
System Automation for z/OS
Version 3 Release 3

Customizing and Programming

SC34-2570-03

���

System Automation for z/OS
Version 3 Release 3

Customizing and Programming

SC34-2570-03

���

Note!
Before using this information and the product it supports, read the information in Appendix F, “Notices,” on page 237.

This edition applies to IBM Tivoli System Automation for z/OS (Program Number 5698-SA3) Version 3, Release 3,
an IBM licensed program, and to all subsequent releases and modifications until otherwise indicated in new
editions.

This edition replaces SC34-2570-02.

IBM welcomes your comments. You may forward your comments electronically, or address your comments to:
IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Strasse 220
71032 Boeblingen
Germany

If you prefer to send comments electronically, use one of the following methods:
FAX (Germany): 07031 16-3456
FAX (Other Countries): +49 7031 16-3456
Internet: s390id@de.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

|
|
|
|
|
|

Contents

Figures vii

Tables ix

Accessibility xi
Using assistive technologies xi
Keyboard navigation of the user interface xi
z/OS information xi

Dotted decimal syntax diagrams . . . xiii

How to send your comments to IBM . . xv
If you have a technical problem xv

About This Book xvii
Who Should Use This Book xvii
Prerequisites xvii
Where to Find More Information. xvii

The System Automation for z/OS Library. . . xvii
Related Product Information xviii
Using LookAt to look up message explanations xviii

Summary of Changes for SC34-2570-03 xviii
New Information xix
Changed Information xx
Moved Information xxi
Deleted Information xxii

Chapter 1. How to Add a New
Application to Automation 1
Preparation Before Automating an Application . . . 1

Address Space properties 1
Step 1 - Application Start 1
Step 2 - Application Stop 2
Step 3 - Application Events 3
Step 4 - Application Monitoring 4
Outstanding Reply Processing 5
Topology 5

Adding the Application to Automation 5
Define an Application Policy Object 5
Build New Automation Configuration Files . . . 6

Chapter 2. How to Create Automation
Procedures 7
How Automation Procedures Are Called 7
How Automation Procedures Are Structured . . . 8

Performing Initialization Processing 9
Determining whether Automation Is Allowed . . 9
Performing Automation Processing 10

How to Make Your Automation Procedures Generic 14
Processor Operations Commands 14

Developing Messages for Your Automation
Procedures 15

Example AOCMSG Call 15

Example Automation Procedure 16
Notes on the Automation Procedure Example . . 17

Installing Your Automation Procedures 18
Testing and Debugging Automation Procedures . . 18

The Assist Mode Facility 18
Using Assist Mode to Test Automation
Procedures 19
Using AOCTRACE to Trace Automation
Procedure Processing 19
NetView Testing and Debugging Facilities . . . 20
Where to Find More Testing Information . . . 21

Coding Your Own Information in the Automation
Status File 21
Programming Recommendations 21
Global Variable Names 22

Chapter 3. How to Add a Message to
Automation 23
Conceptual Overview 23
Defining Actions for Messages 23

Defining CMD or REP Actions 24
Defining AT Actions 24
Defining Message Overrides 26

Extended Status Command Support 27
Policy Definitions 27

Defining Entries for the Message Revision Table . . 28
Defining the AT/MRT Scope 29
Build 30
AT and MRT Build Concept 30
Load 30

Listings. 30
A Guide to SA z/OS Automation Tables 31

NetView Automation Table Structure 31
Integrating Automation Tables 32
Generic Automation Table Statements 33

System Operations Automation Flow 34
Inheritance Rules for Classes 35

Define Application Information 35
Define Relationships 35
Define Application Messages and User Data . . 35
Define Startup Procedures 35
Define Shutdown Procedures 36
Define Error Thresholds 36
Define IMS Subsystem-Specific Data 36

Chapter 4. How to Monitor Applications 39
Observed Status Monitoring 39
Health Monitoring 40

Overview 40
Monitor Resource Commands 41
Writing a Recovery Routine 42
Active Health Monitoring 43
Passive, Event-Based Health Monitoring 44
Programming Techniques 46

Health Monitoring using OMEGAMON 47

© Copyright IBM Corp. 1996, 2011 iii

||
||
||
||
||

|
||
||
||
||
||
||
||
||
||
||
||
||

||
||

||

Overview 48
Assumptions 48
OMEGAMON Interaction 49
Health Monitoring Based on OMEGAMON
Exceptions. 53
Health Monitoring Based on OMEGAMON XE
Situations 55

Health Monitoring using CICSPlex SM 58
Component Overview 58
Creating an Application to Manage the VOST . . 58
Defining the Monitor Resources 59

Monitoring JES3 Components 59
AOFRJ3MN Routine 60
AOFRJ3RC Routine. 62

JES2 Spool Monitoring. 63
DB2 Connection Monitoring 63
IMS Component Monitoring 63

Chapter 5. Alert-Based Notification . . 65
Overview 65
Communication Flow 65
Enabling Alerting 66

Setup in SA z/OS 66
INGALERT Command. 70

Chapter 6. Availability and Recovery
Time Reporting 71
Overview 71
Resource Lifecycle 71
Layout of the SMF Record 72
Enabling SMF Records. 73
The INGPUSMF Utility 74

Output 74
The INGPUSMF Utility JCL 74
Return Codes. 75

Writing the SMF Report to DB2. 76
Customization 76
Output 77

Chapter 7. How to Automate Processor
Operations-Controlled Resources . . . 79
Automating Processor Operations Resources of
z/OS Target Systems Using Proxy Definitions . . . 79

Concept 79
Customizing Automation for Proxy Resources . . 80
Preparing Message Automation. 82

Automating Linux Console Messages 82
The Linux Console Connection to NetView . . . 82
Linux Console Automation with Mixed Case
Character Data 82
Security Considerations 83
Restrictions and Limitations 83

How to Add a Processor Operations Message to
Automation 83

Messages Issued by a Processor Operations
Target System 83
Building the New Automation Definitions . . . 87
Loading the Changed Automation Environment 87

Using Pipes and ISQCCMD for Synchronous HW
Commands 88

Automating Asynchronous Hardware Commands
with ISQCCMD and PIPES 89
VM Second Level Systems Support 90

Guest Target Systems 90
Customizing Target Systems 91

Chapter 8. How to Automate USS
Resources 95
Integration of z/OS UNIX System Services 95

Infrastructure Overview 96
Setting Up z/OS UNIX Automation 96

Customization of z/OS UNIX Resources. . . . 96
Example: inetd 102

Hints and Tips 105
Trapping UNIX syslogd Messages 105
Debugging 106

Chapter 9. How to Enable Sysplex
Automation 107
Sysplex Functions 107

Managing Couple Data Sets 107
Managing the System Logger 108
Managing Coupling Facilities 109
Recovery Actions 111
Hardware Validation 115

Enabling Hardware-Related Automation 117
Step 1: Defining the Processor 117
Step 2: Using the Policy Item PROCESSOR
INFO 117
Step 3: Defining Logical Partitions 117
Step 4: Defining the System 117
Step 5: Connecting the System to the Processor 117
Step 6: Defining Logical Sysplexes 118
Step 7: Defining the Physical Sysplex 118

Enabling Continuous Availability of Couple Data
Sets. 118
Enabling WTO(R) Buffer Shortage Recovery . . . 119
Enabling System Removal 121

Step 1: Defining the Processor and System. . . 121
Step 2: Defining the Application with
Application Type IMAGE 121
Step 3: Defining an Application Group 122
Step 4: Automating IXC102A and IXC402D
Messages 122
Step 5: Verify Automation table entries 123

Enabling Long Running Enqueues (ENQs) . . . 123
Step 1: Defining Resources 124
Step 2: Making Job/ASID Definitions 124
Step 3: Defining IEADMCxx Symbols 124
Step 4: Defining Commands 124
Step 5: Defining Snapshot Intervals 124

Enabling Auxiliary Storage Shortage Recovery . . 124
Step 1: Defining the Local Page Data Set . . . 124
Step 2: Defining the Handling of Jobs 125

Defining Common Automation Items 125
Customizing the System to Use the Functions . . 125

Additional Automation Operator IDs 125
Switching Sysplex Functions On and Off . . . 125

Chapter 10. Automating Networks . . 127

iv System Automation for z/OS: Customizing and Programming

||
||

||

||

||
|
||
||

Automation Network Definition Process 127
Defining an SDF Focal Point System. 128
Defining Gateway Sessions 129

Defining Automatically-Initiated TAF Fullscreen
Sessions 130

Chapter 11. Defining a VTAM
Application to SA z/OS 133
Registering VTAM Application Subsystems with
SA z/OS Recovery 133

Chapter 12. Shutting Down z/OS
systems in a GDPS Environment . . . 135
Example Definition 135

Chapter 13. WTOR Processing 137
Process Flow of WTORs 137

Actions in Response to Incoming WTORs . . . 138
Customizing how WTORs Are Stored by
SA z/OS 138
Processing of Primary WTORs. 139
Usage Notes. 140

Chapter 14. SA z/OS User Exits . . . 141
Initialization Exits 142

AOFEXDEF 143
AOFEXI01 143
AOFEXI02 143
AOFEXI03 143
AOFEXI04 143
AOFEXI05 143
AOFEXI06 144
AOFEXINT 144

Environmental Setup Exits 144
Parameters 144
Return Codes 144
Usage Notes. 145

Static Exits 145
AOFEXSTA 145
AOFEXX02 146
AOFEXX03 146
AOFEXX04 147
AOFEXX15 147

Flag Exits. 147
Parameters 149
Task Global Variables. 149
Return Codes 150

Customization Dialog Exits 150
User Exits for BUILD Processing 150
User Exits for COPY Processing 152
User Exits for DELETE Processing 152
User Exits for CONVERT Processing 153
User Exits for RENAME, and IMPORT
Functions. 153
Invocation of Customization Dialog Exits . . . 154

Command Exits 154
AOFEXC00 154
AOFEXC01 154
AOFEXC02 155
AOFEXC03 155

AOFEXC04 155
AOFEXC05 155
AOFEXC06 155
AOFEXC07 155
AOFEXC08 156
AOFEXC09 156
AOFEXC10 156
AOFEXC11 156
AOFEXC12 156
AOFEXC13 156
AOFEXC14 156
AOFEXC15 157
AOFEXC16 157
AOFEXC17 157
AOFEXC18 157
AOFEXC19 157
AOFEXC20 158
AOFEXC21 158
AOFEXC22 158
AOFEXC23 158

Pseudo-Exits 158
Automation Control File Reload Permission Exit 158
Automation Control File Reload Action Exit . . 159
Subsystem Up at Initialization Commands . . 159

Testing Exits. 159

Chapter 15. Automation Solutions . . 161
LOGREC Data Set Processing 162
SMF Data Set Processing 162
SYSLOG Processing 162
System Log Failure Recovery 162
SVC Dump Processing 163
Deletion of Processed WTORs from the Display 163
AMRF Buffer Shortage Processing 163
Drain Processing Prior to JES2 Shutdown 164
TWS Automation Operation 164
IMS Transaction Recovery 164
AOFRSA01 165
AOFRSA02 166
AOFRSA03 168
AOFRSA08 170
AOFRSA0C 172
AOFRSA0E 175
AOFRSA0G 176
AOFRSD07 177
AOFRSD09 178
AOFRSD0F 180
AOFRSD0G 182
AOFRSD0H 183
EVEERTRN 185
EVIECT0X 186
EVIEET00 186
EVIEI006 187
EVISTRCT 187
EVISTRMN 188
EVJEAC04 188
EVJEOBSV 188
EVJRAC05 189
EVJRSACT 189
EVJRSJOB 190
HASP099 190

Contents v

||

||
||
||
||

||

||
||

||
||
||

INGRMJSP 191
INGRCJSP (AOFRSD01) 192
INGRTAPE 194
INGRX740 194

Appendix A. Global Variables 197
Read-Only Variables 197
Read/Write Variables. 198
Parameter Defaults for Commands 205

Appendix B. Customizing the Status
Display Facility 209
Overview of the Status Display Facility. 209

How the Status Display Facility Works 209
Types of SDF Panels 209
Status Descriptors 210
SDF Tree Structures 211
How Status Descriptors Affect SDF 212
How SDF Helps Operations to Focus on Specific
Problems 215
How SDF Panels Are Defined 215
Dynamically Loading Tree Structure and Panel
Definition Members 216
Using SDF for Multiple Systems 216
SDF Components 217
How the SDF Task Is Started and Stopped . . 218

SDF Definition Process 218
Step 1: Defining SDF Hierarchy 219
Step 2: Defining SDF Panels 220
Step 3: (Optional) Customizing SDF
Initialization Parameters 223

Step 4: (Optional) Defining SDF in the
Customization Dialog 224

Appendix C. How System Operations
Coordinates with Automatic Restart
Manager 225
Defining an ARM Element Name. 225
Defining a MOVE Group for Automatic Restart
Manager 226

Appendix D. Message Automation . . 227
Generic Synonyms: AOFMSGSY 227

SA z/OS Message Presentation: AOFMSGSY 228
Operator Cascades: AOFMSGSY 230
SA z/OS Topology Manager for NMC:
AOFMSGST 233

Appendix E. TSO User Monitoring . . 235

Appendix F. Notices 237
Programming Interface Information 238
Trademarks 238

Glossary 239

Index 261

vi System Automation for z/OS: Customizing and Programming

||

||

Figures

1. Application Lifecycle 4
2. Automation Procedures for System Operations 8
3. Automation Procedures for Processor

Operations 8
4. Skeleton of an Automation Procedure 14
5. AT Structure 31
6. Sample Monitor Command 44
7. Take Action Dialog 57
8. Alert Communication Flow 66
9. Events in the Lifecycle of an Application 71

10. SMF Processing with z/OS Offloader 76
11. Stop Definitions for a Process 101
12. Delete a File 102
13. Structure of inetd 102
14. Dependency Graphic for inetd 104
15. Example of a UNIX Message 106
16. Sample Panel for Command Processing 123
17. Sample Panel for Code Processing 123
18. Focal Point Forwarding Definitions for

Systems 128
19. Notification Forwarding Panel for CHI02 128
20. Notification Forwarding Panel for ATL01 and

ATL02 128
21. Automation Operator Definitions Panel 129
22. Automation Operator NetView Userids Panel 130
23. Fullscreen TAF Application Definition Panel 131
24. Example Processing of a Primary WTOR 140
25. SA z/OS Exit Sequence during SA z/OS

Initialization 142
26. Threshold Definitions for MVS Component

LOGREC 167

27. MESSAGES/USER DATA Policy Item for
Entry/Type-Pair MVSESA/LOGREC. . . . 167

28. Threshold Definitions for MVS Component
SMFDUMP 169

29. MESSAGES/USER DATA Policy Item for
Entry/Type-Pair MVSESA/SMFDUMP . . . 169

30. Threshold Definitions for MVS Component
SYSLOG 171

31. MESSAGES/USER DATA Policy Item for
Entry/Type-Pair MVSESA/SYSLOG 171

32. MVSDUMP Thresholds 174
33. MVSESA AMRF Command Definitions 177
34. JES2 DRAIN Specifications Panel 181
35. DISPACF Panel 181
36. DISPACF JES2 INITDRAIN Panel 182
37. JES2 SPOOLSHORT Recovery Definition 184
38. DISPACF Command Response Panel 184
39. Threshold Definitions for MVS Component

LOG 196
40. MESSAGES/USER DATA Policy Item for

Entry/Type-Pair MVSESA/LOG 196
41. Example SDF Panels 210
42. Example SDF Tree Structure. 211
43. Status Descriptors Chained to Status

Components 213
44. Example Tree Structure Definition. 220
45. Example SDF Panel 221
46. Example Panel Definition Entry 222

© Copyright IBM Corp. 1996, 2011 vii

||

||

|
||

||

||

viii System Automation for z/OS: Customizing and Programming

Tables

1. System Automation for z/OS Library xvii
2. Application Start 1
3. Application Stop (1) 2
4. Application Stop (2) 3
5. Observed Status Monitor Routines 39
6. Health Status Return Codes 43
7. Inform List Policy Items 67
8. Inform List Communication Methods 67
9. Code Processing Example for the INGALERT

Message ID 70
10. Layout of the SMF Record 72
11. Format of INGPUSMF Utility Data Set Records 74
12. SINGSAMP SA z/OS Sample Library Routines 85

13. Example Customization Dialog Definitions for
inetd 103

14. WTOBUF Recovery Process 120
15. Example SYSTEM_SHUTDOWN Command

Processing Entry 135
16. Externalized Common Global Variables 197
17. Global Variables to Enable Advanced

Automation (CGLOBALS) 198
18. Global Variables That Define the Installation

Defaults for Specific Commands 205
19. SDF Components 217
20. Panel Definition Entry Description 222

© Copyright IBM Corp. 1996, 2011 ix

||
||
||

||

||

x System Automation for z/OS: Customizing and Programming

Accessibility

Publications for this product are offered in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when using PDF files, you may view the information through the z/OS
Internet Library website or the z/OS Information Center. If you continue to
experience problems, send an email to mhvrcfs@us.ibm.com or write to:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS® enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

z/OS information
z/OS information is accessible using screen readers with the BookServer or Library
Server versions of z/OS books in the Internet library at:
http://www.ibm.com/systems/z/os/zos/bkserv/

© Copyright IBM Corp. 1996, 2011 xi

http://www.ibm.com/systems/z/os/zos/bkserv/

xii System Automation for z/OS: Customizing and Programming

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users accessing the
Information Center using a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line,
because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are

© Copyright IBM Corp. 1996, 2011 xiii

optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!
(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

xiv System Automation for z/OS: Customizing and Programming

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:
1. Send an email to s390id@de.ibm.com
2. Visit the SA z/OS home page at http://www.ibm.com/systems/z/os/zos/

features/system_automation/
3. Visit the Contact z/OS web page at http://www.ibm.com/systems/z/os/zos/

webqs.html
4. Mail the comments to the following address:

IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Str. 220
D-71032 Boeblingen
Federal Republic of Germany

5. Fax the comments to us as follows:
From Germany: 07031-16-3456
From all other countries: +(49)-7031-16-3456

Include the following information:
v Your name and address
v Your email address
v Your telephone or fax number
v The publication title and order number:

IBM Tivoli System Automation for z/OS V3R3.0 Customizing and
Programming
SC34-2570-03

v The topic and page number related to your comment
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit.

If you have a technical problem
Do not use the feedback methods listed above. Instead, do one of the following:
v Contact your IBM service representative
v Call IBM technical support
v Visit the IBM zSeries support web page at www.ibm.com/systems/z/support/.

© Copyright IBM Corp. 1996, 2011 xv

http://www.ibm.com/systems/z/os/zos/features/system_automation/
http://www.ibm.com/systems/z/os/zos/features/system_automation/
http://www.ibm.com/systems/z/os/zos/features/system_automation/
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xvi System Automation for z/OS: Customizing and Programming

About This Book

This book describes how to adapt your completed standard installation of IBM®

Tivoli® System Automation for z/OS (SA z/OS) as described in IBM Tivoli System
Automation for z/OS Planning and Installation to your environment. This book
contains information on how to add new applications to automation and how to
write your own automation procedures. It also contains information about how to
add new messages for automated applications.

Who Should Use This Book
This book is primarily intended for automation programmers responsible for:
v Customizing system automation and the operations environment
v Developing automation procedures and other operations capabilities

Prerequisites
Throughout this book, it is expected that readers are familiar with System
Automation for z/OS and the following documentation:
v IBM Tivoli System Automation for z/OS Operator’s Commands

v IBM Tivoli System Automation for z/OS Programmer’s Reference

v IBM Tivoli System Automation for z/OS Defining Automation Policy

Where to Find More Information

The System Automation for z/OS Library
Table 1 shows the information units in the System Automation for z/OS library:

Table 1. System Automation for z/OS Library

Title Order Number

IBM Tivoli System Automation for z/OS Planning and Installation SC34-2571

IBM Tivoli System Automation for z/OS Customizing and Programming SC34-2570

IBM Tivoli System Automation for z/OS Defining Automation Policy SC34-2572

IBM Tivoli System Automation for z/OS User’s Guide SC34-2573

IBM Tivoli System Automation for z/OS Messages and Codes SC34-2574

IBM Tivoli System Automation for z/OS Operator’s Commands SC34-2575

IBM Tivoli System Automation for z/OS Programmer’s Reference SC34-2576

IBM Tivoli System Automation for z/OS Product Automation Programmer’s
Reference and Operator’s Guide

SC34-2569

IBM Tivoli System Automation for z/OS TWS Automation Programmer’s
Reference and Operator’s Guide

SC34-2579

IBM Tivoli System Automation for z/OS End-to-End Automation Adapter SC34-2580

IBM Tivoli System Automation for z/OS Monitoring Agent Configuration and
User’s Guide

SC34-2581

© Copyright IBM Corp. 1996, 2011 xvii

The System Automation for z/OS books are also available on CD-ROM as part of
the following collection kit:

IBM Online Library z/OS Software Products Collection (SK3T-4270)

SA z/OS Home Page
For the latest news on SA z/OS, visit the SA z/OS home page at
http://www.ibm.com/systems/z/os/zos/features/system_automation

Related Product Information
You can find books in related product libraries that may be useful for support of
the SA z/OS base program by visiting the z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv

Using LookAt to look up message explanations
LookAt is an online facility that lets you look up explanations for most of the IBM
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for
z/OS elements and features, z/VM®, z/VSE®, and Clusters for AIX® and Linux:
v The Internet. You can access IBM message explanations directly from the LookAt

Website at www.ibm.com/systems/z/os/zos/bkserv/lookat/index.html
v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations using LookAt from a TSO/E
command line (for example: TSO/E prompt, ISPF, or z/OS UNIX System
Services).

v Your Microsoft Windows workstation. You can install LookAt directly from the
z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection
(SK3T-4271) and use it from the resulting Windows graphical user interface
(GUI). The command prompt (also known as the DOS > command line) version
can still be used from the directory in which you install the Windows version of
LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from
www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html with a handheld
device that has wireless access and an Internet browser (for example: Internet
Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for Linux
handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from:
v A CD-ROM in the z/OS Collection (SK3T-4269).
v The z/OS and Software Products DVD Collection (SK3T-4271).
v The LookAt Website (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in
the LOOKAT.ME files available during the download process.

Summary of Changes for SC34-2570-03
This document contains information previously presented in System Automation
for z/OS V3R3.0 Customizing and Programming, SC34-2570-02.

xviii System Automation for z/OS: Customizing and Programming

|

|
|

http://www.ibm.com/systems/z/os/zos/features/system_automation/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/index.html
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html

New Information
INGRTAPE

The INGRTAPE automation routine is added to Chapter 15, “Automation
Solutions,” on page 161.

INGROMON
The INGROMON monitoring routine is added to “Observed Status
Monitoring” on page 39.

INGHIST_WIMAX parameter
INGHIST_WIMAX has been added in “Parameter Defaults for Commands”
on page 205.

INGUXPPI PPI interface
Use of the program-to-program interface INGUXPPI for USS process
initialization and termination status updates is added in Chapter 8, “How
to Automate USS Resources,” on page 95.

IP Stack
IP stack information has been added to “Customization of z/OS UNIX
Resources” on page 96 and “Example: inetd” on page 102.

Additional Read Only Global Variables for SA z/OS
AOFBFP, AOFCFP, and AOFPFP, have been added in “Read-Only
Variables” on page 197.

Additional Read/Write Global Variables for SA z/OS
AOF_AAO_SHUTSYS_OLD, AOF_AAO_OMVS_SHUTDOWN, and
AOF_AAO_SHUTDOWN_STOPAPPL have been added in “Read/Write
Variables” on page 198.

Shutting Down z/OS systems from GDPS
A new procedure and new phase 0 to shutdown z/OS from GDPS is
described in a new chapter, see Chapter 12, “Shutting Down z/OS systems
in a GDPS Environment,” on page 135.

RESYNC SDFDEFS command
Reference to the use of the above command for generating SDF panels is
included in “Dynamically Loading Tree Structure and Panel Definition
Members” on page 216.

%INCLUDE Statement for SDF Panels
The %INCLUDE statement for SDF panels allows you to specify dynamic
generation of the panel definitions, see “%INCLUDE Statement for SDF
Panels” on page 223.

Command exits
The following command exits have been introduced:
v AOFEXC16 for INGTHRS
v AOFEXC18 for INGLKUP
v AOFEXC19 for INGAMS
v AOFEXC21 for INGOPC
v AOFEXC22 for trouble ticketing
v AOFEXC23 for authorization checking of requests that are passed using

the TWS interface.

For more details, see “Command Exits” on page 154

About This Book xix

|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|

|

|

|

|
|

|

DB2® connection monitoring
SA z/OS allows you to monitor DB2 connections for both CICS® and
IMS™. See “DB2 Connection Monitoring” on page 63.

Enabling SMF records
Details are provided in Chapter 6, “Availability and Recovery Time
Reporting,” on page 71, see “Enabling SMF Records” on page 73.

Extended alert-based notification
The alert-based notification service that SA z/OS provides has been
extended to include the following notification targets:
v Tivoli Netcool/OMNIbus
v IBM Tivoli Service Request Manager®

v A user-defined alert handler

See Chapter 5, “Alert-Based Notification,” on page 65 for more details.

INGERRLS listing
If the testing or loading of an AT or MRT fails, a special INGERRLS listing
is written to the DSILIST data set. See “Listings” on page 30.

INGRMJSP automation routine
The INGRMJSP automation routine has been introduced as part of an
updated JES2 spool monitoring process, see “INGRMJSP” on page 191.

NetView message revision table
SA z/OS now uses the NetView message revision table (MRT) as part of
message processing. For more details, see Chapter 3, “How to Add a
Message to Automation,” on page 23.

SDFCONF command
“Panel Definition Structure” on page 220 provides details about how to
assign the PF4 key to the SDFCONF command to delete a record in SDF.

System operations processing
The dedicated work operators that SA z/OS uses for all subsystem-related
processing are described in “System Operations Automation Flow” on page
34.

Task global variables set by INGMON
“Programming Techniques” on page 46 now provides details of the task
global variables that are set by INGMON.

Changed Information
The INGJRMJSP automation routine

This routine now appears as the INGRMJSP routine. See “INGRMJSP” on
page 191.

INGVOTE_SOURCE global installation variable
A new global installation variable INGVOTE_SOURCE replaces
INGVOTE_VERIFY in “Parameter Defaults for Commands” on page 205

&*JOBNAME. variable
A new variable &*JOBNAME. available as part of an automation table (AT)
condition statement is described in “Defining Message Overrides” on page
26.

Readers' Comments
The "Readers' Comments - We'd Like to Hear from You" section at the back
of the publication has been replaced with a new section “How to send

xx System Automation for z/OS: Customizing and Programming

|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

your comments to IBM” on page xv. The hardcopy mail-in has been
replaced with a page that provides information appropriate for submitting
comments to IBM.

Adding a new application to automation
Revised procedures are provided for adding a new application to
automation in Chapter 1, “How to Add a New Application to
Automation,” on page 1.

DB2 License Files
Additional DB2 license file support for z/OS is described in “Writing the
SMF Report to DB2” on page 76.

AOFEXC17 user exit
The details about this user exit for alerting have been updated. See
“Command Exits” on page 154.

EVEERTRN automation routine
The parameters for the EVEERTRN have been retired. The routine no
longer responds to message DFHAC2246, and message DFHAC2250 has
been added.

Flag exits
The example and process information about flag exits has been updated,
see “Flag Exits” on page 147.

JES2 spool monitoring
The JES2 spool recovery process has been extended to include an explicit
monitoring routine, INGRMJSP. For more details, see “JES2 Spool
Monitoring” on page 63.

Message automation
Because of major changes to message processing, Chapter 3, “How to Add
a Message to Automation,” on page 23 has been extensively rewritten.
These changes also affect associated processing of various automation
solutions that are supplied by SA z/OS, see Chapter 15, “Automation
Solutions,” on page 161.

UNIX Automation
Details about customizing UNIX resources have been updated, see
“Customization of z/OS UNIX Resources” on page 96.

WTO(R) buffer shortage recovery
The introduction to enabling WTO(R) buffer shortage recovery has been
updated, see “Enabling WTO(R) Buffer Shortage Recovery” on page 119.

Reader's Comments
The "Reader's Comments - We'd Like to Hear from You" section at the back
of this publication has been replaced with a new section “How to send
your comments to IBM” on page xv. The hardcopy mail-in has been
replaced with a page that provides information appropriate for submitting
comments to IBM.

Moved Information
The information that was previously in “Step 7: Reload MPF List and Automation
Configuration Files” has been moved to “Loading the Changed Automation
Environment” on page 87.

About This Book xxi

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|

The section “Generic Synonyms: AOFMSGSY” on page 227 has been moved from
“A Guide to SA z/OS Automation Tables” on page 31 to Appendix D, “Message
Automation,” on page 227.

The section “Inheritance Rules for Classes” on page 35 has been moved from
Appendix D, “Message Automation,” on page 227 to Chapter 3, “How to Add a
Message to Automation,” on page 23.

The following sections have been moved to this document from IBM Tivoli System
Automation for z/OS Defining Automation Policy:
v “Extended Status Command Support” on page 27
v Chapter 10, “Automating Networks,” on page 127
v Appendix C, “How System Operations Coordinates with Automatic Restart

Manager,” on page 225
v Chapter 11, “Defining a VTAM Application to SA z/OS,” on page 133

The chapter “DB2 Automation for System Automation for z/OS” has been moved
to Product Automation Programmer’s Reference and Operator’s Guide.

Deleted Information
EVIEI00Q

The EVIEI00Q routine is removed from IMS Transaction Recovery in
Chapter 15, “Automation Solutions,” on page 161.

AOFEXX16
This SA z/OS Static Exit is removed from Chapter 14, “SA z/OS User
Exits,” on page 141.

%AOFSIRTASK%
This generic synonym has been retired for use in the AOFMSGSY member
used as a NetView automation table. See “Generic Synonyms:
AOFMSGSY” on page 227.

Important Processor Operations Considerations
The section Important Processor Operations Considerations has been
removed from Chapter 9, “How to Enable Sysplex Automation,” on page
107.

SYSIEFSD Resource Recovery
The SYSIEFSD resource recovery function is removed from “Handling
Long-Running Enqueues (ENQs)” on page 111.

AOF_SET_AVM_RESTART_EXIT
This common global variable to set advanced automation options (AAOs)
has been retired.

AOF_NETWORK_DOMAIN_ID
This common global variable to set advanced automation option (AAOs)
has been retired.

Automation routines
Because of the exploitation of the base functions of SA z/OS for the
automation of CICS, the following automation routines have been retired:
v EVEEARMW
v EVEED004
v EVEEI004
v EVEEI006
v EVEEI009

xxii System Automation for z/OS: Customizing and Programming

|
|
|

|
|
|

|
|

|

|

|
|

|

|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

v EVEEI010
v EVEEI115
v EVEERLSI
v EVEES100
v EVEET002
v EVEET003
v EVEETUOW
v EVERSPPI

Because of changes related to TWS Automation, the EVJEAC03 automation
routine has been retired.

Message automation
Because of changes to message processing, the following sections have
been deleted from Appendix D, “Message Automation,” on page 227:
v FORCED AT Entry Type
v RECOMMENDED AT Entry Type
v CONDITIONAL AT Entry Type
v Other Forced AT Entries
v Restricted Message IDs

TEC Notification: AOFMSGSY synonyms
The TEC Notification AOFMSGSY synonyms have been retired and deleted
from “Generic Synonyms: AOFMSGSY” on page 227.

User exits
The INGEX12 and INGEX14 exits have been retired.

You may notice changes in the style and structure of some content in this
document—for example, headings that use uppercase for the first letter of initial
words only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
documents.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

About This Book xxiii

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

xxiv System Automation for z/OS: Customizing and Programming

Chapter 1. How to Add a New Application to Automation

This chapter outlines the requirements to add and monitor a new application for
SA z/OS.

Preparation Before Automating an Application
Before you can automate a product you need to extract its characteristics like its
start and stop behaviour and parameters like its jobname.

The following steps should help you to obtain these characteristics. Once you have
finished you need to add the application to your automation policy. Refer to IBM
Tivoli System Automation for z/OS Defining Automation Policy for this activity. The
main requirements for the automation of an application are:
v Address Space properties
v Application Start
v Application Shutdown
v Application Events
v Application Monitoring
v Outstanding Reply Processing
v Topology

Address Space properties
When adding an new application, you need to know the following most important
characteristics of the application:
v Jobname
v JCL procedure name
v Is it scheduled by the Master Scheduler or a scheduling subsystem?
v Is it an MVS, OMVS application or another kind of application (for example a

NetView task)?
v Location for running the application: every sysplex's system, once in the sysplex

or on a subset of systems within the sysplex?

The application's general properties are mostly defined in the APPLICATION
INFO policy.

Step 1 - Application Start
Before you can introduce a new application you should consider how it is started
and all the actions required to make it operational. Therefore it is important to
know:

Table 2. Application Start

Actions Required Available Functionality

Are there any actions to complete before
the application itself could be started?

To include these actions in automation, use
the application's PRESTART policy. Any
command specified there is issued prior to
the insertion of the start command.

© Copyright IBM Corp. 1996, 2011 1

|

|

|
|

|
|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|
|

|
|

|
|

|

|
|
|

||

||

|
|
|
|
|
|

Table 2. Application Start (continued)

Actions Required Available Functionality

What is the application's start command?
And are there different start commands
depending on the startup mode of an
application (for example, the normal and
the light start for a DB2 database)?

The start command should be located in the
STARTUP policy. It also provides the full
flexibility for different start commands by
specifying different start types. Once a start
type is set, the specified command will be
chosen. The start type easily can be
chosen/changed at System Automation's
runtime.

Who starts the application when it is not
started by System Automation? Is it started
by another instance?

The APPLICATION INFO policy lets you
specify an EXTERNAL STARTUP parameter.

Are there any actions to complete after the
application initialization?

Use the POSTSTART policy to issue
additional commands after the full
initialization of the application.

Note: All startup policies support flexible start types.

Step 2 - Application Stop
Once the application is no longer required, you need to take all the necessary steps
to bring it down in a planned way. Therefore it is important to know:

Table 3. Application Stop (1)

Actions Required Available Functionality

Should you issue commands to prepare the
application shutdown ?

Use the SHUTDOWN INIT policy to identify
additional commands to be issued before the
application termination can be initiated.

Which command initiates the termination
process? And what happens when the stop
command does not take effect?

System Automation has the concept of
command escalation. It provides the capacity
to specify an order of termination
commands. System Automation will issue
the first command and verify the effect
before it inserts the next more effective
command. There are three policies
(SHUTDOWN NORM, IMMED, FORCE)
where you can specify different shutdown
command sequences for different shutdown
types.

Who stops the application when it is not
stopped by System Automation? Is there
another instance controlling the
application?

The APPLICATION INFO policy lets you
specify an EXTERNAL SHUTDOWN
parameter.

Are there any final termination actions to
complete after an orderly application
termination?

Use the SHUTDOWN FINAL policy to issue
additional commands after the termination
of the application.

Sometimes it can happen that an application terminates unexpectedly. In this case
it might be necessary to complete some cleanup actions before the application can
be restarted. Consequently it is necessary to know:

How to Add a New Application to Automation

2 System Automation for z/OS: Customizing and Programming

|

||

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|

|

|
|

||

||

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

Table 4. Application Stop (2)

Actions Required Available Functionality

Are there any necessary cleanup activities
to be completed before the application can
be restarted?

The concept of status commands addresses
this issue. Once the application reaches a
specific status, the defined command will be
issued.

Is the application restartable in case of an
unexpected termination?

System Automation recognizes several
termination situations for applications.
Depending on the situation System
Automation is able to distinguish between a
recoverable and an unrecoverable error. As a
result, System Automation determines
whether to restart the application or not.
This concept is Code Match processing.
Additionally the RESTART option in the
APPLICATION INFO policy defines the
circumstances when System Automation
should restart the application.

Is the application restarted automatically
by another application? Is the application
ARM (Automatic Restart Manager) enabled
and will it be restarted automatically?

System Automation provides the concept of
Move groups to accomplish the same
behavior as the ARM mechanism does. It is
recommended to use Move groups for
achieving high availability of applications.

Step 3 - Application Events
System Automation reacts to events. More specifically, it reacts to messages sent by
applications or the system itself.

There are many kinds of applications. Each of them sends a varying degree of
messages which can be used to determine its status. The messages represent
different states during an application's life-cycle. Normally MVS resources provide
proper messages to determine the status of an application. Resources within OMVS
are mostly silent.

Step 3 points you to important messages in the life-cycle of the application. As you
can see below a resource is started once. After an amount of initialization time it is
fully operational. When the resource is no longer needed a stop command is
invoked to terminate it. After the termination processing it does not exist any
longer.

How to Add a New Application to Automation

Chapter 1. How to Add a New Application to Automation 3

||

||

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|

What are the important messages at the points in the application's life-cycle as
illustrated in Figure 1 above?

For example a message IEF403I is sent when the system observes that an
application has been started. IEF404I is issued when the application terminated.

Are there are other kinds of usable events at the specific points?

Step 3 discusses also the situation of an unplanned application termination.

Are there important messages at point 3 and 4 of Figure 1 in case of an unplanned
termination?

For example a message IEF450I points to an unplanned termination.

Step 4 - Application Monitoring
Automating resources does not only consist of starting and stopping the resources.
It is also important to know methods that determine whether the component is
working as expected or already terminated. System Automation provides proper
monitoring routines to be able to determine its state.

What kind of an application is it and could the state of the application be
determined by:
v The existence of an address space
v The existence of a USS process
v The status of a NetView task

The corresponding monitor could be specified in the field MONITOR ROUTINE.

Step 4 presents messages issued by applications and how communicative they are.
So it is useful to decide whether an application must be actively monitored or its
state could be reliably derived from messages. If this is the case the MONITOR
INTERVAL could be set to NONE. It helps to reduce the messages in the NetView
log and to reduce unnecessary system activity. The monitoring action itself takes
place at the startup and shutdown cycle to verify the state of the application.

Termination Complete

Initialization Complete Stop Command

3

Start Command

1

2

4

Figure 1. Application Lifecycle

How to Add a New Application to Automation

4 System Automation for z/OS: Customizing and Programming

|

|
|
|
|
|

|
|

|

|

|
|

|

|

|
|
|
|

|
|

|

|

|

|

|
|
|
|
|
|

In contrast, there are less communicative applications. In this case a well balanced
monitor interval (specific enough) ensures a periodic monitoring service to verify
the applications status.

Sometimes it is not enough to know whether a resource is running or not. Many
situations require more detailed information as well as its status. The concept of
monitor resources provides the infrastructure to evaluate the status of resources in
detail and to react properly to the specific situation.

Outstanding Reply Processing
SA z/OS keeps track of all outstanding Write-to-Operator Replies (WTORs) that it
receives if it does not reply to them immediately. Because some applications may
have more than one outstanding WTOR at the same time, and not all WTORs are
equally important, they are classified accordingly. For more details refer to
Chapter 13, “WTOR Processing,” on page 137.

Topology
Normally the application to be automated depends on the underlying
infrastructure, like JES2 or TCPIP. This means that this infrastructure must be
available before you can start the application.

Vice versa the application can be a prerequisite for other applications, before they
can be started.

Likewise you need to think about which other applications must be terminated
prior to the termination of the application.

As described above, there are relationships between the applications.

At this point it might be helpful to draw a picture and to visualize the
relationships between the application in case of a start and a stop situation.

SA z/OS provides Best Practice policies containing solutions for several products.
The solutions are illustrated in PDF file format located in: /usr/lpp/ing/doc/
policies.

Please refer to the appropriate file to find out more information about the solution
you are trying to automate.

Adding the Application to Automation

Define an Application Policy Object
To add a new application to SA z/OS, you must create and define a new
Application policy object using the SA z/OS customization dialog. With the
customization dialog, you also define how the new application should be
automated by SA z/OS, for example:
v Specifying startup or shutdown commands for the application,
v Specifying the appropriate monitoring routine,
v Specifying relationships to correlate it with other applications,
v Linking the application into an application group,
v Considering where the applications should be visible.

SA z/OS provides Best Practice policies containing solutions for several products.

How to Add a New Application to Automation

Chapter 1. How to Add a New Application to Automation 5

|
|
|

|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|

|
|

|
|
|

|
|

|
|

|

|
|
|
|

|

|

|

|

|

|

How to add a new application and how to access System Automation's Best
Practice solutions is described in detail in IBM Tivoli System Automation for z/OS
Defining Automation Policy.

Build New Automation Configuration Files
When you finish defining the application in the customization dialog, build the
new automation configuration files from the updated policy database. See IBM
Tivoli System Automation for z/OS Defining Automation Policy for more information.

After you have completed this step, the application is known to SA z/OS and can
therefore be automated according to the policy that was defined in “Define an
Application Policy Object” on page 5.

How to Add a New Application to Automation

6 System Automation for z/OS: Customizing and Programming

|
|
|

|

|
|
|

|
|
|

Chapter 2. How to Create Automation Procedures

You can write additional automation procedures to supplement the basic
automation procedures that are supplied by SA z/OS. For example, you may want
to develop procedures to automate an application that is used exclusively on your
system or to perform specialized automated operations for a subsystem.

SA z/OS commands and routines perform basic functions such as logging
messages and checking automation flags. You can use them in your own
automation procedures.

SA z/OS generic routines and common routines are convenience routines that
provide your automation procedures with a simple, standard way of interfacing
with the automation control file, automation status file, and NetView log file. It is
strongly recommended that you use these routines wherever possible in your own
code.

“How Automation Procedures Are Structured” on page 8 describes how to
structure your automation procedures. Refer to IBM Tivoli System Automation for
z/OS Programmer’s Reference for detailed descriptions and examples of the generic
routines, common routines and file manager commands you can use in your
automation procedures.

How Automation Procedures Are Called
There are several ways to call an automation procedure including:
v Calling the automation procedure from the NetView automation table using

SA z/OS generic routines
v Keying in the automation procedure name or its synonym into a NetView

command line
v Calling the automation procedure from another program
v Starting the automation procedure with a timer
v Starting the automation procedure with the NetView EXCMD command
v Starting the automation procedure on an automation operator with the SA z/OS

AOFEXCMD command routine
v In the customization dialog, entering your automation procedure name in the

Command text or Command field of various policy items for the following
entry types:
– Application
– MVS™ Component
– Timers
– Monitor Resources

Note: Not all routines can be called through all interfaces as some require
extensive environmental setup before they are invoked.

© Copyright IBM Corp. 1996, 2011 7

How Automation Procedures Are Structured
It is recommended that the structure of automation procedures contain three main
parts, as follows:
1. Perform initialization processing
2. Determine whether automation is allowed
3. Perform automation processing.

Figure 2 illustrates the structure of automation procedures for system operations
and Figure 3 for processor operations.

Figure 2. Automation Procedures for System Operations

Figure 3. Automation Procedures for Processor Operations

How Automation Procedures Are Structured

8 System Automation for z/OS: Customizing and Programming

The following sections provide more details about each part of an automation
procedure.

Performing Initialization Processing
Initialization processing may not be required for simple automation procedures.

Initialization processing is responsible for:
v Setting up any error trap routines.
v Identifying the automation procedure by setting a local variable either explicitly

or at execution time. This step makes it simpler to code routines that log
messages and send notifications.

v Declaring the global variables, such as common and task global variables, that
are used for subsystem definition values in the automation procedure.
See Appendix A, “Global Variables,” on page 197 for descriptions of global
variables.

v Checking whether debugging is on.
v Issuing debugging messages, if debugging is turned on.
v Validating the automation procedure call.

This step can help prevent an operator from calling the automation procedure
inappropriately. Automation procedures can also be validated using command
authorization checking methods provided by NetView or an SAF product.

v Saving NetView message parameters. This step is necessary if your automation
procedure uses the NetView WAIT statement and you need to access the original
message text or control information.

For more information on coding automation procedure initialization sections, refer
to “Example Automation Procedure” on page 16, to Tivoli NetView for z/OS
Customization Guide and to Tivoli NetView for z/OS Automation Guide.

Determining whether Automation Is Allowed

System Operations
Automation procedures for applications and MVS components that are called from
the NetView automation table should always perform an automation check by
calling the AOCQRY common routine. AOCQRY checks that the automation flags
allow automation. These checks eliminate the risk of automating messages for
applications that should not be automated, or for which automation is turned off.
AOCQRY also initializes most of the common and task global variables that are
used in the automation procedure with values specific to the application.

Refer to IBM Tivoli System Automation for z/OS Programmer’s Reference for more
information on coding the automation check routine.

Processor Operations
Most of the processor operations commands run only when processor operations
has been started. To determine whether processor operations is active, you can use
the ISQCHK command in your automation routines. If processor operations is not
running, ISQCHK returns return code 32 and issues the message:
ISQ0301 Cannot run cmd-name command until Processor Operations has started.

Your application can then issue the ISQSTART command to begin processor
operations.

How Automation Procedures Are Structured

Chapter 2. How to Create Automation Procedures 9

Performing Automation Processing
Automation processing is performed by any combination of SA z/OS routines and
your own code. The following documentation gives more information on coding
automation procedures:
v “Automation Processing in System Operations”
v “Automation Processing in Processor Operations” on page 11

Automation Processing in System Operations
This section contains information on how to customize automation processing for
system operations.

Updating Status Information: You can update status information by calling the
AOCUPDT common routine. This routine is used when a message indicates a
status change. This would normally be done from the generic routines ACTIVMSG,
HALTMSG, and TERMMSG. Making your own status updates may cause
unpredictable results.

For more information, see IBM Tivoli System Automation for z/OS Programmer’s
Reference.

Logging Messages and Sending Notifications: You can log messages and send
notifications by calling the AOCMSG common routine.

AOCMSG performs the following actions:
v Formats a message for display or logging
v Issues messages as SA z/OS notification messages to notification operators

For more information, see IBM Tivoli System Automation for z/OS Programmer’s
Reference.

Issuing Commands and Replies: You can issue commands and replies by calling
the ACFCMD and ACFREP common routines. You can use these routines to:
v Issue one or more commands in response to a message.
v Issue a single reply in response to a message.
v Use the step-by-step (PASS) concept to react to or recover from an automation

event.

ACFCMD issues one or more commands. It supports both a single reaction and the
step-by-step (PASS) concept. For more information, see IBM Tivoli System
Automation for z/OS Programmer’s Reference.

ACFREP issues a single reply. It supports both a single reaction and the
step-by-step (PASS) concept. For more information see IBM Tivoli System
Automation for z/OS Programmer’s Reference.

In many cases you may be able to use the ISSUEACT generic routine that also
supports single and pass processing.

Checking Thresholds: You can check and update thresholds by calling the
CHKTHRES common routine. Use CHKTHRES to track and maintain a threshold,
and to change the recovery action based on the threshold level exceeded. For more
information see IBM Tivoli System Automation for z/OS Programmer’s Reference.

How Automation Procedures Are Structured

10 System Automation for z/OS: Customizing and Programming

Checking Error Codes: You can check error codes by calling the CDEMATCH
common routine. Use CDEMATCH to compare error codes in a message to a set of
automation-unique error codes to determine the action to take. For more
information, see IBM Tivoli System Automation for z/OS Programmer’s Reference.

In some cases you may be able to use the code matching capabilities of the
ISSUEACT and TERMMSG generic routines.

Using File Manager Commands: You can use file manager commands to access
SA z/OS control files such as the automation control file and automation status
file:
v Use the ACF command if you need to load or display the automation control

file.
v Use the ACFFQRY command to query the automation control file quickly.
v Use the ASF command to display the automation status file.
v Use the ASFUSER command to modify the automation status file fields reserved

for your own information.

For more information, see IBM Tivoli System Automation for z/OS Programmer’s
Reference.

Using External Code for Timers, Logic, and Other Functions: Your automation
procedures may require code to set timers, to perform logic unique to your
enterprise or to the automation procedure itself, and to perform other functions.
Some examples include:
v Issuing commands and trapping responses.

You can issue commands and trap responses using the NetView WAIT or PIPE
commands. You may need to use these commands in your code if it is necessary
to check the value or status of a system component or application before
continuing processing. For more information, see Tivoli NetView for z/OS
Customization Guide.

v Setting Common Global and Task Global values to control processing.
You can set Common and Task Global values by using NetView commands. You
may need to set these values if it is necessary to set a flag indicating progress,
message counts, and other indicators that must be kept from one occurrence of a
message to the next. See IBM Tivoli System Automation for z/OS Defining
Automation Policy for a table of all externalized SA z/OS global variables.
Also refer to the discussion of common and task global variables in Tivoli
NetView for z/OS Customization Guide.

v Setting timer delays to resume processing.
You can set timer delays by using the NetView AT, AFTER, EVERY and CHRON
commands. You can use these commands when an automation procedure must
either resume processing or initiate another automation procedure after a given
time to do additional processing. For example, you could use these commands
to perform active monitoring of subsystems. For more information, see the
discussion of AT, AFTER, EVERY and CHRON commands in Tivoli NetView for
z/OS Automated Operations Network User's Guide.

Automation Processing in Processor Operations
This section contains information on how to customize automation processing for
processor operations.

Initializing a Target System: If your routines need to start target systems
(hardware and/or operating system), issue the ISQCCMD ACTIVATE command.

How Automation Procedures Are Structured

Chapter 2. How to Create Automation Procedures 11

Shutting Down a Target System: If your routines need to shut down a target
system, issue the ISQCCMD DEACTIVATE OCF command. Before issuing the
command to close the target system, shut down all of your functioning
subsystems. This avoids any unexpected situations at the target system.

Issuing Other OCF Commands: All OCF commands supported by processor
operations can be issued from automation routines. See IBM Tivoli System
Automation for z/OS Operator’s Commands for details about these commands.

Reserved SA z/OS Commands: The SA z/OS commands ISQISUP, ISQISTAT,
ISQCMMT, ISQSTRT, ISQXIPM, ISQGPOLL, and ISQGSMSG are not intended for
your use. Do not use these in your automation routines. Unexpected results may
occur.

The following commands can only be used from an operator console and should
not be used in your automation routines or with ISQEXEC: ISQXDST, ISQXOPT,
and ISQHELP.

The following commands are for automation and should not be used in your
automation routines: ISQI101, ISQI212, ISQMCLR, ISQI320, ISQIUNX, ISQI347,
ISQI470, ISQI886, ISQI888, ISQI889, ISQI128, ISQIVMT, ISQMVMI1, ISQMVMI2,
ISQMWAIT, ISQMDCCF, ISQM020, and ISQIPLC.

Serializing Command Processing: Serializing command processing ensures that
commands and automation routines are processed in the order in which they are
sent to a target system console. It can also prevent the command sequence from
being interrupted by other tasks.

Specific target control tasks are assigned to specific target systems during
initialization of the target system. More than one target system can share a target
control task, but a target system never has more than one target control task
allocated to it to perform work.

When a command or an automation routine is sent to a target system, it can be
processed partly in the issuing task (a logged-on operator or an autotask) and
partially in a target control task. When the command or automation routine is to
be processed by a target control task, it is either allocated to the target control task
and processed, or queued to be processed by the target control task. This serializes
the processing of commands and automation routines. Serializing ensures that they
are processed in the order in which they were sent to the target system console.

The NetView program has priority defaults established during its initialization.
Usually, everything running under NetView has a low priority. You can use the
NetView DEFAULTS command to see what the settings are, but you should not
change them. For SA z/OS command processing to be serialized as designed, all
commands used in SA z/OS must have a priority setting of “low”. If you change
the priorities or have more than one priority for commands used in SA z/OS, the
difference in the priorities may defeat the serialization that results from the
architecture of the target control task.

Sending an Automation Routine to a Target Control Task: If you run the same
series of SA z/OS commands regularly, you can program the commands into a
NetView automation routine. Follow the guidelines you use for any NetView
automation routine.

How Automation Procedures Are Structured

12 System Automation for z/OS: Customizing and Programming

A NetView autotask or a logged-on operator can then run this routine or send it to
a target control task. Use the following command to transfer an automation routine
to a target control task:
ISQEXEC target-system-name SC routine-name

When you issue the ISQEXEC command to process an automation procedure, all of
the commands are processed in the order in which they occur in the automation
procedure. This is because the ISQEXEC command sends work to a target control
task, which processes commands serially. Any other commands or automation
routines issued to the same console by the ISQEXEC command are queued for
processing by the target control task and do not start until the previous command
or automation procedure completes.

The ISQEXEC command also frees the original task from any long-running
command sequence. This lets you use the issuing task, such as an OST, for other
work.

The ISQEXEC command does not lock consoles to ensure command serialization;
the command serialization process is due to the target control task allocation
scheme. Commands and automation routines are processed in the order in which
they occur; however, it is possible for commands from other tasks to interrupt the
command sequence.

For more information about the ISQEXEC command, see IBM Tivoli System
Automation for z/OS Operator’s Commands.

Locking a Console: Several routines and operators may attempt to address the
same console at the same time. The ISQEXEC command does not prevent other
tasks from interrupting the sequence of commands being processed by the target
control task; it does not lock the console.

To prevent a sequence of commands from being interrupted, use the ISQXLOC and
ISQXUNL commands. The ISQXLOC command locks access to the console. If a
task attempts to issue a command to a locked console, the task is told that the
console is locked, and the command fails. When you are finished with the
sequence of commands that must be processed without interruption, issue the
ISQXUNL command to unlock access to the console.

You can use the ISQXLOC and ISQXUNL commands within automation routines to
ensure that they complete without interference from other tasks. For automation
routines that issue a number of SA z/OS commands, put the following command
after the ISQEXEC command and near the beginning of the routine:
ISQXLOC target-system-name SC

This locks access to the target system console to the current task until the lock is
dropped by the command:
ISQXUNL target-system-name SC

Only the task that issued ISQXLOC can successfully issue ISQXUNL. If an
ISQXLOC command is issued from a locked sequence of commands, it is rejected
because the console is already locked.

When you lock a system console for a target system running on a logical partition,
you lock that system console for all other target systems using that processor. A
command sent to a system console for any other target system (logical partition)
on that target hardware definition does not run until the console is unlocked.

How Automation Procedures Are Structured

Chapter 2. How to Create Automation Procedures 13

If your automation routine cannot wait for a console to be released, use the
ISQOVRD command to gain control of the console. Use the following command
only in critical automation routines:
ISQOVRD target-system-name SC

When the routine issuing the override command completes, the lock is removed
and the console is available.

How to Make Your Automation Procedures Generic
By using the SA z/OS common routines, you can make your own automation
procedures generic. A generic automation procedure comprises three parts. For
each part, there are special common routines that help you to fulfill your tasks:

Preparation
Check if automation is allowed and should be done. Use common routine
AOCQRY.

Evaluation
What should be done? Use common routine CDEMATCH.

Execution
Do what should be done. Use common routines ACFCMD or ACFREP.

For more information on the mentioned common routines refer to IBM Tivoli
System Automation for z/OS Programmer’s Reference. For more information on
command processing or reply processing refer to IBM Tivoli System Automation for
z/OS User’s Guide.

Processor Operations Commands
Whenever possible, your automation routines should make use of SA z/OS's
processor operations OCF commands, also called common commands. These

**
******* Preparation *******
**

AOCQRY

- check if the resource is controlled by SA z/OS

- check if automation is allowed

- prepare/set task global variables for CDEMATCH, ACFCMD and ACFREP

...

CDEMATCH

- code matching (table search in ACF)

- find out required action

...

ACFCMD/ACFREP

- do required action:
issue command / respond reply

Figure 4. Skeleton of an Automation Procedure

How Automation Procedures Are Structured

14 System Automation for z/OS: Customizing and Programming

commands are independent of the hardware type of the target system's processor.
Therefore, the use of these commands minimizes the need for changes to your
automation routines if you need to add new processors to your configuration. See
IBM Tivoli System Automation for z/OS Operator’s Commands for a detailed
description of the processor operations commands.

Developing Messages for Your Automation Procedures
Depending on the scope of additional programming, creating new automation
procedures may also require developing additional messages.

Some SA z/OS facilities and commands you can use to develop messages include:
v The AOCMSG common routine (see IBM Tivoli System Automation for z/OS

Programmer’s Reference).
v The AOCUPDT common routine (see IBM Tivoli System Automation for z/OS

Programmer’s Reference).

The following steps summarize the message development process.
1. Choose a message ID. Make sure it is unique.
2. Use NetView message services to define the message to NetView.

Put an entry for the message in a DSIMSG data set. This data set must be
identified in a DSIMSG data definition (DD) name.

3. Use the AOCMSG common routine to issue the message (see IBM Tivoli System
Automation for z/OS Programmer’s Reference).

4. Add an entry for the message to your production copy of the NetView
DSIMSG data set.

Example AOCMSG Call
This example shows how to code AOCMSG to issue message ABC123I.

Entries for messages in DSIMSG member DSIABC12 are as follows:

120I ...
121I ...
122I ...
123I 10 40 THE EAGLE HAS &1
124I ...

Your automation procedure contains the following AOCMSG call:
<other automation procedure code>...

AOCMSG LANDED,ABC123...
<other automation procedure code>

When AOCMSG is called as specified in the automation procedure, DSIMSG
member DSIABC12 is searched for message ABC123I. Substitution for variable &1
occurs, and the following message is generated:
ABC123I THE EAGLE HAS LANDED

Note that the message is defined with a 10 and a 40 between the message ID and
the first word of the message. These are the SA z/OS message classes to which the

How to Make Your Automation Procedures Generic

Chapter 2. How to Create Automation Procedures 15

message belongs. When the message is issued a copy is sent to every notification
operator who is assigned class 10 or class 40 messages.

Refer to Tivoli NetView for z/OS Customization Guide for further information on
developing new messages.

Example Automation Procedure
This section provides an example of an application program that handles a z/OS
message. The automation procedure uses a subset of the SA z/OS common
routines or generic routines.
/* Example SA z/OS Automation Procedure */

�1� Signal on Halt Name Aof_Error; Signal on Failure Name Aof_Error
Signal on Novalue Name Aof_Error; Signal on Syntax Name Aof_Error

�2� Parse source .. ident .

�3� "GLOBALV GETC AOFDEBUG AOF."||ident||".0DEBUG AOF."||ident||".0TRACE"
If AOFDEBUG = ’Y’ Then

"AOCMSG "||ident||",700,LOG,"||time()||","||opid()||","||Arg(1)
loc.0debug = AOF.ident.0DEBUG
loc.0trace = AOF.ident.0TRACE
loc.0me = ident
If loc.0trace <> ’’ Then Do

loc.0debug = ’’
Trace Value loc.0trace

End

�4� save_msg = msgid()
save_text = msgstr()
lrc = 0

�5� /* This procedure can only be called for msg IEA099A */
If save_msg <> ’IEA099A’ Then Do

"AOCMSG "||loc.0me||",203,"||time()||","||opid()
Exit

End

�6� "GLOBALV GETC AOFSYSTEM"
cmd = ’AOCQRY ’||save_msg||’ RECOVERY ’||AOFSYSTEM
cmd
svretcode = rc
If loc.0debug = ’Y’ Then

"PIPE LIT /Called AOCQRY; Return Code was "||svretcode||"/" ,
"| LOGTO NETLOG"

/* -- **
** Check return code from AOCQRY **
** 0 = ok 1 = global flag off **
** 2 = specific flag off 3 = resource not in ACF **
** 4 = bad parms 5 = errors/timeout **
** -- */
Select

�7� When svretcode >= 3 Then Do
"AOCMSG "loc.0me",206,,"time()",,,"cmd",RETCODE="svretcode
lrc = 1

End
�8� When svretcode > 0 Then Do

"GLOBALV GETT AUTOTYPE SUBSAPPL SUBSTYPE SUBSJOB"
"AOCMSG "loc.0me",580,,"time()","SUBSAPPL","SUBSTYPE"," ,

SUBSJOB","AUTOTYPE","save_msg
lrc = 1

End
Otherwise Do

Developing Messages for Your Automation Procedures

16 System Automation for z/OS: Customizing and Programming

�9� Parse Var save_text With . ’JOBNAME=’ save_job ’ASID=’ save_asid .

�10� ehkvar1 = save_job
ehkvar2 = save_asid
"GLOBALV PUTT EHKVAR1 EHKVAR2"

�11� cmd = ’ACFCMD ENTRY=’||AOFSYSTEM||’,MSGTYP=’||save_msg
cmd
svretcode = rc
If loc.0debug = ’Y’ Then

"PIPE LIT /Called ACFCMD; Return Code was "||svretcode||"/" ,
"| LOGTO NETLOG"

/* -- **
** Check return code from ACFCMD **
** 0 = ok 1 = no commands found in ACF **
** 4 = bad parms 5 = errors/timeout **
** -- */

�12� If svretcode > 1 Then Do
"AOCMSG "loc.0me",206,,"time()",,,’"cmd"’,RETCODE="svretcode
lrc = 1

End
End

End /* End of Select svretcode */

�13� Exit lrc

�14� Aof_Error:
Signal Off Halt; Signal Off Failure
Signal Off Novalue; Signal Off Syntax
errtype = condition(’C’)
errdesc = condition(’D’)
Select

When errtype = ’NOVALUE’ Then rc = ’N/A’
When errtype = ’SYNTAX’ Then errdesc = errortext(rc)
Otherwise Nop

End
"AOCMSG "errtype",760,,"loc.0me","sigl","rc","errdesc
Exit -5

Notes on the Automation Procedure Example
�1� This step sets error traps for negative return codes, operator halt

commands, and REXX programming errors.

�2� This step defines the identity of the automation procedure.

�3� This step handles the debug and trace settings (refer to “Using
AOCTRACE to Trace Automation Procedure Processing” on page 19.

�4� Save the NetView message variables the automation procedure uses.

�5� Perform authorization check. This procedure can only be called for a
particular message.

�6� This section performs the automation check:
1. Fetch the AOFSYSTEM common global variable that contains the

information under which entry name the system messages are stored in
the automation control file (ACF).

2. The automation procedure calls the AOCQRY command. This performs
the automation flag check and presets some task global variables that
are used by other common routines like ACFCMD.

�7� Issue message AOF206I if call to AOCQRY fails.

�8� Issue message AOF580I if automation flag is off.

Example Automation Procedure

Chapter 2. How to Create Automation Procedures 17

�9� Get the job name and asid reported in the message.

�10� Set EHKVARn variables for ACFCMD.

�11� Call ACFCMD to issue the command specified in the configuration files.
The Automation Control File entry for the message IEA099A could look
like this:

MVSESA IEA099A,
CMD=(,,’MVS C &EHKVAR1,A=&EHKVAR2’)

�12� Issue message AOF206I if call to ACFCMD fails.

�13� Exit with return code that indicates successful or unsuccessful processing.

�14� This code logs a message if an error is trapped at step �1�.

Installing Your Automation Procedures
The installation process for a new automation procedure depends on the language
in which the automation procedure is written.
v If the automation procedure uses a compiled language, such as PL/I, C, or

Assembler:
1. Compile or assemble your source into an object module.
2. Link-edit the object module into a NetView load library.
3. Include an entry for the automation procedure in the CNMCMDU member

of the NetView DSIPARM data set.
v If the automation procedure uses an interpreted language such as NetView

command list or REXX:
1. Copy the automation procedure into a NetView command list library
2. Optionally include an entry for this automation procedure in the DSICMD

member of the NetView DSIPARM data set. Then it is more quickly found
and invoked.

For more information on preparing your code for use and installing it, refer to
Tivoli NetView for z/OS Customization Guide

Testing and Debugging Automation Procedures
This section describes SA z/OS and NetView facilities you can use for testing
automation procedures, including:
v SA z/OS assist mode
v SA z/OS AOCTRACE operator facility
v NetView testing and debugging facilities

The Assist Mode Facility
SA z/OS provides an assist mode facility, so that you can verify actions of
automation procedures and automation policy before letting them run in a
completely automated environment.

When assist mode is on, actions that are normally taken by SA z/OS automation
procedures, such as issuing a command or reply or calling a common routine, are
not performed. Instead messages that describe what would have happened are
written to the netlog.

Example Automation Procedure

18 System Automation for z/OS: Customizing and Programming

The assist mode is associated with automation flags (Automation, Initstart, Start,
Recovery, Terminate or Restart). Whether assist mode is used for any action is
determined by the automation flag. This is checked to see whether that action is
permitted.

Cases where you might want to use assist mode include:
v During early stages of developing and using your automation policy
v After changing your automation policy, such as after adding an application to

automation
v After adding a new automation procedure to the SA z/OS code

Using Assist Mode to Test Automation Procedures
Assist mode can help you to detect problems with your automation procedures
before they are added to your production code. Assist mode works by intercepting
commands and replies before they are issued through NetView. The intercepted
commands and replies, as coded in the automation policy, are reformatted into a
message that is sent to the NetView log.

The reformatted command is issued in message AOF320I and the reformatted reply
in message AOF323I. Each message contains detailed information about the action
defined in the automation policy and the actual action to be issued.

During run time of SA z/OS, the assist mode can be enabled with the INGAUTO
command to set the related automation flag to the value L. The DISPFLGS
command can be used to view the current automation flag settings. Any other
value for the automation flag deactivates assist mode.

When an event triggers an automated action and assist mode is enabled, SA z/OS
logs the action in the NetView log. The log can be reviewed to ensure that
automation has run as expected.

Assist mode works for all routines that call the SA z/OS common routine, after
having checked the automation flag by calling AOCQRY.

Using AOCTRACE to Trace Automation Procedure Processing
The AOCTRACE command dialog maintains both global execution flow traces and
automation procedure-specific debugging flags. Setting the global flag causes all
routines that support tracing and all message IDs to record a statement in the
NetView log whenever they are invoked. The AOFDEBUG global variable is used
to pass the global flag information to the automation procedure. The global flag is
set to null if the global trace is off, or Y if the global trace is on.

Setting the automation procedure-specific flags lets you obtain information about
what the automation procedure is doing when it executes, or lets you activate a
REXX trace. The debug flag is either null or Y, and is stored in the
AOF.clist.0DEBUG common variable (where clist is the true automation procedure
name).

The trace flag is set to null or a valid REXX trace type, as follows:
v A (All)
v R (Results)
v I (Intermediate)
v C (Commands)
v E (Errors)

Testing and Debugging Automation Procedures

Chapter 2. How to Create Automation Procedures 19

v F (Failures)
v L (Labels)
v O (Off)
v N (Normal)

The S (Scan) trace type cannot be used.

The trace flag is stored in the common global variable AOF. clist.0TRACE (where
clist is the true automation procedure name).

Message tracing can only be set from the command line, using the command
AOCTRACE MSG/id,ON|OFF where id is the message to be traced.

AOCTRACE is documented in IBM Tivoli System Automation for z/OS Operator’s
Commands.

REXX Coding Example
For examples of code that can be placed at the beginning and end of your REXX
automation procedures to handle trace and debug settings, see AOFEXC00 in the
SINGSAMP library.

When writing code to support the debug feature, you should expose loc. on all
your procedures and insert fragments of code to check the value of the loc.0debug
flag and output relevant information. The loc.0me assignment makes the
automation procedure name available everywhere, so you can prefix all debug
messages with it. You can then tell where the messages are coming from. For
example:

Myproc:
Procedure expose loc.
If loc.0debug = ’Y’ Then

’PIPE LIT /’ loc.0debug ’ has called procedure MYPROC/’,
’| LOGTO NETLOG’

Return

NetView Testing and Debugging Facilities
NetView provides several facilities to assist in testing and debugging automation
procedures.

To do detailed testing, you may want to trace every statement issued from
automation procedures. This type of testing is enabled through the &CONTROL
statement for NetView command lists and through the TRACE statement for REXX
procedures.

You can also specify less detailed tracing on the TRACE and &CONTROL
statements, so that only commands are traced. A comparable facility, the interactive
debugging aid, is available for programs coded in PL/I and C.

Perform specific tracing by issuing NetView MSG LOG, PIPE LOGTO NETLOG
commands at appropriate points throughout a NetView command list, REXX
procedure, or PL/I routine.

To test for proper parsing and reaction to a message, write a short automation
procedure to issue a NetView WTO command. This WTO is processed by the
NetView automation table and triggers the appropriate automation procedure. If
the automation procedure requires the job name, the job name must be temporarily
hard-coded to the appropriate name. In this case, because the WTO was issued

Testing and Debugging Automation Procedures

20 System Automation for z/OS: Customizing and Programming

from the NetView region, the job name associated with the message is the NetView
region. A sample automation procedure follows:
WRITEWTO CLIST

WTO &PARMSTR
&EXIT

The sample automation procedure can issue any single-line message by calling the
routine. For example, to issue message ABC123I, which indicates the start of a
program, the command is:
WRITEWTO ABC123I My testprogram PRGTEST has started.

Where to Find More Testing Information
More information on testing can be found in the following books:
v Tivoli NetView for z/OS Customization Guide

This book lists requirements for your programs, including preparing your code
for use, and detailed information on writing exit routines and command
processors.

v Tivoli NetView for z/OS Automation Guide

This book has guidelines for creating new automation procedures, including a
recommended development process.

Coding Your Own Information in the Automation Status File
You can code your own information in the automation status file with the
ASFUSER command.

The automation status file has 40 user data fields that are associated with each
resource that is defined within it. You may use these fields to store persistent
information about resources that your code needs to access later. The information
in the ASF is not lost when SA z/OS is shut down. It lasts until one of the
following events occurs:
v The ASF VSAM data set is deleted and redefined,
v You bring SA z/OS up with an automation control file that does not include the

application that the information has been defined for

Note that you should verify that the information you have stored in the
automation status file is accurate whenever SA z/OS initializes, as circumstances
may have changed while SA z/OS was down.

Each automation status file field reserved for your data can contain up to 20
characters. The ASFUSER command allows you to update and display data in
these fields. See IBM Tivoli System Automation for z/OS Programmer’s Reference for
the ASFUSER command description.

Programming Recommendations
This section contains tips and techniques that may help to reduce the coding effort
required when writing your own automation procedures, and to improve
performance of your automation procedures.
v Use variables, such as &IDENT, &SUBSAPPL, &SUBSTYPE, and &SUBSJOB in

place of parameter values.
Using &IDENT for automation procedure names allows for changes to
automation procedure names (only the &IDENT variable value needs changing).

Testing and Debugging Automation Procedures

Chapter 2. How to Create Automation Procedures 21

The &SUBSxxx variables allow for subsystem and job name changes (changes to
subsystem and job names need only be made in automation policy).
Using NetView command list language variable JOBNAME for the resource field
on an AOCQRY call, an automation procedure can be written to support a
known message for any job that can issue a message.

v Use defaults when possible to minimize coding.
v Use generic error codes (see CDEMATCH).
v Use available message parsing techniques:

– Use the NetView command PARSEL2R or REXX PARSE command to parse a
message without relying on a field position in a message.

– Parse a message in the NetView automation table and send only necessary
fields to an automation procedure.

v Consider not coding the ENTRY field in CDEMATCH calls (default is the
SUBSAPPL returned from the last AOCQRY call).

v Use appropriate automation flags.
v Review the coding requirements in Tivoli NetView for z/OS Customization Guide

including restrictions to consider when writing code, such as:
– Restrictions when TVBINXIT is on
– Variable names
– Macro use
– Register use
– Re-entering programs

v Use SA z/OS generic routines where possible, because they:
1. Reduce your maintenance overhead.
2. Often use internal interfaces that are more efficient than the common

routines. Similarly, it is better to use a common routine than to write your
own code to process the response from an ACF command display request.

v Use SA z/OS's processor operations common commands where possible,
because these:
1. Are independent of the hardware type of the target system's processor
2. Minimize the need for changes to your automation routines as you add new

processors to your enterprise
v Consider using the NetView VIEW command to display online help text

associated with new code, and to develop a fullscreen interface for new
commands that are a part of the new code. Refer to Tivoli NetView for z/OS
Customization Guide for information on the VIEW command.

Global Variable Names
When creating your own automation procedures, you must ensure that the names
of any global variables you create do not clash with SA z/OS external or internal
global variable names. In addition, you must not use names beginning with:
v CFG
v AOF
v ING
v ISQ
v EVI
v EVE
v EVJ

Programming Recommendations

22 System Automation for z/OS: Customizing and Programming

Chapter 3. How to Add a Message to Automation

SA z/OS exploits the NetView automation table (AT) and message revision table
(MRT). The AT contains traps for messages that must be automated. If an action
must be taken in response to a message, this action needs to be defined in the
customization dialog. A related AT entry is required to call a routine to execute the
action. The MRT allows you to modify message attributes such as color, route
code, descriptor code, display and syslog settings, and text of original z/OS
messages (rather than copies).

SA z/OS automatically generates the ATs and MRT.

Conceptual Overview
This section gives a brief overview of the main aspects of SA z/OS message
automation:
v A list of messages that are involved in SA z/OS automation is generated by

SA z/OS. This can then be used as a message processing facility (MPF) member.
v Message automation is a process that is based on the NetView AT and MRT.
v The AT and MRT are generated by SA z/OS.
v AT entries are created for messages that actions are defined for.
v Messages can be defined to indicate a status change.
v Messages can be marked to be ignored or suppressed, thus not generating an AT

or MRT entry.
v Messages can be marked to be captured for further display.
v Most AT entries trap messages independent of the issuing product instance,

component or module.
v Predefined AT entries can be changed.
v You can define the AT/MRT scope to determine precisely if and what kind of

ATs or MRT are built.

Defining Actions for Messages
AT entries are generated by SA z/OS for messages that are defined for APL, MTR,
or MVC policy entries and that have actions (for example, CMD or REP) defined
for them.

Note: Throughout this chapter, whenever the term policy entry is used, it implies
either an APL, MTR, or MVC policy entry, unless otherwise stated.

The first step in defining actions is to select a policy entry from the Policy Selection
panel. From its policy selection list, select the MESSAGES/USER DATA policy
item. This leads to the Message Processing panel, where you can then define
actions for message IDs. If an AT entry is built according to the action, it only
checks for the message ID by default, independent of the product instance,
component or module issuing that message. If this is not intended, you can use the
AT action (see “Defining Message Overrides” on page 26).

There are many messages that are already prepared by SA z/OS. For these
messages specific AT entries are predefined by SA z/OS, see the

© Copyright IBM Corp. 1996, 2011 23

|
|
|
|
|
|
|

|

|

|

|
|

|
|

|
|

+SA_PREDEFINED_MSGS MVS component entry. If you want to know what kind
of AT entry is built for automating a particular message, you can view it on the
Message Automation Overview panel.

Note: You must not use SA z/OS symbols (AOCCLONEs) or system symbols for
or in message IDs because a correct AT cannot be built.

Defining CMD or REP Actions
Suppose, for example, that you define a CMD or REP action for message XYZ222I
on the Message panel, where XYZ222I is a completely new message that is not
predefined by SA z/OS.

