
ICSF

Enhanced Key Management for Crypto

Assist Instructions

���

ii APAR OA08172 – December, 2004

Contents

Overview . 1

Support Description . 1

Requirements . 1

Changed Callable Services . 1

KGUP . 2

KGUP TSO Panels . 2

Sharing the CKDS . 2

Message Changes . 2

New Reason Code for Return Code 4 (4) 2

New Reason Code for Return Code 8 (8) 2

Clear Key Token . 3

Key Record Read (CSNBKRR) 5

Format . 5

Parameters . 5

Restrictions . 6

Usage Notes . 6

Key Token Build (CSNBKTB) 7

Format . 7

Parameters . 7

Usage Notes . 12

Related Information . 14

Symmetric Key Decipher (CSNBSYD and CSNBSYD1) 17

Choosing Between CSNBSYD and CSNBSYD1 18

Format . 18

Parameters . 19

Usage Notes . 23

Related Information . 23

Symmetric Key Encipher (CSNBSYE and CSNBSYE1) 25

Choosing between CSNBSYE and CSNBSYE1 26

Format . 26

Parameters . 27

Usage Notes . 31

Related Information . 31

KGUP Updates . 33

Examples of Control Statements 33

Example 1 – ADD control statement with CLRDES keyword 33

Example 2 – ADD control statement to add a group of CLRDES key labels 33

Example 3 – ADD control statement to add a group of CLRDES key labels 33

Example 4 – ADD control statement to add a range of CLRDES key labels 33

Example 5 – UPDATE control statement with CLRDES keyword 34

Example 6 – UPDATE control statement with CLRDES keyword 34

Example 7 – DELETE control statement with CLRDES keyword 34

Example 8 – DELETE control statement to delete a group of CLRDES key

labels . 34

Example 9 – RENAME Control Statement with CLRDES Keyword 34

Panels . 34

Format of the Clear Key Token 37

 iii

iv APAR OA08172 – December, 2004

Overview

This document supports APAR OA08172.

Support Description

To enable more exploitation of the clear key DES instructions on the CPACF, ICSF

will be enhanced to generate and format clear DES tokens that can be used in

callable services and stored in the cryptographic key data set (CKDS). Clear key

tokens on the CKDS can be referenced by labelname by the Symmetric Key

Encipher (CSNBSYE and CSNBSYE1) and the Symmetric Key Decipher

(CSNBSYD and CSNBSYD1) services. With clear key support on the CKDS, clear

keys do not have to appear in application storage during use.

Requirements

Software requirements are:

v APAR OA08172

v FMID HCR770A or HCR770B

v OS/390 V2R10 or later

Hardware requirements are:

v z890 or z990 server

v CP Assist for Cryptographic Functions (CPACF) DES/TDES Enablement (feature

code 3863)

v PCI X Cryptographic Coprocessor (feature code 0868)

Changed Callable Services

The callable services provided here in their entirety are from the current ICSF

Application Programmer’s Guide. Updates to the callable services are marked with

an asterisk (*) so that you can quickly find the new support documentation.

v Key Record Read (CSNBKRR)

The Key Record Read service will not return the token for a clear key. See “Key

Record Read (CSNBKRR)” on page 5.

v Key Record Write (CSNBKRW)

The Key Record Write service supports writing a clear key token with non-zero

key values to the CKDS.

v Key Token Build (CSNBKTB)

The Key Token Build service will allow creation of a clear key token from

supplied key values. A new key_type, CLRDES, is required. See “Key Token

Build (CSNBKTB)” on page 7.

v Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

These services will now support the specification of a key token or key

labelname for the key_identifier parameter. For the DES algorithm only, new

keyword KEYIDENT may be specified for the key rule keyword in the rule_array

parameter. See “Symmetric Key Decipher (CSNBSYD and CSNBSYD1)” on page

17.

v Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

 1

These services will now support the specification of a key token or key

labelname for the key_identifier parameter. For the DES algorithm only, new

keyword KEYIDENT may be specified for the key rule keyword in the rule_array

parameter. See “Symmetric Key Encipher (CSNBSYE and CSNBSYE1)” on page

25.

KGUP

KGUP will support the creation and maintenance of clear key tokens on the CKDS.

See “KGUP Updates” on page 33.

KGUP TSO Panels

See “Panels” on page 34.

Sharing the CKDS

On systems sharing the CKDS without this support, it is highly recommended that

you RACF-protect the labelname of the clear key tokens on the other systems. This

will provide additional security for your installation.

Message Changes

Message CSFG0224 has changed.

The message text is: keyword SPECIFIED WITH TYPE keytype.

There is a mismatch between keyword and keytype. Keyword values can be NOCV

or DES. If NOCV is specified, only key types EXPORTER or IMPORTER are

allowed. If DES is specified, only key types EXPORTER, IMPORTER, or DATA are

allowed.

If keytype CLRDES is specified, keywords CLEAR, OUTTYPE and TRANSKEY are

not allowed.

New Reason Code for Return Code 4 (4)

Table 1 lists the new reason code.

 Table 1. Reason Codes for Return Code 4 (4)

Reason Code Hex

(Decimal) Description

81E (2078) The key was retrieved successfully, but for a clear key token, it is not returned to the caller.

New Reason Code for Return Code 8 (8)

Table 2 lists the new reason code.

 Table 2. Reason Codes for Return Code 8 (8)

Reason Code Hex

(Decimal) Description

81F (2079) An encrypted key token is not supported in the service.

2 APAR OA08172 – December, 2004

Clear Key Token

See “Format of the Clear Key Token” on page 37.

Overview 3

4 APAR OA08172 – December, 2004

Key Record Read (CSNBKRR)

Use the key record read callable service to copy an internal key token from the

in-storage CKDS to application storage. Other cryptographic services can then use

the copied key token directly. The key token can also be used as input to the token

copying functions of key generate, key import, or secure key import services to

create additional NOCV keys.

If the internal key token is a clear key token, the token is not returned to the caller

unless the caller is in supervisor state or system key. Otherwise, a return code 4,

reason code X'81E' is returned.

Format

 CALL CSNBKRR(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 key_label,

 key_token)

Parameters

return_code

 Direction: Output Type: Integer

The return code specifies the general result of the callable service. ICSF

Application Programmer’s Guide lists the return codes.

reason_code

 Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to

the application program. Each return code has different reason codes assigned

to it indicating specific processing problems. ICSF Application Programmer’s

Guide lists the reason codes.

exit_data_length

 Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be

from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the

exit_data parameter.

exit_data

 Direction: Input/Output Type: String

The data that is passed to the installation exit.

