
z/OSCryptographic Services
Integrated Cryptographic Service Facility

PKCS #11 Enhancements for FIPS 140-2
— APAR OA32012
(May 31, 2010)

���

ii PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

Contents

Chapter 1. Overview 1

Chapter 2. Update of z/OS Cryptographic
Services ICSF Writing PKCS #11
Applications, SA23-2231-02, information. 3
Operating in compliance with FIPS 140-2 3

Requiring signature verification for ICSF module
CSFINPV2 4
Requiring FIPS 140-2 compliance from all z/OS
PKCS #11 applications 5
Requiring FIPS 140-2 compliance from select z/OS
PKCS #11 applications 6

Key types and mechanisms supported 8

Chapter 3. Update of z/OS
Cryptographic Services ICSF
Application Programmer’s Guide,
SA22-7522-13, information 15
PKCS #11 Secret key encrypt (CSFPSKE). 15

Format 15
Parameters 15

Authorization 19
Usage Notes 19

PKCS #11 One-way hash, sign, or verify
(CSFPOWH) 21

Format 21
Parameters 21
Authorization 25
Usage Notes 25

Reason Codes for Return Code 8 (8) 25

Chapter 4. Update of z/OS
Cryptographic Services ICSF System
Programmer’s Guide, SA22-7520-14,
information 27
Steps to customize SYS1.PARMLIB 28
Parameters in the installation options data set . . . 30
CICS Attachment Facility 42
Implementing the CICS wait list 43
The Cryptographic Communication Vector Table
Extension (CCVE) 44

© Copyright IBM Corp. 2010 iii

|
||

iv PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

Chapter 1. Overview

This document update describes PKCS #11 Enhancements for FIPS 140-2, and
contains alterations to information previously presented in the following books:
v z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-02
v z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-12
v z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14

The preceding books document capabilities provided by FMID HCR7770, and
support z/OS Version 1 Release 11.

Technical changes or additions related to PKCS #11 enhancements for FIPS 140-2 in
this document update are indicated by a vertical line to the left of the change.

These updates relate to the enhancements made to the ICSF product by the
application of APAR OA32012.

© Copyright IBM Corp. 2010 1

2 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

Chapter 2. Update of z/OS Cryptographic Services ICSF
Writing PKCS #11 Applications, SA23-2231-02, information

This chapter contains updates to the document z/OS Cryptographic Services ICSF
Writing PKCS #11 Applications, SA23-2231-02, for the PKCS #11 enhancements
provided by this APAR for FIPS 140-2. Refer to this source document if
background information is needed.

Operating in compliance with FIPS 140-2
The National Institute of Standards and Technology (NIST) is the US federal
technology agency that works with industry to develop and apply technology,
measurements, and standards. One of the standards published by NIST is the
Federal Information Processing Standard Security Requirements for Cryptographic
Modules, referred to as FIPS 140-2. FIPS 140-2 provides a standard that can be
required by organizations who specify that cryptographic-based security systems
are to be used to provide protection for sensitive or valuable data.

z/OS PKCS #11 cryptography is designed to meet FIPS 140-2 Level 1 criteria, and
can be configured to operate in compliance with FIPS 140-2 specifications.
Applications that need to comply with the FIPS 140-2 standard can therefore use
the z/OS PKCS #11 services in a way that allows only the cryptographic
algorithms (including key sizes) approved by the standard and restricts access to
the algorithms that are not approved. There are two modes of FIPS operation:
v The services can be configured so that all z/OS PKCS #11 applications are forced

to comply with the FIPS 140-2 standard. This is called FIPS standard mode.
v For installations where only certain z/OS PKCS #11 applications need to comply

with the FIPS 140-2 standard, the services can be configured so that only the
necessary applications are restricted from using the non-approved algorithms
and key sizes, while other applications are not. This is called FIPS compatibility
mode.

You can also use FIPS compatibility mode to test individual applications to ensure
FIPS compliance before switching to FIPS standard mode.

ICSF installation options are described in the z/OS Cryptographic Services ICSF
System Programmer's Guide. The installation option FIPSMODE indicates one of the
following:
v the z/OS PKCS #11 services will operate in FIPS standard mode. The installation

option to specify this is FIPSMODE(YES, FAIL(fail-option)) and is described in
more detail in “Requiring FIPS 140-2 compliance from all z/OS PKCS #11
applications” on page 5.

v the z/OS PKCS #11 services will operate in FIPS compatibility mode. The
installation option to specify this is FIPSMODE(COMPAT, FAIL(fail-option)).
When operating in FIPS compatibility mode, it is expected that further
specifications will be made to identify which applications must comply with the
FIPS 140-2 standard, and which applications do not need to comply. These
further specifications can be made:
– at the PKCS #11 token and application level, using FIPSEXEMPT.token-name

resource profiles in the CRYPTOZ class.

© Copyright IBM Corp. 2010 3

– within applications themselves for individual keys. When an application
creates a key, the application can specify that the key must be used in a FIPS
140-2 compliant fashion. The application can specify this by setting the
Boolean key attribute CKA_IBM_FIPS140 to TRUE.

The FIPSMODE(COMPAT, FAIL(fail-option)) installation option,
FIPSEXEMPT.token-name resource profiles, and the CKA_IBM_FIPS140 key
attribute, are described in more detail in “Requiring FIPS 140-2 compliance from
select z/OS PKCS #11 applications” on page 6.

v no FIPS 140-2 compliance is required by any application. This is the default
behavior if the FIPSMODE installation option is not used, but can be set
explicitly using the FIPSMODE(NO, FAIL(fail-option)) installation option.

If any z/OS PKCS #11 application intends to use the services in compliance with
the FIPS 140-2 standard, then, in accordance with that standard, the integrity of the
load module containing the z/OS PKCS #11 services must be checked when ICSF
is started. This load module is digitally signed, and, in order for applications using
its services to be FIPS 140-2 compliant, the signature must be verified when ICSF is
started. For more information, refer to “Requiring signature verification for ICSF
module CSFINPV2.”

If any application will use PKCS #11 objects for AES Galois/Counter Mode (GCM)
encryption or GMAC generation, and will have ICSF generate the initialization
vectors, then you need to set ECVTSPLX or CVTSNAME to a unique value. Refer
to “Steps to customize SYS1.PARMLIB” on page 28 for more information.

Requiring signature verification for ICSF module CSFINPV2
If your installation needs to operate z/OS PKCS #11 in compliance with the FIPS
140-2 standard, then the integrity of the cryptographic functions shipped by IBM
must be verified at your installation during ICSF startup. The load module that
contains the software cryptographic functions is SYS1.SIEALNKE(CSFINPV2), and
this load module is digitally signed when it is shipped from IBM. Using RACF,
you can verify that the module has remained unchanged from the time it was built
and installed on your system. To do this, you create a profile in the PROGRAM
class for the CSFINPV2 module, and use this profile to indicate that signature
verification is required before the module can be loaded.

To requiring signature verification for ICSF module CSFINPV2:
1. Make sure that RACF has been prepared to verify signed programs. As

described in z/OS Security Server RACF Security Administrator's Guide, a security
administrator prepares RACF to verify signed programs by creating a key ring
for signature verification, and adding the code-signing CA certificate that is
supplied with RACF to the key ring. If RACF has been prepared to verify
signed programs, there will be a key ring dedicated to signature verification,
the code-signing CA certificate will be attached to the key ring, and the
PROGRAM class will be active.
a. If RACF has been prepared to verify signed programs, the discrete profile

IRR.PROGRAM.SIGNATURE.VERIFICATION in the FACILITY class will
specify the name the name of the signature-verification key ring. To
determine if a signature key ring is already active, enter the command:
RLIST FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION

If there is no discrete profile with this name, have your security
administrator prepare RACF to verify signed programs using the
information in z/OS Security Server RACF Security Administrator's Guide.

4 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

|
|
|
|

b. If the signature verification key ring exists, the RLIST command will display
information for the discrete profile
IRR.PROGRAM.SIGNATURE.VERIFICATION in the FACILITY class. The
name of the signature verification key ring and the name of the key ring
owner will be included in the APPLICATION DATA field of the RLIST
command output. Using this information, enter the RACDCERT LISTRING
command to make sure the code-signing CA certificate is attached to the
key ring:
RACDCERT ID(key-ring-owner) LISTRING(key-ring-name)

The label of the code-signing CA certificate is 'STG Code Signing CA'. If this
label is not shown in the RACDCERT LISTRING command output, have
your security administrator prepare RACF to verify signed programs using
the information in z/OS Security Server RACF Security Administrator's Guide.

c. Program control must be active in order for RACF to perform signature
verification processing. To make sure the PROGRAM class is active, enter
the SETROPTS LIST command.
SETROPTS LIST

The ACTIVE CLASSES field of the command output should include the
PROGRAM class. If it does not, have your security administrator prepare
RACF to verify signed programs using the information in z/OS Security
Server RACF Security Administrator's Guide.

2. Create a profile for the CSFINPV2 program module in the PROGRAM class,
indicating that the program must be signed. The following command specifies
that the program should fail to load if the signature cannot be verified for any
reason. This command also specifies that all signature verification failures
should be logged.

Note: Due to space constraints, this command example appears on two lines.
However, the RDEFINE command should be entered completely on one
line.

RDEFINE PROGRAM CSFINPV2 ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

You will need to activate your profile changes in the PROGRAM class.
SETROPTS WHEN(PROGRAM) REFRESH

Requiring FIPS 140-2 compliance from all z/OS PKCS #11
applications

If all z/OS PKCS #11 applications running on your system must comply with the
FIPS 140-2 standard, your installation's system programmer should configure ICSF
so that z/OS PKCS #11 operates in FIPS standard mode. To do this:
1. Make sure the integrity of the cryptographic functions shipped by IBM in the

ICSF module CSFINPV2 will be verified by RACF before the module is loaded.
This is done by following the instructions in “Requiring signature verification
for ICSF module CSFINPV2” on page 4. If the these steps are not followed to
verify the digital signature of the module, no application calling the z/OS
PKCS #11 services can be considered FIPS 140-2 compliant.

2. To specify FIPS standard mode, have you installation's system programmer
include the installation option FIPSMODE(YES, FAIL(fail-option)) in the ICSF
installation options data set.

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-02, information 5

When this option is used, ICSF will operate in FIPS standard mode. In this
mode, ICSF initialization will test that it is running on an IBM System z model
type, and a version and release of z/OS, that supports FIPS. If so, then ICSF
will perform a series of cryptographic known answer tests as required by the
FIPS 140-2 standard. If the tests succeed, then all applications calling z/OS
PKCS services will be restricted from using the PKCS #11 algorithms and key
sizes that are prohibited by the FIPS 140-2 standard (as outlined in Table 3 on
page 13).
If any of the installation tests should fail, the action ICSF initialization takes
depends on the fail-option specified. The fail-option within the FIPSMODE(YES,
FAIL(fail-option)) installation option can be either:
v YES (which indicates that ICSF should terminate abnormally if there is a

failure in any of the tests that are performed).
v NO (which indicates that ICSF initialization processing should continue even

if there is a failure in one or more of the tests that are performed). If an
initialization test does fail, however, PKCS #11 support will be limited or
nonexistent depending on the test that failed.
– If ICSF is running on an IBM system z model type or with a version of

z/OS that does not support FIPS, most FIPS processing is bypassed. PKCS
#11 callable services will be available, but ICSF will not adhere to FIPS 140
restrictions. Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE will result in a failure return code.

– If a known answer test failed, all ICSF PKCS #11 callable services will be
unavailable.

For more information on this on other ICSF installation options, refer to z/OS
Cryptographic Services ICSF System Programmer's Guide.

Requiring FIPS 140-2 compliance from select z/OS PKCS #11
applications

If only certain z/OS PKCS #11 applications running on your system must comply
with the FIPS 140-2 standard, while other z/OS PKCS #11 applications do not,
your system programmer should configure ICSF so that z/OS PKCS #11 operates
in FIPS compatibility mode. In FIPS compatibility mode, you can use resource
profiles in the CRYPTOZ class to specify, at a token level, the applications that are
exempt from FIPS 140-2 compliance and, for that reason, should not be subject to
FIPS restrictions. To configure the z/OS PKCS #11 services to operate in FIPS
compatibility mode:
1. Make sure the integrity of the cryptographic functions shipped by IBM in the

module ICSF module CSFINPV2 will be verified by RACF before the module is
loaded. This is done by following the instructions in “Requiring signature
verification for ICSF module CSFINPV2” on page 4. If the these steps are not
followed to verify the digital signature of the module, no application calling the
z/OS PKCS #11 services can be considered FIPS 140-2 compliant.

