
z/OS
Cryptographic Services
Integrated Cryptographic Service Facility

PKA Key Management Extensions — APAR
OA28855

���

ii PKA Key Management Extensions — APAR OA28855

Contents

Chapter 1. Overview . 1

Chapter 2. Update of z/OS Cryptographic Services ICSF Overview,
SA22-7519-12, information. 3

Security . 3

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s
Guide, SA22-7521-13, information 7

Controlling Who Can Use Cryptographic Keys and Services. 7
Steps for RACF-protecting keys and services 7
Setting up profiles in the CSFKEYS general resource class 9
Setting up profiles in the CSFSERV general resource class 10
Defining a key store policy 14

Chapter 4. Update of z/OS Cryptographic Services ICSF Application
Programmer’s Guide, SA22-7522-12, information 37

ICSF Query Facility (CSFIQF and CSFIQF6) 37
Format . 37
Parameters . 37
Restrictions . 51
Usage Notes. 51

Reason Codes for Return Code 8 (8) 52

Chapter 5. Update of z/OS Cryptographic Services ICSF System
Programmer’s Guide, SA22-7520-13, information 53

SMF Records . 53
SMF type 82 subtype 14 - PCI Cryptographic Coprocessor Master Key Entry 53
SMF type 82 subtype 24 - Duplicate key tokens. 54
SMF type 82 subtype 25 – Duplicate Tokens Found 54
SMF type 82 subtype 26 - PKDS Data Space Refresh 55
SMF type 82 subtype 27 - PKA Key Management Extensions. 56

Chapter 6. Update of z/OS Cryptographic Services ICSF Messages,
SA22-7523-12, information 61

© Copyright IBM Corp. 2009 iii

||

iv PKA Key Management Extensions — APAR OA28855

Chapter 1. Overview

This document update describes PKA Key Management Extensions, and contains
alterations to information previously presented in the following books:

v z/OS Cryptographic Services ICSF Overview, SA22-7519-12

v z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13

v z/OS Cryptographic Services ICSF Application Programmer’s Guide,
SA22-7522-12

v z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-13

v z/OS Cryptographic Services ICSF Messages, SA22-7523-12

The preceding books document capabilities provided by FMID HCR7751, and
support z/OS Version 1 Release 10.

Technical changes or additions related to PKA Key Management Extensions in this
document update are indicated by a vertical line to the left of the change.

These updates relate to the enhancements made to the ICSF product by the
application of APAR OA28855. For full functionality on z/OS V1R8, V1R9 and
V1R10, you must also apply APAR OA28437 (for SAF) and APAR OA28439 (for
RACF). For full functionality on z/OS V1R11, you must also apply APAR OA28581
(for SAF) and APAR OA28580 (for RACF).

© Copyright IBM Corp. 2009 1

2 PKA Key Management Extensions — APAR OA28855

Chapter 2. Update of z/OS Cryptographic Services ICSF
Overview, SA22-7519-12, information

This chapter contains updates to the document z/OS Cryptographic Services ICSF
Overview, SA22-7519-12, for the PKA Key Management Extensions enhancements
provided by this APAR. Refer to this source document if background information is
needed.

Security
In reviewing your installation security plan before installing ICSF, consider these
points:

v Controlling Access to Disk Copies of the CKDS

You should determine which users and applications should have access to each
copy of the CKDS on your system.

Note: The in-storage copy of the CKDS can be accessed only through ICSF
functions such as callable services, KGUP, or the ICSF panels. To protect
the in-storage copy of the CKDS, control who can use these services.

v Controlling Access to the PKDS

You should determine which users and applications should have access to the
PKDS on your system.

Note: The in-storage copy of the PKDS can be accessed only through ICSF
functions such as callable services or the ICSF panels. To protect the
in-storage copy of the PKDS, control who can use these services.

v Controlling Access to the Key Generator Utility Program (KGUP)

Anyone who is running the KGUP can read and change an unprotected CKDS.
To prevent unauthorized persons from using the KGUP, store the program in an
APF-authorized library that is protected by the Security Server (RACF). KGUP is
also protected by CSFSERV(CSFKGUP).

v Controlling Access to Services and Keys

Users of the Security Server (RACF) can use the CSFSERV and CSFKEYS
classes to perform access checking and auditing of services and keys,
respectively. The CSFSERV class also protects some critical administrative TSO
panels, such as changing the master key and refreshing the CKDS. The audit
records that are produced by these routines are SMF type 80 records.

You can also define profiles in the XFACILIT class to establish a Key Store
Policy. Each profile you define in the XFACILIT class is a separate Key Store
Policy control. Together, these profiles define your overall Key Store Policy. By
establishing a Key Store Policy, you can control access to secure symmetric keys
in the CKDS and asymmetric keys in the PKDS. A Key Store Policy can also
specify how keys in a PKDS or CKDS can be used. By enabling Key Store Policy
controls, you can:

– have ICSF verify, when an application passes a callable service a key token
instead of a key label, that the user has authority to the secure token. ICSF
does this be identifying key labels associated with the key token, so that a
SAF authorization check (which depends on key labels) can be carried out
against profiles in the CSFKEYS class.

– prevent applications from storing duplicate tokens in a CKDS or PKDS.

© Copyright IBM Corp. 2009 3

– raise the level of access authority required to create, write to, or delete a key
label.

– raise the level of access authority required to export a symmetric key (transfer
it from encryption under a master key to encryption under an
application-supplied RSA public key) when an application calls the Symmetric
Key Export callable service (CSNDSYX or CSNFSYX). In this case, a SAF
authorization check is performed against profiles in the XCSFKEY class rather
than the CSFKEYS class.

– Set additional restrictions on how keys can be used. These additional
restrictions are specified in the ICSF segment of CSFKEYS (or XCSFKEY)
profiles. Using the ICSF segment of profiles in these classes, you can:

- specify that asymmetric keys covered by the profile can not be used for
secure export or import operations.

- specify that asymmetric keys covered by the profile can not be used in the
handshake operations performed by the following callable services:

v Digital Signature Generate (CSNDDSG and CSNFDSG)

v Digital Signature Verify (CSNDDSV and CSNFDSV)

v PKA Encrypt (CSNDPKE and CSNFPKE)

v PKA Decrypt (CSNDPKD and CSNFPKD)

- specify whether symmetric keys covered by the profile can be exported
using the Symmetric Key Export callable service (CSNDSYX or CSNFSYX).
If allowing the symmetric keys covered by the profile to be exported, you
can specify which asymmetric keys can be used to perform the export
operation. You can specify this by supplying a list of labels of RSA keys in
the PKDS, or a list of certificates in either a PKCS #11 token, or a SAF key
ring.

You should familiarize yourself with the controls you can enable and decide on
the Key Store Policy that is best for your installation.

v Scheduling Changes for Cryptographic Keys

To reduce the possibility of exposing a key value, you may want to change the
value of cryptographic keys, including master keys, from time to time:

– You can use the ICSF panels to change the DES, AES and PKA master keys.

– If you have an optional Trusted Key Entry (TKE) workstation installed, you can
use it to change DES, AES and PKA master keys on all cryptographic
coprocessors.

– You can use KGUP or the ICSF panel to change the CKDS.

– You can develop applications that use the dynamic CKDS update callable
services to change both the in-storage and DASD copies of the CKDS.

You can perform all of these operations without interrupting cryptographic
functions.

v Allowing or Preventing Clear Cryptographic Keys

With ICSF, keys exist in the clear only in these cases:

– if you specifically allow special secure mode and actually set special secure
mode during operations, applications can use the secure key import callable
service, the clear PIN generate callable service, the clear PIN generate
alternate callable service and the multiple secure key import and symmetric
key generate with the IM keyword. On a z990, z890, z9 EC, z9 BC, z10 EC
and z10 BC with a PCIXCC/CEX2C, access control points for these services
must be enabled.

4 PKA Key Management Extensions — APAR OA28855

|
|
|

|
|

|
|

|

|

|

|

|
|
|
|
|
|
|

– If ICSF is not in special secure mode, most keys in the system are encrypted
except DATA keys that a user may enter through the use of the clear key
import callable service. CLRAES and CLRDES keys are also not encrypted.

Note: The clear key import callable service is equivalent to the PCF EMK
macro.

– The encode callable service can use a clear key to encipher data.

– If you use the Master Key Entry panels to enter the key parts of a master key,
the key parts appear briefly in the clear in host storage.

– When an application calls the symmetric key generate callable service to
generate a DATA key, the DATA key appears briefly in the clear in host
storage when executed on a CCF. The DATA key is then quickly encrypted
under the DES master key and the RSA public key.

– When an application calls the symmetric key export callable service to transfer
a DATA key from encryption under the host DES master key to encryption
under an RSA public key, the DATA key appears briefly in the clear in host
storage when executed on a CCF.

– When an application calls the SET block compose and SET block decompose
callable services, the DATA key exists briefly in the clear in host storage when
executed on a CCF.

– On the z890, z990, z9 EC, z9 BC, z10 EC and z10 BC clear keys are used to
provide improved performance for the DES, TDES and AES algorithms.
Symmetric key encrypt and decrypt services (CSNBSYD and CSNBSYE) are
available on all CP’s.

On a CCF system, these services will be routed to the PCI Cryptographic
Coprocessor if one is available: CSNDSYG, CSNDSYX, CSNDSBC, CSNDSYI,
CSNDSBD, CSNBSKY, and CSNBSPN. If no PCI Cryptographic Coprocessor is
available, then keys will appear briefly in the clear as stated previously.

v Sending Cryptographic Keys to Other Installations

To eliminate the need to have a courier deliver clear keys between installations,
you can use either or both of these options:

– DES transport keys to encrypt keys for network distribution

– The receiving installation’s RSA public key to encrypt a DES or AES DATA key
prior to electronic distribution

Both of these methods make key distribution more secure.

v Controlling access to the Disk Copies

You should determine which users and applications should have access to each
DASD copy of the CKDS, PKDS and TKDS on your system.

v SMF Records Generated by ICSF

ICSF generates type 82 records in the SMF data set when these conditions
occur:
– ICSF starts
– ICSF status changes on a processor
– When you enable or disable special secure mode
– When you enter a clear master key part to the Cryptographic Coprocessor

Feature through the use of the ICSF panels
– You enter a master key part
– When the in-storage CKDS is refreshed
– When the in-storage PKDS is refreshed
– You use the ICSF panels to process an operational key part or key part

register loaded using the TKE workstation
– When an application uses any of the dynamic services that write to the CKDS

Chapter 2. Update of z/OS Cryptographic Services ICSF Overview, SA22-7519-12, information 5

– When ICSF handles error conditions or tampering
– When you issue a command from the TKE workstation to the Cryptographic

Coprocessor Feature
– When an application uses any of the dynamic services that write to the PKDS
– When you use the Master Key Entry panels to enter a master key in the

PCICC, PCIXCC or CEX2C
– When you create or delete a retained key on a PCICC, PCIXCC or CEX2C
– When you use the TKE workstation to communicate with the PCICC, PCIXCC

or CEX2C
– To capture measurements of timing and configuration for the PCICC, PCIXCC,

CEX2C, CEX2A or PCICA
– When ICSF issues IXCJOIN or IXCLEAVE to join or leave the ICSF sysplex

group.
– When you use the Trusted Block Create callable service to create or activate

a trusted block.
– When you use the PKCS #11 token management callable services to create

or delete a token or object or to modify an attribute value of an object
– When the security administrator has indicated that duplicate key tokens must

be identified
– When a callable service checks the key store policy

You can also use the Security Server (RACF) or an equivalent product to record
attempts to use protected cryptographic keys or functions.

v Recording and Formatting type 82 SMF Records in a Report

Sample jobs are available (in SYS1.SAMPLIB) to assist in the recording and
formatting of type 82 SMF data:

– CSFSMFJ - JCL that executes the code to dump and format SMF type 82
records for ICSF. Before executing the JOB step, you need to make
modifications to the JCL (see the prologue in the sample for specific
instructions). After the JCL has been modified, terminate SMF recording of the
currently active dump dataset (by issuing I SMF) to allow for the unloading of
SMF records. After SMF recording has been terminated, execute the JCL. The
output goes into the held queue.

– CSFSMFR - An EXEC that formats the SMF records into a readable report.

v Recording and Formatting type 80 SMF Records in a Report

RACF provides support to log type 80 SMF records when a user attempts to
access an ICSF service, utility, or key label when a profile is defined for the
service, utility or label. See the z/OS Security Server RACF Auditor’s Guide for
guidance on how to activate this logging and to format the type 80 SMF records.

6 PKA Key Management Extensions — APAR OA28855

Chapter 3. Update of z/OS Cryptographic Services ICSF
Administrator’s Guide, SA22-7521-13, information

This chapter contains updates to the document z/OS Cryptographic Services ICSF
Administrator’s Guide, SA22-7521-13, for the PKA Key Management Extensions
enhancements provided by this APAR. Refer to this source document if background
information is needed.

Controlling Who Can Use Cryptographic Keys and Services
You can use z/OS Security Server RACF to control which applications can use
specific keys and services. This can help you ensure that keys and services are
used only by authorized users and jobs. You can also use RACF to audit the use of
keys and services. In addition, you can establish a Key Store Policy that defines
rules for the use of encrypted key tokens that are stored in a CKDS or PKDS. To
use RACF to control access to keys and services, you create and maintain general
resource profiles in the CSFKEYS class, the CSFSERV class, and the XFACILIT
class.

v The CSFKEYS class controls access to cryptographic keys. You create profiles in
this class (based on the label by which the key is defined in the CKDS or PKDS)
to set access authority for the keys. For the exclusive purpose of requiring
UPDATE instead of READ authority when transferring a secure AES or DES key
from encryption under the master key to encryption under an RSA key, you can
define profiles in the XCSFKEY class. Profiles in the XCSFKEY class are used in
authorization checks only when the Symmetric Key Export service (CSNDSYX or
CSNFSYX) is called. For all other callable services, the CSFKEYS class is used.

v The CSFSERV class controls access to ICSF services and ICSF TSO panel
utilities.

v One or more resource profiles in the XFACILIT class define your Key Store
Policy. A Key Store Policy consists of a number of controls that collectively
determine how encrypted key tokens defined in a CKDS or PKDS can be
accessed and used.

If you are not the RACF security administrator, you may need to ask assistance
from that person. To use the auditing capabilities of RACF, you may need to ask for
reports from a RACF auditor. Your installation's security plan should show who is
responsible for maintaining these RACF profiles and auditing their use.

Steps for RACF-protecting keys and services
This procedure describes one approach for RACF-protecting keys and services:

1. Decide whether you will protect keys, services, or both. You can select which
keys and services to protect.

2. You may want to organize the users who need access to ICSF keys and
services into groups. To do this, obtain a list of the user IDs of users who need
to use ICSF keys and services. If batch jobs or started tasks need to use ICSF,
obtain the user IDs under which they will run.

Group any of the user IDs together if they require access to the same keys and
services. For example, you might want to set up groups as follows:
v Users who work with MAC-related callable services
v Users who work with PIN-related callable services
v Users who work with a particular MAC, or a particular PIN
v Users who call applications to dynamically update the CKDS
v Users who perform functions available on the User Control Functions panel

© Copyright IBM Corp. 2009 7

Usually, all users of ICSF should have access to keys and services by virtue of
their membership in one of these RACF groups, rather than specific users. This
is because RACF maintains the access lists in in-storage profiles. When the
in-storage profiles are created or changed, the in-storage profiles must be
refreshed. (Merely changing them in the RACF data base is not sufficient. This
is analogous to the in-storage CKDS maintained by ICSF.) To refresh the
in-storage RACF profiles, the RACF security administrator must use the
SETROPTS command:

SETROPTS RACLIST(CSFKEYS) REFRESH

SETROPTS RACLIST(CSFSERV) REFRESH

If you place RACF groups in the access lists of the RACF profiles, you can
change a user’s access to the protected services and keys by adding or
removing the user from the groups. Ask your RACF security administrator to
create the RACF groups.

You should also ask your RACF security administrator to connect you to these
groups with CONNECT group authority. This permits you to connect and remove
users from the groups.

For example, the security administrator could issue these commands:
ADDGROUP groupid

CONNECT your-userid GROUP(groupid) AUTHORITY(CONNECT)

With CONNECT group authority, you are able to connect other users to the
groups:

CONNECT other-userid GROUP(groupid)

With CONNECT group authority, you are also able to remove users from the
groups:

REMOVE other-userid GROUP(groupid)

3. Ask your RACF security administrator for the authority to create and maintain
profiles in the CSFKEYS and CSFSERV general resource classes. Usually, this
is done by assigning a user the CLAUTH (class authority) attribute in the
specified classes. For example, the security administrator can issue this
command:

ALTUSER your-userid CLAUTH(CSFKEYS CSFSERV)

4. If you want to use generic profiles that contain characters such as * and %, ask
your RACF security administrator to activate generic profile checking in the
CSFKEYS and CSFSERV classes:

SETROPTS GENERIC(CSFKEYS CSFSERV)

Note: Using generic profiles has several advantages. Using generic profiles you
can reduce the number of profiles that you need to maintain. You can
also create a “top” generic profile that can be used to protect all keys
and services that are not protected by a more specific profile.

