
1 CCA and PKCS #11 Algorithm Currency – APAR OA61253

z/OS IBM

Cryptographic Services

Integrated Cryptographic Service Facility

CCA and PKCS #11 Algorithm Currency

APAR OA61253

2 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Table of Contents
Chapter 1. Overview ... 4

Chapter 2. Update of z/OS Cryptographic Services ICSF Overview, SC14-7505-10, information 5

Summary of callable service support by hardware configuration .. 5

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator's Guide, SC14-7506-10,

information... 6

Managing cryptographic keys .. 6

Using KGUP control statements .. 8

Callable services affected by key store policy ... 9

Callable services that trigger reference date processing .. 9

Resource names for CCA and ICSF entry points .. 9

Chapter 4. Update of z/OS Cryptographic Services ICSF System Programmer's Guide, SC14-7507-10,

information... 10

Parameters in the installation options data set.. 10

Migration .. 11

Diagnosis reference information .. 13

ICSF SMF records ... 14

Resource names for CCA and ICSF entry points .. 15

Chapter 5. Update of z/OS Cryptographic Services ICSF Application Programmer's Guide, SC14-7508-

10, information .. 16

Managing personal authentication .. 16

Australian Payment Network support .. 16

Summary of callable services .. 17

Summary of the PKA callable services .. 17

PKCS #11 services .. 17

Diversified Key Generate (CSNBDKG and CSNEDKG) ... 18

Diversified Key Generate2 (CSNBDKG2 and CSNEDKG2) ... 27

Diversify Directed Key (CSNBDDK and CSNEDDK) .. 35

Random Number Generate (CSNBRNG, CSNERNG, CSNBRNGL and CSNERNGL) 45

Symmetric Key Export (CSNDSYX and CSNFSYX) ... 50

Symmetric Algorithm Decipher (CSNBSAD or CSNBSAD1 and CSNESAD or CSNESAD1) 60

Symmetric Algorithm Encipher (CSNBSAE or CSNBSAE1 and CSNESAE or CSNESAE1) 68

Enhanced PIN security .. 79

Encrypted PIN Translate (CSNBPTR and CSNEPTR) ... 80

Encrypted PIN Translate2 (CSNBPTR2 and CSNEPTR2) ... 82

Encrypted PIN Verify2 (CSNBPVR2 and CSNEPVR2) ... 84

PIN Change/Unblock (CSNBPCU and CSNEPCU) .. 94

Secure Messaging for PINs (CSNBSPN and CSNESPN) .. 96

3 CCA and PKCS #11 Algorithm Currency – APAR OA61253

SET Block Decompose (CSNDSBD and CSNFSBD) ... 99

DK PIN Change (CSNBDPC and CSNEDPC) .. 100

DK PIN Verify (CSNBDPV and CSNEDPV) .. 115

Using digital signatures ... 121

Digital Signature Generate (CSNDDSG and CSNFDSG) ... 122

Digital Signature Verify (CSNDDSV and CSNFDSV) .. 132

PKA Key Translate (CSNDPKT and CSNFPKT) ... 145

ICSF Query Facility2 (CSFIQF2 and CSFIQF26) ... 157

PKCS #11 Private Key Sign (CSFPPKS and CSFPPKS6) ... 161

PKCS #11 Public Key Verify (CSFPPKV and CSFPPKV6) ... 164

PKCS #11 Secret Key Reencrypt (CSFPSKR and CSFPSKR6) .. 167

ICSF and cryptographic coprocessor return and reason codes .. 171

Access control points and callable services .. 172

Resource names for CCA and ICSF entry points .. 173

CCA release levels .. 174

Chapter 6. Update of z/OS Cryptographic Services ICSF Writing PKCS #11 Applications, SC14-7510-08,

information... 176

Key types and mechanisms supported ... 176

PKCS #11 Coprocessor Access Control Points .. 178

4 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Chapter 1. Overview
This document describes changes to the Integrated Cryptographic Service Facility (ICSF)

product in support of the following changes for CCA and PKCS #11 algorithm currency:

• Enhancement for CCA services

o Enhancements for German Banking Industry Committee (DK)

o New service Encrypted PIN Verify2 (CSNBPVR2 and CSNEPVR2)

o Australian Payment Network enhancements in support of standard AS2805.5.4

o Support for the Schnorr digital signature algorithm

o Support for key exchange with Azure Cloud services.

o New key usage values for AES CIPHER keys in Key Generator Utility Program

• Enhancements to PKCS #11 services

o New service PKCS #11 Secret Key Reencrypt (CSFPSKR and CSFPSKR6).

o Enhancements for Koblitz elliptic curves.

These changes are available through the application of the PTF for APAR OA61253 and

apply to FMID HCR77D1 and HCR77D2.

This document contains alterations to information previously presented in the following

books:

• z/OS Cryptographic Services ICSF Application Programmer’s Guide, SC14-7508-10

• z/OS Cryptographic Services ICSF Administrator's Guide, SC14-7506-1

• z/OS Cryptographic Services ICSF System Programmer’s Guide, SC14-7507-10

• z/OS Cryptographic Services ICSF Overview SC14-7505-10

• z/OS Cryptographic Services ICSF Writing PKCS #11 Applications SC14-7510-08

The technical changes made to the ICSF product by the application of the PTF for APAR

OA61253 are indicated in this document by red text.

5 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Chapter 2. Update of z/OS Cryptographic Services ICSF Overview, SC14-

7505-10, information
This topic contains updates to the document z/OS Cryptographic Services ICSF Overview, SC14-

7505-09, for the updates provided by this APAR. Refer to this source document if background

information is needed.

Summary of callable service support by hardware configuration

Table 1. Services that require a CCA coprocessor

Service Name Function A B C D E F

Encrypted PIN
Verify2

Compares a supplied PIN against a
reference PIN in encrypted PIN blocks.

 X

Table 2. Summary of PKCS #11 callable services support

Service Name Function

PKCS #11 Secret Key Reencrypt Decrypts and re-encrypts data using secure secret
keys

6 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Chapter 3. Update of z/OS Cryptographic Services ICSF Administrator's

Guide, SC14-7506-10, information
This topic contains updates to the document z/OS Cryptographic Services ICSF Administrator’s

Guide, SC14-7506-04, for the updates provided by this APAR. Refer to this source document if

background information is needed.

Managing cryptographic keys

Table 3. Key Store Policy controls

The following Key Store
Policy Controls

Consists of the following
XFACILIT class discrete
profiles:

Description:

Archived Key for Data
Decryption Use control

Specifies that ICSF
allows an application to
use the key material of a
CKDS or TKDS record that
has been archived for
only data decrypt
operations

CSF.KDS.KEY.ARCHIVE.DATA.DECRYP
T

Enables the Archived Key for Data
Decryption Use control. The Key
Archive Use control need not be active.

When this control is enabled, an archived
data-encryption key is allowed to be
used in a service that does data
decryption. The key is allowed to be use
with these services that do data
decryption.

These services do data decryption:
• Decipher (CSNBDEC, CSNEDEC,

CSNBDEC1, and CSNEDEC1).
• Ciphertext Translate2 (CSNBCTT2,

CSNECTT2, CSNBCTT3, and
CSNECTT3):

– Inbound key identifier .
• Symmetric Algorithm Decipher

(CSNBSAD, CSNESAD,
CSNBSAD1, and CSNESAD1).

• Symmetric Key Decipher
(CSNBSYD, CSNESYD,
CSNBSYD1, and CSNESYD1).

• Field Level Decipher (CSNBFLD and
CSNEFLD).

• FPE Decipher (CSNBFPED and
CSNEFPED).

• FPE Translate (CSNBFPET and
CSNEFPET):

– Inbound key identifier.
• Format Preserving Algorithms

Decipher (CSNBFFXD and
CSNEFFXD.

• Format Preserving Algorithms
Translate (CSNBFFXT and
CSNEFFXT):

– Inbound key identifier.

7 CCA and PKCS #11 Algorithm Currency – APAR OA61253

• PKCS #11 Secret key decrypt
(CSFPSKD and CSFPSKD6).

• PKCS #11 Secret Key Reencrypt
(CSFPSKR and CSFPSKR6)

– Inbound (decryption) key
object

When this control is enabled, an archived
data encryption key is not allowed to be
used in a service that does data
encryption. The service request fails with
these services that do data encryption:
• Encipher (CSNBENC, CSNEENC,

CSNBENC1, and CSNEENC1).
• Ciphertext Translate2 (CSNBCTT2,

CSNECTT2, CSNBCTT3, and
CSNECTT3):

– Outbound key identifier.
• Symmetric Algorithm Encipher

(CSNBSAE, CSNESAE,
CSNBSAE1, and CSNESAE1).

• Symmetric Key Encipher
(CSNBSYE, CSNESYE,
CSNBSYE1, and CSNESYE1).

• Field Level Encipher (CSNBFLE and
CSNEFLE).

• FPE Encipher (CSNBFPEE and
CSNEFPEE).

• FPE Translate (CSNBFPET and
CSNEFPET):

– Outbound key identifier.
• Format Preserving Algorithms

Encipher (CSNBFFXE and
CSNEFFXE).

• Format Preserving Algorithms
Translate (CSNBFFXT and
CSNEFFXT):

– Outbound key identifier.
• PKCS #11 Secret Key Encrypt

(CSFPSKE and CSFPSKE6).
• PKCS #11 Secret Key Reencrypt

(CSFPSKR and CSFPSKR6)
– Outbound (encryption) key

object

8 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Using KGUP control statements

Syntax of the ADD and UPDATE control statements

KEYUSAGE(key-usage-value[,key-usage-value]...)

This keyword defines key usage values for the key that is being generated. The usage

values are used to restrict a key to a specific algorithm or usage.

The associated data for variable length tokens is described in Appendix B of the

Application Programmer's Guide. The DES control vector is described in Appendix C. of

the Application Programmer's Guide.

The following values have been defined. The usage values are specific to a key type. The

values can only be specified for the key type that is indicated in the following tables.

Note: Any value with a non-alphanumeric character must be enclosed in quotes when

specified with the KEYUSAGE keyword. For example:

KEYUSAGE('CVVKEY-A')

When a pair of keys is generated, one for the local system and the other for a remote

system, both keys are generated with the same key-usage flags when the KEYUSAGE

keyword is used.

Table 4. Usage values for key types

Key type Key
algorithm

Key Usage Values

CIPHER AES The following values are optional: C-XLATE, V1PYLD
and
One of following value is optional: ANY-MODE, FF1, FF2,
FF2.1, GCM
and
One or both can be specified: DECRYPT, ENCRYPT.

Note: The key generated when KEYUSAGE is not specified
has only the DECRYPT and ENCRYPT key-usage. This is
the default.
Note: When no encryption mode keyword is specified, the
encryption mode will default to CBC.

Table 5. Meaning of usage values

Key Usage
Value

Key types Meaning

ANY-MODE CIPHER This key can be used for any encryption mode.

FF1 CIPHER This key can be used for Format Preserving method FF1.

FF2 CIPHER This key can be used for Format Preserving method FF2

FF2.1 CIPHER This key can be used for Format Preserving method FF2.1.

GCM CIPHER This key can be used for Galois/counter mode.

9 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Callable services affected by key store policy

Table 6. Callable services and parameters affected by key store policy

ICSF callable service 31-bit name Parameter checked

Encrypted PIN Verify2 CSNBPVR2 input_PIN_encrypting_key_identifier
reference_PIN_encrypting_key_identifier

Random Number Generate
Long

CSNBRNGL key_identifier

Symmetric Algorithm
Encipher

CSNBSAE key_identifier
key_parms when the parameter is used
to pass a key identifier to the service

Callable services that trigger reference date processing

Table 7. Callable services and parameters that trigger reference date processing

ICSF callable service 31-bit name Parameter checked

Encrypted PIN Verify2 CSNBPVR2 input_PIN_encrypting_key_identifier
reference_PIN_encrypting_key_identifier

Random Number Generate
Long

CSNBRNGL key_identifier

Symmetric Algorithm
Encipher

CSNBSAE key_identifier
key_parms when the parameter is used to
pass a key identifier to the service

PKCS #11 Secret Key
Reencrypt

CSFPSKR decrypt_key_handle
encrypt_key_handle

Resource names for CCA and ICSF entry points

Table 8. Resource names for CCA and ICSF entry points

Descriptive
service
name

CCA entry point name ICSF entry point name SAF
resource
name

Callable
service
exit
name

Encrypted
PIN Verfiy2

CSNBPVR2 CSNBEPVR2 CSFPVR2 CSFPVR26 CSFPVR2 CSFPVR2

PKCS #11
Secret Key
Reencrypt

N/A N/A CSFPSKR CSFPSKR6 CSF1SKR1 N/A

Notes:

– 1 CSF1xxx is just another name for the CSFPxxx service.

10 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Chapter 4. Update of z/OS Cryptographic Services ICSF System

Programmer's Guide, SC14-7507-10, information
This topic contains updates to the document z/OS Cryptographic Services ICSF System

Programmer’s Guide, SC14-7507-09, for the updates provided by this APAR. Refer to this source

document if background information is needed.

Parameters in the installation options data set

TRACKCLASSUSAGE(class1[,class2])

Indicates information about tracking key usage by classes of cryptographic operations.

Reference date tracking must be enabled. See the KDSREFDAYS parameter description.

ICSF tracks the usage of keys in the common record format CKDS, PKDS, and TKDS.

The usage is recorded in the metadata for the key record as the last date any service in a

class was called. The reference period is the same as the reference date tracking. See

the KDSREFDAYS parameter description.

The supported cryptographic classes are:

DATADEC

Symmetric keys data decryption operations.

When a symmetric key is referenced for these services, the date is recorded.

• Decipher (CSNBDEC, CSNEDEC, CSNBDEC1, and CSNEDEC1).

• Ciphertext Translate2 (CSNBCTT2, CSNECTT2, CSNBCTT3, and

CSNECTT3):

o Inbound key identifier.

• Symmetric Algorithm Decipher (CSNBSAD, CSNESAD, CSNBSAD1, and

CSNESAD1).

• Symmetric Key Decipher (CSNBSYD, CSNESYD, CSNBSYD1, and

CSNESYD1).

• Field Level Decipher (CSNBFLD and CSNEFLD).

• FPE Decipher (CSNBFPED and CSNEFPED).

• FPE Translate (CSNBFPET and CSNEFPET):

o Inbound key identifier.

• Format Preserving Algorithms Decipher (CSNBFFXD and CSNEFFXD).

• Format Preserving Algorithms Translate (CSNBFFXT and CSNEFFXT).

o Inbound key identifier.

• PKCS #11 Secret Key Decrypt (CSFPSKD and CSFPSKD6).

• PKCS #11 Secret Key Reencrypt (CSFPSKR and CSFPSKR6)

o Inbound key identifier.

DATAENC

Symmetric keys data encryption operations.

When a symmetric key is referenced for these services, the date is recorded.

11 CCA and PKCS #11 Algorithm Currency – APAR OA61253

• Encipher (CSNBENC, CSNEENC, CSNBENC1, and CSNEENC1).

• Ciphertext Translate2 (CSNBCTT2, CSNECTT2, CSNBCTT3, and

CSNECTT3):

– Outbound key identifier.

• Symmetric Algorithm Encipher (CSNBSAE, CSNESAE, CSNBSAE1, and

CSNESAE1).

• Symmetric Key Encipher (CSNBSYE, CSNESYE, CSNBSYE1, and

CSNESYE1).

• Field Level Encipher (CSNBFLE and CSNEFLE).

• FPE Encipher (CSNBFPEE and CSNEFPEE).

• FPE Translate (CSNBFPET and CSNEFPET):

– Outbound key identifier.

• Format Preserving Algorithms Encipher (CSNBFFXE and CSNEFFXE).

• Format Preserving Algorithms Translate (CSNBFFXT and CSNEFFXT):

– Outbound key identifier.

• PKCS #11 Secret key encrypt (CSFPSKE and CSFPSKE6).

• PKCS #11 Secret Key Reencrypt (CSFPSKR and CSFPSKR6)

– Outbound key identifier.

Migration

Callable services

For complete reference information on these callable services, see z/OS Cryptographic Services

ICSF Application Programmer's Guide.

Note: When an APAR number is listed in the FMID column along with an ICSF FMID, the FMID is

the earliest release where the new function is supported.

Table 9. Summary of new and changed ICSF callable services

Callable service FMID Description

Digital Signature
Generate

HCR77D1
OA61253

Changed: Support for Schnorr digital signature algorithm.

Digital Signature
Verify

HCR77D1
OA61253

Changed: Support for Schnorr digital signature algorithm.

Diversified Key
Generate

HCR77D1
OA61253

Changed: Support for AusPayNet key derivation
algorithms.

Diversified Key
Generate2

HCR77D1
OA61253

Changed: Change derivation data length restrictions for
KDFFM-DK. Add initialization vector support.

Diversify Directed
Key

HCR77D1
OA61253

Changed: KTV changes for PINPROT and ISO-4

DK PIN Change HCR77D1
OA61253

Changed: Support for General ISO PIN error mode. Allow
specifying script MAC length via parameter.

DK PIN Verify HCR77D1
OA61253

Changed: Support for General ISO PIN error mode

Encrypted PIN
Translate

HCR77D1
OA61253

Changed: Support for General ISO PIN error mode

Encrypted PIN
Translate2

HCR77D1
OA61253

Changed: Support for General ISO PIN error mode

Encrypted PIN
Verify2

HCR77D1
OA61253

New: Verify a trial PIN against a reference PIN in an
encrypted PIN block.

12 CCA and PKCS #11 Algorithm Currency – APAR OA61253

PKA Key Translate HCR77D1
OA61253

Changed: Support for translating CCA PKA key token to
Azure object format.

Random Number
Generate Long

HCR77D1
OA61253

Changed: Support for encrypting the returned random
number under a cipher key.

Symmetric Algorithm
Decipher

HCR77D1
OA61253

Changed: Add support for X9.23 padding.

Symmetric Algorithm
Encipher

HCR77D1
OA61253

Changed: Add support for X9.23 padding.
Changed: Support for AusPayNet MAC generation and
verification.

Symmetric Key
Export

HCR77D1
OA61253

Changed: Support for translating CCA AES key token to
Azure object format.

CCA access control

For complete reference information on these CCA access controls, see z/OS Cryptographic

Services ICSF Application Programmer's Guide.

Note: When an APAR number is listed in the FMID column along with an ICSF FMID, the FMID is

the earliest release where the new access control is supported

Table 10. Summary of new and changed CCA access controls

Access control Description FMID or APAR
number

Services
affected

Offset

General ISO PIN Error Mode New HCR77D1
OA61253

CSNBDPC
CSNBDPV
CSNBPTR
CSNBPTR2

039F

Encrypted PIN Translate - Translate
PIN Check Mode

New HCR77D1
OA61253

CSNBPTR
CSNBPTR2

03A0

Encrypted PIN Verify2 - REFPIN New HCR77D1
OA61253

CSNBPVR2

03B0

Encrypted PIN Verify2 - TRUNCPIN New HCR77D1
OA61253

CSNBPVR2

03B1

Symmetric Algorithm Encipher - allow
A28MACGN and A28MACVR

New HCR77D1
OA61253

CSNBSAE

03B2

Symmetric Algorithm Encipher - allow
A28OWFCL

New HCR77D1
OA61253

CSNBSAE

03B3

Symmetric Algorithm Encipher - allow
A28OWFEC

New HCR77D1
OA61253

CSNBSAE

03B4

Random Number Generate Long -
TDES-CBC

New HCR77D1
OA61253

CSNBRNGL

03B5

PKA Key Translate - From CCA RSA
to CKM-RAKW format

New HCR77D1
OA61253

CSNDPKT

03B6

PKA Key Translate - From CCA ECC
to CKM-RAKW format

New HCR77D1
OA61253

CSNDPKT

03B7

Symmetric Key Export - CKM-RAKW New HCR77D1
OA61253

CSNDSYX

03B8

Diversified Key Generate -
A28OWFEC

New HCR77D1
OA61253

CSNBDKG

03B9

Diversified Key Generate -
A28OWFCL

New HCR77D1
OA61253

CSNBDKG

03BA

Diversified Key Generate -
A28XOREC

New HCR77D1
OA61253

CSNBDKG

03BB

13 CCA and PKCS #11 Algorithm Currency – APAR OA61253

CICS attachment facility

If you have the CICS Attachment Facility installed and you specify your own CICS wait list data

set, you need to modify the wait list data set to include the new callable services.

Modify and include:

For FMID HCR77D1:

CSFFFXD, CSFFFXE, CSFFFXT (APAR OA59593).

CSFPVR2, CSFPSKR (APAR OA61253)

Resource Manager Interface (RMF)

Support to enable RMF to provide performance measurements on these selected ICSF services

and functions. The measurements refer to these services processing on cryptographic

coprocessors except for one-way hash. One-way hash is processed on CPACF.

• Decipher (CSNBDEC)

• Digital Signature Generate (CSNDDSG)

• Digital Signature Verify (CSNDDSV)

• Encipher (CSNBENC)

• Encrypted PIN Translate (CSNBPTR)

• Encrypted PIN Translate2 (CSNBPTR2)

• Encrypted PIN Translate Enhanced (CSNBPTRE)

• Encrypted PIN Verify (CSNBPVR)

• Encrypted PIN Verify2 (CSNBPVR2)

• Format Preserving Algorithms Decipher (CSNBFFXD)

• Format Preserving Algorithms Encipher (CSNBFFXE)

• Format Preserving Algorithms Translate (CSNBFFXT)

• FPE Decipher (CSNBPFED)

• FPE Encipher (CSNBPFEE)

• FPE Translate (CSNBPFET)

• MAC Generate (CSNBMGN)

• MAC Generate2 (CSNBMGN2)

• MAC Verify (CSNBMVR)

• MAC Verify2 (CSNBMVR2)

• One-Way Hash (CSNBOWH)

• Symmetric Algorithm Decipher (CSNBSAD)

• Symmetric Algorithm Encipher (CSNBSAE)

Diagnosis reference information

RMF measurements table

Table 116 on page 373 describes the contents of the performance measurements for RMF. The count
fields are double-word length.

14 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Table 11. RMF measurements record format

Offset (Dec) Number of
Bytes

Field name Description

272 8 DACC_ENT_ID Identifier of count array - character PVR. The
PIN Verify and PIN Verify2 services will collect
data as follows:
• Collect the number of service calls only.

280 8 DACC_ENT_SVC_CNT Count of PVR service calls.

ICSF SMF records

Table 12. Subtype 48 Compliance warning event

Dec Hex Name Length Format Description

264 108 SMF82_TAG_TOK_FMT 1 binary The format of the token.
X'01'

Fixed length CCA token.
X'02'

Variable length CCA token.
X'03'

TR-31 key block.
X'04'

RKX token.
X'05'

RSA DSI PKCS #1 V2 OAEP format
(PKCSOAEP).

X'06'
RSA DSI PKCS #1 block type 02
format (PKCS-1.2).

X'07'
Zero padded (ZERO-PAD).

X'08'
PKA92 format (PKA92).

X'09'
EMV or Smart Card format (EMVCRT,
EMVDDA, EMVDDAE,
SCCOMCRT, SCCOMME, or
SCVISA).

X'0A'
Azure key object (CKM_RAKW)

Notes:
1. When format is X'04' or greater, no
other key or token-related
fields are present.
2. When format is TR-31 key block, the
only other key or token related field that
can be present is the key fingerprint.

15 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Resource names for CCA and ICSF entry points

Table13. Resource names for CCA and ICSF entry points

Descriptive
service
name

CCA entry point name ICSF entry point name SAF
resource
name

Callable
service exit
name

Encrypted
PIN Verfiy2

CSNBPVR2 CSNBEPVR2 CSFPVR2 CSFPVR26 CSFPVR2 CSFPVR2

PKCS #11
Secret Key
Reencrypt

N/A N/A CSFPSKR CSFPSKR6 CSF1SKR1 N/A

Notes:

– 1 CSF1xxx is just another name for the CSFPxxx service.

16 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Chapter 5. Update of z/OS Cryptographic Services ICSF Application

Programmer's Guide, SC14-7508-10, information
This topic contains updates to the document z/OS Cryptographic Services ICSF

Application Programmer’s Guide, SC14-7508-09, for the updates provided by this APAR.

Refer to this source document if background information is needed.

Managing personal authentication

Verifying credit card data

Encrypted PIN Verify2 Callable Service (CSNBPVR2 and CSNEPVR2)

To verify a supplied PIN against a reference PIN, call the Encrypted PIN verify2 callable service.
You need to specify the supplied enciphered PIN block, the reference enciphered PIN block, the
PIN-encrypting keys that encipher the blocks, and other relevant data. The service compares the
two personal identification numbers; if they are the same, it verifies the supplied PIN. IBM 3624,
ISO-0, ISO-1, ISO-2, ISO-3, and ISO-4 PIN block formats are supported. See Chapter 8,
“Financial services,” on page 667 for additional information.

An enhanced PIN security mode is available for extracting PINs from encrypted PIN blocks. This
mode only applies when specifying a PIN-extraction method for an IBM 3621 or an IBM 3624
PIN-block. See “Encrypted PIN Verify2 (CSNBPVR and CSNEPVR2)” on page XXX for more
information.

Australian Payment Network support

This topic describes the support for the Australian Payment Network that based on standard
AS2805.5.4.

Key derivation

CSNBDKG supports key derivation to meet the needs of the APN.
CSNBRNGL supports encrypting the output under a data-encrypting key.

MAC generation

CSNBSAE supports generating and verifying MACs and related processing.

17 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Summary of callable services

Table 14. Summary of ICSF callable services

Service Service name Function

Chapter 8, “Financial services,” on page 667

CSNBPVR2
CSNEPVR2

Encrypted PIN Verify2 Verifies a supplied PIN against a
reference PIN. DUKPT
keywords are supported.

Summary of the PKA callable services

Table 15. Summary of PKA callable services

Service Service Name Function

Chapter 12, “Managing PKA cryptographic keys,” on page 1059

CSNDPKT
CSNFPKT

PKA key translate Translates a CCA RSA key token to a smart card format
or a PKCS #11 object.
Convert an CCA RSA key token with a DES OPK to a
token with an AES OPK.
Convert CCA PKA key token to a compliant-tagged
token.

PKCS #11 services

PKCS #11 tokens and objects

ICSF provides callable services that support PKCS #11 token and object creation and use. The
following table summarizes these callable services. For complete syntax and reference
information, refer to Chapter 16, “Using PKCS #11 tokens and objects,” on page 1183

Table 16. Summary of PKCS #11 callable services

Verb Service Name Function

PKCS #11 Secret Key
Reencrypt

CSFPSKR Decrypts and re-encrypts
data using secure secret
keys

18 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Diversified Key Generate (CSNBDKG and CSNEDKG)
Use the Diversified Key Generate service to generate a key based on the key-generating key, the

processing method, and the parameter supplied. The control vector of the key-generating key

also determines the type of target key that can be generated.

To use this service, specify:

• The rule array keyword to select the diversification process.

• The operational key-generating key from which the diversified keys are generated. The

control vector associated with this key restricts the use of this key to the key generation

process. This control vector also restricts the type of key that can be generated.

• The data and length of data used in the diversification process.

• The generated-key may be an internal token or a skeleton token containing the desired CV of

the generated-key. The generated key CV must be one that is permitted by the processing

method and the key-generating key. The generated-key will be returned in this parameter.

• A key generation method keyword.

This service generates diversified keys as follows:

• Determines if it can support the process specified in rule array.

• Recovers the key-generating key and checks the key-generating key class and the specified

usage of the key-generating key.

• Determines that the control vector in the generated-key token is permissible for the specified

processing method.

• Determines that the control vector in the generated-key token is permissible by the control

vector of the key-generating key.

• Determines the required data length from the processing method and the generated-key CV.

Validates the data_length.

• Generates the key appropriate to the specific processing method. Adjusts parity of the key to

odd.

Creates the internal token and returns the generated diversified key.

The callable service name for AMODE(64) invocation is CSNEDKG.

Format

CALL CSNBDKG(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 generating_key_identifier,

 data_length,

 data,

 data_decrypting_key_identifier,

 generated_key_identifier)

Parameters

return_code

19 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1283 lists the return

codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes assigned to it that

indicate specific processing problems.Appendix A, “ICSF and cryptographic coprocessor

return and reason codes,” on page 1283 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The data is identified in the

exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The only valid value is

1, 2, or 3.

rule_array

Direction Type

Input/Output String

Keywords that provide control information to the callable service. The processing method

is the algorithm used to create the generated key. The keywords must be 8 bytes of

contiguous storage with the keyword left-justified in its 8-byte location and padded on the

right with blanks.

Table 17. Rule Array Keywords for Diversified Key Generate

Keyword Meaning

Processing Method for generating or updating diversified keys (required)

A28OWFCL Specifies that 16 bytes of clear data will be processed as described in
AS2805.5.4 to create the generated key. The data parameter will be
processed by the AusPayNet One Way Function using a double-length
key-encrypting key to generate a new key-encrypting key.

20 CCA and PKCS #11 Algorithm Currency – APAR OA61253

A28OWFEC Specifies that 16 bytes of data encrypted using the
data_decrypting_key_identifier will be processed as described in
AS2805.5.4 to create the generated key. The data parameter will be
processed by the AusPayNet One Way Function using a double-length
key-encrypting key to generate a new key-encrypting key. The data
parameter should contain the data wrapped as follows: data =
wrap(PPASN) || wrap(PPASN)

A28XORE Specifies that 16 bytes of data encrypted using the
data_decrypting_key_identifier will be processed as specified in
AS2805.5.4 to generate a key-encrypting key.

CLR8-ENC Specifies that 8-bytes of clear data shall be multiply-encrypted with the
generating key. The generating_key_identifier must be a KEYGENKY
key type with bit 19 of the control vector set to 1. The control vector in
generated_key_identifier must specify a single-length key. The key
type may be DATA, MAC, or MACVER.
Note: CIPHER class keys are not supported.

SESS-XOR Modifies an existing DATA, DATAC, MAC, DATAM, MACVER, or
DATAMV single-length or double-length key. Specifies the VISA
method for session key generation. Data supplied may be 8 or 16
bytes of data depending on whether the generating_key_identifier is a
single or double length key. The 8 or 16 bytes of data is XORed with
the clear value of the generating_key_identifier. The
generated_key_identifier has the same control vector as the
generating_key_identifier. The generating_key_identifier may be
DATA/DATAC, MAC/DATAM or MACVER/DATAMV key types.

TDES-DEC Data supplied may be 8 or 16 bytes of clear data. If the
generated_key_identifier specifies a single length key, then 8-bytes of
data is TDES decrypted under the generating_key_identifier. If the
generated_key_identifier specifies a double length key, then 16-bytes
of data is TDES ECB mode decrypted under the
generating_key_identifier. No formating of data is done prior to
encryption. The generating_key_identifier must be a DKYGENKY key
type, with appropriate usage bits for the desired generated key.

TDES-ENC Data supplied may be 8 or 16 bytes of clear data. If the
generated_key_identifier specifies a single length key, then 8-bytes of
data is TDES encrypted under the generating_key_identifier. If the
generated_key_identifier specifies a double length key, then 16-bytes
of data is TDES ECB mode encrypted under the
generating_key_identifier. No formatting of data is done prior to
encryption. The generating_key_identifier must be a DKYGENKY key
type, with appropriate usage bits for the desired generated key. The
generated_key_identifier may be a single or double length key with a
CV that is permitted by the generating_key_identifier.

TDES-CBC Data supplied must be 16 bytes of clear data. The
generated_key_identifier must specify a double length key, then the 16
bytes of data is TDES-CBC mode encrypted under the
generating_key_identifier. No formatting of data is done prior to
encryption. The generating_key_identifier must be a DKYGENKY key
type, with appropriate usage bits for the desired generated key. The
generated_key_identifier must be a double length key with a CV that is
permitted by the generating_key_identifier.

TDES-XOR Combines the function of the existing TDES-ENC and SESS-XOR into
one step.

21 CCA and PKCS #11 Algorithm Currency – APAR OA61253

The generating key must be a level 0 DKYGENKY and cannot have
replicated halves. The session key generated must be double length
and the allowed key types are DATA, DATAC, MAC, MACVER, SMPIN
and SMKEY. Key type must be allowed by the generating key control
vector.

TDESEMV2 Supports generation of a session key by the EMV 2000 algorithm (This
EMV2000 algorithm uses a branch factor of 2). The generating key
must be a level 0 DKYGENKY and cannot have replicated halves. The
session key generated must be double length and the allowed key
types are DATA, DATAC, MAC, MACVER, SMPIN and SMKEY. Key
type must be allowed by the generating key control vector.

TDESEMV4 Supports generation of a session key by the EMV 2000 algorithm (This
EMV2000 algorithm uses a branch factor of 4). The generating key
must be a level 0 DKYGENKY and cannot have replicated halves. The
session key generated must be double length and the allowed key
types are DATA, DATAC, MAC, MACVER, SMPIN and SMKEY. Key
type must be allowed by the generating key control vector.

Key Wrapping Method (optional)

USECONFG Specifies that the system default configuration should be used to
determine the wrapping method. This is the default keyword.

The system default key wrapping method can be specified using the
DEFAULTWRAP parameter in the installation options data set. See
the z/OS Cryptographic Services ICSF System Programmer's Guide.

WRAP-ENH Use enhanced key wrapping method, which is compliant with the ANSI
X9.24 standard.

WRAPENH3 Specifies to wrap the key using the enhanced wrapping method with
SHA-256 and CMAC authentication code.

WRAP-ECB Use original key wrapping method, which uses ECB wrapping for DES
key tokens and CBC wrapping for AES key tokens.

Translation Control (optional)

ENH-ONLY Restrict rewrapping of the key_identifier token. Once the token has
been wrapped with the enhanced method, it cannot be rewrapped
using the original method. This is the default when the wrapping
method is WRAPENH3.

generating_key_identifier

Direction Type

Input/Output String

The identifier of the key-generating key. The key identifier is a 64 byte operational token

or the key label of an operational token in key storage. The type of key depends on the

processing method.

The key is a DES key-generating key as described in the rule array.

For A28XOREC, this key must be a double-length DES EXPORTER key.

For A28OWFEC, this key must be a double-length DES EXPORTER or DES CIPHER

key.

For A28OWFCL, this key must be a double-length DES CIPHER key.

If the token supplied was encrypted under the old master key, the token is returned

encrypted under the current master key.

22 CCA and PKCS #11 Algorithm Currency – APAR OA61253

data_length

Direction Type

Input Integer

The length of the data parameter in bytes. The required length depends on the

diversification process specified in the rule array and the length of the key identified by

the generated_key_identifier parameter:

Rule-array keyword Key length of generated key Required data length

CLR8-ENC SINGLE 8

A28OWFCL, A28OWFEC,
A28XOREC

DOUBLE 16

TDES-CBC DOUBLE or null key-token 16

TDES-ENC DOUBLE or null key-token 16

SINGLE 8

TDES-DEC DOUBLE or null key-token 16

SINGLE 8

TDESEMV2, TDESEMV4 DOUBLE 10, 18, 26, or 34

TDES-XOR DOUBLE 10 or 18

SESS-XOR DOUBLE 16

SINGLE 8

data

Direction Type

Input String

Data input to the diversified key or session key generation process. Data depends on the

processing method and the generated_key_identifier.

For TDESEMV4 or TDESEMV2, the data is either 18 bytes (36 digits) or 34 bytes 68

digits) of data comprised of:

▪ 16 bytes (32 digits) of card specific data used to create the card specific intermediate

key (UDK) as per the TDES-ENC method. This will typically be the PAN and PAN

Sequence number as per the EMV specifications

▪ 2 bytes (4 digits) of ATC (Application Transaction Count)

▪ (optional) 16 bytes (32 digits) of IV (Initial Value) used in the EMV

data_decrypting_key_identifier

Direction Type

Input/Output String

The key to decrypt the value supplied in the data parameter. When the processing

method rule is A28OWFEC or A28XOREC, this parameter must contain the label or 64-

byte key token of a DES CIPHER or DECIPHER key. The key must be a double-length

key.

Otherwise, this parameter must contain a 64-byte null token.

If the token supplied was encrypted under the old master key, the token is returned

encrypted under the current master key.

23 CCA and PKCS #11 Algorithm Currency – APAR OA61253

generated_key_identifier

Direction Type

Input/Output String

The key to be generated. On input, specify a null token or an internal token or a skeleton

token containing the control vector of the key to be generated. On output, this parameter

contains the generated key.

▪ For the CLR8-ENC, TDESEMV2, TDESEMV4, and TDES-XOR keywords, a null

token must not be specified.

▪ For the TDES-CBC, TDES-ENC, or TDES-DEC keywords, either a null key- token or

an internal key-token must be specified.

▪ For the SESS-XOR and keyword, a null key-token must be specified.

▪ For the A28XOREC keyword, a DES EXPORTER key token or skeleton must be

specified.

▪ For the A28OWFEC keyword, a DES EXPORTER or DES CIPHER key token or

skeleton must be specified. The supplied token must match the key supplied in the

generating_key_identifier parameter.

▪ For the A28OWFCL keyword, a DES CIPHER, DES MAC with sub-type ANY-MAC, or

DES IPINENC key token or skeleton must be specified.

To generate a compliant-tagged key token, a compliant-tagged skeleton token must be

supplied.

When the WRAPENH3 method is selected, a skeleton key token is required. A secure

internal key token wrapped with the WRAPENH3 method obfuscates the key length.

The output generated_key_token will use the default wrapping method unless a rule

array keyword overriding the default is specified.

The DES key wrapping methods available are described in “Key wrapping”.

Restrictions

This callable service does not support version X'10' external DES key tokens (RKX key tokens).