2. To specify FIPS compatibility mode, have you installation's system programmer
include the installation option FIPSMODE(COMPAT, FAIL(fail-option)) in the
ICSF installation options data set.
When this option is used, ICSF will operate in FIPS compatibility mode. In this
mode, ICSF initialization will test that it is running on a IBM System z model
type, and a version and release of z/OS, that supports FIPS. If so, then ICSF
will perform a series of cryptographic known answer tests as required by the
FIPS 140-2 standard. If the tests are successful, then, by default, all applications
calling z/OS PKCS services will be restricted from using the PKCS #11
algorithms and key sizes that are prohibited by the FIPS 140-2 standard (as

6 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

outlined in Table 3 on page 13). Using profiles in the CRYPTOZ class, however,
you can identify applications that are exempt from FIPS 140-2 compliance (as
described in the next step).
If any of the installation tests should fail, the action ICSF initialization takes
depends on the fail-option specified. The fail-option within the
FIPSMODE(COMPAT, FAIL(fail-option)) installation option can be either:
v YES (which indicates that ICSF should terminate abnormally if there is a

failure in any of the tests that are performed).
v NO (which indicates that ICSF initialization processing should continue even

if there is a failure in one or more of the tests that are performed). If an
initialization test does fail, however, PKCS #11 support will be limited or
nonexistent depending on the test that failed.
– If ICSF is running on an IBM system z model type or with a version of

z/OS that does not support FIPS, most FIPS processing is bypassed. PKCS
#11 callable services will be available, but ICSF will not adhere to FIPS 140
restrictions. Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE will result in a failure return code.

– If a known answer test failed, all ICSF PKCS #11 callable services will be
unavailable.

For more information on this on other ICSF installation options, refer to z/OS
Cryptographic Services ICSF System Programmer's Guide.

3. To specify which applications must comply with FIPS 140-2 restrictions and
which applications do not need to comply, create FIPSEXEMPT.token-label
resource profiles in the CRYPTOZ class. If no FIPSEXEMPT.token-label resource
profiles are created, then all z/OS PKCS #11 applications will be subject to FIPS
restrictions. By creating a FIPSEXEMPT.token-label resource profile for a
particular token, however, you can specify whether or not a particular user ID
should be considered exempt from FIPS restrictions.
v If a user ID has access authority NONE to the FIPSEXEMPT.token-label

resource, ICSF will enforce FIPS 140-2 compliance for that user ID.
v If a user ID has access authority READ to the FIPSEXEMPT.token-label

resource, that user ID is exempt from FIPS 140-2 restrictions.
To specify which applications must comply with the FIPS 140-2 restrictions, and
which do not, the security administrator must:
a. If it is not already activated, activate the CRYPTOZ class with generics and

RACLIST it:
SETROPTS CLASSACT(CRYPTOZ) GENERIC(CRYPTOZ) RACLIST(CRYPTOZ)

b. Create the FIPSEXEMPT.token-label resource profile for each z/OS PKCS #11
token. The following command creates the profile for the omnipresent
session-object token SYSTOK-SESSION-ONLY.
RDEF CRYPTOZ FIPSEXEMPT.SYSTOK-SESSION-ONLY UACC(NONE)

Although the use of generic profiles in the CRYPTOZ class is permitted, we
recommend you begin the profile name with “FIPSEXEMPT”. Failure to do
this could result in generic characters unintentionally matching the
SO.token-label or USER.token-label resources for token access, and so could
have unintended consequences.

c. Using the PERMIT command, specify READ access authority for user IDs
that are exempt from FIPS 140-2 restrictions, and NONE access authority for
user IDs that must comply with FIPS 140-2. The following command
indicates that all user IDs are exempt, except for the daemon user ID
BOGD.

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-02, information 7

PERMIT FIPSEXEMPT.SYSTOK-SESSION-ONLY CLASS(CRYPTOZ) ID(*) ACC(READ)
PERMIT FIPSEXEMPT.SYSTOK-SESSION-ONLY CLASS(CRYPTOZ) ID(BOGD) ACC(NONE)

d. Refresh the CRYPTOZ class in common storage:
SETROPTS RACLIST(CRYPTOZ) REFRESH

Specifying FIPS 140-2 compliance from within a z/OS PKCS #11
application
When running in FIPS compatability mode, a PKCS #11 application can, when
creating a key, specify that generation and subsequent use of the key must adhere
to FIPS 140-2 restrictions. An application specifies this by setting the Boolean
attribute CKA_IBM_FIPS140 to TRUE when creating the key. If an application does
this, the FIPS 140-2 restrictions (as outlined in Table 3 on page 13) will be enforced
for the key regardless of any specifications made at the token level using
FIPSEXEMPT.token-label resource profiles.

An application controls FIPS 140-2 compliance for a key when in FIPS
compatibility mode as specified by the FIPSMODE(COMPAT, FAIL(fail-option))
installation option. If the installation option FIPSMODE(NO, FAIL(fail-option)),
which indicates no FIPS 140-2 compliance for any application, is specified (or
defaulted to), an application that sets the Boolean attribute CKA_IBM_FIPS140 to
TRUE will fail with return/reason code 8/3069. If the FIPSMODE(YES,
FAIL(fail-option)) installation option is specified, indicating FIPS 140-2 compliance is
required by all applications, setting the Boolean attribute CKA_IBM_FIPS140 to
TRUE is merely redundant and does not result in an error.

Key types and mechanisms supported
ICSF supports the following PKCS #11 key types (CK_KEY_TYPE). All of these key
types are supported in software. Whether they are also supported in hardware will
depend on the limitations of your cryptographic hardware configuration.
v CKK_AES - key lengths 128, 192, and 256 bits
v CKK_BLOWFISH - key lengths 8 up to 448 bits (in increments of 8 bits)
v CKK_DES
v CKK_DES2
v CKK_DES3
v CKK_DH - key lengths 512 up to 2048 bits (in increments of 64 bits)
v CKK_DSA - key lengths 512 up to 1024 bits (in increments of 64 bits)
v CKK_EC (CKK_ECDSA) - key lengths 160 up to 521 bits
v CKK_GENERIC_SECRET - key lengths 8 up to 2048 bits, unless further

restricted by the generation mechanism:
– CKM_DH_PKCS_DERIVE - key lengths 512 up to 2048 bits
– CKM_SSL3_MASTER_KEY_DERIVE - 384-bit key lengths
– CKM_SSL3_MASTER_KEY_DERIVE_DH - 384-bit key lengths
– CKM_SSL3_PRE_MASTER_KEY_GEN - 384-bit key lengths
– CKM_TLS_MASTER_KEY_DERIVE - 384-bit key lengths
– CKM_TLS_MASTER_KEY_DERIVE_DH - 384-bit key lengths
– CKM_TLS_PRE_MASTER_KEY_GEN - 384-bit key lengths

v CKK_RC4 - key lengths 8 up to 2048 bits
v CKK_RSA - key lengths 512 up to 4096 bits

8 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

|

The following table shows the mechanisms supported by different hardware
configurations. All the mechanisms are supported in software, and some may be
available in hardware. If the mechanism is available in hardware, ICSF will use the
hardware mechanism. If the mechanism is not available in hardware, ICSF will use
the software mechanism. The following table also shows the flags returned by the
C_GetMechanismInfo function in the CK_MECHANISM_INFO structure. Whether
or not the CKF_HW flag is returned in the CK_MECHANISM_INFO structure
indicates whether or not the mechanism is supported in the hardware.

Table 1. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_RSA_PKCS_KEY_PAIR_GEN Bits [CKF_HW] CKF_GENERATE_KEY_PAIR

CKM_DES_KEY_GEN not applicable [CKF_HW] CKF_GENERATE

CKM_DES2_KEY_GEN not applicable [CKF_HW] CKF_GENERATE

CKM_DES3_KEY_GEN not applicable [CKF_HW] CKF_GENERATE

CKM_RSA_PKCS6 Bits [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP CKF_SIGN
CKF_VERIFY CKF_SIGN_RECOVER
CKF_VERIFY_RECOVER

CKM_RSA_X_5096, 7 Bits [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_SIGN CKF_VERIFY
CKF_SIGN_RECOVER
CKF_VERIFY_RECOVER

CKM_MD2_RSA_PKCS6, 7 Bits CKF_SIGN CKF_VERIFY

CKM_MD5_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA1_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA224_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA256_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA384_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA512_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_DES_ECB3 not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES_CBC not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES_CBC_PAD not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_DES3_ECB3, 4 not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES3_CBC4 not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES3_CBC_PAD4 not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_SHA_1 not applicable [CKF_HW] CKF_DIGEST

CKM_SHA224 not applicable [CKF_HW] CKF_DIGEST

CKM_SHA256 not applicable [CKF_HW] CKF_DIGEST

CKM_SHA384 not applicable [CKF_HW] CKF_DIGEST

CKM_SHA512 not applicable [CKF_HW] CKF_DIGEST

CKM_RIPEMD160 not applicable CKF_DIGEST

CKM_MD2 not applicable CKF_DIGEST

CKM_MD5 not applicable [CKF_HW] CKF_DIGEST

CKM_AES_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-02, information 9

Table 1. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO) (continued)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_AES_ECB4 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_AES_CBC4 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_AES_CBC_PAD4 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_AES_GCM4 Bytes CKF_ENCRYPT CKF_DECRYPT

CKM_DSA_KEY_PAIR_GEN Bits CKF_GENERATE_KEY_PAIR

CKM_DH_PKCS_KEY_PAIR_GEN Bits CKF_GENERATE_KEY_PAIR

CKM_EC_KEY_PAIR_GEN Bits CKF_GENERATE_KEY_PAIR CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_DSA_PARAMETER_GEN Bits CKF_GENERATE

CKM_DH_PKCS_PARAMETER_GEN Bits CKF_GENERATE

CKM_BLOWFISH_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

CKM_RC4_KEY_GEN Bits [CKF_HW] CKF_GENERATE

CKM_SSL3_PRE_MASTER_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

CKM_TLS_PRE_MASTER_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

CKM_GENERIC_SECRET_KEY_GEN Bits [CKF_HW] CKF_GENERATE

CKM_BLOWFISH_CBC5 Bytes CKF_ENCRYPT CKF_DECRYPT

CKM_RC45 Bits CKF_ENCRYPT CKF_DECRYPT

CKM_DSA_SHA1 Bits CKF_SIGN CKF_VERIFY

CKM_DSA Bits CKF_SIGN CKF_VERIFY

CKM_ECDSA_SHA1 Bits CKF_SIGN CKF_VERIFY CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_ECDSA Bits CKF_SIGN CKF_VERIFY CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_MD5_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA_1_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA224_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA256_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA384_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA512_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SSL3_MD5_MAC Bits CKF_SIGN CKF_VERIFY

CKM_SSL3_SHA1_MAC Bits CKF_SIGN CKF_VERIFY

CKM_DH_PKCS_DERIVE Bits CKF_DERIVE

CKM_ECDH1_DERIVE Bits CKF_DERIVE CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_SSL3_MASTER_KEY_DERIVE Bytes CKF_DERIVE

CKM_SSL3_MASTER_KEY_DERIVE_DH Bytes CKF_DERIVE

CKM_SSL3_KEY_AND_MAC_DERIVE not applicable CKF_DERIVE

CKM_TLS_MASTER_KEY_DERIVE Bytes CKF_DERIVE

10 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

Table 1. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO) (continued)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_TLS_MASTER_KEY_DERIVE_DH Bytes CKF_DERIVE

CKM_TLS_KEY_AND_MAC_DERIVE not applicable CKF_DERIVE

CKM_TLS_PRF not applicable CKF_DERIVE

Footnotes for table Table 1 on page 9.

1 The PKCS11 standard designates two ways of implementing Elliptic Curve
Cryptography, nicknamed Fp and F2

m. z/OS PKCS11 supports the Fp variety only.

2 ANSI X9.62 has the following ASN.1 definition for Elliptic Curve domain
parameters:

Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve OBJECT IDENTIFIER,
implicitlyCA NULL }

z/OS PKCS11 supports the specification of CKA_EC_PARAMS attribute using the
namedCurved CHOICE. The following NIST-recommended named curves are
supported:
v secp192r1 – { 1 2 840 10045 3 1 1 }
v secp224r1 – { 1 3 132 0 33 }
v secp256r1 – { 1 2 840 10045 3 1 7 }
v secp384r1 – { 1 3 132 0 34 }
v secp521r1 – { 1 3 132 0 35 }

The following Brainpool-defined named curves are supported:
v brainpoolP160r1 – { 1 3 36 3 3 2 8 1 1 1 }
v brainpoolP192r1 – { 1 3 36 3 3 2 8 1 1 3 }
v brainpoolP224r1 – { 1 3 36 3 3 2 8 1 1 5 }
v brainpoolP256r1 – { 1 3 36 3 3 2 8 1 1 7 }
v brainpoolP320r1 – { 1 3 36 3 3 2 8 1 1 9 }
v brainpoolP384r1 – { 1 3 36 3 3 2 8 1 1 11 }
v brainpoolP512r1 – { 1 3 36 3 3 2 8 1 1 13 }

In addition, z/OS PKCS11 has limited support for the ecParameters CHOICE.
When specified, the DER encoding must contain the optional cofactor field and
must not contain the optional Curve.seed field. Also, calls to C_GetAttributeValue
to retrieve the CKA_EC_PARAMS attribute will always return the value in the
namedCurve form regardless of how the attribute was specified when the object
was created. Due to these limitations, the CKF_EC_ECPARAMETERS flag is not
turned on for the applicable mechanisms.

