
z/OS V1R4 Communications Server
Network Management

User's Guide

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 1

Preface

This document applies to z/OS TM Communications Server (5694-A01).

How this document is organized
This document is organized by function:

Chapter 1 - Planning for Network Management
Chapter 2 - Application interfaces for network monitoring
Chapter 3 - Application interface for formatting packet and data trace records
Chapter 4 - Application interface for monitoring TCP/UDP end points and TCP/IP
 storage
Chapter 5 - Application interface for SNA network monitoring data
Chapter 6 - Diagnosis
Appendix A - Record formats
Appendix B - PTF information
Appendix C - File storage locations

Who should read this document
This document is intended to be used by programmers who want to use z/OS Communications
Server network management interfaces. Before you use this document, you should have an
understanding of z/OS Communications Server IP and SNA (VTAM) components.

Related information
You may need to refer to these documents as you implement this function:

z/OS MVS TM Interactive Problem Control System (IPCS) Customization, SA22-7595

z/OS MVS Programming: Assembler Services Reference, Volume 1 (ABEND-HSPSERV),
SA22-7609

z/OS Communications Server: IP Configuration Reference, SC31-8776

z/OS Communications Server: IP System Administrator's Commands, SC31-3881

 z/OS Communications Server: IP Diagnosis, SC31-8782

 z/OS Communications Server: SNA Network Implementation, SC31- 8777

 z/OS Security Server RACF Security Administrator's Guide, SA22-7683-04

 UNIX TM System Services Messages and Codes, SA22-7807
z/OS C/C++ Run-Time Library Reference, SA22-7821

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 2

z/OS UNIX System Services Programming: Assembler Callable Services Reference,
SA22-7803-03

Notices
Any reference to an IBM licensed program in this document does not imply that IBM intends to
make them available in all countries in which IBM operates. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that does not
infringe any of the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, New York
USA 10504-1785

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement or other agreement between us.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Interface information

This document describes the attachment to z/OS Communications Server's Network
Management Interfaces. These interfaces will generally be upward compatible. In other words,
applications that are successfully using these interfaces on a given release should expect that
they will be able to execute on higher releases without any requirement for code changes or
recompilation. However, because of the dependencies on detailed design and implementation, it
is to be expected that the interfaces described in this document may need to be changed in order
to run with new product releases or new system platforms or as a result of service.

Unique attachment content

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 3

This document indicates only unique actions required when attaching a z/OS Communications
Server image via the interfaces described in this document and does not provide or discuss z/OS
Communications Server on a general level.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

APF
IBM
MVS
RACF
UNIX System Services
z/OS

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 4

Table of Contents

101Appendix B - PTF information .
93Appendix A - Record formats .
92Chapter 6 - Diagnosis .
62Chapter 5 - Application interface for SNA network monitoring data
44

Chapter 4 - Application interface for monitoring TCP/UDP end points and TCP/IP
storage .

26Chapter 3 - Application interface for formatting packet and data trace records
8Chapter 2 - Application interfaces for network monitoring .
6Chapter 1 - Planning for Network Management .
2Preface .

Appendix C - File storage locations . 102

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 5

Chapter 1 - Planning for Network Management
z/OS Communications Server provides several interfaces that allow network monitor and
management applications to obtain information about its network operations, for both TCP/IP
and VTAM. These interfaces for z/OS Communications Server TCP/IP, provide the following:

The capability to programmatically obtain copies of TCP/IP packet and data trace
buffers, real-time, as the traces are collected.

The capability to format the TCP/IP packet trace records collected.
The capability to obtain:
 Activation and deactivation events for TCP connections in SMF format and

buffered
 Event information for the FTP and TN3270 clients and servers in SMF format

and buffered
The capability to monitor

TCP connection and UDP endpoint activity using a callable API
TCP/IP storage usage using a callable API

The interfaces for z/OS Communications Server VTAM, provide the following:
The ability to collect Enterprise Extender (EE) summary and connection data
The ability to collect HPR endpoint data
Communication Storage Manager (CSM) storage statistics

Some of the information provided by these interfaces can be obtained from other types of
documented interfaces provided by z/OS Communications Server such as SNMP, SMF,
command display output, and VTAM exits. TCP/IP packet trace collection and formatting
interfaces provide access to packet trace data that was not previously available through an
authorized, real-time z/OS Communications Server interface. Some of the event information in
SMF format is currently available through traditional SMF services, and can be collected using
an SMF user exit to monitor SMF records.

The interfaces described in this document provide an alternative for collecting some of the
TCP/IP SMF records and are expected to perform efficiently. Most of the data provided by the
application interface for monitoring TCP/UDP end points and TCP/IP storage described in
Chapter 4 can be collected from supported SNMP MIBs. Storage usage information is available
through displays and the VTAM Performance Monitor Interface (PMI). When used properly,
the interfaces documented in this book provide well-defined and efficient APIs to be used for
obtaining management information related to the IP and SNA (VTAM) components of z/OS
Communication’s Server. They also allow for easy application migration to subsequent z/OS
Communication’s Server releases. They are targeted for use by responsible network
management applications.

The following chapters describe the programming interfaces for these functions in detail, and
provide the information required to develop network management applications that use them.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 6

These interfaces:

Use a client/server model or a called interface.

Require all clients to be run locally on the same z/OS image as the Communications Server.

Are provided for C/C++ and Assembler, except as otherwise indicated.

In this document, the term TCP/IP is used to represent the IP component of z/OS
Communications Server and the term VTAM refers to the SNA component of z/OS
Communications Server.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 7

Chapter 2 - Application interfaces for TCP/IP network
monitoring
The following z/OS Communications Server network management interfaces are described in
this chapter:

Network management interface for obtaining real-time SMF dataSYSTCPSM

Network management interface for obtaining TCP connection informationSYSTCPCN

Network management interface for obtaining TCP/IP real-time packet trace
data.

SYSTCPDA
DescriptionName

These interfaces allow network management applications to obtain data in real-time as well as
programmatically. Details for invoking these interfaces and the data provided from them are
documented in the following sections. Programmers will understand how to parse the data
retrieved from these interfaces, and the data structures required to perform this function.
Instructions for compiling and linking applications are also provided.

Overview

Each of the interfaces described in this section provides a unique type of data to be processed by
the end user, but the general interface by which the data is obtained is essentially the same. The
records are retrieved using a common data layout, although the records themselves may differ in
format depending on the interface.

The information provided by each interface is as follows:

The records provided through the interface are type 119 SMF records. The specific
subtypes that are provided are:

TN3270 server session initiation and termination records (subtypes 20 and 21).
TSO telnet client connection initiation and termination records (subtypes 22 and
23).
FTP server transfer completion records (subtype 70).
FTP server logon failure records (subtype 72).
FTP client transfer completion records (subtype 3).

Network Management
interface for obtaining
real-time SMF data
(SYSTCPSM)

This interface provides a means for applications to be notified when TCP connections
are established or terminated in a near real-time fashion. SYSTCPCN provides
applications with a copy of records indicating a TCP connection initiation or
termination. These records are presented in the same format as SMF type 119 TCP
connection initiation and termination records (for example, subtype and 2 records).
The interface also may be used to provide records describing existing TCP
connections. Note that use of this interface does not require TCP/IP SMF recording to
be active.

Network Management
interface for obtaining
TCP connection
information
(SYSTCPCN)

This interface provides a means for applications to obtain a copy of network packets
(for example, Packet trace records) and/or data trace records that are buffered by the
TCP/IP stack’s packet/data trace functions. The packet trace and/or data trace
function must be enabled with the Vary TCPIP,,PKTTRACE command or Vary
TCPIP,,DATTRACE command.

Network management
interface for TCP/IP
Real-Time Packet
Tracing (SYSTCPDA)

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 8

The records above are identical in format to SMF records created by TCP/IP, however
they offer several key advantages:
1. They do not require that TCP/IP SMF record capturing is activated.
2. They are presented to the application in a buffered format (for example, when

several SMF records are created within a short time interval, they are collected
and passed to the application as a group of records instead of individual records.)

In addition to the records above, two more records are available across this interface
that are not currently available from TCP/IP SMF records processing:

FTP server transfer initiation records (subtype 100).
FTP client transfer initiation records (subtype 101).

See Appendix A for the structures and mappings of records 100 and 101.

All of these interfaces provide the same two-step process for accessing the data:

1. The Communications Server TCP/IP stack provides an AF_UNIX streams socket for
each of the above interfaces that allows one or more applications to receive
notifications for the data that is being collected. The TCP/IP stack is acting as the
server for these AF_UNIX streams sockets, performing the listen() and waiting for
incoming connection requests. Applications wishing to exploit this interface connect
to the server’s listening AF_UNIX stream socket. Each of the interfaces has its own,
distinct AF_UNIX pathname that uniquely identifies the socket to be used by the
interface. In the case of SYSTCPDA and SYSTCPSM, once connected, the
application will immediately start receiving applicable data. In the case of
SYSTCPCN, after connecting, the application must send a record to the server to
indicate the type of data it desires, only after which will it start receiving applicable
data.

2. Each notification record received by the application over the socket represents a
buffer of up to 64K bytes of data being stored by the TCP/IP stack. It is important to
understand that the actual SYSTCPDA, SYSTCPCN and SYSTCPSM data is not part
of this notification record. After receiving the entire notification record from the
AF_UNIX socket, the application must then pass this record along with a
user-allocated storage buffer to the EZBTMIC1 API routine provided. EZBTMIC1
will populate the provided storage buffer with the output records related to the
interface that the input notification record defines. Once the notification is received
over the AF_UNIX socket, the application must invoke EZBTMIC1 (or
TMI_CopyBuffer) right away since the buffers are stored in a circular queue by the
TCP/IP stack, and may eventually be overwritten and invalidated. The network
management application also needs to execute at a relatively high priority to ensure
that it gets dispatched by the system reasonably quickly so that it can obtain the data
before those buffers are overwritten.

The buffer copied using the EZBTMIC1 API call contains the actual data of interest to the
application. The format of these buffers, and the records contained therein, are described in the
section called “Understanding the common buffer output of TMI_CopyBuffer”.

In summary, the application connects to open an AF_UNIX socket pathname that is defined for
the network management interface for which it would like to collect information (for example,
SYSTCPCN, SYSTCPDA, SYSTCPSN) and receives notification records. It passes these
2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 9

records to EZBTMIC1 to copy the actual data of interest into the application's storage. The
application will then parse the records in the returned buffer to obtain the actual packet trace or
SMF-type records. It is possible for the network management application to connect to one or
more of these interfaces from the same application. The application passes these records to an
API call to copy the actual data of interest into the application's storage.

Enabling during configuration

In order for the TCP/IP stack to collect the data for these interfaces and accept connections over
the AF_UNIX socket from clients that want to connect, you must first enable them within the
TCP/IP configuration using the NETMONitor statement in the TCP/IP profile. See the z/OS
Communications Server IP Configuration Reference for details. If you are developing a feature
for a product to be used by other parties, you should include in your documentation instructions
indicating that administrators must make these configuration changes in order to use that feature.

The z/OS system administrator may restrict access to each of these interfaces by defining the
SERVAUTH class EZB.NETMGMT.sysname.tcpprocname.interface profile with UACC of
NONE in RACF (or the equivalent security product), and permitting only certain management
applications or users to access that interface.

Guidelines:

1. The user ID referenced for this authorization check is the user ID associated with the task
and MVS address space that issues the connect() call for the AF_UNIX stream socket.

2. “sysname” represents the MVS system name where the interface is being invoked.

3. “tcpprocname” represents the job name associated with a TCP/IP started task procedure.

4. “interface” represents SYSTCPDA, SYSTCPCN, or SYSTCPSM.

For more information refer to z/OS Communications Server: IP Configuration Reference.

If the RACF profile is not defined for the interface, then only superusers (users with an OMVS
UID of 0 or users permitted to access the BPX.SUPERUSER resource in the FACILITY class)
are permitted to use the interface. If you are developing a feature for a product to be used by
other parties, include in your documentation instructions indicating that administrators must
either define and give appropriate permission to the given security resource for use of that
feature, or must run your program as superuser.

Connecting to the server

The application wishing to make use of one of the interfaces must connect to the appropriate
AF_UNIX streams socket provided by TCP/IP, which acts as the server. The socket pathnames
for each of these interfaces are as follows. For each of the following, tcpipprocname is the
procedure name used to start TCP/IP.

Network monitor interface for capturing data packets (SYSTCPDA)
/var/sock/SYSTCPDA.tcpipprocname

Network monitor interface for obtaining TCP connection information (SYSTCPCN)
/var/sock/SYSTCPCN.tcpipprocname

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 10

Network monitor interface for obtaining real-time SMF data (SYSTCPSM)
/var/sock/SYSTCPSM.tcpipprocname

Use either the LE C/C++ API or the UNIX System Services BPX callable services to open
AF_UNIX sockets and connect to the given service.

Interacting with the servers

In the case of the TCP connection information service, after connecting to the SYSTCPCN
server over AF_UNIX socket, /var/sock/SYSTCPCN.tcpipprocname, the application must then
send a connection request record to the server over the connected socket (see the
tmi_conn_request record). For the other two services, the application need take no action.

After the client connects to the desired server (or, in the case of the SYSTCPCN service, after
sending a connection request record), the server will send an initial record to the client,
identifying the server (see the tmi_init record). After that record is received, the client will be
sent tmi_token records representing data buffers. A record will be sent for each data buffer filled
in by TCP/IP. Records for partial buffers are sent if there has been no activity for a brief period.
In case there is no activity, the client should be prepared to wait for extended periods of time for
incoming tokens.

When the server needs to terminate the connection, it will attempt to send a special termination
record (see the tmi_term record) over the socket to the connected application, after which it will
close the socket. This termination record describes the reason for closure. In some cases, the
server may be unable to send such a record, and will close the socket. The application should be
prepared to handle either case.

Particularly for the SYSTCPDA and SYSTCPCN interfaces, large amounts of data can be
generated. Care should be taken in the case of SYSTCPDA not to activate too broad of a packet
trace filter option, so as to avoid recording unnecessary data; see the z/OS Communications
Server IP Configuration Reference and z/OS Communications Server IP System Administrator’s
Commands for details. In the case of SYSTCPCN, the NETMONitor MINLIFETIME TCP/IP
profile configuration option may be used to restrict the collection of short-lived connections; see
the z/OS Communications Server IP Configuration Reference for details.

Restriction: Except in the case of sending a connection request record for the SYSTCPCN
service, the client application must never send data to the server. If data is unexpectedly
received by the server, the server will send a termination record with tmit_termcode = EPIPE to
the client, and will close the connection.

Common record header

All data sent over the AF_UNIX socket by the client and the server is prefixed with a common
header indicating the length of the entire record (this length includes the header) and the type of
data contained within the record. The format for the header is as follows, as defined in
ezbytmih.h (an assembler mapping for this structure is in EZBYTMIA):

struct tmi_header
 {
 int TmiHr_len; /* Length of this record */
 int TmiHr_Id; /* Identifier for this record */
 int TmiHr_Ver; /* Version identifier for this */
 int TmiHr_resv; /* reserved */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 11

 };

#define TmiHr_CnRqst 0xC3D5D9D8 /* Constant("CNRQ") */
 /* TCP connection request record */
#define TmiHr_Init 0xC9D5C9E3 /* Constant("INIT") */
 /* Connection initialization */
#define TmiHr_Term 0xE3C5D9D4 /* Constant("TERM") */
 /* Normal connection termination */
#define TmiHr_SmfTok 0xE2D4E3D2 /* Constant("SMTK") */
 /* Token for SMF buffer */
#define TmiHr_PktTok 0xE2D7D3E2 /* Constant("TPKT") */
 /* Token for packettrc data */
#define TmiHr_Version1 1 /* Version number */

Requests sent by the client to the server

For the SYSTCPCN service only, the client must send a request record to the server after
connecting to the server's AF_UNIX socket. This request record is in the following format,
defined in ezbytmih.h (an assembler mapping for this structure is in EZBYTMIA):

struct tmi_conn_request /* Conn info server request */
{
 struct tmi_header tmicnrq_hdr; /* Header; id=TMI_ID_CNRQST */
 unsigned int tmicnrq_list :1; /* Requests connection list */
 unsigned int tmicnrq_smf :1; /* Requests init/term SMFrcd*/
 unsigned int tmicnrq_rsvd1 :30; /* Reserved, set to 0 */
 char tmicnrq_rsvd2[12]; /* Reserved, set to 0 */
};

The client should initialize the fields of this request structure as follows:

Initialize the tmicnrq_hdr using the length of tmi_conn_request, the appropriate
record ID (TMIHr_CnRqst), and the correct version (TMIHr_Version1).
Initialize the tmicnrq_list and tmicnrq_smf fields as described below.
Initialize all remaining fields to zero.

The two fields tmicnrq_list and tmicnrq_smf control the data that the SYSTCPCN server will
send to the client. These fields should be set as follows:

tmicnrq_list

If set, the server will send the client zero or more tokens representing data buffers that
contain a list of all established TCP connections at the time the client connected. These
connections will be represented as type 119 TCP connection initiation SMF records. If
this field is set to 0, no such list will be sent to the client.

tmicnrq_smf

If set, the server will send tokens to the client These tokens represent data buffers that
contain type 119 TCP connection initiation and termination SMF records, representing
TCP connections that are established and closed on the TCP/IP stack. If this field is set
to 0, the server will not send any tokens representing ongoing connection establishment
and closure.

The SYSTCPCN server will wait until it has received this entire record from the client before it
starts processing connection information on the client's behalf. If the client does not send a
complete record, then the server will never report data to the client, since the client has not

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 12

completed initialization. If the server receives a record with an unrecognized version, a bad
length, or a bad eyecatcher, then it will send a termination record (see following) with
tmit_termcode = EINVAL to the client, and will close the connection.

Records sent by the server to the client

For each of the three interfaces, the server sends three types of records to the client:

1. Initialization records

2. Termination records

3. Token records

Each record is described in the sections that follow.

Initialization record

After the client connects to the server, the server sends an initialization record to the client. The
initialization record may be recognized as having a TmiHr_Id equal TmiHr_CnRqst. This record
contains miscellaneous information about the server and the stack that the client may choose to
use or ignore. This record has the following format, defined in ezbytmih.h (an assembler
mapping for this structure is in EZBYTMIA):

struct tmi_init /* Connection startup record */
{
 struct tmi_header tmii_hdr; /* Record header */
 char tmii_sysn[8]; /* System name (EBCDIC) */
 char tmii_comp[8]; /* Component name (EBCDIC) */
 char tmii_sub[8]; /* TCPIP job name (EBCDIC) */
 char tmii_time[8]; /* Time TCPIP started (STCK) */
 char tmii_rsvd[16]; /* Reserved */
};

The component name, tmii_comp, represents the server the client is connected to. This will be
one of SYSTCPDA, SYSTCPCN, or SYSTCPSM, depending on the server being accessed.

Termination record

The termination record is sent when the server closes the connection. The termination record
may be recognized as having a TmiHr_Id equal to TmiHr_Term. The connection may be closed
as part of normal operation (for example the service is being disabled or the stack is
terminating), or it may be closed due to some error. A termination code in the record indicates
the termination reason.

This record is the last data sent by the server before close; after sending the termination record,
the server will close the connection. The stack will attempt to send the termination record before
it closes the socket. However, under certain abnormal stack termination conditions, it may be
unsuccessful; furthermore, if the client's receive buffer is full, it may also be unsuccessful. In
such cases the connection is closed.

The format of this record is as follows, as defined in ezbytmih.h (an assembler mapping for this
structure is in EZBYTMIA):

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 13

struct tmi_term /* Termination notification rcd */
{
 struct tmi_header tmit_hdr; /* Record header */
 unsigned int tmit_termcode; /* Termination code */
 char tmit_tstamp[8]; /* Termination timestamp */
 char tmit_rsvd[12]; /* Reserved */
};

The possible values for tmit_termcode and their explanations are as follows, as defined in
errno.h:

The server could not write to the client socket because the client's receive
buffer is full (in which case it is possible that the server may not have been
able to write this record and closed the connection).

EWOULDBLOCK (1102)

The client has erroneously sent data to the server when the server was not
expecting data.

EPIPE (140)

The server was unable to allocate necessary storage.ENOMEM (132)
The client has sent invalid data to the server.EINVAL (121)

The client is not permitted to connect to the server.EACCES (111)

No error; planned termination. Either this function is being disabled or the
TCP/IP stack is ending.

0

DescriptionValue

See the z/OS UNIX System Services Messages and Codes for more detail.

The tmit_tstamp field contains an 8-byte MVS TOD clock value for the time of termination of
the connection.

The client should expect to receive no more data on the connection following this record; the
connection will be closed by the server.

Token record

The server sends the tmi_token record when a 64k buffer has been filled with records for the
given service. The token record may be recognized as having a TmiHr_Id equal to
TmiHr_PktTok (in the case of SYSTCPDA) or TmiHr_SmfTok (in the case of SYSTCPCN and
SYSTCPSM). In addition, each of the servers will, after a brief period of inactivity, flush a
partially filled buffer, sending a token for that partial buffer and advancing to the next internal
buffer.

The format of this record is as follows, as defined in ezbytmih.h (an assembler mapping for this
structure is in EZBYTMIA):

struct tmi_token
{
 struct tmi_header tmik_hdr; /* Record header */
 char tmik_token[32]; /* Token representing buffer */
};

The tmik_token record contains a token describing the data buffer. The client's actions upon
receiving this record are discussed in the following section.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 14

Copying the trace buffer
Use the EZBTMIC1 service to copy the data buffer to the client application's storage.
EZBTMIC1 may be invoked through a C function, TMI_CopyBuffer, which calls the callable
service. EZBTMIC1 uses the tmi_token record just read from the AF_UNIX socket as input to
locate and copy the data buffer to the user-provided 64K byte buffer.

EZBTMIC1 - Copy TCP/IP Management Interface Data Buffer
Function

The EZBTMIC1 callable service uses a token provided over a TCP/IP management
interface to copy a data buffer into application storage. This service is also referred to as
the TMI copy buffer service.

Requirements

Authorization Supervisor state or problem state, any PSW key

 Caller must be APF authorized
Dispatchable unit mode Task
Cross memory mode PASN = HASN
AMODE 31-bit
ASC mode Primary mode
Interrupt status Enabled for interrupts
Locks Unlocked
Control parameters All parameters must be addressable by the caller and in the primary address
 space.

Format

CALL EZBTMIC1,(Token,
 Bufptr,
 Return_value,
 Return_code,
 Reason_code)

Parameters

Token

The name of a record containing a token describing a TCP/IP management interface data buffer.

Type Structure

Length Size of buffer token record

Bufptr

The address of a buffer into which the TCP/IP management data buffer will be copied.

Type Structure

Length 12

The bufptr parameter is a 12-byte structure describing the address of the buffer:
Bufptr DS 0F /* Buffer pointer */
Buf_alet DC F’0’ /* Buffer ALET, or 0 */
Buf_addr_hi DC F’0’ /* Highword of 64bit bufptr */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 15

Buf_addr DC A(0) /* Lowword of 64bit bufptr */

If the buffer is in a data space, then Buf_alet is the ALET of the data space, otherwise it is
zero. If the buffer is in 64-bit storage, then Buf_addr_hi and Buf_addr contain the 64-bit
address of the buffer. If the buffer is in 24 or 31-bit storage, then Buf_addr_hi contains zeros
and the buffer address in Buf_addr. To improve performance, place the buffer on a page
boundary.

This buffer can represent the following:

When the token is a TmiHr_PktTok, the data buffer will contain the
unformatted packet trace data records (SYSTCPDA).

When the token is a TmiHr_SmfTok, the data buffer will contain SMF records
(SYSTCPCN or SYSTCPSM).

Return_value

Returned parameter
Type Integer

Length Fullword

The name of a fullword in which the TMI buffer copy service returns the results of
the request:

> 0 -- the data buffer has been successfully copied into the application
buffer. The return value is the number of bytes of data that has been
copied into the buffer. This length does not include the trailing halfword
of zeros in the buffer.

-1 -- the system could not complete the request, for reasons such as the
data buffer being no longer valid. Refer to Return_code and Reason_code
for more details.

Return_code

Returned parameter
Type Integer

Length Fullword

The name of a fullword in which the TMI buffer copy service stores the return code.
The TMI buffer copy service returns Return_code only if Return_value is -1. The
TMI buffer copy service can return one of the following values in the Return_code
parameter:

The address is incorrect. EFAULT-1
The token provided to locate a buffer is not a valid token.EBADF-1
The application is not APF authorized. EACCES-1
The request was succesful. 0>0
MeaningReturn_codeReturn_value

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 16

The data buffer described by token has been overwritten
and is no longer available.