This definition leads to the creation of an AT entry for message XYZ222I using the
ISSUEACT command after the next Configuration Build process.

Note: If you have code definitions that you expect to be passed to ISSUEACT, you
have to manage the AT overrides to do this. This is not done by SA z/OS.
See “Defining Message Overrides” on page 26.

Note that for MVC entries, messages have the parameter SYSTEMMSG=YES added to
the SA z/OS command (ISSUEACT).

Defining AT Actions
You can define various AT actions for messages using the Message Automation
Overview panel:
v The condition in the AT entry
v Status changes for messages
v Capturing messages to be displayed but not automated
v Preventing the building of AT entries

You can also edit the AT entries directly using the AO option from this panel. Note
that if you use one of the other options after you have specified an override,
SA z/OS requires you to confirm whether you want to delete the override that
exists for the message because it cannot be combined with the other options.

Defining Conditions for AT Entries
You can improve the efficiency of AT processing by controlling where entries are
placed within the AT and by specifying more precise conditions to trap the
message. SA z/OS allows you to do this with the AT Entry Conditions panel,
which you reach from the Message Automation Overview panel by entering the
AC option.

Defining Status Messages
Many messages that indicate a state change of APL, MTR, and MVC resources are
known to SA z/OS. The related AT entries are already predefined. For these
messages there is no need to define them in the policy database.

If necessary, you can define additional application messages that indicate a state
change. The AT action leads to the Message Automation Overview panel, where
you can enter the AS option to display the AT Status Specification panel that lists
resource states.

The Status Message Report shows all status messages. It lists all user-defined and
predefined status messages and their associated statuses.

Defining Actions for Messages

24 System Automation for z/OS: Customizing and Programming

|
|
|

|
|

|
|
|

|
|

|
|

|

|

|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

Status messages can be defined for MVC policy entries as well as for APL and
MTR instances or classes. As an example, to define an UP state indicated by
message XYZ444I, enter A in the Cmd field next to the message ID on the Message
Processing panel. On the Message Automation Overview panel, enter the AS
option to display the AT Status Specification panel and select the UP status. Here,
XYZ444I is a message that is unknown to SA z/OS.

This definition leads to the creation of an AT entry for message XYZ444I using the
ACTIVMSG command after the next configuration build process, as shown on the
Message Automation Overview panel.

Notes:

1. There are certain messages that can be used as status messages, but for some
messages, COD definitions are required (for example, IEF450I). TERMMSG sets
the status depending on these definitions. For more details about TERMMSG,
see IBM Tivoli System Automation for z/OS Programmer’s Reference.

2. Automation table entries are generated based on the messages that are defined
with MESSAGES/USER data. For size and performance reasons, these entries
are message-oriented rather than job-oriented.
This means that an AT action (except IGNORE or SUPPRESS) for a particular
message generates an AT entry. This entry traps that message independently of
the issuing subsystem. It then sets the subsystem state as selected via the AT
action.
If a state message should be processed for a particular subsystem only, you can
define an AT override action.

Defining Captured Messages
If messages only need to be captured to be displayed but not automated, the AT
Status Specification panel provides an additional Capture option for APL and MVC
entries.

Messages that have a CMD or REP action defined for them or that are defined as
status message are implicitly captured. There is no need to explicitly define these
messages to be captured.

For example, to define message XYZ555I to be captured, enter option AS on the
Message Automation Overview panel to display the AT Status Specification panel
and select the Capture option. Here XYZ555I is a message that is unknown to
SA z/OS.

This definition leads to the creation of an AT entry for message XYZ555I using the
AOFCPMSG command after the next configuration build process, as shown on the
Message Automation Overview panel.

Note: The status (AUTO) action is mutually exclusive with the OVR action.

Preventing the Building of AT, MRT and MPF Entries

Inhibiting AT, MRT, and MPFLSTSA Entries: Using the AUTO action you can
select IGNORE or SUPPRESS for certain messages:
v Messages that are marked IGNORE do not cause an AT entry, MRT entry, or an

MPFLSTSA entry to be generated.
v Messages that are marked SUPPRESS do not cause an AT entry or MRT entry to

be generated. An MPFLSTSA entry is generated with the options
SUP(YES),AUTO(NO).

Defining Actions for Messages

Chapter 3. How to Add a Message to Automation 25

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

IGNORE and SUPPRESS overrule other actions that are defined for the same
message.

The MPFLSTSA member is built for each policy database. Because IGNORE and
SUPPRESS affect the build of the MPFLSTSA member, these definitions also have a
policy database-wide scope. The MPFLSTSA member is built at an enterprise level,
so whenever IGNORE is defined the MPF table is not built.

AT Entries That Are Never Built: There are many keywords that can be entered
as message IDs in the customization dialog (for example, message
MVSDUMPFULL). No AT entry is built for these keywords. A list of these
keywords is given in the online help.

Defining Message Overrides
You can apply an override on the Message Processing panel for a message ID for
an APL instance, APL class or an MVC entry.

The Message Automation Overview panel allows you to preview an AT entry and
MRT entry as it would be built according to the actions that are defined for the
message. If you have not made a specification that would produce an AT or MRT
entry, you are informed of this in the preview section of the panel.

The AO option on the Message Automation Overview panel allows you to
override an AT entry. You can change any part of the AT entry. Condition and
action statements can be changed, added or deleted. Deleting the condition
statement removes the AT override. Note that a syntax check is not performed, you
have to ensure that the specification obeys NetView automation table syntax rules.

If you define a message with an AT action or condition, and then invoke the
override panel, the preview of the AT entry is shown on the override editor screen.
You can use this as a model for your own AT definition. Use the CANCEL
command to exit the editor without saving your changes.

Note that if you specify an AT status selection or an MRT action selection for a
message with an AT or MRT override then a confirmation panel for the "override
delete" is displayed because an override cannot be combined with the other
specifications.

You can define "&*JOBNAME." as part of an AT override. The variable will be
replaced by the job names of the applications for which the AT is specified. This is
very valuable when defining an AT entry for an application class with "...&
JOBNAME='&*JOBNAME.'...." as part of the AT condition. In the generated AT
each linked instance will have its own AT entry with its job name in the condition.
Checking for the job name may also be required if multiple applications issue the
same message but not all of them should be affected by that message.

You can include SA z/OS symbols (AOCCLONEs) and system symbols in an AT
or MRT override definition. They are resolved at AT load time.

You can define '&*JOBNAME.' as part of an AT condition statement that will be
replaced by the jobname of the given policy entry when building the AT. This is
very valuable when defining an AT entry for an APL class. Then each APL instance
linked to that class will have its own AT entry with its jobname in the AT
condition statement. Checking for the jobname may also be required if different
instances of a product issue the same message but you only want certain jobs to be
affected by that message.

Defining Actions for Messages

26 System Automation for z/OS: Customizing and Programming

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

To define an override for message XYZ666I, for example, on the Message
Processing panel, you can either change an existing AT entry that then becomes a
user-defined AT entry, or, if no predefinitions are available, you can define a
user-specific AT entry. For example, if message XYZ666I should be trapped, and
routine MYREXX1 should be called as a result, enter:
IF MSGID = ’XYZ666I’ THEN
EXEC(CMD(’MYREXX1’) ROUTE(ONE %AOFOPWTORS%));

This definition leads to the creation of an AT entry for message XYZ666I using the
routine MYREXX1 after the next configuration build process.

If you specify an override, nothing is added by SA z/OS during AT build because
the override applies to all applications. Only the initial conversion of the policy
database creates an override that contains all of the AT entries that would be built.
After conversion, nothing else is added to the override. Thus if there is a message
with an override and then, for some application with that message, a command is
added, you have to ensure that the command is honored.

Extended Status Command Support
The status command concept has been extended so that commands can be issued if
two linked or dependent applications reach an “up” or “down” state. Thus, a
command can be issued for one application (APL1) when another one (APL2®)
enters a certain state. Application APL1 is a consumer that consumes services
provided by application APL2, which is a provider. In certain cases it is valuable to
trigger an action for the consumer if the provider enters an UP or DOWN state.

In addition to runtime variables such as &SUBSAPPL or &SUBSJOB, there are
provider-specific runtime variables that can be used within a command or reply as
specified for a Message ID in the MESSAGES/USER DATA policy. These variables
start with &SU2 instead of &SUB. For a list of supported provider runtime
variables, see ACFCMD and ACFREP in IBM Tivoli System Automation for z/OS
Programmer’s Reference.

Policy Definitions
Links must be defined in the APL policy for the consumer application. A link is a
data pair that is represented by a consumer and a provider subsystem name:
v The consumer name is defined as the Subsystem Name of the consumer APL
v The provider name is defined in the MESSAGES/USER DATA policy item of the

consumer APL as part of a Message ID

A link requires a definition for a message ID (UP_provider-name, DN_provider-name)
in the MESSAGES/USER DATA policy and an action that must be taken for the
consumer by the provider. If the link is to be dynamic, define a USR action with
the Keyword/Data pair DYNAMIC=YES for the message ID. There are usually
multiple message IDs defined for dynamic links (one per provider) that are
determined at run time.

For example, if you want to start the MQ Listener for the MQCHIN application
whenever the TCPIP application reaches an up state, you define a command for
the message ID UP_TCPIP using the MESSAGES/USER DATA policy item of
MQCHIN. On the Message Processing panel, enter the line command C for the
UP_TCPIP message ID and on the subsequent Command Processing panel enter
MVS START LISTENER in the Command Text field.

Defining Actions for Messages

Chapter 3. How to Add a Message to Automation 27

|
|
|
|
|

|
|

|
|
|
|
|
|

For dynamic links, you need to define message IDs for all the providers that might
be used by a consumer. There are several alternatives for defining when a link is
activated:
1. In the POSTSTART phase of the STARTUP policy item
2. Based on a user-selectable message before the consumer is in the UP state
3. Based on the “up” state (this can be UP or ENDED)
4. Based on a user-selectable message after the consumer is in the UP state

You can make these definitions in either the STARTUP or MESSAGES/USER
DATA policy item. Corresponding policy definitions are required for link
deactivation either in the SHUTDOWN or MESSAGES/USER DATA policy item.

You must supply a user-written REXX automation procedure that:
1. Identifies the provider
2. Issues the INGLINK command to activate the link, if required

All the dynamic links of a consumer are automatically DEACTIVATED after the
consumer is shut down. Thus you only need to define DEACTIVATE commands if
you want this process to happen at an earlier point in time. Furthermore, you must
not define a DEACTIVATE if the consumer is its own provider since this
DEACTIVATE may take place before the DN_ message can be processed.

There is no difference in the DN_ and UP_ message processing between normal
and transient applications, with one exception: when stopping a transient provider
the corresponding DN_ message on the consumer is not processed.

Special Considerations
You can define a consumer as its own provider. This can be done to perform a
predefined action for an application whenever it enters any “down” state. A
“down” state in this context is an agent state of:
v DOWN
v RESTART
v AUTODOWN
v STOPPED
v CTLDOWN
v BROKEN

Thus you no longer need to define the same action for each of the agent states. To
achieve this, define the same name in the DN_ message and subsystem name field
of an application policy entry. You should note, however, that:
v If the consumer and provider applications are different, the action defined under

DN_ is only executed, when the consumer application is in the “up” state.
However if the consumer and provider applications are the same, the action
defined under DN_ is executed even when the consumer application is not in
the “up” state.

v Dynamic link definitions are not required. If you define a dynamic link, it is
ignored.

Defining Entries for the Message Revision Table
The message revision table (MRT) enables user-defined modification of attributes
such as color, route code, descriptor code, display and syslog settings, and text of
original z/OS messages (rather than copies). You can make decisions about the
message based on its message ID, job name, and many other properties. You can
have only one MRT active per system.

Defining Actions for Messages

28 System Automation for z/OS: Customizing and Programming

|
|
|
|
|

|

|
|
|
|
|

Any MRT specifications that you make are independent of any AT entry data for
the message. Thus if you make a definition for the MRT but not for the AT, any
existing data for AT entry is still in effect.

The MS option on the Message Automation Overview panel allows you to define
conditions and attributes that are used to generate NetView message revision table
(MRT) entries for a message ID. Use the options on the Message Revision Table
Conditions panel to specify the following:
v Delete the message completely (if you select this, no other selection is valid)
v Whether to automate the message
v Suppress the message from the console or system log
v Translate the message text to uppercase or append further text to it
v Change the color, highlighting, and intensity (if your terminal supports high

intensity) attributes of the message. Only one selection for each of these
attributes is allowed.

A syntax check is not made of the MRT entry because any system-specific
definitions (for example, symbols) can only be verified on the system where the
MRT is to run.

You should check that routines that are triggered by the AT entry for the message
ID are compatible with any text that you append to the original message text.

You can also use the MO option on the Message Automation Overview panel to
define the MRT entry directly using a fullscreen editor. Note that a syntax check is
not performed on this panel. You must ensure that your specifications follow
NetView message revision table syntax rules.

For more details, see the chapter “The Message Revision Table” in IBM Tivoli
NetView for z/OS Automation Guide.

Defining the AT/MRT Scope
The AT/MRT Scope field on the Settings for Policy Database panel in the
customization dialog allows you to define the scope of a NetView automation table
(AT) and message revision table (MRT). Valid AT/MRT scope values are:

NONE
No AT, MRT, or MPFLSTSA member is built at configuration build time.
Use this value if you want to maintain ATs yourself.

ENTERPRISE
One AT and one MRT is built to be shared within the whole enterprise.

SYSPLEX
One AT and one MRT is built to be shared within a sysplex.

SYSTEM
One AT and one MRT is built for each system of the selected policy
database. (This is the default.)

If the AT/MRT scope changes from NONE to SYSTEM, a build of type
ALL is required.

If the AT/MRT Scope is set to SYSPLEX, a standalone system must be linked to a
sysplex group otherwise no AT or MRT is built for that system.

Defining Actions for Messages

Chapter 3. How to Add a Message to Automation 29

|
|
|

|
|
|
|

|

|

|

|

|
|
|

|
|
|

|
|

|
|
|
|

|
|

|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

The scope for MPFLSTSA is either NONE or ENTERPRISE, if anything else is
defined.

Build
Once you have made all the message definitions that you need, you can start the
Configuration Build Process to build the configuration files containing the AT,
MRT, and MPF table. For more information about the build function, see the
chapter “Building and Distributing Configuration Files” in IBM Tivoli System
Automation for z/OS Defining Automation Policy.

The AT fragments, MRT, and the MPFLSTSA member are built into the
configuration data output data set.

This may require more space than you have allocated for the output data set. Thus
enlarging the output data set may be required.

This also applies to the DSILIST data set where the listings are stored.

It is recommended that you copy the build output to a Generation Data Group
(GDG) to avoid token mismatch conditions and AT or MRT load errors.

AT and MRT Build Concept
The AT and MRT are built if necessary.

Note: If the MPF Header or Footer definitions have changed, an MPFLSTSA build
is not performed. The changes are taken into account at the next build.

Load
After the NetView automation tables have been generated using the customization
dialog, they are ready to be loaded. INGAMS REFRESH can be used to refresh the
complete SA z/OS configuration, that is, the Automation Manager Configuration
(AMC), the agent's Automation Control Files (ACFs) and the related NetView
Automation Tables (ATs) as they are defined in the SA z/OS Policy Database.
Alternatively, ATs can be loaded using ATLOAD.

Some AT entries are required for SA z/OS to operate properly. These entries reside
in a separate AT that is loaded during SA z/OS initialization. This AT is called
INGMSGSA. Do not edit it.

Listings
The DSILIST data set is used to store listings. For example, if you want to view the
listing of the AT INGMSG01, issue the command:
br dsilist.ingmsg01

To view the listing of the MRT, issue:
br dsilist.ingmrt01

A listing is produced whenever SA z/OS loads an AT or MRT. You can use the
advanced automation option (AAO) AOFMATLISTING to suppress listings by
setting it to zero (see Appendix A, “Global Variables,” on page 197).

Defining the AT/MRT Scope

30 System Automation for z/OS: Customizing and Programming

|
|

|
|
|
|
|

|
|

|

|
|

|

|
|

|
|
|

|
|

|

|

|

The AT can be reloaded at configuration refresh (INGAMS, ACF ATLOAD).
Because of this you should:
v Use a separate DSILIST data set for each NetView
v Allocate the DSILIST data set as a PDSE in order to prevent Sx37 errors

If the testing or loading of an AT or MRT fails, a special INGERRLS listing that
contains the data of the failing AT or MRT is written to DSILIST. To view this
listing issue the following command:
br dsilist.ingerrls

A Guide to SA z/OS Automation Tables

NetView Automation Table Structure
SA z/OS provides a ready-to-use AT, INGMSG01. To activate the AT, perform the
following steps:
1. Define the AT member INGMSG01 in the SYSTEM INFO policy of the system

in the customization dialogs
2. Build the automation configuration files
3. Refresh the configuration using INGAMS REFRESH
4. Restart NetView with the new configuration

The SA z/OS AT contains:
v All entries for the SA z/OS basic automation infrastructure, which reside in

INGMSGSA
v AT entries for messages that are defined in the PDB
v User include fragments

You do not have to customize the AT INGMSG01. All unused entries are disabled
automatically according to the configuration that you use. If you want to have
additional entries that are valid only for your environment, you can use either a
separate AT (specified in the customization dialog) or use one of the user includes.

Figure 5 shows the structure of the AT:

For information about how to use the INCLUDE fragments that SA z/OS
provides, refer to “Using SA z/OS %INCLUDE Fragments” on page 32.

The following fragments are used by the AT:

Synonym Definitions
There is one fragment, AOFMSGSY, that is used to initialize the various
synonyms used throughout the rest of the table. SA z/OS requires the

INGMSG01
│
│
│──── %INCLUDE AOFMSGSY
│
│──── %INCLUDE INGMSGU1
│
│──── %INCLUDE INGMSG02 (auto-generated)
│
└──── %INCLUDE INGMSGU2

Figure 5. AT Structure

Load

Chapter 3. How to Add a Message to Automation 31

|
|
|

|

synonyms to be suitably customized to reflect your environment. See
“Generic Synonyms: AOFMSGSY” on page 227 for more details about the
synonyms.

SA z/OS Functional Definitions
These definitions (located in the fragment that is loaded as INGMSG02)
contain automation table statements for specific functions of SA z/OS. You
should not change these statements. Any modifications can be made in
INGMSGU1.

Master Automation Tables
This section discusses the three master automation tables that SA z/OS provides.

INGMSG00: The automation table INGMSG00 is used for SA z/OS initialization.
INGMSG00 should not have be modified by the user.

This table makes use of the synonyms that are defined in AOFMSGSY.

INGMSG01: INGMSG01 is suitable for use as a primary automation table.

INGMSG01 should not be included into any other table but should be activated as
a separate table.

AOFMSGST: This is a table suitable for a NetView with a SA z/OS Satellite
installed.

Integrating Automation Tables
If you have any user-written automation table statements that you still want to
use, you must now combine your primary table with SA z/OS's. There are several
approaches to achieve this.

Refer to the NetView documentation for more information on how to use NetView
automation tables.

Multiple Master Automation Tables
Besides INGMSG01, you can specify multiple additional NetView automation
tables for a system in the customization dialog. The tables are concatenated as
entered in this panel and processed in this concatenation order.

You need not modify the INGMSG01 automation table or any of the fragments,
except AOFMSGSY. It is easy to maintain SA z/OS automation table fragments.
However, you have to watch for new messages. It is easy to maintain your entries,
because they are independent from SA z/OS entries.

Using SA z/OS %INCLUDE Fragments
INGMSG01 is the master include member. It provides some message suppression
that is necessary to prevent mismatches and duplicate automation before the first
%INCLUDE fragment.

The INGMSGU1 fragment can be used for user entries. These entries have
precedence over the SA z/OS entries. The default INGMSGU1 fragment is an
empty member.

The INGMSGU2 fragment can be used for all entries that SA z/OS does not
provide any entries for. The default INGMSGU2 fragment is an empty member.
During ACF COLD or WARM start the AT or ATs are loaded and they write a

NetView Automation Table Structure

32 System Automation for z/OS: Customizing and Programming

listing to the DSILIST data set. This enables the use of the NetView AUTOMAN
command to monitor and manage the ATs. Make sure that the size of your
DSILIST data set is sufficient to store these listings. Without these listings you can
only monitor or manage the ATs using AUTOTBL. It is recommended that you
define your DSILIST data set as a PDSE so that regular data set compression is not
required. You should also make sure that the DSILIST DSN is unique to your
NetView procedure.

Examples: An example output of AUTOTBL STATUS:
BNH361I THE AUTOMATION TABLE CONSISTS OF THE FOLLOWING LIST OF MEMBERS:
AUTO2 COMPLETED INSERT FOR TABLE #1: INGMSG01 AT 04/16/02 19:34:59
AUTO2 COMPLETED INSERT FOR TABLE #2: HAIMSG01 AT 04/16/02 19:35:00

IPSNO
BNH363I THE AUTOMATION TABLE CONTAINS THE FOLLOWING DISABLED STATEMENTS:
TABLE: INGMSG01 INCLUDE: __n/a___ GROUP : INGCICS
TABLE: INGMSG01 INCLUDE: __n/a___ GROUP : INGIMAGE
TABLE: INGMSG01 INCLUDE: __n/a___ GROUP : INGIMS
TABLE: INGMSG01 INCLUDE: __n/a___ GROUP : INGJES3
TABLE: INGMSG01 INCLUDE: __n/a___ GROUP : INGOPC

An example of the AUTOMAN panel:

EZLKATGB AUTOMATION TABLE MANAGEMENT

MEMBER TYPE LABEL/BLOCK/GROUP NAME(S) STATUS NUMBER OF STATEMENTS
-------- ----- ------------------------- -------- --------------------
INGMSG02 GROUP INGCICS DISABLED 222
INGMSG02 GROUP INGDB2 ENABLED 120
INGMSG02 GROUP INGIMAGE DISABLED 1
INGMSG02 GROUP INGIMS DISABLED 107
INGMSG02 GROUP INGJES2 ENABLED 1
INGMSG02 GROUP INGJES3 DISABLED 1
INGMSG02 GROUP INGOPC DISABLED 10
INGMSG02 GROUP INGUSS ENABLED 1

In this example the configuration loaded does not use the IMS, CICS, OPC product
automation and the IXC102A automation. It uses JES2, DB2 and USS automation.

Restriction: The NetView AUTOMAN cannot be used to RELOAD INGMSG01.

Generic Automation Table Statements
The basic automation table contains a number of generic automation table entries
that can reduce your automation table overhead considerably. These samples use
some of the advanced features of SA z/OS to make automating your applications
as simple and reliable as possible.

For some of these entries (IEF403I and IEF404I in particular) the message flow may
be quite high. To handle this, you can insert additional entries in INGMSGU1 to
suppress a block of messages. For example, if all your batch jobs started with the
characters BAT or JCL, then the following entry would suppress them:
IF MSGID = ’IEF40’. & DOMAINID = %AOFDOM% THEN BEGIN;
*

IF (TOKEN(2) = ’BAT’. | TOKEN(2) = ’JCL’.)
THEN DISPLAY(N) NETLOG(N);

*
END;

Integrating Automation Tables

Chapter 3. How to Add a Message to Automation 33

|

|

System Operations Automation Flow
SA z/OS uses dedicated work operators for all subsystem-related processing in
order to:
v Keep the extra message-related workload off the NetView subsystem interface

router task (CNMCSSIR) and primary POI task PPT
v Establish even load balancing
v Ensure that all messages for a subsystem are processed in the correct sequence

You define work operators in the customization dialog using the Automation
Operators entry type (AOP). Here you define automated functions that allow you
to specify automation operators, which are the NetView task name. This
two-staged definition gives the flexibility to specify a second operator as a backup
within the same Automated Function definition. The automation operator name
that is specified here is the name of the task in NetView.

Note that the automation operators also need to be defined in the DSIOPF member
in the NetView DSIPARM data set or in the SAF product.

By default SA z/OSS provides 20 Automated Functions, AOFWRK01 through
AOFWRK20, with the automation operator names AUTWRKxx. The number can
be increased according to the installation needs.

During SA z/OS initialization or refresh the subsystems that are defined in the
configuration file are evenly distributed among the automation operators in a
round-robin manner. Thus each automation operator has a list of subsystems that it
is responsible for. Each automation operator then subscribes for the messages of
those subsystems via the NetView ASSIGN command. Finally the initial
monitoring of SA z/OS is run on the appropriate automation operator, which is
then locked until message AOF540I is issued.

When SA z/OS is fully initialized all messages for a subsystem are queued to the
same automation operator. This ensures that all messages are processed in the
order they have been received.

If the automation table action uses standard SA z/OS capabilities (that is,
SA z/OS commands), the message is processed at the automation operator in the
following three steps. However, if there is a complete user defined automation
table entry (that is, an AT override), only the first step can be run:
1. The message is driven through the NetView automation tables.
2. If there is a match, the SA z/OS data model is applied, which includes

automation flag checking, code matching, threshold comparison, pass
evaluation, and message capturing.

3. Finally the command is executed or the outstanding reply is answered.

There are two places where this processing can be modified for single messages:
v The assignment of messages to AUTWRKxx automation operators can be

overruled.
To do this, the AOF_ASSIGN_JOBNAME advanced automation option must be
set to 0, which lets ASSIGN BY MESSAGE ID take precedence over the ASSIGN
BY JOBNAME that is established by SA z/OS.
An ASSIGN command with the MSG parameter must be issued to redirect the
message. That particular message is then assigned according to the user
specification while all other messages still run on the automation operators that

Generic Automation Table Statements

34 System Automation for z/OS: Customizing and Programming

|

|
|

|
|

|

|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|

|

|
|

|
|
|

|
|
|

are assigned by SA z/OS. However this should be used with care because it
suspends SA z/OS load balancing and breaks the serialized command
processing for that subsystem.

v Execution of the command on the automation operator that has been assigned
by SA z/OS can be overruled by specifying an Automated Function name
together with the command in the MESSAGES/USER DATA policy in the
customization dialog.
Execution of the command is then routed to the task that has been specified for
the Automated Function. The automation table and data model processing is still
run on the automation operator and thus proper sequencing is guaranteed.
SA z/OS internally uses the AOFEXCMD command (described in IBM Tivoli
System Automation for z/OS Programmer’s Reference) to queue the command to the
specified automation operator. The routine checks whether the requested
automation operator is available and, if this is not the case, it queues the
command to a backup operator, so that in any case the command does not run
on the current automation operator.
It is recommended that you use this only if there are special reasons, for
example, for long running commands, because it may break the serialized
command processing for that subsystem (if not all commands are executed on
the same automation operator).

Inheritance Rules for Classes
Bear in mind the following inheritance rules for class data when building AT
entries.

Define Application Information
Data is inherited in the APPLICATION INFO policy item per individual field,
independent from each other (except for Transient Rerun). If a field is blank, the
class value is inherited (if it is available). There are a few exceptions where the
inheritance can be blocked without specifying an instance value with the special
value NONE , for example, Restart after IPL.

Define Relationships
The External Startup and External Shutdown fields in the sub header area show
inherited data individually in the same way as in the APPLICATION INFO policy
item. However the relationships are only inherited as a whole if no relationships
are defined for the child object.

Define Application Messages and User Data
Data is inherited per message ID. For example, assume a message ID has a
command definition for the instance, and the same message ID is defined for a
class with reply data. The command and reply data is not merged on the instance,
and the class definitions are not inherited at all. Message overrides (OVR) are not
inherited at all. All OVRs are used to generate AT entries at the level where they
are specified.

Define Startup Procedures
The STARTUP policy offers two panels. The Subsystem Startup Processing panel
with a subheader section with input fields that may show inherited values, and for
each selected startup phase there is a Startup Command Processing panel with a
command input area that also may show inherited data.

Generic Automation Table Statements

Chapter 3. How to Add a Message to Automation 35

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

Subsystem Startup Processing
Data in the subheader section is inherited per individual field, similar to the
APPLICATION INFO policy. Command definitions for the three phases
PRESTART, STARTUP, and POSTSTART are inherited per start phase. So if
PRESTART commands are defined for the instance and both PRESTART and
STARTUP commands are defined for a class, the instance inherits the STARTUP
commands from the class.

Startup Command Processing
Within each start phase the commands are inherited all together. So if a PRESTART
command is defined for the instance and other PRESTART commands are defined
for a class, none of the commands are merged on the instance. Instead the instance
has only the one command defined there. No PRESTART commands are inherited
from the class.

Define Shutdown Procedures
Shutdown specifications are inherited per phase. So if a SHUTINIT command is
defined for the instance and both SHUTINIT and SHUTNORM commands are
defined for a class, the instance inherits the SHUTNORM commands from the
class. Furthermore, command and reply definitions for one phase are inherited
together. So if for SHUTFORCE a command is defined for the instance, and the
class has a reply defined for SHUTFORCE, nothing is inherited by that instance.

Changes within inherited data result in creating definitions for the current
application. So if for a phase, commands and reply definitions are inherited, and
then commands are modified, both the reply and the command definitions become
data of the current application. If only commands are inherited for a phase, and
then reply data is specified, the command definitions are also copied to the phase
definition of the current application.

Define Error Thresholds
The data is inherited as a whole if no thresholds are defined for the child object –
it is not possible to specify a level for Critical, Frequent, or Infrequent alone for an
instance and inherit the other threshold levels from a class.

Define IMS Subsystem-Specific Data
This policy combines fields that are built into the IMSCNTL and the
ENVIRONMENT structures of the configration files. The fields within a structure
are inherited all together, but each structure is inherited independently from the
other. Furthermore the IMSCNTL fields do not allow definitions for a class (though
they are displayed on the class panel). And finally for a subtype other than CTL
only a subset of the fields is available.

Thus there are three variations of this panel:
1. Instance of subtype CTL with all IMSCNTL and all ENVIRONMENT fields
2. Class of subtype CTL with all ENVIRONMENT fields
3. Instance or Class of subtype other than CTL with a subset of ENVIRONMENT

fields (2 fields)

The first four fields (APPLid, Default HSBID, Startup parm1, Startup parm2) are
never inherited. They cannot be specified for a class. The remaining fields are
inherited all together in a blocks.

Generic Automation Table Statements

36 System Automation for z/OS: Customizing and Programming

|
|
|
|
|
|

Automatic AT Generation
CMD (Command), REP (Reply), COD (Code), and USR (User Data) are inherited
per message ID. For example, assume a message ID has a command definition on
the instance, and the same message ID is defined for a class with reply data. The
command and reply data are not merged on the instance, and the class definitions
are not inherited at all.

Messsage Overrride and Status specifications provide instructions for the
generation of the AT entry. This data is never inherited, but is used to create one
AT entry for the object where they are specified. Remember that the AT is message
oriented and the AT entry usually has the message ID as a condition, so for
example, inheriting a Status would create duplicate entries.

Generic Automation Table Statements

Chapter 3. How to Add a Message to Automation 37

38 System Automation for z/OS: Customizing and Programming

Chapter 4. How to Monitor Applications

System Automation for z/OS provides different ways to monitor your applications:
v Using observed status monitoring routines, SA z/OS can determine whether your

applications and several other automated resources are active, inactive, or in the
process of being started. It is recommended to always enable observed status
monitoring routines and to use the product-provided routines where possible.
See “Observed Status Monitoring” for further details.

v With monitor resources you can optionally monitor the health of your applications
and recover them on health status changes. SA z/OS distinguishes between
active health monitoring and passive event-based health monitoring. See “Health
Monitoring” on page 40 for further details.

Active and passive health monitoring is supported by SA z/OS in the following
areas:
v Health monitoring of JES3, based on console messages
v Health monitoring of z/OS, DB2, CICS, IMS and other components, based on

IBM Tivoli OMEGAMON II exceptions or IBM Tivoli OMEGAMON XE
situations

v Health monitoring of CICS, based on CICSPlex® SM
v Health monitoring of IMS, based on console messages

Observed Status Monitoring
SA z/OS determines the observed status of an application by running a routine
identified by the policy administrator in the customization dialog. The routine can
be specified for an individual application (refer to IBM Tivoli System Automation for
z/OS Defining Automation Policy), and a default monitor routine can be specified for
all applications on an entire system (see the AUTOMATION INFO policy item in
the customization dialog).

Table 5 lists the routines that can be specified as application monitors.

Table 5. Observed Status Monitor Routines

AOFADMON This routine has been deprecated and is provided only for compatibility
with earlier releases.This routine determines the status of an application
by issuing the MVS D A, jobname command. The job name used is the
job name defined in the customization dialog for the application.
Possible values for the application monitor status as determined by this
routine are Active, Starting, Inactive. IBM recommends to use
INGPJMON instead of AOFADMON.

AOFATMON This routine is used to determine the status of a task operating within
the NetView environment.

AOFAPMON This routine determines the status of a program-to-program interface
(PPI) receiver.

AOFCPSM This routine is a dedicated routine used to monitor the status of the
SA z/OS processor operations applications.

AOFNCMON This routine is used to determine the status of the NETCONV
connection running between the NMC server and NetViewfor z/OS.

© Copyright IBM Corp. 1996, 2011 39

|
|

Table 5. Observed Status Monitor Routines (continued)

AOFUXMON This routine determines the status of a resource with application type
USS. This resource can either be a z/OS UNIX process, a file system in
the UNIX file system (HFS), or a TCP port. Depending on the nature of
the resource (process, file, or port) AOFUXMON decides which internal
monitoring method to use.

INGPJMON This routine determines the status of an application by searching z/OS
for address spaces with a particular job name. The job name used is the
job name defined in the customization dialog for the application.

INGMTSYS With this routine, IMAGE applications for BCPII usage can be
monitored.

INGROMON With this routine, OMVS can be monitored.

INGPSMON This routine monitors the subsystem's registration to the subsystem
interface.

ISQMTSYS With this routine, a processor operations target system resource
represented by its proxy can be monitored. See “Automating Processor
Operations Resources of z/OS Target Systems Using Proxy Definitions”
on page 79 for examples of how to use a proxy definition. Active
operator console connections are mandatory and are used for sending a
z/OS command (for example, d t) and receiving the related response.

SA z/OS expects certain return codes from all monitor routines, either from
SA z/OS provided ones or from your own routines. These can be one of the
following:

RC Meaning
0 Active
4 Starting
8 Inactive
12 Error

Health Monitoring

Overview
Health monitoring is accomplished using special resources called monitor resources.
Monitor resources, which have a resource type MTR, are policy objects that are
used to obtain the health status of other resources, typically applications or
application groups, or more generally, any object that can be monitored. The health
status is useful when you need to know how well a resource is performing and not
simply that it is active.

The health status can be used to provide application-specific performance and
health monitoring information, for example, an application may be active but it is
failing to meet performance objectives defined by the system administrator. The
health status can be used either for information only, or by the automation
manager to make decisions and, if necessary, trigger automation for the
application.

Monitor resources are defined in the customization dialog with entry type MTR.
They are resources with similar characteristics as all other SA z/OS resources.

Monitor resources are connected to application resources (APLs) or application
group resources (APGs). The health status of the monitored object is propagated to

40 System Automation for z/OS: Customizing and Programming

||

the APLs and APGs and results in a combined health status there. You can define
and connect MTRs in the customization dialog (see IBM Tivoli System Automation
for z/OS Defining Automation Policy).

Monitor resources obtain the health status of an object in two different ways:
v Actively, by polling—that is executing a monitoring command periodically
v Passively, by processing events

Active monitors are scheduled periodically based on the interval defined in the
MTR policy.

Passive monitors do not have a monitor interval but can have a monitor command
defined for them for initial health status determination. They rely on other events
to set the health status using the INGMON command.

Monitor resources can be explicitly bound to the object that they are monitoring
and optionally to a job. This allows SA z/OS to handle a variety of monitoring
events in a generic way. A monitored object can be, for example, an OMEGAMON
XE situation, or an event posted by CICSPlex System Manager (CICSPlex SM). See
“Passive, Event-Based Health Monitoring” on page 44. Note that the monitored
object is derived from the monitor resource name, if none was specified.

There can be one or more recovery commands associated with each health status
(NORMAL, WARNING, MINOR, CRITICAL and FATAL). These commands are
invoked by SA z/OS when the monitor resource switches to the corresponding
health status.

You can display and control monitor resources with the DISPMTR command.
Monitor resources are also displayed on the Tivoli Enterprise Portal (TEP) as well
as SDF and NMC, provided that the appropriate inform list specifications have
been made.

Monitor Resource Commands
When defining a monitor resource you can specify activate, deactivate and monitor
commands. Any command is suitable that can be executed in the NetView
environment. These commands are divided into two groups:
v NetView activate and deactivate commands that expect a return code of zero
v Monitor commands that return a health status

The main difference between these two groups is that the activate and deactivate
commands are executed only once, and SA z/OS expects a return code of zero.

If the activate command ended with a non-zero return code, the monitor resource
remains in an INACTIVE status. The monitor resource ends in a BROKEN status if
the deactivate command ended with a non-zero return code.
v The activate command is optional and can be used to establish the environment

the monitoring routine can run in. The command is executed every time the
monitor is started. The command must exit with return code 0.

v The deactivate command is optional and can be used to cleanup the
environment. The command is executed every time the monitor is stopped. The
command must exit with return code 0.

v The monitor command is executed after the activate command and then
periodically if a monitoring interval is given. SA z/OS expects the monitor
command to return a valid health status code. Additionally the monitor

Chapter 4. How to Monitor Applications 41

command can issue a message that is then attached to the health status. The
absence of a monitoring interval indicates that the given monitor resource is a
passive or event-based health monitor. In this case, the monitor command is
optional and, if specified, it is invoked for initial health monitoring only.
Otherwise, if a monitoring interval is provided, the given monitor resource is an
active health monitor. In this case, a monitor command must be provided to
return a health status.

The activate, deactivate and monitor command can be a command procedure
written in any language that is supported by NetView: REXX, Assembler, PL/I, C,
or the NetView Command List Language (NCLL). Writing a monitor routine can
be simple or it can be complex. The complexity depends upon the application that
you are attempting to monitor.

Writing a Recovery Routine
The recovery routine is invoked every time the monitor resource switches to the
health status that the recovery routine is defined for. The goal of the recovery
routine is to bring the monitor resource, and thus the monitored object, back to a
health status of NORMAL.

Recovery Techniques
User data in the MESSAGES/USER DATA policy item can be used to disable
additional recovery processing while other recovery is already in progress. In
combination with the predefined keyword DISABLETIME, the recovery disable
time can be specified in the formats hh:mm:ss, mm:ss, :ss, or mm. While recovery
is disabled, no commands are processed on behalf of this monitor resource for
messages and exceptions that are specified in the MESSAGES/USER DATA policy
item.

Recovery is automatically enabled after the recovery disable time has expired.
Recovery can also be enabled prematurely by calling the INGMON command with
the option CLEARING=YES, for example:
INGMON CI2XREP MSGTYPE=XREP CLEARING=YES

In some cases, it is necessary to force increasingly strong recovery actions over a
period of time. This can be accomplished using a PASS count that starts at 1 and
runs to 99. SA z/OS maintains the PASS count individually per message or
exception, and increments the PASS count each time that message or exception is
processed. Upon successful recovery, it is the installation's responsibility to reset
the PASS count. When specified with option CLEARING=YES, INGMON enables
command processing for messages and exceptions, and resets the PASS count.

Task Global Variables for Recovery Routines
The following task global variables can be accessed by the recovery routine:

Task Global Variable Value

&EHKVAR1 Contains the monitor name

&EHKVAR2 Contains the current health status

&EHKVAR3 Contains the old health status

&EHKVAR4 Contains the message that is associated with the health status

&SUBSAPPL Contains the monitor name

&SUBSTYPE Contains the string MONITOR

42 System Automation for z/OS: Customizing and Programming

|

|

Active Health Monitoring
In general, the monitor command needs to issue one or more commands to
generate data, process the data, and set a return code. The return code is then used
by SA z/OS to determine the health status for the resource. The possible return
codes and the corresponding health status are given in Table 6.

Table 6. Health Status Return Codes

Return Code Health Status Description

1 BROKEN The monitor detected an unrecoverable error.
SA z/OS stops monitoring.

2 FAILED The monitor is currently unable to obtain a health
status. SA z/OS keeps the monitor active because
the problem might disappear.

3 NORMAL The monitor detected normal operation of the
monitored object.

4 WARNING The monitor detected a certain degree of
degradation in the operation of the monitored object.

5 MINOR The same as WARNING, but more severe.

6 CRITICAL The same as MINOR, but more severe.

7 FATAL The same as CRITICAL, but more severe.

8 DEFER Used internally.

The health status values affect the compound status in the automation manager.

Most monitor commands use UNKNOWN, NORMAL, and WARNING statuses.
The MINOR, CRITICAL, and FATAL statuses can be used as gradients to indicate
that a problem is getting worse. BROKEN and FAILED are statuses that describe
the status of the monitor itself and may be seen if an error is encountered with the
monitor command.

Optionally, the monitor routine can issue a message describing the condition that is
trapped by the SA z/OS process that invoked the monitor. The message can be
viewed on the DISPMTR panel.

Every monitor command needs several basic steps:
1. Issue one or more commands to collect data and interrogate the results.
2. Based on the results from the command or commands, set the return code to a

value from 1 through 8 and, optionally, perform processing based on that
value.

3. Optionally, supply more descriptive information about the health status in a
message that can be viewed with the DISPMTR command.

4. Exit with the return code so SA z/OS can set the health status appropriately.

Figure 6 on page 44 is an example using the NetView PING command within a
PIPE to query the status of a TCP/IP stack on a remote system. The IP address is
passed on input. The routine uses the average round trip time (RTT) for the
request provided in message BNH770I to determine the health.

Chapter 4. How to Monitor Applications 43

Passive, Event-Based Health Monitoring

Overview
Passive, event-based monitoring allows you to react to events, for example a
message, an OMEGAMON XE situation, or a CICSPlex SM event, directly. In
contrast to active health monitoring, SA z/OS does not have to query the
monitored object status periodically but is informed only when such an event has
occurred.

The definitions in the MONITOR INFO policy item for a monitor resource allow
you to define an object that the monitor resource is bound to and optionally a job
that the monitor resource accepts events from.

The Monitored Object specification for the monitor resource can follow any
naming convention that might be required for the monitoring process. For
example, for CICS monitoring it has the prefix CPSM, followed by the CICS name,
the type (such as a connection), and the name. For a link called CT12, the
monitored object is called as follows, for example:
CPSM.CICSTOR1.CONNECT.CT12.

Whereas for monitoring OMEGAMON XE situations, it has the prefix ITM,
followed by the situation name, for example: ITM.MYAUXSHORTAGE_WARN.

There can be only one monitored object per monitor resource but more than one
monitor resource can be bound to a monitored object, for example, several IMS
monitors might specify OLDS as an object.

You can also optionally specify the Monitored Jobname that a monitor resource
accepts events from. Thus, for example in the case of IMS monitor resources, you
might specify a job name of IMS1 for monitor resource MTR1 and IMS2 for MTR2.
If an event arrives for OLDS and the issuer is IMS1 only MTR1 is affected.

/*REXX MYMON */
Arg parm
monrcs=’BROKEN FAILED NORMAL WARNING MINOR CRITICAL FATAL DEFER’
’PIPE (STAGESEP | NAME PING)’,
’| NETV PING’ parm,
’| LOCATE 1.8 /BNH770I /’,
’| STEM out.’
if out.0 = 0 then

lrc = wordpos(’FATAL’,monrcs)
else

do
parse var out.1 . ’averaging’ ms ’ms’ .
say ’PING lasted’ ms ’ms’
select

when ms < 10 then lrc = wordpos(’NORMAL’,monrcs)
when ms < 20 then lrc = wordpos(’WARNING’,monrcs)
when ms < 30 then lrc = wordpos(’MINOR’,monrcs)
when ms < 40 then lrc = wordpos(’CRITICAL’,monrcs)
otherwise lrc = wordpos(’FATAL’,monrcs)

end
end

Return lrc

Figure 6. Sample Monitor Command

44 System Automation for z/OS: Customizing and Programming

Event Types
In the simplest case, an event is represented by a plain message issued by a job.
All monitor resources that register for a particular message accept this message
unless you also specified the monitored job name.

In other cases, for example for OMEGAMON XE situations or events reported by
CICSPlex SM, the event is represented by a triggering message provided by
SA z/OS for the purpose of health monitoring only. This message, ING150I, that
contains the monitored object name or the job can then be used by SA z/OS to
locate the monitor resource and to set the health status or issue commands. This
allows SA z/OS to handle a variety of monitoring events.

INGMON, the command that is responsible for health monitoring, is invoked from
the NetView® automation table whenever ING150I or any other message a monitor
resource has registered for is issued. It locates the monitor resource for a given
monitored object or job and then looks up the code match table for the health
status or commands, or both, that should be issued whenever the triggering event
occurs.

Code Matching for Event-Triggering Messages
INGMON allows you to pass up to three codes that, when specified, are used to
determine a specific set of commands to be issued in case of an event-triggering
message. For message ING150I, SA z/OS creates an automation table entry where
Code 1 is used to select commands by event severity. For other messages, you can
override the default automation table entry and pass the appropriate tokens in
Code 1, Code 2, and Code 3, as you require.

In any case, the Value Returned field contains one or two tokens separated by a
blank. The first token is a required command selector that can be one of the
following:

selection
Execute commands with the given selection or commands for which no
selection is specified.

Perform pass processing and execute all commands that match the current
pass.

#selection
Interpret selection as another pseudo message ID. Perform pass processing
for this message and execute all commands that match the current pass.

This is useful for pass processing on behalf of the event triggering
message, for example, ING150I. Suppose you have one entry for
WARNING and one for CRITICAL. When you do pass processing for
ING150I your pass counter may be on 5, for example, when the first
CRITICAL event comes in (because you already had 4 WARNING events).

However, with #selection you can specify, for example, a value returned of
#MYWARN WARNING and #MYCRIT CRITICAL for the corresponding
levels. INGMON performs pass processing for the pseudo-message
MYWARN and set the health status WARNING for a WARNING event.
For a CRITICAL event it performs independent pass processing for the
pseudo-message MYCRIT and finally sets a health status of CRITICAL.

Remember to set the IGNORE action for the pseudo-messages to avoid AT
entries being built.

Chapter 4. How to Monitor Applications 45

The second token in the Value Returned column of the Code Processing panel
indicates the optional health status to be set. If specified, it must be separated by a
blank from the selection criterion.

Programming Techniques
Commands that are called by INGMON have access to the message that triggered
the invocation using the NetView SAFE, AOFMSAFE, for example:
/* MYCLIST, called by INGMON */
’PIPE SAFE AOFMSAFE | STEM MSG.’
If msg.0 > 0 Then

msgtext = msg.1 /* first message line */

In addition, INGMON fills the task global variables &EHKVAR0, &EHKVAR1–9,
and &EHKVART with tokens that are derived from the message or exception that
INGMON was invoked by. For messages, the assignment starts with the message
ID, and for exceptions, it starts with the exception ID.

INGMON also sets the following task global variables:

&SUBSAPPL Contains the monitor name.

&SUBSTYPE Contains the string MONITOR.

&SUBSDESC Contains the description of the monitor resource.

The following examples illustrate how message and exception tokens are assigned
to these task global variables.

Example 1:
$HASP9211 JES MAIN TASK NOT RUNNING. DURATION- hh:mm:ss.xx

Task Global Variable Value

&EHKVAR0 $HASP9211

&EHKVAR1 JES

&EHKVAR2 MAIN

&EHKVAR3 TASK

&EHKVAR4 NOT

&EHKVAR5 RUNNING.

&EHKVAR6 DURATION-

&EHKVAR7 hh:mm:ss.xx

&EHKVAR8
&EHKVAR9
&EHKVART

NULL

Example 2:
ING080I CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS XREP Number of Outstanding Replies = 4

Task Global Variable Value

&EHKVAR0 XREP

&EHKVAR1 Number

&EHKVAR2 of

&EHKVAR3 Outstanding

46 System Automation for z/OS: Customizing and Programming

|

||

||

||

Task Global Variable Value

&EHKVAR4 Replies

&EHKVAR5 =

&EHKVAR6 4

&EHKVAR7
&EHKVAR8
&EHKVAR9
&EHKVART

NULL

When defining commands to be issued by the INGMON command, the
&EHKVARx variables can be used to be replaced by the corresponding tokens of
the message or exception.

When INGMON looks up the monitor resource for a given monitored object or job
name, or both, it is possible to skip monitor resource processing dynamically
through a user-specified REXX expression. In the absence of such a REXX
expression, INGMON locates the monitor resource with the given monitored object
name for the job that issued the message and proceeds with health status setting
and commands as defined in the automation policy. By adding a REXX expression
to the User Defined Data panel within the MESSAGES/USER DATA policy item
for the automated message, further processing can be disabled depending on the
result of this REXX expression.

To do this, the predefined keyword INGMON_FUNCTION is specified as a
keyword and an arbitrary REXX expression is defined as the value in the User
Data Processing panel. If the result of the REXX expression is false (that is, 0),
processing is stopped, otherwise INGMON processing continues. The following
example for the message ID MYMTR controls monitor resource processing, based
on the day of week that is defined in the common global variable DAY_OF_WEEK.
(processing continues only if the current day is not a Sunday):

Keyword INGMON_FUNCTION

Data cglobal(’DAY_OF_WEEK’) \= ’SUN’

When a monitor resource is defined with a monitor command but without an
interval, the initial health status of such a passive monitor resource is obtained at
monitor resource start time only. Any other health status update must be derived
from events that the monitor resource has registered for.

It is however possible to issue the monitor command at any point in time by
executing the command AOFRCMTR. This command expects the monitored object
name and optionally a job name as parameters. It locates the corresponding
monitor resource and, if specified, issues the monitor command.

See IBM Tivoli System Automation for z/OS Programmer’s Reference for the syntax of
AOFRCMTR.

Health Monitoring using OMEGAMON
SA z/OS allows you to interact with IBM Tivoli OMEGAMON II and IBM Tivoli
OMEGAMON XE products to collect key performance indicators that represent the
health status of address spaces, middleware, or even the system. The following
sections show you how to interact with these products using monitor resources.

Chapter 4. How to Monitor Applications 47

|
|
|
|
|
|
|

|||

||
|

|

Overview
The SA z/OS OMEGAMON interface lets you gather a wide range of performance
data on a system. You can gather data from the following performance monitoring
products:
v IBM Tivoli OMEGAMON II for MVS
v IBM Tivoli OMEGAMON II for CICS
v IBM Tivoli OMEGAMON II for IMS
v IBM Tivoli OMEGAMON II for DB2
v IBM Tivoli OMEGAMON XE products
v Other IBM Tivoli Monitoring products running on z/OS

Exception analysis is an OMEGAMON feature that monitors predefined thresholds in
a system. Each time exception analysis is invoked, an exception is displayed on the
OMEGAMON console if a threshold is exceeded. Using SA z/OS, you can then act
on these exception alerts by running execs or issuing commands, including issuing
commands back to the host OMEGAMON.

Situations are much like exceptions but they are based on a combination of logical
expressions and even on the status of other embedded situations. Each product
based on the IBM Tivoli Monitoring infrastructure, such as IBM Tivoli
OMEGAMON XE, provides a set of predefined situations that you can use as is, or
modify as you wish. You can also create your own situations to tailor the
monitoring to your specific needs. Situations are edited and displayed on the Tivoli
Enterprise Portal (TEP). Using a TEP function called Reflex Automation, you can
inform SA z/OS about a particular situation and then act upon it.

IBM Tivoli Monitoring services also allow you to interact with each and every
product based on this infrastructure through a standardized SOAP services
interface on the Tivoli Enterprise Monitoring Server (TEMS). SOAP services exist,
for example, to obtain data from a particular object collected by Tivoli
OMEGAMON XE for z/OS. Other services allow you to automatically manage
situations and TEP workflow policies, or to send universal messages to the
universal message console.

You can set up monitor resources to:
v Monitor sets of exceptions that may be of interest using an active monitor

resource and set an application's health status based on the existence of such
exceptions

v React to and resolve conditions that cause those exceptions
v Monitor sets of situations that may be of interest using a passive monitor

resource, set an application's health status and react to and resolve conditions
that cause those situations

Assumptions
Various topologies are possible for SA z/OS with IBM Tivoli OMEGAMON II
monitors and IBM Tivoli Monitoring products such as OMEGAMON XE:
v There can be one or more monitoring product per system
v Connectivity is through VTAM® and the NetView Terminal Access Facility (TAF)

for OMEGAMON II and through TCP/IP for OMEGAMON XE
v A TEMS SOAP Server is running locally, on a remote system or on a distributed

system
v SA z/OS can act as a focal point either:

48 System Automation for z/OS: Customizing and Programming

– Globally, monitoring data from monitoring products running on different
systems

– Locally, monitoring data from monitoring products running on the local
system

The following assumptions are made about the topologies that can be adopted for
interaction with OMEGAMON II:
1. The OMEGAMON product is installed on each system where MVS and CICS,

DB2, or IMS is installed.
2. OMEGAMON monitors are installed and configured already to support

multiple VTAM-based connections to it. For interoperability with SA z/OS,
logical units of type 3270 model 2 (24x80) are required.

3. OMEGAMON monitors are setup to interact with an external security product
such as IBM SecureWay™ Security Server for z/OS (formerly RACF®).

4. OMEGAMON exceptions are reported when the threshold that is defined in
OMEGAMON is exceeded. That threshold must be agreed within an
installation because it must cater for the least severe condition that there might
be an alert for.

The following assumption is made regarding the interaction with OMEGAMON
XE:
1. Reflex automation is executed on the OMEGAMON XE agent that created the

corresponding situation event

OMEGAMON Interaction
The following subsections assume that, for OMEGAMON II interaction, you have
defined one or more OMEGAMON sessions and automated functions that are
designated to handle network communication using the SA z/OS customization
dialog. For details on defining OMEGAMON sessions, refer to the OMEGAMON
SESSIONS and AUTHENTICATION policy items in the Network (NTW) entry type
and to the OPERATORS policy in the Auto Operators (AOP) entry type described
in IBM Tivoli System Automation for z/OS Defining Automation Policy.

For OMEGAMON XE interaction using SOAP services you have to specify each
SOAP server in the automation policy that you want to connect to. For details on
defining SOAP servers, refer to the SOAP SERVER policy item in the Network
(NTW) entry type described in IBM Tivoli System Automation for z/OS Defining
Automation Policy.

Using the INGOMX Programming Interface
INGOMX acts as the interface between operators (or auto-operators) and
OMEGAMON. This includes not only any of the classic OMEGAMON monitors
for CICS, DB2, IMS, and MVS, but also OMEGAMON XE monitors and other IBM
Tivoli Monitoring products running on z/OS.

For the classic OMEGAMON monitors, INGOMX can be used to issue
OMEGAMON major, minor, and immediate commands, and to filter one or more
exceptions of interest from the list of exceptions reported by OMEGAMON
exception analysis. Each request is written to the console (but not exposed to
NetView) in the format as produced by the OMEGAMON monitor. When
exception filtering is requested, multiple exception lines for one exception are
combined into a single line and written to the console as a single message if the
filter criterion (XTYPE) matches. INGOMX is best used within a NetView PIPE.

Chapter 4. How to Monitor Applications 49

The INGOMX SOAP interface allows you to issue any of the SOAP services
supported by the TEMS SOAP server, for example to
v Obtain attributes of interest from a particular OMEGAMON XE object, for

example, Job_name and CPU_percent from the OMEGAMON XE for z/OS
object Address_Space_CPU_Utilization

v Start and stop situations as well as TEP workflow policies
v Issue a universal message
v Send an event into the IBM Tivoli Monitoring platform

The full set of SOAP services and a description of the XML-syntax is described in
IBM Tivoli Monitoring Administrator's Guide.

The following examples illustrate the use of INGOMX. They are based on an
OMEGAMON for MVS session with the name OMSY4MVS. The same techniques
also apply to other OMEGAMON monitors. For more details, refer to IBM Tivoli
System Automation for z/OS Programmer’s Reference.

Example 1. Returning Information on Common Storage Utilization Using the
CSAA Command:

INGOMX EXECUTE,NAME=OMSY4MVS,CMD=CSAA
| IPXNG CSAA SUMMARY
| IPXNG +
| IPXNG + System
| IPXNG + Maximum Pre-CSAA Orphan Usage
| IPXNG + ------- -------- ------- ---------------0___2___4___6___8___100
IPXNG + CSA 3312K 1247K 0 1247K 37.6%	------>
IPXNG + ECSA 307740K 78797K 0 78797K 25.6%	---->
IPXNG + SQA 1620K 660K 0 660K 40.8%	------->
IPXNG + ESQA 145696K 23930K 0 23930K 16.4%	-->

Example 2. Using OMEGAMON Command Modifiers:

INGOMX EXECUTE,NAME=OMSY4MVS,CMD=ALLJ,MOD=#
| IPXNG #ALLJ 166
INGOMX EXECUTE,NAME=OMSY4MVS,CMD=ALLJ,MOD=<
| IPXNG <ALLJ *MASTER* PCAUTH RASP TRACE DUMPSRV XCFAS GRS SMSPDSE+
| IPXNG + CONSOLE WLM ANTMAIN ANTAS000 OMVS IEFSCHAS JESXCF ALLOCAS+
| IPXNG ...

50 System Automation for z/OS: Customizing and Programming

Example 3. Trapping Outstanding Operator Replies:

INGOMX TRAP,NAME=OMSY4MVS,XTYPE=(XREP)
| IPXNG + XREP Number of Outstanding Replies = 5

Example 4. Issuing OMEGAMON Minor Commands:

/* REXX-Routine EXMINOR */
cmd.1 = "CMD=SYS" /* Major command, issued ahead of its minors */
cmd.2 = "CMD=FCSA" /* Minor: CSA frames below 16M */
cmd.3 = "CMD=FCOM" /* Minor: CSA, LPA, SQA, and nucleus below 16M */
cmd.0 = 3
’PIPE STEM cmd. COLLECT’,
’| NETV INGOMX EXECUTE,NAME=OMSY4MVS,CMD=*’,
’| CONSOLE ONLY’
* IPXNG EXMINOR
| IPXNG SYS >> WLM Goal mode OPT=00 SYSRES=(150526,8812) <<
| IPXNG fcsa 328 1312 K
| IPXNG fcom 849 3396 K

There is no need to explicitly establish a session between an operator and a
particular OMEGAMON monitor before using INGOMX; such sessions are
established automatically on their first use.

Selective protection of individual OMEGAMON sessions and commands, or both,
is possible based on the NetView Command Authorization Table. Details can be
found in the appendix, “Security and Authorization”, in IBM Tivoli System
Automation for z/OS Planning and Installation.

To use a SOAP service, for example to obtain certain attributes from an
OMEGAMON XE object, you first have to describe the request's parameters in the
form of an XML document. The XML document is validated and rejected by the
SOAP server if it is found to be incorrect or incomplete. The spelling of the names
enclosed in '<' and '>' is significant because XML is a case-sensitive document
description language. Also, because the structure of every XML document is
hierarchical, each element must be enclosed by an opening name (for example,
'<CT_Get>') and a corresponding closing name denoted by a forward slash
preceding the name (for example, '</CT_Get>').

The following is an example that describes the request parameters to retrieve the
Job_Name, the address space ID (ASID), and the CPU_Percent attributes from the
OMEGAMON XE for z/OS object, Address_Space_CPU_Utilization, for all jobs
with a CPU percentage greater than 1.0. In this example, the object that has been
queried is collected on the TEMS called KEYAS:CMS.
<CT_Get>

<target>KEYAS:CMS</target>
<object>Address_Space_CPU_Utilization</object>
<attribute>Job_Name</attribute>
<attribute>ASID</attribute>
<attribute>CPU_Percent</attribute>
<afilter>CPU_Percent;GT;10</afilter>

</CT_Get>

You can pass this XML document either by pointing INGOMX to a sequential or
partitioned data set, or in the default SAFE, assuming INGOMX is invoked in a
NetView PIPE.

Chapter 4. How to Monitor Applications 51

When INGOMX is invoked, the SOAP server that is connected to must be
specified. In the following example, it is assumed that you have defined a SOAP
server called KEYAYA in the SOAP SERVER policy item of the Network (NTW)
entry type using the SA z/OS customization dialog. This definition includes the
host name or IP address, the SOAP server's port and the path name of the SOAP
service. The request parameters as shown above are located in the member
GETCPU in the partitioned data set SYS1.SOAP.DATA:
soapds = ’SYS1.SOAP.DATA(GETCPU)’
soapsrv = ’KEYAYA’
Address NETVASIS ’PIPE (END % NAME GETCPU)’,
’| NETV (MOE) INGOMX SOAPREQ SERVER=’soapsrv’ DATA=’soapds,
’| L: LOC 1.8 ’d||’DWO369I ’||d,
’| EDIT SKIPTO ’d||’RETURN CODE’||d,
’ UPTO ’d||’.’||d,
’ WORD 3 1’,
’| VAR omx_rc’,
’%L:’,
’| CON ONLY’

On the successful return of INGOMX, the output of the SOAP server is returned in
the multiline ING160I message:
ING160I RESPONSE FROM SOAP SERVER: 9.xxx.xxx.xxx:1920///cms/soap
Job_Name:ASID:CPU_Percent
IXGLOGR:20:2.1
NET:59:2.1
RMFGAT:89:6.9
SDM1IRLM:108:1.7
BBOS001S:113:22.1
YANAMSJH:117:3.9

The first row of this message documents the IP address of the SOAP server that
responded, that is, KEYAYA in the example (IP address anonymized).

The second row describes the names of the attributes returned by the SOAP server.
The attribute names are separated from each other by the non-printable character
X'FF' (represented by a :).

The third and all following rows contain the actual data that has been requested.
The attribute values are presented in the same sequence as the corresponding
attribute names in the second row. Also, like the attribute names, the attribute
values are separated from each other by the non-printable character X'FF'
(represented by a :).

The tabular structure of this message allows you to easily process it in a NetView
PIPE.

Using the INGMTRAP Monitor Command
INGMTRAP is a customized interface to INGOMX that provides filtering
capabilities for exceptions of interest as reported by OMEGAMON exception
analysis and triggering of automation on behalf of such exceptions. For each
exception that matches the XTYPE filter that is provided by the caller, INGMTRAP
issues message ING080I, which is exposed to NetView. For example:
ING080I CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS XREP Number of Outstanding Replies = 4

If no exception matches the XTYPE filter that is provided by the caller,
INGMTRAP creates a ING081I message that is not exposed to NetView but written
to the monitor resource's log to document that no exception has been found. For
example:

52 System Automation for z/OS: Customizing and Programming

ING081I CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS NO EXCEPTION FOUND

INGMTRAP can only be used as a monitor command. This means that it has to be
specified directly as a monitor command in the definition of a monitor resource, or
it has to be called on behalf of such a monitor command. The following example
illustrates what you need to specify on the MONITOR INFO policy in entry type
monitor resource (MTR) in order to trap outstanding operator replies that are
reported by OMEGAMON for MVS session OMSY4MVS:
INGMTRAP NAME=OMSY4MVS,XTYPE=(XREP)

Be careful when specifying a list of exceptions: each exception may cause an
ING080I message to be issued. Because each occurrence of an ING080I message
triggers health status processing of the monitor resource, make sure you
understand the impact that this may have on the monitor resource's final health
status.

For more details about INGMTRAP refer to IBM Tivoli System Automation for z/OS
Programmer’s Reference. For more details about defining monitor resources, refer to
IBM Tivoli System Automation for z/OS Defining Automation Policy.

Health Monitoring Based on OMEGAMON Exceptions
This section describes how to set up the monitor resources for health-based
monitoring based on OMEGAMON exceptions using the customization dialogs,
provides a sample scenario, and gives recommendations when using
OMEGAMON in combination with monitor resources.

Defining the Monitor Resources
By combining monitor resources and the OMEGAMON interaction methods
described in “OMEGAMON Interaction” on page 49, automation can be triggered
as a result of analyzing the output reported by OMEGAMON and by the setting of
an appropriate health status.

OMEGAMON exceptions can be periodically monitored using a monitor resource
and the monitor command INGMTRAP. There are a variety of ways to handle such
exceptions:
1. In the customization dialog, the MESSAGES/USER DATA policy of a given

monitor resource needs to state the health status of each exception that
INGMTRAP has been set up to monitor. Unlike messages, OMEGAMON
exceptions are denoted by a '+' sign, followed by a blank and then a 4-character
OMEGAMON exception ID.

2. In addition to the health status, a series of one or more commands can be
specified to handle that particular exception. Commands are processed in the
same way as for any other resources that a MESSAGES/USER DATA policy is
provided for, such as applications (APL). This includes escalation processing
based on a PASS count, or processing based on a selection value that can be
defined using CODEs that are derived from a message.

3. The HEALTHSTATE policy can be used to issue recovery commands on behalf
of an OMEGAMON exception each time the health status changes.

No matter which method or combination of method are chosen, the process of
handling an exception is triggered by the occurrence of an ING080I message for a
particular monitor resource and exception. The automation table that is built from
the definitions in the MESSAGES/USER DATA policy contains statements that
invoke the INGMON command to set the monitor resource's health status and to
issue commands in response to exceptions. In most cases, the necessary entries in

Chapter 4. How to Monitor Applications 53

the NetView Automation Table are created automatically by SA z/OS. In some
rare cases when, for example, command selection should be based on CODEs, it is
necessary to override the automation table definition of the exception, and to
specify up to 3 codes (CODE1, CODE2, and CODE3) on the invocation of
INGMON.

Alternatively, an installation-written monitor command can be used to issue
INGOMX for a series of exceptions to one or more OMEGAMON monitor. Such a
monitor command then returns with an appropriate health status that is based on
the analysis of the output produced by INGOMX. The recovery commands that are
issued when the health status changes are specified in the HEALTHSTATE policy
of that monitor resource.

Example Scenario
To illustrate how SA z/OS and OMEGAMON operate together, consider the
following scenario.

Suppose there is a DB2 application that should be continuously monitored. Of
particular interest is the availability of primary active logs. The LOGN
exception indicates that fewer primary active logs exist than specified by the
respective threshold value. This is considered a critical health indicator
because it can cause a DB2 hang situation if the last primary active log
becomes 100% full. Such a situation can only be resolved by making one or
more additional primary active logs available again.

In order to monitor this situation and react accordingly, the automation policy has
to be changed. First, define the session attributes for the OMEGAMON for DB2
monitor, if they do not yet exist, to be able to establish a VTAM connection. The
OMEGAMON session is referred to by its session name. Then review the number of
session operators (automation operators) that are started to handle the VTAM
session traffic and add an additional one if a higher degree of parallelism is
required. You need to ensure that the number of session operators and predefined
NetView tasks are identical.

Next, add a new monitor resource (MTR) that periodically requests exception
information from this OMEGAMON session. Add the MTR by means of a
HasParent relationship to the DB2 subsystem to be monitored. This ensures that the
MTR is activated when the DB2 subsystem is started, and deactivated when the
DB2 subsystem is stopped. Also define the MTR via a HasMonitor relationship to
the DB2 subsystem to ensure that the monitor's health status can be propagated to
the application.

While the MTR is active, it uses the monitor command, INGMTRAP, to gather
OMEGAMON exceptions that currently exist, based on the thresholds that are
defined in the OMEGAMON for DB2 installation profile. INGMTRAP analyses all
exceptions returned by OMEGAMON and filters out those exceptions that the
MTR is interested in, in this example, LOGN. SA z/OS subsequently issues
message ING080I to initiate exception processing.

Finally, also add a new rule to the NetView automation table (using the SA z/OS
policy) that executes a REXX automation procedure to add a new log data set to
the pool of primary active data sets whenever the LOGN exception is reported and
the health status is CRITICAL (6). The MTR's health status is considered CRITICAL
if the number of available primary active logs is equal to 1. If the LOGN exception
is reported again in the next monitor interval, a second rule in the automation
table sets the MTR's health status to FATAL (7), which triggers an application move

54 System Automation for z/OS: Customizing and Programming

because normal recovery handling doesn't seem to work anymore. In addition, an
alert is sent to the operator to inform him about this situation. If the LOGN
exception is no longer reported, the MTR's health status is set to NORMAL (3).

The health status assigned to the MTR by means of the automation table is
propagated to the DB2 application that owns this MTR. Thus, you can see at a
glance whether the DB2 subsystem is okay or not.

Recommendations
You should consider the following recommendations when using OMEGAMON in
combination with monitor resources:
v Avoid monitoring multiple exceptions using INGMTRAP. Note that there can be

more than one exception that may trip and thus multiple ING080I messages may
be generated. The monitor resource's health status, however, depends on the last
ING080I message.

v Avoid setting different health statuses for the same exception that is monitored
by different monitor resources using INGMTRAP. Note that only one automation
table entry is generated by SA z/OS to process message ING080I for such an
exception.

In these cases, the use of INGOMX, invoked from an installation-written monitor
command, to determine a combined health status from multiple exceptions or to
determine an individual health status for each monitor resource, is preferred to
using INGMTRAP.

Health Monitoring Based on OMEGAMON XE Situations
This section gives an overview of passive, event-based monitoring of
OMEGAMON XE situations and describes how to set up the monitor resources
using the customization dialogs.

Overview
Unlike the exception-based monitoring that SA z/OS uses for classic
OMEGAMON monitors, the IBM Tivoli Monitoring infrastructure provides the
means to react to situations whenever they occur. On the Tivoli Enterprise Portal
(TEP), a user can specify what kind of automated response (reflex automation)
should be triggered for each individual situation.

SA z/OS makes use of this capability by providing a simple command called
INGSIT. The ITM administrator enters this command on the TEP with the Situation
Editor dialog for those situations where SA z/OS health monitoring or
health-based automation should take place. For more details about INGSIT refer to
IBM Tivoli System Automation for z/OS Programmer’s Reference.

The Take Action command is carried out on the agent, for example, OMEGAMON
XE for z/OS, and not the Tivoli Enterprise Monitoring Server (TEMS) unless the
TEMS is running on the same system. This is because it is possible that the hub
TEMS may not reside on z/OS and so the command may not be delivered.

INGSIT triggers message ING150I that allows you to set the health status of
individual monitor resources. It is then possible to issue commands, such as
recovery or notification commands, to automatically fix the situation. You can
specify what the health status is and what associated commands are issued in the
customization dialog.

Defining the Monitor Resources
To set up the monitor resources:

Chapter 4. How to Monitor Applications 55

1. Define one MTR for each OMEGAMON XE situation that you want to respond
to.

2. In the MONITOR INFO policy item fill in the following fields:

Monitored Object
Enter the name of the OMEGAMON XE situation in uppercase with a
prefix of ITM, for example, ITM.MYSIT

Monitored Jobname
Enter an optional job name to match this situation to a particular
monitor resource.

3. Define codes for the message ID ING150I in the MESSAGE/USER DATA policy
of the MTR to yield the commands that are to be issued and to map the
severity to a valid health status.

Example Scenario: Consider the following scenario:

The PAGEADD command is to be issued when an auxiliary storage shortage
is detected, based on page data set utilization and page data sets that are not
operational.

A situation called MyAuxShortage_Warn is defined by the installation that is true
when both predefined situations OS390_Local_PageDS_PctFull_Warn and
OS390_PageDSNotOperational_Warn are true.

As reflex automation, the following system command is issued on the managed
system, that is, the system that produced the situations:
F NETV,INGSIT MyAuxShortage_Warn,warn

Where NETV is the job name of NetView address space.

This command is issued from the Take Action dialog, as shown in Figure 7 on page
57.

56 System Automation for z/OS: Customizing and Programming

INGSIT is called and produces an ING150I message, which contains the situation
name that is mapped to the monitored object. Other optional information includes:
v The severity of the situation
v A job name that matches this situation to a particular monitor resource
v Other data that contains information related to the event

In this example, the situation, MyAuxShortage_Warn, and its severity, warn, are
included.

Using the customization dialog, a monitor resource, for example, AUXSHORT, is
created that specifies ITM.MYAUXSHORTAGE_WARN (in uppercase) as its
monitored object.

ING150I is then specified in the MESSAGE/USER DATA policy item of the
AUXSHORT monitor resource. In this example, the following code entry could be
used to derive selection ADD and set the health status to MINOR:

Code 1 warn

Code 2 *

Code 3 *

Value Returned ADD MINOR

In addition, one or more commands can be specified for ING150I for the selection
that resulted from code match processing. In the example above, the PAGEADD

Figure 7. Take Action Dialog

Chapter 4. How to Monitor Applications 57

command would be specified for selection ADD.

After executing all the commands that have been specified in the Command
Processing panel for the selection, the health status that was mapped in the code
processing is set (in this example, it was MINOR). Note that if no health status was
specified in the code match table, it remains unchanged.

In a more sophisticated extension of this scenario, the situation,
MyAuxShortage_Warn, as shown on the TEP is automatically acknowledged using
SOAP services. To do this, a small request parameter XML-document must be
created and sent to the TEMS SOAP server for processing. To acknowledge a
situation, a CT_Acknowledge request must be issued as shown in the following
example:
<CT_Acknowledge>

<target>KEYAS:CMS</target>
<name>MyAuxShortage_Warn</name>
<source>KEYAPLEX:SYS1:MVSSYS</source>
<data>System Automation is taking care of this</data>

</CT_Acknowledge>

The XML-document above references the TEMS that manages the situation (target),
the situation itself (name), and the so-called monitoring agent (source) that is the
source of this situation. With the data-element, you can pass any additional textual
information to the person that is looking into this situation on the TEP.

As described in “OMEGAMON Interaction” on page 49, INGOMX is used to issue
the SOAP request to the TEMS SOAP server. Once the situation has been
acknowledged, it can be recognized as such on the TEP's situation event console or
navigator flyover list.

Health Monitoring using CICSPlex SM
This section introduces the components of event-based CICS monitoring and
describes how to set up the monitor resources using the customization dialogs.

Component Overview
Event-based CICS link and health monitoring is implemented using CICSPlex
System Manager (CICSPlex SM) objects. Whenever an event is received from
CICSPlex SM, message ING150I is issued.

INGCPSM is the event listener for CICSPlex SM. Because it is a long-running
automation procedure it needs to be run in a virtual operator station task (VOST).
It scans the configuration on startup and listens for events. It then periodically
checks whether the configuration has changed (that is, monitor resources have
been added, deleted, or changed, etc.) or monitor resources are waiting for initial
monitoring (that is, they have STATUS=ACTIVE and HEALTH=UNKNOWN).

Creating an Application to Manage the VOST
You can manage the VOST that executes INGCPSM using an application of type
NONMVS:
v Start the VOST by using the INGVSTRT command as the start command of the

APL, where its job name is used as the attach_name of the VOST.
v Stop the VOST using a sequence of INGVSTOP stop commands in the

management APL.

58 System Automation for z/OS: Customizing and Programming

v Monitor the status of the VOST using the INGVMON monitoring routine in the
management APL.

