
System Automation for z/OS
Version 3 Release 4

Programmer's Reference

SC34-2650-00

���

Note:
Before using this information and the product it supports, read the information in “Notices,” on page 341.

This edition applies to IBM Tivoli System Automation for z/OS (5698-SA3) Version 3 Release 4, an IBM licensed
program, and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC34-2576-02.

IBM welcomes your comments. You may forward your comments electronically, or address your comments to:
IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Strasse 220
71032 Boeblingen
Germany

If you prefer to send your comments electronically, use one of the following methods:

FAX: (Germany): 07031 16-3456
FAX: (Other countries): +49 7031 16-3456

Internet e-mail: s390id@de.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|
|
|
|
|

Contents

Figures v

Tables vii

Accessibility ix
Using assistive technologies ix
Keyboard navigation of the user interface ix
z/OS information ix

Dotted decimal syntax diagrams xi

How to send your comments to IBM xiii
If you have a technical problem xiii

About This Book xv
Who Should Use This Book xv
Where to Find More Information xv
Summary of Changes for SC34-2650-00 xvi

Part 1. Introduction 1

Chapter 1. Introduction 3
Overview of Commands 3
Format of Syntax Diagrams 3

Part 2. SA z/OS System Operations
Commands and Routines 5

Chapter 2. SA z/OS System Operations
Commands 7
Using System Operations Commands for
Programming 7
ACFCMD 7
ACFFQRY 16
ACFREP 21
ACTIVMSG 29
AOCFILT 31
AOCGETCN 33
AOCMSG 34
AOCQRES. 39
AOCQRY 40
AOCUPDT 50
AOFCPMSG 55
AOFEXCMD 58
AOFRACON 60
AOFRCMTR 60
AOFSET 61
AOFTREE 61
CDEMATCH 66
CHKTHRES 69
FWDMSG 72
HALTMSG 74

INGALERT 76
INGCLEAN 80
INGCNTL 81
INGCPSM 85
INGDATA 87
INGEXEC 91
INGJLM 95
INGLINK 98
INGMON 101
INGMTRAP 107
INGOMX. 108
INGPOST 120
INGQRY 123
INGRCHCK 125
INGRCLUP 126
INGRDS 126
INGRTCMD 138
INGSIT 139
INGSTOBS 141
INGSTX 144
INGTIMER 148
INGUSS 150
INGVARS 154
INGVSTOP 157
INGVSTRT 158
INGVTAM 159
ISSUEACT (ISSUECMD, ISSUEREP). 161
MDFYSHUT. 168
OUTREP 169
TERMMSG 171

Chapter 3. Monitoring Routines . . . 179
AOFADMON 179
AOFAPMON 179
AOFATMON 180
AOFCPSM 180
AOFNCMON 181
AOFUXMON 181
INGPJMON 182
INGPSMON 183
INGROMON 184
INGVMON 185
ISQMTSYS 185

Chapter 4. ING$QRY NetView
Automation Table Function 187
ING$QRY 187

Part 3. SA z/OS I/O Operations
Commands. 191

Chapter 5. I/O Operations Commands
(API) 193

© Copyright IBM Corp. 1996, 2012 iii

||

||

||

||

Using I/O Operations Commands for
Programming 193
Safe Switching 195
FICON Switches 195
FICON Cascaded Switches 195
Common Elements 196
DELETE FILE 209
QUERY ENTITY CHP 210
QUERY ENTITY CNTLUNIT 215
QUERY ENTITY DEV 218
QUERY ENTITY HOST 222
QUERY ENTITY SWITCH 225
QUERY FILE 228
QUERY INTERFACE CNTLUNIT. 229
QUERY INTERFACE SWITCH 235
QUERY RELATION CHP 243
QUERY RELATION CNTLUNIT 244
QUERY RELATION DEV 244
QUERY RELATION HOST 246
QUERY RELATION SWITCH 246
QUERY SWITCH 247
REMOVE and RESTORE CHP. 250
REMOVE DEV and RESTORE DEV 254
WRITEFILE 259
WRITEPORT 261
WRITESWCH 266

Chapter 6. Invoking I/O Operations
using the API 273
API Calls by REXX EXECs 273
API Calls by the CALL Macro 275

Part 4. Status Display Facility
Definitions 281

Chapter 7. SDF Initialization
Parameters 283
DCOLOR. 283
DPFKnn 284
DPFKDESC1 285
DPFKDESC2 285
EMPTYCOLOR. 286
ERRCOLOR 287
INITSCRN 287

MAXOPS. 288
PFKnn. 288
PRIORITY 290
PRITBLSZ 291
PROPDOWN 292
PROPUP 292
SCREENSZ 292
TEMPERR 293
Priority and Color Default Assignments 294

Chapter 8. SDF Definition Statements 299
AOFTREE 299
BODY 302
BODYHEADER 303
BODYTEXT 305
CELL 305
DATETIME 307
ENDPANEL 308
INPUTFIELD 308
PANEL 309
PFKnn. 311
STATUSFIELD 311
STATUSTEXT 314
TEXTFIELD 315
TEXTTEXT 317
Example SDF Definition 318
Example Of A Large SDF Panel 325

Chapter 9. SDF Commands 331
Using SDF Commands 331
SCREEN 333
SDF 333
SDFCONF 334
SDFPANEL 335
SDFTREE. 336
Navigation Commands 337

Appendix. Notices 341
Programming Interface Information 342
Trademarks 342

Glossary 345

Index 367

iv System Automation for z/OS: Programmer's Reference

||

||
||

||

||

||
||

||

Figures

1. DISPACF Command Response Panel 12
2. Subsystem Dependent Tree 62
3. Application Tree 64
4. Code Processing Sample Panel 68
5. Monitoring a non-SA z/OS controlled job. 98
6. Sample AT-TLS policy. 118
7. Exits and Associated Resources 144
8. INGVARS Command Line-Mode Output 157
9. INGVTAM REQ=LIST Output 161

10. INGVTAM subsys REQ=LIST Output 161
11. DISPACF Sample Panel 167
12. Code Processing Panel for an Application

Resource 171
13. Code Processing Panel for the MVSESA

Resource 171
14. QUERY SWITCH Command - Sample Output 250
15. Example Tree Structure Definitions: System

SY1 301

16. Example Tree Structure Definitions: System
SY2 302

17. SDF Example: Tree Structure Definition for
SY1 and SY2 319

18. SDF Example: Hierarchy Defined by SY1 Tree
Structure 319

19. SDF Example: System Panel Definition
Statements 320

20. SDF Example: Status Component Panel
Definition Statements for SY1 and SY2 . . . 322

21. Sample SY1 SDF Panel 323
22. SDF definitions of a large display panel 326
23. Snapshot of the large display panel (left side)

followed by Snapshot of the large panel (right
side) 328

© Copyright IBM Corp. 1996, 2012 v

||

|
||

|
||
|
||

|
||

||
|
|
||

vi System Automation for z/OS: Programmer's Reference

Tables

1. System Automation for z/OS Library xv
2. Overview of Commands 3
3. Output from ACFFQRY 17
4. AOCQRY Subsystem Task Global Variables 45
5. AOCQRY Parent Task Global Variables 46
6. AOCQRY Automation Flag Task Global

Variables 48
7. Relational Operator Listing 134
8. TERMMSG Status Transitions 172
9. Standard SA z/OS Array Format 198

10. Header for all Query Entity/Interface Output
Formats 203

11. Output Format for all Query Relation
Commands 204

12. QUERY ENTITY CHP Output 210
13. QUERY ENTITY CNTLUNIT Output 216
14. QUERY ENTITY DEV Output 219
15. QUERY ENTITY HOST Output 222
16. QUERY ENTITY SWITCH Output 225
17. QUERY FILE Output of a Particular

Configuration 229
18. QUERY INTERFACE CNTLUNIT Output 230
19. QUERY INTERFACE SWITCH Output 236
20. QUERY SWITCH Output 248

21. REMOVE DEV and RESTORE DEV Output 257
22. WRITEFILE Input Format 261
23. WRITESWCH Input 267
24. Variables for the PFKnn and DPFKnn

Parameters 289
25. Table of Default Subsystem Status Colors and

Priorities 294
26. Table of Default Gateway Status Colors and

Priorities 295
27. Table of Default Spool Status Colors and

Priorities 296
28. Table of Default WTOR Status Colors and

Priorities 296
29. Table of Default Monitor Resource Status

Colors and Priorities 296
30. Table of Default Captured Message Status

Colors and Priorities 297
31. Table of Default TWS Automation Status

Colors and Priorities 297
32. Table of Default Group Status Colors and

Priorities 297
33. Table of Ensemble Status Colors and Priorities 297
34. Table of Processor Status Colors and Priorities 298
35. Table of LPAR Status Colors and Priorities 298

© Copyright IBM Corp. 1996, 2012 vii

||

|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
||
||
||

viii System Automation for z/OS: Programmer's Reference

Accessibility

Publications for this product are offered in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when using PDF files, you may view the information through the
z/OS® Internet Library website or the z/OS Information Center. If you continue to
experience problems, send an email to mhvrcfs@us.ibm.com or write to:

IBM® Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

z/OS information
z/OS information is accessible using screen readers with the BookServer or Library
Server versions of z/OS books in the Internet library at:
http://www.ibm.com/systems/z/os/zos/bkserv/

© Copyright IBM Corp. 1996, 2012 ix

http://www.ibm.com/systems/z/os/zos/bkserv/

x System Automation for z/OS: Programmer's Reference

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users accessing the
Information Center using a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line,
because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are

© Copyright IBM Corp. 1996, 2012 xi

optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!
(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

xii System Automation for z/OS: Programmer's Reference

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:
1. Send an email to s390id@de.ibm.com
2. Visit the SA z/OS home page at http://www.ibm.com/systems/z/os/zos/

features/system_automation/
3. Visit the Contact z/OS web page at http://www.ibm.com/systems/z/os/zos/

webqs.html
4. Mail the comments to the following address:

IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Str. 220
D-71032 Boeblingen
Federal Republic of Germany

5. Fax the comments to us as follows:
From Germany: 07031-16-3456
From all other countries: +(49)-7031-16-3456

Include the following information:
v Your name and address
v Your email address
v Your telephone or fax number
v The publication title and order number:

IBM Tivoli System Automation for z/OS V3R4.0 Programmer's Reference
SC34-2650-00

v The topic and page number related to your comment
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit.

If you have a technical problem
Do not use the feedback methods listed above. Instead, do one of the following:
v Contact your IBM service representative
v Call IBM technical support
v Visit the IBM zSeries support web page at www.ibm.com/systems/z/support/.

© Copyright IBM Corp. 1996, 2012 xiii

http://www.ibm.com/systems/z/os/zos/features/system_automation/
http://www.ibm.com/systems/z/os/zos/features/system_automation/
http://www.ibm.com/systems/z/os/zos/features/system_automation/
http://www.ibm.com/systems/z/os/zos/webqs.htm
http://www.ibm.com/systems/z/os/zos/webqs.htm
http://www.ibm.com/systems/z/os/zos/webqs.htm
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xiv System Automation for z/OS: Programmer's Reference

About This Book

This book describes the programming interfaces of IBM Tivoli® System Automation
for z/OS (SA z/OS). It provides detailed reference material you need to operate,
maintain and program for SA z/OS.

Throughout this publication references to MVS™ refer either to MVS/ESA, or to the
MVS element of z/OS.

Who Should Use This Book
This information is primarily for system programmers and automation
programmers, but may also be useful for others, for example, help desk personnel
and customer engineers.

Where to Find More Information

The System Automation for z/OS Library
Table 1 shows the information units in the System Automation for z/OS library:

Table 1. System Automation for z/OS Library

Title Order Number

IBM Tivoli System Automation for z/OS Planning and Installation SC34-2645

IBM Tivoli System Automation for z/OS Customizing and Programming SC34-2644

IBM Tivoli System Automation for z/OS Defining Automation Policy SC34-2646

IBM Tivoli System Automation for z/OS User’s Guide SC34-2647

IBM Tivoli System Automation for z/OS Messages and Codes SC34-2648

IBM Tivoli System Automation for z/OS Operator’s Commands SC34-2649

IBM Tivoli System Automation for z/OS Programmer’s Reference SC34-2650

IBM Tivoli System Automation for z/OS Product Automation Programmer’s
Reference and Operator’s Guide

SC34-2643

IBM Tivoli System Automation for z/OS TWS Automation Programmer’s
Reference and Operator’s Guide

SC34-2651

IBM Tivoli System Automation for z/OS End-to-End Automation Adapter SC34-2652

IBM Tivoli System Automation for z/OS Monitoring Agent Configuration and
User’s Guide

SC34-2653

The System Automation for z/OS books are also available on CD-ROM as part of
the following collection kit:

IBM Online Library z/OS Software Products Collection (SK3T-4270)

SA z/OS Home Page
For the latest news on SA z/OS, visit the SA z/OS home page at
http://www.ibm.com/systems/z/os/zos/features/system_automation

© Copyright IBM Corp. 1996, 2012 xv

http://www.ibm.com/systems/z/os/zos/features/system_automation/

Related Product Information
You can find books in related product libraries that may be useful for support of
the SA z/OS base program by visiting the z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv

Using LookAt to look up message explanations
LookAt is an online facility that lets you look up explanations for most of the IBM
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for
z/OS elements and features, z/VM®, z/VSE®, and Clusters for AIX® and Linux:
v The Internet. You can access IBM message explanations directly from the LookAt

Website at www.ibm.com/systems/z/os/zos/bkserv/lookat/index.html
v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations using LookAt from a TSO/E
command line (for example: TSO/E prompt, ISPF, or z/OS UNIX System
Services).

v Your Microsoft Windows workstation. You can install LookAt directly from the
z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection
(SK3T-4271) and use it from the resulting Windows graphical user interface
(GUI). The command prompt (also known as the DOS > command line) version
can still be used from the directory in which you install the Windows version of
LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from
www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html with a handheld
device that has wireless access and an Internet browser (for example: Internet
Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for Linux
handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from:
v A CD-ROM in the z/OS Collection (SK3T-4269).
v The z/OS and Software Products DVD Collection (SK3T-4271).
v The LookAt Website (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in
the LOOKAT.ME files available during the download process.

Summary of Changes for SC34-2650-00
This document contains information previously presented in System Automation
for z/OS V3R3.0 Programmer's Reference, SC34-2576-02.

New Information
AOCQRY command

A Subsystem Task Common Global (SUBSIPSTACK) variable and a Parent
Task Common Global (SUBPIPSTACK) variable have been added in
“AOCQRY” on page 40.

BODYHEADER SDF Definition Statement
BODYHEADER defines a descriptive header and scrolling information for
a SDF panel. See “BODYHEADER” on page 303.

xvi System Automation for z/OS: Programmer's Reference

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os//zos/bkserv/lookat/index.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

BODYTEXT SDF Definition Statement
BODYTEXT defines the text displayed in an SDF panel header. See
“BODYTEXT” on page 305.

DATETIME SDF Definition Statement
The DATETIME statement defines the location and attributes of the current
date and time. See “DATETIME” on page 307.

DISKonly parameter
The DISKonly parameter is added for the SDFPANEL and SDFTREE
command to indicate a panel/tree member is added, and any previously
loaded panel/tree member is ignored. See “SDFPANEL” on page 335 or
“SDFTREE” on page 336.

INGCLEAN command
The new INGCLEAN command to clean up and repair the in-storage data
model. See “INGCLEAN” on page 80.

INGDATA command
The NETVASIS parameter is added for INGDATA. Additional filter criteria
are added to the command to match the INGLIST filter criteria. See
“INGDATA” on page 87.

INGJLM command
The new INGJLM command starts, stops, suspends, or provides a status on
job log monitoring for JES2. See “INGJLM” on page 95.

INGRDS command
The new INGRDS command provides Relational Data Services (RDS) for
System Automation. See “INGRDS” on page 126.

INGROMON monitoring routine
The new INGROMON monitoring routine is added. See “INGROMON” on
page 184.

SDF command
The SDF command to launch the SDF component is added for the SDF
commands. See “SDF” on page 333.

SDFCONF command
The SDFCONF command to delete an SDF record with a confirmation
screen is added. See “SDFCONF” on page 334.

SDF Navigation Commands
“Navigation Commands” on page 337 within an SDF panel hierarchy are
added in Chapter 9, “SDF Commands,” on page 331.

Changed Information
AOFCPMSG command

The message actions for the NORMAL value of the SEVERITY parameter
are amended. The DOM parameter is updated to include a facility to
overwrite or delete messages, as they become obsolete. See “AOFCPMSG”
on page 55.

CDEMATCH command
The parameters, return codes, usage notes, task global variables, and
example. The VARn parameter is added. See “CDEMATCH” on page 66.

INGALERT command
The USRn and CDEn parameters are added. See “INGALERT” on page 76.

About This Book xvii

INGQRY command
A new attribute IPSTACK is added. See “INGQRY” on page 123.

ING$QRY command
A new attribute IPSTACK is added. The attribute parameter has several
new values. See Chapter 4, “ING$QRY NetView Automation Table
Function,” on page 187.

INGCNTL command
The examples have been expanded and updated. The ALERTHOST and
TTTHOST parameters are modified. The EIFPPI parameter is updated. See
“INGCNTL” on page 81.

INGDATA command
The CATEGORY and SUBTYPE parameters are added. See “INGDATA” on
page 87.

INGEXEC command
The CORRWAIT, DESCR, NETVASIS and TERMMSG parameters are
added to “INGEXEC” on page 91.

INGLINK command
The usage of the user_data parameter has changed. Use of the new ISUP_
and ISDN_ messages for application linking is described and screen
examples are updated to show additional column displays for the status of
these messages. See “INGLINK” on page 98.

INGMON command
The INACTIVE status for Monitor Status is removed and status transitions
are redefined. See “INGMON” on page 101.

INGOMX command
An additional example is provided for a Secure Socket Connection. Use of
INGOMX directives is added for handling SOAP requests. See “INGOMX”
on page 108.

INGRCLUP command
The jobname parameter takes wildcards and the restrictions have been
updated. See “INGRCLUP” on page 126.

INGUSS command
The STDENV parameter is added for assigning a path for environment
variables. The NETVASIS parameter is added for entering commands in
mixed or lower case. Return codes are added. See “INGUSS” on page 150.

MDFYSHUT command
The ABORT parameter is added to the MDFYSHUT command. See
“MDFYSHUT” on page 168.

QUERY SWITCH
The name LAIBLEDEXT is added to the “QUERY SWITCH” on page 247
output.

SCREENSZ initialization parameter
The “SCREENSZ” on page 292 initialization parameter is amended to
include new screen and panel size definition capacity.

Example Of A Large SDF Panel for SDF definition statements
A further example is added to Chapter 8, “SDF Definition Statements,” on
page 299 to demonstrate enhanced screen and panel display definitions.
See “Example Of A Large SDF Panel” on page 325.

xviii System Automation for z/OS: Programmer's Reference

Moved Information
Priority and Color Default Assignments

The priority and color assignment tables for subsystems are taken from the
IBM Tivoli System Automation for z/OS Defining Automation Policy and added
here. An additional table for ProcOps color assignment within SDF is
added. Refer to “Priority and Color Default Assignments” on page 294.

You may notice changes in the style and structure of some content in this
document—for example, headings that use uppercase for the first letter of initial
words only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
documents.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

About This Book xix

xx System Automation for z/OS: Programmer's Reference

Part 1. Introduction

Chapter 1. Introduction 3
Overview of Commands 3

Format of Syntax Diagrams 3

This part describes System Automation for z/OS commands in general—how to
enter them, the format, and the various types of commands, and also explains the
format of syntax diagrams that are used for commands.

© Copyright IBM Corp. 1996, 2012 1

2 System Automation for z/OS: Programmer's Reference

Chapter 1. Introduction

Overview of Commands
Table 2 gives a brief overview of the System Automation for z/OS commands. This
overview lists the various types of commands, their functions and where they can
be entered.

Table 2. Overview of Commands

Type of command Function Where entered

System operations
commands

Control and maintain
resources in the enterprise
from a single point of control

NetView console, or NMC

I/O operations commands Control input/output devices TSO/ISPF, API, operator
console

Processor operations
commands

Common commands for
automation

API, NetView console, or
NMC
Note: Precede with
ISQCCMD command

Control hardware processors NetView console or NMC

Format of Syntax Diagrams
The description of each command and routine includes the format of the command
in a syntax diagram. The diagram shows the operands for the commands. Use
blanks to separate the operands, unless otherwise stated or diagrammed.

To construct a command from the diagram, follow the diagram from left to right,
choosing the path that suits your needs. The following is a sample syntax diagram
with notes that explain how to use it to construct a command. This command is
for illustration only. Do not attempt to enter it.

��
(1) (2)

ASample

(3)
ALL
SOME
NONE (4)

E
Q

�
(5)

job_number �

� �

,
(6) (7)

type ��

Notes:

1 Start here. ��─ indicates the start of the diagram.

2 Type ASAMPLE, or abbreviate it to AS. The uppercase characters are the
abbreviation. Operands on the main line are required.

3 Choose one of the options. The default is always above the main line. In this
case, ALL is the default. If the option includes punctuation marks, include
them too, for example: = () . ,

© Copyright IBM Corp. 1996, 2012 3

4 Choose E, Q, or neither. Operands below the main line are optional.

5 Repeat job_number any number of times. Variables are shown in italics.
Replace them with a real name or value.

6 Repeat type any number of times, separated with a comma. Variables are
shown in italics. Replace them with a real name or value.

7 End here. ─�� indicates the end of the command.

If a command continues to the next line, you see ─� and �─.

├and┤ indicates a fragment for a specific condition or option.

The following examples show commands that you might enter, based on the
sample syntax diagram:
asample none q DAF00821 DAF00832 ELD00824

as some DLR01445

4 System Automation for z/OS: Programmer's Reference

Part 2. SA z/OS System Operations Commands and Routines

Chapter 2. SA z/OS System Operations
Commands 7
Using System Operations Commands for
Programming 7
ACFCMD 7
ACFFQRY 16
ACFREP 21
ACTIVMSG 29
AOCFILT 31
AOCGETCN 33
AOCMSG 34
AOCQRES. 39
AOCQRY 40
AOCUPDT 50
AOFCPMSG 55
AOFEXCMD 58
AOFRACON 60
AOFRCMTR 60
AOFSET 61
AOFTREE 61
CDEMATCH 66
CHKTHRES 69
FWDMSG 72
HALTMSG 74
INGALERT 76
INGCLEAN 80
INGCNTL 81
INGCPSM 85
INGDATA 87
INGEXEC 91
INGJLM 95
INGLINK 98
INGMON 101
INGMTRAP 107
INGOMX. 108
INGPOST 120

INGQRY 123
INGRCHCK 125
INGRCLUP 126
INGRDS 126
INGRTCMD 138
INGSIT 139
INGSTOBS 141
INGSTX 144
INGTIMER 148
INGUSS 150
INGVARS 154
INGVSTOP 157
INGVSTRT 158
INGVTAM 159
ISSUEACT (ISSUECMD, ISSUEREP). 161
MDFYSHUT. 168
OUTREP 169
TERMMSG 171

Chapter 3. Monitoring Routines 179
AOFADMON 179
AOFAPMON 179
AOFATMON 180
AOFCPSM 180
AOFNCMON 181
AOFUXMON 181
INGPJMON 182
INGPSMON 183
INGROMON 184
INGVMON 185
ISQMTSYS 185

Chapter 4. ING$QRY NetView Automation Table
Function 187
ING$QRY 187

This part describes System Automation for z/OS commands and routines,
including specifics of how to enter them and their format.

See IBM Tivoli System Automation for z/OS User’s Guide for general information
about SA z/OS commands.

© Copyright IBM Corp. 1996, 2012 5

||

||

||

||

6 System Automation for z/OS: Programmer's Reference

Chapter 2. SA z/OS System Operations Commands

Using System Operations Commands for Programming
SA z/OS supplies commands that provide your automation procedures with a
simple, standard way of interfacing with the automation control file, the
automation status file, and the NetView log file. It is strongly recommended that
you use these commands wherever possible in your own code.