 5

*
*
*

key_label

 Direction: Input Type: Character string

The 64-byte label of a record in the in-storage CKDS. The internal key token in

this record is returned to the caller.

key_token

 Direction:
returnedin-storagethein-storage

Key Token Build (CSNBKTB)

Use the key token build callable service to build an external or internal key token

from information which you supply. The token can be used as input for the key

generate and key part import callable services. You can specify a control vector or

the service can build a control vector based upon the key type you specify and the

control vector-related keywords in the rule array. ICSF supports the building of an

internal key token with the key encrypted under a master key other than the current

master key.

Note: CLR8-ENC or UKPT must be coded in rule_array when the KEYGENKY

key_type is coded. When the SECMSG key_type is coded, either SMKEY or

SMPIN must be specified in the rule_array.

You can use this service to build internal clear DES tokens. You must use key_type

CLRDES. CLRDES requires rule_array keyword INTERNAL, optional keyword

KEYLN8/ KEYLN16/ KEYLN24, and a key_value parameter.

You can also use this service to update the DES or SYS-ENC markings in a

supplied DATA, IMPORTER, or EXPORTER token and to build CCA key tokens for

all key types ICSF supports.

Format

 CALL CSNBKTB(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 key_token,

 key_type,

 rule_array_count,

 rule_array,

 key_value,

 master_key_version_number,

 key_register_number,

 secure_token,

 control_vector,

 initialization_vector,

 pad_character,

 cryptographic_period_start,

 masterkey_verify_parm

Parameters

return_code

 Direction: Output Type: Integer

The return code specifies the general result of the callable service. ICSF

Application Programmer’s Guide lists the return codes.

reason_code

 Direction: Output Type: Integer

 7

*
*
*

The reason code specifies the result of the callable service that is returned to

the application program. Each return code has different reason codes assigned

to it that indicate specific processing problems. ICSF Application Programmer’s

Guide lists the reason codes.

exit_data_length

 Direction: Input/Output Type: Integer

Reserved field.

exit_data

 Direction: Input/Output Type: String

Reserved field.

key_token

 Direction: Input/Output Type: String

If the following parameter key_type is TOKEN then this is a 64-byte internal

token that is updated as specified in the rule_array. The internal token must be

a DATA, IMPORTER or EXPORTER key type. Otherwise this field is an

output-only field.

key_type

 Direction: Input Type: String

An 8-byte field that specifies the type of key you want to build or the keyword

TOKEN for updating a supplied token. If key_type is TOKEN, then the

key_token field cannot contain a double- or triple-length DATA key token. No

other keywords are valid. The TOKEN keyword indicates changing an internal

token in the key_token parameter. A valid key_type indicates building a key

token from the parameters specified.

 Key type values for the Key Token Build callable service are: AKEK, CIPHER,

CLRDES, CVARDEC, CVARENC, CVARPINE, CVARXCVL, CVARXCVR, DATA,

DATAC, DATAM, DATAMV, DATAXLAT, DECIPHER, DKYGENKY, ENCIPHER,

EXPORTER, IKEYXLAT, IMPORTER, IPINENC, KEYGENKY, MAC, MACVER,

OKEYXLAT, OPINENC, PINGEN, PINVER, and SECMSG. Key_type USE-CV is

used when a user-supplied control vector is specified. The USE-CV key_type

specifies that the key_type should be obtained from the control vector specified

in the control_vector parameter. The CV rule_array keyword should be specified

if USE-CV is specified.

 CLRDES can only specify a clear DES token. Using CLRDES requires

rule_array keyword INTERNAL, optional keyword KEYLN8/KEYLN16/KEYLN24,

and a key_value parameter.

rule_array_count

 Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter.

Key Token Build (CSNBKTB)

8 APAR OA08172 – December, 2004

*

*
*
*

rule_array

 Direction: Input Type: String

One to four keywords that provide control information to the callable service.

See Table 4 for a list. The keywords must be in contiguous storage with each of

the keywords left-justified in its own 8-byte location and padded on the right

with blanks. For any key type, there are no more than four valid rule_array

values.

 If you specify TOKEN for the key_type, then the only valid rule_array values are

INTERNAL and DES or SYS-ENC. The Data Encryption Algorithm (see the

table that follows) keyword has no default.

 If you specify a key_type of DATA, IMPORTER or EXPORTER, the Data

Encryption Algorithm selection keyword defaults to SYS-ENC. The other

rule_array keywords do not apply.

 If you specify a key_type of CLRDES, then the only valid rule_array values are

INTERNAL and optionally, KEYLN8/KEYLN16/KEYLN24.

 Table 4. Keywords for Key Token Build Control Information

Keyword Meaning

Token Type (required)

EXTERNAL Specifies an external key token.

INTERNAL Specifies an internal key token.

Key Status (optional) — not valid for CLRDES

KEY This keyword indicates that the key token to build will contain

an encrypted key. The key_value parameter identifies the field

that contains the key.

NO-KEY This keyword indicates that the key token to build will not

contain a key. This is the default key status.

Data Encryption Algorithm (optional) — valid only for single-length DATA keys and

KEKs.

DES Tolerated for compatibility reasons.

SYS-ENC Tolerated for compatibility reasons.

CV on the Link Specification (optional) — valid only for IMPORTER and

EXPORTER.

CV-KEK This keyword indicates marking the KEK as a CV KEK. The

control vector is applied to the KEK before use in encrypting

other keys. This is the default.

NOCV-KEK This keyword indicates marking the KEK as a NOCV KEK.

The control vector is not applied to the KEK before use in

encrypting other keys. Services using NO-CV keys must be

processed on the Cryptographic Coprocessor Feature.

CV (Status optional) — not valid for CLRDES

CV This keyword indicates to obtain the control vector from the

variable identified by the control_vector parameter.

NO-CV Default. This keyword indicates that the control vector is to be

supplied based on the key type and the control vector related

keywords.

Key Length Keywords (optional)

Key Token Build (CSNBKTB)

Key Token Build (CSNBKTB) 9

*
*

*

*

Table 4. Keywords for Key Token Build Control Information (continued)

Keyword Meaning

DOUBLE Double-length or 16-byte key. Synonymous with KEYLN16.

Not valid for CLRDES.

Note: See Table 5 on page 12 for valid key types for these

key length values.

KEYLN8 Single-length or 8-byte key. Default for CLRDES.

KEYLN16 Double-length or 16-byte key.

KEYLN24 Triple-length, 24-byte key valid only for a DATA key type.

MIXED Double-length key. Indicates that the key can either be a

replicated single-length key or a double-length key with two

different 8–byte values. Not valid for CLRDES.

SINGLE Single-length or 8-byte key. Synonymous with KEYLN8. Not

valid for CLRDES.

Key Part Indicator (optional) — not valid for CLRDES

KEY-PART This token is to be used as input to the key part import

service.