For more details, see IBM Tivoli System Automation for z/OS Programmer’s Reference.

Defining the Monitor Resources
To set up the monitor resources:
1. Define one MTR for each CPSM object (for example, each connection).
2. Fill in the Monitored Object field in the MONITOR INFO policy item

according to the naming conventions, for example,
CPSM.CICS1TOR.CONNECT.CON1

3. Leave the Monitored Jobname field empty.
4. Define codes for the message ID ING150I in the MESSAGE/USER DATA policy

of the MTR to map the CPSM severities to valid health statuses, for example:

Code 1 Value Returned

VLS * NORMAL

LS * WARNING

LW * WARNING

HW * MINOR

Refer to the *CICS add-on policy for sample definitions to monitor the connection
between two CICS resources.

Monitoring JES3 Components
The concept of a monitor resource is used to monitor the health of various JES3
components. SA z/OS provides two commands that support a strict separation of
the monitoring part and the resulting recovery processing:
v AOFRJ3MN: used to monitor components in the JES3 environment, for example

spool space.
v AOFRJ3RC: used to perform recovery actions against the monitored JES3 object.

The following example defines a spool space monitor:
1. Define a monitor resource with a “HasParent” relationship to the corresponding

JES3 because it only makes sense to monitor the spool space when JES3 is
active.

2. Activate and deactivate commands are not necessary for the spool monitor.
3. Use the AOFRJ3MN command as the monitor command and setup the

monitoring interval as desired. In this example, spool usage of up to 60% is
NORMAL, 61-70% WARNING, 71-80% MINOR, 81-90% CRITICAL and greater
than 90% FATAL.

AOFRJ3MN JES3_subys SPOOLSHORT 60,70,80,90

4. Define the recovery action in the HEALTHSTATE policy, for example:

NORMAL : AOFR3RC JES3_subsys SPOOLSHORT RESET
CRITICAL: AOFRJ3RC JES3_subsys SPOOLSHORT 05
FATAL : AOFRJ3RC JES3_subsys SPOOLSHORT 01

Chapter 4. How to Monitor Applications 59

Issue one recovery command every minute. The commands are read from the
SPOOLSHORT policy of the JES3 subsystem. When the spool usage goes down
to 60% or less, the health status goes to NORMAL. This causes to invoke the
AOFR3RC command but now with the RESET option - the RESET option stops
recovery. It is recommended that you use JESOPER as the auto-operator for the
recovery commands. Note, that the recovery commands for the SPOOLSHORT
condition must be defined for the JES3 subsystem.

5. For the JES3 subsystem, define the necessary actions that should be performed
for SPOOLSHORT in the Message/User data policy:

Pass Automated Function Command

1 JESOPER MVS &SUBSCMDPFXF U,Q=HOLD,AGE=30D,N=ALL,C

2 JESOPER MVS &SUBSCMDPFXF U,Q=HOLD,AGE=10D,N=ALL,C

3 JESOPER MVS &SUBSCMDPFXF U,Q=HOLD,AGE=3D,N=ALL,C

10 JESOPER MVS &SUBSCMDPFXF U,Q=HOLD,AGE=1D,N=ALL,C

This purges all jobs from the hold queue that are older than 30 days in the first
pass. On pass 2, all jobs older than 10 days are purged. On pass 3 all jobs older
than 3 days are purged. Finally, after 10 times the pass interval (in our example
5 minutes), all jobs older than 1 day are deleted if the recovery action is not
reset in the meantime.

AOFRJ3MN Routine
Use this routine to monitor various objects in a JES3 environment. The following
objects can be monitored:
v MDS queues (Fetch queue, Verify queue, Wait volume queue, Error queue,

Allocation queue, Breakdown queue, Unavailable queue, Restart queue, System
select queue, System verify queue)

v Current® setup depth
v Spool space

For each of the 10 JES3 MDS queues, thresholds may be set for each of the 4 health
statuses (Warning, Minor, Critical and Fatal) indicating the number of jobs that
particular queue may contain causing to set the corresponding health status. If, for
example, the WARNING threshold for the Error queue is set to 5, if 5 or more jobs
are pending on the MDS Error queue, the health status is set to Warning.

For the spool space the thresholds define the amount of used space that when
exceeded causes to set the corresponding health status.

Whenever AOFRJ3MN is called, it issues the appropriate JES3 command (*I,Q,S for
SPOOLSHORT and *I,S for the MDS queues) and parses the response. The value
extracted from the message text is compared with the thresholds and then the
return code is set to the corresponding health status. This simply sets the health
status of the Monitor resource (MTR). No recovery action is taken by AOFRJ3MN
routine. Use the HEALTHSTATE policy of the Monitor resource to define a
recovery action for each health status, if necessary.

The syntax of the AOFRJ3MN routine is as follows:

�� AOFRJ3MN jes3apl object threshold-list ��

60 System Automation for z/OS: Customizing and Programming

object:

MDSCOUNTQ
MDSCOUNTF
MDSCOUNTV
MDSCOUNTW
MDSCOUNTE
MDSCOUNTA
MDSCOUNTB
MDSCOUNTU
MDSCOUNTR
MDSCOUNTSS
MDSCOUNTSV
SPOOLSHORT

threshold-list:

warning,minor,critical,fatal

jes3apl
Specifies the name of an APL of category JES3 for which this monitor
works.

monitor
Specifies the JES3 object to be monitored:

MDSCOUNTQ Current setup depth

MDSCOUNTF Fetch queue

MDSCOUNTV Verify queue

MDSCOUNTW Wait volume queue

MDSCOUNTE Error queue

MDSCOUNTA Allocation queue

MDSCOUNTB Breakdown queue

MDSCOUNTU Unavailable queue

MDSCOUNTR restart queue

MDSCOUNTSS System select queue

MDSCOUNTSV System verify queue

SPOOLSHORT Spool

threshold-list
Specifies a list of four threshold values separated by commas:

warning Set health status to WARNING if this value is exceeded

minor Set health status to MINOR if this value is exceeded

critical Set health status to CRITICAL if this value is exceeded

fatal Set health status to FATAL if this value is exceeded

If warning is not exceeded the health status is set to NORMAL.

Chapter 4. How to Monitor Applications 61

Note that for SPOOLSHORT the values are in percent but for the MDS
queues they are absolute numbers. No value checking is done by
AOFRJ3MN except for whole numbers.

Note also that the thresholds are tested from FATAL to WARNING. So if
you want to go directly from NORMAL to FATAL, you could specify
50,50,50,50

AOFRJ3RC Routine
This routine performs the recovery action against a monitored object in a JES3
environment.

When AOFRJ3RC is called, it checks whether the system that it is running that
holds the JES3 global processor. If not AOFRJ3RC terminates without any further
action.

The syntax of the AOFRJ3RC routine is as follows:

�� AOFRJ3RC jes3apl msg-type pass-interval
RESET

��

jes3apl Specifies the name of an APL of category JES3.

msg-type
Specifies the message type within the given JES3 APL that the recovery
commands are to be read from:

pass-interval
Specifies the time interval that AOFRJ3RC should wait before
executing the next pass. The format is in NetView notation (mm,
hh:mm, hh:mm:ss or :ss).

RESET
If RESET is specified AOFRJ3RC stops the recovery.

AOFRJ3RC looks into the MESSAGE/USER DATA policy definition of the specified
JES3 APL. It issues the command that is defined for PASS1 of the given message
type. As long as there are commands in higher passes it sets up a NetView timer
that re-calls AOFRJ3RC after the given pass interval. Whenever AOFRJ3RC is
executed the command that is defined for the next pass is issued as long as one
exists.

If RESET is specified instead of a pass interval any pending timer is killed and
processing stops.

The return code is always zero.

Note: AOFRJ3RC issues the recovery commands in a fire-and-forget manner. It does
not check whether the recovery action has the desired result. This is done by
the monitor. After one or more monitor intervals the health status changes
to a less severe one if the recovery shows an effect. If you want to stop
recovery actions when the health status returns to NORMAL, for example,
you have to code a HEALTHSTATE command that calls AOFRJ3RC with
RESET.

62 System Automation for z/OS: Customizing and Programming

JES2 Spool Monitoring
An SA z/OS monitor resource (MTR) is used to monitor JES2 spool file usage.
This can be accomplished with an active monitor that queries the spool usage
periodically or a passive monitor that listens for HSAP050 and HASP355 events.

The JES2 spool monitoring function that is provided includes the following items:
v Automation routines INGRMJSP, INGRCJSP (AOFRSD01), AOFRSD09, and

AOFRSD0H. See “INGRMJSP” on page 191, “INGRCJSP (AOFRSD01)” on page
192, “AOFRSD09” on page 178, and “AOFRSD0H” on page 183.

v Automation table entries for system messages HASP050 and HASP355.
v Configuration parameters for the JES2 spool recovery process in the JES2

SPOOLSHORT and JES2 SPOOLFULL policy items of the JES2 application.

DB2 Connection Monitoring
SA z/OS allows you to monitor DB2 connections for both CICS and IMS:

CICS The CICS command CEMT INQUIRE DB2CONN is issued regularly after
each monitor interval to query the status of the CICS DB2 connection.

For more details, see the sections “Monitoring of CICS DB2 Connections”
and “INGRMCDB Routine for the Monitoring of CICS DB2 Connections”
in IBM Tivoli System Automation for z/OS Product Automation Programmer’s
Reference and Operator’s Guide

IMS The IMS command DISPLAY SUBSYS is issued regularly after each
monitor interval and the response to this command is analyzed with
respect to the status of the connection to a DB2 subsystem.

For more details, see the sections “Monitoring of IMS DB2 Connections”
and “INGRMIDB Routine for the Monitoring of IMS DB2 Connections” in
IBM Tivoli System Automation for z/OS Product Automation Programmer’s
Reference and Operator’s Guide

IMS Component Monitoring
For IMS automation, SA z/OS enables the monitoring of online log data sets
(OLDS) and recovery control data sets (RECON) of IMS control regions, and allows
the status checking of the VTAM Application Control Blocks (ACB) and the
enablement of logons.

The monitor routines that are provided for this and the necessary definitions to
enable the monitoring functions are described in IBM Tivoli System Automation for
z/OS Product Automation Programmer's Reference and Operator's Guide.

Chapter 4. How to Monitor Applications 63

|

|
|
|

|

|
|
|

|

|
|

|

|

||
|

|
|
|
|

||
|
|

|
|
|
|

64 System Automation for z/OS: Customizing and Programming

Chapter 5. Alert-Based Notification

SA z/OS provides an alert-based notification service that enables you to alert
subject-matter experts. You can escalate automation problems that require manual
intervention by sending alerts, events or trouble tickets to different kinds of
notification targets. SA z/OS supports several communication methods that allow
you to deliver alerts to notification targets such as:
v System Automation for Integrated Operations Management (SA IOM)
v Tivoli Enterprise Console (TEC)
v Tivoli NETCOOL/OMNIbus
v IBM Tivoli Service Request Manager
v A user-defined alert handler

Overview
The alert-based notification service of SA z/OS allows alerts to be sent to
operators or system programmers for predefined situations. You can also customize
when to issue alerts, if desired, using the customization dialog and the INGALERT
utility. Alerts can only be issued for applications (APL), monitor resources (MTR),
application groups (APG), and MVS components.

An alert is a set of information that is collected and sent by an SA z/OS
automation agent to a target for notification processing. The information that is
sent consists of the text that is to be forwarded to the alerted person or group. This
information is supplemented by additional options that determine in detail the
processing at the different kinds of notification targets.

In SA z/OS there are several predefined alert points that trigger alerts whenever a
command encounters a problem situation, such as a resource becoming degraded
or not being up within a given time interval.

Alerting can be enabled or disabled at various levels:
v Globally using the INGCNTL command
v Resource-specific using the resource's Inform List
v Alert-specific using code definitions for the message ID INGALERT

.

Communication Flow
Figure 8 on page 66 outlines the communication between the automation manager
and the automation agents.

© Copyright IBM Corp. 1996, 2011 65

|
|
|
|
|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

|

|

|

|

The automation agents on the systems in the sysplex subscribe to the automation
manager to be alerted about problems with system or sysplex application groups
(APGs). This is because the automation manager cannot itself send alerts to the
notification targets. Whenever the automation manager detects a problem with an
APG it sends an alert to the subscribed automation agents (one in case of a system
APG, and all in case of a sysplex APG). Any alerts for sysplex APGs are handled
by only one automation agent in the sysplex.

The automation agents can also receive alerts for applications, application groups,
or monitor resources via the INGALERT command. If the affected resource is
managed by a different automation agent, the request is passed on. The
automation agent that manages the resource sends the alert to the notification
target. If, for whatever reason, this automation agent cannot send the alert, it
passes on the request to the next automation agent in the sysplex. This can happen
several times until the alert is successfully sent or no more automation agents are
available.

For each alert, the automation agent connects to a notification target, sends the
alert and then disconnects. The automation agent does not maintain a permanent
connection to the SA IOM server.

Enabling Alerting
By default alerting is not enabled. To activate it you must perform setup actions in
both SA z/OS and notification target.

Setup in SA z/OS
You can turn alerting on or off at three different levels in SA z/OS:
v The system level, via the INGCNTL command. Turning off alerting means that

no alerts are detected or accepted by the system. Alerting must be turned on
explicitly either globally or selectively for at least one notification target.

v The resource level, via the Inform List policy field. Turning off alerting means
that no alerts are detected or accepted for the resource. The notification target
must be explicitly specified (or inherited from the defaults) to activate alerting
for it.

Sysplex

Automation Manager

Detects problem with APG,
and notifies all subcsribed agents

SYS1

Automation Agent

Detects problem with
APL or MTR on SYS1

Handles alerts for system
and sysplex APGs

SYS2

Automation Agent

Detects problem with
APL or MTR on SYS2

Handles alerts for system
and sysplex APGs

pass request

subscribe
for APGs

subscribe
for APGs

INGALERT

Alert for APL, APG, or MTR
on SYS1 or SYS2

notify agent

notify agent

Figure 8. Alert Communication Flow

Alert-Based Notification

66 System Automation for z/OS: Customizing and Programming

|
|
|

|
|

|
|
|

|
|
|
|

v The alert ID level, via code definitions for the INGALERT message ID of the
resource or MVS component entry.

INGCNTL Command
By default alerting is not enabled. You have to issue the INGCNTL command to
enable it and set the connection properties for the notification target. This can be
done as follows:
v In the NetView style sheet using auxiliary commands:

* Auxiliary commands

* Enable Alerting and set connection properties
auxInitCmd.A = INGCNTL SET ALERTMODE=IOM ALERTHOST=saiom:1040:SAALERT

v From the AOFEXDEF exit that is supplied with SA z/OS:
’INGCNTL SET ALERTMODE=IOM ALERTHOST=saiom:1040:SAALERT’

See IBM Tivoli System Automation for z/OS Programmer’s Reference for more
information about the INGCNTL command.

Inform List
You have to include the appropriate communication method for the notification
target in the Inform List field of the appropriate policy item to explicitly enable
alerting for specific resources or classes of resources, as shown in Table 7.

Table 7. Inform List Policy Items

Policy Object Policy Item

Application Group (APG) APPLGROUP INFO *

Application (APL) APPLICATION INFO *

Monitor Resource (MTR) MONITOR INFO *

MVSCOMP Defaults (MDF) MVSESA INFO *

System Defaults (SDF) AUTOMATION OPTIONS

Sysplex Defaults (XDF) RESOURCE INFO
* Leaving the Inform List field blank allows the policy object to inherit the value specified
in the system defaults or sysplex defaults definition.

You must also specify the appropriate communication method for the desired
notification target as shown in Table 8.

Table 8. Inform List Communication Methods

Value in Inform List Communication Method Supported Notification
Target in SA z/OS

IOM Peer-to-peer protocol of IBM
Tivoli System Automation for
Integrated Operations
Management (SA IOM)

SA IOM

EIF Tivoli Event Integration
Facility (EIF)

TEC or OMNIbus

TTT XML TSRM via TDI

USR Command call User-defined alert handler

You can specify a blank-separated list of values to enable alerting for several
notification targets.

Alert-Based Notification

Chapter 5. Alert-Based Notification 67

|
|

|
|
|

|
|
|
|
|

|

|
|

|
|

||

|||
|

||
|
|
|

|

||
|
|

|||

|||
|
|
|

Code Processing
Code processing with the INGALERT message ID allows you to define additional
characteristics for events to be passed to the notification target or to prevent event
creation for certain alerts. Such definition can be made, dependent on the alert ID,
issuing job and type of notification target.

Code definitions for message ID INGALERT can be used for resources of type
APL, APG, MTR, and for MVS components. If no matching code definitions are
found for the APL, APG or MTR resources, the INGALERT code definitions are
checked for the corresponding MVS component entry on the system where the
resource resides.

Enter the following in the Code Processing panel for the INGALERT message ID:

Code 1 The alert ID that identifies the type of alert. SA z/OS provides the
following set of built-in alert points:

Alert ID Description
For Resource
Type

CMD_FAILED Return code checking is on and
the command ended with RC≠0

APL, MTR

COMM_FAILED An error was detected during
communication to another system

APL

CRITICAL_WTOR Critical WTOR triggered OUTREP APL

MSG/Message ID Messages with a critical severity.
The message can be abbreviated
by means of wildcard, for
example, MSG/DFS54*

APL, APG, MTR

OS_DEGRADED The observed status of the
resource has become degraded

APL

OS_PROBLEM The automation status is ZOMBIE
or BROKEN, or a shutdown
outside SA z/OS and restart is
not allowed

APL

REC_FAILED Automation was halted because
the critical threshold for a minor
resource was exceeded

APL

REP_FAILED No further outstanding WTORs
that are stored by SA z/OS need
to be replied to

APL

START_FAILED The start command failed APL

START_PENDING The up message was not received
within the timeout interval

APL

STOP_PENDING Ran out of stop commands APL

CS_PROBLEM The compound status PROBLEM
has been set

APG

You can also use any user-defined alert ID. Simply specify it in the
corresponding code entry and call INGALERT with this ID.
Wildcards are supported.

Code 2 For APL this is the job name that alerting should be done for. For
MVC it contains MVSESA. For APG and MTR Code 2 is ignored.

Alert-Based Notification

68 System Automation for z/OS: Customizing and Programming

|
|
|
|

|
|
|
|
|

|
||
|
|

||
|
|

||
|
|

|||

||
|
|
|

|

||
|
|

||
|
|
|

|

||
|
|

|

||
|
|

|

|||

||
|
|

|||

||
|
|

|

|
|

Wildcards are supported. This allows you to set alerting for several
APLs at once by using APL classes.

Code 3 The communication method that is used to send the alert to the
notification target. Valid values are IOM, EIF, TTT or USR.
Wildcards are supported.

Value Returned
This can be either IGNORE to prevent event creation, or parameters
that are sent to the notification target together with the passed
event. The meaning of these parameters depends on the type of
communication method, as follows:

IOM The first two tokens of the Value Returned are considered
to be:
v The priority of the alert (0–999).
v The escalation ID that is used in SA IOM to define the

rules that determine how the alert should be processed.
The length of this value is limited to 20 characters.

If the first two tokens have invalid values, the Value
Returned is assumed to be IGNORE.

If you specify more than two tokens in the Value Returned
field, the superfluous tokens are ignored.

EIF The Value Returned is considered to be the event severity.
Valid values are HARMLESS, WARNING, MINOR,
CRITICAL or FATAL, or a corresponding number between
1 and 5, where 1 corresponds to HARMLESS, etc. Both
alternatives for specifying a severity can be used for events
to TEC or NETCOOL/OMNIbus. When specifying the
severity as a number, the code definition can also be used
to send alerts to SA IOM.

If you do not specify a valid severity, the Value Returned is
assumed to be IGNORE.

Superfluous tokens in the Value Returned field are ignored.

TTT If TSRM is the notification target, the values in Value
Returned are used as:
v The priority of the trouble ticket as it is initially reported

(1-5)
v The urgency, which is a indication of how quickly a

trouble ticket should be resolved (1-5)
v The business impact or severity of the trouble ticket (1-5)

These values are not validated because other targets may
expect other values.

If you specify more than three tokens in the Value
Returned field, the superfluous tokens are ignored. If you
specify less than three tokens, they are used according to
their position and the missing tokens default to N/A.

USR The content of the Value Returned field is passed to the
user-defined alert handler that is called.

Code Definitions Example: Consider the example in Table 9 on page 70.

Alert-Based Notification

Chapter 5. Alert-Based Notification 69

|
|

|
|
|

|
|
|
|

||
|

|

|
|
|

|
|

|
|

||
|
|
|
|
|
|
|

|
|

|

||
|

|
|

|
|

|

|
|

|
|
|
|

||
|

Table 9. Code Processing Example for the INGALERT Message ID

Code 1 Code 2 Code 3 Value Returned

START_FAILED IMS* IOM 500 IMS_start

START_FAILED DB2* EIF CRITICAL

* * * IGNORE

The code definitions in this example result in the following behavior:
v Alerts with the alert ID START_FAILED for jobs with the name prefix IMS are

sent to IOM with priority 500 and escalation ID IMS_start.
v Alerts with the alert ID START_FAILED for jobs with the name prefix DB2 are

sent as EIF events to TEC or NETCOOL/OMNIbus with event severity
CRITICAL.

v All other alerts are ignored for all notification targets.

INGALERT Command
You can use the INGALERT command to inject alerts into a system. This can be
from either the NetView automation table, an automation procedure, or the
command line.

You can specify the following parameters:
v A resource name , the text MVSESA, or a job or subsystem name.
v The alert ID, for example, CS_PROBLEM, CMD_FAILED, etc.
v A message ID that identifies the message text or a text string that is passed to

the notification target.

For example, the following can be used from the command line or an automation
procedure:
INGALERT MYGRP/APG/SYS1 ID=MYALERT TEXT=(MYGRP HAS A PROBLEM)

In this example, INGALERT uses the alert ID, MYALERT, to obtain additional
parameters via a matching code definition for the message ID INGALERT, and it
uses the TEXT parameter value for the alert text.

The following can be used from the NetView automation table to send an alert
whenever message ABC123I is issued:
IF MSGID=’ABC123I’
THEN
EXEC(CMD(’INGALERT’));

INGALERT uses ABC123I as the alert ID and the complete text of message
ABC123I as the alert text. The resource parameter of INGALERT is defaulted to the
job name of the subsystem that issued the message.

See IBM Tivoli System Automation for z/OS Programmer’s Reference for more
information about the INGALERT utility.

Alert-Based Notification

70 System Automation for z/OS: Customizing and Programming

|
|

|
|
|

|
|
|

Chapter 6. Availability and Recovery Time Reporting

SA z/OS introduces support to assist you in billing users or reporting reliability of
your critical applications or the software that those applications are dependent on.
For example, you might want to charge accurately based on the amount of time
required to run an application. This is of importance for non-MVS resources, such
as USS applications, or monitoring resources that might run in the NetView
address space.

Overview
SA z/OS collects and records job-related information, and writes System
Management Facility (SMF) records at specific events in the lifetime of a resource.
This resource can be:
v A subsystem (APL)
v An application group (APG) that is hosted by the local system as well as sysplex

application groups
v A monitor resource (MTR)

The INGPUSMF batch utility produces a report file that you can import into a
spreadsheet. You can also convert and write the report into DB2 tables that are
provided and exploited by the IBM Tivoli System Automation Application
Manager. For more details, see “Writing the SMF Report to DB2” on page 76.

You can control whether a record is written for a resource by entering the value
SMF in the Inform List field in the resource's information policy item.

Resource Lifecycle
Figure 9 shows the events in the lifetime of an application when SA z/OS records
information.

These events are:

t0 t1 t2 t3 t =t4 0

Last down
phase

Startup
phase

Active
phase

Shutdown
phase

S
ta

rt
in

g

Active, running

S
top

ping

Start order or
external start

Stop order or
external stop

UP event DOWN event

Figure 9. Events in the Lifecycle of an Application

© Copyright IBM Corp. 1996, 2011 71

|
|
|
|

v Start order received from the automation manager (t1)
v UP signal received (t2)
v Stop order received from the automation manager (t3)
v DOWN signal received (t4=t0)

By examining these records you can establish the following information for a given
time period:
v Application up time and downtime
v Application startup and shutdown time
v The number of scheduled stoppages and the approximate amount of scheduled

downtime
v The number of unscheduled stoppages and the approximate amount of

unscheduled downtime

To make using SA z/OS SMF records easier, the following periods are
automatically calculated and stored (in units of seconds) in the SMF record:
v The startup time (t2–t1)
v The shutdown time (t4–t3)
v The time the application was active (t3–t2)
v The last down time (t1–t4)

You therefore have a precise view of the lifecycle of the application.

Layout of the SMF Record
Table 10 provides details of the data that is stored in the SMF record.

Table 10. Layout of the SMF Record

Offset Length Format Description

00 2 Binary Record length. This field and the next (a total of 4 bytes)
form the record descriptor word (RDW).

02 2 Binary Segment descriptor. This is zero.

04 1 Binary System Indicator Bit:
0 Reserved
1 Subtypes used

05 1 Binary SMF Record Type. This is 114.

06 4 Binary The time, since midnight, that the record was moved into
the SMF buffer (in hundredths of a second).

10 4 Packed The date when the record was moved into the SMF
buffer, in the form 0cyydddF.

14 4 EBCDIC System Identification (from the SID parameter).

18 2 Binary Record subtype:
1 Automation tracking record

20 2 Binary Record version.

22 2 — Reserved.

24 4 Binary Offset to product section from start of record, including
the record descriptor word (RDW).

28 2 Binary Length of product section.

30 2 Binary Number of product sections. This is always 1.

72 System Automation for z/OS: Customizing and Programming

Table 10. Layout of the SMF Record (continued)

Offset Length Format Description

32 4 Binary Offset to resource section from start of record, including
the record descriptor word (RDW).

36 2 Binary Length of resource event section.

38 2 Binary Number of resource event sections. This is always 1.

40 8 — Reserved.

Product Section

00 16 EBCDIC Product name, for example SA z/OS V3R2M0.

16 8 EBCDIC Name of the SYSPLEX.

24 8 EBCDIC Domain identifier.

32 8 EBCDIC MVS System name.

40 8 EBCDIC XCF group name.

Automation Section

00 24 EBCDIC Resource name (in automation manager notation).

24 8 EBCDIC Job name (optional).

32 2 Binary Event type:
X'0001' Starting
X'0002' Active
X'0003' Stopping
X'0004' Inactive
X'0005' Degraded

34 2 — Reserved.

36 12 EBCDIC Automation agent status (optional).

48 12 EBCDIC Start type.

60 12 EBCDIC Stop type.

72 5 EBCDIC Termination type (abend code). Optional.

77 3 — Reserved.

80 4 Binary Total startup time in seconds.

84 4 Binary Elapsed time in seconds that the resource was active.

88 4 Binary Total shutdown time in seconds.

92 4 Binary Last down time of resource in seconds.

Enabling SMF Records
To enable SMF records for a resource:
1. Ensure that the SMFPRMxx member in SYS1.PARMLIB is set up to collect type

114 SMF records by adding type 114 to the SYS(TYPE statement:
SYS(TYPE(30,...,114)

2. Specify SMF in the Inform List of the APPLICATION INFO policy item for the
resource.

Chapter 6. Availability and Recovery Time Reporting 73

|

|

|
|

|

|
|

The INGPUSMF Utility
You can use the INGPUSMF utility to analyze SMF records and produce a data set
that can be imported into a spreadsheet program. The data set contains the type
114 records that SA z/OS produces in a format that can easily be imported. By
default, the fields are semicolon delimited.

Output
The first record in the data set is a title record that describes each column. The
remaining records are the data records. One data record is written for each type
114 SMF record.

Table 11 describes the format of each record.

Table 11. Format of INGPUSMF Utility Data Set Records

Column Description

1 SMF system ID

2 Date when SMF record was written, in YYYYMMDD format

3 Time when SMF record was written, in hhmmss format

4 SA z/OS product name, including release level

5 Name of sysplex

6 System name

7 NetView domain ID

8 XCF group name

9 Resource name in automation manager notation

10 Job name, if present

11 Event

12 Automation agent status

13 Startup time in seconds

14 Active time in seconds

15 Shutdown time in seconds

16 Down time in seconds

17 Start type

18 Stop type

19 Termination (abend) code

The INGPUSMF Utility JCL
The INGPUSMF utility runs as a batch job. See INGEUSMF for a sample. The
meaning of the DD statements is as follows:

STEPLIB
The load library that contains the INGPUSMF utility. The utility resides in
the SINGMOD1 library.

REPORT
The output data set that contains the spreadsheet import data set in a
semicolon-delimited format. The record size is 255 bytes.

74 System Automation for z/OS: Customizing and Programming

SYSPRINT
Contains information that is written by the utility.

HSATRACE
Is used for debugging purposes only. If present, the INGPUSMF utility
writes trace entries to record the process flow.

SMFDATA
Contains the SMF records. The record format is: Variable, blocked,
spanned.

USRPARMS
Contains user options, such as filter criteria or a specific separator
character.

User Options
You can specify various options in the USRPARMS data set that control the
processing of the utility. You must specify each option in a separate record. The
option are defined as keyword=value pairs. If you specify an option several times,
the last occurrence is used. The keyword must start in column 1 of the record. No
blanks are allowed in front of or after the equal sign (=). A asterisk (*) is
considered to be a comment.

The following options are supported:

SEPCHAR=char
Defines the separator character to be used to separate the columns. The
default is a semicolon (;) if omitted

SYSID
Defines the SMF system ID used as a filter. Only SMF records that are
generated by that system are taken. The value can be 1–4 characters.

FROM=date
The starting date used as a filter. The format is YYYYMMDD. All SMF
records written on the specified date or later are taken.

TO=date
The ending date used as a filter. The format is YYYYMMDD All SMF
records that are written no later than the specified date are taken.

RESOURCE=
Defines the resources in automation manager notation used as a filter. You
can specify up to 10 resource names. The name can be a wildcard, such as
abc, abc or *abc*.

Return Codes
The following return codes are set by the utility:

0 Normal completion.

8 Invalid option detected in the USRPARMS data set.

12 REPORT data set is not accessible.

16 A severe error occurred, for example, an open error for the SMFDATA data set,
or writing a record to the REPORT file.

Chapter 6. Availability and Recovery Time Reporting 75

Writing the SMF Report to DB2
You can convert and write the SMF report that is produced by INGPUSMF into
DB2 tables that are provided and exploited by the IBM Tivoli System Automation
Application Manager.

The following reports are provided:
v Startup and Shutdown Reports:

– Report the cumulative startup and shutdown times for a resource, including
its dependencies.

– Report resources with the longest startup and shutdown times in a selected
domain.

v Availability and Recovery Reports:

– Report a resource's uptimes and downtimes, unexpected outages and
corresponding recovery times.

– Report resources that had the highest number of unexpected outages in a
selected domain.

A conversion utility, known as the z/OS offloader, delivers the z/OS domain data
that is required to run these reports.

The z/OS offloader component runs as a batch job (see Figure 10) and uses
existing and new programs that are installed into the end-to-end automation
adapter HFS directory, which is normally /ust/lpp/ing/adapter.

You can use the sample job INGXRPRT to run the z/OS offloader.

Customization
After installing the z/OS offloader you must carry out the following customization
steps:
Step 1. Customize the script /usr/lpp/ing/adapter/ingreport.sh.

Adapt the installation path:

Figure 10. SMF Processing with z/OS Offloader

76 System Automation for z/OS: Customizing and Programming

|

INSTALL_DIR=/usr/lpp/ing/adapter

Step 2. Copy the sample job INGXRPRT and follow the steps as described in it.
There are several input parameters that you need to set correctly
otherwise the conversion utility cannot access the DB2 table:

Parameter Details

INGDSN=HLQ.SMF.REPORT The data set of the SMF report created by the
INGPUSMF utility.

INGSEPCHAR=; This must be the separator as used by the INGPUSMF
utility.

INGDOMAIN=MyDomain The name of the E2E domain as specified in the E2E
adapter configuration file, ing.adapter.plugin.properties.
If omitted the default is used, which consists of the
sysplex name and XCF group name.

INGDB2_USER=db2inst1 The DB2 user name for remote logon.

INGDB2_PSW=db2admin The DB2 password for remote logon.

INGDB2_PORT=50000 The TCP/IP port to connect to the remote DB2.

INGDB2_SERVER=db2-host-name The TCP/IP host name to connect to the remote DB2.

INGDB2_NAME=EAUTODB The DB2 name or the DB2 location if DB2 resides on
z/OS.

INGDB2_SCHEMA=EAUTOUSR The DB2 schema of the table.

Step 3. (Optional) If the database is located on a z/OS system, a DB2 license file
is required. An appropriate license file for the z/OS platform,
db2jcc_license_*.jar, must be installed in the application classpath.
Connectivity to z/OS databases is enabled with the license file as defined
by the following table.

Update DB2 database From==> To License file required

Distributed system ==> z/OS DB2 db2jcc_license_cisuz.jar

z/OS system ==> z/OS DB2 db2jcc_license_cisuz.jar

z/OS system ==> distributed DB2 db2jcc_license_cu.jar

a. Copy the appropriate license file, for example, from
DB2_INSTALL_PATH/db2/db2v8/jcc/classes/db2jcc_license_cisuz.jar
to the directory /usr/lpp/ing/adapter/lib.

b. Modify the classpath in the script /usr/lpp/ing/adapter/ingreport.sh
and add the license file for example:
DB2_LICENSE=$INSTALL_LIB/db2jcc_license_cu.jar

Step 4. Run the INGXRPRT job that copies the SMF report to DB2.

Output
The output of the ingreport.sh shell script shows the progress of the z/OS
offloader. Any errors that occur are reported in this output. See IBM Tivoli System
Automation for z/OS Messages and Codes for details of these messages (INGX9850E,
INGX9855E, and INGX9856E).

Chapter 6. Availability and Recovery Time Reporting 77

|
|
|
|
|

|||

||

||

||
|

|
|
|

|
|
|

|

|

|
|
|
|

78 System Automation for z/OS: Customizing and Programming

Chapter 7. How to Automate Processor Operations-Controlled
Resources

This chapter contains information on how to customize your SA z/OS installation
to enable the automation of messages coming from target systems that are
controlled by processor operations. These target systems or resources are referred
to as processor operations resources in the following.

Processor Operations, which is a focal point type function, allows you to monitor
and control processor hardware including Coupling Facility images, from a single
NetView, the processor operations focal point.

Notes:

1. VM guest systems are treated the same as any other target systems that are
controlled by ProcOps (see IBM Tivoli System Automation for z/OS Operator’s
Commands for details).

2. PSMs are "virtual" hardware and therefore not all target hardware commands
apply (see IBM Tivoli System Automation for z/OS Operator’s Commands for
details).

With the method described in this chapter, you can use SA z/OS system
operations to react on these messages. This information is contained in
“Automating Processor Operations Resources of z/OS Target Systems Using Proxy
Definitions,” which introduces the general process how to achieve such message
automation.

Automating Processor Operations Resources of z/OS Target Systems
Using Proxy Definitions

SA z/OS processor operations can be used to automate messages that cannot be
automated on the target systems themselves. Typically these messages include
those appearing at IPL time.

In a sysplex environment there are additional messages (XCF WTORs) being
displayed at IPL time when joining the sysplex and at shutdown time when a
system is leaving a sysplex. These WTOR messages cannot be automated yet
because SA z/OS system operations is not active at that time.

With the XCF message automation framework described in this chapter, you have
a method of exploiting your own XCF message automation.

Note: There are XCF WTOR messages which are automatable by Sysplex Failure
Management (SFM). In these cases, to avoid conflicting automation, it is not
recommended that you automate these messages by SA z/OS.

Concept
You can use the SA z/OS standard interface and routines to handle system
external messages in almost the same way as system internally generated
messages. This applies to the way of defining message automation in the
customization dialog as well as to the means available for controlling message
automation at automation time.

© Copyright IBM Corp. 1996, 2011 79

|

|

|

|
|
|
|

|
|
|

|

|
|
|

|
|
|

To exploit the system operations mechanism for message automation, a proxy
resource representing the processor operations resources must be generated in the
customization dialog as entry type Application (APL).

There is a one-to-one relation between a proxy and a processor operations resource
(target system). How to implement this relation in the customization dialog is
described in the following subsections.

Messages that are generated on external systems, where no SA z/OS is active or
not yet active, can also be automated. The resources generating these messages are
called processor operations resources. They are defined in the customization dialog as
entry type System (SYS).

Customizing Automation for Proxy Resources
It is assumed that you have already used the customization dialog to define
processor operations target systems and made these systems accessible to the
processor operations focal point via the Processor Control file (see also IBM Tivoli
System Automation for z/OS Defining Automation Policy). So for every processor
operations target system that has been defined on the processor operations focal
point, you should define a proxy resource. You do this by defining the proxy
resource as entry type Application (APL) in the customization dialog.

Note: If you want to define many proxy resource applications, you can use the
application class concept as described in IBM Tivoli System Automation for
z/OS Defining Automation Policy).

Defining the proxy resource as an Application (APL) has another advantage: The
system is then visible in the INGLIST panel and it can be managed and monitored
like an application resource. SA z/OS users are able to not only use message
automation for target system messages, they can also issue start and stop
commands to IPL and shut down systems. These commands can be defined like
any start and stop command for an application. Unlike application resources, target
systems are managed by processor operations commands (for example, ISQCCMD
target_system_name ACTIVATE FORCE(NO) or ISQSEND target_system_name OC
vary xcf,target_system_name,off,retain=yes). Processor operations commands allow
you to send MVS commands to target systems as well as hardware commands to
the processor (support element).

The rules that you need to obey when defining the proxy resource are as follows:
1. You need to define (or have defined) the processor operations target systems

that you want to automate. For those systems, the following rule applies:
MVS SYSNAME = ProcOps name

The MVS SYSNAME must be identical with the ProcOps name.
If this is not the case, you need to change it subsequently.

2. Job Name = ProcOps name

The Job Name of the application for the proxy resource must match the
processor operations target system's name as defined when creating this
system in the customization dialog.

3. Job Type = NONMVS

The Job Type for the proxy application must be NONMVS.
4. The Monitor Routine for the proxy application must be ISQMTSYS.
5. Sysname = MVS SYSNAME

How to Automate Processor Operations Controlled Resources

80 System Automation for z/OS: Customizing and Programming

The Sysname for the proxy application must match the MVS SYSNAME
defined for the processor operations target system. This definition is used for
resource monitoring.

6. If you want to inhibit operators from performing a startup or shutdown for a
target system resource using the INGREQ command, External Startup and
External Shutdown must be set to 'ALWAYS'.

7. If you do not want the proxy resource to be automatically started, you should
set the Restart after IPL option to NO.

8. Because you can only automate applications by linking them to systems via an
application group, you need to define an application group for the proxy
applications. Do not merge the proxy applications with other applications into
this application group because destructive requests applied to a merged
application group would also affect the proxy resources contained in that
group.
You may choose PASSIVE behavior to not forward requests against the
application group to each member. This prevents you from unintentionally
sending requests to processor operations target systems represented by their
proxies.

9. In the Message Processing panel for the proxy application define the messages
to be automated in the Message ID column. Do not specify message ID
ISQ900I, as this message is used as a carrier for the original target system
message.
Enter cmd in the Action column to specify the command to be processed if the
defined message occurs.

10. If the message to be automated is a WTOR, the variable &EHKVAR1 contains
the reply ID. This variable may then be used as a parameter to the ISQSEND
command:
ISQSEND &SUBSJOB OC R &EHKVAR1,COUPLE=00

Startup and Shutdown Considerations
Processor operations commands must be used to start or stop processor operations
resources, for example:
v Start example:

ISQCCMD &SUBSJOB LOAD FORCE(NO)

v Stop example:
Pass 1 ISQSEND &SUBSJOB OC Z EOD
__

Pass 2 ISQSEND &SUBSJOB OC VARY XCF,&SUBSAPPL,OFF,RETAIN=YES

Note:
If the delay time between sending the commands in pass 1 and pass 2 is
not appropriate, you can define a resource-specific Shut Delay in the
Application Automation Definition panel.

For more details about processor operations commands refer to IBM Tivoli System
Automation for z/OS Operator’s Commands.

How to Automate Processor Operations Controlled Resources

Chapter 7. How to Automate Processor Operations-Controlled Resources 81

Preparing Message Automation
The interaction with target systems is based on the SA z/OS processor operations
component. Therefore the installation and customization of this component must
be complete at this point.

Operating System messages from processor operations target systems receiving at
the focal point are transferred to ISQ900I messages.

ISQ901I is not relevant. It is used to inform interested operators about target
system messages. It is not used for automation purposes.

MSCOPE() parameter in CONSOLxx member
MSCOPE allows you to specify those systems in the sysplex from which this
console is to receive messages not explicitly routed to this console. An
asterisk (*) indicates the system on which this CONSOLE statement is
defined. Because the default is *ALL, indicating that unsolicited messages
from all systems in the sysplex are to be received by this console, this
parameter must be set to '*' for correct automation by SA z/OS processor
operations.

Automating Linux Console Messages

The Linux Console Connection to NetView
When a Linux target system IPLs, its boot messages are displayed on the Console
Integration facility (CI) of the System z® or 390-CMOS processor Support Element
(SE). For SA z/OS processor operations, CI is the only supported interface to
communicate with the Linux operating system. The communication between the
processor operations focal point and CI is based on the NetView RUNCMD and
the Support Element's Operator Command Facility (OCF), an SNA application. In
SA z/OS processor operations, this connection path is referred to as a NetView
Connection (NVC).

Linux Console Automation with Mixed Case Character Data
Unlike operating systems which translate console command input into uppercase
characters, Linux is case sensitive. The NetView automation table syntax allows the
use of mixed case characters in compare arguments of an IF statement. When an
automation command is to be scheduled as a result of such a comparison, any
message token arguments passed, are not translated into uppercase by NetView.
Make sure that your automation routine does not do an uppercase translation of
parameters passed. For example, in REXX use the statement PARSE ARG P1 P2
instead of ARG P1 P2, which implicitly performs a translation into uppercase. If a
Linux message invokes your automation code and the message information is
retrieved using NetView's GETMLINE function, no uppercase translation occurs. In
order to send mixed case command data to the Linux console consider the
following REXX statement:
Address Netvasis ’ISQsend MYlinux Oc whoami’

The addressed REXX command environment, Netvasis, passes the command string
without doing an uppercase translation. The ISQSEND command internally
translates its destination parameters into MYLINUX and OC but leaves command
whoami as is.

How to Automate Processor Operations Controlled Resources

82 System Automation for z/OS: Customizing and Programming

Security Considerations
After Linux system initialization, usually a LOGIN prompt message is displayed
allowing users defined to the system to login. The ISQSEND command interface
does not suppress any password data from being displayed. You may use the
NetView LOG suppression character to avoid the password information to be
visible in the NetView log. In Support Element log files, such password data can
be viewed in text form.

Restrictions and Limitations
The following Linux systems are supported:
v Linux systems running in an LPAR of a System z or 390-CMOS processor

hardware
v Linux systems running on a System z or 390-CMOS processor hardware,

configured in Basic mode
v Linux systems running as VM guest machines under z/VM Version 4.3 or higher

Linux systems running under a VM, which itself runs as a VM guest, are not
supported.

In the command shell environments of a Linux console it is possible to pass control
keys as character strings instead of pressing the keyboard control key combination
to perform functions like Control-C. The current Linux support of SA z/OS
processor operations has not been tested using this Linux capability. Any Linux
program or command script that requires a user interaction with control keys
should not be invoked using the SA z/OS processor operations ISQSEND
interface.

How to Add a Processor Operations Message to Automation
Use the NetView automation table (AT) and the SA z/OS command set to
implement console automation. You can automate the routine functions that an
operator performs when a particular message is generated. For more information
see IBM Tivoli System Automation for z/OS Defining Automation Policy, SC33–7039.

Messages Issued by a Processor Operations Target System
When a target system issues a message, the message is forwarded to the processor
operations focal point system. The focal point system repackages the message
within an SA z/OS ISQ900I message, an ISQ901I message, or both, and routes the
message to the appropriate task:
v ISQ900I messages are routed to SA z/OS processor operations autotasks. If you

want automation that you write to receive ISQ900I messages, use the ISQEXEC
command to run the automation in a target control task. For information about
using the ISQEXEC command, see section Sending an Automation Routine to a
Target Control Task in “Issuing Other OCF Commands” on page 12. Your
NetView automation table entries for SA z/OS should acknowledge the ISQ900I
identifier for all target system messages forwarded to the processor operations
focal point system. You can specify your ISQ900I automation table entries to be
target system specific, however, this is not recommended.

v ISQ901I messages are routed to all logged-on operators identified as interested
operators by the ISQXMON command or marked as such in the customization
dialog.

For information about the ISQEXEC and ISQXMON commands, see IBM Tivoli
System Automation for z/OS Operator’s Commands.

How to Automate Processor Operations Controlled Resources

Chapter 7. How to Automate Processor Operations-Controlled Resources 83

|
|
|
|
|
|

|
|

|
|

A message forwarded from an SNMP connection consists of the following:
v ISQ900I or ISQ901I message identifier
v Name of target system where the message originated
v Console designator form describing where the message originated
v Message identifier and text of the original message from the target system

For example, if a NetView connection forwards the message IEA101A SPECIFY
SYSTEM PARAMETERS from the operating system to the focal point system, SA z/OS
creates one or both of the following SA z/OS messages:
ISQ900I target-system-name OC IEA101A SPECIFY SYSTEM PARAMETERS
ISQ901I target-system-name OC IEA101A SPECIFY SYSTEM PARAMETERS

This message format applies to all processor operations target system messages. It
is independent of the target system resource that generated the original message.

The processor operations target system message is sent in the same format as it
would be displayed on the processor Support Element (SE) or Hardware
Management Console (HMC).

Specifics of VM second level systems:
Messages from guest machine operating system appear in the following
format:
ISQ900I psm-name.guest-name OC IEA101A SPECIFY SYSTEM PARAMETERS

Messages from CP on the virtual machine appear in the following format:
ISQ900I psm-name.guest.name OC HCPGSP2627I The virtual machine is

placed in CP mode due to a SIGP initial CPU reset from CPU 00.

Messages from the PSM itself appear in the following format:
ISQ700I psm-name SC ISQCS0314E Message Handler has failed.

Note:
Make sure your consoles issue messages in the format that you expect and
write your NetView automation table entries accordingly.

Sample NetView Automation Table Statements
The following message response example presents a request for system parameters
when the message ID string contains 'IEA101A':
IF TEXT = . ’IEA101A SPECIFY SYSTEM PARAMETERS’

& MSGID = ’ISQ900I’ .
THEN EXEC(CMD(’ISQI101 ’) ROUTE (ONE *))

DISPLAY(N) NETLOG(Y);

This NetView automation table statement initiates the ISQI101 routine when the
message condition is true.

Note: Text within messages may be in mixed case. Be sure your coding accounts
for mixed case text.

How to Automate Processor Operations Controlled Resources

84 System Automation for z/OS: Customizing and Programming

|

Message ISQ211I
Some SA z/OS commands attempt to lock and unlock ports. Where an operator
owns the lock for a port, the SA z/OS unlock command, ISQXUNL, returns RC=12
associated with message ISQ211I Unable to unlock target name console.

In such a case, you have the choice of either using the ISQOVRD command to
force an unlock or you may end your automation with a message. Thereafter, you
can view your NetView log to find out the reason for the lock of the port.

Your automation may encounter this message ISQ211I frequently. Attempting to
unlock a locked port is not an error condition; however, it may be a sign that the
calling command did not succeed. Schedule your automation from messages that
indicate positively that a command did not run, not from the ISQ211I message.

Processor Operations Command Messages
Some SA z/OS commands run on the target system. The message returned from
these commands indicates only that the support element was told to schedule the
operation. Consequently, the operation at the target system may not complete even
though the SA z/OS message indicates a successful completion.

SA z/OS acknowledges only that the command was successfully forwarded to the
support element. An unsuccessful operation at the target system generates an
unsolicited message that the support element forwards to the focal point system in
an ISQ900I message. Schedule your automation from the message that positively
indicates that a target system operation did or did not complete.

The SINGSAMP SA z/OS sample library contains the PL/I source code for several
automation routines that issue responses to selected messages. You can select the
response that is most appropriate for your enterprise. You can also use them as
models to create your own automation routines. The list in Table 12 summarizes
these routines, the messages they respond to, and the responses they issue initially.

Table 12. SINGSAMP SA z/OS Sample Library Routines

SINGSAMP
Member Routine Description

INGEI120 ISQI120 Responds to the following messages:

IEA120A Device ddd volid read, reply cont or wait.
IOS120A Device ddd shared (PR volid not read.)

the recovery task, reply cont or wait.

Issues the following response to the target: CONT

INGEI357 ISQI357 Responds to the following message:

IEE357A Reply with SMF values or U.

Issues the following response to the target: U

INGEI426 ISQI426 Responds to the following message:

$HASP426 Specify options - subsystem_id.

Issues the following response to the target: WARM,NOREQ.

INGEI502 ISQI502 Responds to the following message:

ICH502A Specify name for primary/backup
RACF data set sequence nnn or none.

Issues the following response to the target: NONE

How to Automate Processor Operations Controlled Resources

Chapter 7. How to Automate Processor Operations-Controlled Resources 85

Table 12. SINGSAMP SA z/OS Sample Library Routines (continued)

SINGSAMP
Member Routine Description

INGEI877 ISQI877 Responds to the following message:

IEA877A Specify full DASD SYS1.DUMP data sets
to be emptied, tape units to be used as
SYS1.DUMP data sets or GO.

Issues the following response to the target: GO

INGEI956 ISQI956 Responds to the following message:

IEE956A Reply - ftime = hh.mm.ss,
name = operator,reason = (ipl,reason)
or u.

Issues the following response to the target: U

The SA z/OS automation table entries in the ISQMSG0 member of the
SINGNPRM data set include inactive entries that call these automation routines. To
incorporate these routines into your automation, do the following:
1. Remove the comments from the corresponding automation table entries for the

messages that initiate the automation routines you want to use. If you perform
these steps as part of the initial SA z/OS installation, make these changes
before you incorporate the SA z/OS entries. If you do this after the initial
SA z/OS installation, change the NetView automation table.

2. Code the routines you are using to issue the responses you want.
3. Compile the PL/I source code for the routines you want to use, and link the

resulting object code to your PL/I library.
4. Recycle the NetView program to activate the new entries.

For automation processing to occur, each message in the NetView automation table
at the focal point system and at each target system must be made available to the
system's NetView program. In z/OS, MPF controls message availability to the
NetView program. Examine the MPF list member in the SYS1.PARMLIB data set to
ensure that the necessary messages are marked for automation. For target systems
using other operating systems, check the message suppression facilities used on
those systems.

Testing Messages
SA z/OS provides a collection of NetView automation table entries for your
SA z/OS configuration. NetView automation table entries are in the AOFCMD
member of the SA z/OS SINGNPRM installation data set. When these entries are
moved to your NetView automation table, they may need additional editing.

For example, you may already test for a particular message in your production
NetView automation table. If you add an entry that tests for that same message,
your automation table will not run as you expect. After a match with the test
criteria is found, the search of the automation table is aborted. The second
NetView automation table statement is not found. Consequently, the message does
not drive all of your required actions.

To avoid this, combine entries into a single test condition. This ensures that all
required actions are scheduled for all messages. For the following message:
IEA320A RESPECIFY PARAMETERS OR CANCEL

How to Automate Processor Operations Controlled Resources

86 System Automation for z/OS: Customizing and Programming

your NetView automation table may already have the following entry: (�1�)
IF MSGID = ’IEA320A’
THEN EXEC (CMD(’USERJOB’) ROUTE(ONE *)) CONINUE(Y);

With SA z/OS installed, the following message appears when forwarded from
System z or 390-CMOS processor hardware:
ISQ900I SYS1 OC IEA320A RESPECIFY PARAMETERS OR CANCEL

After the SA z/OS entries are added, the NetView automation table includes the
following entry:
IF TEXT = . ’IEA320A RESPECIFY PARAMETERS’ .

& MSGID = ’ISQ900I’ .
THEN

EXEC (CMD(’ISQI320 ’) ROUTE(ONE *))
DISPLAY(N) NETLOG(Y);

In this case, the first entry satisfies the IF test and the command USERJOB runs
(�1�). The second command, ISQI320, is not scheduled to run because once the
message matches a table entry, the autotask stops searching. Combine these two
entries into a single entry, such as:
IF TEXT = . ’IEA320A RESPECIFY PARAMETERS’ .

& MSGID = ’ISQ900I’ .
THEN

EXEC(CMD(’ISQI320 ’) ROUTE(ONE *))
EXEC(CMD(’USERJOB ’) ROUTE(ONE *))
DISPLAY(N) NETLOG(Y);

When you use the second example, both commands are scheduled.

If your NetView automation table tests the text of SA z/OS messages, the message
format must match the character case for which you test. This can be done by
requiring all sites to use the same format for their messages, or by duplicating AT
entries in uppercase and in mixed formats.

Building the New Automation Definitions
When you are finished using the customization dialog to add message response
and automation operator information to the automation policy, you need to build
the system operations control files. The complete description of how to build and
distribute these files is provided in IBM Tivoli System Automation for z/OS Defining
Automation Policy.

The SA z/OS build function places the new automation definitions in the data set
defined in the Build Parameters panel.

Copy the new automation definitions into the SA z/OS NetView DSIPARM
concatenation in the NetView startup procedures, or concatenate it to the NetView
DSIPARM data set.

Loading the Changed Automation Environment
To reload the AMC file, automation control file and the AT perform the following
actions:

To reload the MPF list, enter the following command:
v From the z/OS console:

SET MPF=xx

How to Automate Processor Operations Controlled Resources

Chapter 7. How to Automate Processor Operations-Controlled Resources 87

|
|

|
|

v From a NetView console using the MVS prefix:
MVS SET MPF=xx

Where xx is the suffix of the MPF member in the SYS1.PARMLIB data set to load.

To reload the automation manager configuration file, all updated automation
control files and the automation tables issue:
INGAMS REFRESH

Specify a data set name or an asterisk (*) which means reload the current data set.

Using Pipes and ISQCCMD for Synchronous HW Commands
The System Automation for z/OS Hardware interfaces command, ISQCCMD,
available for Processor Operations SNMP connections and with imitations for BCP
Internal Interface connections, allows the management and control of processors
and logical partitions, as well as hardware activation profiles. When used in
automation procedures, ISQCCMD provides an easy-to-use interface to automate
processor operations management and configuration tasks.

The following HW commands return all their response information immediately to
NetView on command completion and are therefore called synchronous commands:
v CCNTL
v CONDATA
v CPCDATA
v GETCLUSTER
v GETISTAT
v GETIINFO
v GETSDGA
v GETSINFO
v GETSSTAT
v ICNTL
v PROFILE
v STPDATA
v TCDATA

For SNMP and BCPii connections, ISQCCMD supports NetView PIPES. On
completion of the ISQCCMD command, a PIPE KEEP with the name ISQ.SNMP
contains the immediate command response of the HW command that was issued,
for example:
* ISQCCMD G14 GETSINFO
| ISQ417I GETSINFO STATUS(SUCCESS)
| ISQ900I G14.KEY3 SC AOFA0017 GETSINFO G14 STATUS(OPERATING) PDATA(TYPE(2084)

,MODEL(B16),S/N(000020016F7A)) MODE(LPAR) APROF() CPCSNAME(IBM390PS.G14) NAME(G14)
TSTIME(070825131936)

| ISQ419I ISQCCMD GETSINFO processing on G14 is complete.
* IPSFO PIPE KEEP ISQ.SNMP | CONS
| IPSFO AOFA0017 GETSINFO G14 STATUS(OPERATING)

PDATA(TYPE(2084),MODEL(B16),S/N(000020016F7A)) MODE(LPAR) APROF()
CPCSNAME(IBM390PS.G14) NAME(G14) TSTIME(070825131936)

In the example above, the HW common command GETSINFO was issued at a
NetView console. Embedded in the ‘ISQ’ messages the response from the hardware
is displayed on the console, starting at report ID AOFA0017.

Loading the Changed Automation Environment

88 System Automation for z/OS: Customizing and Programming

|

|

|

|

The same information is available if you reference the PIPE KEEP with the name
ISQ.SNMP, once the ISQCCMD command completed, as shown in the example,
with the content of ISQ.SNMP displayed on the console.

In an automation procedure, this can be coded as shown in the following example:
/*ReXX*/
/* Display CPC information using the ISQ.SNMP KEEP */
Arg cpcname
'ISQCCMD 'cpcname’ GETSINFO’
If RC = 0 Then Do

'PIPE KEEP ISQ.SNMP ' ,
' | LOC /AOFA0017/ ' ,
' | LOC /’cpcname’/’ ,
' | CONS ONLY’

End

As an alternative, you can get the immediate ISQCCMD HW responses directly
into the PIPE input stream if you use the PIPE NETVIEW stage followed by an
EXPOSE TOTRAP stage. In this case, all ISQ messages and the AOFA0017 report
data is available for PIPE processing.
/*ReXX*/
/* Display CPC information in a PIPE */
Arg cpcname
'PIPE NETV ISQCCMD 'cpcname’ GETSINFO' ,
' | EXPOSE TOTRAP ' ,
' | LOC /ISQ90/ , /* takes ISQ901I or ISQ900I */
' | LOC /AOFA0017/ ,
' | LOC /’cpcname’/’ ,
' | CONS ONLY’

Automating Asynchronous Hardware Commands with ISQCCMD and
PIPES

The following ISQCCMD hardware commands return two messages to NetView.
First a message that the HW command has either been accepted for execution or
rejected. Second, if an acceptance message was issued, a completion event message
that contains the actual success or failure information of the command is sent
asynchronously.
v ACTIVATE
v CBU
v CTRLCONS
v DEACTIVATE
v EXTINT
v LOAD
v OOCOD
v RESERVE
v RESTART
v START
v STOP
v STP
v SYSRESET
v TCM

Automation scripts using the ISQCCMD interface must distinguish between the
accepted or rejected response of an asynchronous HW command and the actual

Loading the Changed Automation Environment

Chapter 7. How to Automate Processor Operations-Controlled Resources 89

|

|

command completion information, which may either indicate successful execution
or a failure. The asynchronous command completion events from the hardware are
made available for message automation and TRAP AND WAIT processing by
ProcOps. Application scripts using the ISQCCMD interface can get the Accepted or
Rejected responses directly at ISQCCMD termination time. The Accepted response
can then be used to wait for the command completion event message.

Member INGEI004 of the SINGSAMP library provides a REXX sample illustrating
how asynchronous hardware commands can be automated using ISQCCMD and
NetView PIPES, together with TRAP and WAIT.

VM Second Level Systems Support
This feature provides ProcOps support to control and monitor guest machines
running under VM.

ProcOps allows an operating system to be IPLed into a processor, amongst other
facilities. Such an operating system is VM. Within VM other operating systems can
be IPLed as guest machines. Of particular interest are LINUX guest machines, but
MVS, VSE and even VM guest machines may be possible. (Lower levels of guest
machines are not considered). Previously there was no effective way to enter
commands to and receive messages from such a guest target system in order to
validate that it had IPLed correctly, or that it is behaving correctly.

With second level guest machine support you can:
v Capture messages issued by the guest machine itself and route these back to the

ProcOps process for display or automated processing, or both
v Send commands to the guest machine from ProcOps, either as operator requests

or automated actions

Guest Target Systems
The most likely guest machine that is used as a target system is a LINUX system.
When a LINUX machine has a secondary user, the secondary user can use CP
SEND commands to:
v Issue CP commands to the guest machine
v Log on as a user to LINUX
v Enter LINUX commands (after logging on)

(It is also possible to set up the LINUX system in such a way that LINUX
commands can be entered on the VM console without logging on to LINUX.)

The secondary user receives:
v All "boot up messages"
v Responses to CP commands that are run on the guest machine
v Responses to logon and LINUX commands

MVS machines are more complex. When an MVS machine is running, the original
VM user first becomes an NIP console and then an MCS console. In these console
modes MVS takes over all I/O to and from the console, and MVS messages to it
cannot be intercepted by any CP facilities. Hence the SCIF SEND command cannot
be used to send commands to MVS, nor can MVS messages to this console be
intercepted.

Loading the Changed Automation Environment

90 System Automation for z/OS: Customizing and Programming

However a "virtual SCLP console" for the guest machine can be used. During the
NIP phase of initialization, use of this console can be forced by configuring the
guest virtual machine so that it has no usable 3270 consoles. NIP then directs its
messages to the guest machine as line mode commands. This is analogous to the
stream of messages sent to the Operating System Messages (OSM) window on an
HMC by an MVS system running in a logical partition.

Responses to any NIP messages are entered using the CP VINPUT command.
Internally this is done when an ISQSEND command is issued to the operator
console (OC) of the target system. To ensure that such VINPUT commands are
processed correctly, the guest machine must be operating in RUN ON state at this
time.

To ensure that RUN ON state is set, a CP SET RUN ON command is sent to all
MVS guest machines at the time when the guest machine is started by the PSM.

Once MCS operation is established, important messages requiring operator action
are directed to the guest machine. Again, these are analogous to the stream of
messages directed to the OSM window of the HMC. Initially, commands cannot be
entered to MVS. To do so, it is necessary to enter "Problem Determination Mode".
To enter this mode, a VARY CONSOLE(*),ACTIVATE command must be entered.
Once this is done:
v All MVS messages that are displayed are routed to the guest machine
v Commands may be entered using the CP VINPUT command.

Problem Determination is not generally recommended.

To enter LINUX commands it is normally necessary to log on to LINUX. This
requires a user ID and a password. So, to provide for LINUX commands would
require the specification of a user ID and a password to ProcOps, with all the
attendant difficulties in the area of security. At present the LINUX system is
considered IPL COMPLETE when specified messages have appeared. These do not
require a user logon.

VM machines may also be guest machines. Third level guest machines are not
supported.

VSE machines may also be guest machines.

Customizing Target Systems

LINUX
The LINUX target system should have in its VM Directory entry, a CONSOLE
statement that sets its PSM as its default secondary user. For example, if the virtual
machine LNXAO1 is controlled by a PSM running in virtual machine ISQPSM1,
then its CONSOLE statement might be:
CONSOLE 009 3215 T ISQPSM1

When a LINUX target system is to be deactivated a FORCE command is used to
shut it. The default guest signal timeout interval values (set by the SET SIGNAL
command) and values defined for the guest machine determine the interval used
when allowing the LINUX system to shut in an orderly fashion. If this function is
required for a guest, you must ensure that this is set accordingly.

Such actions may include updating the etc/inittab entry on the LINUX system
itself, and setting up a SHUTTRAP module on the VM host.

Loading the Changed Automation Environment

Chapter 7. How to Automate Processor Operations-Controlled Resources 91

MVS
This too should have a CONSOLE statement in its VM directory entry that defines
its PSM as its secondary user:
CONSOLE 01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is
IPLed it should run a PROFILE EXEC that includes the statements similar to the
following:
SET RUN ON
DETACH 01F
IPL 7700

The SET RUN ON is needed so that when a response is to be sent to a NIP console
the VINPUT command used is effective.

The DETACH is used so that when the MVS system IPLs it finds none of its
defined 3270 consoles available to it. (You should also ensure that no user issues a
VM DIAL to an address that is defined as a NIP or MCS console.)

The IPL command is used to IPL the MVS system.

The MVS system itself should have included in its active CONSOLxx definition a
CONSOLE statement for the SYSCONS so that commands can be entered to MVS
after it is IPLed, for example:
CONSOLE DEVNUM(SYSCONS)

ROUTCODE(ALL)
AUTH(MASTER)
MSCOPE(*)
CMDSYS(*)
UD(Y)

VM
This too should have a CONSOLE statement in its VM directory entry that defines
its PSM as its secondary user:
CONSOLE 01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is
IPLed it should run a PROFILE EXEC that includes the statements similar to the
following:
SET RUN ON
DETACH 01F
IPL 7700

The SET RUN ON is needed so that when a response is to be sent to a console the
VINPUT command used is effective.

The DETACH is used so that when the VM system IPLs it finds none of its defined
3270 consoles available to it. (You should also ensure that no user issues a VM
DIAL to an address that is defined as a Operator Console)

The IPL command is used to IPL the VM system.

The VM system itself should include within its OPERATOR_CONSOLES statement
in the SYSTEM CONFIG file (which resides on the "parm disk") a specification for
the emulated system console, for example:
OPERATOR _CONSOLES 01F 020 System_Console

Loading the Changed Automation Environment

92 System Automation for z/OS: Customizing and Programming

This ensures that when VM IPLs and finds no regular consoles available, it then
uses the emulated system console. This in turn directs the messages to the
secondary user as a stream of line-mode messages.

VSE
This too should have a CONSOLE statement in its VM directory entry that defines
its PSM as its secondary user:
CONSOLE 01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is
IPLed it should run a PROFILE EXEC that includes the statements similar to the
following:
TERM CONMODE 3215
IPL 7700

The TERM CONMODE 3215 command sets the console into line mode.

Loading the Changed Automation Environment

Chapter 7. How to Automate Processor Operations-Controlled Resources 93

94 System Automation for z/OS: Customizing and Programming

Chapter 8. How to Automate USS Resources

This chapter describes how z/OS UNIX System Services are integrated into
SA z/OS, how to set up z/OS UNIX automation, and provides tips about using
z/OS UNIX automation.

Note
USS tasks behave differently when started as STCs rather than directly in the
USS environment.

When a USS task is started as an STC, the starting user ID may differ so that,
in most cases, the AOFUXMON monitor routine is not able to internally
trigger ACTIVMSG UP=YES.

In this case it is much simpler for SA z/OS to start these applications with
INGUSS. An AT entry is then not required for the UP message. SA z/OS is
able to internally simulate this so that you do not have to worry about UP
messages.

Job names (that is, the last character of the job name) are not predictable for
USS resources. However, AOFUXMON is able to handle this by monitoring
the path within USS and changing the defined job name in SA z/OS
accordingly.

For the syslog daemon you would define the job name as SYSLOGD. When
the application is started and changes the job name to, say, SYSLOGD7,
AOFUXMON adjusts the SA z/OS data model to reflect this. However, this
cannot be handled in the AT with a generic entry for SYSLOGD*. This is
because the change in the job name is caused by the USS process that creates
a new address space with a new name, so that the old address space with the
old name terminates. This means that you get an ended message for the old
address space and an UP message for the new address space. The sequence of
these messages is also unpredictable.

Integration of z/OS UNIX System Services
The following functions are supported by SA z/OS for z/OS UNIX applications:
v Starting and stopping of applications
v Monitoring of:

– Processes (represented by the command or path and user ID)
– TCP Ports
– Files and file systems
– Generic User Monitoring (the user supplies a z/OS UNIX monitoring routine

or script)
v Using an API to execute z/OS UNIX commands (INGUSS command)

© Copyright IBM Corp. 1996, 2011 95

Infrastructure Overview
The z/OS UNIX resources that should be automated must run in the z/OS UNIX
of a z/OS system that is already automated by SA z/OS. From the automation
manager's perspective the NetView agent of this system is responsible for the z/OS
UNIX resources.

For command execution through INGUSS or user-defined monitoring, a z/OS
UNIX program (provided by SA z/OS) is directly invoked by SA z/OS. This
program (ingccmd) executes UNIX commands and runs when started by SA z/OS
with the jobname INGCUNIX. The ingccmd program is the extension of the
NetView-based agent into z/OS UNIX. To monitor the standard z/OS UNIX
resources (processes, ports, or files) an internal SA z/OS routine is started.

Process initialization and termination status updates of USS resources are directly
reported from system exits to the SA z/OS environment by the
program-to-program interface INGUXPPI. A NetView task with the same name
immediately posts the UP or DOWN status. The automation agent recognizes and
then sets the correct automation status for the resource.

For this functionality, the NetView Subsystem Interface (SSI) is required. For a
correct customization of the SSI, refer to Step 5 in Chapter 8 - Installing SA z/OS
on Host Systems in IBM Tivoli System Automation for z/OS Planning and Installation.

When monitoring of the USS process indicates that it is down, its status is updated
to AUTODOWN. However, because it may take some time before a USS process
has ended (that is, to clean up the resources that is had acquired), monitoring is
repeated after a cleanup delay. If you define your own USS processes, you should
specify a suitable cleanup delay using the APPLICATION INFO policy item.
Consider using an application class if you need to define several processes.

Setting Up z/OS UNIX Automation

Customization of z/OS UNIX Resources
z/OS UNIX resources are introduced to SA z/OS by defining them in the
SA z/OS customization dialogs.

The customization dialogs support the application type USS. If USS is selected, you
can enter z/OS UNIX-specific data such as a UNIX user ID, command or path,
filename, or monitored port. Choose one of these fields to enter the data.

The start and stop definitions can be varied between MVS and z/OS UNIX
commands. For example, to stop an application you can issue a UNIX kill
command first and (if this was not successful) you can perform an MVS cancel
later.

Definitions for Automation Setup
The HFS path where the program shipped with SA z/OS is located must be
defined in the SA z/OS setup panel. When user-defined UNIX monitoring is used
and no absolute path is specified for the monitoring routine, SA z/OS tries to start
the user-defined monitoring routine in this directory.

96 System Automation for z/OS: Customizing and Programming

|
|
|
|
|

|
|
|

|
|
|
|
|
|

Definitions for z/OS UNIX Resources
To define a new application entry (APL, class, or instance), specify the application
type USS on the Define New Entry panel. When choosing the application type
USS, the option USS Control is displayed on the Policy Selection panel.

Select USS Control on the Policy Selection panel to enter the data for the new
z/OS UNIX resource. You can specify only the user ID and the z/OS UNIX
monitoring routine for a class on this panel. All other definitions (for example,
from/to, dependencies, etc.) can be entered as usual. For more details about this
panel, see IBM Tivoli System Automation for z/OS Defining Automation Policy.

USS applications must be defined with a HASPARENT relationship to JES.

Use the USS Control Specification policy item for an object of type INSTANCE to
define the resource as a:

Process
Enter the path of the command that is running (as shown by the UNIX
command ps -e) in the Process Command/Path field.

TCP port
Enter the TCP port number that the resource is to listen to on the local
host in the Port Number field.

File Enter the path of a file in the HFS in the File Name field.

IP Stack
For TCP port monitoring, you may enter optionally the name of the IP
stack if multiple IP stacks are configured.

Often the command/path specification, especially for Java processes, is not unique.
The Filter field allows you to uniquely identify the USS process if this is not
possible.

There are two methods of monitoring USS applications:
v The standard method is to specify the monitoring routine AOFUXMON in the

APPLCATION INFO policy item, which is called by SA z/OS for UNIX System
Services resources.

v If you choose to use your own script or program in the HFS, this is called by
AOFUXMON. You must then specify the script or program in the Monitoring
Command field of the USS CONTROL policy item, and you must also specify
AOFUXMON in the APPLCATION INFO policy item.

If this program does not begin with a forward slash (/) it must reside in the same
directory as the z/OS UNIX ingccmd routine that is supplied by SA z/OS.
Otherwise the name specified is considered to be an absolute path identifier.

The UNIX monitoring routine must have an exit value. It can be one of the
following:
0 Resource is available
4 Resource is starting
8 Resource is unavailable
12 Error occurred

If the user-specified monitoring routine loops, it receives a SIGKILL after the
AOFUSSWAIT time (defined in the NetView stylesheet).

Setting Up z/OS UNIX Automation

Chapter 8. How to Automate USS Resources 97

|
|

|
|
|

|
|
|

||

|
|
|

|
|
|

Hint:
It is possible to write a message from this UNIX monitoring routine to the
MVS system log, in order to trigger an action or perform a status change
through the NetView Automation Table (AT).

The monitoring routine AOFUXMON must be specified, otherwise the default
monitoring routine (usually INGPJMON) is called, which is not sufficient for z/OS
UNIX resources.

The Job Type field can be either MVS or NONMVS:

MVS Is only used for resources that represent a process with a unique jobname.
For these resources SA z/OS accepts the following messages for status
changes:
v IEF403I Job started
v IEF404I Job ended
v IEF450I Job abended

If no start command is specified, the default MVS start method
(s <JOBNAME>) is used.

NONMVS
SA z/OS ignores the messages listed above for status changes. This is
necessary if the job name is not unique.

For z/OS UNIX resources the Start Delay interval that has been defined begins
when SA z/OS issues a start command for an application. SA z/OS is informed
by z/OS that the resource that is to be monitored has started. This results in the
USS resource being set in the status ACTIVE. After the first start delay interval and
successful monitoring, the ACTIVMSG comand is triggered, which sets the agent
status to UP. The default value for the Start Timeout is 2 minutes.

If you set the Skip ACTIVE status field in the APPLICATION INFO policy item to
YES, the resource is immediately set to UP when SA z/OS is informed by z/OS
that the process is running.

For application shutdown, SA z/OS is informed by z/OS as soon as the process
has ended. At this point, SA z/OS immediately sets the resource into the
AUTODOWN status.

As a result of this behavior you should carefully consider how you set the
following parameters in the APPLICATION INFO policy item, either for the
application or at the class level:
v Start Delay
v Start Cycles
v Skip ACTIVE status
v Shutdown Pass Interval
v Cleanup Delay

For more information, see the *USS best practices policy.

Setting Up z/OS UNIX Automation

98 System Automation for z/OS: Customizing and Programming

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

Automated Resources

Process Monitoring: No UNIX process identifiers (PIDs) can be monitored. The
monitoring routine needs the start command and the user ID that the process
belongs to. This information can be obtained with the UNIX command ps. In the
following example all processes that belong to the user USER are displayed:
USER:/u/user/ingcmd>ps -e

PID COMMAND
33554481 /bin/sh
50331698 /usr/sbin/rlogind2
33554486 /usr/lpp/netview/bin/cnmeunix
67108927 /bin/sh
83886176 /bin/ps
33554821 /usr/sbin/inetd
83886472 FTPD
67109276 /bin/sh
16777629 /usr/sbin/rlogind2
33554924 HSAPYTCP

This means that automation could not distinguish between the two processes
started by /usr/sbin/rlogind2. Processes started by identical commands must
have different user IDs.

Alternative 1: If it is necessary to automate processes running multiple instances, a
user could use softlinks to distinguish between the different processes. For
example, the process:
/u/user/usstest/testme

should be started more than once. In this case, create some softlinks:
USER:/u/user/usstest> ln -s testme test1
USER:/u/user/usstest> ln -s testme test2

This results in:
USER:/u/user/usstest>ls -al
total 216
drwxrwxr-x 2 USER DE#03243 8192 Jan 24 16:24 .
drwxr-xr-x 19 USER DE#03243 8192 Jan 24 16:23 ..
lrwxrwxrwx 1 USER DE#03243 6 Jan 24 16:24 test1 -> testme
lrwxrwxrwx 1 USER DE#03243 6 Jan 24 16:24 test2 -> testme
-rwxrwxr-x 1 USER DE#03243 94208 Jan 24 16:23 testme

These three programs (being the same "real" program) can be automated with the
three different start commands test1, test2, and testme. These links may be created
as a prestart command and deleted as a shutfinal command.