3 Mechanism not present on a CCF system.

4 Mechanism not present on a system that is export controlled.

5 Mechanism limited to 56-bit on a system that is export controlled.

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-02, information 11

6 In general, z/OS PKCS #11 expects RSA private keys to be in Chinese Remainder
Theorem (CRT) format. However, for Decrypt, Sign, or UnwrapKey (z890, z990 or
higher only) where one of the following is true, the shorter Modulus Exponent
(ME) is permitted:
v There is an accelerator present and the key is less than or equal to 2048 bits in

length.
v There is a coprocessor present and the key is less than or equal to 1024 bits in

length and FIPS restrictions don’t apply.

7 RSA public or private keys that have a public exponent greater than 8 bytes in
length, or a modulus that has an odd number of bits, can only be used when an
accelerator is present or a coprocessor is present and FIPS restrictions don’t apply.
If only an accelerator is present, the key must be less than or equal to 2048 bits in
length.

The following table lists the mechanisms supported by specific cryptographic
hardware. When a particular mechanism is not available in hardware, ICSF will
use the software implementation of the mechanism.

Table 2. Mechanisms supported by specific cryptographic hardware

Machine type and
cryptographic hardware Mechanisms supported Notes

z800, z900 - CCF CKM_DES_KEY_GEN
CKM_DES2_KEY_GEN
CKM_DES3_KEY_GEN
CKM_RSA_PKCS
CKM_RSA_X_509
CKM_MD5_RSA_PKCS
CKM_SHA1_RSA_PKCS
CKM_DES_CBC
CKM_DES_CBC_PAD
CKM_DES3_CBC
CKM_DES3_CBC_PAD
CKM_SHA_1
CKM_BLOWFISH_KEY_GEN
CKM_RC4_KEY_GEN
CKM_AES_KEY_GEN
CKM_SSL3_PRE_MASTER_KEY_GEN
CKM_TLS_PRE_MASTER_KEY_GEN
CKM_GENERIC_SECRET_KEY_GEN

This is the base set.

RSA private key operations
limited to 1024 bits in length
(maximum) and no key pair
generation capability.

z800, z900 - PCICC Base set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN

RSA private key operations
limited to 2048 bits in length
(maximum).

z890, z990 - PCIXCC Base set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB

RSA private key operations
limited to 2048 bits in length
(maximum).

z890, z990 - CEX2C Base set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB

RSA private key operations
limited to 2048 bits in length
(maximum).

12 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

Table 2. Mechanisms supported by specific cryptographic hardware (continued)

Machine type and
cryptographic hardware Mechanisms supported Notes

z9® - CEX2C Base set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB
CKM_SHA224_RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA224
CKM_SHA256
CKM_AES_CBC
CKM_AES_CBC_PAD
CKM_AES_ECB

AES key operations limited to 128
bits in length (maximum).

RSA private key operations
limited to 4096 bits in length
(maximum).

z10 - CEX2C or CEX3C z9 CEX2C set plus:
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_SHA384
CKM_SHA512

AES key operations limited to 256
bits in length (maximum).

RSA private key operations
limited to 4096 bits in length
(maximum).

The following table lists the algorithms and uses (by mechanism) that are not
allowed when operating in compliance with FIPS 140-2. For more information
about how the z/OS PKCS #11 services can be configured to operate in compliance
with the FIPS 140-2 standard, refer to “Operating in compliance with FIPS 140-2”
on page 3.

Table 3. Restricted algorithms and uses when running in compliance with FIPS 140-2

Algorithm Mechanisms Usage disallowed

RIPEMD CKM_RIPEMD160 All

MD2 CKM_MD2, CKM_MD2_RSA_PKCS All

MD5 CKM_MD5, CKM_MD5_RSA_PKCS,
CKM_MD5_HMAC

All

SSL3 CKM_SSL3_MD5_MAC,
CKM_SSL3_SHA1_MAC,
CKM_SSL3_MASTER_KEY_DERIVE,
CKM_SSL3_MASTER_KEY_DERIVE_DH,
CKM_SSL3_KEY_AND_MAC_DERIVE

All

TLS CKM_TLS_MASTER_KEY_DERIVE,
CKM_TLS_MASTER_KEY_DERIVE_DH,
CKM_TLS_KEY_AND_MAC_DERIVE

Base key sizes less than 10 bytes

Diffie Hellman CKM_DH_PKCS_DERIVE Key sizes less than 1024 bits

DSA CKM_DSA_SHA1, CKM_DSA Key sizes less than 1024 bits

Single DES CKM_DES_ECB, CKM_DES_CBC,
CKM_DES_CBC_PAD

All

Triple DES CKM_DES3_ECB, CKM_DES3_CBC,
CKM_DES3_CBC_PAD

Two key Triple DES

Blowfish CKM_BLOWFISH_CBC All

RC4 CKM_RC4 All

RSA CKM_RSA_X_509 All

CKM_RSA_PKCS Key sizes less than 1024 bits

ECC CKM_ECDSA, CKM_ECDSA_SHA1,
CKM_ECDH1_DERIVE

Brainpool curves

Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-02, information 13

Table 3. Restricted algorithms and uses when running in compliance with FIPS 140-2 (continued)

Algorithm Mechanisms Usage disallowed

HMAC CKM_SHA_1, CKM_SHA224, CKM_SHA256,
CKM_SHA384, CKM_SHA512

Base key sizes less than one half
the output size

AES GCM CKM_AES_GCM GCM encryption or GMAC
generation with externally
generated initialization vectors.
Initialization vector lengths other
than 12 bytes. Tag byte sizes 4 and
8

14 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

|||
|
|
|
|
|

Chapter 3. Update of z/OS Cryptographic Services ICSF
Application Programmer’s Guide, SA22-7522-13, information

This chapter contains updates to the document z/OS Cryptographic Services ICSF
Application Programmer’s Guide, SA22-7522-13, for the PKCS #11 enhancements
provided by this APAR for FIPS 140-2. Refer to this source document if
background information is needed.

PKCS #11 Secret key encrypt (CSFPSKE)
Use the PKCS #11 secret key encrypt callable service to encipher data using a clear
symmetric key. AES, DES, BLOWFISH, and RC4 are supported. This service
supports CBC, ECB, Galois/Counter, and stream modes and PKCS #7 padding.
The key handle must be a handle of a PKCS #11 secret key object. The
CKA_ENCRYPT attribute must be true.

If the length of output field is too short to hold the output, the service will fail and
return the required length of the output field in the cipher_text_length parameter.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPSKE6.

Format

CALL CSFPSKE(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_handle,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
clear_text_length,
clear_text,
clear_text_id,
cipher_text_length,
cipher_text,
cipher_text_id)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service.

reason_code

Direction: Output Type: Integer

© Copyright IBM Corp. 2010 15

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes-1). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 0, 1, 2, or 3.

rule array

Direction: Input Type: String

Keywords that provide control information to the callable service.

Table 4. Keywords for secret key encrypt

Keyword Meaning

Encryption Mechanism (Optional. No default. If not specified, mechanism will be
taken from key type of secret key. If specified , must match key type)

AES AES algorithm will be used.

DES DES algorithm will be used. This is only single-key encryption.

DES3 DES3 algorithm will be used, This includes double- and triple-key
encryption.

BLOWFISH BLOWFISH algorithm will be used.

RC4 RC4 algorithm will be used. This is a stream cipher.

Processing Rule (optional)

CBC Performs cipher block chaining. The text length must be a multiple
of the block size for the specified algorithm (8 bytes for DES,
DES3, and BLOWFISH, 16 bytes for AES). CBC is the default value
for DES, DES3, AES, and BLOWFISH. CBC cannot be specified for
RC4.

CBC-PAD Performs cipher block chaining. Except for FINAL and ONLY
chaining calls, the clear text length must be a multiple of the block
size for the specified algorithm. For FINAL and ONLY calls:

v The clear text length may be shorter than the block size and
may even be zero.

v PKCS #7 padding is performed. Thus, the cipher text will
always be longer than the clear text.

CBC-PAD cannot be specified for BLOWFISH or RC4.

PKCS #11 Secret key encrypt (CSFPSKE)

16 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

Table 4. Keywords for secret key encrypt (continued)

Keyword Meaning

ECB Performs electronic code book encryption. The text length must be
a multiple of the block size for the specified algorithm. ECB cannot
be specified for BLOWFISH or RC4.

GCM Performs Galois/Counter mode encryption. The clear text length
may be shorter than the block size and may even be zero. The
authentication tag is returned appended to the cipher text. GCM
may only be specified with AES. GMAC is a specialized form of
GCM where no plain text is specified.

GCMIVGEN Performs similarly to the GCM processing rule except that ICSF
will generate part of the initialization vector and return it in the
initialization_vector parameter. Having ICSF generate the
initialization vector ensures that initialization vectors are never
repeated for a given key object.

STREAM Performs a stream cipher. STREAM cannot be specified for
BLOWFISH, DES, DES3, or AES. STREAM is the default value for
RC4.

Chaining Selection (optional)

INITIAL Specifies this is the first call in a series of chained calls. For cipher
block chaining, the initialization vector is taken from the
initialization_vector parameter. Intermediate results are stored in the
chain_data field. Cannot be specified with processing rule ECB,
GCM, or GCMIVGEN.

CONTINUE Specifies this is a middle call in a series of chained calls.
Intermediate results are read from and stored in the chain_data
field. Cannot be specified with processing rule ECB, GCM, or
GCMIVGEN.

FINAL Specifies this is the last call in a series of chained calls.
Intermediate results are read from the chain_data field. Cannot be
specified with processing rule ECB, GCM, or GCMIVGEN.

ONLY Specifies this is the only call and the call is not chained. For cipher
block chaining, the initialization vector is taken from the
initialization_vector parameter. For Galois Counter mode, the
initialization parameters are taken from the initialization_vector
parameter. ONLY is the default chaining.

key_handle

Direction: Input Type: String

The 44-byte handle of secret key object.

Initialization_vector_length

Direction: Input Type: Integer

Length of the initialization_vector in bytes. For CBC and CBC-PAD, this must be
8 bytes for DES and BLOWFISH and 16 bytes for AES. For GCM and
GCMVGEN, this must be the size of the initialization_vector field (28 bytes).

initialization_vector

Direction: Input Type: String

This field has a varying format depending on the mechanism specified. For
CBC and CBC-PAD this is the 8 or 16 byte initial chaining value. The format

PKCS #11 Secret key encrypt (CSFPSKE)

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-13, information 17

||
|
|
|
|

|

|
|

|

|
|

|

|||
|
|
|

for GCM and GCMIVGEN are shown in the following tables.

Table 5. initialization_vector parameter format for GCM mechanism

Offset Length
in bytes

Direction Description

0 4 Input length in bytes of the initialization vector area. The minimum value is 1. The
maximum value is 128. 12 is recommended.

4 8 Input 64-bit address of the initialization vector area. The data must reside in the caller’s
address space. High order word must be set to all zeros by AMODE31 callers.

12 4 Input length in bytes of the additional authentication data. The minimum value is 0. The
maximum value is 1048576.

16 8 Input 64-bit address of the additional authentication data. The data must reside in the
caller’s address space. High order word must be set to all zeros by AMODE31
callers. This field is ignored if the length of the additional authentication data is
zero.

24 4 Input Length in bytes of the desired authentication tag. This value must be one of 4, 8, 12,
13, 14, 15, or 16.

Table 6. initialization_vector parameter format for GCMIVGEN mechanism

Offset Length
in bytes

Direction Description

0 4 Input Nonce value which ICSF is to use as the first 4 bytes of the initialization vector. The
remaining 8 bytes will be generated and returned to the caller in the initialization
vector area.

4 8 Input 64-bit address of the initialization vector area into which ICSF will store the 8 bytes
it generates. The area must reside in the caller’s address space. High order word
must be set to all zeros by AMODE31 callers.

The complete initialization vector to be used for decryption is the 4-byte nonce
concatenated with the 8 bytes stored in the area

12 4 Input length in bytes of the additional authentication data. The minimum value is 0. The
maximum value is 1048576.

16 8 Input 64-bit address of the additional authentication data. The data must reside in the
caller’s address space. High order word must be set to all zeros by AMODE31
callers. This field is ignored if the length of the additional authentication data is
zero.

24 4 Input Length in bytes of the desired authentication tag. This value must be one of 4, 8, 12,
13, 14, 15, or 16.

chain_data_length

Direction: Input/Output Type: Integer

The byte length of the chain_data parameter. This must be 128 bytes.

chain_data

Direction: Input/Output Type: String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another. ICSF initializes the chain data on an INITIAL call, and may
change it on subsequent CONTINUE calls. Your application must not change
the data in this field between the sequence of INITIAL, CONTINUE, and
FINAL calls for a specific message. The chain data has the following format:

PKCS #11 Secret key encrypt (CSFPSKE)

18 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

|

||

||
|
||

||||
|

||||
|

||||
|

||||
|
|
|

||||
|
|

||

||
|
||

||||
|
|

||||
|
|

|
|

||||
|

||||
|
|
|

||||
|
|

|

Table 7. chain_data parameter format

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

clear_text_length

Direction: Input Type: Integer

Length of the clear_text parameter in bytes. Except for processing rules GCM
and GCMIVGEN, the length can be up to 2147483647. For processing rules
GCM and GCMIVGEN, the length cannot exceed 1048576.

clear_text

Direction: Input Type: String

Text to be encrypted

clear_text_id

Direction: Input Type: Integer

The ALET identifying the space where the clear text resides.

cipher_text_length

Direction: Input/Output Type: Integer

On input, the length in bytes of the cipher_text parameter. On output, the
length of the text encrypted into the cipher_text parameter.

cipher_text

Direction: Output Type: String

Encrypted text

cipher_text_id

Direction: Output Type: Integer

The ALET identifying the space where the cipher text resides.