Usage notes

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS or PKDS.

Refer to Appendix C, “Control vectors and changing control vectors with the CVT callable

service,” on page 1429 for information on the control vector bits for the DKG key generating key.

For Session key algorithm (EMV Smartcard specific), a master derivation key (MDK) can be used

in two ways:

• To calculate the Card Specific Key (or UDK) in the personalization process, call this service

with the TDES-ENC or TDES-CBC method using an output token that has been primed with

the CV of the final session key, for instance, if the MDK is a DMPIN, the token should have

the CV of an SMPIN key; DMAC (a double length MAC); DDATA (a double length DATA key),

and so on.

The result would then be exported in the personalization file. This key is not usable in this

form for any other calculations.

24 CCA and PKCS #11 Algorithm Currency – APAR OA61253

• To use the session key, call this service with the TDESEMV4 method. Provide, for input, the

same card data that was used to create the UDK as well as the ATC and optionally the IV

value. This is the key that will be used in EMV related Smartcard processing.

This same processing applies to those API's the generate the session key on your behalf, like

CSNBPCU.

If ICSF is configured to audit the lifecycle of tokens [AUDITKEYLIFECKDS(TOKEN(YES),...) is

specified], an additional request is made to the Crypto Express coprocessor to generate the key

fingerprint to be used for auditing the generated key.

Access control points

The following table shows the access control points in the domain role that control the function of

this service.

Table 18. Required access control points for Diversified Key Generate

Rule array keyword Access control point

CLR8-ENC Diversified Key Generate - CLR8-ENC

A28XOREC Diversified Key Generate - A28XOREC

A28OWFCL Diversified Key Generate - A28OWFCL

A28OWFEC Diversified Key Generate - A28OWFEC

SESS-XOR Diversified Key Generate - SESS-XOR

TDES-DEC Diversified Key Generate - TDES-DEC

TDES-ENC Diversified Key Generate - TDES-ENC

TDES-CBC Diversified Key Generate - TDES-CBC

TDES-XOR Diversified Key Generate - TDES-XOR

TDESEMV2 or TDESEMV4 Diversified Key Generate - TDESEMV2/TDESEMV4

When the key wrapping method keyword specifies a wrapping method that is not the default

method, the Diversified Key Generate - Allow wrapping override keywords access control

must be enabled.

When a key-generating key of key type DKYGENKY is specified with control vector bits (19 – 22)

of B'1111', the Diversified Key Generate - DKYGENKY – DALL access control point must also

be enabled in the domain role.

When using the TDES-ENC or TDES-DEC modes, you can specifically enable generation of a

single-length key or a double-length key with equal key-halves by enabling the Diversified Key

Generate – Single length or same halves access control point.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point is enabled,

this service will fail if the source key is a triple-length DATA key and the DES master key is a 16-

byte key.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 19. Diversified Key Generate required hardware

25 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Server Required
cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

Crypto Express2
Coprocessor

Keywords ENH-ONLY, USECONFG,
WRAP-ENH, WRAP-ECB, TDES-CBC,
A28OWCEC, A28OWFCL, and A28XOREC
not supported.

Enhanced key token wrapping not
supported.

Compliant-tagged key tokens are not
supported.

Rule array keyword WRAPENH3 is not
supported

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor

Keywords ENH-ONLY, USECONFG,
WRAP-ENH, WRAP-ECB, TDES-CBC,
A28OWCEC, A28OWFCL, and A28XOREC
not supported.

Enhanced key token wrapping not
supported.

Compliant-tagged key tokens are not
supported.

Rule array keyword WRAPENH3 is not
supported

Crypto Express3
Coprocessor

Keywords TDES-CBC, A28OWCEC,
A28OWFCL, and A28XOREC are not
supported.

Enhanced key token wrapping not
supported.

Compliant-tagged key tokens are not
supported.

Rule array keyword WRAPENH3 is not
supported.

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

Keywords TDES-CBC, A28OWCEC,
A28OWFCL, and A28XOREC are not
supported.

Compliant-tagged key tokens are not
supported.

Rule array keyword WRAPENH3 is not
supported.

IBM zEnterprise EC12
IBM zEnterprise BC12

Crypto Express3
Coprocessor
Crypto Express4 CCA
Coprocessor

TDES-CBC support requires the Sep. 2013
or later licensed internal code (LIC).

Compliant-tagged key tokens are not
supported.

26 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Rule array keywords WRAPENH3,
A28OWCEC, A28OWFCL, and A28XOREC
are not supported.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not
supported.

Rule array keyword WRAPENH3 requires
the April 2021 or later licensed internal code
(LIC).

Rule array keywords A28OWCEC,
A28OWFCL, and A28XOREC are not
supported.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not
supported.

Rule array keyword WRAPENH3 requires
the April 2021 or later licensed internal code
(LIC).

Rule array keywords A28OWCEC,
A28OWFCL, and A28XOREC are not
supported.

Crypto Express6 CCA
Coprocessor

Rule array keyword WRAPENH3 requires
the April 2021 or later licensed internal code
(LIC).

Rule array keywords A28OWCEC,
A28OWFCL, and A28XOREC are not
supported.

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not
supported.

Rule array keyword WRAPENH3 requires
the April 2021 or later licensed internal code
(LIC).

Rule array keywords A28OWCEC,
A28OWFCL, and A28XOREC are not
supported.

Crypto Express6 CCA
Coprocessor

Rule array keyword WRAPENH3 requires
the April 2021 or later licensed internal code
(LIC).

Rule array keywords A28OWCEC,
A28OWFCL, and A28XOREC are not
supported.

Crypto Express7 CCA
Coprocessor

Rule array keyword WRAPENH3 requires
the April 2021 or later licensed internal code
(LIC).

Rule array keywords A28OWCEC,
A28OWFCL, and A28XOREC require the
CCA release 7.4 or later licensed internal
code.

27 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Diversified Key Generate2 (CSNBDKG2 and CSNEDKG2)
The Diversified Key Generate2 callable service generates an AES key based on a function of a

key-generating key, the process rule, and data that you supply.

To use this service, specify:

• The rule array keyword to select the diversification process.

• The operational AES key-generating key from which the diversified keys are generated.

For a key-generating key with a key-derivation sequence level of 1 or 2:

The type of key created will be a DKYGENKY key with a sequence level one lower than

the key-generating key with the same key usage fields.

For a key-generating key with a key-derivation sequence level of 0:

Key usage field 1 determines the type of key that is generated and restricts the use of

this key to the key-diversification process. If the generating key has related key usage

fields 3 through field 6 defined, these key usage attributes are used to control the

permitted key usage attributes for the key to be generated.

Note: Key usage field 2 of the generating DKYGENKY key contains a flag in its high-

order byte. This flag byte determines how key usage fields 3 and beyond (called the

related generated key usage fields) are used to control the values of the key usage fields

of the generated key:

– When the type of key to diversify is D-ALL, the flag is undefined because there are no

key usage restrictions on the generated key. The generating key has no related

generated key usage fields.

– When the type of key to diversify is not D-ALL and the flag byte has KUF-MBE usage,

the key usage fields of the key to be generated must be equal to the related generated

key usage fields that start with key usage field 3 of the generating key.

– When the type of key to diversify is not D-ALL and the flag byte has KUF-MBP usage,

the key usage fields of the key to be generated must be permissible. In other words, a

key to be diversified is only permitted to have a level of usage less than or equal to the

related key usage fields (key usage fields starting with key usage field 3). One exception

is that the UDX-only setting of the generated key always must be equal to the UDX-ONLY

setting of the generating key.

• The diversification data and length of data used in the diversification process.

• The variable-length AES symmetric-key generated token with a suitable key type and key

usage fields for receiving the diversified key, or a null key token if the type of key to diversify

supports default key usage and a default key is desired.

The callable service name for AMODE(64) invocation is CSNEDKG2.

Format

CALL CSNBDKG2(

28 CCA and PKCS #11 Algorithm Currency – APAR OA61253

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 generating_key_identifier_length,

 generating_key_identifier,

 derivation_data_length,

 derivation_data,

 input_initial_vector_length,

 input_initial_vector,

 reserved2_length,

 reserved2,

 generated_key_identifier1_length,

 generated_key_identifier1,

 generated_key_identifier2_length,

 generated_key_identifier2)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1283 lists the return

codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes assigned to it that

indicate specific processing problems. Appendix A, “ICSF and cryptographic coprocessor

return and reason codes,” on page 1283 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The data is identified in the

exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

29 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value must be 1

or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. The keywords must be

in contiguous storage with each of the keywords left-justified in its own 8-byte location

and padded on the right with blanks.

Table 20. Rule array keywords for Diversified Key Generate2

Keyword Meaning

Diversification Process (required)

KDFFM-DK Specifies to use the DK version of key derivation function in feedback
mode.

This method uses AES CMAC to encipher the 16 to 40 bytes of
derivation data with the k-bit diversified key generating key (banking
association specific master key) to produce a k-bit generated bank
specific Issuer Master Key, where k = 128, 192, or 256.

MK-OPTC Specifies to use the EMV master key derivation option C specified in
EMV Integrated Circuit Card Specifications for Payments Systems.

This method uses AES in ECB mode to encipher the 16 bytes of
derivation data with the k-bit diversified key generating key (Issuer
Master Key) to produce a k-bit generated ICC master key, where k =
128, 192, or 256.

SESS-ENC Specifies to use the EMV common session key derivation option
specified in EMV Integrated Circuit Card Specifications for Payments
Systems.

This method uses AES in ECB mode to encipher the 16 bytes of
derivation data with the k-bit diversified key generating key (ICC
master key) to produce a k-bit generated key (ICC session key),
where k = 128, 192, or 256.

Bit length of generated key (one, optional). Valid only with the KDFFM-DK keyword.
Default is to use the bit length of the generating key as the bit length of the generated
key.

KLEN128 Specifies the bit length of the generated key to be 128.

KLEN192 Specifies the bit length of the generated key to be 192, allowed if and
only if the bit length of the enerating key is greater than or equal to
192.

KLEN256 Specifies the bit length of the generated key to be 256, allowed if and
only if the bit length of the generating key is 256.

IV Usage (One optional) Valid only with process keyword KDFFM-DK.

DEFLT-IV Specifies to use the DK default initial vector value as the IV in the
derivation function. This is the default value.

USE-IV Specifies to use the value specified in the input_initial_vector
parameter as the IV in the derivation function.

30 CCA and PKCS #11 Algorithm Currency – APAR OA61253

generating_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the generating_key_identifier parameter. If the

generating_key_identifier contains a label, the value must be 64. Otherwise, the value

must be between the actual length of the token and 725.

generating_key_identifier

Direction Type

Input/Output String

The identifier of the key-generating key. The key identifier is an operational token or the

key label of an operational token in key storage. The key algorithm of this key must be

AES and the key type must be DKYGENKY. The key usage field indicates the key type of

the generated key. The key length determines the length of the generated key.

If SESS-ENC is specified, the clear length of the generated key is equal to the clear

length of the generating key. If SESS-ENC is specified, the key-derivation sequence level

must be set to DKYL0 in the key usage field 2.

If the token supplied was encrypted under the old master key, the token is returned

encrypted under the current master key.

derivation_data_length

Direction Type

Input Integer

Specifies the length in bytes of the derivation_data parameter. If SESS-ENC or MK-

OPTC is specified, the value must be 16.

When the process rule KDFFM-DK is specified, the value must be between 1 to 2048

inclusive for CCA release 6.7, 7.4, and later. Otherwise, the value must be 16 to 40

inclusive.

derivation_data

Direction Type

Input String

The derivation data to be used in the key generation process. This data is often referred

to as the diversification data. For SESS-ENC, the derivation data is 16-bytes long.

Note that if SESS-ENC is specified and the length of the key generating key is 192 bits or

256 bits, the data is manipulated in conformance with the EMV Common Session Key

Derivation Option.

input_initial_vector_length

Direction Type

Input Integer

31 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Length in bytes of the input_initial_vector parameter. For CCA releases 6.7, 7.4 and later

when the KDFFM-DK process rule and the USE-IV keywords are specified, the value

must be between 0 or 16 inclusive. Otherwise, the value must be 0.

input_initial_vector

Direction Type

Input String

For the KDFFM-DK process rule, the 16-byte initial vector value for the algorithm When a

value is not provided, the default value, 0x52525252525252522525252525252525, will

be used. When the USE-IV keyword is specified and the input_initial_vector_length is 0,

the initial value will be hex zero.

When the input_initial_vector_length is zero, this field is ignored.

reserved2_length

Direction Type

Input Integer

Length in bytes of the reserved2 parameter. The value must be 0.

reserved2

Direction Type

Input String

This field is ignored.

generated_key_identifier1_length

Direction Type

Input/Output Integer

On input, the length of the buffer for the generated_key_identifier1 parameter in bytes.

The maximum value is 725 bytes.

On output, the parameter holds the actual length of the generated_key_identifier1

parameter.

generated_key_identifier1

Direction Type

Input/Output String

The buffer for the generated key token.

On input, the buffer contains a null token or a valid internal skeleton token containing the

desired key-usage fields and key-management fields you want to generate. The key

token must be left justified in the buffer.

The generating key (generating_key_identifier parameter) determines whether on input

the generated_key_identifier1 parameter can identify a null key token or a skeleton key

token.

When the generating_key_identifier is compliant-tagged, a compliant-tagged key token

will be created.

32 CCA and PKCS #11 Algorithm Currency – APAR OA61253

When a skeleton token is passed as input and the generating_key_identifier is compliant-

tagged, the skeleton token must have the compliant-tagged flag on.

Table 21. Summary of input generating key tokens, input generated key tokens, and
output generated key tokens

Input generating key
token

Input generated key
token

Output generated key token

DKYL0, type of key to
diversify D-ALL

Skeleton key token
required.

Key type same as skeleton,
diversified key final.

DKYL0, type of key to
diversify not D-ALL

Null or skeleton key
token allowed.

Key type determined by input
generated key token type of key to
diversify. If null key token on input,
the output key token will have
attributes based on the related
generated key usage fields of the
input generating key token.
Otherwise, the output key token will
have attributes of input skeleton key
token.

DKYL1, any type of
key to diversify

Null key token
required.

Same as input generating key token
except DKYL0 and with new level of
diversified key.

DKYL2, any type of
key to diversify

Null key token
required.

Same as input generating key token
except DKYL1 and with new level of
diversified key.

Notes:

1. If the supplied generated key-token contains a key, the key value and length are

ignored and overwritten.

2. If the generating_key_identifier1 parameter identifies a DKYGENKY key token with a

key-derivation sequence level of DKYL0 and it does not have a type of key to

diversify of D-ALL, the key type must match what the generating key indicates can be

created in the key generating key usage field at offset 45.

3. The key usage fields in the generated key must meet the requirements (KUF 'must

be equal' or 'must be permitted') of the corresponding key usage fields in the

generating key unless D-ALL is specified in the generating key. A flag bit in the

DKYGENKY key-usage field 2 determines whether the key-usage field level of

control is KUF-MBE or KUF-MBP.

4. If authorized by access control, D-ALL permits the derivation of several different keys.

On output, the buffer contains the generated key token.

generated_key_identifier2_length

Direction Type

Input/Output Integer

Length in bytes of the generated_key_identifier2 parameter. The value must be 0.

generated_key_identifier2

Direction Type

Input/Output String

This field is ignored.

33 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Usage notes

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS.

If ICSF is configured to audit the lifecycle of tokens [AUDITKEYLIFECKDS(TOKEN(YES),...) is

specified], an additional request is made to the Crypto Express coprocessor to generate the key

fingerprint to be used for auditing the generated key.

Access control points

The following table shows the access control points in the domain role that control the function of

this service:

Table 22. Required access control points for Diversified Key Generate2

Rule array keyword Access control point

KDFFM-DK Diversified Key Generate2 - KDFFM-DK

MK-OPTC Diversified Key Generate2 - MK-OPTC

SESS-ENC Diversified Key Generate2 - SESS-ENC

To use the KLEN192 and KLEN256 keywords, the Diversified Key Generate2 - Allow length

option with KDFFM-DK access control point must be enabled.

If the key-generating key key-usage fields indicate that all key types may be derived, the

Diversified Key Generate2 – DALL access control point must be enabled in the domain role.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 23. Diversified Key Generate2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

 This service is not supported.

IBM System z10 EC
IBM System z10 BC

 This service is not supported.

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

Requires the November 2013 or later licensed
internal code (LIC).

Keywords KDFFM-DK, MK-OPTC, KLEN128,
KLEN192, and KLEN256 are not supported.

Compliant-tagged key tokens are not supported.

The input_initial_vector_length parameter value
must be 0. The derivation_data_length must not
exceed 40.

IBM zEnterprise EC12
IBM zEnterprise BC12

Crypto Express3
Coprocessor
Crypto Express4 CCA
Coprocessor

Requires the September 2013 or later licensed
internal code (LIC).

Keywords KDFFM-DK, MK-OPTC, KLEN128,

34 CCA and PKCS #11 Algorithm Currency – APAR OA61253

KLEN192, and KLEN256 require the June 2015
or later licensed internal code (LIC).

Compliant-tagged key tokens are not supported.

The input_initial_vector_length parameter value
must be 0. The derivation_data_length must not
exceed 40.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

Keywords KDFFM-DK, MK-OPTC, KLEN128,
KLEN192, and KLEN256 require the June 2015
or later licensed internal code (LIC).

Compliant-tagged key tokens are not supported.

The input_initial_vector_length parameter value
must be 0. The derivation_data_length must not
exceed 40.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

Keywords KDFFM-DK, MK-OPTC, KLEN128,
KLEN192, and KLEN256 require the June 2015
or later licensed internal code (LIC).

Compliant-tagged key tokens are not supported.

The input_initial_vector_length parameter value
must be 0. The derivation_data_length must not
exceed 40.

Crypto Express6 CCA
Coprocessor

Compliant-tagged key tokens require a CEX6C
with the July 2019 or later licensed internal code
(LIC).

The input_initial_vector_length and
derivation_data_length parameter support
requires the require CCA release 6.7 or later
licensed internal code.

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not supported.

The input_initial_vector_length parameter value
must be 0. The derivation_data_length must not
exceed 40.

Crypto Express6 CCA
Coprocessor

The input_initial_vector_length and
derivation_data_length parameter support
requires the require CCA release 6.7 or later
licensed internal code.

Crypto Express7 CCA
Coprocessor

The input_initial_vector_length and
derivation_data_length parameter support
requires the CCA release 7.4 or later licensed
internal code.

35 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Diversify Directed Key (CSNBDDK and CSNEDDK)
The Diversify Directed Key callable service is used to selectively generate and derive a pair of

associated keys in connection with a directed key diversification key scheme. The objective of the

concept is to generate and derive a key pair with different key usages from one key diversification

key (KDK). Key direction comes into play in that one of the keys is generated and is used for one

direction (for example, encryption, MAC generate, and so forth), while the other key is derived

and will have usage associated with a different direction (for example, decryption, MAC

verification, and so forth). This callable service provides an option to perform the generate or

derive operation.

A structure called a key type vector, which is always used as the initialization vector for the

diversification process, is passed in as input and is used to determine what and how the key is

produced by this callable service.

The key generated by this callable service is used as a session key. The intention in this context

is that the keys of a generated and derived key pair are one-time keys. The key management

fields of the output key will indicate that the key cannot be exported.

The callable service name for AMODE(64) invocation is CSNEDDK.

Format

CALL CSNBDDK(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 kdk_key_identifier_length,

 kdk_key_identifier,

 key_type_vector_length,

 key_type_vector,

 additional_derivation_data_length,

 additional_derivation_data,

 random_data_length,

 random_data,

 output_key_identifier_length,

 output_key_identifier)

Parameters

return_code

Direction Type

Input/Output String

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1283 lists the return

codes.

36 CCA and PKCS #11 Algorithm Currency – APAR OA61253

reason_code

Direction Type

Input/Output String

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes that indicate specific

processing problems. Appendix A, “ICSF and cryptographic coprocessor return and

reason codes,” on page 1283 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The data is identified in the

exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value must be 2.

rule_array

Direction Type

Input Character

The rule_array contains keywords that provide control information to the callable service.

The keywords must be in contiguous storage with each of the keywords left-justified in its

own 8-byte location and padded on the right with blanks.

Table 24. Keywords for Diversify Directed Key

Keyword Meaning

Diversification Process (One required)

KDFFM Specifies to use the Key Derivation Function (KDF) in Feedback Mode
(NIST SP 800-108) to generate key. The key type vector is used as the
IV for this process.

Function (one required)

DERIVE Specifies to derive the passive diversified key of a pair of directed
keys.

GENERATE Specifies to generate the active diversified key of a pair of directed
keys.

kdk_key_identifier_length

37 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input Integer

Specifies the length in bytes of the kdk_key_identifier parameter. If the kdk_key_identifier

contains a label, the value must be 64. Otherwise, the value must be between the actual

length of the token and 725.

kdk_key_identifier

Direction Type

Input/Output String

The identifier of the key diversification key used to derive keys. The key identifier is an

operational token or the key label of an operational token in key storage.

The key algorithm of this key must be AES and the key type must be KDKGENKY. The

key usage fields indicate the type of key to diversify and if the key is to be derived for

entity A or entity B.

Note: When the GENERATE function is specified and the generating key has usage of

KDKTYPEA, the associated DERIVE function must have usage of KDKTYPEB. Likewise,

when the GENERATE function is specified and this key has usage of KDKTYPEB, the

associated DERIVE function must have usage of KDKTYPEA.

If the token supplied was encrypted under the old master key, the token is returned

encrypted under the current master key.

key_type_vector_length

Direction Type

Input Integer

Specifies the length in bytes of the key_type_vector parameter. The value must be 16.

key_type_vector

Direction Type

Input String

The 16-byte key_type_vector specifies the rules for the calculation of the key value to be

generated or derived and contains information needed to restrict the usage of the key to

be generated or derived. The format of the structure is as follows:

Offset Length Description

0 2 Version number X'0000'.

2 2 Type of key to be derived or generated.
Value

Meaning
X'0000'

MAC.
X'0001'

Data encryption (cipher).
X'0003'

PIN encryption.
X'0004'

38 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Key wrapping.
All other values are reserved and undefined.

4 2 Key algorithm.
Value

Meaning
X'0002'

AES.
All other values are reserved and undefined.

6 2 Length of the key to be derived or generated in bits.
Value

Meaning
X'0800'

2048 (for example, AES-256).

8 2 Key usage restriction 1 of the key to be derived or generated,
based on the key type field (value at offset 2):

For MAC key type (value at offset 2 = X’0000’).
Value

Meaning
X'0001'

Key can derive or generate a CMAC mode key only.
All other values are reserved and undefined.

For data encryption (cipher) key type (value at offset 2 = X’0001’).
Value

Meaning
X'0002'

Key can derive or generate a CBC mode key only.
All other values are reserved and undefined.

For PIN encryption key type (value at offset 2 = X’0003’).
Value

Meaning
X'0000' or X'0002'

Key can derive or generate an ISO-4 format key only. See the
note for KTVs for this key type.

All other values are reserved and undefined.

For Key wrap key type (value at offset 2 = X’0004’).
Value

Meaning
X'0001'

Key can derive or generate a VARDRV-D key only.
All other values are reserved and undefined.

For all other key types not listed above:
Value

Meaning
X'0000'

No key usage restriction 1.
All other values are reserved and undefined.

10 2 Key usage restriction 2 of the key to be derived or generated,
depending on the key type (offset 2) and key usage restriction 1
(offset 8):

MAC key type and HMAC mode (value at offset 2 = X’0000’ and

39 CCA and PKCS #11 Algorithm Currency – APAR OA61253

offset 8 = X’0001’).
Value

Meaning
X'0002'

SHA-256.
X'0003'

SHA-384.
X'0004'

SHA-512.
All other values are reserved and undefined.

Key-wrap key type and VARDRV-D mode (value at offset 2 =
X’0004’ and offset 8 = X’0001’).
Value

Meaning
X'0100'

Maximum key length of the protected keys is 2048 bits.
All other values are reserved and undefined.

All other values at offset 2 and offset 8.
Value

Meaning
X'0000'

Undefined.
All other values are reserved and undefined.

For all other key types and key usage restriction 1
combinations not listed above:
Value

Meaning
X'0000'

No key usage restriction 2.
All other values are reserved and undefined.

12 3 Reserved, must be binary zero.

15 1 Key direction variant indicator

Diversifies the key to be derived or generated depending on the
permitted use of direction.

The HSM has to restrict the usage of the key depending on this value
and the type of entity (A or B) which is an additional parameter in the
process of deriving or generating the key.

This value affects a key usage attribute of the key to be derived or
generated.
Value

Meaning
X'00'

A ↔ B (undirected use of key).
X'01'

A → B (A active, B passive use of key).
X'10'

A ← B or equivalent (A passive, B active use of key).
X'FF'

System is to determine key direction from entity usage of the
KDKGENKY and rule array keywords.

40 CCA and PKCS #11 Algorithm Currency – APAR OA61253

KDK-A + GENERATE rule array keyword
Direction set to X'01' (A → B).

KDK-B + GENERATE rule array keyword
Direction set to X'10' (A ← B).

KDK-A + DERIVE rule array keyword
Direction set to X'10' (A ← B).

KDK-B + DERIVE rule array keyword
Direction set to X'01' (A → B).

All other values are reserved and undefined.

The following tables define the valid KTV supported.

For each of the four key types defined at KTV offset 2 (MAC, data encryption, PIN

encryption, and key wrapping), there are two KTVs defined, with the only difference

between them being the key direction variant indicator (KTV offset 15). Either entity Type

A is active and Type B is passive (A→B), or Type B is active and Type A is passive

(A←B). See Table 45 on page 160 for additional information.

Table 25. Summary of KTV tables

A→B or A←B MAC generate/
verify

Data encrypt/
decrypt

PIN encrypt/
decrypt

Key wrap/unwrap

A→B (A active) KTVM1 Table 46
on page 161

KTVC1 Table 48
on page 161

KTVP1 Table 50
on page 162

KTVW1 Table 52
on page 162

A←B (B active) KTVM2 Table 47
on page 161

KTVC2 Table 49
on page 161

KTVP2 Table 51
on page 162

KTVW2 Table 53
on page 163

Table 26. KTV for MAC generate/verify, Type A active and Type B passive

Version
(offset 0)

Key type
indicator
(offset 2)

Algorithm
indicator
(offset 4)

Key
length
(offset 6)

Key
usage
indicator
1 (offset
8)

Key
usage
restriction
2 (offset
10)

RFU
(offset
12)

Key
direction
variant
indicator
(offset
15)

0 MAC AES AES-256 CMAC 'else' - A→B

00 00 00 00 02 01 00 00 01 00 00 00 00 00 01

KTVM1 = X'00 00 00 00 00 02 01 00 00 01 00 00 00 00 00 01'

Table 27. KTV for MAC generate/verify, Type B active and Type A passive

Version
(offset 0)

Key type
indicator
(offset 2)

Algorithm
indicator
(offset 4)

Key
length
(offset 6)

Key
usage
indicator
1 (offset
8)

Key
usage
restriction
2 (offset
10)

RFU
(offset
12)

Key
direction
variant
indicator
(offset
15)

0 MAC AES AES-256 CMAC 'else' - A←B

00 00 00 00 02 01 00 00 01 00 00 00 00 00 10

KTVM2 = X'00 00 00 00 00 02 01 00 00 01 00 00 00 00 00 10'

Table 28. KTV for data encryption (cipher), Type A active and Type B passive

Version
(offset 0)

Key type
indicator
(offset 2)

Algorithm
indicator
(offset 4)

Key
length
(offset 6)

Key
usage
indicator

Key
usage
restriction

RFU
(offset
12)

Key
direction
variant

41 CCA and PKCS #11 Algorithm Currency – APAR OA61253

1 (offset
8)

2 (offset
10)

indicator
(offset
15)

0 Cipher AES AES-256 CBC 'else' - A→B

00 00 01 00 02 01 00 00 02 00 00 00 00 00 01

KTVC1 = X'00 00 00 01 00 02 01 00 00 02 00 00 00 00 00 01'

Table 29. KTV for data encryption (cipher), Type B active and Type A passive

Version
(offset 0)

Key type
indicator
(offset 2)

Algorithm
indicator
(offset 4)

Key
length
(offset 6)

Key
usage
indicator
1 (offset
8)

Key
usage
restriction
2 (offset
10)

RFU
(offset
12)

Key
direction
variant
indicator
(offset
15)

0 Cipher AES AES-256 CBC 'else' - A←B

00 00 01 00 02 01 00 00 02 00 00 00 00 00 10

KTVC2 = X'00 00 00 01 00 02 01 00 00 02 00 00 00 00 00 10'

For PIN encryption key type, the key usage indicator 1 (offset 8) for ISO-4 format can have the

value of ‘0000’ or ‘0002’ for a pair of KTVs. The caller is not allowed to mix pairs of KTVs because

the KTV is used as the IV in the key creating process. This is the responsibility of the caller of the

service.

KTV pair for PIN encryption key type with key usage indicator 1 with ‘0002’ value

Table 30. KTV for PIN encryption, Type A active and Type B passive

Version
(offset 0)

Key type
indicator
(offset 2)

Algorithm
indicator
(offset 4)

Key
length
(offset 6)

Key
usage
indicator
1 (offset
8)

Key
usage
restriction
2 (offset
10)

RFU
(offset
12)

Key
direction
variant
indicator
(offset
15)

0 PIN-Enc AES AES-256 ISO-4 'else' - A→B

00 00 03 00 02 01 00 00 02 00 00 00 00 00 01

KTVP1 = X'00 00 00 03 00 02 01 00 00 02 00 00 00 00 00 01'

Table 31. KTV for PIN encryption, Type B active and Type A passive

Version
(offset 0)

Key type
indicator
(offset 2)

Algorithm
indicator
(offset 4)

Key
length
(offset 6)

Key
usage
indicator
1 (offset
8)

Key
usage
restriction
2 (offset
10)

RFU
(offset
12)

Key
direction
variant
indicator
(offset
15)

0 PIN-Enc AES AES-256 ISO-4 'else' - A←B

00 00 03 00 02 01 00 00 02 00 00 00 00 00 10

KTVP2 = X'00 00 00 03 00 02 01 00 00 02 00 00 00 00 00 10'

KTV pair for PIN encryption key type with key usage indicator 1 with ‘0000’ value.

Table 32. KTV for PIN encryption, Type A active and Type B passive

Version
(offset 0)

Key type
indicator
(offset 2)

Algorithm
indicator
(offset 4)

Key
length
(offset 6)

Key
usage
indicator

Key
usage
restriction

RFU
(offset
12)

Key
direction
variant

42 CCA and PKCS #11 Algorithm Currency – APAR OA61253

 1
(offset 8)

2
(offset 10)

 indicator
(offset 15)

0 PIN-Enc AES AES-256 ISO-4 'else' - A→B

00 00 03 00 02 01 00 00 00 00 00 00 00 00 01

KTVP1 = X'00 00 00 03 00 02 01 00 00 00 00 00 00 00 00 01'

Table 33. KTV for PIN encryption, Type B active and Type A passive

Version
(offset 0)

Key type
indicator
(offset 2)

Algorithm
indicator
(offset 4)

Key
length
(offset 6)

Key
usage
indicator
1
(offset 8)

Key
usage
restriction
2
(offset 10)

RFU
(offset
12)

Key
direction
variant
indicator
(offset 15)

0 PIN-Enc AES AES-256 ISO-4 'else' - A←B

00 00 03 00 02 01 00 00 00 00 00 00 00 00 10

KTVP2 = X'00 00 00 03 00 02 01 00 00 02 00 00 00 00 00 10'

For Table 52 on page 162, entity Type A must use an AES EXPORTER key with usage of

EXPTT31D, while entity Type B must use an IMPORTER key with usage of IMPTT31D.

Key wrapping with key block protection (ISO TC 68/SC 2 Nxxxx, 2016-08-17, ISO DIS

20038):

Table 34. KTV for key wrapping, Type A active and Type B passive

Version
(offset 0)

Key type
indicator
(offset 2)

Algorithm
indicator
(offset 4)

Key
length
(offset 6)

Key usage
indicator 1
(offset 8)

Key
usage
restriction
2 (offset
10)

RFU
(offset
12)

Key
direction
variant
indicator
(offset
15)

0 Key wrap AES AES-256 VARDRV-D Maximum
bit length
of the
protected
keys

- A→B

00 00 04 00 02 01 00 00 01 01 00 00 00 00 01

KTVW1 = X'00 00 00 04 00 02 01 00 00 01 01 00 00 00 00 01'

For Table 53 on page 163, entity Type B must use an AES EXPORTER key with usage of

EXPTT31D, while entity Type A must use an IMPORTER key with usage of IMPTT31D.

Table 35. KTV for key wrapping, Type B active and Type A passive

Version
(offset 0)

Key type
indicator
(offset 2)

Algorithm
indicator
(offset 4)

Key
length
(offset 6)

Key usage
indicator 1
(offset 8)

Key
usage
restriction
2 (offset
10)

RFU
(offset
12)

Key
direction
variant
indicator
(offset
15)

0 Key wrap AES AES-256 VARDRV-D Maximum
bit length
of the
protected
keys

- A←B

00 00 04 00 02 01 00 00 01 01 00 00 00 00 10

KTVW2 = X'00 00 00 04 00 02 01 00 00 01 01 00 00 00 00 10'

43 CCA and PKCS #11 Algorithm Currency – APAR OA61253

additional_derivation_data_length

Direction Type

Input Integer

Specifies the length in bytes of the additional_derivation_data parameter. The value must

be between 0 and 2032 inclusive for CCA release 6.7, 7.4, and later. Otherwise, the value

must be 0 and 24 inclusive.

 The sum of the additional_derivation_data_length and the random_data_length cannot

exceed 2048.

additional_derivation_data

Direction Type

Input String

Data to be used in the key generation or key derivation process.

The additional derivation data concatenated with the random data cannot exceed 2048

for CCA releases 6.7, 7.4, and later. Otherwise the random data cannot exceed 40 bytes.

random_data_length

Direction Type

Input/Output Integer

Specifies the length in bytes of the random_data parameter. The value must be between

16 and 40 inclusive. The sum of the additional_derivation_data_length and the

random_data_length cannot exceed 2048 for CCA releases 6.7, 7.4, and later.

Otherwise, the random data cannot exceed 40 bytes.

When keyword GENERATE is specified in the rule array, this is an input and an output

parameter. On input, this value specifies the number of bytes of data to use as the

random data portion of the diversification data used in diversifying the first key of a key

pair. On output, the returned value indicates the number of bytes of data actually returned

in the random_data variable.

When keyword DERIVE is specified in the rule array, this is an input only parameter. On

input, this value specifies the number of bytes of data to use as the random data portion

of the diversification data used in diversifying the second key of a key pair. To produce

the desired results, this value must be the same length returned by a previous associated

GENERATE function call.

random_data

Direction Type

Input/Output String

The random data used in the diversification process.

When the GENERATE function is specified, on input, this variable is ignored, and on

output, this variable contains the random data created and used to diversify the first

output key of a key pair.

44 CCA and PKCS #11 Algorithm Currency – APAR OA61253

When the DERIVE function is specified, on input, this variable must contain the random

data previously created during a previous GENERATE function and is used to diversify

the second output key of a key pair.

Note: For a given pair of output keys, the DERIVE function must provide the same

random data and additional_derivation_data value as the GENERATE function used.

The additional derivation data concatenated with the random data cannot exceed 2048

for CCA releases 6.7, 7.4, and later. Otherwise, the random data cannot exceed 40 bytes.

output_key_identifier_length

Direction Type

Input/Output Integer

Specifies the length in bytes of the buffer for the output_key_identifier parameter. On

input, the value is the size of the buffer. The maximum length is 725. On output, the value

is the length of the key token returned in the output_key_identifier parameter.

output_key_identifier

Direction Type

Output String

The buffer to receive the generated key. The key attributes are identified by the

key_type_vector parameter.

When the kdk_key_identifier is compliant-tagged, a compliant-tagged key token will be

created.

Usage notes

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS.

Access control points

The Diversify Directed Key access control point in the domain role controls the function of this

service.

The access controls for rule array keywords are listed in the table:

Diversification process
rulearray keyword

Function rule-array
keyword

Access control

KDFFM DERIVE Diversify Directed Key – allow
KDFFM DERIVE

GENERATE Diversify Directed Key – allow
KDFFM GENERATE

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 36. Diversify Directed Key required hardware

45 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Server Required
cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

 This service is not supported.

IBM System z10 EC
IBM System z10 BC

 This service is not supported.

IBM zEnterprise 196
IBM zEnterprise 114

 This service is not supported.

IBM zEnterprise EC12
IBM zEnterprise BC12

 This service is not supported.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

This service requires the July 2019 or later
licensed internal code (LIC).

Compliant-tagged key tokens are not supported.

The additional_derivation_data_length must not
exceed 24.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

This service requires the July 2019 or later
licensed internal code (LIC).

Compliant-tagged key tokens are not supported.

The additional_derivation_data_length must not
exceed 24.

Crypto Express6 CCA
Coprocessor

This service requires the December 2018 or later
licensed internal code (LIC).

Compliant-tagged key tokens require a CEX6C
with the July 2019 or later licensed internal code
(LIC).

The additional_derivation_data_length
parameter support requires the require CCA
release 6.7 or later licensed internal code.

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not supported.

The additional_derivation_data_length must not
exceed 24.

Crypto Express6 CCA
Coprocessor

The additional_derivation_data_length
parameter support requires the require CCA
release 6.7 or later licensed internal code.

Crypto Express7 CCA
Coprocessor

The additional_derivation_data_length
parameter support requires the CCA release 7.4
or later licensed internal code.