Note: Only the command is used, not the parameters that were used to start the
program. This is because a program may be started by SA z/OS with
different startup parameters, depending on what the automation manager
told the automation agent to do. In this case, the only constant value is the
command, not the parameters.

Alternative 2: The same program can run in parallel several times by using
different startup parameters (like Java programs). In this case it is inefficient to
automate these processes as described above. Java programs run in a Java
environment and are visible as Java processes, for example:
ps -e

PID TTY TIME CMD
50331734 ? 5h24 .../V6R1/AP/AppServer/java/bin/java

Setting Up z/OS UNIX Automation

Chapter 8. How to Automate USS Resources 99

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

83886173 ? 1:44 .../V6R1/AP/AppServer/java/bin/java
60341724 ? 2h36 .../V6R1/AP/AppServer/java/bin/java
73392173 ? 1:02 .../V6R1/AP/AppServer/java/bin/java

It is impossible in this case to distinguish and evaluate the process that should be
monitored.

The command ps -ef shows the same processes (for example, programs running
in a Java environment), without the fully-qualified Java path but with a parameter
chain that is used for startup.
#ps -ef

UID PID PPID C STIME TTY TIME CMD
EEZDMN 50331734 1 - Jun 27 ? 5h25 java -Djava.util.logging.configureByServer=true
EEZDMN 83886173 1 - Jun 27 ? 1:44 java -Dcom.ibm.eez.adapter.debug=true
EEZDMN 60341724 1 - Jun 27 ? 2h36 java -Djava.util.logging.manager=connect
EEZDMN 73392173 1 - Jun 27 ? 1:02 java -Djava.security.auth.login.config=/etc/security.conf

Mapping the output of both commands using the matching PID, a unique process
can be evaluated and monitored. The process that is distinguished is then:
/SYSTEM/local/WebSphere/V6R1/AP/AppServer/java/bin/java
-Djava.util.logging.configureByServer=true

Where the data that is specified in the UNIX Control Specification panel in the
Process Command/Path field is /SYSTEM/local/WebSphere/V6R1/AP/AppServer/
java/bin/java and in the with Filter field is the filter
-Djava.util.logging.configureByServer=true.

If the USS program has the sticky bit set, the MVS load is performed using the
symbolic link name. For example, running two instances of syslogd requires the
usage of a symbolic link, for example, /tmp/syslogd. A separate /tmp directory
must be used so that the same name (syslogd) can be created.

TCP Port Monitoring: Exactly one TCP port number can be entered for one
resource. SA z/OS monitors the local host as returned by the function
gethostid(). When this port has a state of 'listening,' this resource is considered to
be 'available' in terms of SA z/OS. All other states of the port map to 'unavailable.'

No user ID is required for definitions.

If your system is configured with multiple IP stacks you may specify the name of
the corresponding IP stack for the defined port in the IP Stack field.

File or File-System Monitoring: The existence of a file (belonging to a certain
user) is verified. Many applications create files at startup and delete these files
when terminating normally. If more than one file should be monitored, this can be
modeled as an application group (APG) in the automation manager.

This monitoring can be used to determine if a certain file system is mounted. The
start command for this resource would be a UNIX 'mount' command, the stop
command a UNIX 'umount'.

Start and Stop Definitions (INGUSS Command)
If the resource is to be controlled by traditional MVS commands, this could be
done in the same way as for all other MVS applications. Issuing commands in the
z/OS UNIX environment is done by specifying the INGUSS command in the start
or stop definitions for the resource.

Setting Up z/OS UNIX Automation

100 System Automation for z/OS: Customizing and Programming

|

|
|

To issue commands in the USS environment use the INGUSS command (for more
details see IBM Tivoli System Automation for z/OS Programmer’s Reference).

Note: INGUSS can only be used if the primary JES is available. Therefore, z/OS
UNIX resources using INGUSS need a HASPARENT dependency to JES.
Most z/OS UNIX applications have this dependency. If you want to issue
prestart commands, an additional PREPAVAILABLE dependency is
necessary.

z/OS UNIX and MVS commands can be mixed in different shutdown passes.

Command Examples:

Start Command for a Process: To start a process with the command and job name
specified in the customization dialogs, enter INGUSS JOBNAME=&SUBSJOB &SUBSPATH
&SUBSFILTER in the Command Text field on the Startup Command Processing panel
of the STARTUP policy item of the resource.

Only the command that was used to start an application or a process can be
monitored. If the same program is to be started multiple times, a softlink as
prestart command could be used to distinguish the processes.

Use a Softlink to Distinguish Processes That Run the Same Executable File as a Prestart
Command: To create a softlink for &SUBSPATH (the path parameter of the
resource issuing the command, for example, /u/user1/uss1) and link to the file
/u/user1/usstest, enter the following command in the Command Text field on the
PRESTART Command Processing panel:
INGUSS /bin/ln -s /u/user1/usstest &SUBSPATH

When looking at the HFS, this results in:
USER1:/u/user1>ls -l
total 408
lrwxrwxrwx 1 USER1 DE#03243 7 Feb 13 12:44 uss1 -> usstest
-rwxrwxr-x 1 USER1 DE#03243 163840 Jan 29 14:55 usstest

Stop Commands for a Process: A z/OS UNIX process may be stopped in different
ways (using escalation passes). For example, you can first use the z/OS UNIX kill
command, if that does not work use z/OS UNIX kill -9, and finally enter an MVS
cancel command.

Enter the definitions for this example as shown in Figure 11 on the Command
Processing panel for the normal shutdown phase of the resource (via its
SHUTDOWN policy item).

&SUBSPID is replaced at run time by the real PID of the process.

Stop Command for a File: A stop command for a file may be deleting the file. The
file name entered in the customization dialogs can be found in &SUBSFILE, as
shown in Figure 12 on page 102.

Cmd Ps AutoFn/* Command Text
1 INGUSS /bin/kill &SUBSPID
3 INGUSS /bin/kill -9 &SUBSPID
4 MVS C &SUBSUSSJOB,A=&SUBSASID

Figure 11. Stop Definitions for a Process

Setting Up z/OS UNIX Automation

Chapter 8. How to Automate USS Resources 101

|
|
|
|
||
|
|

Example: inetd
The inetd is the UNIX internet daemon. It allows you to invoke several others and
it should be started at IPL time (normally through OMVSKERN with /etc/rc). It
then listens for connections on certain internet sockets. Its configuration file
is /etc/inetd.conf

The following is a sample inetd configuration file:
login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -d
otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -k -t
daytime stream tcp nowait OMVSKERN internal
time stream tcp nowait OMVSKERN internal
netbios-ssn stream tcp nowait OMVSKERN /local/samba/bin/smbd smbd

When a service request is detected at one of its sockets, it decides what service the
socket corresponds to and invokes a program to service the request. Then it
normally continues to listen on the socket the last request came in at (see
Figure 13) .

To check whether the internet daemon has been started, issue the ps -e command:
USER:/u/user/ingcmd>ps -e

PID COMMAND
33554481 /bin/sh
50331698 /usr/sbin/rlogind2
33554486 /usr/lpp/netview/bin/cnmeunix
67108927 /bin/sh
83886176 /bin/ps

Cmd Ps AutoFn/* Command Text
1 INGUSS /bin/rm &SUBSFILE

Figure 12. Delete a File

File
/etc/inetd.conf

File
/etc/inetd.pid

start
services

on demand

inetd
Process

read

write

listen

Port 13

Port 37

Port 139

Port 512

Port 513

z/OS user:
OMVSKERN

Figure 13. Structure of inetd

Setting Up z/OS UNIX Automation

102 System Automation for z/OS: Customizing and Programming

|

|
|
|
|
|
|
|
|

33554821 /usr/sbin/inetd
83886472 FTPD
67109276 /bin/sh
16777629 /usr/sbin/rlogind2
33554924 HSAPYTCP

This shows the process ID (PID) for the inetd process.

The ps -ef command supplies further parameters to identify the process
referenced as Filter, for example:
ps -ef | grep inetd

UID PID PPID C STIME TTY TIME CMD
OMVSKERN 3554821 1 - Jun 30 ? 0:00 /usr/sbin/inetd /etc/inetd.conf

From this output, set the Filter as /etc/inetd.conf.

Next find out the z/OS user ID that the process is running on by issuing the
following z/OS command and locating the user ID in the first column where the
process ID (PID) is listed:
D OMVS,A=ALL
RESPONSE=SYS1
BPXO040I 17.11.01 DISPLAY OMVS 789
OMVS 000E ACTIVE OMVS=(00)
USER JOBNAME ASID PID PPID STATE START CT_SECS
...
OMVSKERN INETD1 009F 33554821 1 1FI--- 19.23.26 .081

LATCHWAITPID= 0 CMD=/usr/sbin/inetd /etc/inetd.conf

The inetd that is started with the configuration file above listens on the following
sockets:
USER:/etc>netstat -a | grep INET
INETD1 00006B80 0.0.0.0..13 0.0.0.0..0 Listen
INETD1 00006B7D 0.0.0.0..513 0.0.0.0..0 Listen
INETD1 00006B7E 0.0.0.0..512 0.0.0.0..0 Listen
INETD1 00006B7F 0.0.0.0..623 0.0.0.0..0 Listen
INETD1 00006B82 0.0.0.0..139 0.0.0.0..0 Listen
INETD1 00006B81 0.0.0.0..37 0.0.0.0..0 Listen

Whereas the services and the real port numbers correspond according to
/etc/services:
daytime 13/tcp #Daytime
time 37/tcp timserver #Time
netbios-ssn 139/tcp #NETBIOS Session Service
exec 512/tcp #remote process execution;
login 513/tcp #remote login a la telnet;
otelnet 623/tcp #OE telnet

You can define the UNIX internet daemon (inetd) using the fields of the USS
Control policy item for applications (APLs) of type USS in the customization
dialogs with, for example, the data in Table 13.

Table 13. Example Customization Dialog Definitions for inetd

Process File Port

Application Name* INETD/APL INETFILE/APL INETPORT/APL

User ID OMVSKERN OMVSKERN OMVSKERN

Process
Command/Path

usr/sbin/inetd

Filter /etc/inetd.conf

Setting Up z/OS UNIX Automation

Chapter 8. How to Automate USS Resources 103

|
|
|
|
|

|

|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

Table 13. Example Customization Dialog Definitions for inetd (continued)

Process File Port

File Name /tmp/inetd.pid

Port Number 513

IP Stack TCPIP**

* This is the name that was specified for the applications when they were created.
** Only if the system is configured for multiple IP stacks.

Define a basic group containing all resources with relationships that indicate that:
v The file is created by the inetd process and can never be started or created

directly by SA z/OS.
v The inetd process listening on the port can never be started or created directly

by SA z/OS.

The example in Figure 14 recognizes the inetd (modeled as a group) as up and
running when the process /usr/sbin/inetd started by user OMVSKERN shows up,
the file /tmp/inetd.pid exists, and port 513 is in the status 'listen' (inetd listens to
this port for incoming login requests).

You can only choose a port that is defined in inetd/conf.

Start definition for INETFILE/APL
None.

Start definition for INETPORT/APL
None.

Start definition for INETD/APL
CMD: INGUSS JOBNAME=&SUBSJOB &SUBSPATH &SUBSFILTER

(&SUBSFILTER is substituted at run time by the parameter
command/path.)

Figure 14. Dependency Graphic for inetd

Setting Up z/OS UNIX Automation

104 System Automation for z/OS: Customizing and Programming

|

|
|

Stop definitions for INETFILE/APL
CMD: INGUSS /bin/rm &SUBSFILE

(This removes the file if it has not yet been removed by the inetd process.)

Stop definition for INETPORT/APL
None.

Stop definitions for INETD/APL
CMD: INGUSS /bin/kill &SUBSPID
CMD: INGUSS /bin/kill -9 &SUBSPID
CMD: MVS C &SUBSUSSJOB,A=&SUBSASID

&SUBSPID is replaced by the z/OS UNIX command routine with the real
PID that matches the parameter's command/path and user ID. In the
example in this section, this is 33554821:
USER:/u/user/ingcmd>ps -e

PID COMMAND
33554481 /bin/sh
50331698 /usr/sbin/rlogind2
33554486 /usr/lpp/netview/bin/cnmeunix
67108927 /bin/sh
83886176 /bin/ps
33554821 /usr/sbin/inetd
83886472 FTPD
67109276 /bin/sh
16777629 /usr/sbin/rlogind2
33554924 HSAPYTCP

SA z/OS provides the *USS best practices policy that provides definitions for
several automated USS daemons, such as inetd.

Hints and Tips

Trapping UNIX syslogd Messages
To trap UNIX syslogd messages, an entry must be added to the syslogd
configuration file /etc/syslog.conf in order to forward the messages to the MVS
system log. Thus, messages can be processed by the NetView automation table
(AT).

To forward all messages to the MVS log add the following entry:
. /dev/console

To send special messages to the MVS log only, follow the syslog message naming
guidelines (for example, for warning messages use *.warn). You can use
/dev/console as an ordinary file to write to.

To test this, issue the following UNIX command from a USS console:
echo ’This is a test message’ >>/dev/console

The UNIX messages have the MVS message ID BPXF024I and are multiline
messages.

Figure 15 on page 106 shows an example of the output of the UNIX command in
the system log.

Setting Up z/OS UNIX Automation

Chapter 8. How to Automate USS Resources 105

|
|

Debugging
Debugging can be activated for z/OS UNIX monitoring and command execution
on the AOCTRACE panel. The automation procedure for monitoring is
AOFUXMON and for command execution AOFRSUSS.

Turning on debugging for AOFRSUSS implicitly turns on debugging for ingccmd
(the SA z/OS command server).

The debugging messages are written to the netlog and to the z/OS UNIX system
log (syslogd).

M 13:45:21.34 STC03602 00000090 BPXF024I (USER) Feb 13 13:45:21 SYS1 syslogtest 67109100 : This is
S 498
D 498 00000090 a test message

Figure 15. Example of a UNIX Message

Hints and Tips

106 System Automation for z/OS: Customizing and Programming

Chapter 9. How to Enable Sysplex Automation

This chapter describes enhancements to Parallel Sysplex® automation, how to use
the SA z/OS customization dialogs to enable them, and how to customize your
system.

Note: If you use a host code page other than 037, the hexadecimal representation
of the at sign (@) can be different. Use the letter represented by the hex code
X'7C' for the at sign.

Sysplex Functions
The following functions are described:
v “Managing Couple Data Sets”
v “Managing the System Logger” on page 108
v “Managing Coupling Facilities” on page 109
v “Recovery Actions” on page 111
v “Hardware Validation” on page 115

Managing Couple Data Sets
Couple data sets (CDSs) contain control information about the sysplex and its
resources, and are of crucial importance for the functioning of a Parallel Sysplex.
Particularly important are the SYSPLEX couple data set, which contains
information about the systems and the communication structure (XCF groups) of
the sysplex, and the CFRM couple data set, which specifies its coupling facilities
(CFs) and structures (see “Managing Coupling Facilities” on page 109). Every MVS
system in a Parallel Sysplex must have access to these CDSs, and to those of all
other implemented sysplex functions, such as SFM and Application Response
Measurement (ARM).

If a member system cannot access a CDS, the corresponding sysplex function is
impacted, and in some cases the sysplex goes down. It is therefore recommended
that you define two CDSs to XCF for every CDS type required for the
implementation of the sysplex. One of these, the primary CDS, is the one that is
actually used. The other, which is called the alternate CDS, serves as a backup copy.
The two CDSs contain the same data. Whenever the primary CDS changes, XCF
updates the alternate CDS accordingly. If an alternate CDS is available for a certain
type, XCF automatically switches to this alternate CDS whenever a member can no
longer access the primary CDS.

All CDSs except the sysplex couple data set contain one or more user-defined
configurations, called policies. For each CDS type, only one policy can be active.
However, it is possible to switch the active policy at run time. Refer to IBM Tivoli
System Automation for z/OS Operator’s Commands for further information about the
INGPLEX command.

SA z/OS offers two functions for easier CDS management:
v Automated creation and recovery of alternate couple data sets for continuous

availability
v INGPLEX CDS, which simplifies management of couple data sets

© Copyright IBM Corp. 1996, 2011 107

Ensuring Continuous Availability of Couple Data Sets
When an alternate CDS exists for a given CDS type and the current primary CDS
fails, XCF makes this alternate the primary CDS. After this switch, however, an
alternate CDS no longer exists, and if the current primary CDS also fails, the
problems that were to be avoided by the creation of an alternate occur again. To
avoid this single-point-of-failure situation, SA z/OS provides a recovery
mechanism that tries to ensure that an alternate CDS is always available for every
CDS type used.

SA z/OS creates a new alternate CDS in the following two situations:
v During initialization, SA z/OS checks that an alternate CDS is specified for

every primary CDS. If there is a primary CDS for which no alternate CDS exists,
SA z/OS automatically creates it.

v At run time, SA z/OS ensures that a new alternate is created whenever the
current alternate has been removed or switched to the primary one.

Customization
Recovery of alternate CDSs is initiated either by the CDS function of INGPLEX or
in the background (for example, at initialization time). Background recovery can be
switched on and off by using the SA z/OS customization dialogs. Automatic
re-creation with INGPLEX CDS is always enabled.

You must specify the spare volumes that SA z/OS may use for creating missing
alternate CDSs (using the policy item SYSPLEX from the Policy Selection panel for
sysplex groups). This is also required for automatic creation with INGPLEX CDS.
Every CDS type has its own pool of spare volumes. Note that if you do not define
spare volumes for a CDS type, no recovery is performed for this type. For details
on the use of the customization dialogs, see “Enabling Continuous Availability of
Couple Data Sets” on page 118.

You can control access to those functions of INGPLEX CDS that modify the sysplex
configuration. Refer to Appendix A of IBM Tivoli System Automation for z/OS
Planning and Installation for details.

Managing the System Logger

Terms and Concepts
The system logger provides a sysplex-wide logging facility. Applications that use the
system logger write their log data into log streams. Within a Parallel Sysplex, these
log streams are usually associated with a coupling facility structure. For further
information about coupling facility structures, refer to “Managing Coupling
Facilities” on page 109. By using a coupling facility log stream, members of a
multisystem application can merge their logs even when residing on different
systems.

When an application writes data to a log stream this data is stored at first
temporarily in the associated structure (coupling facility log stream) or a local
buffer (DASD-only log stream). From there, it is off-loaded into a log stream data
set which is automatically allocated by the system logger. When this log stream
data set is full, the system logger allocates a second one, and so on.

The control information for the system logger, which includes a directory for the
log stream data sets of every log stream, is contained in the LOGR couple data set.
The total number of log stream data sets that can be allocated by the system logger
is determined when the LOGR couple data set is formatted.

Managing Couple Data Sets

108 System Automation for z/OS: Customizing and Programming

Two problems that can arise in connection with the log stream data sets are a
shortage of directory space in the LOGR CDS and incorrect share options for the
log stream data sets. SA z/OS provides the following recovery actions for these
problems:
v The primary and alternate LOGR CDSs are automatically re-sized if there is a

directory shortage
v The operator is notified if the share options for log stream data sets are not

defined correctly

Resizing the LOGR Couple Data Sets in Case of Directory
Shortage
The LOGR CDS contains information about the log stream data sets used by the
system logger. This information is stored in directory extents. Every directory extent
record can hold information about up to 168 log stream data sets. The number of
directory extents available in a LOGR CDS is specified when the CDS is formatted
(DSEXTENT parameter). When all available directory extents are used up the system
logger can no longer allocate new log stream data sets. This can cause considerable
problems for applications that use the system logger.

With SA z/OS, you can avoid this situation. If you switch on logger recovery,
SA z/OS automatically reformats your primary and alternate LOGR CDS with an
increased DSEXTENT parameter whenever the system reports a directory shortage.

Customization
Automation of system logger recovery is enabled through the SA z/OS
customization dialogs. For more details, see “System Log Failure Recovery” on
page 162.

Managing Coupling Facilities
A coupling facility (CF) is a logical partition that provides storage for data exchange
between components of an application that is distributed across different systems
in a Parallel Sysplex. A Parallel Sysplex can contain more than one CF. The storage
of a coupling facility is divided into areas that are called structures. You can
imagine a structure as a special kind of data set. It is these structures, which are
identified by their name, that are accessed for reading and writing by the
application components.

The association between CFs and structures is dynamic. A structure that is used by
an application need not be allocated at all (for example, when the application is
not running), and can be allocated on different CFs at different points in time. For
every structure, there exists a preference list that defines the CFs on which it may be
allocated. The order of the CFs in that list determines which CF is selected when
more than one member of the list satisfies all allocation requirements (for example,
provides enough space).

The preference list, the space requirements, and other properties of the structures
are defined in the active CFRM policy. This policy is contained in the CFRM
couple data set. Refer to “Managing Couple Data Sets” on page 107 for further
information.

XES allocates a structure that does not yet reside on any CF when an application
component needs to be connected to it. Note that the application component only
specifies the name of the structure that it wants to access. It is XES that decides on
which CF the structure is allocated. This decision is influenced by the structure
definition in the active CFRM policy. After the structure has been allocated, the

Managing the System Logger

Chapter 9. How to Enable Sysplex Automation 109

requesting application component can access it, and further components of this
application can require to connect to it. An application component that has access
to an allocated structure is referred to as an active connector to this structure.

In the simplest case, XES deallocates a structure when all connected application
components have disconnected from the structure. However, an application
component can require that the structure or its own connection to the structure be
persistent. When the structure is persistent it remains allocated even when the
application component is no longer connected to it. When a connection is persistent
the structure remains allocated after a failure of that connection. The application
component in question remains a connector to the structure, although not an active
one. It is now a failed persistent connector. In both cases, you can force the
deallocation of the structure as soon as it no longer has active connectors.

Allocated structures can be rebuilt. Rebuilding is the process of reconstructing a
structure on the same or another CF. A rebuild consists of three main steps. First,
XES allocates the new structure instance. Then, the data of the old structure is
reconstructed in the new structure. Finally, XES deallocates the old structure
instance. Note that you cannot specify the target CF in your rebuild request. As
with structure allocation, XES selects it from the preference list.

There are two methods for rebuild: user-managed and system-managed. With
user-managed rebuild, the active connectors are responsible for reconstructing the
data. With system-managed rebuild, XES transfers the data to the new structure
instance. System-managed rebuild is thus also available for structures without
active connectors. These structures can either themselves be persistent or have
failed persistent connections.

When an application component connects to a structure, it specifies whether it
allows the structure to be rebuilt through user-managed or system-managed
rebuild. For structures with active connectors, both rebuild methods require that all
active connectors allow the respective rebuild method.

You can also duplex structures. Duplexing means maintaining two instances of the
same structure on different CFs at the same time. Duplexing serves to increase
availability and usability of a structure.

Typical management tasks for CFs are removing a CF from the sysplex and
reintegrating it again. These tasks have several steps that must be performed in a
certain order and can be quite complex. To simplify these operations, SA z/OS
offers the INGCF command. INGCF has several functions, which serve to
manipulate structures and the CFs themselves. For more information, see IBM
Tivoli System Automation for z/OS Operator’s Commands and the online help.

Some functions deal with the sender paths of a coupling facility. They have the
following limitations. First, at least one system in the sysplex that is running the
automation must know the control unit ID (CUID) of the coupling facility. If this is
not the case, no missing sender paths can be resolved.

A missing sender path occurs when a coupling facility is deactivated prior to a
system IPL (or reIPL) and then activated afterwards. The system that has been
IPLed (or reIPLed) does not recognize the coupling facility. To determine the
missing sender paths, the automation calls the HOM interface of HCD. Resolving
the missing path information is only possible when either the complete network
address is defined in HCD along with the processor ID, or you provide the CPC

Managing Coupling Facilities

110 System Automation for z/OS: Customizing and Programming

synonym used by the automation as the processor ID. However, it is recommended
that you define both. If neither is defined, the system that misses the sender paths
must run the automation.

Recovery Actions

Resolving WTO(R) Buffer Shortages
When all WTO(R) buffers are in use, it is possible that commands can no longer be
processed. To resolve this, there are several options: you can extend the buffer,
change the properties of the affected consoles, or cancel jobs that issue WTO(R)s.

SA z/OS provides recovery of buffer shortage in two stages. It first tries to extend
the buffer and modify the console characteristics, if applicable. If this does not
help, it then cancels jobs that issue WTO(R)s. You must specify which jobs can be
canceled by SA z/OS if there is a buffer shortage.

Customization: Automation of buffer shortage recovery is enabled using the
SA z/OS customization dialogs. For more information, see “Enabling WTO(R)
Buffer Shortage Recovery” on page 119.

Handling Long-Running Enqueues (ENQs)
This type of recovery is divided into the following individual functions:
v Long-running enqueue recovery
v "Hung" command recovery
v Command flooding recovery

All these recoveries can be enabled and disabled individually or globally.

The long-running enqueue recovery function lets you:
v Check which resources are blocked
v Customize automation to cancel or keep the jobs that block the resource
v Customize automation to dump the jobs before they are canceled

You can determine which resources you want to monitor. You can define a value
for the maximum time a job can lock a resource while other jobs are waiting for it.
If this amount of time is exceeded, recovery takes place. Identification of and
elimination of these potential bottlenecks helps to reduce the risk of a Parallel
Sysplex outage.

While the time definition describes an inclusion list, you also have the possibility
to define an exclusion list of resources that are not monitored at all.

For more information about enabling the ENQ function, see “Enabling Long
Running Enqueues (ENQs)” on page 123.

This function has been extended by two supplementary functions:
v “"Hung" Command Recovery”
v “Command Flooding Recovery” on page 112

"Hung" Command Recovery: The purpose of this function is to detect hung
commands that often result in multisystem outages. We distinguish three
situations:
1. Commands that inhibit other commands from completing execution
2. Commands that inhibit jobs from completing execution

Managing Coupling Facilities

Chapter 9. How to Enable Sysplex Automation 111

|

|

|

|

|

|

3. Jobs that inhibit commands from completing execution

Automation examines ENQ contention associated with command processing and
builds a list of blockers and waiters. The SA z/OS policy is then examined to see
how long waiting commands and waiting jobs are allowed to wait before
automated action is taken. The policy is also examined to determine what action
(DUMP, NODUMP, KEEP or exclude) is to be taken against the blocking command
or job, as follows:
1. When a command inhibits other commands from completing and no policy

definitions exist for any of the waiting commands, no automated action is
taken.

2. When a command inhibits jobs from completing and no policy definitions exist
for the blocking command, no automated action is taken.

3. When a job inhibits commands from completing and no policy definitions exist
for any of the waiting commands, no automated action is taken.

If long-running ENQ and hung command recovery detect that the same resource
requires automated action at the same time, the hung command recovery policy
definitions take precedence and hung command recovery automates the resource.

The action taken (DUMP, NODUMP, KEEP or exclude) is identical to the
long-running ENQ recovery action.

In either case only commands that are waiting on blocked resources are
considered. "Hung" command recovery only considers those resources that are not
being monitored by long-running ENQ recovery. If long-running ENQ recovery is
disabled then all resources, even those defined as long-running ENQ resources, are
considered for "hung" command recovery. It is also important to realize that if
long-running ENQ recovery is enabled and a generic "catchall" resource definition
applies, then "hung" command recovery cannot occur, because long-running ENQ
recovery always take precedence.

Commands are executed by the master and console address spaces. Thus when a
resource blocker is from either of these address spaces it is considered to be a
blocking command rather than a blocking job.

As with resources, you can make similar definitions for commands that determine
how long a command is permitted to lock a resource while other commands are
waiting for the resource.

If the resource blocker is a job then recovery actions are only taken when the job
has blocked the command for 3 consecutive iterations of "hung" command
recovery processing. This results in a job blocking a command for no more than 90
to <120 seconds.

Recovery action for the blocking job or the job that issued the blocking command
is the same as that specified for long-running ENQ recovery automation.

Command Flooding Recovery: The purpose of this function is to detect jobs that
flood a command class. Command flooding can cause log buffer shortages and
inhibits other commands from executing. Both can lead to a multisystem outage.

When all (50) TCBs that are reserved for command processing are in use, new
commands are queued to the waiting queue. In this case the system issues message
IEE806A which triggers this function to evaluate what jobs are causing the
situation.

Recovery Actions

112 System Automation for z/OS: Customizing and Programming

Jobs that just issue a set of commands, such as 200 (or more) "VARY dev,ONLINE"
commands should not be considered during the evaluation. This is achieved by
comparing the current and the previous snapshot of the affected command class.

Snapshot processing is scheduled when message IEE806A is trapped. The interval
time between the snapshots is 3 seconds by default (see “Enabling Long Running
Enqueues (ENQs)” on page 123 for details about adjusting this value if necessary).
The interval should give these jobs enough time to finish issuing commands before
the first snapshot is taken. Only jobs that issue commands on two consecutive
snapshots become subject of the recovery action.

Before the recovery action takes place, the number of commands that are issued by
the job must exceed a threshold (see below) and at least one of the commands
must not be involved in a lock contention that is handled by the "hung" commands
recovery.

The recovery action depends on the job definitions (see “Enabling Long Running
Enqueues (ENQs)” on page 123). If the job can be canceled, the recovery also
removes its waiting commands and terminates its executing commands. The
recovery action is completed either with message ING922E or with message
ING924E. The latter message is repeatedly issued approximately every minute until
the waiting queue becomes empty.

The threshold is calculated by subtracting the number of jobs that are issuing
commands in the command class from the total number of TCBs (50) that are
reserved for command processing. This prevents jobs that repeatedly issue few
commands from being evaluated.

The recovery ends when the message IEE061I is issued.

Note: The dump definitions are not in effect if a dump should be taken when the
job is canceled. This is because the recovery routine of the job that is being
canceled can suppress the dump.

Customization: Automation of handling long-running enqueues is enabled
through the SA z/OS customization dialogs. For more details, see “Enabling Long
Running Enqueues (ENQs)” on page 123.

Managing System Removal
The purpose of this function is to isolate failed systems from a Parallel Sysplex by
removing them as quickly as possible. It also ensures fast mean time to recovery
(MTTR) for those system images that you wish to restart immediately if an
unavoidable outage occurs.

Note: This function is unavailable when running on a z/OS image which runs
under z/VM, even if the function is enabled.

In particular, the function automates the messages IXC102A and IXC402D.

The automation of the IXC102A message completes the Sysplex Failure
Management (SFM). Under certain circumstances SFM cannot complete the
isolation of a failed system. This is because SFM's HW isolation, resetting the
channel subsystem (CSS) of the failed system, is driven through the CF. When
connectivity between the system image and the coupling facility is lost, SFM
cannot perform the hardware isolation (ISOLATE command) and defers resetting
the system image until manual operator intervention occurs. Message IXC102A

Recovery Actions

Chapter 9. How to Enable Sysplex Automation 113

|

tells the operator to manually reset the HW and then reply "DOWN" to the
message, after which SFM safely partitions the system image out of the sysplex.
The longer the delay lasts, the more the components and applications that rely on
XCF messaging are impacted. The delay can eventually lead to a sysplex outage
when the failed system has I/O operations pending. Automation of this message
minimizes the delay.

Message IXC402D has the same impact as IXC102A. However, this message
indicates a possible temporary inoperative status of the system due to a missing
status update. For this reason the automation gives the system the chance to
recover before the removal takes place by replying "INTERVAL=sss" to the first
occurrence of message IXC402D. The interval time, sss, is the failure detection
interval that is displayed by the command D XCF,CPL.

The automation does the removal of a system in two stages. The first stage clears
any pending I/O operations by sending a hardware command to the Support
Element. This requires information about the software running on the hardware.
Because the system issuing message IXC102A or IXC402D does not necessarily
have access to the hardware of the failed system, the automation needs predefined
mapping between software and hardware. Depending on this mapping, it then
routes the hardware command to the system that has access to the hardware of the
failed system. For information about how to do the mapping refer to “Enabling
System Removal” on page 121. For further information about the hardware
requirements refer to IBM Tivoli System Automation for z/OS Planning and
Installation.

The second stage replies to the outstanding WTOR with "DOWN" triggering the
removal of the system from the sysplex.

Customization: Automation of message IXC102A is enabled through the SA z/OS
customization dialogs. For more details, see “Step 4: Automating IXC102A and
IXC402D Messages” on page 122.

Recovering Auxiliary Storage Shortage
With the automation of local page data sets, SA z/OS prevents auxiliary storage
shortage outages by dynamically allocating spare local page data sets when
needed. The function checks which jobs cause the shortage condition and whether
additional page data sets can be added. If this is not possible, the job that is
causing the shortage is canceled if this has been defined.

To enable local page data set automation customize the PAGTOTL parameter
(defined in one of the IEASYSxx PARMLIB members used during IPL). Make sure
to set the PAGTOTL parameter to a value greater than the number of local page
data sets currently used.

Local page data sets must be defined in the master catalog and should not be
SMS-managed. It is recommended to use preallocated local data sets instead of
dynamically allocated ones. This makes the process faster because formatting
newly allocated page data sets is time-consuming (10sec./35MB). Each predefined
local page data set should be allocated with 10% space of local page space
currently used by the system. If predefined page data sets can no longer be
allocated, new local page data sets are created dynamically.

Customization: Automation of the recovery of auxiliary storage shortage is
enabled through the SA z/OS customization dialogs. For more details, see
“Enabling System Removal” on page 121.

Recovery Actions

114 System Automation for z/OS: Customizing and Programming

|
|
|
|
|
|

Hardware Validation
This function performs cross-validation of the hardware configuration mapped out
in the customization dialogs against the actual hardware configuration that is
running. This information is critical to accurately control logical partitions (LPARs)
on any supported CPC within the HMC/SE LAN over the BCP Internal Interface.

Hardware validation uses the CPC name, Partition name and Partition number to
ensure that the LPARs defined in the customization dialogs are on the correct CPC
and located on the correct partition number. However, this helps only for coupling
facilities because their partition identifiers must be defined in the active CFRM
policy.

For MVS images, information from the HMC/SE (such as system name and
sysplex name that are stored during initialization) is used to verify the
corresponding customization dialog definitions. During initialization of the
automation's Hardware Command Interface and just before a disruptive request is
sent to a partition, new checks are made to ensure that everything matches
correctly.

Note: Only active images can be verified. For inactive images we must still rely on
definitions made in the customization dialogs.

An active system in this context is a system belonging to the same sysplex
as the system that runs the hardware validation, that is SA z/OS checks
only systems and coupling facilities within its own sysplex.

Hardware validation runs on an SA z/OS system primarily during startup, and
subsequently when changes to the definition in the customization dialogs are
applied through the INGAMS REFRESH command. The validation checks the
definitions of all registered systems, that is whenever an SA z/OS system
performs the hardware validation, it validates all systems and coupling facilities
that are active in the sysplex at this point in time. Registered systems are systems
running msys for Operations or SA z/OS that have joined the same XCF group.

The validation of active systems and coupling facilities requires that the CPCs that
host the active systems must all be defined in the customization dialogs.

The data for inactive systems cannot be verified. However, these definitions are
checked for consistency across all registered systems. As soon as one of these
inactive systems or coupling facilities joins the sysplex or is made available for use,
the validation is run for the particular image only.

Retrieving actual hardware information can take up to 5 minutes per CPC
depending on the model and its LPARs. During the time that the hardware
validation takes place all other hardware-related automation is either delayed or
cannot be performed, depending on the type of recovery. For this reason the
validation carries out "delta" processing. That is validating only the data that has
changed. This also includes the absence of data resulting in terminating CPC
connections when CPC definitions are missing that have been applied by a prior
validation. The actions resulting from the validation are performed on ALL
registered systems. This has two advantages:
v you don't need to recycle NetView for changes in hardware definitions.
v you only need to make the changes available to one system.

Hardware Validation

Chapter 9. How to Enable Sysplex Automation 115

The first part of the hardware validation triggered by the ACF command or the
automation startup determines what CPC connections must be terminated and
initiated, namely in this sequence. The resulting actions are performed on all
registered systems. When this step has been completed successfully the image
validation is performed.

The image validation collects actual hardware information, and verifies the current
hardware definitions against the actual data and the definitions found on all other
registered systems. It informs you if:
v A real system or coupling facility could not be validated because either actual

hardware information or user definitions are not available
v The image definitions could not be evaluated because the actual hardware

information is not available
v The real system or coupling facility is not active and the image definitions of

some of the registered systems are different
v Any definition value has been corrected that was improperly defined or not

defined at all

Changes in hardware definitions can be made available to all registered systems by
simply invoking the command INGAMS REFRESH on only one of the these
systems. There is one exception: the change of the authorization token value used
for the communication with a particular CPC. A change of this value requires 3
steps:
1. In the first step you must remove the particular CPC definition and then

invoke the ACF command as above.
2. When the command completes successfully the next step is to change the

authorization token value of the CPC at the Support Element.
3. The final step is to define the CPC again with the new token value and invoke

the ACF command again.

Note: This behavior of the INGAMS command applies to the hardware definitions
only.

The second part of the validation is triggered by either the message IXC517I that is
issued when a coupling facility is made available for use, or by the automation
itself when notified that a system joined the sysplex. Both trigger the automation
to perform only the validation of the new system or coupling facility. Multiple
occurrences of messages for the same system or coupling facility are ignored while
this system or coupling facility is validated. In case of a new system, the advantage
here is that the real hardware is validated before the system starts NetView and
the automation. If this automation then detects no difference between its current
definitions and the definitions of the other registered systems—which is the normal
case—only a consistency check takes place. This check does not require any real
hardware information.

Prerequisites

Note: Hardware validation is not supported on MVS systems running under
z/VM.

Hardware Validation

116 System Automation for z/OS: Customizing and Programming

Enabling Hardware-Related Automation
To enable the sysplex automation that SA z/OS provides for recovery actions and
coupling facility management, the following definitions must be made in the
customization dialog.

Step 1: Defining the Processor
Use the customization dialog to define a new processor of Entry Type PRO. The
name should be the real physical name of the processor defined in HCD. For more
information, refer to the online help or the section "Creating a New Processor" in
IBM Tivoli System Automation for z/OS Defining Automation Policy.

Step 2: Using the Policy Item PROCESSOR INFO
Use the Processor Information panel, to define a processor using entry type PRO.

Note: The connection type protocol must be INTERNAL
For more information, refer to the online help or the section "More about Policy
Item PROCESSOR INFO" in IBM Tivoli System Automation for z/OS Defining
Automation Policy.

Step 3: Defining Logical Partitions
If the processor that you have defined runs in LPAR mode, define its logical
partitions using the LPAR Definitions panel. You should define all LPARs that are
physically available on your processor, together with the systems that run on them.

For more information, refer to the online help or the section "More about Policy
Item LPARS AND SYSTEMS" in IBM Tivoli System Automation for z/OS Defining
Automation Policy.

Step 4: Defining the System
Define a system using entry type SYS, and the Define New Entry panel.

Note: To avoid receiving hardware validation messages during SA z/OS
initialization, you should define all your systems (including your coupling
facilities).

For more information, refer to the online help or the section "Creating a New
System" in IBM Tivoli System Automation for z/OS Defining Automation Policy.

Step 5: Connecting the System to the Processor
Connect this system to the processor that you defined in “Step 2: Using the Policy
Item PROCESSOR INFO” and to its logical partition (if you set the processor mode
as LPAR).

Connect this system to the sysplex or standard group (see “Step 6: Defining
Logical Sysplexes” on page 118 and “Step 7: Defining the Physical Sysplex” on
page 118).

Note: MVS SYSNAME and the Image/ProcOps Name must be the same.

Restriction:

Enabling Hardware-Related Automation

Chapter 9. How to Enable Sysplex Automation 117

Usually, the MVS SYSNAME may begin with a number. However, in this case, it
must be the same as the Image/ProcOps Name, which cannot begin with a number.
Therefore, this naming restriction also applies to the MVS SYSNAME.

Step 6: Defining Logical Sysplexes
Define EACH logical sysplex (systems within the same XCF group ID) using entry
type GRP with group type SYSPLEX.

Use policy SYSPLEX to enter the real physical sysplex name. You can use the same
name in several SYSPLEX GRPs.

Use policy SYSTEMS to connect all systems within the same XCF group ID to the
SYSPLEX GRP. A system can only be connected to one SYSPLEX GRP.

Step 7: Defining the Physical Sysplex
Define your real physical sysplex using entry type GRP with group type
STANDARD.

Use policy SYSTEMS to connect all systems of your physical sysplex to the
STANDARD GRP.

Enabling Continuous Availability of Couple Data Sets
Couple data sets (CDSs) contain important information about how to manage
certain aspects of your sysplex. For example, the SFM CDS (sysplex failure
management couple data set) defines how the system manages system and
signalling connectivity failures and PR/SM™ (Processor Resource/Systems
Manager™) reconfiguration actions.

The following couple data sets are particularly important for the functioning of
your Parallel Sysplex:
v The SYSPLEX couple data set, which defines the systems and the XCF groups of

the sysplex
v The CFRM couple data set, which defines the coupling facilities and structures

of the sysplex

It is recommended that you define alternate couple data sets for all couple data
sets in your sysplex. These alternate couple data sets serve as backups when the
primary CDS fails.

With the customization dialog you can specify a series of spare volumes for every
CDS type, for example, SYSPLEX, ARM, CFRM. The first volume in the series is
used to create an alternative CDS if one of the primary alternate CDSs fails.

In the customization dialog you define the potential alternate couple data sets
using the Group entry type. Select a sysplex group, then select its policy item
SYSPLEX (define sysplex policy) from the panel Policy Selection.

The Sysplex Policy Definition panel is displayed if you select policy item SYSPLEX
from the Policy Selection panel for sysplex groups.

For a description of this panel refer to the online help or the section "More About
Policy Item SYSPLEX" in IBM Tivoli System Automation for z/OS Defining Automation
Policy.

Enabling Hardware-Related Automation

118 System Automation for z/OS: Customizing and Programming

Enabling WTO(R) Buffer Shortage Recovery
You can customize the WTO(R) buffer shortage recovery of SA z/OS with the
MESSAGES/USER DATA policy item of the customization dialog for the MVS
Component entry type (MVC). Code definitions for the message ID WTOBUF are
used to specify jobs that are canceled or kept in case a WTO(R) buffer shortage is
threatening. The jobs that you select for cancellation will then no longer issue
WTO(R)s.

Specify code definitions for message ID WTOBUF with the following values:

CODE1
Specifies the name of the job which might or might not be canceled.

CODE2
This must be WTO, WTOR, or * to indicate which requests the job (or jobs)
might or might not be canceled for. Use just * to specify WTO and WTOR
requests.

CODE3
This must be blank.

Value Returned
This must be CANCEL to indicate that the job (or jobs) might be canceled
or KEEP to indicate that they might not.

Example:

Code 1 Code 2 Code 3 Value Returned
JOB1 WTOR KEEP
JOB2* WTO KEEP
JOB3* * CANCEL
JOB4* * KEEP
* * KEEP

To set up the default behavior for all jobs not explicitly defined, a specification of
CODE1=* and CODE2=* is needed. To indicate that all other jobs might be
canceled specify CANCEL in the Value Returned field, otherwise specify KEEP.

The job name *MASTER* cannot be entered in the Code 1 field. Even if your
default behavior is set up to cancel all jobs that have not been explicitly defined, a
cancel command is not issued against *MASTER* if it is the job name being
checked. This is because *MASTER* is non-cancelable.

WTO Recovery is performed when different messages are received by SA z/OS.
The action taken when each of these messages is received is described inTable 14
on page 120.

Enabling WTO(R) Buffer Shortage Recovery

Chapter 9. How to Enable Sysplex Automation 119

|
|
|
|
|
|

|

|
|

|
|
|
|

|
|

|
|
|

|

|
|
|
|
|
|
||

|
|
|

|
|
|
|

Table 14. WTOBUF Recovery Process

Recovery Message Command

WTO IEA405E Set the console attributes.

If the deletion mode is not roll or wrap, set the mode to roll. K S,DEL=R,L=x

If any out-of-line display area exists, delete the status display. K E,D,L=x

If the interval between message rolls is greater than 1 second and
not '*' , set the interval to 0.25 seconds.

K S,RTME=1/4,L=x

If the console receives messages not only from the local system
and the WTO message buffer size has reached its maximum,
remove the buffering systems from the list and add the local
system to the list.

V CN(x),MSCOPE=(l)

IEA404A Suspend the console.

Requeue the messages to the hardcopy log. K Q,L=x

Vary the active console (COND=A) offline. For SMCS consoles,
issue the appropriate VTAM command.

V {CN(x),OFFLINE
|NET,TERM,LU1=x,
TYPE=FORCE

}

Cancel the job or TSO user that caused the shortage, but only
when defined as a candidate during customization.

C {jobnm,A=asid
|U=userid
}

IEA406I Resume the console if it was suspended and if it is not a SMCS
console.

V CN(x),ONLINE

Restore the console attributes.

Set the deletion mode to the value before the buffer shortage
occurred.

K S,DEL=old,L=x

Set the interval between message rolls to the value before the
buffer shortage occurred.

K S,RTME=old,L=x

Set the list from which the console is to receive unsolicited
messages to the list before the buffer shortage occurred.

V CN(x),MSCOPE=(l)

Increase the WTO message buffer size to minimise future shortages
as follows:

new = min(9999
,max(1500

,1.2 * current MLIM
)

)

K M,MLIM=new

Issue the message AOF929 for permanent changes (MLIM).

WTOR IEA230E Increase the maximum number of reply IDs to the maximum
allowable value if the maximum number of systems in the sysplex
is greater than 8 or the system runs in local mode.

K M,RMAX=9999

Increase the WTOR message buffer size if the current RMAX value
is greater than the current RLIM value as follows:

new = min(9999
,max(10 + 2 * maxsys_in_sysplex

,1.2 * current RLIM
)

)

K M,RLIM=new

IEA231A Cancel all jobs and TSO users that have outstanding WTORs and
that are defined as candidates during the customization.

C {jobnm,A=asid
|U=userid
}

IEA232I Issue the message AOF928 for irreversible changes (RMAX). Issue
the message AOF929 for permanent changes (RLIM).

Enabling WTO(R) Buffer Shortage Recovery

120 System Automation for z/OS: Customizing and Programming

||

||||

||||

||

||

|
|
|

|
|
|
|

|

|||

||

|
|
|
|
|
|

|
|
|
|
|

||
|
|

||

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

|

||

|||
|
|

|

|
|

|
|
|
|
|

|

||
|
|
|
|

||
|
|

Enabling System Removal
SA z/OS helps you to resolve pending I/Os for systems being removed from the
sysplex. See “Recovery Actions” on page 111 and “Managing System Removal” on
page 113 for further details.

Because the automation must know where the system is located to send the
command to the appropriate Support Element, you must use the customization
dialog to define its hardware configuration.

The BCP Internal Interface allows you to perform hardware operations from each
NetView in your sysplex member as long as its processor hardware supports this.
Refer to IBM Tivoli System Automation for z/OS Planning and Installation for more
information.

Hint:
If you want to use the IXC102A automation, make sure there is no processor
operation related IXC102A automation defined in your automation policy.
Likewise, if you want to continue to use the processor operations based
automation of messages IXC102A and IXC402D, the IXC102A automation flag
must be disabled.

Step 1: Defining the Processor and System
The processor and system must be defined as described in “Enabling
Hardware-Related Automation” on page 117.

Step 2: Defining the Application with Application Type IMAGE
Use entry type APL to define a new application with Application Type IMAGE and
subsystem name that is the same as the Image Name of the system that this
application represents (as defined in “Step 4: Defining the System” on page 117).

Use entry type APL and select policy item APPLICATION INFO for your system.
On the panel Application Information you can define a new application type IMAGE.
For more information, refer to the online help or the section "Policy Items for
Applications" in IBM Tivoli System Automation for z/OS Defining Automation Policy.

Because the application has been defined as type IMAGE, the job name is set by
default to the subsystem name and cannot be changed.

The Subtype, Scheduling Subsystem, JCL Procedure Name, ARM Element Name,
and WLM Resource Name are forced to be blank.

Some other definitions in the policy item APPLICATION INFO are also defaulted:
v the Job Type is forced to NONMVS
v the Monitor Routine is defaulted to INGMTSYS if nothing is specified
v the External Startup is defaulted to ALWAYS if the Monitor Routine is

INGMTSYS
v the External Shutdown is defaulted to ALWAYS if the Monitor Routine is

INGMTSYS

Enabling WTO(R) Buffer Shortage Recovery

Chapter 9. How to Enable Sysplex Automation 121

|

|
|
|

|
|
|
|
|

|

|

|

|
|

|
|

For more information, refer to the online help or the section "More About Policy
Item APPLICATION INFO" in IBM Tivoli System Automation for z/OS Defining
Automation Policy.

Step 3: Defining an Application Group
Because you can only automate applications by linking them to systems via an
application group, you need to define an application group for the IMAGE
applications.

Step 4: Automating IXC102A and IXC402D Messages
You can automate IXC102A and IXC402D messages to avoid sysplex outages.

Note: The following shows examples for defining commands and codes for
message IXC102A.

You can specify one of the following four hardware commands for each system in
the sysplex that is automated. If you specify nothing SYSRESET CLEAR is used.
v SYSRESET [CLEAR]
v DEACTIVATE
v ACTIVATE [P(image_profile_name)]
v LOAD [P(load_profile_name)]

Where:

CLEAR Indicates that the storage is cleared

P Specifies the profile to be used. The name can consist of up to 16
alphanumeric characters. If the parameter is omitted, the last used
profile is taken.

Note:
The following restriction applies to the hardware commands ACTIVATE and
LOAD:

Both commands invoke processor functions that can cause asynchronous
events such as operator messages at BCP (Basic Control Program) Internal
Interface initialization time or processor hardware wait states. Currently, the
BCP Internal Interface does not allow the monitoring and control of these
events.

Use policy item MESSAGES/USER DATA of the SA z/OS customization dialog
within the application type IMAGE you created to define commands and codes for
message IXC102A and IXC402D. Enter C or S in the Cmd column and IXC102A in
the Message ID column (or IXC402D for IXC402D message automation). For more
information, refer to the online help or the section "MESSAGES/USER DATA
Policy Item for Applications " in IBM Tivoli System Automation for z/OS Defining
Automation Policy. The definitions here also apply to message IXC402D.

Pressing Enter displays the CMD Processing panel, as shown in Figure 16 on page
123. Use this panel to specify a valid hardware command for the image in the
Command Text column and a "Pass/Selection" value that must match the "Value
Returned" definition specified on the Code Processing panel.

Enabling System Removal

122 System Automation for z/OS: Customizing and Programming

|
|
|

|

|
|
|

|

|
|

|

|

|

|

|

||

||
|
|

|
|
|
|
|
|
|

|
|
|
|

On the Message Processing panel enter k to define codes. Specify on the Code
Processing panel, as shown in Figure 17, the following:

If you want to automate messages IXC102A and IXC402D , you must enter IXC102A
for Code 1 and BCPII for Code 2 for both messages.

Step 5: Verify Automation table entries
Verify that the entries of IXC102A and IXC402D of the predefined messages are
used in your automation table and that the auto-operator AUTXCF and AUTXCF2
are defined (see *BASE sample policy).

Enabling Long Running Enqueues (ENQs)
If you automate long running ENQs, you must define the following:
v The resource or resources that are being checked
v The time frame when a long ENQ is detected

If you automate "hung" commands, you must define the following:
v The command (or commands) that are being monitored or excluded from

monitoring
v The time frame for each command that a command is granted for completion or,

if commands are to be excluded from monitoring, the exclusion keyword
v The action to be taken against this command if this command is determined to

be a blocker of other commands or jobs

In addition, the following definitions can be made:
v The names of jobs that should be canceled or kept when detecting a long ENQ,

a "hung" command, or command flooding
v The snapshot interval for a command class
v The title of the dump taken before the job is cancelled
v The default storage areas to be dumped
v Symbol definitions to be used when the dump specifications are provided by a

PARMLIB member

Use the entry type GRP in the customization dialog to define the following
policies:
v Resource definition
v JOB/ASID definitions
v IEADMCxx symbols
v Command definition
v Snapshot interval definition

Cmd Ps AutoFn/* Command Text
ACTCODE LOAD P(LOADPROF)

Figure 16. Sample Panel for Command Processing

Code 1 Code 2 Code 3 Value Returned
IXC102A BCPII ACTCODE

Figure 17. Sample Panel for Code Processing

Enabling System Removal

Chapter 9. How to Enable Sysplex Automation 123

|
|

|

|
|
|

Step 1: Defining Resources
Use the Long Running ENQ Resource Definition panel to define your resources.
This panel is displayed if you select policy item RESOURCE DEFINITIONS from
the Long Running Enqueue Policy section of the Policy Selection panel for sysplex
groups. For more information, refer to the online help or the section "More About
Policy Item RESOURCE DEFINITIONS" in IBM Tivoli System Automation for z/OS
Defining Automation Policy.

Step 2: Making Job/ASID Definitions
Use the Long Running ENQ Job/ASID Definitions panel that is displayed if you
select policy item JOB/ASID DEFINITIONS from the Long Running Enqueue
Policy section of the Policy Selection panel for sysplex groups. For more
information, refer to the online help or the section "More About Policy Item
JOB/ASID DEFINITIONS" in IBM Tivoli System Automation for z/OS Defining
Automation Policy.

Step 3: Defining IEADMCxx Symbols
Use the Long Running ENQ IEADMCxx Symbols panel that is displayed if you select
policy item IEADMCxx SYMBOLS from the Long Running Enqueue Policy section
of the Policy Selection panel for sysplex groups. For more information, refer to the
online help or the section "More About Policy Item IEADMCxx SYMBOLS" in IBM
Tivoli System Automation for z/OS Defining Automation Policy.

Step 4: Defining Commands
Use the Long Running Command Definition panel to define your commands. This
panel is displayed if you select policy item COMMAND DEFINITIONS from the
Long Running Enqueue Policy section of the Policy Selection panel for sysplex
groups. For more information, refer to the online help or the section "More About
Policy Item COMMAND DEFINITIONS" in IBM Tivoli System Automation for z/OS
Defining Automation Policy.

Step 5: Defining Snapshot Intervals
Use the Command Flooding Definition panel to define the individual snapshot
times. This panel is displayed if you select policy item COMMAND FLOODING
from the Long Running Enqueue Policy section of the Policy Selection panel for
sysplex groups. For more information, refer to the online help or the section "More
About Policy Item COMMAND FLOODING" in IBM Tivoli System Automation for
z/OS Defining Automation Policy.

Enabling Auxiliary Storage Shortage Recovery
To prevent auxiliary storage shortage outages you can predefine local page data
sets, using the SA z/OS customization dialog for entry type GRP to define the
following:
v local page data set
v job definitions

Step 1: Defining the Local Page Data Set
Use the Local Page Data Set Recovery panel that is displayed if you select policy
item LOCAL PAGE DATA SET from the Local Page Data Set Policy section of the
Policy Selection panel for sysplex groups. For more information, refer to the online

Enabling Long Running Enqueues (ENQs)

124 System Automation for z/OS: Customizing and Programming

help or the section "More About Policy Item LOCAL PAGE DATA SET" in IBM
Tivoli System Automation for z/OS Defining Automation Policy.

Step 2: Defining the Handling of Jobs
Use the Local Page Data Set Recovery Job Definition panel that is displayed if you
select policy item JOB DEFINITIONS from the Local Page Data Set Policy section
of the Policy Selection panel for sysplex groups. For more information, refer to the
online help or the section "More About Policy Item JOB DEFINITIONS" in IBM
Tivoli System Automation for z/OS Defining Automation Policy.

Defining Common Automation Items
There are definitions that relate to utilities running as a started task. The first one
(Temporary Data Set HLQ/TEMPHLQ) replaces the usage of the first qualifier of
the automation status file. The second definition (Started Task Job
Name/STCJOBNM) allows the unique assignment of started task job names
scheduled by the automation in case you have dedicated job name assignments
that conflict with the procedure names provided by the automation.

It is recommended that you define the Temporary Data Set HLQ/TEMPHLQ. If it
is not defined, the automation uses the first qualifier of the automation status file.

You can define both of these items using the Sysplex Policy Definition panel that is
displayed if you select the policy item SYSPLEX from the Policy Selection panel for
sysplexes. For more information, refer to the online help or the section "More
About Policy Item SYSPLEX" in IBM Tivoli System Automation for z/OS Defining
Automation Policy.

Customizing the System to Use the Functions

Additional Automation Operator IDs
To automate the Parallel Sysplex, you must define the additional automation
operator IDs. Refer to Table 7 of IBM Tivoli System Automation for z/OS Defining
Automation Policy. You can import these auto-operator definitions from the *BASE
sample policy provided.

Switching Sysplex Functions On and Off
Use the SA z/OS customization dialog to specify the following minor resource
names:

CDS For the recovery of alternate CDSs.

ENQ Enables the handling of the next four individual recoveries.

ENQ.CMDFLOOD
Enables the handling of commands that flood a particular
command class.

ENQ.HUNGCMD
Enables the handling of jobs and commands that inhibit other
commands from completing execution.

ENQ.LONGENQ
Enables the handling of long-running ENQs.

LOG For the recovery of the system log.

Enabling Auxiliary Storage Shortage Recovery

Chapter 9. How to Enable Sysplex Automation 125

|
|
|
|

LOGGER For the recovery of the system logger.

PAGE For the recovery of auxiliary storage shortage.

WTO For the recovery of WTO(R) buffer shortages.

XCF For automating messages IXC102A and IXC402D.

By default, all recovery actions are enabled. If you want to disable them, use the
customization dialog Flag Automation Specification and set the recovery flag to NO.

Note: You can change the automation recovery flag during run time by using the
command INGAUTO.

Customizing the System to Use the Functions

126 System Automation for z/OS: Customizing and Programming

Chapter 10. Automating Networks

Automation Network Definition Process 127
Defining an SDF Focal Point System. 128
Defining Gateway Sessions 129

Defining an Outbound Gateway Autotask 129
Defining Automatically-Initiated TAF Fullscreen
Sessions 130

Automation Network Definition Process
This section summarizes the steps for defining an automation network to
SA z/OS. More detail for each step of the process is provided later in this chapter.
1. Define your message forwarding paths between different systems. To do this,

you define:
v A primary focal point, where all notifications are sent.
v An optional backup focal point, used when the primary focal point is

unavailable.
v Target systems, which are monitored and controlled by the focal point

system.
v Gateway sessions between the systems.

“Defining Gateway Sessions” on page 129 describes how to define gateway
sessions.

2. Modify the NetView definitions to reflect your automation network
configuration. The chapter on how to install SA z/OS on host systems in IBM
Tivoli System Automation for z/OS Planning and Installation provides details.

For an example of the automation network definition process, see also the chapter
about installing SA z/OS on host systems in IBM Tivoli System Automation for z/OS
Planning and Installation.

These definitions create a path allowing message forwarding from target systems
to the focal point system.

A message forwarding path is best implemented by defining systems in the
following top-down manner:
1. Primary focal point system
2. Backup focal point system
3. Target systems

Defining the primary focal point first ensures that it is ready to handle forwarded
messages as soon as forwarding is turned on for the target systems.

If the message forwarding path is not yet implemented on all systems in an
automation network, messages are displayed to notification operators on the target
systems. Once the message forwarding path is implemented, notifications are
forwarded to the focal point system.

If the target systems are implemented first, additional overhead occurs because the
target systems unsuccessfully attempt to forward notifications, and the notifications
are logged in the NetView log.

© Copyright IBM Corp. 1996, 2011 127

Defining an SDF Focal Point System
The focal point system and backup focal point systems are defined using the
Network entry type in the customization dialog. Each system has a single entry in
the automation policy defining the next system or domain in the message
forwarding path. Figure 18 shows an example automation network. In this
example, the primary focal point system is CHI01. The backup focal point is
CHI02.

The corresponding focal-point forwarding definitions in the automation policy for
systems CHI02, ATL01 and ATL02 are as follows. You reach the required panel by
selecting the FORWARD policy item of a Network entry type.
v CHI02 automation policy:

v ATL01 and ATL02 automation policy:

Figure 18. Focal Point Forwarding Definitions for Systems

COMMANDS HELP
--
AOFPINE2 Notification Forwarding
Command ===>

Entry Type : Network PolicyDB Name : USER_PDB
Entry Name : FOCAL_NETWORK Enterprise Name : USER_ENTERPRISE

Enter the NetView domains for automation notification forwarding.

Primary Domain ==> CHI01 Current Domain ID
Backup Domain ==> &DOMAIN. Backup Domain ID

Figure 19. Notification Forwarding Panel for CHI02

COMMANDS HELP
--
AOFPINE2 Notification Forwarding
Command ===>

Entry Type : Network PolicyDB Name : USER_PDB
Entry Name : FOCAL_NETWORK Enterprise Name : USER_ENTERPRISE

Enter the NetView domains for automation notification forwarding.

Primary Domain ==> CHI01 Current Domain ID
Backup Domain ==> CHI02 Backup Domain ID

Figure 20. Notification Forwarding Panel for ATL01 and ATL02

Automation Network Definition Process

128 System Automation for z/OS: Customizing and Programming

In Figure 18 on page 128, the automation policies for system CHI01 do not have
any forward focal point definitions. This is because SA z/OS considers the current
system as the primary focal point and displays messages without forwarding them
if either or both of the following is true:
v The forward focal point is not defined in the automation policy for the system.
v The system specified in a forward focal point definition is the current system.

Defining Gateway Sessions
To define gateway sessions:
1. For each system, define the outbound gateway autotask (GATOPER) on the

Automation Operators policy object of the customization dialog. See “Defining
an Outbound Gateway Autotask” for details.

2. On the SA z/OS Network policy object, use the GATEWAY policy item to
define the destination systems that the originating system connects to.

3. Define operator IDs used for all inbound and outbound gateway autotasks
used on the system in the NetView DSIPARM data set member DSIOPF. See the
chapter on how to install SA z/OS on host systems in IBM Tivoli System
Automation for z/OS Planning and Installation for details.

Defining an Outbound Gateway Autotask
In any system, only the outbound gateway task is defined using the Automation
Operators entry type.

If GATOPER has not previously been defined, type the automation operator name,
gatoper, in the Automated Function field of the Auto Operator Definition policy item,
as shown in Figure 21.

You do not have to specify any messages for GATOPER. When you press Enter, the
Automation Operator NetView Userids panel is displayed automatically, as shown
in Figure 22 on page 130.

If GATOPER has previously been defined, select it by entering an S in the Action
column.

COMMANDS ACTIONS HELP
--
AOFPIAO0 Automation Operator Definitions Row 1 to 10 of 20
Command ===> SCROLL===> PAGE

Entry Type : Automation Operators PolicyDB Name : USER_PDB
Entry Name : CHI10OPS Enterprise Name : USER_ENTERPRISE

Actions: S = Select M = Move B = Before A = After I = Insert

Automated
Action Function Messages for this Operator (* notation ok)

gatoper

Figure 21. Automation Operator Definitions Panel

Automation Network Definition Process

Chapter 10. Automating Networks 129

Enter the NetView operator ID that is associated with the GATOPER function on
the Automation Operator NetView Userids panel.

Note:
This NetView operator ID must be unique within the enterprise.

For example, to define the outbound gateway autotask for system CHI01 in the
automation network shown in IBM Tivoli System Automation for z/OS Planning and
Installation, the values shown in Figure 22 are specified.

Defining Automatically-Initiated TAF Fullscreen Sessions
You can automatically establish Terminal Access Facility (TAF) fullscreen sessions
for applications that SA z/OS monitors, so that the operators need not define the
sessions on a daily basis.

These TAF fullscreen sessions are defined in the FULL SESSIONS policy item for a
Network policy object.

In addition to defining TAF fullscreen sessions using the customization dialog, you
follow the NetView process for customizing TAF fullscreen sessions, as outlined in
Tivoli NetView for z/OS Customization Guide.

Once TAF fullscreen sessions are set up, they can be managed using the TAF
Fullscreen Menu in the SA z/OS Operator Interface. See IBM Tivoli System
Automation for z/OS User’s Guide for more information on managing TAF fullscreen
sessions.

To define an application on the Fullscreen TAF Application Definition panel that
you reach by selecting the FULL SESSIONS policy item of a Network policy object,
specify the following:
v The session name, or the name of the application that a TAF fullscreen session is

to be established for, for example, TSO. This name is displayed in the

COMMANDS HELP
--
AOFPIAO1 Automation Operator Definitions
Command ===>

Entry Type : Automation Operators PolicyDB Name : USER_PDB
Entry Name : CHI10OPS Enterprise Name : ENTERPRISE_NAME

Automated Function: GATOPER
Messages assigned:

MVS Console Name . . Console for NetView cmds

Enter automation operators and NetView operator(s) to receive messages.

Automation Operators NetView Operators
Primary . . GAT&DOMAIN. Id 1 . .
Backup. . . Id 2 . .

Id 3 . .
Id 4 . .
Id 5 . .
Id 6 . .

Figure 22. Automation Operator NetView Userids Panel

Automation Network Definition Process

130 System Automation for z/OS: Customizing and Programming

Description field on the TAF Fullscreen Menu operator panel. This value can be
the same as that used for the application ID.

v The application ID. You can obtain this value from the library containing the
network definitions (VTAMLST) or from your network system programmer.

v The system name that the application runs on, for example, CHI01. This is an
information-only field and is displayed in the System field on the TAF
Fullscreen Menu operator panel.

For example, the following panel defines a TAF fullscreen session for TSO in
system CHI01:

COMMANDS HELP
--
AOFPINE3 Fullscreen TAF Application Definition Row 1 to 10 of 20
Command ===> SCROLL===> PAGE

Entry Type : Network PolicyDB Name : USER_PDB
Entry Name : FOCAL_NETWORK Enterprise Name : USER_ENTERPRISE

Enter the applications with which SA z/OS operators can establish TAF
sessions automatically using the operator interface.

Session Name Application ID System
TSO TAIN1 CHI01

Figure 23. Fullscreen TAF Application Definition Panel

Defining Automatically-Initiated TAF Fullscreen Sessions

Chapter 10. Automating Networks 131

132 System Automation for z/OS: Customizing and Programming

Chapter 11. Defining a VTAM Application to SA z/OS

VTAM applications need to have Application nodes activated for the application to
operate correctly. This is normally not a problem if an application is to run on a
single system. However, if the application is to be switched from one system to
another (via a move group or server group), the application node definition must
be deleted from the system that the application is moving from. If this is not done,
users may not be able to log on to the application because there is a definition for
the application node that is not active, that is, the application has not opened the
node ACB.

To alleviate this problem, the application node must be deleted from the old
system and created on the new system. Unfortunately, the only way to delete a
node in VTAM is to deactivate its major node, that is, the member that it is defined
in.

Newer releases of VTAM have introduced the concept of Model node definitions. In
this case a major node is created with the type of node and a name that includes
wildcards. Whenever a node of the type is accessed, VTAM will use the name
requested to match the models. It will then dynamically create a node based on the
model definitions with the name requested. When the node is no longer required it
will delete it. What this means for application nodes is that a model definition can
be defined once on each VTAM in the network that the application might be run
on. Then when the application is started and opens its ACB, VTAM will
dynamically create the node for it. Likewise when moving the application, upon
closing the ACB, VTAM will delete the node and another VTAM on another
system will dynamically create the node.

VTAM applications may require recovery commands to be issued if VTAM is
restarted, or the VTAM application node is reactivated. These commands differ
from subsystem to subsystem and can be specified in the Messages/User Data
policy items as described in the following section.

The INGVTAM command provides a method of activating the Major Nodes for an
application before the application is started, and deactivating the Major Nodes
after it is down. To enable the function you must code the INGVTAM command in
the prestart, ACORESTART, post-shut policies. In addition, if VTAM should ever
be restarted whilst the applications are running, the major nodes must be
reactivated. This can be accomplished by coding the INGVTAM command in the
UP messages/user data policy for the VTAM subsystem.

Registering VTAM Application Subsystems with SA z/OS Recovery
To enable VTAM application recovery to take place, the subsystems must be
registered with the SA z/OS recovery code. This is achieved by using the
INGVTAM command that is described in IBM Tivoli System Automation for z/OS
Programmer’s Reference. The following application policy items must be customized:
1. PRE-START policy

The PRE-START policy must have at least a NORMal start item with the
INGVTAM command to activate a list of major nodes. The following command
can be used as an example:
INGVTAM &SUBSAPPL REQ=ACTIVATE MAJNODE=(majnode1,majnode2,...)

© Copyright IBM Corp. 1996, 2011 133

Where majnoden are VTAM application major nodes. Each major node will be
varied active to VTAM when the subsystem prestart commands are issued.
Note, it is expected that only one of the major nodes will contain the minor
node that the VTAM application subsystem will use.

2. POST-SHUTDOWN policy
The POST-SHUTDOWN policy is used to deregister the subsystem with
SA z/OS VTAM application recovery. Use the INGVTAM REQ=DEACTIVATE
command in the policy. For example:
INGVTAM &SUBSAPPL REQ=DEACTIVATE

The DEACTIVATE request issues a vary net inactive for each major node
registered by the REQ=ACTIVATE. The vary is not done if the major node is
shared by other subsystems that have also registered the major node. When the
last subsystem registered issues an INGVTAM REQ=DEACTIVATE, the major
node will be varied inactive. The only exception to this is when the major node
contains model resources with wildcards in the node definition. In this case the
major node is never inactivated.

3. ACORESTART Messages/User Data policy
The ACORESTART message policy must have the same definition as the
PRE-START policy. This policy item is used to reregister the subsystem with
SA z/OS VTAM application recovery.

4. VTAMUP Messages/User Data policy
Enter commands that are issued when the VTAM subsystem is restarted.
Typically these commands reopen the VTAM ACB that the subsystem uses to
communicate with VTAM.

5. Relationships policy
Optionally enter a relationship for the subsystem to ensure that the prestart
commands are only issued when VTAM is up. The required relationship is:
PrepAvailable(WhenAvailable),Passive,Weak -> VTAM/APL/=

Where VTAM is the name of the VTAM subsystem and that is the supporting
resource. Passive forces the relationship to wait until VTAM is UP. Weak
specifies that only the supporting resource status is checked.

In addition the UP message for VTAM should have the following command:
INGVTAM REQ=ACTIVATE

When INGVTAM is executed with REQ=ACTIVATE and no positional subsystem,
it finds all the subsystems that had previously registered via INGVTAM and issues
Vary NET ACT commands for their major nodes. After this has been done, it will
execute any policy command(s) that is/are specified to USER MESSAGE VTAMUP
for the subsystems.

Defining a VTAM Application to SA z/OS

134 System Automation for z/OS: Customizing and Programming

Chapter 12. Shutting Down z/OS systems in a GDPS
Environment

SA z/OS allows you to shutdown z/OS systems either through the INGREQ ALL
command in a GDPS® production environment or from a GDPS controlling system.
There are three distinct phases in the final shutdown processing that are defined
using the special message id SYSTEM_SHUTDOWN message/user data policy
item for the MVS Component entry type:

Phase 0
This phase is entered prior to shutting down the resource that is identified
by the GDPS STOPAPPL parameter (the STOPAPPL resource). In this phase
you can perform any action before the actual system shutdown starts.

Phase 1
This phase begins when the resource that is identified by the GDPS
STOPAPPL parameter (the STOPAPPL resource) has been terminated. In
this phase you can specify additional INGREQ stop commands or any
other commands through NetView to terminate any subsystems that are
still present.

Phase 2
This phase begins after the takeover of OMVS and any local automation
manager (PAM and SAMs). Only NetView commands or z/OS commands
issued through NetView can be specified. For example, the MVS Z EOD
command.

Notes:

1. OMVS and all local automation managers are always shutdown by
SA z/OS automatically. Do not specify termination commands for
OMVS or automation managers in PHASE1 or PHASE2.

2. Be aware that the NetView address space is still present and must stay
up in order to signal the nearly termination of the system to GDPS.

The scenario is based on the provided best practice policies *BASE and *GDPS. For
more details refer to the MVC entry GDPS_SYSTEM_SHUTDOWN in the *GDPS
best practice policy.

Example Definition
The actions you take to shutdown z/OS systems from within GDPS are defined
using the SYSTEM_SHUTDOWN message/user data policy item for the MVS
Component entry type. These actions can include instructing SA z/OS to
shutdown resources out of the affected dependency path of GDPS STOPAPPL,
shutdown file systems, and so on.

Table 15. Example SYSTEM_SHUTDOWN Command Processing Entry

Cmd Ps/Select AutoFn/* Command Text

PHASE1 INGREQ RACF/APL/&SYSNAME. REQ=STOP PRECHECK=NO REMOVE=SYSGONE VERIFY=NO OUTMODE=LINE

PHASE1 INGREQ RRS/APL/&SYSNAME. REQ=STOP PRECHECK=NO REMOVE=SYSGONE VERIFY=NO OUTMODE=LINE

PHASE1 INGREQ GDPS_ALL/APG/&SYSNAME. REQ=STOP PRECHECK=NO REMOVE=SYSGONE VERIFY=NO OUTMODE=LINE

PHASE1 INGREQ LOOKASIDE/APG/&SYSNAME. REQ=STOP PRECHECK=NO REMOVE=SYSGONE VERIFY=NO OUTMODE=LINE

© Copyright IBM Corp. 1996, 2011 135

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|

|
|
|

Table 15. Example SYSTEM_SHUTDOWN Command Processing Entry (continued)

Cmd Ps/Select AutoFn/* Command Text

PHASE1 INGRCHCK BASE_SYS/APG/&SYSNAME.OBSERVED=(SO HA)

PHASE1 INGRCHCK LOOKASIDE/APG/&SYSNAME.OBSERVED=(SO HA)

PHASE2 MVS Z EOD

Table 15 on page 135 shows example definitions for the SYSTEM_SHUTDOWN
entry that place stop votes against the listed resources in PHASE1 in a sequential
order. The desired completion of the resource shutdown is processed in parallel.
The specified INGRCHCK command at the end of the PHASE1 sequences waits for
the completion of the stop requests for the specified resources.

For example:
INGRCHCK LOOKASIDE/APG/&SYSNAME OBSERVED=(SOFTDOWN HARDDOWN)
INGRCHCK LOOKASIDE/APG/&SYSNAME OBSERVED=(SOFTDOWN HA)

For more information about the INGRCHCK command, see IBM Tivoli System
Automation for z/OS Operator’s Commands.

If synchronization is necessary, the FDBK option for the INGREQ command
permits waiting until the appropriate subsystem has been shutdown. The
FDBK=WAIT option causes an INGREQ stop command to be processed
sequentially. In this way it slows down the shutdown process.