Authorization
To use this service with a public object, the caller must have at least SO (READ)
authority or USER (READ) authority (any access).

To use this service with a private object, the caller must have at least USER
(READ) authority (user access).

Usage Notes
If the INITIAL rule is used to start a series of chained calls:

PKCS #11 Secret key encrypt (CSFPSKE)

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-13, information 19

|
|

v The key used to initiate the chained calls must not be deleted until the chained
calls are complete.

v The application should make a FINAL call to free ICSF resources allocated. If
processing is to be aborted without making a FINAL call and the chain_data
parameter indicates that a cryptographic state object has been allocated, the
caller must free the object by calling CSFPTRD (or CSFPTRD6 for 64-bit callers)
passing the state object’s handle.

GCM encryption may be used to produce a GMAC on some authentication data.
To do this, request AES encryption with processing rule GCM or GCMVGEN. The
clear_text_length field must be set to zero. The authentication tag (the GMAC) is
returned in the cipher_text field.

For Processing Rule GCMIVGEN, the total number of initialization vector
generations for a token key object is limited to 4294967295. Once this number is
exceeded, the key object will no longer be eligible for Processing Rule GCMIVGEN
and is considered “retired”. This usage counter is maintained in the TKDS as part
of the key object. For keys that are copied using CSFPTRC (C_CopyObject), the
existing counter value is copied to the new key object, but not synchronized after
that.

For Processing Rule GCMIVGEN, session key objects have no maximum lifetime.
They may be retired at any time. Once retired, the key object will no longer be
eligible for Processing Rule GCMIVGEN.

For Processing Rule GCMIVGEN, the nonce value portion of the initialization
vector is predetermined by the caller. It is used to ensure that initialization vector
values are not repeated for any given key value. The caller should provide a
random value and change the value as often as practical. It must be changed
whenever:
v a given key value is replicated as a new persistent key object
v a given persistent key object is replicated as a new session key object
v a given session key value is re-instantiated after system IPL
v a given key value is re-instantiated after ICSF indicates it has been retired

Use of Processing Rule GCMIVGEN with token key objects requires that the first 4
bytes of ECVTSPLX or CVTSNAME be set to a unique value with respect to other
systems. See z/OS Cryptographic Services ICSF System Programmer's Guide, SA22-7520
for information on how to set these fields.

A session key object should never be used for Processing Rule GCMIVGEN if the
key value is distributed to multiple systems outside the current sysplex where new
initialization vectors may be generated. Use only token key objects in such cases. If
session key objects are used, the other systems must use different nonces.

For Processing Rule GCMIVGEN, the 8 bytes of generated initialization vector are
stored back into the initialization vector area before the GCM operation is
performed. This allows the generated initialization vector to be part of the
additional authentication data, if desired.

PKCS #11 Secret key encrypt (CSFPSKE)

20 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|

|

|

|
|
|
|

|
|
|
|

|
|
|
|

PKCS #11 One-way hash, sign, or verify (CSFPOWH)
Use the one-way hash, sign, or verify callable service to generate a one-way hash
on specified text, sign specified text, or verify a signature on specified text. For
one-way hash, this service supports the following methods:
v MD2 - software only
v MD5 - software only
v SHA-1
v RIPEMD-160 - software only
v SHA-224
v SHA-256
v SHA-384
v SHA-512

For sign and verify, the following methods are supported:
v MD2 with RSA-PKCS 1.5
v MD5 with RSA-PKCS 1.5
v SHA1 with RSA-PKCS 1.5, DSA, or ECDSA
v SHA-224 with RSA-PKCS 1.5 or ECDSA
v SHA-256 with RSA-PKCS 1.5 or ECDSA
v SHA-384 with RSA-PKCS 1.5 or ECDSA
v SHA-512 with RSA-PKCS 1.5 or ECDSA

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPOWH6.

Format

CALL CSFPOWH(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
text_id,
chain_data_length,
chain_data,
handle,
hash_length,
hash)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service.

reason_code

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-13, information 21

|

|
|
|

|

|

|

|

|

|

|

|

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes-1). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each
keyword is left-justisfied in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 8. Keywords for one-way hash generate

Keyword Meaning

Hash Method (required)

MD2 Hash algorithm is MD2 algorithm. Length of hash generated is 16
bytes.

MD5 Hash algorithm is MD5 algorithm. Length of hash generated is 16
bytes.

RPMD-160 Hash algorithm is RIPEMD-160. Length of hash generated is 20
bytes.

SHA-1 Hash algorithm is SHA-1. Length of hash generated is 20 bytes.

SHA-224 Hash algorithm is SHA-224. Length of hash generated is 28 bytes.

SHA-256 Hash algorithm is SHA-256. Length of hash generated is 32 bytes.

SHA-384 Hash algorithm is SHA-384. Length of hash generated is 48 bytes.

SHA-512 Hash algorithm is SHA-512. Length of hash generated is 64 bytes.

Chaining Flag (optional)

FIRST Specifies this is the first call in a series of chained calls.
Intermediate results are stored in the hash and chain_data field.

MIDDLE Specifies this is a middle call in a series of chained calls.
Intermediate results are stored in the hash and chain_data field.

LAST Specifies this is the last call in a series of chained calls.

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

22 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

|

|

Table 8. Keywords for one-way hash generate (continued)

Keyword Meaning

ONLY Specifies this is the only call and the call is not chained. This is the
default.

Requested Operation (optional)

HASH The specified text is to be hashed only. This is the default.

SIGN-RSA The data is to be hashed then signed using RSA-PKCS 1.5
formatting. Any hash method is acceptable except RPMD-160.

SIGN-DSA The data is to be hashed then signed using DSA. The hash method
must be SHA-1.

SIGN-EC The data is to be hashed then signed using ECDSA. The hash
method must be SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

VER-RSA The data is to be hashed then signature verified using RSA-PKCS
1.5 formatting. Any hash method is acceptable except RPMD-160.

VER-DSA The data is to be hashed then signature verified using DSA. The
hash method must be SHA-1.

VER-EC The data is to be hashed then signature verified using ECDSA. The
hash method must be SHA-1, SHA-224, SHA-256, SHA-384, or
SHA-512.

text_length

Direction: Input Type: Integer

The length of the text parameter in bytes.

If you specify the FIRST or MIDDLE keyword, then the text length must be a
multiple of the block size of the hash method. For MD2, this is a multiple of 16
bytes. For MD5, RPMD-160, SHA-1, SHA-224, and SHA-256, this is a multiple
of 64 bytes. For SHA-384 and SHA-512, this is a multiple of 128 bytes. For
ONLY and LAST, this service performs the required padding according to the
algorithm specified. The length can be from 0 to 2147483647.

text

Direction: Input Type: String

Value to be hashed

text_id

Direction: Input Type: Integer

The ALET identifying the space where the text resides.

chain_data_length

Direction: Input/Output Type: Integer

The byte length of the chain_data parameter. This must be 128 bytes.

chain_data

Direction: Input/Output Type: String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another. ICSF initializes the chain data on a FIRST call and may
change it on subsequent MIDDLE calls. Your application must not change the

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-13, information 23

|

||

||
|

||
|

||
|

||
|

||
|

||
|
|

data in this field between the sequence of FIRST, MIDDLE, and LAST calls for
a specific message. The chain data has the following format:

Table 9. chain_data parameter format

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

handle

Direction: Input Type: String

For hash requests, this is the 44-byte name of the token to which this hash
operation is related. The first 32 bytes of the handle are meaningful. The
remaining 12 bytes are reserved.

For sign and verify requests, this is the 44-byte handle to the key object that is
to be used. For FIRST and MIDDLE chaining requests, only the first 32 bytes of
the handle are meaningful, to identify the token.

hash_length

Direction: Input/Output Type: Integer

The length of the supplied hash field in bytes.

For hash requests, this field is input only. For SHA-1 and RPMD-160 this must
be at least 20 bytes; for MD2 and MD5 this must be at least 16 bytes. For
SHA-224 and SHA-256, this must be at least 32 bytes. Even though the length
of the SHA-224 hash is less than SHA-256, the extra bytes are used as a work
area during the generation of the hash value. The SHA-224 value is
left-justified and padded with 4 bytes of binary zeroes. For SHA-384 and
SHA-512, thus must be at least 64 bytes. Even though the length of the
SHA-384 hash is less than SHA-512, the extra bytes are used as a work area
during the generation of the hash value. The SHA-384 value is left-justified
and padded with 16 bytes of binary zeroes.

For FIRST and MIDDLE sign and verify requests, this field is ignored.

For LAST and ONLY sign requests, this field is input/output. If the signature
generation is successful, ICSF will update this field with the length of the
generated signature. If the signature generation is unsuccessful because the
supplied hash field is too small, ICSF will update this field with the required
length.

For LAST and ONLY verify requests, this field is input only.

hash

Direction: Input/Output Type: String

This field contains the hash or signature, left-justified. The processing of the
rest of the field depends on the implementation.

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

24 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

|

|
|
|

|||
|

|

|

|
|
|
|
|

|

For hash requests, this field is the generated hash. If you specify the FIRST or
MIDDLE keyword, this field contains the intermediate hash value. Your
application must not change the data in this field between the sequence of
FIRST, MIDDLE, and LAST calls for a specific message.

For FIRST and MIDDLE sign and verify requests, this field is ignored.

For LAST and ONLY sign requests, this field is the generated signature.

For LAST and ONLY verify requests, this field is input signature to be verified.

Authorization
To use this service to sign or verify with a public object, the caller must have at
least SO (READ) authority or USER (READ) authority (any access).

To use this service to sign or verify with a private object, the caller must have at
least USER (READ) authority (user access).

Usage Notes
If the FIRST rule is used to start a series of chained calls, the application must not
change the Hash Method or Requested Operation rules between the calls. The
behavior of the service is undefined if the rules are changed.

If the FIRST rule is used to start a series of chained calls, the application should
make a LAST call to free ICSF resources allocated. If processing is to be aborted
without making a LAST call and the chain_data parameter indicates that a
cryptographic state object has been allocated, the caller must free the object by
calling CSFPTRD (or CSFPTRD6 for 64-bit callers) passing the state object’s handle.

The CSFSERV resource name that protects this service is CSFOWH, the same
resource name used to protect the non-PKCS #11 One Way Hash service.

Reason Codes for Return Code 8 (8)
Table 10 lists reason codes reason codes added by the PKCS #11 enahancements for
FIPS 140-2. These reason codes are returned from certain callable services that give
return code 8.

Table 10. Reason Codes for Return Code 8 (8)

Reason Code Hex
(Decimal) Description

BFC (3068) A cryptographic operation using a specific PKCS #11 key object is being requested. The key
object has exceeded its useful life for the operation requested. The request is not processed.

User action: Use a different key.

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-13, information 25

|

|

|

|

|
|
|

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

26 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

Chapter 4. Update of z/OS Cryptographic Services ICSF
System Programmer’s Guide, SA22-7520-14, information

This chapter contains updates to the document z/OS Cryptographic Services ICSF
System Programmer’s Guide, SA22-7520-14, for the PKCS #11 enhancements provided
by this APAR for FIPS 140-2. Refer to this source document if background
information is needed.

Table 11. Format of the token secret key object (Version 0)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for secret key object: “SECK”

4 2 Version: EBCDIC '00'

6 2 Length of the object in bytes

8 4 Flags

Object type-specific section

12 4 Type of key: CKK_DES, CKK_DES2, CKK_DES3,
CKK_AES

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism
CK_UNAVAILABLE_INFORMATION

36 2 Length of the key in bytes

38 32 Reserved

70 64 VALUE: value of the key

134 538 Reserved

672 4 Usage counter field

676 2 Reserved

678 2 Length of LABEL attribute in bytes (xx)

680 2 Length of APPLICATION attribute in bytes (yy)

682 2 Length of the ID attribute in bytes (zz)

684 20 Reserved

704 4 Offset of LABEL attribute in bytes

708 4 Offset of APPLICATION attribute in bytes

712 4 Offset of the ID attribute in bytes

716 40 Reserved

756 xx+yy+zz Secret key attributes (variable length)

756+xx+yy+zz End of secret key object

© Copyright IBM Corp. 2010 27

|||

|||

|||

Table 12. Format of the token secret key object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for secret key object: “SECK”

4 2 Version: EBCDIC '01'

6 2 Length of the object in bytes

8 4 Flags

Object type-specific section

12 4 Type of key:

CKK_DES, CKK_DES2, CKK_DES3,
CKK_BLOWFISH, CKK_RC4,
CKK_GENERIC_SECRET, and CKK_AES.