Random Number Generate (CSNBRNG, CSNERNG, CSNBRNGL and CSNERNGL)
The callable service uses a cryptographic feature to generate a random number. The foundation

for the random number generator is a time variant input with a very low probability of recycling.

46 CCA and PKCS #11 Algorithm Currency – APAR OA61253

There are two forms of the Random Number Generate callable service. One version returns an 8-

byte random number. The second version allows the caller to specify the length of the random

number.

The callable service names for AMODE(64) invocation are CSNERNG and CSNERNGL.

Format

CALL CSNBRNG(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 form,

 random_number)

CALL CSNBRNGL(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_identifier_length,

 key_identifier,

 random_number_length,

 random_number)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1279 lists the return

codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes that indicate specific

processing problems. Appendix A, “ICSF and cryptographic coprocessor return and

reason codes,” on page 1279 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The data is identified in the

exit_data parameter.

47 CCA and PKCS #11 Algorithm Currency – APAR OA61253

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

form

Direction Type

Input Character String

The 8-byte keyword for the CSNBRNG service that defines the characteristics of the

random number should be left-justify and pad on the right with blanks. The keywords are

listed in Table 140 on page 350.

Table 37. Keywords for the Form Parameter

Keyword Meaning

EVEN Generate a 64-bit random number with even parity in each byte.

ODD Generate a 64-bit random number with odd parity in each byte.

RANDOM Generate a 64-bit random number.

Parity is calculated on the 7 high-order bits in each byte and is presented in the low-order

bit in the byte.

rule_array_count

Direction Type

Input Integer

The number of keywords for the CSNBRNGL service you are supplying in the rule_array

parameter. The value must be 1 or 2.

rule_array

Direction Type

Input String

The keyword for the CSNBRNGL service that provides control information to the callable

service. The recovery method is the method to use to recover the symmetric key. The

keyword is left-justified in an 8-byte field and padded on the right with blanks. All

keywords must be in contiguous storage.

Table 38. Keywords for Random Number Generate Control Information

Keyword Meaning

Requested service (one, required)

EVEN Specifies that each generated random byte is adjusted for even
parity.

ODD Specifies that each generated random byte is adjusted for odd
parity.

RANDOM Specifies that each generated random byte is not adjusted for
parity.

RT-KRD Specifies that the generated random number is returned
formatted as a TR-34 Key Receiving Device Random Number
Token (RT-KRD). The token requires 21 additional bytes for

48 CCA and PKCS #11 Algorithm Currency – APAR OA61253

encoding and overhead. The random number is not adjusted for
parity.

Note the maximum size of the token that is usable with the
service that the token is planned to be used with. If the
maximum size is 200 bytes, the maximum random number size
is 179 bytes.

Encryption Process (one, optional) Not valid with the RT-KRD keyword

TDES-CBC Specifies to return the random number encrypted using the DES
key specified in the key_identifier parameter.

Note: A CCA Crypto Express coprocessor must be active to get
encrypted output.

key_identifier_length

Direction Type

Input Integer

The length of the key_identifier parameter in bytes. When the rule array keyword TDES-

CBC is specified, the value must be 64.

Otherwise, the value must be 0.

key_identifier

Direction Type

Input/Output String

The identifier of the key to encrypt the random number. The key identifier is an

operational token or the key label of an operational token in key storage. When the

TDES-CBC keyword is specified, the key algorithm of this key must be DES, the key type

must be CIPHER or ENCIPHER, and the key must be a double-length or triple-length

key.

When the key_identifier_length parameter is 0, this parameter is ignored.

If the token supplied was encrypted under the old master key, the token will be returned

encrypted under the current master key.

random_number_length

Direction Type

Input/Output Integer

This parameter contains the desired length of the random_number that is returned by the

CSNBRNGL callable service. The minimum value is 1 byte; the maximum value is 8192

bytes.

When the requested service keyword is TDES-CBC, the value must be a multiple of 8.

The maximum value is 1024.

When the requested service keyword is RT-KRD:

▪ On input, this value is the number of bytes of the random number requested plus 21

bytes for the DER encoding of the token. Note the maximum size of the token that is

49 CCA and PKCS #11 Algorithm Currency – APAR OA61253

usable with the service that the token is planned to be used with. If the maximum size

is 200 bytes, the maximum random number size is 179 bytes.

▪ On output, the value will be the actual size of the token returned.

random_number

Direction Type

Output String

The generated number returned by the CSNBRNG callable service is stored in an 8-byte

variable.

The generated number returned by the CSNBRNGL callable service is stored in a

variable that is at least random_number_length bytes long.

When the requested service keyword is RT-KRD, the TR-34 Key Receiving Device

Random Number Token is returned.

Usage notes

If the CSF.CSFSERV.AUTH.CSFRNG.DISABLE SAF resource profile is defined in the XFACILIT

SAF resource class, no SAF authorization checks will be performed against the CSFSERV class

when using this service. If CSF.CSFSERV.AUTH.CSFRNG.DISABLE is not defined, the SAF

authorization check will be performed. Disabling the SAF check may improve the performance of

your application.

Access control points

The CSNBRNG service requires that the Key Generate – SINGLE-R access control point is

enabled. The CSNBRNGL service is not controlled by any access control.

The use of the TDES-CBC rule array keyword requires the Random Number Generate Long –

TDES-CBC access control be enabled.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 39. Random Number Generate required hardware

Server Required cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

CP Assist for
Cryptographic Functions

Rule array keywords TDES-CBC is not
supported.

IBM System z10 EC
IBM System z10 BC

CP Assist for
Cryptographic Functions

Rule array keywords TDES-CBC is not
supported.

IBM zEnterprise 196
IBM zEnterprise 114

CP Assist for
Cryptographic Functions

Rule array keywords TDES-CBC is not
supported.

IBM zEnterprise EC12
IBM zEnterprise BC12

CP Assist for
Cryptographic Functions

Rule array keywords TDES-CBC is not
supported.

IBM z13
IBM z13s

CP Assist for
Cryptographic Functions

Rule array keywords TDES-CBC is not
supported.

IBM z14
IBM z14 ZR1

CP Assist for
Cryptographic Functions

Rule array keywords TDES-CBC is not
supported.

50 CCA and PKCS #11 Algorithm Currency – APAR OA61253

CP Assist for
Cryptographic Functions

Rule array keywords TDES-CBC is not
supported.

IBM z15
IBM z15 T02

CP Assist for
Cryptographic Functions

Rule array keywords TDES-CBC is not
supported.

Crypto Express7 CCA
Coprocessor

Rule array keyword TDES-CBC requires
the CCA release 7.4 or later licensed
internal code (LIC).

Symmetric Key Export (CSNDSYX and CSNFSYX)
Use the Symmetric Key Export callable service to transfer an operational AES, DES, or HMAC

key in a CCA key token from encryption under a master key to encryption under an RSA public

key or AES EXPORTER key.

For an RSA-enciphered output key, the key is returned as an opaque data buffer or in an external

variable-length symmetric key-token. If the key is returned as an opaque data buffer, the

Symmetric Key Import service can be used along with the associated RSA private-key to import

the key back into an operational symmetric key-token. If the key is returned in an external

variable-length symmetric key-token, the Symmetric Key Import2 service can be used along with

the associated RSA private-key to import the key.

For an AES-enciphered output key, the key is returned in an external variable-length symmetric

key- token. The Symmetric Key Import2 service can be used along with its associated AES

IMPORTER key- encrypting key to import the key. The usage attributes of the IMPORTER key

must allow IMPORT.

Table 40 and 41 show which formatting methods can be used for each type of key token and a

description of the enciphered key returned.

Table 40. CSNDSYX key formatting for fixed length AES and DES key tokens
Operational
source key-token

Key-formatting method keyword
AESKWCV PKCS-1.2 PKCSOAEP ZERO-PAD

AES DATA Not supported. The output key is
returned as an
opaque data buffer
after being
formatted using the
RSAES-PKCS1-
v1_5 encryption /
decryption scheme
of the RSA PKCS
#1 v2.0 standard
and enciphered
using the RSA
public-key provided
as a transport key.

The output key is
returned as an
opaque data buffer
after being
formatted using the
RSAES-OAEP
encryption /
decryption scheme
of the RSA PKCS
#1 v2.0 standard
and enciphered
using the RSA
public-key provided
as a transport key.

The output key is
returned as an
opaque data buffer
after the key is
right-aligned,
padded on the left
to the necessary
block length with
bits valued to zero,
and enciphered
using the RSA
public-key provided
as a transport key.

DES DATA The output key is
returned in an
external variable-
length DES key-
token with control
vector after being
enciphered using
the AES
EXPORTER key
provided as the
transport key.

DES key types
other than DATA

The output key is
returned in an
external variable-
length DES key-
token with control
vector after being
enciphered using
the AES
EXPORTER key
provided as the

Not supported. Not supported. Not supported.

51 CCA and PKCS #11 Algorithm Currency – APAR OA61253

transport key.

Table 41. CSNDSYX key formatting for variable length AES and HMAC key tokens

Operational source
key-token

Key-formatting method keyword

AESWK PKOAEP2 CKM-RAKW

AES

The output key is
returned in an external
variable-length AES key-
token after being
enciphered using he AES
EXPORTER key
provided as the transport
key.

The output key is returned in
an external variable length
AES key token after being
formatted using the RSAES-
OAEP encryption / decryption
scheme of the RSA PKCS #1
v2.1 standard and enciphered
using the RSA public-key
provided as a transport key.

The output key is returned as
output structure corresponding
to the output from the
PKCS#11 mechanism
CKM_RSA_AES_KEY_WRAP
and enciphered using the RSA
public-key provided as a
transport key.

HMAC Same as variable-length
AES source key-token,
except that the output
key is returned in an
external variable-length
HMAC key-token.

Same as variable-length AES
source key-token, except that
the output key is returned in
an external variable-length
HMAC key-token.

Not supported.

Notes:
1. For keywords PKCS-1.2, PKCSOAEP, and PKOAEP2, see “Formatting hashes and keys
in public-key cryptography” on page xxx.
2. The RSA PKCS #1 v2.0 standard for the RSAES-PKCS1-v1_5 encryption/decryption
scheme is formerly known as block-type 02 format.
3. PKCSOAEP and PKOAEP2 are the only key formatting methods that use a hash method.
PKCSOAEP and PKOAEP2 can specify either SHA-1 or SHA-256. PKOAEP2 can also specify
SHA-384 or SHA-512.

The callable service name for AMODE(64) is CSNFSYX.

Format

CALL CSNDSYX(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 source_key_identifier_length,

 source_key_identifier,

 transporter_key_identifier_length,

 transporter_key_identifier,

 enciphered_key_length,

 enciphered_key)

Parameters

return_code

Direction Type

Output Integer

52 CCA and PKCS #11 Algorithm Currency – APAR OA61253

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1279 lists the return

codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes assigned to it that

indicate specific processing problems. Appendix A, “ICSF and cryptographic coprocessor

return and reason codes,” on page 1279 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The data is identified in the

exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. Value may be 1,

2, or 3.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Table 42 on page 376

lists the keywords. Each keyword is left-justified in 8-byte fields and padded on the right

with blanks. All keywords must be in contiguous storage.

Table 42 Keywords for Symmetric Key Export Control Information

Keyword Meaning

Token Algorithm (One keyword, optional)

AES The key being exported is an AES key. If source_key_identifier is a
variable-length symmetric key token or label, only the PKOAEP2 and
AESKW key formatting methods are supported.

DES The key being exported is a DES key. This is the default.

HMAC The key being exported is an HMAC key. Only the PKOAEP2 and
AESKW key formatting methods are supported.

Key Formatting method (One required)

53 CCA and PKCS #11 Algorithm Currency – APAR OA61253

AESKW Specifies that the key is to be formatted using AESKW and placed in
an external variable length CCA token. The transport_key_identifier
must be an AES EXPORTER. This rule is not valid with the DES
Algorithm keyword or with AES DATA (version X'04') keys.

AESKWCV Specifies that the key is to be formatted using AESKW and placed in a
symmetric variable length CCA token of type DESUSECV. The
transport_key_identifier must be an AES EXPORTER key. The DES
control vector and other significant token information will be in the
associated data section of the variable length key token. Only valid
with the DES token algorithm.

CKM-RAKW Specifies to return the key in an external AES wrapped PKCS#11
object. The variable-length symmetric key-token will be returned in an
output structure corresponding to the output from PKCS#11
mechanism CKM_RSA_AES_KEY_WRAP. Valid only with the AES
algorithm.

PKCSOAEP Specifies to format the key according to the method in RSA DSI PKCS
#1V2 OAEP. The default hash method is SHA-1. Use the SHA-256
keyword for the SHA-256 hash method.

PKCS–1.2 Specifies to format the key according to the method found in RSA DSI
PKCS #1 block type 02 to recover the symmetric key.

PKOAEP2 Specifies to format the key according to the method found in RSA DSI
PKCS #1 v2.1 RSAES-OAEP documentation. Not valid with DES
algorithm or with AES DATA (version X’04’) keys. A hash method is
required.

ZERO-PAD The clear key is right-justified in the field provided, and the field is
padded to the left with zeros up to the size of the RSA encryption
block (which is the modulus length).

Hash Method (One, optional for PKCSOAEP, required for PKOAEP2. Not valid with
any other Key Formatting method)

SHA-1 Specifies to use the SHA-1 hash method to calculate the OAEP
message hash. This is the default for PKCSOAEP.

SHA-256 Specifies to use the SHA-256 hash method to calculate the OAEP
message hash.

SHA-384 Specifies to use the SHA-384 hash method to calculate the OAEP
message hash. Not valid with PKCSOAEP.

SHA-512 Specifies to use the SHA-512 hash method to calculate the OAEP
message hash. Not valid with PKCSOAEP.

Certificate validation method (One required when the input is an X.509 certificate.
Otherwise, must not be specified.)

RFC-2459 Validate the certificate using the semantics of RFC-2459.

RFC-3280 Validate the certificate using the semantics of RFC-3280.

RFC-5280 Validate the certificate using the semantics of RFC-5280.

RFC-ANY Attempt to validate the certificate by first using the semantics of RFC-
2459, then the semantics of RFC-3280, and finally, the semantics of
RFC-5280.

Public Key Infrastructure Usage (One optional when the input is an X.509 certificate.
Otherwise, must not be specified.)

PKI-CHK Specifies that the X.509 certificate is to be validated against the trust
chain of the PKI hosted in the adapter. This requires that the CA
credentials have been installed into all coprocessors using the Trusted
Key Entry workstation. This is the default.

PKI-NONE Specifies that the X.509 certificate is not to be validated against the
trust chain of the PKI hosted in the adapter. This is suitable if the
certificate has been validated using host-based PKI services or if using
a self-signed certificate.

54 CCA and PKCS #11 Algorithm Currency – APAR OA61253

source_key_identifier_length

Direction Type

Input Integer

The length in bytes of the source_key_identifier parameter. The minimum size is 64

bytes. If the source_key_identifier contains a label, the length must be 64. Otherwise, the

value must be between the actual length of the token and 725.

source_key_identifier

Direction Type

Input/Output String

The label or internal token of a secure AES DATA (version X‘04’), DES DATA, or variable-

length symmetric key token to encrypt under the supplied RSA public key or a secure

AES or DES key token to encrypt under the supplied AES EXPORTER key. The key in

the key identifier must match the algorithm in the rule_array. DES is the default algorithm.

transporter_key_identifier_length

Direction Type

Input Integer

The key to be exported and wrapped by the transport_key_identifier. The key identifier is

an operational token or the key label of an operational token in key storage.

The key in the key identifier must match the algorithm in the rule_array. DES is the

default algorithm.

For formatting method rules PKCSOAEP, PKCS-1.2, and ZERO-PAD, the source key is

an AES or DES DATA key in a fixed-length key token.

For rule AESKWCV, the source key is a DES key of any type in a fixed-length key token.

For rules AESKW and PKOAEP2, the source key is an AES or HMAC key of any type in

a variable-length key token.

For rule CKM-RAKW, the source key is an AES CIPHER key in a variable-length key

token.

If the token supplied was encrypted under the old master key, the token will be returned

encrypted under the current master key.

transporter_key_identifier

Direction Type

Input String

The key to wrap the source key in a formatted data buffer or external key token. The key

identifier is an operational token, the key label of an operational token in key storage, or

an X.509 certificate containing the public key.

When the AESKW or AESKWCV key formatting method is specified, this parameter must

be an AES EXPORTER key token or label with the EXPORT bit on in the key-usage field.

55 CCA and PKCS #11 Algorithm Currency – APAR OA61253

The key usage wrap algorithm control must match the algorithm of the source key. The

key usage wrap class control must match the class of the source key.

Otherwise, this parameter must be the token or label of an RSA public or private key

token, or the X.509 certificate containing the RSA public key.

Certificates may be PEM-formatted EBCDIC text or DER-encoded. The certificate may

either have no key usage attribute, or it must have the following usage: keyEncipherment.

When the identifier is an AES EXPORTER and the token supplied was encrypted under

the old master key, the token will be returned encrypted under the current master key.

Certificates may be PEM-formatted EBCDIC text or DER-encoded. The certificate may

either have no key usage attribute, or it must have the following usage: keyEncipherment.

enciphered_key_length

Direction Type

Input/Output Integer

The length of the enciphered_key parameter. This is updated with the actual length of the

enciphered_key generated. The maximum size you can specify in this parameter is 900

bytes, although the actual key length may be further restricted by your hardware

configuration (as shown in Table 159 on page 380).

enciphered_key

Direction Type

Output String

The exported key in the specified format wrapped by the RSA public or AES EXPORTER

key specified in the transporter_key_identifier field.

Usage notes

If ICSF is configured to audit the lifecycle of tokens (for example,

AUDITKEYLIFECKDS(TOKEN(YES),...) is specified) and a token is passed as input to be

exported, a request is made to the Crypto Express Coprocessor to generate the key fingerprint to

be used for auditing the exported key.

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS or PKDS.

If an RSA public key is specified as the transporter_key_identifier, the hardware configuration sets

the limit on the modulus size of keys for key management; thus, this service will fail if the RSA

key modulus bit length exceeds this limit.

When wrapping an AES key with an RSA public key, the RSA key used must have a modulus size

greater than or equal to the total PKOAEP2 message bit length (key size + total overhead).

Table 43. Minimum RSA modulus strength required to contain a PKOAEP2 block when
exporting an AES key

AES key
size

Total message sizes (and therefore minimum RSA key size) when the Hash
Method is:

SHA-1 SHA-256 SHA-384 SHA-512

128 bits 736 bits 928 bits 1184 bits 1440 bits

192 bits 800 bits 992 bits 1248 bits 1504 bits

56 CCA and PKCS #11 Algorithm Currency – APAR OA61253

256 bits 800 bits 1056 bits 1312 bits 1568 bits

Access control points

The following table shows the access control points in the domain role that control the function of

this service.

Table 44. Required access control points for Symmetric Key Export

Key formatting method Token Algorithm Access control point

PKCSOAEP AES Symmetric Key Export - AES, PKCSOAEP,
PKCS-1.2

DES Symmetric Key Export - DES, PKCS-1.2

PKCS-1.2 AES Symmetric Key Export - AES, PKCSOAEP,
PKCS-1.2

DES Symmetric Key Export - DES, PKCS-1.2

ZERO-PAD AES Symmetric Key Export - AES, ZEROPAD

DES Symmetric Key Export - DES, ZEROPAD

PKOAEP2 HMAC Symmetric Key Export - HMAC, PKOAEP2

 AES Symmetric Key Export - AES, PKOAEP2

AESKW AES or HMAC Symmetric Key Export - AESKW

AESKWCV DES Symmetric Key Export – AESKWCV

CKM-RAKW AES Symmetric Key Export - CKM-RAKW

If the transport key identifier is a weaker key than the key being exported, then:

• the service will fail if the Prohibit weak wrapping - Transport keys access control point is

enabled.

• the service will complete successfully with a warning return code if the Warn when weak

wrap - Transport keys access control point is enabled.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 45. Symmetric Key Export required hardware

Server Required cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the
November 2007 or later licensed internal
code (LIC).

Encrypted AES key support requires the
November 2008 or later licensed internal
code (LIC).

The AESKW, AESKWCV, CKM-RAKW,
HMAC, and PKOAEP2 keywords are not
supported.

The SHA-256 keyword is not supported for

57 CCA and PKCS #11 Algorithm Currency – APAR OA61253

PKCSOAEP.

Triple-length DES keys are not supported.
Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY,

PKI-CHK, and PKI-NONE are not
supported.

X.509 certificates are not supported.
Compliant-tagged key tokens are not
supported.

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048- bit to 4096-bit requires the
November 2007 or later licensed internal
code (LIC).

Encrypted AES key support requires the
November 2008 or later licensed internal
code (LIC).

The AESKW, AESKWCV, CKM-RAKW,
HMAC, and PKOAEP2 keywords are not
supported.

The SHA-256 keyword is not supported for
PKCSOAEP.

Triple-length DES keys are not supported.

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, and PKI-NONE
are not supported.

X.509 certificates are not supported.
Compliant-tagged key tokens are not
supported.

Crypto Express3
Coprocessor

The AESKW, AESKWCV, CKM-RAKW,
HMAC, and PKOAEP2 keywords are not
supported.

The SHA-256 keyword is not supported for
PKCSOAEP.

Triple-length DES keys are not supported.

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, and PKI-NONE
are not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

58 CCA and PKCS #11 Algorithm Currency – APAR OA61253

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

DK AES PIN key support requires the
November 2013 or later licensed internal
code.

Variable-length AES Keys, the AESKW
method, and PKCSOAEP with the SHA-256
hash method require the September 2011
or later licensed internal code (LIC).

HMAC key support requires the November
2010 or later licensed internal code (LIC).

The AESKWCV and CKM-RAKW keywords
are not supported.

Triple-length DES keys are not supported.

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, and PKI-NONE
are not supported.

X.509 certificates are not supported.
Compliant-tagged key tokens are not
supported.

IBM zEnterprise EC12
IBM zEnterprise BC12

Crypto Express3
Coprocessor
Crypto Express4 CCA
Coprocessor

DK AES PIN key support requires the
September 2013 or later licensed internal
code.

AESKWCV requires the September 2013 or
later licensed internal code (LIC).

Triple-length DES keys are not supported.

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, and PKI-NONE
are not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

Rule array keyword CKM-RAKW is not
supported.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

Triple-length DES keys require the July
2019 or later licensed internal code (LIC).

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, and PKI-NONE
are not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

59 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Rule array keyword CKM-RAKW is not
supported.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

Triple-length DES keys require the
December 2018 or later licensed internal
code (LIC).

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, and PKI-NONE
are not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

Rule array keyword CKM-RAKW is not
supported.

Crypto Express6 CCA
Coprocessor

Triple-length DES keys require the
December 2018 or later licensed internal
code (LIC).

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, and PKI-NONE
require the July 2019 or later licensed
internal code (LIC).

X.509 certificates require the July 2019 or
later licensed internal code (LIC).

Compliant-tagged key tokens require a
CEX6C with the July 2019 or later licensed
internal code (LIC).

Rule array keyword CKM-RAKW is not
supported.

IBM z15
IBM z15 T02

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not
supported.

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, and PKI-NONE
are not supported.

X.509 certificates are not supported.

Rule array keyword CKM-RAKW is not
supported.

Crypto Express6 CCA
Coprocessor

Rule array keyword CKM-RAKW is not
supported.

Crypto Express7 CCA
Coprocessor

Rule array keyword CKM-RAKW requires
the CCA release 7.4 or later licensed
internal code (LIC).

60 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Symmetric Algorithm Decipher (CSNBSAD or CSNBSAD1 and CSNESAD or

CSNESAD1)
The symmetric algorithm decipher callable service deciphers data with the AES algorithm.

Encryption modes supported are Cipher Block Chaining (CBC) mode, Electronic Code Book

(ECB) mode, and Galois/ Counter Mode (GCM).

You can specify that the clear text data was padded before encryption using the method

described in the PKCS standards. In this case, the callable service will remove the padding bytes

and return the unpadded clear text data. PKCS padding is described in “PKCS padding method”

on page 1468.

The callable service names for AMODE(64) invocation are CSNESAD and CSNESAD1.

Choosing between CSNBSAD and CSNBSAD1 or CSNESAD and CSNESAD1

CSNBSAD, CSNBSAD1, CSNESAD, and CSNESAD1 provide identical functions. When

choosing which service to use, consider this:

• CSNBSAD and CSNESAD require the cipher text and plaintext to reside in the caller’s

primary address space. Also, a program using CSNBSAD adheres to the IBM Common

Cryptographic Architecture: Cryptographic Application Programming Interface.

• CSNBSAD1 and CSNESAD1 allow the cipher text and plaintext to reside either in the caller’s

primary address space or in a data space. This can allow you to decipher more data with one

call. However, a program using CSNBSAD1 and CSNESAD1 does not adhere to the IBM

CCA: Cryptographic API and may need to be modified prior to it running with other

cryptographic products that follow this programming interface.

For CSNBSAD1 and CSNESAD1, cipher_text_id and clear_text_id are access list entry token

(ALET) parameters of the data spaces containing the cipher text and plaintext.

Format

CALL CSNBSAD(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_identifier_length,

 key_identifier,

 key_parms_length,

 key_parms,

 block_size,

 initialization_vector_length,

 initialization_vector,

 chain_data_length,

 chain_data,

 cipher_text_length,

 cipher_text,

 clear_text_length,

 clear_text,

 optional_data_length,

 optional_data)

61 CCA and PKCS #11 Algorithm Currency – APAR OA61253

CALL CSNBSAD1(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_length,

 key_identifier,

 key_parms_length,

 key_parms,

 block_size,

 initialization_vector_length,

 initialization_vector,

 chain_data_length,

 chain_data,

 cipher_text_length,

 cipher_text,

 clear_text_length,

 clear_text,

 optional_data_length,

 optional_data,

 cipher_text_id,

 clear_text_id)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1279 lists the return

codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes assigned to it that

indicate specific processing problems. Appendix A, “ICSF and cryptographic coprocessor

return and reason codes,” on page 1279 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

62 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value may be 2,

3 or 4.

rule_array

Direction Type

Input String

An array of 8-byte keywords providing the processing control information. The keywords

must be in contiguous storage, left-justified and padded on the right with blanks.

Table 46. Symmetric Algorithm Decipher Rule Array Keywords

Keyword Meaning

Algorithm (required, one keyword)

AES Specifies that the Advanced Encryption Standard (AES) algorithm is to
be used. The block size is 16 bytes. The key length may be 16, 24, or
32 bytes.

Processing Rule (optional, one keyword)

CBC Performs encryption in cipher block chaining (CBC) mode. The text
length must be a multiple of the AES block size (16-bytes). This is the
default value.

ECB Performs encryption in electronic code book (ECB) mode. The text
length must be a multiple of the AES block size (16-bytes).

GCM Performs Galois/Counter mode decryption. The plaintext will have the
same length as the ciphertext. Additionally, the authentication tag will
be verified before the data is returned.

PKCS-PAD Performs encryption in cipher block chaining (CBC) mode. The
ciphertext length must be an exact multiple of 16 bytes. Padding is
removed from the plaintext and the text length is reduced to the
original value. This rule should be specified only when there is one
request or on the last request of a sequence of chained requests.

X9.23PAD

Specifies that the cleartext was padded according to the PKCS
padding scheme.

Performs encryption in cipher block chaining (CBC) mode. The
ciphertext length must be an exact multiple of 16 bytes. Padding is
removed from the plaintext and the text length is reduced to the
original value. This rule should be specified only when there is one
request or on the last request of a sequence of chained requests.

Key Rule (required, one keyword)

KEYIDENT This indicates that the value in the key_identifier parameter is either an
internal key token or the label of a key token in the CKDS. The key
must be a secure AES key, that is, enciphered under the current
master key.

ICV Selection (optional for CBC and PKCS-PAD, required for GCM, one keyword)

INITIAL This specifies that this is the first request of a sequence of chained
requests and indicates that the initialization vector should be taken

63 CCA and PKCS #11 Algorithm Currency – APAR OA61253

from the initialization_vector parameter. This is the default value for
CBC and PKDS-PAD. This keyword is not valid with processing rule
GCM.

CONTINUE This specifies that this request is part of a sequence of chained
requests, and is not the first request in that sequence. The initialization
vector will be taken from the work area identified in the chain_data
parameter. This keyword is only valid for processing rules CBC or
PKCS-PAD.

ONLY Specifies that this is the only request and indicates that the
initialization vector should be taken from the initialization_vector
parameter. Only valid with the processing rule GCM.

key_identifier_length

Direction Type

Input Integer

The length of the key_identifier parameter in bytes. The length must be 64 bytes for a

fixed-length (version X’04’) token or a CKDS label, or between the actual length of the

token and 725 for a variable-length (version X’05’) token.

key_identifier

Direction Type

Input/Output String

The identifier of the key to decrypt the text. The key identifier is an operational token or

the key label of an operational token in key storage. The key algorithm of this key must

be AES, the key type must be DATA (fixed-length token, version X'04') or CIPHER

(variable-length token, version X'05'). For the CIPHER key, the key usage must indicate

DECRYPT and the appropriate mode of encryption (CBC, ECB, GCM, or ANY-MODE).

If the token supplied was encrypted under the old master key, the token is returned

encrypted under the current master key.

key_parms_length

Direction Type

Input Integer

The length of the key_parms parameter in bytes.

For the GCM processing rule, this is the length of the authentication tag to be verified.

Valid lengths are 4, 8, 12, 13, 14, 15, and 16, but using a length of 4 or 8 is strongly

discouraged.

For all other processing rules, the value must be zero.

key_parms

Direction Type

Input String

The key_parms parameter contains key related parameters.

64 CCA and PKCS #11 Algorithm Currency – APAR OA61253

For the GCM processing rule, key_parms will contain an authentication tag to be verified

for the provided ciphertext (cipher_text parameter) and additional authenticated data

(optional_data parameter). You must specify the same key_parms generated when the

text was enciphered.

Otherwise, this parameter is ignored.

block_size

Direction Type

Input Integer

The block size for the cryptographic algorithm. AES requires the block size to be 16.

initialization_vector_length

Direction Type

Input Integer

The length of the initialization_vector parameter in bytes. For CBC, PKCS-PAD, and

X9.23PAD, the length must be equal to the block length for the algorithm specified, 16.

For the GCM processing rule, NIST recommends a length of 12, but tolerates any non-

zero length up to a maximum of 232-1.

This parameter is ignored when the process rule is ECB.

initialization_vector

Direction Type

Input/Output String

This parameter contains the initialization vector (IV) for CBC mode decryption. This

includes CBC, GCM, PKCS-PAD, and X9.23PAD processing rule keywords. The IV must

be the same value used when the data was encrypted.

This parameter is ignored when the process rule is ECB.

chain_data_length

Direction Type

Input Integer

The length of the chain_data parameter in bytes. On input, it contains the length of the

buffer provided with parameter chain_data. On output, it is updated with the length of the

data returned in the chain_data parameter.

For CBC, the value must be at least 32. For ECB and GCM, the parameter is ignored.

chain_data

Direction Type

Input/Output String

A buffer that is used as a work area for sequences of chained symmetric algorithm

decipher requests. The exact content and layout of chain_data is not described. Your

application program must not change the data in this string.

65 CCA and PKCS #11 Algorithm Currency – APAR OA61253

When the keyword INITIAL is used, this is an output parameter and receives data that is

needed when deciphering the next part of the input data. When the keyword CONTINUE

is used, this is an input/output parameter; the value received as output from the previous

call in the sequence is provided as input to this call, and in turn, this call will return new

chain_data that will be used as input on the next call. When CONTINUE is used, both the

data (chain_data parameter) and the length (chain_data_length parameter) must be the

same values that were received in these parameters as output on the preceding call to

the service in the chained sequence.

For ECB and GCM, this parameter is ignored.

cipher_text_length

Direction Type

Input Integer

The length of the cipher text. For processing rules CBC, ECB, PKCS-PAD, and

X9.23PAD, the length must be a multiple of the algorithm block size. The maximum

length is 232-1.

For GCM, the value may be zero.

When the Crypto Express adapter is a CEX5 or CEX6, the maximum value is 229-1.

When the Crypto Express adapter is a CEX7, the maximum value is 232-1.

cipher_text

Direction Type

Input/Output String

The text to be deciphered.

clear_text_length

Direction Type

Input/Output Integer

On input, this parameter specifies the size of the storage pointed to by the clear_text

parameter. On output, this parameter has the actual length of the text stored in the

clear_text parameter.

If process rule PKCS-PAD or X9.23PAD is used, the clear text length will be less than the

cipher text length since padding bytes are removed.

clear_text

Direction Type

Output String

The deciphered text the service returns.

optional_data_length

Direction Type

Input Integer

66 CCA and PKCS #11 Algorithm Currency – APAR OA61253

The length of the optional_data parameter in bytes. For the GCM processing rule, this

parameter contains the length of the Additional Authenticated Data (AAD). The value may

be 0 to 232-1.

For all other processing rules, the value must be 0.

optional_data

Direction Type

Input String

Optional data required by a specified algorithm or processing mode. For the GCM

processing rule, this parameter contains the Additional Authenticated Data (AAD). For all

other processing rules, this field is ignored.

You must specify the same optional_data used when the text was enciphered.

cipher_text_id

Direction Type

Input Integer

For CSNBSAD1 and CSNESAD1 only, the ALET of the dataspace in which the

cipher_text parameter resides.

clear_text_id

Direction Type

Input Integer

For CSNBSAD1 and CSNESAD1 only, the ALET of the dataspace in which the clear_text

parameter resides.

Usage notes

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS or PKDS.

The clear_text and cipher_text parameters may be in any dataspace. The initialization_vector and

optional_data parameters must be in the caller's address space (primary).

Access control point

The Symmetric Algorithm Decipher - secure AES keys access control point controls the

function of this service. Use of the GCM processing rule requires that the Symmetric Algorithm

Decipher – Galois/Counter mode AES access control is enabled.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 47. Symmetric Algorithm Decipher required hardware

Server Required cryptographic
hardware

Restrictions

67 CCA and PKCS #11 Algorithm Currency – APAR OA61253

IBM System z9 EC
IBM System z9 BC

Crypto Express2
Coprocessor

Secure AES key support requires the Nov. 2008
or later licensed internal code (LIC).

Keywords GCM, ONLY, and X9.23PAD are not
supported.

Compliant-tagged key tokens are not supported.

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor
Crypto Express3
Coprocessor

Secure AES key support requires the Nov. 2008
or later licensed internal code (LIC).

Keywords GCM, ONLY, and X9.23PAD are not
supported.

Compliant-tagged key tokens are not supported.

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

AES Variable-length Symmetric Internal Key
Tokens require the Sep. 2011 or later licensed
internal code (LIC).

Keywords GCM, ONLY, and X9.23PAD are not
supported.

Compliant-tagged key tokens are not supported.

IBM zEnterprise EC12
IBM zEnterprise BC12

Crypto Express3
Coprocessor
Crypto Express4 CCA
Coprocessor

Keywords GCM, ONLY, and X9.23PAD are not
supported.

Compliant-tagged key tokens are not supported.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

Keywords GCM and ONLY require the March
2016 or later licensed internal code (LIC).

Compliant-tagged key tokens are not supported.

Rule array keyword X9.23PAD is not supported.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

Keywords GCM and ONLY require the March
2016 or later licensed internal code (LIC).

Compliant-tagged key tokens are not supported.

Rule array keyword X9.23PAD is not supported.

Crypto Express6 CCA
Coprocessor

Keywords GCM and ONLY require the March
2016 or later licensed internal code (LIC).

Rule array keyword X9.23PAD requires the CCA
release 6.7 or later licensed internal code (LIC).

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

Keywords GCM and ONLY require the March
2016 or later licensed internal code (LIC).

Compliant-tagged key tokens are not supported.

Rule array keyword X9.23PAD is not supported.

Crypto Express6 CCA
Coprocessor

Rule array keyword X9.23PAD requires the CCA
release 6.7 or later licensed internal code (LIC).

Crypto Express7 CCA
Coprocessor

Rule array keyword X9.23PAD requires the CCA
release 7.4 or later licensed internal code (LIC).

68 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Symmetric Algorithm Encipher (CSNBSAE or CSNBSAE1 and CSNESAE or CSNESAE1)
The symmetric algorithm encipher callable service enciphers data with the AES algorithm.

Encryption modes supported are Cipher Block Chaining (CBC) mode, Electronic Code Book

(ECB) mode, and Galois/Counter Mode (GCM).

The symmetric algorithm encipher service supports the Australian Payment Network (APN)

standards to generate and verify MACs and related processing as defined in AS2805.5.4.

• To generate a MAC – Processing rule A28MACGN

Parameters:

key_identifier: double-length DES MAC key

key_parms: double-length DES CIPHE R key

clear_text: clear message text

chain_data:

Input: starting MAC residue, encrypted by the key in the key_parms parameter

Output: Final MAC residue, encrypted by the key in the key_parms parameter

cipher_text:

Output: 8-byte MAC

• To verify a MAC – Processing rule A28MACVR

Parameters:

key_identifier: double-length DES MAC key

key_parms: double-length DES CIPHE R key

clear_text: clear message text

chain_data:

Input: starting MAC residue as indicated by the Residue value keyword,

encrypted by the key in the key_parms parameter

Output: Final MAC residue, encrypted by the key in the key_parms parameter

cipher_text:

Input: 8-byte MAC to verify

• One Way Function processing

▪ Processing rule A28OWFEC

Parameters:

key_identifier: double-length DES EXPORTER key

key_parms: double-length DES CIPHE R key

chain_data: input value ECB wrapped by the key specified in the key_parms field

cipher_text: output of the OWF

• Processing rule A28OWFCL

Parameters:

key_identifier: double-length DES CIPHER key

chain_data: clear input value

cipher_text: output of the OWF

The callable service names for AMODE(64) invocation are CSNESAE and CSNESAE1

Choosing between CSNBSAE and CSNBSAE1 or CSNESAE and CSNESAE1

69 CCA and PKCS #11 Algorithm Currency – APAR OA61253

CSNBSAE, CSNBSAE1, CSNESAE, and CSNESAE1 provide identical functions. When choosing

which service to use, consider this:

• CSNBSAE and CSNESAE require the cipher text and plaintext to reside in the caller’s

primary address space. Also, a program using CSNBSAE adheres to the IBM Common

Cryptographic Architecture: Cryptographic Application Programming Interface.