The primary and all secondary automation managers (PAM and SAMs) on the
local system will be shutdown by SA z/OS automatically unless they are moved
to another system. OMVS will be shutdown by SA z/OS automatically too. Only
the MVS Z OED command is issued in PHASE2.

136 System Automation for z/OS: Customizing and Programming

Chapter 13. WTOR Processing

When System Automation for z/OS receives WTORs (write-to-operator-with-reply
requests), it either automatically replies to them, or stores them if they are to be
used for recovery or to shut down the subsystem that issued them. WTORs that
are stored for later use are known as outstanding WTORs.

Process Flow of WTORs
All WTORs that are issued at a system should be forwarded to NetView.
Otherwise SA z/OS is not able to process them.

From NetView V5R2 the following definition in the message revision table ensures
that all WTORs are provided to NetView for automation:
UPON (ALWAYS)

SELECT
* Ensure all WTORs are being automated

WHEN (WQE SUBSTR 345 C2D ^= "+0")
REVISE("Y" AUTOMATE)

OTHERWISE
END

For earlier releases of NetView:
v The known WTORs that are to be forwarded to NetView have to be defined for

automation in the MPF table
v The unknown WTORs have to be forwarded by means of an assembler exit

Incoming WTORs are processed by the NetView automation table (AT) and this
triggers commands according to the processing purpose:

Called Generic Routine Processing Purpose

ISSUEACT 1. Issue commands or replies (or both) that have been
defined to a subsystem.

2. Store the WTOR if it has not been replied to.

ACTIVMSG, HALTMSG,
TERMMSG

1. Update the status of the subsystem that issued the
WTOR.

2. Issue defined commands or replies (or both).

3. Store the WTOR if it has not been replied to.

INGMON 1. Issue commands or replies (or both) that have been
defined to a monitor resource.

2. Store the WTOR if it has not been replied to.

OUTREP Store the WTOR.

The commands (other than OUTREP) are routed to the first active task that is
defined in the AT synonym %AOFOPGSSOPER%. Thus they are usually routed to
the work operator of the subsystem that issued the WTOR. This is done based on
the job name that is associated with the WTOR.

© Copyright IBM Corp. 1996, 2011 137

Generic routines that process WTORs from subsystems that are not defined in
SA z/OS or are from MVS components are routed to tasks that the WTORs have
been assigned to based on their message ID.

The OUTREP command is routed to the first active task that is defined in the AT
synonym %AOFOPSYSOPER%.

Actions in Response to Incoming WTORs
You can use the MESSAGES/USER DATA automation policy item to define what
response SA z/OS should make to incoming WTORs for applications, monitor
resources and MVS components, as follows:
v Use the CMD action (possibly combined with the CODE action) to define

commands that are to be issued in response to an incoming WTOR.
v Use the REP action (possibly combined with the CODE action) to define a reply

that is to be made immediately in response to an incoming WTOR.
v Use the AUTO action to define the incoming WTOR as a status message that

changes the status of the subsystem that issued the WTOR.

NetView automation table statements are created that call the relevant command,
depending on the defined actions.

If you used CODE definitions to define actions, the automation table statements
that are created have to be supplemented with an OVR action to tell SA z/OS
what variable information is to be extracted from the WTOR and how to pass this
data as code values to the related command.

WTORs that have no actions defined for them are stored by SA z/OS via
OUTREP. Appropriate automation table statements are created for this purpose.

Customizing how WTORs Are Stored by SA z/OS
SA z/OS keeps track of all outstanding WTORs that have not yet been replied to
and displays them via SDF or NMC.

These outstanding WTORs include:
v Permanent outstanding WTORs that are issued by applications at startup and

thus provide an interface for critical operator communication and shutdown
v WTORs that no replies have been defined for in the SA z/OS automation policy
v WTORs that were issued before SA z/OS had initialized or during down time

of SA z/OS

You can use the automation policy to define the severity for outstanding WTORs
and a priority that allows you to distinguish between primary and secondary
WTORs:

Severity
The severity of a WTOR determines the color of the WTOR in SDF and
NMC. The following values can be specified for the severity:

NORMAL Ordinary messages that do not indicate a problem.

UNUSUAL Messages that might indicate a problem.

IMPORTANT Messages that indicate serious problems.

IGNORE Messages that are to be ignored by SA z/OS.

138 System Automation for z/OS: Customizing and Programming

Priority
A primary WTOR is stored and can later be used for operator
communication and to shut down the subsystem that issued it. In contrast,
secondary WTORs are replied to immediately, or may be stored to be
displayed in SDF and NMC.

This customization is done with code definitions in the MESSAGES/USER DATA
policy item for a message ID of WTORS. For details see the description of the
OUTREP command in IBM Tivoli System Automation for z/OS Programmer’s Reference.

Processing of Primary WTORs
To prevent SA z/OS from replying to primary WTORs as soon as they are
received, the replies are not defined directly for the message ID of the primary
WTOR. Instead, the issuing of replies to primary WTORs is invoked by other
messages or executed commands. Thus the replies for primary WTORs that are to
be deferred are defined for the ID of these invoking messages, or the replies to be
issued are provided for a predetermined message ID. For example, the
SHUTDOWN automation policy item is used to define the replies to be issued
during shutdown.

The reply ID of any stored, primary WTOR to a subsystem can be used for
operator communication or the shutdown of this subsystem.

If SA z/OS has to communicate with a subsystem by issuing a reply but an
outstanding WTOR has not yet been stored for the subsystem, the RETRY option is
used to wait for the required WTOR.

You can define multiple replies with the same pass or selection option for a
message ID. These replies can be used in response to a sequence of incoming
primary WTORs.

Example
Message ABC123D is issued by application ABCAPPL during startup as
permanent, outstanding WTOR and SA z/OS stores it as primary WTOR for this
application. During the lifetime of the application, whenever message ABC789I is
issued in special situations, a reply should be issued to the permanent, outstanding
WTOR ABC123D for this application. The MESSAGES/USER DATA automation
policy item for message ID ABC789I of the application is used to define this reply.

When message ABC789I is issued by the application, SA z/OS retrieves the reply
ID of the permanent, outstanding WTOR and issues command MVS R 117,ABC
RESTORE, as shown in Figure 24 on page 140.

Chapter 13. WTOR Processing 139

Restrictions
The reply IDs of a subsystem's outstanding primary WTORs are stored by
SA z/OS as a blank-separated list without leading zeros. The storage for this is
restricted to 255 bytes. If this limit is reached, the reply IDs of further incoming
primary WTORs are ignored.

Usage Notes®

When storing incoming WTORs, a search for code definitions for the message ID,
WTORS, is first made in the entry for the subsystem that issued the WTOR. If the
subsystem itself cannot be found in the automation policy or the code definitions
that are searched for are not found for the subsystem, they are searched for under
the MVSESA entry. For subsystems such as IMS or NetView that have a permanent
outstanding reply, you should specify the code definitions for the subsystem
entries themselves instead of MVSESA. This improves performance by reducing
searches within the automation policy.

Reply defined for message ABC789I:

Entry Name : ABCAPPL Message ID :

Pass/ Retry Reply Text
Selection Count
__________ __ ____________________________

ABC789I

ABC RESTORE

Command issued:

MVS R ,117 ABC RESTORE

Primary WTOR stored for application ABCAPPL:

117 ABC123D REPLY WITH VALID COMMAND

Incoming message ABC789I

Figure 24. Example Processing of a Primary WTOR

140 System Automation for z/OS: Customizing and Programming

Chapter 14. SA z/OS User Exits

To allow user-specific activities that are not covered by the customization dialogs,
SA z/OS provides support for the following classes of user exits:
v Initialization exits that are called at the start of SA z/OS initialization, before

message AOF603D is issued, see “Initialization Exits” on page 142
v Static exits that are called at fixed points during SA z/OS processing, see “Static

Exits” on page 145
v Flag exits that are called when SA z/OS needs to evaluate an automation flag,

see “Flag Exits” on page 147
v Customization Dialog exits that can be called during certain phases when

working with the customization dialog, see “Customization Dialog Exits” on
page 150

v Command exits that can be called during the processing of certain commands,
see “Command Exits” on page 154

Additionally, SA z/OS has a number of facilities that behave in an exit-like
manner, see “Pseudo-Exits” on page 158.

Figure 25 on page 142 shows the sequence that exits may be invoked in during
SA z/OS initialization.

© Copyright IBM Corp. 1996, 2011 141

Initialization Exits
These exits are invoked at the start of SA z/OS initialization:
v AOFEXDEF
v AOFEXI01
v AOFEXI02
v AOFEXI03
v AOFEXI04
v AOFEXI05
v AOFEXI06

NetView initialized
CNMCSSIR started

ACF COLD

MVSESA.RELOAD.CONFIRM

MVSESA.RELOAD.ACTION

AOFEXDEF initialization
exit invoked

AOF603D WTOR
...initialization process...

AOFEXI01 initialization exit

AOFEXINT exit
invoked or scheduled

initialization

Initialized

AOFEXI02 exitinitialization

AOF110I message issued

AOF511I message issued

AOF540I message issued

Environmental setup
exits invoked

AOFEXSTA static exit may
be invoked from here

Flag exits
may be invoked

Exit Sequence during SA z/OS Initialization

Figure 25. SA z/OS Exit Sequence during SA z/OS Initialization

Initialization Exits

142 System Automation for z/OS: Customizing and Programming

|

|
|
|

|

|

|

|

|

|

|

|

v AOFEXINT
v Environmental Setup Exits

AOFEXDEF
This exit is called at the start of SA z/OS initialization, before message AOF603D
is issued. For example, using AOFEXDEF you can load a different MPF table.

This exit is run on AUTO1.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI01
This exit is invoked before the AOF603D ENTER AUTOMATION OPTIONS reply
is issued. It is invoked in a NetView PIPE and gets the data that is displayed in the
AOF767I message as input in the default SAFE. With this exit you can add or
remove lines from the message and add additional options to the reply.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI02
This exit is invoked after the operator has replied to the AOF603D reply. It gets the
operator's response to the reply as input in the default safe and it can remove, add,
or change the options that the operator has entered.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI03
This exit is invoked before SA z/OS loads NetView automation table. It can be
used to create statistics of the currently loaded ATs. Together with the AT listings
that SA z/OS produces at load, these statistics can be used for any purpose.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI04
This exit is invoked after SA z/OS loads NetView automation tables. It can be
used to store the AT listings that SA z/OS produces at load.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI05
This exit is called before either an ACF load or refresh takes place. The parameter
indicates what action the automation agent is going to process: REFRESH or
LOAD.

Initialization Exits

Chapter 14. SA z/OS User Exits 143

|

|

|

|
|

|

|

|

Parameters: Type of ACF action (REFRESH or LOAD).

Return Codes: 0 (Note: the return code is ignored by the caller).

AOFEXI06
This exit is called after an ACF process (LOAD or REFRESH) has completed
(AOFCOMPL=YES) and before the AOF540I message is issued.

Parameters: Type of ACF action (REFRESH or LOAD).

Return Codes: 0 (Note: the return code is ignored by the caller).

AOFEXINT
This exit is called when SA z/OS initialization is complete, before message
AOF540I is issued. You can use AOFEXINT to call your own initialization
processing after SA z/OS has finished. Refer also to the description of the global
variable AOFSERXINT in “AOFSERXINT global variable” on page 203.

Parameters: The input parameter is the Starttype which is one of the following:
RESYNC, IPL, REFRESH, RELOAD, RECYCLE.

Return Codes: 0 is expected.

Environmental Setup Exits
The SA z/OS customization dialog allows you to define a string of exits that are
invoked during SA z/OS initialization processing. These exits are defined using
the SYSTEM INFO policy item of the System (SYS) entry type. See IBM Tivoli
System Automation for z/OS Defining Automation Policy for more information.

Environmental setup exits are invoked after SA z/OS has started its various tasks,
but before the primary automation table has been loaded. You can use these exits
to initiate your own automation, but some SA z/OS services may be unavailable
because SA z/OS has not yet finished initializing when these exits are called. In
particular, status information may be inaccurate because SA z/OS may not have
finished resynchronization. Environmental setup exits run on AUTO1.

Parameters
Parameters are passed in sequence, delimited by blanks.

INITIALIZATION
INITIALIZATION is a constant.

RELOAD|REFRESH|IPL|RECYCLE
RELOAD Indicates that the automation control file has been reloaded.
REFRESH Indicates that the automation control file has been refreshed.
IPL Indicates that SA z/OS has just been restarted after a system

IPL.
RECYCLE Indicates that NetView has been restarted.

Return Codes
0 is expected. If you return a non-zero return code you may prevent other exits
from being invoked or disrupt SA z/OS initialization.

Initialization Exits

144 System Automation for z/OS: Customizing and Programming

|

|
|
|
|

|
|
|
|
|
|

|

|

|
|

|
||
||
||
|
||

|

|
|

Usage Notes
v These exits are not driven if you run RESYNC.
v Unlike the other static exits, you must specify the name of the routine or

routines to invoke in the automation control file.

Static Exits
These exits are invoked at fixed points in SA z/OS processing. They are always
invoked if they are found in the DSICLD concatenation. Positive return codes from
these exits are generally ignored, though it is recommended that you always exit
with a return code of 0.

The main purpose of static exits is to allow you to take your own actions at
specific points during SA z/OS processing. The static exits available are described
below.

AOFEXSTA
This exit is called from AOCUPDT every time the automation status of an
application is updated.

Note: It is not necessary for AOCUPDT to change an application automation status
for this exit to be called. The exit is still invoked if the update does not
result in a change of status.

AOFEXSTA can be used to perform any special status transition processing that
cannot be triggered by other methods.

Note: This exit is invoked frequently, and is invoked at times when SA z/OS is
not fully initialized. Your exit code should be as robust and efficient as
possible.

SA z/OS attempts to load AOFEXSTA into storage at initialization. If this attempt
fails, AOFEXSTA is not invoked on any AOCUPDT calls. To activate the exit it
must be present in the DSICLD concatenation when the automation control file is
loaded or reloaded.

AOFEXSTA runs on the task that called AOCUPDT, after all other processing has
finished.

Attention: AOFEXSTA is scheduled with EXCMD opid(). If your operators are
issuing commands that change application statuses and you want to use
AOFEXSTA, you may have to modify your command authorization definitions.

Parameters: Parameters are passed in sequence, delimited by commas.

Resource type
SA z/OS uses types of SUBSYSTEM, MVSESA, WTORS, and SPOOL. Other
users may use other resource types.

Resource Name
For an application, this is the name of the subsystem it is defined as.

Automation Status
For an application, this is one of the automation statuses that is supported by
SA z/OS.

Initialization Exits

Chapter 14. SA z/OS User Exits 145

|

|

|
|

SDF Root
This is the SDF Root, as specified in the customization dialog, for the system
that originated the status update. Generally the exit is driven only for status
changes on other systems on the automation focal point.

Return Codes: 0 is expected.

Restrictions:

v Because the exit is scheduled with EXCMD, the status update and subsequent
processing in the caller will have completed before the exit is invoked.

v Check the resource type and the SDF root to ensure you are only trying to
process the right things.

v Plan carefully before you take any action to change the status of an application
from this exit. If you are not careful you may create a loop (AOCUPDT to
AOFEXSTA to AOCUPDT to AOFEXSTA).

Note:
Consider using ISSUEACT or status change commands as alternatives to
AOFEXSTA, because AOFEXSTA is invoked for every status update that
seriously degrades performance.

If the advanced automation options are set up appropriately, the ACTIVMSG
and TERMMSG commands issues commands whenever an application
changes to a particular status. It may be more appropriate to place commands
here, rather than in the status change exit, which gets driven for every status
update of every resource. It is recommended to use status change commands
for better performance.

AOFEXX02
The exit allows the installation to decide whether or not an SDF update should be
performed for the specified resource.

A non-zero return code from the exit causes the SDF update processing to be
skipped, both locally as well as for the focal point.

This exit is called prior to posting entries to SDF to provide the facility to filter out
specific events.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXX03
The exit allows the installation to decide whether or not status change notification
should be forwarded to the NMC focal point for the specified resource.

A non-zero return code from the exit causes status change forwarding to be
skipped.

This exit is called prior to posting entries to NMC to provide the facility to filter
out specific events.

Static Exits

146 System Automation for z/OS: Customizing and Programming

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXX04
This exit is called from CHKTHRES every time that this routine is called to check
the number of errors recorded in the automation status file for a given resource
against error thresholds that are defined in the automation control file.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXX15
This exit allows you to write a log entry for each status change notification that
arrives at the NMC focal point.

Refer to the sample exit for details of the parameters passed to the exit.

Flag Exits
Using automation flag exits you can cause your automated operations code to exit
normal SA z/OS processing to an external source, such as a scheduling function,
to determine whether automation should be on or off for a given resource at that
particular instant.

Flag exits can be defined for any flag (AUTOMATION, INITSTART, START,
RECOVERY, TERMINATE, or RESTART) on any major or minor resource. See the
description of the MINOR RESOURCES policy item in IBM Tivoli System
Automation for z/OS Defining Automation Policy for more information on minor
resources.

You can specify multiple exits for each flag.

A flag exit is invoked only if SA z/OS checks the value of the current flag setting
during the flag evaluation process of AOCQRY, as described in IBM Tivoli System
Automation for z/OS Programmer’s Reference. If one of the global or specific flags,
which have to be checked in one iteration step during the evaluation process over
the inheritance hierarchy levels is set to NO, the other flag no longer has to be
checked.

With the default BYPASS option of AOCQRY, exits that have been defined for the
automation flag of a resource are executed when that automation flag is checked
during flag evaluation and the flag value is EXITS.

With the FORCED option of AOCQRY, exits that have been defined for the
automation flag of a resource are executed when that automation flag is checked
during flag evaluation, independent of the flag value, as long as it is not empty.

If an automation flag is set to EXITS, the flag value is assumed to be YES during
flag checking as long as none of the exits that have been defined for the checked
resource switch the flag to NO. Exits that are forced to execute do not change the
flag value.

Flag settings are determined by:
v The automation policy settings

Static Exits

Chapter 14. SA z/OS User Exits 147

v NOAUTO periods (the flag is OFF during a NOAUTO period)
v The user-entered INGAUTO command

For example, if you enter the following flag settings:

Resource Flag Setting

DEFAULTS AUTOMATION YES

SUBSYSTEM RESTART NO

JES2 AUTOMATION Exit J2AUT

JES2 START Exit J2STR

JES2 RECOVERY NO

JES2 TERMINATE Exits J2SD1 and J2SD2

The effective flags for JES2 are:

Flag Effective setting

AUTOMATION YES, Exit J2AUT

INITSTART YES

START YES, Exit J2STR

RECOVERY NO

TERMINATE YES, Exits J2SD1 and J2SD2

RESTART NO

When SA z/OS checks the current value of any flag for the JES2 application, the
process is as follows:

Flag Process

AUTOMATION 1. Call exit J2AUT.

2. If the exit returns:

v RC=0: AUTOMATION flag is YES

v RC>0: AUTOMATION flag is NO

INITSTART 1. Call exit J2AUT (because of AUTOMATION global flag).

2. If the exit returns:

v RC=0: INITSTART flag is YES

v RC>0: INITSTART flag is NO

START 1. Call exit J2AUT (because of AUTOMATION global flag).

2. If exit returns RC=0, call exit J2STR.

3. If:

v Both flags return RC=0: START flag is YES

v Either flag returns RC>0: START flag is NO

RECOVERY RECOVERY flag is NO

Flag Exits

148 System Automation for z/OS: Customizing and Programming

||||

|||

|||

|||

|||

|||

|||
|

|||

||

||

||

||

||

||
|

|

|

|

|

|

|

|

|

|

|

|

|

Flag Process

TERMINATE 1. Call exit J2AUT (because of AUTOMATION global flag).

2. If exit returns RC=0, call exit J2SD1.

3. If exit J2SD1 returns RC=0, call exit J2SD2.

4. If:

v Both flags return RC=0: TERMINATE flag is YES

v Either flag returns RC>0: TERMINATE flag is NO

RESTART 1. Call exit J2AUT (because of AUTOMATION global flag).

2. Regardless of the return code, the RESTART flag is NO.

Note: Normally the START and RECOVERY flags are checked by SA z/OS only
for minor resources but not for the subsystem itself.

Parameters
Parameters are supplied in sequence, delimited by blanks.

Flag
This is the name of the flag that is being checked. Possible values are
AUTOMATION, INITSTART, START, RECOVERY, TERMINATE or RESTART.

Time Setting
Time Setting is a constant. It can be either:

AUTO
Automation is currently turned on.

NOAUTO
Automation is currently turned off.

A value of NOAUTO is possible only if AOCQRY is called with the parameter
EXITS=FORCED.

Note: This ensures that the exit is invoked, but it is not possible for an exit to
override a NOAUTO period.

Resource Name
This is the name of the resource that the flag is being requested for. For minor
resources it contains the fully qualified minor resource name. Given no flag
definition for TSO.USER.MAG1 and an exit enabled for TSO.USER, the
resource name passed to the exit would be TSO.USER.MAG1 if a check was
made for TSO.USER.MAG1.

Resource Type
This is the type of the resource that the flag is being requested for. Possible
values are DEFAULTS, SUBSYSTEM, or MVSESA (the value of the common
global variable AOFSYSTEM).

Target Prefix
This is the TGPFX value with which AOCQRY was invoked. If TGPFX is not
specified, the value SUB is passed.

Task Global Variables
The task global variables that are set by the AOCQRY command are available in
flag exits.

Flag Exits

Chapter 14. SA z/OS User Exits 149

|

|

|

|

|

|

|

|

Return Codes
0 Automation is allowed by the exit.

> 0 Automation is not allowed.

Notes:

1. Flag exits are always called through the AOCQRY command. This means that
the task global variables for the resource have been primed and are available
for use. Normally the names of the task global variables are prefixed with SUB,
but if AOCQRY is called with a different value for parameter TGPFX, they are
found in variables that are prefixed with that value. You should use the TGPFX
parameter that is passed to locate the task global variables.

2. The set of task global variables that are set by AOCQRY depends on the values
for the resource and request parameter. Make sure that the task global variables
that you rely on in your exit are being set up.

3. If an exit is invoked for a minor resource, the task global variables are set for
the major resource that is associated with that minor resource.

4. If you call AOCQRY from within your exit you must specify a TGPFX value
that is different from the TGPFX parameter value you were passed. You are
responsible for ensuring the uniqueness of all TGPFXs if you nest AOCQRY
exits. Because this can become quite complex, it is recommended you avoid
nesting exits.

5. Do not code calls to ACFCMD, ACFREP, or CDEMATCH because these use
task global variables that are prefixed with SUB that may not be set up for the
application that you want to process.

6. Do not change any of the task global variables that have been set by AOCQRY.
7. Flag exits may be called frequently, so performance is important.
8. If AOCQRY is specified with FORCE and multiple exits are defined for a flag,

the exits are called in order.

Customization Dialog Exits
SA z/OS provides a series of user exits that can be invoked during certain phases
while working with the customization dialog. They are:
v “User Exits for BUILD Processing”
v “User Exits for COPY Processing” on page 152
v “User Exits for DELETE Processing” on page 152
v “User Exits for CONVERT Processing” on page 153
v “User Exits for RENAME, and IMPORT Functions” on page 153

“Invocation of Customization Dialog Exits” on page 154 provides information on
how to activate the user exits.

User Exits for BUILD Processing
The following user exits are provided for the process of building the automation
control file.
v INGEX10:: This is called before the automation control file build function starts.

This exit is only available when the build process is initiated from the
customization dialogs.

v INGEX01:: This is called before the automation control file build function starts.
starts. This exit is available when the build process is initiated from the

Flag Exits

150 System Automation for z/OS: Customizing and Programming

customization dialogs, from a batch job submitted via the customization dialogs,
or from a batch job submitted independently from the customization dialogs.
When a BUILD mode of BATCH is selected in the customization dialogs, the
JCL for the batch job is submitted and INGEX01 is called when the job begins
execution and before the automation control file build function starts in batch.

v INGEX02:: This is called after the configuration file build has ended. This exit is
available when the BUILD process is initiated from the customization dialogs,
from a batch job submitted through the customization dialogs, or from a batch
job submitted independently from the customization dialogs.

The following parameters are passed to both INGEX01 and INGEX02 exits,
separated by commas:
v Parm1 = PolicyDB name
v Parm2 = Enterprise name
v Parm3 = BUILD output data set
v Parm4 = entry type (or blank)
v Parm5 = entry name (or blank)
v Parm6 = BUILD type (MOD/ALL)
v Parm7 = BUILD mode (ONLINE/BATCH)
v Parm8 = Configuration (0=NORMAL/1=ALTERNATE)
v Parm9 = Sysplex name (or blank)
v Parm10 = Build option (1,2, or 3)
v Parm11 = return code (for INGEX02 only)

If user exit INGEX10 produces return code RC = 0, build processing continues. If a
return code RC > 0 is produced, an error message is returned and the build
processing terminates.

If user exit INGEX10 ends with return code RC > 0, user exits INGEX01 and
INGEX02 are not called. Processing terminates.

If user exit INGEX10 ends with return code RC > 0 and a BUILD mode of BATCH
was selected in the customization dialogs, no JCL is submitted to run the build in
batch. Processing terminates.

If user exit INGEX01 produces return code RC = 0, build processing continues. If a
return code RC > 0 is produced, an error message is returned and build processing
terminates. If the build is run in batch mode, and a return code RC > 0 is
produced, the job finishes with a return code RC 08.

If user exit INGEX01 ended with return code RC > 0, user exit INGEX02 is not
called because the build function was not started. Processing terminates.

User exit INGEX02 is always called when the BUILD process has started,
irrespective of whether it has completed or not.

If user exit INGEX02 produces a return code RC > 0, an error message is
displayed. If the build is run in batch mode, and a return code RC > 0 is produced,
the job completes with a return code RC 04. If a severe build error occurred, the
job completes with a return code RC 20.

The return codes and their meaning are as follows:

0 Successful

4 Build with minor errors

Customization Dialog Exits

Chapter 14. SA z/OS User Exits 151

12 No build (data is inconsistent)

20 No build (severe errors)

User Exits for COPY Processing
Two user exits are implemented for the COPY processing.
1. INGEX03: This is called before the COPY function starts. The following

parameters are passed:
v Entry name of the entry to be copied to (target)
v Entry name of the entry to be copied from (source)
v Entry type (for example, APL)

2. INGEX04: This is called after the COPY function has ended. The following
parameters are passed:
v Entry name of the entry to be copied to (target)
v Entry name of the entry to be copied from (source)
v Entry type (for example, APL)
v Indicator whether the COPY process was successful or not (S=successful,

U=unsuccessful)

If user exit INGEX03 produces return code RC = 0, COPY processing continues. If
a return code RC > 0 is produced, an error message is displayed, the COPY
function does not start, and processing terminates.

If user exit INGEX03 ended with return code RC > 0, the user exit INGEX04 is not
called because the COPY processing will terminate.

User exit INGEX04 is always called once the COPY function has started. The
information about the success or failure of the COPY function is passed as a
parameter.

If user exit INGEX04 produces a return code RC > 0, an error message is
displayed.

User Exits for DELETE Processing
Two user exits are implemented for the DELETE processing.
1. INGEX05: This is called before the DELETE process starts. The following

parameters are passed:
v Entry name of the entry to be deleted
v Entry type (for example, APL)

2. INGEX06: This is called after the DELETE process has ended. The following
parameters are passed:
v Entry name of the entry to be deleted
v Entry type (for example, APL)
v Indicator whether the DELETE process was successful or not (S=successful,

U=unsuccessful)

If user exit INGEX05 produces return code RC = 0, the DELETE processing
continues. If a return code RC > 0 is produced, an error message is displayed, the
DELETE function does not start and the processing terminates.

Customization Dialog Exits

152 System Automation for z/OS: Customizing and Programming

If user exit INGEX05 ended with a return code RC > 0, user exit INGEX06 is not
called because the DELETE processing will terminate.

User exit INGEX06 is always called once the DELETE function has started. The
information about the success or failure of the DELETE function is passed as a
parameter.

If user exit INGEX06 produces a return code RC > 0, an error message is
displayed.

User Exits for CONVERT Processing
Two user exits are implemented for the CONVERT processing.
1. INGEX07: This is called before the CONVERT process starts. No parameters are

passed.
2. INGEX08: This is called after the CONVERT process has ended. No parameters

are passed.

If user exit INGEX07 produces return code RC = 0, the CONVERT processing
continues. If a return code RC > 0 is produced, an error message is displayed, the
CONVERT function does not start and the processing terminates.

If user exit INGEX07 ended with a return code RC > 0, user exit INGEX08 is not
called because the CONVERT processing will terminate.

User exit INGEX08 is always called once the CONVERT function has started.

If user exit INGEX08 produces a return code RC > 0, an error message is
displayed.

User Exits for RENAME, and IMPORT Functions
The following user exits are provided for the renaming, and import functions.
1. INGEX09: This is called when the log data set is switched, usually because the

current data set is full. One parameter is passed:
v Name of current log data set, for example, the data set that went out of

space
2. INGEX15: This is called before an entry is renamed. The following parameters

are passed:
v Entry Name
v Entry Type

3. INGEX16: This is called after an entry has been renamed. The following
parameters are passed:
v Entry Type
v Old Entry Name
v New Entry Name

4. INGEX17: This is called during the IMPORT function, when reading data from
the source policy database. One parameter is passed:
v Name of copy data work table. This table contains the entry types and entry

names of the data to be copied.

Customization Dialog Exits

Chapter 14. SA z/OS User Exits 153

5. INGEX18: This is called after the IMPORT function has ended. INGEX18 is
only called if INGEX17 was called at the beginning of the IMPORT function. If
checks have been made that prevent INGEX17 being called, INGEX18 is not
called either.
One parameter is passed:
v Indicator whether the IMPORT process was successful (S=successful,

U=unsuccessful)
6. INGEX20: This is called after the links have been changed. No parameters are

passed.
7. INGEX21: This is called before the policy database report is invoked. No

parameters are passed.

Invocation of Customization Dialog Exits
The user exits are part of the SA z/OS product. Therefore they are supplied in the
same data set as all other ISPF REXX modules (part of SINGIREX). All of the
supplied samples just perform a 'RETURN' with return code RC=0.

You have two possibilities to apply your user modifications:
1. Edit the user exit (or exits) in the supplied library. Your changes do not have

any consequences for the code of the SA z/OS product. These exits are not
serviced (via PTF) by IBM because they do not include any code at the time of
product delivery.

2. Supply the modified user exit in a private data set. Then you have to
concatenate your private data set to your SYSEXEC library chain. As INGDLG
supports multiple data set names specified for ddname SYSEXEC, this can be
done in the following way:
INGDLG SELECT(ADMIN) ALLOCATE(YES) HLQ(SYS1)

SYSEXEC(usr.private.dsn SYS1.SINGIREX)

This example assumes that the high level qualifier of the data sets where the
IBM supplied parts exist is SYS1.
If you specify the SYSEXEC parameter in the INGDLG call, you need to specify
the IBM supplied library explicitly with its fully qualified data set name.

Command Exits
These exits can be called during the processing of certain commands.

AOFEXC00
The AOFEXC00 exit routine is called if the selection L has been entered in the AOC
command dialog. No parameters are passed to the routine. The purpose of this
routine is to act as the starting point for installation-provided local functions.

AOFEXC01
If this exit is defined, it is invoked during INGREQ processing before Precheck and
Verification processing.

The exit allows you to modify the parameters that are passed.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

Customization Dialog Exits

154 System Automation for z/OS: Customizing and Programming

AOFEXC02
If this exit routine is defined, it is invoked during INGSCHED processing before
the schedule override file is updated. The parameters are positional and separated
by a comma.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC03
If this exit routine is defined, it is invoked by the DISPINFO command slave to
retrieve user-supplied information about the subsystem. The input for the routine
is the subsystem name. The data returned by the exit is shown as part of the
DISPINFO output.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC04
If this exit routine is defined, the command code U is supported for the DISPMTR,
DISPSTAT, and INGLIST commands. The input for the AOFEXC04 exit is the
resource name (subsystem name for DISPSTAT) and the location of the resource.
The location is either the system name if the resource resides on a system member
of the local sysplex, or the domain ID if the resource resides on a system which is
outside of the local sysplex. The parameters are separated by a comma.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC05
This exit is called on entry of the INGLIST command. The exit allows you to
modify the input parameters. The modified input parameters are returned to the
INGLIST command by sending a message (single or multiline) to the console, for
example:
OBSERVED=* DESIRED=*

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC06
This exit is called on entry of the INGSET command with the SET action. The exit
allows you to perform authorization checking of the resources for the INGSET
command.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC07
This exit is called on entry of the INGIMS command. The exit allows you to
perform authorization checking of the IMS subsystem that is the subject of the
INGIMS command.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

Command Exits

Chapter 14. SA z/OS User Exits 155

|
|
|

AOFEXC08
This exit is called on entry of the INGVOTE command. The exit allows you to
perform authorization checking of the resources for the INGVOTE command.
Because the INGSET CANCEL/KILL action uses the INGVOTE command, this exit
is also called when performing this action.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC09
This exit is called on entry of the SETSTATE command. The exit allows you to
perform authorization checking of the resources for the SETSTATE command.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC10
This exit is called on entry of the INGEVENT command. The exit allows you to
perform authorization checking of the resources for the INGEVENT command.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC11
This exit is called on entry of the INGCICS command. The exit allows you to
perform authorization checking of the resources for the INGCICS command.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC12
This exit is called on entry to the command slave (EVJRVCMD) for the TWS
command server (EVJRVCM0). The exit allows you to perform authorization
checking of the commands scheduled via the TWS batch interface (EVJRYCMD)
against the user ID of the batch job requesting the command.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXC13
This exit is called on entry to the INGGROUP and INGMOVE commands. The exit
allows you to perform authorization checking of the user ID that issues the
command.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXC14
This exit is called by the SA z/OS GDPS termination routine (INGRGDPS) after
stopping the PAM or selecting a SAM to become the PAM.

Refer to the sample exit for details of the return codes.

Command Exits

156 System Automation for z/OS: Customizing and Programming

|
|
|
|

AOFEXC15
If this exit routine is defined, it is invoked during INGREQ processing after the
GO confirmation has been received.

The user exit is called in a PIPE. Refer to the sample exit for details of the
parameters that are passed to the exit.

AOFEXC16
This exit is invoked by the INGTHRES command prior to updating or deleting the
thresholds for a given resource. It allows you to perform authorization checking of
the requested action. If the exit returns with a non-zero return code and additional
data is written to the console, this data is shown in the message panel. If no
additional data is passed back in the exit, message AOF227I is issued.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC17
This exit is invoked by the INGALERT command. It allows you to:
v Modify the event text
v Reduce the Inform List with event notification targets such as IOM, EIF, TTT,

and USR
v Modify the value that is returned from the matching code definition with

information such as the event severity or whether to ignore the event

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC18
This exit is invoked by the INGLKUP command. It is driven prior to stopping or
canceling the specified address space. It allows you to perform authorization
checking of the requested action. If the exit returns with a non-zero return code
and additional data is written to the console, this data is shown in the message
panel. If no additional data is passed back in the exit, message AOF227I is issued.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC19
This exit is invoked by the INGAMS command. It is driven in the following cases:
v Enabling or disabling access to the takeover file
v Suspending or resuming systems
v Refreshing the configuration
v Performing a diagnostic action (starting or stopping recording, taking a

snapshot)
v Switching the primary automation manager

The exit allows you to perform authorization checking of the INGAMS command.
If the exit returns with a non-zero return code and additional data is written to the
console, this data is shown in the message panel. If no additional data is passed
back in the exit, message AOF227I is issued.

Command Exits

Chapter 14. SA z/OS User Exits 157

|

|
|
|
|
|

|
|

|

|

|
|

|
|

|

|
|
|
|
|

|
|

|

|

|

|

|

|
|

|

|
|
|
|

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC20
This exit is called when a command is passed via the TWS request interface. The
exit allows the installation to perform authorization checking. The exit allows the
user to modify the command that is passed. The modified command must be
returned by sending a message (single-line) to the console.

The installation exit is called in a PIPE. If the exit returns a bad return code and
additional data is written to the console, this data is written in the netlog. If no
additional data is passed in the exit, message AOF227I is issued.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC21
This exit is invoked by the INGOPC command with the option REQ=MOD. It
allows you to perform authorization checking of the requested action. If the exit
returns with a non-zero return code and additional data is written to the console,
this data is shown in the message panel. If no additional data is passed back in the
exit, message AOF227I is issued.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC22
This exit is called when a trouble ticket is created using the INGALERT command.
It allows you to determine the trouble ticket detail data that is to be written to the
detail data set.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC23
This exit is invoked when a request is passed via the TWS interface. It allows you
to perform authorization checking of the requested action. If the exit returns a
non-zero return code and additional data is written to the console, this data is
taken as a message. If no additional data is passed back in the exit, message
AOF227I is issued.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

Pseudo-Exits
This section discusses a number of places where SA z/OS either makes special use
of a flag exit or has a function with certain, exit-like, qualities.

Automation Control File Reload Permission Exit
When an operator issues the ACF COLD command, SA z/OS checks the global
AUTOMATION flag of minor resource MVSESA.RELOAD.CONFIRM. If the flag is
set to NO, the automation control file reload is not allowed. If the flag is set to

Command Exits

158 System Automation for z/OS: Customizing and Programming

|
|

|

|
|
|
|
|

|
|

|

|
|
|

|
|

|

|
|
|
|
|

|
|

|
|
|

YES, the task global AOFCONFIRM is checked. If AOFCONFIRM has been set to a
non-null value, the user is prompted to confirm that they want the automation
control file to be reloaded.

Notes:

1. Note that an exit can be associated with the global AUTOMATION flag for this
resource.

2. An automation control file cannot be loaded if the global AUTOMATION flag
for the major resource MVSESA is set to N. If the global AUTOMATION flag
for the minor resource MVSESA.RELOAD.CONFIRM is set to Y, reloading the
ACF is permitted.

Automation Control File Reload Action Exit
After the automation control file reload permission exit is checked, when SA z/OS
is committed to reloading the automation control file, it checks the global
AUTOMATION flag for minor resource MVSESA.RELOAD.ACTION. The actual
setting of this flag (ON or OFF) is ignored, but any exits defined for it are invoked.
All exits should return a return code of 0.

Subsystem Up at Initialization Commands
Using the customization dialog you can specify commands that are run if
SA z/OS finishes resynchronizing statuses and an application is found to be up.
These commands can be useful for synchronizing local automation that has been
built on top of SA z/OS.

Testing Exits
Exits should be well tested with a variety of different input parameters before they
are put into production. For exits that need AOCQRY task globals, you can call
AOCQRY to set up the globals without evaluating the flag exits, and then invoke
the exit on its own for testing purposes. This method saves the overhead of calling
AOCQRY every time you run the exit.

Attention:

If you have a syntax error or a no-value-condition in your exit it can cause parts of
SA z/OS to abend, resulting in severe disruption of your automation.

Pseudo-Exits

Chapter 14. SA z/OS User Exits 159

|
|
|

Testing Exits

160 System Automation for z/OS: Customizing and Programming

Chapter 15. Automation Solutions

SA z/OS provides solutions that enable automatic processing of z/OS
components, data sets and job scheduling systems as well as automation
procedures that are useful tools in the automation processing context. By using
these prefabricated automation procedures you can save the time to develop your
own procedures to handle the processing in corresponding situations.

In particular these automation routines provide solutions for:
v “LOGREC Data Set Processing” on page 162
v “SMF Data Set Processing” on page 162
v “SYSLOG Processing” on page 162
v “System Log Failure Recovery” on page 162
v “SVC Dump Processing” on page 163
v “Deletion of Processed WTORs from the Display” on page 163
v “AMRF Buffer Shortage Processing” on page 163
v “JES2 Spool Monitoring” on page 63
v “Drain Processing Prior to JES2 Shutdown” on page 164
v “TWS Automation Operation” on page 164
v “IMS Transaction Recovery” on page 164

The solutions for automatic processing of these situations include definitions in the
automation configuration files and automation procedures.

It is common to all the solutions that are provided that the automation procedures
first determine whether automation is allowed by checking the corresponding
automation flags with the AOCQRY command. See IBM Tivoli System Automation
for z/OS Defining Automation Policy for further information concerning types and
settings of automation flags. Use the DISPFLGS command to display or
temporarily change the current settings of the automation flags.

Some of the automation routines respond to messages by issuing commands from
the automation configuration files. Most of these automation routines keep track of
the reception of these messages and compare the frequency of the incoming
messages with predefined thresholds of infrequent, frequent, and critical levels. If
such a defined threshold is exceeded, it is used as the option for selecting the
appropriate commands according to the first field in the command entry of the
MESSAGES/USER DATA policy item of the configuration file. If no threshold is
exceeded the commands defined for the selection option ALWAYS are issued. See
“How SA z/OS Uses Error Thresholds” in IBM Tivoli System Automation for z/OS
User’s Guide for further information on setting up thresholds.

This chapter describes the details of the automation functions that are provided
with SA z/OS.

© Copyright IBM Corp. 1996, 2011 161

|

LOGREC Data Set Processing
The logrec recovery function responds to system messages that indicate that the
logrec data set is full or nearly full. The recovery function issues predefined
commands to dump and clear the logrec data sets. While the recovery function is
in progress, it prevents the automation processing being started a second time.

The logrec recovery function includes the following items:
v Automation routines AOFRSA01 and AOFRSA02, see “AOFRSA01” on page 165

and “AOFRSA02” on page 166
v Automation table entries for system messages IFB040I, IFB060E, IFB080E,

IFB081I, and IFC001I
v Error threshold definitions for MVS component minor resource LOGREC
v Command specification in the MESSAGES/USER DATA automation policy item

for the special message ID LOGREC

SMF Data Set Processing
The SMF recovery function that is provided responds to system messages that
indicate that the SMF data set is full or has been switched. Predefined commands
from the configration files are selected to dump and clear the contents of the SMF
data set. The commands to be selected can be defined depending on the occurrence
of the incoming messages. The SMF recovery function includes the following items:
v Automation routine AOFRSA03, see “AOFRSA03” on page 168
v Automation table entries for system messages IEE362A, IEE362I, IEE391A and

IEE392I
v Error threshold definitions for MVS component minor resource SMFDUMP
v Command specification in the MESSAGES/USER DATA automation policy item

for the special message ID SMFDUMP

SYSLOG Processing
The syslog function that is provided responds to messages that are queued to the
syslog. The function starts an external writer to save the syslog that was queued.
The commands to be selected can be defined depending on the occurrence of the
incoming messages.

The syslog function includes the following items:
v Automation routine AOFRSA08, see “AOFRSA08” on page 170
v Automation table entry for system message IEE043I
v Error threshold definitions for MVS component minor resource SYSLOG
v Command specification in the MESSAGES/USER DATA automation policy item

for the special message ID SYSLOG

System Log Failure Recovery
The system log failure recovery function that is provided responds to a system log
inactive message by restarting the system log. If the system log should be available
to be used as the hardcopy medium, the recovery function assigns the system log
as the hardcopy medium.

The recovery commands are only issued if the occurrence of the system log
inactive message that is received does not exceed a defined critical threshold.

LOGREC Data Set Processing

162 System Automation for z/OS: Customizing and Programming

|

|
|

|

|
|

|

|
|

The system log failure recovery function that is provided includes the following
items:
v Automation routine INGRX740, see “INGRX740” on page 194
v Automation table entries for system messages IEE037D, IEE041I, IEE533E,

IEE769E, IEE043I
v Recovery automation flag for the MVS component minor resource LOG
v Error threshold definitions for the MVS component minor resource LOG
v Command specification in the MESSAGES/USERDATA automation policy item

for the special message ID LOG

SVC Dump Processing
The SVC dump processing function that is provided responds to an SVC
dump-taken message by issuing predefined commands from the configration files
to handle the dump. The commands to be selected can be defined depending on
the occurrence of the incoming messages.

The provided SVC dump processing function includes the following items:
v Automation routine AOFRSA0C, see “AOFRSA0C” on page 172
v Automation table entries for system messages IEA611I and IEA911E
v Error threshold definitions for MVS component minor resource MVSDUMP
v Command specification in the MESSAGES/USER DATA automation policy item

for the following special message IDs:
– MVSDUMP
– MVSDUMPTAKEN
– MVSDUMPRESET

Deletion of Processed WTORs from the Display
The WTOR processing function that is provided deletes WTORs from SA z/OS
display capabilities when they are replied to or canceled.

The WTOR processing function includes the following items:
v Automation routine AOFRSA0E, see “AOFRSA0E” on page 175
v Automation table entries for system messages IEE400I and IEE600I

AMRF Buffer Shortage Processing
The AMRF buffer shortage processing function that is provided responds to
messages that report buffer shortage of the action message retention facility
(AMRF). The function issues commands from the configration files to process
buffer shortage automation.

The AMRF buffer shortage processing function that is provided includes the
following items:
v Automation routine AOFRSA0G, see “AOFRSA0G” on page 176
v Automation table entries for system messages IEA359E, IEA360A and IEA361I
v Command specification in the MESSAGES/USER DATA automation policy item

for the following special message IDs:
– AMRFSHORT
– AMRFFULL

System Log Failure Recovery

Chapter 15. Automation Solutions 163

|
|

– AMRFCLEAR

Drain Processing Prior to JES2 Shutdown
SA z/OS provides functions for drain processing of JES2 resources prior to JES2
shutdown.

The JES2 drain processing function that is provided includes the following items:
v Automation routines AOFRSD07, AOFRSD0F, AOFRSD0G. See “AOFRSD07” on

page 177, “AOFRSD0F” on page 180 and “AOFRSD0G” on page 182.
v Automation table entries for system message HASP607.
v Specifications in the JES2 DRAIN automation policy item for the JES2

applications that are to be drained and how they are to be drained prior to JES2
shutdown.

TWS Automation Operation
SA z/OS provides functions to respond to errors with TWS operations and jobs.

The functions that are provided include the following routines and AT entries for
associated messages:
v EVJEAC04 and EVJ120I, see “EVJEAC04” on page 188
v EVJRAC05 and EQQE026I, see “EVJRAC05” on page 189
v EVJRSJOB and EQQE107I, EQQE107I, and EQQW079W, see “EVJRSJOB” on

page 190

IMS Transaction Recovery
SA z/OS provides an IMS transaction recovery function. This responds to an IMS
application program abend message by issuing predefined replies or commands
from the configration files for recovery purposes. A recovery action is not issued if
the program is excluded from recovery processing, or the occurrence of the
incoming message exceeds a predefined critical threshold.

The IMS transaction recovery function that is provided by SA z/OS includes the
following:
v Automation routine EVIECT0X, see “EVIECT0X” on page 186
v A NetView automation table entry for the application program abend message,

DFS554A
v The subsystem that issues the abend message has the following automation

policy definitions:
– Error threshold definitions in the MINOR RESOURCE policy item for the

minor resource PROG.progid or TRAN.tran

– Code definitions in the MESSAGES/USER DATA policy item for the message
types ABCODEPROG.progid, ABCODEPROG, ABCODETRAN.tran, or
ABCODETRAN

– Reply or command specifications in the MESSAGES/USER DATA policy item
for the message ID DFS554A

AMRF Buffer Shortage Processing

164 System Automation for z/OS: Customizing and Programming

|
|
|

AOFRSA01

Purpose
You can use the AOFRSA01 automation routine to respond to logrec data set
nearly full or full messages from your system by issuing commands from the
configration files to dump and clear the contents of the logrec data set.

AOFRSA01 keeps track of the incoming logrec data set messages and compares
their occurrence with predefined thresholds of infrequent, frequent, and critical
level. An exceeded threshold is used as the option to select the appropriate
commands according to the first field in the command entry of the
MVSESA/LOGREC entry/type-pair in the configuration file. If no threshold is
exceeded the commands defined for the selection option ALWAYS are issued.

AOFRSA01 should be called from the NetView automation table.

Syntax

�� AOFRSA01 ��

Restrictions
v Actions are only taken in AOFRSA01 if the recovery automation flag for

LOGREC is on.
v Processing in AOFRSA01 is only done if it is called from NetView automation

table by one of the expected messages IFB040I, IFB060E, IFB080E or IFB081I.
v The commands from automation policy to dump and clear the LOGREC data set

are only issued if a LOGREC recovery function is not already in progress.

Usage
Automation routine AOFRSA01 is intended to respond to the following messages:
IFB040I SYS1.LOGREC AREA IS FULL, hh.mm.ss
IFB060E SYS1.LOGREC NEAR FULL
IFB080E LOGREC DATA SET NEAR FULL, DSN=dsname
IFB081I LOGREC DATA SET IS FULL,hh.mm.ss, DSN=dsn

The commands to issue are selected from the command entry of the
MVSESA/LOGREC entry/type-pair in the configuration file.

If no threshold is reached when one of the expected messages arrive, all
commands to entries with no selection option and to selection option ALWAYS are
selected. If the threshold at level infrequent is exceeded, all commands to entries
with no selection specification option and to selection option INFR are selected. In
the same way a level of frequent corresponds to selection option FREQ and a level
of critical corresponds to selection option CRIT.

Make sure that the automation routine AOFRSA02 is issued by message IFC001I
from the NetView automation table, to indicate the completion of the LOGREC
recovery function.

AOFRSA01

Chapter 15. Automation Solutions 165

Global Variables
&EHKVAR1

When defining the commands in the configuration files to dump and clear
the contents of the LOGREC data set, the variable &EHKVAR1 can be used
for the name of the LOGREC data set. This variable is substituted with the
complete data set name of the LOGREC data set name.

AOFRSA02

Purpose
You can use the AOFRSA02 automation routine to respond to the initialization
message of the LOGREC data set to reset the flag, which indicates that the
LOGREC recovery function is in progress

AOFRSA02 should be called from the NetView automation table.

Syntax

�� AOFRSA02 ��

Restrictions
v Actions are only taken in AOFRSA02 if the recovery automation flag for

LOGREC is on.
v Processing in AOFRSA02 is only done if it is called from NetView automation

table.

Usage
Automation routine AOFRSA02 is intended to respond to the following message:
IFC001I D=devtyp N=x F=track1* L=track2* S=recd** DIP COMPLETE

This is produced during the initialization of the LOGREC data set and describes
the limits of the data set.

The flag, indicating that the LOGREC recovery function is in progress, is used by
automation routine AOFRSA01.

Examples
This example shows a sample scenario for LOGREC data set processing:

The following entries in the NetView automation table are created automatically to
issue the appropriate automation routine when one of the expected messages
arrives:
IF MSGID = ’IFB040I’ | MSGID = ’IFB060E’ |

MSGID = ’IFB080I’ | MSGID = ’IFB081I’
THEN
EXEC(CMD(’AOFRSA01’)ROUTE(ONE %AOFOPRECOPER%));

IF MSGID = ’IFC001I’
THEN
EXEC(CMD(’AOFRSA02’)ROUTE(ONE %AOFOPRECOPER%));

AOFRSA01

166 System Automation for z/OS: Customizing and Programming

Assume that the following message arrives the first time for one day:
IFB080E LOGREC DATA SET NEAR FULL, DSN=SYS1.AOC1.MAN3

Because none of the defined thresholds is exceeded, the automation routine
AOFRSA01 searches for defined commands without selection option and to
selection option ALWAYS to be issued. With the control file shown above the
command MVS S CLRLOG,DSN=&EHKVAR1 is selected. Before issuing this command,
the variable &EHKVAR1 is substituted by the data set name of the received
message resulting in MVS S CLRLOG,DSN=SYS1.AOC1.MAN3.

If message IFB080E continues to arrive and the occurrence of the expected
messages thus exceeds the infrequent, frequent or critical threshold, the automation
routine AOFRSA01 searches for defined commands without selection option and to
selection option INFR, FREQ or CRIT to be issued.

Because no command is defined with any selection option, only the defined
command with no selection option is selected and issued, as in the previous case.

Message AOF589I, AOF588I or AOF587I is issued in cases, where an infrequent,
frequent or critical threshold has been exceeded. These messages indicate that an
infrequent, frequent or critical threshold action has been processed.

If the recovery processing for a LOGREC data set is still in progress when an
expected error message arrives, the following message is issued:
AOF585I 15:45 : RECOVERY OF LOGREC IS ALREADY IN PROGRESS -

The recovery process is considered to be finished, when message IFC001I arrives
telling that the LOGREC data set has been initialized.

COMMANDS HELP
--

Thresholds Definition
Command ===>

Entry Type : MVS Component PolicyDB Name : DATABASE_NAME
Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE

Resource : MVSESA.LOGREC

Critical Number 3 (1 to 50)
Critical Interval . . . 00:05 (hh:mm or hhmm, 00:01 to 24:00)

Frequent Number 3 (1 to 50)
Frequent Interval . . . 00:30 (hh:mm or hhmm, 00:01 to 24:00)

Infrequent Number . . . 3 (1 to 50)
Infrequent Interval . . 24:00 (hh:mm or hhmm, 00:01 to 24:00)

Figure 26. Threshold Definitions for MVS Component LOGREC

Pass/Selection Automated Function/’*’
Command Text

MVS S CLRLOG,DSN=&EHKVAR1

Figure 27. MESSAGES/USER DATA Policy Item for Entry/Type-Pair MVSESA/LOGREC

AOFRSA02

Chapter 15. Automation Solutions 167

AOFRSA03

Purpose
You can use the AOFRSA03 automation routine to respond to SMF data set full or
switch messages from your system. AOFRSA03 issues commands from the
configration files to dump and clear the contents of the SMF data set.

AOFRSA03 keeps track of incoming SMF data set messages and compares their
occurrence with predefined thresholds at infrequent, frequent, and critical levels.
An exceeded threshold is used as the option for selecting the appropriate
commands according to the first field in the command entry of the
MVSESA/SMFDUMP entry/type pair in the configuration file. If no threshold is
exceeded the commands that are defined for the selection option ALWAYS are
issued.

AOFRSA03 should be called from the NetView automation table.

Syntax

�� AOFRSA03 ��

Restrictions
v Actions in AOFRSA03 are only taken if the recovery automation flag for

SMFDUMP is on.
v Processing in AOFRSA03 is only done if it is called from the NetView

automation table by one of the expected messages: IEE362A, IEE262I, IEE391A or
IEE392I.

Usage
Automation routine AOFRSA03 is intended to respond to the following messages:
IEE362A SMF ENTER DUMP FOR SYS1.MANn ON ser
IEE362I SMF ENTER DUMP FOR SYS1.MANn ON ser
IEE391A SMF ENTER DUMP FOR DATA SET ON VOLSER ser, DSN=dsname
IEE392I SMF ENTER DUMP FOR DATA SET ON VOLSER ser, DSN=dsname

that indicate that the SMF data set is ready to be dumped.

Global Variables
&EHKVAR1

When defining the commands in the configuration file to dump and clear
the contents of the SMF data set, the variable &EHKVAR1 can be used for
the name of the SMF data set. This variable is substituted with the
complete data set name by AOFRSA03 when message IEE391A or IEE392I
is received. In case of message IEE362A or IEE362I this variable is
substituted with MANn, the second part of the SMF data set name.

&EHKVAR2
When defining the commands in the configuration file to dump and clear
the contents of the SMF data set, the variable &EHKVAR2 can be used for
the name of the SMF data set. This variable is substituted with the
complete data set name by AOFRSA03 when message IEE391A, IEE392I,
IEE362A, or IEE362I is received.

AOFRSA03

168 System Automation for z/OS: Customizing and Programming

Examples
This example shows a sample scenario for SMF data set processing:

The following entries in the NetView automation table are created automatically to
issue the appropriate automation routine when one of the expected messages
arrives:
IF (MSGID = ’IEE362I’ | MSGID = ’IEE362A’ |

MSGID = ’IEE391A’ | MSGID = ’IEE392I’)
THEN
EXEC(CMD(’AOFRSA03’)ROUTE(ONE %AOFOPRECOPER%));

Assume that the following message arrives the first time on one day:
IEE391A SMF ENTER DUMP FOR DATASET ON VOLSER 123, DSN=SYS1.AOC1.MAN3

Because none of the defined thresholds has been exceeded, the AOFRSA03
automation routine searches for commands to issue that have been defined without
a selection option or with the selection option ALWAYS. With the control file
shown above the command MVS S SMFDUMP1,DA=’&EHKVAR1’ is selected. Before
issuing this command, the variable &EHKVAR1 is substituted with the data set
name from the received message, resulting in MVS S
SMFDUMP1,DA=’SYS1.AOC1.MAN3’.

If message IEE391A continues to arrive and the occurrence of the expected
messages thus exceeds the infrequent, frequent or critical thresholds, the
AOFRSA03 automation routine searches for commands to issue that have been
defined without a selection option or with selection option INFR, FREQ or CRIT.

Because no command has been defined with a selection option, only the command
that has been defined without a selection option is selected and issued, as in the
previous case.

COMMANDS HELP
--

Thresholds Definition
Command ===>

Entry Type : MVS Component PolicyDB Name : DATABASE_NAME
Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE

Resource : MVSESA.SMFDUMP

Critical Number 3 (1 to 50)
Critical Interval . . . 00:05 (hh:mm or hhmm, 00:01 to 24:00)

Frequent Number 3 (1 to 50)
Frequent Interval . . . 00:30 (hh:mm or hhmm, 00:01 to 24:00)

Infrequent Number . . . 3 (1 to 50)
Infrequent Interval . . 24:00 (hh:mm or hhmm, 00:01 to 24:00)

Figure 28. Threshold Definitions for MVS Component SMFDUMP

Pass/Selection Automated Function/’*’
Command Text

MVS S SMFDUMP1,DA=’’&EHKVAR1’’’

Figure 29. MESSAGES/USER DATA Policy Item for Entry/Type-Pair MVSESA/SMFDUMP

AOFRSA03

Chapter 15. Automation Solutions 169

Message AOF589I, AOF588I or AOF587I is issued in cases where an infrequent,
frequent or critical threshold has been exceeded. These messages indicate that an
infrequent, frequent or critical threshold action has been processed.

AOFRSA08

Purpose
You can use the AOFRSA08 automation routine to respond to syslog being queued
messages by starting an external writer to save the syslog that was queued.

AOFRSA08 keeps track of the incoming syslog queued messages and compares
there occurrence with predefined thresholds at infrequent, frequent, and critical
levels. An exceeded threshold is used as the option for selecting the appropriate
commands according to the first field in the command entry of the
MVSESA/SYSLOG entry/type-pair in the configuration file. If no threshold is
exceeded the commands that are defined for the selection option ALWAYS are
issued.

AOFRSA08 should be called from the NetView automation table.

Syntax

�� AOFRSA08 ��

Restrictions
v Processing in AOFRSA08 is only done if it is called from NetView automation

table by the expected message IEE043I.
v Actions are only taken in AOFRSA08 if the recovery automation flag for

SYSLOG is on and if the status of JES is UP or HALTED.

Usage
Automation routine AOFRSA08 is intended to respond to the message:
IEE043I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS class

which indicates that the system closed the system log (SYSLOG) data set and
queued the data set to a SYSOUT class.

The commands to issue are selected from the command entry of the
MVSESA/SYSLOG entry/type-pair in the configuration file.

If no threshold is reached when one of the expected messages arrive, all
commands that are defined for entries without a selection option and for the
selection option ALWAYS are selected.

If the threshold at the infrequent level is exceeded, all commands that are defined
for entries without a selection specification option and for entries with the selection
option INFR are selected.

In the same way, a level of frequent corresponds to the selection option FREQ and
a level of critical corresponds to the selection option CRIT.

AOFRSA03

170 System Automation for z/OS: Customizing and Programming

Examples
This example shows a sample scenario for SYSLOG processing:

The following entry in the NetView automation table is created automatically to
issue AOFRSA08 as response to the incoming IEE043I message:
IF MSGID = ’IEE043I’
THEN
EXEC(CMD(’AOFRSA08’)ROUTE(ONE %AOFOPRECOPER%));

Assume that the following message arrives the first time for one day:
IEE043I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS A

Because none of the defined thresholds is exceeded, the automation routine
AOFRSA08 searches for defined commands without selection option and to
selection option ALWAYS to be issued. With the control file shown above the
command MVS S SAVELOG is selected.

If message IEE043I continues to arrive and the occurrence of the expected
messages thus exceeds the infrequent, frequent or critical threshold, the automation
routine AOFRSA08 searches for defined commands without selection option and to
selection option INFR, FREQ or CRIT to be issued.

Because no command is defined with any selection option, only the defined
command with no selection option is selected and issued, as in the previous case.

Message AOF589I, AOF588I or AOF587I is issued in cases, where an infrequent,
frequent or critical threshold has been exceeded. These messages indicate that an
infrequent, frequent or critical threshold action has been processed.

COMMANDS HELP
--

Thresholds Definition
Command ===>

Entry Type : MVS Component PolicyDB Name : DATABASE_NAME
Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE

Resource : MVSESA.SYSLOG

Critical Number 3 (1 to 50)
Critical Interval . . . 00:05 (hh:mm or hhmm, 00:01 to 24:00)

Frequent Number 3 (1 to 50)
Frequent Interval . . . 00:30 (hh:mm or hhmm, 00:01 to 24:00)

Infrequent Number . . . 3 (1 to 50)
Infrequent Interval . . 24:00 (hh:mm or hhmm, 00:01 to 24:00)

Figure 30. Threshold Definitions for MVS Component SYSLOG

Pass/Selection Automated Function/’*’
Command Text

MVS S SAVELOG

Figure 31. MESSAGES/USER DATA Policy Item for Entry/Type-Pair MVSESA/SYSLOG

AOFRSA08

Chapter 15. Automation Solutions 171

AOFRSA0C

Purpose
You can use the AOFRSA0C automation routine to respond to a SVC dump taken
to a dump data set message by issuing commands from the configuration file to
format the dump, to clear the dump data sets, or to prevent further dumping. The
commands to issue are taken from the MVSESA/MVSDUMP and
MVSESA/MVSDUMPTAKEN entry/type-pairs and selected according to the
frequency of the incoming messages and the thresholds defined in the automation
policies. The first field in the command entry gives detailed criteria to select the
appropriate commands from the configuration file.

AOFRSA0C should be called from the NetView automation table.

Syntax

�� AOFRSA0C ��

Restrictions
v Actions in AOFRSA0C are only taken if the recovery automation flag for

MVSDUMP is on.
v Processing in AOFRSA0C is only done if it is called from NetView automation

table by one of the expected messages IEA611I or IEA911E.

Usage
Automation routine AOFRSA0C is intended to respond to the following messages:
IEA611I {COMPLETE|PARTIAL} DUMP ON dsname
DUMPID=dumpid REQUESTED BY JOB (jobname)
FOR ASIDS(id,id,...)
...

IEA911E {COMPLETE|PARTIAL} DUMP ON SYS1.DUMPnn
DUMPid=dumpid REQUESTED BY JOB (jobname)
FOR ASIDS(id,id,...)
...

These indicate that the system wrote a complete or partial SVC dump to an
automatically allocated or pre-allocated dump data set on a direct access storage
device or a tape volume.

AOFRSA0C keeps track on the reception of these messages and compares the
frequency of the incoming messages with predefined thresholds of infrequent,
frequent and critical level, where the thresholds to MVS component MVSDUMP
are considered. The commands to issue are selected according to the frequency of
the incoming messages.

If no threshold is reached, all commands to entries with no selection option and to
selection option ALWAYS are selected. If the threshold at level infrequent is
exceeded, all commands to entries with no selection option and to selection option
INFR are selected. In the same way a level of frequent corresponds to selection
option FREQ and a level of critical corresponds to selection option CRIT.

AOFRSA0C

172 System Automation for z/OS: Customizing and Programming

The commands to issue are taken from MVSESA/MVSDUMP entry/type-pair of
the configuration file with respect to the frequency of the incoming of these
messages.

If AOFRSA0C has been triggered by receipt of message IEA911E, all the commands
from the MVSESA/MVSDUMPTAKEN entry/type-pair of the configuration file are
also selected and issued, as long as the critical threshold has not been exceeded.

After dump processing has been done, AOFRSA0C further monitors the frequency
of messages IEF611I and IEF911E in intervals of 15 minutes. As soon as the
frequency falls below the infrequent threshold, all the commands of
MVSESA/MVSDUMPRESET entry/type-pair are issued.

Global Variables
When defining the commands in the configuration file to handle the SVC dump
data set, the variables &EHKVAR1 to &EHKVAR6 can be used to be substituted by
variable contents of message IEA611I or IEA911E. The variables &EHKVAR1 to
&EHKVAR6 are not available in command entries of type MVSDUMPRESET.
These variables are substituted as follows:

&EHKVAR1
The dsname of IEA611I or suffix of SYS1.DUMPnn in IEA911E

&EHKVAR2
The data set name

&EHKVAR3
The dump ID

&EHKVAR4
The job name

&EHKVAR5
The ID of address space

&EHKVAR6
The dump type (PARTIAL or COMPLETE)

Examples
This example shows the use of automation routine AOFRSA0C in a sample
context:

An entry in the NetView automation table is used to issue AOFRSA0C when one
of the expected messages arrives:
IF MSGID = ’IEA611I’ | MSGID = ’IEA911E’
THEN
EXEC(CMD(’AOFRSA0C ’)ROUTE(ONE %AOFOPRECOPER%));

Three threshold levels are defined in the automation policy for MVS component
MVSDUMP:

AOFRSA0C

Chapter 15. Automation Solutions 173

The MESSAGES/USER DATA automation policy item of the MVSESA/MVSDUMP
entry/type-pair contains the following command entries for the message ID
MVSDUMP with selection options at different levels:

Ps/Select Command Text

FREQ ’MVS DD ALLOC=INACTIVE’

INFR ’MVS DD ALLOC=ACTIVE’

CRIT ’MVS DD ALLOC=INACTIVE’

The MESSAGES/USER DATA automation policy item of the MVSESA/
MVSDUMPTAKEN entry/type-pair contains the following entry without any
selection options:
’MVS DD CLEAR,DSN=&EHKVAR1’

The MESSAGES/USER DATA automation policy item of the MVSESA/
MVSDUMPRESET entry/type-pair contains the following entry without any
selection options:
’MVS DD ALLOC=ACTIVE’

As long as no threshold is exceeded at receipt of one of the IEA611I and IEA911E
messages, no action is taken.

If dumps have been taken more often than defined with the infrequent threshold,
the command MVS DD ALLOC=ACTIVATE, specified in entry type MVSDUMP, is
issued. This makes sure that automatic dump data set allocation is enabled. In
cases when the dump has been written to a pre-allocated SYS1.DUMP data set,
additionally the data set is cleared using the command MVS DD
CLEAR,DSN=&EHKVAR1, specified in the entry type MVSDUMPTAKEN. Variable
&EHKVAR1 is substituted by the numeric suffix of the SYS1.DUMP data set.

The same processing is done in cases when the incoming dump data set messages
exceeds the frequent level.

AOFKAASR SA z/OS - Command Dialogs
Domain ID = IPSNO ---------- INGTHRES ---------- Date = 08/28/03
Operator ID = SAUSER Time = 09:38:02

Specify thresholds and resource changes:

Resource => MVSESA.MVSDUMP Group or specific resource
System => KEY3 System name, domain ID, sysplex name or *all

Critical => 6 errors in 00:30 Time (HH:MM)
Frequent => 4 errors in 00:20 Time (HH:MM)
Infrequent => 2 errors in 00:20 Time (HH:MM)

Pressing ENTER will set the THRESHOLD values

Command ===>
PF1=Help PF2=End PF3=Return PF6=Roll

PF12=Retrieve

Figure 32. MVSDUMP Thresholds

AOFRSA0C

174 System Automation for z/OS: Customizing and Programming

As soon as the critical threshold is exceeded, the automation routine stops clearing
pre-allocated SYS1.DUMP data sets.

After commands having been issued by the automatic processing of dump data
sets, automation routine AOFRSA0C checks every 15 minutes whether the
infrequent threshold is satisfied again. As soon as this situation is reached,
automatic dump data set allocation is enabled again by command MVS DD
ALLOC=ACTIVE, as defined in entry type MVSDUMPRESET.

AOFRSA0E

Purpose
Automation routine AOFRSA0E deletes WTORs from SA z/OS display capabilities
when they are replied to or canceled.

Syntax

�� AOFRSA0E �

,

id
��

Parameters
id The reply identifiers for cancelled messages.

Restrictions
Processing in AOFRSA0E is only done if it is called from NetView automation
table by message IEE400I or IEE600I or if one of these messages are passed by
parameter.

Usage
Automation routine AOFRSA0E is intended to respond to the following messages:
IEE400I THESE MESSAGES CANCELED- id,id,id
IEE600I REPLY TO id IS; text

Message IEE400I says that the system cancelled messages because the issuing task
ended or specifically requested that the messages be cancelled. Message IEE600I
notifies all consoles that received a message that the system accepted a reply to the
message.

As well AOFRSA0E can extract the identifiers of the messages to delete from
passed parameters.

Example
The following example shows how to issue AOFRSA0E from the NetView
automation table:
IF MSGID = ’IEE400I’ | MSGID = ’IEE600I’
THEN
EXEC(CMD(’AOFRSA0E ’)ROUTE(ONE %AOFOPWTORS%));

AOFRSA0C

Chapter 15. Automation Solutions 175

AOFRSA0G

Purpose
You can use the AOFRSA0G automation routine to respond to messages reporting
buffer shortage of the action message retention facility (AMRF) by issuing
commands from the configuration file to process buffer shortage automation.

In the case of an incoming buffer shortage message, the commands to issue are
taken from the MVSESA/AMRFSHORT entry/type-pair with the selection option
PASS1 and reissued at 1 minute intervals with an incremented pass count.

In the case of a buffer full message, the commands to issue are taken from the
MVSESA/AMRFFULL entry/type-pair. If buffer shortage relieved is reported, the
commands that are defined for the MVSESA/AMRFCLEAR entry/type-pair are
selected.

AOFRSA0G should be called from the NetView automation table.

Syntax

�� AOFRSA0G ��

Restrictions
v Actions are only taken in AOFRSA0G if the recovery automation flag for AMRF

is on.
v Processing of system messages in AOFRSA0G is only done if it is called from

NetView automation table by message IEA359E, IEA360A or IEA361I.

Usage
Automation routine AOFRSA0G is intended to respond to the messages:
IEA359E BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 80% FULL
IEA360A SEVERE BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 100% FULL
IEA361I BUFFER SHORTAGE RELIEVED FOR RETAINED ACTION MESSAGES

IEA359E and IEA360A reports buffer shortage of the buffer area for immediate
action messages, non-critical and critical eventual action messages and WTOR
messages. IEA361I indicates the reduction of the number of retained action
messages so that the buffer is now less than 75% full.

If AOFRSA0G has been triggered on receipt of message IEA359E the commands to
issue are taken from entry/type-pair MVSESA/AMRFSHORT, starting at selection
option PASS1 and continuing with incremented selection options in 1 minute
intervals until message IEA361 reports that buffer shortage has relieved. After
arriving the maximal used selection option for a defined command processing
restarts at selection option PASS1.

If AOFRSA0G has been triggered on receipt of message IEA360A all commands
from entry/type-pair MVSESA/AMRFFULL are issued.

If AOFRSA0G has been triggered on receipt of message IEA361I all commands
from entry/type-pair MVSESA/AMRFCLEAR are issued.

AOFRSA0G

176 System Automation for z/OS: Customizing and Programming

Examples
The following example shows a sample scenario for AMRF shortage processing:

Entries in the NetView automation table are used to issue AOFRSA0G when
message IEA359E, IEA360E or IEA361I arrives:
IF MSGID = ’IEA359E’
THEN
EXEC(CMD(’AOFRSA0G’)ROUTE(ONE %AOFOPRECOPER%));
IF MSGID = ’IEA360A’
THEN
EXEC(CMD(’AOFRSA0G’)ROUTE(ONE %AOFOPRECOPER%));
IF MSGID = ’IEA361I’
THEN
EXEC(CMD(’AOFRSA0G’)ROUTE(ONE %AOFOPRECOPER%));

To specify how to respond to message IEA359E and IEA361I, the following
command definitions are made in the automation policy under the entry/type-pair
MVSESA/AMRFFULL and MVSESA/AMRFCLEAR:

If for example message
IEA360A SEVERE BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 100% FULL

arrives, AOFRSA0G is issued by the shown statement in the NetView automation
table, which causes the command CONTROL M,AMRF=N to be issued to clear the
AMRF buffers.

After AMRF buffer shortage is relieved, the incoming message
IEA361I BUFFER SHORTAGE RELIEVED FOR RETAINED ACTION MESSAGES

causes command CONTROL M,AMRF=Y to be issued to reactivate AMRF.

AOFRSD07

Purpose
You can use the AOFRSD07 automation routine to respond to a JES2 not dormant
message during JES2 shutdown by issuing commands for resources that are not
drained.

The commands to issue are taken from the automation policy item JES2 DRAIN of
application JES2.

Additionally AOFRSD07 calls AOFRSD0F which outputs a list of all active jobs and
started tasks and a list of all resources not yet drained.

AOFRSD07 should be called from the NetView automation table.

Command = ACF ENTRY=MVSESA,TYPE=AMRF*,REQ=DISP
SYSTEM = AOC1 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA

AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA
TYPE IS AMRFCLEAR
CMD = (,,’MVS CONTROL M,AMRF=Y’)
TYPE IS AMRFULL
CMD = (,,’MVS CONTROL M,AMRF=N’)
END OF MULTI-LINE MESSAGE GROUP

Figure 33. MVSESA AMRF Command Definitions

AOFRSA0G

Chapter 15. Automation Solutions 177

Syntax

�� AOFRSD07 ��

Restrictions
Processing in AOFRSD07 is only done if:
v It is called from NetView automation table by JES2 message HASP607
v The terminate automation flag for JES2 is on
v JES2 is in shutdown progress

AOFRSA07 performs no processing under z/OS 1.7 and above because Console
IDs are not valid in that environment.

Usage
Automation routine AOFRSD07 is intended to respond to message
HASP607 JES2 NOT DORMANT -- MEMBER DRAINING, RC=rc text

which indicates in case the P JES2 command was entered to withdraw JES2 from
the system that not all of JES2's functions have completed.

To find out all resources not drained, the response to JES2 command DU,STA is
processed. For each resource in status DRAINING the corresponding command
from the automation policy item JES2 DRAIN for this resource type to force drain
is issued. Resources in status ACTIVE are first stopped with JES2 command P
resource, before the command from the automation policy item to force drain is
issued. Resources in status INACTIVE are only stopped with JES2 command P
resource.

In cases, where the automation is unable to issue actions on not yet drained
resources, JES2 is set to status STUCK and a message is issued which tells that an
operator action is required. Those situations occur if no command is specified in
automation policy item JES2 DRAINED of JES2 to drain a resource or if a not yet
drained resource is in an unknown status

AOFRSD09

Purpose
Automation routine AOFRSD09 is used for JES2 spool recovery. It is called by
AOFRSD01 via a timer every retry interval to monitor spool utilization of JES2 and
to successive issue the recovery commands of policy item JES2 SPOOLSHORT or
JES2 SPOOLFULL.

