanism

Offset Length in bytes Direction Description

0 1 Input IKE version code. Must be x’01’

PKCS #11 Derive multiple keys

32 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

|

|

|
|

|
|

||

||||

||||

Table 28. parms_list parameter format for IKE1PHA1 mechanism (continued)

Offset Length in bytes Direction Description

1 1 Input PRF function code x'01' = HMAC_MD5, x’02’ =
HMAC_SHA1, x’04’ = HMAC_SHA256, x’05’ =
SHA384, and x’06’ = SHA512

2 4 Input reserved

6 2 Input length of to-be-derived encryption key, SKEYID_e

8 44 Input Key handle of additional key

52 16 Input Concatenated cookie string

68 44 Output SKEYID_d key handle

112 44 Output SKEYID_a key handle

156 44 Output SKEYID_e key handle

Table 29. parms_list parameter format for IKE2PHA1 mechanism

Offset Length in bytes Direction Description

0 1 Input IKE version code. Must be x’02’

1 1 Input PRF function code x'01' = HMAC_MD5, x’02’ =
HMAC_SHA1, x’04’ = HMAC_SHA256, x’05’ =
SHA384, and x’06’ = SHA512

2 2 Input length of to-be-derived derivation key, SK_d

4 2 Input length of a single to-be-derived authentication key,
SK_a

6 2 Input length of a single to-be-derived encryption key,
SK_e

8 2 Input length of a single to-be-derived peer authentication
key, SK_p

10 2 Input Concatenated nonce, SPI string length (n), where 24
<= n <= 520

12 44 Output SKEYID_d key handle

56 44 Output Initiator SKEYID_a key handle

100 44 Output Responder SKEYID_a key handle

144 44 Output Initiator SKEYID_e key handle

188 44 Output Responder SKEYID_e key handle

232 44 Output Initiator SKEYID_p key handle

276 44 Output Responder SKEYID_p key handle

320 n Input Concatenated nonce, SPI string

Table 30. parms_list parameter format for IKE1PHA2 and IKE2PHA2 mechanisms

Offset Length in bytes Direction Description

0 1 Input IKE version code. Must be x’01’ for IKE1PHA2, x’02’
for IKE2PHA2

1 1 Input PRF function code x'01' = HMAC_MD5, x’02’ =
HMAC_SHA1, x’04’ = HMAC_SHA256, x’05’ =
SHA384, and x’06’ = SHA512

2 2 Input length of to-be-derived salts (s), where 0 <= s <= 4.
Zero if salts are not to be derived

PKCS #11 Derive multiple keys

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-14, information 33

|

||||

||||
|
|

||||

||||

||||

||||

||||

||||

||||
|

||

||||

||||

||||
|
|

||||

||||
|

||||
|

||||
|

||||
|

||||

||||

||||

||||

||||

||||

||||

||||
|

||

||||

||||
|

||||
|
|

||||
|

Table 30. parms_list parameter format for IKE1PHA2 and IKE2PHA2 mechanisms (continued)

Offset Length in bytes Direction Description

4 2 Input length of to-be-derived authentication keys. Zero if
authentication keys are not to be derived

6 2 Input length of to-be-derived encryption, GMAC, or GCM
keys. Zero if no such keys are to be derived

8 2 Input First pass parameter string length (n)

v For IKE1PHA2 – Receiver concatenated Protocol,
Security Parameter Index, and initiator/responder
nonce string length, where 25 <= n <= 525

v For IKE2PHA2 – Concatenated
initiator/responder nonce string length, where 16
<= n <= 512.

10 2 Input Second pass parameter string length (m)

v For IKE1PHA2 – Sender concatenated Protocol,
Security Parameter Index, and initiator/responder
nonce string length, where 25 <= m <= 525. Zero
if second pass is to be skipped

v For IKE2PHA2 – Not used. Must be zero

12 44 Input Key handle of additional key. Fill with binary zeros
if n/a

56 44 Output Initiator (sender) authentication key handle

100 44 Output Responder (receiver) authentication key handle

144 44 Output Initiator (sender) encryption, GMAC, or GCM key
handle

188 44 Output Responder (receiver) encryption, GMAC, or GCM
key handle

232 n Input First pass parameter string

232+n m Input Second pass parameter string

232+n+m s Output Initiator (sender) salt

232+n+m+s s Output Responder (receiver) salt

Authorization
There are multiple keys involved in this service — one or two base keys and the
target keys (the new keys created from the base key).
v To use a base key that is a public object, the caller must have SO (READ)

authority or USER (READ) authority (any access).
v To use a base key that is a private object, the caller must have USER (READ)

authority (user access).
v To derive a target key that is a public object, the caller must have SO (READ)

authority or USER (UPDATE) authority.
v To derive a target key that is a private object, the caller must have SO

(CONTROL) authority or USER (UPDATE) authority.

Usage Notes
Key derivation operations are performed in software.

For the SSL-KM and TLS-KM mechanisms, an attribute list is required if
encryptions keys are to be generated.