5. Define profiles in the CSFKEYS and CSFSERV classes. For further instructions,
see “Setting up profiles in the CSFKEYS general resource class” on page 9 and
“Setting up profiles in the CSFSERV general resource class” on page 10.

6. Activate logging for CSFSERV using these commands:

v ALTUSER userid UAUDIT - audits a userid

v RALTER class-name profile-name AUDIT(audit-attempt[(audit-access-level)]) -
used by the profile owner

RALTER class-name profile-name GLOBALAUDIT(access-attempt[(audit-
access-level)]) - used by a user with AUDITOR authority to set up profiles

8 PKA Key Management Extensions — APAR OA28855

v SETROPTS CLASSACT(CSFSERV) RACLIST(CSFSERV)
SETR LOGOPTIONS(CSFSERV(....))

For more information on RDEFINE, RALTER, and SETR, see the z/OS Security
Server RACF Command Language Reference.

7. Determine if you need to establish a Key Store Policy for a CKDS and/or a
PKDS. A Key Store Policy is made up of a number of controls. Each Key Store
Policy control is a resource in the XFACILIT class. The existence of a profile for
a particular resource in the XFACILIT class enables that control. A Key Store
Policy applies only to encrypted keys in a CKDS or PKDS. No key store policy
controls are available or needed for a TKDS, because none of the keys in a
TKDS are enciphered under a key-encrypting key. By enabling Key Store Policy
controls, you can:

v verify, when an application passes a callable service a key token instead of a
key label, that the user has authority to the secure token. Profiles in the
CSFKEYS class are named based on key labels (a discrete profile will
exactly match the key label, while a generic profile will contain generic
characters to match a number of key labels). Because the profiles are based
on the key label, a SAF authorization check needs to know the key label of a
CKDS or PKDS key record in order to perform the authorization check. A Key
Store Policy control is available that will, if an application passes a callable
service a key token instead of a key label, locate the associated key label(s)
for the token so that a SAF authorization check can be carried out. By
default, if ICSF cannot find an associated key label for the key token, the
callable service will fail. However, another Key Store Policy control lets you
use a default profile to specify access authority to tokens that are not stored
in the CKDS or PKDS.

v prevent applications from storing duplicate tokens in a CKDS or PKDS.

v raise the level of access authority required to create, write to, or delete a key
label.

v raise the level of access authority required to export a token using the
Symmetric Key Export callable service (CSNDSYX or CSNFSYX).

v set additional restrictions on how keys covered by the profile can be used.

You should familiarize yourself with the controls you can enable and decide on
the Key Store Policy that is best for your installation. Refer to “Defining a key
store policy” on page 14 for more information.

Setting up profiles in the CSFKEYS general resource class
To set up profiles in the CSFKEYS general resource class, take these steps:

1. Define appropriate profiles in the CSFKEYS class:
RDEFINE CSFKEYS label UACC(NONE)

other-optional-operands

where label is the label by which the key is defined in the CKDS or PKDS (this
is not the transport key label). Note that if an application uses a token instead of
a key label, no authorization checking is done on the use of the key.

Notes:

a. If you have ICSF/MVS Version 1 Release 1 profiles that specify
key-type.label, you need to change them to specify only label.

b. As with any RACF profile, if you want to change the profile later, use the
RALTER command. To change the access list, use the PERMIT command
as described in the next step.

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 9

|

c. If you have already started ICSF, you need to refresh the in-storage profiles.
See Step 3.

d. You can specify other operands, such as auditing (AUDIT operand), on the
RDEFINE or RALTER commands.

e. If the RACF security administrator has activated generic profile checking for
the CSFKEYS class, you can create generic profiles using the generic
characters * and %. This is the same as any RACF general resource class.

2. Give appropriate users (preferably groups) access to the profiles:
PERMIT profile-name CLASS(CSFKEYS)

ID(groupid) ACCESS(READ)

3. When the profiles are ready to be used, ask the RACF security administrator to
activate the CSFKEYS class and refresh the in-storage RACF profiles:

SETROPTS CLASSACT(CSFKEYS)

SETROPTS RACLIST(CSFKEYS) REFRESH

Setting up profiles in the CSFSERV general resource class
To set up profiles in the CSFSERV general resource class, take these steps:

1. Define appropriate profiles in the CSFSERV class:
RDEFINE CSFSERV service-name UACC(NONE)

other-optional-operands

Where service-name is one of these:

CSFAEGN ANSI X9.17 EDC generate callable service

CSFAKEX ANSI X9.17 key export callable service

CSFAKIM ANSI X9.17 key import callable service

CSFAKTR ANSI X9.17 key translate callable service

CSFATKN ANSI X9.17 key transport key partial notarize callable service

CSFCKI Clear key import callable service

CSFCKM Multiple clear key import callable service

CSFCMK Change master key (TSO panel) utility

CSFCONV PCF CKSD to ICSF CKDS conversion utility

CSFCPA Clear PIN generate alternate callable service

CSFCPE Clear PIN encrypt callable service

CSFCSG VISA CVV service generate callable service

CSFCSV VISA CVV service verify callable service

CSFCTT Cipher text translate callable service

CSFCTT1 Cipher text translate (with ALET) callable service

CSFCVE Cryptographic variable encipher callable service

CSFCVT Control vector translate callable service

CSFDCO Decode callable service

CSFDEC Decipher callable service

CSFDEC1 Decipher (with ALET) callable service

CSFDKCS Clear master key entry (TSO panel) utility (PCICC and
PCIXCC/CEX2C)

10 PKA Key Management Extensions — APAR OA28855

CSFDKEF Clear master key entry (TSO panel) utility (CCF)

CSFDKG Diversified key generate callable service

CSFDKM Data key import callable service

CSFDKX Data key export callable service

CSFDSG Digital signature generate callable service

CSFDSV Digital signature verify callable service

CSFECO Encode callable service

CSFEDC Compatibility service for the PCF CIPHER macro

CSFEMK Compatibility service for the PCF EMK macro

CSFENC Encipher callable service

CSFENC1 Encipher (with ALET) callable service

CSFEPG Encrypted PIN generate callable service

CSFGKC Compatibility service for the PCF GENKEY macro

CSFIQA ICSF Query Algorithm callable service

CSFIQF ICSF Query Facility callable service

CSFKEX Key export callable service

CSFKGN Key generate callable service

CSFKGUP Key generation utility program

CSFKIM Key import callable service

CSFKPI Key part import callable service

CSFKRC Key record create callable service

CSFKRD Key record delete callable service

CSFKRR Key record read callable service

CSFKRW Key record write callable service

CSFKTR Key translate callable service

CSFKYT Key test callable service

CSFKYTX Key test extended callable service

CSFMDG MDC generate callable service

CSFMDG1 MDC generate (with ALET) callable service

CSFMGN MAC generate callable service

CSFMGN1 MAC generate (with ALET) callable service

CSFMVR MAC verify callable service

CSFMVR1 MAC verify (with ALET) callable service

CSFOWH One-way hash generate callable service

CSFOWH1 One-way hash generate (with ALET) callable service

CSFPCAD PCICC and PCIXCC/CEX2C management (TSO panel) utility
(activate/deactivate)

CSFPCI PCI interface callable service

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 11

CSFPCU PIN Change/Unblock callable service

CSFPEX Prohibit export callable service

CSFPEXX Prohibit export extended callable service

CSFPGN Clear PIN generate callable service

CSFPKD PKA decrypt callable service

CSFPKDR PKDS reencipher and PKDS activate (TSO panel) utilities

CSFPKE PKA encrypt callable service

CSFPKG PKA key generate callable service

CSFPKI PKA key import callable service

CSFPKRC PKDS record create callable service

CSFPKRD PKDS record delete callable service

CSFPKRR PKDS record read callable service

CSFPKRW PKDS record write callable service

CSFPKSC PKSC interface callable service

CSFPKTC PKA key token change callable service

CSFPKX PKA public key extract callable service

CSFPMCI Pass phrase master key/KDS initialization (TSO panel) utility

CSFPTR Encrypted PIN translate callable service

CSFPVR Encrypted PIN verify callable service

CSFREFR Refresh CKDS (TSO panel) utility

CSFRENC Reencipher CKDS (TSO panel) utility

CSFRKD Retained key delete callable service

CSFRKL Retained key list callable service

CSFRKX Remote key export callable service

CSFRNG Random number generate callable service

CSFRNGL Random number generate long callable service

CSFRSWS Administrative control functions (TSO panel) utility (ENABLE)

CSFRTC Compatibility service for the CUSP or PCF RETKEY macro

CSFSAD Symmetric Algorithm Decipher

CSFSAD1 Symmetric Algorithm Decipher

CSFSAE Symmetric Algorithm Encipher

CSFSAE1 Symmetric Algorithm Encipher

CSFSBC SET block compose callable service

CSFSBD SET block decompose callable service

CSFSKI Secure key import callable service

CSFSKM Multiple secure key import callable service

CSFSKY Secure messaging for keys callable service

12 PKA Key Management Extensions — APAR OA28855

CSFSMK Set master key (TSO panel) utility

CSFSPN Secure messaging for PINs callable service

CSFSSWS Administrative control functions (TSO panel) utility (DISABLE)

CSFSYG Symmetric key generate callable service

CSFSYI Symmetric key import callable service

CSFSYX Symmetric key export callable service

CSFTBC Trusted block create callable service

CSFTCK Transform CDMF key callable service

CSFTRV Transaction validation callable service

CSFUDK User derived key callable service

CSF1GAV PKCS11 get attribute value callable service

CSF1SAV PKCS11 set attribute value callable service

CSF1TRC PKCS11 token record create callable service

CSF1TRD PKCS11 token record delete callable service

CSF1TRL PKCS11 token record list callable service

These service names are PKCS11 callable services that are not published in
the ICSF application programmer’s guide, but can be protected using the
CSFSERV resource.

v CSF1GKP PKCS11 generate key pair callable service

v CSF1GSK PKCS11 generate secret key callable service

v CSF1PKS PKCS11 private key sign callable service

v CSF1PKV PKCS11 public key verify callable service

v CSF1SKD PKCS11 secret key decrypt callable service

v CSF1SKE PKCS11 secret key encrypt callable service

v CSF1UWK PKCS11 unwrap key callable service

v CSF1WPK PKCS11 wrap key callable service

Notes:

a. As with any RACF general resource profile, if you want to change the profile
later, use the RALTER command. To change the access list, use the
PERMIT command as described in the next step.

b. If you have already started ICSF, you need to refresh the in-storage profiles.
See Step 3 on page 14.

c. You can specify other operands, such as auditing (AUDIT operand), on the
RDEFINE or RALTER commands.

d. If the RACF security administrator has activated generic profile checking for
the CSFSERV class, you can create generic profiles using the generic
characters * and %. This is the same as with any RACF general resource
class.

Example

If generic profile checking is in effect, these profiles enable you to specify which
users and jobs can use the ciphertext translate callable services. No other
services can be used by any job on the system.

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 13

RDEFINE CSFSERV CSFCTT UACC(NONE)

RDEFINE CSFSERV CSFCTT1 UACC(NONE)

RDEFINE CSFSERV * UACC(NONE)

2. Give appropriate users (preferably groups) access to the profiles:
PERMIT profile-name CLASS(CSFSERV)

ID(groupid) ACCESS(READ)

3. When the profiles are ready to be used, ask the RACF security administrator to
activate the CSFSERV class and refresh the in-storage RACF profiles:

SETROPTS CLASSACT(CSFSERV)

SETROPTS RACLIST(CSFSERV) REFRESH

Defining a key store policy
A Key Store Policy defines rules for how encrypted key tokens stored in a CKDS or
PKDS can be accessed and used. A Key Store Policy is collectively defined by a
number of separate controls that each specify a particular rule. Most of the Key
Store Policy controls work in conjunction with profiles in the CSFKEYS class, and
enable you to:

v Specify how ICSF should respond when a key token is passed to a callable
service instead of a key label (which is needed to perform a SAF authorization
check).

v Determine if applications should be prevented from creating a new key record
(with a new key label) for a token that is already stored in the CKDS or PKDS (in
a key record with a different key label).

v Specify if READ access authority is sufficient to create, write to, or delete a key
label, or if a higher level of access authority should be required for these actions.

v Specify if READ access authority to an AES or DES key is sufficient to export the
key (move it from encryption under a master key to encryption under an RSA
key), or if UPDATE authority should be required for this action.

v Place restrictions on how keys can be used. You can:

– restrict a particular AES or DES key from being exported, or allow it to be
exported only by certain RSA keys (or only by RSA keys bound to identities in
certain key certificates).

– restrict certain RSA keys from being used in secure export and import
operations, or from being used in handshake operations.

Each Key Store Policy control is a resource in the XFACILIT class, and can be
enabled by creating a profile for the resource using the RDEFINE command.
Similarly, you can disable a control by deleting its profile using the RDELETE
command. ICSF detects changes to the XFACILIT class, so the class does not
need to be active or RACLISTed.

Certain controls, when enabled, will activate Key Store Policy for either the CKDS
or PKDS. When Key Store Policy is activated, ICSF will identify the key label(s)
associated with each key token in the key store. This information is needed, for
example, in order to carry out SAF authorization checks against RACF profiles
(which are based on key labels) when a key token is passed to a callable service,
or to ensure an application doesn't store a duplicate token (a token that is already
stored, but associated with a different key label) in the key store. In addition to the
controls that activate Key Store Policy, other controls that do not themselves
activate Key Store Policy may still require, or to a lesser degree rely upon, an
active Key Store Policy and its key token/label associations. The following table
outlines the Key Store Policy controls that are available. This table also highlights

14 PKA Key Management Extensions — APAR OA28855

|

|
|
|

|
|

the controls that activate Key Store Policy for a CKDS or PKDS, as well as the
dependencies the other controls have on Key Store Policy being active. Be aware
that Key Store Policy is activated separately for a CKDS and a PKDS.

Table 1. Key Store Policy controls

The following Key Store
Policy controls:

Consist of the following XFACILIT class
resources: Description:

Key Token Authorization
Checking controls

Verifies, when an
application passes a
callable service a key token
instead of a key label, that
the user has authority to
the key token in the CKDS
or PKDS. It does this by
identifying the key label
associated with the passed
token.

CSF.CKDS.TOKEN.CHECK.LABEL.WARN Activates Key Store Policy for CKDS. Enables Key
Token Authorization Checking for the CKDS in
warning mode. In this mode, a failing authorization
check will result in a warning, but the operation will be
allowed to continue.

CSF.CKDS.TOKEN.CHECK.LABEL.FAIL Activates Key Store Policy for CKDS. Enables Key
Token Authorization Checking for the CKDS in fail
mode. In this mode, ICSF does not allow the
operation to continue when the authorization check
fails. The service returns with an error.

CSF.PKDS.TOKEN.CHECK.LABEL.WARN Activates Key Store Policy for PKDS. Enables Key
Token Authorization Checking for the PKDS in warning
mode. In this mode, a failing authorization check will
result in a warning, but the operation will be allowed
to continue.

CSF.PKDS.TOKEN.CHECK.LABEL.FAIL Activates Key Store Policy for PKDS. Enables Key
Token Authorization Checking for the PKDS in fail
mode. In this mode, ICSF does not allow the
operation to continue when the authorization check
fails. The service returns with an error.

Default Key Label
Checking controls

Specifies that ICSF should
use a default profile to
determine application
access to tokens that are
not stored in the CKDS or
PKDS. Can be enabled
only if the Key Token
Authorization Checking
control for the appropriate
key store is also enabled.

CSF.CKDS.TOKEN.CHECK.DEFAULT.LABEL Requires an active Key Store Policy for CKDS.
Specifically, this control can be enabled only if the
CSF.CKDS.TOKEN.CHECK.LABEL.WARN or
CSF.CKDS.TOKEN.CHECK.LABEL.FAIL control is
also enabled. Specifies that ICSF should use the
default profile CSF-CKDS-DEFAULT in the CSFKEYS
class to determine user access to tokens that are not
stored in the CKDS.

CSF.PKDS.TOKEN.CHECK.DEFAULT.LABEL Requires an active Key Store Policy for PKDS.
Specifically, this control can be enabled only if the
CSF.PKDS.TOKEN.CHECK.LABEL.WARN or
CSF.PKDS.TOKEN.CHECK.LABEL.FAIL control is
also enabled. Specifies that ICSF should use the
default profile CSF-PKDS-DEFAULT in the CSFKEYS
class to determine user access to tokens that are not
stored in the PKDS.