Control Vector Keywords. Specify one or more of the following (optional)

See Table 5 on page 12 for the key-usage keywords that can be specified for a given

key type.

Master Key Verification Pattern (optional) — not valid for CLRDES

MKVP This keyword indicates that the key_value is enciphered

under the master key which corresponds to the master key

verification pattern specified in the masterkey_verify_parm

parameter. If this keyword is not specified, the key contained

in the key_value field must be enciphered under the current

master key.

key_value

 Direction: Input Type: String

If you use the KEY keyword, this parameter is a 16-byte string that contains the

encrypted key value. Single-length keys must be left-justified in the field and

padded on the right with X'00'. If you are building a triple-length DATA key, this

parameter is a 24-byte string containing the encrypted key value. If you supply

an encrypted key value and also specify INTERNAL, the service will check for

the presence of the MKVP keyword. If MKVP is present, the service will

assume the key_value is enciphered under the master key which corresponds

to the master key verification pattern specified in the masterkey_verify_parm

parameter, and will place the key into the internal token along with the

verification pattern from the masterkey_verify_parm parameter. If MKVP is not

specified, ICSF assumes the key is enciphered under the current host master

key and places the key into an internal token along with the verification pattern

for the current master key. In this case, the application must ensure that the

master key has not changed since the key was generated or imported to this

system. Otherwise, use of this parameter is not recommended.

 For key_type CLRDES, this field is required to contain the clear key value. For

KEYLN8, keys must be left-justified in the field and padded on the right with

X'00'. KEYLN16 and KEYLN24 are also valid. For KEYLN24, this is a 24 byte

field.

Key Token Build (CSNBKTB)

10 APAR OA08172 – December, 2004

*
*
*
*

*

*

*
*

*

*
*
*
*

master_key_version_number

 Direction: Input Type: Integer

This field is examined only if the KEY keyword is specified, in which case, this

field must be zero. If the KEY and INTERNAL keywords are specified in

rule_array, the service will check for the existence of the MKVP rule array

keyword. If MKVP is specified, the service will make use of the last parameter

specified (masterkey_verify_parm). The service assumes the key provided by

the key_value parameter is enciphered under the corresponding master key and

will place the key into the internal token along with the verification pattern from

the masterkey_verify_parm parameter.

key_register_number

 Direction: Input Type: Integer

This field is ignored.

secure_token

 Direction: Input Type: String

This field is ignored.

control_vector

 Direction: Input Type: String

A pointer to a 16 byte string variable. If this parameter is specified, and you use

the CV rule array keyword, the variable is copied to the control vector field of

the key token.

initialization_vector

 Direction: Input Type: String

This field is ignored.

pad_character

 Direction: Input Type: Integer

The only allowed value for key types MAC and MACVER is 0. This field is

ignored for all other key types.

cryptographic_period_start

 Direction: Input Type: String

This field is ignored.

masterkey_verify_parm

 Direction: Input Type: String

A pointer to an 8-byte string variable. The value is inserted into the key token

when you specify both the KEY and INTERNAL keywords in rule array.

Key Token Build (CSNBKTB)

Key Token Build (CSNBKTB) 11

Usage Notes

No pre- or post-processing or security exits are enabled for this service. No RACF

checking is done, and no calls to RACF are issued when this service is used.

You can use this service to create skeleton key tokens with the desired data

encryption algorithm bits for use in some key management services to override the

default system specifications.

v If you are running with the Cryptographic Coprocessor Feature and need to

generate operational AKEKs, use key_type of TOKEN and provide a skeleton

AKEK key token as the generated_key_identifier_1 into the key generate service.

v If you are running with the Cryptographic Coprocessor Feature, the KEY-PART

AKEK key token can also be used as input to key part import service.

v To create an internal token with a specified KEY value, ICSF needs to supply a

valid master key verification pattern (MKVP).

NOCV keyword is only supported for the standard IMPORTERs and EXPORTERs

with the default CVs.

The following illustrates the key type and key usage keywords that can be

combined in the Control Vector Generate and Key Token Build callable services to

create a control vector.

 Table 5. Control Vector Generate and Key Token Build Control Vector Keyword Combinations

Key Type Key Usage

Default keys are indicated in bold.

A key usage keyword is required for the KEYGENKY key type.

* All keywords in the list are defaults unless one or more keywords in the list are specified.

** The NOOFFSET keyword is only valid if NO-SPEC, IBM-PIN, GBP-PIN, or the default

(NO-SPEC) is specified.

Notes: Default keys are indicated in bold.

CLR8-ENC and/or UKPT must be specified for the KEYGENKY key type - SMKEY or SMPIN must be

specified for the SECMSG key type

* All keywords in the list are defaults unless one or more keywords in the list are specified.

** The NOOFFSET keyword is only valid if NO-SPEC, IBM-PIN, GBP-PIN, or the default (NO-SPEC)

is specified.

DATA SINGLE

KEYLN8

MIXED

DOUBLE

KEYLN16

KEYLN24

XPORT-OK

NO-XPORT

KEY-PART

CIPHER

ENCIPHER

DECIPHER

MAC

MACVER

SINGLE

KEYLN8

MIXED

DOUBLE

KEYLN16

XPORT-OK

NO-XPORT

KEY-PART

Key Token Build (CSNBKTB)

12 APAR OA08172 – December, 2004

Table 5. Control Vector Generate and Key Token Build Control Vector Keyword Combinations (continued)

Key Type Key Usage

Default keys are indicated in bold.

A key usage keyword is required for the KEYGENKY key type.

* All keywords in the list are defaults unless one or more keywords in the list are specified.

** The NOOFFSET keyword is only valid if NO-SPEC, IBM-PIN, GBP-PIN, or the default

(NO-SPEC) is specified.

DATAXLAT

CVARPINE

CVARENC

CVARDEC

CVARXCVL

CVARXCVR

SINGLE

KEYLN8

XPORT-OK

NO-XPORT

KEY-PART

DATAC

DATAM

DATAMV

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

KEYGENKY CLR8-ENC

UKPT

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

DKYGENKY DDATA

DMAC

DMV

DIMP

DEXP

DPVR

DMKEY

DMPIN

DALL

DKYL0

DKYL1

DKYL2

DKYL3

DKYL4

DKYL5

DKYL6

DKYL7

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

SECMSG SMKEY

SMPIN

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

IKEYXLAT

OKEYXLAT

ANY

NOT-KEK

DATA

PIN

LMTD-KEK

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

IMPORTER OPIM*

IMEX*

IMIM*

IMPORT*

XLATE ANY

NOT-KEK

DATA

PIN

LMTD-KEK

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

EXPORTER OPEX*

IMEX*

EXEX*

EXPORT*

XLATE ANY

NOT-KEK

DATA

PIN

LMTD-KEK

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

PINVER NO-SPEC**

IBM-PIN**

GBP-PIN**

IBM-PINO

GBP-PINO

VISA-PVV

INBK-PIN

NOOFFSET DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

Key Token Build (CSNBKTB)

Key Token Build (CSNBKTB) 13

Table 5. Control Vector Generate and Key Token Build Control Vector Keyword Combinations (continued)

Key Type Key Usage

Default keys are indicated in bold.