These commands are provided either as building blocks that you must incorporate
into your script, or as complete routines that you can call from Network
Communications Control Facility (NCCF), the NetView automation table (AT),
from timers, or from other automation procedures without further programming. If
a command can be used as a complete routine, this is specified in the usage notes.

Using these commands in automation procedures provides you with the following
advantages:
v Reduced development time: Less code has to be written.
v Portable code: Automation policy information that is unique to an enterprise can

be kept in the automation control file rather than distributed among many
automation procedures. The automation procedures implement a number of
different rules for handling a situation and the automation control file is used to
select which rules are applicable to the current situation.

v A consistent, documented interface.

The commands that are described here may be used while automating any
SA z/OS application. In the context of SA z/OS, an application is defined as:
v An MVS subsystem
v An MVS job
v A non-MVS resource, that is, a resource that is not a z/OS address space, or that

does not respond to the usual MVS startup and shutdown commands
v Your own applications

Occasionally, you may see the term subsystem used to refer to applications in
general.

ACFCMD

Purpose
The ACFCMD command allows an automation procedure to issue commands
defined in the automation policy. It searches the automation control file for the
specified entries, performs variable substitution for predefined variables, then
issues the commands.

ACFCMD can also issue commands that are built dynamically by the calling
automation procedure and passed to ACFCMD through a special task global
variable named EHKCMD.

© Copyright IBM Corp. 1996, 2012 7

In general you should consider using ISSUECMD or ISSUEACT from the
automation table, rather than calling ACFCMD directly. This has the following
advantages:
v It checks the automation flags for you, to ensure that automation is allowed.
v It checks that the job that issued the message is known to SA z/OS.

Syntax
To issue commands that are directly defined in the automation control file use the
following syntax:

1. Syntax for directly defined commands

�� ACFCMD MSGTYP= �

,

(type)
, ENTRY= entry

�

�
, SEL= PASSnn

PASS*
selection

��

To issue commands built dynamically by the calling automation procedure use the
following syntax:

2. Syntax for dynamically built commands

�� ACFCMD FUNC=ISSUE
MSGTYP=type

��

Parameters
MSGTYP=type

This value is the message ID in the MESSAGES/USER DATA policy item
where the commands to be issued by ACFCMD are defined. The value of
MSGTYP is typically coded with the message ID or with a generic name such
as SPOOLSHORT or SPOOLFULL. The specified type values are searched in
the order specified until an entry with the given entry and type value can be
found.

ENTRY=entry
This value is the entry in the automation MESSAGES/USER DATA policy item
where the commands to be issued are defined. The default is the subsystem
name, if the commands are issued for applications.

This parameter is mutually exclusive with the FUNC=ISSUE parameter.

SEL=
This parameter provides the criteria for the first field in the command entry.
This field gives detailed criteria to select a command or commands from the
automation control file. Based on the MSGTYP, ENTRY and SEL fields, any
specific command can be retrieved from a group of commands associated with
a message entry. This parameter is mutually exclusive with the FUNC=ISSUE
parameter.

ACFCMD

8 System Automation for z/OS: Programmer's Reference

The commands associated with the specific pass selection value defined in the
automation policy are issued, along with all commands defined without a
selection value. For selection values beginning with PASS, additionally those
commands with the pass selection value of PASS* are issued.

IF no SEL parameter is coded, all commands are selected without respect to
any pass selection value in the first field of the command entry.

PASSnn
PASSnn values can range from 1 through 99 and must be coded without
leading zeros, such as PASS1, PASS2, and PASS3.

When SEL=PASSnn is specified, commands associated with the PASSnn
selection value defined in the automation policy are issued, along with all
commands defined with a selection value of PASS* or with no selection
value.

PASS*
When SEL=PASS* is specified, commands associated with the PASS*
selection value defined in the automation policy are issued, along with all
commands defined with a selection value beginning with the prefix PASS
or with no selection value.

selection
When SEL=selection is specified, the commands associated with the specific
selection value defined in the automation policy are issued, along with all
commands defined without a selection value.

FUNC=ISSUE
The command to be issued is taken from the task global variable EHKCMD.

This parameter is mutually exclusive with the ENTRY and SEL parameters.

Restrictions and Limitations
The ACFCMD command should be called by an automation procedure or by a
command processor. The AOCQRY command must be invoked first to set the
SUBSAPPL and SUBSTYPE task global variables.

The ACF COLD command temporarily disables automation. ACFCMD will not
work while the automation control file is being reloaded. This is necessary to
ensure that the SA z/OS environment, as defined by the reloaded automation
control file, is established correctly. Full automation resumes when the AOF540I -
INITIALIZATION RELATED PROCESSING HAS BEEN COMPLETED message has been
received.

Return Codes
0 At least one command was found and issued.
1 No commands meeting the selection criteria were found.
2 The issued command returned a non-zero return code and return code

checking was enabled through the customization dialogs.
4 Invalid parameters were used in the call.
6 SA z/OS initialization incomplete, unable to process command request.

Usage
v If the command that is issued uses symbols you should call AOCQRY to

substitute or translate the symbols. Refer to the tables in “Task Global Variables”
on page 44 for AOCQRY.

ACFCMD

Chapter 2. SA z/OS System Operations Commands 9

v ACFCMD can issue multiple commands during a single instance of processing.
Commands can be defined to one ENTRY and MSGTYP combination but with
different or duplicate selection fields. During processing all selection fields are
located that match the selection criteria and their associated commands are
issued in the same sequence that they have been defined in the automation
policy.

v When FUNC=ISSUE is used the ACFCMD command can issue only one
command during a single instance of processing.

v SA z/OS variable CMDCNTHI is returned to the calling automation procedure
as a task global variable value. ACFCMD retrieves all command entries for a
given ENTRY/MSGTYP and searches for the highest PASSnn number. The
highest PASSnn number is returned in CMDCNTHI. You can use this number to
determine whether all available commands are issued and an appropriate error
message should be issued to the operator. If PASSnn is not coded, CMDCNTHI
is zero.

v Variables are available to change the command entered in the automation control
file. Variables &EHKVAR0 through &EHKVAR9 and &EHKVART must be
defined as task global variables in the calling automation procedure and must be
initialized with the data to change the commands. These variables are passed to
ACFCMD. Whenever ACFCMD finds a detail command entry in the automation
control file it scans the command entry looking for &EHKVARn. If an
&EHKVARn variable is found, the value stored in the automation procedure
variable replaces the &EHKVARn in the command entry. Multiple &EHKVARn
variables can be coded in a single command entry. Delimiters are unnecessary,
and the variables can be coded between any other text.

Task Global Variables
The following run time variables are used by ACFCMD for different purposes:

CMDCNTHI
This variable contains the number of the highest PASSnn selection for defined
commands to the specified entry and type in the automation policy.

EHKCMD
When ACFCMD is called with FUNC=ISSUE, this variable must provide the
command that is to be issued.

EHKCMDTEXT
Text for confirmation message AOF570I, after having issued the command.

EHKVAR0 through EHKVAR9 and EHKVART
These variables can be used to alter command definitions in the automation
policy. If included in the defined commands with a leading &, the variables are
substituted by their values before the commands are issued. The values of
these variables must be provided by the calling automation routine.

&APPLPARMS
This variable provides the value that is entered in the APPLPARMS parameter
of the INGREQ command when starting or stopping the resource related to the
specified entry. The value of this variable is only available during startup or
shutdown processing of a resource under the control of SA z/OS and can be
used to alter commands entered in the automation policy.

If the AOCQRY command has been invoked in the calling automation routine, it
sets the following task global variables if the appropriate information is applicable.

ACFCMD

10 System Automation for z/OS: Programmer's Reference

These variables represent only a subset of those that can be used to alter
commands that are entered in the automation policy (where x can be either S for
subsystem, or P for parent subsystem):
v SUBxAPPL
v SUBxASID
v SUBxCATEGORY
v SUBxCMDPFX
v SUBxDESC
v SUBxFILE
v SUBxFILTER
v SUBxIPSTACK
v SUBxJOB
v SUBxPATH
v SUBxPID
v SUBxPLEX
v SUBxPORT
v SUBxPROC
v SUBxSCHEDSS
v SUBxSHUTDLY
v SUBxSPARM
v SUBxSUBCAT
v SUBxSUBID
v SUBxSUBTYPE
v SUBxSYMBOLn (n=1–9)
v SUBxUSER
v SUBxUSSJOB

These task global variables are substituted when they are specified with a leading
& in commands that have been defined in the automation policy.

Valid symbols for provider run time variables are as follows (where x can be either
S for subsystem, or P for parent subsystem):
v SU2xAPPL
v SU2xASID
v SU2xCATEGORY
v SU2xCMDPFX
v SU2xDESC
v SU2xFILE
v SU2xFILTER
v SU2xIPSTACK
v SU2xJOB
v SU2xPATH
v SU2xPID
v SU2xPORT
v SU2xPROC
v SU2xSCHEDSS
v SU2xSHUTDLY
v SU2xSUBCAT
v SU2xSUBID
v SU2xSUBTYPE
v SU2xSYMBOLn (n=1–9)
v SU2xUSER
v SU2xUSSJOB

ACFCMD

Chapter 2. SA z/OS System Operations Commands 11

|

|
|

Common Global Variables
Common global variable AOFJESPREFX is substituted in the command to be
issued when found.

Examples

Example 1
This example shows the relationship between ACFCMD and the automation
control file. The message to automate, $HASP607, is produced by the JES2
subsystem and indicates that JES2 is not dormant. The automation procedure
responds to this by calling ACFCMD to issue a command to stop the JES2
initiators, (MVS $PI).

The command is defined in the automation policy through the customization
dialog panels.

If you enter DISPACF JES2 $HASP607 a panel with information similar to Figure 1 is
displayed.

The automation procedure to issue this command is:
/* REXX CLIST to automate $HASP607 */
/* Check whether automation allowed and set TGLOBALs */
’AOCQRY ...’

:
’ACFCMD MSGTYP=$HASP607,ENTRY=JES2’
Select

When rc = 0 Then Nop /* Command issued OK */
When rc = 1 Then Do /* No commands issued; warn if required */
:
End
Otherwise Do /* Error; perform warning action */
:
End

End
Exit

ACFCMD uses the parameters passed to it to find the corresponding values in the
automation policy. Because no SEL parameter is coded, no selection restriction is
made with respect to the first field of the command entry.

Upon return to the automation procedure, the rc special variable is checked to
ensure a command was found in the automation control file. The automation
procedure takes appropriate action if a command is not found or a processing
error occurs in the ACFCMD command.

Example 2
This example uses the same scenario as Example 1, but shows how you can use
defaults to minimize coding. The message to automate, $HASP607, is produced by

Command = ACF ENTRY=JES2,TYPE=$HASP607,REQ=DISP
SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
TYPE IS $HASP607
CMD = (,,’MVS $PI’)
END OF MULTI-LINE MESSAGE GROUP

Figure 1. DISPACF Command Response Panel

ACFCMD

12 System Automation for z/OS: Programmer's Reference

the JES2 subsystem and indicates that JES2 is not dormant. The automation
procedure responds by calling ACFCMD to issue a command to stop the JES2
initiators ($PI).

The command is defined in the automation policy as in Example 1.

The automation procedure to issue this command is:
/* REXX CLIST to automate $HASP607 */
/* Check whether automation allowed and set TGLOBALs */
’AOCQRY ...’

:
’ACFCMD MSGTYP=’Msgid()
Select

When rc = 0 Then Nop /* Command issued OK */
When rc = 1 Then Do /* No commands issued; warn if required */
:
End
Otherwise Do /* Error; perform warning action */
:
End

End
Exit

This example differs from Example 1 in the following ways:
v ACFCMD uses a NetView REXX function for the MSGTYP field, assumes

defaults for the ENTRY and SEL fields and uses task global variables set up by
AOCQRY for the ENTRY default.

v The ENTRY field defaults to JES2 because the job name on the message was the
job name for the JES2 subsystem, so the SUBSAPPL task global (which is the
default entry type) currently contains JES2. The AOCQRY command must be
called before ACFCMD for the ENTRY default to work correctly.

v The MSGTYP field uses the NetView REXX function Msgid(), which contains the
message identifier for the message that called the automation procedure. This
message identifier is supplied only to an automation procedure called from the
NetView automation table. This value can be used when calling ACFCMD.

Note: If your code issues a WAIT command before it issues the ACFCMD you
must store the msgid() value in a temporary global as the NetView
MSGREAD command overwrites the data from the message that invoked
the procedure.

Assuming that AOCQRY is invoked to check the Terminate flag, both of the above
examples are equivalent to invoking the following from the NetView automation
table for $HASP607:
ISSUECMD AUTOTYP=TERMINATE

Example 3
This example shows the use of PASSnn logic in an automation procedure. The
message to automate, $HASP607, is produced by the JES2 subsystem and indicates
that JES2 is not dormant. The automation procedure responds the first time by
stopping the JES2 initiators ($PI command), and the second time by abending JES2
($P JES2,ABEND).

The commands are defined in the automation policy through the customization
dialogs. The data is stored in the automation control file in the following way:

ACFCMD

Chapter 2. SA z/OS System Operations Commands 13

AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
TYPE IS $HASP607
CMD = (PASS1,,’MVS $PI’)
CMD = (PASS2,,’MVS $P JES2,ABEND’)
END OF MULTI-LINE MESSAGE GROUP

The automation procedure to issue the commands is:
/* REXX CLIST to automate $HASP607 */
/* Check whether automation allowed and set TGLOBALs */
’AOCQRY ...’

:
/* Increase the counter unique to this automation procedure */
’GLOBALV GETC HASP607_CNT’
If hasp607_cnt = " Then hasp607_cnt = 1
Else hasp607_cnt = hasp607_cnt + 1
’GLOBALV PUTC HASP607_CNT’
/* Issue the ACF command for the pass number as determined */
’ACFCMD MSGTYP=’Msgid()’,SEL=PASS’hasp607_cnt
Select

When rc = 0 Then Nop /* Command issued OK */
When rc = 1 Then Do /* No commands issued; warn if required */
:
End
Otherwise Do /* Error; perform warning action */
:
End

End
Exit

This example differs from the previous examples in the following ways:
v The automation procedure uses a unique common global variable, in this case

HASP607_CNT, to maintain a PASS counter. The automation procedure adds 1
to this counter each time it is processed, then appends the counter to the
SEL=PASS field. During processing, the counter is translated, and PASS1 or
PASS2 is processed. Note that a null test is required to set the counter to 1 if it
has not been set before. If the counter exceeds 2 then the ACFCMD will set a
return code of 1 since there is no matching entry in the automation control file.

Note: This example assumes you are using one JES subsystem. If you are using
multiple JES subsystems, you must use a different counter variable for
each.

v Another automation procedure that resets the counter is necessary to complete
the logic flow. For this example, the automation procedure runs when the final
JES2 message or a startup message is received. Note that the counter is cleared
rather than set to zero. This saves an entry in the NetView global dictionary
unless the message $HASP607 has occurred.
The automation procedure to reset the counter is:
/* REXX CLIST to reset the counter */
hasp607_cnt = ’’
’GLOBALV PUTC HASP607_CNT’
Exit

Notes:

1. To ensure serialization of access to the NetView global dictionary and the
correct ordering of the commands issued, the NetView automation table entry
should route the command to a specific operator if the message may occur
more than once in quick succession.

2. If AOCQRY is checking the Terminate flag this example could be coded as:

ACFCMD

14 System Automation for z/OS: Programmer's Reference

ISSUECMD AUTOTYP=TERMINATE,PASSES=YES

The pass count will be reset when the application final termination message is
processed.

Example 4
This example shows the use of EHKVARn variables. It also shows the use of
duplicate selection fields because two entries are coded, each with PASS1. The
message to automate is given in response to the JES2 $DU command, which
displays all JES2 devices. The message ID produced by JES2 is $HASP628. The
example assumes the full text of the message is passed to the automation
procedure. The automation procedure checks the resource type, and if the resource
is a line, stops the line using the $P LINEnn command, then stops current activity
with a restart command, $E LINEnn.

The commands are defined in the automation policy through the customization
dialog panels. The data is stored in the automation control file in the following
way:

AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
TYPE IS $HASP628
CMD = (PASS1,,’MVS $P &EHKVAR1’)
CMD = (PASS1,,’MVS $E &EHKVAR1’)
END OF MULTI-LINE MESSAGE GROUP

The automation procedure to issue the commands is:
/* REXX CLIST to automate $HASP628 */
/* Check whether automation allowed and set TGLOBALs */
’AOCQRY ...’

:
/* Assign EHKVAR1 to parameter 2 (resource name on $HASP628 msg)
then determine whether the first characters are LINE, if not, exit */
ehkvar1 = Msgvar(2)
If Left(ehkvar1,4) <> ’LINE’ Then Exit
’GLOBALV PUTT EHKVAR1’
’ACFCMD MSGTYP=’Msgid()’,SEL=PASS1’
Select

When rc = 0 Then Nop /* Command issued OK */
When rc = 1 Then Do /* No commands issued; warn if required */
:
End
Otherwise Do /* Error; perform warning action */
:
End

End
Exit

Following are the processing steps the automation procedure performs:
1. The EHKVAR1 variable is assigned the value in the second parameter sent to

the automation procedure, which for the $HASP628 message is the resource
type

2. The automation procedure verifies that the resource type is a LINE, then sets
the variable to a task global variable and calls ACFCMD

3. Assuming the second parameter is LINE21, two commands are issued from this
automation procedure:
$P LINE21
$E LINE21.

ACFCMD

Chapter 2. SA z/OS System Operations Commands 15

ACFFQRY

Purpose
The ACFFQRY command provides a fast, pipeable means of accessing the
SA z/OS automation control file from your automation procedures.

See also the related command ACF in IBM Tivoli System Automation for z/OS
Operator’s Commands.

Syntax
The following syntax diagram shows how to use the ACFFQRY command to query
the automation control file.

�� ACFFQRY
entry (

TAME NOWILD
entry

type (
TAME NOWILD DATA

��

Parameters
entry

This is the entry value to be used to search the automation control file. The
entry value may take the following forms:

* The entry value is or ends with the wildcard character, unless TAME is
specified.

entry
A specific entry value is entered. You must enter a specific entry value if
you want to specify a type value.

type
This is the type value to be used to search the automation control file. A type
value can be specified only when a specific entry value is entered. The type
value may take the following forms:

* The type value is or ends with the wildcard character, unless TAME or
NOWILD is specified.

type
A specific type value is entered.

TAME
Wildcards in the entry and type name in the automation control file database
are to be matched against the entry and type specified on the search. TAME
allows for wildcards in the database that you are searching. For example, with a
constant query string, such as AAA 123 you can match on multiple entries in
the automation control file, such as AAA 12*.

This means that if user entries and types have been set up in the automation
control file with an asterisk for the last character they are taming candidates.
This may be particularly useful for situations where generic rather than specific
data is maintained and used in automation procedures.

NOWILD
The asterisk (*) character in the query string is to be treated as a literal.

ACFFQRY

16 System Automation for z/OS: Programmer's Reference

DATA
The keyword=value data that is related to the entry/type pair is to be
returned.

Restrictions and Limitations
A type value can be specified only if a specific entry value is specified.

Usage
It is most efficient if it is called within a PIPE, but may also be called within a
TRAP/WAIT/MSGREAD.

Task Global Variables
None.

Messages
Output from ACFFQRY takes the form of a correlated multiline message, with one
or two list items and data elements on each line of the message. There are no
surrounding message IDs or details.

The first line of the multiline message is always the literal ACFFQRY:, followed by
the return code from ACFFQRY. If output is present it begins on line two. This
means that output returned in a stem must be processed from element two.

If keyword=data is returned, the entry and type will precede it. Your routines can
differentiate entry/type output from data output by the presence of an equals (=)
sign. For example:
If Pos(’=’,data.n) = 0 then Do
/* data line is an ENTRY TYPE */
End
Else Do
/* data line is an KEYWORD=VALUE */
End

v If both entry and type parameters are omitted, a list of all the entries is returned.
v If an entry is specified and the type is omitted, a list of the entry and all the

types for that entry is returned.
v If both entry and type are specified, all the data for that entry/type combination

is returned.
v If the parameters indicate an area where there is no data, a null list is returned.

Table 3 shows the result for various parameter combinations. An “-” means that an
option is irrelevant to the output produced. An asterisk in the DATA column
indicates that the keyword=value data is returned.

Table 3. Output from ACFFQRY

Entry Type TAME NOWILD DATA Result

- - List of all entries

en* or * No No List of entries starting with
“en”.

en* or * Yes No List of all entries starting with
en or taming en*.

entry Yes - - List of entries taming entry

entry No - - List of types for entry

ACFFQRY

Chapter 2. SA z/OS System Operations Commands 17

Table 3. Output from ACFFQRY (continued)

Entry Type TAME NOWILD DATA Result

entry ty* No No * List of types for entry starting
with ty

entry ty* Yes No * List of types for entry starting
with ty or taming ty*

entry ty* No Yes * All data for entry entry and
type ty*

entry ty* Yes Yes * List of all types for entry
taming ty*

entry type No - - All data for entry entry and
type type

entry type Yes - * List of all types for entry
taming type

Return Codes
These return codes appear on the first line of the returned data, after the literal
ACFFQRY:.
0 Data returned.
1 There is no data for the specified parameters or SA z/OS is not fully

initialized.
2 Too many parameters before the opening parentheses. You can specify at most

one entry and one type, each of which is a single word.
3 Entry/Type combination not allowed. If you have specified an entry including

an *, you may not specify a type.
5 The SA z/OS global variables containing internal automation control file

information have been corrupted.
6 You have specified an invalid option.
7 You have specified an option more than once.

Examples

Example 1
An ACFFQRY specifying a full ENTRY value only:
ACFFQRY SUBSYSTEM

This returns all TYPE matches for that ENTRY:
ACFFQRY:0
SUBSYSTEM SYSVSSI
SUBSYSTEM SYSVIEW
SUBSYSTEM VLF
SUBSYSTEM LLA
SUBSYSTEM JES
SUBSYSTEM VTAM
SUBSYSTEM TSO
SUBSYSTEM RMF

Example 2
An ACFFQRY specifying a full ENTRY value and a full TYPE value:
ACFFQRY SUBSYSTEM TSO

This returns all keyword=value data that is associated with the ENTRY/TYPE pair:

ACFFQRY

18 System Automation for z/OS: Programmer's Reference

ACFFQRY:0
SUBSYSTEM TSO
JOB=TSO
DESC=’Time Sharing Option’
SHUTDLY=00:01:30

Example 3
An ACFFQRY specifying a full ENTRY and a wild TYPE:
ACFFQRY SUBSYSTEM V*

This returns a list of all matching TYPES:
ACFFQRY:0
SUBSYSTEM VLF
SUBSYSTEM VTAM

Example 4
This example is the same as Example 3, except that the DATA option is specified:
ACFFQRY SUBSYSTEM V* (DATA

The keyword=value data that is values for all matches are returned:
ACFFQRY:0
SUBSYSTEM VLF
DESC=’Virt Lib DEF’
SCHEDSUB=MSTR
JOBTYPE=MVS
IPLOPTIONS=START
RECYCLEOPT=START
RESTARTOPT=ALWAYS
PARMS=’,SUB=MSTR,NN=00’
SHUTDLY=00:03:00
STRTDLY=00:02:00
TERMDLY=00:00:15
JOB=VLF
SUBSYSTEM VTAM
DESC=’VTAM V4.1’
PARMS=’,,,(LIST=FP)’
SHUTDLY=00:01:00
JOB=VTMN24E

Example 5
This example shows the use of the TAME option:
ACFFQRY CONTROLLER QLN37A07 (TAME

All ENTRY/TYPES that include a wildcard that matches the search string are
returned:
ACFFQRY:0
CONTROLLER QLN*
CONTROLLER QLN37*
CONTROLLER Q*

Example 6
This example is the same as example 5 except that the DATA option is specified:
ACFFQRY CONTROLLER QLN37A07 (TAME DATA

All keyword=value data for the ENTRY/TYPE list is returned:
ACFFQRY:0
CONTROLLER QLN*
LOCATION=NEW_YORK
TYPE=LOCAL
OWNER=’FRED SMITH’

ACFFQRY

Chapter 2. SA z/OS System Operations Commands 19

CONTROLLER QLN37*
LOCATION=’Episode 1, Level 3, Oil Refinery’
TYPE=LOCAL
START=’MVS VARY 04AE,ONLINE’
OWNER=’JIM SMITH’
CONTROLLER Q*
LOCATION=USA
TYPE=GLOBAL
OWNER=’BILL SMITH’

Example 7
This example shows the result of the following NOWILD option:
ACFFQRY CONTROLLER QLN37* (NOWILD

The asterisk (*) is treated as a literal in the search pattern:
ACFFQRY:0
CONTROLLER QLN37*
LOCATION=’Episode 1, Level 3, Oil Refinery’
TYPE=LOCAL
START=’MVS VARY 04AE,ONLINE’
OWNER=’JIM SMITH’

Example 8
The following example shows how to find the job name for a subsystem from a
REXX routine, using the NetView PIPE facility:
Get_Jobname:
Arg subsystem .
’PIPE NETVIEW ACFFQRY SUBSYSTEM’ subsystem ’| STEM ALL_DATA.’,
’| SEPARATE | LOCATE 1.4 /JOB=/ | TAKE 1 | STEM JOBNAME.’
If all_data.0 < 1 Then

Say ’PIPE 1 Failed’
If all_data.1 <> ’ACFFQRY:0’ Then

Return
If jobname.0 = 0 Then

Return subsystem
Parse var jobname.1 ’JOB=’ jobname .
Return jobname

Example 9
This example takes the name of a failing device and finds the appropriate person
to notify. It makes use of the TAME option. The data being searched is:
DEVFAIL DEV1230,
CONTACT=MIK
DEVFAIL DEV12*,
CONTACT=JB
DEVFAIL DEV34*,
CONTACT=JAQUES
DEVFAIL DEV*,
CONTACT=MIK
CONTACT MIK,
page=00230936473
CONTACT JB,
page=00234628164
CONTACT JAQUES,
page=00237564815

The following code fragment takes the number of a failing device and returns the
paging number for the person to be notified. Note the use of subroutines that
make it easy to write similar queries and could replace the previous example.
Get_Page_Num:
Procedure
Arg device_number .