Duplicate Key Token
Checking controls

Prevents applications from
storing duplicate tokens in
the CKDS or PKDS.

CSF.CKDS.TOKEN.NODUPLICATES Activates Key Store Policy for CKDS. Enables
Duplicate Key Token Checking for the CKDS. ICSF
will prevent an application from creating a new key
record (with a new key label) for a token that is
already stored in the CKDS.

CSF.PKDS.TOKEN.NODUPLICATES Activates Key Store Policy for PKDS. Enables
Duplicate Key Token Checking for the PKDS. ICSF
will prevent an application from creating a new key
record (with a new key label) for a token that is
already stored in the PKDS.

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 15

Table 1. Key Store Policy controls (continued)

The following Key Store
Policy controls:

Consist of the following XFACILIT class
resources: Description:

Granular Key Label
Access controls

Increases the level of
access authority required to
create, write to, or delete a
key label.

CSF.CSFKEYS.AUTHORITY.LEVELS.WARN Enables Granular Key Label Access in warning mode.
In this mode, a warning will be issued if the user does
not have UPDATE authority (if creating a label), or
CONTROL authority (if writing to or deleting a label).
As long as the user has READ authority, however,
ICSF will allow the operation to continue. Does not
require an active Key Store Policy for CKDS or
PKDS. However, if a key token is passed to a
callable service instead of a key label, ICSF will, in
order to initiate a SAF authorization check, rely on
an active Key Store Policy for the appropriate key
store.

CSF.CSFKEYS.AUTHORITY.LEVELS.FAIL Enables Granular Key Label Access in fail mode. In
this mode, ICSF will not allow a key label to be
modified if the user does not have UPDATE authority
(if creating a label), or CONTROL authority (if writing
to or deleting a label). The service returns with an
error. Does not require an active Key Store Policy
for CKDS or PKDS. However, if a key token is
passed to a callable service instead of a key label,
ICSF will, in order to initiate a SAF authorization
check, rely on an active Key Store Policy for the
appropriate key store.

Symmetric Key Label
Export controls

Specifies that profiles in the
XCSFKEY class (instead of
profiles in the CSFKEYS
class) should be used to
determine access to AES or
DES keys that an
application is attempting to
export using the Symmetric
Key Export (CSNDSYX or
CSNFSYX) callable service.
This allows you to control
access to AES and DES
keys for the purpose of key
export separately from the
access allowed to the keys
for other purposes.

CSF.XCSFKEY.ENABLE.AES Enables Symmetric Key Label Export for AES keys.
Specifies that profiles in the XCSFKEY class should
determine access to an AES key when an application
is attempting to export it using the Symmetric Key
Export (CSNDSYX or CSNFSYX) callable service.
Does not require an active Key Store Policy for
CKDS or PKDS. However, if a key token is passed
to the callable service instead of a key label, ICSF
will, in order to initiate the SAF authorization
check, rely on an active Key Store Policy for
CKDS.

CSF.XCSFKEY.ENABLE.DES Enables Symmetric Key Label Export for DES keys.
Specifies that profiles in the XCSFKEY class should
determine access to a DES key when an application
is attempting to export it using the Symmetric Key
Export (CSNDSYX or CSNFSYX) callable service.
Does not require an active Key Store Policy for
CKDS or PKDS. However, if a key token is passed
to the callable service instead of a key label, ICSF
will, in order to initiate the SAF authorization
check, rely on an active Key Store Policy for
CKDS.

16 PKA Key Management Extensions — APAR OA28855

Table 1. Key Store Policy controls (continued)

The following Key Store
Policy controls:

Consist of the following XFACILIT class
resources: Description:

PKA Key Management
Extensions control

Specifies that the ICSF
segment of profiles in the
CSFKEYS class (and the
XCSFKEY class when a
Symmetric Key Label
Export control is enabled)
will be checked to
determine additional
restrictions on how keys
covered by the profile can
be used.

CSF.PKAEXTNS.ENABLE.WARNONLY Requires an active Key Store Policy for CKDS and
PKDS. Enables PKA Key Management Extensions in
warning mode. The ICSF segment of CSFKEYS or
XCSFKEY profiles will be checked to:

v determine if a symmetric key can be exported, and,
if so, which asymmetric keys can be used in the
operation to re-encrypt the symmetric key.

v determine if an asymmetric key can be used in
secure export and import operations, or in
handshake operations.

However, because this is warning mode, ICSF will
allow the operation to continue even if the ICSF
segment indicates that the operation is not allowed.

CSF.PKAEXTNS.ENABLE Requires an active Key Store Policy for CKDS and
PKDS. Enables PKA Key Management Extensions in
fail mode. The ICSF segment of CSFKEYS or
XCSFKEY profiles will be checked to:

v determine if a symmetric key can be exported, and,
if so, which asymmetric keys can be used in the
operation to re-encrypt the symmetric key.

v determine if an asymmetric key can be used in
secure export and import operations, or in
handshake operations.

If the ICSF segment indicates that the operation is not
allowed, the service returns with an error.

For more information on the:

v Key Token Authorization Checking controls, refer to “Enabling access authority
checking for key tokens”

v Default Key Label Checking controls, refer to “Determining access to tokens not
stored in the CKDS or PKDS” on page 19

v Duplicate Key Token Checking controls, refer to “Enabling duplicate key label
checking” on page 20

v Granular Key Label Access controls, refer to “Increasing the level of authority
needed to modify key labels” on page 21

v Symmetric Key Label Export controls, refer to “Increasing the level of authority
required to export symmetric keys” on page 23

v PKA Key Management Extension control, refer to “Controlling how cryptographic
keys can be used” on page 25

Enabling access authority checking for key tokens
Profiles in the CSFKEYS class determine access authority to cryptographic keys.
However, CSFKEYS profiles protect keys by their key label (discrete or generic
CSFKEYS profiles are named to match one or more key labels), and ICSF callable
services accept either a key label or key token. By default, if an application passes
a callable service a key token instead of a key label, no authorization checking is
done on the use of the key. By enabling Key Token Authorization Checking controls,
you can have ICSF identify a key token's associated key label so that a SAF
authorization check can be performed. This lets you implement a consistent security
policy for keys regardless of how they are identified (by key label or key token) to
callable services.

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 17

|
|

|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|

|
|
|

||
|
|
|
|
|
|
|
|
|

|
|

|
|

Separate Key Token Authorization Checking controls are provided for activating the
checking for either a CKDS or a PKDS in either warning or fail mode. In warning
mode, authorization checking is performed, but an application will not be prevented
from using a token even when the user lacks the necessary authority. Instead, ICSF
will merely log an SMF type 82 subtype 25 record in the SMF dataset. Warning
mode allows you to identify users who will need access permission to a key prior to
moving to a stricter implementation of the Key Token Authorization Checking policy.

This stricter implementation of the policy is called fail mode. In fail mode, an
application will be denied access to a token when the user does not have authority
to access it. The operation will be unsuccessful, and a return code 8, reason code
BF7 (3063) will be returned to the calling application. As with warning mode, ICSF
will log an SMF type 82 subtype 25 record in the SMF dataset. In addition, RACF
will log an SMF type 80 record (with event code qualifier of ACCESS). The resource
name in the SMF type 80 record will be the first label associated with the key token
that failed the check.

Because the same token could be associated with multiple key records in the key
store, when an application passes an encrypted key token to an ICSF callable
service, ICSF locates all the labels associated with the passed token. If the user
has permission to any of the key labels, then the application is granted authority to
use the token. Because access authority to any label associated with a token will
give a user access to the token, you may want to ensure that the key store does
not contain multiple key records for the same key token. ICSF provides a utility
program, CSFDUTIL, that generates a report of all duplicate keys for either a CKDS
or PKDS. To prevent duplicate keys from being added to a key store, you can
enable the Default Key Label Checking control for either the CKDS or PKDS as
described in “Enabling duplicate key label checking” on page 20.

If ICSF can not find an associated key label for the passed token in the key store,
no authorization checking will be performed on the use of the key unless the
Default Key Label Checking control is enabled for the key store. If the Default Key
Label Checking control is enabled (as described in “Determining access to tokens
not stored in the CKDS or PKDS” on page 19), a default profile will determine user
access when ICSF cannot identify an associated label for the passed token.

The following table shows the controls for enabling Key Token Authorization
Checking for the CKDS and PKDS in either warning or fail mode. To enable one of
the Key Token Authorization Checking controls, create the appropriate profile in the
XFACILIT class. The XFACILIT class does not need to be active or RACLISTed in
order for the control to be enabled.

Table 2. Key Store Policy controls: The Key Token Authorization Checking controls

The existence of this resource profile in the XFACILIT
class: Does this:

CSF.CKDS.TOKEN.CHECK.LABEL.WARN Activates Key Store Policy for CKDS. Enables Key Token
Authorization Checking for the CKDS in warning mode. In this mode, a
failing authorization check will result in a warning, but the operation will
be allowed to continue.

CSF.CKDS.TOKEN.CHECK.LABEL.FAIL Activates Key Store Policy for CKDS. Enables Key Token
Authorization Checking for the CKDS in fail mode. In this mode, ICSF
does not allow the operation to continue when the authorization check
fails. The service returns with an error.

CSF.PKDS.TOKEN.CHECK.LABEL.WARN Activates Key Store Policy for PKDS. Enables Key Token
Authorization Checking for the PKDS in warning mode. In this mode, a
failing authorization check will result in a warning, but the operation will
be allowed to continue.

18 PKA Key Management Extensions — APAR OA28855

Table 2. Key Store Policy controls: The Key Token Authorization Checking controls (continued)

The existence of this resource profile in the XFACILIT
class: Does this:

CSF.PKDS.TOKEN.CHECK.LABEL.FAIL Activates Key Store Policy for PKDS. Enables Key Token
Authorization Checking for the PKDS in fail mode. In this mode, ICSF
does not allow the operation to continue when the authorization check
fails. The service returns with an error.

For example, say you want to enable Key Token Authorization Checking for both a
CKDS and a PKDS. You're not certain all the users currently accessing key tokens
in these key stores will have the necessary access authority, and do not want to
disrupt current work patterns at your installation. For this reason, you decide to
allow a warning period during which you can identify users who will need
permission to access certain key tokens. The following command will enable Key
Token Authorization Checking for the CKDS and the PKDS in warning mode.
RDEFINE XFACILIT CSF.CKDS.TOKEN.CHECK.LABEL.WARN
RDEFINE XFACILIT CSF.PKDS.TOKEN.CHECK.LABEL.WARN

During the warning period, you can, by examining the SMF type 82 subtype 25
records logged in the SMF dataset, identify the users who need permission to
access keys. You can then create or modify the necessary profiles in the CSFKEYS
class. When you are ready to move to a stricter implementation of this policy, you
enable the controls for fail mode and disable the ones for warning mode.
RDEFINE XFACILIT CSF.CKDS.TOKEN.CHECK.LABEL.FAIL
RDEFINE XFACILIT CSF.PKDS.TOKEN.CHECK.LABEL.FAIL
RDELETE XFACILIT CSF.CKDS.TOKEN.CHECK.LABEL.WARN
RDELETE XFACILIT CSF.PKDS.TOKEN.CHECK.LABEL.WARN

If you accidentally enable the Key Token Authorization Checking controls for both
warning and fail mode, the control for fail mode will take precedence.

Determining access to tokens not stored in the CKDS or PKDS: When the
Key Token Authorization Checking control for a key store has been enabled, and a
token is passed to a callable service, ICSF will find the key label(s) associated with
the passed token so that a SAF authority check can be performed. If, however, the
token passed to the callable service is not in the key store, there will be no
associated key label to find. By default, no authorization checking is performed on
the use of the key, and the operation is allowed. If you enable the Default Key
Label Checking control for the CKDS or PKDS, however, ICSF will use a default
profile to determine user access to tokens that are not in the key store.

Separate controls are provided for enabling Default Key Label Checking for a CKDS
or a PKDS, The Default Key Label Checking control will be enabled only if the Key
Token Authorization Checking control for the appropriate key store is also enabled.
Refer to “Enabling access authority checking for key tokens” on page 17 for more
information. To enable one the Default Key Label Checking controls, create the
appropriate profile in the XFACILIT class. The XFACILIT class does not need to be
active or RACLISTed in order for the control to be enabled.

Table 3. Key Store Policy controls: The Default Key Label Checking controls

The existence of this resource profile in the XFACILIT
class: Does this:

CSF.CKDS.TOKEN.CHECK.DEFAULT.LABEL Specifies that ICSF should use the default profile CSF-CKDS-
DEFAULT in the CSFKEYS class to determine user access to tokens
that are not stored in the CKDS. This control is enabled only if the
CSF.CKDS.TOKEN.CHECK.LABEL.WARN or
CSF.CKDS.TOKEN.CHECK.LABEL.FAIL control is also enabled.

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 19

Table 3. Key Store Policy controls: The Default Key Label Checking controls (continued)

The existence of this resource profile in the XFACILIT
class: Does this:

CSF.PKDS.TOKEN.CHECK.DEFAULT.LABEL Specifies that ICSF should use the default profile CSF-PKDS-
DEFAULT in the CSFKEYS class to determine user access to tokens
that are not stored in the PKDS. This control is enabled only if the
CSF.PKDS.TOKEN.CHECK.LABEL.WARN or
CSF.PKDS.TOKEN.CHECK.LABEL.FAIL control is also enabled.

For example, to enable the Default Key Label Checking control for a CKDS, you
would:

1. Create the default profile CSF-CKDS-DEFAULT in the CSFKEYS class.
RDEFINE CSFKEYS CSF-CKDS-DEFAULT UACC(NONE)

2. By defining the universal access authority (UACC) as NONE in the preceding
step, the use of key tokens that do not reside in the key store has been
prohibited. If necessary, however, you can give appropriate users (preferably
groups) access in the CSF-CKDS-DEFAULT profile and refresh the CSFKEYS
class in storage:
PERMIT CSF-CKDS-DEFAULT CLASS(CSFKEYS) ID(group-id) ACCESS(READ)
SETROPTS RACLIST(CSFKEYS) REFRESH

3. Create a profile for the CSF.CKDS.TOKEN.CHECK.DEFAULT.LABEL resource
in the XFACILIT class.
RDEFINE XFACILIT CSF.CKDS.TOKEN.CHECK.DEFAULT.LABEL

Enabling duplicate key label checking
A key token could be stored in a key store within multiple key records, and so could
be associated with multiple key labels. When the Key Token Authorization Checking
control is enabled for the key store, duplicate tokens can cause problems because
all labels that are associated with a key token passed to an ICSF callable service
will be used to determine user access to that token. Although you may deliberately
restrict access to a token by one of the labels associated with it, a user might still
have access to the token through another label. You can enable the Duplicate Key
Token Checking control for the CKDS or PKDS to prevent applications from storing
duplicate tokens in the key store. When enabled, ICSF services that update the key
store will check for duplicate tokens. ICSF will not allow a key token to be written to
the key store if it matches a token that is already stored. The Duplicate Key Token
Checking controls do not rely on SAF authorization checks against CSFKEYS class
profiles. Instead, the callable services that update the key store will verify that a
duplicate token does not already exist within the key store.

Note: Enabling the Duplicate Key Token Checking control for the CKDS or PKDS
ensures only that no duplicate keys are added to the key store. To identify
any duplicate key tokens that may already exist in a CKDS or PKDS, use the
CSFDUTIL utility program. The CSFDUTIL utility program generates a report
of all duplicate keys in either a CKDS or a PKDS.

Separate controls are provided for enabling Duplicate Key Token Checking for a
CKDS or a PKDS. To enable either of the Duplicate Key Token Checking controls,
create the appropriate profile in the XFACILIT class. The XFACILIT class does not
need to be active or RACLISTed in order for the control to be enabled.

20 PKA Key Management Extensions — APAR OA28855

Table 4. Key Store Policy controls: The Duplicate Key Token Checking controls

The existence of this resource profile in the
XFACILIT class: Does this:

CSF.CKDS.TOKEN.NODUPLICATES Activates Key Store Policy for CKDS. Enables Duplicate Key Token Checking
for the CKDS. ICSF will prevent an application from creating a new key record
(with a new key label) for a token that is already stored in the CKDS.

CSF.PKDS.TOKEN.NODUPLICATES Activates Key Store Policy for PKDS. Enables Duplicate Key Token Checking
for the PKDS. ICSF will prevent an application from creating a new key record
(with a new key label) for a token that is already stored in the PKDS.