• CSNBSAE1 and CSNESAE1 allow the cipher text and plaintext to reside either in the caller’s

primary address space or in a data space. This can allow you to encipher more data with one

call. However, a program using CSNBSAE1 and CSNESAE1 does not adhere to the IBM

CCA: Cryptographic API and may need to be modified prior to it running with other

cryptographic products that follow this programming interface.

For CSNBSAE1 and CSNESAE1, cipher_text_id and clear_text_id are access list entry token

(ALET) parameters of the data spaces containing the cipher text and plaintext.

Format

CALL CSNBSAE(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_identifier_length,

 key_identifier,

 key_parms_length,

 key_parms,

 block_size,

 initialization_vector_length,

 initialization_vector,

 chain_data_length,

 chain_data,

 clear_text_length,

 clear_text,

 cipher_text_length,

 cipher_text,

 optional_data_length,

 optional_data)

CALL CSNBSAE1(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 key_identifier_length,

 key_identifier,

 key_parms_length,

 key_parms,

 block_size,

 initialization_vector_length,

 initialization_vector,

70 CCA and PKCS #11 Algorithm Currency – APAR OA61253

 chain_data_length,

 chain_data,

 clear_text_length,

 clear_text,

 cipher_text_length,

 cipher_text,

 optional_data_length,

 optional_data,

 clear_text_id,

 cipher_text_id)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1279 lists the return

codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes assigned to it that

indicate specific processing problems. Appendix A, “ICSF and cryptographic coprocessor

return and reason codes,” on page 1279 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored
String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value may be 2,

3, 4, or 5.

rule_array

71 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input String

This keyword provides control information to the callable service. The keywords must be

eight bytes of contiguous storage with the keyword left-justified in its 8-byte location and

padded on the right with blanks.

Table 48. Symmetric Algorithm Encipher Rule Array Keywords

Keyword Meaning

Algorithm (required, one keyword)

AES Specifies that the Advanced Encryption Standard (AES) algorithm will
be used. The block size is 16-bytes, and the key length may be 16-,
24-, or 32-bytes (128-, 192-, 256-bits).

DES Specifies use of the Data Encryption Standard (DES) as the
encryption algorithm. Only valid with processing rule A28MACGN,
A28MACVR, A28OWFEC, and A28OWFCL keywords.

Processing Rule (one, required when the DES algorithm keyword is specified, optional
when the AES keyword is specified)

Rules for the DES algorithm (one required)

A28MACGN Specifies to generate a MAC as defined by the AusPayNet standard
AS2805.5.4. A Residue Value keyword must be specified.

A28MACVR Specifies to verify a MAC as defined by the AusPayNet standard
AS2805.5.4. A Residue Value keyword must be specified.

A28OWFCL Specifies to process the value in the chain_data parameter as clear
data and return the results of the One Way Function as specified in
AS2805.5.4 in the ciphertext parameter.

A28OWFEC Specifies to process the value in the chain_data parameter as ECB
encrypted using the key supplied in the key_parms parameter. The
value will be decrypted and the results of the One Way Function as
specified in AS2805.5.4 will be returned in the ciphertext parameter.

Rules for the AES algorithm (one optional)

CBC Performs encryption in cipher block chaining (CBC) mode. The text
length must be a multiple of the AES block size (16-bytes). This is the
default value.

ECB Performs encryption in electronic code book (ECB) mode. The text
length must be a multiple of the AES block size (16-bytes).

GCM Perform Galois/Counter mode encryption. The plaintext may be any
length. The ciphertext will have the same length as the plaintext. The
key_parms_length and key_parms parameters are used to indicate
the length of the tag (the value t) on input and contains the tag on
output. Additional Authenticated Data (AAD) is contained in the
optional_data_length and optional_data parameters.

PKCS-PAD Performs encryption in cipher block chaining (CBC) mode, but the
data is padded using PKCS padding rules. The length of the clear
text data does not have to be a multiple of the cipher block length.
The cipher text will be longer than the clear text by at least one byte,
and up to 16-bytes. The PKCS padding method is described in
“PKCS padding method” on page 1468. This rule should be specified
only when there is one request or on the last request of a sequence
of chained requests.

X9.23PAD Performs encryption in cipher block chaining (CBC) mode, but the
data is padded using X9.23 padding scheme. The length of the clear
text data does not have to be a multiple of the cipher block length.
The cipher text will be longer than the clear text by at least one byte,

72 CCA and PKCS #11 Algorithm Currency – APAR OA61253

and up to 16-bytes. This rule should be specified only when there is
one request or on the last request of a sequence of chained requests.

Residue Value (one, required with A28MACVR)
Only valid with processing rules A28MACVR.

A28RES Specifies that there is a residue value in the first 8 bytes of the
chain_data parameter. These 8 bytes will be overwritten in the return.
See the chain_data parameter for details.

A28NORES Specifies that there is no residue value in the first 8 bytes of the
chain_data parameter. These 8 bytes should be left null, as they will
be overwritten in the return. See the chain_data parameter for details.
Only valid with A28MACVR.

Key Rule (required, one keyword)

KEYIDENT This indicates that the value in the key_identifier parameter is either
an internal key token or the label of a key token in the CKDS. The key
must be a secure AES key, that is, enciphered under the current
master key.

ICV Selection (one, required for GCM, otherwise optional)

INITIAL This specifies that this is the first request of a sequence of chained
requests and indicates that the initialization vector should be taken
from the initialization_vector parameter. This is the default value for
CBC and PKDS-PAD. This keyword is not valid with processing rule
GCM.

CONTINUE This specifies that this request is part of a sequence of chained
requests, and is not the first request in that sequence. The
initialization vector will be taken from the work area identified in the
chain_data parameter. This keyword is only valid for processing rules
CBC or PKCS-PAD. This keyword is not valid with the ECB or GCM
processing rule keyword.

ONLY Specifies that this is the only request and indicates that the
initialization vector should be taken from the initialization_vector
parameter. Only valid with the processing rule GCM, A28MACGN,
A28MACVR, A28OWFEC, and A28OWFCL. This is the default for
A28MACGN, A28MACVR, A28OWFEC, and A28OWFCL.

key_identifier_length

Direction Type

Input Integer

The length of the key_identifier parameter in bytes. The length must be 64 bytes for a

fixed-length (version X’04’) token or a CKDS label, or between the actual length of the

token and 725 for a variable-length (version X’05’) token.

key_identifier

Direction Type

Input/Output
String

The identifier of the key to encrypt the text. The key identifier is an operational token or

the key label of an operational token in key storage.

For processing rule keywords CBC, ECB, GCM, PKCS-PAD, and X9.23PAD, the key

algorithm is AES and the key type must be DATA (fixed-length token, version X'04') or

CIPHER (variable-length token, version X'05'). For the CIPHER key, the key usage must

73 CCA and PKCS #11 Algorithm Currency – APAR OA61253

indicate ENCRYPT and the appropriate mode of encryption (CBC, ECB, GCM, or ANY-

MODE).

For processing rule keywords A28MACGN and A28MACVR, the key algorithm is DES,

the key type is MAC, and the key usages must be ANY-MAC. The key must be a double-

length key.

For processing rule keywords A28OWFEC, the key algorithm is DES and the key type is

EXPORTER. The key must be a double-length key.

For processing rule keywords A28OWFCL, the key algorithm is DES, the key type is

CIPHER, and the key usages must permit decryption. The key must be a double-length

key.

If the token supplied was encrypted under the old master key, the token is returned

encrypted under the current master key.

key_parms_length

Direction Type

Input Integer

The length of the key_parms parameter in bytes.

For the GCM processing rule, this is the length of the authentication tag to be verified.

Valid lengths are 4, 8, 12, 13, 14, 15, and 16, but using a length of 4 or 8 is strongly

discouraged. If there is an error in processing, this value will be set to zero on output.

Otherwise, it will be unchanged.

For processing rule keywords A28MACGN, A28MACVR, and A28OWFEC, the value is

64.

For all other processing rules, the value must be zero.

key_parms

Direction Type

Input/Output String

The key_parms parameter contains key related parameters.

For the GCM processing rule, key_parms will contain the generated authentication tag for

the provided plaintext (plain_text parameter) and additional authenticated data

(optional_data parameter). You must specify this generated key_parms when deciphering

the text.

For processing rule keywords A28MACGN, A28MACVR, and A28OWFEC, this is the key

used to encrypt the chain_data parameter. The key algorithm is DES, the key type is

CIPHER. The key must be a double-length key.

When the value of the key_parms_length parameter is 0, this parameter is ignored.

block_size

Direction Type

Input Integer

74 CCA and PKCS #11 Algorithm Currency – APAR OA61253

The block size for the cryptographic algorithm. The block size for AES is 16. The block

size for DES is 8.

initialization_vector_length

Direction Type

Input Integer

The length of the initialization_vector parameter in bytes. For CBC, PKCS-PAD, or

X9.23PAD, the length must be equal to the block length for the algorithm specified, 16.

For the GCM processing rule, NIST recommends a length of 12, but tolerates any non-

zero length up to a maximum of 232-1.

This parameter is ignored when the process rule is ECB.

initialization_vector

Direction Type

Input String

This parameter contains the initialization vector (IV) for CBC mode decryption. This

includes CBC, GCM, PKCS-PAD, and X9.23PAD processing rule keywords. The same IV

value must be used when the data is decrypted.

This parameter is ignored when the process rule is ECB, A28MACGN, A28MACVR,

A28OWFEC, and A28OWFCL.

chain_data_length

Direction Type

Input/Output Integer

The length of the chain_data parameter in bytes. On input, it contains the length of the

buffer provided with parameter chain_data. On output, it is updated with the length of the

data returned in the chain_data parameter.

For CBC, PKCS-PAD, and X9.23PAD the value must be at least 32.

For ECB and GCM, this parameter is ignored.

For processing rule keywords A28MACGN and A28MACVR, the value must be 8.

For processing rule keywords A28OWFEC, the value must be 8 or 16.

For processing rule keywords A28OWFCL, the value must be 1 to 16 inclusive.

chain_data

Direction Type

/Output String

A buffer that is used as a work area for sequences of chained symmetric algorithm

encipher requests. The exact content and layout of chain_data is not described. Your

application program must not change the data in this string.

When the keyword INITIAL is used, this is an output parameter and receives data that is

needed when enciphering the next part of the input data. When the keyword CONTINUE

is used, this is an input/output parameter; the value received as output from the previous

75 CCA and PKCS #11 Algorithm Currency – APAR OA61253

call in the sequence is provided as input to this call, and in turn, this call will return new

chain_data that will be used as input on the next call. When CONTINUE is used, both the

data (chain_data parameter) and the length (chain_data_length parameter) must be the

same values that were received in these parameters as output on the preceding call to

the service in the chained sequence.

For processing rule keywords A28MACGN, A28MACVR, A28OWFEC, A28OWFCL, this

parameter contains the data that will be processed. When AS28RES is specified, the first

8 bytes will be the residue value from a previous MAC operation. When AS28NORES is

specified, the first 8 bytes will be zeros.

A28MACGN, A28MACVR:

Input: (8 bytes)

Input residue value enciphered by the key specified in key_parms

parameter or zero.

Output: (8 bytes)

The output residue value enciphered by the key in key_parms parameter.

A28OWFEC:

Input:

Text enciphered by the key specified in key_parms parameter to be used

as input to the OWF.

No output in this parameter.

A28OWFCL:

Input:

Clear text that will be used as input to the OWF.

No output in this parameter.

For ECB and GCM, this parameter is ignored.

clear_text_length

Direction Type

Input Integer

The length of the clear text data in the clear_text parameter in bytes. For CBC and ECB

processing rules, the length must be a multiple of the algorithm block size. For PKDS-

PAD and GCM processing rules, the length may be any value. The maximum length is

232-1.

For GCM, the value may be zero.

When the Crypto Express adapter is a CEX5 or CEX6, the maximum value is 229-1.

When the Crypto Express adapter is a CEX7, the maximum value is 232-1.

For processing rules A28OWFEC and A28OWFCL, the value must be zero.

For processing rules A28MACGN and A28MACVR, the maximum length is 1024.

clear_text

Direction Type

Input String

76 CCA and PKCS #11 Algorithm Currency – APAR OA61253

The text to be enciphered.

When the clear_text_length is zero, this parameter is ignored.

cipher_text_length

Direction Type

Input/Output Integer

On input, this parameter specifies the size of the storage pointed to by the cipher_text

parameter. On output, this parameter has the actual length of the text stored in the buffer

addressed by the cipher_text parameter.

If process rule PKCS-PAD or X9.23PAD is specified, the cipher text length will exceed the

clear text length by at least one byte, and up to 16-bytes. For other process rules, the

cipher text length will be equal to the clear text length.

For processing rule keywords A28MACGN and A28MACVR, the value will be 8.

For processing rule keyword A28OWFEC, the value will be 4.

For processing rule keywords A28OWFCL, the value will be the length of the chain_data

parameter.

cipher_text

Direction Type

Input/Output String

The enciphered text the service returns. If PKCS-PAD, or X9.23PAD is specified, on

output the ciphertext buffer contains 1 - 16 bytes of data more than the cleartext input

buffer contains.

For processing rule keyword A28MACGN, the 8-byte generated MAC will be returned.

For processing rule keyword A28MACVR, on input, this parameter contains the 8-byte

MAC to be verified

For processing rule keywords A28OWFEC and A28OWFCL, the output of the APN OWF

will be returned.

optional_data_length

Direction Type

Input Integer

The length of the optional_data parameter in bytes. For the GCM processing rule, this

parameter contains the length of the Additional Authenticated Data (AAD). The value may

be 0 to 232-1.

For all other processing rules, the value must be 0.

optional_data

Direction Type

Input/Output Integer

77 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Optional data required by a specified algorithm or processing mode. For the GCM

processing rule, this parameter contains the Additional Authenticated Data (AAD). For all

other processing rules, this field is ignored.

You must specify the same optional_data used when deciphering the text.

cipher_text_id

Direction Type

Input Integer

For CSNBSAE1 and CSNESAE1 only, the ALET of the dataspace in which the

cipher_text parameter resides.

clear_text_id

Direction Type

Input Integer

For CSNBSAE1 and CSNESAE1 only, the ALET of the dataspace in which the clear_text

parameter resides.

Usage notes

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS or PKDS.

The clear_text and cipher_text parameters may be in any dataspace. The initialization_vector and

optional_data parameters must be in the caller's address space (primary).

Access control point

The access controls for Symmetric Algorithm Encipher are listed in this table

Access controls for Symmetric Algorithm Encipher

Rule array keyword Access control

AES Symmetric Algorithm Encipher - secure AES keys

A28MACGN,
A28MACVR

Symmetric Algorithm Encipher – allow A28MACGN and A28MACVR

A28OWFCL Symmetric Algorithm Encipher - allow APN A28OWFCL

A28OWFEC Symmetric Algorithm Encipher - allow APN A28OWFEC

GCM Symmetric Algorithm Encipher – Galois/Counter mode AES

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 49. Symmetric Algorithm Encipher required hardware

Server Required cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

Crypto Express2
Coprocessor

Secure AES key support requires the Nov. 2008
or later licensed internal code (LIC).

Keywords GCM and ONLY are not supported.

78 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Rule array keywords DES, A28MACGN,
A28MACVR, A28OWFEC, A28OWFCL,
A28RES, A28NORES, and X9.23PAD are not
supported.

Compliant-tagged key tokens are not supported.

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor
Crypto Express3
Coprocessor

Secure AES key support requires the Nov. 2008
or later licensed internal code (LIC).

Keywords GCM and ONLY are not supported.

Rule array keywords DES, A28MACGN,
A28MACVR, A28OWFEC, A28OWFCL,
A28RES, A28NORES, and X9.23PAD are not
supported.

Compliant-tagged key tokens are not supported.

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

AES Variable-length Symmetric Internal Key
Tokens require the Sep. 2011 or later licensed
internal code (LIC).

Keywords GCM and ONLY are not supported.

Rule array keywords DES, A28MACGN,
A28MACVR, A28OWFEC, A28OWFCL,
A28RES, A28NORES, and X9.23PAD are not
supported.

Compliant-tagged key tokens are not supported.

IBM zEnterprise EC12
IBM zEnterprise BC12

Crypto Express3
Coprocessor
Crypto Express4 CCA
Coprocessor

Keywords GCM and ONLY are not supported.

Rule array keywords DES, A28MACGN,
A28MACVR, A28OWFEC, A28OWFCL,
A28RES, A28NORES, and X9.23PAD are not
supported.

Compliant-tagged key tokens are not supported.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

Keywords GCM and ONLY require the March
2016 or later licensed internal code (LIC).

Rule array keywords DES, A28MACGN,
A28MACVR, A28OWFEC, A28OWFCL,
A28RES, A28NORES, and X9.23PAD are not
supported.

Compliant-tagged key tokens are not supported.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

Keywords GCM and ONLY require the March
2016 or later licensed internal code (LIC).

Rule array keywords DES, A28MACGN,
A28MACVR, A28OWFEC, A28OWFCL,
A28RES, A28NORES, and X9.23PAD are not
supported.

Compliant-tagged key tokens are not supported.

79 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Crypto Express6 CCA
Coprocessor

Keywords GCM and ONLY require the March
2016 or later licensed internal code (LIC).

Rule array keyword X9.23PAD requires the CCA
release 6.7 or later licensed internal code (LIC).

Rule array keywords DES, A28MACGN,
A28MACVR, A28OWFEC, A28OWFCL,
A28RES, and A28NORES are not supported.

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

Keywords GCM and ONLY require the March
2016 or later licensed internal code (LIC).

Rule array keywords DES, A28MACGN,
A28MACVR, A28OWFEC, A28OWFCL,
A28RES, A28NORES, and X9.23PAD are not
supported.

Compliant-tagged key tokens are not supported.

Crypto Express6 CCA
Coprocessor

Rule array keyword X9.23PAD requires the CCA
release 6.7 or later licensed internal code (LIC).

Rule array keywords DES, A28MACGN,
A28MACVR, A28OWFEC, A28OWFCL,
A28RES, and A28NORES are not supported.

Crypto Express7 CCA
Coprocessor

Rule array keywords DES, A28MACGN,
A28MACVR, A28OWFEC, A28OWFCL,
A28RES, A28NORES, and X9.23PAD require
the CCA release 7.4 or later licensed internal
code (LIC).

Enhanced PIN security

Enhanced PIN security mode

An Enhanced PIN Security Mode is available. This optional mode is selected by enabling the
Enhanced PIN Security access control point in coprocessor domain role. When active, this control
point affects all PIN callable services that extract or format a PIN using a PIN-block format of 3621 or
3624 with a PIN-extraction method of PADDIGIT.

Table 50 summarizes the callable services affected by the Enhanced PIN Security Mode and
describes the effect that the mode has when the access control point is enabled.

Table 50. Callable services affected by enhanced PIN security mode

PIN-block format and
PIN-extraction method

Callable services affected PIN processing changes when
Enhanced PIN Security Mode
enabled

ECI-2, 3621, or 3624
formats AND PINLENxx

CSNBCPA
CSNBPTR
CSNBPTRE
CSNBPVR
CSNBPVR2

The PINLENxx keyword in rule_array
parameter for PIN extraction method
is not allowed if the Enhanced PIN
Security Mode is enabled.

Note: The services will fail with return

80 CCA and PKCS #11 Algorithm Currency – APAR OA61253

code 8 reason code '7E0'x.

3621 or 3624 format
and PADDIGIT

CSNBCPA
CSNBPTR
CSNBPTR2
CSNBPTRE
CSNBPVR
CSNBPVR2
CSNBPCU

PIN extraction determines the PIN
length by scanning from right to left
until a digit, not equal to the pad digit,
is found. The minimum PIN length is
set at four digits, so scanning ceases
one digit past the position of the 4th
PIN digit in the block.

3621 or 3624 format
and PADDIGIT

CSNBCPE
CSNBEPG
CSNBPTR
CSNBPTR2
CSNBPTRE

PIN formatting does not examine the
PIN, in the output PIN block, to see if
it contains the pad digit.

3621 or 3624 format
and PADDIGIT

CSNBPTR
CSNBPTR2
CSNBPTRE

Restricted to non-decimal digit for
PAD digit.

Enhanced PIN checking for CSNBPTR and CSNBPTR2

For the PIN translate services, additional checking is available when the TRANSLAT rule array

keyword is specified. When the Encrypted PIN Translate - Translate PIN Check access control

is enabled, checking of the PIN block is performed. The checking is similar to the checking done

when the REFORMAT keyword is specified.

PIN block error processing mode

To prevent the abuse of PIN processing error messages, due to information leakage derived from

the return code reason codes returned under various conditions, the PIN checking errors will be

replaced with a general ISO format error. This optional mode is selected by enabling the General

ISO PIN Error Mode access control in the coprocessor domain role. These services are affected:

• Encrypted PIN Translate (CSNBPTR and CSNEPTR)

• Encrypted PIN Translate2 (CSNBPTR2 and CSNEPTR2)

• DK PIN Change (CSNBDPC and CSNEDPC)

• DK PIN Verify (CSNBDPV and CSNEDPV)

Return code 8 reason code 2514 (9D2) will be issued instead of these return code 8 reason

codes: 100, 106, 110, 108, 407, 3004, 3016

Encrypted PIN Translate (CSNBPTR and CSNEPTR)

Access control points

The following table shows the access control points in the domain role that control the function of

this service.

Table 51. Required access control points for Encrypted PIN Translate

Processing rule Access control point

TRANSLAT Encrypted PIN Translate - Translate

REFORMAT Encrypted PIN Translate - Reformat

81 CCA and PKCS #11 Algorithm Currency – APAR OA61253

If any of the Unique Key per Transaction rule array keywords are specified, the DUKPT - PIN

Verify, PIN Translate access control point must be enabled.

An enhanced PIN security mode is available for extracting PINs from a 3621 or 3624 encrypted

PIN-block and formatting an encrypted PIN block into IBM 3621 or 3624 format using the

PADDIGIT PIN-extraction method. This mode limits checking of the PIN to decimal digits, and a

minimum PIN length of 4 is enforced; no other PIN-block consistency checking will occur. To

activate this mode, enable the Enhanced PIN Security access control.

When the Encrypted PIN Translate - Translate PIN Check access control is enabled, checking

of the PIN block is performed. The checking is like the checking done when the REFORMAT

keyword is specified.

When the General ISO PIN Error Mode access control is enabled, the return code will be a

general PIN block error (8/2514) instead of some of the PIN block errors return code. The use of

a general return code can prevent the abuse of PIN processing error messages due to

information leakage derived from the return code reason codes returned under various

conditions. See ‘PIN block error processing mode’ on page 80 for details.

Three additional access controls should be considered: ANSI X9.8 PIN - Enforce PIN block

restrictions, ANSI X9.8 PIN - Allow modification of PAN, and ANSI X9.8 PIN - Allow only

ANSI PIN blocks. These three access controls affect how PIN processing is performed as

described below. The access controls will affect this and other PIN processing services if

enabled.

1. Enable the ANSI X9.8 PIN - Enforce PIN block restrictions access control to apply additional

restrictions to PIN processing as follows:

▪ Do not translate or reformat a non-ISO PIN block into an ISO PIN block. Specifically,

do not allow an IBM 3624 PIN-block format in the output_PIN_profile variable when

the PIN-block format in the input_PIN_profile variable is not IBM 3624.

▪ Constrain use of ISO-2 PIN blocks to offline PIN verification and PIN change

operations in integrated circuit card environments only. Specifically, do not allow ISO-

2 input or output PIN blocks.

▪ Do not translate or reformat a PIN-block format that includes a PAN into a PIN-block

format that does not include a PAN. Specifically, do not allow an ISO-1 PIN-block

format in the output_PIN_profile variable when the PIN-block format in the

input_PIN_profile variable is ISO-0, ISO-3, or ISO-4.

▪ Do not allow a change of PAN data. Specifically, when performing translations

between PIN block formats that both include PAN data, do not allow the

input_PAN_data and output_PAN_data variables to be different from the PAN data

enciphered in the input PIN-block.

2. Enable the ANSI X9.8 PIN - Allow modification of PAN access control to override the

restriction to not allow a change of PAN data. This override is applicable only when either the

ANSI X9.8 PIN - Enforce PIN block restrictions control, the ANSI X9.8 PIN - Allow only

ANSI PIN blocks control, or both are enabled. This override is to support account number

changes in issuing environments. The ANSI X9.8 PIN - Allow modification of PAN control

has no effect if neither the ANSI X9.8 PIN - Enforce PIN block restrictions control nor the

ANSI X9.8 PIN - Allow only ANSI PIN blocks control is enabled. This rule does not apply for

CSNBPTRE, and PAN changes are not allowed.

3. Enable the ANSI X9.8 PIN - Allow only ANSI PIN blocks control to apply a more restrictive

variation of the ANSI X9.8 PIN - Enforce PIN block restrictions control. In addition to the

previously described restrictions of the ANSI X9.8 PIN - Enforce PIN block restrictions

control, this control also restricts the input_PIN_profile and the output_PIN_profile to contain

only ISO-0, ISO-1, ISO-3, and ISO-4 PIN block formats. Specifically, the IBM 3624 PIN-block

82 CCA and PKCS #11 Algorithm Currency – APAR OA61253

format is not allowed with this command. The ANSI X9.8 PIN - Allow only ANSI PIN blocks

control overrides the ANSI X9.8 PIN - Enforce PIN block restrictions control.

When the Prohibit translation from DES wrapping to weaker DES wrapping access control

point is enabled in the domain role, this service will fail if the input_PIN_encrypting_key_identifier

is stronger than the output_PIN_encrypting_key_identifier.

When the Disallow PIN block format ISO-1 access control is enabled in the domain role, the

PIN block format in the input_PIN_profile and output_PIN_profile parameters is not allowed to be

ISO-1.

Encrypted PIN Translate2 (CSNBPTR2 and CSNEPTR2)

Access control points

The following table shows the access control points in the domain role that control the function of

this service. When the input or output PIN format in the PIN profile is ISO-4, the Encrypted PIN

Translate2 – REFORMAT/TRANSLATE access controls are used. When neither the input nor

output PIN format in the PIN profile is ISO-4, the Encrypted PIN Translate –

REFORMAT/TRANSLATE access controls are used.

Table 52. Required access control points for Encrypted PIN Translate2

Processing rule Access control point

TRANSLAT • Encrypted PIN Translate - TRANSLAT
• Encrypted PIN Translate2 - TRANSLAT

REFORMAT • Encrypted PIN Translate - REFORMAT
• Encrypted PIN Translate2 - REFORMAT

Table 53. Required access controls for ISO-4 PIN blocks

Input PIN
format

Output PIN
format

Authenticated PAN-
change allowed

Access control name

ISO-0 ISO-4 No Encrypted PIN Translate2 – Permit ISO-
0 to ISO-4 Reformat.

ISO-1 ISO-4 No Encrypted PIN Translate2 – Permit ISO-
1 to ISO-4 Reformat (see note 1).

ISO-1 ISO-4 No Encrypted PIN Translate2 – Permit ISO-
1 to ISO-4 RFMT1TO4 (see note 1).

ISO-4 ISO-0 No Encrypted PIN Translate2 – Permit ISO-
4 to ISO-0 Reformat.

ISO-4 ISO-1 No Encrypted PIN Translate2 – Permit ISO-
4 to ISO-1 Reformat (see note 2).

ISO-4 ISO-1 No Encrypted PIN Translate2 – Permit ISO-
4 to ISO-1 RFMT4TO1 (see note 2).

ISO-4 ISO-4 No Encrypted PIN Translate2 – Permit ISO-
4 to ISO-4 Translate.

ISO-4 ISO-4 Yes Encrypted PIN Translate2 – Permit ISO-
4 Reformat with PAN Change (see note
3).

83 CCA and PKCS #11 Algorithm Currency – APAR OA61253

ISO-4 ISO-4 Yes Encrypted PIN Translate2 - Permit ISO-4
to ISO-4 PTR2AUTH (see note 3).

Notes:

1. When enabled, the Encrypted PIN Translate2 – Permit ISO-1 to ISO-4 RFMT1TO4 control

has the effect of disallowing REFORMAT requests from ISO-1 to ISO-4 PIN blocks unless the

outbound PIN encrypting key has the RFMT1TO4 key-usage field bit enabled in the AES key-

token.

2. When enabled, the Encrypted PIN Translate2 – Permit ISO-4 to ISO-1 RFMT4TO1 control

has the effect of disallowing REFORMAT requests from ISO-4 to ISO-1 PIN blocks unless the

inbound PIN encrypting key has the RFMT4TO1 key-usage field bit enabled in the AES key-

token.

3. When enabled, the Encrypted PIN Translate2 – Permit ISO-4 to ISO-4 PTR2AUTH control

has the effect of disallowing REFORMAT requests from ISO-4 to ISO-4 PIN blocks unless the

outbound PIN encrypting key has the PTR2AUTH key-usage field bit enabled in the AES key-

token.

If any of the Unique Key per Transaction rule array keywords are specified, the DUKPT - PIN

Verify, PIN Translate access control point must be enabled.

An enhanced PIN security mode is available for extracting PINs from a 3621 or 3624 encrypted

PINblock and formatting an encrypted PIN block into IBM 3621 or 3624 format using the

PADDIGIT PINextraction method. This mode limits checking of the PIN to decimal digits, and a

minimum PIN length of 4 is enforced; no other PIN-block consistency checking will occur. To

activate this mode, enable the Enhanced PIN Security access control.

When the Encrypted PIN Translate - Translate PIN Check access control is enabled, checking

of the PIN block is performed. The checking is like the checking done when the REFORMAT

keyword is specified.

When the General ISO PIN Error Mode access control is enabled, the return code will be a

general PIN block error (8/2514) instead of some of the PIN block errors return code. The use of

a general return code can prevent the abuse of PIN processing error messages due to

information leakage derived from the return code reason codes returned under various

conditions. See ‘PIN block error processing mode’ on page 80 for details.

Three additional access controls should be considered: ANSI X9.8 PIN - Enforce PIN block

restrictions, ANSI X9.8 PIN - Allow modification of PAN, and ANSI X9.8 PIN - Allow only

ANSI PIN blocks. These three access controls affect how PIN processing is performed as

described below. The access controls will affect this and other PIN processing services if

enabled.

1. Enable the ANSI X9.8 PIN - Enforce PIN block restrictions access control to apply

additional restrictions to PIN processing as follows:

▪ Do not translate or reformat a non-ISO PIN block into an ISO PIN block. Specifically,

do not allow an IBM 3624 PIN-block format in the output_PIN_profile variable when

the PIN-block format in the input_PIN_profile variable is not IBM 3624.

▪ Constrain use of ISO-2 PIN blocks to offline PIN verification and PIN change

operations in integrated circuit card environments only. Specifically, do not allow ISO-

2 input or output PIN blocks.

▪ Do not translate or reformat a PIN-block format that includes a PAN into a PIN-block

format that does not include a PAN. Specifically, do not allow an ISO-1 PIN-block

84 CCA and PKCS #11 Algorithm Currency – APAR OA61253

format in the output_PIN_profile variable when the PIN-block format in the

input_PIN_profile variable is ISO-0, ISO-3, or ISO-4.

▪ Do not allow a change of PAN data. Specifically, when performing translations

between PIN block formats that both include PAN data, do not allow the

input_PAN_data and output_PAN_data variables to be different from the PAN data

enciphered in the input PIN-block.

2. Enable the ANSI X9.8 PIN - Allow modification of PAN access control to override the

restriction to not allow a change of PAN data. This override is applicable only when either the

ANSI X9.8 PIN - Enforce PIN block restrictions control, the ANSI X9.8 PIN - Allow only

ANSI PIN blocks control, or both are enabled. This override is to support account number

changes in issuing environments. The ANSI X9.8 PIN - Allow modification of PAN control

has no effect if neither the ANSI X9.8 PIN - Enforce PIN block restrictions control nor the

ANSI X9.8 PIN - Allow only ANSI PIN blocks control is enabled. This rule does not apply for

CSNBPTRE, and PAN changes are not allowed.

3. Enable the ANSI X9.8 PIN - Allow only ANSI PIN blocks control to apply a more restrictive

variation of the ANSI X9.8 PIN - Enforce PIN block restrictions control. In addition to the

previously described restrictions of the ANSI X9.8 PIN - Enforce PIN block restrictions

control, this control also restricts the input_PIN_profile and the output_PIN_profile to contain

only ISO-0, ISO-1, ISO-3, and ISO-4 PIN block formats. Specifically, the IBM 3624 PIN-block

format is not allowed with this command. The ANSI X9.8 PIN - Allow only ANSI PIN blocks

control overrides the ANSI X9.8 PIN - Enforce PIN block restrictions control.

When the Disallow translation from AES wrapping to DES wrapping access control point is

enabled in the domain role, this service fails if the input_PIN_encrypting_key_identifier is an AES

key and the output_PIN_encrypting_key_identifier is a DES key.

When the Disallow translation from AES wrapping to weaker AES wrapping access control

point is enabled in the domain role, this service fails if the input_PIN_encrypting_key_identifier is

stronger than the output_PIN_encrypting_key_identifier.

When the Disallow translation from DES wrapping to weaker DES wrapping access control

point is enabled in the domain role, this service fails if the input_PIN_encrypting_key_identifier is

stronger than the output_PIN_encrypting_key_identifier.

When the Disallow PIN block format ISO-1 access control is enabled in the domain role, the

PIN block format in the input_PIN_profile and output_PIN_profile parameters is not allowed to be

ISO-1.

Encrypted PIN Verify2 (CSNBPVR2 and CSNEPVR2)

The Encrypted PIN Verify2 callable service validates a customer encrypted PIN-block against a
reference encrypted PIN block.

You can specify these PIN-block formats:

• IBM 3624

• ISO-0 (same as ANS X9.8, VISA-1, and ECI-1)

• ISO-1 (same as ECI-4)

• ISO-2

• ISO-3

• ISO-4

85 CCA and PKCS #11 Algorithm Currency – APAR OA61253

The service supports truncated customer PINs, optionally verifying an indicated number of PIN digits
(minimum of 4) that is less than the number of digits for the reference PIN. When truncated PINs are
compared, the order is right to left for the number of digits specified in the PIN_check_length
parameter.

The derived unique-key-per-transaction (DUKPT) algorithm is available. Both DES-DUKPT (ANSI
X9.24-1 2007) and AES-DUKPT (ANSI x9.24-3 2017) are supported. This support is available for the
input_PIN_encrypting_key_identifier parameter and the reference_PIN_encrypting_key_identifier
parameter.

The callable service name for AMODE(64) invocation is CSNEPVR2.

Format

CALL CSNBPVR2(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 reference_PIN_rule_array_count,

 reference_PIN_rule_array,

 PIN_check_length,

 input_PIN_encrypting_key_identifier_length,

 input_PIN_encrypting_key_identifier,

 reference_PIN_encrypting_key_identifier_length,

 reference_PIN_encrypting_key_identifier,

 input_PIN_profile_length,

 input_PIN_profile,

 input_PIN_block_length,

 input_PIN_block,

 reference_PIN_profile_length,

 reference_PIN_profile,

 reference_PIN_block_length,

 reference_PIN_block,

 input_PAN_data,

 reference_PAN_data,

 reserved1_length,

 reserved1,

 reserved2_length,

 reserved2,

 reserved3_length,

 reserved3,

 reserved4_length,

 reserved4)

Parameters

return_code

Direction Type

Output Integer

86 CCA and PKCS #11 Algorithm Currency – APAR OA61253

The return code specifies the general result of the callable service. Appendix A, “ICSF and
cryptographic coprocessor return and reason codes,” on page 1359 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the application
program. Each return code has different reason codes that indicate specific processing problems.
Appendix A, “ICSF and cryptographic coprocessor return and reason codes,” on page 1359 lists
the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The data is identified in the exit_data
parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count,

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value must be 1, 2, or
3.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. The keywords must be in
contiguous storage with each of the keywords left-justified in its own 8-byte location and padded
on the right with blanks.

Table 54. Keyword for Encrypted PIN Verify2

Keyword Meaning

Processing rule (one required)

REFPIN Specifies that the input PIN is to be compared to the reference PIN.

TRUNCPIN Specifies that the input PIN is to be compared to a truncated version of
the reference PIN for the number of digits specified by the

87 CCA and PKCS #11 Algorithm Currency – APAR OA61253

PIN_check_length parameter.

Note: The digits of the PINs are checked from the rightmost digit to the
left for the number of digits specified.

Input PIN unique key per transaction (one, optional).

UKPT Specifies the use of the single-DES method of DUKPT key derivation
and PIN-block decryption for the input PIN encrypting key.

DUKPT Specifies the use of the triple-DES method of DUKPT key derivation and
PIN-block decryption for the input PIN encrypting key.

ADUKPT Specifies the use of the AES DUKPT method of DUKPT key-derivation
and PIN-block decryption for the input PIN encrypting key.

Input PIN-extraction method (one, optional). See “PIN block format and PIN extraction
method
keywords” on page 675 for additional information and a list of PIN block formats and PIN
extraction
method keywords.