PKCS #11 Derive multiple keys

34 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

|

||||

||||
|

||||
|

||||

|
|
|

|
|
|

||||

|
|
|
|

|

||||
|

||||

||||

||||
|

||||
|

||||

||||

||||

||||
|

|
|

|
|

For the IKE1PHA1, IKE2PHA1, IKE1PHA2, and IKE2PHA2 mechanisms, the
following attribute rules apply to the derived keys:
v Derivation keys will have the following attributes which may not be overridden

by other values in the attribute list:
– CKA_CLASS=CKO_SECRET_KEY
– CKA_KEY_TYPE=CKK_GENERIC_SECRET
– CKA_DERIVE=TRUE
– CKA_VALUE_LEN=as specified in the parms list

v Authentication keys will have the following attributes which may not be
overridden by other values in the attribute list:
– CKA_CLASS=CKO_SECRET_KEY
– CKA_KEY_TYPE=CKK_GENERIC_SECRET
– CKA_SIGN=TRUE=TRUE
– CKA_VERIFY=TRUE=TRUE
– CKA_VALUE_LEN= as specified in the parms list

v Encryption, GMAC, and GCM keys will be typed according to information
found in the attribute list. However, they will have the following attributes
which may not be overridden by other values in the attribute list:
– CKA_CLASS=CKO_SECRET_KEY
– For key types other than CKK_DES, CKK_DES2, and CKK_DES3,

CKA_VALUE_LEN= as specified in the parms list

v All key types will inherit the values of the CKA_SENSITIVE,
CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. These may not be
overridden by other values in the attribute list. If an additional key is specified,
its values will be applied after setting the base key values as follows:
– If the additional key has CKA_SENSITIVE=TRUE, so will the derived key(s)
– If the additional key has CKA_EXTRACTABLE=FALSE, so will the derived

keys(s)
– If the additional key has CKA_ALWAYS_SENSITIVE=FALSE, so will the

derived keys(s)
– If the additional key has CKA_NEVER_EXTRACTABLE=FALSE, so will the

derived keys(s)
v If encryption, GMAC, or GCM keys are to be derived, an attribute list is

required for the key typing information. Otherwise, it is optional. For all keys,
other applicable secret key attributes may be specified in the attribute list. Any
attribute not specified will be assigned the default value normally assigned to a
newly created secret key.

For the IKE1PHA1, IKE1PHA2, and IKE2PHA2 mechanisms, the additional key
must be a secret key (CKA_CLASS=CKO_SECRET_KEY) capable of performing
key derivation (CKA_DERIVE=TRUE). It must also be contained in the same PKCS
#11 token as the base key.

The IKE1PHA1, IKE2PHA1, IKE1PHA2, and IKE2PHA2 mechanisms have the
following limitations if the operation is FIPS 140 restricted:
v The MD5 PRF may not be specified.
v The length of the base key must be at least half the length of the output of the

PRF function.

PKCS #11 Derive multiple keys

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-14, information 35

|
|

|
|

|

|

|

|

|
|

|

|

|

|

|

|
|
|

|

|
|

|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|

PKCS #11 One-way hash, sign, or verify (CSFPOWH)
Use the one-way hash, sign, or verify callable service to generate a one-way hash
on specified text, sign specified text, or verify a signature on specified text. For
one-way hash, this service supports the following methods:
v MD2 - software only
v MD5 - software only
v SHA-1
v RIPEMD-160 - software only
v SHA-224
v SHA-256
v SHA-384
v SHA-512

For sign and verify, the following methods are supported:
v MD2 with RSA-PKCS 1.5
v MD5 with RSA-PKCS 1.5
v SHA1 with RSA-PKCS 1.5, DSA, or ECDSA
v SHA-224 with RSA-PKCS 1.5, DSA, or ECDSA
v SHA-256 with RSA-PKCS 1.5, DSA, or ECDSA
v SHA-384 with RSA-PKCS 1.5, DSA, or ECDSA
v SHA-512 with RSA-PKCS 1.5, DSA, or ECDSA

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPOWH6.

Format

CALL CSFPOWH(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
text_id,
chain_data_length,
chain_data,
handle,
hash_length,
hash)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service.

reason_code

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

36 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

|

|

|

|

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes-1). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each
keyword is left-justisfied in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 31. Keywords for one-way hash generate

Keyword Meaning

Hash Method (required)

MD2 Hash algorithm is MD2 algorithm. Length of hash generated is 16
bytes.

MD5 Hash algorithm is MD5 algorithm. Length of hash generated is 16
bytes.

RPMD-160 Hash algorithm is RIPEMD-160. Length of hash generated is 20
bytes.

SHA-1 Hash algorithm is SHA-1. Length of hash generated is 20 bytes.

SHA-224 Hash algorithm is SHA-224. Length of hash generated is 28 bytes.

SHA-256 Hash algorithm is SHA-256. Length of hash generated is 32 bytes.

SHA-384 Hash algorithm is SHA-384. Length of hash generated is 48 bytes.

SHA-512 Hash algorithm is SHA-512. Length of hash generated is 64 bytes.

DETERMIN For use with non-chained RSA signature verifies only. Hash
algorithm is to be determined from the input signature.

Chaining Flag (optional)

FIRST Specifies this is the first call in a series of chained calls.
Intermediate results are stored in the hash and chain_data fields.
Cannot be specified with hash method DETERMIN.

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-14, information 37

||
|

|

Table 31. Keywords for one-way hash generate (continued)

Keyword Meaning

MIDDLE Specifies this is a middle call in a series of chained calls.
Intermediate results are stored in the hash and chain_data fields.
Cannot be specified with hash method DETERMIN.

LAST Specifies this is the last call in a series of chained calls. Cannot be
specified with hash method DETERMIN.