For example, to ensure that duplicate tokens are not stored in either the CKDS or
PKDS, you would enter the following commands:
RDEFINE XFACILIT CSF.CKDS.TOKEN.NODUPLICATES
RDEFINE XFACILIT CSF.PKDS.TOKEN.NODUPLICATES

Increasing the level of authority needed to modify key labels
A number of ICSF callable services enable an application to create, write to, or
delete a key label. By default, the user needs only READ authority to read from,
create, write to, or delete a label. In some cases, however, you might want to
require a higher level of authority for modifying a label than is required to merely
read a label. By enabling the Granular Key Label Access control, you increase the
level of access authority required to create, write to, or delete a label, while still
requiring only READ authority for cryptographic functions. This way, you can give a
user permission to access a key for encryption or decryption operations, while
preventing that same user from changing or deleting the key record.

The following table outlines the increased access authority required when the
Granular Key Label Access control is enabled.

Table 5. Increased access authority required to modify key labels when Granular Key Label Access control is enabled

To do this:

The level of access authority
required is increased from
READ to: This impacts the following callable services:

Create a label UPDATE Key Record Create (CSNBKRC)

PKDS Record Create (CSNDKRC and CSNFKRC)

Write to a label CONTROL Key Part Import (CSNBKPI)

Key Record Write (CSNBKRW)

PKDS Record Create (CSNDKRC and CSNFKRC)

PKDS Record Write (CSNDKRW)

PKA Key Generate (CSNDPKG and CSNFPKG)

PKA Key Import (CSNDPKI and CSNFPKI)

Trusted Block Create (CSNDTBC)

Delete a label CONTROL Key Record Delete (CSNBKRD)

PKDS Record Delete (CSNDKRD and CSNFKRD)

Retained Key Delete (CSNDRKD and CSNFRKD)

You can enable the Granular Key Label Access control in warning or fail mode. In
warning mode, the user's access authority will be checked, but only READ authority
will be required. However, if a user does not have UPDATE authority when creating
a label, or CONTROL authority when writing to or deleting a label, a warning will be

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 21

issued and the access will be logged. Warning mode allows you to identify any
users who will need to be granted increased access authority prior to moving to a
stricter implementation of the policy. The stricter implementation of the policy is
called fail mode. In fail mode, users who lack the increased access authority
required will not be able to modify key labels. The operation will be unsuccessful,
and a return code of 8 (reason code 16004) will be returned to the calling
application.

It is recommended that you activate Key Store Policy for both the CKDS and the
PKDS before enabling the Granular Key Label Access control. If Key Store Policy is
not activated and the Granular Key Label Access control is enabled, the increased
access authority checks will work only when the application passes a callable
service a key label. However, if the application were to pass the callable service a
key token instead of a key label, then no authorization checking will be performed.
When a token is passed, ICSF will, in order to initiate a SAF authorization check,
rely on an active Key Store Policy for the appropriate key store.

Enabling any one of the following controls will activate Key Store Policy for a
CKDS:

v CSF.CKDS.TOKEN.CHECK.LABEL.WARN

v CSF.CKDS.TOKEN.CHECK.LABEL.FAIL

v CSF.CKDS.TOKEN.NODUPLICATES

Enabling any one of the following controls will activate Key Store Policy for a PKDS:

v CSF.PKDS.TOKEN.CHECK.LABEL.WARN

v CSF.PKDS.TOKEN.CHECK.LABEL.FAIL

v CSF.PKDS.TOKEN.NODUPLICATES

The following table shows the controls for enabling Granular Key Label Access in
warning or fail mode. To enable one of the controls, create the appropriate profile in
the XFACILIT class. The XFACILIT class does not need to be active or RACLISTed
in order for the control to be enabled.

Table 6. Key Store Policy controls: The Granular Key Label Access controls

The existence of this resource profile in the XFACILIT
class: Does this:

CSF.CSFKEYS.AUTHORITY.LEVELS.WARN Enables Granular Key Label Access in warning mode. In this mode, a
warning will be issued if the user does not have UPDATE authority if
creating a label, or CONTROL authority if writing to or deleting a label.
As long as the user has READ authority, however, ICSF will allow the
operation to continue.

CSF.CSFKEYS.AUTHORITY.LEVELS.FAIL Enables Granular Key Label Access in fail mode. In this mode, ICSF
will not allow a key label to be modified if the user does not have
UPDATE authority if creating a label, or CONTROL authority if writing to
or deleting a label. The service returns with an error.

For example, you want to require UPDATE authority to create a label, and
CONTROL authority to write to or delete a label. You're not certain all the users
currently modifying key labels will have the necessary access authority, and do not
want to disrupt current work patterns at your installation. For this reason, you
decide to allow a warning period during which you can identify which users will
need to be granted increased authority. To do this, you would:

1. Enable the Granular Key Label Access control in warning mode.
RDEFINE XFACILIT CSF.CSFKEYS.AUTHORITY.LEVELS.WARN

22 PKA Key Management Extensions — APAR OA28855

2. Because you have enabled the control in warning mode, a failing access check
will still allow a user to modify the key record (as long as the user has READ
authority), but will issue a warning and log the access. Using this information,
you can update the appropriate profiles in the CSFKEYS class to grant
increased access authority to the appropriate users. For example, if user RITA
needs to be able to generate RSA key tokens (by way of the CSNDKRC and
CSNDPKG callable services), she will need CONTROL access to the label:
PERMIT RITA.RSA.TEST.* CLASS(CSFKEYS) ID(RITA) ACCESS(CONTROL)

3. When you are ready to move to a stricter implementation of the policy, you
would enable the control for fail mode and disable the one for warning mode.
RDEFINE XFACILIT CSF.CKDS.TOKEN.CHECK.LABEL.FAIL
RDELETE XFACILIT CSF.CKDS.TOKEN.CHECK.LABEL.WARN

If you accidentally enable the Granular Key Label Access controls for both warning
and fail mode, the control for fail mode will take precedence.

Increasing the level of authority required to export symmetric
keys
Using the Symmetric Key Export (CSNDSYX or CSNFSYX) callable service, an
application can transfer a symmetric (AES or DES) key from encryption under a
master key to encryption under an application-supplied RSA public key. This
callable service is used because a secure key (which is encrypted under a master
key in the ICSF environment) might need to be shared with a partner, and to
transfer it to that partner securely, it will need to be encrypted under an RSA key
provided by the partner. The partner will then be able to decrypt it using a
corresponding private key.

The export operation performed by the Symmetric Key Export callable service does
not fit into a traditional access control hierarchy. Due to the nature of the export
operation, you might want to restrict users from accessing a symmetric key for the
purpose of exporting it, while still allowing users to access the key for other
purposes. By enabling the Symmetric Key Label Export control for AES or DES
keys, and creating profiles in the XCSFKEY resource class, you can increase the
level of access authority needed to export AES or DES keys without increasing the
level of authority needed to access the keys for other operations.

By default, the CSFKEYS class determines access authority to cryptographic keys
passed to callable services (including the CSNDSYX/CSNFSYX callable service).
When the Symmetric Key Label Export control for AES or DES keys is not enabled
and the CSNDSYX or CSNFSYX service is called, a user needs only READ
authority for the key (as specified in a CSFKEYS class profile). If, however, the
Symmetric Key Label Export control for AES or DES keys is enabled and the
CSNDSYX or CSNFSYX service is called, then a user needs UPDATE authority for
the key (as specified in an XCSFKEY class profile). The Symmetric Key Label
Export controls affect only the CSNDSYX/CSNFSYX callable service; for all other
callable services, access to cryptographic keys is checked against profiles in the
CSFKEYS class. What's more, the Symmetric Key Label Export controls affect
access only to the symmetric key the application is attempting to export, and do not
affect access to the RSA key that is being used to re-encrypt the symmetric key.
Access authority to the AES or DES key will be checked against XCSFKEY class
profiles, while access to the RSA key will still be checked against CSFKEYS class
profiles.

It is recommended that you activate Key Store Policy for the CKDS before enabling
the Symmetric Key Label Export control for AES or DES keys. If Key Store Policy is
not activated for the CKDS and the Symmetric Key Label Export control for AES or

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 23

DES keys is enabled, the access authority check for the symmetric key will be
performed only when it is identified to the CSNDSYX or CSNFSYX callable service
by its key label. If the application were to pass the callable service a key token
instead of a key label, then no authorization checking will be performed. When a
token is passed, ICSF will, in order to initiate a SAF authorization check, rely on an
active Key Store Policy for CKDS. Enabling any one of the following controls will
activate Key Store Policy for a CKDS:

v CSF.CKDS.TOKEN.CHECK.LABEL.WARN

v CSF.CKDS.TOKEN.CHECK.LABEL.FAIL

v CSF.CKDS.TOKEN.NODUPLICATES

The following table shows the controls for enabling Symmetric Key Label Export for
AES or DES keys. To enable the controls, create the appropriate profile in the
XFACILIT class. The XFACILIT class does not need to be active or RACLISTed in
order for the control to be enabled. There are separate Symmetric Key Label Export
controls for AES and DES keys, so you can require UPDATE authority (which will
be checked against XCSFKEY profiles) for export of one type of key, while still
requiring only READ authority (which will still be checked against CSFKEY profiles)
for export of the other type of key. There are no Symmetric Key Label Export
controls that enable the policy in a warning mode. However, you can use the
WARNING operand on XCSFKEY profiles to achieve the same results.

Table 7. Key Store Policy controls: The Symmetric Key Label Export controls

The existence of this resource
profile in the XFACILIT class: Does this:

CSF.XCSFKEY.ENABLE.AES Enables Symmetric Key Label Export for AES keys. Specifies
that profiles in the XCSFKEY class should determine access to
an AES key when an application is attempting to export it using
the Symmetric Key Export (CSNDSYX or CSNFSYX) callable
service.

CSF.XCSFKEY.ENABLE.DES Enables Symmetric Key Label Export for DES keys. Specifies
that profiles in the XCSFKEY class should determine access to
a DES key when an application is attempting to export it using
the Symmetric Key Export (CSNDSYX or CSNFSYX) callable
service.

For example, you want to require UPDATE authority to export any symmetric key
(AES or DES) using the Symmetric Key Export callable service. You're not certain
all the users currently exporting symmetric keys will have the necessary access
authority, and do not want to disrupt current work patterns at your installation. For
this reason, you decide to allow a warning period during which you can identify
which users will need to be granted increased authority. To do this, you would:

1. Create profiles in the XCSFKEY class to cover the symmetric keys. In this
example, your installation has a consistent naming policy for AES and DES key
labels, so the following two generic profiles will cover all symmetric keys. The
WARNING operand is specified to initiate the warning period.
RDEFINE XCSFKEY AES* UACC(NONE) WARNING
RDEFINE XCSFKEY DES* UACC(NONE) WARNING

The XCSFKEY class will need to be activated and placed in common storage:
SETROPTS CLASSACT(XCSFKEY)
SETROPTS RACLIST(XCSFKEY)

2. Enable the Symmetric Key Label Export control for AES and DES. In this
example, we enable both controls so that UPDATE authority is required when
exporting any symmetric key.

24 PKA Key Management Extensions — APAR OA28855

RDEFINE CSF.XCSFKEY.ENABLE.AES
RDEFINE CSF.XCSFKEY.ENABLE.DES

3. Because the WARNING operand was specified on the generic profiles AES* and
DES*, any failing access check will still allow access to the symmetric key, but
will issue a warning message and log the access. Using this information, you
can grant UPDATE access to users or groups as needed. Since the generic
profiles in our example cover all AES and all DES keys, you may need to create
other generic profiles or discrete profiles to limit access for certain users. Here,
user BOBADMIN is given UPDATE access to all symmetric keys, while user
GWEN is given UPDATE access to the key labeled DES.BURDA.MEDINC.
PERMIT AES* CLASS(XCSFKEY) ID(BOBADMIN) ACCESS(UPDATE)
PERMIT DES* CLASS(XCSFKEY) ID(BOBADMIN) ACCESS(UPDATE)
RDEFINE XCSFKEY DES.BURDA.MEDINC UACC(NONE)
PERMIT DES.BURDA.MEDINC CLASS(XCSFKEY) ID(GWEN) ACCESS(UPDATE)

The XCSFKEY class will need to be refreshed in common storage:
SETROPTS RACLIST(XCSFKEY) REFRESH

4. When you are ready to move to a stricter implementation of the policy, you can
end the warning period. To do this, update the necessary profiles in the
XCSFKEY class using the RALTER command with its NOWARNING operand.
RALTER XCSFKEY AES* UACC(NONE) NOWARNING
RALTER XCSFKEY DES* UACC(NONE) NOWARNING

The XCSFKEY class will need to be refreshed in common storage:
SETROPTS RACLIST(XCSFKEY) REFRESH

Controlling how cryptographic keys can be used
In addition to using profiles in the CSFKEYS class (and, when Symmetric Key Label
Export is enabled, the XCSFKEY class) to identify which users have permission to
certain cryptographic keys, you can also enable the PKA Key Management
Extensions control so that CSFKEYS and XCSFKEY profiles can place restrictions
on how keys are used. For example, you can:

v restrict an asymmetric key from being used in secure export and import
operations.

v restrict an asymmetric key from being used in handshake operations.

v Restrict a symmetric key from being exported (transferred from encryption under
a master key to encryption under an application-supplied RSA public key).
Alternatively, you can allow the symmetric key to be exported, but only by certain
public keys (as indicated by a list of key labels), or only by public keys bound to
certain identities (as indicated by a list of certificates in either a PKCS #11 token,
or a SAF key ring).

Setting restrictions such as these can help ensure that keys are used only for
intended purposes, regardless of who has access to the keys. For example, if you
have an RSA key pair intended only for generating and verifying digital signatures,
you can set a restriction to ensure that the public key of this key pair is never used
to export a symmetric key.

You place restrictions on cryptographic keys using the ICSF segment of the
CSFKEYS or XCSFKEY class profiles that cover the keys. After you have modified
the profiles with the restrictions you want to place on the keys, you can enable the
PKA Key Management Extensions control by creating a CSF.PKAEXTNS.ENABLE
profile in class XFACILIT. You can also enable PKA Key Management Extensions in
warning mode by creating a CSF.PKAEXTNS.ENABLE.WARNONLY profile in class
XFACILIT. In order to enable PKA Key Management Extensions, Key Store Policy

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 25

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

must be active for both the CKDS and the PKDS. For more information, refer to
“Enabling PKA Key Management Extensions” on page 32.

Restricting asymmetric keys from being used in secure import and export
operations: Using the ASYMUSAGE field in the ICSF segment of CSFKEYS
profiles enables you to restrict asymmetric keys covered by the profile from being
used in secure import and export operations. In secure export operations, a
symmetric key (AES or DES) is moved from encryption under a master key to
encryption under an asymmetric key (RSA public key). In a secure import operation,
the private key of an RSA key pair is used to move a symmetric key from
encryption under the RSA public key to encryption under a master key. The
following callable services all identify an asymmetric key (either the public or private
key of an RSA key pair) to encrypt or decrypt a symmetric key. The callable
services that perform secure import and export operations are:

v Symmetric Key Generate (CSNDSYG)

v Symmetric Key Export (CSNDSYX and CSNFSYX)

v Symmetric Key Import (CSNDSYI and CSNFSYI)

For each of these services, a profile in the CSFKEYS class will control access to
the asymmetric key. In addition to specifying user access to the key, the CSFKEYS
profile can also specify information (in the ICSF segment of the profile) on how the
key can be used. The ASYMUSAGE field of the ICSF segment enables you to
specify whether an asymmetric key covered by the profile can participate in secure
import or export operations. By specifying the NOSECUREEXPORT keyword in the
ASYMUSAGE field, you restrict any asymmetric key covered by the profile from
being used to encrypt or decrypt the symmetric key in these operations.

For example, the profile RSA.SAMMY.DIGSIG in class CSFKEYS covers an RSA
key pair that should be used only for generating and verifying digital signatures and
performing TLS/SSL handshakes. The following RALTER command modifies the
profile to ensure that the public key of the RSA key pair is never used to export
keys. The SETROPTS RACLIST command is used to refresh the profile in common
storage.
RALTER CSFKEYS RSA.SAMMY.DIGSIG ICSF(ASYMUSAGE(NOSECUREEXPORT))
SETROPTS RACLIST(CSFKEYS) REFRESH

In order for the secure import/export restriction to take effect, you will need to
enable the PKA Key Management Extensions control by creating a
CSF.PKAEXTNS.ENABLE profile in class XFACILIT. In order to enable the PKA Key
Management Extensions control, the Key Store Policy for both the CKDS and the
PKDS must also be active. Refer to “Enabling PKA Key Management Extensions”
on page 32 for more information.