ACFFQRY

20 System Automation for z/OS: Programmer's Reference

match = Get_Best_Match(’DEVFAIL’,device_number)
If match = ’’ Then

Return
contact = Get_Key(’CONTACT=’,’DEVFAIL’,match)
If contact = ’’ Then

Return
Return Get_Key(’page=’,’CONTACT’,contact)

Get_Best_Match:
Procedure
Arg entry ., type .
’PIPE NETVIEW ACFFQRY’ entry type ’(TAME | STEM DATA.’
If data.0 < 1 Then

Say ’Get_Best_Match PIPE Failed’
If data.0 <> ’ACFFQRY:0’ Then

Return
match = ’’ /* Longest match = best match */
match_len = 0
Do i = 2 to data.0

If words(data.i) = 2 Then Do
data_val = word(data.i,2)
If Length(data_val) > match_len The Do

match = data_val
match_len = Length(match)

End
End

End
Return match

Get_Key:
Procedure
Arg key . , entry ., type .
’PIPE NETVIEW ACFFQRY’ entry type ’(NOWILD | STEM ALL_DATA.’,
’| SEPARATE | LOCATE 1.’||length(key) ’/’||key||’/’,
’| TAKE 1 | STEM DATA.’
If all_data.0 < 1 Then

Call Terminal_Error ’Get_Key PIPE Failed’
If all_data.1 <> ’ACFFQRY:0’ Then

Return
parse var data.1 .’=’ data_val
Return data_val

ACFREP

Purpose
The ACFREP command allows an automation procedure to issue replies defined in
the automation policy. It searches the automation control file for the specified
entries, performs variable substitution for predefined variables, then issues the
reply.

ACFREP can also issue replies that are built dynamically by the calling automation
procedure and passed to ACFREP through a special task global variable named
EHKRPY.

ACFREP issues replies to the resource that is identified by the task global variables
SUBSAPPL and SUBSTYPE, which are set by the AOCQRY command.

In general you should consider using ISSUEREP or ISSUEACT from the NetView
automation table, rather than calling ACFREP directly. This has the following
advantages:
v It checks the automation flags for you, to ensure that automation is allowed.

ACFFQRY

Chapter 2. SA z/OS System Operations Commands 21

v It checks that the job that issued the message is known to SA z/OS.

If the application responds with a new WTOR after your automation routine
issued the ACFREP call, then your automation routine must be invoked again to
give SA an opportunity to store new WTOR details. Multiple consecutive ACFREP
calls in your automation routine will not find the new outstanding reply and will
result in return code 2.

Syntax
To issue replies directly defined in the automation control file use the following
syntax:

1. Syntax for directly defined replies

�� ACFREP MSGTYP= �

,

(type)
,REPLYID=replyid

,RETRY=0
,RETRY=nn �

�
,ENTRY=entry ,SEL= PASSnn

PASS*
selection

��

To issue replies built dynamically by the calling automation procedure use the
following syntax:

2. Syntax for dynamically built replies

�� ACFREP FUNC=ISSUE
,REPLYID=replyid

,RETRY=0

,RETRY=nn
��

Parameters
MSGTYP

This value is the message ID in the MESSAGES/USER DATA policy item
where the replies to be issued by ACFREP are defined. The value of MSGTYP
is typically coded with the message ID or with a generic name such as
SPOOLSHORT or SPOOLFULL. The specified type values are searched in the
order specified until an entry with the given entry and type value can be found.

REPLYID
The MVS reply identifier associated with this reply.

This parameter is optional. If it is not specified, the outstanding reply value is
retrieved and used, regardless of the specified MSGTYP value.

RETRY
nn specifies the retry count if an outstanding reply is not available. The first
time after 1 second and then every two seconds, ACFREP attempts to retrieve
an outstanding reply until the retry count is exhausted. When an outstanding
reply ID is retrieved, the reply is issued. If no RETRY value is coded, ACFREP
defaults to RETRY=0.

ACFREP

22 System Automation for z/OS: Programmer's Reference

ENTRY
This value is the entry in the automation MESSAGES/USER DATA policy item
where the replies to be issued are defined. The default is the name of the
subsystem that issued the WTOR.

This parameter is mutually exclusive with the FUNC=ISSUE parameter.

SEL
This parameter provides the criteria for the first field in the reply entry. This
field gives detailed criteria to select a reply or replies from the automation
control file. Based on the MSGTYP, ENTRY and SEL fields, any specific reply
can be retrieved from a group of replies associated with a message entry. This
parameter is mutually exclusive with the FUNC=ISSUE parameter.

The replies associated with the specified pass selection value defined in the
automation policy are issued, along with all replies defined without a selection
value. For selection values beginning with PASS, those replies to the pass
selection value of PASS* are additionally issued.

If no SEL parameter is coded all replies are selected without respect to any
pass selection value in the first field of the reply entry.

PASSnn
PASSnn values can range from 1 through 99 and must be coded without
leading zeros, such as PASS1, PASS2, and PASS3.

When SEL=PASSnn is specified, replies associated with the PASSnn
selection value defined in the automation policy are issued, along with all
replies defined with the selection value of PASS* or with no selection
value.

PASS*
When SEL=PASS* is specified, replies associated with the PASS* selection
value defined in the automation policy are issued, along with all replies
defined without a selection value and all replies defined with a selection
value beginning with the prefix PASS.

selection
When SEL=selection is specified, the replies associated with the specific
selection value defined in the automation policy are issued, along with all
replies defined without a selection value.

FUNC=ISSUE
The reply to be issued in response to the incoming WTOR is taken from the
task global variable EHKRPY.

This parameter is mutually exclusive with the ENTRY and SEL parameters.

Restrictions and Limitations
The ACFREP command should be called only by an automation procedure or by a
command processor. The AOCQRY command must be invoked first to set the
SUBSAPPL and SUBSTYPE task global variables.

For serialization reasons, ACFREP must run on:
v The work operator of the subsystem that issued the WTOR if no REPLYID was

specified
v The SYSOPER task, if the WTOR was not issued by a subsystem known to

SA z/OS

ACFREP

Chapter 2. SA z/OS System Operations Commands 23

Return Codes
0 A reply was found and issued.
1 No reply meeting the selection criteria was found.
2 No outstanding reply ID was found.
3 ACFREP successfully responded to only part of the defined replies.
4 Incorrect parameters were used in the call.
5 Timeout or other error occurred.
6 SA z/OS initialization incomplete, unable to process command request.

Usage
v Consider using ISSUEACT or ISSUEREP from the NetView automation table

rather than using ACFREP directly.
v Multiple replies may exist for a given ENTRY, MSGTYP, or SEL field. These

replies are processed in the same sequence as they are defined. For the second
and subsequent replies, ACFREP always retrieves the outstanding reply number
of a subsystem before issuing the reply. If an outstanding reply number does not
exist when the reply should be issued, ACFREP attempts a retry if so defined.
Retries may be defined either through the RETRY keyword of ACFREP or
through the retry value specified in the policy entry. The retry value that you
specified in the RETRY keyword takes precedence over that in your policy if
both are specified. There is a 2-second delay between retry attempts.

v SA z/OS variable EHKRPYHI is returned to the calling automation procedure as
a task global variable value. ACFREP retrieves all reply entries for a given
ENTRY or MSGTYP value, searches for the highest PASSnn number, and returns
it in the variable EHKRPYHI. You can use this number to determine whether all
available commands are issued and an appropriate error message is issued to
the operator. If PASSnn is not coded, EHKRPYHI is zero.

v Variables are available to change the reply entered in the automation control file.
Variables EHKVAR0 through EHKVAR9 and EHKVART must be defined as task
global variables in the calling automation procedure and must be initialized with
the data to change the replies. These variables are passed to the ACFREP
command. Whenever ACFREP finds a detail reply entry in the automation
control file, it scans the reply entry looking for &EHKVARn. If an EHKVARn
variable is found, the value stored in the variable replaces the &EHKVARn in
the reply entry. You can code multiple &EHKVARn variables in a single reply
entry. Delimiters are unnecessary, and you can code the variables between any
other text.

v If your automation procedure issues a TRAP command, you must save the
message variables upon entry, because this information is lost whenever message
processing is started.

Task Global Variables
The following run time variables are used by ACFREP for different purposes:

EHKRPY
When ACFREP is called with FUNC=ISSUE, this variable must provide the
reply that is to be issued.

EHKRPYHI
This variable contains the number of the highest PASSnn selection for defined
replies to the specified entry and type in the automation policy.

EHKRPYTEXT
The text for the AOF570I confirmation message, after having issued the reply.

ACFREP

24 System Automation for z/OS: Programmer's Reference

EHKVAR0 through EHKVAR9 and EHKVART
These variables can be used to alter reply definitions in the automation policy.
If included in the defined replies with a leading &, the variables are
substituted by their values before the replies are issued. The values of these
variables must be provided by the calling automation routine.

&APPLPARMS
This variable provides the value that is entered in the APPLPARMS parameter
of the INGREQ command when starting or stopping the resource related to the
specified entry. The value of this variable is only available during startup or
shutdown processing of a resource under the control of SA z/OS and can be
used to alter replies entered in the automation policy.

If the AOCQRY command has been invoked in the calling automation routine, it
sets the following task global variables if the appropriate information is available
(where x can be either S for subsystem, or P for parent subsystem):
v SUBxAPPL
v SUBxASID
v SUBxCATEGORY
v SUBxCMDPFX
v SUBxDESC
v SUBxFILE
v SUBxFILTER
v SUBxIPSTACK
v SUBxJOB
v SUBxPATH
v SUBxPID
v SUBxPLEX
v SUBxPORT
v SUBxPROC
v SUBxSCHEDSS
v SUBxSHUTDLY
v SUBxSPARM
v SUBxSUBCAT
v SUBxSUBID
v SUBxSUBTYPE
v SUBxSYMBOLn (n=1–9)
v SUBxUSER
v SUBxUSSJOB

These task global variables are substituted when they are specified with a leading
& in replies that have been defined in the automation policy or provided in the
task global variable EHKRPY. Refer to the tables in “Task Global Variables” on
page 44 for AOCQRY.

Valid symbols for provider run time variables are as follows (where x can be either
S for subsystem, or P for parent subsystem):
v SU2xAPPL
v SU2xASID
v SU2xCATEGORY
v SU2xCMDPFX
v SU2xDESC
v SU2xFILE
v SU2xFILTER
v SU2xIPSTACK
v SU2xJOB
v SU2xPATH

ACFREP

Chapter 2. SA z/OS System Operations Commands 25

|

|
|

v SU2xPID
v SU2xPORT
v SU2xPROC
v SU2xSCHEDSS
v SU2xSHUTDLY
v SU2xSUBCAT
v SU2xSUBID
v SU2xSUBTYPE
v SU2xSYMBOLn (n=1–9)
v SU2xUSER
v SU2xUSSJOB

Common Global Variables
Common global variable AOFJESPREFX is substituted in the reply to be issued
when found.

Examples

Example 1
This example shows the relationship between ACFREP and automation policy. The
message to automate, $HASP426, is produced by the JES2 subsystem, requesting
the JES2 startup specifications. The automation procedure responds to this by
calling ACFREP to issue a reply of WARM,NOREQ from the automation control file.

The data is stored in the automation control file in the following way:

AOFK3D0X SA z/OS - Command Response Line 1 of 4
Domain ID = IPSNO ---------- DISPACF ---------- Date = 06/06/00
Operator ID = NETOP1 Time = 13:30:53

Command = ACF ENTRY=JES2,TYPE=$HASP426,REQ=DISP
SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
TYPE IS $HASP426
REPLY = (,,’WARM,NOREQ’)
END OF MULTI-LINE MESSAGE GROUP

The automation procedure to issue this reply is:
/* REXX CLIST to automate the reply to $HASP426 */
/* Check whether automation allowed and set TGLOBALs */
’AOCQRY ...’

:
’ACFREP MSGTYP=$HASP426,REPLYID=’Replyid()’,ENTRY=JES2’
Select

When rc = 0 Then Nop /* Reply issued OK */
When rc = 1 Then Do /* No reply issued; warn if required */
:
End
Otherwise Do /* Error; perform warning action */
:
End

End
Exit

ACFREP uses the parameters that are passed to the routine to find corresponding
entries in the automation control file. Because no SEL parameter is coded, no
selection restriction is made concerning the first field of the command entry.

ACFREP

26 System Automation for z/OS: Programmer's Reference

Note that the function Replyid() is used for the REPLYID parameter. This function
is a standard NetView REXX function that will only return a value to an
automation procedure called from the NetView automation table, and only if a
reply is required. You can use this value when calling ACFREP.

Upon return to the automation procedure, the rc special variable is checked to
ensure that a reply was found in the automation control file. The automation
procedure takes appropriate action if a reply is not found or a processing error
occurs in ACFREP.

Note: Assuming that AOCQRY was checking the Start automation flag, this
example routine could be replaced by coding:
ISSUEREP AUTOTYP=START

Example 2
This example uses the same scenario as Example 1, but shows how you can use
the defaults to minimize coding. The message to automate, $HASP426, is produced
by the JES2 subsystem and requests the JES2 startup specifications. The automation
procedure responds to this by calling ACFREP to issue a reply of WARM,NOREQ from
the automation control file.

The reply is defined in the automation policy in the same way as Example 1.

The automation procedure to issue the reply is:
/* REXX CLIST to automate the reply to $HASP426 */
/* Check whether automation allowed and set TGLOBALs */
’AOCQRY ...’

:
’ACFREP MSGTYP=’Msgid()’,REPLYID=’Replyid()
Select

When rc = 0 Then Nop /* Reply issued OK */
When rc = 1 Then Do /* No reply issued; warn if required */
:
End
Otherwise Do /* Error; perform warning action */
:
End

End
Exit

This example differs from Example 1 in the following ways:
v ACFREP uses a NetView REXX function for the MSGTYP field and assumes the

defaults for the ENTRY and SEL fields.
The ENTRY field defaults to the value of SUBSAPPL. AOCQRY will set this
value to the name of the application that AOCQRY was invoked with. In this
case the value is JES2.

v The MSGTYP field uses the NetView REXX function Msgid(), which contains the
message identifier for the message that called the automation procedure. This
message identifier is supplied only to an automation procedure called from the
NetView automation table. Use this value when calling ACFREP. Note that
calling WAIT will replace the value of Msgid().

Note: Assuming AOCQRY was checking the Start flag, this example could be
replaced with:
ISSUEREP AUTOTYP=START

ACFREP

Chapter 2. SA z/OS System Operations Commands 27

Example 3
This example shows the use of PASSnn logic in an automation procedure. The
message to automate, $HASP098, is produced by the JES2 subsystem and requests
the JES2 shutdown options. The automation procedure responds to this, the first
Reply time, by calling ACFREP to issue a REPLY of DUMP from the automation
control file, and the second time by issuing a reply of PURG.

Reply information is defined in the automation policy through the customization
dialogs. The data is stored in the automation control file in the following way:

AOFK3D0X SA z/OS - Command Response Line 1 of 5
Domain ID = IPSNO ---------- DISPACF ---------- Date = 06/06/00
Operator ID = AFRANCK Time = 13:36:31

Command = ACF ENTRY=JES2,TYPE=$HASP098,REQ=DISP
SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
TYPE IS $HASP098
REPLY = (PASS1,,’DUMP’)
REPLY = (PASS2,,’PURG’)
END OF MULTI-LINE MESSAGE GROUP

The automation procedure to issue these replies is:
/* REXX CLIST to automate $HASP098 */
/* Check whether automation allowed and set TGLOBALs */
’AOCQRY ...’

:
/* Increase the counter unique to this automation procedure */
’GLOBALV GETC HASP098_CNT’
If hasp098_cnt = " Then hasp098_cnt = 1
Else hasp098_cnt = hasp098_cnt + 1
’GLOBALV PUTC HASP098_CNT’
/* Issue the ACF reply for the pass number as determined */
’ACFREP MSGTYP=’Msgid()’,REPLYID=’Replyid()’,SEL=PASS’hasp098_cnt
Select

When rc = 0 Then Nop /* Reply issued OK */
When rc = 1 Then Do /* No reply issued; warn if required */
:
End
Otherwise Do /* Error; perform warning action */
:
End

End
Exit

This example differs from the previous examples in the following ways:
v The automation procedure uses a unique common global variable, in this case

HASP098_CNT, to maintain a PASS counter. The automation procedure adds 1
to this counter each time it is processed, then appends the counter to the
SEL=PASS field. During processing, the counter is translated, and PASS1 or
PASS2 is run. Note that a null test is required to set the counter to 1 if it has not
been set before. If the counter exceeds 2 then the ACFREP will set a return code
of 1 since there is no matching entry in the automation control file.

v Another automation procedure that resets the counter is necessary to complete
the logic flow. In this example, this automation procedure is processed when the
final JES2 message or a startup message is received.
The automation procedure to reset the counter is:

ACFREP

28 System Automation for z/OS: Programmer's Reference

/* REXX CLIST to reset the counter */
hasp098_cnt = ’’
’GLOBALV PUTC HASP098_CNT’
Exit

Note: To ensure serialization of access to the NetView global dictionary and the
correct ordering of the replies issued, the NetView automation table entry
should route the command to a specific operator if the message may occur
more than once in quick succession.

ACTIVMSG

Purpose
You can use the ACTIVMSG command to respond to ACTIVE and UP messages
from an application by changing the SA z/OS status of the application.
ACTIVMSG calls the ISSUEACT command to also issue commands and replies
that are defined in the automation policy for both the ID of the ACTIVE or UP
message and for the new status of the application. Typically, ACTIVMSG is called
from the NetView automation table.

Syntax

�� ACTIVMSG
UP=NO

UP=YES
JOBNAME=jobname

MSGTYPE=type EHKVAR=YES
EHKVAR=NO

�

�
REPLY=NO
REPLY=YES

PASSES=NO
PASSES=YES

CODE1=code1 CODE2=code2
�

�
CODE3=code3 PID=number ASID=asid

��

Parameters
UP This parameter is used to distinguish between ACTIVE messages and UP

messages. ACTIVE messages indicate that the job associated with an
application is working but is not yet available for use. UP messages indicate
that the job associated with an application is available for use.

NO NO should be used if you are responding to an application ACTIVE
message. The application is placed in ACTIVE status if it is not there
already. UP=NO is the default.

YES
YES should be used if you are responding to an application UP message.
The application is placed in UP status if it is not there already. If the
application is a transient job then it is placed in RUNNING status.

JOBNAME
The name of the job that the message is for. If not specified, the job name is
taken from the message's job name field. You must supply a value for the job
name if you are calling ACTIVMSG from a CLIST.

ACFREP

Chapter 2. SA z/OS System Operations Commands 29

MSGTYPE
This parameter is used to search for command and reply entries to
subsystem/msgtype-pairs in the automation control file, where subsystem is the
subsystem name derived from the job name.

When a match occurs, the commands that are associated with the entries are
issued. This is in addition to the entries that are associated with the
ENTRY-TYPE pair subsystem/ACTIVE if UP=NO and subsystem/UP if UP=YES.

If parameter MSGTYPE is not specified, the message identifier of the message
that ACTIVMSG is called for is taken as the default.

EHKVAR
This parameter determines whether the tokens of the parsed message text are
to be stored in task global variables EHKVAR0 through EHKVAR9 and
EHKVART.

YES
The tokens of the triggering message are to be assigned to the task global
variables EHKVARn.

NO No values are to be assigned to the task global variables EHKVARn.

REPLY
This parameter determines whether a defined reply is issued for a message
that ACTIVMSG has been called for.

YES
A defined reply in the automation policy for the message that is being
handled by ACTIVMSG is issued. REPLY=YES is assumed as the default if
the message is a WTOR, otherwise the default is REPLY=NO.

NO A defined reply for a WTOR that is being handled by ACTIVMSG is not
issued.

PASSES
Specifies whether passes are used to issue commands or replies (or both) that
have been defined in the automation policy.

YES
PASSES=YES is passed to the ISSUEACT command.

NO PASSES=NO is passed to the ISSUEACT command.

CODE1=code1 CODE2=code2 CODE3=code3
These parameters are passed to the ISSUEACT command, where they are used
to select defined commands and replies via code entries.

PID
The process ID of the resource. Together with the ASID, it uniquely identifies
the resource.

ASID
The ASID that is associated with the resource. Together with the PID, it
uniquely identifies the resource.

Restrictions and Limitations
v If ACTIVMSG is driven by a delete operator message, no action is taken in

response to this message.
v Defined commands and replies are only issued in response to a message or a

status change if the start flag of the related minor resources of the application
allows automation.

ACTIVMSG

30 System Automation for z/OS: Programmer's Reference

Usage
You should typically call the ACTIVMSG command from the NetView automation
table.

It is recommended that you use ACTIVMSG for all IEF403I (job started) messages.

If ACTIVMSG is called for a WTOR and it is not replied to, OUTREP is called to
track the WTOR.

If you are invoking ACTIVMSG for a generic message you should use the
ING$QRY NetView automation table function to screen the message before
invoking ACTIVMSG. See Chapter 4, “ING$QRY NetView Automation Table
Function,” on page 187 for more information.

ACTIVMSG should run on the working operator of the subsystem that issued the
message. Otherwise, the ACTIVMSG command will run asynchronously to the
calling procedure. This means that when the calling procedure regains control, the
status of the affected subsystem may not yet have changed.

All commands and replies that are triggered through ACTIVMSG have access to
the SAFE, called AOFMSAFE, that stores the message that caused the ACTIVMSG
call.

Task Global Variables
EHKVAR0 through EHKVAR9 and EHKVART

When defining the commands in the automation control file to be issued by
command ACTIVMSG, the variables &EHKVAR0 through &EHKVAR9 and
&EHKVART can be used to be substituted by the tokens of the parsed message
that has driven ACTIVMSG. &EHKVAR0 will be substituted by the message
ID, &EHKVAR1 by the first token of the message text after the message ID,
&EHKVAR2 with the second token and so forth. &EHKVART will be
substituted by the trailing message text after the 9th token.