ONLY Specifies this is the only call and the call is not chained. This is the
default.

Requested Operation (optional)

HASH The specified text is to be hashed only. This is the default. Cannot
be specified (either explicitly or by default) with hash method
DETERMIN.

SIGN-RSA The data is to be hashed then signed using RSA-PKCS 1.5
formatting. Any hash method is acceptable except RPMD-160 and
DETERMIN.

SIGN-DSA The data is to be hashed then signed using DSA. The hash method
must be SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

SIGN-EC The data is to be hashed then signed using ECDSA. The hash
method must be SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

VER-RSA The data is to be hashed then signature verified using RSA-PKCS
1.5 formatting. Any hash method is acceptable except RPMD-160.
This operation is required for hash method DETERMIN.

VER-DSA The data is to be hashed then signature verified using DSA. The
hash method must be SHA-1, SHA-224, SHA-256, SHA-384, or
SHA-512.

VER-EC The data is to be hashed then signature verified using ECDSA. The
hash method must be SHA-1, SHA-224, SHA-256, SHA-384, or
SHA-512.

text_length

Direction: Input Type: Integer

The length of the text parameter in bytes.

If you specify the FIRST or MIDDLE keyword, then the text length must be a
multiple of the block size of the hash method. For MD2, this is a multiple of 16
bytes. For MD5, RPMD-160, SHA-1, SHA-224, and SHA-256, this is a multiple
of 64 bytes. For SHA-384 and SHA-512, this is a multiple of 128 bytes. For
ONLY and LAST, this service performs the required padding according to the
algorithm specified. The length can be from 0 to 2147483647.

text

Direction: Input Type: String

Value to be hashed

text_id

Direction: Input Type: Integer

The ALET identifying the space where the text resides.

chain_data_length

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

38 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

|

|
|

|
|
|

|
|

|

|

|
|

Direction: Input/Output Type: Integer

The byte length of the chain_data parameter. This must be 128 bytes.

chain_data

Direction: Input/Output Type: String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another. ICSF initializes the chain data on a FIRST call and may
change it on subsequent MIDDLE calls. Your application must not change the
data in this field between the sequence of FIRST, MIDDLE, and LAST calls for
a specific message. The chain data has the following format:

Table 32. chain_data parameter format

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

handle

Direction: Input Type: String

For hash requests, this is the 44-byte name of the token to which this hash
operation is related. The first 32 bytes of the handle are meaningful. The
remaining 12 bytes are reserved.

For sign and verify requests, this is the 44-byte handle to the key object that is
to be used. For FIRST and MIDDLE chaining requests, only the first 32 bytes of
the handle are meaningful, to identify the token.

hash_length

Direction: Input/Output Type: Integer

The length of the supplied hash field in bytes.

For hash requests, this field is input only. For SHA-1 and RPMD-160 this must
be at least 20 bytes; for MD2 and MD5 this must be at least 16 bytes. For
SHA-224 and SHA-256, this must be at least 32 bytes. Even though the length
of the SHA-224 hash is less than SHA-256, the extra bytes are used as a work
area during the generation of the hash value. The SHA-224 value is
left-justified and padded with 4 bytes of binary zeroes. For SHA-384 and
SHA-512, thus must be at least 64 bytes. Even though the length of the
SHA-384 hash is less than SHA-512, the extra bytes are used as a work area
during the generation of the hash value. The SHA-384 value is left-justified
and padded with 16 bytes of binary zeroes.

For FIRST and MIDDLE sign and verify requests, this field is ignored.

For LAST and ONLY sign requests, this field is input/output. If the signature
generation is successful, ICSF will update this field with the length of the

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-14, information 39

generated signature. If the signature generation is unsuccessful because the
supplied hash field is too small, ICSF will update this field with the required
length.

For LAST and ONLY verify requests, this field is input only.

hash

Direction: Input/Output Type: String

This field contains the hash or signature, left-justified. The processing of the
rest of the field depends on the implementation.

For hash requests, this field is the generated hash. If you specify the FIRST or
MIDDLE keyword, this field contains the intermediate hash value. Your
application must not change the data in this field between the sequence of
FIRST, MIDDLE, and LAST calls for a specific message.

For FIRST and MIDDLE sign and verify requests, this field is ignored.

For LAST and ONLY sign requests, this field is the generated signature.

For LAST and ONLY verify requests, this field is input signature to be verified.

Authorization
To use this service to sign or verify with a public object, the caller must have at
least SO (READ) authority or USER (READ) authority (any access).

To use this service to sign or verify with a private object, the caller must have at
least USER (READ) authority (user access).

Usage Notes
If the FIRST rule is used to start a series of chained calls, the application must not
change the Hash Method or Requested Operation rules between the calls. The
behavior of the service is undefined if the rules are changed.

If the FIRST rule is used to start a series of chained calls, the application should
make a LAST call to free ICSF resources allocated. If processing is to be aborted
without making a LAST call and the chain_data parameter indicates that a
cryptographic state object has been allocated, the caller must free the object by
calling CSFPTRD (or CSFPTRD6 for 64-bit callers) passing the state object’s handle.

The CSFSERV resource name that protects this service is CSFOWH, the same
resource name used to protect the non-PKCS #11 One Way Hash service.