EILSEQ-1

The token provided to locate a buffer does not specify a
valid data buffer.

EINVAL-1

Reason_code

The name of a full word in which the TMI buffer copy service stores the reason code.

Type Integer

Length Fullword

The TMI buffer copy service returns Reason_code only if Return_value is -1. The reason
code contains diagnostic information and is described in z/OS UNIX System Services
Messages and Codes.

Usage Notes

Compiling and Linking

Assembler mappings for the various records that flow over the AF_UNIX socket may be
found in macro EZBYTMIA.

This routine will be in SYS1.CSSLIB as the callable stub EZBTMIC1.

TMI_CopyBuffer - Copy TCP/IP Management Interface Data Buffer

The TMI_CopyBuffer() function copies the 64K byte TMI data buffer described in token to the
application-provided buffer pointed to by bufptr. Ezbytmih.h contains this definition.

Format

void Tmi_CopyBuffer (struct tmi_header *token,
 struct bufptr_t *bufptr,
 int *retval,
 int *retcode,
 int *rsncode);

Parameters

token

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 17

The pointer to the token record read from the TCP/IP management interface service. The
record contains a token used to locate a data buffer to be copied.

bufptr
A pointer to a tmi_bufptr structure describing a 64K byte buffer provided by the user.
The indicated buffer will be overwritten with the contents of the TMI data buffer if the
call is successful.

The tmi_bufptr structure is a twelve-byte structure describing the address of the buffer.
struct tmi_bufptr /* Buffer pointer */
{
 int buf_alet; /* Buffer ALET, or 0 */
 int buf_addr_hi; /* Highword of 64bit bufptr */
 void *buf_addr; /* Lowword of 64bit bufptr */

};

retval
The returned value.

If successful, TMI_CopyBuffer() returns the number of bytes copied in retval.

If unsuccessful, TMI_CopyBuffer() returns -1 in retval and sets retcode to one of the
following values:

retcode

A pointer to a full word in which the TMI buffer copy service stores the return code.

The TMI buffer copy service returns retcode only if retval is -1. The TMI buffer copy service
can return one of the following values in the retcode parameter.

Error code description

The data buffer described by Token has been overwritten and no longer available.EILSEQ
The Token provided to locate a buffer does not specify a valid data buffer.EINVAL

Using the Buffer parameter as specified would result in an attempt to access storage outside
the caller's address space.

EFAULT
The Token provided to locate a buffer is not a valid token.EBADF
The application is not APF authorized.EACCES
MeaningReturn_code

rsncode

The address of a full word in which the TMI buffer copy service stores the reason code.

The TMI buffer copy service returns rsncode only if retval is -1. The reason code contains
diagnostic information and is described in z/OS UNIX System Services Messages and Codes.

Usage Notes

Character data

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 18

Some of the data contained in the TMI data buffer may be system data, such as job
names. Such data will be in EBCDIC and the application should be prepared to process
it appropriately.

Compiling and linking

The callable service routine that provides this service is provided as a callable stub
located in SYS1.CSSLIB.

Understanding the common buffer output of TMI copy buffer service
Upon successful completion of the EZBTMIC1 call of the TMI_CopyBuffer(), the user-supplied
64-k buffer is filled with cte records, which contain the data provided by the service being used.

The data records for the server are stored sequentially within individual 64K data buffers. The
cte describes the length of the data record. The data record is immediately followed by a cteeplg
(cte epilogue) structure. The first cte structure begins at the beginning of the buffer. The last
cteeplg is followed by a cte whose ctelenp field is 0; this signifies the end of the data in the
buffer. The layout of the buffer is as follows:

binary 0cte_epiloguedatacte. . .cte_epiloguedatactecte_epiloguedatacte

The cte is a 16-byte descriptor whose format is as follows (as defined in ezbytmih.h, and in
ITTCTE in SYS1.MACLIB):

struct cte
{
 unsigned short ctelenp; /* Length of CTE
 and cte_epilogue. */
 short cteoff; /* Offset from start of CTE */
 unsigned long ctefmtid; /* Format ID of record */
 unsigned long long ctetime; /* STCK timestamp of record
 creation */
};

ctelenp holds the total length of the record, including the cte, the data record, and the
cte_epilogue. cteoff is the offset to the data record from the start of the cte. The ctefmtid is a
format ID specific to each service; it is described in a following section. The ctetime is an 8-byte
STCK timestamp of the time the record was written.

The format of the two-byte cteeplg is as follows (as defined in ezbytmih.h, and in ITTCTE in
SYS1.MACLIB):

struct cteeplg
{
 unsigned short ctelene; /* Length of CTE, data, and
 cte_epilogue. */
};

The field ctelene holds the same value as the ctelenp field in the cte.

Format of service-specific data
The sections below describe how to process CTE records for SYSTCPDA, SYSTCPCN, and
SYSTCPSM.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 19

Processing the CTE records for SYSTCPDA

The following ctefmtid values are supported for the SYSTCPDA interface:

 Command to Start IPv4 or IPV6 data trace
record

Described by the
PTHDR_T structure

5 (PTHIdDat)

 Command to Start IPv4 or IPV6 packet
trace record

Described by the
PTHDR_T structure

4 (PTHIdPkt)

 Command to StartIPv4 data trace recordDescribed by the GtCntl
structure

3 (TRCIDDAT)

 Command to StartIPv4 packet trace recordDescribed by the GtCntl
structure

2 (TRCIDX25)

 Command to StartIPv4 packet trace recordDescribed by the GtCntl
structure

1 (TRCIDPKT)
 Command to Start DescriptionData Areactefmtid

If tracing for the TCP/IP data trace and the TCP/IP packet trace is active, the trace buffer will
contain both types of records. The client must handle this condition.

The GtCntl is defined in EZBCTHDR and contains the following information:

GTCNTL
gtseqnum One byte sequence number
gtsflg Flag byte

GTSPKT 0x80 Packet trace request
 GTSX25 0x40 X.25 Data trace request
 GTSDAT 0x20 Data trace request
 GTSVERS 0x10 Version number always 1

GTSIUTL 0x08 Data from multiple PDUs
GTSADJ 0x04 Record size adjust by +1
GTSABBR 0x02 IP pkt was abbreviated
GTSPOUT 0x01 IP pkt was sent = 1 rcvd = 0

gtslrcd Lost record count
gtsrect Record type (device type)

GTSLCSE 1 IFPETH - Ethernet
GTSLCS8 2 IFP8023 - 802.3 Ethernet
GTSLCSE8 3 IFPETHOR - Ether|802.3
GTSLCSTR 4 IFPTR - Token Ring
GTSLCSFD 5 IFPFDDI - FDDI
GTSLU62 6 IFPSNA62 - SNA LU6.2
GTSHCH 10 IFPHCH - HyperChannel
GTSCLWRS 21 IFPCLIP - CLAW
GTSCTC 29 IFPCTC - CTC
GTSCDLC 30 IFPCDIP - CDLC IP
GTSATM 32 IFPATM - ATM
GTSVIPA 33 IFPVIPA - VIPA
GTSLOOPB 34 IFPLOOPB - LoopBack
GTSMpc 35 IFPMPC - MPC
GTSX25C 36 IFPX25 - X.25
GTSSNALN 37 IFPSNALINK - SNA LINK
GTSMPCIE 39 IFPIPAQENET - MPC IP AQENET link
GTSMPCOD 40 IFPOSAFDDI - MPC OSAFDDI link

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 20

GTSMPCON 41 IFPOSAENET - MPC OSAFNET link
GTSMPCIH 42 IFPIPAQTR - MPC IPAQTR link
GTSQIDIO 43 IFPIPAQIDO - iQdio

gtstlen Total length of IP packet
gtslknm Link name, or data trace job name
gtssipad Source IPv4 address
gtsdpad Destination IPv4 address
gtstod Time of Day timestamp
gtssport Source port number (data trace)
Gtsdport Destination port number (data trace)
Gtstcb MVS TCB address (data trace)
Gtsasid ASID (data trace)

The PTHDR_T is defined in EZBYPTHA and contains the following information:

PTHDR_T
pth_len Length of the PTHDR_T structure
pth_seqnum Sequence number of this packet
pth_flag Flag indicators

 PTH_Adj 0x04 Record size was adjusted by +1 (reflected

in the ctelene and ctelenp). The
data length was odd and a single pad byte was added.
 PTH_Abbr 0x02 ABBREV parameter was used on the trace

command
 PTH_Out 0x01 IP packet was sent = 1 rcvd = 0

pth_devty The type of device represented by the interface being traced.

 PTHLCSE 1 - Ethernet
 PTHLCS8 2 - 802.3 Ethernet
 PTHLCSE8 3 - Ether|802.3
 PTHLCSTR 4 - Token Ring
 PTHLCSFD 5 - FDDI
 PTHLU62 6 - SNA LU6.2
 PTHHCH 10 - HyperChannel
 PTHCLWRS 21 - CLAW
 PTHCTC 29 - CTC
 PTHCDLC 30 - CDLC IP
 PTHATM 32 - ATM
 PTHVIPA 33 - VIRTUAL
 PTHLOOPB 34 - LoopBack
 PTHMpc 35 - MPC
 PTHX25C 36 - X.25
 PTHSNALN 37 - SNA LINK
 PTHMPCIG 38 - MPC giga
 PTHMPCIE 39 - MPC IPAQENET
 PTHMPCOD 40 - MPC OSAFDDI
 PTHMPCON 41 - MPC OSAFNET
 PTHMPCIH 42 - MPC IPAQTR
 PTHQIDIO 43 - iQdio
 PTH6loopb 51 - IPv6 loopback
 PTH6vipa 52 ifp6vipa
 PTH6ipaqenet 53 ifp6ipaqenet
 PTH6ipaqtr 54 ifp6ipaqtr
 PTH6mpc 55 ifp6mpc
 PTH6ipaqidio 56 ifp6ipaqidio

pth_tlen Portion of the payload that is actually traced. If ABBREV was not
specified on the trace command then this will be the name as pth_plen.
If ABBREV was specified, then it will be this value.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 21

pth infname Name of the interface the packet was traced on in EBCDIC
character format

pth_time Stored time of day clock when packet was processed by the trace

pth_src Hexadecimal source IP address of this packet (IPv6 or IPv4)

pth_dst Hexadecimal destination IP address of this packet (IPv6 or IPv4)

pth_sport Hexadecimal source IP port number

pth_dport Hexadecimal destination IP port

pth_trcnt Total count of records traced

pth_tcb Task control block address of the sender of the outbound. On
inbound, this will usually be task associated with the TCP/IP stack

pth_asid Ascbasid of the sender of the outbound packet. On inbound, this
will usually be the asid of the TCP/IP stack

pth_lost Total lost record count

pth_plen Payload length

The fields in the GtCntl and PTHDR_T with the same suffix serve the same purpose in both
headers. IPv4 address in pth_src and pth_dst are prefixed with x’000000000000’,
x’00000000FFFE’ or x’00000000FFFF’.

Processing trace records in a buffer

The EZBTMIC1 call or the TMI_CopyBuffer() service is used to receive a buffer of trace
records defined by a starting CTE structure and ending with a two byte ctelente field, which has
the same value as the ctelenp. The PTHDR_T structure follows the CTE and has many fields for
use when processing the trace records. The pth_tlen field is the IP packet payload length,
although this field could reflect the ABBREV parameter on the PKTTRACE command.
In some cases, to obtain the entire IP packet, multiple trace records must be processed. These
trace records could span multiple 64K buffers and will probably not be contiguous. In this case,
several fields must be examined. See the example of IP record X below. The ctelenp will be
less than the pth_tlen. The pth_seqnum fields must be used to determine the ordered chain of
records that make up the IP packet. The first record in the sequence will have pth_seqnum=0 and
will contain the IP protocol headers. The pth_tlen and pth_time will be the same for each record
in the sequence.

Example of split buffers for IP packet X:

First TMI_CopyBuffer() issued:

64K buffer received

 ctelente=1K trace data
 (IP packet X)
 contains IP headers

PTHDR_T
structure
 pth_seqnum=0
 pth_tlen=64K

Record1 for IP packet X
 CTE structure
 ctelenp=1K

 Trace Records

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 22

 pth_time=Time X

Second TMI_CopyBuffer issued:
64K buffer received

 Trace Records

 ctelente=32K trace data
 (IP packet X
 continued).
 No headers.

PTHDR_T
structure
 pth_seqnum=1
 pth_tlen=64K
 pth_time=Time X

Record2 for IP packet X
 CTE structure
 ctelenp=32K

 ctelente=1K trace data
 (IP packet Y)
 contains IP headers

PTHDR_T
structure
 pth_seqnum=0
 pth_tlen=ip
 payload length
 (less than 1K)

Record1 for IP packet Y
 CTE structure
 ctelenp=1K

 Trace Records

Third TMI_CopyBuffer() issued:
64K buffer received

ctelente=31K

 trace data
 (IP packet X
continued).
 No headers.

PTHDR_T
structure
 pth_seqnum=2
 pth_tlen=64K
 pth_time=Time X

 Record3 for IP packet X
 CTE structure
 ctelenp=31K

 Trace Records

Processing the CTE records for SYSTCPCN
The TCP connection information server (SYSTCPCN) presents information about the
establishment and closing of TCP connections as they occur. Type 119 SMF TCP connection
initiation and termination records (subtypes 1 and 2) are stored in the data buffer to reflect this
activity. Each record in the data buffer will be a complete type 119 SMF record, of subtype 1 or
2.

Additionally, if requested, the server will fill one or more buffers with the list of currently active
connections. This list is provided as type 119 TCP connection initiation records (subtype 1), so
that entries in the list will be indistinguishable from newly established connections (except that

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 23

the connection establishment timestamp will be in the past). This set of records is sent only once
per new connection, after the initialization.

For the TCP connection information server, the ctefmtid for the CTE will always be equal to the
subtype of the SMF record (either 1 or 2) following the CTE in the data buffer.

Applications may use this interface to dynamically maintain a list of active TCP connections.
Note that due to timing issues, it is possible that an application will receive two initiation records
for a given connection (if the connection is established around the time the client connects, its
initiation record will be sent, as will a record identifying it as a preexisting established
connection). It is also possible that an application will receive a termination record for a
connection for which it has not received an initiation record. Client applications should be
prepared to handle both of these possibilities.

SMF recording for TCP connection initiation and termination records does not need to be active
for this service to function. Moreover, activating this service does not cause TCP connection
initiation and termination SMF records to be recorded into the SMF data sets if they are not
already enabled.

C structures for mapping the SMF type 119 records may be found in ezasmf.h. Assembler
mappings for the structures may be found in EZASMF77 in SYS1.MACLIB.

Processing the CTE records for SYSTCPSM
The real-time SMF data server (SYSTCPSM) reports type 119 SMF event records for TCP/IP
applications. Each record in the data buffer is a complete type 119 SMF record. The records
reported, and their subtypes, are as follows:

FTP client transfer initialization (subtype 101).

FTP client transfer completion (subtype 3).
FTP server transfer initialization (subtype 100).
FTP server transfer completion (subtype 70).
FTP server logon failure (subtype 72).
TN3270 server session initialization (subtype 20).
TN3270 server session termination (subtype 21).
TSO telnet client connection initialization (subtype 22).
TSO telnet client connection termination (subtype 23).

For the real-time SMF data server, the ctefmtid for the CTE will always be equal to the subtype
of the SMF record (one of the values listed above) following the CTE in the data buffer. The
structures and macros for mapping the SMF 119 record subtypes delivered by these interfaces
are as follows:

hlq.SEZANMAC(EZANMFTA)

Refer to Appendix A for the layout of
the FTP Client and Server Transfer
Initialization records.

hlq.SEZANMAC(EZANMFTC)100 and 101
sys1.maclib(EZASMF77)hlq.SEZANMAC(EZASMF)3, 20, 21, 22, 23, 70 and 72
Assembler macroC/C++ headerSubtype

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 24

hlq represents the z/OS Communications Server data set high level qualifier.

The FTP client/server transfer initiation records are available only across this interface.

See z/OS Communications Server: IP Configuration Reference Appendix D for the formats of
SMF type 119 records.

The header files and macros are described in the following table:

Structures and mappings for the SMF 119
records, subtype 100 and 101. See
Appendix A.

EZANMFTAEZANMFTC

Request and response headers containing
the common headers, connection requests,
initialization, termination and token
records.

EZBYTMIAEZBYTMIH

ContentsMacros for
Assembler programs

Header files for
C/C++ programs

These header files and macros are shipped in the hlq.SEZANMAC data set (hlq refers to the High
Level qualifier used when the product was installed on your system). This data set must be
available in the concatenation when compiling or assembling a part that makes use of these
definitions.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 25

Chapter 3 - Application interface for formatting packet and
data trace records
Records collected from the SYSTCPDA interface described in the previous chapter may be
formatted programmatically with the EZBCTAPI macro. This chapter describes how the
EZBCTAPI interface may be used.

Network management interface for formatting packet trace recordsEZBCTAPI
DescriptionName

Overview

The interface to the formatter described in this chapter provides a means for network
applications to format packet and data trace records. An application program can capture a copy
of the packet and data trace buffers using the Network Management interface for TCP/IP
real-time packet and data tracing (SYSTCPDA), described in Chapter 2.

Trace records are laid out in the trace buffer as a series of Component Trace Entries (CTEs).
Each CTE contains one trace record. The format identification field (CteFmtId) describes the
layout of data in the trace record. Types 1, 2 and 3 contain a header (GTCNTL) described the
EZBCTHDR macro (or the EZBYCTHH header). Types 4 and 5 contain a header (PTHDR_T)
described by the EZBYPTHA macro (or the EZBYPTHH header). The table below depicts the
layout of the various records.

YvariableN/AN/APTHDR_TData Trace5
YvariablevariableIPv6PTHDR_TPacket Trace4

Y
(EE only)*

variableN/AN/AGTCNTLData Trace3
NvariablevariableIPv4GTCNTLX25 Trace2
YvariablevariableIPv4GTCNTLPacket Trace1

V1R4DataProtocolIP HeaderHeaderDescriptionCteFmtId

* EE stands for Enterprise Extender. Read about Enterprise Extender in z/OS Communications
Server: SNA Network Implementation.

The ABBREV value of the PKTTRACE or DATTRACE command determines the amount of
data available. The layout of CTEs in the 64K buffer is below.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 26

Confi
gurati

on and enablement

There is no formal configuration required to enable this interface.

EZBCTAPI Network management interface for formatting packet trace records

Function

The EZBCTAPI macro accepts parameters to format component trace records from the TCP/IP
packet trace and data trace. The data is formatted in the same fashion as is done using the IBM
provided packet trace and data trace formatters that are available with the IPCS CTRACE
command. Note however that this interface does not require an IPCS environment to be active.

The EZBCTAPI macro allows users to pass component trace records to the format routine for
processing and capture the formatted output text. There are several functions performed by the
macro:

SETUP - Define the formatting environment with the various parameters.
FORMAT - Pass a record to the formatting interface.
TERM - Delete the formatting environment allowing final output to be shown.
QUIT - Delete the formatting environment without any final output. Summary and
statistical reports created at the end of SYSTCPDA processing will not be formatted.
This request should be used for quick termination of the interface when no further
output is desired

Requirement: High Level Assembler Language, Version 1 Release 4 or higher is required to use
this macro.

Requirements

The requirements for the caller are:

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 27

CTEEPLG CTE FmtId=4

CTE FmtId=4

CTE FmtId=5

CTE FmtId=3

X’0000’

GtCntl

PTHDR_t

PTHDR_t

PTHDR_t

GtCntl

IPv4 header

IPv6 header

IPv4 header

protocol header

protocol header

protocol header

data

data

- - - - - - - - - - - - - data - - - - - - - - - - - - -

CTEEPLG

CTEEPLG

CTEEPLG

CTEEPLG

CTE FmtId=1

data

- - - - - - - - - - - - - data - - - - - - - - - - - - -

Minimum authorization: Problem state, and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be addressable in the primary address space and have a
 storage key that matches the PSW key.

Input register information

Before issuing the EZBCTAPI macro, the caller must ensure that the following general purpose
registers (GPRs) contain the specified information:

Register contents
13 The location of a 72-byte standard save area in the primary address space

Before issuing the EZBCTAPI macro, the caller does not have to place any information into
any access register (AR).

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code, if GPR 15 contains a non-zero return code; otherwise, used as a work
register by the system.
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a service.
If the system changes the contents of registers on which the caller depends, the caller must save
them before issuing the service, and restore them after the system returns control.

Performance implications

None.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 28

Syntax

The EZBCTAPI macro is written as follows:

Default: REPORT=FULL ,REPORT=FULL

retcode: RX-type address or register (2) - (12), or
(15).

 ,RETCODE=retcode

epaddr : RX-type address or register (2) - (12). ,RELEASE=epaaddr

epaaddr : RX-type address or register (2) - (12). ,PRTSRV=epaaddr

options : RX-type address or register (2) - (12). ,OPTIONS=options

epaaddr : RX-type address or register (2) - (12). ,OBTAIN=epaaddr

epaaddr: RX-type address of register (2) - (12) ,NMCTF=epaaddr

number: RX-type address or register (2) - (12). ,MAXLINE=number

stcktime: RX-type address or register (2) - (12). ,LSO=stcktime

stcktime : RX-type address or register (2) - (12). ,LDTO=stcktime

record : RX-type address or register (2) - (12). ,CTE=record

name: RX-type address or register (2) - (12). ,COMP=name

epaaddr: RX-type address or register (2) - (12). ,API=epaaddr

workarea : RX-type address or register (2) - (12). ,WORKAREA=workarea

 QUIT
 TERM
 FORMAT
 SETUP

One or more blanks must follow EZBCTAPI.
 EZBCTAPI

One or more blanks must precede EZBCTAPI.

name : Symbol. Begin name in column 1.name

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 29

,MF=(E,list_addr,COMPLETE)

 ,MF=(E,list_addr)

,MF=(M,list_addr,COMPLETE)

 ,MF=(M,list_addr)
 ,MF=G
Default: MF=(L,list_addr ,0D) ,MF=(L,list_addr ,attr)
list_addr : RX-type address or register (1) - (12) ,MF=(L,list_addr)

token: RX-type address or register (2) - (12). ,USERTOKEN=token

 ,TIME=LOCAL
Default: TIME=LOCAL ,TIME=GMT

name: RX-type address or register (2) - (12) ,TABLE=name

rsncode: RX-type address or register (2) - (12) or
(0).

 ,RSNCODE=rsncode

 ,REPORT=TALLY
 ,REPORT=SUMMARY
 ,REPORT=SHORT

Parameters

The parameters are explained below. First select one of the four required parameters that define
the function that the interface is to perform.

SETUP Initialize the interface by allocating and initializing control blocks and loading the
component trace format table. Most of the other keywords can be specified to define the
processing options.

FORMAT Locate the specific entry in the format table and call the format routine. The CTE
keyword identifies the record to be formatted.

TERM End the interface by calling the filter routine one last time to issue any final reports
and release all the allocated resources.

QUIT End the interface calling the filter routine one last time to release all the allocated
resources acquired by the formatter.

Next select the optional parameters that you need:

,API=epiaddr

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 30

 Specifies the location of a word that contains the location of the EZBCTAPI routine. Use this
keyword in the SETUP call to pass the entry pointer address to the interface. This may be useful
to avoid the overhead of loading and deleting this reentrant interface module. If the API
keyword is not used, then the EZBCTAPI routine will be loaded by the SETUP function and
deleted by the TERM or QUIT function.

,COMP=name
 Specifies the location of a eight byte character field containing the name of the CTRACE
component. If not specified, the component name of 'SYSTCPDA’ is used.

,CTE=record
 Specifies the location of a component trace record. Used with the FORMAT function.

,LDTO=stcktime
 Specifies the location of eight byte store clock field. This field is in units of STCK timer
units. It contains the local date time offset. This field is used to convert STCK time stamps in
the component trace records to local time. If not specified, the field CVTLDTO is used as the
default.

,LSO=stcktime
 Specifies the location of eight byte store clock field. This field is in units of STCK timer
units. It contains the leap seconds time offset. This field is used to convert STCK time stamps in
the component trace records to GMT time and local time. If not specified, the field CVTLSO is
used as the default.

,MAXLINE=number
 Specifies the location of a word than contains the maximum line width for formatted output.
The minimum value is 60 and the maximum value is 250. The default value is 80.

,NMCTF=epaddr
 Specifies the location of a word that contains the location of the EZBNMCTF stub routine.
This may be useful to avoid the overhead of loading and deleting this reentrant interface module.
This keyword should be used on each invocation that will invoke the interface (MF=(E)). If the
NMCTF keyword is not specified, then the EZBNMCTF routine will be called by the macro as
an external reference and EZBNMCTF must be link-edited with the application program.