Examples
The following example shows how ACTIVMSG is called from the NetView
automation table:
IF MSGID = ’IEF403I’ & TOKEN(2) = SVJOB & DOMAINID = %AOFDOM%

& ATF(’ING$QRY APPL,,JOB=’VALUE(SVJOB)) ^= ’’
THEN
EXEC(CMD(’ACTIVMSG JOBNAME=’ SVJOB)
ROUTE(ONE %AOFOPGSSOPER%));

AOCFILT

Purpose
The AOCFILT command is used to screen messages that invoke other commands.
Although it adds to the overhead of a useful invocation of a command, it greatly
reduces CPU used to detect an unnecessary invocation.

Note: For performance reasons consider using ING$QRY instead, see Chapter 4,
“ING$QRY NetView Automation Table Function,” on page 187.

ACTIVMSG

Chapter 2. SA z/OS System Operations Commands 31

Syntax

�� AOCFILT jobname command
*

��

Parameters
jobname

This is the name of the job that the message refers to. If an * is specified the
default job name for the message, retrieved with the NetView jobname()
function, is checked.

command
This command is issued (in a PIPE) if the jobname parameter is the name of a
job known to SA z/OS. If the job name is not the name of a job of a
SA z/OS-controlled application, the command is not issued.

Restrictions and Limitations
v The command should be invoked only when there is a message in the default

safe. Normally this will be from the NetView automation table (AT).
v You must obtain the job name before you invoke AOCFILT.

Return Codes
AOCFILT produces a return code of 0.

Usage
You should code the AOCFILT command in the NetView automation table (AT)
where you are using a generic message (such as IEF403I) to invoke one of the
SA z/OS commands (such as ACTIVMSG).

AOCFILT routes the command that is passed to it to the auto operator that is
responsible for that particular subsystem.

AOCFILT is not as efficient as explicitly screening for the message in the AT, but
may be more efficient than negative screening. AOCFILT also makes the
automation statement more portable, in that you do not have to update it if you
define a new application to SA z/OS.

Examples
In the following example, the NetView automation table is used to block out all
IEF403I messages concerning jobs starting with the letters BAT, and AOCFILT is
used to screen the other IEF403I messages:
IF MSGID = ’IEF’ . & DOMAINID = %AOFDOM% THEN BEGIN;
...

IF MSGID = ’IEF403I’ THEN BEGIN;

IF TOKEN(2) = ’BAT’ . THEN DISPLAY(N) NETLOG(Y);

IF TOKEN(2) = SVJOB THEN
EXEC(CMD(’AOCFILT ’ SVJOB ’ ACTIVMSG JOBNAME=’ SVJOB)
ROUTE(ONE %AOFOPGSSOPER%));

END;
...

ALWAYS;
END;

AOCFILT

32 System Automation for z/OS: Programmer's Reference

Related Commands
v “ACTIVMSG” on page 29
v “HALTMSG” on page 74
v “ISSUEACT (ISSUECMD, ISSUEREP)” on page 161
v “TERMMSG” on page 171

AOCGETCN

Purpose
The AOCGETCN command obtains an extended MCS console with a unique name
for an operator or autotask issuing the command. If an MVS console is already
associated with that task, it is released.

The default console name is the character A, followed by the last 5 characters of
the task name concatenated with the last two characters of the system name.

Syntax

�� AOCGETCN parameters ��

Parameters
Optionally, you may supply one or more parameters that are valid for NetView's
GETCONID, for example, ALERTPCT, MIGRATE, QLIMIT, QRESUME, or
STORAGE.

If you specify more than one parameter, you can either separate them by blank or
by comma, for example:
AOCGETCN MIGRATE=YES,STORAGE=1000

For further information and a list of valid GETCONID parameters and their
descriptions, refer to the NetView documentation.

Restrictions and Limitations
The previous console will be released even if AOCGETCN fails to obtain the new
console.

The GETCONID parameters CONSOLE=xxxxxxxx and AUTH=yyyyyyy are not
supported. If you enter them, they will be ignored.

Usage
Console names within a sysplex must be unique. The task name is used if the
console name is not specified. To avoid possible naming conflicts due to common
task names AOCGETCN should be used to obtain a console with a unique name.
The characters that are used in determining the unique console name can be
tailored by updating the common global variable AOFCNMASK. Refer to IBM
Tivoli System Automation for z/OS Customizing and Programming for further
information.

AOCFILT

Chapter 2. SA z/OS System Operations Commands 33

Example
Issue AOCGETCN, for example, in the initial clist of an operator or autotask. As
soon as an MVS command is issued by the task, a console is allocated with the
console name that has been set by AOCGETCN.

The default name for the console is the character A, followed by the last 5
characters of the task name concatenated with the last two characters of the system
name.

Thus, task OPER1 on system FOC1 obtains the default extended console name
OPER1. When the AOCGETCN command is issued, the console AOPER1C1 is now
associated with OPER1.

AOCMSG

Purpose
The AOCMSG command displays and logs messages. AOCMSG merges variable
data specified as parameter values in the AOCMSG call with fixed message text to
produce an SA z/OS message. You can display the resulting message on a
NetView console and log it in the NetView log.

The message format depends on the message ID and variable data placed in the
message.

If you specify one or more message classes in the message, AOCMSG also
performs message class matching and sends the message as a notification message
to one or more notification operators defined to receive those classes of notification
messages.

AOCMSG uses the NetView message handling facilities, specifically NetView
macros DSIMDS and DSIMBS. When you want to define user messages you must
code a message definition module named AOFMaaa where aaa is the message
prefix. Refer to NetView Customization: Using Assembler for the coding. Examples 1
and 2 in this section require a message definition module of AOFMABC.

The parsing within AOFMSG has been rewritten with an SA z/OS parsing routine
used instead of DSIPRS. This allows SA z/OS to be more flexible in the handling
of parameters. The parsing rules are:
v The only delimiter recognized in parsing the command is the comma.
v Tokens surrounded by single quotation marks will be stored without the

quotation marks.
v A token containing two consecutive single quotation marks will be stored with

only one of the quotation marks.
v Leading and trailing spaces are removed except that spaces inside quotation

marks are not removed.
v Instead of rejecting a command with mismatched quotation marks an attempt is

made to break the command into tokens.

The rules are illustrated by the following examples:
COMMAND TOKENS
A,BCDEF, G (A) (BCDEF) (G)
’A B C’ , ’ EF GH’ (A B C) (EF GH)
ABC,,DEF (ABC) () (DEF)
’ABC,DEF,GHI (ABC,DEF,GHI)

AOCGETCN

34 System Automation for z/OS: Programmer's Reference

’ABC’’DEF’ (ABC’DEF)
’ABC,DEF (’ABC) (DEF)
ABC’DEF (ABC’DEF)
ABC’DEF’ (ABC’DEF’)
’ABC’DEF (ABC) (DEF)
’ABC’DEF’ (ABC) (DEF’)
’ABC’’DEF (ABC) (’DEF)
ABC’’ (ABC’)

Note: AOCMSG has the facility to use MVS descriptor codes to control the
message flow at the master console. Refer to IBM Tivoli System Automation
for z/OS Messages and Codes for a table of message types and descriptor
codes used by AOCMSG.

Syntax
Parameters are positional.

�� AOCMSG , mid
p1

�

,
(1)

msgclass �

�

�

,

,
request_code (2)

pn

��

Notes:

1 Up to 10 optional message classes can be specified with the mid parameter. If
used, message classes should be separated from the mid value and each other
by at least one blank.

2 Parameters 2–9 may be specified here. Parameters are positional, so
non-specified parameters must be represented by a comma.

Parameters
p1–p9

These are parameter values that are substituted into the message text (located
in a NetView DSIMSG member) in place of NetView message variables &1
through &9, respectively. These parameter values are all optional. However,
because parameters are positional, if you do not specify p1, you must code a
comma for that parameter position, for example:
aocmsg ,abc123,,date(),time()

mid
The message ID to be issued. This parameter is required. The message ID must
be a valid message installed in the NetView message library, that is, in data set
members identified in DSIMSG. The message ID can be specified in the
following ways:
v A 3-digit number, which is assumed to have a prefix of AOF.

AOCMSG

Chapter 2. SA z/OS System Operations Commands 35

This message ID value relates to a message in DSIMSG member DSIAOFnn.
For example, a message ID value of 203 is for SA z/OS message AOF203I,
which is in DSIMSG member DSIAOF20.

v A 6-digit ID consisting of a 3-character prefix followed by a 3-digit message
ID number. The first character of the prefix must be alphabetic.
This message ID value relates to a message in DSIMSG member DSIxxxnn,
where xxx is the prefix value and nn is the first two digits of the message ID
number. For example, a message ID value of ABC123 is for message
ABC123I, which is in DSIMSG member DSIABC12.

v A 7-character ID consisting of a 4-character prefix followed by a 3-digit
message ID number. The first character of the prefix must be alphabetic.
The primary use for this type of message ID format is when coding a
message ID for a message that has a 4-digit prefix.
When this type of message ID value is specified, AOCMSG drops the third
of the four prefix characters to create the string used for searching DSIMSG
members and retrieving the desired message. The actual message issued
uses all four prefix characters.
For example, a message ID value of ABCD123 is used to retrieve message
ABCD123I, which is in DSIMSG member DSIABD12 (note that the C is
dropped in the DSIABD12 member name).

The message ID value can be up to 7 characters long.

Up to 10 optional dynamic message classes can be specified through the mid
field. If specified, optional message classes will be merged with the message
classes defined in the message member (if there are any) up to a maximum of
10 message classes. If the total number of message classes exceeds 10, those
specified on the AOCMSG call will take precedence over those specified in the
message member.

The rules for dynamic message classes are the same as for those defined in the
message member.

Message classes specified on the AOCMSG call are taken into consideration for
the following request_codes:

blank
LOG
MIM

When NOMID is used, any message classes specified on the AOCMSG call will
be ignored. However, any message classes defined in the message member will
continue to appear in the resulting message text.

request_code
This parameter specifies the type of message processing request the AOCMSG
command performs. The value for this parameter can be one of the following:

blank
If you leave this parameter position blank, or enter any text other than the
values listed below, AOCMSG will generate the message for display. This
is the default.

LOG
AOCMSG generates the message and logs the message in the NetView log
instead of displaying it on the issuer's console.

MIM (Message in Message)
AOCMSG generates the message and strips the message ID value (mid)
from the generated message, leaving only the message text. The first word

AOCMSG

36 System Automation for z/OS: Programmer's Reference

in the message is treated as a valid message ID value (mid), and processing
continues as if that word were the original mid. That is, AOCMSG
performs message class matching and notification. See the AOCMSG
examples for an example of how this parameter value affects the issued
message.

NOMID (No Message ID)
AOCMSG generates the message and strips the message ID value (mid)
from the generated message, leaving only the message text. AOCMSG does
not perform message class matching and notification. See “Example 2” on
page 38 for an example of how this parameter value affects the issued
message.

Note: With the exception of the NOMID request_code value, forwarding of
notification messages to notification operators occurs regardless of
the value specified for this parameter.

Restrictions and Limitations
Each variable parameter value besides the message ID value (mid) can be up to 80
characters long, but the total maximum message length is 470 characters.

An operator can call the AOCMSG command from an automation procedure or
command processor, or issue it directly from a display station.

Return Codes
0 AOCMSG processed normally.
>0 and <60

An error occurred while processing the NetView DSIPSS macro. The return
code is actually from DSIPSS.

60 An error occurred while processing the NetView DSIGET macro to request
storage. No storage space is available.

>60
An error occurred while processing the NetView DSIPRS macro.

Note: If you receive return codes other than 0 and 60, refer to NetView
Customization: Using Assembler for information on resolving the NetView
macro problems.

Error messages returned by AOCMSG are:
AOF262E MESSAGE ID mid INVALID, MUST BE "NNN", "ABCNNN", OR "ABCDNNN".

AOF263I MESSAGE ID NUMERIC "nnn" IS NOT NUMERIC.

AOF264I TOO FEW PARAMETERS ON AOCMSG COMMAND, 2 IS MINIMUM.

abc000I USER MESSAGE mid ISSUED BUT DOES NOT EXIST IN MESSAGE TABLE
DSIabcnn - CALL IGNORED.

Note: In message abc000I, the variable abc represents the product identifier portion
of the message ID.

Usage
v Parameter values passed to AOCMSG depend on the format of the message

entry as coded in the DSIMSG member DSIxxxnn.

AOCMSG

Chapter 2. SA z/OS System Operations Commands 37

|
|

v AOCMSG uses NetView message handling facilities, DSIMDS and DSIMBS in
particular. Refer to NetView Customization for details about using DSIMDS to
create your own messages.

v AOCMSG implements the SA z/OS notification message function to allow you
to forward messages to notification operators. This aspect of AOCMSG
processing can be useful if you develop new messages and want notification
operators to receive them.
The notification message function is implemented by assigning message classes
to your messages. Message classes are assigned within the text of the messages
in the DSIMSG member (DSIxxxnn). In the text for the message, specify the class
or classes (up to five) after the message ID number and before the message text.
For example, the following entry for a message assigns message classes 10 and
40 to the message. The message will be issued as a notification message to any
notification operators defined to receive class 10 or 40 messages.
123I 10 40 THE EAGLE HAS &1

Examples

Example 1
Entries for messages in DSIMSG member DSIABC12 are as follows:

120I ...
121I ...
122I &1 &2 ON THE &3
123I 10 40 THE EAGLE HAS &1
124I ...

An automation procedure contains the following AOCMSG calls referencing
messages ABC122 and ABC123.
<other automation procedure code>
:
AOCMSG HELP,ABC122,,IS,WAY
AOCMSG LANDED,ABC123
:
<other automation procedure code>

When AOCMSG is called as specified in the automation procedure, DSIMSG
member DSIABC12 is searched for messages ABC122I and ABC123I. Variable
substitution for the variables in the message entries occurs, resulting in the
following messages being generated:
ABC122I HELP IS ON THE WAY
ABC123I THE EAGLE HAS LANDED

Note: Because the DSIMSG member entry for ABC122I does not specify message
class information, only the issuer of the automation procedure receives the
message, not any notification operators. Because the DSIMSG member entry
for message ABC123I specifies message classes 10 and 40, notification
operators defined to receive message classes 10 and 40 also receive message
ABC123I.

Example 2
Use of the AOCMSG request_code parameter value NOMID has the following effect
on the messages generated.

The same entries in DSIMSG member DSIABC12 are used.

AOCMSG

38 System Automation for z/OS: Programmer's Reference

The AOCMSG calls using the NOMID request_code parameter value are as follows:
<other automation procedure code>
:
AOCMSG HELP,ABC122,NOMID,IS,WAY
AOCMSG LANDED,ABC123,NOMID
:
<other automation procedure code>

These calls and the DSIABC12 entries result in the following messages:
HELP IS ON THE WAY
10 40 THE EAGLE HAS LANDED

Note: In message ABC123I, the message classes 10 and 40 have not been processed
as message classes and appear in the message text. No notification operators
receive either message. This is an error for message ABC123. The message is
not implemented to use the NOMID parameter value effectively.

Use of the AOCMSG request_code parameter value MIM has the following effect on
the messages generated.

The same entries in DSIMSG member DSIABC12 are used.

The AOCMSG calls using the MIM request_code are as follows:
<other automation procedure code>
:
AOCMSG HELP,ABC122,MIM,IS,WAY
AOCMSG ’HELP 40’,ABC122,MIM,IS,WAY
AOCMSG LANDED,ABC123,MIM
:
<other automation procedure code>

These calls and the DSIABC12 entries result in the following three messages:

HELP IS ON THE WAY
The text HELP is considered to be the new message ID. Because no message
classes are in the AOCMSG call, no notification operators receive the message.

HELP IS ON THE WAY
In this case, the value 40 is processed as a message class. This processing
causes notification operators defined to receive class 40 messages to also
receive this message.

10 THE EAGLE HAS LANDED
The value 40 is processed as a message class, as in previous AOCMSG
examples. In contrast, the value 10 is processed as the message ID, not a
message class. Message ABC123 is not implemented to effectively use the MIM
parameter value.

AOCQRES

Purpose
The AOCQRES command examines and returns information about where a
resource resides in a sysplex. Optionally, AOCQRES also tries to obtain status
information on resources.

AOCMSG

Chapter 2. SA z/OS System Operations Commands 39

Syntax

�� AOCQRES subsystem_name
* (STATUS

��

Parameters
subsystem_name

Specifies the name of the subsystem.

* This causes the command to return information about all subsystems within
the sysplex.

STATUS
If you specify STATUS, another column will be added to the output. This
column contains the current automation status of each subsystem.

Return Codes
0 The AOCQRES command completed successfully.
1 An error occurred while processing the AOCQRES command. See the

accompanying message for the cause of the error.
2 The specified subsystem is either unknown or currently not registered.

Usage
The command is to be used within a NetView PIPE statement.

Examples
When you issue the command:
PIPE NETV AOCQRES TSO (STATUS | STEM ABC.

within a REXX procedure and the system where this command is issued is in a
sysplex with four systems, the stem variable ABC. will be assigned something
similar to the following:
ABC.0 = 4
ABC.1 = TSO TSO KEY3 UP
ABC.2 = TSO TSO KEY4 AUTODOWN
ABC.3 = TSO TSO KEY5 STARTED
ABC.4 = TSO TSO KEY6 RESTART

The first token of the data is the subsystem name, the second token is the
subsystem's job name, the third token is the system name and the last token is the
subsystem's status.

AOCQRY

Purpose
The AOCQRY command verifies that automation is allowed for a specific resource.
AOCQRY does the following:
v Searches the automation policy to verify that the resource is defined to SA z/OS
v Checks that the automation flags for that resource allow automation
v Initializes certain control variables for use by the calling automation procedure
v Drives automation flag exits

AOCQRES

40 System Automation for z/OS: Programmer's Reference

v Initializes AOCQRY task global variables with application information

A call to AOCQRY is intended to be a standard component of most automation
procedures. AOCQRY should be called whenever resource automation is required
to verify whether automation should continue.

AOCQRY only works for applications that have been defined to automation using
the application policy object of the customization dialogs.

Syntax

�� AOCQRY resource,request_type ,
,stype

,TGPFX=SUB

,TGPFX=variable_prefix
�

�
,PARENTINFO=YES

,PARENTINFO=NO ,
,EXITS=FORCED
,EXITS=BYPASS

��

Parameters
resource

The resource name that automation should be checked for. This value can be a:
v Job name
v Subsystem name
v Subsystem minor resource, such as CICS®.TRAN.APPL1, where the first

qualifier can be the job name of the subsystem
v MVS component minor resource, such as MVSESA.SMF
v SUBSYSTEM
v DEFAULTS

If stype is coded, the resource is assumed to be a minor resource and, if the
specified resource name does not already begin with the value of stype, it is
prefixed with the value of stype, separated by a period.

If stype does not specify the name of a subsystem or MVSESA (the value of the
AOFSYSTEM common global variable), the resource name is prefixed with
MVSESA. When, for example, calling AOCQRY SMF RECOVERY MVSESA or
AOCQRY MVSESA.SMF RECOVERY MVSESA, MVSESA.SMF is assumed as
the resource name in both cases.

This parameter is required.

request_type
The type of automation checks and information retrieval functions AOCQRY
performs. request_type is required and must be one of the following:

AUTOMATION
Only the Automation flag is checked to determine whether automation is
allowed. Data retrieval from the automation policy occurs as described for
the CFGINFO option. If the stype parameter is coded data retrieval does
not occur.

INITSTART
The Automation flag and the Initstart flag are checked in determining

AOCQRY

Chapter 2. SA z/OS System Operations Commands 41

whether automation is allowed. Data retrieval from the automation policy
occurs as described for the CFGINFO option. If the stype parameter is
coded data retrieval does not occur.

START
The Automation flag and the Start flag are checked in determining whether
automation is allowed. Data retrieval from the automation policy occurs as
described for the CFGINFO option. If the stype parameter is coded data
retrieval does not occur.

RECOVERY
The Automation flag and the Recovery flag are checked in determining
whether automation is allowed. Data retrieval from the automation policy
occurs as described for the CFGINFO option. If the stype parameter is
coded data retrieval does not occur.

TERMINATE
The Automation flag and Terminate flag are checked in determining
whether automation is allowed. Data retrieval from the automation policy
occurs as described for the CFGINFO option. If the stype parameter is
coded data retrieval does not occur.

RESTART
The Automation flag and the Restart flag are checked in determining
whether automation is allowed. Data retrieval from the automation policy
occurs as described for the CFGINFO option. If the stype parameter is
coded data retrieval does not occur.

CFGINFO or STATUS
Selected information about the specified resource is retrieved from the
automation policy and provided in predefined task global variables.
Regardless of whether the resource is a subsystem name or a minor
resource to a subsystem, information retrieval is performed for the
subsystem and its parent. This parameter is mutually exclusive with the
stype parameter and is not supported for the specified resources
DEFAULTS, SUBSYSTEM or MVSESA (the value of the AOFSYSTEM
common global variable) and its minor resources. Supported task global
variables are described in “Task Global Variables” on page 44.

CFGONLY or CFG-ONLY or STATUS-ONLY
Selected information is provided as described for the CFGINFO option, but
without information to the subsystem parent.

stype
If stype is coded, the specified resource parameter is assumed to be a minor
resource and, if the specified resource name does not already begin with the
value of stype, it is prefixed with the value of stype, separated by a period.

The stype values SUBSYSTEM and DEFAULTS are silently ignored.

This parameter is mutually exclusive with the resource values DEFAULTS and
SUBSYSTEM and with the request_type values CFGINFO, CFGONLY,
CFG-ONLY, STATUS and STATUS-ONLY. Data retrieval does not occur for any
other combination of the request_type and stype parameters.

TGPFX=variable_prefix
Specifies the variable prefix that is used to create the names of the task global
variables that AOCQRY provides the retrieved information in.

The value of variable_prefix must be 3 characters long and defaults to SUB.

AOCQRY

42 System Automation for z/OS: Programmer's Reference

If you call AOCQRY from a routine that is driven from the automation control
file you must specify a variable prefix for TGPFX= that is something other than
SUB or you will corrupt the task global variables that are used by the routine
that is driving your routine. This can lead to unpredictable behavior.

PARENTINFO
Specifies whether parent task global variable information is retrieved. Specifies
whether information about the parent of the resource is retrieved and provided
in task global variables.

The following values can be specified:

YES
Parent information is retrieved and provided in task global variables. If the
dependency has a sequence number, PARENTINFO defaults to YES.
Otherwise, PARENTINFO=NO applies.

Note: If the subsystem has multiple dependencies with sequence
numbering, information is obtained for the first parent resource in
the parent list that is recognized by the local System Automation
Agent. If information is required for all the supporting resources,
AOCQRY must be issued for each of them. A list of the supporting
resources can be obtained from the SUBSPARENT task global
variable.

NO Parent information is not obtained.

This value is enforced for request_type values CFGONLY, CFG-ONLY and
STATUS-ONLY.

EXITS
This parameter determines how automation flag exits are invoked. The
following values can be specified:

FORCED
When FORCED is specified, automation flag exits are invoked during flag
evaluation regardless of the automation flag setting.

BYPASS
When BYPASS is specified, defined exits to an automation flag of a
resource are executed, when this automation flag is checked during flag
evaluation and when the flag value is E.

This is the default value.

Restrictions and Limitations
AOCQRY does not clear its task global variables before resetting them. Thus these
task global variable may contain data from an earlier AOCQRY call that was for a
different subsystem.

Return Codes
0 The function completed successfully. If checking an automation flag,

automation is allowed.
1 The global automation flag is off.
2 The specific automation flag is turned off.
3 A valid resource was not found in the automation control file. This is not used

if the stype parameter is coded.
4 Incorrect parameters were used in the call.
6 SA z/OS initialization is incomplete. Unable to process command request.

AOCQRY

Chapter 2. SA z/OS System Operations Commands 43

|
|
|
|
|
|
|

Note: If AOCQRY processes with a return code greater than 2, no task global
variables are updated.