For hash method DETERMIN, ICSF determines the hashing method by RSA
decrypting the input signature using the specified public key and examining the
result. ICSF will return the “signature did not verify” error (return code 4, reason
code X'2AF8') if this process is unsuccessful for any of the following reasons:
1. ICSF cannot successfully perform the decryption because the public key is the

wrong size.
2. The resulting clear text block is not properly RSA-PKCS 1.5 formatted.
3. The resulting clear text block indicates a hashing algorithm not supported by

this service was used.

PKCS #11 Private key sign (CSFPPKS)
Use the PKCS #11 private key sign callable service to:

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

40 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

|
|
|
|

|
|

|

|
|

v Decrypt or sign data using an RSA private key using zero-pad or PKCS #1 v1.5
formatting

v Sign data using a DSA private key
v Sign data using an Elliptic Curve private key in combination with DSA

The key handle must be a handle of a PKCS #11 private key object. When the
request type keyword DECRYPT is specified in the rule array, CKA_DECRYPT
attribute must be true. When no request type is specified, the CKA_SIGN attribute
must be true.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPPKS6.

Format

CALL CSFPPKS(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
cipher_value_length,
cipher_value,
key_handle,
clear_value_length,
clear_value)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes-1). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

PKCS #11 Private key sign

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-14, information 41

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array_parameter. This value
may be 1 or 2.

rule array

Direction: Input Type: String

Keywords that provide control information to the callable service.

Table 33. Keywords for private key sign

Keyword Meaning

Mechanism (One of the following must be specified)

RSA-ZERO Mechanism is RSA decryption or signature generation using
zero-pad formatting

RSA-PKCS Mechanism is RSA decryption or signature generation using PKCS
#1 v1.5 formatting

DSA Mechanism is DSA signature generation

ECDSA Mechanism is Elliptic Curve with DSA signature generation

Request type (optional)

DECRYPT The request is to decrypt data. This type of request requires the
CKA_DECRYPT attribute to be true. If DECRYPT is not specified,
the CKA_SIGN attribute must be true. Valid with RSA only.

cipher_value_length

Direction: Input Type: Integer

Length of the cipher_value parameter in bytes.

cipher_value

Direction: Input Type: String

For decrypt, this is the value to be decrypted. Otherwise this is the value to be
signed. For RSA-PKCS signature requests, the data to be signed is expected to
be a DER encoded DigestInfo structure. For DSA and ECDSA signature
requests, the data to be signed is expected to be a SHA1, SHA224, SHA256,
SHA384 or SHA512 digest.

key_handle

Direction: Input Type: String

The 44-byte handle of a private key object.

clear_value_length

Direction: Input/Output Type: Integer

Length of the clear_value parameter in bytes. On output, this is updated to be
the actual length of the decrypted value or the generated signature.

clear_value

Direction: Output Type: String

PKCS #11 Private key sign

42 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

|
|
|

For decrypt, this field will contain the decrypted value. Otherwise this field
will contain the generated signature.

Authorization
To use this service with a public object, the caller must have SO (READ) authority
or USER (READ) authority (any access).

To use this service with a private object, the caller must have USER (READ)
authority (user access).

Usage Notes
DSA operations are performed in software. RSA operations may be done in
hardware or software.

Request type DECRYPT is not supported for an Elliptic Curve or DSA private key.

PKCS #11 Public key verify (CSFPPKV)
Use the PKCS #11 public key verify callable service to:
v Encrypt or verify data using an RSA public key using zero-pad or PKCS #1 v1.5

formatting. For encryption, the encrypted data is returned
v Verify a signature using a DSA public key. No data is returned
v Verify a signature using an Elliptic Curve public key in combination with DSA.

No data is returned

The key handle must be a handle of a PKCS #11 public key object. When the
request type keyword ENCRYPT is specified in the rule array, CKA_ENCRYPT
attribute must be true. When no request type is specified, the CKA_VERIFY
attribute must be true.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPPKV6.

Format

CALL CSFPPKV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_value_length,
clear_value,
key_handle,
cipher_value_length,
cipher_value)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service.

PKCS #11 Private key sign

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-14, information 43

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes-1). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule array

Direction: Input Type: String

Keywords that provide control information to the callable service.

Table 34. Keywords for public key verify

Keyword Meaning

Mechanism (One of the following must be specified)

RSA-ZERO Mechanism is RSA encryption or signature verification using
zero-pad formatting

RSA-PKCS Mechanism is RSA encryption or signature verification using PKCS
#1 v1.5 formatting

DSA Mechanism is DSA signature verification

ECDSA Mechanism is Elliptic Curve with DSA signature verification

Request type (optional)

ENCRYPT The request is to encrypt data. This type of request requires the
CKA_ENCRYPT attribute to be true. If ENCRYPT is not specified,
the CKA_VERIFY attribute must be true. Valid with RSA only.

clear_value_length

Direction: Input Type: Integer

The length of the clear_value parameter

clear_value

Direction: Input Type: String

PKCS #11 Public key verify

44 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

For encrypt, this is the value to be encrypted. Otherwise this is the signature to
be verified.

key_handle

Direction: Input Type: String

The 44-byte handle of public key object.

cipher_value_length

Direction: Input/Output Type: Integer

For encrypt, on input, this is the length of the cipher_value parameter in bytes.
On output, this is updated to be the actual length of the text encrypted into the
cipher_value parameter. For signature verification, this is the length of the data
to be verified (input only).

cipher_value

Direction: Input/Output Type: String

For encrypt, this is the encrypted value (output only). For signature
verification, this is the data to be verified (input only). For RSA-PKCS
signature verification requests, the data to be verified is expected to be a DER
encoded DigestInfo structure. For DSA and ECDSA signature verification
requests, the data to be verified is expected to be a SHA1, SHA224, SHA256,
SHA384 or SHA512 digest.