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism
CK_UNAVAILABLE_INFORMATION

36 2 Length of the key in bytes

38 32 Reserved

70 256 VALUE: value of the key

326 346 Reserved

672 4 Usage counter field

676 2 Reserved

678 2 Length of LABEL attribute in bytes (xx)

680 2 Length of APPLICATION attribute in bytes (yy)

682 2 Length of the ID attribute in bytes (zz)

684 20 Reserved

704 4 Offset of LABEL attribute in bytes

708 4 Offset of APPLICATION attribute in bytes

712 4 Offset of the ID attribute in bytes

716 40 Reserved

756 xx+yy+zz Secret key attributes (variable length)

756+xx+yy+zz End of secret key object

Steps to customize SYS1.PARMLIB
The installation options data set you will create is generally stored in
SYS1.PARMLIB. If your administrator does not have access to SYS1.PARMLIB, you
need to use another data set instead.

Update the data set you are using as follows:
1. Add CEE.SCEERUN and CSF.SCSFMOD0 to the LNKLST concatenation. This

adds the ICSF library to the z/OS library search. This is an example of an ICSF
entry to the LNKLST concatenation.
CSF.SCSFMOD0

28 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

|||

|||

|||

|||

2. APF authorize CSF.SCSFMOD0, if LNKAUTH=APFTAB. This is an example of
an ICSF entry for APF authorization.
APF ADD DSNAME(CSF.SCSFMOD0) VOLUME(******)

3. In the IKJTSOxx parameter, add CSFDAUTH and CSFDPKDS as a value in the
AUTHPGM parameter list and in the AUTHTSF parameter list. This is an
example of an ICSF entry in the IKJTSOxx member.
AUTHPGM NAMES(/* AUTHORIZED PROGRAMS */ +
....
....
CSFDAUTH /* ICSF */ +
CSFDPKDS /* ICSF */ +

....

AUTHTSF NAMES(/* PROGRAMS TO BE AUTHORIZED WHEN */ +
/* WHEN CALLED THROUGH THE TSO */ +
/* SERVICE FACILITY */ +

....

....
CSFDAUTH /* ICSF */ +
CSFDPKDS /* ICSF */

4. If your application programmers intend to use PKCS #11 token key objects for
AES Galois/Counter Mode (GCM) encryption or GMAC generation, and have
ICSF generate the initialization vectors, then you need to set ECVTSPLX or
CVTSNAME to a unique value.
This needs to be done, because, for AES GCM encryption or GMAC generation,
the security of the algorithm is dependent on never repeating a key,
initialization vector combination for two or more distinct sets of data. In PKCS
#11, applications can request that ICSF generate a new (unique) initialization
vectors each time AES GCM or GMAC is initiated. In fact, this is the only
permitted way to perform AES GCM or GMAC when PKCS #11 is operating in
FIPS mode. When ICSF generates initialization vectors, it uses the ECVTSPLX
(sysplex mode) or CVTSNAME (non-sysplex mode) field as the cryptographic
module name. The name ensures uniqueness if such keys are distributed to
multiple systems, but only if each system is set with a unique name.
When setting ECVTSPLX or CVTSNAME to unique values, be aware that ICSF
uses only the first (left most) 4 characters of these fields. For this reason, these
4 characters must be set to uniquely identify the system.
For example, suppose AES key value 123 is created on the current single-image
system (known as System A) and is distributed to another system residing in a
Sysplex (known as Sysplex B). Both systems will be performing GCM
encryption where ICSF generates the initialization vectors. To ensure that
unique initialization vectors are generated, set CVTSNAME=SYSA on System A
and ECVTSPLX=PLXB on Sysplex B.
CVTSNAME is normally set from the SYSNAME=value statement in the
IEASYSxx member of "SYS1.PARMLIB". For more information, see z/OS MVS
Initialization and Tuning Reference, SA22-7592.
ECVTSPLX is normally set from the COUPLE SYSPLEX(value) in the
COUPLExx member of "SYS1.PARMLIB". For more information, see z/OS MVS
Setting Up a Sysplex, SA22-7625.

Notes:

1. If you will be using TKE V3.0 or higher on this host, you should also add
CSFTTKE as a value in the AUTHCMD parameter list.

2. If you will only be using ICSF for SMP/E electronic delivery, this step does not
need to be performed. TKE is not needed for SMP/E electronic delivery.

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14, information 29

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

3. To change the active IKJTSOxx member of SYS.PARMLIB without an IPL, use
the PARMLIB UPDATE command.

z/OS MVS Initialization and Tuning Guide and z/OS MVS Initialization and Tuning
Reference provide more information.

Parameters in the installation options data set
The installation options data set is an intended programming interface.

When specifying parameter values within parentheses, leading and trailing blanks
are ignored. Embedded blanks may cause unpredictable results.

Support is provided for the use of system symbols in the installation options data
set. System symbols can be used as values for any of the parameters. System
symbols are specified in the IEASYMxx member of SYS1.PARMLIB; the IEASYM
statement of the LOADxx member of SYS1.PARMLIB specifies the IEASYMxx
member(s) to be used for the resolution of system symbols. This example shows
the use of a system symbol for specifying the domain to be used for the start of
ICSF:
DOMAIN(&PARDOM.)

When the Installation Options Data Set is processed during the start of ICSF, the
value of the system symbol PARDOM will be substituted as the value of the
DOMAIN parameter.

For the first start, you specified an empty VSAM data set name for the CKDS in
the CKDSN option, an empty VSAM data set name for the PKDS in the PKDSN
option, and SSM(YES). You may want to change these and other options for
subsequent starts. Here is a complete list of installation options:

CHECKAUTH(YES or NO)
Indicates whether ICSF performs security access control checking of
Supervisor State and System Key callers. If you specify
CHECKAUTH(YES), ICSF issues RACROUTE calls to perform the security
access control checking and the results are logged in RACF SMF records
that are cut by RACF. If you specify CHECKAUTH(NO), the authorization
checks against resources in the CSFSERV class are not performed resulting
in a significant performance enhancement for supervisor state and system
key callers. However, the authorization checks are not logged in the RACF
SMF records.

If you do not specify the CHECKAUTH option, the default is
CHECKAUTH(NO).

If you configure CHECKAUTH(YES) in the ICSF options dataset, the
Health Checker address space user identity must be authorized to the
CSFRKL profile in class CSFSERV for the
ICSFMIG7731_ICSF_RETAINED_RSAKEY migration check to successfully
execute. However, you have no action to take if you choose not to run the
migration check. If you configure CHECKAUTH(NO), there is no
requirement to authorize the Health Checker user identity for any ICSF
profiles or classes, since the check routine executes in supervisor state. This
is not an implementation consideration, but rather a check deployment or
activation time customer administration consideration.

CKDSN(data-set-name)
Specifies the CKDS name the system uses to start ICSF. Whenever you

30 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

restart ICSF, the CKDS named in the CKDSN option becomes the active
in-storage CKDS. (At first-time startup, you should specify the name of an
empty VSAM data set you created to use as the CKDS.)

If you do not specify this keyword, ICSF does not become active. There is
no default for this option, so you must specify a value.

CKTAUTH(YES or NO)
Decides if authentication will be performed for every CKDS record read
from DASD.

Note: If the active CKDS does not use record level authentication, the
CKTAUTH option will be ignored. It will be displayed as
DISABLED on the Installation Options Display panel.

YES Indicates authentication will be performed.

NO Indicates no authentication will be performed.

COMPAT(YES, NO, or COEXIST)
Indicates whether ICSF runs in compatibility mode, non-compatibility
mode, or coexistence mode with PCF.

YES Indicates compatibility mode.

In compatibility mode, you can run a PCF application on
ICSF, because ICSF supports the PCF macros. You do not
have to reassemble PCF applications to do this. You cannot
start PCF at the same time as ICSF on the same operating
system.

NO Indicates non-compatibility mode. In noncompatibility
mode, you run PCF applications on PCF and ICSF
applications on ICSF. You cannot run PCF applications on
ICSF, because ICSF does not support the PCF macros in
this mode. PCF can be started at the same time as ICSF on
the same operating system. You can start ICSF and then
start PCF, or you can start PCF and then start ICSF.

You should use noncompatibility mode unless you are
migrating from PCF to ICSF.

COEXIST Indicates coexistence mode.

In coexistence mode, you can run a PCF application on
PCF, or you can reassemble the PCF application to run on
ICSF. To do this, you reassemble the application against
coexistence macros that are shipped with ICSF. You can
start PCF at the same time as ICSF on the same operating
system.

If you do not specify the COMPAT option, the default value is
COMPAT(NO).

When you initialize ICSF for the first time, noncompatibility mode must be
active. Therefore, at first-time startup, you must specify COMPAT(NO) or
allow the default to be used.

COMPENC(DES or CDMF)
This keyword is no longer supported but is tolerated.

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14, information 31

DOMAIN(n)
Specifies the number of the domain that you want to use for this start of
ICSF. You can specify only one domain in the options data set.

DOMAIN is an optional parameter. The DOMAIN parameter is only
required if more than one domain is specified as the usage domain on the
PR/SM panels or if running in native mode. If specified in the options
data set, it will be used and it must be one of the usage domains for the
LPAR.

If DOMAIN is not specified in the options data set, ICSF determines which
domains are available in this LPAR. If only one domain is defined for the
LPAR, ICSF will use it. If more than one is available, ICSF will issue error
message CSFM409E.

The cryptographic processors support multiple sets of master key registers,
which the specific domain values identify.
v The Cryptographic Coprocessor Feature has a master key register for the

DES master key, the auxiliary DES master key, the signature master key
and the key management master key. The auxiliary DES master key
register may contain either the new or old DES master key. On the PCI
Cryptographic Coprocessor, each domain has a master key register for
the current, new, and old SYM-MK and ASYM-MK.

v The PCIXCC/CEX2C/CEX3C has master key registers for the DES-MK,
AES-MK and ASYM-MK master keys. Each domain has a master key
register for the current, new, and old DES-MK, AES-MK and ASYM-MK.

For more information about partitions and running different
configurations, see z/OS Cryptographic Services ICSF Overview.

If you run ICSF in compatibility or coexistence mode, you cannot change
the domain number without re-IPLing the system. A re-IPL ensures that a
program does not access a cryptographic service with a key that is
encrypted under a different master key. If you are certain that no
cryptographic applications are still running, you can:
1. Stop CSF
2. Start CSF in COMPAT(NO) mode with a different domain number
3. Stop CSF
4. Start CSF in compatibility or coexistence mode with a different domain

number.

EXIT(ICSF-name,load-module-name,FAIL(fail-option))
Indicates information about an installation exit.

The ICSF-name is the identifier for each exit. Table 13 on page 33 lists all
the ICSF exit names and explains when ICSF calls each exit. The load
module name is the name of the module that contains the exit. The name
can be any valid name your installation chooses.

Using the FAIL keyword of the EXIT statement, you specify the action
ICSF, the KGUP, or the PCF conversion program takes if the exit ends
abnormally. The fail action that you specify applies to subsequent calls of
the exit. If an exit ends abnormally, ICSF takes a system dump. The exit is
protected with an ESTAE or the ICSF service functional recovery routine
(FRR).

In general, you can specify one of these values for a fail option:

32 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

NONE
No action is taken. The exit can be called again and will end
abnormally again.

EXIT The exit is no longer available to be called again.

SERVICE
The service or program that called the exit is no longer available to
be called again.

ICSF ICSF or the key generator utility program or the PCF conversion
program is ended, depending on the exit.

Some fail options are not valid for a specific exit. If you specify a fail
option that is not valid, ICSF uses the next valid fail option. For example,
if SERVICE is not a valid fail option for an exit, ICSF uses the EXIT option.
EXIT is responsible for logging in SMF the results of any authorization
checks that are made.

Table 13. Exit Identifiers and Exit Invocations

Exit Identifiers Exit Invocations

CSFEXIT1 Gets control after the operator issues the START command, but before processing
takes place.
Note: You must not specify an EXIT statement for the first mainline exit, CSFEXIT1.

CSFEXIT2 Gets control after ICSF reads and interprets the installation options data set.

CSFEXIT3 Gets control before ICSF completes initialization.

CSFEXIT4 Gets control after the operator issues the STOP command to stop ICSF.

CSFEXIT5 Gets control when the operator issues the MODIFY command to modify ICSF.

CSFEMK Gets control during the compatibility service for the PCF EMK macro.

CSFGKC Gets control during the compatibility service for the PCF GENKEY macro.

CSFRTC Gets control during the compatibility service for the PCF RETKEY macro.

CSFEDC Gets control during the compatibility service for the PCF CIPHER macro.

CSFCKDS Gets control when a callable service retrieves an entry from the CKDS.

CSFKGUP Gets control during key generator utility program initialization, processing, and
termination.

CSFCONVX Gets control when you run the PCF CKDS conversion program.

CSFSRRW Gets control when an access to a single record in the CKDS is made using the key
entry hardware.