Usage
v AOCQRY accesses the automation flag settings as they are defined via the

customization dialog or dynamically changed via the INGAUTO command to
determine whether automation should continue.

v Return codes 1 and 2, which specify that automation is turned off, are set when
automation flags are set to NO or are disabled for a certain time.

v Return code 3 indicates that this application is not defined to SA z/OS and
therefore no automation should be done for it.

v The AOCQRY command searches through the automation flags in a predefined
sequence to decide whether automation should continue. The first Automation
flag entry defined in the automation policy governs whether automation is
allowed. The search order is:
1. The flags that are associated with the fully-qualified resource name as

derived from the input parameters.
2. If the resource name consists of several qualifiers, the flags associated with

the resource name, which has been truncated by one qualifier.
3. If the last remaining resource qualifier is the name of a subsystem, the flags

associated with SUBSYSTEM.
4. The flags associated with DEFAULTS.

v If the request_type is coded as Initstart, Start, Recovery, Terminate or Restart, a
two-level search is performed. The predefined search sequence described above
is performed twice: first for the Automation flag, and then for the specific
automation flag. If the Automation flag turns off automation, the second search
is not performed and AOCQRY processing terminates.

Task Global Variables
There are three main groups of task global variables that are provided by
AOCQRY:
v Application information task global variables (SUBSxxxxx)
v Parent information task global variables (SUBPxxxxx)
v Automation flag task global variables

If stype is not coded in the AOCQRY call, the following apply:
v All task global variables are modified unless parent information is not requested

or parent information is not valid.
v If an application entry is not found, the task global variables are not altered

from previous settings.

If stype is coded in the AOCQRY call, only SUBSAPPL, SUBSTYPE and AUTOTYPE
are modified. All other task global variables retain their previous value.

Table 4 on page 45 lists AOCQRY application task global variables (SUBSxxxxx task
global variables).

AOCQRY

44 System Automation for z/OS: Programmer's Reference

Table 4. AOCQRY Subsystem Task Global Variables

Task Global
Variable Description

SUBSAPPL The application name from the automation control file. If stype was coded, this task global
variable contains the resource name.

SUBSASID The address space ID of the application. This is only available when SA z/OS process
monitoring is used for this resource.

SUBSCATEGORY The subsystem category (for example, JES2, DB2®, IMS™, USS, etc.).

SUBSCMDPFX The application command prefix from the automation control file.

SUBSDESC The application description from the automation control file.

SUBSEXTSTART Contains the 'External Start' information.

SUBSEXTSTOP Contains the 'External Stop' information.

SUBSFILE Contains the information whose file this resource represents.

SUBSFILTER Contains the filter information that is associated with the path specification of the USS
resource.

SUBSINFOLINK The application INFOLINK from the automation control file.

SUBSIPLOPT The application IPL option from the automation control file.

SUBSIPSTACK Contains the name of the IP stack to be used for port monitoring of USS resources.

SUBSJOB The application job name from the automation control file.

SUBSJOBTYPE The subsystem jobtype from the automation control file (MVS/NONMVS/TRANSIENT).

SUBSMDATE The date the last monitor cycle checked the subsystem.

SUBSMTIME The time the last monitor cycle checked the subsystem.

SUBSOPER The work operator assigned to the subsystem.

SUBSPARENT A list of the application parent names from the automation control file. The parent names are
separated by blanks. This is only provided if dependencies with a sequence number were
specified in the dialog.

SUBSPATH Contains the information whose z/OS UNIX process this resource represents.

SUBSPID The ID for the USS process.

SUBSPLEX The name of the plex that is associated with the subsystem.

SUBSPORT Contains the information whose TCP port this resource represents.

SUBSPROC Contains the subsystem's PROCNAME.

SUBSPROCESS Contains the current process (START, STOP, or null).

SUBSRSTOPT The application restart information from the automation control file.

SUBSSCHEDSS The application scheduling subsystem from the automation control file. If not specified, it
defaults to the primary scheduling subsystem.

SUBSSDATE The date the status of the subsystem was last updated.

SUBSSESS The subsystem name from the automation control file.

SUBSSHUTDLY The application shutdown delay value from the automation control file.

SUBSSPARM The application parameter data from the automation control file.

SUBSSTARTTYPE The application start type. This value is only available if the application is currently in a start
phase.

SUBSSTAT The application status from the automation status file.

SUBSSTIME The time the status of the subsystem was last updated.

SUBSSTOPTYPE The application stop type. This value is only available if the application is currently in a stop
phase.

AOCQRY

Chapter 2. SA z/OS System Operations Commands 45

|

||

Table 4. AOCQRY Subsystem Task Global Variables (continued)

Task Global
Variable Description

SUBSSTRTCYC The application start cycles from the automation control file.

SUBSSTRTDLY The application start delay from the automation control file.

SUBSSUBCAT The subsystem subcategory (for example, tracker, TOR, AOR, etc.).

SUBSSUBID The subsystem ID of the application as defined in the customization dialog.

SUBSSUBTYPE The subsystem type (JES2, JES3, DB2, CICS, or IMS).
Note: This task global variable is obsolete and is provided only for compatibility. Use
SUBSCATEGORY instead.

SUBSSYMBOLn The application symbol defined for the subsystem (n=1–9).

SUBSTERMDLY The application termination delay from the automation control file.

SUBSTRANTY Used by transient subsystems to indicate whether they can be rerun.

SUBSTYPE This task global variable indicates the resource that automation flag checking is performed for.
For an application, the value for this task global variable is SUBSYSTEM. For resources other
than applications, the value for this task global variable is the value coded for stype on the
AOCQRY call. If an application entry was not found, the task global variable value is NONE.

SUBSUSER Contains the information whose z/OS UNIX user ID this resource belongs to.

SUBSUSSJOB The real job name of the application. This is only available when SA z/OS process monitoring
is used for this resource.

SUBSWLMNAME A list of the workload manager names from the automation control file.

SUBSWTOR The list of reply IDs of primary outstanding WTORs of the application.

Table 5 lists AOCQRY parent task global variables (SUBPxxxxx task global
variables).

Table 5. AOCQRY Parent Task Global Variables

Task Global
Variable Description

SUBPAPPL The parent application name.

SUBPASID The parent address space ID. This is only available when SA z/OS process monitoring is used
for this resource.

SUBPCATEGORY The parent subsystem category (for example, JES2, DB2, IMS, USS, etc.).

SUBPCMDPFX The parent command prefix from the automation control file.

SUBPDESC The parent description

SUBPEXTSTART Contains the 'External Start' information.

SUBPEXTSTOP Contains the 'External Stop' information.

SUBPFILE Contains the information whose file the parent represents.

SUBPFILTER Contains the filter information that is associated with the path specification of the USS
resource.

SUBPINFOLINK The parent INFOLINK from the automation control file.

SUBPIPSTACK Contains the name of the IP stack of the parent subsystem.

SUBPIPLOPT The parent IPL option from the automation control file.

SUBPJOB The parent job name.

SUBPJOBTYPE The parent subsystem jobtype from the automation control file (MVS/NONMVS/TRANSIENT).

SUBPMDATE The date the last monitor cycle checked the parent subsystem.

AOCQRY

46 System Automation for z/OS: Programmer's Reference

||

Table 5. AOCQRY Parent Task Global Variables (continued)

Task Global
Variable Description

SUBPMTIME The time the last monitor cycle checked the parent subsystem.

SUBPOPER The work operator assigned to the parent.

SUBPPARENT A list of the parent names from the automation control file. The parent names are separated by
blanks. This is only provided if dependencies with a sequence number were specified in the
dialog.

SUBPPATH Contains the information whose z/OS UNIX process the parent represents.

SUBPPID The ID for the USS process of the parent.

SUBPPLEX The name of the plex that is associated with the subsystem.

SUBPPORT Contains the information whose TCP port the parent represents.

SUBPPROC Contains the subsystem's PROCNAME.

SUBPPROCESS Contains the current process (START, STOP, or null).

SUBPRSTOPT The parent restart information

SUBPSCHEDSS The scheduling subsystem for the parent, from the automation control file. If not specified, it
defaults to the primary scheduling parent.

SUBPSDATE The date the status of the parent system was last updated.

SUBPSESS The parent subsystem name from the automation control file.

SUBPSHUTDLY The parent shutdown delay value

SUBPSPARM The parent parameter data

SUBPSTAT The parent status

SUBPSTARTTYPE The application start type. This value is only available if the application is currently in a start
phase.

SUBPSTIME The time the status of the parent system was last updated.

SUBPSTOPTYPE The application stop type. This value is only available if the application is currently in a stop
phase.

SUBPSTRTCYC The parent start cycles from the automation control file.

SUBPSTRTDLY The parent start delay from the automation control file.

SUBPSUBCAT The parent subsystem subcategory (for example, tracker, TOR, AOR, etc.).

SUBPSUBID The subsystem ID of the application as defined in the customization dialog.

SUBPSUBTYPE The subsystem type of the parent subsystem.

SUBPSYMBOLn The application symbol defined for the parent (n=1–9).

SUBPTERMDLY The parent termination delay from the automation control file.

SUBPTRANTY If the parent subsystem is a transient, this indicates whether it can be rerun.

SUBPTYPE This task global variable indicates the resource that automation flag checking is performed for.
For an application, the value for this task global variable is SUBSYSTEM. For resources other
than applications, the value for this task global variable is the value coded for stype on the
AOCQRY call. If an application entry was not found, the task global variable value is NONE.

SUBPUSER Contains the information whose z/OS UNIX user ID the parent belongs to.

SUBPUSSJOB The real parent job name. This is only available when SA z/OS process monitoring is used for
this resource.

SUBPWLMNAME A list of the workload manager names from the automation control file.

SUBPWTOR A list of reply IDs of primary outstanding WTORs of the application.

AOCQRY

Chapter 2. SA z/OS System Operations Commands 47

Note: The SUBP variables are only available if a relationship with a sequence
number was specified in the customization dialog.

Table 6 lists AOCQRY automation flag task global variables.

Table 6. AOCQRY Automation Flag Task Global Variables

Task Global Variable Description

AUTOTYPE The AUTOTYPE task global variable contains the value of the automation mode that is
turned off. Depending on certain conditions, AUTOTYPE has the following values:

Value Condition
Null Automation is allowed.
Null request_type does not check automation flags.
GLOBAL The Automation (global) automation flag is off.
INITSTART Initstart automation flag is off.
RECOVERY Recovery automation flag is off.
RESTART Restart automation flag is off.
START Start automation flag is off.
TERMINATE Shutdown automation flag is off.

EHKEXITRSN The return code from the exit if a nonzero return code.

EHKEXITNME The name of the exit supplying the nonzero return code.

SUBSASSIST The Assist Mode setting for the automation flag.

Examples

Example 1
This example shows how AOCQRY can be used in an automation procedure to
check whether automation is allowed for an application, before invoking
automation actions.

Assume that the CICST subsystem issues a message during termination that
invokes this automation procedure via a NetView automation table statement.
Assume also that the message identifier is not considered for the automation
decision.

The automation procedure to call AOCQRY is:
/* REXX CLIST to check if termination automation is allowed for CICST */
’AOCQRY CICST,TERMINATE’
Select

When rc = 0 Then Do /* Automation on; perform actions req’d. */
:
End
When rc = 1 | rc = 2 Then Do /* Automation off; If applicable log a

message indicating unable to take
action for message. */

:
End
When rc = 3 Then Exit /* Subsystem not automated */
Otherwise Do /* Error; log error message */
:
End

End
Exit

The automation procedure performs the following processing steps:

AOCQRY

48 System Automation for z/OS: Programmer's Reference

1. The automation procedure calls AOCQRY, supplying CICST as the subsystem
name and TERMINATE as the request_type. AOCQRY retrieves the appropriate
subsystem information, and then searches for the automation flags.

2. After returning from AOCQRY, the automation procedure determines what the
return code was, then takes the appropriate action.

Supposing that the subsystem CICST has a HasParent relationship to VTAM®,
AOCQRY accesses both the definitions of CICST and VTAM to fill in the task
global variables. All the SUBSxxxx task global variables are filled with the CICST
subsystem information, and the SUBPxxxx task global variables are filled with the
VTAM information.

Example 2
The automation procedure from Example 1 can be coded in a more generic way by
using the NetView REXX function jobname() as the resource option of AOCQRY.

The automation procedure to call AOCQRY is:
/* REXX CLIST to check if termination automation is allowed for a job
- generic check dependant on Jobname */
’AOCQRY ’Jobname()’,TERMINATE’
Select

When rc = 0 Then Do /* Automation on; perform actions req’d. */
:
End
When rc = 1 | rc = 2 Then Do /* Automation off; If applicable log a

message indicating unable to take
action for message. */

:
End
When rc = 3 Then Exit /* Subsystem not automated */
Otherwise Do /* Error; log error message */
:
End

End
Exit

The jobname() function returns the name of the job that has issued the message.
Using this function, the automation procedure supports any job that can issue the
message that invokes this automation procedure via the NetView automation table.
This allows portability of the automation procedure to different systems without
requiring changes to it. The job name is supplied only to an automation procedure
that is called from the NetView automation table.

If your automation procedure issues MSGREAD commands, you must issue the
jobname() function upon entry because the returned value resets whenever the
MSGREAD command is issued.

Example 3
This example shows how AOCQRY can be used in an automation procedure to
check whether automation is allowed for an MVS component, before invoking
automation actions.

The message to automate is issued by MVS indicating that an SMF dump data set
is full. The automation procedure verifies that automation is allowed by calling
AOCQRY.

The automation procedure to call AOCQRY is:

AOCQRY

Chapter 2. SA z/OS System Operations Commands 49

/* REXX CLIST to check if recovery automation is allowed for SMF */
’GLOBALV GETC AOFSYSTEM’
’AOCQRY SMFDUMP,RECOVERY,’aofsystem
Select

When rc = 0 Then Do /* Automation on; perform actions req’d. */
:
End
When rc = 1 | rc = 2 Then Do /* Automation off; If applicable log a

message indicating unable to take
action for message. */

:
End
Otherwise Do /* Error; log error message */
:
End

End
Exit

This example differs from the previous examples as follows:
v When automating an MVS component, use a generic component as the resource

name when calling AOCQRY instead of a message identifier. Thus several
messages can be related to a single MVS component to be automated.

v The third parameter stype is coded. Coding stype tells AOCQRY to skip the
process of finding subsystem entries. The example uses the AOFSYSTEM
common global variable as the stype parameter. The value of the variable is
MVSESA.

v Return Code 3 is not valid because the application entries in the automation
control file are not checked.

AOCUPDT

Purpose
AOCUPDT performs several status update functions, including:
v Updating the automation agent status for the resource
v Identifying any messages associated with the automation agent status change

and processing options performed for these messages:
– Whether a message is issued and logged in the NetView log
– Which message is issued
– Whether the message is sent as a notification message to notification

operators on a local system (distinct from forwarding to a focal-point system)
– Whether the message is forwarded to a focal-point system
AOCUPDT calls the AOCMSG command to handle processing of log and
notification messages.

v Updating SDF status displays with the resource status change
v Updating the automation manager OBSERVED status

Syntax

�� AOCUPDT resource STATUS=status
RESTYPE=SUBSYSTEM

RESTYPE=type
�

AOCQRY

50 System Automation for z/OS: Programmer's Reference

�
MSG=571

MSG= message_id
(message_id,msgtext)
NONE
(NONE,msgtext)

LOG=YES

LOG=NO
SDF_Options ��

SDF_Options:

,FPFWD=YES

,FPFWD=NO

,SDFUPDT=YES

,SDFUPDT=NO INFO=text RV=ref_data
�

�
FROM=userid

(domain)

Parameters
resource

The name of the resource that status or information updates specified by other
AOCUPDT parameters are performed for. This value is required and must be
specified first on an AOCUPDT call. You can use the following formats for
resource.

Format Example

system_name.resource PROD.TSO or PROD.VTAM

resource TSO or VTAM

The system_name variable defaults to AOFSYSNAME.

STATUS
Specifies the new value of the automation agent status for the resource.

When you use this parameter to change status, some other AOCUPDT
parameters perform default actions, unless otherwise coded. These parameters
include:
v MSG
v FPFWD
v SDFUPDT

If you specify STATUS to change status, but do not specify any of the
parameters listed above (thereby using parameter defaults), the following
occurs:
v SA z/OS issues the message AOF571I resource_name SUBSYSTEM STATUS FOR

JOB jobname IS status - text and also logs the message in the NetView
log.

v The specified status change is reflected in SDF status panels.

To change the values or actions performed by the MSG, FPFWD, and
SDFUPDT parameters, or to preclude their use, you must specify those
parameters and desired values.

If a status value that has a length greater than eight characters is used, the
status value is truncated to a length of eight characters.

AOCUPDT

Chapter 2. SA z/OS System Operations Commands 51

RESTYPE
Identifies the type of resource for the resource parameter. You can specify a
resource type of your own choice, with the exception of SYSTEM, which is
reserved for internal use only. The default is SUBSYSTEM.
type

A resource type of your own choice.
SUBSYSTEM

A resource type of SUBSYSTEM.

FPFWD
Determines whether the specified status is sent from a local system (the system
that AOCUPDT is issued on) to a focal-point system.

YES
The status is sent. This is the default.

NO The status is not sent.

Note: For status forwarding to a focal-point system to occur, you must already
have configured an automation network and defined the automation
network to SA z/OS. Refer to IBM Tivoli System Automation for z/OS
User’s Guide for details.

SDFUPDT
Determines whether the specified status change is also reflected in SDF status
displays.

YES
The status change is reflected in SDF status displays. This is the default if
STATUS is specified.

NO The status change is not reflected in SDF status displays. This is the default
if STATUS is not specified.

MSG
This parameter identifies the message associated with the status change
specified with the STATUS parameter. This message is issued to make a note of
when the status change occurs. This parameter is applicable only if the
STATUS parameter is also specified.

The default is 571, the message ID for SA z/OS status change message
AOF571I, resource_name SUBSYSTEM STATUS FOR JOB jobname IS status—text.

This parameter value can be specified using the following formats:

message_id
Identifies the numeric part of a message ID. For example, 571 specifies
SA z/OS message AOF571I.

(message_id)
The complete message ID, including message prefix and message number,
enclosed in parentheses, for example, (AOF123).

(message_id,msgtext)
The complete message ID, including message prefix and message number,
plus message text to be substituted for message variables in the message
text. This entire specification is enclosed in parentheses, for example,
(123,AA,BB,CC). Quotation marks are not allowed in the message text.

The AOCMSG command substitutes the message text values into message
variables &1 through &9 in the fixed message text that is located in the
NetView message library. See “AOCMSG” on page 34 for details of how

AOCUPDT

52 System Automation for z/OS: Programmer's Reference

this command works. Some message variables are preset to certain values
depending on the message ID and message text that are specified on the
AOCUPDT call:
v Variable &1 is always set to AOFRUPDT, which is the name of the

automation procedure that the AOCUPDT command processor resides
in.

v If the message text is omitted, the following message variables are
preset:

Var Setting
&1 AOFRUPDT
&2 Time
&3 system_name.resource
&4 Resource type
&5 Subsystem name
&6 Subsystem job name
&7 Status

v If the message text is provided and the message_id number is 571, the
following message variables are preset:

Var Setting
&1 AOFRUPDT
&2 Time
&3 system_name.resource
&4 Resource type
&5 Subsystem name
&6 Subsystem job name
&7 Status
Variables &8 and &9 can be assigned values from the msgtext portion of
this parameter.

v If the message text is provided and the message_id number is not 571, the
following message variables are preset:

Var Setting
&1 AOFRUPDT
&2 Time
&3 system_name.resource
&4 Resource type
Variables &5 through &9 can be assigned values from the msgtext
portion of this parameter.

NONE
The operator is not notified that the update has taken place. The text string
“RESOURCE resource_name STATUS UPDATED TO status_value” is written
to SDF.

(NONE,msgtext)
The operator is not notified that the update has taken place. The text string
“msgtext” is written to SDF.

LOG
Specifies whether the trace message is written in the NetLog. The default is
YES. The message has the following format: AOFRUPDT: system_name
resource_name resource_type,STATUS=status

INFO
The SDF INFO attribute shown in the detail panel of an SDF status descriptor.
Can be any alphanumeric character up to a length of 80 characters.

AOCUPDT

Chapter 2. SA z/OS System Operations Commands 53

|
|
|
|

|
|
|

RV The reference value of the SDF status descriptor. The maximum length is 40
characters.

FROM
The user id (operator task) and optionally the domain id of the originator of
the status update. The default is the issuing task and local domain id.

Restrictions and Limitations
AOCUPDT has the following restrictions and limitations:
v AOCUPDT should only be issued from an automation procedure.
v Parentheses appearing within message text must be properly paired and

balanced.
v Using AOCUPDT to change a resource status only changes the status. It does not

initiate any associated status change processing that occurs if the status change
is processed through a command such as ACTIVMSG or TERMMSG. Also, the
automation status remains unchanged. For example, if the resource is involved
in a STARTUP, and the resource's status is changed to UP via AOCUPDT, this
process will not be affected because the automation status will not be changed to
IDLE.

Return Codes
0 AOCUPDT processed normally.
4 All requested actions were performed. However, the system detected that some

of the data to be changed was the same as the modified data specified on the
AOCUPDT call.

8 Incorrect keyword specifications were detected and ignored. All other
keywords processed normally.

12 No function keyword was specified on the AOCUPDT call. A resource was
identified, but no action to perform on the resource was specified.

16 The specified resource was not found, when the specified resource type
(RESTYPE value) is SUBSYSTEM and the system name is the system that
AOCUPDT is running on.

20 The resource name length was longer than allowed. When the specified
RESTYPE value is SUBSYSTEM, the resource name cannot be longer than 11
characters.

99 A timeout or another error occurred.

Usage
v When you use AOCUPDT to change resource status, the status change message

is sent to notification operators defined to receive the message. Notification of a
status change occurs whether automation flags for the resource are enabled or
disabled (set to Yes or No). To suppress sending a message when a status change
occurs, specify MSG=NONE along with the STATUS parameter.

Examples

Example 1
This example shows how to use AOCUPDT to change the status of the TSO
subsystem to UP.
AOCUPDT TSO,STATUS=UP

Note: This will not cause any TSO UP commands to be issued.

AOCUPDT

54 System Automation for z/OS: Programmer's Reference

||
|

|
|
|

Example 2
This example shows how to use AOCUPDT to:
v Change the status of subsystem IMSPROD to DOWN
v Issue a customer-defined message, ABC123
v Ensure that the status change is not reflected in SDF
AOCUPDT IMSPROD,STATUS=DOWN,MSG=ABC123,SDFUPDT=NO

AOFCPMSG

Purpose
The AOFCPMSG command lets you:
v Capture messages and save them in common global variables for subsequent

display by DISPINFO
v Add the message to SDF for display in the Messages panels
v Add the message to NMC as a minor resource of the major resource that issued

the message

Syntax

�� AOFCPMSG
CODE3=code

SEVERITY=UNUSUAL

SEVERITY= IGNORE
NORMAL
IMPORTANT
CRITICAL
UNUSUAL

JOBNAME=jobname
�

�
CLEAR= NO

YES

�

DOM= NO
YES

(msgid)

�

INFORM=*

INFORM= type

�

�
QUAL=qualifier MSG=message COMMENT=text RESOURCE=resname

��

Parameters
CODE3

code
This is the optional CODE3 value used by CDEMATCH to specify the
severity of the message.

SEVERITY
This parameter allows you to directly specify a severity and bypass the code
matching process. To change the severity classification of a message you need
to change the NetView automation table (AT).

The severity is always overwritten by a policy entry. That is, if a policy entry
exists, the severity is taken from there.

AOCUPDT

Chapter 2. SA z/OS System Operations Commands 55

|||

The severity of a message can also be specified in a CDEMATCH against the
subsystem. If no match is found against the subsystem, a match is attempted
against the system issuing the message. The message ID for the code match is
CAPMSGS.

CODE1 is set to the message ID of the message being captured. CODE2 is set
to the job name (you can alternatively set this to the subsystem name) of the
subsystem that issued the message. CODE3 is set to the value specified in the
code parameter.

The severity code that is defined as the value to be returned to the command
list can be one of the following:
IMPORTANT The message is captured and its color is set to PINK.
IGNORE The message is not captured.
NORMAL The message is captured and its color is set to GREEN, but not

forwarded to SDF or NMC.
UNUSUAL The message is captured and its color is set to YELLOW.
CRITICAL The message is captured and its color is set to RED.

JOBNAME
The JOBNAME is optional and specifies the job name of the subsystem that
issued or is assigned to the message. This parameter overrides the value as
determined from the jobname() function against the message.