A key usage keyword is required for the KEYGENKY key type.

* All keywords in the list are defaults unless one or more keywords in the list are specified.

** The NOOFFSET keyword is only valid if NO-SPEC, IBM-PIN, GBP-PIN, or the default

(NO-SPEC) is specified.

PINGEN CPINGEN*

CPINGENA*

EPINGENA*

EPINGEN*

EPINVER*

NO-SPEC**

IBM-PIN**

GBP-PIN**

IBM-PINO

GBP-PINO

VISA-PVV

INBK-PIN

NOOFFSET DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

IPINENC CPINGENA*

EPINVER*

REFORMAT*

TRANSLAT*

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

OPINENC CPINENC*

EPINGEN*

REFORMAT*

TRANSLAT*

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

Related Information

Attention: CDMF is no longer supported.

The ICSF key token build callable service provides a subset of the parameters and

keywords available with the Transaction Security System key token build verb.

The following key types are not supported: ADATA, AMAC, CIPHERXI, CIPHERXL,

CIPHERXO, UKPTBASE.

The following rule array keywords are not supported: ACTIVE, ADAPTER, CARD,

CBC, CLEAR-IV, CUSP, INACTIVE, IPS, KEY-REF, MACLEN4, MACLEN6,

MACLEN8, NO-IV, READER, X9.2, X9.9-1.

The master_key_verification_number parameter has been replaced by the

master_key_version_number parameter. The master_key_version_number

parameter is examined only if the KEY keyword is specified, and in this case must

be zero. If KEY and INTERNAL are both specified in the rule array, the service will

check for the existence of a new optional rule array keyword, MKVP. If MKVP is

specified, the service will make use of the last parameter specified. Currently, this is

called masterkey_verify_parm and is always ignored. It will now be used to contain

a master key verification pattern if MKVP is specified in the rule_array. The service

assumes the key provided by the key_value parameter is enciphered under the

corresponding master key and will place the key into the internal token along with

the verification pattern from the masterkey_verify_parm parameter.

The key_register_number, secure_token, and initialization_vector parameters are

ignored.

The pad_character parameter must have a value of zero.

Key Token Build (CSNBKTB)

14 APAR OA08172 – December, 2004

The following table lists the required cryptographic hardware for each server type

and describes restrictions for this callable service.

 Table 6. Key token build required hardware

Server Required

cryptographic

hardware

Restrictions

S/390 G6 Enterprise

Server

None.

IBM Eserver zSeries

800

IBM Eserver zSeries

900

None.

IBM Eserver zSeries

990

IBM Eserver zSeries

890

None.

Key Token Build (CSNBKTB)

Key Token Build (CSNBKTB) 15

Key Token Build (CSNBKTB)

16 APAR OA08172 – December, 2004

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

Use the symmetric key decipher callable service to decipher data in an address

space or a data space using the cipher block chaining or electronic code book

modes. ICSF supports the following processing rules to decipher data. You choose

the type of processing rule that the decipher callable service should use for block

chaining.

Processing Rule Purpose

ANSI X9.23 For cipher block chaining. The ciphertext must be

an exact multiple of 8 bytes, but the plaintext will be

1 to 8 bytes shorter than the ciphertext.

CBC For cipher block chaining. The ciphertext must be

an exact multiple of 8 bytes, and the plaintext will

have the same length.

CUSP For cipher block chaining, but the ciphertext can be

of any length. The plaintext will be the same length

as the ciphertext.

ECB Performs electronic code book encryption. The text

length must be a multiple of the block size for the

specified algorithm.

IPS For cipher block chaining, but the ciphertext can be

of any length. The plaintext will be the same length

as the ciphertext.

The Advanced Encryption Standard (AES) and DES (Data Encryption Standard) are

supported. AES encryption uses a 128-, 192-, or 256-bit key. The CBC and ECB

modes are supported. Due to export regulations, AES encryption may not be

available on your system.

This service supports both electronic code book (ECB) and cipher block chaining

(CBC) modes. The CBC mode of operation uses an initial chaining vector (ICV) in

its processing. The ICV is exclusive ORed with the first block of plaintext after the

decryption step, and thereafter, each block of ciphertext is exclusive ORed with the

next block of plaintext after decryption, and so on.

Cipher block chaining also produces a resulting chaining value called the output

chaining vector (OCV). The application can pass the OCV as the ICV in the next

encipher call. This results in record chaining.

The electronic code book mode does not use the initial chaining vector.

The selection between single-DES decryption mode and triple-DES decryption

mode is controlled by the length of the key supplied in the key_identifier parameter.

If a single-length key is supplied, single-DES decryption is performed. If a

double-length or triple-length key is supplied, triple-DES decryption is performed.

For DES, the key may be specified as a clear key value or the key_identifier of a

clear key token or labelname in the CKDS.

 17

*
*

Choosing Between CSNBSYD and CSNBSYD1

CSNBSYD and CSNBSYD1 provide identical functions. When choosing which

service to use, consider the following:

v CSNBSYD requires the ciphertext and plaintext to reside in the caller’s primary

address space. Also, a program using CSNBSYD adheres to the IBM Common

Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBSYD1 allows the ciphertext and plaintext to reside either in the caller’s

primary address space or in a data space. This can allow you to decipher more

data with one call. However, a program using CSNBSYD1 does not adhere to the

IBM Common Cryptographic Architecture: Cryptographic Application

Programming Interface, and may need to be modified before it can run with other

cryptographic products that follow this programming interface.

For CSNBSYD1, cipher_text_id and clear_text_id are access list entry token

(ALET) parameters of the data spaces containing the ciphertext and plaintext.