CSFAEGN Gets control during the ANSI X9.17 EDC generate callable service.

CSFAKEX Gets control during the ANSI X9.17 key export callable service.

CSFAKIM Gets control during the ANSI X9.17 key import callable service.

CSFAKTR Gets control during the ANSI X9.17 key translate callable service.

CSFATKN Gets control during the ANSI X9.17 transport key partial notarize callable service.

CSFCKI Gets control during the clear key import callable service.

CSFCPE Gets control during the clear PIN encrypt callable service.

CSFCPA Gets control during the clear PIN generate alternate callable service.

CSFCTT Gets control during the ciphertext translate callable service.

CSFCTT1 Gets control during the ciphertext translate (with ALET) callable service.

CSFPGN Gets control during the Clear PIN generate callable service.

CSFCVT Gets control during the control vector translate callable service.

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14, information 33

Table 13. Exit Identifiers and Exit Invocations (continued)

Exit Identifiers Exit Invocations

CSFCVE Gets control during the cryptographic variable encipher callable service.

CSFDKX Gets control during the data key export callable service.

CSFDKM Gets control during the data key import callable service.

CSFDEC Gets control during the decipher callable service.

CSFDEC1 Gets control during the decipher (with ALET) callable service.

CSFDCO Gets control during the decode callable service.

CSFDSG Gets control during the digital signature generate service.

CSFDSV Gets control during the digital signature verify callable service.

CSFDKG Gets control during the diversified key generate callable service.

CSFENC Gets control during the encipher callable service.

CSFENC1 Gets control during the encipher (with ALET) callable service.

CSFECO Gets control during the encode callable service.

CSFEPG Gets control during the encrypted PIN generate callable service.

CSFPTR Gets control during the encrypted PIN translate callable service.

CSFPVR Gets control during the encrypted PIN verify callable service.

CSFKEX Gets control during the key export callable service.

CSFKGN Gets control during the key generate callable service.

CSFKIM Gets control during the key import callable service.

CSFKPI Gets control during the key part import callable service.

CSFKRC Gets control during the key record create callable service.

CSFKRD Gets control during the key record delete callable service.

CSFKRR Gets control during the key record read callable service.

CSFKRW Gets control during the key record write callable service.

CSFKYT Gets control during the key test callable service.

CSFKYTX Gets control during the key test extended callable service.

CSFMDG Gets control during the MDC generate callable service.

CSFKTR Gets control during the key translate callable service.

CSFMGN1 Gets control during the MAC generate (with ALET) callable service.

CSFMVR Gets control during the MAC verify callable service.

CSFMVR1 Gets control during the MAC verify (with ALET) callable service.

CSFMDG1 Gets control during the MDC generate (with ALET) callable service.

CSFMGN Gets control during the MAC generate callable service.

CSFCKM Gets control during the multiple clear key import callable service.

CSFSKM Gets control during the multiple secure key import callable service.

CSFOWH Gets control during the one-way hash generate callable service.

CSFOWH1 Gets control during the one-way hash generate (with ALET) callable service.

CSFPCI Gets control during the PCI interface callable service.

CSFPCU Gets contol during the PIN Change/Unblock callable service

CSFPEX Gets control during the prohibit export callable service.

CSFPEXX Gets control during the prohibit export extended callable service.

34 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

Table 13. Exit Identifiers and Exit Invocations (continued)

Exit Identifiers Exit Invocations

CSFPKD Gets control during the PKA decrypt callable service.

CSFPKE Gets control during the PKA encrypt callable service.

CSFPKG Gets control during the PKA key generate callable service.

CSFPKI Gets control during the PKA key import callable service.

CSFPKT Gets control during the PKA key translate callable service.

CSFPKTC Gets control during the PKA key token change callable service.

CSFPKX Gets control during the PKA Public Key Extract callable service.

CSFPKRC Gets control during the PKDS record create callable service.

CSFPKRD Gets control during the PKDS record delete callable service.

CSFPKRR Gets control during the PKDS record read callable service.

CSFPKRW Gets control during the PKDS record write callable service.

CSFPKSC Gets control during the PKSC interface callable service.

CSFRNG Gets control during the random number generate callable service.

CSFRNGL Gets control during the random number generate long callable service.

CSFRKD Gets control during the retained key delete callable service.

CSFRKL Gets control during the retained key list callable service.

CSFRKX Gets control during the remote key export callable service.

CSFSKI Gets control during the secure key import callable service.

CSFSKY Gets control during the secure messaging for keys callable service.

CSFSMG Gets control during the symmetric MAC generate callable service.

CSFSMG1 Gets control during the symmetric MAC generate (with ALET) callable service.

CSFSMV Gets control during the symmetric MAC verify callable service.

CSFSMV1 Gets control during the symmetric MAC verify (with ALET) callable service.

CSFSPN Gets control during the secure messaging for PINs callable service.

CSFSBC Gets control during the SET block compose callable service.

CSFSBD Gets control during the SET block decompose callable service.

CSFSYX Gets control during the symmetric key export callable service.

CSFSYG Gets control during the symmetric key generate callable service.

CSFSYI Gets control during the symmetric key import callable service.

CSFTBC Gets control during the trusted block create callable service.

CSFTCK Gets control during the transform CDMF key callable service.

CSFTRV Gets control during the transaction validation callable service

CSFUDK Gets control during the user derived key callable service.

CSFCSG Gets control during the VISA CVV service generate callable service.

CSFCSV Gets control during the VISA CVV service verify callable service.

Note: z/OS no longer ships IBM-supplied security exit routines; the
security exit points remain. Users of z/OS should use the Security
Server (RACF) or an equivalent product to obtain access checking of
services and keys. ICSF no longer needs these exit routines.

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14, information 35

FIPSMODE(YES or COMPAT or NO,FAIL(fail-option))
Indicates whether z/OS PKCS #11 services must run in compliance with
the Federal Information Processing Standard Security Requirements for
Cryptographic Modules, referred to as FIPS 140-2. FIPS 140-2, published by
the National Institute of Standards and Technology (NIST), is a standard
that defines rules and restrictions for how cryptographic modules should
protect sensitive or valuable information. The standard is available at
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

By configuring z/OS PKCS #11 services to operate in compliance with FIPS
140-2 specifications, installations or individual applications can use the
z/OS PKCS #11 services in a way that allows only the cryptographic
algorithms (including key sizes) approved by the standard, and restricts
access to the algorithms that are not approved. For more information, refer
to z/OS Cryptographic Services ICSF Writing PKCS #11 Applications.

YES Indicates that the z/OS PKCS #11 services will operate in FIPS
standard mode. Any application using the PKCS #11 services will be
forced to use those services in a FIPS-compliant manner.
Applications will not have access to the algorithms or key sizes not
approved by FIPS 140-2. In addition, ICSF initialization will test
that it is running on an IBM System z model type, and a version
and release of z/OS, that supports FIPS. If so, then ICSF will
perform a series of cryptographic known answer tests as required
by the FIPS 140-2 standard. If any of these initialization tests
should fail, the action the ICSF initialization process takes will
depend on the fail-option specified.

COMPAT
Indicates that the z/OS PKCS #11 services will operate in FIPS
compatibility mode. This mode is intended for installations where
only certain z/OS PKCS #11 applications must comply with the
FIPS 140-2 standard, while other applications do not. In this mode,
the PKCS #11 services can be further configured so that the
applications that do not need to comply with the FIPS 140-2
standard are not restricted from using any of the PKCS #11
algorithms, while applications that must comply with the standard
are restricted from using the non-approved algorithms. By default,
the COMPAT option will have the same effect as the YES option,
and all applications using the PKCS #11 services will be forced to
use those services in a FIPS-compliant manner. However,
additional specifications can be made:
v at the PKCS #11 token and application level, by creating

FIPSEXEMPT.token-name resource profiles in the CRYPTOZ class.
A FIPSEXEMPT.token-name resource exists for each token. User
IDs with READ access authority to a FIPSEXEMPT.token-name
are exempt from FIPS compliance, while user IDs with access
authority NONE can only use the PKCS #11 services in a
FIPS-compliant manner.

v within applications themselves for individual keys. When an
application creates a key, the application can specify that the key
must be used in a FIPS 140-2 compliant fashion. The application
can specify this by setting the Boolean key attribute
CKA_IBM_FIPS140 to TRUE.

When the COMPAT option is specified, ICSF initialization will test
that it is running on an IBM System z model type, and a version

36 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

and release of z/OS, that supports FIPS. If so, then ICSF will
perform a series of cryptographic known answer tests as required
by the FIPS 140-2 standard. If any of these initialization tests
should fail, the action the ICSF initialization process takes will
depend on the fail-option specified.

NO Indicates that no z/OS PKCS #11 applications at the installation
need to comply with the FIPS 140-2 standard, and ICSF will bypass
the extra processing that is required to ensure FIPS compliance.
FIPSEXEMPT.token-name profiles, if they exist, will not be
examined. Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE will result in a failure return code.

The fail-option is either YES or NO, and indicates what action the ICSF
initialization process should take if any of the initialization tests
(performed when FIPSMODE is YES or COMPAT) should fail.

YES indicates that ICSF should end abnormally if any of the tests fail.

NO Specifies that ICSF initialization process should continue even if
one or more of the tests fail. However, z/OS PKCS #11 support
will be limited or nonexistent depending on the test that failed.
v If ICSF is running on an IBM system z model type or with a

version of z/OS that does not support FIPS, most FIPS
processing is bypassed. PKCS #11 callable services will be
available, but ICSF will not adhere to FIPS 140 restrictions.
Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE will result in a failure return code.

v If a known answer test failed, all ICSF PKCS #11 callable
services will be unavailable.

KEYAUTH(YES or NO)
Indicates whether or not ICSF authenticates a key entry after ICSF retrieves
one from the in-storage CKDS. If you specify KEYAUTH(YES), ICSF
authenticates the key. ICSF generates a message authentication code (MAC)
for each key entry in the CKDS when you create or update the entry. If
you specify KEYAUTH(YES), ICSF performs a MAC verification to ensure
that the entry has not changed. If you specify KEYAUTH(NO), ICSF does
not perform this authentication and gains a small performance
enhancement. If you do not specify the KEYAUTH option, the default
value is KEYAUTH(NO).

Note: If the active CKDS does not use record level authentication, the
KEYAUTH option will be ignored. It will be displayed as
DISABLED on the Installation Options Display panel.

MAXLEN(n)
Defines the maximum length of characters in a text string, including any
necessary padding, for some callable service requests. For example, this
option defines the maximum length of the text the encipher service
encrypts for each call. Specify n as a decimal value from 1024 through
2147483647. If you do not specify the MAXLEN option, the default value is
MAXLEN(65535).

The MAXLEN parameter may still be specified in the options data set, but
only the maximum value limit will be enforced (2147483647). If a value
greater than this is specified, an error will result and ICSF will not start.

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14, information 37

Note: MAXLEN is no longer displayed on the Installation Option Display
panel.

PKDSCACHE
This keyword is no longer supported but is tolerated.

PKDSN(data-set-name)
Specifies the PKDS name the system uses to start ICSF. Whenever you
restart ICSF, the PKDS named in the PKDSN option becomes the active
PKDS. (At first-time startup, you should specify the name of an empty
VSAM data set you created to use as the PKDS.)

If you do not specify this keyword, ICSF does not become active. There is
no default for this option, so you must specify a value.

REASONCODES(ICSF or TSS)
Specifies which set of reason codes are to be returned from callable
services. If you do not specify the REASONCODES option, the default of
REASONCODES(ICSF) is used. If you specify REASONCODES(TSS), TSS
reason codes will be returned. If there is a 1-to-1 mapping, the codes will
be converted.

If you specified REASONCODES(ICSF) and your service was processed on
a PCICC, PCIXCC, CEX2C, or CEX3C, a TSS reason code may be returned
if there is no 1–1 corresponding ICSF reason code.

SERVICE(service-number,load-module-name,FAIL(fail-option))
Indicates information about an installation-defined service.

ICSF allows an installation to define its own service similar to an ICSF
callable service. The service-number specifies a number that identifies the
service to ICSF. The valid service numbers are 1 through 32767, inclusive.
This set of service numbers is valid for both installation-defined services
and UDX services. The service number of an installation-defined service
must not be the same as the service number of a UDX service. The
load-module-name is the name of the module that contains the service.
During ICSF startup, ICSF loads this module and binds it to the
service-number you specified.

The fail-option is YES or NO, indicating the action ICSF should take if
loading the service ends abnormally.

YES Specifies that ICSF ends abnormally if your service cannot be
loaded.

NO Specifies that ICSF continues to start if your service cannot be
loaded.

If the service itself ends abnormally, ICSF does not end, but takes a system
dump instead. The ICSF service functional recovery routine (FRR) protects
the service.

SSM(YES or NO)
Specifies whether or not an installation can enable special secure mode
(SSM) while running ICSF. SSM lowers the security of your system to let
you enter clear keys and generate clear PINs. You must enable SSM for
KGUP to permit generation or entry of clear keys and to enable the secure
key import or clear pin generate callable services.

YES Indicates that you can enable the SSM.

NO Indicates that you cannot enable the SSM.