When the PKA Key Management Extensions control is enabled, the default is to
allow keys to participate in secure import and export operations. You can also
explicitly specify this using the SECUREEXPORT keyword in the ASYMUSAGE field
of a CSFKEYS profile. For example:
RALTER CSFKEYS RSA.SAMMY.EXPORT ICSF(ASYMUSAGE(SECUREEXPORT))
SETROPTS RACLIST(CSFKEYS) REFRESH

The ASYMUSAGE field can also contain the NOHANDSHAKE or HANDSHAKE
keywords to specify whether keys covered by the profile can participate in
handshake operations (as described in “Restricting asymmetric keys from being

26 PKA Key Management Extensions — APAR OA28855

|
|

|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

used in handshake operations”). These keywords can be specified along with the
NOSECUREEXPORT or SECUREEXPORT keywords when entering the RDEFINE
or RALTER command.
RALTER CSFKEYS RSA.SAMMY.EXPORT ICSF(ASYMUSAGE(SECUREEXPORT NOHANDSHAKE))
SETROPTS RACLIST(CSFKEYS) REFRESH

Restricting asymmetric keys from being used in handshake operations:
Using the ASYMUSAGE field in the ICSF segment of CSFKEYS profiles enables
you to restrict asymmetric keys covered by the profile from being used in
handshake operations. The following callable services all identify an asymmetric key
to be used in a handshake operation. The callable services that perform handshake
operations are:

v Digital Signature Generate (CSNDDSG and CSNFDSG)

v Digital Signature Verify (CSNDDSV and CSNFDSV)

v PKA Encrypt (CSNDPKE and CSNFPKE)

v PKA Decrypt (CSNDPKD and CSNFPKD)

For each of these services, a profile in the CSFKEYS class will control access to
the asymmetric key used to generate/verify a digital signature, or encrypt/decrypt a
clear key value. In addition to specifying user access to the key, the CSFKEYS
profile can also specify information (in the ICSF segment of the profile) on how the
key can be used. The ASYMUSAGE field of the ICSF segment enables you to
specify whether an asymmetric key covered by the profile can participate in
handshake operations. By specifying the NOHANDSHAKE keyword in the
ASYMUSAGE field, you restrict any key covered by the profile from being used in
handshake operations. For example, the profile RSA.SAMMY.EXPORT in class
CSFKEYS covers an RSA key pair intended for exporting and importing symmetric
keys. The following RALTER command modifies the profile to ensure that the RSA
keys are not used in handshake operations. The SETROPTS RACLIST command is
used to refresh the profile in common storage.
RALTER CSFKEYS RSA.SAMMY.EXPORT ICSF(ASYMUSAGE(NOHANDSHAKE))
SETROPTS RACLIST(CSFKEYS) REFRESH

In order for the restriction on handshake operations to take effect, you will need to
enable the PKA Key Management Extensions control by creating a
CSF.PKAEXTNS.ENABLE profile in class XFACILIT. In order to enable the PKA Key
Management Extensions control, the Key Store Policy for both the CKDS and the
PKDS must also be active. Refer to “Enabling PKA Key Management Extensions”
on page 32 for more information.

When the PKA Key Management Extensions control is enabled, the default is to
allow keys to participate in handshake operations. You can also explicitly specify
this using the HANDSHAKE keyword in the ASYMUSAGE field of profiles in the
CSFKEYS class. For example:
RALTER CSFKEYS RSA.SAMMY.EXPORT ICSF(ASYMUSAGE(HANDSHAKE))
SETROPTS RACLIST(CSFKEYS) REFRESH

The ASYMUSAGE field can also contain the NOSECUREEXPORT or
SECUREEXPORT keywords to specify whether keys covered by the profile can
participate in secure import and export operations (as described in “Restricting
asymmetric keys from being used in secure import and export operations” on page
26). These keywords can be specified along with the NOHANDSHAKE or
HANDSHAKE keywords when entering the RDEFINE or RALTER command.
RALTER CSFKEYS RSA.SAMMY.EXPORT ICSF(ASYMUSAGE(NOSECUREEXPORT HANDSHAKE))
SETROPTS RACLIST(CSFKEYS) REFRESH

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 27

|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

Placing restrictions on exporting symmetric keys: The Symmetric Key Export
(CSNDSYX or CSNFSYX) callable service lets a calling application transfer a
symmetric (AES or DES) key from encryption under a master key to encryption
under an application-supplied RSA public key. This callable service is needed
because a secure key (which is encrypted under a master key in the ICSF
environment) might need to be shared with a partner, and to transfer it to that
partner securely, it will need to be encrypted under an RSA key provided by the
partner. The partner will then be able to decrypt it using a corresponding private
key. Due to the nature of the operation performed by the Symmetric Key Export
callable service, you may want to place additional restrictions on its use. “Increasing
the level of authority required to export symmetric keys” on page 23 describes how
you can enable the Symmetric Key Label Export controls to specify that a user
needs UPDATE authority in the XCSFKEY class (instead of the default READ
authority in the CSFKEYS class) to export a symmetric key. By enabling the PKA
Key Management Extensions control, can also specify that a symmetric key
covered by a CSFKEYS or XCSFKEY profile:

v cannot be exported.

v can be exported by any asymmetric key in the PKDS

v can be exported only by certain asymmetric keys in the PKDS (as specified by a
supplied list).

v can be exported by any asymmetric key, provided it is bound to an identity in a
key certificate in a trusted certificate repository (either a PKCS #11 token or a
SAF key ring).

v can be exported only by an asymmetric key that is bound to certain identities (as
specified by a supplied list of key certificates in a trusted certificate repository).

When an application calls the CSNDSYX or CSNFSYX service, access to the
symmetric key (the AES or DES key to be re-encrypted) is determined by a profile
in the CSFKEYS class or, if the Symmetric Key Label Export control has been
enabled, the XCSFKEY class. In addition to specifying user access to the key, the
CSFKEYS or XCSFKEY profile can also place restrictions (in the ICSF segment of
the profile) on export of the symmetric key. In the ICSF segment of a CSFKEYS or
XCSFKEY profile, the SYMEXPORTABLE field contains a keyword that determines
if the key can be exported, and, if so, how ICSF will determine the asymmetric keys
(the RSA public keys) that can export (re-encrypt) the key.

Table 8. Keyword settings for symmetric key export using the ICSF segment's SYMEXPORTABLE field

This field/keyword Specifies:

SYMEXPORTABLE(BYNONE) The symmetric key can not be exported.

SYMEXPORTABLE(BYLIST) The symmetric key can be exported, but only by certain RSA public keys in the PKDS
(as specified by a supplied list), or only by RSA public keys bound to certain identities
(as specified by a supplied list of key certificates).

v To supply a list of RSA public keys in the PKDS that can export the symmetric key,
you use the SYMEXPORTKEYS field on the ICSF segment. You can list the RSA
public keys by label, or you can use a special character setting in this field to specify
that any RSA public key in the PKDS can export the symmetric key.

v To supply a list a key certificates, you use the SYMEXPORTCERTS field of the ICSF
segment. You can list the certificates by label, or you can use a special character
setting in this field to specify that any RSA public key bound to an identity in any
certificate in the repository can export the symmetric key.

SYMEXPORTABLE(BYANY) There are no additional restrictions placed on export of the key. Provided no other
access requirement or control prevents it, the symmetric key can be exported by any
asymmetric key. This is the default.

v For more information on the BYNONE keyword, refer to “Restricting the
symmetric key from being exported” on page 29.

28 PKA Key Management Extensions — APAR OA28855

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

||

||

||

||
|
|
|
|
|
|
|
|
|
|

||
|
|
|

|
|

v For more information on using the BYLIST keyword and the SYMEXPORTKEYS
field, refer to “Identifying RSA public keys that can export the symmetric key.”

v For more information on using the BYLIST keyword and the
SYMEXPORTCERTS field, refer to “Identifying key certificates for symmetric key
export” on page 30.

v For more information on the BYANY keyword, refer to “Placing no additional
restrictions on symmetric key export” on page 32.

Restricting the symmetric key from being exported: CSFKEYS and XCSFKEY
profiles can contain an ICSF segment. Fields of the ICSF segment specify rules for
key use. In the SYMEXPORTABLE field of the ICSF segment, the BYNONE
keyword specifies that the symmetric key(s) covered by the profile can not be
exported, regardless of a user's access authority to the key. If an application
attempts to use the Symmetric Key Export (CSNDSYX or CSNFSYX) callable
service to transfer a symmetric (AES or DES) key covered by the profile, the
operation will fail and the service will return an error.

For example, the CKDS contains a DES key labeled DES.BRADY.CASTLE that
should never be exported. The Symmetric Key Label Export control for DES keys
has not been enabled, so the key is covered by a profile in the CSFKEYS class.
The following RALTER command modifies the discrete profile DES.BRADY.CASTLE
to indicate that the key should never be exported. The SETROPTS RACLIST
command is used to refresh the profile in common storage.
RALTER CSFKEYS DES.BRADY.CASTLE ICSF(SYMEXPORTABLE(BYNONE))
SETROPTS RACLIST(CSFKEYS) REFRESH

Identifying RSA public keys that can export the symmetric key: CSFKEYS and
XCSFKEY profiles can contain an ICSF segment. Fields of the ICSF segment
specify rules for key use. In the SYMEXPORTABLE field of the ICSF segment, the
BYLIST keyword specifies that the symmetric key(s) covered by the profile can be
exported by keys identified using the SYMEXPORTKEYS or SYMEXPORTCERTS
fields.

Using the SYMEXPORTKEYS field, you can list the RSA public keys in the PKDS
that are allowed to export the symmetric key. The SYMEXPORTKEYS list consists
of one or more PKDS key labels identifying the RSA public keys under which the
symmetric key can be re-encrypted. These labels follow the normal ICSF label
conventions; they can be space separated, and quotes are optional.

Note: Key Store Policy must be active in order for the PKA Key Management
Extensions to be enabled. Because Key Store Policy for the PKDS is active,
ICSF knows the key label(s) associated with each key token. Tokens
associated with multiple labels are considered equivalent. Be aware that as
long as one of the labels associated with the token appears in the
SYMEXPORTKEYS list, the RSA public key can export symmetric key.

A special key label is the asterisk character (*). If the SYMEXPORTKEYS field
contains this special key label, any RSA public key in the PKDS can export the
symmetric key (provided no other access requirement or control prevents it).

If an application attempts to use the Symmetric Key Export (CSNDSYX or
CSNFSYX) callable service to transfer a symmetric (AES or DES) key covered by
the profile, ICSF will compare the RSA public key identified by the application with
those identified in the SYMEXPORTKEYS list. If the key is in the list, the operation
is allowed to continue. If it is not in the list, and is also not bound to an identity in a

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 29

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

certificate listed in the SYMEXPORTCERTS field (as described in “Identifying key
certificates for symmetric key export”), the operation will fail and the service will
return an error.

For example, the following RALTER command modifies the discrete profile
DES.BRADY.CASTLE so that the DES key it covers can be exported only by the
RSA public key RSA.BRADY.CASTLE. In this example, the Symmetric Key Label
Export control has been enabled for DES keys, so the DES.BRADY.CASTLE profile
is defined in the XCSFKEY class. The SETROPTS RACLIST command is used to
refresh the profile in common storage.

RALTER XCSFKEY DES.BRADY.CASTLE ICSF(SYMEXPORTABLE(BYLIST) SYMEXPORTKEYS(RSA.BRADY.CASTLE))
SETROPTS RACLIST(XCSFKEY) REFRESH

To instead allow any RSA public key in the PKDS to export the symmetric key
covered by the DES.BRADY.CASTLE profile, you would specify the asterisk
character (*) in the SYMEXPORTKEYS field.
RALTER XCSFKEY DES.BRADY.CASTLE ICSF(SYMEXPORTABLE(BYLIST) SYMEXPORTKEYS(*))
SETROPTS RACLIST(XCSFKEY) REFRESH

The ADDSYMEXPORTKEYS keyword of the ICSF segment enables you to add
labels to a SYMEXPORTKEYS list without having to recreate the entire list. For
example, to add the label RSA.BKNIGHT.CASTLE to the list, you would enter:
RALTER XCSFKEY DES.BRADY.CASTLE ICSF(ADDSYMEXPORTKEYS(RSA.BKNIGHT.CASTLE))
SETROPTS RACLIST(XCSFKEY) REFRESH

Similarly, you can delete labels from a SYMEXPORTKEYS list using the
DELSYMEXPORTKEYS keyword:
RALTER XCSFKEY DES.BRADY.CASTLE ICSF(DELSYMEXPORTKEYS(RSA.BKNIGHT.CASTLE))
SETROPTS RACLIST(XCSFKEY) REFRESH

You can also delete the entire SYMEXPORTKEYS field using the
NOSYMEXPORTKEYS keyword.
RALTER XCSFKEY DES.BRADY.CASTLE ICSF(NOSYMEXPORTKEYS)
SETROPTS RACLIST(XCSFKEY) REFRESH

Identifying key certificates for symmetric key export: CSFKEYS and XCSFKEY
profiles can contain an ICSF segment. Fields of the ICSF segment specify rules for
key use. In the SYMEXPORTABLE field of the ICSF segment, the BYLIST keyword
specifies that the symmetric key(s) covered by the CSFKEYS or the XCSFKEY
profile can be exported by keys identified using the SYMEXPORTKEYS or
SYMEXPORTCERTS fields.

Using the SYMEXPORTCERTS field, you can supply a list of certificate labels in a
trusted certificate repository (either a PKCS #11 token or a SAF key ring). As
described in “Enabling PKA Key Management Extensions” on page 32, you enable
the PKA Key Management Extensions control by creating a
CSF.PKAEXTNS.ENABLE profile in class XFACILIT. You can use the APPLDATA
field in that profile to identify the type and name of the trusted certificate repository.
If the APPLDATA field is not used to provide this information, the default certificate
repository is a PKCS #11 token named CSF.TRUSTED.KEYRING. The format of
the SYMEXPORTCERTS field depends on whether the trusted certificate repository
is a PKCS #11 token or a SAF key ring.

v If the trusted certificate repository is a PKCS #11 token, the certificate labels are
listed in the format 'cka-id/cert-label', where:

cka-id is the CKA_ID attribute of the certificate object. This portion of the

30 PKA Key Management Extensions — APAR OA28855

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

||

specification is optional, and only necessary if multiple certificate objects
have the same CKA_LABEL. If provided, RACF will convert this portion
of the specification into uppercase before storing it in the profile.

/cert-label
is the CKA_LABEL attribute of the certificate object. Note that the forward
slash character (/) is required even if the optional cka-id portion of the
specification is omitted. If this portion of the specification contains blank
characters, the entire specification must be enclosed in single quotes.

v If the trusted certificate repository is a SAF key ring, the certificate labels are
listed in the format 'userID/cert-label', where:

userID is the owner of the certificate. This portion of the specification is optional,
and only necessary if multiple certificates have the same label. If
provided, RACF will convert this portion of the specification into
uppercase before storing it in the profile.

/cert-label
is the label of the digital certificate that was assigned when the certificate
was created. Note that the forward slash character (/) is required even if
the optional userID portion of the specification is omitted. If this portion of
the specification contains blank characters, the entire specification must
be enclosed in single quotes.

Regardless of whether you are using a PKCS #11 token or a SAF key ring, you can
also use the asterisk character (*) in the SYMEXPORTCERTS field to match any
certificate in the trusted certificate repository. Using the asterisk character in the
SYMEXPORTCERTS field is the same as listing all the certificates in the trusted
certificate repository.

If an application attempts to use the Symmetric Key Export (CSNDSYX or
CSNFSYX) callable service to transfer a symmetric (AES or DES) key covered by
the profile, ICSF will compare the RSA public key identified by the application with
those bound to identities in certificates in the SYMEXPORTCERTS list. If any of the
listed certificates contains the RSA public key, the operation is allowed to continue.
If none of the listed certificates contain the public key, and the key is also not listed
in the SYMEXPORTKEYS field (as described in “Identifying RSA public keys that
can export the symmetric key” on page 29), the operation will fail and the service
will return an error.

For example, say you want to allow export of a the symmetric key
DES.BRADY.CASTLE only by the user and public key bound by a certificate in a
SAF key ring. The SAF key ring was identified to ICSF when the PKA Key
Management Extensions control was enabled (using the APPLDATA field of the
CSF.PKAEXTNS.ENABLE profile). The label of the digital certificate in the SAF key
ring is "Mister Ink", and the discrete profile covering the key has already been
defined in the XCSFKEY class. The following RALTER command specifies that the
only RSA public key that can export the symmetric key is the one bound to the
identity in the "Mister Ink" certificate. The SETROPTS RACLIST command is used
to refresh the profile in common storage.