Format

 CALL CSNBSYD(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_length,

 key_identifier,

 key_parms_length,

 key_parms,

 block_size,

 initialization_vector_length,

 initialization_vector,

 chain_data_length,

 chain_data,

 cipher_text_length,

 cipher_text,

 clear_text_length,

 clear_text,

 optional_data_length,

 optional_data)

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

18 APAR OA08172 – December, 2004

CALL CSNBSYD1(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_length,

 key_identifier,

 key_parms_length,

 key_parms,

 block_size,

 initialization_vector_length,

 initialization_vector,

 chain_data_length,

 chain_data,

 cipher_text_length,

 cipher_text,

 clear_text_length,

 clear_text,

 optional_data_length,

 optional_data

 cipher_text_id

 clear_text_id)

Parameters

return_code

 Direction: Output Type: Integer

The return code specifies the general result of the callable service. ICSF

Application Programmer’s Guide lists the return codes.

reason_code

 Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to

the application program. Each return code has different reason codes assigned

to it that indicate specific processing problems. ICSF Application Programmer’s

Guide lists the reason codes.

exit_data_length

 Direction: Ignored Type: Integer

Reserved field.

exit_data

 Direction: Ignored Type: String

Reserved field.

rule_array_count

 Direction: Input Type: Integer

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

Symmetric Key Decipher (CSNBSYD and CSNBSYD1) 19

The number of keywords you supplied in the rule_array parameter. The value

may be 1, 2, 3 or 4.

rule_array

 Direction: Input Type: String

An array of 8-byte keywords providing the processing control information. The

keywords must be in contiguous storage, left-justified and padded on the right

with blanks.

 Table 7. Symmetric Key Decipher Rule Array Keywords

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)

algorithm is to be used. The block size is 16 bytes. The key

length may be 16, 24, or 32 bytes. The chain_data field must

be at least 32 bytes in length. The OCV is the first 16 bytes

in the chain_data. The supported processing rules for AES

are CBC and ECB.

DES Specifies that the Data Encryption Standard (DES) algorithm

is to be used. The algorithm, DES or TDES, will be

determined from the length of the key supplied. The key

length may be 8, 16, or 24. The block size is 8 bytes. The

chain_data field must be at least 16 bytes in length. The

OCV is the first eight bytes in the chain_data. The

processing rules supported for DES are CBC, ECB, X9.23,

CUSP and IPS.

Processing Rule (optional)

CBC Performs cipher block chaining. The text length must be a

multiple of the block size for the specified algorithm. CBC is

the default value.

CUSP CBC mode (cipher block chaining) that is compatible with

IBM’s CUSP and PCF products. Input text may be any

length.

ECB Performs electronic code book encryption. The text length

must be a multiple of the block size for the specified

algorithm.

IPS CBC mode (cipher block chaining) that is compatible with

IBM’s IPS product. Input text may be any length.

X9.23 CBC mode (cipher block chaining) for 1 to 8 bytes of

padding dropped from the output clear text.

Key Rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key

value. KEY-CLR is the default value.

KEYIDENT This specifies that the key_identifier field will be an internal

clear token or the labelname of a key in the CKDS. Normal

CKDS labelname syntax is required. Valid only with DES.

ICV Selection (optional)

INITIAL This specifies taking the initialization vector from the

initialization_vector parameter. INITIAL is the default value.

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

20 APAR OA08172 – December, 2004

*

Table 7. Symmetric Key Decipher Rule Array Keywords (continued)

Keyword Meaning

CONTINUE This specifies taking the initialization vector from the output

chaining vector contained in the work area to which the

chain_data parameter points. CONTINUE is valid for

processing rules CBC, IPS, and CUSP only.

key_length

 Direction: Input Type: Integer

The length of the key parameter. For clear keys, the length is in bytes and

includes only the value of the key. The maximum size is 256 bytes.

 For the KEYIDENT keyword, this parameter value must be 64.

key_identifier

 Direction: Input Type: String

For the KEY-CLR keyword, this specifies the cipher key. The parameter must be

left justified.

 For the KEYIDENT keyword, this specifies an internal clear token or the

labelname of a key in the CKDS. Normal CKDS labelname syntax is required.

KEYIDENT is only valid with DES.

key_parms_length

 Direction: Ignored Type: Integer

The length of the key_parms parameter. The maximum size is 256 bytes.

key_parms

 Direction: Ignored Type: String

This parameter contains key-related parameters specific to the encryption

algorithm.

block_size

 Direction: Input Type: Integer

This parameter contains the processing size of the text block in bytes. This

value will be algorithm specific. Be sure to specify the same block size as used

to encipher the text.

initialization_vector_length

 Direction: Input Type: Integer

The length of the initialization_vector parameter. The length should be equal to

the block length for the algorithm specified.

initialization_vector

 Direction: Input Type: String

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

Symmetric Key Decipher (CSNBSYD and CSNBSYD1) 21

*

*
*
*

This initialization chaining value for CBC encryption. You must use the same

ICV that was used to encipher the data.

chain_data_length

 Direction: Input/Output Type: Integer

The length of the chain_data parameter. On output, the actual length of the

chaining vector will be stored in the parameter.

chain_data

 Direction: Input/Output Type: String

This field is used as a system work area for the chaining vector. Your

application program must not change the data in this string. The chaining vector

holds the output chaining vector from the caller.

 The direction is output if the ICV selection keyword is INITIAL.

 The mapping of the chain_data depends on the algorithm specified. For AES,

the chain_data field must be at least 32 bytes in length. The OCV is in the first

16 bytes in the chain_data. For DES, chain_data field must be at least 16 bytes

in length.

cipher_text_length

 Direction: Input Type: Integer

The length of the cipher text. A zero value in the clear_text_length parameter is

not valid. The length must be a multiple of the algorithm block size.

cipher_text

 Direction: Input Type: String

The text to be deciphered.

clear_text_length

 Direction: Input/Output Type: Integer

On input, this parameter specifies the size of the storage pointed to by the

clear_text parameter. On output, this parameter has the actual length of the text

stored in the clear_text parameter.

clear_text

 Direction: Output Type: String

The deciphered text the service returns.

optional_data_length

 Direction: Ignored Type: Integer

The length of the optional_data parameter.

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

22 APAR OA08172 – December, 2004

optional_data

 Direction: Ignored Type: String

Optional data required by a specified algorithm.

cipher_text_id

 Direction: Input Type: Integer

For CSNBSYD1 only, the ALET of the ciphertext to be deciphered.

clear_text_id

 Direction: Input Type: Integer

For CSNBSYD1 only, the ALET of the clear text supplied by the application.

Usage Notes

v No pre- or post-processing exits are enabled for this service.

v No SAF authorization check is made.

v The master keys need not be loaded to use this service.

v The AES algorithm is implemented in the software.

v AES has the same availability restrictions as triple-DES.

v This service will fail if execution would cause destructive overlay of the

cipher_text field.

 Table 8. Symmetric Key Decipher required hardware

Server Required

cryptographic

hardware

Restrictions

S/390 G6 Enterprise

Server

Cryptographic

Coprocessor Feature

DES keyword is not supported.

IBM Eserver zSeries

800

IBM Eserver zSeries

900

Cryptographic

Coprocessor Feature

DES keyword is not supported.

