
2 December 1999

James Antognini

OS/390, seen by NT 2 2 December 1999

Overview

• Introduction.

• S/390: The hardware.

• Address space.

• Addressability.

• Authorization.

• PC routines.

• The repositories.

• Dispatching and scheduling.

• Units of work.

• The I/O model.

• Recovery.

• Serialization, coordination.

• Development of systems-level programs.

• Miscellany.

OS/390, seen by NT 3 2 December 1999

Introduction

• Many, many similarities between OS/390 and NT –

• Whilst the hardware isn’t quite proprietary, the soft-
ware is.

• A “mainframe” can be quite small, even portable.

• The dispatching mechanism is one interrupt-driven,
preemptive multithreading.

• Orientation of presentation is to the NT kernel-mode de-
veloper who has the concepts and wants to know “How
do I do it?”

OS/390, seen by NT 4 2 December 1999

S/390: The Hardware

• PSW (Program Status Word, like EIP+flags) contains
some state information, including “kernel-mode” indi-
cators. There are defined places (a one-level stack) for
“old” and “new” PSWs to contain state.

• There are 16 32-bit general-purpose and access regis-
ters, as well as control and floating-point registers.

• There are page tables, including higher tables. For each
physical page there are bits affecting access.

• There are storage keys, something of an historical arti-
fact but a feature useful for protecting a subsystem’s in-
formation from its clients (e.g., CICS).

• There are PC-entry tables to call routines via hardware.
SVC tables are primarily software (like dispatch rou-
tines).

• And there is addressability.

OS/390, seen by NT 5 2 December 1999

Address Space

• “Address space” is roughly equivalent to “process,” be-
ing a unit of management (dispatchability, identity and
accounting) as well the framework of virtual address-
ing.

• There are 2G in an address space (history again).

• At any moment, a program may address 2G or merely
the low 16M of an address space.

• System code and data areas straddle the 16M line (ex-
cept for page 0).

• An address space may be a unit of execution or merely
of data (the “data” space). The PSW points to the for-
mer; GPRs and ARs point to both types, up to a combi-
nation of 15 different ones at one moment.

• The management:

• The address space has its own dispatchability, under
which “threads” run.

• Swapping: Movement out or in affects use of real
storage and, of course, eligibility for dispatching.

• Identity = authority.

• Accounting.

• WLM can manage the address space individually or
as part of an “enclave.”

OS/390, seen by NT 6 2 December 1999

Addressability

• A routine always has a primary and a secondary address
space (for historical reasons) as well as a home address
space.

• Home is the dispatched address space.

• The primary is whence come instructions. Most often the
primary is the home address space.

• The secondary can be used for data.

• When an authorized component is invoked via a PC in-
struction, primary addressability may switch to the com-
ponent (server) address space, and the caller’s (client)
becomes secondary. Dispatchability doesn’t change.

OS/390, seen by NT 7 2 December 1999

Authorization

• The fundamental division is supervisor versus problem
state (= kernel-mode versus user-mode).

• Running in “system” key allows access via software to
supervisor state. Key change is available via hardware
or software.

• APF (Authorized Program Facility) is like a superuser
attribute, which gives access to other states via soft-
ware.

• Identity is in itself unimportant for authorization.

• But for the setting of APF attributes (or restricted USS
(UNIX System Services) attributes), identity affects
permission.

• An authorized application involves having code in an
APF library (≈ system DLL) and being invoked author-
ized. Usually the bulk of code is in PC routines.

• Note that kernel-mode components are not based on an
I/O model. And there is no equivalent of a filter rou-
tine!

OS/390, seen by NT 8 2 December 1999

PC Routines

• These are established by an authorized component, typ-
ically running in its own address space. They are the us-
ual way of “exporting” authorized services.

• The establisher loads the routines in the right place and
defines who can call them and with what attributes they
receive control.

• A routine can have the establisher’s address space as pri-
mary or the caller’s.

• The establisher must make the PC numbers (= indices)
known to (and valid for) expected callers.

• A call is effected solely by hardware, via table lookup
given the PC number.

OS/390, seen by NT 9 2 December 1999

The Repositories

• There is no analog of the NT registry. There is rather a
multiplicity of repositories of information.

• SYS1.PARMLIB is employed for some system informa-
tion, especially at IPL (“boot”) time.

• “Policy” and other information is kept in datasets (=
files).

• Catalogs (master and user) keep dataset descriptors and,
in some cases, state. They – the master catalog particu-
larly, due to its crucial role – are a bit like registries.

OS/390, seen by NT 10 2 December 1999

Dispatching and Scheduling

• OS/390 is a preemptive, interrupt-driven, multithreaded
system.

• WLM (Workload Manager) makes scheduling decisions
based on policies, to affect dispatching priority, swapin
status and working set.

• Given WLM decisions, the dispatcher selects address
spaces and then their SRBs and tasks to be given control.