RALTER XCSFKEY DES.BRADY.CASTLE ICSF(SYMEXPORTABLE(BYLIST) SYMEXPORTCERTS('/Mister Ink'))
SETROPTS RACLIST(XCSFKEY) REFRESH

The preceding example assumes that no other certificates have the same label. If
other certificates do have the same label, you would want to include the user ID of
the certificate owner in the SYMEXPORTCERTS list specification. For example, if
the user BKNIGHT is the certificate owner, you would enter:

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 31

|
|
|

|
|
|
|
|

|
|

||
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

RALTER XCSFKEY DES.BRADY.CASTLE ICSF(SYMEXPORTABLE(BYLIST) SYMEXPORTCERTS('BKNIGHT/Mister Ink'))
SETROPTS RACLIST(XCSFKEY) REFRESH

You can also use the asterisk character (*) in the SYMEXPORTCERT field to
match any certificate in the certificate repository.
RALTER XCSFKEY DES.BRADY.CASTLE ICSF(SYMEXPORTABLE(BYLIST) SYMEXPORTCERTS(*))
SETROPTS RACLIST(XCSFKEY) REFRESH

The ADDSYMEXPORTCERTS keyword of the ICSF segment enables you to add
certificate labels to a SYMEXPORTCERTS list without having to recreate the entire
list. For example, to add the certificate 'SERRIN/Mister Ink' to the list of certificate
labels, you would enter:
RALTER XCSFKEY DES.BRADY.CASTLE ICSF(ADDSYMEXPORTCERTS('SERRIN/Mister Ink'))
SETROPTS RACLIST(XCSFKEY) REFRESH

Similarly, you can delete certificate labels from a SYMEXPORTCERTS list using the
DELSYMEXPORTCERTS keyword:
RALTER XCSFKEY DES.BRADY.CASTLE ICSF(DELSYMEXPORTCERTS('BKNIGHT/Mister Ink'))
SETROPTS RACLIST(XCSFKEY) REFRESH

You can also delete the entire SYMEXPORTCERTS field using the
NOSYMEXPORTCERTS keyword.
RALTER XCSFKEY DES.BRADY.CASTLE ICSF(NOSYMEXPORTCERTS)
SETROPTS RACLIST(XCSFKEY) REFRESH

Placing no additional restrictions on symmetric key export: If no keyword value is
specified in the ICSF segment's SYMEXPORTABLE field, then, by default, no
additional restrictions are placed on the export of symmetric keys covered by the
profile. Provided no other access requirement or control prevents it, the symmetric
key can be exported by any RSA public key. Although this is the default behavior,
you can also explicitly specify it using the BYANY keyword. You might want to do
this, for example, if you had previously specified the BYNONE or BYLIST keyword
in the SYMEXPORTABLE field, and now want to return to the default behavior.

For example, to specify that there are no restrictions on the export of the symmetric
key covered by the profile DES.BRADY.CASTLE in the XCSFKEY class, and that
any RSA key can be used in the export operation (provided the user has access
permission to the key), you could enter the following RALTER command. The
SETROPTS RACLIST command is used to refresh the profile in common storage.
RALTER XCSFKEY DES.BRADY.CASTLE ICSF(SYMEXPORTABLE(BYANY))
SETROPTS RACLIST(CSFKEYS) REFRESH

You can also return to the default behavior by deleting the entire
SYMEXPORTABLE field using the NOSYMEXPORTABLE keyword.
RALTER XCSFKEY DES.BRADY.CASTLE ICSF(NOSYMEXPORTABLE)
SETROPTS RACLIST(XCSFKEY) REFRESH

Enabling PKA Key Management Extensions: The rules for cryptographic key
usage defined in the ICSF segment of CSFKEYS and XCSFKEY profiles (described
in “Restricting asymmetric keys from being used in secure import and export
operations” on page 26, “Restricting asymmetric keys from being used in
handshake operations” on page 27, and “Placing restrictions on exporting
symmetric keys” on page 28) will not be in effect unless PKA Key Management
Extensions are enabled. PKA Key Management Extensions cannot be enabled
unless Key Store Policy is active for both the CKDS and PKDS.

32 PKA Key Management Extensions — APAR OA28855

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

Enabling any one of the following controls will activate Key Store Policy for a
CKDS:

v CSF.CKDS.TOKEN.CHECK.LABEL.WARN

v CSF.CKDS.TOKEN.CHECK.LABEL.FAIL

v CSF.CKDS.TOKEN.NODUPLICATES

Enabling any one of the following controls will activate Key Store Policy for a PKDS:

v CSF.PKDS.TOKEN.CHECK.LABEL.WARN

v CSF.PKDS.TOKEN.CHECK.LABEL.FAIL

v CSF.PKDS.TOKEN.NODUPLICATES

The following table shows the controls for enabling PKA Key Management
Extensions in either warning or fail mode. To enable one of the controls, create the
appropriate profile in the XFACILIT class. The XFACILIT class does not need to be
active or RACLISTed for the control to be enabled.

Table 9. Key Store Policy controls: The PKA Key Management Extensions controls

The existence of this resource profile in the
XFACILIT class: Does this:

CSF.PKAEXTNS.ENABLE.WARNONLY Enables PKA Key Management Extensions in warning mode. The ICSF segment
of CSFKEYS or XCSFKEY profiles will be checked to:

v determine if a symmetric key can be exported, and, if so, which asymmetric
keys can be used in the operation to re-encrypt the symmetric key.

v determine if an asymmetric key can be used in secure export and import
operations, or in handshake operations.

However, because this is warning mode, ICSF will allow the operation to continue
even if the ICSF segment indicates that the operation is not allowed.

CSF.PKAEXTNS.ENABLE Enables PKA Key Management Extensions in fail mode. The ICSF segment of
CSFKEYS or XCSFKEY profiles will be checked to:

v determine if a symmetric key can be exported, and, if so, which asymmetric
keys can be used in the operation to re-encrypt the symmetric key.

v determine if an asymmetric key can be used in secure export and import
operations, or in handshake operations.

If the ICSF segment indicates that the operation is not allowed, the service
returns with an error.

For example, you've already used the ICSF segment of profiles in the CSFKEYS or
XCSFKEY class to define various restrictions on how keys covered by the profiles
can be used. You're not certain that all applications at your installation are using the
keys according to the new restrictions, and do not want to disrupt current work
patterns at your installation. For this reason, you decide to allow a warning period
during which you can identify noncompliant applications without causing application
failure. To do this, you would:

1. Enable PKA Key Management Extensions in warning mode:
RDEFINE XFACILIT CSF.PKAEXTNS.ENABLE.WARNONLY

2. Because you have enabled PKA Key Management Extensions in warning mode,
ICSF will allow applications to use keys in ways that violate ICSF segment
specifications. However, ICSF will generate SMF type 82 subtype 27 records for
any violation. Using the information in these records, you can modify your
installation's applications as needed.

3. When you are ready to move to a stricter implementation of the policy, you
enable the PKA Key Management Extensions control for fail mode, and disable
the one for warning mode.

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 33

|
|

|

|

|

|

|

|

|

|
|
|
|

||

|
||

||
|
|
|
|
|

|
|

||
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|

RDEFINE XFACILIT CSF.PKAEXTNS.ENABLE
RDELETE XFACILIT CSF.PKAEXTNS.ENABLE.WARNONLY

If you accidentally enable PKA Key Management Extensions in both warning
and fail mode, the control for fail mode will take precedence.

As described in “Identifying key certificates for symmetric key export” on page 30,
you can use the ICSF segment's SYMEXPORTCERTS field to provide a list of
certificate labels in a trusted certificate repository (either a PKCS #11 token or a
SAF key ring). This enables you to specify that symmetric keys covered by a
CSFKEYS or XCSFKEY profile can be exported only by RSA public keys that are
bound to identities in the listed certificates. If using the SYMEXPORTCERTS field to
provide a list of certificate labels in a trusted certificate repository, you will need to
identify that trusted certificate repository to ICSF. You do this using the APPLDATA
field of the CSF.PKAEXTNS.ENABLE profile. If the trusted key repository is a PKCS
#11 token, it should be identified in the APPLDATA field in the format
TOKEN/PKCS-token-name. If the trusted key repository is a SAF key ring, it
should be identified in the APPLDATA field in the format userID/key-ring-name. For
example, if the trusted key repository was a SAF key ring named
TRUSTED.KEY.EXPORTERS created by BOBADMIN, you would enter:
RDEFINE XFACILIT CSF.PKAEXTNS.ENABLE APPLDATA(BOBADMIN/TRUSTD.KEY.EXPORTERS)

If an APPLDATA field is not provided on the CSF.PKAEXTNS.ENABLE, the default
certificate repository is a PKCS #11 token named CSF.TRUSTED.KEYRING.

PKA key management extensions example: The following example provides
additional illustration of the ICSF segment fields and keywords that you can use to
place restrictions on how cryptographic keys can be used.

A DES key has been created for encrypting transactions between a Company and
its Business Partner. The Business Partner's public key has previously been added
to the PKDS for the purpose of exporting the DES key. The Company's security
administrator wants to be sure that only the Business Partner's public key can be
used to export the DES key that the Company and its Business Partner are sharing.
There is already a profile covering the label of the RSA public key in the PKDS, but
no profile covering the label of the new DES key. The security administrator needs
to alter the profile for the RSA public key label, and define a new profile for the DES
key label. The security administrator has also enabled the Symmetric Key Label
Export Control to increase the level of authority needed to export symmetric keys,
and so the profile covering the DES key is defined in the XCSFKEY class.

RALTER CSFKEYS RSA.BRADY.CASTLE ICSF(ASYMUSAGE(SECUREEXPORT NOHANDSHAKE))
RDEFINE XCSFKEY DES.BRADY.CASTLE ICSF(SYMEXPORTABLE(BYLIST) SYMEXPORTKEYS(RSA.BRADY.CASTLE)) UACC(NONE)
PERMIT DES.BRADY.CASTLE CL(XCSFKEY) ID(SAMPRTNR) UPDATE
SETROPTS RACLIST(CSFKEYS) REFRESH
SETROPTS RACLIST(XCSFKEY) REFRESH

Key Store Policy is active for both the CKDS and PKDS, so the security
administrator only needs to enable the PKA Key Management Extensions control:
RDEFINE XFACILIT CSF.PKAEXTNS.ENABLE

Later, the security administrator wants further restrictions on exporting the DES key
that the Company and its Business Partner are sharing. The security administrator
wants to bind an existing RSA public key to an identity, and allow export of the DES
key only by the user and public key bound by a particular certificate. The security
administrator creates the certificate for the RSA key, creates a SAF key ring, and
adds the certificate to the key ring.

34 PKA Key Management Extensions — APAR OA28855

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|

RACDCERT ID(BOBADMIN) GENCERT +
SUBJECTSDN(CN('Mister Ink Inc')O('Business Partner')C('uk')) +
WITHLABEL('Mister Ink')SIGNWITH(CERTAUTH LABEL(LocalCertauth')) +
KEYUSAGE(DOCSIGN) +
NOTAFTER(DATE(2020-12-31)) +
FROMICSF(RSA.BRADY.CASTLE) +

RACDCERT ID(BOBADMIN) ADDRING(TRUSTD.KEY.EXPORTERS)
RACDCERT ID(BOBADMIN) CONNECT(LABEL('Mister Ink' RING(TRUSTD.KEY.EXPORTERS) +

USAGE(PERSONAL))
RALTER XCSFKEY DES.BRADY.CASTLE ICSF(NOSYMEXPORTKEYS +

SYMEXPORTCERTS('/Mister Ink'))
SETROPTS RACLIST(XCSFKEY) REFRESH

Because the security administrator knows that only one certificate with the label
"Mister Ink" will be present in the key ring, he does not specify the user ID portion
of the string in the SYMEXPORTCERTS list. Note, however, that the security
administrator still needs to include the forward slash (/) delimiter even though a
user ID was not provided. Also note that the NOSYMEXPORTKEYS keyword is
used to remove the SYMEXPORTKEYS list that had been previously defined.

The security administrator modifies the CSF.PKAEXTNS.ENABLE profile in the
XFACILIT class to identify the SAF key ring as the certificate repository.
RDEFINE XFACILIT CSF.PKAEXTNS.ENABLE APPLDATA(TRUSTD.KEY.EXPORTERS)

For more information on the ICSF fields and keywords, refer to “Restricting
asymmetric keys from being used in secure import and export operations” on page
26, “Restricting asymmetric keys from being used in handshake operations” on
page 27, and “Placing restrictions on exporting symmetric keys” on page 28.

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information 35

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|
|

36 PKA Key Management Extensions — APAR OA28855

Chapter 4. Update of z/OS Cryptographic Services ICSF
Application Programmer’s Guide, SA22-7522-12, information

This chapter contains updates to the document z/OS Cryptographic Services ICSF
Application Programmer’s Guide, SA22-7522-12,, for the PKA Key Management
Extensions enhancements provided by this APAR. Refer to this source document if
background information is needed.

ICSF Query Facility (CSFIQF and CSFIQF6)
Use this utility to retrieve information about ICSF, the cryptographic coprocessors
and the CCA code in the coprocessors. This information includes:

v general information about ICSF

v general information about CCA code in a coprocessor

v export control information from a coprocessor

v diagnostic information from a coprocessor

Coprocessor information requests may be directed to a specific ONLINE or ACTIVE
coprocessor or any ACTIVE coprocessor.

This service has an interface similar to the IBM 4758 service CSUACFQ. Instead of
the output being returned in the rule array, there is a separate output area. The
format of the data returned remains the same. This service supports a subset of the
keywords supported by CSUACFQ. For the same supported keywords, CSFIQF
and CSUACFQ return the same coprocessor-specific information. The service
returns information elements in the returned_data field and updates the
returned_data_length with the actual length of the output returned_data field.

This callable service supports invocation in AMODE(64). The callable service name
for AMODE(64) invocation is CSFIQF6.

Format

CALL CSFIQF(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
returned_data_length,
returned_data,
reserved_data_length,
reserved_data)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service.

© Copyright IBM Corp. 2009 37

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation data.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in rule_array. Value must be 1 or 2

rule_array

Direction: Input Type: String

Keywords that provide control information to callable services. The keywords
are left-justified in an 8-byte field and padded on the right with blanks. The
keywords must be in contiguous storage. Specify one or two of the values in
Table 10.

Table 10. Keywords for ICSF Query Service

Keyword Meaning

Coprocessor (optional) - parameter is ignored for ICSFSTAT.

COPROCxx Specifies the specific coprocessor to execute the request.
xx may be 00 through 63 inclusive. This may be the
processor number of a PCICC or a PCIXCC/CEX2C.

ANY Process request on any ACTIVE cryptographic
coprocessor. This is the default.

nnnnnnnn Specifies the 8-byte serial number of the coprocessor to
execute the request.

Information to return (required)

ICSFSTAT Get ICSF related status information.

ICSFST2 Get additional ICSF related status information.

STATAES Get status information on AES enablement and the AES
master key registers.

STATCCA Get CCA-related status information.

STATCCAE Get CCA-related extended status information.

38 PKA Key Management Extensions — APAR OA28855

Table 10. Keywords for ICSF Query Service (continued)

Keyword Meaning

STATCARD Get coprocessor-related basic status information.

STATDIAG Get coprocessor-related basic status information.

STATEID Get coprocessor-related basic status information.

STATEXPT Get coprocessor-related basic status information.

returned_data_length

Direction: Input/Output Type: Integer

The length of the returned_data parameter. Currently, the value must be at least
eight times the number of elements returned for the rule_array keyword
specified. Allow additional space for future enhancements. On output, this field
will contain the actual length of the data returned.

returned_data

Direction: Output Type: String

This field will contain the output from the service. It has the format of 8-byte
elements of character data.

The format of the output returned_data depends on the value of the input
rule_array and the information requested. Different information is returned
depending on what the input keyword is.

For returned_data elements that contain numbers, those numbers are
represented by numeric characters which are left-justified and padded on the
right with space characters. For example, a returned_data element which
contains the number two with contain the character string '2 '.

For ICSFSTAT, the coprocessor keyword is ignored. The output returned_data
for the ICSFSTAT keyword is defined in Table 11.