IBM Eserver zSeries

990

IBM Eserver zSeries

890

CP Assist for

Cryptographic

Functions

Related Information

You cannot overlap the plaintext and ciphertext fields. For example:

pppppp

 cccccc is not supported.

cccccc

 pppppp is not supported.

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

Symmetric Key Decipher (CSNBSYD and CSNBSYD1) 23

ppppppcccccc is supported.

P represents the plaintext and c represents the ciphertext.

On z990 systems, the PCIXCC will support non destructive overlap. For example:

pppppp

 cccccc is supported.

ICSF Application Programmer’s Guide discusses the cipher processing rules.

Symmetric Key Decipher (CSNBSYD and CSNBSYD1)

24 APAR OA08172 – December, 2004

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

Use the symmetric key encipher callable service to encipher data in an address

space or a data space using the cipher block chaining or electronic code book

modes. ICSF supports the following processing rules to encipher data. You choose

the type of processing rule that the encipher callable service should use for the

block chaining.

Processing Rule Purpose

ANSI X9.23 For block chaining not necessarily in exact multiples

of 8 bytes. This process rule pads the plaintext so

that ciphertext produced is an exact multiple of 8

bytes.

CBC For block chaining in exact multiples of 8 bytes.

CUSP For block chaining not necessarily in exact multiples

of 8 bytes. The ciphertext will be the same length

as the plaintext.

ECB Performs electronic code book encryption. The text

length must be a multiple of the block size for the

specified algorithm.

IPS For block chaining not necessarily in exact multiples

of 8 bytes. The ciphertext will be the same length

as the plaintext.

The Advanced Encryption Standard (AES) and DES (Data Encryption Standard) are

supported. AES encryption uses a 128-, 192-, or 256-bit key. The CBC and ECB

modes are supported. Due to export regulations, AES encryption may not be

available on your system.

This service supports both electronic code book (ECB) and cipher block chaining

(CBC) modes. The CBC mode of operation uses an initial chaining vector (ICV) in

its processing. The ICV is exclusive ORed with the first block of plaintext before the

encryption step, and thereafter, the block of ciphertext just produced is exclusive

ORed with the next block of plaintext, and so on. This disguises any pattern that

may exist in the plaintext.

Cipher block chaining also produces a resulting chaining value called the output

chaining vector (OCV). The application can pass the OCV as the ICV in the next

encipher call. This results in record chaining.

The electronic code book mode does not use the initial chaining vector.

The selection between single-DES decryption mode and triple-DES decryption

mode is controlled by the length of the key supplied in the key_identifier parameter.

If a single-length key is supplied, single-DES decryption is performed. If a

double-length or triple-length key is supplied, triple-DES decryption is performed.

For DES, the key may be specified as a clear key value or the key_identifier of a

clear key token or labelname in the CKDS.

 25

*
*

Choosing between CSNBSYE and CSNBSYE1

CSNBSYE and CSNBSYE1 provide identical functions. When choosing which

service to use, consider the following:

v CSNBSYE requires the cleartext and ciphertext to reside in the caller’s primary

address space. Also, a program using CSNBSYE adheres to the IBM Common

Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBSYE1 allows the cleartext and ciphertext to reside either in the caller’s

primary address space or in a data space. This can allow you to encipher more

data with one call. However, a program using CSNBSYE1 does not adhere to the

IBM Common Cryptographic Architecture: Cryptographic Application

Programming Interface, and may need to be modified before it can run with other

cryptographic products that follow this programming interface.

For CSNBSYE1, clear_text_id and cipher_text_id are access list entry token

(ALET) parameters of the data spaces containing the cleartext and ciphertext.

Format

 CALL CSNBSYE(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_length,

 key_identifier,

 key_parms_length,

 key_parms,

 block_size,

 initialization_vector_length,

 initialization_vector,

 chain_data_length,

 chain_data,

 clear_text_length,

 clear_text,

 cipher_text_length,

 cipher_text,

 optional_data_length,

 optional_data)

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

26 APAR OA08172 – December, 2004

CALL CSNBSYE1(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_length,

 key_identifier,

 key_parms_length,

 key_parms,

 block_size,

 initialization_vector_length,

 initialization_vector,

 chain_data_length,

 chain_data,

 clear_text_length,

 clear_text,

 cipher_text_length,

 cipher_text,

 optional_data_length,

 optional_data

 clear_text_id

 cipher_text_id)

Parameters

return_code

 Direction: Output Type: Integer

The return code specifies the general result of the callable service. ICSF

Application Programmer’s Guide lists the return codes.

reason_code

 Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to

the application program. Each return code has different reason codes assigned

to it that indicate specific processing problems. ICSF Application Programmer’s

Guide lists the reason codes.

exit_data_length

 Direction: Ignored Type: Integer

Reserved field.

exit_data

 Direction: Ignored Type: String

Reserved field.

rule_array_count

 Direction: Input Type: Integer

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

Symmetric Key Encipher (CSNBSYE and CSNBSYE1) 27

The number of keywords you supplied in the rule_array parameter. The value

may be 1, 2, 3 or 4.

rule_array

 Direction: Input Type: String

An array of 8-byte keywords providing the processing control information. The

keywords must be in contiguous storage, left-justified and padded on the right

with blanks.

 Table 9. Symmetric Key Encipher Rule Array Keywords

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)

algorithm is to be used. On systems that contain a

Cryptographic Coprocessor Feature, AES is the only

algorithm that is supported. The block size is 16 bytes. The

key length may be 16, 24, or 32 bytes. The chain_data field

must be at least 32 bytes in length. The OCV is the first 16

bytes in the chain_data.The supported processing rules for

AES are CBC and ECB.

DES Specifies that the Data Encryption Standard (DES) algorithm

is to be used. The algorithm, DES or TDES, will be

determined from the length of the key supplied. The key

length may be 8, 16, or 24. The block size is 8 bytes. The

chain_data field must be at least 16 bytes in length. The

OCV is the first eight bytes in the chain_data. The

processing rules supported for DES are CBC, ECB, X9.23,

CUSP and IPS.

Processing Rule (optional)

CBC Performs cipher block chaining. The text length must be a

multiple of the block size for the specified algorithm. CBC is

the default value.

CUSP CBC mode (cipher block chaining) that is compatible with

IBM’s CUSP and PCF products. Input text may be any

length.

ECB Performs electronic code book encryption. The text length

must be a multiple of the block size for the specified

algorithm.

IPS CBC mode (cipher block chaining) that is compatible with

IBM’s IPS product. Input text may be any length.

X9.23 CBC mode (cipher block chaining) for 1 to 8 bytes of

padding added according to ANSI X9.23. Input text may be

any length.

Key Rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key

value. KEY-CLR is the default.

KEYIDENT This specifies that the key parameter contains that the

key_identifier field will be an internal clear token or the

labelname of a key in the CKDS. Normal CKDS labelname

syntax is required. Only valid with DES.