Note: If a PIN extraction method is not specified, the first one listed in Table 264 on page 675
for
the PIN block format will be the default.

reference_PIN_rule_array_count,

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value must be 0, 1, or
2.

reference_PIN_rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. The keywords must be in
contiguous storage with each of the keywords left-justified in its own 8-byte location and padded
on the right with blanks.

Table 55. Keywords for Encrypted PIN Verify2

Keyword Meaning

Reference PIN unique key per transaction (one, optional).

UKPT Specifies the use of the single-DES method of DUKPT key derivation
and PIN-block decryption for the reference PIN encrypting key.

DUKPT Specifies the use of the triple-DES method of DUKPT key derivation and
PIN-block decryption for the reference PIN encrypting key.

ADUKPT Specifies the use of the AES DUKPT method of DUKPT key-derivation
and PIN-block decryption for the reference PIN encrypting key.

Reference PIN-extraction method (one, optional). See “PIN block format and PIN extraction
method
keywords” on page 675 for additional information and a list of PIN block formats and PIN
extraction
method keywords.

88 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Note: If a PIN extraction method is not specified, the first one listed in Table 264 on page 675
for
the PIN block format will be the default.

 .PIN_check_length

Direction Type

Input Integer

The number of digits of the reference PIN to compare when the TRUNCPIN keyword is specified.
The value may be 4-16 inclusive and must be less or equal to the length of the reference PIN.
When the REFPIN keyword is specified, the value must be zero.

input_PIN_encrypting_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the input_PIN_encrypting_key_identifier parameter. If the
input_PIN_encrypting_key_identifier contains a label, the length must be 64. Otherwise, the value
must be between the actual length of the token and 725.

input_PIN_encrypting_key_identifier

Direction Type

Input String

This is either the identifier of the key to unwrap the input PIN block or the identifier of the key-
generating key used to derive the key to unwrap the input PIN block. The key identifier is an
operational token or the key label of an operational token in key storage.

The key identifier must identify an AES key when the input PIN profile specifies a PIN-block
format of ISO-4, otherwise it must identify a DES key.

For DES keys, the control vector in the key token must specify the IPINENC key-type with
EPINVER bit (CV bit 19) set to B'1'.

For AES keys, the variable-length symmetric key token must have a token algorithm of AES and a
key type of PINPROT. In addition, the key usage fields must indicate that the key can be used for
decryption (DECRYPT), the encryption mode must be Cipher Block Chaining (CBC), common
usage control must be NOFLDFMT, PIN block format usage must be ISO-4, and PIN function
usage EPINVER must be enabled.

When any of the DUKPT rule array keywords is used for the input PIN encrypting key:

• When you use the DES DUKPT process for the input PIN-block, specify that the base
derivation key as a KEYGENKY key type with the UKPT bit (CV bit 18) set to B'1'.

• When you use the AES DUKPT process for the input PIN-block, specify the base derivation
key as an AES DKYGENKY key with the A-DUKPT bit set to 1 in the low-order byte of key
usage field 1.

When the token supplied was encrypted under the old master key, the token is returned
encrypted under the current master key.

89 CCA and PKCS #11 Algorithm Currency – APAR OA61253

reference_PIN_encrypting_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the reference_PIN_encrypting_key_identifier parameter. If the
reference_PIN_encrypting_key_identifier contains a label, the length must be 64. Otherwise, the
value must be between the actual length of the token and 725.

reference_PIN_encrypting_key_identifier

Direction Type

Input String

This is either the identifier of the key to unwrap the reference PIN block or the identifier of the
key-generating key used to derive the key to unwrap the reference PIN block. The key identifier is
an operational token or the key label of an operational token in key storage.

The key identifier must identify an AES key when the reference PIN profile specifies a PIN-block
format of ISO-4, otherwise it must identify a DES key.

For DES keys, the control vector in the key token must specify the IPINENC key-type with
EPINVER bit (CV bit 19) set to B'1'.

For AES keys, the variable-length symmetric key token must have a token algorithm of AES and a
key type of PINPROT. In addition, the key usage fields must indicate that the key can be used for
decryption (DECRYPT), the encryption mode must be Cipher Block Chaining (CBC), common
usage control must be NOFLDFMT, PIN block format usage must be ISO-4, and PIN function
usage EPINVER must be enabled.

When any of the DUKPT rule array keywords is used for the reference PIN encrypting key:

• When you use the DES DUKPT process for the reference PIN-block, specify that the base
derivation key as a KEYGENKY key type with the UKPT bit (CV bit 18) set to B'1'.

• When you use the AES DUKPT process for the reference PIN-block, specify the base
derivation key as an AES DKYGENKY key with the A-DUKPT bit set to 1 in the low-order byte
of key usage field 1.

When the token supplied was encrypted under the old master key, the token is returned
encrypted under the current master key.

input_PIN_profile_length

Direction Type

Input Integer

The length of the input_PIN_profile parameter in bytes.

Table 56. Supported Encrypted PIN Verify2 input PIN profile lengths

Pin profile Length

PIN-block format only. 24

PIN-block format and CKSN extension used for DES-DUKPT. 48

90 CCA and PKCS #11 Algorithm Currency – APAR OA61253

PIN-block format and single block of derivation data extension used for
AES-DUKPT.

44

input_PIN_profile

Direction Type

Input String

The three 8-byte character elements that contain information necessary to extract the PIN from a
formatted PIN block. See “The PIN profile” on page 674 for additional information.

When the DUKPT keywords are specified for the input PIN encrypting key, additional bytes must
be present containing the CKSN or derivation data extension. The DES DUKPT algorithm will be
used to derive the DUKPT key used to decrypt the input PIN block when the CKSN extension is
included in the input_PIN_profile. The AES DUKPT algorithm will be used to derive the DUKPT
key used to decrypt the input PIN block when the derivation data extension is included in the
input_PIN_profile. See Table 639 on page 1613 for the layout of the AES-DUKPT derivation data
extension. The algorithm indicator must be set to either X'0000' (2-key TDES) or X'0001' (3-key
TDES). The key usage indicator must be set to X'1000' (PIN Encryption).

input_PIN_block_length

Direction Type

Input Integer

The length of the input_PIN_block in bytes. The value must be 16 for ISO-4 PIN blocks and 8 for
all other PIN blocks.

input_PIN_block

Direction Type

Input String

The encrypted PIN block containing the PIN to compare against the reference PIN.

reference_PIN_profile_length

Direction Type

Input Integer

The length of the reference_PIN_profile parameter in bytes.

Table 57. Supported Encrypted PIN Verify2 reference PIN profile lengths

Pin profile Length

PIN-block format only. 24

PIN-block format and CKSN extension used for DES-DUKPT. 48

PIN-block format and single block of derivation data extension used for
AES-DUKPT.

44

reference_PIN_profile

91 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input String

The three 8-byte character elements that contain information necessary to extract the reference
PIN from a formatted PIN block. See “The PIN profile” on page 674 for additional information.

When the DUKPT keywords are specified for the reference PIN encrypting key, additional bytes
must be present containing the CKSN or derivation data extension. The DES DUKPT algorithm
will be used to derive the DUKPT key used to decrypt the input PIN block when the CKSN
extension is included in the reference_PIN_profile. The AES DUKPT algorithm will be used to
derive the DUKPT key used to decrypt the input PIN block when the derivation data extension is
included in the reference_PIN_profile. See Table 639 on page 1613 for the layout of the AES-
DUKPT derivation data extension. The algorithm indicator must be set to either X'0000' (2-key
TDES) or X'0001' (3-key TDES). The key usage indicator must be set to X'1000' (PIN Encryption).

reference_PIN_block_length

Direction Type

Input Integer

The length of the reference_PIN_block in bytes. The value must be 16 for ISO-4 PIN blocks and 8
for all other PIN blocks.

reference_PIN_block

Direction Type

Input String

The encrypted PIN block containing the reference PIN.

input_PAN_data

Direction Type

Input String

The PAN data for the input_PIN_block. The PAN data is used if the input PIN profile specifies the
ISO-0, ISO-3, ISO-4, or VISA-4 keyword for the PIN block format. The PAN_data parameter is 21
bytes long.

When using the ISO-0, IS0-3, or VISA-4 keyword, the value is 12 bytes long. Use the 12
rightmost digits of the PAN data, excluding the check digit.

 When using the ISO-4 keyword, the value is 21 bytes long. The PAN data is 10 –19 bytes long.
The length of the PAN data and the PAN data are contained in the structure below padded to 21
bytes with characters that will be ignored.

Offset Length Description

0 2 Length of the PAN data field, p

2 p 10 – 19 bytes of PAN data

2+p 0-9 Padding

Note: If the reference_PAN_data and the input_PAN_data are different lengths, the rightmost 12

92 CCA and PKCS #11 Algorithm Currency – APAR OA61253

digits must be the same excluding the check digit.

reference_PAN_data

Direction Type

Input String

The PAN data for the reference_PIN_block. The PAN data is used if the reference PIN profile
specifies the ISO-0, ISO-3, ISO-4, or VISA-4 keyword for the PIN block format. The PAN_data
parameter is 21 bytes long.

When using the ISO-0, IS0-3, or VISA-4 keyword, the value is 12 bytes long. Use the 12
rightmost digits of the PAN data, excluding the check digit.

 When using the ISO-4 keyword, the value is 21 bytes long. The PAN data is 10 –19 bytes long.
The length of the PAN data and the PAN data are contained in the structure below padded to 21
bytes with characters that will be ignored.

Offset Length Description

0 2 Length of the PAN data field, p

2 p 10 – 19 bytes of PAN data

2+p 0-9 Padding

Note: If the reference_PAN_data and the input_PAN_data are different lengths, the rightmost 12
digits must be the same excluding the check digit.

reserved1_length

Direction Type

Input Integer

Length in bytes of the reserved1 parameter. The value must be 0.

reserved1

Direction Type

Input String

This parameter is ignored.

reserved2_length

Direction Type

Input Integer

Length in bytes of the reserved2 parameter. The value must be 0.

reserved2

Direction Type

Input String

93 CCA and PKCS #11 Algorithm Currency – APAR OA61253

This parameter is ignored.

reserved3_length

Direction Type

Input Integer

Length in bytes of the reserved3 parameter. The value must be 0.

reserved3

Direction Type

Input String

This parameter is ignored.

reserved4_length

Direction Type

Input Integer

Length in bytes of the reserved4 parameter. The value must be 0.

reserved4

Direction Type

Input String

This parameter is ignored.

Usage Notes

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or
internal secure key tokens that are stored in the CKDS or PKDS.

Access control points

This table shows the access control points in the domain role that control the function of this service.

Table 57. Required access controls for Encrypted PIN Verify2

Processing rule Access control

REFPIN Encrypted PIN Verify2 - REFPIN

TRUNCPIN Encrypted PIN Verify2 - TRUNCPIN

If any of the Unique Key per Transaction rule array keywords are specified, the DUKPT - PIN Verify,
PIN Translate access control must be enabled.

An enhanced PIN security mode is available for extracting PINs from a 3621 or 3624 encrypted PIN-

94 CCA and PKCS #11 Algorithm Currency – APAR OA61253

block and formatting an encrypted PIN block into IBM 3621 or 3624 format using the PADDIGIT PIN-
extraction method. This mode limits checking of the PIN to decimal digits, and a minimum PIN length
of 4 is enforced; no other PIN-block consistency checking will occur. To activate this mode, enable the
Enhanced PIN Security access control.

If the ANSI X9.8 PIN – Use stored decimalization tables only access control is enabled in the
domain role, any decimalization table specified must match one of the active decimalization tables in
the coprocessors.

When the Disallow PIN block format ISO-1 access control is enabled in the domain role, the PIN
block format in the input_PIN_profile parameter is not allowed to be ISO-1.

Required hardware
This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 58. Encrypted PIN Verify2 required hardware

Server Required cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

 This service is not supported.

IBM System z10 EC
IBM System z10 BC

 This service is not supported.

IBM zEnterprise 196
IBM zEnterprise 114

 This service is not supported.

IBM zEnterprise EC12
IBM zEnterprise BC12

 This service is not supported.

IBM z13
IBM z13s

 This service is not supported.

IBM z14
IBM z14 ZR1

 This service is not supported.

IBM z15
IBM z15 T02

Crypto Express5 CCA
Coprocessor
Crypto Express6 CCA
Coprocessor

This service is not supported.

Crypto Express7 CCA
Coprocessor

This service requires the CCA release 7.4
or later licensed internal code (LIC).

PIN Change/Unblock (CSNBPCU and CSNEPCU)

Restrictions

Triple-length DES keys are not supported.

Usage notes

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS or PKDS.

95 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Triple-length DES keys requires the CCA release 6.7, 7.4, or later licensed internal code.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 59. PIN Change/Unblock hardware

Server Required cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

Crypto Express2
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

AMEXPCU1 and AMEXPCU2 keywords
require May, 2012 or later version of LIC.

Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not supported.

Triple-length DES keys are not supported.

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor
Crypto Express3
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

AMEXPCU1 and AMEXPCU2 keywords
require May, 2012 or later version of LIC
for Crypto Express2.

AMEXPCU1 and AMEXPCU2 keywords
require June, 2012 or later version of LIC
for Crypto Express3.

Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not supported

Triple-length DES keys are not supported.

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

AMEXPCU1 and AMEXPCU2 keywords
require June, 2012 or later version of LIC.

Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not supported.

Triple-length DES keys are not supported.

IBM zEnterprise
EC12
IBM zEnterprise
BC12

Crypto Express3
Coprocessor
Crypto Express4 CCA
Coprocessor

AMEXPCU1 and AMEXPCU2 keywords
require June, 2012 or later version of LIC
for Crypto Express3.

AMEXPCU1 and AMEXPCU2 keywords
require September, 2012 or later version of
LIC for Crypto Express4.

96 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not supported.

Triple-length DES keys are not supported.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not supported.

Triple-length DES keys are not supported.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not supported.

Triple-length DES keys are not supported.

Crypto Express6 CCA
Coprocessor

Compliant-tagged key tokens require the
July 2019 or later licensed internal code
(LIC).

PIN block format ISO-4 requires the
October 2020 or later licensed internal
code (LIC).

Triple-length DES keys require the CCA
release 6.7 or later licensed internal code
(LIC).

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not supported.

Triple-length DES keys are not supported.

Crypto Express6 CCA
Coprocessor

PIN block format ISO-4 requires the
September 2020 or later licensed internal
code (LIC).

Triple-length DES keys require the CCA
release 6.7 or later licensed internal code
(LIC).

Crypto Express7 CCA
Coprocessor

Triple-length DES keys require the CCA
release 7.4 or later licensed internal code
(LIC).

Secure Messaging for PINs (CSNBSPN and CSNESPN)

Restrictions

97 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Triple-length DES keys are not supported.

Usage notes

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS or PKDS.

SAF will be invoked to check authorization to use the Secure Messaging for PINs service and any

key labels specified as input.

Keys only appear in the clear within the secure boundary of the cryptographic coprocessors and

never in host storage.

Triple-length DES keys requires the CCA release 6.7, 7.4, or later licensed internal code.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 60. Secure Messaging for PINs required hardware

Server Required cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

Crypto Express2
Coprocessor

ISO-3 PIN block format requires the
Nov. 2007 or later licensed internal
code (LIC).

Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not
supported.

Triple-length DES keys are not
supported.

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor
Crypto Express3
Coprocessor

ISO-3 PIN block format requires the
Nov. 2007 or later licensed internal
code (LIC).

Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not supported

Triple-length DES keys are not
supported.

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not
supported.

Triple-length DES keys are not
supported.

IBM zEnterprise EC12
IBM zEnterprise BC12

Crypto Express3
Coprocessor

Compliant-tagged key tokens are not
supported.

98 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Crypto Express4 CCA
Coprocessor

PIN block format ISO-4 is not
supported.

Triple-length DES keys are not
supported.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not
supported.

Triple-length DES keys are not
supported.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not
supported.

Triple-length DES keys are not
supported.

Crypto Express6 CCA
Coprocessor

Compliant-tagged key tokens require
the July 2019 or later licensed internal
code (LIC).

PIN block format ISO-4 requires the
October 2020 or later licensed internal
code (LIC).

Triple-length DES keys require the CCA
release 6.7 or later licensed internal
code (LIC).

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

Crypto Express5 CCA Coprocessor
Compliant-tagged key tokens are not
supported.

PIN block format ISO-4 is not
supported.

Triple-length DES keys are not
supported.

Crypto Express6 CCA
Coprocessor

PIN block format ISO-4 requires the
September 2020 or later licensed
internal code (LIC).

Triple-length DES keys require the CCA
release 6.7 or later licensed internal
code (LIC).

Crypto Express7 CCA
Coprocessor

Triple-length DES keys require the CCA
release 7.4 or later licensed internal
code (LIC).

99 CCA and PKCS #11 Algorithm Currency – APAR OA61253

SET Block Decompose (CSNDSBD and CSNFSBD)

Usage notes

Triple-length DES keys requires the CCA release 6.7, 7.4, or later licensed internal code.

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS or PKDS.

When the SET Block Decompose service is invoked without the DES-ONLY keyword, the DES

key is retrieved from the RSA-OAEP block and returned in the key token contained in the

DES_key_block. On subsequent calls to the SET Block Decompose service, a caller can re-use

the DES key. The caller of the service must supply the DES_key_block, the

DES_key_block_length, the DES_encrypted_data_block, the DES_encrypted_data_block_length,

the initialization and chaining vectors, and the rule_array keywords SET1.00 and DES-ONLY. The

RSA private key information, RSA-OAEP block and length, XData string and length, and hash

block and length need not be supplied (although the parameters must still be specified). For this

invocation, the decryption of the RSA-OAEP block is bypassed; only DES decryption is

performed, using the supplied DES key.

When the SET Block Decompose service is invoked with the PINBLOCK keyword, DES-ONLY

may not also be specified. If both of these rule array keywords are specified, the service will fail. If

PINBLOCK is specified and the DES_key_block_length field is not 128, the service will fail.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 61. SET Block Decompose required hardware

Server Required cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

Crypto Express2
Coprocessor

Triple-length DES keys are not
supported.

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor
Crypto Express3
Coprocessor

Triple-length DES keys are not
supported.

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

Triple-length DES keys are not
supported.

IBM zEnterprise EC12
IBM zEnterprise BC12

Crypto Express3
Coprocessor
Crypto Express4 CCA
Coprocessor

Triple-length DES keys are not
supported.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

Triple-length DES keys are not
supported.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

Triple-length DES keys are not
supported.

Crypto Express6 CCA
Coprocessor

Triple-length DES keys require the CCA
release 6.7 or later licensed internal
code (LIC).

100 CCA and PKCS #11 Algorithm Currency – APAR OA61253

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

Triple-length DES keys are not
supported.

Crypto Express6 CCA
Coprocessor

Triple-length DES keys require the CCA
release 6.7 or later licensed internal
code (LIC).

 Crypto Express7 CCA
Coprocessor

Triple-length DES keys require the CCA
release 7.4 or later licensed internal
code (LIC).

DK PIN Change (CSNBDPC and CSNEDPC)
Use the DK PIN Change callable service to allow a customer to change their PIN to a value of

their choosing.

The current and new PINs are entered into the ATM, where they are encrypted into ISO-1 or ISO-

4 PIN blocks. The PIN and other needed information are used to verify the current PIN. If the PIN

does not verify, the process is aborted. If the PIN does verify, the PIN is reformatted into a PBF-O

format and the provided information is used to create a new PIN reference value.

Note: Regarding weak PINs, if the new PIN specified appears in the weak PIN table, the PIN

change fails with an indication that the selected new PIN was not valid.

The callable service name for AMODE(64) invocation is CSNEDPC.

Format

CALL CSNBDPC(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 PAN_data_length,

 PAN_data,

 card_p_data_length,

 card_p_data,

 card_t_data_length,

 card_t_data,

 cur_ISO_PIN_block_length,

 cur_ISO_PIN_block,

 new_ISO_PIN_block_length,

 new_ISO_PIN_block,

 card_script_data_length,

 card_script_data,

 script_offset,

 script_offset_field_length,

 script_initialization_vector_length,

 script_initialization_vector,

 output_PIN_profile,

 PIN_reference_value_length,

101 CCA and PKCS #11 Algorithm Currency – APAR OA61253

 PIN_reference_value,

 PRW_random_number_length,

 PRW_random_number,

 PRW_key_identifier_length,

 PRW_key_identifier,

 cur_IPIN_encryption_key_identifier_length,

 cur_IPIN_encryption_key_identifier,

 new_IPIN_encryption_key_identifier_length,

 new_IPIN_encryption_key_identifier,

 script_key_identifier_length,

 script_key_identifier,

 script_MAC_key_identifier_length,

 script_MAC_key_identifier,

 new_PRW_key_identifier_length,

 new_PRW_key_identifier,

 OPIN_encryption_key_identifier_length,

 OPIN_encryption_key_identifier,

 OEPB_MAC_key_identifier_length,

 OEPB_MAC_key_identifier,

 script_length,

 script,

 script_MAC_length,

 script_MAC,

 new_PIN_reference_value_length,

 new_PIN_reference_value,

 new_PRW_random_number_length,

 new_PRW_random_number,

 output_encrypted_PIN_block_length,

 output_encrypted_PIN_block,

 PIN_block_MAC_length,

 PIN_block_MAC)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1279 lists the return

codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes assigned to it that

indicate specific processing problems. Appendix A, “ICSF and cryptographic coprocessor

return and reason codes,” on page 1279 lists the reason codes.

exit_data_length

102 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The data is identified in the

exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value must be 0 -

7.

rule_array

Direction Type

Input Character

Keywords that provide control information to the callable service. The keywords must be

in contiguous storage with each of the keywords left-justified in its own 8-byte location

and padded on the right with blanks.

Table 62. Rule array keywords for the DK PIN Change Service

Keyword Meaning

PIN Block output selection keyword (One, optional)

NOEPB Do not return an encrypted PIN block (EPB). This is the default
value.

EPB Return an encrypted PIN block and a MAC to verify the
encrypted PIN block.

Script selection algorithm and method keyword (One, optional)

AES-CBC Specifies to use CBC mode to AES encrypt the script. If
SCR2020 is specified, AES-CBC specifies to AES encrypt the
PIN block plus additional data in the script.

NOSCRIPT Do not return an encrypted SMPIN message with a MAC. This is
the default value.

TDES-CBC Specifies to use CBC mode to TDES encrypt the script. If
SCR2020 is specified, TDES-CBC specifies to TDES CBC
encrypt the PIN block plus additional data in the script.

TDES-ECB Specifies to use ECB mode to TDES encrypt the script. If
SCR2020 is specified, TDES-ECB specifies to TDES ECB
encrypt the PIN block plus additional data in the script.

Script Process (One, optional). May be specified with keyword AES-CBC, TDES-CBC,
or TDES-ECB. Otherwise, invalid.

SCR2013 Specifies to use script processing rules introduced with the
service in 2013. This is the default.

SCR2020 Specifies to use the script processing rules introduced with this
service in 2020. The new process encrypts only the new PIN
block and any additional data in the card_script_data field

103 CCA and PKCS #11 Algorithm Currency – APAR OA61253

parameter and returns only the encrypted portion of the
card_script_data field in the output script parameter. This
keyword is introduced in APAR OA58880 for ICSF FMID
HCR77D1.

Pin encryption keyword (One, optional)
Only valid if AES-CBC, TDES-CBC or TDES-ECB is selected above.

CLEARPIN Do not encrypt the PIN prior to inserting in the script block. This
is the default value.

SELF-ENC Copy the PIN-block self-encrypted to the clear PIN block within
the clear output message. Use this rule array keyword to specify
that the 8-byte PIN block shall be used as a DES key to encrypt
the PIN block. The service copies the self-encrypted PIN block
to the clear PIN block in the output message.

MAC Ciphering Method (One required for AES-CBC, one optional for TDES-CBC or
TDES-ECB; otherwise, not allowed.)

CMAC Specifies to use the cipher-based MAC algorithm block cipher
mode of operation for authentication, recommended in NIST SP
800-38B. Required for AES-CBC. Only valid with AES-CBC.

EMVMACD Specifies the EMV-related message-padding and calculation
method. Not valid with AES-CBC.

TDES-MAC Specifies the ANS X9.9 Option 1 (binary data) procedure and a
CBC Triple-DES encryption of the data. Not valid with AES-CBC.

X9.19OPT Specifies the ANS X9.19 Optional Procedure. A double-length
key is required. Not valid with AES-CBC. This is the default
value for TDES-CBC and TDES-ECB.

MAC Length and presentation (One, optional)
Only valid if AES-CBC, TDES-CBC, or TDES-ECB is selected above.

MACLEN8 Specifies a 8-byte MAC. This is the default value for TDES-CBC
and TDES-ECB.

MACLEN16 Specifies a 16-byte MAC. Only valid with CMAC. This is the
default for AES-CBC.

PIN Block format (One, optional)

ISO-1 Specifies that the encrypted PIN block in the
ISO_encrypted_PIN_block parameter is in the ISO-1 format.
This is the default.

ISO-4 Specifies that the encrypted PIN block in the
ISO_encrypted_PIN_block parameter is in the ISO-4 format.

PAN_data_length

Direction Type

Input Integer

Specifies the length in bytes of the PAN_data parameter. The value must be between 10

and 19, inclusive.

PAN_data

Direction Type

Input Character

The PAN data which the PIN is associated. The full account number, including check

digit, should be included. This parameter is character data.

104 CCA and PKCS #11 Algorithm Currency – APAR OA61253

card_p_data_length

Direction Type

Input Integer

Specifies the length in bytes of the card_p_data parameter. The value must be between 2

and 256, inclusive.

card_p_data

Direction Type

Input String

The time-invariant card data (CDp), determined by the card issuer, which is used to

differentiate between multiple cards for one account.

card_t_data_length

Direction Type

Input Integer

Specifies the length in bytes of the card_t_data parameter. The value must be between 2

and 256, inclusive.

card_t_data

Direction Type

Input String

The time-sensitive card data, determined by the card issuer, which, together with the

account number and the card_p_data, specifies an individual card.

cur_ISO_PIN_block_length

Direction Type

Input Integer

The cur_ISO_pin_block_length specifies the length in bytes of the cur_ISO_PIN_block

parameter. This value must be 8 when ISO-1 is specified and 16 when ISO-4 is specified.

cur_ISO_PIN_block

Direction Type

Input String

The encrypted PIN block with the current PIN in ISO-1 or ISO-4 format.

new_ISO_PIN_block_length

Direction Type

Input Integer

The new_ISO_pin_block_length specifies the length in bytes of the new_ISO_PIN_block

parameter. This value must be 8 when ISO-1 is specified and 16 when ISO-4 is specified.

new_ISO_PIN_block

105 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input String

The new encrypted PIN block with the customer chosen PIN. The PIN block must be in

ISO-1 or ISO-4 format.

card_script_data_length

Direction Type

Input Integer

The number of bytes of data in the card_script_data parameter. If the script selection of

the rule array specifies to not return an encrypted SMPIN message with a PIN block MAC

(that is, AES-CBC, TDES-CBC, or TDES- ECB is not specified), the value must be 0.

When the script selection keyword is TDES-CBC or TDES-ECB, the value is a positive

value less than or equal to 4096 and a multiple of 8. When the keyword is AES-CBC, the

value is a positive value less than or equal to 4096.

card_script_data

Direction Type

Input String

The cleartext data to be MAC'd. The script_offset value can be considered the PIN block

offset. If the SCR2013 keyword or no script process rule is specified, the entire field is

encrypted and returned in the script parameter. If the SCR2020 keyword is specified,

script_length bytes are encrypted starting at the offset indicated by the script_offset

parameter. The PIN block plus additional data are encrypted and inserted at the offset

specified by the script_offset parameter the MAC operation is performed. The smaller

encrypted result is returned in the script parameter.

script_offset

Direction Type

Input Integer

The offset in bytes from the beginning of the cleartext data in the card_script_data

variable to the location for the clear PIN block. The first byte of the cleartext data is offset

0. If the SCR2013 keyword or no script process rule is specified, this offset plus the

script_offset_field_length must be less than or equal to the card_script_data_length. If the

SCR2020 keyword is specified, the value of the script_offset plus the script_length must

be less than or equal to the card_script_data_length.

script_offset_field_length

Direction Type

Input Integer

The number of bytes of data in the PIN block format referenced by the output PIN profile.

Currently, this length must be 8. The PIN block must fit entirely within the

card_script_data parameter. If NOSCRIPT is specified in the rule array, this parameter is

ignored.

script_initialization_vector_length

106 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input Integer

Specifies the length in bytes of the script_initialization_vector parameter. For script

selection algorithm and method keyword AES-CBC, the value must be 16. For TDES-

CBC, the value must be 8. Otherwise, the value must be 0.

script_initialization_vector

Direction Type

Input String

The 8-byte or 16 byte initialization data for encrypting the script. The value of this

parameter must be a string of hexadecimal zeroes. If the

script_initialization_vector_length is 0, this parameter is ignored.

output_PIN_profile

Direction Type

Input String

A 24-byte string containing the PIN profile, including the PIN block format for the script.

See “The PIN profile” on page 626 for additional information. You can use PIN-block

formats ISO-0, ISO-1, ISO-2, ISO-3, and ISO-4 with this service. If NOSCRIPT is

specified in the rule array, this parameter is ignored.

PIN_reference_value_length

Direction Type

Input Integer

Specifies the length in bytes of the PIN_reference_value parameter. This value must be

16.

PIN_reference_value

Direction Type

Input String

The 16-byte PIN reference value of the current PIN for comparison to the calculated

value.

PRW_random_number_length

Direction Type

Input Integer

Specifies the length in bytes of the PRW_random_number parameter. The value must be

4.

PRW_random_number

Direction Type

Input String

The 4-byte random number associated with the PIN reference value of the current PIN.

107 CCA and PKCS #11 Algorithm Currency – APAR OA61253

PRW_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the PRW_key_identifier parameter. If the

PRW_key_identifier contains a label, the length must be 64. Otherwise, the value must

be between the actual length of the token and 725.

PRW_key_identifier

Direction Type

Input/Output String

The identifier of the key to verify the PRW of the current PIN block. The key identifier is

an operational token or the key label of an operational token in key storage. The key

algorithm of this key must be AES, the key type must be PINPRW, and the key usage

fields must indicate VERIFY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token will be returned

encrypted under the current master key.

cur_IPIN_encryption_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the cur_IPIN_encryption_key_identifier parameter. If the

cur_IPIN_encryption_key_identifier contains a label, the length must be 64. Otherwise,

the value must be between the actual length of the token and 725.

cur_IPIN_encryption_key_identifier

Direction Type

Input/Output String

The identifier of the key to decrypt the PIN_block containing the current PIN. The key

identifier is an operational token or the key label of an operational token in key storage.

When ISO-1 is specified, the key algorithm of this key must be DES and the key type

must be IPINENC. The control vector must enable the verification of an encrypted PIN

(EPINVER bit 19 = B'1').

When ISO-4 is specified, the key algorithm of this key must be AES and the key type

must be PINPROT. The key usage fields must specify DECRYPT, CBC, NOFLDFMT,

ISO-4, and PINXLATE. To use the same PINPROT key for the new and current inbound

IPIN encryption key, the key usage fields must specify DECRYPT, CBC, NOFLDFMT,

ISO-4, PINXLATE, and EPINVER.

If the token supplied was encrypted under the old master key, the token will be returned

encrypted under the current master key.

new_IPIN_encryption_key_identifier_length

Direction Type

Input Integer

108 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Specifies the length in bytes of the new_IPIN_encryption_key_identifier parameter. If the

new_IPIN_encryption_key_identifier contains a label, the length must be 64. Otherwise,

the value must be between the actual length of the token and 725.

new_IPIN_encryption_key_identifier

Direction Type

Input/Output String

The identifier of the key to decrypt the PIN_block containing the new PIN. The key

identifier is an operational token or the key label of an operational token in key storage.

When ISO-1 is specified, the key algorithm of this key must be DES and the key type

must be IPINENC. The control vector must enable for translation (TRANSLAT bit 22 =

B'1'). To use the same key token for the current and the new inbound PIN encryption key,

the control vector must have key usages TRANSLAT and EPINVER enabled.

When ISO-4 is specified, the key algorithm of this key must be AES and the key type

must be PINPROT. The key usage fields must specify DECRYPT, CBC, and PINXLATE.

To use the same key token for the current and the new inbound PIN encryption key, the

key usage EPINVER, and PINXLATE must be enabled.

If the token supplied was encrypted under the old master key, the token will be returned

encrypted under the current master key.

script_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the script_key_identifier parameter. If the rule array

indicates that no script is to be processed, this value must be 0. If the

script_key_identifier contains a label, the lengthmust be 64. Otherwise, the value must be

between the actual length of the token and 725.

script_key_identifier

Direction Type

Input/Output String

The identifier of the key for encryption of the script. The key identifier is an operational

token or the key label of an operational token in key storage. For script selection

algorithm and method keyword AES-CBC, the key algorithm of the key must be AES, the

key type must be SECMSG, and the key usage fields must indicate SMPIN and allow use

by the CSNBDPC service (ANY-USE or DPC-ONLY). For keywords TDES-CBC or TDES-

ECB, the key algorithm of this key must be DES, the key type must be SECMSG with the

SMPIN usage bit (CV bit 19) set to B'1'.

If the token supplied was encrypted under the old master key, the token will be returned

encrypted under the current master key.

script_MAC_key_identifier_length

Direction Type

Input Integer

109 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Specifies the length in bytes of the script_MAC_key_identifier parameter. If the rule array

indicates that no script is to be processed, this value must be 0. If the

script_MAC_key_identifier contains a label, the length must be 64. Otherwise, the value

must be between the actual length of the token and 725.

script_MAC_key_identifier

Direction Type

Input/Output String

The identifier of the key to generate the MAC of the script. The key identifier is an

operational token or the key label of an operational token in key storage. For script

selection algorithm and method keyword AES-CBC, the key algorithm of the key must be

AES, the key type must be MAC, and the key usage fields must indicate GENERATE or

GENONLY and CMAC. For keywords TDES-CBC or TDES-ECB, the key algorithm of this

key must be DES, the key type must be MAC, and the key must be double-length.

If the token supplied was encrypted under the old master key, the token will be returned

encrypted under the current master key.

new_PRW_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the new_PRW_key_identifier parameter. If the

new_PRW_key_identifier contains a label, the length must be 64. Otherwise, the value

must be between the actual length of the token and 725.

new_PRW_key_identifier

Direction Type

Input/Output String

The identifier of the key to verify the new PRW. The key identifier is an operational token

or the key label of an operational token in key storage. The key algorithm of this key must

be AES, the key type must be PINPRW, and the key usage fields must indicate

GENONLY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token will be returned

encrypted under the current master key.

OPIN_encryption_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the OPIN_encryption_key_identifier parameter. If the rule

array indicates that no encrypted PIN block is to be returned, this value must be 0. If the

OPIN_encryption_key_identifier contains a label, the length must be 64. Otherwise, the

value must be between the actual length of the token and 725.

OPIN_encryption_key_identifier

Direction Type

110 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Input/Output String

The identifier of the key to encrypt the new PIN block. The key identifier is an operational

token or the key label of an operational token in key storage. If the

OPIN_encryption_key_identifier_length is 0, this parameter is ignored. The key algorithm

of this key must be AES, the key type must be PINPROT, and the key usage fields must

indicate ENCRYPT, CBC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token will be returned

encrypted under the current master key.

OEPB_MAC_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the OEPB_MAC_key_identifier parameter. If the rule array

indicates that no encrypted PIN block MAC is to be returned, this value must be 0. If the

OEPB_MAC_key_identifier contains a label, the length must be 64. Otherwise, the value

must be between the actual length of the token and 725.

OEPB_MAC_key_identifier

Direction Type

Input/Output String

The identifier of the key to generate the MAC of new PIN block. The key identifier is an

operational token or the key label of an operational token in key storage. If the

OEPB_MAC_key_identifier_length is 0, this parameter is ignored. The key algorithm of

this key must be AES, the key type must be MAC, and the key usage fields must indicate

CMAC, GENONLY, and DKPINOP.

If the token supplied was encrypted under the old master key, the token will be returned

encrypted under the current master key.

script_length

Direction Type

Input/Output Integer

The number of bytes of data in the script variable. The value must be 0 if the script

selection algorithm and method of the rule array specifies NOSCRIPT. For scripting, if the

SCR2020 keyword is specified, the value must be set to the PIN block length plus the

length of the additional customer defined data. Otherwise, the value of the script_offset

plus the script_length must be less than or equal to the card_script_data_length.

script

Direction Type

Output String

The script returned. If the rule array specifies to return a script, script_length bytes of this

variable are overwritten. If SCR2020 is specified, the parameter contains the encrypted

part of the script. Otherwise, it contains the entire script.

script_MAC_length

111 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input/Output Integer

Specifies the length in bytes of the script_MAC parameter. If the NOSCRIPT keyword is

selected, this value must be 0. When the MAC length keyword is MACLEN8 or

MACLEN16, the value must be at least as large as indicated by the keyword specified.

When no MAC length keyword is specified and the script selection keyword is AES-CBC,

the value must be between 4 and 16 inclusive. On output, the parameter is updated with

the actual length of the script_MAC parameter.

script_MAC

Direction Type

Output String

The 8 byte or 16 byte MAC of the encrypted script. If the script_MAC_length is 0, this

parameter is ignored.

new_PIN_reference_value_length

Direction Type

Input/Output Integer

Specifies the length in bytes of the new_PIN_reference_value parameter. The value must

be at least 16. On output, it will be set to 16.

new_PIN_reference_value

Direction Type

Output String

The 16-byte new PIN reference value of the new PIN block.

new_PRW_random_number_length

Direction Type

Input/Output Integer

Specifies the length in bytes of the new_PRW_random_number parameter. The value

must be at least 4. On output, it will be set to 4.

new_PRW_random_number

Direction Type

Output String

The 4-byte random number associated with the new PIN reference value.

output_encrypted_PIN_block_length

Direction Type

Input/Output Integer

Specifies the length in bytes of the output_encrypted_PIN_block parameter. If the rule

array indicates that no encrypted PIN block should be returned, this value must be 0.