Authorization
To use this service with a public object, the caller must have at least SO (READ)
authority or USER (READ) authority (any access).

To use this service with a private object, the caller must have at least USER
(READ) authority (user access).

Usage Notes
DSA operations are performed in software. RSA and ECDSA operations may be
done in hardware or software.

Request type ENCRYPT is not supported for an Elliptic Curve or DSA public key.

PKCS #11 Public key verify

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-14, information 45

|
|
|

Return Codes and Reason Codes
The following reason code for Return Code 8 (the call to the service was
unsuccessful) has been modified.

Table 35. Reason Code for Return Code 8 (8)

Reason Code Hex
(Decimal) Description

BFF (3071) An application using a z/OS PKCS #11 token that is marked ‘Write Protected’ is attempting
to do one of the following:

v Store a persistent object in the token.

v Delete the token.

v Reinitialize the token.

ICSF always marks the session object only omnipresent token as ‘Write Protected.’ ICSF will
also mark an ordinary token ‘Write Protected’ if it contains objects not supported by this
release of ICSF.

User action: Use a z/OS PKCS #11 token that is not marked ‘Read Only’ or, if this is an
ordinary token (not the omnipresent token), attempt the delete or reinitialization from a
different member of the sysplex.

PKCS #11 Public key verify

46 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Chapter 4. Update of z/OS Cryptographic Services ICSF
System Programmer’s Guide, SA22-7520-15, information

This chapter contains updates to the document z/OS Cryptographic Services ICSF
System Programmer’s Guide, SA22-7520-15, for the PKCS #11 enhancements provided
by the PTF for APAR OA34403. Refer to this source document if background
information is needed.

Format of the token and object records
Each z/OS PKCS #11 token record and token object record begins with the same
188 bytes of data. The remainder of the record is specific to the token or object.

Common section of the token and object records
Every record in the token data set, with the exception of the header record, begins
with these 188 bytes of data.

Table 36. Format of the common section of the token and object records

Offset (decimal)
Length of field
(bytes) Description

0 72 Handle of token or object
Bytes 0-31: Token name
Bytes 32-39: Sequence number
Byte 40: Character “T” for token object
Bytes 41-43 Blank characters
Bytes 44-71: Binary zeros

72 8 Reserved for IBM's use

80 8 The date that this record was created, in the
format yyyymmdd

88 8 The time that this record was created, in the
format hhmmssth

96 8 The most recent date that this record was updated,
in the format yyyymmdd

104 8 The most recent time that this record was updated,
in the format hhmmssth

112 4 Length of the entire TKDS record entry

116 20 Reserved for IBM's use

136 52 User data

188 variable The TKDS token or object (see mappings)

Format of the token-specific section of the token record
Each z/OS PKCS #11 token record begins with the 188 bytes. The remainder of the
record contains the contents of the token. The mapping of the record shows the
data beginning at offset 0, which is its offset into the token-specific portion of the
record; however, that portion of the record is at an offset of 188 into the entire
record.

© Copyright IBM Corp. 2011 47

Table 37. Format of the unique section of the token record

Offset (decimal)
188 +

Length of field
(bytes) Description

0 4 Eye catcher for token: “TOKN”

4 2 Version number of structure: EBCDIC '00'

6 2 Length of structure in bytes

8 4 Reserved for IBM's use. Must be zeros.

12 8 Last assigned sequence number

20 32 Manufacturer identification

52 16 Model

68 16 Serial number

84 8 Date of the most recent update to this token,
expressed as Coordinated Universal Time (UTC) in
the format yyyymmdd. This includes any update to
token information or to a token object.

92 8 Time of the most recent update to this token,
expressed as Coordinated Universal Time (UTC) in
the format hhmmssth. This includes any update to
token information or to a token object.

100 44 Reserved for IBM's use

144 End of token

Format of the object-specific sections of the token object
records

The following classes of objects can be associated with a z/OS PKCS #11 token:
v Certificate
v Public key
v Private key
v Secret key
v Data objects
v Domain parameters

The token object record for each begins with the common section described
“Common section of the token and object records” on page 47, followed by a
section specific to the class of object. Each of the object-specific sections begins
with a 12-byte header record, followed by a variable-length section. Each 12-byte
header contains a 4-byte flag field that has the same mapping for all classes of
objects.

Table 38. Format of the token object flags. This 4-byte flag field occurs in the object header
section of each token object record.

Offset
(decimal) Field name Description

Flag byte 1

Bit 0 OBJ_IS_TOKOBJ When on, the object is a token object.
When off, the object is a session
object.

Bit 1 OBJ_IS_PRVOBJ When on, the object is a private object.
When off, the object is a public object.

Bit 2 OBJ_IS_MODOBJ When on, the object is modifiable.

48 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 38. Format of the token object flags (continued). This 4-byte flag field occurs in the
object header section of each token object record.

Offset
(decimal) Field name Description

Bit 3 KEY_DERIVE When on, the key supports key
derivation.