ICV Selection (optional)

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

28 APAR OA08172 – December, 2004

**
*
*
*

Table 9. Symmetric Key Encipher Rule Array Keywords (continued)

Keyword Meaning

INITIAL This specifies taking the initialization vector from the

initialization_vector parameter. INITIAL is the default value.

CONTINUE This specifies taking the initialization vector from the output

chaining vector contained in the work area to which the

chain_data parameter points. CONTINUE is valid for

processing rules CBC, IPS, and CUSP only.

key_length

 Direction: Input Type: Integer

The length of the key parameter. For clear keys, the length is in bytes and

includes only the value of the key.

 For the KEYIDENT keyword, this parameter value must be 64.

key_identifier

 Direction: Input Type: String

For the KEY-CLR keyword, this specifies the cipher key. The parameter must be

left justified.

 For the KEYIDENT keyword, this specifies a internal clear token or the

labelname of a key in the CKDS. Normal CKDS labelname syntax is required.

KEYIDENT is only valid with DES.

key_parms_length

 Direction: Ignored Type: Integer

The length of the key_parms parameter.

key_parms

 Direction: Ignored Type: String

This parameter contains key-related parameters specific to the encryption

algorithm.

block_size

 Direction: Input Type: Integer

This parameter contains the processing size of the text block in bytes. This

value will be algorithm specific.

initialization_vector_length

 Direction: Input Type: Integer

The length of the initialization_vector parameter. The length should be equal to

the block length for the algorithm specified.

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

Symmetric Key Encipher (CSNBSYE and CSNBSYE1) 29

*

*
*
*

initialization_vector

 Direction: Input Type: String

This initialization chaining value for CBC encryption. You must use the same

ICV to decipher the data.

chain_data_length

 Direction: Input/Output Type: Integer

The length of the chain_data parameter. On output, the actual length of the

chaining vector will be stored in the parameter.

chain_data

 Direction: Input/Output Type: String

This field is used as a system work area for the chaining vector. Your

application program must not change the data in this string. The chaining vector

holds the output chaining vector from the caller.

 The direction is output if the ICV selection keyword is INITIAL.

 The mapping of the chain_data depends on the algorithm specified. For AES,

the chain_data field must be at least 32 bytes in length. The OCV is in the first

16 bytes in the chain_data. For DES, the chain_data field must be at least 16

bytes in length.

clear_text_length

 Direction: Input Type: Integer

The length of the clear text. A zero value in the clear_text_length parameter is

not valid. The length must be a multiple of the algorithm block size.

clear_text

 Direction: Input Type: String

The text to be enciphered.

cipher_text_length

 Direction: Input/Output Type: Integer

On input, this parameter specifies the size of the storage pointed to by the

cipher_text parameter. On output, this parameter has the actual length of the

text stored in the buffer addressed by the cipher_text parameter.

cipher_text

 Direction: Output Type: String

The enciphered text the service returns.

optional_data_length

 Direction: Ignored Type: Integer

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

30 APAR OA08172 – December, 2004

The length of the optional_data parameter.

optional_data

 Direction: Ignored Type: String

Optional data required by a specified algorithm.

clear_text_id

 Direction: Input Type: Integer

For CSNBSYE1 only, the ALET of the clear text to be enciphered.

cipher_text_id

 Direction: Input Type: Integer

For CSNBSYE1 only, the ALET of the ciphertext that the application supplied.

Usage Notes

v No pre- or post-processing exits are enabled for this service.

v No SAF authorization check is made.

v The master keys need not be loaded to use this service.

v The AES algorithm is implemented in the software.

v AES has the same availability restrictions as triple-DES.

v This service will fail if execution would cause destructive overlay of the clear_text

field.

 Table 10. Symmetric Key Encipher required hardware

Server Required

cryptographic

hardware

Restrictions

S/390 G6 Enterprise

Server

Cryptographic

Coprocessor Feature

DES keyword is not supported.

IBM Eserver zSeries

800

IBM Eserver zSeries

900

Cryptographic

Coprocessor Feature

DES keyword is not supported.

IBM Eserver zSeries

990

IBM Eserver zSeries

890

CP Assist for

Cryptographic

Functions

Related Information

You cannot overlap the plaintext and ciphertext fields. For example:

pppppp

 cccccc is not supported.

cccccc

 pppppp is not supported.

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

Symmetric Key Encipher (CSNBSYE and CSNBSYE1) 31

ppppppcccccc is supported.

P represents the plaintext and c represents the ciphertext.

On z990 systems, the PCIXCC will support non destructive overlap. For example:

cccccc

 pppppp is supported.

The method used to produce the OCV is the same with the CBC and X9.23

processing rules. However, that method is different from the method used by the

CUSP and IPS processing rules.

ICSF Application Programmer’s Guide discusses the cipher processing rules.

Symmetric Key Encipher (CSNBSYE and CSNBSYE1)

32 APAR OA08172 – December, 2004

KGUP Updates

The Key Generation Utility Program (KGUP) will support the creation and

maintenance of clear key tokens in the CKDS. The new key type keyword CLRDES

will be used to refer to clear DES key tokens. The ADD and UPDATE control

statements will create or update clear key tokens.

The keywords that may be specified with TYPE(CLRDES) are LABEL or RANGE,

LENGTH, and KEY. LABEL or RANGE is required. LENGTH is optional, the default

is 8 (the SINGLE keyword should not be allowed for key types that may be single

or double length). KEY is optional and if not specified, KGUP will generate a key of

requested length. All other keywords are not supported with key type CLRDES.

Clear key values will not be echoed in any output data set. TYPE(CLRDES) can

also be used on the RENAME and DELETE control statements.

Examples of Control Statements

For the ADD control statements, KGUP checks that the key label with a key type of

CLRDES does not already exist in the CKDS. It also checks that there are no

DATA, DATAXLAT, DATAM, DATAMV, MAC, MACVER, or NULL key entries with

that label. Each of these key types require a unique label. If the key entry already

exists, KGUP stops processing the control statement.

If the label does not exist, KGUP will create the key label in the CKDS.

Example 1 – ADD control statement with CLRDES keyword

This example shows a control statement that adds a CLRDES key label to the

CKDS with a random 8 byte key.

ADD TYPE(CLRDES) LENGTH(8), LAB(CLRDES.KEYLN8)

Example 2 – ADD control statement to add a group of CLRDES key

labels

This example shows a control statement that adds a group of CLRDES key labels

to the CKDS. Key value is generated.

ADD TYPE(CLRDES) LENGTH(8),LAB(A.CLRDES.KEYLN8,B.CLRDES.KEYLN8,C.CLRDES.KEYLN8)

Example 3 – ADD control statement to add a group of CLRDES key

labels

This example shows a control statement that adds a group of CLRDES key labels.