Otherwise, it should be at least 32. On output it will be set to 32.

112 CCA and PKCS #11 Algorithm Currency – APAR OA61253

output_encrypted_PIN_block

Direction Type

Output String

The 32-byte encrypted new PIN block. If the output_encrypted_PIN_block_length is 0,

this parameter is ignored.

PIN_block_MAC_length

Direction Type

Input/Output Integer

Specifies the length in bytes of the PIN_block_MAC parameter. If the rule_array indicates

that no PIN block MAC should be returned, this value must be 0. Otherwise, it must be at

least 8.

PIN_block_MAC

Direction Type

Output String

The 8-byte MAC of the new encrypted PIN block. If the PIN_block_MAC_length is 0, this

parameter is ignored.

Usage notes

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS.

Notes on script processing

When using the SCR2020 keyword, the script, whose length is represented by script_length, is

now only a part of the card_script_data area, whose length is represented by

card_script_data_length. This script length will indicate how much of the card_script_data area is

to be encrypted. Therefore, the script_offset + the script_length must not be less than the

card_script_data_length. If it is, a size error is returned.

Note: If the script_offset = 0, the card_script_data_length and the script_length could be equal.

Here is an example showing the correct layout with sample input lengths:

• card_script_data_length = 18

• script_offset = 2

• script_offset_field_length = 8

• script_length = 16

┌───┐

| card_script_data_length (18) |

| --- |

| | script_length (16) |

| --- |

| script_offset | (script_offset_field_length) (8) | Additional data to be |

| (2) | Clear PIN block | encrypted |

| | | (Script_length - |

| | | Offset_field_length = 8) |

| --- |

| The card_script_data_length must be large enough |

└───┘

113 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Note: It is not possible with SCR2020 to encrypt data before the clear PIN block. This is a

difference from SCR2013. SCR2020 is mandatory for ISO-4 PIN blocks. Therefore, this restriction

applies to all scripts that handle ISO-4 PINs.

Access control points

The DK PIN Change access control point in the domain role controls the function of this service.

When the General ISO PIN Error Mode access control is enabled, the return code will be a

general PIN block error (8/2514) instead of some of the PIN block errors return code. The use of

a general return code can prevent the abuse of PIN processing error messages due to

information leakage derived from the return code reason codes returned under various

conditions. See ‘PIN block error processing mode’ on page 80 for details.

When the Disallow PIN block format ISO-1 access control is enabled in the domain role, the

PIN block format rule_array keyword ISO-1 is not allowed.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 63. DK PIN Change required hardware

Server Required cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

 This service is not supported.

IBM System z10 EC
IBM System z10 BC

 This service is not supported.

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

DK AES PIN key support requires the
November 2013 or later licensed
internal code (LIC).

Rule array keywords AES-CBC, CMAC,
ISO-1, and
ISO-4 are not supported.

Triple-length DES keys are not
supported.

Compliant-tagged key tokens are not
supported.

Keywords SCR2013 and SCR2020 are
not supported.

IBM zEnterprise EC12
IBM zEnterprise BC12

Crypto Express3
Coprocessor
Crypto Express4 CCA
Coprocessor

DK AES PIN key support requires the
September 2013 or later licensed
internal code (LIC).

Rule array keywords AES-CBC, CMAC,
and MACLEN16 require the June 2015
or later licensed internal code (LIC).

Keywords ISO-1 and ISO-4 are not
supported.

114 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Triple-length DES keys are not
supported.

Compliant-tagged key tokens are not
supported.

Keywords SCR2013 and SCR2020 are
not supported.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

Rule array keywords AES-CBC, CMAC,
and MACLEN16 require the July 2015
or later licensed internal code (LIC).

Keywords ISO-1 and ISO-4 and triple-
length DES keys require the July 2019
or later licensed internal code (LIC).

Compliant-tagged key tokens are not
supported.

The combination of keyword ISO-4 and
any keyword form the script selection
algorithm and method keyword group
requires the June 2020 or later licensed
internal code (LIC).

Keywords SCR2013 and SCR2020
require the June 2020 or later licensed
internal code (LIC).

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

Rule array keywords AES-CBC, CMAC,
and MACLEN16 require the July 2015
or later licensed internal code (LIC).

Keywords ISO-1 and ISO-4 and triple-
length DES keys require the December
2018 or later licensed internal code
(LIC).

Compliant-tagged key tokens are not
supported.

The combination of keyword ISO-4 and
any keyword form the script selection
algorithm and method keyword group
requires the June 2020 or later licensed
internal code (LIC).

Keywords SCR2013 and SCR2020
require the June 2020 or later licensed
internal code (LIC).

Crypto Express6 CCA
Coprocessor

Keywords ISO-1 and ISO-4 and triple-
length DES keys require the December
2018 or later licensed internal code
(LIC).

115 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Compliant-tagged key tokens require a
CEX6C with the July 2019 or later
licensed internal code (LIC).

The combination of keyword ISO-4 and
any keyword form the script selection
algorithm and method keyword group
requires the June 2020 or later licensed
internal code (LIC).

Keywords SCR2013 and SCR2020
require the June 2020 or later licensed
internal code (LIC).

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not
supported.

The combination of keyword ISO-4 and
any keyword form the script selection
algorithm and method keyword group
requires the June 2020 or later licensed
internal code (LIC).

Keywords SCR2013 and SCR2020
require the June 2020 or later licensed
internal code (LIC).

Crypto Express6 CCA
Coprocessor
Crypto Express7 CCA
Coprocessor

The combination of keyword ISO-4 and
any keyword form the script selection
algorithm and method keyword group
requires the June 2020 or later licensed
internal code (LIC).

Keywords SCR2013 and SCR2020
require the June 2020 or later licensed
internal code (LIC).

DK PIN Verify (CSNBDPV and CSNEDPV)
Use the DK PIN Verify callable service to verify an ISO-1 or ISO-4 format PIN. The input PIN will

be converted to PBF-0 format. A test PIN reference value (PRW) is created and that value is

bitwise compared to the input PRW.

The callable service name for AMODE(64) invocation is CSNEDPV.

Format

CALL CSNBDPV(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 PAN_data_length,

116 CCA and PKCS #11 Algorithm Currency – APAR OA61253

 PAN_data,

 card_data_length,

 card_data,

 PIN_reference_value_length,

 PIN_reference_value,

 PRW_random_number_length,

 PRW_random_number,

 ISO_encrypted_PIN_block_length,

 ISO_encrypted_PIN_block,

 PRW_key_identifier_length,

 PRW_key_identifier,

 IPIN_encryption_key_identifier_length,

 IPIN_encryption_key_identifier)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1279 lists the return

codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes assigned to it that

indicate specific processing problems. Appendix A, “ICSF and cryptographic coprocessor

return and reason codes,” on page 1279 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The data is identified in the

exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

117 CCA and PKCS #11 Algorithm Currency – APAR OA61253

The number of keywords you supplied in the rule_array parameter. The value can be 0 or

1.

rule_array

Direction Type

Input Character

Keywords that provide control information to the callable service. The keywords must be

in contiguous storage with each of the keywords left-justified in its own 8-byte location

and padded on the right with blanks.

Table 64. Keywords for the DK PIN Verify Service

Keyword Meaning

PIN Block format (One, optional)

ISO-1 Specifies that the encrypted PIN block in the
ISO_encrypted_PIN_block parameter is in the ISO-1 format. This is
the default.

ISO-4 Specifies that the encrypted PIN block in the
ISO_encrypted_PIN_block parameter is in the ISO-4 format.

PAN_data_length

Direction Type

Input Integer

Specifies the length in bytes of the PAN_data parameter. The value must be between 10

and 19, inclusive.

PAN_data

Direction Type

Input Character

The PAN data which the PIN is associated. The full account number, including check

digit, should be included. This parameter is character data.

card_data_length

Direction Type

Input Integer

Specifies the length in bytes of the card_data parameter. The value must be between 4

and 512, inclusive.

card_data

Direction Type

Input String

The time-invariant card data (CDp) and the time-sensitive card data (CDt) which, together

with the account number, specifies an individual card.

PIN_reference_value_length

Direction Type

118 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Input Integer

Specifies the length in bytes of the PIN_reference_value parameter. This value must be

16.

PIN_reference_value

Direction Type

Input String

The 16-byte PIN reference value for comparison to the calculated value.

PRW_random_number_length

Direction Type

Input Integer

Specifies the length in bytes of the PRW_random_number parameter. The value must be

4.

PRW_random_number

Direction Type

Input String

The 4-byte random number associated with the PIN reference value.

ISO_encrypted_PIN_block_length

Direction Type

Input Integer

Specifies the length in bytes of the ISO_encrypted_PIN_block parameter. This value

must be 8 for a ISO-1 block and 16 for a ISO-4 block.

ISO_encrypted_PIN_block

Direction Type

Input String

The 8-byte encrypted PIN block in ISO-1 format.

PRW_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the PRW_key_identifier parameter. If the

PRW_key_identifier contains a label, the length must be 64. Otherwise, the value must

be between the actual length of the token and 725.

PRW_key_identifier

Direction Type

Input/Output String

The identifier of the key to verify the PIN reference value. The key identifier is an

operational token or the key label of an operational token in key storage. The key

119 CCA and PKCS #11 Algorithm Currency – APAR OA61253

algorithm of this key must be AES, the key type must be PINPRW, and the key usage

fields must indicate VERIFY, CMAC, and DKPINOP.

If the token supplied was encrypted under the old master key, the token will be returned

encrypted under the current master key.

IPIN_encryption_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the IPIN_encryption_key_identifier parameter. If the

IPIN_encryption_key_identifier contains a label, the length must be 64. Otherwise, the

value must be between the actual length of the token and 725.

IPIN_encryption_key_identifier

Direction Type

Input/Output String

The identifier of the key to decrypt the PIN_block. The key identifier is an operational

token or the key label of an operational token in key storage.

When ISO-1 is specified, the key algorithm of this key must be DES and the key type

must be IPINENC. The control vector must enable the verification of an encrypted PIN

(EPINVER bit 19 = B'1').

When ISO-4 is specified, the key algorithm of this key must be AES and the key type

must be PINPROT. The key usage fields must specify DECRYPT, CBC, NOFLDFMT, and

EPINVER.

If the token supplied was encrypted under the old master key, the token will be returned

encrypted under the current master key.

Usage notes

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS.

Access control points

The DK PIN Verify access control point in the domain role controls the function of this service.

When the General ISO PIN Error Mode access control is enabled, the return code will be a

general PIN block error (8/2514) instead of some of the PIN block errors return code. The use of

a general return code can prevent the abuse of PIN processing error messages due to

information leakage derived from the return code reason codes returned under various

conditions. See ‘PIN block error processing mode’ on page 80 for details.

When the Disallow PIN block format ISO-1 access control is enabled in the domain role, the PIN

block format rule_array keyword ISO-1 is not allowed.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

120 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Table 65. DK PIN Verify required hardware

Server Required cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

 This service is not supported.

IBM System z10 EC
IBM System z10 BC

 This service is not supported.

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

DK AES PIN key support requires the
November 2013 or later licensed
internal code (LIC).

Keywords ISO-1 and ISO-4 are not
supported.

Triple-length DES keys are not
supported.

Compliant-tagged key tokens are not
supported.

IBM zEnterprise EC12
IBM zEnterprise BC12

Crypto Express3
Coprocessor
Crypto Express4 CCA
Coprocessor

DK AES PIN key support requires the
September 2013 or later licensed
internal code (LIC).

Keywords ISO-1 and ISO-4 are not
supported.

Triple-length DES keys are not
supported.

Compliant-tagged key tokens are not
supported.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

Keywords ISO-1 and ISO-4 and triple-
length DES keys require the July 2019
or later licensed internal code (LIC).

Compliant-tagged key tokens are not
supported.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

Keywords ISO-1 and ISO-4 and triple-
length DES keys require the December
2018 or later licensed internal code
(LIC).

Compliant-tagged key tokens are not
supported.

Crypto Express6 CCA
Coprocessor

Keywords ISO-1 and ISO-4 and triple-
length DES keys require the December
2018 or later licensed internal code
(LIC).

Compliant-tagged key tokens require a
CEX6C with the July 2019 or later
licensed internal code (LIC).

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

Compliant-tagged key tokens are not
supported.

121 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Crypto Express6 CCA
Coprocessor
Crypto Express7 CCA
Coprocessor

Using digital signatures

Signature algorithms and formatting methods

ICSF supports signature generation and verification for RSA, EC, and CRYSTALS-Dilithium

algorithms. This topic lists the hashing algorithms supported by CSNDDSG and CSNDDSV that

are either recommended or required by the standard for the algorithms and formatting methods.

ICSF will only enforce the hashing algorithm when required by a standard.

ICSF supports these hash formatting methods for the RSA algorithm:

ANSI X9.31

Required hash methods: RIPEMD-160, SHA-1, SHA-256, SHA-384, or SHA-512.

ISO 9796-1

Recommended hash methods: Any.

RSA PKCS 1.0 and PKCS 1.1

Recommended hash methods: MD5, SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

RSA PKCS-PSS

Required hash methods: SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

Padding on the left with zeros

Recommended hash methods: Any.

ICSF supports these elliptic curve algorithms:

ANSI X9.62 ECDSA (Brainpool, NIST prime, and Koblitz)

Recommended hash methods: SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

ISO/IEC 14888 Schnorr Digital Signature Algorithm (EC-SDSA)

• The hash method for P256 keys is SHA-256.

• The hash method for P521 keys is SHA-512.

Edwards-curve Digital Signature Algorithm (EdDSA)

▪ Required hash methods for Ed25519: SHA-512.

▪ Required hash methods for Ed448: SHAKE-256.

ICSF supports these hash formatting methods for the CRYSTALS-Dilithium algorithm:

CRYSTALS-Dilithium Digital Signature Algorithm (CRDL-DSA)

122 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Required hash methods for CRYSTALS-Dilithium: SHAKE-256.

Digital Signature Generate (CSNDDSG and CSNFDSG)
Use the Digital Signature Generate callable service to generate a digital signature using a PKA

private key or, for some limited functions, a secure PKCS #11 private key. Private keys must be

valid for signature usage.

This service supports these hash formatting methods for the RSA algorithm:

• ANSI X9.31

• ISO 9796-1

• RSA DSI PKCS #1 v1.5 and v2.1

• Padding on the left with zeros

This service supports the ANSI X9.62 ECDSA (Brainpool, NIST prime, and Koblitz), the Edwards-

curve Digital Signature Algorithm (EdDSA), the ISO/IEC 14888 Schnorr Digital Signature

Algorithm (EC-SDSA), and the CRYSTALS-Dilithium Digital Signature Algorithm (CRDL-DSA)

algorithms.

This service accepts either the input message or a hash of the input message.

For CCA keys, when the private_key_identifier parameter specifies:

An RSA private key

Select the method of formatting the text by using the digital signature formatting method

rule array keyword.

An ECC private key

Select the ECDSA, EDDSA, or EC-SDSA signature algorithm rule array keyword.

For the EC-SDSA algorithm, the key is restricted to secp256r1 (P256) and secp521r1

(P521) curves. The hash method for P256 keys is SHA-256. The hash method for P521

keys is SHA-512.

A CRYSTALS-Dilithium private key

Select the CRDL-DSA signature algorithm rule array keyword.

For secure PKCS #11 keys, when the private_key_identifier parameter specifies:

An RSA private key

Select the PKCS-1.1 formatting method keyword.

An ECC private key

Select the ECDSA or EDDSA algorithm keyword.

If keyword ECDSA is specified in the rule array, the Elliptic Curve Digital Signature Algorithm is

used as the digital-signature hash formatting method. If keyword EDDSA is specified, the EdDSA

algorithm and hashing method appropriate for Edwards curves is used. Otherwise, specify the

optional digital-signature hash formatting method keyword in the rule array for the method used to

generate the RSA digital signature.

123 CCA and PKCS #11 Algorithm Currency – APAR OA61253

The callable service name for AMODE(64) invocation is CSNFDSG.

Format

CALL CSNDDSG(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 private_key_identifier_length,

 private_key_identifier,

 data_length,

 data,

 signature_field_length,

 signature_bit_length,

 signature_field)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1279 lists the return

codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program.Each return code has different reason codes assigned to it that

indicate specific processing problems. Appendix A, “ICSF and cryptographic coprocessor

return and reason codes,” on page 1279 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The data is identified in the

exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

124 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The value may

be 0 1, 2, 3, or 4.

rule_array

Direction Type

Input String

The rule_array contains keywords that provide control information to the callable service.

The keywords must be in contiguous storage with each of the keywords left-justified in its

own 8-byte location and padded on the right with blanks.

Table 66. Keywords for Digital Signature Generate Control Information

Keyword Meaning

Signature algorithm (One, optional)

CRDL-DSA Specifies to generate a signature in the CRYSTALS-Dilithium digital
signature scheme.

ECDSA Specifies to generate a digital signature using the ECDSA algorithm.

EC-SDSA Specifies to generate a digital signature using the EC-SDSA
algorithm.

EDDSA Specifies to generate a digital signature using the EdDSA algorithm.

RSA Specifies to generate an RSA digital signature. This is the default.

Digital Signature Formatting Method (optional, valid for RSA digital signature
generation only)

ISO-9796 Specifies to format the hash according to the ISO/IEC 9796-1
standard and generate the digital signature. Any hash method is
allowed. This is the default.

PKCS-1.0 Specifies to format the digital signature on the string supplied in the
hash variable as defined in the RSA PKCS #1 standard for block-
type 00. The PKCS #1 v2.0 standard no longer defines this
signature scheme.

PKCS-1.1 Specifies to format the digital signature on the string supplied in the
hash variable as defined in the RSA PKCS #1 v2.0 standard for the
RSASSA-PKCS1-v1_5 signature scheme. This was formerly known
as block-type 01.

PKCS-PSS Specifies to format the hash as defined in the RSA PKCS #1 v2.2
standard for the RSASSA-PSS signature scheme. Only valid for
RSA-AESM and RSA-AESC key tokens.

X9.31 Specifies to format the hash according to the ANSI X9.31 standard.
The modulus length of a key used must be one of 1024, 1280, 1536,
1792, 2048, or 4096 bits.

ZERO-PAD Specifies to format the hash by padding it on the left with binary
zeros to the length of the RSA key modulus. Any supported hash
function is allowed.

Data Input Type (One, optional)

HASH Specifies that the data parameter contains the hash that is to be
signed. This is the default.

MESSAGE Specifies that the data parameter contains the message that is to be
hashed and signed. This keyword is required with EDDSA, EC-
SDSA, and CRDL-DSA keywords.

Hash Method Specification (One required:)
• When the MESSAGE keyword is specified,

125 CCA and PKCS #11 Algorithm Currency – APAR OA61253

• When the HASH keyword is specified and the hash formatting method is PKCS-PSS
or X9.31, or
• When the signature algorithm keyword EDDSA or CRDL-DSA is specified.

ED-HASH Process the text supplied in the data variable using the hash method
for the Edwards curve of the key passed in the
PKA_private_key_identifier parameter. For Ed25519, this is SHA-
512. For Ed448, this is SHAKE-256. This keyword is required with
the EDDSA keyword.

CRDLHASH Process the text supplied in the message variable using the hash
method appropriate for the CRYSTALS-Dilithium algorithm. This is
SHAKE-256. Required for CRDL-DSA.

MD5 Process the text supplied in the data parameter using the MD5 hash
method. Not valid with PKCS-PSS or X9.31.

RPMD-160 Process the text supplied in the data parameter using the RIPEMD-
160 hash method. Not valid with PKCS-PSS.

SHA-1 Process the text supplied in the data parameter using the SHA-1
hash method.

SHA-224 Process the text supplied in the data parameter using the SHA-224
hash method. Not valid with X9.31.

SHA-256 Process the text supplied in the data parameter using the SHA-256
hash method.

SHA-384 Process the text supplied in the data parameter using the SHA-384
hash method.

SHA-512 Process the text supplied in the data parameter using the SHA-512
hash method.

private_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the private_key_identifier parameter. If the

private_key_identifier contains a label, the value must be 64. Otherwise, the value must

be between the actual length of the token and 6500.

For secure PKCS #11 keys, the length must be 64.

private_key_identifier

Direction Type

Input String

The identifier of the private key to generate the signature. The key identifier is an RSA,

EC, or CRYSTALS-Dilithium private key token, or label of such a private key identifier in

key storage.

For CCA, this is an RSA, EC, or CRYSTALS-Dilithium private key or a retained RSA key.

The token key usage flag must permit the generation of signatures. The format restriction

field of the RSA private key token will restrict the format allowed to be used with the key.

If formatting method PKCS-PSS is specified, the RSA key token must have an AES

object protection key (private key section identifiers X'30' and X'31'), which can be

created with key type RSA-AESM and RSA-AESC in PKA Key Token Build (CSNDPKB

and CSNFPKB).

126 CCA and PKCS #11 Algorithm Currency – APAR OA61253

For secure PKCS #11 keys, this is the 44-byte handle of the private key, prefixed with an

EBCDIC equal sign character (‘=’ or X’7E’), and padded on the right with spaces for a

total length of 64 bytes.

data_length

Direction Type

Input Integer

The length of the data parameter in bytes. See Usage Notes for details of the formatting

methods and the length requirements.

When the data input type keyword is MESSAGE, the value is the length of the message

to be hashed. The maximum value is 2147483647 bytes. When the signature algorithm

keyword is EDDSA or EC-SDSA, the maximum value is 8192. When CRDL-DSA is

specified, the maximum value is 5000. A hash method rule array keyword must be

specified.

When the data input type keyword is HASH, the value must be the exact length of the

hash to be signed. The maximum value is 516 bytes. The length of the hash for the

supported hashing method is 16 for MD5, 20 for SHA-1 and RPMD-160, 28 for SHA-224,

32 for SHA-256, 48 for SHA-384, and 64 for SHA-512. You can use either the One-Way

Hash Generate callable service or the MDC Generate callable service to generate the

hash.

For the PKCS-PSS formatting rule, the first four bytes must be the salt length. The

remaining bytes of the parameter must contain the hash or message. The value will be 4

+ length of the hash or message.

For the ZERO-PAD format rule, the length is restricted to 36 for RSA keys that permit key

management in the key usage field. For RSA keys that permit signature only in the key

usage field, the maximum value is 512. This hash length limit is controlled by an access

control point. Only RSA keys that permit key management are affected by this access

control point. See the restrictions section of this service for details.

data

Direction Type

Input String

The application-supplied data to be signed. The data can be the message to be hashed

and signed or the hash of the message. See Usage Notes for details of the formatting

methods and the data requirements.

The data must be in the caller's primary address space.

For the PKCS-PSS formatting rule, the first four bytes must be the salt length. The

remaining bytes of the parameter must contain the hash or message.

signature_field_length

Direction Type

Input/Output Integer

The length in bytes of the signature_field to contain the generated digital signature. Upon

return, this field contains the actual length of the generated signature. The maximum size

127 CCA and PKCS #11 Algorithm Currency – APAR OA61253

for RSA is 512. The maximum size of ECC is 132. For CRYSTALS-Dilithium, the

maximum size is 3500.

For RSA, this must be at least the byte length of the modulus rounded up to a multiple of

32 bytes for the X9.31 signature format or one byte for all other signature formats.

For ECDSA NIST prime curves, the maximum is 2 * 521 bits. For brain pool curves, the

maximum size is 2 * 512 bits. For Koblitz secp256k1 curves, the maximum is 64 bytes.

signature_bit_length

Direction Type

Output Integer

The bit length of the digital signature generated. For ISO-9796, this is 1 less than the

modulus length. For other RSA processing methods, this is the modulus length.

signature_field

Direction Type

Input/Output String

The digital signature generated is returned in this field. The digital signature is in the low-

order bits (right-justified) of a string whose length is the minimum number of bytes that

can contain the digital signature. This string is left-justified within the signature_field. Any

unused bytes to the right are undefined.

Restrictions

Although ISO-9796 does not require the input hash to be an integral number of bytes in length,

this service requires you to specify the hash_length in bytes.

For CCA RSA keys, the hash length limit is controlled by the DSG ZERO-PAD unrestricted hash

length access control point. If enabled, the maximum hash length limit for ZERO-PAD is the

modulus length of the PKA private key. If disabled, the maximum hash length limit for ZERO-PAD

is 36 bytes. Only RSA key management keys are affected by this access control point. The limit

for RSA signature use only keys is 512 bytes. This access control point is disabled in the domain

role. You must have a TKE workstation to enable it.

Authorization

To use this service with a secure PKCS #11 private key that is a public object, the caller must

have SO (READ) authority or USER (READ) authority (any access) to the containing PKCS #11

token.

To use this service with a secure PKCS #11 private key that is a private object, the caller must

have USER (READ) authority (user access) to the containing PKCS #11 token.

See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for more information on

the SO and User PKCS #11 roles.

Usage notes

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS, PKDS, or TKDS.

Notes on formatting the message:

128 CCA and PKCS #11 Algorithm Currency – APAR OA61253

ISO-9796

The length of the hash must be less than or equal to one-half of the number of bytes

required to contain the modulus of the RSA key.

PKCS-1.0 and PKCS-1.1

The length of the hash must be 11 bytes shorter than the number of bytes required to

contain the modulus of the RSA key.

When the HASH keyword is specified, the hash must be BER encoded. See “Formatting

hashes and keys in public-key cryptography” on page 1472 for a description of the

formatting methods.

PKCS-PSS

The first four bytes of the data parameter will contain the salt length. The remaining bytes

of the parameter contains the hash or message.

It is recommended that the salt length be either 0 or the byte length of the hash algorithm

selected. The salt length should not be less than the byte length of the hash algorithm,

but it can be greater. When the Digital Signature Generate – PKCS-PSS allow small salt

access control is enabled in the domain role, the salt length may be less than the length

of the hash.

The size of the data to be signed is governed by the size of the RSA modulus. The

modulus size and hash length affect the maximum salt length for a given key modulus

size and specified hash. The maximum salt length equals modulus size/8 - hash length -

2. For example, with a 4096 bit modulus key and SHA-1, the maximum salt length

becomes – (4096/8) – 20 -2 => 512-20-2 = 490.

X9.31

There are no restrictions for the hash length or message.

ZERO-PAD

The length of the hash must be less than or equal to the number of bytes required to

contain the modulus of the RSA key.

ECDSA

There are no restrictions for the hash length or message.

EdDSA and EC-SDSA

The length of the message must be less than or equal to 8192 bytes.

CRDL-DSA

The length of the message must be less than or equal to 5000 bytes.

The Digital Signature Generate callable service can take advantage of a PKCS#11

private key object stored in the TKDS, but you should check if using “PKCS #11 Private

Key Sign (CSFPPKS and CSFPPKS6)” on page 1221 aligns better with the overall

design of your application.

PKCS-PSS details

129 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Before specifying PKCS-PSS, see section A.2.3 of RFC 8017: PKCS #1: RSA Cryptography

Specifications Version 2.2 (RFC 8017 (tools.ietf.org/html/rfc8017)). Section A.2.3 defines a

parameter field for RSASSAPSS that has the following four parameters:

hashAlgorithm

This parameter identifies the hash function. A hashing-method specification keyword of

SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512 is required. There is no default.

maskGenAlgorithm

This parameter identifies the mask generation function. MGF1 is a mask generation

function based on a hash function and is the only function currently defined by the

standard. For CCA, the hash function on which MGF1 is based is always the same as

hashAlgorithm. Although this is not required, CCA enforces the recommendation by the

standard that the underlying hash function be the same as the one identified by

hashAlgorithm.

saltLength

This is the length of the salt, which is a randomly generated value. Use the data variable

of the verb to prepend a 4-byte saltLength field in big endian format to the hash digest to

be signed or the message to be hashed and signed.

trailerField

This is the trailer field number. This is not an input to the verb because it is always set to

the value X'BC'. Other trailer field numbers are not supported by the standard.

Access control points

For PKA private keys, the Digital Signature Generate access control point controls the function

of this service.

The length of the hash for ZERO-PAD is restricted to 36 bytes. If the DSG ZERO-PAD

unrestricted hash length access control point is enabled in the domain role, the length of the

hash is not restricted. This access control is disabled by default.

For the PKCS-PSS formatting method, ICSF requires the salt length specified in the data

parameter to be zero or the length of the hash specified. When the Digital Signature Generate –

PKCS-PSS allow small salt access control is enabled in the domain role, the salt length may be

less than the length of the hash.

For secure PKCS #11 private keys, the Sign with private keys access control point controls the

function of this service. For more information on the access control points of the Enterprise PKCS

#11 coprocessor, see 'PKCS #11 Access Control Points' in z/OS Cryptographic Services ICSF

Writing PKCS #11 Applications.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 67. Digital Signature Generate required hardware

Server Required cryptographic
hardware

Restrictions

130 CCA and PKCS #11 Algorithm Currency – APAR OA61253

IBM System z9 EC
IBM System z9 BC

Crypto Express2
Coprocessor

ECC not supported.

CRYSTALS-Dilithium not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the
Nov. 2007 or later licensed internal code
(LIC).

Keywords PKCS-PSS, SHA-384, and
SHA-512 are not supported.

Compliant-tagged key tokens are not
supported.

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor

ECC not supported.

CRYSTALS-Dilithium not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the
Nov. 2007 or later licensed internal code
(LIC).

Keyword PKCS-PSS is not supported. The
combination of the X9.31 keyword and
either SHA-384 or SHA-512
is not supported.

Compliant-tagged key tokens are not
supported.

Crypto Express3
Coprocessor

ECC support requires the Sep. 2010
licensed internal code (LIC).

Keywords PKCS-PSS, EDDSA, EC-SDSA,
ED-HASH, CRDL-DSA, and CRDLHASH
are not supported. The combination of the
X9.31 keyword and either SHA-384 or
SHA-512 is not supported

ECC Koblitz curve secp256k1 is not
supported.

Compliant-tagged key tokens are not
supported.

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

Keywords PKCS-PSS EDDSA, EC-SDSA,
ED-HASH, CRDL-DSA, and CRDLHASH
are not supported.

ECC Koblitz curve secp256k1 is not
supported.

Compliant-tagged key tokens are not
supported

IBM zEnterprise
EC12

Crypto Express3
Coprocessor

Keywords PKCS-PSS EDDSA, EC-SDSA,
ED-HASH, CRDL-DSA, and CRDLHASH
are not supported.

131 CCA and PKCS #11 Algorithm Currency – APAR OA61253

IBM zEnterprise
BC12

Crypto Express4 CCA
Coprocessor

ECC Koblitz curve secp256k1 is not
supported.

Compliant-tagged key tokens are not
supported.

Crypto Express4
Enterprise PKCS #11
coprocessor

Required to use a secure PKCS #11
private key.

Compliant-tagged key tokens are not
supported.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

PKCS-PSS support requires the October
2016 or later licensed internal code (LIC).

Keywords EDDSA, EC-SDSA, ED-HASH,
CRDL-DSA, and CRDLHASH are not
supported.

ECC Koblitz curve secp256k1 is not
supported.

Compliant-tagged key tokens are not
supported.

Crypto Express5
Enterprise PKCS #11
coprocessor

Required to use a secure PKCS #11
private key.

Compliant-tagged key tokens are not
supported.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

PKCS-PSS support requires the October
2016 or later licensed internal code (LIC).

Keywords EDDSA, EC-SDSA, ED-HASH,
CRDL-DSA, and CRDLHASH are not
supported.
ECC Koblitz curve secp256k1 is not
supported.

Compliant-tagged key tokens are not
supported.

Crypto Express6 CCA
Coprocessor

Compliant-tagged key tokens require a
CEX6C with the July 2019 or later licensed
internal code (LIC).

Keywords EDDSA, EC-SDSA, ED-HASH,
CRDL-DSA, and CRDLHASH are not
supported.

ECC Koblitz curve secp256k1 is not
supported.

Crypto Express5
Enterprise PKCS #11
coprocessor
Crypto Express6
Enterprise PKCS #11
coprocessor

Required to use a secure PKCS #11
private key.

Compliant-tagged key tokens are not
supported.

132 CCA and PKCS #11 Algorithm Currency – APAR OA61253

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

PKCS-PSS support requires the October
2016 or later licensed internal code (LIC).

Keywords EDDSA, EC-SDSA, ED-HASH,
CRDL-DSA, and CRDLHASH are not
supported.

ECC Koblitz curve secp256k1 is not
supported.

Compliant-tagged key tokens are not
supported.

Crypto Express6 CCA
Coprocessor

Keywords EDDSA, EC-SDSA, ED-HASH,
CRDL-DSA, and CRDLHASH are not
supported.

ECC Koblitz curve secp256k1 is not
supported.

Crypto Express7 CCA
Coprocessor

Keywords EDDSA, ED-HASH, CRDL-DSA,
and CRDLHASH require the June 2020 or
later licensed internal code (LIC).

ECC Koblitz curve secp256k1 requires the
September 2020 or later licensed internal
code (LIC).

Keyword EC-SDSA requires the CCA
release 7.4 or later licensed internal code.

Crypto Express5
Enterprise PKCS #11
coprocessor
Crypto Express6
Enterprise PKCS #11
coprocessor
Crypto Express7
Enterprise PKCS #11
coprocessor

Required to use a secure PKCS #11
private key.

Compliant-tagged key tokens are not
supported.

CP Assist for
Cryptographic Functions

Clear and secure ECC key requests for the
Prime P-256, Prime P-384, Prime P-521,
Ed25519, and Ed448 curves are
supported. Secure key support requires a
CEX7 CCA coprocessor with the June
2020 or later licensed internal code.

Digital Signature Verify (CSNDDSV and CSNFDSV)
Use the Digital Signature Verify callable service to verify a digital signature using a PKA public

key.

• The Digital Signature Verify callable service can use the RSA, EC, or CRYSTALS-Dilithium

public key, depending on the digital signature algorithm used to generate the signature.

• The Digital Signature Verify callable service can use the RSA public keys that are contained

in trusted blocks regardless of whether the block also contains rules to govern its use when

133 CCA and PKCS #11 Algorithm Currency – APAR OA61253

generating or exporting keys with the RKX service. If the TPK-ONLY keyword is used in the

rule_array parameter, an error will occur if the PKA_public_key_identifier parameter does not

contain a trusted block.

• The Digital Signature Verify callable service can use an X.509 certificate containing an RSA

or ECC public key.

This service supports these hash formatting methods for RSA keys:

• ANSI X9.31

• ISO 9796

• RSA DSI PKCS #1 v2.0 and v2.2

• Padding on the left with zeros

This service supports the ANSI X9.62 ECDSA (Brainpool, NIST prime, and Koblitz), Edwards-

curve Digital Signature Algorithm (EdDSA), the ISO/IEC 14888 Schnorr Digital Signature

Algorithm (EC-SDSA), and CRYSTALS-Dilithium Digital Signature Algorithm (CRDL-DSA)

algorithms.

This service accepts either the input message or a hash of the input message.

If keyword ECDSA is specified in the rule array, the Elliptic Curve Digital Signature Algorithm is

used as the digital-signature hash formatting method. If keyword EDDSA is specified, the EdDSA

algorithm and hashing method appropriate for Edwards curves is used. If keyword CRDL-DSA is

specified, the CRYSTALS-Dilithium algorithm and hashing method appropriate for CRYSTALS-

Dilithium is used. Otherwise, specify the optional digital-signature hash formatting method

keyword in the rule array for the method used to generate the RSA digital signature being verified.

The callable service name for AMODE(64) invocation is CSNFDSV.

Format

CALL CSNDDSV(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 PKA_public_key_identifier_length,

 PKA_public_key_identifier,

 data_length,

 data,

 signature_field_length,

 signature_field)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1279 lists the return

codes.

134 CCA and PKCS #11 Algorithm Currency – APAR OA61253

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes assigned to it that

indicate specific processing problems. Appendix A, “ICSF and cryptographic coprocessor

return and reason codes,” on page 1279 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The data is identified in the

exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The value must

be 0, 1, 2, 3, 4, 5, or 6.

rule_array

Direction Type

Input String

The rule_array contains keywords that provide control information to the callable service.

The keywords must be in contiguous storage with each of the keywords left-justified in its

own 8-byte location and padded on the right with blanks.

Table 68. Keywords for Digital Signature Verify Control Information

Keyword Meaning

Signature Algorithm (One, optional)

CRDL-DSA Specifies to verify a signature in the CRYSTALS-Dilithium digital
signature scheme.

ECDSA Specifies to verify a digital signature using the ECDSA algorithm.

EC-SDSA Specifies to verify a digital signature using the EC-SDSA algorithm.

EDDSA Specifies to verify a digital signature using the EDDSA algorithm.

RSA Specifies to verify an RSA digital signature. This is the default.

Digital Signature Formatting Method (One, optional, RSA only)

ISO-9796 Specifies to format the hash according to the ISO/IEC 9796-1
standard and generates the digital signature. Any hash method is
allowed. This is the default.

135 CCA and PKCS #11 Algorithm Currency – APAR OA61253

PKCS-1.0 Specifies to format the digital signature on the string supplied in the
hash variable as defined in the RSA PKCS #1 standard for block-
type 00. The PKCS #1 v2.0 standard no longer defines this
signature scheme.