38 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

If you do not specify the SSM option, the default value is SSM(NO).

Note: CCF Systems only: When you initialize ICSF for the first time, SSM
must be active. Therefore, at first-time startup, you must specify
SSM(YES).

If you are running with the IBM Eserver zSeries 900, IBM Eserver zSeries
800, S/390 Enterprise Servers and S/390 Multiprise servers, you must
perform these tasks to make SSM active:
v Specify SSM(YES) in the installation options data set
v Enable SSM in the cryptographic hardware
v When running under a logical partition (LPAR), enable SSM for each

partition.

SSM must be enabled or disabled in ALL places or errors may be logged
and functions will not work as expected.

Note: The setting of the Environment Control Mask (ECM) enables SSM.
Without TKE, the supplied ECM enables SSM. With TKE, you can
set the ECM directly; the supplied ECM enables SSM, but you have
the ability to disable it. For details, refer to Support Element
Operations Guide and z/OS Cryptographic Services ICSF TKE PCIX
Workstation User's Guide.

SYSPLEXCKDS(YES or NO,FAIL(fail-option))

SYSPLEXCKDS(YES,FAIL(fail-option))
ICSF will join the ICSF sysplex group SYSICSF and this
system will participate in sysplex-wide consistency for
CKDS data.

SYSPLEXCKDS(YES,FAIL(YES))
Indicates ICSF initialization will end abnormally if
the ICSF cross-system services environment cannot
be established during ICSF initialization due to a
failure creating the CKDS latch set or a failure to
join the ICSF sysplex group.

SYSPLEXCKDS(YES,FAIL(NO))
Indicates ICSF initialization processing will
continue even if the request to create a CKDS latch
set fails or the request to join the ICSF sysplex
group fails. The system will not be notified of
updates to the CKDS by other members of the
ICSF sysplex group. A value of either FAIL(YES) or
FAIL(NO) will be ignored with
SYSPLEXCKDS(NO,...).

SYSPLEXCKDS(NO,FAIL(fail-option))
CKDS update processing proceeds as it does today (i.e. no
Cross-System Services task will be initialized, nor will any
XCF signalling be performed when an update to a CKDS
record occurs).

If you do not specify the SYSPLEXCKDS option, the default value is
SYSPEXCKDS(NO,FAIL(NO)).

SYSPLEXPKDS(YES or NO,FAIL(fail-option))
ICSF will join the ICSF sysplex group SYSICSF and this system will
participate in sysplex-wide consistency for PKDS data.

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14, information 39

SYSPLEXPKDS(YES,FAIL(fail-option))
ICSF will join the ICSF sysplex group SYSICSFP and this
system will participate in sysplex-wide consistency for
PKDS data.

SYSPLEXPKDS(YES,FAIL(YES))
Indicates ICSF initialization will fail to join the
sysplex if the ICSF cross-system services
environment cannot be established during ICSF
initialization due to a failure creating the PKDS
latch set or a failure to join the ICSF sysplex group.

SYSPLEXPKDS(YES,FAIL(NO))
Indicates ICSF initialization processing will
continue even if the request to create a PKDS latch
set fails or the request to join the ICSF sysplex
group fails. The system will not be notified of
updates to the PKDS by other members of the ICSF
sysplex group. A value of either FAIL(YES) or
FAIL(NO) will be ignored with
SYSPLEXPKDS(NO,...).

SYSPLEXPKDS(NO,FAIL(fail-option))
PKDS update processing proceeds without trying to join
the ICSF sysplex group.

If you do not specify the SYSPLEXPKDS option, the default value is
SYSPEXPKDS(NO,FAIL(NO)).

SYSPLEXTKDS(YES or NO,FAIL(fail-option))

ICSF will join the ICSF sysplex group SYSICSF and this system will
participate in sysplex-wide consistency for TKDS data.

Note: TKDSN needs to be specified for this to work. See on page 40.

SYSPLEXTKDS(NO,FAIL(fail-option))
Indicates no XCF signalling will be performed when an
update to a TKDS record occurs.

SYSPLEXTKDS(YES,FAIL(fail-option))
Indicates the system will be notified of updates made to
the TKDS by other members of the sysplex who have also
specified SYSPLEXTKDS(YES,FAIL(fail-option)).

SYSPLEXTKDS(YES,FAIL(YES))
Indicates ICSF will terminate abnormally if there is
a failure creating the TKDS latch set.

SYSPLEXTKDS(YES,FAIL(NO))
Indicates ICSF initialization processing will
continue even if the request to create a TKDS latch
set fails with an environment failure. This system
will not be notified of updates to the TKDS by
other members of the ICSF sysplex group.

If you do not specify the SYSPLEXTKDS option, the
default value is SYSPLEXTKDS(NO,FAIL(NO)) is the
default.

TKDSN(data-set-name)
The name of an existing TKDS or an empty VSAM data set to be used as

40 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

the TKDS. To enable applications to create and use persistent PKCS #11
tokens and objects using the PKCS #11 services, this option must be
specified.

TRACEENTRY(n)
Specifies the number, n, of trace buffers to allocate for ICSF tracing. Specify
n as a decimal value from 10000 through 500000, inclusive. The default is
10000.

You should set this parameter to the maximum in case you ever need this
trace material.

UDX(UDX-id,service-number,load-module-name,'comment_text',FAIL(fail-
option))

ICSF allows the development of User Defined Extensions for the PCICC,
PCIXCC, CEX2C, or CEX3C. The UDX-id is supplied to the installation
when the UDX is developed. The service-number specifies a number that
identifies the service to ICSF. The valid service numbers are 1 to 32767,
inclusive. This set of service numbers is valid for both installation-defined
services and UDX services. The service number of a UDX service must not
be the same as the service number of an installation-defined service. The
load-module-name is the name of the module that contains this service.
During ICSF startup, ICSF loads this module and binds it to the
service-number that was specified. A comment may be specified. The
positional parameter is required. The comment consists of up to 40
EBCDIC characters, and may include imbedded blank characters. The
comment text is enclosed by single quotes. If no comment text is desired,
two contiguous single quotes should be specified.

The fail-option is YES or NO, indicating the action ICSF should take if
loading the service ends abnormally. If the service itself ends abnormally,
ICSF does not end, but takes a system dump instead.

YES Specifies that ICSF ends abnormally if your service cannot be
loaded.

NO Specifies that ICSF continues to start if your service cannot be
loaded.

The User Defined Extension (UDX) is responsible for logging in SMF the
results of any authorization checks that were made.

USERPARM(value)
Specifies an 8-byte field for installation use. The Installation Option
Display panel displays this value, which is stored in the Cryptographic
Communication Vector Table (CCVT) in the CCVT_USERPARM field. An
application program or installation exit can examine this field and use it to
set system environment information. The default is eight blanks.

WAITLIST(data_set_name)
This optional parameter can be used if you have ICSF with CICS (CICS 4.1
or higher) installed. It specifies a customer modifiable data set will be used
to determine names of the services to be placed into the ICSF CICS Wait
List. A sample data set is provided by ICSF via member CSFWTL00 of
SYS1.SAMPLIB with CCFs/PCICCs and CSFWTL01 for systems with
PCIXCCs, CEX2Cs, or CEX3Cs. The sample data set contains the same
entries as the default ICSF CICS Wait List (i.e., the data set contains the
names of all ICSF callable services which, by default, will be driven
through the CICS TRUE). The WAITLIST option should be added to the
Installation Options data set under these conditions.

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14, information 41

v Non-CICS customers will not specify a WAITLIST keyword. You must
ensure, however, that if you have any existing CICS applications which
invoke any of the ICSF services in the Wait List and if these applications
were linked with ICSF stubs at a pre-OS/390 V2R10 level, then these
applications must be re-linked with the current ICSF stubs.
If running on a z990, z890, z9 EC or z9 BC however, you must also
ensure that any existing CICS applications which invoke any of these
services are re-linked to ensure that the correct version of the stub is
used: CSNBCKI, CSNBCKM, CSNBDEC, CSNBENC, CSNBKYTX,
CSNBMGN, CSNBMVR, CSNBPEXX, CSNBRNG

v CICS customers who do not want to make use of CICS TRUE must
either not enable the TRUE or must specify a WAITLIST keyword and
point to an empty wait list data set (or specify WAITLIST(DUMMY)) in
the Installation Options data set.

v CICS customers who wish to modify the ICSF default CICS Wait List
should modify the sample Wait List data set supplied in member
CSFWTL00 or CSFWTL01 of SYS1.SAMPLIB. The WAITLIST keyword in
the Installation Options Data Set should be set to point to this modified
data set. If you have any existing CICS applications which invoke any of
the ICSF services in the Wait List and if these applications were linked
with ICSF stubs at a pre-OS/390 V2R10 level, then these applications
must be re-linked with the current ICSF stubs.
If running on a z990, z890, z9 EC or z9 BC any existing CICS
applications which invoke any of these services are re-linked to ensure
that the correct version of the stub is used: CSNBCKI, CSNBCKM,
CSNBDEC, CSNBENC, CSNBKYTX, CSNBMGN, CSNBMVR,
CSNBPEXX, CSNBRNG.

CICS Attachment Facility
If you have the CICS Attachment Facility (CICS 4.1 or higher) installed and you
specify your own CICS wait list data set, you need to modify the wait list data set
to include the new callable services.

On a z900 or z800 machine, modify and include:
v HCR7770: CSF1DMK, CSF1DVK, CSF1GKP, CSF1GSK, CSF1PKS, CSF1PKV,

CSF1SAV, CSF1SKE, CSF1TRC, CSF1TRD, CSF1UWK, CSF1WPK, CSFTBC,
CSFRKX

v HCR7751, HCR7750, HCR7740: CSF1GKP, CSF1GSK, CSF1PKS, CSF1PKV,
CSF1SAV, CSF1TRC, CSF1TRD, CSF1UWK, CSF1WPK, CSFTBC, CSFRKX

v HCR7731: CSFTBC, CSFRKX

Note: If no Wait List is specified on a z900 or z800, the default wait list will be
used. (See sample CSFWTL00 for the contents of the default wait list for
z900 or z800.)

On a z990 or z890 (or later) class machine, modify and include:
v HCR7770: CSNBSYD, CSNBSYD1, CSNBSYE, CSNBSYE1, CSFPKT, CSF1DMK,

CSF1DVK, CSF1SKD, CSF1SKE, CSF1HMG, CSF1HMV, CSF1OWH, CSF1PRF,
CSNBSAD, CSNBSAD1, CSNBSAE, CSNBSAE1, CSFRNGL, CSF1GKP, CSF1GSK,
CSF1PKS, CSF1PKV, CSF1SAV, CSF1TRC, CSF1TRD, CSF1UWK, CSF1WPK,
CSFTBC, CSFRKX

42 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

|

|
|
|

|
|

|

|
|
|

|

|
|
|
|
|

v HCR7751: CSNBSAD, CSNBSAD1, CSNBSAE, CSNBSAE1, CSFRNGL, CSF1GKP,
CSF1GSK, CSF1PKS, CSF1PKV, CSF1SAV, CSF1TRC, CSF1TRD, CSF1UWK,
CSF1WPK, CSFTBC, CSFRKX

v HCR7750: CSFRNGL, CSF1GKP, CSF1GSK, CSF1PKS, CSF1PKV, CSF1SAV,
CSF1TRC, CSF1TRD, CSF1UWK, CSF1WPK, CSFTBC, CSFRKX

v HCR7740: CSF1GKP, CSF1GSK, CSF1PKS, CSF1PKV, CSF1SAV, CSF1TRC,
CSF1TRD, CSF1UWK, CSF1WPK, CSFTBC, CSFRKX

v HCR7731: CSFTBC, CSFRKX

Note: If no Wait List is specified on a z990, z890, z9 EC, z9 BC, z10 EC and z10 BC
the default wait list will be used. (See sample CSFWTL01 for the contents of
the default wait list for z990, z890, z9 EC, z9 BC, z10 EC and z10 BC.)

Implementing the CICS wait list
The CICS Wait List can be implemented by means of a customer modifiable data
set, pointed to by the Installation Options Data Set (WAITLIST parameter). The
default WAITLIST includes all services which can complete asynchronously (for
example, those services which perform I/O to a cryptographic key data set and
those services which are routed to a PCICC or PCIXCC). If the option is not
specified, the default CICS Wait List will be utilized by ICSF when a CICS
application invokes an ICSF callable service. If WAITLIST is specified, the data set
specified by this parameter will be used to determine the names of the services to
be placed on the CICS Wait List. A sample data set is provided by ICSF via
member CSFWTL00 (for CCF systems with PCICCs) and CSFWTL01 (for systems
with PCIXCCs) of SYS1.SAMPLIB. The sample data set contains the same entries
as the default ICSF CICS Wait List -- for example, the data set contains the names
of all ICSF callable services which, by default, will be driven through the CICS
TRUE.