Bit 4 KEY_LOCAL When on, the key was generated
locally.

Bit 5 KEY_ENCRYPT When on, the key supports
encryption.

Bit 6 KEY_DECRYPT When on, the key supports
decryption.

Bit 7 KEY_VERIFYA When on, the key supports
verification where the signature is an
appendix to the data.

Flag byte 2

Bit 0 KEY_VERIFYR When on, the key supports
verification where the data is
recovered from the signature

Bit 1 KEY_SIGA When on, the key supports signatures
where the signature is an appendix to
the data.

Bit 2 KEY_SIGR When on, the key supports signatures
where the data is recovered from the
signature.

Bit 3 KEY_WRAP When on, the key supports wrapping.

Bit 4 KEY_UNWRAP When on, the key supports
unwrapping.

Bit 5 KEY_EXTRACT When on, the key is extractable.

Bit 6 KEY_IS_SENSITIVE When on, the key is sensitive.

Bit 7 KEY_IS_ALWAYS_SENSITIVE When on, the SENSITIVE attribute
(KEY_IS_SENSITIVE) is always true.

Flag byte 3

Bit 0 KEY_NEVER_EXTRACT When on, the EXTRACTABLE
attribute (KEY_EXTRACT) is never
true. When off, the EXTRACTABLE
attribute (KEY_EXTRACT) can be
true.

Bit 1 OBJ_IS_TRUSTED When on, the certificate can be trusted
for the application for which it was
created.

Bit 2 CERT_IS_DEFAULT When on, this is the default certificate.

Bit 3 FIPS140 When on, key is only to be used in a
FIPS-compliant manner.

Bits 4-7 Reserved for IBM's use

Flag byte 4

Bits 0-7 Reserved for IBM's use

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-15, information 49

Table 39. Format of the token certificate object

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for certificate object: “CERT”

4 2 Version: EBCDIC '00'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 38 on page 48)

Object type-specific section

12 4 TYPE attribute:
X'00000000': CKC_X_509

16 4 Certificate category
0 Undefined
1 Token user
2 Certificate authority
3 Other entity

20 8 Reserved for IBM's use

28 32 Reserved for IBM's use

60 2 Length of SUBJECT attribute in bytes (aa)

62 2 Length of ID attribute in bytes (bb)

64 2 Length of ISSUER attribute in bytes (cc)

66 2 Length of SERIAL_NUMBER attribute in bytes
(dd)

68 2 Length of VALUE attribute in bytes (ee)

70 2 Length of LABEL attribute in bytes (ff)

72 2 Length of APPLICATION attribute in bytes (gg)

74 22 Reserved for IBM's use

96 4 Offset of SUBJECT attribute in bytes

100 4 Offset of ID attribute in bytes

104 4 Offset of ISSUER attribute in bytes

108 4 Offset of SERIAL_NUMBER attribute in bytes

112 4 Offset of VALUE attribute in bytes

116 4 Offset of LABEL attribute in bytes

120 4 Offset of APPLICATION attribute in bytes

124 44 Reserved for IBM's use

168 aa + bb + cc + dd +
ee + ff + gg

Certificate attributes (variable length)

168 + aa + bb + cc
+ dd + ee + ff +
gg

End of certificate object

Table 40. Format of the token public key object (Version 0)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

50 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 40. Format of the token public key object (Version 0) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

0 4 Eye catcher for public key object: “PUBK”

4 2 Version: EBCDIC '00'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 38 on page 48)

Object type-specific section

12 4 TYPE attribute:
CKK_RSA

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

72 4 Length in bits of modulus n

76 256 Modulus n

332 256 Reserved

588 256 Public exponent e

844 256 Reserved

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd Public key attributes (variable length)

1184+aa+bb+cc+dd End of public key object

Table 41. Format of the token public key object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for public key object: “PUBK”

4 2 Version: EBCDIC '01'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 38 on page 48)

Object type-specific section

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-15, information 51

Table 41. Format of the token public key object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

12 4 TYPE attribute:
CKK_RSA, CKK_DSA, CKK_EC, or CKK_DH

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus n

588 512 Public exponent e

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 128 Reserved

204 128 Prime p

332 128 Reserved

460 128 Base g

588 128 Reserved

716 128 Value y

844 20 Reserved

864 20 Subprime q

884 216 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 256 Reserved

Algorithm-specific section (EC)

52 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 41. Format of the token public key object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 128 Reserved

204 136 EC point Q (DER encoded)

340 760 Reserved

Variable length attribute section

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd Public key attributes (variable length)

1184+aa+bb+cc+dd End of public key object

Table 42. Format of the token public key object (Version 2)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-15, information 53

||

|
|
|
||

|

Table 42. Format of the token public key object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

0 4 Eye catcher for public key object: “PUBK”

4 2 Version: EBCDIC '02'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 38 on page 48)

Object type-specific section

12 4 TYPE attribute:
CKK_RSA, CKK_DSA, CKK_EC, or CKK_DH

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus n

588 512 Public exponent e

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 8 Reserved

852 32 Subprime q

884 216 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 256 Reserved

Algorithm-specific section (EC)

54 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

|

|
|
|
||

|||

|||

|||

|||

|

|||
|

|||

|||

|||
|

|||

|

|||

|||

|||

|

|||

|||

|||

|||

|||

|||

|||

|

|||

|||

|||

|||

|||

|

Table 42. Format of the token public key object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 128 Reserved