PKCS-1.1 Specifies to format the digital signature on the string supplied in the
hash variable as defined in the RSA PKCS #1 v2.0 standard for the
RSASSAPKCS1-v1_5 signature scheme. This was formerly known
as block-type 01.

PKCS-PSS Specifies to format the hash as defined in the RSA PKCS #1 v2.2
standard for the RSASSA-PSS signature scheme.

X9.31 Specifies to format the hash according to the ANSI X9.31 standard.
The input text must have been previously hashed with any of the
hash algorithms listed. The modulus length of a key used must be
one of 1024, 1280, 1536, 1792, 2048, or 4096 bits.

ZERO-PAD Specifies to format the hash by padding it on the left with binary
zeros to the length of the RSA key modulus. Any hash method is
allowed.

Data Input Type (One, optional)

HASH Specifies that the data parameter contains the hash that is to be
signed. This is the default.

MESSAGE Specifies that the data parameter contains the message that is to
be hashed and signed. This keyword is required with EDDSA, EC-
SDSA, and CRDL-DSA keywords.

Hash Method Specification (One required:)
• When the MESSAGE keyword is specified,
• When the HASH keyword is specified and the hash formatting method is PKCS-PSS
or X9.31, or
• When the signature algorithm keyword EDDSA or CRDL-DSA is specified.

ED-HASH Process the text supplied in the data variable using the hash
method for the Edwards curve of the key passed in the
PKA_private_key_identifier parameter. For Ed25519, this is SHA-
512. For Ed448, this is SHAKE-256. This keyword is required with
the EDDSA keyword.

CRDLHASH Process the text supplied in the message variable using the hash
method appropriate for the CRYSTALS-Dilithium algorithm. This is
SHAKE-256. Required for CRDL-DSA.

MD5 Process the text supplied in the data parameter using the MD5
hash method. Not valid with PKCS-PSS.

RPMD-160 Process the text supplied in the data parameter using the RIPEMD-
160 hash method. Not valid with PKCS-PSS.

SHA-1 The input value supplied in the data parameter is generated using
the SHA-1 hash method.

SHA-224 The input value supplied in the data parameter is generated using
the SHA-224 hash method.

SHA-256 The input value supplied in the data parameter is generated using
the SHA-256 hash method.

SHA-384 The input value supplied in the data parameter is generated using
the SHA-384 hash method.

SHA-512 The input value supplied in the data parameter is generated using
the SHA-512 hash method.

Signature checking rule (One optional). Valid only with the PKCS-PSS digital signature
hash formatting method.

EXMATCH Specifies that the 4-byte salt length prepended to the data identified
by the data parameter must be an exact match to the salt length
derived from the signature. This is the default.

136 CCA and PKCS #11 Algorithm Currency – APAR OA61253

NEXMATCH Specifies that the 4-byte salt length prepended to the data identified
by the data parameter does not have to be an exact match to the
salt length derived from the signature.

Note: The derived salt length cannot be less than the prepended
length.

Trusted public key restriction (One, optional). Not valid with ECDSA, EDDSA, EC-
SDSA, or CRDL-DSA keywords. Valid only with trusted blocks.

TPK-ONLY The PKA_public_key_identifier parameter must be a trusted block
or the PKDS label of a trusted block that contains, at a minimum,
two sections:
• Trusted Block Information section 0x14, which is required for all
trusted blocks and
• Trusted Public Key section 0x11, which contains the trusted public
key and usage rules that indicate whether the trusted public key
can be used in digital signature operations.

Certificate validation method (One required when PKA_public_key_identifier is a
certificate. Otherwise, must not be specified.)

RFC-2459 Validate the certificate using the semantics of RFC-2459.

RFC-3280 Validate the certificate using the semantics of RFC-3280.

RFC-5280 Validate the certificate using the semantics of RFC-5280.

RFC-ANY Attempt to validate the certificate by first using the semantics of
RFC-2459, then the semantics of RFC-3280, and finally, the
semantics of RFC-5280.

Public Key Infrastructure Usage (One optional when the input is an X.509 certificate.
Otherwise, must not be specified.)

PKI-CHK Specifies that the X.509 certificate is to be validated against the
trust chain of the PKI hosted in the adapter. This requires that the
CA credentials have been installed into all coprocessors using the
Trusted Key Entry workstation. This is the default.

PKI-NONE Specifies that the X.509 certificate is not to be validated against the
trust chain of the PKI hosted in the adapter. This is suitable if the
certificate has been validated using host-based PKI services or if
using a self-signed certificate.

PKA_public_key_identifier_length

Direction Type

Input Integer

Specifies the length in bytes of the public_key_identifier parameter. If the

public_key_identifier contains a label, the value must be 64. Otherwise, the value must

be between the actual length of the token and 6500.

PKA_public_key_identifier

Direction Type

Input String

The identifier of the public key to verify the signature. The key identifier is an RSA, EC, or

CRYSTALSDilithium public key token, an internal trusted block, an X.509 certificate, or

the label of such a public key identifier in key storage.

When the TPK-ONLY keyword is specified, the identifier must be a trusted block.

137 CCA and PKCS #11 Algorithm Currency – APAR OA61253

When the PKCS-PSS keyword is specified, the identifier cannot be an X.509 certificate.

Certificates may be PEM-formatted EBCDIC text or DER-encoded. The certificate may

either have no key usage attribute or it must have at least one of the following usages:

digitalSignature, nonRepudiation, keyCertSign, or cRLSign.

For the EC-SDSA algorithm, the key is restricted to secp256r1 (P256) and secp521r1

(P521) curves. The hash method for P256 keys is SHA-256. The hash method for P521

keys is SHA-512.

data_length

Direction Type

Input Integer

The length of the data parameter in bytes. See Usage Notes for details of the formatting

methods and the length requirements.

When the data input type keyword is MESSAGE, the value is the length of the message

to be hashed. The maximum value is 2147483647 bytes. When the signature algorithm

keyword is EDDSA or EC-SDSA, the maximum length is 8192. When CRDL-DSA is

specified, the maximum data_length is 5000. A hash method rule array keyword must be

specified.

When the data input type keyword is HASH, the value must be the exact length of the

hash to be signed. The maximum value is 516 bytes. The length of the hash for the

supported hashing method is 16 for MD5, 20 for SHA-1 and RPMD-160, 28 for SHA-224,

32 for SHA-256, 48 for SHA-384, and 64 for SHA-512. You can use either the One-Way

Hash Generate callable service or the MDC Generate callable service to generate the

hash.

For the PKCS-PSS formatting rule, the first four bytes must be the salt length. The

remaining bytes of the field must contain the hash or message. The value will be 4 +

length of the hash or message.

data

Direction Type

Input String

The application-supplied text on which the supplied signature was generated. The data

can be the message to be hashed and verified or the hash of the message. See Usage

Notes for details of the formatting methods and the data requirements.

The data must be in the caller's primary address space.

For the PKCS-PSS formatting rule, the first four bytes must be the salt length. The

remaining bytes of the parameter must contain the hash or message.

signature_field_length

Direction Type

Input Integer

The length in bytes of the signature_field parameter. The maximum size is 3500 bytes.

signature_field

138 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input String

This field contains the digital signature to verify. The digital signature is in the low-order

bits (rightjustified) of a string whose length is the minimum number of bytes that can

contain the digital signature. This string is left-justified within the signature_field.

Restrictions

The exponent for RSA public keys must be odd.

RSA keys 512-bit to 2048-bit may have a public exponent of 3, 5, 17, 257, 65537, or random.

Support for RSA public exponents 5, 17, and 257 requires the October 2016 or later licensed

internal code (LIC).

For 2049-bit to 4096-bit RSA keys:

• The public exponent may have a value of 3, 5, 17, 257, 65537, or random.

• Support for a random public exponent requires zEC12, zBC12, and later systems with a

CEX4C or later coprocessor with September 2013 or later licensed internal code (LIC).

• Support for RSA public exponents 5, 17, and 257 requires the October 2016 or later licensed

internal code (LIC).

Usage notes

SAF may be invoked to verify the caller is authorized to use this callable service, the key label, or

internal secure key tokens that are stored in the CKDS or PKDS.

Notes on formatting the message:

ISO-9796

The length of the hash must be less than or equal to one-half of the number of bytes

required to contain the modulus of the RSA key.

PKCS-1.0 and PKCS-1.1

The length of the hash must be 11 bytes shorter than the number of bytes required to

contain the modulus of the RSA key.

When the HASH keyword is specified, the hash must be BER encoded. See “Formatting

hashes and keys in public-key cryptography” on page 1472 for a description of the

formatting methods.

PKCS-PSS

The first four bytes of the data parameter will contain the salt length. The remaining bytes

of the parameter contains the hash or message.

The hash algorithm and salt length should be provided to you with the signature. If not,

the recommended salt length is 0 or the byte length of the hash algorithm.

For signature verification, the salt length derived from the signature must be an exact

match (keyword EXMATCH, the default) for the salt length specified with the data

parameter. When the Digital Signature Verify – PKCS-PSS allow not exact salt length

access control is enabled in the domain role, keyword NEXMATCH can be specified to

allow signature verification when the salt length derived from the signature is not an exact

139 CCA and PKCS #11 Algorithm Currency – APAR OA61253

match for the salt length specified with the data parameter. Salt lengths derived from the

signature are not allowed to be less than the value specified with the data parameter.

When the signature verification is done on an accelerator, there is no domain role and no

access control points. The check of the salt length will be performed based on the

signature check rule keywords.

X9.31

There are no restrictions for the hash length or message.

ZERO-PAD

The length of the hash must be less than or equal to the number of bytes required to

contain the modulus of the RSA key.

ECDSA

There are no restrictions for the hash length or message.

EdDSA and EC-SDSA

The length of the message must be less than or equal to 8192 bytes.

CRDL-DSA

The length of the message must be less than or equal to 5000 bytes.

PKCS-PSS details

Before specifying PKCS-PSS, see section A.2.3 of RFC 8017: PKCS #1: RSA Cryptography

Specifications Version 2.2 (RFC 8017 (tools.ietf.org/html/rfc8017)). Section A.2.3 defines a

parameter field for RSASSAPSS that has the following four parameters:

hashAlgorithm

This parameter identifies the hash function. A hashing-method specification keyword of

SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512 is required. There is no default.

maskGenAlgorithm

This parameter identifies the mask generation function. MGF1 is a mask generation

function based on a hash function and is the only function currently defined by the

standard. For CCA, the hash function on which MGF1 is based is always the same as

hashAlgorithm. Although this is not required, CCA enforces the recommendation by the

standard that the underlying hash function be the same as the one identified by

hashAlgorithm.

saltLength

This is the length of the salt, which is a randomly generated value. Use the data variable

of the verb to prepend a 4-byte saltLength field in big endian format to the hash digest to

be signed or the message to be hashed and signed.

trailerField

This is the trailer field number. This is not an input to the verb because it is always set to

the value X'BC'. Other trailer field numbers are not supported by the standard.

140 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Access control point

The Digital Signature Verify access control point controls the function of this service.

For the PKCS-PSS formatting method, the salt length derived from the signature must be an

exact match for the salt length specified in the data parameter. When the Digital Signature

Verify – PKCS-PSS allow not exact salt length access control is enabled in the domain role,

the NEXMATCH keyword may be specified in the rule_array parameter. When the NEXMATCH

keyword is specified, the salt length derived from the signature need not be an exact match for

the salt length specified with the data parameter.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 69. Digital Signature Verify required hardware

Server Required cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the
Nov. 2007 or later licensed internal
code (LIC).

Keywords PKCS-PSS, EXMATCH,
NEXMATCH, SHA-384, SHA-512, RFC-
2459, RFC-3280, RFC-5280, RFC-ANY,
PKI-CHK, and PKI-NONE are not
supported.

ECC not supported.

CRYSTALS-Dilithium not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

Crypto Express2
Accelerator

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the
Nov. 2007 or later licensed internal
code (LIC).

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, and PKI-
NONE are not supported.

ECC not supported.

CRYSTALS-Dilithium not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

141 CCA and PKCS #11 Algorithm Currency – APAR OA61253

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the
Nov. 2007 or later licensed internal
code (LIC).

Keywords PKCS-PSS, EXMATCH,
NEXMATCH, SHA-384, SHA-512, RFC-
2459, RFC-3280, RFC-5280, RFC-ANY,
PKI-CHK, and PKI-NONE are not
supported.

ECC not supported.

CRYSTALS-Dilithium not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

Crypto Express2
Accelerator

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the
Nov. 2007 or later licensed internal
code (LIC).

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, and PKI-
NONE are not supported.

ECC not supported.

CRYSTALS-Dilithium not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

Crypto Express3
Coprocessor

ECC support requires the Sept. 2010
licensed internal code (LIC).

Keywords PKCS-PSS, EXMATCH,
NEXMATCH, SHA-384, SHA-512, RFC-
2459, RFC-3280, RFC-5280, RFC-ANY,
PKI-CHK, PKI-NONE, EDDSA, ED-
HASH, EC-SDSA, CRDL-DSA, and
CRDLHASH are not supported.

ECC Koblitz curve secp256k1 is not
supported.

X.509 certificates are not supported.
Compliant-tagged key tokens are not
supported.

Crypto Express3
Accelerator

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, PKI-NONE,
EDDSA, ED-HASH, EC-SDSA, CRDL-

142 CCA and PKCS #11 Algorithm Currency – APAR OA61253

DSA, and CRDLHASH are not
supported.

ECC not supported.

CRYSTALS-Dilithium not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

RSA clear key support with moduli
within the range 2048-bit and 4096-bit
requires the Sept. 2011 or later licensed
internal code (LIC).

Keywords PKCS-PSS, EXMATCH,
NEXMATCH, SHA-384, SHA-512, RFC-
2459, RFC-3280, RFC-5280, RFC-ANY,
PKI-CHK, PKI-NONE, EDDSA, ED-
HASH, EC-SDSA, CRDL-DSA, and
CRDLHASH are not supported.

ECC Koblitz curve secp256k1 is not
supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

Crypto Express3
Accelerator

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, PKI-NONE,
EDDSA, ED-HASH, EC-SDSA, CRDL-
DSA, and CRDLHASH are not
supported.

ECC not supported.

CRYSTALS-Dilithium not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

IBM zEnterprise EC12
IBM zEnterprise BC12

Crypto Express3
Coprocessor
Crypto Express4 CCA
Coprocessor

Keywords PKCS-PSS, EXMATCH,
NEXMATCH, SHA-384, SHA-512, RFC-
2459, RFC-3280, RFC-5280, RFC-ANY,
PKI-CHK, PKI-NONE, EDDSA, ED-
HASH, EC-SDSA, CRDL-DSA, and
CRDLHASH are not supported.

ECC Koblitz curve secp256k1 is not
supported.

X.509 certificates are not supported.

143 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Compliant-tagged key tokens are not
supported.

Crypto Express3
Accelerator
Crypto Express4
Accelerator

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, PKI-NONE,
EDDSA, ED-HASH, CRDL-DSA, and
CRDLHASH are not supported.

ECC not supported.

CRYSTALS-Dilithium not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

PKCS-PSS support requires the
October 2016 or later licensed internal
code (LIC).

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, PKI-NONE,
EDDSA, ED-HASH, EC-SDSA, CRDL-
DSA, and CRDLHASH are not
supported.

ECC Koblitz curve secp256k1 is not
supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

Crypto Express5
Accelerator

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, PKI-NONE,
EDDSA, ED-HASH, CRDL-DSA, and
CRDLHASH are not supported.

ECC not supported.

CRYSTALS-Dilithium not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

PKCS-PSS support requires the
October 2016 or later licensed internal
code (LIC).

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, PKI-NONE,
EDDSA, ED-HASH, EC-SDSA, CRDL-
DSA, and CRDLHASH are not
supported.

144 CCA and PKCS #11 Algorithm Currency – APAR OA61253

ECC Koblitz curve secp256k1 is not
supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

Crypto Express6 CCA
Coprocessor

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, and PKI-
NONE require the July 2019 or later
licensed internal code (LIC).

Compliant-tagged key tokens require a
CEX6C with the July 2019 or later
licensed internal code (LIC).

Self-signed certificates require a
CEX6C with the July 2019 or later
licensed internal code (LIC).

Keywords EDDSA, ED-HASH, EC-
SDSA, CRDL-DSA, and CRDLHASH
are not supported.

ECC Koblitz curve secp256k1 is not
supported.

Crypto Express5
Accelerator
Crypto Express6
Accelerator

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, PKI-NONE,
EDDSA, ED-HASH, EC-SDSA, CRDL-
DSA, and CRDLHASH are not
supported.

ECC not supported.

CRYSTALS-Dilithium not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, PKI-NONE,
EDDSA, ED-HASH, EC-SDSA, CRDL-
DSA, and CRDLHASH are not
supported.

ECC Koblitz curve secp256k1 is not
supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

Crypto Express6 CCA
Coprocessor

Keywords EDDSA, ED-HASH, EC-
SDSA, CRDL-DSA, and CRDLHASH
are not supported.

145 CCA and PKCS #11 Algorithm Currency – APAR OA61253

ECC Koblitz curve secp256k1 is not
supported.

Crypto Express7 CCA
Coprocessor

Keywords EDDSA, ED-HASH, CRDL-
DSA, and CRDLHASH require the June
2020 or later licensed internal code
(LIC).

ECC Koblitz curve secp256k1 requires
the September 2020 or later licensed
internal code (LIC).

Keyword EC-SDSA requires the CCA
release 7.4 or later licensed internal
code.

Crypto Express5
Accelerator
Crypto Express6
Accelerator
Crypto Express7
Accelerator

Keywords RFC-2459, RFC-3280, RFC-
5280, RFC-ANY, PKI-CHK, PKI-NONE,
EDDSA, ED-HASH, EC-SDSA, CRDL-
DSA, and CRDLHASH are not
supported.

ECC not supported.

CRYSTALS-Dilithium not supported.

X.509 certificates are not supported.

Compliant-tagged key tokens are not
supported.

CP Assist for
Cryptographic Functions

ECC requests for the Prime P-256,
Prime P-384, Prime P-521 curves,
Ed25519, and Ed448 are supported.

PKA Key Translate (CSNDPKT and CSNFPKT)
The PKA Key Translate callable service is used to do the following:

• Translation - Translate a CCA RSA key token into an external key token. The format of the

external key token is specified by the output format keyword of the rule_array parameter.

Supported output formats are: smart card, EMV, and PKCS #11 object.

The source CCA RSA key token must be wrapped with a transport key-encrypting key (KEK).

The XLATE bit must also be turned on in the key usage byte of the source token. The source

token is unwrapped using the specified source transport KEK. The target key token will be

wrapped with the specified target transport KEK. Existing information in the target token is

overwritten. There are restrictions on which type key can be used for the source and target

transport key tokens. These restrictions are enforced by access control points.

• Conversion

▪ Convert the object protection key (OPK) in an CCA RSA private key token from a DES

key to an AES key (EXTDWAKW, INTDWAKW)

146 CCA and PKCS #11 Algorithm Currency – APAR OA61253

The service will convert an existing internal or external RSA private key token. The

modulus-exponent and Chinese Remainder Theorem forms are supported. Private key

section identifiers 0x06, 0x08, and 0x09 can be converted.

If a format restriction keyword is specified, the output key token will have the format

restriction flag in the associated data section of the token set to a requested value. The

key token can only be used to create signatures in the format specified.

▪ Change the key usage attributes of an internal CCA AES OPK key token (RSAAESC2 or

RSAAESM2 private key). (INTUSCHG)

▪ Convert an internal CCA key token to a compliant-tagged token. (COMP-TAG)

• Compliance checking – Check that a CCA key token can have the compliant tag.

The callable service name for AMODE(64) invocation is CSNFPKT.

Format

CALL CSNDPKT(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 source_key_identifier_length,

 source_key_identifier,

 source_transport_key_identifier_length,

 source_transport_key_identifier,

 target_transport_key_identifier_length,

 target_transport_key_identifier,

 target_key_token_length,

 target_key_token)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1279 lists the return

codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes assigned to it that

indicate specific processing problems. Appendix A, “ICSF and cryptographic coprocessor

return and reason codes,” on page 1279 lists the reason codes.

exit_data_length

147 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The data is identified in the

exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. Value must be 1 or 2.

rule_array

Direction Type

Input/Output String

The rule_array contains keywords that provide control information to the callable service.

See Table 437 on page 1025 for a list. A keyword is left-justified in an 8-byte field and

padded on the right with blanks.

Table 70. Keywords for PKA Key Translate Rule Array

Keyword Meaning

Process rule (one required)

Translation rules
The source key token must be an external token and allow translation
(TRANSLAT/XLATE key usage). The target transport key must allow translation in the
key usage attributes.

CKM-RAKW Specifies the translation of an external CCA key token containing an
RSA or EC private key into an external encrypted PKCS #11 object.

The target transport key is an RSA CCA public key to wrap the
ephemeral AES key that wraps the private key in the object.

EMVCRT Specifies the translation of an external CCA key token containing an
RSA CRT private key into the EMVCRT format and wrapped using
TDES-ECB.

EMVDDA Specifies the translation of an external CCA key token containing an
RSA CRT private key into EMV dynamic data authentication (DDA)
format and wrapped using TDES-CBC.

EMVDDAE Specifies the translation of an external CCA key token containing an
RSA CRT private key into EMV DDAE format and wrapped using
TDES-ECB.

SCCOMCRT Specifies the translation of an external CCA key token containing an
RSA CRT private key into the smart card Chinese Remainder Theorem
format.

SCCOMME Specifies the translation of an external CCA key token containing an
RSA ME private key into the smart card Modulus-Exponent format.

148 CCA and PKCS #11 Algorithm Currency – APAR OA61253

SCVISA Specifies the translation of an external CCA key token containing an
RSA ME private key into the smart card Visa proprietary format.

Conversion rules

COMP-TAG Specifies to convert the internal PKA private key token into a
compliant-tagged token.

When the input key type is not RSAAESC2 or RSAAESM2, the
following rules apply:
• When key-usage KM-ONLY is enabled, the token will be converted

to a compliant-tagged RSAAESC2 or RSAAESM2 with key-usage
U-KEYENC enabled.

• When key-usage SIG-ONLY is enabled, the token will be converted
to a compliant-tagged RSAAESC2 or RSAAESM2 with key-usage
U-DIGSIG enabled.

• For all other key-usages, use INTUSCHG to set the desired usage
prior to using COMP-TAG.

EXTDWAKW Specifies to convert an external RSA private key token with a TDES
wrapped OPK to an AESKW wrapped OPK (RSA-AESC, RSAAESC2,
RSA-AESM, or RSAAESM2).

INTDWAKW Specifies to convert an internal RSA private key token with a TDES
wrapped OPK to an AESKW wrapped OPK (RSA-AESC, RSAAESC2,
RSA-AESM, or RSAAESM2).

INTUSCHG Specifies to change the usage attributes of an internal PKA key token.
Requires keyword group PKA Key Usage Control. Not valid if the input
key is compliant-tagged.

Compliant checking rules

COMP-CHK Checks if an internal PKA key token can have the compliant tag.

EMV DDA encrypted key part data format (one, optional). Only valid with output format
keyword EMVDDA or EMVDDAE.

EMV1 Original EMV DDA output format. This is the default.

EMVLENBT Modified EMV DDA output format, which includes a length byte that
becomes part of the encrypted key part section. The length byte, which
replaces a post-padding byte of X’00’ that EMV1 uses, is prepended to
the clear key part. This length is valued to the number clear key-part
bytes and does not include any pad bytes.

Format restriction (one, optional). Only valid with keywords INTDWAKW and
EXTDWAKW.

FR-NONE Specifies to not restrict the private key to be used to a particular
method. The key is usable for any method. This is the default.

FR-I9796 Specifies to render the private key usable with the ISO-9796 digital-
signature hash formatting method.

FR-PK10 Specifies to render the private key usable with the PKCS-1.0 digital-
signature hash formatting method.

FR-PK11 Specifies to render the private key usable with the PKCS-1.1 digital-
signature hash formatting method.

FR-PSS Specifies to render the private key usable with the PKCS-PSS digital-
signature hash formatting method.

FR-X9.31 Specifies to render the private key usable with the X9.31
digitalsignature hash formatting method.

FR-ZPAD Specifies to render the private key usable with the ZERO-PAD digital-
signature hash formatting method.

PKA Key Usage Control. Only valid with INTUSCHG. The keywords specified reflect
the only usage attributes that will be enabled in the output key token. All other usage
attributes will be disabled.

U-DIGSIG Digital Signature usage is allowed.

149 CCA and PKCS #11 Algorithm Currency – APAR OA61253

When input key type is RSAAESC2 or RSAAESM2, requires that the
U-DIGSIG flag is enabled in the input key token.

When input key type is not RSAAESC2 or RSAAESM2, requires that
the KEY-MGMT or SIG-ONLY flag is enabled in the input key token.

U-NONRPD Non-Repudiation usage is allowed.

When input key type is RSAAESC2 or RSAAESM2, requires that the
U-NONRPD flag is enabled in the input key token.

When input key type is not RSAAESC2 or RSAAESM2, requires that
the KEY-MGMT or SIG-ONLY flag is enabled in the input key token.

U-KCRTSN keyCertSign usage is allowed.

When input key type is RSAAESC2 or RSAAESM2, requires that the
U- KCRTSN flag is enabled in the input key token.

When input key type is not RSAAESC2 or RSAAESM2, requires that
the KEY-MGMT or SIG -ONLY flag is enabled in the input key token.

U-CRLSN Certificate Revocation List Sign usage is allowed.

When input key type is RSAAESC2 or RSAAESM2, requires that the
U-CRLSN flag is enabled in the input key token.

When input key type is not RSAAESC2 or RSAAESM2, requires that
the KEY-MGMT or SIG -ONLY flag is enabled in the input key token.

U-KEYENC Key Encipherment usage is allowed.

When input key type is RSAAESC2 or RSAAESM2, requires that the
U- KEYENC flag is enabled in the input key token.

When input key type is not RSAAESC2 or RSAAESM2, requires that
the KEY-MGMT or KM -ONLY flag is enabled in the input key token.

U-DATENC Data Encipherment usage is allowed.

When input key type is RSAAESC2 or RSAAESM2, requires that the
U- DATENC flag is enabled in the input key token.

When input key type is not RSAAESC2 or RSAAESM2, requires that
the KEY-MGMT or KM -ONLY flag is enabled in the input key token.

U-KEYAGR Key agreement usage is allowed.

When input key type is RSAAESC2 or RSAAESM2, requires that the
U- KEYAGR flag is enabled in the input key token.

When input key type is not RSAAESC2 or RSAAESM2, requires that
the KEY-MGMT or KM -ONLY flag is enabled in the input key token.

Key Agreement Control (One, Optional). Only valid with U-KEYAGR.

U-ENCONL Only encipher operations are allowed during key agreement key
establishment protocols.

When input key type is RSAAESC2 or RSAAESM2, the U-DECONL
must not be enabled in the input key token.

150 CCA and PKCS #11 Algorithm Currency – APAR OA61253

U-DECONL Only decipher operations are allowed during key agreement key
establishment protocols.

When input key type is RSAAESC2 or RSAAESM2, the U-ENCONL
must not be enabled in the input key token.

source_key_identifier_length

Direction Type

Input Integer

Length in bytes of the source_key_identifier parameter. If the source_key_identifier

contains a label, the length must be 64. Otherwise, the value must be between the actual

length of the token and 3500.

source_key_identifier

Direction Type

Input String

The key identifier of the EC or RSA private key to be processed. For translation, the key

is an external key token wrapped with an AES or DES key-encrypting key. For OPK

conversion, the token may be internal or external. External tokens are wrapped with a

DES key encrypting key. When an internal token is specified, the transport keys are not

used.

When keyword COMP-CHK is specified, this must be an internal RSA private key token.

When keyword COMP-TAG or INTUSCHG is specified, this must be an internal RSA

private key token with private key section X'08', X'30', or X'31'.

When keyword CKM-RAKW is specified, this must be an external RSA private key token

with private key section X'08', X'30', or X'31' or an external EC private key token with

private key section X’20’. Compliance tagged key tokens are not supported.

source_transport_key_identifier_length

Direction Type

Input Integer

Length in bytes of the source_transport_key_identifier parameter. When the

source_transport_key_identifier contains a label, the length must be 64. When the

processing rule is INTDWAKW, INTUSCHG, COMP-CHK, or COMP-TAG, the value must

be zero. Otherwise, the value must be between the actual length of the token and 725.

source_transport_key_identifier

Direction Type

Input/Output String

The key identifier of the key to unwrap the source key. The key identifier is an operational

token or the key label of an operational token in key storage.

For EC and RSA RSA-AESC, RSAAESC2, RSA-AESM, or RSAAESM2 key tokens, this

is an AES EXPORTER or IMPORTER key with the TRANSLAT key usage attribute. For

other RSA key tokens, this is a DES EXPORTER or IMPORTER key with the XLATE

151 CCA and PKCS #11 Algorithm Currency – APAR OA61253

control vector attribute. See “Access control points” on page 1102 for details on the type

of transport key that can be used.

When the source_transport_key_identifier_length is zero, this parameter is ignored.

If the token supplied was encrypted under the old master key, the token is returned

encrypted under the current master key.

target_transport_key_identifier_length

Direction Type

Input Integer

Length in bytes of the target_transport_key_identifier parameter. If the

target_transport_key_identifier contains a label, the length must be 64. When the

processing rule is INTDWAKW, INTUSCHG, COMP-CHK, or COMP-TAG, the value must

be zero. Otherwise, the value must be between the actual length of the token and 3500.

target_transport_key_identifier

Direction Type

Input/Output String

The key identifier of the key that will wrap the output key in the target_key_token

parameter. The key identifier is an operational token or the key label of an operational

token in key storage.

When the processing rule is EMVCRT, EMVDDA, EMVDDAE, SCCOMCRT, SCCOMME,

or SCVISA, the key is a DES IMPORTER or EXPORTER with the XLATE control vector

attribute.

When the processing rule is EXTDWAKW, the key is an AES IMPORTER or EXPORTER

with the TRANSLAT key usage attribute.

See “Access control points” on page 1102 for details on the type of transport key that can

be used.

When the processing rule is CKM-RKAW, the key is an RSA public key with a modulus bit

length of 2048, 3072, or 4096. The key will wrap the ephemeral AES key that wraps the

private key.

When the target_transport_key_identifier_length is zero, this parameter is ignored.

If the token supplied was encrypted under the old master key, the token is returned

encrypted under the current master key.

target_key_token_length

Direction Type

Input/Output Integer

Length in bytes of the target_key_token parameter. On output, the value in this variable is

updated to contain the actual length of the target_key_token produced by the callable

service. The maximum length is 3500 bytes.

If the COMP-CHK keyword is specified, this parameter must be 0.

target_key_token

152 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Output String

The processed key token.

When converting to an AES OPK format, the token is a CCA key token wrapped by an

AES key-encrypting key (EXTDWAKW) or an internal token (INTDWAKW). When the

INTUSCHG keyword is specified, the output will be an internal RSA private key token

with private key section X'30' and associated data version X'04' (RSAAESM2) or an

internal RSA private key token with private key section X'31' and associated data version

X'05' (RSAAESC2). Internal tokens may be stored in the PKDS.

When translating to a non-CCA format, the key token is wrapped with the key-encrypting

key specified in the target_transport_key_identifier parameter. The key token is not a

CCA token and cannot be stored in the PKDS.

When the processing rule CKM_RAKW, the output is a PKCS#11 structure containing the

AES ephemeral key wrapped by the RSA public key specified in the

target_transport_key_identifier parameter and the wrapped private key.

Restrictions

CCA RSA ME tokens will not be translated to the SCCOMCRT, EMV DDA, EMV DDAE, or the

EMV CRT formats. CCA RSA CRT tokens will not be translated to the SCCOMME format.

SCVISA only supports Modulus-Exponent (ME) keys.

The maximum modulus size of CCA RSA CRT tokens for the EMVDDA, EMVDDAE, or the

EMVCRT formats is 2040 bits.

Only CCA RSA CRT tokens with a private section of X'08' are supported by the EMVDDA,

EMVDDAE, or the EMVCRT rule array keywords.

Access control points

There are access control points that control use of the format rule array keywords and the type of

transport keys that can be used.

Table 71. Required access control points for PKA Key Translate

Rule array keyword Access control point

COMP-CHK PKA Key Translate - Allow COMP-CHK

COMP-TAG PKA Key Translate - Allow COMP-TAG

CKM-RAKW and the
source key is an EC key

PKA Key Translate – From CCA ECC to CKM-RAKW format

CKM-RAKW and the
source key is an RSA key

PKA Key Translate – From CCA RSA to CKM-RAKW format

EMVCRT PKA Key Translate - from CCA RSA CRT to EMV CRT Format

EMVDDA PKA Key Translate - from CCA RSA CRT to EMV DDA Format

EMVDDAE PKA Key Translate - from CCA RSA CRT to EMV DDAE Format

EXTDWAKW PKA Key Translate – Translate external key token

INTDWAKW PKA Key Translate – Translate internal key token

INTUSCHG PKA Key Translate – Allow INTUSCHG

SCCOMCRT PKA Key Translate - from CCA RSA to SC CRT Format

SCCOMME PKA Key Translate - from CCA RSA to SC ME Format

SCVISA PKA Key Translate - from CCA RSA to SC Visa Format

153 CCA and PKCS #11 Algorithm Currency – APAR OA61253

These access control points control the key type combination shown in this table. One of these

access control points must be enabled.

Table 72. Required access control points for source/target transport key combinations

Source transport
key type

Target transport
key type

Access control point

EXPORTER EXPORTER PKA Key Translate - from source EXP KEK to
target EXP KEK

IMPORTER EXPORTER PKA Key Translate - from source IMP KEK to
target EXP KEK

IMPORTER IMPORTER PKA Key Translate - from source IMP KEK to
target IMP KEK

EXPORTER IMPORTER (Not allowed)

When the Disallow translation from AES wrapping to DES wrapping access control point is

enabled, this service will fail if the source_transport_key_identifier is an AES key and the

target_transport_key_identifier is a DES key.

When the Disallow translation from AES wrapping to weaker AES wrapping access control

point is enabled, this service will fail if the source_transport_key_identifier is an AES key that is

stronger than the target_transport_key_identifier.

When the Disallow translation from DES wrapping to weaker DES wrapping access control

point is enabled, this service will fail if the source_transport_key_identifier is a DES key that is

stronger than the target_transport_key_identifier.

The Allow weak DES wrap of RSA access control allows a weaker DES key-encrypting key to

wrap an RSA private key token. The Prohibit weak wrap – Transport keys access control must

be enabled and this access control will override the restriction.

Required hardware

This table lists the required cryptographic hardware for each server type and describes

restrictions for this callable service. The CCA releases used in the table are described in “CCA

release levels,” on page 173.

Table 73. PKA Key Translate required hardware

Server Required cryptographic
hardware

Restrictions

IBM System z9 EC
IBM System z9 BC

Crypto Express2
Coprocessor

Requires the April 2009 or later licensed
internal code (LIC).

The rule_array keywords CKM-RAKW,
EMVDDA, EMVDDAE, EMVCRT, FR-
NONE, FR-I9796, FR-PK10, FR-PK11,
FR-PSS, FR-X9.31, FR-ZPAD, EMV1,
and EMVLENBT are not supported.

Triple-length DES keys are not
supported.

Key types RSAAESM2 and RSAAESC2
are not supported.

154 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Keywords COMP-CHK, COMP-TAG,
INTUSCHG, U-DIGSIG, U-NONRPD,
U-KCRTSN, U-CRLSN, U-KEYENC, U-
DATENC, U-KEYAGR, U-ENCONL, and
U-DECONL are not supported.

Compliant-tagged key tokens are not
supported.

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor
Crypto Express3
Coprocessor

Requires the April 2009 or later licensed
internal code (LIC).

The rule_array keywords CKM-RAKW,
EMVDDA, EMVDDAE, EMVCRT, FR-
NONE, FR-I9796, FR-PK10, FR-PK11,
FR-PSS, FR-X9.31, FR-ZPAD, EMV1,
and EMVLENBT are not supported.

Triple-length DES keys are not
supported.

Key types RSAAESM2 and RSAAESC2
are not supported.

Keywords COMP-CHK, COMP-TAG,
INTUSCHG, U-DIGSIG, U-NONRPD,
U-KCRTSN, U-CRLSN, U-KEYENC, U-
DATENC, U-KEYAGR, U-ENCONL, and
U-DECONL are not supported.

Compliant-tagged key tokens are not
supported.

IBM zEnterprise 196
IBM zEnterprise 114

Crypto Express3
Coprocessor

Support for the rule_array keywords
EMVDDA, EMVDDAE, and EMVCRT
requires the March 2014 or later
licensed internal code (LIC).

The rule_array keywords CKM-RAKW,
FR-NONE, FR-I9796, FRPK10, FR-
PK11, FR-PSS, FR-X9.31, FR-ZPAD,
EMV1, and EMVLENBT are not
supported.

Triple-length DES keys are not
supported.

Key types RSAAESM2 and RSAAESC2
are not supported.

Keywords COMP-CHK, COMP-TAG,
INTUSCHG, U-DIGSIG, U-NONRPD,
U-KCRTSN, U-CRLSN, U-KEYENC, U-
DATENC, U-KEYAGR, U-ENCONL, and
U-DECONL are not supported.

Compliant-tagged key tokens are not
supported.

155 CCA and PKCS #11 Algorithm Currency – APAR OA61253

IBM zEnterprise EC12
IBM zEnterprise BC12

Crypto Express3
Coprocessor
Crypto Express4 CCA
Coprocessor

Support for the rule_array keywords
EMVDDA, EMVDDAE, and EMVCRT
requires the March 2014 or later
licensed internal code (LIC).