For this purpose AOFRSD09 processes the following steps:
v AOFRSD09 issues the JES2 command D SPOOL to obtain the current spool

usage.
v AOFRSD09 re-evaluates the target of recovery process based on the actual

warning threshold for TG and the buffer value from the configuration file.
v If the recovery target has not yet been achieved and the current JES2 subsystem

is responsible for the spool recovery, AOFRSD09 increments the pass count and
issues the appropriate commands from the configuration file. In a shared JES2
environment, where all JES2 subsystems receive a copy of the spool shortage

AOFRSD07

178 System Automation for z/OS: Customizing and Programming

message, AOFRD09 determine the appropriate JES2 subsystem for spool
recovery. To do this, AOFRD09 compares the list of cpuids, as defined in
configuration file, with the response to JES2 command D
MEMBER,STATUS=ACTIVE. The first active cpuid on the list is considered to be
the appropriate JES2 subsystem for spool recovery.

v In case the spool shortage problem has already been relieved, AOFRSD09 stops
the recovery process and sets a timer to reset the pass count for the recovery
commands after the reset interval.

You define recovery commands and configuration parameters for JES2 recovery
processing, such as buffer value, reset interval and cpuid list, using automation
policy item JES2 SPOOLSHORT for spool shortage recovery processing and JES2
SPOOLFULL for spool full recovery processing.

For further information about the JES2 SPOOLSHORT and JES2 SPOOLFULL
automation policy items see IBM Tivoli System Automation for z/OS Defining
Automation Policy.

Syntax

�� AOFRSD09 subsystem recovery type ��

Parameters
subsystem

The subsystem name of JES2. This parameter is required.

recovery type
This parameter is used to distinguish between a JES2 spool shortage and a
JES2 spool full condition. This parameter is required.

SHORT
The automatic recovery from a JES2 spool shortage condition is to be
processed.

FULL The automatic recovery from a JES2 spool full condition is to be
processed.

Restrictions
v Processing of recovery commands in AOFRSD09 is only done if the recovery

automation flag for JES2 is on. Otherwise the recovery process is suspended and
the pass count for selection recovery commands from the configuration file is
not incremented.

v Automation routine AOFRSD09 should be processed by JESOPER. If it is called
on another task it is routed back to JESOPER.

v Processing in AOFRSD09 is only done if the specified type of spool recovery
process has been initiated by automation routine AOFRSD01.

v During a SPOOLFULL recovery condition, the processing for SPOOLSHORT
recovery is suspended.

Usage
The recovery commands to issue are selected from the command entry of policy
item JES2 SPOOLSHORT or JES2 SPOOLFULL. A pass count is used as selection

AOFRSD09

Chapter 15. Automation Solutions 179

option and incremented at each successive processing of automation routine
AOFRSD09. At initialization of the recovery process, the pass count is set to value
PASS1 by automation routine AOFRSD01.

If pass processing runs out of defined recovery commands before the spool
shortage condition is resolved, AOFRSD09 re-executes the recovery sequence from
PASS1. You can change this behavior by setting the appropriate advanced
automation option at start up of System Automation. You can use the
AOFSPOOLSHORTCMD variable (for SPOOLSHORT conditions) and the
AOFSPOOLFULLCMD variable (for SPOOLFULL conditions) to tell automation
routine AOFRSD09 to stop recovery attempts when all commands have been
executed and to issue message AOF294I to inform the operator that manual
intervention is required in order to resolve the spool condition. For more
information about advanced automation options refer to “Read/Write Variables”
on page 198.

Global Variables
When defining the commands in the SPOOLFULL or SPOOLSHORT processing
panel of the configuration file to handle the recovery, the variables &EHKVAR1
and &EHKVAR2 can be used to be substituted by variable contents. Variable
&EHKVAR1 is substituted by the current spool utilization and &EHKVAR2
contains the recovery target.

AOFRSD0F

Purpose
Automation routine AOFRSD0F is used by AOFRSD07 for drain processing prior
to JES2 shutdown. Every shutdown delay interval, AOFRSD0F displays all JES2
resources not yet drained. For this purpose it scans the response to JES2 command
DA,S for executing tasks, the response to JES2 command DA,J for executing jobs
and the response to JES2 command DU,STA for started devices or lines not yet
drained and displays the result in a message.

Syntax

�� AOFRSD0F subsystem ��

Parameters
subsystem

The subsystem name of JES2.

Restrictions
Processing in AOFRSD0F is only done if the following conditions are met:
v The subsystem is of type JES2
v JES2 is in shutdown progress
v The terminate automation flag is on

Usage
This automation routine is performed as part of the SHUTDOWN processing.

AOFRSD09

180 System Automation for z/OS: Customizing and Programming

Examples
This example shows a sample scenario for JES2 drain processing prior to JES2
shutdown.

The following statement shows how AOFRSD07 is issued from the NetView
automation table by JES2 message
$HASP607: IF MSGID(2) = ’HASP607’
THEN
EXEC(CMD(’AOFRSD07’)ROUTE(ONE %AOFOPJESOPER%));

Assume the following drain processing specifications in automation policy item
JES2 DRAIN:

The list of commands to force drain of JES2 resources are passed to the
JES2/FORCEDRAIN entry/type-pair in the configuration file and can be displayed
with the DISPACF command:

Assume that during a shutdown of JES2 message $HASP607 arrives, indicating
that not all of JES2's functions have completed and that JES2's response to
command $DU,STATUS is:
$HASP636 13.53.22 $DU,STA
LINE1 UNIT=0FF3,STATUS=ACTIVE/BOEVM9,DISCON=NO

COMMANDS HELP
--

JES2 DRAIN Specifications
Command ===>

Entry Type : Application PolicyDB Name : DATABASE_NAME
Entry Name : JES2 Enterprise Name : YOUR_ENTERPRISE

Subsystem: JES2
Enter information (Yes or No) for initial drain to bring down JES2 facilities.

LIN YES Drain lines
LOG YES Drain JES2-VTAM interface
OFF NO Drain spool offloaders
PRT YES Drain printers
RDR YES Drain readers
PUN YES Drain punches

Enter information (Command or No) for force drain if normal drain fails.
LIN $E Force drain lines
LOG $E Force drain JES2-VTAM interface
OFF NO Force drain spool offloaders
PRT $I Force drain printers
RDR $C Force drain readers

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 34. JES2 DRAIN Specifications Panel

Command = ACF ENTRY=JES2,TYPE=FORCEDRAIN,REQ=DISP
SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
TYPE IS FORCEDRAIN
LIN = ""$E""
LOG = ""$E""
OFF = ""NO""
PRT = ""$I""
RDR = ""$C""
PUN = ""$E""
END OF MULTI-LINE MESSAGE GROUP

Figure 35. DISPACF Panel

AOFRSD0F

Chapter 15. Automation Solutions 181

Automation routine AOFRSD07 first issues JES2 command $PLINE1 to stop the line
and then issues JES2 command $E, according to the policy specifications FOR
entry/type-pair JES2/FORCEDRAIN.

Then automation routine AOFRSD0F is executed every shutdown delay interval, to
list all JES2 resources not drained.

AOFRSD0G

Purpose
You can use the AOFRSD0G automation routine to drain JES2 resources prior to
JES2 shutdown. AOFRSD0G issues commands to drain the initiators, offloader
tasks, lines, printers, punches and readers, depending on which resources are listed
and enabled in the automation policy item JES2 DRAIN of application JES2.

AOFRSD0G is used by the DRAINJES command.

Syntax

�� AOFRSD0G subsystem ��

Parameters
subsystem

The subsystem name of JES2.

Restrictions
v Processing in AOFRSD0G is only done if the subsystem is of type JES2.

Usage
For all resources enabled to initial drain in automation policy item JES2 DRAIN of
application JES2 the JES2 command P is issued.

Example
Call AOFRSD0G JES2 to stop all resources enabled in JES2 DRAIN for init drain.

These resources can be listed with command DISPACF JES2 INITDRAIN.

Command = ACF ENTRY=JES2,TYPE=INITDRAIN,REQ=DISP
SYSTEM = AOC1 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
TYPE IS INITDRAIN
LIN = ""YES""
LOG = ""YES""
OFF = ""NO""
PRT = ""YES""
RDR = ""YES""
PUN = ""YES""
END OF MULTI-LINE MESSAGE GROUP

Figure 36. DISPACF JES2 INITDRAIN Panel

AOFRSD0F

182 System Automation for z/OS: Customizing and Programming

AOFRSD0H

Purpose
The AOFRSD0H automation routine is used for JES2 spool recovery. It is called by
AOFRSD09 with a timer command after the reset interval and cleans up the pass
counter for the pass processing of the recovery commands of the configuration file.

Syntax

�� AOFRSD0H subsystem recovery type ��

Parameters
subsystem

The subsystem name of JES2. This parameter is required.

recovery type
This parameter is used to distinguish between a JES2 spool shortage and a
JES2 spool full condition. This parameter is required.

SHORT
The pass counter for spool shortage recovery processing is to be reset.

FULL The pass counter for spool full recovery processing is to be reset.

Restrictions
v The AOFRSD0H automation routine should be processed by JESOPER. If it is

called on another task it is routed back to JESOPER.
v Each recovery action during the reset interval
v AOFRSD0H is only scheduled after the reset interval if no new recovery action

of the corresponding type SHORT or FULL has been taken during this time.
v The pass counter for spool full recovery processing is reset by AOFRSD0H after

the reset interval, even if spool short recovery is still in progress.

Examples
The following example shows a sample scenario for JES2 spool recovery
processing:

The following entries in the NetView automation table are used to issue the
AOFRSD01 automation routine from the NetView automation table, when one of
the expected messages arrives:
IF MSGID(2) = ’HASP050’ & TEXT = .’TGS’.
THEN
EXEC(CMD(’AOFRSD01’)ROUTE(ONE %AOFOPJESOPER%));
IF MSGID(2) = ’HASP355’
THEN
EXEC(CMD(’AOFRSD01’)ROUTE(ONE %AOFOPJESOPER%));

The SPOOLSHORT recovery is configured using the automation policy item JES2
SPOOLSHORT as shown in Figure 37 on page 184.

AOFRSD0H

Chapter 15. Automation Solutions 183

Because no cpuids are defined, the own JES2 subsystem is responsible for JES2
spool recovery processing. Entering YES in Edit Spoolshort Pass Commands field
allows you to edit the pass recovery commands that are defined as shown in the
response panel to command DISPACF JES2, .

Assume that a JES2 spool shortage problem is reported by the following message:
$HASP050 JES RESOURCE SHORTAGE OF TGS - 80% UTILIZATION REACHED

This issues the AOFRSD01 automation routine by the appropriate NetView
automation table entry. AOFRSD01 initiates the JES2 SPOOLSHORT recovery
process and sets an every timer to call the pass processing routine by issuing
AOFRSD09 JES2 SHORT every 5 minutes, as defined in the customization dialog
for SPOOLSHORT processing, see Figure 37.

AOFRSD09 redetermines the actual spool usage, compares it with the defined
TGWARN of 80% and calculates the target of recovery as difference of TGWARN
and the buffer value resulting in a value of 75. If this value is exceeded by the
actual spool usage, all recovery commands with the PASS1 selection option in the
configuration file for the SPOOLSHORT recovery type are issued. After the retry
interval of 5 minutes, AOFRSD09 is reissued by the timer.

COMMANDS HELP
--

SPOOLSHORT Processing
Command ===>

Entry Type : Application PolicyDB Name : DATABASE_NAME
Entry Name : JES2 Enterprise Name : YOUR_ENTERPRISE

Enter SPOOLSHORT settings.

Retry Time 00:05:00 Spool recovery attempt interval (hh:mm:ss)
Buffer 5 Recovery target below TGWARN (0->50)
Reset Time 00:15:00 Recovery reset interval (hh:mm:ss)

Priority of systems for spool recovery:

CPUID 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32

Edit Spoolshort Pass Commands . . YES YES NO

Figure 37. JES2 SPOOLSHORT Recovery Definition

Command = ACF ENTRY=JES2,TYPE=*,REQ=DISP
SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

TYPE IS SPOOLSHORT
CMD = (PASS1,,’MVS $PQ,Q=N,A=3’)
CMD = (PASS1,,’MVS $OQ,Q=N,A=3,CANCEL’)
CMD = (PASS1,,’MVS $PQ,Q=V,A=3’)
CMD = (PASS1,,’MVS $OQ,Q=V,A=3,CANCEL’)
CMD = (PASS2,,’MVS $PQ,ALL,A=4’)
CMD = (PASS2,,’MVS $OQ,ALL,A=4,CANCEL’)
CMD = (PASS3,,’MVS $PQ,ALL,A=3’)
CMD = (PASS3,,’MVS $OQ,ALL,A=3,CANCEL’)
CMD = (PASS4,,’AORRSPLS RANGE=JOB1-5000,NAME=T*’)
CMD = (PASS4,,’AORRSPLS RANGE=JOB5000-10000,NAME=T*’)
CMD = (PASS4,,’AORRSPLS RANGE=JOB10000-15000,NAME=T*’)
CMD = (PASS4,,’AORRSPLS RANGE=JOB15000-20000,NAME=T*’)

Figure 38. DISPACF Command Response Panel

AOFRSD0H

184 System Automation for z/OS: Customizing and Programming

If AOFRSD09 now determines that the JES2 spool shortage problem has been
relieved, it stops recovery processing and sets a timer to issue AOFRSD0H JES2 SHORT
after the reset interval of 15 minutes.

If none of the expected JES2 messages arrives by the end of the reset interval, the
AOFRSD0H automation routine resets the pass count to 1 so that the next
SPOOLSHORT recovery process issues recovery commands beginning again at
PASS1 selection option.

EVEERTRN

Purpose
The EVEERTRN routine handles transaction recovery.

It should be invoked from the NetView automation table.

Syntax

�� EVEERTRN ��

Usage
The EVEERTRN automation routine is intended to respond to the following
messages by issuing the transaction recovery commands that are defined for the
RCVRTRAN message ID:
DFHAC2231 date time applid Transaction tranid running program program name term

termid has lost contact with its coordinator system during syncpoint and
has abended with code ASP1. The unit of work is shunted until contact is
restored{. EXCI job = }exci_id. condmsg

DFHAC2232 date time applid Transaction tranid running program program name term
termid has lost contact with its coordinator system during syncpoint and
has abended with code ASPO. All updates will be unilaterally
committed{. EXCI job = }exci_id. condmsg

DFHAC2233 date time applid Transaction tranid running program program name term
termid has lost contact with its coordinator system during syncpoint and
has abended with code ASPP. All updates will be unilaterally backed
out{. EXCI job = }exci_id. condmsg

DFHAC2236 date time applid Transaction tranid abend secondary abcode in program
program name term termid. Updates to local recoverable resources will be
backed out{. EXCI job = }exci_id. condmsg

DFHAC2245 date time applid A CICS-generated syncpoint request could not be completed
normally because a connected system has requested that the unit of work be
rolled back. Transaction tranid running program program name term termid
has been abnormally terminated with code ASPF{. EXCI job = }exci_id. condmsg

DFHAC2247 date time applid Transaction tranid running program program name term
termid has requested rollback, but was using a type of processing for which
rollback is not supported. The transaction has been abnormally terminated
with code ASP8 {. EXCI job = }exci_id. condmsg

DFHAC2248 date time applid Transaction tranid running program program name term
termid has failed with abend ASP7 following the failure of a local
resource owner in the prepare phase of syncpoint. Updates will be backed
out{. EXCI job = }exci_id. condmsg

DFHAC2249 date time applid Transaction tranid running program program name term
termid has failed with abend ASP7 following the failure of a remote system
in the prepare phase of syncpoint. Updates will be backed
out{. EXCI job = }exci_id. condmsg

DFHAC2250 date time applid the coordinator system has indicated that the current unit of work
is to be backed out. Transaction tranid running program program name term
termid has been abnormally terminated with abend ASP3{. EXCI job = }exci_id.
condmsg

DFHAC2251 date time applid Transaction tranid running program program name term
termid has failed with abend ASPQ. Syncpoint commit processing has failed
while communicating with a remote system{. EXCI job = }exci_id. condmsg

DFHAC2252 date time applid Transaction tranid in program program name term termid

AOFRSD0H

Chapter 15. Automation Solutions 185

|||||||
|

|
|
|

|
|
|
|

has lost contact with its coordinator system during syncpoint processing.
No updates have been performed by this system; it has abended with code
ASPR{. EXCI job = }exci_id. condmsg

DFHAC2253 date time applid Transaction tranid running program program name term
termid has failed with abend ASP2 due to the links to the remote systems
being in an invalid state. Updates will be backed out{. EXCI job = }exci_id.
condmsg

Note that these messages are not normally issued to the system console, so if
transaction recovery is required the messages should be included in the
MESSAGES/USER DATA policy so that the CICS message exit forces CICS to WTO
them.

For more details, see the sections “How to Define Transaction Recovery” in the
chapter “How to Set Up the Functions of CICS Automation” in IBM Tivoli System
Automation for z/OS Product Automation Programmer's Reference and Operator's Guide.

EVIECT0X

Purpose
This routine can be used to perform recovery processing for transaction and
program abends in response to the application program abend message DFS554A.

The routine performs the following actions:
v Parses all data from the DFS554A message
v Checks the appropriate automation flag
v Checks the code definitions for exclusions from recovery for the message types

ABCODETRAN or ABCODEPROG
v Performs threshold checking for the triggering DFS554A message

The minor resource name that is used for automation flag checking and threshold
checking is either TRAN.tran or PROG.progid.

If allowed, the recovery commands or replies for message DFS554A with the
selection names PROG or TRAN are issued.

EVIECT0X should be called from the NetView automation table.

Syntax

�� EVIECT0X ��

EVIEET00

Purpose
This routine is a command to process IMS TCO Automation.

This routine should be invoked from the NetView automation table.

Syntax

EVEERTRN

186 System Automation for z/OS: Customizing and Programming

�� EVIEET00 ��

Usage
The EVIEET00 automation routine is intended to respond to the following
messages:
DFS3343E CANNOT PROCESS DFSTCF LOAD COMMAND, REASON=xx
DFS3350E TCO ABNORMALLY TERMINATED, SEE DUMP
DFS3351E TCO ABNORMALLY TERMINATED, SYSTEM ABEND, SEE DUMP
DFS3613I xxx TCB INITIALIZATION COMPLETE.

EVIEI006

Purpose
This routine handles the IMS control region restart errors.

This routine should be invoked from the NetView automation table.

Syntax

�� EVIEI006 ��

Usage
The EVIEI006 automation routine is intended to respond to the following
messages:
DFS166 CHECKPOINT ID NOT ON LOG RE-ENTER RESTART COMMAND
DFS033I DUPLICATE ENTRY ON SIGNON REQUEST, RESTART ABORTED
DFS0618A A RESTART OF A NON-ABNORMALLY TERMINATED SYSTEM MUST SPECIFY EMERGENCY

BACKUP OR OVERRIDE.
DFS3131I A COLD START OR EMERGENCY RESTART REQUIRED
DFS3626I RESTART HAS BEEN ABORTED

EVISTRCT

Purpose
This routine Posts the IMS sysplex event to both SDF and NMC.

This routine should be invoked from the NetView automation table.

Syntax

�� EVISTRCT ��

Usage
The EVISTRCT automation routine is intended to respond to the following
message:
CQS0205E STRUCTURE structurename IS FULL

EVIEET00

Chapter 15. Automation Solutions 187

EVISTRMN

Purpose
This routine resets the posted IMS sysplex event to both SDF and NMC.

This routine should be invoked from the NetView automation table.

Syntax

�� EVISTRMN ��

Usage
The automation routine EVISTRMN is intended to respond to the following
message:
CQS0206I CQS structurename percentage BELOW THRESHOLD LEVEL

EVJEAC04

Purpose
This routine is called when message EVJ120I is trapped. The message is issued by
SA z/OS when a TWS operation has been put into or reset from TWS error status.

The EVJEAC04 routine should be called from the NetView automation table.

Syntax

�� EVJEAC04 ��

Usage
The automation routine EVJEAC04 is intended to respond to message:

EVJ120I applid iatime opnum job status wsname errcode
abcode usrcode job#

This causes a Status Display Facility update and an NMC update to occur.

For an operation changing to error status, the update adds an entry to SDF and
NMC, while an operation changing from error status removes an entry from SDF
and NMC.

SDF entries are added to the OPC Automation Application in Error panel
(OPCERR).

EVJEOBSV

Purpose
This routine is used to start and stop the TWS status observer.

EVISTRMN

188 System Automation for z/OS: Customizing and Programming

|
|

The EVJEOBSV routine called from within the Policy definitions when starting or
stopping the status observer. It is also called internally at SA z/OS initialization
time and when an automation manager takeover has been completed as indicated
by message HSAM1309I.

Syntax

�� EVJEOBSV START
STOP

��

Parameters
START

Establishes the subscription for the list of special resources defined in the
policy.

STOP Removes the subscription.

EVJRAC05

Purpose
This routine is called when message EQQE026I is trapped. This message is issued
by TWS when a TWS operation has detected a job error. This causes an entry to be
added to SDF and the error situation to be posted to NMC.

The EVJRAC05 routine should be called from the NetView automation table.

Syntax

�� EVJRAC05 ��

Usage
The automation routine EVJRAC05 is intended to respond to message:

EQQE026I APPLICATION APPL ENDED IN ERROR EC. OPER = OPERNUM,
PRTY = PRI, IA = IA

This requests the operator to perform error recovery actions for the current job.

EVJRSACT

Purpose
This routine keeps track of whether or not the TWS controller is active or in
standby. The information is stored in the automation manager.

The routine is called when trapping the following message:
v EQQZ201I

Syntax

EVJEOBSV

Chapter 15. Automation Solutions 189

|
|

|

|

�� EVJRSACT ��

EVJRSJOB

Purpose
This routine is called when trapping the following messages:
v EQQE107I
v EQQW079W
v EQQE037I

These messages are issued by TWS when the state of a batch job has changed. This
causes an entry to be added to SDF and the error situation to be posted to NMC.

The EVJRSJOB routine should be called from the NetView automation table.

Syntax

�� EVJRSJOB ��

Usage
The automation routine EVJRSJOB is intended to respond to messages:

EQQE107I OPC-WLM SUCCESSFULLY PROMOTED JBNAM: JBNUM IN
HI PERFORMANCE CLASS

EQQW079W JBNAM WILL NOT BE SUBMITTED TO WLM FOR
PROMOTION. WLM REQUEST IS TOO OLD

EQQE037I JOB JOBNAME(JNUM), OPERATION (OPERNUM) IN
APPLICATION APPL, IS LATE, WORK STATION = WSID,
IA = ARRTIME

This requests the operator to investigate what is keeping the job from starting and
take appropriate actions to enable it to start.

HASP099

Restrictions
Shutdown processing of the JES2 message HASP099 is only done if:
v Shutdown automation for JES2 is on
v JES2 is in the process of being shut down

Usage
The ISSUEACT command responds to message:
HASP099 ALL AVAILABLE FUNCTIONS COMPLETE

This indicates that all JES2 job processors have become dormant, and no JES2 RJE
lines are active.

EVJRSACT

190 System Automation for z/OS: Customizing and Programming

INGRMJSP

Purpose
You use the INGRMJSP automation routine to monitor JES2 spool file usage. It
queries the spool usage to obtain the current spool usage and the warning level. If
necessary it calls the INGRCJSP automation routine for JES2 spool recovery
processing.

The INGRMJSP command also updates the SPOOL entry in the status display
facility (SDF) every time it is called.

Syntax

�� INGRMJSP ��

Restrictions
v Monitoring by INGRMJSP is only done if it has been defined as the monitor

command for an appropriate monitor resource in the customization dialog.

Usage
The INGRMJSP monitoring routine queries the spool usage by issuing the D
SPOOLDEF,TGSPACE command to obtain the current spool usage and the warning
level as set up by the JES2 system programmer:
v If the spool file is full, INGRMJSP sets the health status to CRITICAL and calls

INGRCJSP.
v If the spool usage is above the warning level, INGRMJSP sets the health status

to WARNING and calls INGRCJSP.

Depending on the spool full percentage and the warning level, one of the
following return codes is set:

Return code Meaning

1 A severe error occurred:

v The monitor does not have a job name

v The monitored object is not SPOOL or associated with JES2

v The specified job name does not refer to a JES2 resource

v No command prefix for JES2 was found

2 Monitoring command failed:

v The D SPOOLDEF command failed

3 OK: Spool usage is below the warning level

4 WARNING: Spool usage is above the warning level

6 CRITICAL: The spool file is full

Example
To create a spool usage monitor in the customization dialog you must define the
following items:

INGRMJSP

Chapter 15. Automation Solutions 191

|

|

|
|
|
|

|
|

|

|||||||
|

|

|
|

|

|
|
|

|
|

|
|

|
|

|||

||

|

|

|

|

||

|

||

||

||
|

|

|
|

1. A monitor resource (MTR) with INGRMJSP as the monitoring command. For
example, if you create a monitor resource called JES2SPOOL with the short
description JES2 Spool Monitor, specify the following information in the
MONITOR INFO policy item:

Monitored Object SPOOL

Monitored Jobname JES2

Activate Command

Deactivate Command

Monitor Command INGRMJSP

Monitoring interval 00:15

Captured Messages Limit 20

Desired Available

Inform List SDF

Owner

Info Link

2. The following relationships to the JES2 application using the RELATIONSHIPS
policy item:

Relationship type Supporting Resource Condition

HasParent JES2/APL/=

ForceDown JES2/APL/= WhenObservedDown

The monitor has a HasParent relationship to the corresponding JES2 resource
because it only makes sense to monitor the spool usage when JES2 is active.

3. The following recovery actions in the HEALTHSTATE policy item:

State Command

WARNING INGRCJSP

CRITICAL INGRCJSP

INGRCJSP (AOFRSD01)

Purpose
You can use the INGRCJSP automation routine for JES2 spool recovery processing.
It responds to JES2 spool shortage messages by initiating the recovery process for
JES2 spool shortage. It responds to JES2 spool full messages by initiating the
recovery process for JES2 spool full to downgrade the problem of excessive spool
usage.

The INGRCJSP routine does the following:
v Makes linear and first order predictions of spool usage, based on actual and

historical values.
v Posts the spool status to the status display facility (SDF).
v Determines the target of recovery processing as the difference between the actual

warning threshold for track groups and the buffer value from the configuration
file. The spool shortage condition is considered as relieved if the recovery
process achieves this target.

INGRMJSP

192 System Automation for z/OS: Customizing and Programming

|
|
|
|

|||

||

||

||

||

||

||

||

||

||

||
|

|
|

||||

|||

|||
|
|
|

|

|||

||

||
|

|

v Initiates pass processing to execute the recovery commands of the configuration
file, as defined with the JES2 SPOOLSHORT or JES2 SPOOLFULL policy item.
The pass processing itself is done by the AOFRSD09 automation routine, which
is issued every retry interval. The retry interval is taken from the configuration
file.

You define recovery commands and configuration parameters for JES2 recovery
processing, such as buffer value and retry interval, using automation policy item
JES2 SPOOLSHORT for spool shortage recovery processing and JES2 SPOOLFULL
for spool full recovery processing.

For further information about the JES2 SPOOLSHORT and JES2 SPOOLFULL
automation policy items see IBM Tivoli System Automation for z/OS Defining
Automation Policy.

INGRCJSP should be called from the NetView automation table.

Syntax

�� INGRCJSP ��

Restrictions
v Processing in INGRCJSP is only done if it is called from NetView automation

table by JES2 messages HASP050 or HASP355.
v Message HASP355 is only processed if it reports a shortage of track groups (TG).

Usage
The INGRCJSP automation routine is intended to respond to the following
messages:
HASP050 JES2 RESOURCE SHORTAGE OF TGs - nnn% UTILIZATION REACHED

HASP355 SPOOL VOLUMES ARE FULL

HASP050 indicates that JES2 has a shortage of track groups and the current spool
utilization exceeds the current TGWARN value on this JES. TGNWARN is defined
in the SPOOLDEF statement in the JES initialization member and can be changed
dynamically.

HASP355 indicates that a request for JES2 direct access spool space cannot be
processed because all available space has been allocated to JES2 functions or no
spool volumes are available. Therefore the recovery targets in this case are based
on a figure of 100% spool utilization.

You should code TGWARN in the SPOOLDEF statement in the JES initialization
member so that SPOOLSHORT recovery is initiated before a SPOOLFULL
condition is reached. If you do not do this the recovery process may become
unpredictable.

When resetting after a SPOOLFULL condition, the problem is downgraded to a
SPOOLSHORT condition. SA z/OS expects the SPOOLSHORT recovery that was
previously running to activate and try to downgrade the problem to an OK.
Without the prior SPOOLSHORT recovery, the spool status remains in
SPOOLSHORT after a successful SPOOLFULL recovery.

INGRCJSP (AOFRSD01)

Chapter 15. Automation Solutions 193

|

|||||||
|

|

The NetView automation table entries for JES2 messages must respect the one
character prefix in front of the message identifier of JES2 messages that identifies
the issuing JES.

The spool status is posted to SDF under the SPOOL generic, with the name of the
subsystem as its specific name. To have these displayed on an SDF panel, you need
status fields for xxxx.SPOOL, elements 1 through n, where n is the number of
different subsystems that use the spool.

INGRTAPE

Purpose
INGRTAPE maintains tape status details under SDF and NMC. When SA z/OS
detects an outstanding tape mount request then it feeds the related message into
SDF and/or NMC. If the request is not satisfied before the warning interval has
expired, the status will change to warning.

If the tape mount request is still not satisfied after the alert delay, the status will
change to alert.

The tape mount request is deleted from SDF and/or NMC dynamically when the
related tape is mounted or the requesting job is canceled.

The routine INGRTAPE automation routine is used to visualize the pending tape
mount requests within SDF. Its behaviour is based on the definitions in the 'Tape
Attendance' policy entry. For information about activating and customizing Tape
Attendance, refer to IBM Tivoli System Automation for z/OS Defining Automation
Policy.

Syntax

�� INGRTAPE ��

Usage
Automation routine INGRTAPE is intended to respond to the following messages:
IEC501E, IEC501A, IEC502E, IEC503I, IEC507D, IEA509A, IEC510D, IEC512I,
IEC513D, IEC514D, IEC701D, IEC702I, IEC703I, IEC704A, IEC706I, IEC707I,
IEC708I, IEC708D, IEC709I, IEC710I, IEC711I, IEC712I, IEC713I, IEC714I, IEC715I,
IEF233A, IEF233D, IEF234E, IEF455D, IAT5210, TMS001, TMS002, TMS0012

Restrictions
The monitoring of the tape mounts is only enabled when activated via the
Customization Dialogs.

INGRX740

Purpose
You can use the INGRX740 automation routine to respond to some syslog related
system messages by issuing defined recovery actions from the automation control
file to restart the syslog or to assign the syslog as a hardcopy medium.

INGRCJSP (AOFRSD01)

194 System Automation for z/OS: Customizing and Programming

|

|

|
|
|
|

|
|

|
|

|
|
|
|
|

|

|||||||
|

|

|
|
|
|
|

|

|
|

INGRX740 keeps track of the incoming IEE037D syslog inactive message and
compares its occurrence with predefined thresholds for the MVS component minor
resource, LOG. As long as the critical threshold level is not exceeded, a recovery
action related to a previously received system message is issued.

If one of the messages IEE043I, IEE533E or IEE769E is received prior to the
IEE037D message that is currently being processed, the commands that have been
defined for IEE043I, IEE533E or IEE769E in the MVSESA/msgid entry/type-pair of
the configuration file are issued. If none of these messages has been received prior
to the IEE037D message that is currently being processed, the command MVS
WRITELOG START is issued.

The recovery routine INGRX740 also responds to an incoming IEE041I message if
this indicates that the SYSLOG data set is available for use as a hardcopy log.
Commands are issued in response to message IEE041I that are defined in the
MVSESA/IEE041I entry/type-pair of the configuration file. An appropriate
command in this case would be MVS VARY SYSLOG,HARDCPY to have the
SYSLOG receive the hardcopy log.

INGRX740 should be called from the NetView automation table.

Syntax

�� INGRX740 ��

Restrictions and Limitations
Processing in routine INGRX740 is only done if the following conditions are met:
v The recovery automation flag for LOG is on.
v The routine is running on an automation task.
v The routine is called from NetView automation table by one of the expected

messages
– IEE037D
– IEE041I
– IEE533E
– IEE769E
– IEE043I

Actions in response to message IEE037D are only taken in INGRX740, if the Job
Entry Subsystem is up and running.

Usage
Automation routine INGRX740 responds to the following messages:
IEE037D LOG NOT ACTIVE
IEE041I THE SYSTEM LOG IS NOW ACTIVE[-MAY BE VARIED AS HARDCOPY LOG]
IEE043I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS class
IEE533E SYSTEM LOG INITIALIZATION HAS FAILED
IEE769E SYSTEM ERROR IN SYSTEM LOG

Example
This example shows a sample scenario for system log failure recovery.

The following entry in the NetView automation table is provided by SA z/OS to
issue INGRX740 in response to incoming messages IEE043I and IEE037D:

INGRX740

Chapter 15. Automation Solutions 195

IF MSGID = ’IEE037D’ THEN
EXEC(CMD(’INGRX740’)ROUTE(ONE %AOFOPRECOPER%));
IF MSGID = ’IEE043I’ THEN
EXEC(CMD(’INGRX740’)ROUTE(ONE %AOFOPRECOPER%));

Assume that the following threshold levels are defined in the automation policy
for MVS component minor resource, LOG.

Assume that a command is defined for message IEE043I in the automation policy
item MESSAGES/USER DATA of MVS components, as shown in the following
figure.

Assume that the following messages arrive the first time for one day, while the Job
Entry Subsystem is up and running and the recovery automation flag for the MVS
component minor resource LOG has not been switched off:
IEE043I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS 1
IEE037D LOG NOT ACTIVE

Because IEE043I has been received prior to message IEE037D and the critical
threshold that has been defined for message IEE037D has not been exceeded, the
command that has been defined for message IEE043I is issued in response to
message IEE037D.

COMMANDS HELP
--

Thresholds Definition
Command ===>

Entry Type : MVS Component PolicyDB Name : DATABASE_NAME
Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE

Resource : MVSESA.LOG

Critical Number 3 (1 to 50)
Critical Interval . . . 00:05 (hh:mm or hhmm, 00:01 to 24:00)

Frequent Number 3 (1 to 50)
Frequent Interval . . . 00:30 (hh:mm or hhmm, 00:01 to 24:00)

Infrequent Number . . . 3 (1 to 50)
Infrequent Interval . . 24:00 (hh:mm or hhmm, 00:01 to 24:00)

Figure 39. Threshold Definitions for MVS Component LOG

COMMANDS HELP
--

CMD Processing Row 1 to 4 of 20
Command ===> SCROLL===> PAGE

Entry Name : MVS_COMPONENTS Message ID : IEE043I

Enter commands to be executed when resource issues the selected message.
or define this message as status message.

Status . . . (’?’ for selection list)

Pass/Selection Automated Function/’*’
Command Text

MVS WRITELOG START

Figure 40. MESSAGES/USER DATA Policy Item for Entry/Type-Pair MVSESA/LOG

INGRX740

196 System Automation for z/OS: Customizing and Programming

Appendix A. Global Variables

You must ensure that the names of any global variables you create do not clash
with SA z/OS external or internal global variable names. You should check the
following tables before creating any global variables of your own.

Read-Only Variables
There are two different classes of variables, based on the level of access available to
the programmer:

Class 1:
Read-only variables. These variables are set by SA z/OS and require at
minimum an automation control file reload to be changed.

Class 2:
Read-only variables. These variables are set by SA z/OS CLISTs. They
should not be changed except by calling the appropriate CLISTs.

Table 16. Externalized Common Global Variables

Variable Name Description Class Reference

AOF.clist.0DEBUG Contains either a Y or blank. If it contains
Y an intermediate level of debug that is
supported by SA z/OS automation
procedures is turned on.

2

AOF.clist.0TRACE Contains a REXX trace setting to be used
by the automation procedure clist.

2

AOFAOCCLONEx Where x either does not exist
(AOFAOCCLONE) or is a value from 1
through 9 or A through Z. The
AOFAOCCLONEx global variables
contain the values specified for the
&AOCCLONEx. variables for this system.

1 See the description of the
System policy object in IBM
Tivoli System Automation for
z/OS Defining Automation
Policy.

AOFBFP Contains the backup focal point. 1

AOFCFP Contains the domain ID of the current
focal point.

1

AOFPFP Contains the primary focal point. 1

AOFCOMPL Contains YES if initialization is complete. 2

AOFDEBUG Contains a REXX trace setting to be used
globally.

2 See IBM Tivoli System
Automation for z/OS Planning
and Installation.

AOFINITIALSTARTTYP Contains the value 'IPL' or 'RECYCLE'
depending on whether SA z/OS has
been started the first time after an IPL or
after a NetView recycle.

1

AOF_PRODLVL Contains the release level of SA z/OS.
The values are:

SA z/OS 3.3
SA z/OS,V3R3M0

SA z/OS 3.2
SA z/OS,V3R2M0

1

© Copyright IBM Corp. 1996, 2011 197

|
|
|
|
|
|

|

|

|

|
|

|
|

Table 16. Externalized Common Global Variables (continued)

Variable Name Description Class Reference

AOFJESPREFX The command prefix for the primary
scheduling subsystem.

1

AOFSUBSYS The subsystem name of the primary
scheduling subsystem.

1

AOFSYSNAME Contains the name of the system. 1 See AOCUPDT in IBM Tivoli
System Automation for z/OS
Programmer’s Reference.

AOFSYSTEM Contains the system type (MVSESA) as
defined in the customization dialog.

1 The SYSTEM INFO panel of
the customization dialog.

Read/Write Variables
Table 17 lists the common global variables that can be user-defined. You can set
them in your startup exit to change the way that SA z/OS behaves. These
variables should be set only once for an SA z/OS system. You can enable or
disable advanced automation options (AAOs) by changing the settings of the
global variables in your CNMSTGEN stylesheet. For example:
**
* System Automation AAO CGlobals
**
COMMON.AOFCNMASK = 290C0D0E0F101518
COMMON.INGREQ_ORIGINATOR = 1
COMMON.AOFRESTARTALWAYS = 0
COMMON.AOFUPDRODM = NO
COMMON.AOFUPDAM = NO
COMMON.AOFSMARTMAT = 0

After modifying the exit, an SA z/OS COLD START is required for these changes
to take effect.

Table 17. Global Variables to Enable Advanced Automation (CGLOBALS)

Variable Value Effect

AOF_AAO_INJECT_NOFORCE_REQ Any value SA z/OS does not inject a STOP vote with Priority
Force for source *RECYCLE when processing an
INGREQ REQ=STOP RESTART=YES request. Instead
the regular stop request is passed to the automation
manager and removed automatically when the resource
is down. This also removes any previous request for the
resource that was made by the same source.

AOF_AAO_MSG_EHKVAR YES This indicates that when calling commands, the tokens
of the triggering message are to be stored in variables
EHKVAR0 through EHKVAR9 and EHKVART, if not
specified in parameter EHKVAR.

YES is the default.

NO This indicates that the tokens of the triggering message
are not to be stored in EHKVAR variables, if not
specified in parameter EHKVAR.

Global Variables

198 System Automation for z/OS: Customizing and Programming

|
|
|
|
|
|
|

Table 17. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOF_AAO_MVSTAPEMON >0 Set this value to represent the number of iterations for
INGRTAPE to continue monitoring using MVS
commands after the LATE alert has been reached. A
non-zero entry also indicates using MVS commands for
all tape mount monitoring prior to the LATE alert.

0 INGRTAPE relies on the receipt of the DOMMED
message to satisfy any outstanding alerts.

AOF_AAO_OMVS_SHUTDOWN NOWAIT This causes the wait for a complete termination of
OMVS to be skipped.

AOF_AAO_RETENTIONPERIOD 0 to 1440 Defines how long (in minutes) SA z/OS should keep
the CGLOBALS that are used to keep track of command
requests that are received from TWS. The default is 60
minutes.

AOF_AAO_SDFROOT_LIST User-defined Defines the value of the &SDFROOT variable that is
used as the root name for the sample SDF panels that
are provided with SA z/OS.

The value can be the name of a single system or a list of
system names separated by a blank character. A list can
be used at the SDF focal point to have SA z/OS
generate the necessary panel definitions for all systems
in the list.

AOF_AAO_SHUTDOWN_STOPAPPL User Specifies the name of the defined resource (in AM
notation) to be used for the shutdown.

AOF_AAO_SHUTSYS_OLD YES Indicates that SA z/OS should not redirect the INGREQ
ALL REQ=STOP command to the GDPS STOPAPPL
resource when the GDPS tower is active.

AOF_AAO_TRANRERUN YES This indicates that a transient job can be rerun within
the lifecycle of a particular z/OS, if not specified
otherwise in the automation policy for this job.

NO This indicates that a transient job is only run once in the
lifecycle of a particular z/OS, if not specified otherwise
in the automation policy for this job. NO is the default
value.

AOF_AAO_TWS_CMD_OUTPUT_
NETLOG

YES|NO Set this AAO to YES to place the output of the
command execution in the netlog.

AOF_AAO_TWS_ERRMSG This AAO can be used to inhibit the ERRMSG
parameter. If set to NON BLANK, it erases the contents
of the ERRMSG parameter.

AOF_AAO_TWS_MAX_WAIT_TIME Defines the installation default for the maximum wait
time for the INGREQ and INGMOVE command. The
default is taken when no wait time is specified in the
completion information parameter.

AOF_AAO_TWS_RESYSPLEX YES|NO This AAO can be used to allow the TWS special
resource name to use the SA z/OS Sysplex name
instead of SYSPLEX to facilitate an enterprise wide
naming convention.

Default: NO for SYSPLEX

AOF_AAO_VPCEINIT 0 SA z/OS does not invoke the GDPS initialization exit,
VPCEINIT,

Global Variables

Appendix A. Global Variables 199

|
|

|||
|
|

|
|
|
|
|

|||
|

|

|
|

||
|

Table 17. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOF_ASSIGN_JOBNAME 1 This indicates that SA z/OS exploits the NetView
"ASSIGN BY JOBNAME" feature with a higher priority
than the "ASSIGN BY MESSAGE ID" feature (priority
level 3).

This is the default setting.

0 SA z/OS exploits the NetView "ASSIGN BY JOBNAME"
feature with a lower priority than the "ASSIGN BY
MESSAGE ID" feature (priority level 4).

AOF_E2E_EAS_PPI User-defined PPI receiver ID of the event/automation service to be
used to forward events to the end-to-end automation
adapter.

AOF_E2E_EVT_RETRY 1 to n Specifies the number of retries, at intervals of one
second, that are used to transfer events via PPI
TECROUTE to the message adapter of the
event/automation service. The events are then
forwarded to the end-to-end automation adapter.

AOF_E2E_EXREQ_NETLOG 1 The output to requests received from the end-to-end
automation adapter and issued by the primary
automation agent, is logged to the NetView log.

0 The output to those requests is not logged to the
NetView log.

0 is the default setting.

AOF_E2E_TKOVR_TIMEOUT hh:mm:ss If a hot restart of the automation manager takes longer
than the value specified in this variable, the end-to-end
automation manager is informed about the outage and
has to resynchronize with the first-level automation.

AOF_EMCS_AUTOTASK_
ASSIGNMENT

1 SA z/OS assigns an autotask to extended MCS consoles
with a console status of MASTER or ACTIVE

0 SA z/OS does not assign an autotask to extended MCS
consoles with a console status of MASTER or ACTIVE

0 is the default.

AOF_EMCS_CN_ASSIGNMENT 1 SA z/OS obtains an extended MCS console with a
unique name for operator station tasks (OSTs). If an
MVS console was obtained for the OST previously, it is
released.

1 is the default setting.

0 SA z/OS does not obtain an extended MCS console
with a unique name for OSTs and the command
AOCGETCN is disabled.

AOFACFINIT 1 This indicates that SA z/OS attempts to proceed with
initialization despite error messages during the
processing of the automation control file.

1 is the default setting.

0 SA z/OS stops the initialization process upon such
errors.

Global Variables

200 System Automation for z/OS: Customizing and Programming

|
|
|

Table 17. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOFARMQUERYRETRYS User-defined
numeric value

The number of times AOFPARMQ is called to query the
ARM status of an element after a status of UNKNOWN
is returned. If the ARM status does not change to
another status before the number of retries is exhausted,
SA z/OS continues processing and assume the element
is not ARM-enabled.

The default is 10.

AOFARMQUERYWAIT User-defined
numeric value

The number of seconds to wait between retries as
specified in the AOFARMQUERYRETRYS value above.

The default is 15.

AOFCNMASK User-defined The characters that are used in determining unique
console names can be tailored by updating the common
global variable AOFCNMASK. This global is used as a
hex mask to extract characters from the following string
when generating unique console names with command
AOCGETCN:
left(opid(),8)||right(opid(),8),
||left(aofsysname,4)||right(aofsysname,4),
||left(applid(),8)||right(applid(),8),
||’ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$›#@_!?’

Where

v opid() is a function that returns the OST task name

v aofsysname is a common global that stores the system
name

v applid() is a function that returns VTAM LU name

The default for AOFCNMASK is 290C0D0E0F101718.
X'29' selects character A in position 41, X'0C' through
X'10' selects the last five characters of the opid in
positions 12 to 16, X'17' and X'18' select the last two
characters of the sysname in positions 23 and 24.

If AOFCNMASK is null, AOCGETCN attempts to obtain
a unique extended MCS console after a 1 minute
interval, followed by a two minute interval and so forth
for a maximum of 5 passes (15 minutes elapsed from the
initial invocation of the command).

For example, with

AOFCNMASK: 2A01020304051718

X'2A' selects character B in position 42, X'01' through
X'05' selects the first five characters of the opid in
positions 1 to 5, X'17' and X'18' select the last two
characters of the sysname in positions 23 and 24.

AOFDEFAULT_TARGET User-defined Sets a default for the TARGET parameter for all
commands where this parameter is used.

AOFDESCA 0100001000001000 Descriptor code for action messages

AOFDESCD 0100001000001000 Descriptor code for decision messages

AOFDESCE 0010001000001000 Descriptor code for eventual action messages

AOFDESCI 0000011000001000 Descriptor code for informational messages

AOFDESCW 1000001000001000 Descriptor code for wait messages

Global Variables

Appendix A. Global Variables 201

Table 17. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOFEXPLAIN_USER User-defined The EXPLAIN command accepts this variable to include
help support for customer installation supplied terms. It
can hold one or more pairs of term/help panel
specifications separated by a blank. If the specified
status in the EXPLAIN command is not a valid
SA z/OS status, the command routine checks whether it
is an installation defined term. If so, the associated help
panel is displayed.

AOFINITREPLY hh:mm:ss The initial reply AOF603D is issued and automatically
responded after hh:mm:ss.

00:02:00 (2 minutes) is the default setting.

0 The initial reply AOF603D is not issued and automation
continues with the default start without asking the
operator.

AOF_INIT_MCSFLAG User-defined valid
value

This variable contains the MCSFLAG that is used for
WTOs and WTORs that are issued by SA z/OS during
initialization.

The default is '00000000'.

AOF_INIT_ROUTCDE User-defined valid
value

This variable contains the ROUTCDE (routing code) that
is used for WTOs and WTORs that are issued by
SA z/OS during initialization.

The default is '01000000'.

AOF_INIT_SYSCONID User-defined valid
value

This variable contains the SYSCONID that is used for
WTOs and WTORs that are issued by SA z/OS during
initialization.

The default is blank.

AOFLOCALHOLD 0 INGNTFY and SA z/OS initialization executes the
SETHOLD AUTO command on the notify operator.

0 is the default setting.

1 SETHOLD must be manually invoked.

AOFMATLISTING 0 Setting this variable means that the NetView automation
table listing is not placed in the DSILIST data set at
NetView automation table load time.

AOFOPCCMDMSG 0 OPCAMOD only produces messages that are generated
by INGOPC.

0 is the default setting.

1 OPCAMOD produces EVJ011I, EVJ412I, EVJ420I, and
EVJ423I messages.

Global Variables

202 System Automation for z/OS: Customizing and Programming

Table 17. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOFPAUSE 0 to 5 This is the number of seconds that SA z/OS allows for
applications that have shut down to be cleared by MVS,
in addition to their termination delay. As the
AOFPAUSE value is applied to all applications it should
be kept small. AOFPAUSE may be useful on a slow
machine, where allowing an extra second or two before
SA z/OS checks if the application has been cleared
could avoid the need to use a termination delay timer.

No matter how AOFPAUSE is set, the application status
is not updated to AUTODOWN or CTLDOWN until
SA z/OS is sure that the application has been cleared
from the system by MVS.

0 is the default setting.

AOFRESTARTALWAYS 1 An application that has been shut down normally,
outside the control of SA z/OS, with
RESTARTOPT=ALWAYS, is restarted regardless of
whether or not it has reached its critical error threshold.

0 An application that has been shut down normally,
outside the control of SA z/OS, with
RESTARTOPT=ALWAYS, is not restarted if it has
reached its critical error threshold.

0 is the default setting.

AOFRMTCMDWAIT See NetView
RMTCMD

Contains the installation wait time when RMTCMD is
used for communication.

60 seconds is the default setting for RMTCMD.

AOFRPCWAIT 0 to n This is the number of seconds that SA z/OS waits for
command responses from other systems in the sysplex.

10 is the default setting.

AOFSENDALERT Yes or No This defines whether NetView alert forwarding (YES) or
the command handler (NO) is used to forward data to
the focal point.

Yes is the default setting.

AOFSERXINT 1 The exit AOFEXINT is processed under the BASEOPER
automation operator under the initialization process.
This is the default.

0 The exit AOFEXINT execution is serialized within the
initialization process.

AOFSHUTDELAY 0 to 59 This is the number of minutes that SA z/OS waits for a
termination message before continuing the shutdown
process. Any values outside this range are treated as 0.
With a setting of 0, message AOF745E is not issued.

0 is the default setting.

Global Variables

Appendix A. Global Variables 203

Table 17. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOFSMARTMAT 0 The SA z/OS Agent is disabled from refreshing ATs.
The AT fragment INGMSG02 is included when
SA z/OS initially loads INGMSG01.

Note that INGMSG02 is no longer shipped. You
therefore need to change the AT scope to ENTERPRISE
and then run a SysOps build with MODIFIED in the
TYPE build option field.

1 The SA z/OS Agent is enabled to refresh ATs when an
INGAMS REFRESH is issued. The AT fragment built by
the customization dialog is not loaded; INGMSG02 is
used instead.

Note that INGMSG02 is no longer shipped. You
therefore need to change the AT scope to ENTERPRISE
and then run a SysOps build with MODIFIED in the
TYPE build option field.

The ATs are loaded after a successful test load. This
allows the agent to inform the AM about a load problem
of the AT. The agent may inform the AM of an AT load
failure, thus stopping the configuration refresh.

2 The SA z/OS Agent is enabled to load the AT that is
generated by the customization dialog and to refresh
ATs when an INGAMS REFRESH is issued. The AT that
is built by the customization dialog is dynamically
loaded into storage as the INGMSG02 fragment.

The ATs are loaded after a successful test load. This
allows the agent to inform the AM about a load problem
of the AT. The agent may inform the AM of an AT load
failure, thus stopping the configuration refresh. This is
the default value.

3 The SA z/OS automation agent is enabled to load the
MRT that is generated by the customization dialog and
to refresh the MRT when an INGAMS REFRESH is
issued.

AOFSPOOLFULLCMD 1 SA z/OS does not execute the Spool recovery passes
more than once. Message AOF2941I is issued if the
SPOOLFULL condition persists.

0 SA z/OS re-executes the Spool recovery commands.

0 is the default setting.

AOFSPOOLSHORTCMD 1 SA z/OS does not execute the Spool recovery passes
more than once. Message AOF2941I is issued if the
SPOOLSHORT condition persists.

0 SA z/OS re-executes the Spool recovery commands.

0 is the default setting.

Global Variables

204 System Automation for z/OS: Customizing and Programming

|
|
|
|

Table 17. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect

AOFSTATUSCMDSEL 0 Issue all status commands or replies that are associated
with the new status, without respect to any specified
selection values. No thresholds are checked for the
minor resource subsystem.status to derive selection
criteria or prevent the issuing of commands or replies if
critical thresholds are exceeded.

If AOFSTATUSCMDSEL is not set, or it is set to a value
other than 0, only commands or replies with a given
selection criterion such as starttype or stoptype are
issued.

AOFUPDAM Yes or No This controls whether updates are made in the
automation manager.

No is the default setting.

AOFUPDRODM Yes or No This controls whether updates are made in RODM and
must be set to the same value for each system within a
sysplex.

No is the default setting.

AOFUSSWAIT 1 to n This is the number of seconds SA z/OS waits for the
completion of a user-defined z/OS UNIX monitoring
routine (specified in the z/OS UNIX Control
Specification panel) until it receives a timeout. When the
timeout occurs, SA z/OS no longer waits for a response
from the monitoring routine and sends a SIGKILL to the
monitoring routine.

10 is the default setting.

INGIMS_CORRWAIT User-defined
numeric value

The number of seconds that INGIMS waits for output
from an IMS command. If not specified, INGIMS uses
the default CORRWAIT (CCDEF) value.

INGOPC_MULTIPLIER 1 to n This is used in conjunction with AOFRMTCMDWAIT
and AOFRPCWAIT to determine how long to wait
before giving up.

INGREQ_ORIGINATOR 1 Indicates that SA z/OS assigns individual originator
IDs for each operator issuing an INGREQ command.

0 All operators are grouped under originator ID
OPERATOR.

0 is the default setting.

Parameter Defaults for Commands
Table 18. Global Variables That Define the Installation Defaults for Specific Commands

Variable Name Description Reference 1

AOFSETSTATEOVERRIDE Sets the default OVERRIDE value for the SETSTATE command. SETSTATE

AOFSETSTATESCOPE Allows you to override the predefined default for the SCOPE
parameter of the SETSTATE command.

SETSTATE

AOFSETSTATESTART Allows you to override the predefined default for the START
parameter of the SETSTATE command.

SETSTATE

Global Variables

Appendix A. Global Variables 205

Table 18. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference 1

DISPEVT_WAIT Sets the WAIT parameter of the DISPEVT command to the specified
value.

DISPEVT

DISPEVTS_WAIT Sets the WAIT parameter of the DISPEVTS command to the specified
value.

DISPEVTS

DISPTRG_WAIT Sets the WAIT parameter of the DISPTRG command to the specified
value.

DISPTRG

INGAUTO_INTERVAL Sets the default for the INTERVAL parameter of the INGAUTO
command.

INGAUTO

INGEVENT_WAIT Sets the WAIT parameter of the INGEVENT command to the specified
value. The parameter specifies whether or not to wait until the request
is complete.

INGEVENT

INGEXEC_RESP Sets the RESP parameter of the INGEXEC command to the specified
value.

INGEXEC

INGEXEC_SELECT Sets the SELECT parameter of the INGEXEC command to the specified
value.

INGEXEC

INGEXEC_WAIT Sets the WAIT parameter of the INGEXEC command to the specified
value.

INGEXEC

INGGROUP_WAIT Sets the WAIT parameter of the INGGROUP command to the specified
value. The parameter specifies whether or not to wait until the request
is complete.

INGGROUP

INGHIST_MAX Sets the MAX parameter of the INGHIST command to the specified
value.

INGHIST

INGHIST_WIMAX Sets the WIMAX parameter of INGHIST command to the specified
value.

INGHIST

INGIMS_CMDWAIT Sets the CMDWAIT parameter (the maximum wait time for a
command to complete) of the INGIMS command to the specified
value.

INGIMS

INGIMS_REQ Sets the REQ parameter (the request to be issued to the IMS
subsystem) of the INGIMS command to the specified value.

INGIMS

INGINFO_WAIT Sets the WAIT parameter of the INGINFO command to the specified
value.

INGINFO

INGLIST_WAIT Sets the WAIT parameter of the INGLIST command to the specified
value.

INGLIST

INGMON_WAIT Sets the WAIT parameter of the INGMON command to the specified
value.

INGMON

INGMOVE_WAIT Sets the WAIT parameter of the INGMOVE command to the specified
value.

INGMOVE

INGRELS_SHOW Sets the SHOW parameter of the INGRELS command to the specified
value.

INGRELS

INGRELS_WAIT Sets the WAIT parameter of the INGRELS command to the specified
value.

INGRELS

INGREQ_EXPIRE Sets the default EXPIRE parameter of the INGREQ command to the
specified value.

INGREQ

INGREQ_INTERRUPT Sets the default INTERRUPT parameter of the INGREQ command to
the specified value. The parameter specifies whether or not the
automation manager should wait until the resource has reached its UP
state, but the resource is still in the startup phase when the higher
priority stop request is given.

INGREQ

Global Variables

206 System Automation for z/OS: Customizing and Programming

|
|

|
|

|
|

||
|
|

|
|
|

|
|

||
|
|

Table 18. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference 1

INGREQ_OVERRIDE Sets the default OVERRIDE parameter of the INGREQ command to
the specified value.

INGREQ

INGREQ_PRECHECK Sets the default PRECHECK parameter of the INGREQ command to
the specified value.

INGREQ

INGREQ_PRI Sets the default priority (PRI parameter) of the INGREQ command to
the specified value.

INGREQ

INGREQ_PRI.E2EMGR Specifies the priority that incoming requests from the end-to-end
automation manager are executed at. Default: LOW

INGREQ

INGREQ_REMOVE Sets the default value for the REMOVE parameter of the INGREQ
command to the specified value. It the resource reaches the specified
status (condition), the request is automatically removed.

INGREQ

INGREQ_REMOVE.START Sets the default value for the REMOVE parameter of the INGREQ
START command. If not specified the value set by INGREQ_REMOVE
is used.

INGREQ

INGREQ_REMOVE.STOP Sets the default value for the REMOVE parameter of the INGREQ
STOP command. If not specified the value set by INGREQ_REMOVE
is used.

INGREQ

INGREQ_RESTART Sets the default for the RESTART parameter of the INGREQ command
when shutting down the resource.

INGREQ

INGREQ_SCOPE Sets the SCOPE parameter of the INGREQ command to the specified
value.

INGREQ

INGREQ_SOURCE Sets the default SOURCE parameter of the INGREQ command to the
specified value. The parameter specifies the originator of the request.

INGREQ

INGREQ_TIMEOUT Sets the interval in minutes used to check for the INGREQ command
used to check whether the request has been successfully completed,
and whether to send a message or cancel the request if it has not been
satisfied after that time.

INGREQ

INGREQ_TYPE Sets the default startup/shutdown type (TYPE parameter) of the
INGREQ command to the specified value.

INGREQ

INGREQ_VERIFY Sets the default VERIFY parameter of the INGREQ command to the
specified value.

INGREQ

INGREQ_WAIT Sets the WAIT parameter of the INGREQ command to the specified
value.

INGREQ

INGRPT_WAIT Sets the WAIT parameter of the INGRPT command to the specified
value.

INGSCHED_WAIT Sets the WAIT parameter of the INGSCHED command to the specified
value. The parameter specifies whether or not to wait until the request
is complete.

INGSCHED

INGSET_VERIFY Sets the default VERIFY parameter of the INGSET command to the
specified value.

INGSET

INGSET_WAIT Sets the WAIT parameter of the INGSET command to the specified
value. The parameter specifies whether or not to wait until the request
is complete.

INGSET

INGSTX_WAIT Sets the WAIT parameter of the INGSTX command to the specified
value.

INGSTX

INGTRIG_WAIT Sets the WAIT parameter of the INGTRIG command to the specified
value.

INGTRIG

Global Variables

Appendix A. Global Variables 207

||
|
|

||
|
|

Table 18. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference 1

INGVOTE_EXCLUDE Sets the EXCLUDE parameter of the INGVOTE command to the
specified value. The parameter specifies the resource types (for
example SVP or GRP) to be excluded when showing all requests.
Resources of that type are filtered out.

INGVOTE

INGVOTE_SOURCE Sets the default SOURCE parameter of the INGVOTE command to the
specified value.

INGVOTE

INGVOTE_STATUS Sets the STATUS parameter of the INGVOTE command to the
specified value. The parameter specifies which requests should be
displayed: winning, losing or all.

INGVOTE

INGVOTE_WAIT Sets the WAIT parameter of the INGVOTE command to the specified
value.

INGVOTE

1. See the specified command in IBM Tivoli System Automation for z/OS Operator’s Commands.

Global Variables

208 System Automation for z/OS: Customizing and Programming

||
|
|

Appendix B. Customizing the Status Display Facility

Overview of the Status Display Facility
This appendix explains how to customize the Status Display Facility (SDF) panels,
descriptors, and operations.

How the Status Display Facility Works
The SA z/OS Status Display Facility (SDF) uses colors and highlighting to
represent subsystem resource states. Typically, a subsystem shown in green on the
SDF status panel indicates it is up, while red indicates a subsystem in a stopped or
problem state. SDF can be tailored to present the status of system components in a
hierarchical manner.

Note: SDF works only with MVS systems and resources.

Types of SDF Panels
Figure 41 on page 210 shows several SDF screens for system CHI01. This figure
shows the main types of panels used in SDF:
v The root component

v The status component

v The detail status display

In addition to these panel types, you can create other types of panels according to
your system requirements and the applications you are monitoring.

© Copyright IBM Corp. 1996, 2011 209

Root Component
The root component is typically an element appearing on the first screen displayed
when SDF is started. In Figure 41, the CHI01 system is the root component.

Status Component
Resources monitored by SDF are called status components. In Figure 41, system
CHI01 has JES2, RMF™, VTAM, TSO, and NetView status components, as shown
on the CHI01 System Status panel. The status component panel displays all
monitored resources in a system. Each monitored resource is shown in the color of
its current status. For example, JES2 is shown in green if it is up.

Detail Status Display
A detail status display is built from information in a status descriptor (see “Status
Descriptors”). This panel is displayed by tabbing to the appropriate resource on
the status component panel and pressing the detail PF key. Each status component
can have one or more status descriptors, or detail records, associated with it.

Figure 41 shows an example detail status display for a JES2 status descriptor. The 1
of 3 on the panel indicates that JES2 currently has three status descriptors, and
therefore three detail status displays, associated with it.

Status Descriptors
A status descriptor is a detailed record of information about a resource status. In its
raw form, a status descriptor is a multiline SA z/OS message containing
information such as:
v Root component and status component to which the status descriptor applies

DATA CENTER SYSTEMS

CHI01

===>

1=HELP

CHI01 SYSTEM STATUS

===>

1=HELP

JES2

RMF

VTAM

TSO

NETVIEW

--- DETAIL STATUS DISPLAY ---

===>

1=HELP 3=RETURN 6=ROLL 7=UP 8=DOWN

COMPONENT : JES2 SYSTEM : CHI01

COLOR : GREEN PRIORITY : 550

DATE : 09/08/90 TIME : 09:02:17

REPORTER : GATACOS6 NODE : CHI01

REFERENCE VALUE: JES2

AOF571I 08:59 : JES2 SUBSYSTEM STATUS FOR

JOB JES2 IS UP - AT NETVIEW INITALIZATION

1 OF 3

Root Component
(System Panel)

Status Component
(Monitored Resources)

Detail Status Display

Figure 41. Example SDF Panels

Overview of the Status Display Facility

210 System Automation for z/OS: Customizing and Programming

v Priority, color, and highlighting associated with the status descriptor (see “How
Status Descriptors Affect SDF” on page 212 for more information)

v Date and time the status descriptor was generated
v Actual resource status information; for example, an SA z/OS message indicating

the resource is up

SDF uses information in a status descriptor to generate a detail status display (see
“Detail Status Display” on page 210). You do not usually look directly at a status
descriptor; rather, you look at portions of it through a detail status display. For
example, in Figure 41 on page 210, the detail status display presents information
from a status descriptor for status component JES2. The 1 of 3 on the panel
indicates that JES2 currently has three status descriptors associated with it.

SDF generates, displays, and deletes status descriptors.

SDF Tree Structures
SDF uses tree structures to set up the hierarchy of monitored resources displayed on
SDF status panels. An SDF tree structure always starts with the system name as
the root node and has a level number of one. Tree structure levels subordinate to
the root node are the monitored resources. The level numbers of these resources
reflect their dependency on each other.

You define SDF tree structures in NetView DSIPARM data set member AOFTREE.

Figure 42 shows an example SDF tree structure. Figure 41 on page 210 shows how
these statements result in a tree structure.

SA z/OS supplies a sample SDF tree structure in the SA z/OS sample library. This
tree structure is referenced by a %INCLUDE statement in member AOFTREE in the
NetView DSIPARM data set. You can customize this sample tree structure to meet
your requirements. This order of dependency does not have to be the same as that
used for system startup or shutdown using SA z/OS. System symbols are
supported for the tree structure. This can help reduce both customization work and
errors.

For example, using the tree structure in Figure 42, if there is a problem with TSO,
it is not desirable to also change the VTAM status color, because VTAM is not
having any problems. In contrast, in the SA z/OS startup and shutdown
procedures, TSO is dependent on VTAM.

1 SY1
2 SYSTEM

3 WTOR
3 APPLIC

4 AOFAPPL
5 AOFSSI

4 JES
4 VTAM

3 TSO
3 RMF

2 GATEWAY
2 MONITOR
2 APG

3 GROUP

Figure 42. Example SDF Tree Structure

Overview of the Status Display Facility

Appendix B. Customizing the Status Display Facility 211

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

More details on SDF tree structure definitions are in “Step 1: Defining SDF
Hierarchy” on page 219.

How Status Descriptors Affect SDF
Status descriptors are the main units of information SDF uses. The information in
status descriptors determines how your SDF status displays look at any point in
time. This section explains how SDF uses status descriptors.

Priority and Color Assignments
Status descriptors are assigned both a priority number and a color. These color and
priority assignments determine the colors in which status components are
displayed. In SDF, a lower number indicates a higher priority. Status descriptors
are connected to the status component in ascending order of priority.

Color and priority assignments for status descriptors are defined in two places:
v In the PRIORITY parameter in the AOFINIT member of the NetView DSIPARM

data set. This parameter defines initial priority and color assignments used for
status descriptors. The values defined in AOFINIT are used if no further
customization is done to priority and color assignments. The default priority
ranges and colors used in AOFINIT are:

Priority Range Color

001 to 199 Red

200 to 299 Pink

300 to 399 Yellow

400 to 499 Turquoise

500 to 599 Green

600 to 699 Blue

White is used as the default status descriptor color (the DCOLOR parameter in
member AOFINIT, described in IBM Tivoli System Automation for z/OS
Programmer’s Reference) and as the default color for a status component without a
tree structure entry (the ERRCOLOR parameter in member AOFINIT, described
in IBM Tivoli System Automation for z/OS Programmer’s Reference). For more
information on the PRIORITY parameter, see IBM Tivoli System Automation for
z/OS Programmer’s Reference.

v In the SDF definitions in the Status Details policy object. These entries define
colors, highlighting, and priorities used for particular resource statuses. Color
and priority assignments defined in the customization dialog can be used to
override assignments in the AOFINIT member.

Note: Some of the resource statuses that appear in SDF displays do not directly
correspond to resource statuses used in the automation status file.

IBM Tivoli System Automation for z/OS User’s Guide shows the default resource
status types, colors, highlighting, and priorities provided with SA z/OS. These
settings define to SA z/OS the parameters used when adding status descriptors
to SDF.
For more information on the SDF Status Details definition, see “Step 4:
(Optional) Defining SDF in the Customization Dialog” on page 224.

Chaining of Status Descriptors to Status Components
A resource status change causes a status descriptor to be generated. SDF adds this
status descriptor to a chain of status descriptors. Chained status descriptors

Overview of the Status Display Facility

212 System Automation for z/OS: Customizing and Programming

determine the status and color of status components. The highest-priority status
descriptor in a chain determines the initial color in which the status component is
displayed. The underlying chained priority numbers determine the color that
successive detail status displays are shown in.

Status descriptors are chained off each level of status component in a tree
structure. Status descriptors chained to lower-level status components are also
chained to a higher-level status component, again in order of priority. Status
descriptors are also chained off the root component. These status descriptors are all
the status descriptors that currently exist at all levels of the tree structure.

For example, Figure 43 shows status descriptors currently generated for system
SY1. The priority for each status descriptor is shown by a number.

The status components at the lowest level in this tree structure, JES2, RMF, and
VTAM, have status descriptors chained off them. Status component JES2 has three
status descriptors chained, with priorities 1, 10, and 50. Because 1 is the highest
priority, the status descriptor with priority 1 is organized first in the chain. This
highest-priority status descriptor determines the color in which JES2 is displayed
on the status panel. If an operator uses the detail PF key to view detail status
displays for JES2, the information contained in the status descriptor with priority 1
is displayed first, then the detail status display for the status descriptor with
priority 10, and so on.

At the SYSTEM status component level in the tree structure, all status descriptors
from the lower-level status components are also chained. Because the status
descriptors chained to RMF and VTAM have higher priorities than the priority 10
and 50 status descriptors for JES2, they are organized after the priority 1 status
descriptor in the chain. An operator using the detail PF key at the SYSTEM level
could view five detail status displays, ranging from priority 1 to priority 50.

Similarly, at the SY1 level in the tree structure, all status descriptors chained to all
status components in the tree structure are chained in order of priority. An
operator using the detail PF key at the SY1 level could view six detail status
displays, ranging from priority 1 to priority 100.

Figure 43. Status Descriptors Chained to Status Components

Overview of the Status Display Facility

Appendix B. Customizing the Status Display Facility 213

If a status component has multiple status descriptors with equal priorities, the
status descriptors are chained off the status component in order of arrival time.

When a status descriptor no longer accurately reflects the actual status of a
resource, SDF automatically deletes it from status descriptor chains. As an example
of how priority determines order of status descriptors, suppose two status
descriptors currently exist for status component JES2. If there are two status
descriptors for JES2 with priorities of 120 and 140, the status descriptor with
priority 120 is displayed first. In both cases, JES displays in red on the SDF status
panel.

In SA z/OS, all statuses are defined in the automation control file. When an
automation event occurs, the SA z/OS AOCUPDT command scans the automation
control file for the SDF entry for that status. SA z/OS issues a request to add the
status using the information from the automation control file.

For example, suppose subsystem RMF, shown on the example SDF panels in
Figure 41 on page 210, is set to a STOPPING state. The SA z/OS AOCUPDT
command scans the automation control file for the STOPPING state entry for SDF
and generates a status descriptor, specifying a priority of 330. SDF adds the status
descriptor to the RMF status component. RMF appears as yellow and blinking on
the status panel. Once RMF is in a stopped state, the AOCUPDT command scans
the automation control file for the STOPPED state SDF entry and generates a status
descriptor with priority 130. SDF adds this new status descriptor to the RMF status
component. Now, RMF appears in red on the SDF status panel.

Propagating Status Descriptors Upward and Downward in a Tree
Structure
Based on the order of dependencies defined in a tree structure, status descriptors
can be propagated upward or downward to status components in a tree structure.
This propagation of status descriptors affects the color in which status components
are displayed, as well as the detail status displays operators can view by using the
detail PF key on a particular status component.

Propagation of status upward and downward in a tree structure is defined by the
PROPUP and PROPDOWN parameter in the AOFINIT member (see IBM Tivoli
System Automation for z/OS Programmer’s Reference for descriptions).

The SA z/OS-provided defaults for status propagation in the AOFINIT member
are to propagate status upward (PROPUP=YES) but not downward
(PROPDOWN=NO).

When status is propagated upward in a tree structure, if a status descriptor is
added or deleted at a lower level in the tree structure, it is also added or deleted
from the cumulative chain of status descriptors at a higher-level node in the tree
structure.

Propagation of status upward in a tree structure consolidates the status of all
monitored resources in the system at the root node. In this way, the color of the
root node reflects the most important or critical status in a computer operations
center. For example, in Figure 42 on page 211, any color changes for AOFSSI are
reflected in AOFAPPL, APPLIC, SYSTEM, and SY1, if SDF propagates status
changes upward in the tree structure. In Figure 41 on page 210, if all monitored
resources are green, the root node CHI01 on the Data Center Systems panel is also
shown in green.

Overview of the Status Display Facility

214 System Automation for z/OS: Customizing and Programming

When status is propagated downward in a tree structure, if a status change occurs
at a higher level in a tree structure, the changes are sent downward in the tree
structure. This propagating downward could cause status descriptors at lower
levels in the tree structure to be added or deleted.

Propagating status downward can be useful when an entire system is down. In
such a case, you want SDF status panels to accurately reflect the system status. You
do not want status components lower in the tree structure to retain previously
generated status descriptors indicating that the components are up and running,
because these status descriptors do not accurately reflect the status of the
components. You can configure your SDF implementation to propagate status
downward, and remove all status descriptors from all status components in a tree
structure. If an operator tries displaying detailed status about any of the status
components lower in the tree structure, they receive "NO DETAIL INFO
AVAILABLE" messages. The empty chain color, defined by the EMPTYCOLOR
parameter in member AOFINIT with a default color of blue, is also used to
indicate that no detail information is available. See IBM Tivoli System Automation for
z/OS Programmer’s Reference for the EMPTYCOLOR description.

How SDF Helps Operations to Focus on Specific Problems
SDF structure and processing allows the program identifying a problem to be
concerned only with the specific problem.

For example, suppose an application program detects a warning message for status
component JES on CHI01. The following processing steps occur:
1. The application program issues a request to SDF to add a status descriptor for

JES.
2. The status entry for JES on system CHI01 now indicates there is a problem

with JES. If the SDF is configured to propagate status up the hierarchical tree
structure, the status for system CHI01 also reflects the problem state. See IBM
Tivoli System Automation for z/OS Programmer’s Reference for details on the
PROPUP SDF initialization parameter.

3. Now, suppose another more serious problem occurs. The application program
which detects this new problem issues another request to SDF to add a status
descriptor having a lower priority number than the status descriptor for the
first problem.

4. Because status descriptors are chained in order of priority, the JES status now
reflects the status descriptor color of the more serious problem.

5. When the more serious problem is resolved, the application program detecting
the problem resolution issues a request to SDF to remove the status descriptor
for this problem from the chain of JES status descriptors.

6. The status panel is updated to reflect the first problem.

How SDF Panels Are Defined
All SDF status panels, apart from detail status display panels, are defined in the
AOFPNLS member of the NetView DSIPARM data set.