CLEAR
Specifies whether the existing messages that are recorded for the subsystem
should be erased and SDF and NMC resources should be removed for the
subsystem. This may be specified without a message being issued. The default
is NO.

DOM
Specify YES to cause AOFCPMSG to delete a previously captured message
instance that matches the current message ID (that is, the message ID that is
passed to AOFCPMSG from the AT, unless it is overridden by the MSG
parameter).

Note: This will not capture the latest copy of the message being deleted.
See “The MSG Parameter” on page 57 for details of how to override the
message ID that is passed from the AT.

You can also specify one or more IDs of messages to be deleted. This allows
you to capture a message and thereby delete other messages that become
obsolete in one step. The message IDs must be separated by a blank character
and enclosed in parenthesis or quotes if more than one message ID is specified.
The message ID can contain wildcards.

The default is NO unless the message is detected as a DOM, in which case the
default is YES.

Note: Messages that have been DOMed by an operator are still displayed on
SDF, NMC and TEP. To remove the message explicitly, you must use the
INGMSGS command or its equivalent in SDF, NMC and TEP. See
INGMSGS in IBM Tivoli System Automation for z/OS Operator’s Commands.

INFORM
Specifies the target destination where the message should be sent to. If
omitted, the inform list definition in the automation policy that is associated
with the resource is used.

AOFCPMSG

56 System Automation for z/OS: Programmer's Reference

||
|

|

|
|
|
|
|

QUAL
Specifies a qualifier that is used to identify the message in the absence of the
message arrival time (MAT) when deleting the message. The qualifier consists
of two elements, separated by a slash (/):
1. The first element is the subcomponent that is associated with the resource,

for example, CICSSOS for a CICS short on storage condition.
2. The second element identifies the message uniquely within the

subcomponent and resource. This parameter is optional.

MSG
Specify a message to override the message that is passed from the AT. This
may be an entire message including a message ID followed by message text or
just a message ID. This parameter can also be used in conjunction with the
DOM parameter to DOM any previously captured message. When used in
conjunction with the DOM parameter only a message ID is needed.

If message contains blanks or special characters it must be delimited with single
quotation marks, double quotation marks, or parentheses.

COMMENT
If specified, this text will be appended to the message for SDF and placed in
the DATA3 field for NMC.

The comment text must be delimited with single quotation marks, double
quotation marks, or parentheses if it contains blanks or special characters.

RESOURCE
The name of the resource that is to be associated with the message. This is
typically specified in automation manager notation but can also be the
subsystem name or any other name.

The RESOURCE parameter takes precedence over the JOBNAME parameter if
it is also specified.

Restrictions and Limitations
To use the AOFCPMSG command SA z/OS must be initialized.

AOFCPMSG should only be executed as a NetView automation table command.

Excessive use of AOFCPMSG will reduce NetView storage because messages are
stored in common global variables.

It is recommended that you restrict the use of AOFCPMSG to exception condition
messages.

Return Codes
0 The AOFCPMSG command completed successfully.
1 Incorrect parameters were used.
2 The job name could not be resolved to a subsystem and is not MVSESA.

System messages are only cleared if the job name is specified as MVSESA.
3 The AOFCPMSG command was called without a message in its default safe.

This is only valid if CLEAR=YES is specified.
6 Automation is not initialized.

AOFCPMSG

Chapter 2. SA z/OS System Operations Commands 57

Usage
You should add the AOFCPMSG command to your NetView automation table
(AT). However, you can also call AOFCPMSG outside of the AT when specifying
the MSG parameter.

The severity of the message can be specified in a CDEMATCH against the
subsystem or, if not found there, against the system that the subsystem or resource
belongs to. The following settings apply:

CODE1
The message ID.

CODE2
The job name of the subsystem.

Note: In earlier releases, this was the subsystem name.

CODE3
User-defined (optional).

Value Returned
The severity (message ID p1 p2 ... pn).

Optionally, a message ID, followed by one or more message parameters,
can be specified. If present, the resulting text is appended to the message
for SDF and placed in the DATA3 field for NMC.

Examples
The following example shows how AOFCPMSG is called from the NetView
automation table to change the severity of message HSAM1050E to CRITICAL:
IF MSGID = ’HSAM1050E’
THEN
EXEC(CMD(’AOFCPMSG SEVERITY=CRITICAL’)ROUTE(ONE * %AOFOPGSSOPER%));

AOFEXCMD

Purpose
AOFEXCMD is used to execute a command on a specified autotask. If the autotask
is not active, AOFEXCMD will try to execute the command on a backup autotask.
This process is repeated until the command is successfully scheduled for execution,
or the list of available backup autotasks is exhausted.

AOFEXCMD will attempt to execute the command on the following autotasks:
1. The primary autotask for the automated function, autofunc

2. The secondary autotask for the automated function, autofunc

3. The primary autotask for SYSOPER
4. The secondary autotask for SYSOPER
5. The primary autotask for BASEOPER
6. The primary autotask for AUTO1

If the command cannot execute on any of these autotasks, an AOF572I or AOF763I
message is issued.

SA z/OS automation will attempt to restart any inactive autotasks that are called
by AOFEXCMD.

AOFCPMSG

58 System Automation for z/OS: Programmer's Reference

Syntax

�� AOFEXCMD autofunc,command ��

Parameters
autofunc

The automated function that the autotask name is defined under. Automated
functions are established in the customization dialogs, and are assigned at
SA z/OS initialization.

If the specified value is not defined as an automated function, it is considered
to be an operator ID or task name.

If the automated function name is not supplied the procedure will attempt to
issue the command on one of the backup automated functions (SYSOPER,
BASEOPER or AUTO1).

Note: If the automated function name is not supplied, a comma must be used
as a placeholder for parsing so that the command is identifiable as the
second operand.

command
The command that is to be scheduled to run on the autotask associated with
the automated function.

Restrictions and Limitations
If the command cannot be routed to one of the following automated functions,
command execution is not attempted on a backup autotask:
v GATOPER
v GEOxxxx

v PLEXOPR2
v PLEXOPR3

Issuing operators must be authorized to issue the command using EXCMD.

Messages
The following message is issued by AOFEXCMD when it has failed to execute on
any of the available autotasks. This may occur if AOFEXCMD is issued before
SA z/OS initialization is complete.
AOF572I CGLOBALS NOT INITIALIZED FOR AUTOMATED FUNCTION autofunc -
UNABLE TO ROUTE COMMAND command, operand_1, operand_2, operand_3

Example
The following command schedules a message to be sent from autotask AUTNET1
to operator OPER1. In this example, AUTNET1 is defined under the automated
function NETOPER.
AOFEXCMD NETOPER,MSG OPER1 Logoff in 5 mins

AOFEXCMD

Chapter 2. SA z/OS System Operations Commands 59

AOFRACON

Purpose
Use the AOFRACON command to assign an autotask to each MCS console that is
not already served by a NetView operator.

If the console *ANY* is assigned to a NetView operator, AOFRACON does not
perform console assignments and terminates with RC=1.

If the console *MASTER* is assigned to a NetView operator, the master console
gets an autotask assigned anyway, because a switch of the master console would
result in this console not having access to NetView.

Syntax

�� AOFRACON ��

Parameters
None.

Return Codes
0 Processing successful.
1 Processing not required (*ANY* assignment).
4 Processing failed.

Restrictions and Limitations
SA z/OS must be fully initialized prior to running AOFRACON.

A suitable exit to run AOFRACON from would be AOFEXINT.

AOFRCMTR

Purpose
The AOFRCMTR command can be used to update the health status of monitor
resources by issuing the monitor commands that have been defined for these
monitor resources.

The monitor commands that are issued for those monitor resources are those that
are defined for a given object and job name.

Syntax

�� AOFRCMTR object
jobname

��

Parameters
object Specifies the object that the monitor resource is associated with.

AOFRACON

60 System Automation for z/OS: Programmer's Reference

jobname
Specifies the job name that the monitor resource is associated with. If
AOFRCMTR is called from the NetView automation table, the issuing job
of the automated message is taken as the default value.

Usage
You should normally call the AOFRCMTR command from the NetView automation
table.

AOFSET

Purpose
The AOFSET command is used to set the agent resource attributes to ABENDING
or BREAKING for a given subsystem on the specified system.

Syntax

�� AOFSET system subsystem function ��

Parameters
system

The system that the agent resource parameters are to be changed on.

subsystem
The subsystem that the agent resource parameters are to be changed for.

function
The agent resource parameters that are to be changed. The following values
can be specified:

ABENDING
Set the next stop of the subsystem to ABENDING.

BREAKING
Set the next stop of the subsystem to BREAKING.

Restrictions and Limitations
ABENDING and BREAKING can only be used for active subsystems.

Return Codes
0 OK.
1 An error occurred. The cause of the error is described in the error message.
6 Environment not initialized.

AOFTREE

Purpose
The AOFTREE command is used to extract information about an application and
its dependent applications. The information returned for each application in the
parent-child hierarchy is:
v Name
v Job name

AOFRCMTR

Chapter 2. SA z/OS System Operations Commands 61

v Type of the resource (can be application group or subsystem)
v Position in the tree

The relationship of an application to its dependent applications can be illustrated
using a tree structure as in Figure 2.

Where:
v A, B, C, D, and E are all applications.
v A is the root of the tree. All applications below A are its dependants.
v B, C, and D are direct children of A, that is, dependent on A.
v B, C, D, and E are all dependants of A.
v A is the parent of B, C, and D. B is the parent of E.
v A is on level 1, B, C, and D are on level 2, and E is on level 3.
v E, C, and D have a position in the tree referred to as LOWEST. A and B have a

position in the tree referred to as UPPER.

Syntax

�� AOFTREE NAME=subsystem LOOKUP= ALL
CHILDREN
ONLY
DIRCHILD

,DEPENDENCY=STOP

,DEPENDENCY= START
GROUP

�

�
,DIRECTION=FORWARD

,DIRECTION=BACKWARD

,FORMAT=1

,FORMAT=2 WAIT=nnn
��

Parameters
NAME

subsystem
The name of the application that you want to extract dependent
applications for.

LOOKUP
The scope of the tree to be returned. The following values can be specified for
lookup:

ALL
Returns details about the application and all its children.

CHILDREN
Returns details about all the children of the application.

ONLY
Returns details about the application only.

B C D

E

A

Figure 2. Subsystem Dependent Tree

AOFTREE

62 System Automation for z/OS: Programmer's Reference

DIRCHILD
Returns details about the application and its direct children.

DEPENDENCY
Specifies the type of dependency (as defined in the Policy database) that the
parent-child data should be returned for. The following options are available:

STOP
Returns all resources that are a child of the specified resource or that the
resource has a stop dependency on. This is the default.

START
Returns all resources that are a parent of the specified resource or that the
resource has a start dependency on.

GROUP
Returns all members that the specified resource consists of.

DIRECTION
Specifies the direction for returning the tree data. The following options are
available:

FORWARD
This means progressing from the top level of the tree towards the bottom.
This is the default.

BACKWARD
This means progressing from the bottom of the tree towards the top.

FORMAT
Specifies the output format that the information is returned in. The following
options are available:

1 The data is returned in NetView task global variables (AOFPCHILD.n).
This is the default.

2 The data is returned in a multiline message.

WAIT
Specifies the number of seconds to wait before reporting that a timeout
occurred if the automation manager does not provide the requested data. The
maximum time interval is 999 seconds.

If omitted, the time interval is 30 seconds.

Restrictions and Limitations
This command can only be issued for a local system.

Return Codes
0 The command successfully executed. The results are in the task global variable

array, AOFPCHILD.
1 An invalid application name was used.
4 Invalid parameters were used.
5 Timeout or other error occurred.

Usage
When control is returned to the calling automation procedure, if the return code is
not zero the AOFPCHILD array is set to null.

Note: The AOFPCHILD array is not sorted in hierarchical order.

AOFTREE

Chapter 2. SA z/OS System Operations Commands 63

If you use the AOFTREE command within a PIPE and no parameters are passed,
the contents of the default safe is taken and treated as input parameters. The
output format is set to 2 (FORMAT=2).

Task Global Variables
AOFPCHILD.0

The number of elements in the array.

AOFPCHILD.n
The nth element in the AOFPCHILD array. This element contains the following
details for a subsystem, separated by blanks:
v Name
v Job name
v Position in the tree

Examples
Figure 3 and the following examples show how the application dependency
relationships are expressed using the AOFTREE command. The DIRECTION
parameter setting is shown on the left hand side of the chart for an application tree
structure.

PORTS FILES

APLS

TCPIP

RSLVVTAM

JES2

Top of tree

Bottom of tree

Direction forward
through tree

HP

HP

HP

HP HP

MUWD

Key:
HP=HasParent
MUWD=MakeUnavailableWhenDown

Figure 3. Application Tree

AOFTREE

64 System Automation for z/OS: Programmer's Reference

Example 1
Return all "children" from TCPIP using the STOP graph.
>>> AOFTREE NAME=TCPIP DEPENDENCY=STOP LOOKUP=ALL FORMAT=2
TCPIP/APL/AOC8 TCPIPS APL UPPER
APLS/APL/AOC8/ USSAPLS APL UPPER
PORTS/APL/AOC8 USSPORTS APL LOWEST

Example 2
Return all "parents" from TCPIP using the STOP graph.
>>> AOFTREE NAME=TCPIP DEPENDENCY=STOP LOOKUP=ALL DIRECTION=BACKWARD FORMAT=2
JES2/APL/AOC8 JES2 APL UPPER
RSLV/APL/AOC8 RESOLVRS APL UPPER
TCPIP/APL/AOC8 TCPIPS APL LOWEST
VTAM/APL/AOC8 VTAMS APL UPPER

Example 3
Return all STOP dependencies for FILES.
>>> AOFTREE NAME=FILES LOOKUP=ALL FORMAT=2
APLS/APL/AOC8 USSAPLS APL UPPER
FILES/APL/AOC8/ USSFILES APL LOWEST
PORTS/APL/AOC8 USSPORTS APL LOWEST

Example 4
Return all direct children from APLS using the STOP graph.
>>> AOFTREE LOOKUP=CHILDREN DIRECTION=FORWARD FORMAT=2
PORTS/APL/AOC8 USSPORTS APL LOWEST

The following results are obtained when calling AOFTREE with the following
parameters, and the relationships between A, B, C, D, and E are as described in
Figure 2 on page 62.

AOFTREE NAME=A,LOOKUP=ALL
AOFPCHILD.0 = 5
AOFPCHILD.1 = E Ejobname 0 LOWEST
AOFPCHILD.2 = B Bjobname 0 UPPER
AOFPCHILD.3 = C Cjobname 0 LOWEST
AOFPCHILD.4 = D Djobname 0 LOWEST
AOFPCHILD.5 = A Ajobname 0 UPPER

AOFTREE NAME=A,LOOKUP=ONLY
AOFPCHILD.0 = 1
AOFPCHILD.1 = A Ajobname 0 LOWEST

AOFTREE NAME=A,LOOKUP=DIRCHILD
AOFPCHILD.0 = 4
AOFPCHILD.1 = A Ajobname 0 UPPER
AOFPCHILD.2 = B Bjobname 0 UPPER
AOFPCHILD.3 = C Cjobname 0 LOWEST
AOFPCHILD.4 = D Djobname 0 LOWEST

AOFTREE NAME=B,LOOKUP=ALL
AOFPCHILD.0 = 2
AOFPCHILD.1 = E Ejobname 0 LOWEST
AOFPCHILD.2 = B Bjobname 0 UPPER

AOFTREE

Chapter 2. SA z/OS System Operations Commands 65

CDEMATCH

Purpose
The CDEMATCH command performs a function similar to a table search. It uses
code values that are specified in the automation policy to create a table. You define
the table match criteria and a control keyword or result field. Results from the
search are returned to the automation procedure and are typically used to alter the
automation procedure logic flow or an automation procedure command or reply.

A typical use is to extract feedback and return codes from the message you are
automating, and then perform a search in the automation control file using those
codes. The result of that search alters the action the automation procedure takes.

Syntax

�� CDEMATCH MSGTYP=type
,CODE1=code1 ,CODE2=code2

�

�
,CODE3=code3 ,ENTRY=entry

(1)

VARn=value
��

Notes:

1 You can define VAR1 - VAR9.

Parameters
MSGTYP=type

This is the value that is entered in the Message id field for the
MESSAGES/USER DATA policy item of the automation policy. This policy
item is used to define the codes that are to be searched through for a match.
MSGTYP is typically coded with the message ID of an automated message, but
can also be a pseudo message ID such as CAPMSGS or INGALERT.

CODE1=code1 CODE2=code2 CODE3=code3
These code parameter values are used to search the code entries of the
specified message ID for a matching code definition. You must supply at least
one code parameter but you can supply all three code parameters, if desired.
The code parameters can be specified in any order.

The values for the code parameters may have been extracted as variable values
from an automated message but can also be any other values that a matching
code definition is searched for. The code parameter values correspond to the
related Code fields in the Code Processing panel of the MESSAGES/USER
DATA policy item.

ENTRY=entry
This value is the entry:
APL The subsystem name
MTR The monitor name, prefixed with 0
APG The automation name, prefixed with 1
MVS MVSESA

It is the entry that can be viewed in the Type column in INGLIST.

CDEMATCH

66 System Automation for z/OS: Programmer's Reference

|||||||||||||||||||||
|

|
|||||||||||||||||||||||||||

|

The default value for this parameter is determined by the task global variables
SUBSTYPE and SUBSAPPL. If the value of SUBSTYPE is SUBSYSTEM, the value
of SUBSAPPL is taken as the default value for the ENTRY parameter.
Otherwise, the value of SUBSTYPE is taken as the default value. You must call
the AOCQRY command before CDEMATCH for the defaults to work.

VARn
Variables to substitute '&n' placeholders in the value returned. n can be 1 - 9.

Restrictions and Limitations
The CDEMATCH command can be called only by another automation procedure
or a command processor.

Return Codes
0 A match was found. The resulting Value Returned of the matching code

definition is provided in the task global variable EHKACTION.
1 No match was found.
4 Incorrect parameters were passed to the command.
6 SA z/OS initialization incomplete, unable to process command request.

Usage
v When a matching code definition is found in the automation policy for the

passed parameters and control is returned to the calling automation procedure,
task global variable EHKACTION contains the data from the Value Returned
field in the Code Processing panel of the customization dialog. If no matching
code definition is found, the value of the task global variable EHKACTION is
null.

v Code matching specifications in the automation policy are order-dependent. The
first matching code definition is used.

v Any code parameters (CODE1, CODE2, or CODE3) that are not specified when
calling CDEMATCH are considered as matching regardless of what exists in the
automation policy.

v The format of code matching specifications in the automation policy allows the
use of the wildcard characters * and % and the use of comparison operators. For
more details about the format of code definitions in the customization dialog see
IBM Tivoli System Automation for z/OS Defining Automation Policy.

Task Global Variables
EHKACTION

This variable provides the returned value of the matching code definition as
specified in the Value Returned field in the Code Processing panel of the
customization dialog.

When the return code for CDEMATCH is greater than zero, the value of this
variable is null.

Example
This example shows the relationship between CDEMATCH and the automation
control file. The message to automate, $HASP095, is produced by the JES2
subsystem and indicates that a catastrophic-level problem has occurred. This
example assumes the full message text is passed to the automation procedure. The
automation procedure breaks the message apart, calls CDEMATCH to determine
whether the error codes are in the automation control file.

CDEMATCH

Chapter 2. SA z/OS System Operations Commands 67

|
|

The code matching information is specified in the automation policy as follows.

Select the MESSAGES/USER DATA policy item for the JES2 Application object. On
the Message Processing panel for the JES2 subsystem enter COD as the action for the
message $HASP095.

The Code Processing panel for message $HASP095 is displayed, as shown in
Figure 4.

The automation procedure is as follows:
/* REXX CLIST to respond to $HASP095 */
/* Check whether automation is allowed and set TGLOBALs */
'AOCQRY JES2 RECOVERY’
:
/* Get text of triggering message and save it in msg.1 */
’PIPE SAFE * | STEM msg.’

If msg.0 > 0 Then Do
/* Parse the input message: */
/* $HASP095 JES2 CATASTROPHIC type. CODE = cde RC=rc */
Parse Var msg.1 ’CATASTROPHIC’ code1 . ’CODE =’ code2 .
/* Look for a match */
’CDEMATCH MSGTYP=$HASP095,CODE1=’code1’,CODE2=’code2
Select

When rc = 0 Then Do /* Match found: check the action field */
’GLOBALV GETT EHKACTION’
If ehkaction = ’IPLREQ’ Then Do

:
End

End
When rc = 1 Then Do /* No match found: warn if required */

:
End
Otherwise /* Error: perform warning action */

:
End

End

This is how the automation procedure proceeds:
1. The automation procedure gets the triggering message $HASP095 from the

PIPE default SAFE and stores the only message text line in stem variable msg.1.
2. The message text is parsed using literal string patterns to extract the error type

and the error code in variables code1 and code2. Both values are passed to
CDEMATCH as parameters.

3. According to the code specifications in the automation policy, CDEMATCH first
checks the passed error code (code2) for $PJ in the first three characters. This
checking traps both $PJ2 and $PJF, which indicate that command
$PJES2,ABEND or $PJES2,ABEND,FORCE has been issued.

4. In the case of a match, CDEMATCH returns the value OPERCANCEL in the
task global variable EHKACTION.

Code 1 Code 2 Code 3 Value Returned
* $PJ* OPERCANCEL
ERROR* $K03 IPLREQ
ERROR* $K08 IPLREQ
ERROR* $K15 IPLREQ
ABEND* SA22 OPERCANCEL

Figure 4. Code Processing Sample Panel

CDEMATCH

68 System Automation for z/OS: Programmer's Reference

5. If no match occurs for the first code definition, CDEMATCH checks for the
error codes $K03, $K08, or $K15 and returns the value IPLREQ if there is a
match.

6. If no match has occurred yet, CDEMATCH checks for the abend code SA22 and
returns the value OPERCANCEL if there is a match.

7. Further processing in the automation procedure depends on whether a
matching code definition has been found and, if so, on the returned value of
the matching code definition.

When calling CDEMATCH, the ENTRY parameter is not coded and defaults to
JES2. This default occurs only if AOCQRY was previously called and task global
variable SUBSTYPE is properly filled in. Refer to “AOCQRY” on page 40 for more
information.

CHKTHRES

Purpose
The CHKTHRES command checks the number of errors recorded in the
automation status file against a preset error threshold. It also supports recording of
the error date and time in the automation status file.

CHKTHRES searches the automation control file for the applicable threshold for a
specific resource. It then obtains the error status information from the automation
status file and determines, based on the thresholds, whether any of the three
definable thresholds are exceeded. If a threshold is exceeded, an error message is
issued and an appropriate return code is generated.

Syntax
Parameters are positional.

�� CHKTHRES resource
,NEW

,CHECK ,COMMAND
,NOMSG

��

Parameters
resource

The name of the resource that thresholds should be checked for. This value can
be a subsystem name, a subsystem minor resource such as CICS.TRAN.APPL1,
a generic MVS component name such as MVSESA.SMFDUMP, or any name. If
the first qualifier of the specified resource name is not the name of a defined
subsystem or MVSESA, the resource name is prefixed with MVSESA.

The resource name, including any prefix that might be added, is limited to a
length of 64 characters.

This parameter is required.

NEW
If thresholds are defined for the specified resource name, an error timestamp is
added to the error status information and then thresholds are checked.

CHECK
Thresholds are checked based on the existing error information.

CDEMATCH

Chapter 2. SA z/OS System Operations Commands 69

COMMAND
This parameter determines the messages that CHKTHRES issues when the
infrequent, frequent, and critical error thresholds are exceeded.

Specify this parameter if the automation procedure that uses CHKTHRES
issues commands when an error threshold is exceeded.

NOMSG
This parameter determines that no messages are to be issued when the
infrequent, frequent, and critical error thresholds are exceeded.

Restrictions and Limitations
None.

Return Codes
0 No threshold is exceeded
1 Infrequent threshold is reached
2 Frequent threshold is reached
3 Critical threshold is reached
4 Incorrect parameters were used in the call
5 Timeout or other error occurred

Messages
If CHKTHRES determines that a defined threshold level has been exceeded, it
issues an appropriate message that depends on:
v The exceeded threshold level
v The type of resource that the threshold has been checked for
v The COMMAND parameter

If the COMMAND parameter was specified when calling CHKTHRES, message
AOF589I, AOF588I, or AOF587I is issued.