204 136 EC point Q (DER encoded)

340 760 Reserved

Variable length attribute section

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd Public key attributes (variable length)

1184+aa+bb+cc+dd End of public key object

Table 43. Format of the token private key object (Version 0)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-15, information 55

|

|
|
|
||

|||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||

|||

|||

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

Table 43. Format of the token private key object (Version 0) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

0 4 Eye catcher for private key object: “PRIV”

4 2 Version: EBCDIC '00'

6 2 Length of object (in bytes)

8 4 Flags (see Table 38 on page 48)

Object type-specific section

12 4 Type attribute: CKK_RSA

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

72 4 Length in bits of modulus n

76 256 Modulus: modulus n

332 256 Reserved

588 256 Public exponent e

844 256 Reserved

1100 32 Reserved

1132 256 Private exponent d

1388 256 Reserved

1644 136 Prime p

1780 128 Reserved

1908 128 Prime q

2036 128 Reserved

2172 136 Private exponent d modulo p-1

2300 128 Reserved

2428 128 Private exponent d modulo q-1

2556 128 Reserved

2684 136 CRT coefficient q-1 mod p

2820 128 Reserved

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

56 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 43. Format of the token private key object (Version 0) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

3032 xx+yy+zz+ww Private key attributes (variable length)

3032+xx+yy+zz+ww End of private key object

Table 44. Format of the token private key object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for private key object: “PRIV”

4 2 Version: EBCDIC '01'

6 2 Length of object (in bytes)

8 4 Flags (see Table 38 on page 48)

Object type-specific section

12 4 Type attribute: CKK_RSA, CKK_DSA,
CKK_EC, or CKK_DH

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus: modulus n

588 512 Public exponent e

1100 32 Reserved

1132 512 Private exponent d

1644 264 Prime p

1908 256 Prime q

2164 264 Private exponent d modulo p-1

2428 256 Private exponent d modulo q-1

2684 264 CRT coefficient q-1 mod p

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 128 Reserved

204 128 Prime p

332 128 Reserved

460 128 Base g

588 236 Reserved

824 20 Value x

844 20 Reserved

864 20 Subprime q

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-15, information 57

Table 44. Format of the token private key object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

884 2064 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 236 Reserved

824 20 Value x

844 2104 Reserved

Algorithm-specific section (EC)

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 64 Reserved

140 66 Value d

206 2742 Reserved

Variable length attribute section

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

58 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 44. Format of the token private key object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

3032 xx+yy+zz+ww Private key attributes (variable length)

3032+xx+yy+zz+ww End of private key object

Table 45. Format of the token private key object (Version 2)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for private key object: “PRIV”

4 2 Version: EBCDIC '02'

6 2 Length of object (in bytes)

8 4 Flags (see Table 38 on page 48)

Object type-specific section

12 4 Type attribute: CKK_RSA, CKK_DSA,
CKK_EC, or CKK_DH

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus: modulus n

588 512 Public exponent e

1100 32 Reserved

1132 512 Private exponent d

1644 264 Prime p

1908 256 Prime q

2164 264 Private exponent d modulo p-1

2428 256 Private exponent d modulo q-1

2684 264 CRT coefficient q-1 mod p

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 224 Reserved

812 32 Value x

844 8 Reserved

852 32 Subprime q

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-15, information 59

||

|
|
|
||

|

|||

|||

|||

|||

|

|||
|

|||

|||

|||
|

|||

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|||

|||

|||

|||

|||

|||

|||

Table 45. Format of the token private key object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

884 2064 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value x

844 4 Length in bits of value x

848 2100 Reserved

Algorithm-specific section (EC)

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 64 Reserved

140 66 Value d

206 2742 Reserved

Variable length attribute section

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

60 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

|

|
|
|
||

|||

|

|||

|||

|||

|||

|||

|||

|

|||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||

|||

|||

|

|||

|||

|||

|||

|||

|||

|||

|||

Table 45. Format of the token private key object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

3032 xx+yy+zz+ww Private key attributes (variable length)

3032+xx+yy+zz+ww End of private key object

Table 46. Format of the token secret key object (Version 0)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for secret key object: “SECK”

4 2 Version: EBCDIC '00'

6 2 Length of the object in bytes

8 4 Flags
(see Table 38 on page 48)

Object type-specific section

12 4 Type of key: CKK_DES, CKK_DES2, CKK_DES3,
CKK_AES

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism
CK_UNAVAILABLE_INFORMATION

36 2 Length of the key in bytes

38 32 Reserved

70 64 VALUE: value of the key

134 538 Reserved

672 4 Usage counter field

676 2 Reserved

678 2 Length of LABEL attribute in bytes (xx)

680 2 Length of APPLICATION attribute in bytes (yy)

682 2 Length of the ID attribute in bytes (zz)

684 20 Reserved

704 4 Offset of LABEL attribute in bytes

708 4 Offset of APPLICATION attribute in bytes

712 4 Offset of the ID attribute in bytes

716 40 Reserved

756 xx+yy+zz Secret key attributes (variable length)

756+xx+yy+zz End of secret key object

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-15, information 61

|

|
|
|
||

|||

|||

|||

|||
|

Table 47. Format of the token secret key object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for secret key object: “SECK”

4 2 Version: EBCDIC '01'

6 2 Length of the object in bytes

8 4 Flags
(see Table 38 on page 48)

Object type-specific section

12 4 Type of key:

CKK_DES, CKK_DES2, CKK_DES3,
CKK_BLOWFISH, CKK_RC4,
CKK_GENERIC_SECRET, and CKK_AES.