,OBTAIN=epaaddr

 Specifies the location of a word that contains an entry point location of a routine used by the
interface to obtain storage. The default is a routine that uses the STORAGE (OBTAIN) macro to
obtain the storage from the operating system. If the OBTAIN keyword is specified then the
RELEASE keyword must be specified. It is passed these pointers in a parameter list addressed
by register 1:

The work area
The four word user token (see USERTOKEN)
The word where the location of the obtained storage is returned.
The word with the length of the storage to be obtained.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 31

These return codes are supported:
00 The storage was obtained. The location of the storage is returned.
04 The storage could not be obtained. The address is null.

Standard calling conventions are used to call the routine in the same environment when
the EZBCTAPI interface was called.

,OPTIONS=options
 Specifies the address of options to be passed to the packet trace formatter. These options are
described by EZBYPTO data area. See the "Passing options to the Packet Trace Formatter"
section for more information.

 ,PRTSRV=epaaddr
 Specifies the location of a word that contains entry point location of a routine used by the
interface and formatter to print lines of text and messages. It is passed these parameters in a
parameter list addressed by register 1:

The BLSUPPR2 parameter list.
The four word user token (see USERTOKEN)

These return codes are supported from the print routine
00 The line of text was printed.
04 The line was not printed and future output is to be suppressed.

Standard calling conventions are used to call the routine in the same environment when the
EZBCTAPI interface was called: .

To generate the BLSUPPR2 parameter list use the BLSUPPR2 macro:

PPR2 BLSUPPR2 DSECT=YES

The BLSUPPR2 macro is described in MVS Programming: Assembler Services Reference,
Volume 1 (ABEND-HSPSERV).

 The following fields are defined as:

 PPR2BUF Location of buffer containing the data to be printed.
 PPR2BUFL Length of data in the buffer to be printed
 PPR2MSG The buffer contains a message
 PPR2OVIN Overflow indentation level (0 for the first line, 2 for subsequent
 lines)

 The print buffer is in the EBCDIC code page. The buffer has been translated to change
unprintable characters to periods. The new line character (x’15’) is located in each data line and
the print function is called for each new line. Should the data buffer be larger than the

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 32

MAXLINE value minus 1, then the print function will be called as many times as needed with
the rest of the print line with PPR2OVIN set to 2.

,RELEASE=epaaddr

 Specifies the location of a word that contains the entry point location of a routine used by the
interface to release storage. The default is a routine that uses the STORAGE (RELEASE) macro
to release the storage back to the operating system. If the RELEASE keyword is specified, then
the OBTAIN keyword must be specified.

It is passed these pointers in a parameter list addressed by register 1:
The work area
The four word user token (see USERTOKEN)
The word with the location of the storage to be released
The word with the length of the storage to be obtained.

These return codes are supported:
00 The storage was released.
04 The storage could not be released.

Standard calling conventions are used to call the routine in the same environment when the
EZBCTAPI interface was called.

,RETCODE=retcode

 Specifies the location where the interface return code is stored. The return code is also in
general purpose register (GPR) 15.

,REPORT=FULL
,REPORT=SHORT
,REPORT=SUMMARY
,REPORT=TALLY

 SHORT
 Formats the IP protocol headers. This includes the component mnemonic, entry identifier,
date and time, and a description of the trace record.

 SUMMARY
 Requests one line per trace record. Key fields from each qualifying trace record will be
printed following the date, time, and entry description.

 FULL
 Formats the IP protocol headers and packet data. This includes the component mnemonic,
entry identifier, date and time, and a description of the trace record. FULL is the default report
option.

 TALLY

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 33

 Requests a list of trace entry definitions for the component and counts how many times each
trace entry occurred.

,RSNCODE=rsncode
 Specifies the location where the interface reason code is stored. The reason code is also in
GPR 0. EZBCTAPI provides a reason code if the return code is other than 0.

,TABLE=name
 Specifies the location of the eight (8) character field that contains the name for the format
table (EZBPTFM4) or two words. The first word contains zeros and the second word contains
the entry point address of EZBPTFM4. If not specified or the name is not used, then the
EZBPTFM4 table is loaded. This may be useful to avoid the overhead of loading and deleting
this format table.

,TIME=GMT
,TIME=LOCAL
 Specifies the conversion of the time field in the component trace records. The default is
TIME=LOCAL.

GMT: The time is shown as Greenwich Mean Time
LOCAL: The time is shown as local time.

,USERTOKEN=token

 Specifies the location of a four (4) word field that is copied and passed to the print service
routine and the storage functions. The default is four words of zeros.

,WORKAREA=workarea

 The location of a 16K work area used by the interface for its control blocks, work area, and
save areas. The work area will be cleared by the SETUP function. This work area must remain
intact until the TERM or QUIT function is called. The work area cannot be shared across tasks.
Specification is optional; if not specified, a 16K work area is obtained.

,MF=(L,list_addr)
,MF=(L,list_addr,attr)

 Requests that a EZBCTAPI parameter list be defined. List_addr is the name assigned to the
list. attr is an optional attribute used to define the parameter list. The default is 0D. No other
keywords may be used with this macro format.

,MF=G

 Requests that the EZBCTAPI_t parameter list description be generated. No other keywords
may be used with this macro format.

,MF=(M,list_addr)
,MF=(M,list_addr,COMPLETE)

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 34

 Request that the EZBCTAPI parameter list be modified. COMPLETE requests that the
parameter list be zeroed before any modifications.

,MF=(E,list_addr)
,MF=(E,list_addr,COMPLETE)

 Requests that the EZBCTAPI parameter list be modified. COMPLETE requests that the
parameter list be zeroed before any modifications. In addition, for the SETUP function the
EZBCTAPI interface program is loaded and for the TERM and QUIT functions the interface
program is deleted (see the API keyword to modify this behavior). The interface program is then
called.
Note: COMPLETE does not apply to TERM and QUIT functions.

This matrix shows supported functions and keyword combinations.

 X XIUSERTOKEN
 X XITIME

XXITABLE
 XXXXORSNCODE
 XXXXORETCODE
 X XIREPORT
 X XIRELEASE
 X RIPRTSRV
 X XIOPTIONS
 X XIOBTAIN
 X XIMAXLINE

XXXXINMCTF
 X XILSO
 X XILDTO
 X R ICTE
 X XXICOMP
 XXX XIAPI
 X XIWORKAREA

MF(G) MF(L)MF(M) MF(E)
QUIT

MF(E)
TERM

MF(E)
FORMAT

MF(E)
SETUP

Input
/Output

Keyword

Legend:

 I Input parameter
 O Output parameter
 R Required parameter
 X Optional parameter

ABEND codes

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 35

None

Return and reason codes

When control returns from EZBCTAPI, GPR 15 (and retcode, if you coded RETCODE) contains
one of the following return codes. GPR 0 (and rsncode, if you coded RSNCODE) might contain
one of the following reason codes. The following table displays interface return and reason codes
and their meaning.

The interface routine or the analysis routine abended.
xxxxxxxx is the abend code.

xxxxxxxx18

The program was not able to obtain storage for the work
area

0414
Unable to obtain storage for a work area14
An error occurred loading the EZBCTAPI interface routine0810
The EZBCTAPI interface routine could not be found0410
Unable to load the function interface10
Unknown function code xxxx 0C
Unable to load analysis/format exit0508
Unable to allocate storage for tables0408
Unable to load format table0308
Print callback function was not provided0208
The SETUP function has already initialized the interface0108
The SETUP function was not successful08
The filter/analysis routine failed.1B04
The trace record could not be identified1804
The trace record is not the correct format1104
The SETUP function was not done or did not complete.1004
The FORMAT function was not successful04
Function was successful 00

Meaning Hexadecimal
reason code
(CtApi_IRsnCd)

Hexadecimal
return code
(CtApi_IRtnCd)

Formatter return and reason codes

Ending of the subcommand-10
No further calls to the format/analysis routine- 0C
The current entry is bypassed-08
Reread the records from the first-04
Normal processing of the entry- 00

Meaning Hexadecimal
reason code
(CtApi_FRsnCd)

Hexadecimal
return code
(CtApi_FRtnCd)

These are the return codes described in z/OS MVS Interactive Problem Control System (IPCS)
Customization for a CTRACE formatter filter/analysis exit. The packet trace formatter uses only
a return code of 0 or 8. The interface return code (CtApi_IRtnCd) is always 0 for formatter

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 36

return codes of 0, 4, 8, and 12, otherwise, an interface return code of 4 is returned (see interface
reason code x'1B').

To capture trace records, perform the following steps:
1. Update the TCP/IP profile to allow the copying of trace data: NETMONitor
PKTTRCService
2. Grant authority to an application program to capture trace data.

Make the program APF authorized, and
Define the user with BPX.SUPERUSER, or
Permit the user to access EZB.NETMGMT.sysname.tcpipname.SYSTCPDA

3. Start the application program
4. Issue Vary Tcpip,,PKTTRACE or Vary Tcpip,,DATTRACE commands to collect the
data of interest.

In the expansion of step 3 above, the application program will do the following:
Define the format options in the EZBYPTO control block, passed to EZBCTAPI.
Use the EZBCTAPI macro to setup the packet trace formatter interface.
Connect an AF_UNIX socket to the SYSTCPDA service (described in the preceding
chapter).
Allocate a 64K buffer.
In a loop, read a record from the AF_UNIX socket. The first word of each record
contains the length of the record. The record contains tokens that describe a TCP/IP
trace buffer that contains data to be copied.
Call EZBTMIC1 to copy the TCP/IP trace buffer to the application 64K buffer.
For a return value of zero or negative, read the next record from the AF_UNIX
socket.
The return value contains the amount of data moved into the buffer. The buffer
contains a series of Component Trace Entries (CTE). A CTE is described by the
ITTCTE data area.
Process each CTE in the buffer by calling the format function of EZBCTAPI, passing
the address of the CTE.
The length of each CTE is the unsigned halfword at the start of each CTE. A CTE
with a length of zero indicates the end of the buffer. This last halfword of zeros is not
included in the return value of the amount of data moved.
Loop to read the next record from the socket.

At termination, free the 64K buffer, close the socket, and call the TERM function of
EZBCTAPI.

Example

Initialize the EZBCTAPI exit environment.

* COPY EZBCTAPI
EZBCTSMP CSECT
 SAVE (14,12),,*
 LR 12,15 SET A BASE REGISTER
 USING EZBCTSMP,12
 LA 15,MAINSA CHAIN THE SAVE AREA

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 37

 ST 15,8(,13)
 ST 13,4(,15)
 LR 13,15
*/**/
/ INITIALIZE THE OPTIONS */
*/**/
PTO USING EZBYPTO,APTO MAP THE OPTIONS AREA
 XC APTO,APTO ZERO THE OPTIONS FLAGS AND PTRS
 LA 0,EZBYPTO_SZ SET LENGTH OF OPTIONS AREA
 STH 0,PTO.PTO_LENGTH
 LA 0,EZBYPTO_SZ-4
 STH 0,PTO.PTO_OFFSET
 MVC PTO.PTO_CBID,=A(PTO_EYEC)
* SET FORMAT(DETAIL) SEGMENT REASSEM STATS(DETAIL)
 OI PTO.PTO_FORMAT,L'PTO_FORMAT
 OI PTO.PTO_FMTDTL,L'PTO_FMTDTL
 OI PTO.PTO_STATS,L'PTO_STATS
 NI PTO.PTO_STCSUM,255-L'PTO_STCSUM SET STAT(DETAIL)
 OI PTO.PTO_REASM,L'PTO_REASM
 OI PTO.PTO_SEGMENT,L'PTO_SEGMENT
*
*
 OPEN (PRINTDCB,OUTPUT) OPEN THE PRINT FILE
*
 STORAGE OBTAIN,LENGTH=CTAPI_WKSIZE,ADDR=(8)
* GET STORAGE FOR ABDPL WORK AREA
*
* INTIALIZE THE EZBCTAPI PARAMETER LIST
 EZBCTAPI WORKAREA=(8), C
 COMP==CL8'SYSTCPDA', C
 PRTSRV==A(PRINTSRV), C
 OPTIONS=APTO, C
 REPORT=FULL, C
 TIME=LOCAL, C
 USERTOKEN=PRINTTKN, C
 MAXLINE==A(L'PRINTBUF-1), C
 MF=(M,CTAPIL,COMPLETE)
*
* GET A BUFFER FOR READING BUFFERS
*
 STORAGE OBTAIN,LENGTH=65635
 ST 1,ABUFFER31
*
* SET UP THE FORMATTER INTERFACE
*
 EZBCTAPI SETUP,MF=(E,CTAPIL), SET UP THE INTERFACE C
 RETCODE=RETCDE,RSNCODE=RETRSN
 LTR 15,15 DID THIS WORK
 BNZ ERROR
*
* READ IN A TOKEN
*
LOOP1 DS 0H
 CALL BPX1RED,(SOCKET, C
 ABUFFER,PRIMARYALET,LBUFTKN, C
 RETVAL,RETCDE,RETRSN),VL
 L 15,RETVAL
 LTR 15,15
 BNP EOF CLOSE SOCKET AND EXIT
*
* READ IN DATA BUFFERS
*
 ST 15,LBUFTKN
 CALL EZBTMIC1,(BUFTOKEN,LBUFTKN,RETVAL,RETCDE,RETRSN)

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 38

 L 15,RETVAL
 LTR 15,15 WAS DATA MOVED?
 BNZ LOOP1 NO, GET NEXT ONE
*
 L 3,ABUFFER31 GET ADDRESS THE BUFFER
 USING CTE,3 MAP THE BUFFERS
*
LOOP2 DS 0H
 LH 2,CTELENP GET LENGTH OF THIS RECORD
 N 2,=X'0000FFFF' ALLOW UP TO 64K RECORDS
 LTR 2,2 IS THIS THE END
 BNP LOOP1 YES, DO THE NEXT BUFFER
 EZBCTAPI FORMAT,CTE=CTE, C
 MF=(E,CTAPIL)
 ALR 3,2 POINT TO THE NEXT CTE
 B LOOP2 DO THE NEXT RECORD
*
EOF DS 0H
 STORAGE RELEASE,LENGTH=CTAPI_WKSIZE,ADDR=(8)
* GET STORAGE ABDPL WORK AREA
 EZBCTAPI TERM,MF=(E,CTAPIL)
 CLOSE (PRINTDCB)
 L 13,4(13)
 RETURN (14,12),RC=0
*
*
ERROR DS 0H
*
*
* DATA
*
 LTORG
MAINSA DC 18A(0)
 EZBCTAPI MF=(L,CTAPIL)
 EZBCTAPI MF=G
SOCKET DC F'0' FILE SYSTEM SOCKET NUMBER
ABUFFER DC A(BUFTOKEN)
PRIMARYALET DC F'0'
LBUFTKN DS F LENGTH OF BUFFER TOKEN
BUFTOKEN DS CL64 A BUFFER TOKEN
RETVAL DS F
RETCDE DS F
RETRSN DS F
BUFPTR DC 0F
 DC A(0,0) ALET, HI64BITS
ABUFFER31 DC A(0) ADDRESS OF THE BUFFER
*
APTO DS CL(EZBYPTO_SZ) SPACE FOR THE OPTIONS
*
PRINTTKN DC 0F TOKEN FOR PRINT SERVICE
 DC A(PRINTDCB)
 DC A(PRINTSA)
 DC A(PRINTBUF)
 DC A(0)
*
PRINTDCB DCB DDNAME=SYSPRINT,DSORG=PS,MACRF=PM, C
 RECFM=FBA,LRECL=133
*
PRINTBUF DS 0CL133 A PRINT BUFFER
PRINTCC DC C' '
PRINTDAT DC CL132' '
*
PRINTSA DC 18A(0) A SAVE AREA FOR PRINT SERVICE
*

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 39

*
*
 EJECT
PRINTSRV CSECT
 SAVE (14,12),,* SAVE REGISTERS
 LR 12,15 SET BASE REGISTER
 USING PRINTSRV,12 MAP IT
 LR 2,1 COPY PARM LIST POINTER
 USING PLIST,2
 LM 2,3,PLIST GET PLIST POINTERS
 USING PPR2,2
 USING PTKN,3
 LM 4,6,PTKN GET POINTERS TO STUFF
* 4 ===> DCB
* 5 ===> SAVE AREA
* 6 ===> PRINT BUFFER
 USING PBUF,6 .
 ST 5,8(,13) CHAIN THE SAVE AREAS
 ST 13,4(,5) .
 LR 5,13 .
*
 L 7,PPR2BUF GET ADDRESS OF THE BUFFER
 L 8,PPR2BUFL GET ITS LENGTH
*
 MVI PBUFLNE-1,C' ' BLANK IT ALL OUT
 MVC PBUFLNE,PBUFLNE-1 .
 LTR 8,8 IS THERE A LINE
 BNP PSRV0001 NO, JUST DO A BLANK LINE
 BCTR 8,0 TO EXECUTE LENGTH
 EX 8,COPYLINE COPY LINE OF TEXT
*
PSRV0001 DS 0H
* L 4,PTKNDCB GET ADDRESS OF PRINT DCB
 PUT (4),PBUF PRINT THE LINE OF TEXT
 L 13,4(,13) UNCHAIN THE SAVE AREAS
 RETURN (14,12),RC=0 RETURN TO CALLER
* INDICATE PRINT WAS OK
COPYLINE MVC PBUFLNE(0),0(7) COPY THE PRINT LINE
*
*
PPR2 BLSUPPR2 DSECT=YES PPR2 PARAMETER LIST
PLIST DSECT ,
PLPR2 DS A POINTER TO PPR2 PARM LIST
PLTKN DS A POINTER TO OUR TOKEN
*
PTKN DSECT , OUR TOKEN
PTKNDCB DS A POINTER TO THE DCB
PTKNSA DS A POINTER TO SAVE AREA
PTKNBUF DS A POINTER TO BUFFER AREA
*
PBUF DSECT , OUTPUT BUFFER
PBUFCC DS C CARRIAGE CONTROL
PBUFLNE DS CL132 OUTPUT LINE
*
 ITTCTE ,
 EZBYPTO COPY FORMAT OPTIONS
 END

Passing options to the Packet Trace formatter

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 40

The EZBYPTO macro describes a data area that may be passed using the EZBCTAPI OPTIONS
keyword. This data area contains flags, values, and pointers that describe packet trace formatter
options. The table below shows the option and field settings required to select the option.

These same options are available through the SYSTCPDA CTRACE formatter. You can find a
detailed explanation in z/OS Communications Server: IP Diagnosis.

Available EZBYPTO options

Pto_Stats=1;Pto_StcSum=0;TALLY
Pto_Summary=1;SUMMARY
Pto_Streams=1;Pto_StmSum=1;STREAMS(SUMMARY)
Pto_Streams=1;Pto_StmSum=0;STREAMS(DETAIL)
Pto_Streams=1;Pto_StrmBuf=nnnSTREAMS(nnn)
Pto_Stats=1;Pto_StcSum=1;STATISTICS(SUMMARY)
Pto_Stats=1;Pto_StcSum=0;STATISTICS(DETAIL)
Pto_SesRpt=Pto_SesState; Pto_Session=1;SESSION(STATE)

Pto_SesRpt=Pto_SesSummary;
Pto_Session=1;

SESSION(SUMMARY)

Pto_SesRpt=Pto_SesDetail;
Pto_Session=1;

SESSION(DETAIL)
Pto_Segment=0;NOSEGMENT
Pto_Segment=1;SEGMENT
Pto_ReAsm=0;NOREASSEMBLY
Pto_ReAsm=1;Pto_RsmSum=1REASSEMBLY(SUMMARY)
Pto_ReAsm=1;Pto_RsmSum=0REASSEMBLY(DETAIL)
Pto_ReAsm=1;Pto_MaxRsm=nnnnnREASSEMBLY(nnnnn)
Pto_Port@=Addr(list);Pto_Port#=nnPORT(list)
Pto_Addr@=Addr(list);Pto_Addr#=nnIPADDR(list)
Pto_Links@=Addr(list),Pto_Links#=nnINTERFACE
Pto_Dump=1;Pto_DmpCd=PtoHex;HEX

Pto_Dump=1,Pto_Format=1,Pro_FmtDtl=
1;

FULL
Pto_Format=1;Pto_FmtDtl=0;FORMAT(SUMMARY)
Pto_Format=1;Pto_FmtDtl=1;FORMAT(DETAIL)
Pto_Dump=1;Pto_DmpCd=PtoEbcdic;EBCDIC
Pto_Dump=1;Pto_MaxDmp=nnnnn;DUMP(nnnnn)
Pto_Dump=1;DUMP
Pto_Cleanup=1;Pto_GcIntvl=nnnnn;CLEANUP(nnnnn)
Pto_Dump=1;Pto_DmpCd=PtoBoth;BOTH
Pto_Basic=1;Pto_BasDtl=0;BASIC(SUMMARY)
Pto_Basic=1;Pto_BasDtl=1;BASIC(DETAIL)
Pto_Dump=1;Pto_DmpCd=PtoAscii;ASCII
Field settingOption

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 41

Notes:
1. A packet may span multiple trace records. When segmented records are encountered, the

SEGMENT option recreates the packet as a single trace record. The packet is not used
until the last trace segment record is passed to the formatter. Until that time, the packet is
saved in a temporary buffer. Use the NOSEGMENT option to prevent this. The
CLEANUP value can be used to free the temporary buffers for segments that will not be
completed. The QUIT or TERM function will free all unprocessed segments.

2. When the NOSEGMENT option is used only the first segment has the IP header and
protocol headers.

3. A packet may be fragmented. When you specify the REASSEMBLY option, the
formatter saves the fragments in a temporary buffer until all the fragments have been
processed to recreate the original complete packet. The packet is not used until the last
trace record is passed to the formatter. The CLEANUP value frees temporary buffers that
have not completed, for reassembly. The QUIT or TERM function frees all unprocessed
fragments.

4. Use the NOREASSEMBLY option to prevent this saving of records.
5. If the CLEANUP value is zero, then the temporary buffers are not released until the

QUIT or TERM function.
6. You can use the EZBYPTO options control block to request multiple reports.
7. Use of the EZBCTAPI TERM function creates the SESSION, STATISTICS and

STREAMS reports.

Using the formatter

There are two ways of passing the formatter truncated records so that trace records contain only
headers.

1. Use the ABBREV keyword of the PKTTRACE command to truncate traced records. No
matter the value of ABBREV, the record will always contain the IP header and protocol
header.

2. Shorten the data passed to the formatter. Use these steps:
a. Determine if the trace record is the first segment of packet. The sequence number

field of the header (PTH_SeqNum) will be zero. The record contains the IP header
and protocol header (if any). Otherwise the record just contains data.

b. Set the CTELENP field (the first halfword of a trace record) to the smaller of
CTELENP or the sum of the size of the CTEFDATA field, the size of the PTH_HDR
field, the size of the IP header and the size of the protocol header.

c. Set the PTO_SEGMENT flag to zero. The length also includes the two byte length
field CTELENE.

Records passed to the formatter must always contain at least the ITTCTE, PTHDR_t, the IP
header and the protocol header.

The header files and macros are described in the following tables.

ContentsMacros forHeader files for

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 42

Describes packet trace options for the
formatter.

EZBYPTOn/a

Packet trace header describing the
TCP/IP packets for types 4 and 5 trace
records.

EZBYPTHAEZBYPTHH

Packet trace header describing the
TCP/IP packet for types 1, 2, and 3
trace records.

EZBCTHDREZBYCTHH

Used to format the records created by
the SYSTCPDA interfaces.

EZBCTAPIn/a
Assembler programsC/C++ programs

These header files and macros are shipped in the hlq.SEZANMAC data set (hlq refers to the High
Level qualifier used when the product was installed on your system). This data set must be
available in the concatenation when compiling or assembling a part that makes use of these
definitions.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 43

Chapter 4 - Application interface for monitoring TCP/UDP
end points and TCP/IP storage

z/OS Communications Server provides a high-speed low-overhead callable programming
interface for network management applications to access data related to the TCP/IP stack.

Interface to request network management data from TCP/IPEZBNMIFR
DescriptionName

The EZBNMIFR interface can be invoked to obtain the following types of information:

Active TCP connections.

Active UDP end points.

Active TCP listeners.

TCP/IP storage utilization.

This chapter describes the details for invoking the EZBNMIFR interface with the defined input
parameters and for processing the output it provides.