Otherwise, if the COMMAND parameter is not specified and CHKTHRES is called
to check the threshold for a subsystem, message AOF579I, AOF578I, or AOF577E is
issued.

In all other cases (that is, when it is the threshold for anything other than a
subsystem), CHKTHRES issues message AOF503I, AOF502I, or AOF501E.

All of these messages are captured with a severity that correlates to the exceeded
threshold level, as follows:

Threshold exceeded Severity

Infrequent UNUSUAL

Frequent IMPORTANT

Critical CRITICAL

If necessary, you can change the assigned severity with a code definition for the
message ID CAPMSGS as follows:

Code 1
Message ID

Code 2
Job name of subsystem

CHKTHRES

70 System Automation for z/OS: Programmer's Reference

Code 3
*

Value Returned
Severity (This is required.)

Usage
v CHKTHRES accesses the automation policy to check the threshold definitions,

and the automation status file to check the current error status information of
the resource.

v CHKTHRES is used primarily to track error conditions that can be repetitive. By
tracking the errors, operators can be notified of the repetitive error situation
before it causes problems.
SA z/OS tracks a minimal number of situations, such as application abends,
SPOOL shortages, and problems that cause full LOGREC conditions. It only
tracks specific error messages when there are threshold definitions for the
related minor resource, such as subsystem.msgid or MVSESA.component, and when
commands are defined for those error messages.

v If no thresholds are defined for the resource itself, CHKTHRES searches in a
predefined sequence to find the appropriate default threshold definitions. The
search sequence depends on whether the resource name specifies a major
resource, such as TSO, or a minor resource, such as TSO.IKT010D or
MVSESA.SMFDUMP.
For major resources that are defined as subsystems, the default threshold
definitions for applications or the system apply.
For the following minor resources, the default threshold definitions for MVS
components or the system apply:
– MVSESA.MVSDUMP
– MVSESA.SMFDUMP
– MVSESA.LOGREC
– MVSESA.SYSLOG
– MVSESA.LOG
When searching for default threshold definitions for any other minor resources,
the resource name is consecutively truncated up to the first two name qualifiers.
For example, if no thresholds are defined for the minor resource
CICS.TRAN.APPL1, defined thresholds for the truncated resource name
CICS.TRAN are checked.

Example
This example shows the relationship between a CHKTHRES call in an automation
procedure and thresholds defined in the automation policy database. The example
involves thresholds set for the TSO subsystem. The automation procedure checks
the thresholds by calling CHKTHRES.

The thresholds are defined in the automation policy database on the Thresholds
Definition panel of the customization dialogs for the TSO subsystem.

The automation procedure to call CHKTHRES is:
/* REXX CLIST to check thresholds when a TSO error occurs */
/* Check whether automation allowed and set TGLOBALs */
'AOCQRY TSO AUTOMATION’

...
'CHKTHRES TSO NEW’
Select

CHKTHRES

Chapter 2. SA z/OS System Operations Commands 71

When rc = 0 Then Do
/* perform actions required if no thresholds are exceeded */

:
End
When rc = 1 Then Do

/* perform actions required if infrequent thresholds are exceeded */
:
End
When rc = 2 Then Do

/* perform actions required if frequent thresholds are exceeded */
:
End
When rc = 3 Then Do

/* perform actions required if critical thresholds are exceeded. */
:
End
Otherwise Do

/* otherwise, an error occurred, RC=4/5, log error message */
:
End

End
Exit

If, for example, the following thresholds settings are in effect for TSO:
v A critical threshold is defined as 8 errors occurring in 2 hours
v A frequent threshold is defined as 4 errors in 4 hours
v An infrequent threshold is defined as 4 errors in 8 hours

The example automation procedure performs the following processing steps:
1. If the automation procedure contains ’CHKTHRES TSO NEW’ the time stamp when

the error occurred is added to the automation status file, and the thresholds are
checked.

2. Upon return to the automation procedure, the rc special variable is checked. If
the value indicates that the critical threshold has been exceeded, the automation
procedure should stop recovery to be consistent with the message that is issued
by CHKTHRES.

FWDMSG

Purpose
You can invoke the FWDMSG command from the NetView automation table (AT)
to forward messages from a remote system to a focal point system. By defining
entries in the remote AT that invoke FWDMSG you can:
v Trap messages that you are interested in
v Assign specific message classes to those messages
v Forward the messages to the focal point system

Messages are received by focal point notification operators who are defined to
receive messages of the assigned classes.

CHKTHRES

72 System Automation for z/OS: Programmer's Reference

Syntax

�� FWDMSG �

(1)
class

SELF MSG=text
��

Notes:

1 Up to 10 classes may be specified. Classes should be separated by blanks.

Parameters
class

The message notification classes that are to be assigned to the message. You
should specify at least one message class. If you do not specify a class, the
message is sent to the authorized receiver of the GATOPER autotask. You can
specify up to ten blank-delimited message classes. There are no default
message classes.

SA z/OS notification classes are described in IBM Tivoli System Automation for
z/OS Messages and Codes. You can define your own message classes using the
AUTO MSG CLASSES policy item in the customization dialogs.

Note: The classes that you assign here must match those that you specify
using the NOTIFY OPERATORS policy item in the customization
dialogs.

SELF
This parameter sends the message to the appropriate notification operators on
the issuing system if FWDMSG is invoked on a system that does not have a
defined focal point. If FWDMSG is invoked on a system that does have a
defined focal point, SELF is ignored.

MSG
The message text used for this message. If not coded, the messages in the
message buffer are used. This parameter is valid for single-line messages only.

Restrictions and Limitations
v A triggering delete operator message will not be forwarded to the focal point.
v Do not use the MSG parameter for multiline messages.
v When FWDMSG is called from the NetView automation table, the message to be

processed is in the message buffer. When FWDMSG is called from a command
processor or other automation routine, the message text from the MSG
parameter is treated as the entire message to be forwarded, including the
message ID.

v If invoked with a pipe, all messages in the pipe are forwarded to the focal point
as separate messages.

Return Codes
0 Automation procedure processed correctly.
1 Processing error was encountered.

When the MSG parameter is used for a multiline message, the following message
is issued:

FWDMSG

Chapter 2. SA z/OS System Operations Commands 73

AOF013I SPECIFIED OPERAND MSG= INVALID FOR msgid MLWTO

Usage
You can call the FWDMSG command from the NetView automation table.

Examples

Example 1
The following example sends individual messages for each line in the multiline
response:
IF MSGID=’IST075I’ & DOMAINID = %AOFDOM%
THEN EXEC(CMD(’FWDMSG A1’)ROUTE(ONE *));

Example 2
The following example sends all RACF® messages to ensure notification of security
violations:
IF MSGID=’ICH’ . & DOMAINID = %AOFDOM%
THEN EXEC(CMD(’FWDMSG A2’)ROUTE(ONE *));

HALTMSG

Purpose
You can use the HALTMSG command to respond to a message by changing the
status of an application to HALTED. HALTMSG calls the ISSUEACT command to
also issue commands and replies that are defined in the automation policy for the
ID of the processed message and for the HALTED status.

Typically, HALTMSG is called from the NetView automation table.

Syntax

�� HALTMSG
JOBNAME=jobname MSGTYPE=type EHKVAR=YES

EHKVAR=NO

�

�
REPLY=NO
REPLY=YES

PASSES=NO
PASSES=YES

CODE1=code1 CODE2=code2
�

�
CODE3=code3

��

Parameters
JOBNAME

The name of the job that the message is for. If not specified, the job name is
taken from the message's job name field. You must supply a value for the job
name if you are calling HALTMSG from a CLIST.

MSGTYPE
This parameter is used to search for command and reply entries to
subsystem/msgtype-pairs in the automation control file, where subsystem is the
subsystem name derived from the job name.

FWDMSG

74 System Automation for z/OS: Programmer's Reference

When a match occurs, the commands that are associated with the entries are
issued. This is in addition to the command entries that are associated with the
ENTRY-TYPE pair subsystem/HALTED.

If parameter MSGTYPE is not specified, the message identifier of the message
that HALTMSG is called for is taken as the default.

EHKVAR
This parameter determines whether the tokens of the parsed message text are
to be stored in task global variables EHKVAR0 through EHKVAR9 and
EHKVART.

YES
The tokens of the triggering message are to be assigned to the task global
variables EHKVARn.

NO No values are to be assigned to the task global variables EHKVARn.

REPLY
This parameter determines whether a defined reply is issued for a message
that HALTMSG has been called for.

YES
A defined reply in the automation policy for the message that is being
handled by HALTMSG is issued. REPLY=YES is assumed as the default if
the message is a WTOR, otherwise the default is REPLY=NO.

NO A defined reply for a WTOR being handled by HALTMSG is not issued.

PASSES
Specifies whether passes are used to issue commands or replies (or both) that
have been defined in the automation policy.

YES
PASSES=YES is passed to the ISSUEACT command.

NO PASSES=NO is passed to the ISSUEACT command.

CODE1=code1
CODE2=code2
CODE3=code3

These parameters are passed to the ISSUEACT command, where they are used
to select defined commands and replies via code entries.

Restrictions and Limitations
v If HALTMSG is driven by a delete operator message, no action is taken in

response to this message.
v HALTMSG will not affect an application that is being shut down.
v HALTMSG will not affect an application that is not in UP status.
v The application status is updated and the relevant commands are issued each

time HALTMSG is run.
v Defined commands and replies are only issued in response to a message or a

status change, if the recovery flag of the related minor resources of the
application allows automation.

v If this command is called on a task other than the AOFWRKxx auto operator
that is responsible for the subsystem, HALTMSG will schedule itself to that
AOFWRKxx auto operator. The HALTMSG command will run asynchronously
to the calling procedure. This means that when the calling procedure regains
control, the status of the subsystem may not yet have changed.

HALTMSG

Chapter 2. SA z/OS System Operations Commands 75

v Only messages for applications with known address space IDs are processed by
HALTMSG.
The address space ID is not checked if HALTMSG is called from an automation
procedure (CLIST), or if HALTMSG has been triggered by message BPXF024I.

Usage
You should normally call the HALTMSG command from the NetView automation
table.

Applications can be put into HALTED status when something occurs that leaves
them running with reduced function. Use HALTMSG to put an application into
HALTED status, and ACTIVMSG (or the SETSTATE command dialog) to change
the status.

If HALTMSG is called for a WTOR and it is not replied to, OUTREP is called to
process the WTOR.

HALTMSG should run on the working operator of the subsystem that issued the
message. Otherwise, the HALTMSG command will run asynchronously to the
calling procedure. This means that when the calling procedure regains control, the
status of the affected subsystem may not yet have changed.

All commands and replies that are triggered through HALTMSG have access to the
SAFE called AOFMSAFE, which stores the message that caused the HALTMSG
call.

Task Global Variables
EHKVAR0 through EHKVAR9 and EHKVART

When defining the commands in the automation control file to be issued by
command HALTMSG, the variables &EHKVAR0 through &EHKVAR9 and
&EHKVART can be used to be substituted by the tokens of the parsed message
that has driven HALTMSG. &EHKVAR0 will be substituted by the message ID,
&EHKVAR1 by the first token of the message text after the message ID,
&EHKVAR2 with the second token and so forth. &EHKVART will be
substituted by the trailing message text after the 9th token.

Examples
The following example shows how HALTMSG is called from the NetView
automation table:
* IKT008I TCAS NOT ACCEPTING LOGONS
IF MSGID = ’IKT008I’ & DOMAINID = %AOFDOM% THEN

EXEC(CMD(’HALTMSG’)
ROUTE(ONE %AOFOPGSSOPER%));

INGALERT

Purpose
The INGALERT command allows you to send alerts to event notification targets
such as:
v System Automation for Integrated Operations Management (SA IOM)
v Tivoli Enterprise Console (TEC)
v Tivoli Netcool/OMNIbus

HALTMSG

76 System Automation for z/OS: Programmer's Reference

v Tivoli Service Request Manager®

v A user-defined alert handler.

Syntax

�� INGALERT
resource ID=alert_id

MODE=PROBLEM

MODE=CLEARING
�

�

�

INFORM=*

INFORM= type
,

(type)

(1)
MSG=ING140I

MSG=(msgid,parms)
TEXT=text

(2)
JOBNAME=N/A

JOBNAME=jobname
�

�
(3)

USRn=(name,value)

(4)

CDEn=value
��

Notes:

1 This is the default if INGALERT is not called from the NetView automation
table.

2 This is the default if INGALERT is not called from the NetView automation
table.

3 You can define USR1 - USR9.

4 You can define CDE1 - CDE9.

Parameters
resource

This can be:
v A fully-qualified resource name, in the form name/type/sys (where type

is APL, APG or MTR)
v The text MVSESA (that is, the content of the AOFSYSTEM variable)
v A job or subsystem name

The subsystem name takes precedence over the job name.

If there is more than one resource with the given subsystem or job name,
the corresponding local system resource is used. If there is no such
resource on the local system, the first resource found is used.

If the resource name is not specified as a parameter, the value of the
JOBNAME parameter is used to determine the resource name. If the
JOBNAME parameter is not specified either, and INGALERT is called from
the automation table, the job name is taken from the message’s job name
field. If no job name can be determined, MVSESA is used as the resource
name.

ID This is the alert identifier for the resource. Refer to the "Enable Alerting"
section in IBM Tivoli System Automation for z/OS Customizing and
Programming for further details on the pre-defined alerts for SA z/OS. If

INGALERT

Chapter 2. SA z/OS System Operations Commands 77

||

|

|

|

|
|
|

||
|
|

INGALERT is called from the NetView automation table (AT), alert_id can
be omitted, in which case the message ID of the triggering message is
used.

When you create clearing events by specifying MODE=CLEARING, you
can set the ID=* to clear all outstanding events for the specified resource.

MODE
This specifies the type of created event.

PROBLEM
Creates a problem event. This is the default value.

CLEARING
Creates a clearing event only if the event is addressed to the EIF or
USR target. For other targets, no event is created.

INFORM
This specifies the notification target for the created event to be sent to. An
event is only sent to a specified target, if the event notification for this
target is enabled and if the target is included in the inform policy list of
the resource.

The value for the INFORM parameter can be specified as:
v The name of a supported event notification target. Supported targets are

IOM, EIF, TTT or USR
v A list of supported event notification targets, enclosed in parentheses.
v An asterisk, *, which means the list of all supported event notification

targets.

MSG This is the ID of a message defined in the NetView message catalog.

Note that if you enter an invalid message ID, the message AOF000I is sent
to the specified event notification targets.

The message can have variables &1 through &9 that are filled with
parameters that are specified after msgid. If a message parameter is omitted
the following defaults are used:
&1 INGALERT
&2 The date and time stamp when the message was generated
&3 The alert ID that was specified or the default that was used
&4 The resource that was specified or the default that was used
&5 The system that INGALERT was called on

MSG cannot be used together with TEXT.

TEXT This is a text string that is to be used for the alert.

TEXT cannot be used together with MSG.

JOBNAME
This specifies the name of the job that caused the alert. If not specified, the
job name is taken from the message's job name field if INGALERT is called
from the automation table. Otherwise N/A is used as the default value.

USRn Specifies the name and the value of a user field. n can be 1-9. User fields
are passed on to notification targets EIF, TTT, and USR.

CDEn Specifies the value to replace '&n' placeholders in the CDEMATCH data. n
can be 1-9.

INGALERT

78 System Automation for z/OS: Programmer's Reference

|
|
|

|
|

||
|

||
|

If neither MSG nor TEXT is specified and INGALERT is called from the AT, the
text of the triggering message is used. Otherwise MSG=ING140I is used.

Note that the text or message text may be truncated by SA IOM.

Return Codes
0 All alerts were sent successfully. In addition, there might be alerts that have

been ignored.
1 All alerts were ignored.
3 Besides alerts that were successfully sent, at least one alert could not be sent.

In addition, there might be alerts that have been ignored.
4 Parameter error.
6 Environment check failed.
8 No alert could be sent. In addition, there might be alerts that have been

ignored.

Restrictions and Limitations
SA z/OS must be fully initialized.

Usage
Alert transmission can be controlled as follows:
v Alerting can be enabled and disabled system-wide with the INGCNTL

command.
v If an event notification target is specified in the Inform List field of the

resource's policy, alerting is enabled; otherwise it is disabled.
v Alerting is disabled for a resource if code processing for it is unsuccessful or

returns a value of IGNORE.

An event is only sent to the specified target if event notification for this target is
not prevented by one of these control mechanisms.

SA z/OS does not keep track of alerts that have been sent. Once the data has been
successfully delivered to the event notification target, responsibility for delivering
the event is passed on to this target as follows:
v For IOM, the event is passed on to SA IOM via the peer-to-peer connection
v For EIF, the event is passed on to the message adapter service of the NetView

event/automation service
v For TTT, the event is passed on to the Tivoli Directory Integrator server
v For USR, the event is passed on to the user defined alert handler

If an alert cannot be sent to the target a message is written to the netlog. No
further attempts are made to deliver the alert.

Examples

Example 1:
The following can be used from the NetView automation table to send an alert
whenever message ABC123I is issued:
IF MSGID=’ABC123I’
THEN
EXEC(CMD(’INGALERT’));

INGALERT

Chapter 2. SA z/OS System Operations Commands 79

This uses alert ID ABC123I and the complete message text of ABC123I as the alert
text and sends the alert to all the targets on the inform list definition in the
automation policy.

Example 2:
The following can be used from the command line or a CLIST:
INGALERT MYGRP/APG/SYS1 ID=MYALERT TEXT=(MYGRP HAS A PROBLEM) INFORM=IOM

This uses alert ID MYALERT and the specified alert text and send an alert to IOM
only.

INGCLEAN

Purpose
The INGCLEAN command can be used to clean up the in-storage data model of
the local system. The data model is compared to the currently loaded configuration
files. Entries within the data model that have no corresponding entries in the
configuration files are deleted. For entries that have a hard-coded default provided
by System Automation, this default value is restored.

Syntax

�� INGCLEAN ��

Parameters
There are no parameters. Any specified parameters will be ignored without
notification.

Return Codes
0 Cleanup was successful.

4 Parameter Error.

6 Environment check failed.

8 An error occurred.

Restrictions and Limitations
In order to run INGCLEAN the configuration must be loaded and the
configuration files must be accessible from disk.

INGCLEAN does not affect data for subsystems, subsystem defaults, application
groups and monitor resources because they are cleaned up by the main
configuration loader process.

INGCLEAN does not affect data for automation operators because work could be
scheduled there and a cleanup would cause an immediate log off from the
corresponding task.

For all other elements, INGCLEAN will remove all data if the element is not
present in the currently loaded configuration files. This means especially that all

INGALERT

80 System Automation for z/OS: Programmer's Reference

|

|
|

|

|
|
|
|
|

|

|||||||
|

|

|
|

|

||

||

||

||

|

|
|

|
|
|

|
|
|

|
|

data that has been added via ACF REQ=REPL is deleted. Note that INGCLEAN
does not restore the values from the configuration files for data that has been
modified via ACF REQ=REPL.

INGCLEAN always runs on the local system where it is invoked.

Usage
You can run INGCLEAN from the policy, the automation table, an automation
script or directly from the command line. It is recommended to run INGCLEAN as
an environment setup exit if you want it to run everytime you load or refresh your
configuration from the command line for an instantaneous regular cleanup timer.

Examples
If you want to run INGCLEAN on every configuration refresh, specify it as the
first environment setup exit.

COMMANDS HELP
--

System Information Top of data
Command ===>

Entry Type : System PolicyDB Name : USER_PBD
Entry Name : SYS3 Enterprise Name : USER_ENTERPRISE

More: +
Operating system . . . : MVS
Image/System name. . . . SYS3

The following specifications are for MVS systems only:
Primary JES. JES2 Primary JES2/JES3 subsystem name
System Monitor Time. . . 00:59 Time between monitor cycles (hh:mm or NONE)
Gateway Monitor Time . . 00:15 Time between monitor cycles (hh:mm or NONE)
Automation Table(s). . . INGMSG01

NetView automation table members
SDF Root Name. Root of system’s SDF tree
Exit name(s) INGCLEAN MYEXIT

Environment setup user exit names
USS automation path. . .
/usr/lpp/ing/ussauto/lib

NetView automation table members
SDF Root Name. Root of system’s SDF tree
Exit name(s)

Environment setup user exit names
USS automation path. . .
/usr/lpp/ing/ussauto/lib

System Automation UNIX installation
SA NetView Domain. . . . NetView domain ID of SA z/OS
Network NetView Domain . NetView domain ID of network automation

NMC Focal Point Communication specification:
Heartbeat Interval 5 (1 - 60 minutes)
Missing Heartbeat Delay. . 30 (1 - 3600 seconds)
F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

INGCNTL

Purpose
The INGCNTL command is used to control various SA z/OS settings.

INGCLEAN

Chapter 2. SA z/OS System Operations Commands 81

|
|
|

|

|

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

Syntax

��
LIST

INGCNTL
SET Alert Settings

BCPM Settings
Command Settings
DLA Settings

��

Alert Settings:

ALERTMODE= ON
OFF
’types’

ALERTHOST=host:port:linkid:stack
�

�
EIFPPI= ppi-id

*REMOTE
'tgt'

USRHANDLER=handler TTTHOST=host:port:stack
�

�
TTTDATA='hlqs prim sec'

BCPM Settings:

USERID=userid

Command Settings:

COMMAND_LOGGING= YES
NO

DLA Settings:

CODEPAGE=nnnn ODSN=dsname MEMBER=name ORGNAME=orgname
�

�
ENCODING=nnnn HOSTNAME=name CONTACTINFO=data

Parameters
LIST This lists all of the supported settings. This is the default.

SET This allows you overwrite one or more settings.

You can use ’’ to delete the value of any of the INGCNTL settings, for
example, INGCNTL SET ORGNAME=’’

ALERTMODE
This sets the alerting mode:

INGCNTL

82 System Automation for z/OS: Programmer's Reference

|

|||||

ON Enables alerting for all event notification targets.

OFF Disables alerting for all event notification targets.

'types' Enables alerting for the specified event notification targets. The
value of types must be a blank-separated list of the supported event
notification targets IOM, EIF, TTT, or USR.

ALERTHOST
This sets the properties of the connection to the SA IOM server.

host The host name or IP address of the SA IOM server to be used for
the notification.

Note: IPv6 addresses must be enclosed in square brackets ([...]).

port The port of the SA IOM server to be used for the notification.

linkid The link ID to be used for the connection to the SA IOM server. It
can be up to 8 characters long.

stack IP stack name to be used. If not specified, the default of the
SOCKET command is used.

Note that omitting the colon separators restores the original settings for the
connection.

EIFPPI
Specifies the PPI receiver name of the NetView Event/Automation Service
(E/AS) message adapter service, which forwards alerts to an EIF target
such as the Tivoli Enterprise Console or Tivoli Netcool/OMNIbus.
Alternatively, "*REMOTE" can be specified to forward the EIF alert to a
remote system (outside the local sysplex) for passing the event to the E/AS
service.

tgt is the name of the system or its domain id used as a hub. If
omitted, the current focal point is used.

Note: If tgt is specified with *REMOTE you must use single quotes, for
example INGCNTL...EIFPPI='*REMOTE SYS1....'

USRHANDLER
Specifies the name of the automation procedure to be executed to handle
events destined for the target USR. See the AOFEXALT member in
ING.SINGSAMP for an example.

TTTHOST
Specifies the properties for the connection to the Tivoli Directory Integrator
(TDI) server.

host The host name or IP address of the TDI server that is to be used as
the destination for trouble tickets.

port The port of the TDI server that is to be used as the destination for
trouble tickets.

stack IP stack name to be used. If not specified, the default of the
SOCKET command is used.

Note: IPv6 addresses must be enclosed in square brackets ([...]).