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism
CK_UNAVAILABLE_INFORMATION

36 2 Length of the key in bytes

38 32 Reserved

70 256 VALUE: value of the key

326 346 Reserved

672 4 Usage counter field

676 2 Reserved

678 2 Length of LABEL attribute in bytes (xx)

680 2 Length of APPLICATION attribute in bytes (yy)

682 2 Length of the ID attribute in bytes (zz)

684 20 Reserved

704 4 Offset of LABEL attribute in bytes

708 4 Offset of APPLICATION attribute in bytes

712 4 Offset of the ID attribute in bytes

716 40 Reserved

756 xx+yy+zz Secret key attributes (variable length)

756+xx+yy+zz End of secret key object

Table 48. Format of the token domain parameters object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for token domain object: “DOMP”

4 2 Version: EBCDIC '01'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 38 on page 48)

Object type-specific section

62 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

Table 48. Format of the token domain parameters object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

12 4 TYPE attribute: CKK_DSA or CKK_DH

16 28 Reserved

Algorithm-specific section (DSA)

44 4 Length in bits of prime p

48 128 Reserved

176 128 Prime p

304 128 Reserved

432 128 Base g

560 20 Reserved

580 20 Subprime q

600 636 Reserved

Algorithm-specific section (DH)

44 4 Length in bits of prime p

48 4 Reserved

52 256 Prime p

308 256 Reserved

564 256 Base g

820 416 Reserved

Variable length attribute section

1236 2 Length of LABEL attribute in bytes (aa)

1238 2 Length of APPLICATION attribute in bytes (bb)

1240 20 Reserved

1260 4 Offset of LABEL attribute in bytes

1264 4 Offset of APPLICATION attribute in bytes

1268 40 Reserved

1308 aa+bb Domain parameters attributes (variable length)

1308+aa+bb End of domain parameters object

Table 49. Format of the token domain parameters object (Version 2)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for token domain object: “DOMP”

4 2 Version: EBCDIC '02'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 38 on page 48)

Object type-specific section

12 4 TYPE attribute: CKK_DSA or CKK_DH

16 28 Reserved

Algorithm-specific section (DSA)

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-15, information 63

||

|
|
|
||

|

|||

|||

|||

|||

|

|||

|||

|

Table 49. Format of the token domain parameters object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

44 4 Length in bits of prime p

48 256 Prime p

304 256 Base g

560 8 Reserved

568 32 Subprime q

600 636 Reserved

Algorithm-specific section (DH)

44 4 Length in bits of prime p

48 4 Reserved

52 256 Prime p

308 256 Reserved

564 256 Base g

820 416 Reserved

Variable length attribute section

1236 2 Length of LABEL attribute in bytes (aa)

1238 2 Length of APPLICATION attribute in bytes (bb)

1240 20 Reserved

1260 4 Offset of LABEL attribute in bytes

1264 4 Offset of APPLICATION attribute in bytes

1268 40 Reserved

1308 aa+bb Domain parameters attributes (variable length)

1308+aa+bb End of domain parameters object

Table 50. Format of the token data object

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for data object: “DATA”

4 2 Version: EBCDIC '00'

6 2 Length of object, in bytes

8 4 Flags (see Table 38 on page 48)

Object type-specific section

12 4 Reserved for IBM's use

16 28 Reserved for IBM's use

44 2 Length of VALUE attribute in bytes (aa)

46 2 Length of OBJECT_ID attribute in bytes (bb)

48 2 Length of LABEL attribute in bytes (cc)

50 2 Length of APPLICATION attribute in bytes (dd)

52 2 Length of ID attribute in bytes (ee)

54 22 Reserved for IBM's use

64 PKCS #11 Enhancements for IPsec and Large Keys — APAR OA34403

|

|
|
|
||

|||

|||

|||

|||

|||

|||

|

|||

|||

|||

|||

|||

|||

|

|||

|||

|||

|||

|||

|||

|||

|||
|

Table 50. Format of the token data object (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

76 4 Offset of VALUE attribute in bytes

80 4 Offset of OBJECT_ID attribute in bytes

84 4 Offset of LABEL attribute in bytes

88 4 Offset of APPLICATION attribute in bytes

92 4 Offset of ID attribute in bytes

96 44 Reserved for IBM's use

140 aa + bb + cc + dd +
ee

Data attributes (variable length)

140 + aa + bb + cc
+ dd + ee

End of data object

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-15, information 65

	Contents
	Chapter 1. Overview
	Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-03, information
	Key types and mechanisms supported
	Objects and attributes supported

	Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-14, information
	PKCS #11 Derive key (CSFPDVK)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Derive multiple keys (CSFPDMK)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 One-way hash, sign, or verify (CSFPOWH)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Private key sign (CSFPPKS)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Public key verify (CSFPPKV)
	Format
	Parameters
	Authorization
	Usage Notes

	Return Codes and Reason Codes

	Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-15, information
	Format of the token and object records
	Common section of the token and object records
	Format of the token-specific section of the token record
	Format of the object-specific sections of the token object records