Overview

EZBNMIFR is a callable interface: a program makes a call specifying a request buffer with
caller storage allocated to accommodate the returned response buffer. This callable interface to
collect data about TCP and UDP end points is a polling type of interface that will show status at
a given point in time for selected or all end points, as opposed to an asynchronous interface that
will present all state changes. The caller can specify filters to limit the returned data to a specific
set of information.

Configuration and enablement
There is no configuration required to enable this interface, as this is a polling interface.

EZBNMIFR - Request network management data from TCP/IP

Function

Request network management data from TCP/IP.

Requirements

Minimum authorization: Supervisor state, executing in system key, APF-authorized,
 or superuser
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=SASN=HASN
AMODE: 31- bit, or 64-bit

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 44

ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Not applicable
Control parameters: Must reside in an addressable area in the primary address space
 and must be accessible using caller's execution key

Format

Invoke EZBNMIFR, as follows:

 For C/C++ callers:

 EZBNMIFR(TcpipJobName,
 RequestResponseBuffer,
 &RequestResponseBufferAlet,
 &RequestResponseBufferLength,
 &ReturnValue,
 &ReturnCode,
 &ReasonCode);

 For Assembler callers:

 CALL EZBNMIFR,(TcpipJobName,
 RequestResponseBuffer,
 RequestResponseBufferAlet,
 RequestResponseBufferLength,
 ReturnValue,
 ReturnCode,
 ReasonCode)

Parameters

TcpipJobName
 Supplied and returned parameter

Type: Character
Length: Doubleword
The name of an 8-character field that contains the EBCDIC job name of the target
TCP/IP stack. If the first character of the supplied job name is an asterisk (*), the call is
made to the first active TCP/IP stack and its job name is returned.

RequestResponseBuffer
 Supplied parameter

Type: Character
Length: Variable
The name of the storage area that contains an input request. The input request must be in
the format of a request header (NWMHeader) as defined in the EZBNMRHC header file.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 45

On successful completion of the request, the storage will contain an output response in
the same format.

RequestResponseBufferAlet
 Supplied parameter

Type: Integer
Length: Fullword
The name of a fullword which contains the ALET of RequestResponseBuffer. If a
nonzero ALET is specified, the ALET must represent a valid entry in the caller's
dispatchable unit access list (DU-AL).

RequestResponseBufferLength
 Supplied parameter

Type: Integer
Length: Fullword
The name of a fullword which contains the length of request/response buffer.

ReturnValue
 Returned parameter

Type: Integer
Length: Fullword
The name of a fullword in which the EZBNMIFR service returns one of the following:

0 or positive, if the request is successful. A value greater than zero indicates the
number of output data bytes copied to the response buffer.
-1, if the request is not successful.

ReturnCode
 Returned parameter

Type: Integer
Length: Fullword
The name of a fullword in which the EZBNMIFR service stores the return code (errno).
The EZBNMIFR service returns ReturnCode only if ReturnValue is -1.

ReasonCode
 Returned parameter

Type: Integer
Length: Fullword
The name of a fullword in which the EZBNMIFR service stores the reason code (errnojr).
The EZBNMIFR service returns ReasonCode only if ReturnValue is -1. ReasonCode
further qualifies the ReturnCode value.

The EZBNMIFR service sets the following return codes and reason codes:

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 46

The request was not successful. An unexpected
error occurred.

JRTcpErrorETCPERR-1

The request was not successful. An invalid value
was specified in the request/response header.

JRInvalidValueEINVAL-1

The request was not successful. A program check
occurred while copying output parameters, or while
copying output data to the request/response buffer.

JRWriteUserStorageFailedEFAULT-1

The request was not successful. A program check
occurred while copying input parameters, or while
copying input data from the request/response
buffer.

JRReadUserStorageFailedEFAULT-1

The request was not successful. The target TCP/IP
stack was not active.

JRTCPNOTUPEAGAIN-1

The request was not successful. The caller is not
authorized.

JRSAFNotAuthorizedEACCES-1

The request was not successful. The
request/response buffer is too small to contain all of
the requested information. Some of the requested
information may be returned.

JRBuffTooSmall ENOBUFS-1
The request was successful.000
MeaningReasonCodeReturnCodeReturnValue

Network Management applications can use any of the following methods to invoke the
EZBNMIFR service:

1. Issue a LOAD macro to obtain the EZBNMIFR service entry point address, and
then CALL that address. The EZBNMIFR load module must reside in a linklist
data set (e.g. TCP/IP's SEZALOAD load library), or in LPA.

2. Issue a LINK macro to invoke the EZBNMIFR service. The EZBNMIFR load
module must reside in a linklist dataset (for example, TCP/IP's SEZALOAD load
library), or in LPA.

3. Link-edit EZBNMIFR directly into the application load module, and then CALL
the EZBNMIFR service. Include SYS1.CSSLIB(EZBNMIFR) in the application
load module link-edit.

TCP/IP Network Management Interface Request/Response Format
The general format of the request is:

The request header and the request section descriptors (triplets). A triplet consists of
the offset in bytes of the request section relative to the beginning of the request
buffer, the number of elements in the request section, and the length of a request
section element. The following requests can be made:

GetTCPListeners - obtain information about active TCP listeners.
GetUDPTable - obtain information about active UDP sockets.
GetConnectionDetail - obtain information about active TCP connections.
GetStorageStatistics - obtain information about TCP/IP storage utilization.

The request sections. The following types of request sections can be specified:

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 47

 Filters (optional) - A subset of TCP or UDP end points can be selected based on
any combination of the following items:

A 16-bit unsigned binary port number.Remote Port

A 16-bit signed binary value specifying the number of remote IP address bits to use,
e.g. a value of 12 means that the first 12 bits of a connection's remote IP address will
be compared to the first 12 bits of the remote IP address filter value. A value of 0
means that all address bits will be compared. A value greater than 32 for an IPv4
address, or greater than 128 for an IPv6 address, means that all address bits will be
compared.

Remote IP Address
Prefix

A 32-bit IPv4 address or a 128-bit IPv6 address. The remote IP address filter value is
specified as the IP address field within a sockaddr structure. The sockaddr address
family field must be set to indicate whether the remote IP address filter value is an
IPv4 address or an IPv6 address. For IPv4 connections, the remote IP address filter
value may be specified as either an IPv4 address (e.g. 9.1.2.3) or as an IPv4-mapped
IPv6 address (e.g. ::FFFF:9.1.2.3). For all connections, a null address may be
specified as either an IPv4 address (0.0.0.0), as an IPv4-mapped IPv6 address
(::FFFF:0.0.0.0), or as an IPv6 address (::).

Remote IP Address
A 16-bit unsigned binary port number.Local Port

A 16-bit signed binary value specifying the number of local IP address bits to use,
e.g., a value of 12 means that the first 12 bits of a connection's local IP address will
be compared to the first 12 bit of the local IP address filter value. A value of 0 means
that all address bits will be compared. A value greater than 32 for an IPv4 address, or
greater than 128 for an IPv6 address, means that all address bits will be compared.

Local IP Address Prefix

A 32-bit IPv4 address or a 128-bit IPv6 address. The local IP address filter value is
specified as the IP address field within a sockaddr structure. The sockaddr address
family field must be set to indicate whether the local IP address filter value is an IPv4
address or an IPv6 address. For IPv4 connections, the local IP address filter value
may be specified as either an IPv4 address (e.g., 9.1.2.3) or as an IPv4-mapped IPv6
address (e.g., ::FFFF:9.1.2.3). For all connections, a null address may be specified as
either an IPv4 address (0.0.0.0), as an IPv4-mapped IPv6 address (::FFFF:0.0.0.0), or
as an IPv6 address (::).

Local IP Address

A 32-bit unsigned binary TCP/IP resource identifier of the related server listening
connection.

Server Resource ID

A 32-bit unsigned binary TCP/IP resource identifier ("Client ID" in NETSTAT
displays).

Resource ID

An EBCDIC job name, right-padded with blanks if less then 8 characters long, of a
socket application address space ("Client Name" in NETSTAT displays). A question
mark can be used to wildcard a single character, and an asterisk can be used to
wildcard 0 or more characters. e.g. a value of A?C* will match all names with a first
character "A" and a third character "C", but will not match two-character names or
names beginning with "B" through "Z", etc.

Resource Name
A 16-bit address space number of a socket application address space.ASID
Filter item valueFilter item

You can specify up to a maximum of 4 filter elements. Each filter element can
contain any combination of the items listed in the table above. A filter element with
no applicable items matches any connection. A connection must match all items
specified in a filter element to pass that filter check; a connection must pass at least
one filter check to be selected. For example:

Filter definition example
2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 48

Two filters are defined:

1. Local IP Address = 9.0.0.1, Local Port = 5000
2. Resource Name = FTP*

The following TCP connections exist:

1. Resource Name = FTP1, Local IP Address = 9.0.0.2, Local Port =
5001

2. Resource Name = FTP2, Local IP Address = 9.0.0.1, Local Port =
5000

3. Resource Name = USR1, Local IP Address = 9.0.0.1, Local Port =
5002

When a GetConnectionDetail request is made, connection 1 is selected because it matches filter
2, connection 2 is selected because it matches filter 1, and connection 3 is not selected because it
does not match either filter.

Specifying no filters (triplet offset field is zero, or triplet element count field is zero, or triplet
element length field is zero) means that the caller is requesting information for all end points.

The following table shows which filter items are applicable for each request type. If you specify
inapplicable filters for a particular request type, they are ignored.

NoYesNoNo Remote port

NoYesNoNo Remote IP
address prefix

NoYesNoNo Remote IP
address

NoYesYesYesLocal port

NoYesYesYesLocal IP
address prefix

NoYesYesYesLocal IP
address

NoYesNoNo Server resource
ID

NoYesYesYesResource ID
NoYesYesYesResource name
NoYesYesYesASID

GetStorageStatisticsGetConnectionDetailGetUDPTableGetTCPListener
s

Filter items

The general format of the response is:

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 49

The response header, the request section descriptors (triplets), and the response
section descriptors (quadruplets).

A quadruplet consists of the offset in bytes of the response section relative to the
beginning of the response buffer, the number of elements in the response section,
the length of a response section element, and the total number of connections that
passed the request filter checks.
The response header has the number of bytes required to contain all the requested
data. When the return code is ENOBUFS, use this value to allocate a larger
request/response buffer and reissue the request.

The request sections.
The response sections. One of the following types of response section will be
returned:

TCP Connection Information
TCP Listener Information
UDP Connection Information
TCP/IP Storage Statistics

The EZBNMRHC header file contains the NMI request and response data structure definitions
for C/C++ programs. The EZBNMRHA macro contains the NMI request and response data
structure definitions for Assembler programs.

The C/C++ data structure definitions are:

Typedefs

 typedef unsigned int NWM_uint;
 typedef unsigned short NWM_ushort;
 typedef unsigned char NWM_uchar;
 typedef unsigned long long NWM_ull;

Triplet

 typedef struct /* Network Management Section Triplets */
 {
 NWM_uint NWMTOffset; /* Offset to section */
 NWM_uint NWMTLength; /* Length of each section element */
 NWM_uint NWMTNumber; /* Number of section elements */

 } NWMTriplet;

Quadruplet

typedef struct /* Network Management Output Quadruplet */
 {
 NWM_uint NWMQOffset; /* Offset to section */
 NWM_uint NWMQLength; /* Length of each section element */
 NWM_uint NWMQNumber; /* Number of section elements returned */
 NWM_uint NWMQMatch; /* Number section elements that
 matched filters */
 /* Number < Match implies that the output buffer is too small */

 } NWMQuadruplet;

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 50

Request/Response Header

typedef struct { /* Header overlay NWMHeader */
 NWM_uint NWMHeaderIdent; /* Header Identifier
 (required input) */

#define NWMHEADERIDENTIFIER 0xD5E6D4C8 /* EyeCatcher "NWMH" */
 NWM_uint NWMHeaderLength; /* Length of record header
 (required input) */
 NWM_ushort NWMVersion; /* NetWork Monitor Version
 (required input) */
#define NWMVERSION1 1 /* First version */
#define NWMCURRENTVER NWMVERSION1 /* Current version */
 NWM_ushort NWMType; /* NetWork Monitor Type
 (required input) */
#define NWMTCPCONNTYPE 1 /* TCP Connection Rec Type */
#define NWMTCPLISTENTYPE 2 /* TCP Listen Record Type */
#define NWMUDPCONNTYPE 3 /* UDP Connection Rec Type */
#define NWMSTGSTATSTYPE 4 /* Storage Rec Type */

NWM_uint NWMBytesNeeded; /* Length of buffer required to
 contain all requested data
 (output) */
 char NWMHeaderRsvd01[20]; /* Reserved */
 union {
 NWMTriplet NWMFiltersDesc;
#define NWM_FILTERNUMBER_MAX 4 /* Maximum number of filters */
 } NWMInputDataDescriptors; /* Input section descriptors
 (optional input) */
 union {

 /* The TCP Connection, TCP Listen, UDP Connection, and Storage */
 /* Statistics sections are only available on output */
 NWMQuadruplet NWMTCPConnDesc;
 NWMQuadruplet NWMTCPListenDesc;
 NWMQuadruplet NWMUDPConnDesc;
 } NWMOutputDataDescriptors; /* Output section descriptors
 (output) */
 } NWMHeader; /* NWMHeader */

Filter Element

 typedef struct {
 NWM_uint NWMFilterIdent; /* Identifier */
#define NWMFILTERIDENTIFIER 0xD5E6D4C6 /* EyeCatcher "NWMF" */
 NWM_uint NWMFilterFlags; /* Bit flags indicating the
 items included in the filter */
#define NWMFILTERRESNAMEMASK 0x80000000 /* Resource name included */
#define NWMFILTERRESIDMASK 0x40000000 /* Resource ID included */
#define NWMFILTERLCLADDRMASK 0x20000000 /* Local address included */
#define NWMFILTERLCLPORTMASK 0x10000000 /* Local port included */
#define NWMFILTERLCLPFXMASK 0x08000000 /* Local prefix included */
#define NWMFILTERRMTADDRMASK 0x04000000 /* Remote address included */
#define NWMFILTERRMTPORTMASK 0x02000000 /* Remote port included */
#define NWMFILTERRMTPFXMASK 0x01000000 /* Remote prefix included */
#define NWMFILTERASIDMASK 0x00800000 /* ASID included */
#define NWMFILTERLSRESIDMASK 0x00400000 /* Listening server
 resource ID included */
 char NWMFilterResourceName.8.; /* Resource name */
 /* All non-blank characters after a * wildcard are ignored */
 NWM_uint NWMFilterResourceId; /* Resource ID */
 NWM_uint NWMFilterListenerId; /* Listener resource ID */
 union {
 struct sockaddr_in NWMFilterLocalAddr4;

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 51

 /* AF INET address and port
 (sin_family=AF_INET) */
 struct sockaddr_in6 NWMFilterLocalAddr6;
 /* AF_INET6 address, port and
 scope
 (sin6_family=AF_INET6) */
 } NWMFilterLocal; /* Local Address Filter */
 union {
 struct sockaddr_in NWMFilterRemoteAddr4;
 /* AF_INET address and port
 (sin_family=AF_INET) */
 struct sockaddr_in6 NWMFilterRemoteAddr6;
 /* AF_INET6 address, port and
 scope
 (sin6_family=AF_INET6) */
 } NWMFilterRemote; /* Remote Address Filter */

 NWM_ushort NWMFilterLocalPrefix; /* Local Address prefix number */
 NWM_ushort NWMFilterRemotePrefix;/* Remote Address prefix number */
 NWM_ushort NWMFilterAsid; /* ASID */
 char NWMFilterRsvd01[42]; /* Reserved */

 } NWMFilter;

The following table displays which filter element fields contain filter item data.

ASIDNWMFilterAsid
Remote IP address prefixNWMFilterRemotePrefix
Local IP address prefixNWMFilterLocalPrefix
Remote IP address and remote portNWMFilterRemote
Local IP address and local portNWMFilterLocal
Server resource IDNWMFilterListenerId
Resource IDNWMFilterResourceId
Resource nameNWMFilterResourceName
Filter itemData item

TCP Connection Element

 typedef struct {
 NWM_uint NWMConnIdent; /* Identifier */
#define NWMTCPCONNIDENTIFIER 0xD5E6D4C3 /* EyeCatcher "NWMC" */
 union {
 struct sockaddr_in NWMConnLocalAddr4;
 /* AF_INET address */
 struct sockaddr_in6 NWMConnLocalAddr6;
 /* AF_INET6 address */
 } NWMConnLocal; /* Local Address */
 union {
 struct sockaddr_in NWMConnRemoteAddr4;
 /* AF_INET address */
 struct sockaddr_in6 NWMConnRemoteAddr6;
 /* AF_INET6 address */
 } NWMConnRemote; /* Remote Address */

 NWM_ull NWMConnStartTime; /* Connection start time */
 NWM_ull NWMConnLastActivity; /* Last time of connection
 activity */
 NWM_ull NWMConnBytesIn; /* Bytes received */
 NWM_ull NWMConnBytesOut; /* Bytes sent */
 NWM_ull NWMConnInSegs; /* Segments received */
 NWM_ull NWMConnOutSegs; /* Segments sent */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 52

 NWM ushort NWMConnState; /* State of the TCP Connection */
#define NWMTCPSTATEKLOSED 1
#define NWMTCPSTATELISTEN 2
#define NWMTCPSTATESYNSENT 3
#define NWMTCPSTATESYNRCVD 4
#define NWMTCPSTATEESTAB 5
#define NWMTCPSTATEFINWAIT1 6
#define NWMTCPSTATEFINWAIT2 7
#define NWMTCPSTATECLOSWAIT 8
#define NWMTCPSTATELASTACK 9
#define NWMTCPSTATECLOSING 10
#define NWMTCPSTATETIMEWAIT 11
#define NWMTCPSTATEDELETTCB 12
 NWM_uchar NWMConnActiveOpen; /* 0->Passive open (remote end
 issued connect())
 1->Active open (local end
 issued connect()) */
 NWM_uchar NWMConnRsvd01; /* Reserved */
 NWM_uint NWMConnOutBuffered; /* Number output bytes buffered */
 NWM_uint NWMConnInBuffered; /* Number incoming bytes buffered*/
 NWM_uint NWMConnMaxSndWnd; /* Max send window size */
 NWM_uint NWMConnReXmtCount; /* Number retransmitted segments */
 NWM_uint NWMConnCongestionWnd; /* Congestion window size */
 NWM_uint NWMConnSSThresh; /* Slow-start threshold */
 NWM_uint NWMConnRoundTripTime; /* RTT average */
 NWM_uint NWMConnRoundTripVar; /* RTT variance */
 NWM_uint NWMConnSendMSS; /* Max send segment size */
 NWM_uint NWMConnSndWnd; /* Send window */
 NWM_uint NWMConnRcvBufSize; /* Receive buffer size */
 NWM_uint NWMConnSndBufSize; /* Send buffer size */
 NWM_uint NWMConnOutOfOrderCount; /* Number out-of-order segments
 received */
 NWM_uint NWMConnLcl0WindowCount; /* Number of times local
 window size set to 0 */
 NWM_uint NWMConnRmt0WindowCount; /* Number of times remote
 window size set to 0 */
 NWM_uint NWMConnDupacks; /* Number of duplicate ACKs
 received */
 NWM_ushort MWNConnRsvd02; /* Reserved */
 NWM_ushort MWNConnAsid; /* ASID of address space
 that opened connection */
 char NWMConnResourceName.8.; /* Jobname of address space
 that opened connection */
 NWM_uint NWMConnResourceId; /* TCP/IP connection ID */
 NWM_uint NWMConnSubtask; /* Address of TCB in address space
 that opened connection */
 NWM_uchar NWMConnSockOpt; /* Socket options */
#define NWMConnSOCKOPT_SO_REUSERADDR 0x80 /* SO_REUSERADDR */
#define NWMConnSOCKOPT_SO_OOBONLINE 0x40 /* SO_OOBONLINE */
#define NWMConnSOCKOPT_SO_LINGER 0x20 /* SO_LINGER */
#define NWMConnSOCKOPT_T_MSGDONTROUTE 0x10 /* T_MSG_DONTROUTE */
#define NWMConnSOCKOPT_NO_DELAY 0x08 /* No delay (Nagle off) */
#define NWMConnSOCKOPT_SO_KEEPALIVE 0x04 /* SO_KEEPALIVE */
#define NWMConnSOCKOPT_TIMING_LINGER 0x02 /* Current timing linger */
#define NWMConnSOCKOPT_TIMING_KEEPALI 0x01 /* Current timing keep ali*/
 NWM_uchar NWMConnSockOpt6; /* */
#define NWMConnSOCKOPT_UNICAST_HOPS 0x80 /* Unicast Hops set */
#define NWMConnSOCKOPT_USEMINMTU 0x40 /* UseMinMtu set */
#define NWMConnSOCKOPT_RCVHOPLIM 0x20 /* RcvHopLim set */
#define NWMConnSOCKOPT_V6ONLY 0x10 /* v6Only sock opt */
 NWM_uchar NWMConnClusterConnFlag; /* Sysplex socket flags */
#define NWMConnINTERNALCLUSTER 0x08 /* Internal */
#define NWMConnSAMEIMAGE 0x04 /* Same image */
#define NWMConnSAMECLUSTER 0x02 /* Same cluster */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 53

#define NWMConnNOCLUSTER 0x01 /* None */
 NWM_uchar NWMConnProto; /* 0=Non-TELNET connection */
#define NWMConnPROTO_TN3270E 0x04 /* TN3270E mode */
#define NWMConnPROTO_TN3270 0x02 /* TN3270 mode */
#define NWMConnPROTO_LINE_MODE 0x01 /* Line mode */
 char NWMConnTargetAppl[8]; /* TELNET target application name*/

 char NWMConnLuName[8]; /* TELNET LU name */
 char NWMConnClientUserId[8]; /* TELNET user client name */
 char NWMConnLogMode[8];]/* TELNET LOGMODE name */
 NWM_uint NWMConnTimeStamp; /* Most recent timestamp from
 partner */
 NWM_uint NWMConnTimeStampAge; /* When most recent timestamp
 from partner was updated */
 NWM_uint NWMConnServerResourceId; /* Resource ID of related
 load-balancing server */
 char NWMConnIntfName[16]; /* Interface name */

 } NWMConnEntry;

The following table displays the data returned in TCP connection element fields.

Send Window size.NWMConnSndWnd
Maximum Segment Size we can send.NWMConnSendMSS
Round trip time variance.NWMConnRoundTripVar

The amount of time that has elapsed, in milliseconds, from when the last
TCP segment was transmitted by the TCP Stack until the ACK was
received.

NWMConnRoundTripTime
Slow start threshold.NWMConnSSThresh
Congestion window size.NWMConnCongestionWnd
Number of times segments have been retransmitted.NWMConnReXmtCount
Maximum send window size.NWMConnMaxSndWnd
Number of incoming bytes buffered.NWMConnInBuffered
Number of outgoing bytes buffered.NWMConnOutBuffered

Type of open performed:
- 0=Passive open (remote end initiated the connection)
- 1=Active open (local end initiated the connection)

NWMConnActiveOpen

The state of the TCP Connection:
- 3=Syn sent
- 4=Syn received
- 5=Established
- 6=FIN wait 1
- 7=FIN wait 2
- 8=Close wait
- 9=Last Ack
- 10=Closing

NWMConnState
The number of segments sent to IP for this connection.NWMConnOutSegs
The number of segments received from IP for this connection.NWMConnInSegs
The number of bytes sent to IP for this connection.NWMConnBytesOut
The number of bytes received from IP for this connection.NWMConnBytesIn

The time, in MVS TOD clock format, of the last activity on this
connection.

NWMConnLastActivity
The time, in MVS TOD clock format, when this connection was started. NWMConnStartTime

The remote IP address and port, in sockaddr format, for this TCP
connection.

NWMConnRemote
The local IP address and port, in sockaddr format, for this TCP connection.NWMConnLocal
DescriptionData Item

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 54

Name of the interface over which the last outbound segment was sent.NWMConnIntfName

The numeric identification of the server (i.e., listener connection)
associated with this client connection, if any.

NWMConnServerResourceId

Time, in milliseconds, when most recent timestamp from partner was
updated.

NWMConnTimeStampAge

Most recent timestamp value, in milliseconds, received from the remote
side of the connection.

NWMConnTimeStamp

The VTAM Logmode if the TCP connection is for a TN3270 or TN3270E
session.

NWMConnLogMode

The Client's userid if the TCP connection is for a TN3720 or TN3270E
session.

NWMConnClientUserId

The VTAM LU name if the TCP connection is for a TN3270 or TN3270E
session.