Member AOFPNLS can contain either one or both of the following:
v %INCLUDE statements referencing other NetView DSIPARM members

containing definitions of panels. The %INCLUDE statement causes the named
panel definition member to be loaded. This is the recommended method, and

Overview of the Status Display Facility

Appendix B. Customizing the Status Display Facility 215

the method used in the SA z/OS-provided version of AOFPNLS. System
symbols are supported for the %INCLUDE statements. This can help reduce
both customization work and errors.

v Panel structure definitions for all SDF panels.

Panel members defined or referenced in AOFPNLS are loaded into system
memory, and may be deleted, replaced, or temporarily made resident using the
SDFPANEL command (see IBM Tivoli System Automation for z/OS Programmer’s
Reference for command description).

Panels that are to be dynamically loaded as needed (see “Dynamically Loading
Tree Structure and Panel Definition Members”) must be defined in a NetView
DSIPARM member having the same member name as the panel itself.

It is recommended that you include only frequently used panels in AOFPNLS, to
conserve system memory. Other panels can be dynamically loaded when needed,
either by pressing a SDF function key or by using the SCREEN command.

Note: Dynamic refresh only works with panels that are defined in AOFPNLS.

SDF internally formats and builds detail status display panels from the information
in a status descriptor. You do not have to define and format detail status display
panels. Status components defined in the panel definitions must also be defined in
the corresponding tree structure. However, not all status components defined in
the tree structure require a corresponding entry on the SDF status panel. For
example, in Figure 42 on page 211, the APPLIC status component is only a
pseudo-entry and may not actually be displayed on any SDF status display panel.

SDF status panels can be customized to reflect any environment. For example, you
can define a panel to show the status of all JES subsystems on all processors in a
computer operations center. The JES operator can view the panel to determine the
status of any JES subsystem in the complex.

For detailed information on defining SDF panels, see “Step 2: Defining SDF
Panels” on page 220.

Dynamically Loading Tree Structure and Panel Definition
Members

Using %INCLUDE statements in the main SDF tree structure and panel definition
members allows you to dynamically load tree structure and panel definition
members without restarting SDF (see IBM Tivoli System Automation for z/OS
Programmer’s Reference). The SDFTREE command loads a tree structure definition
member. The SDFPANEL command loads a panel definition member. You can
dynamically reload members AOFTREE and AOFPNLS themselves.

The RESYNC SDFDEFS command generates the SDF panels using the advanced
automation option (AAO) AOF_AAO_SDFROOT_LIST for the SDF root names that
are to be applied. (See IBM Tivoli System Automation for z/OS Operator’s Commands).

Using SDF for Multiple Systems
You can configure SDF so that multiple systems in an automation network can
forward their resource status information to the SDF on the focal point system. In a
multiple-system environment, the following must be defined:

Overview of the Status Display Facility

216 System Automation for z/OS: Customizing and Programming

|
|
|

v The tree structure for each system must be defined in the AOFTREE member of
NetView DSIPARM on the focal point system SDF. The root name must be
unique for each system tree structure.

v For target system SDF status update to occur on a focal point SDF, SA z/OS
focal point services must already be implemented.

Because each root name must be unique in a multiple-system environment, any
status component on any system defined to the focal point SDF can be uniquely
addressed by prefixing the status component with the root component name:
ROOT_COMPONENT.STATUS_COMPONENT

For example:
SY1.JES2

Similarly, any SDF status descriptors forwarded from the target system to the focal
point SDF are prefixed with the root name of the target system by SA z/OS
routines.

SDF Components
SDF consists of the following components:

Table 19. SDF Components

Name Type Purpose

AOFTDDF Task Initializes SDF and maintains the status database. This
initialization is an automated function.

SDF Command Starts an SDF operator session.

SDFTREE Command Dynamically loads or deletes an SDF tree structure
definition member from the NetView DSIPARM data set.

SDFPANEL Command Dynamically loads or deletes an SDF panel definition
member from the NetView DSIPARM data set.

AOFINIT Input file Contains SDF initialization parameters defined with the
statements described in IBM Tivoli System Automation for
z/OS Programmer’s Reference. AOFINIT is in the NetView
DSIPARM data set.

AOFTREE Input file Contains tree structures described in IBM Tivoli System
Automation for z/OS Programmer’s Reference. This member
usually consists of a list of %INCLUDE statements
referencing other members containing tree structures.
AOFTREE is in the NetView DSIPARM data set.

AOFPNLS Input file Contains SDF panel parameters defined by the statements
described in “Step 2: Defining SDF Panels” on page 220.
This member usually consists of a list of %INCLUDE
statements referencing other members containing panel
definitions. AOFPNLS is in the NetView DSIPARM data
set.

panel_name Input file A DSIPARM member containing the definition of one or
more SDF panels or %INCLUDE statements identifying
other DSIPARM panel definition members. It is highly
recommended that panel definition members contain the
definition of a single panel having the same name as the
member.

Overview of the Status Display Facility

Appendix B. Customizing the Status Display Facility 217

Table 19. SDF Components (continued)

Name Type Purpose

tree_name Input file A DSIPARM member containing the definition of one or
more tree structures. It is highly recommended that tree
definition members contain the definition of a single tree
having the same root component name as the member
name.

How the SDF Task Is Started and Stopped
During SA z/OS initialization, the AOFTDDF task loads members defining panel
format, panel flow, and tree structures. Member AOFINIT defines parameters
common to all SDF panels and basic initialization specifications, such as screen
size, default PF keys, and the initial screen displayed when a SDF session is
started. These AOFINIT parameters are described in IBM Tivoli System Automation
for z/OS Programmer’s Reference.

Starting the SDF Task
In SA z/OS code, the AOFTDDF task is started by the following command:
START TASK=AOFTDDF

Stopping the SDF Task
In SA z/OS code, the AOFTDDF task is stopped by the following command:
STOP TASK=AOFTDDF

Note: When SDF is restarted, all existing SDF status descriptors are lost, as they
are kept only in memory.

SDF Definition Process
Use the following procedure to define the panels displayed in an SDF session.
Details on each step are provided later in this chapter and in IBM Tivoli System
Automation for z/OS Programmer’s Reference.
1. Define the hierarchy of monitored resources used for your SDF panels, using

tree structure statements in NetView DSIPARM data set members. These tree
structure definition members should be referenced by %INCLUDE statements
in the main SDF tree structure definition member, AOFTREE, in the NetView
DSIPARM data set. See IBM Tivoli System Automation for z/OS Programmer’s
Reference for details.

2. Define SDF status panels using panel definition statements in NetView
DSIPARM data set members. Panels can either be automatically loaded when
SDF starts, or dynamically loaded using the SDFPANEL command. For panels
to be automatically loaded, add a %INCLUDE statement specifying the panel
definition member to the main panel definition member, AOFPNLS, in the
NetView DSIPARM data set. See “Step 2: Defining SDF Panels” on page 220 for
details.
Define and customize SDF status panels in the following general order:
a. Root panel
b. Status component panel for each entry on the root panel
c. Any other customized status panels.

3. Customize the SDF initialization parameters in NetView DSIPARM member
AOFINIT, if necessary (optional), or use defaults. See IBM Tivoli System
Automation for z/OS Programmer’s Reference for detailed descriptions of SDF
initialization parameters. Using defaults is recommended.

Overview of the Status Display Facility

218 System Automation for z/OS: Customizing and Programming

4. Define SDF resource status, color, highlight and priority values using the
customization dialog to edit the SDF Status Display policy object, or use
defaults. This step is optional. See IBM Tivoli System Automation for z/OS
Defining Automation Policy for the description of the Status Display policy
object. Using defaults is recommended.

Notes:

1. Resources that SA z/OS is not currently automating are not displayed on SDF
panels.

2. To display the status of multiple systems and forward status from target
systems to SDF on a focal point system, SA z/OS focal point services must
already be implemented. See IBM Tivoli System Automation for z/OS Defining
Automation Policy for details on configuring focal point services.

Step 1: Defining SDF Hierarchy
Member AOFTREE in the NetView DSIPARM data set contains a set of definitions
that define the propagation hierarchy for status color changes. When the status
changes for a component, the corresponding color change is propagated up or
down the tree to the next higher or lower level component. The level is determined
by the level number assigned to each component. The type of propagation is
determined either by the entry in the AOFINIT member or by individual requests
to add a status descriptor to a status component.

Note: SA z/OS does not use this SDF hierarchy for subsystem shutdown or
startup procedures. Instead, SA z/OS uses subsystem entries defined in the
automation policy to determine startup and shutdown relationships and
hierarchies.

Tree Structure Definitions
AOFTREE contains tree structure definitions. To define tree structures, you can:
v Use %INCLUDE statements that reference other members containing definitions

for specific tree structures. This is the recommended method, and the method
used in the SA z/OS-provided version of AOFTREE.
On the %INCLUDE statement, the name of the referenced member must be
enclosed in parentheses.

v Place all tree structure definitions in AOFTREE.
v Use a combination of both.

System symbols are supported wherever they are used in the AOFTREE, AOFINIT
and AOFPNLS members. This can help reduce both customization work and
errors.

Figure 44 on page 220 shows a typical tree structure definition:

SDF Definition Process

Appendix B. Customizing the Status Display Facility 219

In this tree structure, SY1 is the root component. This definition is in a separate
member, named SY1. It is referenced by the following statement in the AOFTREE
member:
%INCLUDE(SY1TREE)

Loading Tree Structures: All tree structures need not be loaded during
initialization. Some can be loaded dynamically after SDF is started. To do this, use
AOFTREE to define those tree structure entries that are loaded during
initialization, then use the SDFTREE command to load additional tree structures as
needed. For more information, see IBM Tivoli System Automation for z/OS
Programmer’s Reference.

Tree structures loaded after SDF is started must be contained in separate members.
Each member must be named after the root component for which the tree structure
is defined.

Step 2: Defining SDF Panels
SDF status panels are defined in NetView DSIPARM member AOFPNLS. SA z/OS
loads the panel definitions in AOFPNLS when SDF is initialized.

Panel Definition Methods
To define panels in AOFPNLS, you can:
v Use %INCLUDE statements referencing separate NetView DSIPARM members

containing panel definitions. This is the recommended method, and the method
used in the SA z/OS-provided version of AOFPNLS. See “%INCLUDE
Statement for SDF Panels” on page 223 for details on using the %INCLUDE
statement for SDF panel definition members.

v Include actual definitions for all panels.
v Use a combination of both %INCLUDE statements and panel definitions.
v Include a subset of panel entries to load during initialization, so that additional

panel definitions can be loaded only when needed (see IBM Tivoli System
Automation for z/OS Programmer’s Reference).

System symbols are supported wherever they are used in the AOFTREE, AOFINIT
and AOFPNLS members. This can help reduce both customization work and
errors.

Panel Definition Structure
The structure of each panel definition is as follows:
v Begin panel definition statement (PANEL)

1 SY1
2 SYSTEM

3 WTOR
3 APPLIC

4 AOFAPPL
5 AOFSSI

4 JES
4 VTAM

3 TSO
3 RMF

2 GATEWAY
2 MONITOR
2 APG

3 GROUP

Figure 44. Example Tree Structure Definition

SDF Definition Process

220 System Automation for z/OS: Customizing and Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v Status component definition statements, consisting of pairs of the following
statements:
– STATUSFIELD: defines location of a status component on a panel
– STATUSTEXT: defines the text displayed in the STATUSFIELD

v Text fields and data definition statements, consisting of pairs of the following
statements:
– TEXTFIELD: defines locations and attributes for constant fields on panels
– TEXTTEXT: defines text displayed in the TEXTFIELD

v Status panel PF key definitions (PFKnn)
You should assign the SDFCONF command to the PF4 key. Use the following
definition:
PFK4=SDFCONF &ROOT,&COMPAPPL,&RV,&SID,&SNODE,&DATE,&TIME,&DA

Using SDFCONF to delete a record in SDF is useful because it prompts you for
confirmation before performing the actual deletion. If you do not want the
prompt panel to appear, then add ",VERIFY=NO" to the end of the SDFCONF
command.
You must call SDFCONF to delete exceptional messages, that is, captured
messages with the severity Unusual, Important and Critical. The SDFCONF
command removes a message entry from the SDF control structure and also
from all other interfaces where the message is shown, for example, TEP and
NMC.

v End panel statement (ENDPANEL)

Descriptions of these panel definition statements are in IBM Tivoli System
Automation for z/OS Programmer’s Reference.

Recommended Order for Defining Panels
When defining panels, it is recommended that you define them in the following
order:
1. The root panel
2. The status components for each item listed on the root panel
3. Any other customized status panels

Note: This order of defining panels is a recommendation only. You can define your
SDF panels in any order desired.

Example Panel Definition
Figure 45 shows how an example SDF panel looks when it is displayed.

Figure 46 on page 222 shows the panel definition statements required to define the
panel in Figure 45.

SYSTEM DATA CENTER SYSTEMS

SY1 GATEWAY

===>
1=HELP 2=DETAIL 3=RET 6=ROLL 7=UP 8=DN 10=LF 11=RT 12=TOP

Figure 45. Example SDF Panel

Appendix B. Customizing the Status Display Facility 221

|
|

|

|
|
|
|

|
|
|
|
|

In Figure 46, the panel name is SYSTEM. This panel definition can either be in a
separate member referenced by a %INCLUDE statement in AOFPNLS or be
directly coded in AOFPNLS. The recommended method is to use a separate
member and a %INCLUDE statement. If it is in a separate member, the member
name is SYSTEM. You do not have to explicitly define every PF key for the panel.
PF key definitions not specified are picked up from definitions in NetView
DSIPARM member AOFINIT.

Table 20 describes each statement in Figure 46:

Table 20. Panel Definition Entry Description

Statement Description and Example Value

PANEL(SYSTEM,24,80) The panel definition statement. The panel name is SYSTEM, the
panel length is 24, and the panel width is 80.

TEXTFIELD(01,02,10,WHITE,NORMAL) The text location statement defining constant panel fields. This field
starts on line 01 in position 02 and ends in position 10. The color of
the field is white and highlighting is normal.

TEXTTEXT(SYSTEM) The text data statement specifying the actual data that goes in the
text field just defined. This field contains the word SYSTEM.

TEXTFIELD and TEXTTEXT are always grouped in pairs.

TF(01,25,57,WHITE,NORMAL) Another TEXTFIELD statement for another constant field.

TT(DATA CENTER SYSTEMS) Another TEXTTEXT statement for the text field just defined.

STATUSFIELD(SY1,04,04,11,N,,SY1SYS) The location of the status component field. The status component is
SY1. This field starts on line 04 in position 04 and ends in position
11. The highlighting level is normal. The next panel displayed when
the Down PF key is pressed is SY1SYS.

STATUSTEXT(SY1) The text data used for the name of the field just defined with the
STATUSFIELD statement. In this case, the field name is SY1.

STATUSFIELD and STATUSTEXT statements are grouped in pairs.

SF(SY1.GATEWAY,02,40,47,N,,GATEWAY) Another STATUSFIELD definition.

ST(GATEWAY) Another STATUSTEXT definition.

PANEL(SYSTEM,24,80)
TEXTFIELD(01,02,10,WHITE,NORMAL)
TEXTTEXT(SYSTEM)
TF(01,25,57,WHITE,NORMAL)
TT(DATA CENTER SYSTEMS)
STATUSFIELD(SY1,04,04,11,N,,SY1SYS)
STATUSTEXT(SY1)
SF(SY1.GATEWAY,02,40,47,N,,GATEWAY)
ST(GATEWAY)
TF(24,01,79,T,NORMAL)
TT(1=HELP 2=DETAIL 3=RET 6=ROLL 7=UP 8=DN ,
10=LF 11=RT 12=TOP)
PFK1(AOCHELP SDF)
PFK2(DETAIL)
PFK3(RETURN)
PFK6(ROLL)
PFK7(UP)
PFK8(DOWN)
PFK10(LEFT)
PFK11(RIGHT)
PFK12(TOP)
ENDPANEL

Figure 46. Example Panel Definition Entry

222 System Automation for z/OS: Customizing and Programming

Table 20. Panel Definition Entry Description (continued)

Statement Description and Example Value

TF(24,01,79,T,NORMAL)
TT(1=HELP 2=DETAIL 3=RET 6=ROLL 7=UP,
8=DN 10=LF 11=RT 12=TOP)

Here, TEXTFIELD and TEXTTEXT are used to display PF key
definitions. For this panel, these are the default definitions defined
in AOFINIT. If you need values differing from the defaults, there is
a statement for defining PF keys unique to this panel, DPFKnn. See
IBM Tivoli System Automation for z/OS Programmer’s Reference for a
description of this statement.

PFK1(AOCHELP SDF)
PFK2(DETAIL)
PFK3(RETURN)
PFK6(ROLL)
PFK7(UP)
PFK8(DOWN)
PFK10(LEFT)
PFK11(RIGHT)
PFK12(TOP)

PF key definition statements.

ENDPANEL The end panel statement, indicating that this is the end of definitions
for this panel.

%INCLUDE Statement for SDF Panels

The %INCLUDE statement for SDF has the following features:
v The SDF %INCLUDE statement allows the specification of a list of members

rather than a single member only. Each member name in the list represents a
DSIPARM member that is to be loaded. Member names in the list are delimited
by a comma.

v The SDF %INCLUDE statement requires parentheses around the specified
member or members.

v You can specify the option STATIC or DYNAMIC for the SDF %INCLUDE
statement. If you specify DYNAMIC, this generates the panel definitions for all
of the system names that you specify in AOF_AAO_SDFROOT_LIST common
global variable (see Table 17 on page 198). STATIC is the default.

v The target DSIPARM members may contain only complete panel definitions or
additional %INCLUDE statements. Panel definitions must be contained within a
single member, and therefore cannot be built using commonly defined segments.

System symbols are supported wherever they are used in the AOFTREE, AOFINIT
and AOFPNLS members. This can help reduce both customization work and
errors.

Step 3: (Optional) Customizing SDF Initialization Parameters
Member AOFINIT allows you to define parameters common to all SDF panels and
SDF initialization specifications, such as:
v Initial screen shown when SDF is started
v Maximum operator logon limit
v Default PF key definitions
v Detail status display panel PF key definitions
v Detail status display panel PF key descriptions
v Default priorities and colors

These parameters define values for SDF when it is started.

Appendix B. Customizing the Status Display Facility 223

|
|
|
|

System symbols are supported wherever they are used in the AOFTREE, AOFINIT
and AOFPNLS members. This can help reduce both customization work and
errors.

This step of SDF customization is optional. Using SA z/OS-provided default
values for these parameters is recommended.

Note: User-defined statuses are not saved across a recycle or a monitor cycle. This
means the status of a subsystem changes from the user-defined status to an
appropriate SA z/OS status.

Step 4: (Optional) Defining SDF in the Customization Dialog
The SDF entries in the Status Display policy object allow you to define statuses
and the priorities assigned to those statuses. These entries are used by SA z/OS
commands to gather data for requests to add status descriptors to status
components. The format and values used in SDF Status Detail definitions are
described in IBM Tivoli System Automation for z/OS Programmer’s Reference.

This step of SDF customization is optional. Using SA z/OS-provided definitions
for SDF is recommended.

224 System Automation for z/OS: Customizing and Programming

Appendix C. How System Operations Coordinates with
Automatic Restart Manager

SA z/OS system operations provides coordination with the Automatic Restart
Manager. The Automatic Restart Manager (ARM) is a base z/OS component. It is a
recovery function that automatically restarts designated applications when:
v The application ends abnormally.
v The system that the application is running on is part of a sysplex, and that

system fails. In this case, ARM will attempt to restart the application on another
system within the sysplex.

SA z/OS coordinates with ARM to:
v Determine which facility is responsible for restarting a specific application.
v Avoid possible duplications or conflicts in application recovery attempts.
v Allow you to take full advantage of SA z/OS fallback capabilities for

applications running on sysplexes. SA z/OS continues to automate an
application after it has been moved to a fallback system, provided SA z/OS is
installed on that system. If it is not installed on the fallback system, SA z/OS is
still aware that the application is active on a system other than its primary one
and does not attempt to restart it.

You have to define the Automatic Restart Manager policy using the administrative
data utility for ARM policy data (IXCMIAPU) described in z/OS MVS Setting Up a
Sysplex.

SA z/OS resolves Automatic Restart Manager statuses to SA z/OS statuses,
incorporates Automatic Restart Manager-related conditions, and provides one
status related to Automatic Restart Manager:
v EXTSTART - The application is being started or restarted externally.

Defining an ARM Element Name
Automatic Restart Manager uses element names to identify the applications with
which it works. Each Automatic Restart Manager enabled application must have a
unique element name for itself that it uses in all communication with Automatic
Restart Manager. Automatic Restart Manager tracks the element name and has its
policy defined in terms of element names. If an application moves between
systems it MUST continue to use the same element name as it did on the original
system. For more information on defining Automatic Restart Manager names to
SA z/OS, see “Application Entry Type” in IBM Tivoli System Automation for z/OS
Defining Automation Policy.

All Automatic Restart Manager elements are unregistered initially. Transitions
between statuses are caused by:
v IXCARM macro invocations
v Application failures
v System failures
v Timeouts

© Copyright IBM Corp. 1996, 2011 225

A minor resource definition subsystem.0ARM can be used to tailor automation
behaviour during ARM restart processing. As an example, a subsystem.0ARM minor
resource could be specified with a RESTART EXIT enabled to drive a user supplied
exit during ARM restart. The user exit would control additional actions to be taken
during ARM restart of the subsystem. If the RESTART flag for this minor resource
is resolved to 'N', SA z/OS will not allow ARM to attempt a restart of the
application.

Rather than use the subsystem.0ARM minor resource definition, a RESTART EXIT
could also be specified against the major resource definition for the application. In
this case the exit would be driven for all application restarts, not just ARM.

Other reasons for SA z/OS not to allow ARM to attempt a restart of the
application are:
v The application's monitor indicates that the address space is already active.
v The application is involved in a shutdown.
v The application is in status BREAKING, BROKEN, or CTLDOWN.

Defining a MOVE Group for Automatic Restart Manager
All resources with the same ARM element name should be linked to one Sysplex
Application Group of nature MOVE (MOVE group).

An application's ARM element name is defined either during creation on the
Define New Entry panel for applications or after creation via policy item
APPLICATION INFO, in both cases in the MVS Automatic Restart Management
Element Name field.

In order to ensure an application in a MOVE group has completely deregistered
from ARM before the automation manager attempts to restart it, a
Prepareavailable/WhenObservedDown (passive) relationship must be defined for
each ARMed application in the MOVE group with the MOVE group defined as the
supporting resource.

To make sure that the automation manager will start the applications linked to a
MOVE group, the applications should not be in a HardDown status. The Start On
IPL option should not be set to NO.

For more information on how to define MOVE groups see “Creating a New
ApplicationGroup” in IBM Tivoli System Automation for z/OS Defining Automation
Policy.

Defining an ARM Element Name

226 System Automation for z/OS: Customizing and Programming

Appendix D. Message Automation

Generic Synonyms: AOFMSGSY
This AOFMSGSY NetView automation table (AT) fragment contains a number of
synonyms that must be appropriately set. It is used in most master automation
tables to set up the environmental parameters for the other fragments. The
AOFMSGSY member is supplied by SA z/OS (in the SINGNPRM data set). You
must customize it for each of your systems. The customized copy should be placed
in the domain-specific data set for that system.

Note that many values in this table fragment are enclosed in triple single quotation
marks. This means that the value of the synonym is the value entered surrounded
by a single set of single quotation marks. This is necessary so that the value is
treated as a literal and not an automation table variable.

Synonym Usage and Default

%AOFALWAYSACTION% This synonym contains the action statement used for all the
messages within a Begin-End block that SA z/OS does not
trigger any action for.

Default: NULL

The default is that no action is taken and the message does
not continue to search for further matches within the same
AT.

%AOFDOM% This synonym should contain the domain ID of the SA z/OS
NetView on the system that it is automating. The synonym is
used to screen messages to prevent the SA z/OS on this
machine from reacting to a message that originated on
another machine. If not set correctly, your automation fails.

Default: &DOMAIN.

This is a default domain name used in a number of the
samples.

%AOFSYS% This synonym should contain the system name used in the
last IPL of the system. It is used to screen messages to
prevent the SA z/OS on this machine from reacting to
events that have occurred on other machines. It is important
if you are running on a JES3 global or in a sysplex with
EMCS consoles. If not set correctly, your automation fails.

Default: &SYSNAME.

This is a default system name used in a number of the
samples.

%AOFARMPPI% This synonym should contain the name of the NetView
autotask that is running the PPI interface from SA z/OS to
z/OS. It is used to route commands from the NetView
automation table to the autotask.

Default: AOFARCAT

© Copyright IBM Corp. 1996, 2011 227

Synonym Usage and Default

%AOFGMFHSWAIT% The time interval SA z/OS waits after GMFHS initialization
is complete before issuing the command to update the
RODM with the current application automation states.
Following the issuing of message DUI4003I GMFHS
NETWORK CONFIGURATION INITIALIZED
SUCCESSFULLY, GMFHS resets the color of all SA z/OS
icons to grey (unknown). To set the SA z/OS icons' color to
the current automation states after the initialization of
GMFHS, SA z/OS must wait and issue the update
command AFTER GMFHS has reset the colors to grey.

Default: 00:02:00

SA z/OS Message Presentation: AOFMSGSY
The presentation of SA z/OS messages (prefixed with AOF, ING, HSA, EVJ, EVE
and EVI) under NetView is controlled by the automation table. This uses a number
of synonyms and task globals indicating your message display characteristics. The
following synonyms determine the display characteristics for each type of message.
There is one set for the normal presentation of the message (AOFNORMx) and a
second set for the held presentation (AOFHOLDx).

Synonym Usage and Default

%AOFHOLDI% This synonym defines the actions taken for SA z/OS
information (type I) messages that are held on your NCCF
console.

Default: HOLD(Y) COLOR(GRE) XHILITE(REV)

This:

v Ensures that the message is held

v Causes the message to be displayed in reverse video green

%AOFHOLDA% This synonym defines the actions taken for SA z/OS
immediate action (type A) messages that are held on your
NCCF console. As a rule, you should specify HOLD(Y) in
the action.

Default: HOLD(Y) COLOR(RED) XHILITE(REV) BEEP(Y)

This:

v Ensures that the message is held

v Causes the message to be displayed in reverse video red

v Sounds the terminal alarm when the message is displayed

%AOFHOLDD% This synonym defines the actions taken for SA z/OS
decision (type D) messages that are held on your NCCF
console. As a rule, you should specify HOLD(Y) in the
action.

Default: HOLD(Y) COLOR(WHI) XHILITE(REV) BEEP(Y)

This:

v Ensures that the message is held

v Causes the message to be displayed in reverse video white

v Sounds the terminal alarm when the message is displayed

Generic Synonyms: AOFMSGSY

228 System Automation for z/OS: Customizing and Programming

Synonym Usage and Default

%AOFHOLDE% This synonym defines the actions taken for SA z/OS
eventual action (type E) messages that are held on your
NCCF console. As a rule, you should specify HOLD(Y) in
the action.

Default: HOLD(Y) COLOR(YEL) XHILITE(REV) BEEP(Y)

This:

v Ensures that the message is held

v Causes the message to be displayed in reverse video
yellow

v Sounds the terminal alarm when the message is displayed

%AOFHOLDW% This synonym defines the actions taken for SA z/OS wait
state (type W) messages that are held on your NCCF
console. As a rule, you should specify HOLD(Y) in the
action.

Default: HOLD(Y) COLOR(PIN) XHILITE(REV) BEEP(Y)

This:

v Ensures that the message is held

v Causes the message to be displayed in reverse video pink

v Sounds the terminal alarm when the message is displayed

%AOFNORMI% This synonym defines the actions taken for SA z/OS
information (type I) messages that are not held on your
NCCF console. As a rule, you should not specify HOLD(Y)
in the action.

Default: COLOR(GRE)

This:

v Ensures that the message is not held

v Causes the message to be displayed in green

%AOFNORMA% This synonym defines the actions taken for SA z/OS
Immediate Action (type A) messages that are held on your
NCCF console. As a rule, you should not specify HOLD(Y)
in the action.

Default: COLOR(YEL) XHILITE(REV) BEEP(Y)

This:

v Ensures that the message is held

v Causes the message to be displayed in yellow

v Sounds the terminal alarm when the message is displayed

%AOFNORMD% This synonym defines the actions taken for SA z/OS
Decision (type D) messages that are held on your NCCF
console. You may find it beneficial to force these messages to
be held.

Default: COLOR(WHI) XHILITE(BLI)

This:

v Ensures that the message is held

v Causes the message to be displayed in blinking white

SA z/OS Message Presentation: AOFMSGSY

Appendix D. Message Automation 229

Synonym Usage and Default

%AOFNORME% This synonym defines the actions taken for SA z/OS
Eventual Action (type E) messages that are not held on your
NCCF console. As a rule, you should not specify HOLD(Y)
in the action.

Default: COLOR(YEL)

This:

v Ensures that the message is not held

v Causes the message to be displayed in yellow

%AOFNORMW% This synonym defines the actions taken for SA z/OS Wait
State (type W) messages that are held on your NCCF
console. You may find it beneficial to force these messages to
be held.

Default: HOLD(Y) COLOR(PIN) XHILITE(REV) BEEP(Y)

This:

v Ensures that the message is held

v Causes the message to be displayed in reverse video pink

v Sounds the terminal alarm when the message is displayed

Operator Cascades: AOFMSGSY
The next set of synonyms defines a series of operator cascades. A cascade is basically
a list of automation operators used in many of the fragments to route commands.
If %CASCADE% is defined as a synonym for ’AUTMON AUTBASE AUTO1’ and you route a
command to it with ROUTE (ONE %CASCADE%) on an EXEC statement, the command is
run on the first autotask in the cascade that is logged on. This provides you with a
flexible, controllable means of providing backup processing tasks in case one of
your normal tasks is unavailable.

Synonym Usage and Default

%AOFLOPAUTOx% This cascade defines the actions taken for SA z/OS
information (type I) messages that are being held on your
NCCF console. Given the number of informational messages
that SA z/OS produces you may find it beneficial HOLD(N)
to stop them from being held even if the user has asked for
them to be held.

Default: ’’AUTOx’’

%AOFOPAUTO1% This cascade is used to route commands to AUTO1. If you
have renamed AUTO1 you must change the synonym.

Default: AUTO1

There is no backup for AUTO1. If it fails when it is needed,
many other things will probably fail as well.

%AOFOPAUTO2 This cascade is used to route commands to AUTO2. If you
have renamed AUTO2 you must change this synonym.

Default: AUTO2 AUTO1

If AUTO2 is not active, AUTO1 does its work.

SA z/OS Message Presentation: AOFMSGSY

230 System Automation for z/OS: Customizing and Programming

Synonym Usage and Default

%AOFOPBASEOPER% This cascade is used to send commands to BASEOPER. If
you are not using the standard names for SA z/OS
autotasks you must change this synonym. BASEOPER is
mainly defined as a fallback operator and has very little
work directly routed to it.

Default: AUTBASE AUTO1

AUTBASE is the operator ID that SA z/OS uses for
BASEOPER in its other samples. If AUTBASE is not active,
AUTO1 is tried.

%AOFOPRPCOPER% This cascade is used for XCF communication management. If
you are not using the standard names for SA z/OS
autotasks you must change this synonym.

Default: AUTRPC AUTSYS AUTBASE AUTO1

%AOFOPSYSOPER% This cascade is used to send commands to SYSOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. SYSOPER is mainly defined
as a fallback operator and has very little work directly
routed to it.

Default: AUTSYS AUTBASE AUTO1

AUTSYS is the operator ID that SA z/OS uses for SYSOPER
in its other samples.

%AOFOPMSGOPER% This cascade is used to send commands to MSGOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. MSGOPER is mainly
defined to respond to miscellaneous messages.

Default: AUTMSG AUTSYS AUTBASE AUTO1

AUTMSG is the operator ID that SA z/OS uses for
MSGOPER in its other samples.

%AOFOPNETOPER% This cascade is used to send commands to NETOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. NETOPER is defined for
VTAM automation.

Default: AUTNET1 AUTNET2 AUTSYS AUTBASE AUTO1

AUTNET1 and AUTNET2 are the operator IDs that SA z/OS
uses for NETOPER in its other samples. NETOPER is the
only sample automation function to have a backup defined
in the samples.

%AOFOPJESOPER% This cascade is used to send commands to JESOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. JESOPER is mainly defined
for JES automation.

Default: AUTJES AUTSYS AUTBASE AUTO1

AUTJES is the operator ID that SA z/OS uses for JESOPER
in its other samples.

Operator Cascades: AOFMSGSY

Appendix D. Message Automation 231

Synonym Usage and Default

%AOFOPMONOPER% This cascade is used to send commands to MONOPER. If
you are not using the standard names for SA z/OS
autotasks you must change this synonym. MONOPER is
used for regular monitoring and subsystem startups.

Default: AUTMON AUTSYS AUTBASE AUTO1

AUTMON is the operator ID that SA z/OS uses for
MONOPER in its other samples.

%AOFOPRECOPER% This cascade is used to send commands to RECOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. RECOPER is used for
recovery processing.

Default: AUTREC AUTSYS AUTBASE AUTO1

AUTREC is the operator ID that SA z/OS uses for
RECOPER in its other samples.

%AOFOPSHUTOPER% This cascade is used to send commands to SHUTOPER. If
you are not using the standard names for SA z/OS
autotasks you must change this synonym. SHUTOPER
coordinates automated shutdowns.

Default: AUTSHUT AUTSYS AUTBASE AUTO1

AUTSHUT is the operator ID that SA z/OS uses for
SHUTOPER in its other samples.

%AOFOPGSSOPER% This cascade is used to send commands to GSSOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. GSSOPER is used for
generic subsystem automation.

Default: * AUTGSS AUTSYS AUTBASE AUTO1

AUTGSS is the operator ID that SA z/OS uses for GSSOPER
in its other samples.

If you want to turn off the "ASSIGN BY JOBNAME" feature,
that is, the advanced automation CGLOBAL variable
AOF_ASSIGN_JOBNAME (see Appendix A, “Global
Variables,” on page 197) has been set to 0, you must remove
the asterisk (*), because this may cause serialization
problems.
Note: NetView's ASSIGN-BY-JOBNAME command that
occurs before automation table processing only affects
messages that are associated with an MVS job name.

%AOFOPWTORS% This cascade is used to route commands concerning WTORS.
If you are not using the standard names for SA z/OS
autotasks you must change this synonym. Its use ensures
that all WTOR processing is done on the same task and this
is serialized.

Default: * AUTGSS AUTSYS AUTBASE AUTO1

This specifies that AUTSYS is to do all the WTOR
processing.

Operator Cascades: AOFMSGSY

232 System Automation for z/OS: Customizing and Programming

Synonym Usage and Default

%AOFOPGATOPER% This cascade is used to route commands to this domain's
gateway autotask. Because the autotask name contains the
domain ID you must modify this synonym.

Default: GATRdomain.

AOF01 is the default domain used in the other samples.
There is no backup as the gateway CLISTs expect to be
running on GATOPER.

SA z/OS Topology Manager for NMC: AOFMSGST
These synonyms are used and defined in the AOFMSGST fragment.

Synonym Usage and Default

%AOFOPTOPOMGR% This is the name of the autotask that the SA z/OS topology
manager runs on this system.

Default: &DOMAIN.TPO

%AOFINITOPOCMD% This is the command issued to initialize the SA z/OS
topology manager.

Default: INGTOPO INIT &DOMAIN.TPO

%AOFOPHB% This is the name of the heart beat task needed on focal point.

Default: AUTHB

Operator Cascades: AOFMSGSY

Appendix D. Message Automation 233

SA z/OS Topology Manager for NMC: AOFMSGST

234 System Automation for z/OS: Customizing and Programming

Appendix E. TSO User Monitoring

Active TSO users can be monitored in NMC and SDF using the SA z/OS
command DFTSOU (EVJETSOU). To enable TSO user monitoring add the
following entry to user AT include fragment INGMSGU1 (or to your own user
message table):
IF (MSGID=’IEF125I’ | MSGID=’IEF126I’ | MSGID=’IEF450I’)

THEN EXEC(CMD(’DFTSOU UPDATE’) ROUTE(ALL *))
DISPLAY(N) NETLOG(N) CONTINUE(Y);

Also, put 'DFTSOU SCAN' in the ACORESTART message for the TSO subsystem.

When DFTSOU is called with the UPDATE parameter then:
v For IEF125I, an ADD request is sent to SDF and NMC for the TSO user that

produces the message.
v For IEF126I, a DELETE request is sent to SDF and NMC for the TSO user that

produces the message.
v For IEF450I, a DELETE request is sent to SDF and NMC for the failing TSO user.

When IEF450I is specified, and the trap is coded in INGMSGU1, then
CONTINUE(Y) must also be coded.

When DFTSOU is called with the SCAN parameter, an MVS D TS,L command is
issued to identify all currently active TSO users. This data is then passed to SDF
and NMC.

NMC updates are associated with NMC object TSO. SDF updates are associated
with SDF tree entry TSOUSERS.

© Copyright IBM Corp. 1996, 2011 235

236 System Automation for z/OS: Customizing and Programming

Appendix F. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Websites are provided for
convenience only and do not in any manner serve as an endorsement of those
Websites. The materials at those Websites are not part of the materials for this IBM
product and use of those Websites is at your own risk.

© Copyright IBM Corp. 1996, 2011 237

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information
This publication documents information that is not intended to be used as a
programming interface of IBM Tivoli System Automation for z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at www.ibm.com/legal/
copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

238 System Automation for z/OS: Customizing and Programming

www.ibm.com/legal/copytrade.shtml
www.ibm.com/legal/copytrade.shtml

Glossary

This glossary includes terms and definitions from:
v The IBM Dictionary of Computing New York:

McGraw-Hill, 1994.
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies can be
purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018. Definitions are identified by
the symbol (A) after the definition.

v The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee
1, of the International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of
this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

The following cross-references are used in this
glossary:

Contrast with. This refers to a term that has
an opposed or substantively different
meaning.
Deprecated term for. This indicates that the
term should not be used. It refers to a
preferred term, which is defined in its proper
place in the glossary.
See. This refers the reader to multiple-word
terms in which this term appears.
See also. This refers the reader to terms that
have a related, but not synonymous, meaning.
Synonym for. This indicates that the term has
the same meaning as a preferred term, which
is defined in the glossary.
Synonymous with. This is a backward
reference from a defined term to all other
terms that have the same meaning.

A
ACF. See automation configuration file.

ACF/NCP. Advanced Communications Function for
the Network Control Program. See Advanced
Communications Function and Network Control
Program.

ACF/VTAM. Advanced Communications Function for
the Virtual Telecommunications Access Method.
Synonym for VTAM. See Advanced Communications
Function and Virtual Telecommunications Access
Method.

active monitoring. In SA z/OSautomation control file,
the acquiring of resource status information by
soliciting such information at regular, user-defined
intervals. See also passive monitoring.

adapter. Hardware card that enables a device, such as
a workstation, to communicate with another device,
such as a monitor, a printer, or some other I/O device.

Address Space Workflow. In RMF, a measure of how
a job uses system resources and the speed at which the
job moves through the system. A low workflow
indicates that a job has few of the resources it needs
and is contending with other jobs for system resources.
A high workflow indicates that a job has all the
resources it needs to execute.

adjacent hosts. Systems connected in a peer
relationship using adjacent NetView sessions for
purposes of monitoring and control.

adjacent NetView. In SA z/OS, the system defined as
the communication path between two SA z/OS
systems that do not have a direct link. An adjacent
NetView is used for message forwarding and as a
communication link between two SA z/OS systems.
For example, the adjacent NetView is used when
sending responses from a focal point to a remote
system.

Advanced Communications Function (ACF). A group
of IBM licensed programs (principally VTAM, TCAM,
NCP, and SSP) that use the concepts of Systems
Network Architecture (SNA), including distribution of
function and resource sharing.

advanced program-to-program communication
(APPC). A set of inter-program communication
services that support cooperative transaction processing
in a Systems Network Architecture (SNA) network.
APPC is the implementation, on a given system, of
SNA's logical unit type 6.2.

alert. (1) In SNA, a record sent to a system problem
management focal point or to a collection point to
communicate the existence of an alert condition. (2) In

© Copyright IBM Corp. 1996, 2011 239

NetView, a high-priority event that warrants immediate
attention. A database record is generated for certain
event types that are defined by user-constructed filters.

alert condition. A problem or impending problem for
which some or all of the process of problem
determination, diagnosis, and resolution is expected to
require action at a control point.

alert focal-point system. See NPDA focal point
system.

alert threshold. An application or volume service
value that determines the level at which SA z/OS
changes the associated icon in the graphical interface to
the alert color. SA z/OS may also issue an alert. See
warning threshold.

AMC. (1) See Automation Manager Configuration. (2)
The Auto Msg Classes entry type.

American Standard Code for Information Interchange
(ASCII). A standard code used for information
exchange among data processing systems, data
communication systems, and associated equipment.
ASCII uses a coded character set consisting of 7-bit
coded characters (8-bit including parity check). The
ASCII set consists of control characters and graphic
characters. See also Extended Binary Coded Decimal
Interchange Code.

APF. See authorized program facility.

API. See application programming interface.

APPC. See advanced program-to-program
communication.

application. In SA z/OS, applications refer to z/OS
subsystems, started tasks, or jobs that are automated
and monitored by SA z/OS. On SNMP-capable
processors, application can be used to refer to a
subsystem or process.

Application entry. A construct, created with the
customization dialogs, used to represent and contain
policy for an application.

application group. A named set of applications. An
application group is part of an SA z/OS enterprise
definition and is used for monitoring purposes.

application program. (1) A program written for or by
a user that applies to the user's work, such as a
program that does inventory or payroll. (2) A program
used to connect and communicate with stations in a
network, enabling users to perform application-oriented
activities.

application programming interface (API). An
interface that allows an application program that is
written in a high-level language to use specific data or
functions of the operating system or another program.

ApplicationGroup entry. A construct, created with the
customization dialogs, used to represent and contain
policy for an application group.

ARM. See automatic restart management.

ASCB. Address space control block.

ASCB status. An application status derived by
SA z/OS running a routine (the ASCB checker) that
searches the z/OS address space control blocks
(ASCBs) for address spaces with a particular job name.
The job name used by the ASCB checker is the job
name defined in the customization dialog for the
application.

ASCII. See American Standard Code for Information
Interchange.

ASF. See automation status file.

authorized program facility (APF). A facility that
permits identification of programs that are authorized
to use restricted functions.

automated console operations (ACO). The use of an
automated procedure to replace or simplify the action
that an operator takes from a console in response to
system or network events.

automated function. SA z/OS automated functions
are automation operators, NetView autotasks that are
assigned to perform specific automation functions.
However, SA z/OS defines its own synonyms, or
automated function names, for the NetView autotasks,
and these function names are referred to in the sample
policy databases provided by SA z/OS. For example,
the automation operator AUTBASE corresponds to the
SA z/OS automated function BASEOPER.

automatic restart management (ARM). A z/OS
recovery function that improves the availability of
specified subsystems and applications by automatically
restarting them under certain circumstances. Automatic
restart management is a function of the Cross-System
Coupling Facility (XCF) component of z/OS.

automatic restart management element name. In MVS
5.2 or later, z/OS automatic restart management
requires the specification of a unique sixteen character
name for each address space that registers with it. All
automatic restart management policy is defined in
terms of the element name, including SA z/OS’s
interface with it.

automation. The automatic initiation of actions in
response to detected conditions or events. SA z/OS
provides automation for z/OS applications, z/OS
components, and remote systems that run z/OS.
SA z/OS also provides tools that can be used to
develop additional automation.

240 System Automation for z/OS: Customizing and Programming

automation agent. In SA z/OS, the automation
function is split up between the automation manager
and the automation agents. The observing, reacting and
doing parts are located within the NetView address
space, and are known as the automation agents. The
automation agents are responsible for:
v Recovery processing
v Message processing
v Active monitoring: they propagate status changes to

the automation manager

automation configuration file. The SA z/OS
customization dialogs must be used to build the
automation configuration file. It consists of:
v The automation manager configuration file (AMC)
v The NetView automation table (AT)
v The NetView message revision table (MRT)
v The MPFLSTSA member

automation control file (ACF). In SA z/OS, a file that
contains system-level automation policy information.
There is one master automation control file for each
NetView system that SA z/OS is installed on.
Additional policy information and all resource status
information is contained in the policy database (PDB).
The SA z/OS customization dialogs must be used to
build the automation control files. They must not be
edited manually.

automation flags. In SA z/OS, the automation policy
settings that determine the operator functions that are
automated for a resource and the times during which
automation is active. When SA z/OS is running,
automation is controlled by automation flag policy
settings and override settings (if any) entered by the
operator. Automation flags are set using the
customization dialogs.

automation manager. In SA z/OS, the automation
function is split up between the automation manager
and the automation agents. The coordination, decision
making and controlling functions are processed by each
sysplex's automation manager.

The automation manager contains a model of all of the
automated resources within the sysplex. The
automation agents feed the automation manager with
status information and perform the actions that the
automation manager tells them to.

The automation manager provides sysplex-wide
automation.

Automation Manager Configuration. The Automation
Manager Configuration file (AMC) contains an image
of the automated systems in a sysplex or of a
standalone system. See also “automation configuration
file.”

Automation NetView. In SA z/OS the NetView that
performs routine operator tasks with command
procedures or uses other ways of automating system

and network management, issuing automatic responses
to messages and management services units.

automation operator. NetView automation operators
are NetView autotasks that are assigned to perform
specific automation functions. See also automated
function. NetView automation operators may receive
messages and process automation procedures. There are
no logged-on users associated with automation
operators. Each automation operator is an operating
system task and runs concurrently with other NetView
tasks. An automation operator could be set up to
handle JES2 messages that schedule automation
procedures, and an automation statement could route
such messages to the automation operator. Similar to
operator station task. SA z/OS message monitor tasks
and target control tasks are automation operators.

automation policy. The policy information governing
automation for individual systems. This includes
automation for applications, z/OS subsystems, z/OS
data sets, and z/OS components.

automation policy settings. The automation policy
information contained in the automation control file.
This information is entered using the customization
dialogs. You can display or modify these settings using
the customization dialogs.

automation procedure. A sequence of commands,
packaged as a NetView command list or a command
processor written in a high-level language. An
automation procedure performs automation functions
and runs under NetView.

automation status file (ASF). In SA z/OS, a file
containing status information for each automated
subsystem, component or data set. This information is
used by SA z/OS automation when taking action or
when determining what action to take. In Release 2 and
above of AOC/MVS, status information is also
maintained in the operational information base.

automation table (AT). See NetView automation table.

autotask. A NetView automation task that receives
messages and processes automation procedures. There
are no logged-on users associated with autotasks. Each
autotask is an operating system task and runs
concurrently with other NetView tasks. An autotask
could be set up to handle JES2 messages that schedule
automation procedures, and an automation statement
could route such messages to the autotasks. Similar to
operator station task. SA z/OS message monitor tasks
and target control tasks are autotasks. Also called
automation operator.

available. In VTAM programs, pertaining to a logical
unit that is active, connected, enabled, and not at its
session limit.

Glossary 241

|
|
|
|

B
Base Control Program (BCP). A program that
provides essential services for the MVS and z/OS
operating systems. The program includes functions that
manage system resources. These functions include
input/output, dispatch units of work, and the z/OS
UNIX System Services kernel. See also Multiple Virtual
Storage and z/OS.

basic mode. A central processor mode that does not
use logical partitioning. Contrast with logically
partitioned mode.

BCP. See Base Control Program.

BCP Internal Interface. Processor function of
CMOS-390 and System z processor families. It allows
for communication between basic control programs
such as z/OS and the processor support element in
order to exchange information or to perform processor
control functions. Programs using this function can
perform hardware operations such as ACTIVATE or
SYSTEM RESET.

beaconing. The repeated transmission of a frame or
messages (beacon) by a console or workstation upon
detection of a line break or outage.

BookManager®. An IBM product that lets users view
softcopy documents on their workstations.

C
central processor (CP). The part of the computer that
contains the sequencing and processing facilities for
instruction execution, initial program load (IPL), and
other machine operations.

central processor complex (CPC). A physical
collection of hardware that consists of central storage,
one or more central processors, timers, and channels.

central site. In a distributed data processing network,
the central site is usually defined as the focal point for
alerts, application design, and remote system
management tasks such as problem management.

CFR/CFS and ISC/ISR. I/O operations can display
and return data about integrated system channels (ISC)
connected to a coupling facility and coupling facility
receiver (CFR) channels and coupling facility sender
(CFS) channels.

channel. A path along which signals can be sent; for
example, data channel, output channel. See also link.

channel path identifier. A system-unique value
assigned to each channel path.

channel-attached. (1) Attached directly by I/O
channels to a host processor (for example, a

channel-attached device). (2) Attached to a controlling
unit by cables, rather than by telecommunication lines.
Contrast with link-attached. Synonymous with local.

CHPID. In SA z/OS, channel path ID; the address of
a channel.

CHPID port. A label that describes the system name,
logical partitions, and channel paths.

CI. See console integration.

CICS/VS. Customer Information Control System for
Virtual Storage. See Customer Information Control
System.

CLIST. See command list.

clone. A set of definitions for application instances
that are derived from a basic application definition by
substituting a number of different system-specific
values into the basic definition.

clone ID. A generic means of handling system-specific
values such as the MVS SYSCLONE or the VTAM
subarea number. Clone IDs can be substituted into
application definitions and commands to customize a
basic application definition for the system that it is to
be instantiated on.

CNC. A channel path that transfers data between a
host system image and an ESCON® control unit. It can
be point-to-point or switchable.

command. A request for the performance of an
operation or the execution of a particular program.

command facility. The component of NetView that is
a base for command processors that can monitor,
control, automate, and improve the operation of a
network. The successor to NCCF.

command list (CLIST). (1) A list of commands and
statements, written in the NetView command list
language or the REXX language, designed to perform a
specific function for the user. In its simplest form, a
command list is a list of commands. More complex
command lists incorporate variable substitution and
conditional logic, making the command list more like a
conventional program. Command lists are typically
interpreted rather than being compiled. (2) In
SA z/OS, REXX command lists that can be used for
automation procedures.

command procedure. In NetView, either a command
list or a command processor.

command processor. A module designed to perform a
specific function. Command processors, which can be
written in assembler or a high-level language (HLL),
are issued as commands.

242 System Automation for z/OS: Customizing and Programming

command processor control block. An I/O operations
internal control block that contains information about
the command being processed.

Command Tree/2. An OS/2-based program that helps
you build commands on an OS/2 window, then routes
the commands to the destination you specify (such as a
3270 session, a file, a command line, or an application
program). It provides the capability for operators to
build commands and route them to a specified
destination.

common commands. The SA z/OS subset of the CPC
operations management commands.

common routine. One of several SA z/OS programs
that perform frequently used automation functions.
Common routines can be used to create new
automation procedures.

Common User Access (CUA) architecture. Guidelines
for the dialog between a human and a workstation or
terminal.

communication controller. A type of communication
control unit whose operations are controlled by one or
more programs stored and executed in the unit or by a
program executed in a processor to which the controller
is connected. It manages the details of line control and
the routing of data through a network.

communication line. Deprecated term for
telecommunication line.

connectivity view. In SA z/OS, a display that uses
graphic images for I/O devices and lines to show how
they are connected.

console automation. The process of having NetView
facilities provide the console input usually handled by
the operator.

console connection. In SA z/OS, the 3270 or ASCII
(serial) connection between a PS/2 computer and a
target system. Through this connection, the workstation
appears (to the target system) to be a console.

console integration (CI). A hardware facility that if
supported by an operating system, allows operating
system messages to be transferred through an internal
hardware interface for display on a system console.
Conversely, it allows operating system commands
entered at a system console to be transferred through
an internal hardware interface to the operating system
for processing.

consoles. Workstations and 3270-type devices that
manage your enterprise.

Control units. Hardware units that control I/O
operations for one or more devices. You can view
information about control units through I/O

operations, and can start or stop data going to them by
blocking and unblocking ports.

controller. A unit that controls I/O operations for one
or more devices.

converted mode (CVC). A channel operating in
converted (CVC) mode transfers data in blocks and a
CBY channel path transfers data in bytes. Converted
CVC or CBY channel paths can communicate with a
parallel control unit. This resembles a point-to-point
parallel path and dedicated connection, regardless
whether it passes through a switch.

couple data set. A data set that is created through the
XCF couple data set format utility and, depending on
its designated type, is shared by some or all of the
z/OS systems in a sysplex. See also sysplex couple data
setand XCF couple data set.

coupling facility. The hardware element that provides
high-speed caching, list processing, and locking
functions in a sysplex.

CP. See central processor.

CPC. See central processor complex.

CPC operations management commands. A set of
commands and responses for controlling the operation
of System/390® CPCs.

CPC subset. All or part of a CPC. It contains the
minimum resource to support a single control program.

CPCB. See command processor control block.

CPU. Central processing unit. Deprecated term for
processor.

cross-system coupling facility (XCF). A component of
z/OS that provides functions to support cooperation
between authorized programs running within a
sysplex.

CTC. The channel-to-channel (CTC) channel can
communicate with a CTC on another host for
intersystem communication.

Customer Information Control System (CICS). A
general-purpose transactional program that controls
online communication between terminal users and a
database for a large number of end users on a real-time
basis.

customization dialogs. The customization dialogs are
an ISPF application. They are used to customize the
enterprise policy, like, for example, the enterprise
resources and the relationships between resources, or
the automation policy for systems in the enterprise.
How to use these dialogs is described in IBM Tivoli
System Automation for z/OS Customizing and
Programming.

Glossary 243

CVC. See converted mode.

D
DASD. See direct access storage device.

data services task (DST). The NetView subtask that
gathers, records, and manages data in a VSAM file or a
network device that contains network management
information.

data set. The major unit of data storage and retrieval,
consisting of a collection of data in one of several
prescribed arrangements and described by control
information to which the system has access.

data set members. Members of partitioned data sets
that are individually named elements of a larger file
that can be retrieved by name.

DBCS. See double-byte character set.

DCCF. See disabled console communication facility.

DCF. See Document Composition Facility.

DELAY Report. An RMF report that shows the
activity of each job in the system and the hardware and
software resources that are delaying each job.

device. A piece of equipment. Devices can be
workstations, printers, disk drives, tape units, remote
systems or communications controllers. You can see
information about all devices attached to a particular
switch, and control paths and jobs to devices.

DEVR Report. An RMF report that presents
information about the activity of I/O devices that are
delaying jobs.

dialog. Interactive 3270 panels.

direct access storage device (DASD). A device that
allows storage to be directly accessed, such as a disk
drive.

disabled console communication facility (DCCF). A
z/OS component that provides limited-function console
communication during system recovery situations.

disk operating system (DOS). (1) An operating
system for computer systems that use disks and
diskettes for auxiliary storage of programs and data. (2)
Software for a personal computer that controls the
processing of programs. For the IBM Personal
Computer, the full name is Personal Computer Disk
Operating System (PCDOS).

display. (1) To present information for viewing,
usually on the screen of a workstation or on a
hardcopy device. (2) Deprecated term for panel.

distribution manager. The component of the NetView
program that enables the host system to use, send, and
delete files and programs in a network of computers.

Document Composition Facility (DCF). An IBM
licensed program used to format input to a printer.

domain. (1) An access method and its application
programs, communication controllers, connecting lines,
modems, and attached workstations. (2) In SNA, a
system services control point (SSCP) and the physical
units (PUs), logical units (LUs), links, link stations, and
associated resources that the SSCP can control with
activation requests and deactivation requests.

double-byte character set (DBCS). A character set,
such as Kanji, in which each character is represented by
a 2-byte code.

DP enterprise. Data processing enterprise.

DSIPARM. This file is a collection of members of
NetView’s customization.

DST. Data Services Task.

E
EBCDIC. See Extended Binary Coded Decimal
Interchange Code.

ECB. See event control block.

EMCS. Extended multiple console support. See also
multiple console support.

enterprise. The composite of all operational entities,
functions, and resources that form the total business
concern and that require an information system.

enterprise monitoring. Enterprise monitoring is used
by SA z/OS to update the NetView Management Console
(NMC) resource status information that is stored in the
Resource Object Data Manager (RODM). Resource status
information is acquired by enterprise monitoring of the
Resource Measurement Facility (RMF) Monitor III service
information at user-defined intervals. SA z/OS stores
this information in its operational information base,
where it is used to update the information presented to
the operator in graphic displays.

Enterprise Systems Architecture (ESA). A hardware
architecture that reduces the effort required for
managing data sets and extends addressability for
system, subsystem, and application functions.

entries. Resources, such as processors, entered on
panels.

entry type. Resources, such as processors or
applications, used for automation and monitoring.

environment. Data processing enterprise.

244 System Automation for z/OS: Customizing and Programming

error threshold. An automation policy setting that
specifies when SA z/OS should stop trying to restart
or recover an application, subsystem or component, or
offload a data set.

ESA. See Enterprise Systems Architecture.

eServer™. Processor family group designator used by
the SA z/OS customization dialogs to define a target
hardware as member of the System z or 390-CMOS
processor families.

event. (1) In NetView, a record indicating irregularities
of operation in physical elements of a network. (2) An
occurrence of significance to a task; for example, the
completion of an asynchronous operation, such as an
input/output operation. (3) Events are part of a trigger
condition, such that if all events of a trigger condition
have occurred, a startup or shutdown of an application
is performed.

event control block (ECB). A control block used to
represent the status of an event.

exception condition. An occurrence on a system that
is a deviation from normal operation. SA z/OS
monitoring highlights exception conditions and allows
an SA z/OS enterprise to be managed by exception.

Extended Binary Coded Decimal Interchange Code
(EBCDIC). A coded character set of 256 8-bit
characters developed for the representation of textual
data. See also American Standard Code for Information
Interchange.

extended recovery facility (XRF). A facility that
minimizes the effect of failures in z/OS, VTAM, the
host processor, or high availability applications during
sessions between high availability applications and
designated terminals. This facility provides an alternate
subsystem to take over sessions from the failing
subsystem.

F
fallback system. See secondary system.

field. A collection of bytes within a record that are
logically related and are processed as a unit.

file manager commands. A set of SA z/OS
commands that read data from or write data to the
automation control file or the operational information
base. These commands are useful in the development
of automation that uses SA z/OS facilities.

focal point. In NetView, the focal-point domain is the
central host domain. It is the central control point for
any management services element containing control of
the network management data.

focal point system. (1) A system that can administer,
manage, or control one or more target systems. There

are a number of different focal point system associated
with IBM automation products. (2) NMC focal point
system. The NMC focal point system is a NetView
system with an attached workstation server and LAN
that gathers information about the state of the network.
This focal point system uses RODM to store the data it
collects in the data model. The information stored in
RODM can be accessed from any LAN-connected
workstation with NetView Management Console
installed. (3) NPDA focal point system. This is a
NetView system that collects all the NPDA alerts that
are generated within your enterprise. It is supported by
NetView. If you have SA z/OS installed the NPDA
focal point system must be the same as your NMC
focal point system. The NPDA focal point system is
also known as the alert focal point system. (4) SA z/OS
Processor Operations focal point system. This is a
NetView system that has SA z/OS host code installed.
The SA z/OS Processor Operations focal point system
receives messages from the systems and operator
consoles of the machines that it controls. It provides
full systems and operations console function for its
target systems. It can be used to IPL these systems.
Note that some restrictions apply to the Hardware
Management Console for an S/390® microprocessor
cluster. (5) SA z/OS SDF focal point system. The
SA z/OS SDF focal point system is an SA z/OS
NetView system that collects status information from
other SA z/OS NetViews within your enterprise. (6)
Status focal point system. In NetView, the system to
which STATMON, VTAM and NLDM send status
information on network resources. If you have a NMC
focal point, it must be on the same system as the Status
focal point. (7) Hardware Management Console.
Although not listed as a focal point, the Hardware
Management Console acts as a focal point for the
console functions of an S/390 microprocessor cluster.
Unlike all the other focal points in this definition, the
Hardware Management Console runs on a
LAN-connected workstation,

frame. For a System/390 microprocessor cluster, a
frame contains one or two central processor complexes
(CPCs), support elements, and AC power distribution.

full-screen mode. In NetView, a form of panel
presentation that makes it possible to display the
contents of an entire workstation screen at once.
Full-screen mode can be used for fill-in-the-blanks
prompting. Contrast with line mode.

G
gateway session. An NetView-NetView Task session
with another system in which the SA z/OS outbound
gateway operator logs onto the other NetView session
without human operator intervention. Each end of a
gateway session has both an inbound and outbound
gateway operator.

Glossary 245

generic alert. Encoded alert information that uses
code points (defined by IBM and possibly customized
by users or application programs) stored at an alert
receiver, such as NetView.

generic routines. In SA z/OS, a set of self-contained
automation routines that can be called from the
NetView automation table, or from user-written
automation procedures.

group. A collection of target systems defined through
configuration dialogs. An installation might set up a
group to refer to a physical site or an organizational or
application entity.

group entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a group.

group entry type. A collection of target systems
defined through the customization dialog. An
installation might set up a group to refer to a physical
site or an organizational entity. Groups can, for
example, be of type STANDARD or SYSPLEX.

H
Hardware Management Console (HMC). A system
that controls managed systems, including the
management of logical partitions and use of Capacity
Upgrade on Demand. Using service applications, the
HMC communicates with managed systems to detect,
consolidate, and send information to IBM for analysis.

Hardware Management Console Application
(HWMCA). A direct-manipulation object-oriented
graphical user interface that provides a single point of
control and single system image for hardware elements.
The HWMCA provides grouping support, aggregated
and real-time system status using colors, consolidated
hardware messages support, consolidated operating
system messages support, consolidated service support,
and hardware commands targeted at a single system,
multiple systems, or a group of systems.

heartbeat. In SA z/OS, a function that monitors the
validity of the status forwarding path between remote
systems and the NMC focal point, and monitors the
availability of remote z/OS systems, to ensure that
status information displayed on the SA z/OS
workstation is current.

help panel. An online panel that tells you how to use
a command or another aspect of a product.

hierarchy. In the NetView program, the resource
types, display types, and data types that make up the
organization, or levels, in a network.

high-level language (HLL). A programming language
that provides some level of abstraction from assembler

language and independence from a particular type of
machine.For the NetView program, the high-level
languages are PL/I and C.

HLL. See high-level language.

host (primary processor). The processor that you enter
a command at (also known as the issuing processor).

host system. In a coupled system or distributed
system environment, the system on which the facilities
for centralized automation run. SA z/OS publications
refer to target systems or focal-point systems instead of
hosts.

HWMCA. See Hardware Management Console
Application.

I
I/O operations. The part of SA z/OS that provides
you with a single point of logical control for managing
connectivity in your active I/O configurations. I/O
operations takes an active role in detecting unusual
conditions and lets you view and change paths
between a processor and an I/O device, using dynamic
switching (the ESCON director). Also known as I/O
Ops.

I/O Ops. See I/O operations.

I/O resource number. Combination of channel path
identifier (CHPID), device number, etc. See internal
token.

images. A grouping of processors and I/O devices
that you define. You can define a single-image mode
that allows a multiprocessor system to function as one
central processor image.

IMS. See Information Management System.

IMS/VS. See Information Management System/Virtual
Storage.

inbound. In SA z/OS, messages sent to the
focal-point system from the PC or target system.

inbound gateway operator. The automation operator
that receives incoming messages, commands, and
responses from the outbound gateway operator at the
sending system. The inbound gateway operator handles
communications with other systems using a gateway
session.

Information Management System (IMS). Any of
several system environments available with a database
manager and transaction processing that are capable of
managing complex databases and terminal networks.

246 System Automation for z/OS: Customizing and Programming

Information Management System/Virtual Storage
(IMS/VS). A database/data communication (DB/DC)
system that can manage complex databases and
networks. Synonymous with Information Management
System.

INGEIO PROC. The I/O operations default procedure
name. It is part of the SYS1.PROCLIB.

initial microprogram load. The action of loading
microprograms into computer storage.

initial program load (IPL). (1) The initialization
procedure that causes an operating system to
commence operation. (2) The process by which a
configuration image is loaded into storage at the
beginning of a workday or after a system malfunction.
(3) The process of loading system programs and
preparing a system to run jobs.

initialize automation. SA z/OS-provided automation
that issues the correct z/OS start command for each
subsystem when SA z/OS is initialized. The
automation ensures that subsystems are started in the
order specified in the automation control files and that
prerequisite applications are functional.

input/output configuration data set (IOCDS). A
configuration definition built by the I/O configuration
program (IOCP) and stored on disk files associated
with the processor controller.

input/output support processor (IOSP). The hardware
unit that provides I/O support functions for the
primary support processor and maintenance support
functions for the processor controller.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogs between the
application programmer and the terminal user. See also
Time Sharing Option.

interested operator list. The list of operators who are
to receive messages from a specific target system.

internal token. A logical token (LTOK); name by which
the I/O resource or object is known; stored in IODF.

IOCDS. See input/output configuration data set.

IOSP. See input/output support processor..

IPL. See initial program load.

ISPF. See Interactive System Productivity Facility.

ISPF console. You log on to ISPF from this 3270-type
console to use the runtime panels for I/O operations
and SA z/OS customization panels.

issuing host. The base program that you enter a
command for processing with. See primary host.

J
JCL. See job control language.

JES. See job entry subsystem.

JES2. An MVS subsystem that receives jobs into the
system, converts them to internal format, selects them
for execution, processes their output, and purges them
from the system. In an installation with more than one
processor, each JES2 processor independently controls
its job input, scheduling, and output processing. See
also job entry subsystem and JES3

JES3. An MVS subsystem that receives jobs into the
system, converts them to internal format, selects them
for execution, processes their output, and purges them
from the system. In complexes that have several loosely
coupled processing units, the JES3 program manages
processors so that the global processor exercises
centralized control over the local processors and
distributes jobs to them using a common job queue. See
also job entry subsystem and JES2.

job. (1) A set of data that completely defines a unit of
work for a computer. A job usually includes all
necessary computer programs, linkages, files, and
instructions to the operating system. (2) An address
space.

job control language (JCL). A problem-oriented
language designed to express statements in a job that
are used to identify the job or describe its requirements
to an operating system.

job entry subsystem (JES). An IBM licensed program
that receives jobs into the system and processes all
output data that is produced by jobs. In SA z/OS
publications, JES refers to JES2 or JES3, unless
otherwise stated. See also JES2 and JES3.

K
Kanji. An ideographic character set used in Japanese.
See also double-byte character set.

L
LAN. See local area network.

line mode. A form of screen presentation in which the
information is presented a line at a time in the message
area of the terminal screen. Contrast with full-screen
mode.

link. (1) In SNA, the combination of the link
connection and the link stations joining network nodes;
for example, a System/370 channel and its associated

Glossary 247

protocols, a serial-by-bit connection under the control
of synchronous data link control (SDLC). See
synchronous data link control. (2) In SA z/OS, link
connection is the physical medium of transmission.

link-attached. Describes devices that are physically
connected by a telecommunication line. Contrast with
channel-attached.

Linux on System z. UNIX-like open source operating
system conceived by Linus Torvalds and developed
across the internet.

local. Pertaining to a device accessed directly without
use of a telecommunication line. Synonymous with
channel-attached.

local area network (LAN). (1) A network in which a
set of devices is connected for communication. They
can be connected to a larger network. See also token
ring. (2) A network that connects several devices in a
limited area (such as a single building or campus) and
that can be connected to a larger network.

logical partition (LP). A subset of the processor
hardware that is defined to support an operating
system. See also logically partitioned mode.

logical switch number (LSN). Assigned with the
switch parameter of the CHPID macro of the IOCP.

logical token (LTOK). Resource number of an object
in the IODF.

logical unit (LU). In SNA, a port through which an
end user accesses the SNA network and the functions
provided by system services control points (SSCPs). An
LU can support at least two sessions, one with an SSCP
and one with another LU, and may be capable of
supporting many sessions with other LUs. See also
physical unit and system services control point.

logical unit 6.2 (LU 6.2). A type of logical unit that
supports general communications between programs in
a distributed processing environment. LU 6.2 is
characterized by:
v A peer relationship between session partners
v Efficient use of a session for multiple transactions
v A comprehensive end-to-end error processing
v A generic application program interface (API)

consisting of structured verbs that are mapped to a
product implementation

Synonym for advanced program-to-program
communication.

logically partitioned (LPAR) mode. A central
processor mode that enables an operator to allocate
system processor hardware resources among several
logical partitions. Contrast with basic mode.

LOGR. The sysplex logger.

LP. See logical partition.

LPAR. See logically partitioned mode.

LSN. See logical switch number.

LU. See logical unit.

LU 6.2. See logical unit 6.2.

LU 6.2 session. A session initiated by VTAM on behalf
of an LU 6.2 application program, or a session initiated
by a remote LU in which the application program
specifies that VTAM is to control the session by using
the APPCCMD macro. See logical unit 6.2.

LU-LU session. In SNA, a session between two logical
units (LUs) in an SNA network. It provides
communication between two end users, or between an
end user and an LU services component.

M
MAT. Deprecated term for NetView automation table.

MCA. See Micro Channel architecture.

MCS. See multiple console support.

member. A specific function (one or more modules or
routines) of a multisystem application that is defined to
XCF and assigned to a group by the multisystem
application. A member resides on one system in the
sysplex and can use XCF services to communicate
(send and receive data) with other members of the
same group.

message automation table (MAT). Deprecated term
for NetView automation table.

message class. A number that SA z/OS associates
with a message to control routing of the message.
During automated operations, the classes associated
with each message issued by SA z/OS are compared to
the classes assigned to each notification operator. Any
operator with a class matching one of the message’s
classes receives the message.

message forwarding. The SA z/OS process of sending
messages generated at an SA z/OS target system to the
SA z/OS focal-point system.

message group. Several messages that are displayed
together as a unit.

message monitor task. A task that starts and is
associated with a number of communications tasks.
Message monitor tasks receive inbound messages from
a communications task, determine the originating target
system, and route the messages to the appropriate
target control tasks.

message processing facility (MPF). A z/OS table that
screens all messages sent to the z/OS console. The MPF
compares these messages with a customer-defined list

248 System Automation for z/OS: Customizing and Programming

of messages on which to automate, suppress from the
z/OS console display, or both, and marks messages to
automate or suppress. Messages are then broadcast on
the subsystem interface (SSI).

message suppression. The ability to restrict the
amount of message traffic displayed on the z/OS
console.

Micro Channel architecture. The rules that define
how subsystems and adapters use the Micro Channel
bus in a computer. The architecture defines the services
that each subsystem can or must provide.

microprocessor. A processor implemented on one or a
small number of chips.

migration. Installation of a new version or release of a
program to replace an earlier version or release.

MP. Multiprocessor.

MPF. See message processing facility.

MPFLSTSA. The MPFLST member that is built by
SA z/OS.

multi-MVS environment. physical processing system
that is capable of operating more than one MVS image.
See also MVS image.

multiple console support (MCS). A feature of MVS
that permits selective message routing to multiple
consoles.

Multiple Virtual Storage (MVS). An IBM operating
system that accesses multiple address spaces in virtual
storage. The predecessor of z/OS.

multiprocessor (MP). A CPC that can be physically
partitioned to form two operating processor complexes.

multisystem application. An application program that
has various functions distributed across z/OS images in
a multisystem environment.

multisystem environment. An environment in which
two or more systems reside on one or more processors.
Or one or more processors can communicate with
programs on the other systems.

MVS. See Multiple Virtual Storage.

MVS image. A single occurrence of the MVS
operating system that has the ability to process work.
See also multi-MVS environment and single-MVS
environment.

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture. See z/OS.

MVS/JES2. Multiple Virtual Storage/Job Entry System
2. A z/OS subsystem that receives jobs into the system,
converts them to an internal format, selects them for

execution, processes their output, and purges them
from the system. In an installation with more than one
processor, each JES2 processor independently controls
its job input, scheduling, and output processing.

N
NAU. (1) See network addressable unit. (2) See
network accessible unit.

NCCF. See Network Communications Control Facility..

NCP. (1) See network control program (general term).
(2) See Network Control Program (an IBM licensed
program). Its full name is Advanced Communications
Function for the Network Control Program.
Synonymous with ACF/NCP.

NCP/token ring interconnection. A function used by
ACF/NCP to support token ring-attached SNA devices.
NTRI also provides translation from token
ring-attached SNA devices (PUs) to switched (dial-up)
devices.

NetView. An IBM licensed program used to monitor a
network, manage it, and diagnose network problems.
NetView consists of a command facility that includes a
presentation service, command processors, automation
based on command lists, and a transaction processing
structure on which the session monitor, hardware
monitor, and terminal access facility (TAF) network
management applications are built.

NetView (NCCF) console. A 3270-type console for
NetView commands and runtime panels for system
operations and processor operations.

NetView automation procedures. A sequence of
commands, packaged as a NetView command list or a
command processor written in a high-level language.
An automation procedure performs automation
functions and runs under the NetView program.

NetView automation table (AT). A table against
which the NetView program compares incoming
messages. A match with an entry triggers the specified
response. SA z/OS entries in the NetView automation
table trigger an SA z/OS response to target system
conditions. Formerly known as the message automation
table (MAT).

NetView command list language. An interpretive
language unique to NetView that is used to write
command lists.

NetView Graphic Monitor Facility (NGMF).
Deprecated term for NetView Management Console.

NetView hardware monitor. The component of
NetView that helps identify network problems, such as
hardware, software, and microcode, from a central

Glossary 249

control point using interactive display techniques.
Formerly called network problem determination application.

NetView log. The log that NetView records events
relating to NetView and SA z/OS activities in.

NetView Management Console (NMC). A function of
the NetView program that provides a graphic,
topological presentation of a network that is controlled
by the NetView program. It provides the operator
different views of a network, multiple levels of
graphical detail, and dynamic resource status of the
network. This function consists of a series of graphic
windows that allows you to manage the network
interactively. Formerly known as the NetView Graphic
Monitor Facility (NGMF).

NetView message table. See NetView automation
table.

NetView paths via logical unit (LU 6.2). A type of
network-accessible port (VTAM connection) that
enables end users to gain access to SNA network
resources and communicate with each other. LU 6.2
permits communication between processor operations
and the workstation. See logical unit 6.2.

NetView-NetView task (NNT). The task that a
cross-domain NetView operator session runs under.
Each NetView program must have a NetView-NetView
task to establish one NNT session. See also operator
station task.

NetView-NetView task session. A session between
two NetView programs that runs under a
NetView-NetView task. In SA z/OS, NetView-NetView
task sessions are used for communication between focal
point and remote systems.

network. (1) An interconnected group of nodes. (2) In
data processing, a user application network. See SNA
network.

network accessible unit (NAU). In SNA networking,
any device on the network that has a network address,
including a logical unit (LU), physical unit (PU), control
point (CP), or system services control point (SSCP). It is
the origin or the destination of information transmitted
by the path control network. Synonymous with
network addressable unit.

network addressable unit (NAU). Synonym for
network accessible unit.