Table 11. Output for option ICSFSTAT

Element
Number

Name Description

1 FMID 8-byte ICSF FMID

2 ICSF Status Field 1 Status of ICSF

Number Meaning

0 ICSF started

1 ICSF initialized (CCVINIT is
on)

2 SYM-MK (DES master key)
valid (CCVTMK is on)

3 PKA callable services enabled
(see “Usage Notes” on page
51)

Chapter 4. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-12, information 39

Table 11. Output for option ICSFSTAT (continued)

3 ICSF Status Field 2 Status of ICSF

Number Meaning

0 64-bit callers not supported

1 64-bit callers supported

2 PKCS #11 is available. This is
returned when ICSF is
running on z/OS V1R9 or
later.

4 CPACF CPACF availability

Number Meaning

0 CPACF not available

1 SHA-1 available only

2 DES/TDES enabled

3 SHA-224 and SHA-256 are
available

4 SHA-224 and SHA-256, DES
and TDES are available

5 SHA-384 and SHA-512 are
available

6 SHA-384 and SHA-512, DES
and TDES are available

5 AES AES availability for clear keys

Number Meaning

0 AES not available

1 AES software only

2 AES-128

3 AES-192 and AES-256

6 DSA DSA algorithm availability

Number Meaning

0 DSA not available

1 DSA 1024 key size

2 DSA 2048 key size

7 RSA Signature RSA Signature key length

Number Meaning

0 RSA not available

1 RSA 1024 key size

2 RSA 2048 key size

3 RSA 4096 key size

40 PKA Key Management Extensions — APAR OA28855

Table 11. Output for option ICSFSTAT (continued)

8 RSA Key Management RSA Key Management key length

Number Meaning

0 RSA not available

1 RSA 1024 key size

2 RSA 2048 key size

3 RSA 4096 key size

9 RSA Key Generate RSA Key Generate

Number Meaning

0 Service not available

1 Service available - 2048 bit
modulus

2 Service available - 4096 bit
modulus

10 Accelerators Availability of clear RSA key accelerators
(PCICAs)

Number Meaning

0 Not available

1 At least one available for
application use.

11 Future Use Currently blanks

12 Future Use Currently blanks

For ICSFST2 the coprocessor rule array keyword is ignored. The output
returned_data for the ICSFST2 keyword is defined in Table 12.

Table 12. Output for option ICSFST2

Element
Number

Name Description

1 Version Version of the ICSFST2 returned_data. Initial value is 1. It
covers elements 1 through 12.

2 FMID 8–byte ICSF FMID.

3 ICSF Status Field
1

Status of ICSF

Number Meaning

0 PKA callable services disabled

1 PKA callable services enabled (see “Usage
Notes” on page 51)

4 ICSF Status Field
2

Status of ICSF

Number Meaning

0 PKCS #11 is not available

1 PKCS #11 is available

Chapter 4. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-12, information 41

Table 12. Output for option ICSFST2 (continued)

5 ICSF Status Field
3

Status of ICSF

Number Meaning

0 ICSF started

1 ICSF initialized

2 AES master key valid

6 ICSF Status Field
4

Status of ICSF

Number Meaning

0 Secure key AES not available

1 Secure key AES is available

7 ICSF Status Field
5

An 8-character numeric character string summarizing the
current Key Store Policy.

The first character in this string indicates if Key Token
Authorization Checking controls have been enabled for the
CKDS in either warning or fail mode, and, if so, if the Default
Key Label Checking control has also been enabled. The
numbers that can appear in the first character of this string
are:

Number Meaning

0 Key Token Authorization Checking is not
enabled for the CKDS.

1 Key Token Authorization Checking for CKDS
is enabled in FAIL mode. Key Store Policy
is active for CKDS. Default Key Label
Checking is not enabled.

2 Key Token Authorization Checking for CKDS
is enabled in WARN mode. Key Store
Policy is active for CKDS. Default Key
Label Checking is not enabled.

3 Key Token Authorization Checking for CKDS
is enabled in FAIL mode. Key Store Policy
is active for CKDS. Default Key Label
Checking is also enabled.

4 Key Token Authorization Checking for CKDS
is enabled in WARN mode. Key Store
Policy is active for CKDS. Default Key
Label Checking is also enabled.

The second character in this string indicates if Duplicate Key
Token Checking controls have been enabled for the CKDS.
The numbers that can appear in the second character of this
string are:

Number Meaning

0 Duplicate Key Token Checking is not
enabled for the CKDS.

1 Duplicate Key Token Checking is enabled
for the CKDS. Key Store Policy is active
for CKDS.

42 PKA Key Management Extensions — APAR OA28855

||
|
|
|

|
|
|
|
|
|

||

||
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

|||
|
|
|

||

||
|

||
|
|

Table 12. Output for option ICSFST2 (continued)

The third character in this string indicates if Key Token
Authorization Checking controls have been enabled for the
PKDS in either warning or fail mode, and, if so, if the Default
Key Label Checking control has also been enabled. The
numbers that can appear in the third character of this string
are:

Number Meaning

0 Key Token Authorization Checking is not
enabled for the PKDS.

1 Key Token Authorization Checking for PKDS
is enabled in FAIL mode. Key Store Policy
is active for PKDS. Default Key Label
Checking is not enabled.

2 Key Token Authorization Checking for PKDS
is enabled in WARN mode. Key Store
Policy is active for PKDS. Default Key
Label Checking is not enabled.

3 Key Token Authorization Checking for PKDS
is enabled in FAIL mode. Key Store Policy
is active for PKDS. Default Key Label
Checking is also enabled.

4 Key Token Authorization Checking for PKDS
is enabled in WARN mode. Key Store
Policy is active for PKDS. Default Key
Label Checking is also enabled.

The fourth character in this string indicates if Duplicate Key
Token Checking controls have been enabled for the PKDS.
The numbers that can appear in the fourth character of this
string are:

Number Meaning

0 Duplicate Key Token Checking is not
enabled for the PKDS.

1 Duplicate Key Token Checking is enabled
for the PKDS. Key Store Policy is active
for PKDS.

The fifth character in this string indicates if Granular Key
Label Access controls have been enabled in WARN or FAIL
mode. The numbers that can appear in the fifth character of
this string are:

Number Meaning

0 Granular Key Label Access controls are not
enabled.

1 Granular Key Label Access control is
enabled in FAIL mode

2 Granular Key Label Access control is
enabled in WARN mode

Chapter 4. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-12, information 43

|||
|
|
|
|
|

||

||
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

|||
|
|
|

||

||
|

||
|
|

|||
|
|
|

||

||
|

||
|

||
|

Table 12. Output for option ICSFST2 (continued)

The sixth character in this string indicates if Symmetric Key
Label Export controls have been enabled for AES and/or DES
keys. The numbers that can appear in the sixth character of
this string are:

Number Meaning

0 Symmetric Key Label Export controls are
not enabled.

1 Symmetric Key Label Export control is
enabled for DES keys only.

2 Symmetric Key Label Export control is
enabled for AES keys only.

3 Symmetric Key Label Export controls are
enabled for both DES and AES keys.

The seventh character in this string indicates if PKA Key
Management Extensions have been enabled in either WARN
or FAIL mode, and, if so, whether a SAF key ring or a PKCS
#11 token is identified as the trusted certificate repository.
(The trusted certificate repository is identified using the
APPLDATA field of the CSF.PKAEXTNS.ENABLE profile. If no
value is specified in the APPLDATA field, a PKCS #11 token is
assumed.) The numbers that can appear in the seventh
character of this string are:

Number Meaning

0 Symmetric Key Label Export controls are
not enabled.

1 PKA Key Management Extensions control is
enabled in FAIL mode. The trusted
certificate repository is a SAF key ring.

2 PKA Key Management Extension control is
enabled in FAIL mode. The trusted
certificate repository is a PKCS #11 token.

3 PKA Key Management Extensions control is
enabled in WARN mode. The trusted
certificate repository is a SAF key ring.

4 PKA Key Management Extension control is
enabled in WARN mode. The trusted
certificate repository is a PKCS #11 token.

8 Future use Currently blanks

9 Future use Currently blanks

10 Future use Currently blanks

11 Future use Currently blanks

12 Future use Currently blanks

Table 13. Output for option STATAES

Element
Number

Name Description

44 PKA Key Management Extensions — APAR OA28855

|||
|
|
|

||

||
|

||
|

||
|

||
|

|||
|
|
|
|
|
|
|
|

||

||
|

||
|
|

||
|
|

||
|
|

||
|
|

Table 13. Output for option STATAES (continued)

1 AES NMK Status State of the AES new master key register:

Number Meaning

1 Register is clear

2 Register contains a partially
complete key

3 Register contains a complete key

2 AES CMK Status State of the AES current master key register:

Number Meaning

1 Register is clear

2 Register contains a key

3 AES OMK Status State of the AES old master key register:

Number Meaning

1 Register is clear

2 Register contains a key

4 AES key length
enablement

The maximum AES key length that is enabled by the
function control vector. The value is 0 (if no AES key
length is enabled in the FCV), 128, 192, or 256.

Table 14. Output for option STATCCA

Element
Number

Name Description

1 NMK Status State of the DES New Master Key Register:

Number Meaning

1 Register is clear

2 Register contains a partially
complete key

3 Register contains a complete key

2 CMK Status State of the DES Current Master Key Register:

Number Meaning

1 Register is clear

2 Register contains a key

3 OMK Status State of the DES Old Master Key Register:

Number Meaning

1 Register is clear

2 Register contains a key

4 CCA Application
Version

A character string that identifies the version of the
CCA application program that is running in the
coprocessor.

5 CCA Application Build
Date

A character string containing the build date for the
CCA application program that is running in the
coprocessor.

6 User Role A character string containing the Role identifier which
defines the host application user’s current authority.

Chapter 4. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-12, information 45

Table 15. Output for option STATCCAE

Element
Number

Name Description

1 Symmetric NMK Status State of the DES Symmetric New Master Key
Register:

Number Meaning

1 Register is clear

2 Register contains a partially
complete key

3 Register contains a complete key

2 Symmetric CMK Status State of the DES Symmetric Current Master Key
Register:

Number Meaning

1 Register is clear

2 Register contains a key

3 Symmetric OMK Status State of the DES Symmetric Old Master Key
Register:

Number Meaning

1 Register is clear

2 Register contains a key

4 CCA Application
Version

A character string that identifies the version of the
CCA application program that is running in the
coprocessor.

5 CCA Application Build
Date

A character string containing the build date for the
CCA application program that is running in the
coprocessor.

6 User Role A character string containing the Role identifier which
defines the host application user’s current authority.

7 Asymmetric NMK
Status

State of the Asymmetric New Master Key Register:

Number Meaning

1 Register is clear

2 Register contains a partially
complete key

3 Register contains a complete key

8 Asymmetric CMK
Status

State of the Asymmetric Current Master Key Register:

Number Meaning

1 Register is clear

2 Register contains a key

9 Asymmetric OMK
Status

State of the Asymmetric Old Master Key Register:

Number Meaning

1 Register is clear

2 Register contains a key

46 PKA Key Management Extensions — APAR OA28855

Table 16. Output for option STATCARD

Element
Number

Name Description

1 Number of installed
adapters

The number of active cryptographic coprocessors
installed in the machine. This only includes
coprocessors that have CCA software loaded
(including those with CCA UDX software).

2 DES hardware level A numeric character string containing an integer value
identifying the version of DES hardware that is on the
coprocessor.

3 RSA hardware level A numeric character string containing an integer value
identifying the version of RSA hardware that is on the
coprocessor.

4 POST Version A character string identifying the version of the
coprocessor’s Power-On Self Test (POST) firmware.
The first four characters define the POST0 version
and the last four characters define the POST1
version.

5 Coprocessor Operating
System Name

A character string identifying the operating system
firmware on the coprocessor. Padding characters are
blanks.

6 Coprocessor Operating
System Version

A character string identifying the version of the
operating system firmware on the coprocessor.

7 Coprocessor Part
Number

A character string containing the eight-character part
number identifying the version of the coprocessor.

8 Coprocessor EC Level A character string containing the eight-character EC
(engineering change) level for this version of the
coprocessor.

9 Miniboot Version A character string identifying the version of the
coprocessor’s miniboot firmware. This firmware
controls the loading of programs into the coprocessor.

The first four characters define the MiniBoot0 version
and the last four characters define the MiniBoot1
version.

10 CPU Speed A numeric character string containing the operating
speed of the microprocessor chip, in megahertz.

11 Adapter ID (Also see
element number 15)

A unique identifier manufactured into the coprocessor.
The coprocessor’s Adapter ID is an eight-byte binary
value.

12 Flash Memory Size A numeric character string containing the size of the
flash EPROM memory on the coprocessor, in
64-kilobyte increments.

13 DRAM Memory Size A numeric character string containing the size of the
dynamic RAM (DRAM) on the coprocessor, in
kilobytes.

14 Battery-Backed Memory
Size

A numeric character string containing the size of the
battery-backed RAM on the coprocessor, in kilobytes.

15 Serial Number A character string containing the unique serial number
of the coprocessor. The serial number is factory
installed and is also reported by the CLU utility in a
coprocessor signed status message.

Chapter 4. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-12, information 47

Table 17. Output for option STATDIAG

Element
Number

Name Description

1 Battery State A numeric character string containing a value which
indicates whether the battery on the coprocessor
needs to be replaced:

Number Meaning

1 Battery is good

2 Battery should be replaced

2 Intrusion Latch State A numeric character string containing a value which
indicates whether the intrusion latch on the
coprocessor is set or cleared:

Number Meaning

1 Latch is cleared

2 Latch is set

3 Error Log Status A numeric character string containing a value which
indicates whether there is data in the coprocessor
CCA error log.

Number Meaning

1 Error log is empty

2 Error log contains data but is not yet
full

3 Error log is full

4 Mesh Intrusion A numeric character string containing a value to
indicate whether the coprocessor has detected
tampering with the protective mesh that surrounds the
secure module — indicating a probable attempt to
physically penetrate the module.

Number Meaning

1 No intrusion detected

2 Intrusion attempt detected.

5 Low Voltage Detected A numeric character string containing a value to
indicate whether a power supply voltage was under
the minimum acceptable level. This may indicate an
attempt to attack the security module.

Number Meaning

1 Only acceptable voltages have been
detected

2 A voltage has been detected under
the low-voltage tamper threshold

48 PKA Key Management Extensions — APAR OA28855

Table 17. Output for option STATDIAG (continued)

6 High Voltage Detected A numeric character string containing a value to
indicate whether a power supply voltage was higher
than the maximum acceptable level. This may indicate
an attempt to attack the security module.

Number Meaning

1 Only acceptable voltages have been
detected

2 A voltage has been detected that is
higher than the high-voltage tamper
threshold

7 Temperature Range
Exceeded

A numeric character string containing a value to
indicate whether the temperature in the secure
module was outside of the acceptable limits. This may
indicate an attempt to obtain information from the
module:

Number Meaning

1 Temperature is acceptable

2 Detected temperature is outside an
acceptable limit

8 Radiation Detected A numeric character string containing a value to
indicate whether radiation was detected inside the
secure module. This may indicate an attempt to obtain
information from the module:

Number Meaning

1 No radiation has been detected

2 Radiation has been detected

9, 11, 13,
15, 17

Last Five Commands
Run

These five rule-array elements contain the last five
commands that were executed by the coprocessor
CCA application. They are in chronological order, with
the most recent command in element 9. Each element
contains the security API command code in the first
four characters and the subcommand code in the last
four characters.

10, 12,
14,16, 18

Last Five Return Codes These five rule-array elements contain the SAPI
return codes and reason codes corresponding to the
five commands in rule-array elements 9, 11, 13, 15,
and 17. l Each element contains the return code in
the first four characters and the reason code in the
last four characters.

Table 18. Output for option STATEID

Element
Number

Name Description

1 EID During initialization, a value of zero is set in the
coprocessor.

Table 19. Output for option STATEXPT

Element
Number

Name Description

Chapter 4. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-12, information 49

Table 19. Output for option STATEXPT (continued)

1 Base CCA Services
Availability

A numeric character string containing a value to
indicate whether base CCA services are
available.

Number Meaning

0 Base CCA services are not
available

1 Base CCA services are
available

2 CDMF Availability A numeric character string containing a value to
indicate whether CDMF is available.

Number Meaning

0 CDMF encryption is not
available

1 CDMF encryption is available

3 56-bit DES Availability A numeric character string containing a value to
indicate whether 56-bit DES encryption is
available.

Number Meaning

0 56-bit DES encryption is not
available

1 56-bit DES encryption is
available

4 Triple-DES Availability A numeric character string containing a value to
indicate whether triple-DES encryption is
available.

Number Meaning

0 Triple-DES encryption is not
available

1 Triple-DES encryption is
available

5 SET Services Availability A numeric character string containing a value to
indicate whether SET (Secure Electronic
Transaction) services are available.

Number Meaning

0 SET Services are not
available

1 SET Services are available

50 PKA Key Management Extensions — APAR OA28855

Table 19. Output for option STATEXPT (continued)

6 Maximum Modulus for
Symmetric Key Encryption

A numeric character string containing the
maximum modulus size that is enabled for the
encryption of symmetric keys. This defines the
longest public-key modulus that can be used for
key management of symmetric-algorithm keys.

Number Meaning

0 DSA not available

1024 DSA 1024 key size

2048 DSA 2048 key size

4096 RSA 4096 key size

reserved_data_length

Direction: Input Type: Integer

The length of the reserved_data parameter. Currently, the value must be 0.

reserved_data

Direction: Input Type: String

This field is currently not used.