NWMConnLuName

The Target VTAM Application name if the TCP connection is for a
TN3720 or TN3270E session.

NWMConnTargetAppl

This flag will indicates the following Telnet modes:
-bit(1 - 5) = <reserved>
-bit(6) = TN3270E mode
-bit(7) = TN3270 mode
-bit(8) = line mode

NWMConnProto

This flag contains sysplex cluster connection types for this connection:
-bit(1) = getsockopt(clusterconntype) requested
-bit(2 - 4) = <reserved>
-bit(5) = cluster internal
-bit(6) = same image
-bit(7) = same cluster
-bit(8) = none

NWMConnClusterConnFlag

Socket option flags:
-bit(1) = Unicast Hops set
-bit(2) = UseMinMtu set
-bit(3) = RcvHopLim set
-bit(4) = v6Only

NWMConnSockOpt6

Socket option flags:
-bit(1) = SO_REUSEADDR option
-bit(2) = SO_OOBINLINE option
-bit(3) = SO_LINGER option
-bit(4) = T_MSGDONTROUTE
-bit(5) = No delay (Nagle off) option
-bit(6) = SO_Keepalive option
-bit(7) = Currently timing linger
-bit(8) = Currently timing keep alive

NWMConnSockOpt
The address of the TCB in the address space that opened the socket.NWMConnSubtask

Resource ID is the numeric identification of this resource. This value is
also known as the connection ID.

NWMConnResourceID

Resource Name is the text identification of this resource. It represents the
user who opened the socket and is updated again during the bind
processing.

NWMConnResourceName
The MVS Address space ID of the address space that opened the socket..NWMConnAsid
Number of duplicate ACKs received for this connection.NWMConnDupacks
The number of times remote window size closed to 0.NWMConnRmt0WindowCount
The number of times local window size closed to 0.NWMConnLcl0WindowCount
The number of out-of-order segments received.NWMConnOutOfOrderCount
Receive buffer size.NWMConnRcvBufSize

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 55

TCP Listener Element

 typedef struct {
 NWM_uint NWMTCPLIdent; /* Identifier */
#define NWMTCPLISTENIDENTIFIER 0xD5E6D4E3 /* EyeCatcher "NWMT" */
 union {
 struct sockaddr_in NWMTCPLLocalAddr4;
 /* AF_INET address */
 struct sockaddr_in6 NWMTCPLLocalAddr6;
 /* AF_INET6 address */
 } NWMTCPLLocal; /* Local Address */
 NWM_ushort NWMTCPLRsvd01; /* Reserved */
 NWM_ushort NWMTCPLAsid; /* ASID */
 char NWMTCPLResourceName.8.; /* Resource name */
 NWM_uint NWMTCPLResourceID; /* Resource ID */
 NWM_uint NWMTCPLSubtask; /* Address of TCB in address space
 that opened connection */
 NWM_uint NWMTCPLAcceptCount; /* Number connections accepted */
 NWM_uint NWMTCPLExceedBacklog; /* Number connections dropped */
 NWM_uint NWMTCPLCurrBacklog; /* Current connections in backlog*/
 NWM_uint NWMTCPLMaxBacklog; /* Max backlogs allowed */
 NWM_uint NWMTCPLCurrActive; /* Number of current connections */
 NWM_ull NWMTCPLStartTime; /* Listener start time */
 NWM_ull NWMTCPLLastActivity; /* Last time connection processed*/
 NWM_ull NWMTCPLLastReject; /* Last time connection rejected
 due to backlog exceeded */
 } NWMTCPListenEntry ;

The following table displays the data returned in TCP Listener element fields.

The time, in MVS TOD clock format, that a connection was last rejected due to
backlog exceeded.

NWMTCPLLastReject
The time, in MVS TOD clock format, that a connection was last processed.NWMTCPLLastActivity
The time, in MVS TOD clock format, that the listener started.NWMTCPLStartTime
The number of current connections.NWMTCPLCurrActive
The maximum number of connections allowed in backlog at one time.NWMTCPLMaxBacklog
The current number of connections in backlog.NWMTCPLCurrBacklog

The total number of connections dropped by this listener due to backlog
exceeded.

NWMTCPLExceedBacklog
The total number of connections accepted by this listener.NWMTCPLAcceptCount
The address of the TCB in the address space that opened the socket.NWMTCPLSubtask

Resource ID is the numeric identification of this resource. This value is also
known as the connection ID.

NWMTCPLResourceID

Resource Name is the text identification of this resource. It represents the user
who opened the socket and is updated again during the bind processing.

NWMTCPLResourceName
The MVS Address space ID of the address space that opened the socket..NWMTCPLAsid

The local IP address and port, in sockaddr format, for this TCP connection. In the
case of a listener which is willing to accept connections for any IP interface
associated with the node, an IP address of INADDR_ANY or IN6ADDR_ANY is
used.

NWMTCPLLocal
DescriptionData Item

UDP Connection Element

 typedef struct {

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 56

 NWM uint NWMUDPCIdent; /* Identifier */
#define NWMUDPCONNIDENTIFIER 0xD5E6D4E4 /* EyeCatcher "NWMU */
 union {
 struct sockaddr_in NWMUDPCLocalAddr4;
 /* AF_INET address */
 struct sockaddr_in6 NWMUDPCLocalAddr6;
 /* AF_INET6 address */
 } NWMUDPCLocal; /* Local Address */
 union {
 struct sockaddr_in NWMUDPCRemoteAddr4;
 /* AF_INET address */
 struct sockaddr_in6 NWMUDPCRemoteAddr6;
 /* AF_INET6 address */
 } NWMUDPCRemote; /* Remote Address */
 NWM_ull NWMUDPCStartTime; /* Connection start time */

 NWM_ull NWMUDPCLastActivity; /* Last time of connection
 activity */
 NWM_ull NWMUDPCDgramIn; /* Number datagrams received */
 NWM_ull NWMUDPCBytesIn; /* Number byptes received */
 NWM_ull NWMUDPCDgramOut; /* Number datagrams sent */
 NWM_ull NWMUDPCBytesOut; /* Number byptes sent */
 NWM_ushort NWMUDPCRsvd01; /* Reserved */
 NWM_ushort NWMUDPCAsid; /* ASID */
 char NWMUDPCResourceName[8]; /* Resource name */
 NWM_uint NWMUDPCResourceId; /* Resource Identifier */
 NWM_uint NWMUDPCSubtask; /* Hexadecimal subtask number */

 NWM_uchar NWMUDPCSockOpt; /* Socket options */
#define NWMUDPCSOCKOPT_BROADCAST 0x80 /* Allow broadcast */
#define NWMUDPCSOCKOPT_LOOPBACK 0x40 /* Allow loopback */
#define NWMUDPCSOCKOPT_BYPASSRTE 0x20 /* Bypass Normal Routing */
#define NWMUDPCSOCKOPT_ICMPFWD 0x10 /* Forward ICMP (PASCAL) */
#define NWMUDPCSOCKOPT_SENDMULTI 0x08 /* Allow outgoing multicast */
#define NWMUDPCSOCKOPT_RECVMULTI 0x04 /* Allow incoming multicast */

 NWM_uchar NWMUDPC6SockOpt1; /* Socket option1 */
#define NWMUDPC6SOCKOPT1_AF_INET6 0x80 /* AF_INET6 family */
#define NWMUDPC6SOCKOPT1_V6ONLY 0x40 /* IPV6_V6ONLY */
#define NWMUDPC6SOCKOPT1_RCVPKT 0x20 /* IPV6_RECVPKTINFO */
#define NWMUDPC6SOCKOPT1_RCVHOP 0x10 /* IPV6_RECVHOPLIMIT */
#define NWMUDPC6SOCKOPT1_MINMTU 0x08 /* IPV6_USE_MIN_MTU */
#define NWMUDPC6SOCKOPT1_SENDPKTADDR 0x04 /* IPV6_PKTINFO src IP@ */
#define NWMUDPC6SOCKOPT1_SENDPKTINTF 0x02 /* IPV6_PKTINFO PIF index */
#define NWMUDPC6SOCKOPT1_HOPLIMIT 0x01 /* IPV6_UNICAST_HOPS */
 NWM_uchar NWMUDPC6SockOpt2; /* Socket option2 */
#define NWMUDPC6SOCKOPT1_USEMINMTU 0x80 /* IPV6_USE_MIN_MTU */
 NWM_uchar NWMUDPCRsvd02; /* Reserved */
 NWM_uint NWMUDPCSendLim; /* Send limit */
 NWM_uint NWMUDPCRecvLim; /* Receive Limit */
 NWM_uint NWMUDPCReadQueueCount; /* Number of datagrams on
 read queue */
 NWM_uint NWMUDPCReadQueueByteCount; /* Number of data bytes
 read queue */
 NWM_uint NWMUDPCReadQueueLimit; /* Maximum number of
 datagrams allowed on
 read queue */
 NWM_uint NWMUDPCReadQueueByteLimit; /* Maximum number of
 data bytes allowed on
 read queue */
 NWM_uint NWMUDPCReadQueueLimitDiscards; /* Number of datagrams
 discarded due to
 queue limits */
 } NWMUDPConnEntry;

The following table displays the data returned in UDP connection element fields.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 57

Number of datagrams discarded due to queue limits.NWMUDPCReadQueueLimitDiscards
Maximum number of data bytes allowed on read queue.NWMUDPCReadQueueByteLimit
Maximum number of datagrams allowed on read queue.NWMUDPCReadQueueLimit
Number of data bytes on read queue.NWMUDPCReadQueueByteCount
Number of datagrams on read queue.NWMUDPCReadQueueCount
Maximum received datagram size.NWMUDPCRecvLim
Maximum transmit datagram size.NWMUDPCSendLim

IPv6 UDP Socket Options:
-bit(1) = IPv6 Use minimum MTU

NWMUDPC6SockOpt2

IPv6 UDP Socket options:
-bit(1) = AF_INET6 family
-bit(2) = IPV6_V6ONLY
-bit(3) = IPV6_RCVPKT
-bit(4) = IPV6_RCVHOP
-bit(5) = IPV6_MINMTU
-bit(6) = IPV6_SENDPKTADDR
-bit(7) = IPV6_SENDPKTINTF
-bit(8) = IPV6_HOPLIMIT

NWMUDPC6SockOpt1

IPv4 UDP Socket options:
-bit(1) = allow broadcast address
-bit(2) = allow loopback of datagrams
-bit(3) = bypass normal routing
-bit(4) = forward ICMP message (Pascal)
-bit(5) = outgoing multicast datagrams
-bit(6) = incoming multicast datagrams
-bit(7) = <reserved>
-bit(8) = <reserved>

NWMUDPCSockOpt
The address of the TCB in the address space that opened the socket.NWMUDPCSubtask

Resource ID is the numeric identification of this resource. This value
is also known as the connection ID.

NWMUDPCResourceID

Resource Name is the text identification of this resource. It represents
the user who opened the socket and is updated again during the bind
processing.

NWMUDPCResourceName

The MVS Address space ID of the address space that opened the
socket.

NWMUDPCAsid
Number of bytes sent.NWMUDPCBytesOut
Number of sent datagrams.NWMUDPCDgramOut
Number of bytes received.NWMUDPCBytesIn
Number of received datagrams.NWMUDPCDgramIn

The time, in MVS TOD clock format, of the last activity on this
connection.

NWMUDPCLastActivity

The time, in MVS TOD clock format, when this connection was
started.

NWMUDPCStartTime

The remote IP address and port in sockaddr format, for this UDP
connection. If no connect() was done, this sockaddr will contain all
zeroes.

NWMUDPCRemote

The local IP address and port, in sockaddr format, for this UDP
connection.

NWMUDPCLocal
DescriptionData Item

TCP/IP Storage Statistics Element

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 58

 typedef struct {
 NWM_uint NWMStgIdent; /* Identifier */
#define NWMSTORAGESTATSIDENTIFIER 0xD5E6D4E2 /* EyeCatcher "NWMS" */
 NWM_uint NWMStgRsvd01; /* Reserved */
 NWM_ull NWMStgECSACurrent; /* Current number of ECSA storage
 bytes allocated */
 NWM_ull NWMStgECSAMax; /* Maximum number of ECSA storage
 bytes allocated since the
 TCP/IP stack was started */
 NWM_ull NWMStgECSALimit; /* Maximum number of ECSA storage
 bytes allowed as specified on
 the GLOBALCONFIG statement in
 the TCP/IP profile
 A value of zero indicates that
 there is no limit */
 NWM_ull NWMStgPrivateCurrent; /* Current number of authorized
 private subpool storage bytes
 allocated */
 NWM_ull NWMStgPrivateMax; /* Maximum number of authorized
 private subpool storage bytes
 allocated since the TCP/IP
 stack was started */
 NWM_ull NWMStgPrivateLimit; /* Maximum number of authorized
 private subpool storage bytes

 allowed as specified on the
 GLOBALCONFIG statement in the
 TCP/IP.profile. A value of zero
 indicates that there is no
 limit */
 } NWMStgStatEntry;

The following table displays the data returned in TC/IP storage statistics element fields.

Maximum number of authorized private subpool storage bytes allowed as
specified on the GLOBALCONFIG statement in the TCP/IP.profile. A
value of zero indicates that there is no limit.

NWMStgPrivateLimit

Maximum number of authorized private subpool storage bytes allocated
since the TCP/IP stack was started.

NWMStgPrivateMax
Current number of authorized private subpool storage bytes allocated.NWMStgPrivateCurrent

Maximum number of ECSA storage bytes allowed as specified on the
GLOBALCONFIG statement in the TCP/IP profile. A value of zero indicates that
there is no limit.

NWMStgECSALimit

Maximum number of ECSA storage bytes allocated since the TCP/IP stack
was started.

NWMStgECSAMax
Current number of ECSA storage bytes allocated.NWMStgECSACurrent
DescriptionData Item

The header file and macro are described in the following table:

ContentsMacros for
Assembler programs

Header file for C/C++
programs

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 59

The NMI request and response data
structure definitions.

EZBNMRHAEZBNMRHC

These header files and macros are shipped in the hlq.SEZANMAC data set (hlq refers to the High
Level qualifier used when the product was installed on your system). This data set must be
available in the concatenation when compiling or assembling a part that makes use of these
definitions.

Example

The following C/C++ code fragment shows how to format a request to obtain TCP connection
information using the filters in the Filter definition example (which starts on page 48):

 /**/
 /* */
 /* NMI data definitions */
 /* */
 /**/
 typedef struct {
 NWMHeader NMIheader;
 NWMFilter NMIfilter[2];
 } NMIbuftype;
 NMIbuftype *NMIbuffer;
 unsigned int NMIalet;
 int NMIlength;
 int RV;
 int RC;
 unsigned int RSN;
#define NMIBUFSIZE 8192
 NMIbuffer=malloc(NMIBUFSIZE);
 NMIalet=0;
 NMIlength=NMIBUFSIZE;
 /**/
 /* */
 /* Format the header */
 /* */
 /**/
 NMIbuffer->NMIheader.NWMHeaderIdent=NWMHEADERIDENTIFIER;
 NMIbuffer->NMIheader.NWMHeaderLength=sizeof(NWMHeader);
 NMIbuffer->NMIheader.NWMVersion=NWMVERSION1;
 NMIbuffer->NMIheader.NWMType=NWMTCPCONNTYPE;
 NMIbuffer->NMIheader.NWMBytesNeeded=0;
 NMIbuffer->NMIheader.NWMInputDataDescriptors.\
 NWMFiltersDesc.NWMTOffset=sizeof(NWMHeader);
 NMIbuffer->NMIheader.NWMInputDataDescriptors.\
 NWMFiltersDesc.NWMTLength=sizeof(NWMFilter);
 NMIbuffer->NMIheader.NWMInputDataDescriptors.\
 NWMFiltersDesc.NWMTNumber=2;
 /**/
 /* */
 /* Format filter 1 */
 /* */
 /**/
 NMIbuffer->NMIfilter[1].NWMFilterIdent=NWMFILTERIDENTIFIER;
 NMIbuffer->NMIfilter[1].NWMFilterFlags=NWMFILTERLCLADDRMASK|\
 NWMFILTERLCLPORTMASK;

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 60

 NMIbuffer->NMIfilter[1].NWMFilterLocal.\
 NWMFilterLocalAddr4.sin_family=AF_INET;
 NMIbuffer->NMIfilter[1].NWMFilterLocal.\
 NWMFilterLocalAddr4.sin_port=5000;
 NMIbuffer->NMIfilter[1].NWMFilterLocal.\
 NWMFilterLocalAddr4.sin_addr.s_addr=0x09000001;
 /**/
 /* */
 /* Format filter 2 */
 /* */
 /**/
 NMIbuffer->NMIfilter[2].NWMFilterIdent=NWMFILTERIDENTIFIER;
 NMIbuffer->NMIfilter[2].NWMFilterFlags=NWMFILTERRESNAMEMASK;
 NMIbuffer->NMIfilter[2].NWMFilterResourceName="FTP* ";
 memcpy(NMIbuffer->NMIfilter[2].NWMFilterResourceName,"FTP* ",8);
 /**/
 /* */
 /* Invoke NMI service */
 /* */
 /**/
 EZBNMIFR(TcpipJobName,NMIbuffer,&NMIalet,&NMIlength,&RV,&RC,&RSN);

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 61

Chapter 5 - Application interface for SNA network
monitoring data
z/OS Communications Server VTAM provides a single AF_UNIX socket interface for allowing network
management applications to obtain the following types of data:

Enterprise Extender (EE) connection data: information about all EE connections or a desired
set of EE connections as specified by the application using the local IP address or hostname
and/or the remote IP address or hostname.
Enterprise Extender summary data: information comprising a summary of EE activity for this
host.
High Performance Routing (HPR) connection data: information about specific HPR
connections Rapid Transport Protocol physical units (RTP PUs) as specified by the
application using either 1) the RTP PU name, or 2) the RTP partner CP name with an
optional APPN COS specification. These RTP PUs are not limited to those using EE
connections.
Common Storage Manager (CSM) statistics: CSM storage pool statistics and CSM summary
information.

Overview

The SNA Network Management Interface is a client network management application polls for
information through specific requests via an AF_UNIX streams socket connection using VTAM as the
server for that socket. The requested data is provided to the application directly via the AF_UNIX streams
socket connection. This interface does not support IPv6 addresses in z/OS Communications Server V1R4.

Configuration

The z/OS system administrator may restrict access to this interface by defining the RACF (or equivalent
external security manager product) resource IST.NETMGMT.sysname.vtamprocname.SNAMGMT in the
SERVAUTH class.

sysname represents the MVS system name where the interface is being invoked.

vtamprocname represents the job name associated with the VTAM started task procedure.
For applications that use the interface, the MVS user ID is permitted to the defined resource. If the
resource is not defined, then only superusers (users permitted to BPX.SUPERUSER resource in the
FACILITY class) are permitted to it. If you are developing a feature for a product to be used by other
parties, include instructions in your documentation indicating that either administrators must define and
give appropriate permission to the given security resource to use that feature, or you must run your
program as superuser.

Requirements:
1. The administrator must define an OMVS segment for VTAM if one is not already defined.
2. The VTAM OMVS user ID must have write access to the /var directory.

Enabling and disabling the interface

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 62

You can enable the SNA Network Monitoring data interface by setting the VTAM start option
SNAMGMT to YES, and you can disable the interface by setting the VTAM start option SNAMGMT to
NO. The default for this start option is NO, and the start option is modifiable after VTAM is started. This
start option may be specified in any of the following ways:

Using the START command for VTAM
1. IBM default value is NO
2. Within the supplemental VTAM Start list (ATCSTRxx, if LIST=xx entered) as
 SNAMGMT=YES or SNAMGMT=NO
3. START command options entered by operator as SNAMGMT=YES or
 SNAMGMT=NO

Using the MODIFY VTAMOPTS command
MODIFY vtamprocname,VTAMOPTS,SNAMGMT=YES
MODIFY vtamprocname,VTAMOPTS,SNAMGMT=NO

The current value of the SNAMGMT start option is displayable using any of the following VTAM
DISPLAY commands:

DISPLAY NET,VTAMOPTS
DISPLAY NET,VTAMOPTS,OPTION=SNAMGMT
DISPLAY NET,VTAMOPTS,FUNCTION=VTAMINIT

Connecting to the server

The application wishing to make use of this interface must connect to the AF_UNIX streams socket
provided by the VTAM server for this interface. The socket pathname is /var/sock/SNAMGMT.

Either the LE C/C++ API or the UNIX System Services BPX services may be used to create AF_UNIX
sockets and connect to this service.

When an application connects to the socket, the VTAM server will send an Initialization record to the
client application. When VTAM closes a client connection (reasons for doing so include severe errors in
the format of data requests sent by the application to the VTAM server, the disabling of the interface by
the VTAM operator, and VTAM termination), VTAM will attempt to send a termination record to the
client application before closing the connection. Both the Initialization and Termination Records
conform in structure to the solicited response records sent by VTAM to the application (see SNA
Network Management Interface (NMI) Request/Response Format, below).

The initialization record contains the following information:

VTAM level

Time and date VTAM was started

Flags indicating functions supported by this VTAM

The termination record contains the following information:

Return Code

Reason Code

SNA Network Management Interface (NMI) Request/Response Format

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 63

This interface uses a request/response method over the socket. The application will build and send an
NMI request over the socket. The request specifies the type of information to be received and may
contain data filters. The application must issue a receive to get the NMI response over the socket. The
NMI response will provide either 1) data that satisfies the request (matching any input filters specified on
the request), or 2) an error response. A severe formatting error in the application’s NMI request will
result in VTAM sending a termination record and closing the connection.

The SNA Network Management Interface provides the formatted response data directly to the application
over the AF_UNIX socket. This is in contrast to the application interfaces for network monitoring
described in Chapter 2, which return a token to a response buffer that the application must use as
input to the EZBTMIC1 callable service in order to obtain the formatted response data.
The NMI request and response mappings are provided for programming to this interface.

All SNA NMI requests flow on the socket from the client application to the VTAM server. The general
format of an SNA NMI request is:

The request header, which includes the request type and the request section descriptors
(triplets). The following request types can be made:

EE Connection Request - obtain information about some or all Enterprise Extender
connections.
EE Summary Request - obtain summary information about all Enterprise Extender
connections.
HPR Connection Request - obtain information about one or more HPR connections.
CSM Statistics Request - obtain information about global CSM statistics.

A triplet consists of the offset (in bytes) of the request section relative to the beginning of
the request header, the number of elements in the request section, and the length of a request
section element.

The request sections. The only type of request section that can be specified is a filter
element:

In an EE Connection Request, either zero or one filter elements can be included. The
set of all EE connections can be selected either by not including a filter element in
the request or by supplying a filter element with no filter parameters specified. A
subset of EE connections can be selected by supplying a filter element that includes
any combination of the filter parameters in the following table. z/OS
Communications Server will not perform name resolution (to an IP address) on any
supplied hostname, but will simply look for connections that were established using
the given hostname.

Restriction: Support for the Local Hostname and IPv6 filter parameters is release
dependent. If the initialization record received by the client when the connection was
opened specifies that Local Hostname and IPv6 addresses are not supported by this
VTAM level, then the server rejects any request that contains a Local Hostname or
IPv6-format addresses.

An EBCDIC name, right-padded with nulls or blanks if less than 64 charactersRemote Hostname
A 32-bit IPv4 address. Local IP Address

An EBCDIC name, right-padded with nulls or blanks if less than 64 characters
long. Local Hostname is ignored if Local IP Address is specified. This
parameter is release dependent.

Local Hostname

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 64

A 32-bit IPv4 address. Remote IP Address
long. Remote Hostname is ignored if Remote IP Address is specified.

In an HPR Connection Request, you select a subset of HPR connections based on any
combination of the following items that includes, at a minimum, either the RTP PU Name
or the Partner CP Name (between one and four filter elements may be specified per
request):

An EBCDIC name, right-padded with nulls or blanks if less than 8 characters
long. COS is ignored if RTP PU Name provided.

COS Name

A fully-qualified EBCDIC name, right-padded with nulls or blanks if less than
17 characters long. Partner CP Name is ignored if RTP PU Name provided. If a
network identifier is not supplied, the partner CP Name is qualified with the
host’s network ID.

Partner CP Name

An EBCDIC name, right-padded with nulls or blanks if less than 8 characters
long.

RTP PU Name

An EE Summary Request is not permitted to contain any Filter Elements. No filters
are applicable to an EE summary request.
A CSM Statistics Request is not permitted to contain any Filter Elements. No filters
are applicable to a CSM statistics request

The following table shows which filter parameters are required, optional, or not applicable (N/A) for
each request type. If inapplicable filters are specified for a particular request type, an EE Connection
Request or HPR Connection Request, they are ignored. EE Summary Requests or CSM Statistics
Requests containing Filter Elements will be rejected by VTAM.