The clear key value is specified.

ADD TYPE(CLRDES),KEY(2C2C2C2C2C2C2C2C,1616161616161616),

LAB(X.CLRDES.KEYLN16,Y.CLRDES.KEYLN16,Z.CLRDES.KEYLN16)

Example 4 – ADD control statement to add a range of CLRDES key

labels

This example shows a control statement that adds a range of CLRDES key labels.

A different key value is generated for each key label.

ADD TYPE(CLRDES) LENGTH(24),RAN(CLRDES.KEYLN24.KEY1,CLRDES.KEYLN24.KEY3)

 33

Example 5 – UPDATE control statement with CLRDES keyword

This example shows a control statement that changes a CLRDES key label.

UPDATE TYPE(CLRDES),KEY(4343434343434343),LAB(CLRDES.KEYLN8)

Example 6 – UPDATE control statement with CLRDES keyword

This example shows a control statement that changes a range of CLRDES key

labels.

UPDATE TYPE(CLRDES) LENGTH(16),RAN(CLRDES.KEY1,CLRDES.KEY3)

Example 7 – DELETE control statement with CLRDES keyword

This example shows a control statement that deletes a CLRDES key label.

DELETE TYPE(CLRDES),LAB(CLRDES.KEYLN24)

Example 8 – DELETE control statement to delete a group of CLRDES

key labels

This example shows a control statement that deletes a group of CLRDES key

labels.

DELETE TYPE(CLRDES),LAB(A.KEYLN16,B.KEYLN16,C.KEYLN16)

Example 9 – RENAME Control Statement with CLRDES Keyword

This example shows a control statement that renames a CLRDES key label.

RENAME TYPE(CLRDES),LAB(CLRDES.KEYLN16,CLRDES.DOUBLE.LENGTH.KEY)

Panels

This is the changed panel.

 This is an example of the filled in panel.

 CSFCSE12-------- ICSF - Key Type Selection Panel ---- ROW 1 TO 13 OF 11

 COMMAND ===> SCROLL ===> PAGE

 Select one key type only

 KEY TYPE DESCRIPTION

 CLRDES Clear Encryption/Decryption key

 DATA Encryption/Decryption key

 DATAM Double-length MAC generation key

 DATAMV Double-length MAC verification key

 DATAXLAT Cipher Text Translate key

 EXPORTER Export key-encrypting key

 IMPORTER Import key-encrypting key

 IPINENC Input PIN-encrypting key

 MAC MAC generate key

 MACVER MAC verify key

 NULL Used to create CKDS records

 OPINENC Output PIN-encrypting key

 PINGEN PIN generation key

 PINVER PIN verification key

********************************BOTTOM OF DATA*********************************

Figure 1. Selecting a Key on the Key Type Selection Panel

34 APAR OA08172 – December, 2004

CSFCSE10 --- ICSF - Create ADD, UPDATE, or DELETE Key Statement -----------

 COMMAND ===>

 Specify control statement information below

 Function ===> add___ ADD, UPDATE, or DELETE

 Key Type ===> clrdes___ Outtype ===> ________ (Optional)

 Label ===> clrdes.keyln16 ____________________________________

 Group Labels ===> NO_ NO or YES

 or Range:

 Start ===> __

 End ===> __

 Transport Key Label(s)

 ===> __

 ===> __

 or Clear Key ===> NO_ NO or YES

 Control Vector ===> YES NO or YES

 Length of Key ===> 16 8, 16 or 24

 Key Values ===> ________________ ,_______________ ,________________

 Comment Line ===> generate a clear DES 16 byte key _________________

 Press ENTER to create and store control statement

 Press END to exit to the previous panel without saving

Figure 2. Sample ADD Key Statement Panel

KGUP Updates 35

36 APAR OA08172 – December, 2004

Format of the Clear Key Token

Table 11 shows the format for a clear internal key token.

 Table 11. Internal Clear Key Token Format

Bytes Description

0 X'01' (flag indicating this is an internal key token)

1–3 Implementation-dependent bytes (X'000000' for ICSF)

4 Key token version number (X'00' or X'01')

5 Reserved (X'00')

6 Flag byte

Bit Meaning When Set On

0 Encrypted key and master key verification pattern (MKVP) are present. This will be off for

clear keys.

1 Control vector (CV) value in this token has been applied to the key. This will be off for

clear keys.

2–7 reserved

7-15 Reserved (X'00')

16–23 A single-length key, the left half of a double-length key, or Part A of a triple-length key.

24–31 X'0000000000000000' if a single-length key, or the right half of a double-length operational key, or

Part B of a triple-length operational key.

32–47 Reserved for clear key tokens (X'00’s')

48–55 X'0000000000000000' if a single-length key or double-length key, or Part C of a triple-length

operational key.

56-58 Reserved (X'000000')

59 bits 0 and 1 B'00' reserved

59 bits 2 and 3 B'00' Indicates single-length key (version 0 only).

B'01' Indicates double-length key (version 1 only).

B'10' Indicates triple-length key (version 1 only).

59 bits 4 –7 B'0000'

60–63 Token validation value (TVV).

 37

	Contents
	Overview
	Support Description
	Requirements
	Changed Callable Services
	KGUP
	KGUP TSO Panels

	Sharing the CKDS
	Message Changes
	New Reason Code for Return Code 4 (4)
	New Reason Code for Return Code 8 (8)
	Clear Key Token

	Key Record Read (CSNBKRR)
	Format
	Parameters
	Restrictions
	Usage Notes

	Key Token Build (CSNBKTB)
	Format
	Parameters
	Usage Notes
	Related Information

	Symmetric Key Decipher (CSNBSYD and CSNBSYD1)
	Choosing Between CSNBSYD and CSNBSYD1
	Format
	Parameters
	Usage Notes
	Related Information

	Symmetric Key Encipher (CSNBSYE and CSNBSYE1)
	Choosing between CSNBSYE and CSNBSYE1
	Format
	Parameters
	Usage Notes
	Related Information

	KGUP Updates
	Examples of Control Statements
	Example 1 – ADD control statement with CLRDES keyword
	Example 2 – ADD control statement to add a group of CLRDES key labels
	Example 3 – ADD control statement to add a group of CLRDES key labels
	Example 4 – ADD control statement to add a range of CLRDES key labels
	Example 5 – UPDATE control statement with CLRDES keyword
	Example 6 – UPDATE control statement with CLRDES keyword
	Example 7 – DELETE control statement with CLRDES keyword
	Example 8 – DELETE control statement to delete a group of CLRDES key labels
	Example 9 – RENAME Control Statement with CLRDES Keyword

	Panels

	Format of the Clear Key Token