• Time slicing is not (at present) used.

• Local, CPU and higher locks are somewhat like IRQL in
that they inhibit or prevent loss of the CPU.

OS/390, seen by NT 11 2 December 1999

Units of Work

• Tasks (TCBs) are equivalent to threads.

• SRBs are lightweight threads (but putting on weight
over time) and always authorized.

• Disabled routines – I/O completion routines (SLIHs),
DIEs (principally timers) – are similar to ISRs and
DPCs in not being preemptible, restricted in available
services and running independently of an address
space.

• There are numerous exits (= callbacks) for things like
task- and address-space termination, JESx events, I/O
events and so forth.

OS/390, seen by NT 12 2 December 1999

The I/O Model

• The model comprises a front end, independent I/O hard-
ware (channels) and back end.

• I/O is initiated by an application or by an IOS driver (in-
stallable and thus roughly analogous to a device driver).

• I/O is passed from IOS driver to IOS (≈ HAL), which
starts physical I/O (SSCH).

• I/O completion causes an interrupt in a random address
space.

• An IOS backend fields the interrupt and calls the appro-
priate IOS driver back end in disabled state.

• The IOS driver back end will employ an SRB if the orig-
inating address space is needed.

• There is no equivalent of a filter routine!

OS/390, seen by NT 13 2 December 1999

Recovery

• The MVS philosophy is “keep on truckin’”: Each auth-
orized routine is responsible for trying to continue op-
eration, to limit damage to itself and others and to log
errors.

• The aim is, at minimum, to degrade gracefully. Stop-
ping the system is strongly discouraged.

• Thus, exceptions like disabled page faults and, in gen-
eral, errors in restricted system state can be handled.

• Recovery is done through FRRs and ESTAE routines,
the former being more versatile.

• Terminology: “Recovery” = _except filter expression/
routine. “Retry” = _except block/routine.

OS/390, seen by NT 14 2 December 1999

Serialization, Coordination

• Local, CPU and various spin locks are available.

• Wait/post is equivalent to wait/notification event and
signalling.

• ENQ/DEQ are similar to mutexes or semaphores.

• Memory can be shared between address spaces.

• Cross-address-space applications – whether authorized
or not – are not common and necessitate a shift in the
thinking typical in developers. This, even though mech-
anisms are plentiful.

OS/390, seen by NT 15 2 December 1999

Development of Systems-level Programs

• PL/X is like C but not generally available outside IBM.
Assembler is often used outside IBM. Neither has a
run-time environment.

• C, C++ and PL/I are other systems-oriented languages.

• Simple (= rudimentary) debugging tools, at best akin
to SoftICE: VICOM (for IBM only), and VM and
TEST in TSO. Dumps are very commonly employed.
(But the machine environment cannot be trashed.)

• Two or three main IBM systems-programming centers:
Poughkeepsie, Santa Teresa and (?) Raleigh.

• Few “system” ISVs (for example, units of Computer
Associates).

• There are no books in print to introduce one to the en-
deavor. It’s more artisanal (learning by example and
experience), if you will.

OS/390, seen by NT 16 2 December 1999

Miscellany

• In general, no stack, only heap. (Peter Relson’s ASA
services are an exception.)

• JCL = .bat file, but uglier and with more warts.

• No GUI: Only a TSO or Unix-like command window.

• File systems: MVS-proprietary (primarily sequential,
directory-like and random access) and POSIX-branded
(USS).

• To get the comparison of NT and OS/390, ftp as ANON-
YMOUS to w3.s390.ibm.com, then ‘cd os390/xmemsrvc,
binary, get OS390andWinNT.zip’ (observing case).

//MAKEJABL JOB ANTOGNI,‘Compile and assemble',

// MSGLEVEL=(1,1),MSGCLASS=H,

// TIME=1440,REGION=32M,NOTIFY=ANTOGNI,USER=ANTOGNI

/*JOBPARM L=100

//PLX EXEC PGM=AKEEPLX,

// PARM='LC(100),DOBARS,MACPARM("YKTVSE")'

//SYSIN DD DSN=ANTOGNI.PGM.PLX(MAKEJABL),DISP=SHR

//SYSPRINT DD SYSOUT=*,

// DCB=(RECFM=FBM,LRECL=133,BLKSIZE=13300,BUFNO=15)

//SYSUT1 DD SPACE=(CYL,(10,10)),UNIT=SYSALLDA,

// DCB=(LRECL=80,BLKSIZE=32000,RECFM=FB)

//ASM EXEC PGM=ASMA90,COND=(4,LT),

// PARM='LINECOUNT(100),NOOBJECT,XREF(SHORT),NODECK,RENT'

//SYSPRINT DD SYSOUT=*,

// DCB=(RECFM=FBM,LRECL=133,BLKSIZE=13300,BUFNO=15)