N/AN/AN/AN/ACSM Statistics
Request

Optional, ignored if
RTP PU Name

given

One is required,
Partner CP Name
ignored if RTP
PU Name given

N/AN/AHPR Connection
Request

N/AN/AN/AN/AEE Summary
Request

N/AN/AOptional,
Remote Hostname

ignored if Remote IP
Address is given

N/AEE Connection
Request

COS
name

RTP PU
name or

Partner CP
name

Remote IP
Address or
Hostname

Local IP
Address or
Hostname

Request Type

Conceptually, every valid request record sent to VTAM by the client will look like this:

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 65

General Request format structure:

Start of input information (offset from start of request header to this data given in Input Triplet)

Input Triplet information - a single triplet is defined
Offset from start of request header to first input section
Length of each input section of this type
Number of input sections of this type

Common Request/Response Header

The C/C++ data structure definitions for SNA NMI Requests are contained in the ISTEEHNC header file,
and are shown below. The assembler mappings for these structures are in ISTEEHNA.

Request/Response Header
/***/
/* */
/* Overall EE/HPR Network Management Interface Request and Response */
/* Header Mapping. */
/* */
/* This header is provided in every EE/HPR NMI request from the */
/* application client, and on every EE/HPR NMI response from VTAM. */
/* */
/***/

typedef struct {
 unsigned int EEHNMHeaderIdent; /* Header EyeCatcher: "EEHH"
 (required input/output) @Q2C*/
 unsigned int EEHNMHeaderLength; /* Record Header Length (required
 input/output) */
 unsigned short EEHNMVersion; /* EE/HPR Network Monitor Version
 (required input/output) */
 unsigned short EEHNMType; /* EE/HPR Network Monitor Type
 (required input/output) */
 char EEHMNCorrelator[16]; /* Request/response correlator
 supplied by client on
 request and returned by
 VTAM on the response */
 unsigned int EEHNMClientID; /* Internal server identifier
 for requesting client */
 unsigned int EEHNMReturnCode; /* Errno value (output) */
 unsigned int EEHNMReasonCode; /* ErrnoJr value (output) */
 unsigned int EEHNMRecordLength; /* Overall length of the input
 request and/or output response
 (required input/output) */
 unsigned long long EEHNMTimestamp;/* Timestamp when last piece of
 data was collected (output).
 Format is STCK value, time
 is GMT (not local). */
 char EEHNMRsvd1[16]; /* Reserved */
 EEHNMTriplet EEHNMInputDataDescriptors; /* Input section
 (filter) descriptors */
 EEHNMTriplet EEHNMRsvd2; /* Reserved */
 EEHNMQuadruplet EEHNMOutputDataDescriptors; /* Output section
 descriptors */
 EEHNMQuadruplet EEHNMRsvd3; /* Reserved */
} EEHNMHeader;

Triplets

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 66

/***/
/* Overall Record Triplet mapping, used for input data */
/***/

typedef struct {
 unsigned int EEHNMTOffset; /* Offset to start of first
 section of this type */
 unsigned short EEHNMTLength; /* Length of this section */
 unsigned short EEHNMTNumber; /* Number of instances of this
 section */
} EEHNMTriplet;

/***/
/* Internal Record Triplet mapping */
/***/

typedef struct {
 unsigned int EEHNM_RTOffset; /* Offset from the start of the
 record to the first section of
 this particular type */
 unsigned short EEHNM_RTLength; /* Length of each section of this
 particular type */
 unsigned short EEHNM_RTNumber; /* Number of instances of this
 particular type of section */
} EEHNMRecordTriplet;

Quadruplet

/***/
/* Overall Record Quadruplet mapping, used for output data */
/***/

typedef struct {
 unsigned int EEHNMQOffset; /* Offset to start of first
 record data within the
 response. Subsequent records
 are found using the length of
 the record being processed */
 unsigned int EEHNMQRsvd1; /* Reserved for EE/HPR NMI
 responses, since the length
 of the records are variable
 within the response data */
 unsigned int EEHNMQNumber; /* Number of records returned
 on this response. If less than
 EEHNMQMatch, then server is
 unable to return all of the
 record elements that matched
 the filters due to VTAM storage
 constraints. */
 unsigned int EEHNMQMatch; /* Number of record elements
 that matched the filters. */
} EEHNMQuadruplet;

Filter Element

Note: z/OS V1R$ CS EE does not support IPv6 address structures.

/***/
/* */
/* EE/HPR Network Management Interface Request Filter Mapping */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 67

/* */
/* The client application includes these filters ("pointed" to by */
/* the input triplet construct) on EE/HPR NMI requests to indicate */
/* what specific information the server should return for this */
/* request. The valid filters are request-specific. */
/* */
/* The server will set the bit EEHNMFilter_FilterCheck on output */
/* if any filter parameters were included that were inapplicable */
/* to the request type and thus were ignored by the server. */
/* */
/***/

typedef struct {
 unsigned int EEHNMFilter_Eye; /* Filter Eyecatcher (FLTR) @Q2C*/

 struct { /* Filter flags */
 unsigned int EEHNMFilter_LocIPF :1; /* Local IP Address
 included */
 unsigned int EEHNMFilter_RemIPF :1; /* Remote IP Address
 included */
 unsigned int EEHNMFilter_IPv6F :1; /* IP Address(es) in
 IPv6 format:
 0 = IPv4 format
 1 = IPv6 format */
 unsigned int EEHNMFilter_LocHNF :1; /* Local Hostname
 included */
 unsigned int EEHNMFilter_RemHNF :1; /* Remote Hostname
 included */
 unsigned int EEHNMFilter_RTPPUF :1; /* RTP PU Name included */
 unsigned int EEHNMFilter_PrtrCPF :1; /* Partner CP Name
 included */
 unsigned int EEHNMFilter_COSF :1; /* APPN COS name
 included */
 unsigned int EEHNMFilter_Rsvd1 :23;/* Reserved (set to 0) */
 unsigned int EEHNMFilter_FilterCheck :1; /* Output indicator set
 by server if inapplicable
 filters were specified on
 request. The server will
 ignore the inapplicable filters
 and return data matching the
 valid filters. */
 } EEHNMFilter_Flags;

 /***/
 /* Following is the specific filter data */
 /* */
 /* For EE Summary requests, no filters are expected. */
 /* */
 /* For EE Connection requests, no filters are required. */
 /* Optional filters: */
 /* Local IP address or hostname */
 /* Remote IP address or hostname */
 /* */
 /* For HPR Connection requests, RTP PU name or partner name */
 /* is required, and COS is optional when partner name is */
 /* also specified. */
 /***/

 union {
 struct in6_addr EEHNMFilter_LocIPv6_ADDR; /* Local IPv6 address */
 struct {
 char Rsvd[12]; /* Pad */
 struct in_addr Address; /* Local IPv4 address */
 } EEHNMFilter_LocIPv4_ADDR;

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 68

 } EEHNMFilter Loc ADDR;

 char EEHNMFilter_Rsvd2[12]; /* Reserved for VTAM usage */

 union {
 struct in6_addr EEHNMFilter_RemIPv6_ADDR; /* Remote IPv6 address */
 struct {
 char Rsvd[12]; /* Pad */
 struct in_addr Address; /* Remote IPv4 address */
 } EEHNMFilter_RemIPv4_ADDR;
 } EEHNMFilter_Rem_ADDR;

 char EEHNMFilter_Rsvd3[12]; /* Reserved for VTAM usage */

 unsigned char EEHNMFilter_LocHN_Len; /* Hostname len in bytes */
 char EEHNMFilter_LocHName[64]; /* Local hostname */
 unsigned char EEHNMFilter_RemHN_Len; /* Hostname len in bytes */
 char EEHNMFilter_RemHName[64]; /* Remote hostname */

 char EEHNMFilter_RTPPU[8]; /* RTP PU name */

 unsigned char EEHNMFilter_PrtrCP_Len; /* CP name len in bytes */
 char EEHNMFilter_PrtrCPName[17]; /* FQ Partner CP Name */

 char EEHNMFilter_COS[8]; /* APPN COS name */

} EEHNMFilter;

Constants

/***/
/* Eyecatcher constants for EE/HPR Network Management data */
/***/

const unsigned int EEHNM_ID /* EE/HPR NMI record data (EEHH) */
 = 0xC5C5C8C8; /*@Q2C*/
const unsigned int EEHNM_FLTR /* EE/HPR filter record (FLTR) */
 = 0xC6D3E3D9; /*@Q2C*/
const unsigned int EEHNM_INIT /* EE/HPR init record (NMII) */
 = 0xD5D4C9C9; /*@Q2C*/
const unsigned int EEHNM_TERM /* EE/HPR term record (NMIT) */
 = 0xD5D4C9E3; /*@Q2C*/

/***/
/* Constant for EEHNMI_Comp */
/***/

const char EEHNMI_Comp_Name[7] /* EE/HPR network mgmt server */
 = { '\xE2', '\xD5', '\xC1', '\xD4',
 '\xC7', '\xD4', '\xE3' }; /* SNAMGMT @Q1C*/

/***/
/* Equates for EEHNMVersion field */
/***/

const int EEHNMVersion1 = 1; /* Initial EE/HPR service version*/
const int EEHNMCurrentVersion = 1; /* Current EE/HPR service version*/

/***/
/* Equates for EEHNMType field */
/***/

const int EEHNMInitializationType = 1; /* Socket conn init data */
const int EEHNMTerminationType = 2; /* Socket conn term data */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 69

const int EEHNMEEConnType = 3; /* EE connection data processing */
const int EEHNMEESummType = 4; /* EE summary data processing */
const int EEHNMHPRConnType = 5; /* HPR connection data processing*/
const int EEHNMCSMGlobalType = 6; /* CSM GLOBAL Statistical Data
 processing @Q1A*/
/***/
/* Miscellaneous equates */
/***/

const int EEHNM_FNumber_Min_EESumm = 0; /* Minimum number of
 of filter records in a valid
 EE Summary Request */
const int EEHNM_FNumber_Min_EEConn = 0; /* Minimum number of
 of filter records in a valid
 EE Connection Request */
const int EEHNM_FNumber_Min_HPRConn = 1; /* Minimum number
 of filter records in a valid
 HPR Connection request */
const int EEHNM_FNumber_Max_EESumm = 0; /* Maximum number
 of filter records in a valid
 EE Summary Request */
const int EEHNM_FNumber_Max_EEConn = 1; /* Maximum number
 of filter records in a valid
 EE Connection Request */
const int EEHNM_FNumber_Max_HPRConn = 4; /* Maximum number
 of filter records in a valid
 HPR Connection request */

All SNA NMI responses flow on the socket from the VTAM server to the client application. The general
format of an NMI response is:

The response header, which includes the response type, the return code and reason code, the
request section descriptors (triplets), and the response section descriptors (quadruplets). A
quadruplet consists of the offset in bytes of the response section relative to the beginning of
the response header, a reserved field, the number of elements in the response section, and the
total number of elements that passed the request filter checks.
The request sections.
The response sections.

Response sections of the following solicited response types will be returned if data is found
that matches the corresponding filtered or unfiltered request (if no matches were found, no
response data sections are returned):

EE connection information
EE summary information
HPR connection information
CSM statistics information

An initialization record always contains a single response section.
A termination record does not contain a response section (all information is contained
within the response header).

The NMI response section consists of one or more “records” containing information that passed the
request filter checks.

The general format of an NMI response section record is:
The record header, which contains the overall length of the record and one or more “subrecord”
descriptors (triplets). The record triplet consists of the offset in bytes, relative to the start of the

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 70

response section record, for the first instance of a given subrecord; the length in bytes of this
particular subrecord; and the total number of instances of this subrecord.
The subrecord sections associated with this response section record.

An application wishing to navigate an NMI response must use the overall length value in the response
section record to move to the next variable length record. The application should use the response section
record triplet data to navigate within the record itself.
The following response section records are returned for the solicited response types:

1. EE Summary Response
One EE Summary Global Data Section Record.
One or more EE Summary IP Address Data Section Records.

2. EE Connection Response
One or more EE Connection Data Section Records.

3. HPR Connection Response
One HPR Connection Global Data Section Record.
One or more HPR Connection Specific Data Section Records.

4. CSM Global Statistics Response
One CSM Global Pools Section Record.
One CSM Summary Section Record.

Conceptually, every response record sent by VTAM to the client will look like the format that follows.

General Response format structure:

Start of output information (offset from start of response data saved in Output Quadruplet)

Start of input information (copied from corresponding request, if any - offset from start of response
data saved in Input Triplet)

Output Quadruplet information -- a single quadruplet is defined
Offset from start of response data to first output record
0
Number of output records included in this response (if this value is less than number of
records matching the filters supplied on the corresponding request (if any), then some data
was not reported due to storage constraints)
Number of output records matching the filters supplied on corresponding request, if any

Input Triplet information (copied from corresponding request, if any) -- a single triplet is defined
Offset from start of response data to first input section
Length of each input section of this type
Number of input sections of this type

Common Request/Response Header

Initialization Record
The structure of the initialization record is below.

Enterprise Extender initialization record format:

Input Triplet information (no corresponding input request) -- a single triplet is defined
Common Request/Response Header

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 71

Start of output information (offset from start of response data saved in Output Quadruplet),
specifically one:

Enterprise Extender initialization record

Output Quadruplet information -- a single quadruplet is defined
Offset from start of response data to first output record
0
0
Number of output records included in this response - 1

Offset from start of response data to first input section
Length of each input section of this type - 0
Number of input sections of this type - 0

Enterprise Extender initialization record:

Reserved (15 bytes) - 0

Functions Supported (8 bits)
IPv6 addresses supported (1 bit)

0 = IPv6 addresses not supported
1 = IPv6 addresses supported

Local Hostname filter parameter supported (1 bit)
0 = Local Hostname filter parameter not supported
1 = Local Hostname filter parameter supported

Reserved (6 bits) - '000000'B

SNA Network Management Component Name -- "SNAMGMT"
TOD VTAM Started, from ATCVT (8 bytes)
VTAM Level, from ATCVT (8 bytes)
Record Identifier (4 chars) --- "NMII"

The C/C++ data structure definitions for the Initialization Response Record are contained in the
ISTEEHNC header file, and are shown below. The assembler mappings for these structures are in
ISTEEHNA.

/***/
/* */
/* EE/HPR Network Management Interface Initialization Record */
/* */
/* This record is used to pass information about the VTAM EE/HPR */
/* Management Server to the client application. This is the first */
/* record written by the server to the client. */
/* */
/***/

typedef struct {
 unsigned int EEHNMI_Eye; /* Init record eyecatcher (NMII)
 @Q2C*/
 char EEHNMI_Level[8]; /* VTAM Level from ATCVT */
 unsigned long long EEHNMI_Time; /* TOD VTAM started */
 char EEHNMI_Comp[8]; /* Component name */

 struct { /* Functions supported */
 unsigned int EEHNMI_IPv6_Supp :1; /* IPv6 addrs supported */
 unsigned int EEHNMI_Local_Hostname :1; /* Lcl Hostnm supported */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 72

 unsigned int EEHNMI Rsvd1 :6; /* Unused - available */
 } EEHNMI_Supported;

 char EEHNMI_Rsvd2[15]; /* Reserved */
} EEHNMInit;

Termination Record

The structure of the termination record is below.

Enterprise Extender termination record format:

Output Quadruplet information -- a single quadruplet is defined
Offset from start of response data to first output record
0
0
Number of output records included in this response - 0

Input Triplet information (no corresponding input request) -- a single triplet is defined
Offset from start of response data to first input section
Length of each input section of this type - 0
Number of input sections of this type - 0

Common Request/Response Header

EE Summary Response Record
The structure of the EE Summary response is below.

Enterprise Extender Summary Response format:

Start of output information (offset from start of response data saved in Output Quadruplet), specifically
a collection of:

Enterprise Extender Summary Global Output Record (one instance)
Enterprise Extender Summary IP Address Output Record(s) (one instance per IP address being
reported)

Start of input information (copied from request, offset from start of response data saved in Input
Triplet)

Output Quadruplet information -- a single quadruplet is defined
Offset from start of response data to first output record
0 (since the records that follow are variable length records)
Number of output records included in this response (if this value is less than number of
records matching the filters supplied on the corresponding request, then some data was not
reported due to storage constraints)
Number of output records matching the filters supplied on the corresponding request

Input Triplet information (copied from request) -- a single triplet is defined
Offset from start of response data to first input section
Length of each input section of this type
Number of input sections of this type

Common Request/Response Header

Enterprise Extender Summary Global Output Record:
Record Identifier (4 chars) --- "EESG"

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 73

Start of Enterprise Extender Summary static information section (one instance)

Output Record Triplet information
Offset from start of the record to first section of this type within the output record (4 bytes)
Length of every section of this type within the output record (2 bytes)
Number of output sections of this type within the output record (2 bytes)

Number of triplets for this output record (2 bytes) -- 1
Reserved field (2 chars)
Length of overall record (4 bytes)

Enterprise Extender Summary IP Address Output Record:

Start of Enterprise Extender Summary Hostname information section (one per hostname used to obtain this IP
address, zero if no hostname resolution was performed)

Start of Enterprise Extender Summary IP address information section (one instance)

Output Record Triplet information
Offset from start of the record to first section of this type within the output record (4 bytes)
Length of every section of this type within the output record (2 bytes)
Number of output sections of this type within the output record (2 bytes)

Number of triplets for this output record (2 bytes) -- 2
Reserved field (2 chars)
Length of overall record (4 bytes)
Record Identifier (4 chars) --- "EESI"

The C/C++ data structure definitions for the EE Summary Response Record are contained in the
ISTEESUC header file, and are shown below. The assembler mappings for these structures are in
ISTEEHUA.

/**/
 /* Enterprise Extender Summary Global record */
 /**/
 typedef struct {
 unsigned int EESumG_Eye; /* EE Summary Global ID (EESG)
 @Q1C*/
 unsigned int EESumG_Len; /* Overall length of this record */
 char EESUMG_Rsv[2]; /* Reserved */
 unsigned short EESumG_NumTriplets; /* Number of triplets defined
 for this record */
 EEHNMRecordTriplet EESumG_Triplet; /* Only one triplet
 defined for this record */
 } EESumGlobal; /* Enterprise Extender Summary
 Global record */
 /**/
 /* Enterprise Extender Summary Global record */
 /**/
 typedef struct {
 struct {
 unsigned char EESumGD_Low_TOS; /* Low priority */
 unsigned char EESumGD_Medium_TOS; /* Medium priority */
 unsigned char EESumGD_High_TOS; /* High priority */
 unsigned char EESumGD_Network_TOS; /* Network priority */
 unsigned char EESumGD_Signal_TOS; /* Signal priority */
 } EESumGD_TOS_Info; /* TOS Information (IPv4) or
 traffic class data (IPv6) */

 char EESumGD_Rsvd; /* Reserved */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 74

 struct {
 unsigned short EESumGD_Port_Num_Low; /* Low priority data */
 unsigned short EESumGD_Port_Num_Medium; /* Medium priority data*/
 unsigned short EESumGD_Port_Num_High; /* High priority data */
 unsigned short EESumGD_Port_Num_Network; /* Network priority */
 unsigned short EESumGD_Port_Num_Signal; /* LDLC signals */
 } EESumGD_Port_Numbers; /* Port Numbers */

 struct {
 unsigned int EESumGD_Timer_LIVTIME; /* LIVTIME */
 unsigned int EESumGD_Timer_SRQTIME; /* SRQTIME */
 unsigned char EESumGD_Timer_SRQRETRY; /* SRQRETRY */
 char EESumGD_Timer_Rsvd[3]; /* Reserved */
 } EESumGD_Timer_Info; /* EE Timer Information */

 } EESumGlobalData; /* Enterprise Extender Summary
 Global data section */
/**/
 /* Enterprise Extender Summary IP Address Record */
 /**/
 typedef struct {
 unsigned int EESumI_Eye; /* EE Summary IPAddress ID field
 (EESI) @Q1C*/
 unsigned int EESumI_Len; /* Overall length of this record */
 char EESumI_Rsv[2]; /* Reserved */
 unsigned short EESumI_NumTriplets; /* Number of triplets defined
 for this record */
 EEHNMRecordTriplet EESumI_IPTriplet; /* First triplet points to
 IP specific data */
 EEHNMRecordTriplet EESumI_HNTriplet; /* Second triplet
 points to hostname data */
 } EESumIPAddress; /* Enterprise Extender Summary
 IP Address record format */

 /**/
 /* Enterprise Extender Summary IP Address Specific */
 /**/
 typedef struct {
 union {
 struct in6_addr EESumIP_Local_IPv6_Address; /* Local IPv6 address*/
 struct {
 char Rsvd[12]; /* Pad */
 struct in_addr Address; /* Local IPv4 address */
 } EESumIP_Local_IPv4_Address;
 } EESumIP_Local_Address;

 char EESumIP_Rsvd1[12]; /* Reserved for VTAM usage */

 struct {
 unsigned int EESumIP_IPv6_Address : 1; /* Local IPAddress
 is IPv6
 '1'B = IPv6 Address
 '0'B = IPv4 Address */
 unsigned int EESumIP_IPv6_Rsvd : 7; /* Reserved */
 } EESumIP_Flags; /* Information Flags */

 char EESumIP_Rsvd2[3]; /* Reserved */

 unsigned int EESumIP_Num_SRQRETRY_INOPS; /* Count of the
 number of lines that have
 INOPed due to SRQRETRY */

 unsigned int EESumIP_Num_Active_Total_Conns; /* Total active
 EE connections for this

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 75

 IP address */
 struct {
 unsigned short EESumIP_Num_Avail_Lines_PreDefined; /* Total
 number of available lines for
 predefined connections */
 unsigned short EESumIP_Num_Active_PreDefined_Conns; /* Total
 number of active predefined
 connections */
 } EESumIP_PreDefined_Info; /* Predefined Connection Info
 specific to this IP address */

 struct {
 unsigned short EESumIP_Num_Local_VRNs; /* Total number of Local
 VRNs defined with this
 local IP address */
 unsigned short EESumIP_Num_Avail_Lines_LVRN; /* Total number of
 available lines for Local
 VRN connections */
 unsigned short EESumIP_Num_Active_LVRN_Conns; /* Total number of
 active Local VRN connections */
 } EESumIP_Local_VRN_Info; /* Local VRN Info specific to this
 IP address */
 struct {
 unsigned short EESumIP_Num_Global_VRNs; /* Total number of Global
 VRNs defined with this local
 IP address */
 unsigned short EESumIP_Num_Avail_Lines_GVRN; /* Total number of
 available lines for Global
 VRN connections */
 unsigned short EESumIP_Num_Active_GVRN_Conns; /* Total number of
 active Global VRN connections */
 } EESumIP_Global_VRN_Info; /* Global VRN Info for this
 specific IP address */
 } EESumIPAddressData; /* Enterprise Extender Summary
 IP Address specific section */

 /**/
 /* Enterprise Extender Summary Hostname Section */
 /**/
 typedef struct {
 unsigned char EESumIH_HostLen; /* Actual length of hostname */
 char EESumIH_Hostname[64]; /* Hostname used to resolve
 to the local IP address
 reported in this EE
 Summary record */
 } EESumI_HostnameData; /* Enterprise Extender Summary
 Hostname section mapping */

 /**/
 /* Eyecatcher constants for EE Summary records */
 /**/
 const unsigned int EESumG_ID
 = 0xC5C5E2C7; /* 'EESG' EE summary global
 record @Q1C*/
 const unsigned int EESumI_ID
 = 0xC5C5E2C9; /* 'EESI' EE summary IP
 address record @Q1C*/

 /**/
 /* Constants for Triplet counts for the various records */
 /**/
 const int EESumG_TripletCnt = 1; /* EE summary global record has
 one triplet */
 const int EESumI_TripletCnt = 2; /* EE Summary IP address record

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 76

 record has two triplets */

EE Connection Response Record

The structure of the response record is as follows:

Start of output information (offset from start of response data saved in Output Quadruplet), specifically
a collection of:

Enterprise Extender Connection Specific Output Record(s) (one instance per EE connection
reported)

Start of input information (copied from request, offset from start of response data saved in Input
Triplet)

Output Quadruplet information - a single quadruplet is defined
Offset from start of response data to first output record
0
Total number of output records
Number of output records included in this response (if this value is not equal to total, then
some data was not reported)

Input Triplet information (copied from request) - a single triplet is defned
Offset from start of response data to first input section
Length of each input section of this type
Number of input sections of this type

Common Request/Response Header

Enterprise Extender Connection Specific Output Record:

Start of Enterprise Extender Connection Associated RTP PU name section(s) (one instance per RTP
PU that is using this EE connection)

Start of Enterprise Extender Connection Associated VRN name section (one instance, only included if
the EE connection is across a virtual routing node)

Start of Enterprise Extender Connection Hostname section(s) (zero-two possible instances, one for
local and one for remote hostname if applicable)

Start of Enterprise Extender Connection static information section (one instance)

Output Record Triplet information
Offset from start of the record to first section of this type within the output record (4 bytes)
Length of every section of this type within the output record (2 bytes)
Number of output sections of this type within the output record (2 bytes)

Number of triplets for this output record (2 bytes) -- 4
Reserved field (2 chars)
Length of overall record (4 bytes)
Record Identifier (4 chars) --- "EECO"

The C/C++ data structure definitions for the EE Connection Response Record are contained in the
ISTEECOC header file, and are shown below. The assembler mappings for these structures are in
ISTEECOA.