Network Communications Control Facility (NCCF).
The operations control facility for the network. NCCF
consists of a presentation service, command processors,
automation based on command lists, and a transaction
processing structure on which the network
management applications NLDM and NPDA are built.
NCCF is a precursor to the NetView command facility.

Network Control Program (NCP). An IBM licensed
program that provides communication controller
support for single-domain, multiple-domain, and
interconnected network capability. Its full name is
Advanced Communications Function for the Network
Control Program.

network control program (NCP). (1) A program that
controls the operation of a communication controller.
(2) A program used for requests and responses
exchanged between physical units in a network for
data flow control.

Network Problem Determination Application
(NPDA). An NCCF application that helps you identify
network problems, such as hardware, software, and
microcode, from a central control point using
interactive display methods. The alert manager for the
network. The precursor of the NetView hardware
monitor.

Networking NetView. In SA z/OS the NetView that
performs network management functions, such as
managing the configuration of a network. In SA z/OS
it is common to also route alerts to the Networking
NetView.

NGMF. Deprecated term for NetView Management
Console.

NGMF focal-point system. Deprecated term for NMC
focal point system.

NIP. See nucleus initialization program.

NMC focal point system. See focal point system

NMC workstation. The NMC workstation is the
primary way to dynamically monitor SA z/OS
systems. From the windows, you see messages, monitor
status, view trends, and react to changes before they
cause problems for end users. You can use multiple
windows to monitor multiple views of the system.

NNT. See NetView-NetView task.

notification message. An SA z/OS message sent to a
human notification operator to provide information
about significant automation actions. Notification
messages are defined using the customization dialogs.

notification operator. A NetView console operator
who is authorized to receive SA z/OS notification
messages. Authorization is made through the
customization dialogs.

NPDA. See Network Problem Determination
Application.

NPDA focal-point system. See focal point system.

NTRI. See NCP/token ring interconnection.

250 System Automation for z/OS: Customizing and Programming

nucleus initialization program (NIP). The program
that initializes the resident control program; it allows
the operator to request last-minute changes to certain
options specified during system generation.

O
objective value. An average Workflow or Using value
that SA z/OS can calculate for applications from past
service data. SA z/OS uses the objective value to
calculate warning and alert thresholds when none are
explicitly defined.

OCA. In SA z/OS, operator console A, the active
operator console for a target system. Contrast with
OCB.

OCB. In SA z/OS, operator console B, the backup
operator console for a target system. Contrast with
OCA.

OCF. See operations command facility.

OCF-based processor. A central processor complex
that uses an operations command facility for interacting
with human operators or external programs to perform
operations management functions on the CPC.

OPC/A. See Operations Planning and
Control/Advanced.

OPC/ESA. See Operations Planning and
Control/Enterprise Systems Architecture.

Open Systems Adapter (OSA). I/O operations can
display the Open System Adapter (OSA) channel
logical definition, physical attachment, and status. You
can configure an OSA channel on or off.

operating system (OS). Software that controls the
execution of programs and that may provide services
such as resource allocation, scheduling, input/output
control, and data management. Although operating
systems are predominantly software, partial hardware
implementations are possible. (T)

operations. The real-time control of a hardware device
or software function.

operations command facility (OCF). A facility of the
central processor complex that accepts and processes
operations management commands.

Operations Planning and Control/Advanced
(OPC/A). A set of IBM licensed programs that
automate, plan, and control batch workload. OPC/A
analyzes system and workload status and submits jobs
accordingly.

Operations Planning and Control/Enterprise Systems
Architecture (OPC/ESA). A set of IBM licensed
programs that automate, plan, and control batch

workload. OPC/ESA analyzes system and workload
status and submits jobs accordingly. The successor to
OPC/A.

operator. (1) A person who keeps a system running.
(2) A person or program responsible for managing
activities controlled by a given piece of software such
as z/OS, the NetView program, or IMS. (3) A person
who operates a device. (4) In a language statement, the
lexical entity that indicates the action to be performed
on operands.

operator console. (1) A functional unit containing
devices that are used for communications between a
computer operator and a computer. (T) (2) A display
console used for communication between the operator
and the system, used primarily to specify information
concerning application programs and I/O operations
and to monitor system operation. (3) In SA z/OS, a
console that displays output from and sends input to
the operating system (z/OS, LINUX, VM, VSE). Also
called operating system console. In the SA z/OS operator
commands and configuration dialogs, OC is used to
designate a target system operator console.

operator station task (OST). The NetView task that
establishes and maintains the online session with the
network operator. There is one operator station task for
each network operator who logs on to the NetView
program.

operator view. A set of group, system, and resource
definitions that are associated together for monitoring
purposes. An operator view appears as a graphic
display in the graphical interface showing the status of
the defined groups, systems, and resources.

OperatorView entry. A construct, created with the
customization dialogs, used to represent and contain
policy for an operator view.

OS. See operating system.

OSA. See Open Systems Adapter.

OST. See operator station task.

outbound. In SA z/OS, messages or commands from
the focal-point system to the target system.

outbound gateway operator. The automation operator
that establishes connections to other systems. The
outbound gateway operator handles communications
with other systems through a gateway session. The
automation operator sends messages, commands, and
responses to the inbound gateway operator at the
receiving system.

Glossary 251

P
page. (1) The portion of a panel that is shown on a
display surface at one time. (2) To transfer instructions,
data, or both between real storage and external page or
auxiliary storage.

panel. (1) A formatted display of information that
appears on a terminal screen. Panels are full-screen
3270-type displays with a monospaced font, limited
color and graphics. (2) By using SA z/OS panels you
can see status, type commands on a command line
using a keyboard, configure your system, and passthru
to other consoles. See also help panel. (3) In computer
graphics, a display image that defines the locations and
characteristics of display fields on a display surface.
Contrast with screen.

parallel channels. Parallel channels operate in either
byte (BY) or block (BL) mode. You can change
connectivity to a parallel channel operating in block
mode.

parameter. (1) A variable that is given a constant value
for a specified application and that may denote the
application. (2) An item in a menu for which the user
specifies a value or for which the system provides a
value when the menu is interpreted. (3) Data passed to
a program or procedure by a user or another program,
specifically as an operand in a language statement, as
an item in a menu, or as a shared data structure.

partition. (1) A fixed-size division of storage. (2) In
VSE, a division of the virtual address area that is
available for program processing. (3) On an IBM
Personal Computer fixed disk, one of four possible
storage areas of variable size; one can be accessed by
DOS, and each of the others may be assigned to
another operating system.

partitionable CPC. A CPC that can be divided into 2
independent CPCs. See also physical partition,
single-image mode, MP, and side.

partitioned data set (PDS). A data set in direct access
storage that is divided into partitions, called members,
each of which can contain a program, part of a
program, or data.

passive monitoring. In SA z/OS, the receiving of
unsolicited messages from z/OS systems and their
resources. These messages can prompt updates to
resource status displays. See also active monitoring

PCE. A processor controller. Also known as the
support processor or service processor in some
processor families.

PDB. See policy database.

PDS. See partitioned data set.

physical partition. Part of a CPC that operates as a
CPC in its own right, with its own copy of the
operating system.

physical unit (PU). In SNA, the component that
manages and monitors the resources (such as attached
links and adjacent link stations) of a node, as requested
by a system services control point (SSCP) through an
SSCP-PU session. An SSCP activates a session with the
physical unit to indirectly manage, through the PU,
resources of the node such as attached links.

physically partitioned (PP) configuration. A mode of
operation that allows a multiprocessor (MP) system to
function as two or more independent CPCs having
separate power, water, and maintenance boundaries.
Contrast with single-image mode.

POI. See program operator interface.

policy. The automation and monitoring specifications
for an SA z/OS enterprise. See IBM Tivoli System
Automation for z/OS Defining Automation Policy.

policy database. The automation definitions
(automation policy) that the automation programmer
specifies using the customization dialog is stored in the
policy database. Also known as the PDB. See also
automation policy.

POR. See power-on reset.

port. (1) System hardware that the I/O devices are
attached to. (2) In an ESCON switch, a port is an
addressable connection. The switch routes data through
the ports to the channel or control unit. Each port has a
name that can be entered into a switch matrix, and you
can use commands to change the switch configuration.
(3) An access point (for example, a logical unit) for data
entry or exit. (4) A functional unit of a node that data
can enter or leave a data network through. (5) In data
communication, that part of a data processor that is
dedicated to a single data channel for the purpose of
receiving data from or transmitting data to one or more
external, remote devices.

power-on reset (POR). A function that re-initializes all
the hardware in a CPC and loads the internal code that
enables the CPC to load and run an operating system.
See initial microprogram load.

PP. See physical partition.

PPI. See program to program interface.

PPT. See primary POI task.

PR/SM. See Processor Resource/Systems Manager.

primary host. The base program that you enter a
command for processing at.

primary POI task (PPT). The NetView subtask that
processes all unsolicited messages received from the

252 System Automation for z/OS: Customizing and Programming

VTAM program operator interface (POI) and delivers
them to the controlling operator or to the command
processor. The PPT also processes the initial command
specified to execute when NetView is initialized and
timer request commands scheduled to execute under
the PPT.

primary system. A system is a primary system for an
application if the application is normally meant to be
running there. SA z/OS starts the application on all the
primary systems defined for it.

problem determination. The process of determining
the source of a problem; for example, a program
component, machine failure, telecommunication
facilities, user or contractor-installed programs or
equipment, environment failure such as a power loss,
or user error.

processor. (1) A device for processing data from
programmed instructions. It may be part of another
unit. (2) In a computer, the part that interprets and
executes instructions. Two typical components of a
processor are a control unit and an arithmetic logic
unit.

processor controller. Hardware that provides support
and diagnostic functions for the central processors.

processor operations. The part of SA z/OS that
monitors and controls processor (hardware) operations.
Processor operations provides a connection from a
focal-point system to a target system. Through NetView
on the focal-point system, processor operations
automates operator and system consoles for monitoring
and recovering target systems. Also known as ProcOps.

Processor Resource/Systems Manager (PR/SM). The
feature that allows the processor to use several
operating system images simultaneously and provides
logical partitioning capability. See also logically
partitioned mode.

ProcOps. See processor operations.

ProcOps Service Machine (PSM). The PSM is a CMS
user on a VM host system. It runs a CMS multitasking
application that serves as "virtual hardware" for
ProcOps. ProOps communicates via the PSM with the
VM guest systems that are defined as target systems
within ProcOps.

product automation. Automation integrated into the
base of SA z/OS for the products CICS, DB2, IMS,
TWS (formerly called features).

program operator interface (POI). A NetView facility
for receiving VTAM messages.

program to program interface (PPI). A NetView
function that allows user programs to send or receive

data buffers from other user programs and to send
alerts to the NetView hardware monitor from system
and application programs.

protocol. In SNA, the meanings of, and the
sequencing rules for, requests and responses used for
managing the network, transferring data, and
synchronizing the states of network components.

proxy resource. A resource defined like an entry type
APL representing a processor operations target system.

PSM. See ProcOps Service Machine.

PU. See physical unit.

R
RACF. See Resource Access Control Facility.

remote system. A system that receives resource status
information from an SA z/OS focal-point system. An
SA z/OS remote system is defined as part of the same
SA z/OS enterprise as the SA z/OS focal-point system
to which it is related.

requester. A workstation from that user can log on to
a domain from, that is, to the servers belonging to the
domain, and use network resources. Users can access
the shared resources and use the processing capability
of the servers, thus reducing hardware investment.

resource. (1) Any facility of the computing system or
operating system required by a job or task, and
including main storage, input/output devices, the
processing unit, data sets, and control or processing
programs. (2) In NetView, any hardware or software
that provides function to the network. (3) In SA z/OS,
any z/OS application, z/OS component, job, device, or
target system capable of being monitored or automated
through SA z/OS.

Resource Access Control Facility (RACF). A program
that can provide data security for all your resources.
RACF protects data from accidental or deliberate
unauthorized disclosure, modification, or destruction.

resource group. A physically partitionable portion of a
processor. Also known as a side.

Resource Measurement Facility (RMF). A feature of
z/OS that measures selected areas of system activity
and presents the data collected in the format of printed
reports, System Management Facility (SMF) records, or
display reports.

Resource Object Data Manager (RODM). In NetView
for z/OS, a component that provides an in-memory
cache for maintaining real-time data in an address
space that is accessible by multiple applications. RODM
also allows an application to query an object and
receive a rapid response and act on it.

Glossary 253

resource token. A unique internal identifier of an
ESCON resource or resource number of the object in
the IODF.

restart automation. Automation provided by SA z/OS
that monitors subsystems to ensure that they are
running. If a subsystem fails, SA z/OS attempts to
restart it according to the policy in the automation
configuration file.

Restructured Extended Executor (REXX). A
general-purpose, high-level, programming language,
particularly suitable for EXEC procedures or programs
for personal computing, used to write command lists.

return code. A code returned from a program used to
influence the issuing of subsequent instructions.

REXX. See Restructured Extended Executor.

REXX procedure. A command list written with the
Restructured Extended Executor (REXX), which is an
interpretive language.

RMF. See Resource Measurement Facility.

RODM. See Resource Object Data Manager.

S
SAF. See Security Authorization Facility.

SA IOM. See System Automation for Integrated
Operations Management.

SA z/OS. See System Automation for z/OS.

SA z/OS customization dialogs. An ISPF application
through which the SA z/OS policy administrator
defines policy for individual z/OS systems and builds
automation control data and RODM load function files.

SA z/OS customization focal point system. See focal
point system.

SA z/OS data model. The set of objects, classes and
entity relationships necessary to support the function of
SA z/OS and the NetView automation platform.

SA z/OS enterprise. The group of systems and
resources defined in the customization dialogs under
one enterprise name. An SA z/OS enterprise consists
of connected z/OS systems running SA z/OS.

SA z/OS focal point system. See focal point system.

SA z/OS policy. The description of the systems and
resources that make up an SA z/OS enterprise,
together with their monitoring and automation
definitions.

SA z/OS policy administrator. The member of the
operations staff who is responsible for defining
SA z/OS policy.

SA z/OS satellite. If you are running two NetViews
on an z/OS system to split the automation and
networking functions of NetView, it is common to route
alerts to the Networking NetView. For SA z/OS to
process alerts properly on the Networking NetView,
you must install a subset of SA z/OS code, called an
SA z/OS satellite on the Networking NetView.

SA z/OS SDF focal point system. See focal point
system.

SCA. In SA z/OS, system console A, the active
system console for a target hardware. Contrast with
SCB.

SCB. In SA z/OS, system console B, the backup
system console for a target hardware. Contrast with
SCA.

screen. Deprecated term for panel.

screen handler. In SA z/OS, software that interprets
all data to and from a full-screen image of a target
system. The interpretation depends on the format of the
data on the full-screen image. Every processor and
operating system has its own format for the full-screen
image. A screen handler controls one PS/2 connection
to a target system.

SDF. See status display facility.

SDLC. See synchronous data link control.

SDSF. See System Display and Search Facility.

secondary system. A system is a secondary system for
an application if it is defined to automation on that
system, but the application is not normally meant to be
running there. Secondary systems are systems to which
an application can be moved in the event that one or
more of its primary systems are unavailable. SA z/OS
does not start the application on its secondary systems.

Security Authorization Facility (SAF). An MVS
interface with which programs can communicate with
an external security manager, such as RACF.

server. A server is a workstation that shares resources,
which include directories, printers, serial devices, and
computing powers.

service language command (SLC). The line-oriented
command language of processor controllers or service
processors.

service period. Service periods allow the users to
schedule the availability of applications. A service
period is a set of time intervals (service windows),
during which an application should be active.

254 System Automation for z/OS: Customizing and Programming

service processor (SVP). The name given to a
processor controller on smaller System/370 processors.

service threshold. An SA z/OS policy setting that
determines when to notify the operator of deteriorating
service for a resource. See also alert threshold and
warning threshold.

session. In SNA, a logical connection between two
network addressable units (NAUs) that can be
activated, tailored to provide various protocols, and
deactivated, as requested. Each session is uniquely
identified in a transmission header by a pair of
network addresses identifying the origin and
destination NAUs of any transmissions exchanged
during the session.

session monitor. The component of the NetView
program that collects and correlates session-related data
and provides online access to this information. The
successor to NLDM.

shutdown automation. SA z/OS-provided automation
that manages the shutdown process for subsystems by
issuing shutdown commands and responding to
prompts for additional information.

side. A part of a partitionable CPC that can run as a
physical partition and is typically referred to as the
A-side or the B-side.

Simple Network Management Protocol (SNMP). A
set of protocols for monitoring systems and devices in
complex networks. Information about managed devices
is defined and stored in a Management Information
Base (MIB).

single image. A processor system capable of being
physically partitioned that has not been physically
partitioned. Single-image systems can be target
hardware processors.

single-MVS environment. An environment that
supports one MVS image. See also MVS image.

single-image (SI) mode. A mode of operation for a
multiprocessor (MP) system that allows it to function as
one CPC. By definition, a uniprocessor (UP) operates in
single-image mode. Contrast with physically
partitioned (PP) configuration.

SLC. See service language command.

SMP/E. See System Modification Program/Extended.

SNA. See Systems Network Architecture.

SNA network. In SNA, the part of a user-application
network that conforms to the formats and protocols of
systems network architecture. It enables reliable
transfer of data among end users and provides
protocols for controlling the resources of various
network configurations. The SNA network consists of

network addressable units (NAUs), boundary function
components, and the path control network.

SNMP. See Simple Network Management Protocol.

solicited message. An SA z/OS message that directly
responds to a command. Contrast with unsolicited
message.

SSCP. See system services control point.

SSI. See subsystem interface.

start automation. SA z/OS-provided automation that
manages and completes the startup process for
subsystems. During this process, SA z/OS replies to
prompts for additional information, ensures that the
startup process completes within specified time limits,
notifies the operator of problems, if necessary, and
brings subsystems to an UP (or ready) state.

startup. The point in time that a subsystem or
application is started.

status. The measure of the condition or availability of
the resource.

status display facility (SDF). The system operations
part of SA z/OS that displays status of resources such
as applications, gateways, and write-to-operator
messages (WTORs) on dynamic color-coded panels.
SDF shows spool usage problems and resource data
from multiple systems.

status focal-point system. See focal point system.

steady state automation. The routine monitoring, both
for presence and performance, of subsystems,
applications, volumes and systems. Steady state
automation may respond to messages, performance
exceptions and discrepancies between its model of the
system and reality.

structure. A construct used by z/OS to map and
manage storage on a coupling facility.

subgroup. A named set of systems. A subgroup is part
of an SA z/OS enterprise definition and is used for
monitoring purposes.

SubGroup entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a subgroup.

subplex. Situations where the physical sysplex has
been divided into subentities, for example, a test
sysplex and a production sysplex. This may be done to
isolate the test environment from the production
environment.

subsystem. (1) A secondary or subordinate system,
usually capable of operating independent of, or

Glossary 255

asynchronously with, a controlling system. (2) In
SA z/OS, an z/OS application or subsystem defined to
SA z/OS.

subsystem interface (SSI). The z/OS interface over
which all messages sent to the z/OS console are
broadcast.

support element. A hardware unit that provides
communications, monitoring, and diagnostic functions
to a central processor complex (CPC).

support processor. Another name given to a processor
controller on smaller System/370 processors. See
service processor.

SVP. See service processor.

switch identifier. The switch device number
(swchdevn), the logical switch number (LSN) and the
switch name

switches. ESCON directors are electronic units with
ports that dynamically switch to route data to I/O
devices. The switches are controlled by I/O operations
commands that you enter on a workstation.

symbolic destination name (SDN). Used locally at the
workstation to relate to the VTAM application name.

synchronous data link control (SDLC). A discipline
for managing synchronous, code-transparent,
serial-by-bit information transfer over a link connection.
Transmission exchanges may be duplex or half-duplex
over switched or nonswitched links. The configuration
of the link connection may be point-to-point,
multipoint, or loop. SDLC conforms to subsets of the
Advanced Data Communication Control Procedures
(ADCCP) of the American National Standards Institute
and High-Level Data Link Control (HDLC) of the
International Standards Organization.

SYSINFO Report. An RMF report that presents an
overview of the system, its workload, and the total
number of jobs using resources or delayed for
resources.

SysOps. See system operations.

sysplex. A set of z/OS systems communicating and
cooperating with each other through certain
multisystem hardware components (coupling devices
and timers) and software services (couple data sets).

In a sysplex, z/OS provides the coupling services that
handle the messages, data, and status for the parts of a
multisystem application that has its workload spread
across two or more of the connected processors, sysplex
timers, coupling facilities, and couple data sets (which
contains policy and states for automation).

A Parallel Sysplex is a sysplex that includes a coupling
facility.

sysplex application group. A sysplex application
group is a grouping of applications that can run on any
system in a sysplex.

sysplex couple data set. A couple data set that
contains sysplex-wide data about systems, groups, and
members that use XCF services. All z/OS systems in a
sysplex must have connectivity to the sysplex couple
data set. See also couple data set.

Sysplex Timer®. An IBM unit that synchronizes the
time-of-day (TOD) clocks in multiple processors or
processor sides. External Time Reference (ETR) is the
z/OS generic name for the IBM Sysplex Timer (9037).

system. In SA z/OS, system means a focal point
system (z/OS) or a target system (MVS, VM, VSE,
LINUX, or CF).

System Automation for Integrated Operations
Management. (1) An outboard automation solution for
secure remote access to mainframe/distributed systems.
Tivoli System Automation for Integrated Operations
Management, previously Tivoli AF/REMOTE, allows
users to manage mainframe and distributed systems
from any location. (2) The full name for SA IOM.

System Automation for OS/390. The full name for
SA OS/390, the predecessor to System Automation for
z/OS.

System Automation for z/OS. The full name for
SA z/OS.

system console. (1) A console, usually having a
keyboard and a display screen, that is used by an
operator to control and communicate with a system. (2)
A logical device used for the operation and control of
hardware functions (for example, IPL, alter/display,
and reconfiguration). The system console can be
assigned to any of the physical displays attached to a
processor controller or support processor. (3) In
SA z/OS, the hardware system console for processor
controllers or service processors of processors
connected using SA z/OS. In the SA z/OS operator
commands and configuration dialogs, SC is used to
designate the system console for a target hardware
processor.

System Display and Search Facility (SDSF). An IBM
licensed program that provides information about jobs,
queues, and printers running under JES2 on a series of
panels. Under SA z/OS you can select SDSF from a
pull-down menu to see the resources’ status, view the
z/OS system log, see WTOR messages, and see active
jobs on the system.

System entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a system.

256 System Automation for z/OS: Customizing and Programming

System Modification Program/Extended (SMP/E). An
IBM licensed program that facilitates the process of
installing and servicing an z/OS system.

system operations. The part of SA z/OS that
monitors and controls system operations applications
and subsystems such as NetView, SDSF, JES, RMF, TSO,
RODM, ACF/VTAM, CICS, IMS, and OPC. Also known
as SysOps.

system services control point (SSCP). In SNA, the
focal point within an SNA network for managing the
configuration, coordinating network operator and
problem determination requests, and providing
directory support and other session services for end
users of the network. Multiple SSCPs, cooperating as
peers, can divide the network into domains of control,
with each SSCP having a hierarchical control
relationship to the physical units and logical units
within its domain.

System/390 microprocessor cluster. A configuration
that consists of central processor complexes (CPCs) and
may have one or more integrated coupling facilities.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

T
TAF. See terminal access facility.

target. A processor or system monitored and
controlled by a focal-point system.

target control task. In SA z/OS, target control tasks
process commands and send data to target systems and
workstations through communications tasks. A target
control task (a NetView autotask) is assigned to a target
system when the target system is initialized.

target hardware. In SA z/OS, the physical hardware
on which a target system runs. It can be a single-image
or physically partitioned processor. Contrast with target
system.

target system. (1) In a distributed system
environment, a system that is monitored and controlled
by the focal-point system. Multiple target systems can
be controlled by a single focal-point system. (2) In
SA z/OS, a computer system attached to the
focal-point system for monitoring and control. The
definition of a target system includes how remote
sessions are established, what hardware is used, and
what operating system is used.

task. (1) A basic unit of work to be accomplished by a
computer. (2) In the NetView environment, an operator
station task (logged-on operator), automation operator

(autotask), application task, or user task. A NetView
task performs work in the NetView environment. All
SA z/OS tasks are NetView tasks. See also message
monitor task, and target control task.

telecommunication line. Any physical medium, such
as a wire or microwave beam, that is used to transmit
data.

terminal access facility (TAF). (1) A NetView function
that allows you to log onto multiple applications either
on your system or other systems. You can define TAF
sessions in the SA z/OS customization panels so you
don't have to set them up each time you want to use
them. (2) In NetView, a facility that allows a network
operator to control a number of subsystems. In a
full-screen or operator control session, operators can
control any combination of subsystems simultaneously.

terminal emulation. The capability of a
microcomputer or personal computer to operate as if it
were a particular type of terminal linked to a
processing unit to access data.

threshold. A value that determines the point at which
SA z/OS automation performs a predefined action. See
alert threshold, warning threshold, and error threshold.

time of day (TOD). Typically refers to the time-of-day
clock.

Time Sharing Option (TSO). An optional
configuration of the operating system that provides
conversational time sharing from remote stations. It is
an interactive service on z/OS, MVS/ESA, and
MVS/XA.

Time-Sharing Option/Extended (TSO/E). An option
of z/OS that provides conversational timesharing from
remote terminals. TSO/E allows a wide variety of users
to perform many different kinds of tasks. It can handle
short-running applications that use fewer sources as
well as long-running applications that require large
amounts of resources.

timers. A NetView command that issues a command
or command processor (list of commands) at a specified
time or time interval.

Tivoli Workload Scheduler (TWS). A family of IBM
licensed products that plan, execute and track jobs on
several platforms and environments. The successor to
OPC/A.

TOD. Time of day.

token ring. A network with a ring topology that
passes tokens from one attaching device to another; for
example, the IBM Token-Ring Network product.

TP. See transaction program.

Glossary 257

transaction program. In the VTAM program, a
program that performs services related to the
processing of a transaction. One or more transaction
programs may operate within a VTAM application
program that is using the VTAM application program
interface (API). In that situation, the transaction
program would request services from the applications
program using protocols defined by that application
program. The application program, in turn, could
request services from the VTAM program by issuing
the APPCCMD macro instruction.

transitional automation. The actions involved in
starting and stopping subsystems and applications that
have been defined to SA z/OS. This can include
issuing commands and responding to messages.

translating host. Role played by a host that turns a
resource number into a token during a unification
process.

trigger. Triggers, in combination with events and
service periods, are used to control the starting and
stopping of applications in a single system or a parallel
sysplex.

TSO. See Time Sharing Option.

TSO console. From this 3270-type console you are
logged onto TSO or ISPF to use the runtime panels for
I/O operations and SA z/OS customization panels.

TSO/E. See Time-Sharing Option/Extended.

TWS. See Tivoli Workload Scheduler.

U
UCB. See unit control block.

unit control block (UCB). A control block in common
storage that describes the characteristics of a particular
I/O device on the operating system and that is used for
allocating devices and controlling I/O operations.

unsolicited message. An SA z/OS message that is not
a direct response to a command. Contrast with solicited
message.

user task. An application of the NetView program
defined in a NetView TASK definition statement.

Using. An RMF Monitor III definition. Jobs getting
service from hardware resources (processors or devices)
are using these resources. The use of a resource by an
address space can vary from 0% to 100% where 0%
indicates no use during a Range period, and 100%
indicates that the address space was found using the
resource in every sample during that period. See also
Volume Workflow and Address Space Workflow.

V
view. In the NetView Graphic Monitor Facility, a
graphical picture of a network or part of a network. A
view consists of nodes connected by links and may also
include text and background lines. A view can be
displayed, edited, and monitored for status information
about network resources.

Virtual Storage Extended (VSE). A system that
consists of a basic operating system (VSE/Advanced
Functions), and any IBM supplied and user-written
programs required to meet the data processing needs of
a user. VSE and the hardware that it controls form a
complete computing system. Its current version is
called VSE/ESA.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability. Its full name is Advanced
Communications Function for the Virtual
Telecommunications Access Method. Synonymous with
ACF/VTAM.

VM Second Level Systems Support. With this
function, Processor Operations is able to control VM
second level systems (VM guest systems) in the same
way that it controls systems running on real hardware.

VM/ESA®. Virtual Machine/Enterprise Systems
Architecture. Its current version is called z/VM.

volume. A direct access storage device (DASD)
volume or a tape volume that serves a system in an
SA z/OS enterprise.

volume entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a volume.

volume group. A named set of volumes. A volume
group is part of a system definition and is used for
monitoring purposes.

volume group entry. An construct, created with the
customization dialogs, used to represent and contain
policy for a volume group.

Volume Workflow. The SA z/OS Volume Workflow
variable is derived from the RMF Resource Workflow
definition, and is used to measure the performance of
volumes. SA z/OS calculates Volume Workflow using:

accumulated
Using

Volume = ------------------------- * 100
Workflow % accumulated + accumulated

Using Delay

258 System Automation for z/OS: Customizing and Programming

The definition of Using is the percentage of time when
a job has had a request accepted by a channel for the
volume, but the request is not yet complete.

The definition of Delay is the delay that waiting jobs
experience because of contention for the volume.

See also Address Space Workflow.

VSE. See Virtual Storage Extended.

VTAM. See Virtual Telecommunications Access
Method.

W
warning threshold. An application or volume service
value that determines the level at which SA z/OS
changes the associated icon in the graphical interface to
the warning color. See alert threshold.

workflow. See Address Space Workflow and Volume
Workflow.

workstation. In SA z/OS workstation means the
graphic workstation that an operator uses for day-to-day
operations.

write-to-operator (WTO). A request to send a message
to an operator at the z/OS operator console. This
request is made by an application and is handled by
the WTO processor, which is part of the z/OS
supervisor program.

write-to-operator-with-reply (WTOR). A request to
send a message to an operator at the z/OS operator
console that requires a response from the operator. This
request is made by an application and is handled by
the WTO processor, which is part of the z/OS
supervisor program.

WTO. See write-to-operator.

WTOR. See write-to-operator-with-reply.

WWV. The US National Institute of Standards and
Technology (NIST) radio station that provides standard
time information. A second station, known as WWVB,
provides standard time information at a different
frequency.

X
XCF. See cross-system coupling facility.

XCF couple data set. The name for the sysplex couple
data set prior to MVS/ESA System Product Version 5
Release 1. See also sysplex couple data set.

XCF group. A set of related members that a
multisystem application defines to XCF. A member is a
specific function, or instance, of the application. A

member resides on one system and can communicate
with other members of the same group across the
sysplex.

XRF. See extended recovery facility.

Z
z/OS. An IBM mainframe operating system that uses
64-bit real storage. See also Base Control Program.

z/OS component. A part of z/OS that performs a
specific z/OS function. In SA z/OS, component refers
to entities that are managed by SA z/OS automation.

z/OS subsystem. Software products that augment the
z/OS operating system. JES and TSO/E are examples
of z/OS subsystems. SA z/OS includes automation for
some z/OS subsystems.

z/OS system. A z/OS image together with its
associated hardware, which collectively are often
referred to simply as a system, or z/OS system.

Numerics
390-CMOS. Processor family group designator used in
the SA z/OS processor operations documentation and
in the online help to identify any of the following
S/390 CMOS processor machine types: 9672, 9674, 2003,
3000, or 7060. SA z/OS processor operations uses the
OCF facility of these processors to perform operations
management functions. See OCF-based processor.

Glossary 259

260 System Automation for z/OS: Customizing and Programming

Index

Special characters
"hung" command recovery 111

A
accessibility xi
active connector 110
active health monitoring 43
adding

application to automation 1
processor operations message to

automation 83
additional automation operator IDs 125
additional SA z/OS automation

procedures, programming 7
advanced automation options

exits 143
external global variables 197, 198

alerts
communication flow 65
enabling 66
enabling at alert ID level 68
enabling at system level 67
enabling globally 67
enabling with Inform List 67
enabling with INGCNTL 67, 68
notification 65
overview 65

alternate CDS 107
turning into primary CDS 108

alternate CDS recovery
customizing 108

alternate couple data set
specifying 118

AMRF buffer shortage processing 163
AOCMSG call 15
AOCMSG generic routine 10
AOCQRY common routine

automation availability 9
message automation 21

AOCTRACE
use in testing 18
use in traces 19

AOCUPDT command
and AOFEXSTA exit 145

AOCUPDT common routine
to update status information 10

AOF_AAO_MSG_EHKVAR 198
AOF_AAO_MVSTAPEMON 199
AOF_AAO_OMVS_SHUTDOWN 199
AOF_AAO_RETENTIONPERIOD 199
AOF_AAO_SDFROOT_LIST 199
AOF_AAO_SHUTDOWN_STOPAPPL 199
AOF_AAO_SHUTSYS_OLD 199
AOF_AAO_TRANRERUN 199
AOF_AAO_TWS_CMD_OUTPUT_NETLOG 199
AOF_AAO_TWS_ERRMSG 199
AOF_AAO_TWS_MAX_WAIT_TIME 199
AOF_AAO_TWS_RESYSPLEX 199
AOF_ASSIGN_JOBNAME 200

AOF_E2E_EAS_PPI 200
AOF_E2E_EVT_RETRY 200
AOF_E2E_EXREQ_NETLOG 200
AOF_E2E_TKOVR_TIMEOUT 200
AOF_EMCS_AUTOTASK_

ASSIGNMENT 200
AOF_EMCS_CN_ASSIGNMENT 200
AOF_INIT_MCSFLAG 202
AOF_INIT_ROUTCDE 202
AOF_INIT_SYSCONID 202
AOF_PRODLVL 197
AOF.0DEBUG 197
AOF.0TRACE 197
AOFACFINIT 200
AOFAOCCLONE 197
AOFARMQUERYRETRYS 201
AOFARMQUERYWAIT 201
AOFBFP 197
AOFCFP 197
AOFCNMASK 201
AOFCOMPL 197
AOFCONFIRM global variable 158
AOFDEBUG 197
AOFDEBUG global variable 19
AOFDEFAULT_TARGET 201
AOFDOM 227, 228
AOFEXC00 exit 154
AOFEXC01 exit 154
AOFEXC02 exit 155
AOFEXC03 exit 155
AOFEXC04 exit 155
AOFEXC05 exit 155
AOFEXC06 exit 155
AOFEXC07 exit 155
AOFEXC08 exit 156
AOFEXC09 exit 156
AOFEXC11 exit 156
AOFEXC12 exit 156
AOFEXC13 exit 156
AOFEXC14 exit 156
AOFEXC15 exit 157
AOFEXC16 exit 157
AOFEXC17 exit 157
AOFEXC18 exit 157
AOFEXC19 exit 157
AOFEXC20 exit 158
AOFEXC21 exit 158
AOFEXC22 exit 158
AOFEXC23 exit 158
AOFEXDEF exit 143
AOFEXI01 exit 143
AOFEXI02 exit 143
AOFEXI03 exit 143
AOFEXI04 exit 143
AOFEXI05 exit 143
AOFEXI06 exit 144
AOFEXINT exit 144, 161, 203
AOFEXPLAIN_USER 202
AOFEXSTA exit 145
AOFEXX02 exit 146
AOFEXX03 exit 146

AOFEXX04 exit 147
AOFEXX15 exit 147
AOFINITIALSTARTTYP 197
AOFINITREPLY 202
AOFJESPREFX 198
AOFLOCALHOLD 202
AOFMATLISTING 202
AOFMSGST 32
AOFMSGSY 227
AOFOPCCMDMSG 202
AOFPAUSE 203
AOFRESTARTALWAYS 203
AOFRJ3MN monitoring routine 60
AOFRJ3RC monitoring routine 62
AOFRMTCMDWAIT 203
AOFRPCWAIT 203
AOFRSA01 automation routine 165
AOFRSA02 automation routine 166
AOFRSA03 automation routine 168
AOFRSA08 automation routine 170
AOFRSA0C automation routine 172
AOFRSA0E automation routine 175
AOFRSA0G automation routine 176
AOFRSD01 automation routine 192
AOFRSD07 automation routine 177
AOFRSD09 automation routine 178
AOFRSD0F automation routine 180
AOFRSD0G automation routine 182
AOFRSD0H automation routine 183
AOFSENDALERT 203
AOFSERXINT 203
AOFSETSTATEOVERRIDE 205
AOFSETSTATESCOPE 205
AOFSETSTATESTART 205
AOFSHUTDELAY 203
AOFSMARTMAT 204
AOFSPOOLFULLCMD 204
AOFSPOOLSHORTCMD 204
AOFSTATUSCMDSEL 205
AOFSUBSYS 198
AOFSYS 227, 228
AOFSYSNAME 198
AOFSYSTEM 198
AOFUPDAM 205
AOFUPDRODM 205
AOFUSSWAIT 205
application

adding to automation 1
health status 39

application monitor status 39
application monitoring 39
application type IMAGE, defining 121
application, VTAM, defining to

SA z/OS 133
applications, z/OS UNIX 95
ARM

See Automatic Restart Manager
ASCB chaining

and global variables 200
ASFUSER command 21

© Copyright IBM Corp. 1996, 2011 261

assist mode
for testing automation procedures 19
overview 18

assumptions, health monitoring with
OMEGAMON 48

asynchronous hardware commands,
using pipes and ISQCCMD for 89

AT actions, defining for message
automation 24

AT build
concept for message automation 30
message automation 30

AT entries
preventing the building of 25

AT load, message automation 30
AT/MRT scope, defining for message

automation 29
automated resources, z/OS UNIX

Automation 99
Automatic Restart Manager 225

defining element name 225
MOVE group for 226

automating
auxiliary storage shortage

recovery 124
enqueues, long running 123
IXC102A message 113
IXC402D message 113
Linux console messages 82
Linux console messages, case

sensitive 82
Linux console messages, restrictions

and limitations 83
Linux console messages, security

considerations 83
long running enqueues 123
message IXC102A 122
message IXC402D 122
USS resources 95

automating processor operations
controlled resources 79

automation
adding an application to 1
advanced functions 198
extending 7
messages 23
sysplex, enabling 107

automation control file
defining SDF 224
reload action exit 159
reload permission exit 158

automation flag exits
sample 150

automation networks 127
automation operator IDs

additional 125
automation procedures

calling 7
creating 7
debugging 18
description 7
developing messages 15
example 16
external code 11
global variable names 22
initializing 9
installing 18

automation procedures (continued)
making generic 14
programming recommendations 21
REXX coding example 20
structure of 8
testing 18
use of commands in 7
use of routines in 7
using AOCTRACE 19
writing your own 7

automation processing
performing 10

automation routine
AMRF buffer shortage

processing 163
AOFRSA01 165
AOFRSA02 166
AOFRSA03 168
AOFRSA08 170
AOFRSA0C 172
AOFRSA0E 175
AOFRSA0G 176
AOFRSD07 177
AOFRSD09 178
AOFRSD0F 180
AOFRSD0G 182
AOFRSD0H 183
deletion of processed WTO(R)s from

SDF 163
drain processing prior to JES2

shutdown 164
EVEERTRN 185
EVIECT0X 186
EVIEET00 186
EVIEI006 187
EVISTRCT 187
EVISTRMN 188
EVJEAC04 188
EVJEOBSV 188
EVJRAC05 189
EVJRSACT 189
EVJRSJOB 190
HASP099 190
IMS transaction recovery 164
INGRCJSP 192
INGRMJSP 191
INGRTAPE 194
INGRX740 194
introduction 161
LOGREC data set processing 162
processing 162
SMF data set processing 162
SVC dump processing 163
TWS Automation operation 164

automation setup, definitions for 96
automation status file

coding your own information 21
using commands 11

automation table
See NetView automation table

auxiliary storage shortage recovery 114
automating 124
customizing 114
defining local page data set 124
defining the handling of jobs 125

availability, reporting 71
INGPUSMF utility 74

availability, reporting (continued)
INGPUSMF utility JCL 74
INGPUSMF utility JCL, user

options 75
INGPUSMF utility outrput 74
INGPUSMF utility return codes 75
overview 71
resource lifecycle 71
SMF record layout 72
writing to DB2 76

B
BASEOPER 203
building

new automation definitions 87

C
calling

automation procedures 7
captured messages

defining for message automation 25
cascades 230
case sensitive, Linux console

messages 82
CDEMATCH common routine 21
CDS

See couple data set
CF

See coupling facility
CFRM couple data set 109, 118
CFRM policy 109
CHKTHRES common routine 10
CICS health monitoring 55, 58
CICS link monitoring 58
CICS monitoring

component overview 58
defining monitor resources 59
VOST management 58

CICSPlex monitoring 58
clone ID

Automatic Restart Manager 225
clone ID, Automatic Restart

Manager 205
CMD actions, defining for message

automation 24
CNMCMDU member 18
coding information in automation status

file 21
command flooding recovery 112
command, SDFCONF 221
commands

processor operations 14
use in automation procedures 7

commands, defining for long running
enqueues 124

commands, monitor resources 41
common automation items, defining 125
common global variables 11, 197
common routines 7
communication flow

alerts 65
connecting

system to processor 117

262 System Automation for z/OS: Customizing and Programming

connector
active 110
failed persistent 110

continuous availability, couple data set
enabling 118
ensuring 108

couple data set 107
alternate CDS 107
alternate CDS, recovery of 108
alternate, specifying 118
CFRM 118
enabling continuous availability

of 118
ensuring continuous availability

of 108
managing 107
policy 107
primary CDS 107
SYSPLEX 118

coupling facility 109
coupling facility, managing 109
creating automation procedures 7
customization dialog exits 150

invocation 154
customization of z/OS UNIX

resources 96
customize automation

for processor operations 11
for system operations 10

customizing
alternate CDS recovery 108
auxiliary storage shortage 114
hung command recovery 113
IXC102A message automation 114
IXC402D message automation 114
LINUX target systems 91
MVS target systems 92
proxy resource automation 80
SDF 209
system logger recovery 109
system to use Parallel Sysplex

enhancements 125
target systems 91
VM target systems 92
VSE target systems 93
WTO(R) buffer shortage recovery 111

D
DB2, writing SMF report to 76
debugging

automation procedures 18
NetView facilities 20
z/OS UNIX Automation 106

defining
actions for message automation 23
application type IMAGE 121
AT actions for message

automation 24
AT entry placement 24
AT/MRT scope for message

automation 29
captured messages for message

automation 25
CMD actions for message

automation 24

defining (continued)
commands for long running

enqueues 124
common automation items 125
conditions for AT entries 24
gateway sessions 129
handling of jobs for auxiliary storage

shortage recovery 125
IEADMCxx symbols for long running

enqueues 124
IMAGE application type 121
local page data set for auxiliary

storage shortage recovery 124
logical partitions 117
logical sysplex 118
message revision table entries 28
outbound gateway autotask 129
override for message automation 26
physical sysplex 118
processor 117, 121
REPLY actions for message

automation 24
resources for long running

enqueues 124
SDF focal point system 128
SDF in automation control file 224
snapshot intervals for long running

enqueues 124
started task job name 125
status messages for message

automation 24
SYSPLEX policy item 118
system 117
TAF fullscreen sessions 130
temporary data set HLQ 125
VTAM application to SA z/OS 133

definitions for automation setup 96
definitions for z/OS UNIX resources 97
deletion of processed WTO(R)s from

SDF 163
developing messages for automation

procedures 15
directory extent 109
disability xi
DISPEVT_WAIT 206
DISPEVTS_WAIT 206
DISPTRG_WAIT 206
drain processing prior to JES2

shutdown 164
DSICMD member 18
DSIPARM data set 18

E
element name, Automatic Restart

Manager
defining 225

element names
in Automatic Restart Manager 225

element names in Automatic Restart
Manager 205

enabling
alerting 66
alerting with INGCNTL 68
alerting, with Inform List 67
alerting, with INGCNTL 67

enabling (continued)
continuous availability of Couple Data

Sets 118
sysplex automation 107
system removal 121
WTOR(R) buffer shortage

recovery 119
ENQs

See enqueues
enqueues 111

long running, automating 123
long running, customizing recovery

of 113
long running, handling 111

environmental setup exits 144
error codes 11
EVEERTRN automation routine 185
events, resource lifecycle 71
EVIECT0X automation routine 186
EVIEET00 automation routine 186
EVIEI006 automation routine 187
EVISTRCT automation routine 187
EVISTRMN automation routine 188
EVJEAC04 automation routine 188
EVJEOBSV automation routine 188
EVJRAC05 automation routine 189
EVJRSACT automation routine 189
EVJRSJOB automation routine 190
example automation procedure 16
examples of INGUSS command 101
exits 159

AOFEXC00 154
AOFEXC01 154
AOFEXC02 155
AOFEXC03 155
AOFEXC04 155
AOFEXC05 155
AOFEXC06 155
AOFEXC07 155
AOFEXC08 156
AOFEXC09 156
AOFEXC11 156
AOFEXC12 156
AOFEXC13 156
AOFEXC14 156
AOFEXC15 157
AOFEXC16 157
AOFEXC17 157
AOFEXC18 157
AOFEXC19 157
AOFEXC20 158
AOFEXC21 158
AOFEXC22 158
AOFEXC23 158
AOFEXDEF 143
AOFEXI01 143
AOFEXI02 143
AOFEXI03 143
AOFEXI04 143
AOFEXI05 143
AOFEXI06 144
AOFEXINT 144, 161
AOFEXSTA 145
AOFEXX02 146
AOFEXX03 146
AOFEXX04 147
AOFEXX15 147

Index 263

exits (continued)
BUILD processing 150
CONVERT processing 153
COPY processing 152
customization dialog exits 150
DELETE processing 152
environmental setup exits 144
flag exits 147
IMPORT functions 153
INGEAXIT 147
INGEX01 150
INGEX02 150
INGEX03 152
INGEX04 152
INGEX05 152
INGEX06 152
INGEX07 153
INGEX08 153
INGEX09 153
INGEX12 153
INGEX14 153
INGEX16 153
INGEX17 153
INGEX18 153
pseudo-exits 158
RENAME functions 153
sample automation flag exits 150
static exits 145
status change commands 146
subsystem up at initialization

commands 159
testing 159

EXPLAIN 202
extended status command support

introduced 27
policy definitions 27

extending automation 7
external code, automation procedures 11
external common global variables 197
EXTSTART status 205, 225

F
failed persistent connector 110
failed system, isolation of 113
file manager commands 11
file monitoring, z/OS UNIX

Automation 100
flag exits 147
focal point system definition 128

G
gateway

inbound 129
outbound 129

gateway sessions
defining 129

GDPS environment, shutting down z/OS
systems in 135

generic
automation 33, 198

generic automation procedures 14
generic routines 7
global variable names, for automation

procedures 22

guest machines, processor operations
support 90

guest target systems
LINUX 90
LINUX, user logon 91
MVS 90, 91
MVS, NIP console 90
MVS, NIP messages 90, 91
MVS, problem determination

mode 91
ProcOps Service Machine 90
VSE 91

H
hardware commands

asynchronous, using pipes and
ISQCCMD for 89

synchronous, using pipes and
ISQCCMD for 88

HASP099 automation routine 190
health monitoring

active 43
event-based 44
overview 40
passive 44

health monitoring, OMEGAMON
exceptions

introduction 53
health monitoring, OMEGAMON XE

situations
introduction 55

health status return codes 43
health-based automation using

OMEGAMON
programming techniques 46
recommendations 55
recovery techniques 42

how to automate USS resources 95
hung command recovery,

customizing 113

I
IDENT 21
IEADMCxx symbols, defining

for long running enqueues 124
IMAGE application type, defining 121
IMS automation, monitoring 63
IMS transaction recovery 164
inbound gateway 129
INCLUDE statement 223
INGAUTO_INTERVAL 206
INGCF command 110
INGDLG 154
INGEAXIT exit 147
INGEI004 member 90
INGEVENT_WAIT 206
INGEX01 150
INGEX02 150
INGEX03 152
INGEX04 152
INGEX05 152
INGEX06 152
INGEX07 153
INGEX08 153

INGEXEC_RESP 206
INGEXEC_SELECT 206
INGEXEC_WAIT 206
INGGROUP_WAIT 206
INGHIST_MAX 206
INGHIST_WIMAX 206
INGIMS_CMDWAIT 206
INGIMS_CORRWAIT 205
INGIMS_REQ 206
INGINFO_WAIT 206
INGLIST_WAIT 206
INGMON_WAIT 206
INGMON, programming techniques 46
INGMOVE_WAIT 206
INGMSG00 32
INGMSG01 32
INGMTRAP monitor command 52
INGOMX API 49
INGOPC_MULTIPLIER 205
INGPUSMF utility

introduced 74
JCL 74
JCL, user options 75
output 74
return codes 75

INGRCJSP automation routine 192
INGRELS_SHOW 206
INGRELS_WAIT 206
INGREQ_EXPIRE 206
INGREQ_INTERRUPT 206
INGREQ_ORIGINATOR 205
INGREQ_OVERRIDE 207
INGREQ_PRECHECK 207
INGREQ_PRI 207
INGREQ_PRI.E2EMGR 207
INGREQ_REMOVE 207
INGREQ_REMOVE.START 207
INGREQ_REMOVE.STOP 207
INGREQ_RESTART 207
INGREQ_SCOPE 207
INGREQ_SOURCE 207
INGREQ_TIMEOUT 207
INGREQ_TYPE 207
INGREQ_VERIFY 207
INGREQ_WAIT 207
INGRMJSP automation routine 191
INGRPT_WAIT 207
INGRTAPE automation routine 194
INGRX740 automation routine 194
INGSCHED_WAIT 207
INGSET_VERIFY 207
INGSET_WAIT 207
INGSTX_WAIT 207
INGTRIG_WAIT 207
INGUSS command 100

examples 101
INGVOTE_EXCLUDE 208
INGVOTE_SOURCE 208
INGVOTE_STATUS 208
INGVOTE_VERIFY 208
initialization processing,

AOFSERXINT 203
initializing automation procedures 9
installing

automation procedures 18
integration of z/OS UNIX System

Services 95

264 System Automation for z/OS: Customizing and Programming

ISQCCMD
using for asynchronous hardware

commands 89
using for synchronous hardware

commands 88
ISQEXEC command 12, 83
ISQOVRD 85
ISQOVRD command 13
ISQXLOC command 13
ISQXMON command 83
ISQXUNL command 13
IXC102A message

automating 122
automation of 113
customizing automation of 114

IXC402D message
automating 122
automation of 113
customizing automation of 114

IXCARM macro invocations 225
IXCMIAPU 225

J
JES2 spool monitoring 63
JES3 monitoring 59
job handling, defining for auxiliary

storage shortage recovery 125
job/ASID definitions, making

for long running enqueues 124

K
keyboard xi

L
layout, SMF record 72
Linux console connection to NetView 82
Linux console messages

automating 82
case sensitive 82
restrictions and limitations 83
security considerations 83

LINUX guest target systems, user
logon 91

LINUX target systems, customizing 91
local page data set, defining

for auxiliary storage shortage
recovery 124

log stream 108
log stream data set 108
logical partition

defining 117
logical sysplex, defining 118
LOGR couple data set 108, 109
LOGREC data set processing 162
long running enqueues

automating 123
defining commands 124
defining IEADMCxx symbols 124
defining resources 124
defining snapshot intervals 124
handling 111
making job/ASID definitions 124

LookAt message retrieval tool xviii

M
making generic automation

procedures 14
making job/ASID definitions

for long running enqueues 124
managing

couple data set 107
coupling facilities 109
system logger 108

master automation tables 32
multiple 32

member, INGEI004 90
message

forwarding 83
forwarding path, defining 127
ISQ900I 83
ISQ901I 83
IXC102A, automation of 113
IXC402D, automation of 113
testing 84, 86

message automation 23
AT build 30
AT load 30
AT/MRT build concept 30
defining actions 23
defining AT actions 24
defining AT/MRT scope 29
defining captured messages 25
defining CMD actions 24
defining conditions for AT entries 24
defining message revision table

entries 28
defining overrides 26
defining REPLY actions 24
defining status messages 24
Linux console messages 82
Linux console messages, case

sensitive 82
Linux console messages, restrictions

and limitations 83
Linux console messages, security

considerations 83
overview 23
preparing for processor operations

resources 82
preventing the building of AT, MRT

and MPF entries 25
specifying entry placement 24
use of symbols 24

message automation for processor
operations resources 79

message presentation 228
message retrieval tool, LookAt xviii
message revision table, defining

entries 28
message testing 86
messages

automation 23
classifications 31
developing for automation

procedures 15
trapping UNIX syslogd 105

minor resources
resource name 149

monitor command, INGMTRAP 52
monitor resources 39

commands 41

monitor resources (continued)
defining for CICS monitoring 59
defining for OMEGAMON XE

situations 55
monitor routine

writing your own 40
monitoring

applications 39
CICS health 58
CICS link 58
CICSPlex 58
health with OMEGAMON 47
health, active 43
health, event-based 44
health, overview 40
health, passive 44
IMS automation 63
JES3 components 59
observed status 39
using OMEGAMON XE situations 55

monitoring routines
AOFRJ3MN 60
AOFRJ3RC 62

monitoring routines for z/OS UNIX
resources 97

MOVE group for Automatic Restart
Manager 226

MOVED status
Automatic Restart Manager 225
automation 225

MPF list 87
MPFLSTSA entries

preventing the building of 25
MRT build

concept for message automation 30
MRT entries

preventing the building of 25
MTR

See monitor resources
MVS Automatic Restart Manager

clone ID 205
element names 205
global variables 205

MVS guest target systems
NIP console 90
NIP messages 90, 91
problem determination mode 91

MVS target systems, customizing 92
MVSESA.RELOAD.ACTION minor

resource 159
MVSESA.RELOAD.CONFIRM flag 158
MVSESA.RELOAD.CONFIRM minor

resource 158

N
NetView

generic automation table entries 33
Linux console connection to 82
testing and debugging facilities 20

NetView automation table
adding processor operations messages

to 83
AOFMSGSY 227
defining conditions for AT entries 24
fragments 227
generic entries 33

Index 265

NetView automation table (continued)
integrating 32
ISQEXEC 12, 83
ISQOVRD 13
ISQXLOC 13
ISQXMON 83
ISQXUNL 13
master automation tables 32
merging entries 87
multiple master automation tables 32
production 86
reloading tables 87
sample entry 84
samples 31
specifying entry placement 24
structure 31
user-written statements 32

networks automation
definition process 127

new automation definitions
building 87

notification
alerts 65

notification forwarding 128
notifications 10

O
observed status

monitoring 39
OMEGAMON

assumptions 48
exception analysis 48
exceptions, health monitoring 53
health monitoring 55
health monitoring with 47
health-based automation,

programming techniques 46
health-based automation,

recommendations 55
health-based automation, recovery

techniques 42
interaction 49
monitoring, overview 48
session management, INGMTRAP 52
session management, INGOMX 49
usage scenario 54

OMEGAMON XE situation monitoring
defining monitor resources 55
overview 55

OMEGAMON XE situations,
monitoring 55

operation, TWS Automation 164
operator cascades 230
outbound gateway 129

autotask, defining 129
override

defining for message automation 26
overview

alerts 65
message automation 23
monitoring with OMEGAMON 48

P
panels

DISPACF 177, 181, 182
INGTHRES 174
JES2 181, 184
LOGREC 167
SMF 169
SYSLOG 171

passive, event-based health
monitoring 44

persistent connection 110
persistent structure 110
physical sysplex, defining 118
pipes

using for asynchronous hardware
commands 89

using for synchronous hardware
commands 88

policy
CFRM 109
couple data set 107

preference list 109
preventing

the building of AT, MRT and MPF
entries 25

primary CDS 107
problem determination mode

MVS guest target systems 91
process monitoring, z/OS UNIX

Automation 99
processing, WTOR 137
processor

defining 117, 121
PROCESSOR INFO policy item

using 117
processor operations

guest machines support 90
processor operations command

messages 85
processor operations commands 14
processor operations controlled resources,

automating 79
processor operations resource 79
processor operations resource message

automation 79
ProcOps Service Machine 90

guest target systems 90
programming

additional SA z/OS automation
procedures 7

recommendations for automation
procedures 21

programming recommendations
automation procedures 21

proxy resource 80
proxy resources

customizing automation for 80
shutdown considerations 81
startup considerations 81

pseudo-exits 158
PSM

See ProcOps Service Machine

R
rebuild 110

system-managed 110
user-managed 110

recommendations
programming, for automation

procedures 21
recovery

"hung" command 111
alternate CDS 108
alternate CDS, customizing 108
auxiliary storage shortage 114
auxiliary storage shortage,

automating 124
command flooding 112
handling long-running enqueues 111
long running enqueues,

customizing 113
system log failure 162
system logger, customizing 109
system logger, directory shortage 109
WTO(R) buffer shortage 111
WTO(R) buffer shortage,

customizing 111
WTOR(R) buffer shortage,

enabling 119
recovery time, reporting 71

INGPUSMF utility 74
INGPUSMF utility JCL 74
INGPUSMF utility JCL, user

options 75
INGPUSMF utility outrput 74
INGPUSMF utility return codes 75
overview 71
resource lifecycle 71
SMF record layout 72
writing to DB2 76

reload action exit 159
reload permission exit 158
RELOAD.ACTION flag 159
RELOAD.CONFIRM flag 158
reloading NetView automation table 87
REPLY actions

defining for message automation 24
reporting, availability and recovery

time 71
resolving

WTO(R) buffer shortages 111
resource lifecycle, events 71
resources, defining for long running

enqueues 124
restrictions and limitations, Linux console

messages 83
return codes, health status 43
REXX coding example 20
REXX PARSE 21
REXX trace type 19
routines

use in automation procedures 7

S
SA IOM 65
SA z/OS

commands ISQXIPM and
ISQCMMT 12

266 System Automation for z/OS: Customizing and Programming

SA z/OS, defining VTAM application
to 133

sample
automation tables 31

scenario
OMEGAMON 54

SDF
and specific problems 215
components 217
customizing 209
customizing initialization

parameters 223
defining hierarchy 219
defining in automation control

file 224
defining in customization dialog 224
defining panels 220
definition process 218
for multiple systems 216
how it works 209
panels

definition 215, 220
types 209

starting and stopping 218
status descriptors 210
tree structures 211

SDFCONF command 221
second level systems, VM support 90
security considerations, Linux console

messages 83
serialize command processing 12
session management

OMEGAMON, INGMTRAP 52
OMEGAMON, INGOMX 49

setting up z/OS UNIX automation 96
example 102

SFM
See Sysplex Failure Management

shortcut keys xi
shutdown considerations, proxy resource

automation 81
shutting down z/OS Systems from GDPS

environment 135
SMF data set processing 162
SMF report, writing to DB2 76
snapshot intervals, defining for long

running enqueues 124
spool monitoring, JES2 63
start definitions for z/OS UNIX

resources 100
started task job name

defining 125
startup considerations, proxy resource

automation 81
status change commands 146
status command support, extended

introduced 27
policy definitions 27

status descriptors 212
chaining to status components 212
propagating 214

status information 10
status messages

defining for message automation 24
stop definitions for z/OS UNIX

resources 100
structure 109

structure (continued)
allocation 109
automation procedures, of 8
deallocation 110
duplexing 110
persistent 110
preference list 109
rebuild 110
system-managed rebuild 110
user-managed rebuild 110

SUBSAPPL 21
SUBSJOB 21
SUBSTYPE 21
subsystem

adding to automation 1
up at initialization commands 159

SVC dump processing 163
symbols

use with message automation 24
synchronous hardware commands, using

pipes and ISQCCMD for 88
SYSLOG processing 162
syslogd messages, trapping 105
sysplex automation

enabling 107
SYSPLEX couple data set 118
Sysplex Failure Management 113
sysplex functions 107

switching on and off 125
SYSPLEX policy item

defining 118
system

connecting to processor 117
defining 117

system log failure recovery 162
system logger

directory extent 109
log stream 108
log stream data set 108
LOGR couple data set 109
managing 108
recovery, customizing 109
recovery, directory shortage 109

system operations control files 87
system removal 113

enabling 121
system-managed rebuild 110

T
TAF fullscreen sessions

defining 130
target systems, customizing 91
task global variables 11
TCP port monitoring, z/OS UNIX

Automation 100
temporary data set HLQ

defining 125
Terminal Access Facility 130
testing

automation procedures 18
messages 86
more information 21
NetView facilities 20

testing exits 159
Topology Manager 233

transaction recovery
IMS 164

TRAP AND WAIT processing 89
trapping UNIX syslogd messages 105
TWS Automation

operation 164

U
UNIX Automation

automated resources 99
debugging 106
file monitoring 100
hints and tips 105
process monitoring 99
setting up 96
setup example 102
TCP port monitoring 100

UNIX resources
customization of 96
definitions for 97
monitoring routines for 97
start and stop definitions 100

UNIX syslogd messages, trapping 105
UNIX System Services, integration 95
user exits 141

static exits 145
user logon, LINUX guest target

systems 91
user-managed rebuild 110
using

PROCESSOR INFO policy item 117
USS resources

automating 95

V
VM second level systems support 90
VM target systems, customizing 92
VOST management, CICS monitoring 58
VSE guest target systems 91
VSE target systems, customizing 93
VTAM application, defining to

SA z/OS 133

W
WTO(R)

processed, deletion from SDF 163
WTO(R) buffer 111
WTO(R) buffer shortage recovery

customizing 111
WTOR processing 137
WTOR(R) buffer shortage

recovery, enabling 119

Z
z/OS systems, shutting down in a GDPS

Environment 135
z/OS UNIX applications 95

infrastructure overview 96
z/OS UNIX Automation

automated resources 99
debugging 106

Index 267

z/OS UNIX Automation (continued)
file monitoring 100
hints and tips 105
process monitoring 99
setting up 96
setup example 102
TCP port monitoring 100

z/OS UNIX resources
customization of 96
definitions for 97
monitoring routines for 97
start and stop definitions 100

z/OS UNIX System Services, integration
of 95

268 System Automation for z/OS: Customizing and Programming

����

Product Number: 5698-SA3

Printed in USA

SC34-2570-03

	Contents
	Figures
	Tables
	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Dotted decimal syntax diagrams
	How to send your comments to IBM
	If you have a technical problem

	About This Book
	Who Should Use This Book
	Prerequisites
	Where to Find More Information
	The System Automation for z/OS Library
	Related Product Information
	Using LookAt to look up message explanations

	Summary of Changes for SC34-2570-03
	New Information
	Changed Information
	Moved Information
	Deleted Information

	Chapter 1. How to Add a New Application to Automation
	Preparation Before Automating an Application
	Address Space properties
	Step 1 - Application Start
	Step 2 - Application Stop
	Step 3 - Application Events
	Step 4 - Application Monitoring
	Outstanding Reply Processing
	Topology

	Adding the Application to Automation
	Define an Application Policy Object
	Build New Automation Configuration Files

	Chapter 2. How to Create Automation Procedures
	How Automation Procedures Are Called
	How Automation Procedures Are Structured
	Performing Initialization Processing
	Determining whether Automation Is Allowed
	System Operations
	Processor Operations

	Performing Automation Processing
	Automation Processing in System Operations
	Automation Processing in Processor Operations

	How to Make Your Automation Procedures Generic
	Processor Operations Commands

	Developing Messages for Your Automation Procedures
	Example AOCMSG Call

	Example Automation Procedure
	Notes on the Automation Procedure Example

	Installing Your Automation Procedures
	Testing and Debugging Automation Procedures
	The Assist Mode Facility
	Using Assist Mode to Test Automation Procedures
	Using AOCTRACE to Trace Automation Procedure Processing
	REXX Coding Example

	NetView Testing and Debugging Facilities
	Where to Find More Testing Information

	Coding Your Own Information in the Automation Status File
	Programming Recommendations
	Global Variable Names

	Chapter 3. How to Add a Message to Automation
	Conceptual Overview
	Defining Actions for Messages
	Defining CMD or REP Actions
	Defining AT Actions
	Defining Conditions for AT Entries
	Defining Status Messages
	Defining Captured Messages
	Preventing the Building of AT, MRT and MPF Entries

	Defining Message Overrides

	Extended Status Command Support
	Policy Definitions
	Special Considerations

	Defining Entries for the Message Revision Table
	Defining the AT/MRT Scope
	Build
	AT and MRT Build Concept
	Load
	Listings

	A Guide to SA z/OS Automation Tables
	NetView Automation Table Structure
	Master Automation Tables

	Integrating Automation Tables
	Multiple Master Automation Tables
	Using SA z/OS %INCLUDE Fragments

	Generic Automation Table Statements

	System Operations Automation Flow
	Inheritance Rules for Classes
	Define Application Information
	Define Relationships
	Define Application Messages and User Data
	Define Startup Procedures
	Subsystem Startup Processing
	Startup Command Processing

	Define Shutdown Procedures
	Define Error Thresholds
	Define IMS Subsystem-Specific Data
	Automatic AT Generation

	Chapter 4. How to Monitor Applications
	Observed Status Monitoring
	Health Monitoring
	Overview
	Monitor Resource Commands
	Writing a Recovery Routine
	Recovery Techniques
	Task Global Variables for Recovery Routines

	Active Health Monitoring
	Passive, Event-Based Health Monitoring
	Overview
	Event Types
	Code Matching for Event-Triggering Messages

	Programming Techniques

	Health Monitoring using OMEGAMON
	Overview
	Assumptions
	OMEGAMON Interaction
	Using the INGOMX Programming Interface
	Using the INGMTRAP Monitor Command

	Health Monitoring Based on OMEGAMON Exceptions
	Defining the Monitor Resources
	Example Scenario
	Recommendations

	Health Monitoring Based on OMEGAMON XE Situations
	Overview
	Defining the Monitor Resources

	Health Monitoring using CICSPlex SM
	Component Overview
	Creating an Application to Manage the VOST
	Defining the Monitor Resources

	Monitoring JES3 Components
	AOFRJ3MN Routine
	AOFRJ3RC Routine

	JES2 Spool Monitoring
	DB2 Connection Monitoring
	IMS Component Monitoring

	Chapter 5. Alert-Based Notification
	Overview
	Communication Flow
	Enabling Alerting
	Setup in SA z/OS
	INGCNTL Command
	Inform List
	Code Processing

	INGALERT Command

	Chapter 6. Availability and Recovery Time Reporting
	Overview
	Resource Lifecycle
	Layout of the SMF Record
	Enabling SMF Records
	The INGPUSMF Utility
	Output
	The INGPUSMF Utility JCL
	User Options

	Return Codes

	Writing the SMF Report to DB2
	Customization
	Output

	Chapter 7. How to Automate Processor Operations-Controlled Resources
	Automating Processor Operations Resources of z/OS Target Systems Using Proxy Definitions
	Concept
	Customizing Automation for Proxy Resources
	Startup and Shutdown Considerations

	Preparing Message Automation

	Automating Linux Console Messages
	The Linux Console Connection to NetView
	Linux Console Automation with Mixed Case Character Data
	Security Considerations
	Restrictions and Limitations

	How to Add a Processor Operations Message to Automation
	Messages Issued by a Processor Operations Target System
	Sample NetView Automation Table Statements
	Message ISQ211I
	Processor Operations Command Messages
	Testing Messages

	Building the New Automation Definitions
	Loading the Changed Automation Environment

	Using Pipes and ISQCCMD for Synchronous HW Commands
	Automating Asynchronous Hardware Commands with ISQCCMD and PIPES
	VM Second Level Systems Support
	Guest Target Systems
	Customizing Target Systems
	LINUX
	MVS
	VM
	VSE

	Chapter 8. How to Automate USS Resources
	Integration of z/OS UNIX System Services
	Infrastructure Overview

	Setting Up z/OS UNIX Automation
	Customization of z/OS UNIX Resources
	Definitions for Automation Setup
	Definitions for z/OS UNIX Resources
	Automated Resources
	Start and Stop Definitions (INGUSS Command)

	Example: inetd

	Hints and Tips
	Trapping UNIX syslogd Messages
	Debugging

	Chapter 9. How to Enable Sysplex Automation
	Sysplex Functions
	Managing Couple Data Sets
	Ensuring Continuous Availability of Couple Data Sets
	Customization

	Managing the System Logger
	Terms and Concepts
	Resizing the LOGR Couple Data Sets in Case of Directory Shortage
	Customization

	Managing Coupling Facilities
	Recovery Actions
	Resolving WTO(R) Buffer Shortages
	Handling Long-Running Enqueues (ENQs)
	Managing System Removal
	Recovering Auxiliary Storage Shortage

	Hardware Validation
	Prerequisites

	Enabling Hardware-Related Automation
	Step 1: Defining the Processor
	Step 2: Using the Policy Item PROCESSOR INFO
	Step 3: Defining Logical Partitions
	Step 4: Defining the System
	Step 5: Connecting the System to the Processor
	Step 6: Defining Logical Sysplexes
	Step 7: Defining the Physical Sysplex

	Enabling Continuous Availability of Couple Data Sets
	Enabling WTO(R) Buffer Shortage Recovery
	Enabling System Removal
	Step 1: Defining the Processor and System
	Step 2: Defining the Application with Application Type IMAGE
	Step 3: Defining an Application Group
	Step 4: Automating IXC102A and IXC402D Messages
	Step 5: Verify Automation table entries

	Enabling Long Running Enqueues (ENQs)
	Step 1: Defining Resources
	Step 2: Making Job/ASID Definitions
	Step 3: Defining IEADMCxx Symbols
	Step 4: Defining Commands
	Step 5: Defining Snapshot Intervals

	Enabling Auxiliary Storage Shortage Recovery
	Step 1: Defining the Local Page Data Set
	Step 2: Defining the Handling of Jobs

	Defining Common Automation Items
	Customizing the System to Use the Functions
	Additional Automation Operator IDs
	Switching Sysplex Functions On and Off

	Chapter 10. Automating Networks
	Automation Network Definition Process
	Defining an SDF Focal Point System
	Defining Gateway Sessions
	Defining an Outbound Gateway Autotask

	Defining Automatically-Initiated TAF Fullscreen Sessions

	Chapter 11. Defining a VTAM Application to SA z/OS
	Registering VTAM Application Subsystems with SA z/OS Recovery

	Chapter 12. Shutting Down z/OS systems in a GDPS Environment
	Example Definition

	Chapter 13. WTOR Processing
	Process Flow of WTORs
	Actions in Response to Incoming WTORs
	Customizing how WTORs Are Stored by SA z/OS
	Processing of Primary WTORs
	Example
	Restrictions

	Usage Notes®

	Chapter 14. SA z/OS User Exits
	Initialization Exits
	AOFEXDEF
	AOFEXI01
	AOFEXI02
	AOFEXI03
	AOFEXI04
	AOFEXI05
	AOFEXI06
	AOFEXINT

	Environmental Setup Exits
	Parameters
	Return Codes
	Usage Notes

	Static Exits
	AOFEXSTA
	AOFEXX02
	AOFEXX03
	AOFEXX04
	AOFEXX15

	Flag Exits
	Parameters
	Task Global Variables
	Return Codes

	Customization Dialog Exits
	User Exits for BUILD Processing
	User Exits for COPY Processing
	User Exits for DELETE Processing
	User Exits for CONVERT Processing
	User Exits for RENAME, and IMPORT Functions
	Invocation of Customization Dialog Exits

	Command Exits
	AOFEXC00
	AOFEXC01
	AOFEXC02
	AOFEXC03
	AOFEXC04
	AOFEXC05
	AOFEXC06
	AOFEXC07
	AOFEXC08
	AOFEXC09
	AOFEXC10
	AOFEXC11
	AOFEXC12
	AOFEXC13
	AOFEXC14
	AOFEXC15
	AOFEXC16
	AOFEXC17
	AOFEXC18
	AOFEXC19
	AOFEXC20
	AOFEXC21
	AOFEXC22
	AOFEXC23

	Pseudo-Exits
	Automation Control File Reload Permission Exit
	Automation Control File Reload Action Exit
	Subsystem Up at Initialization Commands

	Testing Exits

	Chapter 15. Automation Solutions
	LOGREC Data Set Processing
	SMF Data Set Processing
	SYSLOG Processing
	System Log Failure Recovery
	SVC Dump Processing
	Deletion of Processed WTORs from the Display
	AMRF Buffer Shortage Processing
	Drain Processing Prior to JES2 Shutdown
	TWS Automation Operation
	IMS Transaction Recovery
	AOFRSA01
	AOFRSA02
	AOFRSA03
	AOFRSA08
	AOFRSA0C
	AOFRSA0E
	AOFRSA0G
	AOFRSD07
	AOFRSD09
	AOFRSD0F
	AOFRSD0G
	AOFRSD0H
	EVEERTRN
	EVIECT0X
	EVIEET00
	EVIEI006
	EVISTRCT
	EVISTRMN
	EVJEAC04
	EVJEOBSV
	EVJRAC05
	EVJRSACT
	EVJRSJOB
	HASP099
	INGRMJSP
	INGRCJSP (AOFRSD01)
	INGRTAPE
	INGRX740

	Appendix A. Global Variables
	Read-Only Variables
	Read/Write Variables
	Parameter Defaults for Commands

	Appendix B. Customizing the Status Display Facility
	Overview of the Status Display Facility
	How the Status Display Facility Works
	Types of SDF Panels
	Root Component
	Status Component
	Detail Status Display

	Status Descriptors
	SDF Tree Structures
	How Status Descriptors Affect SDF
	Priority and Color Assignments
	Chaining of Status Descriptors to Status Components
	Propagating Status Descriptors Upward and Downward in a Tree Structure

	How SDF Helps Operations to Focus on Specific Problems
	How SDF Panels Are Defined
	Dynamically Loading Tree Structure and Panel Definition Members
	Using SDF for Multiple Systems
	SDF Components
	How the SDF Task Is Started and Stopped
	Starting the SDF Task
	Stopping the SDF Task

	SDF Definition Process
	Step 1: Defining SDF Hierarchy
	Tree Structure Definitions

	Step 2: Defining SDF Panels
	Panel Definition Methods
	Panel Definition Structure
	Recommended Order for Defining Panels
	Example Panel Definition
	%INCLUDE Statement for SDF Panels

	Step 3: (Optional) Customizing SDF Initialization Parameters
	Step 4: (Optional) Defining SDF in the Customization Dialog

	Appendix C. How System Operations Coordinates with Automatic Restart Manager
	Defining an ARM Element Name
	Defining a MOVE Group for Automatic Restart Manager

	Appendix D. Message Automation
	Generic Synonyms: AOFMSGSY
	SA z/OS Message Presentation: AOFMSGSY
	Operator Cascades: AOFMSGSY
	SA z/OS Topology Manager for NMC: AOFMSGST

	Appendix E. TSO User Monitoring
	Appendix F. Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