The rule_array keywords CKM-RAKW,
FR-NONE, FR-I9796, FRPK10, FR-
PK11, FR-PSS, FR-X9.31, FR-ZPAD,
EMV1, and EMVLENBT are not
supported.

Triple-length DES keys are not
supported.

Key types RSAAESM2 and RSAAESC2
are not supported.

Keywords COMP-CHK, COMP-TAG,
INTUSCHG, U-DIGSIG, U-NONRPD,
U-KCRTSN, U-CRLSN, U-KEYENC, U-
DATENC, U-KEYAGR, U-ENCONL, and
U-DECONL are not supported.

Compliant-tagged key tokens are not
supported

IBM z13
IBM z13s

Crypto Express5 CCA
Coprocessor

Support for the format restriction
rule_array keywords requires the
October 2016 or later licensed internal
code (LIC).

Triple-length DES keys and rule_array
keywords EMV1 and EMVLENBT
require the July 2019 or later licensed
internal code (LIC).

Key types RSAAESM2 and RSAAESC2
are not supported.

Keywords CKM-RAKW, COMP-CHK,
COMP-TAG, INTUSCHG, U-DIGSIG,
U-NONRPD, U-KCRTSN, U-CRLSN, U-
KEYENC, U-DATENC, U-KEYAGR, U-
ENCONL, and U-DECONL are not
supported.

Compliant-tagged key tokens are not
supported.

IBM z14
IBM z14 ZR1

Crypto Express5 CCA
Coprocessor

Support for the format restriction
rule_array keywords requires the
October 2016 or later licensed internal
code (LIC).

Triple-length DES keys and rule_array
keywords EMV1 and EMVLENBT
require the July 2019 or later licensed
internal code (LIC).

156 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Key types RSAAESM2 and RSAAESC2
are not supported.

Keywords CKM-RAKW, COMP-CHK,
COMP-TAG, INTUSCHG, U-DIGSIG,
U-NONRPD, U-KCRTSN, U-CRLSN, U-
KEYENC, U-DATENC, U-KEYAGR, U-
ENCONL, and U-DECONL are not
supported.

Compliant-tagged key tokens are not
supported.

Crypto Express6 CCA
Coprocessor

Triple-length DES keys and rule_array
keywords EMV1 and EMVLENBT
require the December 2018 or later
licensed internal code (LIC).

Key types RSAAESM2 and RSAAESC2
require the July 2019 or later licensed
internal code (LIC).

Keywords CKM-RAKW, COMP-CHK,
COMP-TAG, INTUSCHG, U-DIGSIG,
U-NONRPD, U-KCRTSN, U-CRLSN, U-
KEYENC, U-DATENC, U-KEYAGR, U-
ENCONL, and U-DECONL require the
July 2019 or later licensed internal code
(LIC).

Compliant-tagged key tokens require a
CEX6C with the July 2019 or later
licensed internal code (LIC).

IBM z15
IBM z15 TO2

Crypto Express5 CCA
Coprocessor

Key types RSAAESM2 and RSAAESC2
are not supported.

Keywords CKM-RAKW, COMP-CHK,
COMP-TAG, INTUSCHG, U-DIGSIG,
U-NONRPD, U-KCRTSN, U-CRLSN, U-
KEYENC, U-DATENC, U-KEYAGR, U-
ENCONL, and U-DECONL are not
supported.

Compliant-tagged key tokens are not
supported.

Crypto Express6 CCA
Coprocessor

Rule array keyword CKM-RAKW is not
supported.

Crypto Express7 CCA
Coprocessor

Rule array keyword CKM-RAKW
requires the CCA release 7.4 or later
licensed internal code (LIC).

157 CCA and PKCS #11 Algorithm Currency – APAR OA61253

ICSF Query Facility2 (CSFIQF2 and CSFIQF26)
Use this utility to retrieve status information about the cryptographic environment as currently

known to ICSF.

This callable service will:

• NOT be SAF protected.

• NOT make calls to any cryptographic processor

• Return information that can be collected from various ICSF control blocks

The callable service name for AMODE(64) invocation is CSFIQF26..

Format

CALL CSFIQF2(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 returned_data_length,

 returned_data,

 reserved_data_length,

 reserved_data)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1279 lists the return

codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes assigned to it that

indicate specific processing problems. Appendix A, “ICSF and cryptographic coprocessor

return and reason codes,” on page 1279 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

158 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in rule_array. Value must be 0.

rule_array

Direction Type

Ignored String

Keywords that provide control information to callable services. This parameter is ignored.

returned_data_length

Direction Type

Input/Output Integer

The length of the returned_data parameter in bytes. A minimum value of 11 is required.

Specify a length of 22 or greater to receive all the supported data.

returned_data

Direction Type

Output String /Integer

This field will contain the output from the service. The service will return only the amount

of data specified by the returned_data_length field.

The format of the returned_data is defined in Table 504 on page 1164.

Table 74. Format of returned ICSF Query Facility 2 data

Bytes Description

0-7 ICSF FMID.

8 Bit
Meaning when set on

0
Crypto Accelerator available.

1
CCA Coprocessor available.

2
Public Key hardware available.

3
TKDS available.

4
SHA-1 available in CPACF.

5
SHA-224 available in CPACF.

6

159 CCA and PKCS #11 Algorithm Currency – APAR OA61253

SHA-256 available in CPACF.
7

SHA-384 available in CPACF.

9 Bit
Meaning when set on

0
SHA-512 available in CPACF.

1
DES available in CPACF.

2
TDES available in CPACF.

3
AES 128-bit available in CPACF.

4
AES 192-bit available in CPACF.

5
AES 256-bit available in CPACF.

6
AES-GCM available in CPACF.

7
ECC Clear Key hardware available.

10 Bit
Meaning when set on

0
ECC Secure Key hardware available.

1
PKCS #11 Secure Key available.

2
FIPS No Enforcement Mode.

3
FIPS Mode enabled.

4
FIPS Compatibility Mode enabled.

5
Reserved.

6
SHA-3 and SHAKE available.

7
ECC available in CPACF.

11 Reserved.

12-19 System compliance information.
Byte 0
Bit

Meaning when set on
0

Compliance mode is active.
1

Compliance migration mode is active.
2-7

Reserved.

Bytes 1-6: Reserved.

Byte 7
Bit

Meaning when set on

160 CCA and PKCS #11 Algorithm Currency – APAR OA61253

0-6
Reserved.

7
PCI-HSM 2016 compliance mode is active.

Note: These byte references only relate to the 8-byte structure
contained in bytes 12-19.

20 Crypto usage statistics flags.
Bit

Meaning when set on
0

Cryptographic engine usage tracking is enabled (ENG).
1

Cryptographic service usage tracking is enabled (SRV).
2

Cryptographic algorithm usage tracking is enabled (ALG).
3-7

Reserved.

21 Supported elliptic curves.
Value (hex)

Supported curves
01

secp192r1, secp224r1, secp256r1, secp384r1, secp521r1,
brainpoolP160r1, brainpoolP192r1, brainpoolP224r1,
brainpoolP256r1, brainpoolP320r1, brainpoolP384r1,
brainpoolP512r1.

02
All of the above curves plus: Ed25519, X25519, Ed448, X448,
secp256k1

03
All of the above curves plus: Koblitz secp256k1.

Note that some curves require hardware.

reserved_data_length

Direction Type

Input Integer

The length of the reserved_data parameter. This field is reserved and must be 0.

reserved_data

Direction Type

Ignored
String

This parameter is ignored.

Required hardware

No cryptographic hardware is required by this callable service.

161 CCA and PKCS #11 Algorithm Currency – APAR OA61253

PKCS #11 Private Key Sign (CSFPPKS and CSFPPKS6)
Use the PKCS #11 Private Key Sign callable service to:

• Decrypt or sign data using an RSA private key using zero-pad or PKCS #1 v1.5 formatting.

• Sign data using a CRYSTALS-Dilithium (LI2) private key.

• Sign data using a DSA private key.

• Sign data using an Elliptic Curve private key in combination with DSA.

The key handle must be a handle of a PKCS #11 private key object. When the request type

keyword DECRYPT is specified in the rule array, CKA_DECRYPT attribute must be true. When

no request type is specified, the CKA_SIGN attribute must be true.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64). 64-bit callers

must use CSFPPKS6.

Format

CALL CSFPPKS(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 cipher_value_length,

 cipher_value,

 key_handle,

 clear_value_length,

 clear_value)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1283 lists the return

codes.

reason_code

Direction Type

Output String

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes that indicate specific

processing problems. Appendix A, “ICSF and cryptographic coprocessor return and

reason codes,” on page 1283 lists the reason codes.

exit_data_length

Direction Type

162 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array_parameter. This value may be 1

or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service.

Table 75. Keywords for private key sign

Keyword Meaning

Mechanism (One of the following must be specified)

DSA Mechanism is DSA signature generation

ECDSA Mechanism is Elliptic Curve with DSA signature generation

EC-SDSA Mechanism is non-ECDSA non-EDDSA EC-based signature, generally
Schnorr variants.

EDDSA Mechanism is PureEdDSA signature generation (no pre-hashing)

LI2 Mechanism is a CRYSTALS-Dilithium signature generation.

RSA-PKCS Mechanism is RSA decryption or signature generation using PKCS #1
v1.5 formatting

RSA-ZERO Mechanism is RSA decryption or signature generation using zero-pad
formatting

Request type (optional)

DECRYPT The request is to decrypt data. This type of request requires the
CKA_DECRYPT attribute to be true. If DECRYPT is not specified, the
CKA_SIGN attribute must be true. Valid with RSA only.

Schnorr Subvariant (One, required with EC-SDSA)

RANDOM Randomized Schnorr signature; no pre-hashing, SHA-256 only

COMPMULT Randomized Schnorr signature with compressed keys, and including
the signing party’s public key, SHA-256 only

cipher_value_length

Direction Type

Input Integer

Length of the cipher_value parameter in bytes.

163 CCA and PKCS #11 Algorithm Currency – APAR OA61253

cipher_value

Direction Type

Input String

For decrypt, this is the value to be decrypted. Otherwise, this is the value to be signed.

• For DSA and ECDSA signature requests, the data to be signed is expected to be a

SHA1, SHA224, SHA256, SHA384, or SHA512 digest.

• For EC-SDSA signature requests, the data to be signed is expected to be a SHA1,

SHA224, or SHA256 digest.

• For CRYSTALS-Dilithium signature requests,

• The data to be signed is from zero to 5120 bytes.

• For EDDSA signature requests,

• When using a clear key, the data to be signed is from zero to 214 (16384) bytes.

• When using a secure key, the data to be signed is from zero to 213 (8192) bytes.

• For RSA-PKCS signature requests, the data to be signed is expected to be a DER

encoded DigestInfo structure.

key_handle

Direction Type

Input String

The 44-byte handle of a private key object. See “Handles” on page 103 for the format of a

key_handle.

clear_value_length

Direction Type

Input/Output Integer

Length of the clear_value parameter in bytes. On input, this must be at least the size of

the RSA modulus in bytes. For CRYSTALS-Dilithium signatures, this must be at least

3366 bytes. On output, this is updated to be the actual length of the decrypted value or

the generated signature.

clear_value

Direction Type

Output
String

For decrypt, this field will contain the decrypted value. Otherwise this field will contain the

generated signature.

Authorization

To use this service with a public object, the caller must have SO (READ) authority or USER

(READ) authority (any access).

To use this service with a private object, the caller must have USER (READ) authority (user

access).

Usage Notes

Operations may be done in hardware or software.

164 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Request type DECRYPT is not supported for an Elliptic Curve, DSA, or CRYSTALS-Dilithium

private key.

For rule EC-SDSA and each subvariant, the signing key must be a secure key.

PKCS #11 Public Key Verify (CSFPPKV and CSFPPKV6)
Use the PKCS #11 Public Key Verify callable service to:

• Encrypt or verify data using an RSA public key using zero-pad or PKCS #1 v1.5 formatting.

For encryption, the encrypted data is returned.

• Verify a signature using a CRYSTALS-Dilithium public key. No data is returned.

• Verify a signature using a DSA public key. No data is returned.

• Verify a signature using an Elliptic Curve public key in combination with DSA. No data is

returned.

The key handle must be a handle of a PKCS #11 public key object. When the request type

keyword ENCRYPT is specified in the rule array, CKA_ENCRYPT attribute must be true. When

no request type is specified, the CKA_VERIFY attribute must be true.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64). 64-bit callers

must use CSFPPKV6.

Format

CALL CSFPPKV(

 return_code,

 reason_code,

 exit_data_length,

 exit_data,

 rule_array_count,

 rule_array,

 clear_value_length,

 clear_value,

 key_handle,

 cipher_value_length,

 cipher_value)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A, “ICSF

and cryptographic coprocessor return and reason codes,” on page 1283 lists the return

codes.

reason_code

165 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes that indicate specific

processing problems. Appendix A, “ICSF and cryptographic coprocessor return and

reason codes,” on page 1283 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value must be 1

or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service.

Table 76. Keywords for public key verify

Keyword Meaning

Mechanism (One of the following must be specified)

DSA Mechanism is DSA signature verification

ECDSA Mechanism is Elliptic Curve with DSA signature verification

EC-SDSA Mechanism is non-ECDSA non-EDDSA EC-based signature,
generally Schnorr variants.

EDDSA Mechanism is PureEdDSA signature verification (no pre-hashing)

LI2 Mechanism is a CRYSTALS-Dilithium signature verification.

RSA-PKCS Mechanism is RSA encryption or signature verification using PKCS
#1 v1.5 formatting

RSA-ZERO Mechanism is RSA encryption or signature verification using zero-pad
formatting

Request type (optional)

ENCRYPT The request is to encrypt data. This type of request requires the
CKA_ENCRYPT attribute to be true. If ENCRYPT is not specified, the
CKA_VERIFY attribute must be true. Valid with RSA only.

Schnorr Subvariant (One, required with EC-SDSA)

RANDOM Randomized Schnorr signature; no pre-hashing, SHA-256 only.

166 CCA and PKCS #11 Algorithm Currency – APAR OA61253

COMPMUL Randomized Schnorr signature with compressed keys, and including
the signing party’s public key, SHA-256 only

clear_value_length

Direction Type

Input Integer

The length of the clear_value parameter

clear_value

Direction Type

Input String

For encrypt, this is the value to be encrypted. Otherwise, this is the signature to be

verified.

key_handle

Direction Type

Input String

The 44-byte handle of public key object. See “Handles” on page 103 for the format of a

key_handle.

cipher_value_length

Direction Type

Input/Output Integer

For encrypt, on input, this is the length of the cipher_value parameter in bytes. On output,

this is updated to be the actual length of the text encrypted into the cipher_value

parameter. For signature verification, this is the length of the data to be verified (input

only).

cipher_value

Direction Type

Input String

For encrypt, this is the encrypted value (output only).

• For CRYSTALS-Dilithium signature verification requests,

• The data to be verified is from zero to 5120 bytes.

• For DSA and ECDSA signature verification requests, the data to be verified is

expected to be a SHA1, SHA224, SHA256, SHA384, or SHA512 digest.

• For EC-SDSA signature verification requests, the data to be verified is expected to be

a SHA1, SHA224, or SHA256 digest.

• For EDDSA signature requests,

• When using a clear key, the data to be verified is from zero to 214 (16384) bytes.

• When using a secure key, the data to be verified is from zero to 213 (8192)

bytes.

• For RSA-PKCS signature verification requests, the data to be verified is expected to

be a DER encoded DigestInfo structure.

167 CCA and PKCS #11 Algorithm Currency – APAR OA61253

• For signature verification, this is the data to be verified (input only).

Authorization

To use this service with a public object, the caller must have SO (READ) authority or USER

(READ) authority (any access).

To use this service with a private object, the caller must have USER (READ) authority (user

access).

Usage Notes

Operations may be done in hardware or software.

Request type ENCRYPT is not supported for an Elliptic Curve, DSA, or CRYSTALS-Dilithium

public key.

For rule EC-SDSA and each subvariant, the verifying key must be a secure key.

PKCS #11 Secret Key Reencrypt (CSFPSKR and CSFPSKR6)
Use the PKCS #11 Secret Key Reencrypt callable service to decrypt data and then reencrypt the

data using secure secret keys. The interim clear text created by the decrypt process is never

available to the application and never exists outside of the EP11 coprocessor. AES and DES3

secure keys are supported. CBC, CBC-PAD, and ECB modes are supported.

Both key handles must be handles of a PKCS #11 secure secret key object. The CKA_DECRYPT

attribute must be true for the decrypt key. The CKA_ENCRYPT attribute must be true for the

encrypt key.

If the length of output field is too short to hold the output, the service will fail and return the

required length of the output field in the encrypted_text_length parameter.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64). 64-bit callers

must use CSFPSKR6.

Format

CALL CSFPSKR(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

decrypt_handle,

encrypt_handle,

decrypt_initialization_vector_length,

decrypt_initialization_vector,

encrypt_initialization_vector_length,

encrypt_initialization_vector,

chain_data_length,

chain_data,

168 CCA and PKCS #11 Algorithm Currency – APAR OA61253

decrypt_text_length,

decrypt_text,

decrypt_text_id,

encrypt_text_length,

encrypt_text,

encrypt_text_id)

Parameters

return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. See appendix A,

“ICSF and cryptographic coprocessor return and reason codes” in the z/OS

Cryptographic Services ICSF Application Programmer’s Guide.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to the

application program. Each return code has different reason codes that indicate specific

processing problems. See appendix A, “ICSF and cryptographic coprocessor return and

reason codes” in the z/OS Cryptographic Services ICSF Application Programmer’s

Guide.

exit_data_length

Direction Type

Ignored Integer

 This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

Rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array_parameter. This value must be 2.

rule_array

Direction Type

Input Integer

169 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Keywords that apply to the decryption of the decrypt_text and the encryption of the

interim clear text.

Table 77. Rule Array Keywords for rule_array

Keyword Meaning

Decrypt Processing rule (one required)

D-CBC Performs cipher block chaining on the decrypt_text. The
decrypt_text_length must be a multiple of the block size for the
specified encrypt mechanism (8 bytes for DES3 and 16 bytes for
AES).

D-CBCPAD Performs cipher block chaining on the decrypt_text. The
decrypt_text_length must be a multiple of the block size for the
specified decrypt mechanism (8 bytes for DES3 and 16 bytes for
AES).

D-ECB Performs electronic code book encryption. The decrypt_text_length
must be a multiple of the block size for the specified decrypt
mechanism (8 bytes for DES3 and 16 bytes for AES).

Encrypt Processing rule (one required)

E-CBC Performs cipher block chaining on the interim clear text. The interim
clear text length must be a multiple of the block size for the
specified encrypt mechanism (8 bytes for DES3 and 16 bytes for
AES).

E-CBCPAD Performs cipher block chaining on the interim clear text. The interim
clear text length may be shorter than the block size for the encrypt
mechanism or may even be zero. PKCS #7 padding is performed,
thus the encrypt_text_length will be greater than the interim clear
text length

E-ECB Performs electronic code book encryption. The interim clear text
length must be a multiple of the block size for the specified encrypt
mechanism (8 bytes for DES3 and 16 bytes for AES).

decrypt_handle

Direction Type

Input String

The 44-byte handle of the secure secret key object used to decrypt the decrypt_text.

encrypt_handle

Direction Type

Input String

The 44-byte handle of the secure secret key object used to encrypt the interim clear text.

 decrypt_initialization_vector_length

Direction Type

Input Integer

Length of the decrypt_initialization_vector in bytes. For CBC and CBC-PAD this must be

8 bytes for DES and 16 bytes for AES. For ECB this must be zero.

decrypt_initialization_vector

170 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input String

This is the 8 byte or 16 byte initial chaining value used for the decryption of the

decrypt_text.

encrypt_initialization_vector_length

Direction Type

Input Integer

Length of the encrypt_initialization_vector in bytes. For CBC and CBC-PAD this must be

8 bytes for DES and 16 bytes for AES. For ECB this must be zero.

encrypt_initialization_vector

Direction Type

Input String

This is the 8 byte or 16 byte initial chaining value used for the encryption of the interim

clear text.

chain_data_length

Direction Type

Input Integer

This value must be zero.

chain_data

Direction Type

Input/Output String

This parameter is ignored when chain_data_length is zero.

decrypt_text_length

Direction Type

Input Integer

The length of the decrypt_text parameter in bytes. The length can be up to 10600.

decrypt_text

Direction Type

Input String

Text to be decrypted and then encrypted.

decrypt_text_id

Direction Type

Input Integer

The ALET identifying the space where the decrypt_text resides.

encrypt_text_length

171 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Direction Type

Input/Output Integer

On input, the length in bytes of the encrypt_text parameter. On output, the length of the

text reencrypted into the encrypt text parameter.

encrypt_text

Direction Type

Output String

The encrypted text resulting from the decryption and reencryption of the decrypt_text.

encrypt_text_id

Direction Type

Input Integer

The ALET identifying the space where the encrypt_text resides.

 Authorization

 To use this service with a public object, the caller must have at least SO (READ) authority or

USER (READ) authority (any access).

To use this service with a private object, the caller must have at least USER (READ) authority

(user access).

 Usage Notes

The use of this service keys requires an active EP11 Coprocessor. If there is not an EP11

Coprocessor online that supports Secret Key Reencrypt, the service will return with reason code

‘C’x, return code ‘2B34’x.

ICSF and cryptographic coprocessor return and reason codes

Return codes and reason codes

Reason codes for return code 8 (8)

Table 78. Reason codes for return code 8 (8)

Reason Code
Hex (Decimal)

Description

8FA (2298) The hash function specified in the rule array has a digest size less than the bit
length of the curve of the key.

User action: Select a hash function large enough for the curve.

9D2 (2514) An error was found in the ISO PIN block format. The specific error is not noted.

172 CCA and PKCS #11 Algorithm Currency – APAR OA61253

User action: Examine the PIN profile, PAN data, and other input data to ensure the
inputs are correct.

DD6 (3542) The value specified in the input_PAN_data_length, PAN_data_length, or
reference_PAN_data_length parameter is not valid.

User action: Correct the input_PAN_data_length, PAN_data_length or
reference_PAN_data_length parameter.

DD8 (3544) The value specified in the input_PIN_profile_length or
reference_PIN_profile_length parameter is not valid.

User action: Correct the input_PIN_profile_length or reference_PIN_profile_length
parameter.

Access control points and callable services

Table 79. Access control points affecting multiple services or requiring special consideration

Name Callable
services

Notes Value
(hex)

Usage

ANSI X9.8 PIN -
Allow only ANSI
PIN blocks

CSNBPTR /
CSNEPTR,
CSNBPTR2 /
CSNEPTR2,
CSNBPTRE /
CSNEPTRE,
CSNBPVR2 /
CSNEPVR2,
CSNBSPN /
CSNESPN

See “ANSI X9.8 PIN restrictions” for
a description of this control.

0352 DD,
SC

Enhanced PIN Security CSNBCPE /
CSNECPE,
CSNBCPA /
CSNECPA,
CSNBEPG /
CSNEEPG,
CSNBPTR /
CSNEPTR,
CSNBPTR2 /
CSNEPTR2,
CSNBPTRE /
CSNEPTRE,
CSNBPVR /
CSNEPVR,
CSNBPVR2 /
CSNEPVR2,
CSNBPCU /
CSNEPCU,
CSNBPFO /
CSNEPFO

See “Enhanced PIN security mode”
on page 79 for a description of this
control.

0313 DD,
SC

General ISO PIN Error
Mode

CSNBPTR /
CSNEPTR,
CSNBPTR2 /

See “PIN block error processing
mode” on page 80 for a description
of this control.

039F DD,
SC

173 CCA and PKCS #11 Algorithm Currency – APAR OA61253

CSNEPTR2,
CSNBDPC /
CSNEDPC,
CSNBDPV /
CSNEDPV

Encrypted PIN Translate
- Translate PIN Check
Mode

CSNBPTR /
CSNEPTR,
CSNBPTR2 /
CSNEPTR2

See “Enhanced PIN checking for
CSNBPTR and CSNBPTR2” on
page 80 for a description of this
control.

03A0

DD,
SC

Table 80. Access control points – Callable Services
Name Callable service Offset

(Hex)
Usage

Authentication Parameter Generate - Clear CSNBAPG 02B2 ED

Diversified Key Generate - A28XOREC CSNBDKG 03B9 ED

Diversified Key Generate - A28OWFCL CSNBDKG 03BA ED

Diversified Key Generate - A28OWFEC CSNBDKG 03BB ED

Encrypted PIN Verify2 – REFPIN CSNBPVR2 03B0 ED

Encrypted PIN Verify2 – TRUNCPIN CSNBPVR2 03B1 ED

PKA Key Translate – From CCA RSA to CKM-
RAKW format

CSNDPKT 03B6 DD

PKA Key Translate – From CCA ECC to CKM-
RAKW format

CSNDPKT 03B7 DD

Random Number Generate Long – TDES-CBC CSNBRNGL 03B5 ED

Symmetric Algorithm Encipher – allow A28MACGN
and A28MACVR

CSNBSAE 03B2 ED

Symmetric Algorithm Encipher - allow A28OWFCL CSNBSAE 02B3 ED

Symmetric Algorithm Encipher – allow A28OWFEC CSNBSAE 02B4 ED

Symmetric Key Export – AES, CKM-RAKW CSNDSYX 03B8 DD

Resource names for CCA and ICSF entry points

Table 81. Resource names for CCA and ICSF entry points

Descriptive
service
name

CCA entry point name ICSF entry point name SAF
resource
name

Callable
service
exit
name

Encrypted
PIN Verfiy2

CSNBPVR2 CSNBEPVR2 CSFPVR2 CSFPVR26 Encrypted
PIN Verfiy2

CSNBPVR2

PKCS #11
Secret Key
Reencrypt

N/A N/A CSFPSKR CSFPSKR6 PKCS #11
Secret Key
Reencrypt

N/A

Notes

– 1 CSF1xxx is just another name for the CSFPxxx service.

174 CCA and PKCS #11 Algorithm Currency – APAR OA61253

CCA release levels

Table 82. CCA release levels for the IBM z15

CCA
Release

ICSF release
APAR

Crypto Express
adapter

Licensed internal code information

7.4 HCR77D1
OA61253

CEX7C September 2021
Driver D41C MCL P46646.017

6.7 HCR77D1
OA61253

CEX6C September 2021
Driver D41C MCL P46644.012

7.3 HCR77D1
OA60318

CEX7C May 2021
Driver D41C MCL P46646.014

6.6 HCR77D1
OA60318

CEX6C April 2021
Driver D41C MCL P46644.010

5.7 HCR77D1
OA60318

CEX5C April 2021
Driver D41C MCL P46642.009

7.2 HCR77D1
OA59593

CEX7C September 2020
Driver D41C MCL P46646.011

6.5 HCR77D1
OA59593

CEX6C September 2020
Driver D41C MCL P46644.007

7.1 HCR77C1
OA58880

CEX7C June 2020
Driver D41C MCL P46646.008

6.4 HCR77C1
OA58880

CEX6C June 2020
Driver D41C MCL P46644.006

5.6 HCR77C1
OA58880

CEX5C June 2020
Driver D41C MCL P46642.005

7.0 HCR77C1
OA58306

CEX7C November 2019
Driver D41C MCL P46646.004

6.3 HCR77C1
OA58306

CEX6C November 2019
Driver D36C MCL P41456.005
 P41456.006

5.5 HCR77C1
OA58306

CEX5C November 2019
Driver D41C MCL P46642.003

7.0 HCR77D1
z/OS V2R2-V2R4

CEX7C September 2019

6.3 HCR77D1
z/OS V2R2-V2R4

CEX6C September 2019

5.5 HCR77D1
z/OS V2R2-V2R4

CEX5C September 2019

Table 83. CCA release levels for the IBM z14

CCA
release

ICSF release
APAR

Crypto Express
adapter

Licensed internal code information

6.7 HCR77D1
OA61253

CEX6C September 2021
Driver D36C MCL P41458.012

6.6 HCR77D1
OA60318

CEX6C July 2021
Driver D36C MCL P41458.011

5.7 HCR77D1
OA60318

CEX5C July 2021
Driver D36C MCL P41456.010

6.5 HCR77D1
OA59593

CEX6C October 2020
Driver 36C MCL P41458.010

175 CCA and PKCS #11 Algorithm Currency – APAR OA61253

OA60355

6.4 HCR77C1
OA58880

CEX6C June 2020
Driver D36C MCL P41458.009

5.6 HCR77C1
OA58880

CEX5C June 2020
Driver D36C MCL P41456.008

6.3 HCR77C1
OA58306

CEX6C November 2019
Driver D41C MCL P46644.003

5.5 HCR77C1
OA58306

CEX5C November 2019
Driver D36C MCL P41456.005
 P41456.006

6.3 HCR77D0
OA57089

CEX6C July 2019
Driver D36C MCL P41458.004

5.5 HCR77D0
OA57089

CEX5C July 2019
Driver D36C MCL P41456.004

6.3 HCR77D0
OA57088

CEX6C July 2019
Driver D36C MCL P41458.004

5.5 HCR77D0
OA57088

CEX5C July 2019
Driver D36C MCL P41456.004

6.2 HCR77D0
z/OS V2R2-V2R4

CEX6C December 2018

6.1 HCR77C1
OA55184

CEX5C December 2018
Driver D36C MCL P41458.002

5.4 HCR77C1
OA55184

CEX5C December 2018
Driver D32L MCL P42641.004

6.0 HCR77C1
z/OS V2R1-V2R3

CEX6C September 2017

Table 84. CCA release levels for the IBM z13

CCA
release

ICSF release
APAR

Crypto Express
adapter

Licensed internal code information

5.7 HCR77D1
OA60318

CEX5C April 2021
Driver D27I MCL P08449.024

5.6 HCR77C1
OA58880

CEX5C June 2020
Driver D27I MCL P08449.022

5.5 HCR77C1
OA58306

CEX5C November 2019
Driver D27I MCL P08449.020

5.5 HCR77D0
OA57089

CEX5C July 2019
Driver D27I MCL P08449.019

5.5 HCR77D0
OA57088

CEX5C July 2019
Driver D27I MCL P08449.019

5.4 HCR77C1
OA55184

CEX5C December 2018
Driver D27I MCL P08449.019

5.3 HCR77C0
z/OS V2R1-V2R3

CEX5C October 2016

5.2 HCR77B1
z/OS V1R13-V2R2

CEX5C March 2016

5.1 HCR77B1
OA49064

CEX5C July 2015

5.0 HCR77B0
z/OS V1R13-V2R2

CEX5C February 2015

176 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Chapter 6. Update of z/OS Cryptographic Services ICSF Writing PKCS #11

Applications, SC14-7510-08, information
This topic contains updates to the document z/OS Cryptographic Services ICSF Writing PKCS #11

Applications, SC14-7510-07, for the updates provided by this APAR. Refer to this source document if

background information is needed.

Key types and mechanisms supported

Table 85. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO)

Footnotes for Table 4 on page 21

1. The PKCS #11 standard designates two ways of implementing Elliptic Curve Cryptography, which
is nicknamed Fp and F2 m. z/OS PKCS #11 supports the Fp variety only.

2. ANSI X9.62 has the following ASN.1 definition for Elliptic Curve domain parameters:
 Parameters ::= CHOICE {

ecParameters ECParameters,

namedCurve OBJECT IDENTIFIER,

implicitlyCA NULL }

z/OS PKCS #11 supports the specification of CKA_EC_PARAMS attribute by using the namedCurved

CHOICE. The following NIST-recommended named curves are supported:

• secp192r1 – { 1 2 840 10045 3 1 1 }

• secp224r1 – { 1 3 132 0 33 }

• secp256r1 – { 1 2 840 10045 3 1 7 }

• secp384r1 – { 1 3 132 0 34 }

• secp521r1 – { 1 3 132 0 35 }

The following Brainpool-defined named curves are supported:

• brainpoolP160r1 – { 1 3 36 3 3 2 8 1 1 1 }

• brainpoolP192r1 – { 1 3 36 3 3 2 8 1 1 3 }

• brainpoolP224r1 – { 1 3 36 3 3 2 8 1 1 5 }

• brainpoolP256r1 – { 1 3 36 3 3 2 8 1 1 7 }

• brainpoolP320r1 – { 1 3 36 3 3 2 8 1 1 9 }

• brainpoolP384r1 – { 1 3 36 3 3 2 8 1 1 11 }

• brainpoolP512r1 – { 1 3 36 3 3 2 8 1 1 13 }

The following Edwards named curves are supported:

• Ed448 – { 1 3 101 113 }

• Ed25519 – { 1 3 101 112 }

The following Montgomery named curves are supported:

• X448 – { 1 3 101 111 }

• X25519 – { 1 3 101 110 }

The following Koblitz named curves are supported:

• secp256k1 - { 1 3 132 0 10 }

177 CCA and PKCS #11 Algorithm Currency – APAR OA61253

The following table lists the mechanisms supported by specific cryptographic hardware. When a

particular mechanism is not available in hardware, ICSF uses the software implementation of the

mechanism.

Table 86. Mechanisms supported by specific cryptographic hardware

Machine type
and
cryptographic
hardware

Mechanisms supported Notes

IBM z13 or
z13s – CEX5P

CKM_DES_KEY_GEN
CKM_DES2_KEY_GEN
CKM_DES3_KEY_GEN
CKM_RSA_PKCS
CKM_RSA_X_509
CKM_MD5_RSA_PKCS
CKM_SHA1_RSA_PKCS
CKM_DES_CBC
CKM_DES_CBC_PAD
CKM_DES3_CBC
CKM_DES3_CBC_PAD
CKM_SHA_1
CKM_BLOWFISH_KEY_GEN
CKM_RC4_KEY_GEN
CKM_AES_KEY_GEN
CKM_SSL3_PRE_MASTER_KEY_GEN
CKM_TLS_PRE_MASTER_KEY_GEN
CKM_GENERIC_SECRET_KEY_GEN
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_EC_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB
CKM_SHA224_RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA224
CKM_SHA256
CKM_AES_CBC
CKM_AES_CBC_PAD
CKM_AES_CTS
CKM_AES_ECB
CKM_PKCS5_PBKD2

This is the base set

IBM z14 or
z14 ZR -
CEX5P

z13 and z13s set

IBM z14 or
z14 ZR -
CEX6P

z14 and z14R1 set and

• ReencryptSingle function

• CKM_IBM_ECDSA_OTHER

CEX6P at level 3.6.16 is required for
Reencrypt Single.
CEX6P at level 3.6.19 is required for
CKM_IBM_ECDSA_OTHER.

IBM z15 T01
or z15 T02 -
CEX6P

IBM z14 or z14R1 set and
• ReencryptSingle.
• CKM_IBM_ECDSA_OTHER

CEX6P at level 3.7.11 is required for
ReencryptSingle.

178 CCA and PKCS #11 Algorithm Currency – APAR OA61253

CEX6P at level 3.7.14 is required for
CKM_IBM_ECDSA_OTHER.

IBM z15 T01
or z15 T02 -
CEX7P

IBM z14 or z14R1 set and
• CKM_ECDH1_DERIVE
• CKK_IBM_DILITHIUM
• CKA_IBM_PROTKEY_EXTRACTABLE
• ReencryptSingle.
• CKM_IBM_ECDSA_OTHER

CEX7P at level 4.7.10 is required for
CKM_ECDH1_DERIVE and
CKA_IBM_PROTKEY_EXTRACTABLE

CEX7P at level 4.7.10 is required for
CKK_IBM_DILITHIUM

CEX7P at level 4.7.21 is required for
ReencryptSingle.

CEX7P at level 4.7.24 is required for
CKM_IBM_ECDSA_OTHER

The following table lists the algorithms and uses (by mechanism) that are not allowed when

operating in compliance with FIPS 140-2. For more information about how the z/OS PKCS #11

services can be configured to operate in compliance with the FIPS 140-2 standard, see

“Operating in compliance with FIPS 140-2”.

Table 87. Restricted algorithms and uses when running in compliance with FIPS 140-2

Algorithm Mechanisms Usage disallowed

EC Koblitz CKM_ECDSA,
CKM_ECDH1_DERIVE,
CKM_EC_KEY_PAIR_GEN,
CKM_ECDSA_SHA1

All

PKCS #11 Coprocessor Access Control Points

The following table lists the Access Control Points that are available on the Enterprise PKCS #11

coprocessors and the PKCS #11 mechanisms or functions that would be disabled for secure keys

if the control point is deactivated. A new or a zeroized Enterprise PKCS #11 coprocessor (or

domain) comes with an initial set of Access Control Points (ACPs) that are enabled by default. All

other ACPs, representing potential future support, are left disabled. When a firmware upgrade is

applied to an existing Enterprise PKCS #11 coprocessor , the upgrade might introduce new

ACPs. The firmware upgrade does not retroactively enable these ACPs, so they are disabled by

default. These ACPs must be enabled with the TKE (or subsequent zeroize) to use the new

support they govern.

See the Enabling Access Control Points for PKCS #11 coprocessor firmware section in the

Migration topic of the z/OS Cryptographic Services ICSF System Programmer's Guide for the list

of default ACPs and those ACPs that need to be enabled with the TKE for PKCS #11 coprocessor

firmware upgrades.

The following table lists the Access Control Points that are available on the Enterprise PKCS #11

coprocessors and the PKCS #11 mechanisms or functions that would be disabled for secure keys

if the control point is deactivated.

179 CCA and PKCS #11 Algorithm Currency – APAR OA61253

Table 88. PKCS #11 Access Control Points

Access Control Point name or group Mechanism/Function requiring enablement Number

Cryptographic Algorithms

Enable support for non-ECDSA/non-
EdDSA elliptic curve signature algorithms

EC-SDSA rule for sign and verify, and all
subvariants.

67