/***/

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 77

/* Enterprise Extender Connection Data Block */
/***/

typedef struct {
 unsigned int EEConn_Eye; /* EE Connection ID (EECO) @Q1C*/
 unsigned int EEConn_Len; /* Overall length of this record */
 short EEConn_Rsvd; /* Reserved */
 unsigned short EEConn_NumTriplets;/* Number of triplets defined
 for this record */
 EEHNMRecordTriplet EEConn_StTriplet; /* First triplet
 defines the static section */
 EEHNMRecordTriplet EEConn_HnTriplet; /* Second triplet
 defines the associated
 hostname section(s) */
 EEHNMRecordTriplet EEConn_VNTriplet; /* Third triplet
 defines the VRN section */
 EEHNMRecordTriplet EEConn_PUTriplet; /* Fourth triplet
 defines the list of
 associated RTP PU names */
} EEConnRecord;

/***/
/* Enterprise Extender Connection static information section */
/***/

typedef struct {
 union {
 struct in6_addr EEConnS_Local_IPv6_Address; /* Local IPv6 address*/
 struct {
 char Rsvd[12]; /* Pad */
 struct in_addr Address; /* Local IPv4 address */
 } EEConnS_Local_IPv4_Address;
 } EEConnS_Local_Address;

 char EEConnS_Rsvd1[12]; /* Reserved */

 union {
 struct in6_addr EEConnS_Remote_IPv6_Address; /* Remote IPv6 addr */
 struct {
 char Rsvd[12]; /* Pad */
 struct in_addr Address; /* Remote IPv4 address */
 } EEConnS_Remote_IPv4_Address;
 } EEConnS_Remote_Address;

 char EEConnS_Rsvd[12]; /* Reserved */

 char EEConnS_Stack_Name[8]; /* Enterprise Extender
 TCP/IP stack name */
 char EEConnS_Line_Name[8]; /* Enterprise Extender
 Line Name */
 char EEConnS_PU_Name[8];/* Enterprise Extender PU Name */
 unsigned char EEConnS_Remote_SAP;/* Remote SAP */
 unsigned char EEConnS_Local_SAP; /* Local SAP */

 struct {
 unsigned int EEConnS_IPv6_Address :1; /* Local and Remote
 addresses are IPv6:
 1 - Both IPv6 Address
 0 - Both IPv4 Address */
 unsigned int EEConnS_Dynamic_PU :1; /* Dynamic PU indicator
 1 - Dynamic
 0 - Predefined */
 unsigned int EEConnS_KEEPACT :1; /* KEEPACT boolean flag */
 unsigned int EEConnS_DWINOP :1; /* DWINOP boolean flag */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 78

 unsigned int EEConnS FlagsRsvd :4; /* Reserved */
 } EEConnS_Flags;

 unsigned char EEConnS_REDIAL_Cnt;/* EE Redial Count */
 short EEConnS_REDIAL_Dly;/* EE Redial Delay in seconds */
 unsigned short EEConnS_Rsvd3; /* Padding, available */
 unsigned int EEConnS_Total_LULU_Count; /* Count of LU-LU sessions
 on RTP pipes using this
 EE connection */
 /**
 Outbound Data Transfer Information by Priority:
 Low
 Medium
 High
 Network
 Signal
 **/

 struct {
 unsigned long long EEConnS_SNA_Bytes_Sent_L; /* Total number of
 bytes sent over this EE
 connection - LOW priority.
 This includes the data bytes
 along with NLH, THDR and FID5 */
 unsigned long long EEConnS_NLPOut_Info_L; /* Count of NLPs
 sent outbound - LOW priority */
 unsigned long long EEConnS_NLPOut_Rxmt_Info_L;/* Count of NLPs
 retransmitted outbound -
 LOW priority */

 unsigned long long EEConnS_SNA_Bytes_Sent_M; /* Total number of
 bytes sent over this EE
 connection - MEDIUM priority.
 This includes the data bytes
 along with NLH, THDR and FID5 */
 unsigned long long EEConnS_NLPOut_Info_M; /* Count of NLPs
 sent outbound - MEDIUM
 priority */
 unsigned long long EEConnS_NLPOut_Rxmt_Info_M;/* Count of NLPs
 retransmitted outbound -
 MEDIUM priority */

 unsigned long long EEConnS_SNA_Bytes_Sent_H; /* Total number of
 bytes sent over this EE
 connection - HIGH priority.
 This includes the data bytes
 along with NLH, THDR and FID5 */
 unsigned long long EEConnS_NLPOut_Info_H; /* Count of NLPs
 sent outbound - HIGH priority */
 unsigned long long EEConnS_NLPOut_Rxmt_Info_H;/* Count of NLPs
 retransmitted outbound -
 HIGH priority */

 unsigned long long EEConnS_SNA_Bytes_Sent_N; /* Total number of
 bytes sent over this EE
 connection - NETWORK priority.
 This includes the data bytes
 along with NLH, THDR and FID5 */
 unsigned long long EEConnS_NLPOut_Info_N; /* Count of NLPs
 sent outbound - NETWORK
 priority */
 unsigned long long EEConnS_NLPOut_Rxmt_Info_N;/* Count of NLPs
 retransmitted outbound -
 NETWORK priority */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 79

 unsigned long long EEConnS_SNA_Bytes_Sent_S; /* Total number of
 bytes sent over this EE
 connection - SIGNAL priority.
 This includes the data bytes
 along with NLH, THDR and FID5 */
 unsigned long long EEConnS_NLPOut_Info_S; /* Count of NLPs
 sent outbound - SIGNAL
 priority */
 unsigned long long EEConnS_NLPOut_Rxmt_Info_S;/* Count of NLPs
 retransmitted outbound -
 SIGNAL priority */

 unsigned long long EEConnS_SNA_Bytes_Sent_A; /* Total number of
 bytes sent over this EE
 connection - ALL priorities
 This includes the data bytes
 along with NLH, THDR and FID5 */
 unsigned long long EEConnS_NLPOut_Info_A; /* Count of NLPs
 sent outbound - ALL priorities*/
 unsigned long long EEConnS_NLPOut_Rxmt_Info_A;/* Count of NLPs
 retransmitted outbound -
 ALL priorities */
 } EEConnS_Data_Transfer_Info_OutBound;

 /**
 Inbound Data Transfer Information by Priority:
 Low
 Medium
 High
 Network
 Signal
 **/
 struct {
 unsigned long long EEConnS_SNA_Bytes_Rcv_L; /* Total number
 of bytes received over this
 EE connection - LOW priority.
 This includes data bytes along
 with NLH, THDR and FID5 */
 unsigned long long EEConnS_NLPIn_Info_L; /* Count of NLPs
 received inbound - LOW
 priority */

 unsigned long long EEConnS_SNA_Bytes_Rcv_M; /* Total number
 of bytes received over this
 EE connection - MEDIUM priority.
 This includes data bytes along
 with NLH, THDR and FID5 */
 unsigned long long EEConnS_NLPIn_Info_M; /* Count of NLPs
 received inbound - MEDIUM
 priority */

 unsigned long long EEConnS_SNA_Bytes_Rcv_H; /* Total number
 of bytes received over this
 EE connection - HIGH priority.
 This includes data bytes along
 with NLH, THDR and FID5 */
 unsigned long long EEConnS_NLPIn_Info_H; /* Count of NLPs
 received inbound - HIGH
 priority */

 unsigned long long EEConnS_SNA_Bytes_Rcv_N; /* Total number
 of bytes received over this
 EE connection - NETWORK

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 80

 priority. This includes data
 bytes along with NLH, THDR and
 FID5 */
 unsigned long long EEConnS_NLPIn_Info_N; /* Count of NLPs
 received inbound - NETWORK
 priority */

 unsigned long long EEConnS_SNA_Bytes_Rcv_S; /* Total number
 of bytes received over this
 EE connection - SIGNAL priority.
 This includes data bytes along
 with NLH, THDR and FID5 */
 unsigned long long EEConnS_NLPIn_Info_S; /* Count of NLPs
 received inbound - SIGNAL
 priority */

 unsigned long long EEConnS_SNA_Bytes_Rcv_A; /* Total number
 of bytes received over this
 EE connection - ALL priorities.
 This includes data bytes along
 with NLH, THDR and FID5 */
 unsigned long long EEConnS_NLPIn_Info_A; /* Count of NLPs
 received inbound - ALL
 priorities */
 } EEConnS_Data_Transfer_Info_InBound;

 unsigned long long EEConnS_Connection_Act_TOD; /* TOD the EE
 connection was activated */

 unsigned short EEConnS_Num_SRQRETRY_GT_One; /* Number of times
 this connection has had signal
 responses require more than
 one retry. */
 unsigned short EEConnS_Num_SRQRETRY_EQ_Max; /* Number of times
 this connection has had signal
 responses require the maximum
 allowable retries. */
} EEConn_StaticData;

/***/
/* Enterprise Extender Connection Associated Hostname section */
/***/

typedef struct {
 struct { /* Hostname indicators */
 unsigned int EEConnH_Usage :1; /* Local vs. Remote hostname
 '1'B - hostname was used to
 obtain remote IP address
 '0'B - hostname was used to
 obtain local IP address */
 unsigned int EEConnH_Rsvd :7; /* Unused */
 } EEConnH_Flags;

 unsigned char EEConnH_Length; /* Actual length of the hostname
 being reported. For convenience,
 the section will always have
 space for a maximum sized
 hostname */
 char EEConnH_Host[64]; /* Hostname being reported */
} EEConn_HostnameData;

/***/
/* Enterprise Extender Connection Associated VRN section */
/***/

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 81

typedef struct {
 struct { /* Header data */
 struct { /* VRN data indicators */
 unsigned int EEConnV_Type :1; /* VRN type being reported:
 '1'B - Global VRN
 '0'B - Local VRN */
 unsigned int EEConnV_Rsvd :7; /* Unused */
 } EEConnV_Flags;
 } EEConnV_Header;

 /* Following the header is the Virtual Routing Node Name. The */
 /* length of the name is obtained from the total length of the */
 /* VRN section, as shown in the record triplet, less the length */
 /* of the section header. */

} EEConn_VRNData;

/***/
/* Enterprise Extender Connection Associated RTP PU name section */
/***/

typedef struct {
 char EEConnP_Name[8]; /* RTP PU name, right-padded with
 blanks. */
} EEConn_RTPPUDATA;

/***/
/* Eyecatcher constants for EE Connection records */
/***/

const unsigned int EEConn_ID /* EE connection record (EECO) */
 = 0xC5C5C3D6; /*@Q1C*/

/***/
/* Constants for Triplet counts for the EE Connection record */
/***/

const int EEConn_TripletCnt = 4; /* EE conn rcd has 4 triplets */

HPR Connection Response Record

HPR Connection Response format:

Start of input information (copied from request, offset from start of response data saved in Input
Triplet)

Output Quadruplet information -- a single quadruplet is defined
Offset from start of response data to first output record
0
Number of output records included in this response (if this value is less than number of
records matching the filters supplied on the corresponding request, then some data was not
reported due to storage constraints)
Number of output records matching the filters supplied on the corresponding request

Input Triplet information (copied from request) -- a single triplet is defined
Offset from start of response data to first input section
Length of each input section of this type
Number of input sections of this type

Common Request/Response Header

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 82

Start of output information (offset from start of response data saved in Output Quadruplet),
specifically a collection of:

HPR Connection Global Output Record (one instance)
HPR Connection Specific Output Record(s) (one instance per HPR connection reported)

HPR Connection Global Output Record:

Start of HPR Connection Global data

Output Record Triplet information
Offset from start of the response data to first section of this type within the output record (4
bytes)
Length of every section of this type within the output record (2 bytes)
Number of output sections of this type within the output record (2 bytes)

Number of triplets for this output record (2 bytes) -- 1
Reserved field (2 chars)
Length of overall record (4 bytes)
Record Identifier (4 chars) -- "HPRG"

HPR Connection Specific Output Record:

Start of HPR Connection Pathswitch information section (only present if pathswitch had ever
occurred on this connection, one instance if present)

Start of HPR Connection Route Selection Control Vector section (one instance, potentially none if
connection is in the process of performing a pathswitch)

Start of HPR Connection static information section (one instance)

Output Record Triplet information
Offset from start of the record to first section of this type within the output record (4 bytes)
Length of every section of this type within the output record (2 bytes)
Number of output sections of this type within the output record (2 bytes)

Number of triplets for this output record (2 bytes) -- 3
Reserved field (2 chars)
Length of overall record (4 bytes)
Record Identifier (4 chars) --- "HPRC"

The C/C++ data structure definitions for the HPR Connection Response Record are contained in the
ISTHPRCC header file, and are shown below. The assembler mappings for these structures are in
ISTHPRCA.

/***/
/* HPR Connection Global record */
/***/

 typedef struct {
 unsigned int HPRConnG_Eye; /* HPRConn EyeCatcher (HPRG) @Q3C*/
 unsigned int HPRConnG_Len; /* Overall length of this record */
 char HPRConnG_Rsv[2]; /* Reserved */
 unsigned short HPRConnG_NumTriplets; /* Number of triplets
 defined for this record */
 EEHNMRecordTriplet HPRConnG_Triplet; /* Only one triplet
 defined for this record */
 } HPRConnGlobal; /* HPR Connection Global Data

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 83

 record */

/***/
/* HPR Connection Global Data section */
/***/
 typedef struct {
 struct {
 char HPRConnGD_CPNetId[8]; /* NETID */
 char HPRConnGD_CPName[8]; /* CPNAME */
 } HPRConnGD_Endpoint_Name; /* Node name of this VTAM */
 } HPRConnGlobalData; /* HPR Connection Global Data
 section */

/***/
/* HPR Connection Specific Data record */
/***/
 typedef struct {
 unsigned int HPRConnD_Eye; /* HPRConn EyeCatcher (HPRC) @Q3C*/
 unsigned int HPRConnD_Len; /* Overall length of this record */
 char HPRConnD_Rsv[2]; /* Reserved */
 unsigned short HPRConnD_NumTriplets; /* Number of triplets
 defined for this record */
 EEHNMRecordTriplet HPRConnD_StTriplet; /* First triplet
 points to static data section */
 EEHNMRecordTriplet HPRConnD_CVTriplet; /* Second triplet
 points to RSCV data section */
 EEHNMRecordTriplet HPRConnD_PSTriplet; /* Third triplet
 points to pathswitch data (only
 present if at least one switch
 has occurred) */
 } HPRConnData; /* HPR Connection Specific Data
 record */

/***/
/* HPR Connection Specific Data Section */
/***/
 typedef struct {
 char HPRConnDS_Name[8]; /* RTP PU Name */

 struct {
 char HPRConnDS_CPNetId[8]; /* NETID - destination */
 char HPRConnDS_CPName[8]; /* CPNAME - destination */
 } HPRConnDS_FQ_Partner_Name; /* FullyQualified Partner CPName */

 char HPRConnDS_Local_NCB_PUName[8]; /* Physical NCB
 PU Name */
 struct {
 char HPRConnDS_First_Hop_CPNetId[8]; /* NETID */
 char HPRConnDS_First_Hop_CPName[8]; /* CPNAME */
 } HPRConnDS_First_Hop; /* First Hop CPName */

 struct {
 struct {
 unsigned int HPRConnDS_Routing_Mode : 3; /* Routing Mode */
 unsigned int HPRConnDS_Rsv1 : 2; /* Reserved */
 unsigned int HPRConnDS_TPF : 2; /* Transmission Priority */
 unsigned int HPRConnDS_Rsv2 : 9; /* Reserved */
 } HPRConnDS_NET_HEAD_BIT; /* Net header overlay */
 } HPRConnDS_NET_Header; /* NLH header */

 struct {
 unsigned int HPRConnDS_ARB_Algorithm : 2; /* ARB Algorithm
 '00'B - Original
 '01'B - Responsive Mode */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 84

 unsigned int HPRConnDS ARB Mode : 2; /* ARB Pacing Mode
 '00'B - Green mode
 '01'B - Yellow mode
 '10'B - Red mode */
 unsigned int HPRConnDS_Role : 2; /* Passive or Active
 '10'B - Active
 '01'B - Passive */
 unsigned int HPRConnDS_MNPS : 1; /* RTP connection is being
 used by an MNPS application */
 unsigned int HPRConnDS_DYNLU : 1; /* DYNLU support indicator */
 unsigned int HPRConnDS_XNETALS : 1; /* XNETALS support
 indicator */
 unsigned int HPRConnDS_Rsv3 : 7; /* Reserved */
 } HPRConnDS_Flags; /* Informational flags */

 unsigned char HPRConnDS_State; /* RTP State */
 char HPRConnDS_COS_Original[8]; /* Original COS @Q2C*/
 char HPRConnDS_Rsv5[3]; /* Reserved @Q2A*/

 struct {
 unsigned long long HPRConnDS_Data_Bytes_Sent; /* Number of
 data bytes sent over this
 RTP connection. */

 unsigned long long HPRConnDS_Total_Bytes_Sent; /* Total number
 of bytes sent over this RTP
 connection. This includes data
 bytes along with NLH, THDR and
 FID5 */

 unsigned long long HPRConnDS_NLPOut; /* Count of NLPs sent
 outbound */

 unsigned short HPRConnDS_Largest_NLPOut;/* Largest NLP sent */
 unsigned short HPRConnDS_Num_Rexmitted_NLPS; /* Number of
 retransmitted NLPs */
 } HPRConnDS_Data_Transfer_Info_OutBound; /* OutBound data transfer
 information */

 struct {
 unsigned long long HPRConnDS_Data_Bytes_Rcv; /* Number of data
 bytes received over this RTP
 connection. */

 unsigned long long HPRConnDS_Total_Bytes_Rcv; /* Total number
 of bytes received over this RTP
 connection. This includes data
 bytes along with NLH, THDR and
 FID5 */

 unsigned long long HPRConnDS_NLPIn; /* Count of NLPs received
 inbound */

 unsigned short HPRConnDS_Largest_NLPIN; /* Largest NLP received*/
 unsigned short HPRConnDS_Rsv4; /* Reserved */
 } HPRConnDS_Data_Transfer_Info_InBound; /* InBound data transfer
 information */

 struct {
 unsigned int HPRConnDS_Initial_Send_Rate; /* Initial send
 Rate */
 unsigned int HPRConnDS_Allowed_Send_Rate; /* Allowed Send
 Rate */
 /**/

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 85

 /* The next five threshholds are valid only if */
 /* HPRConnDS_ARB_Algorithm indicates "ARB Responsive mode" is */
 /* being used */
 /**/
 unsigned int HPRConnDS_Maximum_Send_Rate; /* Highwater mark for
 HPRConnDS_Actual_Send_Rate@Q1M*/
 unsigned int HPRConnDS_Actual_Send_Rate; /* Actual Send Rate
 @Q1M*/
 int HPRConnDS_ARB2_RCVR_THRESHOLD; /* Current
 receiver threshold
 (value in microsecs) */
 int HPRConnDS_ARB2_RCVR_THRESHOLD_MIN; /* Min
 receiver threshold
 (value in microsecs) */
 int HPRConnDS_ARB2_RCVR_THRESHOLD_MAX; /* Max receiver
 receiver threshold
 (value in microsecs) */
 } HPRConnDS_ARB_Info; /* ARB Information */

 struct {
 unsigned int HPRConnDS_Num_NLPs_On_Pending_Sends_Q; /* Number
 of NLPs on RPNCB_PENDING_SENDS_Q */
 unsigned int HPRConnDS_Num_NLPs_On_OOSQ; /* Number of NLPs on
 the RPN_OutOfSeq_Msg_Q */
 unsigned int HPRConnDS_Num_NLPs_On_In_Segments_Q; /* Number
 of NLPS on contained within the
 RPN_RCV_Segments_DaPtr */
 struct {
 unsigned int HPRConnDS_NLPs_On_Wait_For_Ack_Q; /* Number of
 NLPs on RPNCB_WAIT_FOR_ACK_Q */
 unsigned int HPRConnDS_Max_Num_NLPs_On_Wait_For_Ack_Q; /* High
 water mark for the number of
 NLPs on RPNCB_WAIT_FOR_ACK_Q */
 unsigned long long HPRConnDS_Max_Num_NLPs_On_Wait_TOD; /* TOD
 clock of high water mark for
 number of NLPs on
 RPNCB_WAIT_FOR_ACK_Q */
 } HPRConnDS_Wait_For_Ack_Q_Info;

 } HPRConnDS_Queue_Info;

 struct {
 int HPRConnDS_Smooth_Deviation; /* Responsive mode
 ARB smoothing deviation. */
 unsigned int HPRConnDS_SRTT; /* Smoothed roundtrip time in ms*/
 unsigned int HPRConnDS_Liveness_Time; /* Liveness time length
 in seconds */
 } HPRConnDS_Timer_Info;

 unsigned int HPRConnDS_LULU_Session_Count; /* Active LU-LU
 sessions using this RTP
 connection */
 unsigned long long HPRConnDS_Activation_TOD; /* TOD HPR Pipe
 activated */
 unsigned long long HPRConnDS_Local_TCID; /* Local TCID */
 unsigned long long HPRConnDS_Remote_TCID; /* Remote TCID */

 unsigned char HPRConnDS_Local_NCE_Len; /* Local NCE length */
 char HPRConnDS_Local_NCE[8]; /* Local NCE */

 unsigned char HPRConnDS_NCE_ID_LEN; /* Remote NCEID length */
 char HPRConnDS_NCE_ID[8]; /* Remote NCEID */

 unsigned char HPRConnDS_Local_ANR_LEN; /* Local ANR length */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 86

 char HPRConnDS Local ANR[8]; /* Local ANR label
 outbound */

 } HPRConnSpecificData; /* HPR Connection Specific Data
 section */

 /**/
 /* Mapping for the HPR Connection Pathswitch Data. This section */
 /* will only be supplied if a pathswitch had occurred in the life */
 /* of the HPR connection being reported. */
 /**/

 typedef struct {
 unsigned long long HPRConnDP_TOD_Last_Pathswitch; /* TOD when
 last path switch was initiated*/
 struct {
 unsigned int HPRConnDP_In_PS : 1; /* RTP pipe in currently in
 the process of pathswitching
 '1'B - Pipe is pathswitching
 '0'B - Pipe is not switching */
 unsigned int HPRConnDP_Last_PS_Reason : 3; /* Last Path
 Switch Reason
 '001'B - TGINOP
 '010'B - SRT retries
 '011'B - No NCB
 '100'B - Modify RTP command
 '101'B - Auto Pathswitch
 '110'B - Partner Initiated
 last switch @Q1C*/
 unsigned int HPRConnDP_Rsv : 4; /* Reserved */
 } HPRConnDP_PS_Flags; /* Path Switch Flags */

 char HPRConnPathSwitchData_Rsvd; /* Reserved */
 unsigned short HPRConnDP_Cnt_PS_Initiated_Rem; /* Number of Path
 switches initiated by the
 remote RTP partner */
 unsigned short HPRConnDP_Cnt_PS_Initiated_Loc; /* Total number
 of path switches initiated by
 this node */
 unsigned short HPRConnDP_Cnt_PS_Due_To_Failure; /* Number of
 Path switches initiated by this
 node due to errors (i.e.,
 TGINOP, short response time
 retries, or no NCB) */
 unsigned short HPRConnDP_Cnt_PS_Due_To_PSRETRY; /* Number of
 Path switches initiated by this
 node due to PSRETRY. */
 } HPRConnPathSwitchData; /* HPR Connection Pathswitch data
 section */

 /**/
 /* Eyecatcher constants for HPR Connection records */
 /**/
 const unsigned int HPRConnG_ID
 = 0xC8D7D9C7; /* HPR connection global
 record 'HPRG' @Q3C*/
 const unsigned int HPRConnD_ID
 = 0xC8D7D9C3; /* HPR connection global
 record 'HPRC' @Q3C*/