Restrictions
Caller must be task mode and must not be SRB mode, when running on z900/z800
servers with PCICC.

Usage Notes
RACF will be invoked to check authorization to use this service.

PKA key generate available indicates the PKA callable services are enabled and
there is at least one PCICC or PCIXCC/CEX2C that is ACTIVE

The options ICSFSTAT and ICSFST2 report on the state of PKA callable services.
ICSFSTAT reports it in element 2. ICSFST2 reports it in element 3. There is a
subtle difference between the two options. ICSFSTAT reports PKA callable services
as enabled only after the DES master key is loaded and valid. ICSFSTAT does not
report PKA callable services as enabled when only the AES master key is loaded
and valid. Option ICSFST2 reports PKA callable services as enabled when the DES
and/or AES master key is loaded and valid.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Chapter 4. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-12, information 51

Table 20. ICSF Query Service required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
800

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None

Reason Codes for Return Code 8 (8)
Table 21 shows the reason codes related to the PKA Key Management Extensions.
These reason codes are returned from certain callable services that give return
code 8.

Table 21. PKA Key Management Extensions Reason Codes for Return Code 8 (8)

Reason
Code Hex
(Decimal) Description

BF5
(3061)

The provided asymmetric key identifier can not be used for the requested function. PKA Key
Management Extensions have been enabled by a CSF.PKAEXTNS.ENABLE profile in the XFACILIT
class. A CSFKEYS profile covering the key includes an ICSF segment, and the ASYMUSAGE field of
that segment restricts the key from being used for the specified function.

An SMF type 82 subtype 27 record is logged in the SMF database.

BF6
(3062)

The provided symmetric key identifier can not be exported using the provided asymmetric key identifier.
PKA Key Management Extensions have been enabled by a CSF.PKAEXTNS.ENABLE profile in the
XFACILIT class. A CSFKEYS or XCSFKEY profile covering the symmetric key includes an ICSF segment
and the SYMEXPORTABLE field of that segment places restrictions on how the key can be exported.
The SYMEXPORTABLE field either specifies BYNONE, or else specifies BYLIST but the provided
asymmetric key identifier is not one of those permitted to export the symmetric key (as identified by the
SYMEXPORTCERTS or SYMEXPORTKEYS fields).

An SMF type 82 subtype 27 record is logged to the SMF database.

52 PKA Key Management Extensions — APAR OA28855

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

Chapter 5. Update of z/OS Cryptographic Services ICSF
System Programmer’s Guide, SA22-7520-13, information

This chapter contains updates to the document z/OS Cryptographic Services ICSF
System Programmer’s Guide, SA22-7520-13, for the PKA Key Management
Extensions enhancements provided by this APAR. Refer to this source document if
background information is needed.

SMF Records
SMF records are documented in z/OS MVS System Management Facilities (SMF)
and published on release boundaries. As a migration aid for HCR7751, which is not
on a release boundary, new and changed SMF records for FMID HCR7751 are
listed here.

SMF type 82 subtype 14 - PCI Cryptographic Coprocessor Master Key
Entry
Table 22. SMF type 82 subtype 14

Offset
(Dec)

Offset
(Hex) Name Length Format Description

0 0 SMF82AAB 4 binary Flags

Bit Meaning when set

0 DES NMK verification pattern is
valid.

1 Asymmetric-key NMK verification
pattern is valid.

2 DES key part verification pattern is
valid.

3 Asymmetric-Key key part verification
pattern is valid.

4 AES NMK verification pattern is
valid.

5 AES key part verification pattern is
valid.

6 Reserved for future use

7 Reserved for future use

8 Coprocessor is not a PCI
Cryptographic Coprocessor

9 Coprocessor is a PCI X
Cryptographic Coprocessor

10 Coprocessor is a CEX2C

11 Reserved for future use
The remaining bits are reserved for future
use.

© Copyright IBM Corp. 2009 53

SMF type 82 subtype 24 - Duplicate key tokens
This record is generated only when the security administrator has indicated that
duplicate key tokens must be identified. The label of each secure token that makes
up the set of duplicates is in the record.

Note: No NULL token labels are listed in an SMF type 82 subtype 24 record. More
detail about the duplicated tokens can be generated by the CSFDUTIL utility.
Duplicate tokens appear within the CKDS or the PKDS.

Table 23. SMF type 82 subtype 24

Offset
(Dec)

Offset
(Hex) Name Length Format Description

Header/Self defining section (defined by SMF)

0 0 SMF82LEN 2 binary Record length. This field and the next
field (total of four bytes) form the RDW
(record descriptor word). See z/OS MVS
System Management Facilities (SMF) for
a detailed description.

2 2 SMF82SEG 2 binary Segment descriptor (see record length
field).

4 4 SMF82FLG 1 binary System indicator

Bit Meaning when set

0–2 Reserved

3–6 Version indicators*

7 Reserved
*See z/OS MVS System Management
Facilities (SMF) for a detailed description.

5 5 SMF82RTY 1 binary Record type 82 (X'52'’)

6 6 SMF82TME 4 binary Time since midnight, in hundredths of a
second, that the record was moved into
the SMF buffer.

10 A SMF82DTE 4 packed Date when the record was moved into the
SMF buffer, in the form 0cyydddF.

14 E SMF82SID 4 EBCDIC System identification (from the SID
parameter).

18 12 SMF82SSI 4 EBCDIC Subsystem identification.

22 16 SMF82STY 2 binary Record subtype. Value is X'18'

24 18 SMF82DCNTSTRT 4 binary Start duplicate labels

28 1C SMF82DCNTEND 4 binary End duplicate labels

32 20 SMF82DCNT 4 binary Number of duplicate labels

36 24 * 4 * Reserved

40 28 SMF82DNAM 44 EBCDIC Name of key data set

The following is repeated 'count' number of times.

0 0 SMF82DLAB 64 EBCDIC Labels of duplicate tokens

SMF type 82 subtype 25 – Duplicate Tokens Found
SMF type 82 subtype 25 records are logged for key store policies.

54 PKA Key Management Extensions — APAR OA28855

Table 24. SMF type 82 subtype 25

Offset
(Dec)

Offset
(Hex) Name Length Format Description

Header/Self defining section (defined by SMF)

0 0 SMF82LEN 2 binary Record length. This field and the next field
(total of four bytes) form the RDW (record
descriptor word).

2 2 SMF82SEG 2 binary Segment descriptor (see record length field).

4 4 SMF82FLG 1 binary System indicator

Bit Meaning when set

0–2 Reserved

3–6 Version indicators*

7 Reserved
*See z/OS MVS System Management
Facilities (SMF) for a detailed description.

5 5 SMF82RTY 1 binary Record type 82 (X'52'’)

6 6 SMF82TME 4 binary Time since midnight, in hundredths of a
second, that the record was moved into the
SMF buffer.

10 A SMF82DTE 4 packed Date when the record was moved into the
SMF buffer, in the form 0cyydddF.

14 E SMF82SID 4 EBCDIC System identification (from the SID
parameter).

18 12 SMF82SSI 4 EBCDIC Subsystem identification.

22 16 SMF82STY 2 binary Record subtype. Value is X'19'

24 18 SMF82KDS 44 EBCDIC Key data store

68 44 SMF82KLF 4 binary Key store policy flags

Bit Meaning when set

0 Warning

1 List is incomplete

2 List is from CKDS

3 List is from PKDS

4–31 Reserved

72 48 SMF82KLC 4 binary Number of key labels following

The following is repeated 'count' number of times.

76 4C SMF82DKL 72 EBCDIC Unauthorized duplicate key label and key
type (one or more of these will follow.)*

*If a label passes CSFKEYS check, then it is stored at offset 76 and the number of
key labels following (SMF82KLC) is zero. If none of the labels pass the CSFKEYS
check, then beginning at offset 76, the number of key labels following (SMF82KLC)
is the number of labels checked. The key labels follow in the log record.

SMF type 82 subtype 26 - PKDS Data Space Refresh
SMF type 82 subtype 26 records are logged after a refresh of the PKDS data
space.

Chapter 5. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-13, information 55

Table 25. SMF type 82 subtype 26

Offset
(Dec)

Offset
(Hex) Name Length Format Description

Header/Self defining section (defined by SMF)

0 0 SMF82LEN 2 binary Record length. This field and the next field
(total of four bytes) form the RDW (record
descriptor word).

2 2 SMF82SEG 2 binary Segment descriptor (see record length
field).

4 4 SMF82FLG 1 binary System indicator

Bit Meaning when set

0–2 Reserved

3–6 Version indicators*

7 Reserved
*See z/OS MVS System Management
Facilities (SMF) for a detailed description.

5 5 SMF82RTY 1 binary Record type 82 (X'52'’)

6 6 SMF82TME 4 binary Time since midnight, in hundredths of a
second, that the record was moved into the
SMF buffer.

10 A SMF82DTE 4 packed Date when the record was moved into the
SMF buffer, in the form 0cyydddF. See
″Standard SMF Record Header″ on page
13-1 for a detailed description.

14 E SMF82SID 4 EBCDIC System identification (from the SID
parameter).

18 12 SMF82SSI 4 EBCDIC Subsystem identification.

22 16 SMF82STY 2 binary Record subtype. Value is X'1A'

24 16 SMF82PREF
_FLAG

4 binary Flags

Bit Meaning when set

0 PKDS was refreshed

1–31 Reserved

28 1C SMF82PREF_
OLDDS

44 EBCDIC Old PKDS name

72 48 SMF82PREF_
NEWDS

44 EBCDIC New PKDS name

SMF type 82 subtype 27 - PKA Key Management Extensions
SMF Record Type 82 is used to record information about the events and operations
of ICSF. Record type 82 is written to the SMF data set at the completion of certain
cryptographic functions. SMF Record Type 82, Subtype 27 is used to record
information related to PKA Key Management Extensions.

56 PKA Key Management Extensions — APAR OA28855

|

|
|
|
|

Table 26. SMF type 82 subtype 27

Offset
(Dec)

Offset
(Hex) Name Length Format Description

0 0 SMF82LEN 2 binary Record length. This field and the
next field (total of four bytes) form
the RDW (record descriptor word).

2 2 SMF82SEG 2 binary Segment descriptor (see record
length field).

4 4 SMF82FLG 1 binary System indicator:

Bit Meaning when set

0-2 Reserved

3-6 Version indicators

7 Reserved

5 5 SMF82RTY 1 binary Record type 82 (X’52’)

6 6 SMF82TME 4 binary Time since midnight, in hundredths
of a second, that the record was
moved into the SMF buffer.

10 A SMF82DTE 4 packed Date when the record was moved
into the SMF buffer, in the form
0cyydddF.

14 E SMF82SID 4 EBCDIC System identification (from the SID
parameter).

18 12 SMF82SSI 4 EBCDIC Subsystem identification.

22 16 SMF82STY 2 binary Record subtype. Value is ’1B’X

Chapter 5. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-13, information 57

||

|
|
|
|||||

||||||
|
|

||||||
|

||||||

||

||

||

||

||||||

||||||
|
|

||||||
|
|

||||||
|

||||||

||||||

Table 26. SMF type 82 subtype 27 (continued)

Offset
(Dec)

Offset
(Hex) Name Length Format Description

24 18 SMF82PKE_FLAGS 4 binary PKA Key Management Extension
flags

Bit Meaning when set on

0 PKA token may not be
used for requested function

1 SYM token may not be
exported by the provided
PKA token

2 PKA label list is incomplete

3 SYM label list is
incomplete

24 Trusted certificate
repository has changed.

25 PKA Key Management
Extensions in WARNONLY
mode.

26 An error was detected
during processing.

27 Trusted cert repository was
empty.

28 An error was detected
while extracting APPLDATA

29 The repository wasn't
found

30 One or more certs were
unable to be parsed.

Bits 0-3 are set during callable
services.

Bits 24-30 are set during repository
parsing.

Bits 4-23 and 31 are reserved.

28 1C SMF82PKE_FUNCTION 8 EBCDIC Name of the service that issued this
SMF record. The name will be in
the form CSFzzz.

36 24 SMF82PKE_APPLDATALEN 1 binary Length of the enablement profile
APPLDATA or current repository
name.

37 25 SMF82PKE_APPLDATA 247 EBCDIC Enablement profile APPLDATA or
current repository name.

284 11C SMF82PKE_FUNCSPEC 0 binary Function-specific section of the
record

284 11C SMF82PKE_APPLDATA_PARSING 0 binary APPLDATA parsing results section

284 11C SMF82PKE_SAF_RC 2 binary SAF_RC or 'FFFF'X

286 11E SMF82PKE_SERV_RC 2 binary RACF RC or ICSF RC

58 PKA Key Management Extensions — APAR OA28855

|

|
|
|
|||||

||||||
|

||

||
|

||
|
|

||

||
|

||
|

||
|
|

||
|

||
|

||
|

||
|

||
|

|
|

|
|

|

||||||
|
|

||||||
|
|

||||||
|

||||||
|

||||||

||||||

||||||

Table 26. SMF type 82 subtype 27 (continued)

Offset
(Dec)

Offset
(Hex) Name Length Format Description

288 120 SMF82PKE_SERV_RS 4 binary RACF RS or ICSF RS

284 11C SMF82PKE_SERVICE_SECTION 0 binary Callable services section

284 11C SMF82PKE_PKA_REC_CNT 4 binary Number of PKA labels present in
this record

288 120 SMF82PKE_SYM_REC_CNT 4 binary Number of SYM labels present in
this record.

The following is repeated SMF82PKE_PKA_REC_CNT number of times.

292 124 SMF82PKE_PKA_LABELS 64 EBCDIC PKA key label.

The following is repeated SMF82PKE_SYM_REC_CNT number of times.

292
+ zzz

124 +
zzz

SMF82PKE_SYM_LABELS 72 EBCDIC SYM key label.

Chapter 5. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-13, information 59

|

|
|
|
|||||

||||||

||||||

||||||
|

||||||
|

|

||||||

|

|
|
|
|
||||

|
|

60 PKA Key Management Extensions — APAR OA28855

Chapter 6. Update of z/OS Cryptographic Services ICSF
Messages, SA22-7523-12, information

This chapter contains updates to the document z/OS Cryptographic Services ICSF
Messages, SA22-7523-12, for the PKA Key Management Extensions enhancements
provided by this APAR. Refer to this source document if background information is
needed.

The following message is added for PKA Key Management Extensions.

CSFM612I PKA KEY EXTENSIONS CONTROL IS
state

Explanation: If state is DISABLED, either the profile
that enables the PKA Key Management Extensions
control is not defined, or one or both of the profiles that
enable Key Token Authorization Checking for the CKDS
and PKDS are not defined. If state is ENABLED, the
profile is defined.

The existence of a profile for the
CSF.PKAEXTNS.ENABLE resource in the XFACILIT
class enables the PKA Key Management Extensions

control. RACF commands can be used to define,
change, list, or delete the profiles that cover this
resource in the XFACILIT class.

This message may be issued during ICSF initialization
or when ICSF detects that the policy is either activated
or deactivated.

System action: Processing continues.

Operator response: None

System programmer response: None

© Copyright IBM Corp. 2009 61

||
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|

|

|

	Contents
	Chapter 1. Overview
	Chapter 2. Update of z/OS Cryptographic Services ICSF Overview, SA22-7519-12, information
	Security

	Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator’s Guide, SA22-7521-13, information
	Controlling Who Can Use Cryptographic Keys and Services
	Steps for RACF-protecting keys and services
	Setting up profiles in the CSFKEYS general resource class
	Setting up profiles in the CSFSERV general resource class
	Defining a key store policy
	Enabling access authority checking for key tokens
	Enabling duplicate key label checking
	Increasing the level of authority needed to modify key labels
	Increasing the level of authority required to export symmetric keys
	Controlling how cryptographic keys can be used

	Chapter 4. Update of z/OS Cryptographic Services ICSF Application Programmer’s Guide, SA22-7522-12, information
	ICSF Query Facility (CSFIQF and CSFIQF6)
	Format
	Parameters
	Restrictions
	Usage Notes

	Reason Codes for Return Code 8 (8)

	Chapter 5. Update of z/OS Cryptographic Services ICSF System Programmer’s Guide, SA22-7520-13, information
	SMF Records
	SMF type 82 subtype 14 - PCI Cryptographic Coprocessor Master Key Entry
	SMF type 82 subtype 24 - Duplicate key tokens
	SMF type 82 subtype 25 – Duplicate Tokens Found
	SMF type 82 subtype 26 - PKDS Data Space Refresh
	SMF type 82 subtype 27 - PKA Key Management Extensions

	Chapter 6. Update of z/OS Cryptographic Services ICSF Messages, SA22-7523-12, information