The WAITLIST option should be added to the Installation Options data set under
these conditions.
v Non-CICS customers will not specify a WAITLIST keyword.
v CICS customers who want to use the default CICS Wait List shipped with ICSF

will not specify a WAITLIST keyword. If you have any existing CICS
applications which invoke any of the ICSF services in the Wait List, then these
applications must be re-linked with the current ICSF stubs.

v CICS customers who do not want to make use of CICS TRUE must either not
enable the TRUE or specify a WAITLIST keyword and point to an empty wait
list data set or you can specify WAITLIST(DUMMY) in the Installation Options
data set.

v CICS customers who wish to modify the ICSF default CICS Wait List should
modify the sample Wait List data set supplied in member CSFWTL00 (for CCF
systems with PCICCs) or member CSFWTL01 (for systems with PCIXCCs,
CEX2Cs, or CEX3Cs) of SYS1.SAMPLIB. The WAITLIST keyword in the
Installation Options Data Set should be set to point to this data set. If you have
any existing CICS applications which invoke any of the ICSF services in the Wait
List, then these applications must be re-linked with the current ICSF stubs.

If you already have the CICS-ICSF Attachment facility installed, there are a number
of callable services which may potentially be routed to the PCICC, PCIXCC,
CEX2C, or CEX3C or may perform other asynchronous processing. If you have a
modified CICS Wait List, you should ensure that the wait list data set includes all
such services, and any CICS applications which invoke any of these services are

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14, information 43

|
|
|

|
|

|
|

|

|
|
|

|

|

re-linked with the current ICSF stubs. As a model, you can use the default CICS
Wait List that is shipped with ICSF which includes all services which have an
asynchronous interface to ICSF or you can use a sample Wait List data set that is
also shipped with ICSF. The sample CICS Wait List data set is contained in
member CSFWTL00 (for CCF systems with PCICCs) or in member CSFWTL01 (for
systems with PCIXCC, CEX2C, or CEX3C) of SYS1.SAMPLIB. The sample data set
contains the same entries as the default ICSF CICS Wait List. You can modify the
sample data set to add and/or delete items from the Wait List. Here are some
examples of why you might want to modify the sample data set.

For CCF Systems:
v If you do not have a PCI Cryptographic Coprocessor installed, you can delete all

of the services identified with an "*" that are in the sample wait list.
v If you have a PCI Cryptographic Coprocessor installed, you can examine the

services your applications invoke in a CICS environment and determine, based
upon the routing information provided for each service in z/OS Cryptographic
Services ICSF Application Programmer's Guide, SA22-7522, that the service will
never be routed to a PCI Cryptographic Coprocessor. In this case (except for the
CKDS/PKDS access services) the service can be deleted from the list.

For CCF systems with a PCICC or z990/z890 systems with a PCIXCC/CEX2C:
v If you have an application which invokes a UDX while running under CICS,

then the name of the UDX generic service should be added to the CICS Wait
List.

If you use a CICS Wait List data set, you need to identify the data set to ICSF
through the WAITLIST(data_set_name) option in the ICSF Installation Options data
set. The data set can be a member of a PARMLIB, a member of a partitioned data
set, or a sequential data set. The data set should be allocated on a permanently
resident volume and should adhere to:
v The format of each record in the data set must be fixed length or fixed block

length.
v A physical line in the data set must be a LRECL of 80 characters long. The

system ignores any characters in positions 73 to 80 of the line.
v You can delimit comments by "/*" and "*/" and include them anywhere in the

text. A comment cannot span physical records.
v Only one service may be specified on a logical line.

The Cryptographic Communication Vector Table Extension (CCVE)
The CCVE is an extension of the CCVT that contains fields that can exist. The
CCVE exists in ICSF extended private. It should contain any ICSF base control
block fields that are not needed by other address spaces.

CCVE

ONLY these fields are part of the programming interface:
v CCVEINPP
v CCVEINPL
v CCVESECC

Table 14 on page 45 describes the contents of the Cryptographic Communication
Vector Table Extension. Any bits that are not described in the table are reserved.

44 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

Table 14. Cryptographic Communication Vector Table Extension

Offset
(Dec)

Number
of
Bytes Field Name Description

0 4 CCVEID Cryptographic Communication Vector Table Extension
ID. This field must contain the character string CCVE.

4 2 CCVEVER Version.

The version number of the CCVE. This field must
contain the character string 04.

8 8 Reserved.

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14, information 45

Table 14. Cryptographic Communication Vector Table Extension (continued)

Offset
(Dec)

Number
of
Bytes Field Name Description

16 4 CCVESTAT Status word

First status byte – CCVESTA1

Bit Meaning When Set On
0 Special secure mode allowed.
1 Special secure mode enabled.
3 Authentication required for key

retrieval.
4 The hardware has gone from active to

inactive.
5 First start of ICSF during this IPL.
6 Security Server (RACF) checking

required for authorized callers.
7 PCF coexistence.

Second status byte – CCVESTA2
0 Dynamic CKDS updates disallowed.
1 Refresh needed.
2 Dynamic CKDS creates disallowed.
3 Linear CKDS 80% full.
4 80% message already sent.
5 CDMF used (rather than DES). This

indicates setting of COMPENC
keyword.

6 PKA callable services disallowed.
7 Authenticate the CKT when bit is one

Third status byte – CCVESTA3
1 PKDS write, create, and delete not

permitted.
2 SYSPLEXCKDS(YES) was specified in

Install Options Data Set.
3 SYSPLEXCKDS(YES,FAIL(YES)) was

specified in Install Options Data Set.
4 SYSPLEXTKDS(YES) was specified in

Install Options Data Set.
5 SYSPLEXTKDS(YES,FAIL(YES)) was

specified in Install Options Data Set.
6 TKDS refresh requested.
7 TKDS empty at initialization

Fourth status byte – CCVESTA4

Bit Meaning When Set On
0 PKDS dataspace needs refresh.
1 PKDS dataspace can't be updated.
2 PKDS dataspace is 80% full.
3 80% message already sent.
4 SYSPLEXPKDS(YES)
5 SYSPLEXPKDS(YES,FAIL(YES))
6 CKDS MAC record authentication
7 Sysplex running in sysplex mode (not

XCF-local mode)

20 4 CCVECAMQ Pointer to MCAMQ.

24 4 CCVEEXIT Pointer to the installation exit router (CSFEXIT).

46 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

Table 14. Cryptographic Communication Vector Table Extension (continued)

Offset
(Dec)

Number
of
Bytes Field Name Description

28 4 CCVECLIC Software Crypto control block

32 4 CCVE_ENQ_TIMEOUT XCF Failure detection interval in 0.01 seconds used for
Sysplex ENQ timeout interval.

36 4 CCVETRCB Pointer to the current trace buffer.

Bit Meaning When Set On

0 Trace is active.

40 4 CCVECPRM Address of CPRM.

44 4 CCVEMGST Address of the generic service table.

48 4 CCVEENT Address of the exit name table.

52 4 CCVETSKT Address of task table.

56 4 CCVEMKVN Master key version numbers.

Byte 1: Current master key version number.

Bytes 2 and 3: Reserved.

Byte 4: Cryptographic domain index.

60 54 CCVEWLDS Dataset name of WaitList dataset.

114 1 CCVEIBMR IBM reserved byte.

115 1 CCVEHFL2 Hardware flags

Bit Meaning When Set On

0 CCA level 3.41 detected

1 CA level 4.00 detected

2 STFLE.15 was on

3 AP-special-command facility available

116 4 Reserve

120 4 CCVE_NOPKA_MSGID WTO message ID saved when PKA callable services are
not available at startup

124 12 CCVEDCTLARR DCTL address array.

136 4 CCVESERBCPID SERB cell pool ID

140 4 CCVEFIXS Address of the fixed area storage used as dynamic
storage for the RISGNL routines.

144 4 CCVEFIXL Length of the fixed area storage.

148 4 CCVECPUF CPUF routine — used to manipulate the control register.

152 4 CCVERFMK RFOMK routine — used to RFOMK keys on specific
CPs.

156 4 CCVERMKV MKV RISGNL routine — used by MKV to validate a
CP.

160 4 CCVESTHW STHW routine — used to obtain the current status of
the hardware.

164 4 CCVEKEYM KEYM routine — used to manipulate keys from the key
entry hardware.

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14, information 47

||||

Table 14. Cryptographic Communication Vector Table Extension (continued)

Offset
(Dec)

Number
of
Bytes Field Name Description

168 4 CCVEDKEF DKEF routine — used to manipulate keys for clear key
entry.

172 16 CCVE_PKA_KMMK_HP KMMK hash pattern

188 16 CCVE_PKA_SMK_HP SMK hash pattern

204 4 CCVELFDD ECB for look for disabled Cryptographic Coprocessor
Feature task termination (LFD Done).

208 4 CCVELFDT Pointer to TCB for CSFMLFDT.

212 4 CCVEENFS ECB for Issue ENF SIGNAL.

216 4 CVESMCA Address of SMCA

220 4 CCVE_SUBPOOL Subpool for storage

224 4 CCVEAMKV Pointer to the AES MKVP block

228 4 CCVEMKVB Pointer to the current Master Key Verification Pattern
(MKVP) block.

232 32 CCVEMKB1 First MKVP block.

264 32 CCVEMKB2 Second MKVP block.

296 32 CCVEMKB3 Third MKVP block.

328 4 CCVEINPP Pointer to installation optional parameter.

332 4 CCVEINPL Length of the installation optional parameter.

336 4 CCVETRCN Number of trace entries.

340 4 CCVEIOPB_PKDS Address of PKDS IO subtask data.

344 4 CCVEIOST_TKDS Address of TKDS IO subtask TCB.

348 4 CCVEIOPB_TKDS Address of TKDS IO subtask data.

352 4 CCVEIOPB Address of IO subtask data.

356 4 CCVECCPD Pointer to CAJP Data.

360 4 CCVECCPV Pointer to private CAJP Data .

364 4 CCVEWKAR Work area for services.

368 4 CCVEMUST Address of UDX service table.

372 8 CCVESECC Reserved for security exit.

380 4 CCVEENTK ENTE for security keys exit.

384 4 CCVEENTS ENTE for security service exit.

388 8 Reserved

396 4 CCVEDSCB Control block for the data manager.

400 16 CCVEAMB1 AES MKVP first block.

416 16 CCVEAMB2 AES MKVP second block .

432 16 CCVEAMB3 AES MKVP third block.

448 12 CCVE_CKDS_HASH_TABLES CKDS hash tables.

460 12 CCVE_PKDS_HASH_TABLES PKDS hash tables.

48 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

Table 14. Cryptographic Communication Vector Table Extension (continued)

Offset
(Dec)

Number
of
Bytes Field Name Description

472 4 CCVE_KEY_
STORE_POLICY Bit Meaning When Set On

0 CKDS key store policy enabled

1 CKDS control in fail mode

2 CKDS control in warn mode

3 CKDS default control enabled

4 No duplicates in CKDS

8 PKDS key store policy enabled

9 PKDS control in fail mode

10 PKDS control in warn mode

11 PKDS default control enabled

12 No duplicates in PKDS

16 Granular keylabel access controls
enabled in fail mode

17 Granular keylabel access controls
enabled in warn mode

18 Enhanced export restrictions enabled
for AES keys

19 Enhanced export restrictions enabled
for DES keys

24 PKA key extensions enabled.

25 PKCS #11 Token used for trusted
certificate repository (SAF keyring
when this bit is 0).

26 PKA key extensions in WARNONLY
mode.

476 4 Reserved

480 4 CCVEINQKP_ECB INQKP ECB for waking up

484 4 CCVE_KSP_PKAKE_DATA_PTR Pointer to PKA key management extensions data.

488 4 CCVE_FIPS FIPS policy flags.

Bit Meaning When Set On

1 FIPS startup known answer tests
failed disabling PKCS#11.

2 FIPS140(xxx,FAIL(YES)) specified

3 Known answer test executed on
accelerator for private key operation

4 Known answer test executed on
accelerator for public key operation

492 28 Reserved

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14, information 49

||||

||

||
|

||

||
|

||
|

Table 14. Cryptographic Communication Vector Table Extension (continued)

Offset
(Dec)

Number
of
Bytes Field Name Description

520 2 CCVELEN Length.

The length of the CCVE. The value of this field is 752 in
decimal.

50 PKCS #11 Enhancements for FIPS 140-2 — APAR OA32012

	Contents
	Chapter 1. Overview
	Chapter 2. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SA23-2231-02, information
	Operating in compliance with FIPS 140-2
	Requiring signature verification for ICSF module CSFINPV2
	Requiring FIPS 140-2 compliance from all z/OS PKCS #11 applications
	Requiring FIPS 140-2 compliance from select z/OS PKCS #11 applications
	Specifying FIPS 140-2 compliance from within a z/OS PKCS #11 application

	Key types and mechanisms supported

	Chapter 3. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-13, information
	PKCS #11 Secret key encrypt (CSFPSKE)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 One-way hash, sign, or verify (CSFPOWH)
	Format
	Parameters
	Authorization
	Usage Notes

	Reason Codes for Return Code 8 (8)

	Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-14, information
	Steps to customize SYS1.PARMLIB
	Parameters in the installation options data set
	CICS Attachment Facility
	Implementing the CICS wait list
	The Cryptographic Communication Vector Table Extension (CCVE)