 /**/
 /* Constants for Triplet counts for the various records */
 /**/
 const int HPRConnG_TripletCnt = 1; /* HPR connection global

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 87

 record has one triplet */
 const int HPRConnD_TripletCnt = 3; /* HPR conn specific
 record has three triplets */

 /**/
 /* Constants for ARB Algorithm */
 /**/

 const int HPRConnDS_ARB_Original = 0; /* ARB original mode */
 const int HPRConnDS_ARB_Responsive = 1; /* ARB responsive mode */

 /**/
 /* Constants for ARB Mode */
 /**/
 const int HPRConnDS_ARB_GreenMode = 0; /* Green */
 const int HPRConnDS_ARB_YellowMode = 1; /* Yellow */
 const int HPRConnDS_ARB_RedMode = 2; /* Red */

 /**/
 /* Constants for Endpoint Role */
 /**/
 const int HPRConnDS_Role_Active = 2; /* Active, or the node that
 setup the pipe */
 const int HPRConnDS_Role_Passive = 1; /* Passive, or the partner
 endpoint that was told to set
 up the pipe */

 /**/
 /* Constants for Pathswitch reason codes */
 /**/
 const int HPRConnDP_PS_TGINOP = 1; /* TG INOP condition was detected*/
 const int HPRConnDP_PS_SRTRetry = 2; /* Short request timer
 expiration */
 const int HPRConnDP_PS_NoNCB = 3; /* No NCB was available to use */
 const int HPRConnDP_PS_Modify = 4; /* Operator issued pathswitch
 request */
 const int HPRConnDP_PS_AutoSwtch = 5; /* Pathswitch driven due to
 automatic retry timer */
 const int HPRConnDP_PS_Partner = 6; /* Partner initiated last
 switch @Q1A*/

CSM Statistics Response Record

The structure of the CSM Statistics response is as follows:

CSM Statistics Response format:

Output Quadruplet information -- a single quadruplet is defined
Offset from start of response data to first output record
0
Number of output records included in this response (if this value is less than number of
records matching the filters supplied on the corresponding request, then some data was not
reported due to storage constraints)
Number of output records matching the filters supplied on the corresponding request

Input Triplet information (copied from request) -- a single triplet is defined
Offset from start of response data to first input section
Length of each input section of this type
Number of input sections of this type

Common Request/Response Header

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 88

Start of output information (offset from start of response data saved in Output Quadruplet), specifically a
collection of:

CSM Global Pool Output Record containing multiple CSM Buffer Pool data records (CSMPoolGData),
one per pool
CSM Global Summary Output Record containing a single CSM Summary Data record
(CSMSummGData) representing CSM system wide summary info

Start of input information (copied from request, offset from start of response data saved in Input Triplet)

CSM Global Output Pool Record:

Start of CSM Global Pool data (CSMPoolGDdata) records - one per CSM pool

Output Record Triplet information
Offset from start of the response data to first section of this type within the output record (4 bytes)
Length of every section of this type within the output record (2 bytes)
Number of output sections of this type within the output record (2 bytes)

Number of triplets for this output record (2 bytes) -- 1
Reserved field (2 chars)
Length of overall record (4 bytes)
Record Identifier (4 chars) -- "CSMP"

CSM Global Output Summary Record:

Start of CSM Global Summary data (CSMSummGData) record one single system wide record

Output Record Triplet information
Offset from start of the response data to first section of this type within the output record (4 bytes)
Length of every section of this type within the output record (2 bytes)
Number of output sections of this type within the output record (2 bytes)

Number of triplets for this output record (2 bytes) -- 1
Reserved field (2 chars)
Length of overall record (4 bytes)
Record Identifier (4 chars) -- "CSMS"

The C/C++ data structure definitions for the CSM Statistics Response Record are contained in the
ISTCSMGC header file, and are shown below. The assembler mappings for these structures are in
ISTCSMGA.

/***/
/* CSM Pool Global record */
/***/

typedef struct {
 unsigned int CSMPoolG_Eye; /* CSM Pool Global ID (CSMP) @Q1C*/
 unsigned int CSMPoolG_Len; /* Overall length of this record */
 unsigned short CSMPoolG_Rsvd; /* Reserved */
 unsigned short CSMPoolG_NumTriplets; /* Number of triplets defined
 for this record */
 EEHNMRecordTriplet CSMPoolG_Triplet; /* Only one triplet
 defined for this record */
} CSMPoolGlobal;

/***/
/* CSM Pool Global Data record (one per CSM pool) */
/***/

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 89

typedef struct {
 int CSMPoolGD_Size; /* Pool size */
 unsigned char CSMPoolGD_Srce; /* Buffer source flag */
 char CSMPoolGD_Rsvd[3]; /* Not used - available */
 int CSMPoolGD_InUse; /* Number of buffers in
 pool that are in use */
 int CSMPoolGD_Free; /* Number of buffers in
 pool that are available */

} CSMPoolGData;

/***/
/* CSM Summary Global record */
/***/

typedef struct {
 unsigned int CSMSummG_Eye; /* CSM Summary Global ID (CSMS)
 @Q1C*/
 unsigned int CSMSummG_Len; /* Overall length of this record */
 unsigned short CSMSummG_Rsvd; /* Reserved */
 unsigned short CSMSummG_NumTriplets; /* Number of triplets defined
 for this record */
 EEHNMRecordTriplet CSMSummG_Triplet; /* Only one triplet
 defined for this record */
} CSMSummGlobal;

/***/
/* CSM Summary Global Data record (one per system) */
/***/

typedef struct {
 unsigned int CSMSummGD_MaxFiNMeg :1; /* When off value = bytes
 When on value = megabytes*/
 unsigned int CSMSummGD_Rsvd1 :7; /* Reserved */
 unsigned int CSMSummGD_MaxFixed :24; /* Installation Max
 fixed storage */
 unsigned int CSMSummGD_CurFiNMeg :1; /* When off value = bytes
 When on value = megabytes*/
 unsigned int CSMSummGD_Rsvd2 :7; /* Reserved */
 unsigned int CSMSummGD_CurFixed :24; /* Current fixed storage
 in use */
 unsigned int CSMSummGD_MaxECSA; /* Installation max ECSA */
 unsigned int CSMSummGD_CurECSA; /* Current ECSA Storage */
} CSMSummGData;

/***/
/* Eyecatcher constants for CSM Summary pool and summary records */
/***/

const unsigned int CSMPool_ID
 = 0xC3E2D4D7; /* CSM Pool Global ID @Q1C*/
const unsigned int CSMSumm_ID
 = 0xC3E2D4E2; /* CSM Summary Global ID @Q1C*/

/***/
/* Constants to describe CSMPoolGD_Srce (buffer source) */
/***/

const int CSMPoolGD_SrceECSA = 0x80; /* Indicates source is
 CSM ECSA */
const int CSMPoolGD_SrceDS = 0x40; /* Indicates source is
 CSM DS */

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 90

/***/
/* Constants for Triplet counts for the various records */
/***/
const int CSMPoolG_TripletCnt = 1; /* CSM Pool Global record has
 one triplet */
const int CSMSummG_TripletCnt = 1; /* CSM Summary Global record has

 one triplet */

The following table describes the errors in an NMI Request for which VTAM will send a termination
record with the given Return Code and Reason Code, and then close the connection

Invalid eyecatcher in request header.‘00007114’XEINVAL

Length of request header plus length of request sections
does not equal total length of request.

‘00007113’XEINVAL

Invalid triplet format: length of filter element is not correct
for given version.

‘00007112’XEINVAL

Invalid triplet format: first request section is not contiguous
to request header.

‘00007112’XEINVAL
Unsupported version number in request header.‘00007111’XEINVAL
Request header too short.‘00007110’X EINVAL
MeaningReason CodeReturn Code

The following table describes the error in an NMI request for which VTAM will return a negative
response of the same type as the request. VTAM will leave the connection active after returning the
negative response for these errors.

Unsupported filter parameter indicator set in filter element.‘0000711A’XEINVAL
Required filter parameter missing from filter element.‘00007119’XEINVAL
Undefined filter parameter indicator set in filter element.‘00007118’XEINVAL

Too few filter elements (request sections) included for
request type.

‘00007117’XEINVAL

Too many filter elements (request sections) included for
request type.

‘00007116’XEINVAL
Unrecognized request type.‘00007115’X EINVAL
MeaningReason CodeReturn Code

The header files and macros are described in the following table.

The HPR connection response data structure
definitions.

ISTHPRCAISTHPRCC
The EE connection response data structure definitions ISTEECOAISTEECOC
The EE summary response data structure definitions. ISTEESUAISTEESUC

The NMI request and response header, initialization
record, and termination record structure definitions.

ISTEEHNAISTEEHNC

ContentsMacro for
Assembler
programs

Header files for
C/C++
programs

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 91

The CSM global statistics response data structure
definitions.

ISTCSMGAISTCSMGC

These header files and macros are shipped in the hlq.SEZANMAC data set (hlq refers to the High
Level qualifier used when the product was installed on your system). This data set must be
available in the concatenation when compiling or assembling a part that makes use of these
definitions.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 92

Chapter 6 - Diagnosis
The interfaces described in this document are designed to return error information as either a
return_value, return_code or reason_code, where applicable. This information should be
used to further diagnosis the problem being reported.

When the return_value is -1, the return_code and reason_code will indicate the problem that
was incurred by the interface. Refer to the chapter describing the interface being used for
return_value, return_code and reason_code descriptions.

If you are not able to diagnose the problem using the returned error information, gather the
following information documenting the error and contact IBM Customer Support.

Collect a dump of the VTAM address
space.

Application interface for SNA network
monitoring data

Collect a dump of the TCP/IP address space
and data space.

Application interface for monitoring
TCP/UDP end points and TCP/IP storage
usage

Collect a dump of the TCP/IP address space
and data space.

Application interface for formatting packet
and data trace records

Set the SYSTCPIP “MISC” trace as
active.
Collect a dump of the TCP/IP address
space and data space.

Application interfaces for network
monitoring

DocumentationInterface

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 93

Appendix A - Record Formats

FTP Server Transfer Initialization record

FTP Server Transfer Initialization self-defining section of SMF record:

Number of FTP server second associated data set
name
 sections

binary2SMF119S4Num66 (x'42')

Length of FTP server second associated data set name
 section

binary2SMF119S4Len64 (x'40')

Offset to FTP server second associated data set nam
 section

binary4SMF119S4Off60 (x'3C')

Number of FTP server first associated data set name
 sections

binary2SMF119S3Num58 (x'3A')

Length of FTP server first associated data set name
 section

binary2SMF119S3Len56 (x'38')

Offset to FTP server first associated data set name
 section

binary4SMF119S3Off52 (x'34')
Number of FTP server hostname sectionsbinary2SMF119S2Num50 (x'32')
Length of FTP server hostname sectionbinary2SMF119S2Len48 (x'30')

Offset to FTP server hostname sectionbinary4SMF119S2Off44 (x'2C')
Number of FTP server sections binary2SMF119S1Num42 (x'2A')
Length of FTP server sectionbinary2SMF119S1Len40 (x'28')
Offset to FTP server sectionbinary4SMF119S1Off36 (x'24')
Number of TCP/IP identification sectionsbinary2SMF119IDNum34 (x'22')
Length of TCP/IP identification sectionbinary2SMF119IDLen32 (x'20')
Offset to TCP/IP identification sectionbinary4SMF119IDOff28 (x'1C')
reserved226 (x'1A')
Number of triplets in this record V1R4: 5binary2SMF119SD_TRN24 (x'18')

Self Defining Section

Standard SMF header; subtype will be 100 (x’64’)N/A24Standard SMF
header

0 (x'0')
DescriptionFormatLengthNameOffset

The TCP/IP Identification section is the same as for the completion record:

Started task qualifier or address space name of address
space that writes this SMF record

8SMF119TI_ASName40

TCP/IP subcomponent (right padded with blanks):

FTPS: FTP server

8SMF119TI_Comp32
CS OS/390 TCP/IP Release Identifier8SMF119TI_ReleaseID24
TCP/IP stack name8SMF119TI_Stack16
Sysplex name from SYSPLEX in COUPLExx8SMF119TI_SysplexName8
System name from SYSNAME in IEASYSxx8SMF119TI_SYSName0
DescriptionLengthNameOffset

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 94

Reason for writing this SMF record:

X’08’: Event SMF record

4SMF119TI_Reason60
ASID of address space that writes this SMF record4SMF119TI_ASID56

User ID of security context under which this SMF record
is written

8SMF119TI_UserID48

FTP Server Transfer Initialization record section (located physically after the TCP/IP identification
section in the record). This section is slightly different from the one in the transfer completion record and
the field names are therefore different from the completion record. The mapping of this record section is
in EZANMFTA (assembler macro) for assembler code and in EZANMFTC (a C header) for C code.

Data type

A: ASCII
E: EBCDIC

1SMF119FT_FSIFType92
Client User ID on server8SMF119FT_FSISUser84
Local port number (control connection - server)2SMF119FT_FSICLPort82
Remote port number (control connection - client)2SMF119FT_FSICRPort80
Local IP address (control connection)16SMF119FT_FSICLIP64
Remote IP address (control connection)16SMF119FT_FSICRIP48
Local port number (data connection - server)2SMF119FT_FSIDLPort46
Remote port number (data connection)2SMF119FT_FSIDRPort44
Local IP address (data connection)16SMF119FT_FSIDLIP28
Remote IP address (data connection)16SMF119FT_FSIDRIP12
File type (SEQ, JES, or SQL)4SMF119FT_FSIFType8
FTP command (according to RFC959+)4SMF119FT_FSICmd4
Reserved22

Passive or active mode data connection:

x'00' active using default ip and port
x'01' active using PORT
x'02' active using EPRT
x'03' passive using PASV
x'04' passive using EPSV

1SMF119FT_FSIActPas1

FTP Operation according to SMF77 subtype
classification (this is really redundant information, the
same information can be found in
SMF119FT_FSICmd).

x'01': Append
x'02': Delete
x'03': Rename
x'04': Retrieve
x'05': Store
x'06': Store Unique

1SMF119FT_FSIOPer0
DescriptionLengthNameOffset

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 95

Second PDS member name (if rename operation)8SMF119FT_FSIM2120
PDS Member name8SMF119FT_FSIM1112

Control connection start date (format: 0cyydddF). If the
end date is not available, the value specified will be
x'0000000F'. (FTP sessions start date)

4SMF119FT_FSICSDate108

Control connection start time in 1/100 seconds since
midnight (using Coordinated Universal Time (UTC)).
(FTP session start time)

4SMF119FT_FSICSTime104

Data connection start date (format: 0cyydddF). If the
start date is not available, the value specified will be
x'0000000F'.

4SMF119FT_FSISDate100

Data connection start time, formatted in 1/100 seconds
since midnight (using Coordinated Universal Time
(UTC))

4SMF119FT_FSISTime96

Data set type

S: SEQ
P: PDS
H: HFS

1SMF119FT_FSIDsType95

Data structure

F: File
R: Record

1SMF119FT_FSIStruct94

Transmission mode

B: Block
C: Compressed
S: Stream

1SMF119FT_FSIMode93

I: Image
B: Double-byte
U: UCS-2

The FTP Server Hostname section, physically located after the FTP Server Transfer Initialization section.
This section is optional and is identical to the one present in the transfer completion record, and will only
be present if a gethostbyaddr operation was performed for the Local IP address:

Host NamenSMF119FT_Hostname0
DescriptionLengthNameOffset

The FTP Server MVS Data Set Name section, physically located after the FTP Server Hostname section
(if present) or the FTP Server Transfer Initialization section. This section represents the MVS data set
names associated with the file transfer and is identical to the one present in the completion record. A
second instance of the section will be included for Rename File Transfer operations.

MVS Data Set Name44SMF119FT_MVSDataSet0
DescriptionLengthNameOffset

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 96

The FTP Server HFS Filename section, physically located after the FTP Server MVS Data Set Name
section. It is identical to the one present in the completion record. One or two names may be included in
this section:

HFS File NamemSMF119FT_HFSName24+n

Length of second HFS File name (zero if only one HFS
File name is being reported)

2SMF119FT_HFSLen22+n
HFS File Name nSMF119FT_HFSName12
Length of first HFS File name2SMF119FT_HFSLen10
DescriptionLengthNameOffset

FTP Client Transfer Initialization record

FTP Client Transfer Initialization self-defining section of SMF record:

Number of FTP client SOCKS sectionsbinary2SMF119S3Num58 (x'3A')
Length of FTP client SOCKS sectionbinary2SMF119S3Len56 (x'38')
Offset to FTP client SOCKS sectionbinary4SMF119S3Off52 (x'34')

Number of FTP client associated data set name
sections

binary2SMF119S2Num50 (x'32')

Length of FTP client associated data set name
section

binary2SMF119S2Len48 (x'30')

Offset to FTP client associated data set name
section

binary4SMF119S2Off44 (x'2C')
Number of FTP client sectionsbinary2SMF119S1Num42 (x'2A')
Length of FTP client sectionbinary2SMF119S1Len40 (x'28')
Offset to FTP client sectionbinary4SMF119S1Off36 (x'24')
Number of TCP/IP identification sectionsbinary2SMF119IDNum34 (x'22')
Length of TCP/IP identification sectionbinary2SMF119IDLen32 (x'20')
Offset to TCP/IP identification sectionbinary4SMF119IDOff28 (x'1C')
reserved226 (x'1A')
Number of triplets in this record V1R4: 4binary2SMF119SD_TRN24 (x'18')

Self Defining Section

Standard SMF header; subtype will be 101
(x’64’)

N/A24Standard SMF header0 (x'0')
DescriptionFormatLengthNameOffset

The TCP/IP Identification section is the same as for the completion record.

TCP/IP subcomponent (right padded with blanks):

FTPC: FTP client

8SMF119TI_Comp32
CS OS/390 TCP/IP Release Identifier8SMF119TI_ReleaseID24
TCP/IP stack name8SMF119TI_Stack16
Sysplex name from SYSPLEX in COUPLExx8SMF119TI_SysplexName8
System name from SYSNAME in IEASYSxx8SMF119TI_SYSName0
DescriptionLengthNameOffset

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 97

Reason for writing this SMF record:

X’08’: Event SMF record

4SMF119TI_Reason60

ASID of address space that writes this SMF
record

4SMF119TI_ASID56

User ID of security context under which this SMF
record is written

8SMF119TI_UserID48

Started task qualifier or address space name of
address space that writes this SMF record

8SMF119TI_ASName40

FTP Client Transfer Initialization record section (physically located after the TCP/IP Identification
section). This section is slightly different from the one in the transfer completion record and the field
names are therefore different from the completion record. The mapping of this record section is in
EZANMFTA (assembler macro) for assembler code and in EZANMFTC (a C header) for C code.

Data set type

S: SEQ
P: PDS
H: HFS

1SMF119FT_FCIDSType99

Structure

F: File
R: Record

1SMF119FT_FCIStruct98

Transfer mode

B: Block
C: Compressed
S: Stream

1SMF119FT_FCIMode97

Data format

A: ASCII
E: EBCDIC
I: Image
B: Double-byte
U: UCS-2

1SMF119FT_FCIType96
Local User ID 8SMF119FT_FCILUser88
User ID (login name) on server8SMF119FT_FCIRUser80
Local port number (control connection)2SMF119FT_FCICLPort78
Remote port number (control connection)2SMF119FT_FCICRPort76
Local IP address (control connection)16SMF119FT_FCICLIP60
Remote IP address (control connection)16SMF119FT_FCICRIP44
Local port number (data connection)2SMF119FT_FCIDLPort42
Remote port number (data connection)2SMF119FT_FCIDRPort40
Local IP address (data connection)16SMF119FT_FCIDLIP24
Remote IP address (data connection)16SMF119FT_FCIDRIP8
Local file type (SEQ or SQL)4SMF119FT_FCIFType4
FTP subcommand (according to RFC959)4SMF119FT_FCICmd0
DescriptionLengthNameOffset

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 98

3reserved125

Passive or active mode data connection:

x'00' active using default ip and port
x'01' active using PORT
x'03' passive using PASV
x'04' passive using EPSV

1SMF119FT_FCIActPas124
 PDS member name8SMF119FT_FCIM1116

Start date of the control connection (format 0cyydddF).
If the start date is not available, the value specified will
be x'0000000F'. FTP session start date.

4SMF119FT_FCICSSDate112

Start time of control connection in 1/100 seconds since
midnight (using Coordinated Universal Time (UTC)).
FTP session start time.

4SMF119FT_FCICSTime108

Start date of data connection (format: 0cyydddF). If the
start date is not available, the value specified will be
x'0000000F'.

4 SMF119FT_FCISDate104

Start time of data connection in 1/100 seconds since
midnight (using Coordinated Universal Time (UTC))

4SMF119FT_FCISTime100

The FTP Client Hostname section, physically located after the FTP Client Transfer Complete section.
This section is optional and is identical to the one present in the transfer completion record - it will only
be present if a gethostbyaddr operation was performed for the Local IP address:

Host NamenSMF119FTC_Hostname0
DescriptionLengthNameOffset

The FTP Client MVS Data Set Name section, physically located after the FTP Client Hostname section
(if present) or the FTP Client Transfer Complete section and is identical to the one present in the transfer
completion record. This section represents the MVS data set names associated with the file transfer:

MVS Data Set Name44SMF119FTC_MVSDataSet0
DescriptionLengthNameOffset

The FTP Client HFS Filename section, physically located after the FTP Client MVS Data Set Name
section and is identical to the one present in the transfer completion record. This section will only be
present if Data Set Type = HFS, and only one HFS filename will be present.

HFS File Name nSMF119FT_HFSName10
DescriptionLengthNameOffset

The FTP client SOCKS section is only present if the connection passes through a SOCKS server and is
identical to the one present in the transfer completion record.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 99

SOCKS protocol version:

x'01' SOCKS Version 4
x'02' SOCKS Version 5

1SMF119FT_FCCProt18
SOCKS Server port number2SMF119FT_FCCPort16
SOCKS server IP address16SMF119FT_FCCIP0
DescriptionLengthNameOffset

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 100

Appendix B - PTF information

This appendix contains information about PTFs required for enabling this function on z/OS V1R4.

Informational APARII13699
SNA Headers/MacrosOA05225SNA
EE and CSM OA04394SNA
FTP SMF dataPQ78753IP FTP SMF
IP Headers/MacrosPQ79566IP

API code that is not in the EZBTCPIP address space:
EZBCTAPI, Packet trace formatter, NM Service, IPCS

PQ77840IP
FTPPQ77838IP
Netstat, Configuration, SNMPPQ77837IP
Stack related API codePQ77244IP

APARInterface

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 101

Appendix C - File storage locations

The following table shows parts that are needed in order to compile Network Management
Interface applications and their locations. Your compiler should be configured to have access to
these libraries.

hlq.SEZANMAC

H
MACRO
H
MACRO

EZANMFTC
EZANMFTA
EZBYTMIH (1)
EZBYTMIA (1)Network Management - Real Time

Interface for SMF event records

SYS1.MACLIB

MACRO
MACRO

MACRO
MACRO
MACRO
H
H
H
H
H

ISTCSMGA
ISTHPRCA
ISTEECOA
ISTEESUA
ISTEEHNA
ISTCSMGC
ISTHPRCC
ISTEECOC
ISTEESUC
ISTEEHNCEnterprise Extender Network Management

Same files as "Callable API to retrieve local TCP and
UDP End Point Data"

Network Management - Callable API to
retrieve new TCP/IP storage statistics
details

hlq.SEZANMAC
H
MACRO

EZBNMRHC
EZBNMRHACallable API to retrieve local TCP and

UDP End Point Data

hlq.SEZANMAC
hlq.SEZANMAC
SYS1.MACLIB
hlq.SEZANMAC H

MACRO
H
MACRO

EZASMF
EZASMF77
EZBYTMIH (1)
EZBYTMIA (1)Allow applications to obtain TCP

connection information

hlq.SEZANMAC

H
H
MACRO
MACRO
MACRO
MACRO

EZBYPTHH
EZBYCTHH
EZBCTHDR
EZBYPTHA
EZBYPTO
EZBCTAPIAllow applications to format CTRACE

records

HEZBYTMIH (1)

hlq.SEZANMACMACROEZBYTMIA (1)Allow applications to capture data
packets

LibraryTypeFilenameFunction

Table Notes: (1) Part used for multiple functions.

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 102

2003/10/30 15:16:50 V1R4 Network Mgmt User's Guide.lwp 103