INGCNTL

Chapter 2. SA z/OS System Operations Commands 83

||
|

|
|
|
|
|
|
|

||
|

|
|

||
|

TTTDATA
Specifies the data set characteristics for the trouble ticket detail data,
where:

hlqs The prefix for the data set name, consisting of one or more
qualifiers, with a maximum length of 16 characters. This value
must follow the naming conventions for a valid data set name. The
name of the data set will be hlqs.domainid.Ddate.Ttime.Ccounter.

prim The number of cylinders for the primary allocation.

sec The number of cylinders for the secondary allocation.

USERID
Specifies the MAXIMO user ID for BPCM Web Service authentication.

COMMAND_LOGGING
This sets command logging via message AOF705I for several SA z/OS
commands. Message AOF705I lists all the parameters that have been
specified together with the user ID of the person or autotask that issued
the command.
YES Enables command logging.
NO Disables command logging.

CODEPAGE
Specifies the encoding codepage — it is the one that NetView uses. The
default is 1047.

You must specify this parameter if you are running with a different
codepage. Failure to do so will result in the generation and downloading
of a corrupt Identity Markup Language (IdML) book that Tivoli
Application Discovery Dependency Manager (TADDM) cannot load.

ODSN
Specifies the name of the output data set. The data set must be a
pre-allocated (catalogued) PDS with attribute VB=3000. The name must be
fully qualified, with or without surrounding quotation marks. The user ID
that NetView is running under must have UPDATE access to it.

MEMBER
Specifies the name of the member that will contain the IdML data. The
default is INGBOOK.

Reserved member name is @CHCKSUM.

ORGNAME
Specifies the name of the organization. The default is to take the default
name from the IBM Tivoli Change and Configuration Management
Database (CCMDB).

ENCODING
Specifies the encoding option. Valid values are EBCDIC, ASCII and UTF-8.
The default is UTF-8.

HOSTNAME
Specifies the name of the host of the management software system (that is,
SA z/OS). It is used to address SA z/OS. If specified, it takes precedence
over a discovered host name.

CONTACTINFO
Provides details of ports and security keys that are needed to establish a
session with NetView over TCP/IP when used in conjunction with the host
name.

INGCNTL

84 System Automation for z/OS: Programmer's Reference

Return Codes
0 Normal completion. Settings have been applied.
4 Invalid parameters were specified.
8 Command failed.

Usage
INGCNTL behaves like an operator command. The output from INGCNTL LIST
command takes the form of a correlated multiline message ING149I.

The first line of the multiline message is a header text. Output of the settings
begins on line two. Each setting is in a separate line and in the format keyword:
value.

Use INGCNTL in a PIPE to capture and analyze (or suppress) the generated
message or as an operator NCCF command.

Examples
To list the current settings specify:
INGCNTL LIST

The output produced is similar to the following:
ING149I LIST CONTROL SETTINGS

ALERTMODE: OFF
CODEPAGE: 1047
ORGNAME: My Organization

ODSN: USER.DLA

Note that unset values that have no defaults are not listed.

To enable alerting for IOM and EIF, specify:
INGCNTL SET ALERTMODE=’IOM EIF’

To set the connection properties for IOM specify, for example:
INGCNTL SET ALERTHOST=MYIOMSRVR:4711:SA2IOM

To set the connection properties for IOM using an IPv4 address, specify, for
example:
INGCNTL SET ALERTHOST=10.0.0.3:4711:SA2IOM

To set the connection properties for IOM using an IPv6 address, specify, for
example:
INGCNTL SET ALERTHOST=[::0AFF:7F01]:4711:SA2IOM

Note: You can invalidate the ALERTHOST settings for an instance by removing
the colons. This makes it easy to restore to the original settings.

INGCPSM

Purpose
The INGCPSM command returns status information for a CICSPlex® System
Manager (CICSPlex SM) object. This data is returned in ING150I messages.
INGCPSM should be run in a virtual operator station task (VOST).

INGCNTL

Chapter 2. SA z/OS System Operations Commands 85

Syntax

�� INGCPSM CONTEXT=context
SCOPE=context

SCOPE=scope

ACTION=SAZOS

ACTION=action
�

�
TIMEOUT=10

TIMEOUT=timeout

PREFIX=CPSM

PREFIX=prefix
��

Parameters
CONTEXT

This identifies the context for the command. context must be the name of a
CICSplex and can be 1–8 characters long. This parameter is required.

Note that a CICSPlex SM address space (CMAS) name is not allowed.

SCOPE
This qualifies the CONTEXT option. scope can be:
v The 1- to 8-character name of the CICSPlex itself
v A CICS system or CICS system group within the CICSPlex
v A logical scope, as defined in a CICSPlex SM resource description

(RESDESC)

If scope is not specified the same value that is defined for the context is
used.

ACTION
This limits the events that INGCPSM handles to those that are defined
with a certain ACTION DEFINITION name.

If action is not specified SAZOS is used as the default.

TIMEOUT
This is the number of seconds to wait and collect events before ING150I
messages are produced. This is also the interval during which monitor
resources that require initial monitoring are determined. The valid range is
1–30 seconds.

If timeout is not specified 10 seconds is used as the default.

PREFIX
This is the 1-4 character string that prefixes a monitored CPSM object in
the monitor resource. This is used to identify CPSM-related MTRs for
initial monitoring.

If prefix is not specified CPSM is used as the default.

Return Codes
None.

Restrictions and Limitations
SA z/OS must be fully initialized.

INGCPSM requires CICSPlex SM to be installed and ready to use. Appropriate
definitions must have been made within CPSM. See the step “Installing CICSPlex

INGCPSM

86 System Automation for z/OS: Programmer's Reference

|
|

SM REXX API” in the chapter “Installing SA z/OS on Host Systems” in IBM Tivoli
System Automation for z/OS Planning and Installation.

Usage
Use the INGVSTRT command to run INGCPSM in a VOST, see “INGVSTRT” on
page 158.

Examples
To start INGCPSM and monitor CICSplex CICPLX1, enter the following as a start
command in the VOST management APL:
INGVSTRT SYNC,INGCPSM CONTEXT=CICSPLX1

To override the defaults for ACTION and TIMEOUT specify:
INGVSTRT SYNC,INGCPSM CONTEXT=CICSPLX1,ACTION=MYACT,TIMEOUT=30

INGDATA

Purpose
The INGDATA command returns detailed information that the automation
manager maintains for the specified resources. The data is returned as a multiline
message, one line for each resource.

The format is as follows:

Byte Length Description

1 11 Name of resource

14 3 Resource type, for example, APG or APL

19 8 Name of system hosting resource

29 11 Observed status

41 12 Desired status

54 10 Automation status

65 4 Automation flag

70 4 Hold flag

75 48 Description

125 10 Start type

137 8 Stop type

147 8 Service period name

157 8 Trigger name

167 12 Compound status

181 10 Startability status

193 8 Resource nature (group type)

203 8 Category

213 10 Subcategory

224 12 Health status

237 8 Jobname

246 40 Inform list

INGCPSM

Chapter 2. SA z/OS System Operations Commands 87

|
|

|||

|||

|||

Byte Length Description

287 3 Runmode qualification

291 8 Desired default status

Syntax

��
NETVASIS

�INGDATA resource
WAIT=nnn

�

� filter criteria
TARGET= sysname

domain
sysplex

��

filter criteria:

�

OBSERVED= *

(status)
^
\

�

�

�

DESIRED= *

(status)
^
\

�

�

�

AUTOSTAT= *

(status)
^
\

�

�

�

COMPOUND= *

(status)
^
\

�

INGDATA

88 System Automation for z/OS: Programmer's Reference

|||

|||

|

|||||||

|||||||

|||||||

|||||||

�

�

HEALTH=
*

(status)
^
\

GROUPTYPE=(grouptype)
�

�
DESCR=text

�CATEGORY=(category) �SUBTYPE=(subtype)

�

�

�JOBNAME=(jobname) �RUNTOKEN=(runtoken)

Parameters
NETVASIS

Prefix the INGDATA command with NETVASIS if you want to pass the
description text in lower or mixed case.

resource
Specifies the name of the resource (or resources) to be displayed. The format is
name/type<[</system>]>. It can be a list of names.

The resource names must be separated by a blank. Asterisks (*) can be used as
wildcard characters.

WAIT
Specifies the number of seconds to wait before reporting that a timeout
occurred if the automation manager does not provide the requested data. The
maximum time interval is 999 seconds.

If omitted, the time interval is 30 seconds.

filter criteria
The filter criteria to be applied prior to displaying the data. The following
values can occur:

OBSERVED
Specifies the observed statuses to be displayed. The statuses must be
separated by a blank. It can be abbreviated, for example, to AV for
available. If '^' or '\' is used, all statuses except the ones you specify are
displayed.

DESIRED
Specifies the desired statuses to be displayed. The statuses must be
separated by a blank. It can be abbreviated, for example, to AV for
available. If '^' or '\' is used, all statuses except the ones you specify are
displayed.

AUTOSTAT
Specifies the automation status to be displayed. The statuses must be
separated by a blank. It can be abbreviated, for example, to ID for idle. If
'^' or '\' is used, all statuses except the ones you specify are displayed.

INGDATA

Chapter 2. SA z/OS System Operations Commands 89

||||||||||

|||||||

||||||

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

COMPOUND
Specifies the compound status. The statuses must be separated by a blank.
It can be abbreviated, for example, to SA for satisfactory. If '^' or '\' is
used, all statuses except the ones you specify are displayed.

CATEGORY
Specifies the category that the resource belongs to. More than one value
can be specified.

SUBTYPE
Specifies the subtype of the resource. More than one value can be specified.

DESCR
Specifies the text string used as a filter. The text can contain wildcards. An
asterisk (*) matches a string of arbitrary length and a percentage sign (%)
matches a single character. The DESCR parameter is case-sensitive. The text
string must be enclosed in single or double quotation marks or
parentheses() to maintain the case-sensitivity of the entry.

GROUPTYPE
Specifies the type (nature) of the resource group. More than one value can
be specified.

HEALTH
Specifies the desired health statuses to be displayed. The statuses must be
separated by a blank. It can be abbreviated, for example, to NO for normal.
You can also specify an asterisk (*) to reset the current filter setting, for
example, INGFILT HEALTH=*. If '^' or '\' is used, all statuses except the
ones you specify are displayed.

JOBNAME
The jobname assigned to the resource. More than one jobname can be
specified. Wildcards are supported.

RUNTOKEN
The runtoken assigned to the resource. More than one runtoken can be
specified. Wildcards are supported.

TARGET
For information on the TARGET parameter, refer to IBM Tivoli System
Automation for z/OS Operator’s Commands.

Return Codes
0 Okay.
1 An error occurred.
2 SA z/OS has not fully initialized.

Restrictions and Limitations
SA z/OS must be fully initialized.

Usage
The INGDATA command should be used in a NetView PIPE statement.

INGDATA

90 System Automation for z/OS: Programmer's Reference

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

INGEXEC

Purpose
The INGEXEC command can be used to process the specified command on the
system where the specified resource resides. The output of the command execution
is collected and can be automatically returned to the caller.

The INGEXEC command operates sysplex-wide. The INGEXEC command
interrogates the automation manager to determine the list of resources affected.

Syntax

��
NETVASIS

INGEXEC resource
SELECT=ONE

SELECT= FIRST
SYSTEM
ALL

RESP=YES

RESP=NO
�

�
WAIT=nnn CORRWAIT=nnn

filter criteria CMD=command �

�
OPER=operator MAXRC=nnn TARGET=destination

�

�

�TERMMSG=(msgid)

��

filter criteria:

CATEGORY=category

�SUBTYPE=(type)

DESCR=text
�

�
STATUS= ACTIVE

INACTIVE
�OBSERVED=(status)

^
\

�

�

�DESIRED=(status)
^
\

�AUTOSTAT=(status)
^
\

�

INGEXEC

Chapter 2. SA z/OS System Operations Commands 91

|

|

|||

||||

�

�COMPOUND=(status)
^
\

�HEALTH=(status)
^
\

Parameters
NETVASIS

Prefix the INGEXEC command with NETVASIS if you want to pass the
command and/or the description text in lower or mixed case.

resource
The resource name that is used to determine the system that the command
should be routed to. It can be one of the following:
v The resource name in automation manager format. If an application group is

specified its group members are taken. Note that a resource name in
automation manager notation has the format resname/type[/system]. The
resource name can contain wildcards, such as TSO*/APL/* or
CICS%%G/APG.

v The subsystem name. If the name that is specified for a resource does not
contain a slash (/) it is considered to be a subsystem name. The subsystem
name can contain wildcards, such as TSO* or *DB2.

Note: When the INGEXEC command is specified in the policy database, the
subsystem symbols are resolved at the time the INGEXEC command is
executed and not when the command specified in INGEXEC is
processed. To ensure that the substitution is done when the command
specified in INGEXEC is executed, prefix the variable name with a
number sign character (#) instead of the standard ampersand character
(&), for example, #SUBSJOB.

SELECT
Specifies which resource is used when determining where to send the
command:
ALL All resources that match the filter criteria.
FIRST The first resource in the list of eligible resources. The resource list is

sorted in alphabetical order.
ONE Only one resource is allowed to match the filter criteria. This is the

default. If more than one resource matches the criteria, the command is
rejected.

SYSTEM
One resource per system is allowed to match the filter criteria.

RESP
Specifies how to handle the command output:
YES The output of the command is returned to the caller.
NO The output of the command is queued with the NetView CMD LOW

command on the target systems.

WAIT
Specifies the number of seconds to wait before reporting that a timeout
occurred if the automation manager does not provide the requested data. The
maximum time interval is 999 seconds. If omitted, the time interval is 30
seconds.

INGEXEC

92 System Automation for z/OS: Programmer's Reference

|
|
|

CORRWAIT
Specifies the CORRWAIT value (in seconds) to be used when INGEXEC uses
the NetView PIPE command to submit the command to be executed. The
CORRWAIT PIPE stage is necessary to trap asynchronous command output.
The maximum value is 999 seconds.

filter criteria
The following filter criteria can be optionally specified:

CATEGORY
The category of the resource.

SUBTYPE
The subcategory of the resource. More than one subcategory can be
specified. Wildcards are supported.

DESCR
Specifies the text string as a filter. The text can contain wildcards. An
asterisk (*) matches a string of arbitrary length and a percentage sign (%)
matches a single character. The DESCR parameter is case-sensitive. The text
string must be enclosed in single or double quotation marks or parenthesis
to maintain the case-sensitivity of the entry.

STATUS
The status that the resource must be in to be considered. It can be one of
the following:
ACTIVE The observed status of the resource must be AVAILABLE.
INACTIVE The observed status of the resource must be either

SOFTDOWN, HARDDOWN, SYSGONE, or UNKNOWN.

OBSERVED
Specifies the observed statuses that the resource must be in to be eligible.
The statuses must be separated by a blank. It can be abbreviated, for
example, to AV for available. If '^', or '\' is used, all statuses except the
ones you specify make the resource eligible.

DESIRED
Specifies the desired statuses that the resource must be in to be eligible.
The statuses must be separated by a blank. It can be abbreviated, for
example, to AV for available. If '^', or '\' is used, all statuses except the
ones you specify make the resource eligible.

COMPOUND
Specifies the compound statuses that the resource must be in to be eligible.
The statuses must be separated by a blank. It can be abbreviated, for
example, to SA for satisfactory. If '^', or '\' is used, all statuses except the
ones you specify make the resource eligible.

AUTOSTAT
Specifies the automation statuses that the resource must be in to be
eligible. The statuses must be separated by a blank. It can be abbreviated,
for example, to ID for idle. If '^', or '\' is used, all statuses except the ones
you specify make the resource eligible.

HEALTH
Specifies the health statuses that the resource must be in to be eligible. The
statuses must be separated by a blank. It can be abbreviated, for example,
to MI for minor. If '^', or '\' is used, all statuses except the ones you
specify make the resource eligible.

INGEXEC

Chapter 2. SA z/OS System Operations Commands 93

|
|
|
|
|

|
|
|

|
|
|
|
|
|

CMD
The command to be executed. It can contain &SUBxxxxx variables that are
resolved using the appropriate settings of the subsystem on the target system.

OPER
The automated operator on the target system where the command is to be
processed.

MAXRC
The maximum return code accepted for command processing. If the command
return code is higher processing is aborted. For multiple resources, the
processes run sequentially and a process is terminated if a return code is
greater than the value specified here.

TERMMSG
Specifies the message ids that terminate the message collection. More than 1
message id can be specified separated by a blank character. If more than 1
message id is specified, they must be enclosed in parenthesis or quotes.

TARGET
The systems where the INGEXEC command should run. The INGEXEC
command is a sysplex-wide command. Therefore you do not need to specify
the TARGET parameter when you want processing within the local sysplex.
Specify only one system for each remote sysplex. Specify *FP when the
command should be routed to the focal point.

Return Codes
0 Command processed successfully.
1 An error occurred.
2 Parsing Error.

Restrictions and Limitations
SA z/OS must be fully initialized.

Any color attribute that is associated with the output messages of the command
that is being executed are ignored. This also applies to any screen manipulation
actions.

Examples
Consider a setup with three basic DB2 application groups that each have three DB2
applications: DB2MSTR, DB2IRLM, and DB2DIST. All three applications in
DB2GRP/APG/SYS1 are active, DB2DIST in DB2GRP/APG/SYS2, and all three
applications in DB2GRP/APG/SYS3 are inactive.

Now consider the result of the following:
1. INGEXEC DB2GRP/APG/* STATUS=ACTIVE SUBTYPE=MSTR SELECT=ONE CMD=’...’

In this example, both DB2MSTR/APL/SYS1 and DB2MSTR/APL/SYS2 are
selected. However, because SELECT=ONE is specified the command is denied.

2. INGEXEC DB2/APG STATUS=ACTIVE SUBTYPE=DIST SELECT=ALL RESP=NO
CMD=’...’

In this example, DB2DIST/APL/SYS1 is selected. It is the only resource with
subtype=DIST that is active. The command is routed to SYS1. Subsystem
symbol (&SUBxxxxx) substitution takes place using the subsystem settings of
DB2DIST on SYS1. Because RESP=NO is specified, SA z/OS does not wait for
command completion.

INGEXEC

94 System Automation for z/OS: Programmer's Reference

|
|
|
|

|
|
|
|

|
|
|
|
|
|

||

3. INGEXEC DB2MSTR SELECT=ALL CMD=’...’

In this example, the resources DB2MSTR/APL/SYS1, DB2MSTR/APL/SYS2
and DB2MSTR/APL/SYS3 are selected. The command is routed to SYS1, SYS2
and SYS3. Subsystem symbol (&SUBxxxxx) substitution takes place using the
corresponding subsystem settings.

To issue a command on all active systems in a sysplex, specify */SYS/* as the
resource name, for example:
ingexec */sys cmd=’mvs d t’ select=all

The command output is collected and returned to the caller in one or more
multi-line messages. There is one multi-line message for each command invocation
on the target systems. The first line of the multi-line message describes:
v The name of the system where the command executed
v The name of the resource for which the command was executed
v The return code of the command execution
v The command itself

The following is an example of the output:
| IPXFI
SYSTEM=KEYA WASTEST1/APL/KEYA RC=0 CMD=’RES’
DSI386I NETVIEW RESOURCE UTILIZATION 14:38:37

TOTAL CPU % = 1.06
NETAROLI CPU % = 0.00
NETAROLI CPU TIME USED = 306.32 SEC.
REAL STORAGE IN USE = 66948K
PRIVATE ALLOCATED < 16M = 980K
PRIVATE ALLOCATED > 16M = 66392K
PRIVATE REGION < 16M = 9192K
PRIVATE REGION > 16M = 307200K

END OF DISPLAY
| IPXFI
SYSTEM=KEYB WASTEST1/APL/KEYB RC=0 CMD=’RES’
DSI386I NETVIEW RESOURCE UTILIZATION 14:38:37

TOTAL CPU % = 0.00
NETAROLI CPU % = 0.00
NETAROLI CPU TIME USED = 179.01 SEC.
REAL STORAGE IN USE = 60432K
PRIVATE ALLOCATED < 16M = 972K
PRIVATE ALLOCATED > 16M = 60000K
PRIVATE REGION < 16M = 9192K
PRIVATE REGION > 16M = 307200K

INGJLM

Purpose
The INGJLM command is used to start/stop, suspend or query the joblog
monitoring when the spooling subsystem is JES2.

Syntax

INGJLM

�� INGJLM START dsname INTERVAL=sss
STATUS
STOP dsname
SUSPEND

��

INGEXEC

Chapter 2. SA z/OS System Operations Commands 95

|
|

|

|
|

|

|

|||||||||||||||||||||||||||||||

|

dsname:

JOBNM=jnm
OWNER=uid JOBID=jid JESMSGLG

DDN=
ddname

Parameters
DDN

Defines the ddname of a valid JES spool output data set:
JESMSGLG JES message log. This is the default.
ddname The ddname of any other spooled output data set.

INTERVAL
Defines the monitoring interval for the indicated ddname in seconds. The
minimum interval is 1 second, the maximum is 3600 seconds.

JOBID
Defines the job identifier, for example, JOB08450. The value can be up to 8
characters long.

Note: The command is rejected when the parameter is omitted and multiple
job ids are found for the particular job name.

JOBNM
Defines the name of the job. The value can be up to 8 characters long.

OWNER
Defines the owner of the job. The value can be up to 8 characters long.

Note: The command is rejected when the parameter is omitted and multiple
jobs are found for the particular job name with different owner ids.

START
Start the joblog monitoring of the indicated log.

STATUS
Show the status of the joblog monitoring task and its monitored resources.

STOP
Stop the joblog monitoring of the indicated log.

SUSPEND
Suspend the joblog monitoring. All opened data sets are closed and
deallocated. Finally, the task is terminated. However, all information to
continue the preceding monitoring is kept. When the task is restarted it
reopens each data set, positions to the last record read, and processes each new
accumulated message.

Note: When you are no longer interested in joblog monitoring at all use the
NetView command STOP to terminate the task. All data sets are closed
and all storage is released.

Restrictions and Limitations
The command is available only when JES2 is the primary subsystem.

When the monitoring task is restarted after it was suspended the joblog monitoring
continues with the following limitations:

INGJLM

96 System Automation for z/OS: Programmer's Reference

|

||||||||||||||||||||||||||||||||||

|

|

|
|
||
||

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|

|

|

|
|

v The output of jobs that have finished before the monitoring task has been
restarted is lost unless the output is still held on the output queue.

v A job is not monitored when it has been started between the time frame of the
suspension of the task and its restart.

For manually monitored jobs you cannot specify any filter criteria to limit the data
that is passed to automation. This means any line of data except an empty line
which is generally excluded is forwarded to the message automation. The
automation is always performed by the autotask LOGOPER.

Usage
The start and stop commands should be used only for jobs which are not
controlled by SA z/OS.

The suspend command is used to suspend the joblog monitoring. The accumulated
output of all monitored jobs is not processed before the task has been restarted. To
restart the task use the NetView command START TASK=INGTJLM.

The query command is used to determine the current status of all monitored jobs.
This command can be issued in a NetView PIPE.

Examples
The following sample shows you how to monitor a spooled data set other than the
default data set of a job which is not controlled by SA z/OS and which was
started prior to the command

INGJLM START JOBNM=HIRZJLMS INTERVAL=10 DDN=AAAZOUT

However, the application opened the monitored data set first after the query
command was issued the first time. The second query command shows you that
some records have been read and passed since the last monitoring interval. The
last query command shows you that no more data was processed and that the job
has ended. The monitoring of the job is automatically stopped after the interval
has expired twice.

INGJLM

Chapter 2. SA z/OS System Operations Commands 97

|
|

|
|

|
|
|
|

|

|
|

|
|
|

|
|

|

|
|
|

|

|
|
|
|
|
|
|

INGLINK

Purpose
The INGLINK command lets you:
v Activate and deactivate a link between a consumer and a provider application

that is defined as a dynamic link in the automation policy
v Query the status of a link between a consumer and a provider application as

defined in the automation policy

A consumer application executes commands based on the UP_, DN_, ISUP_, or
ISDN_ prefixed messages defined in the MESSAGES/DATA policy item for the
application. These messages contain pre-defined commands to be taken by the
consumer application depending on the status of the provider application.

A provider application and its subsystem name form part of the UP_, DN_, ISUP_,
or ISDN_ message suffix. These messages notify the consumer application of the
provider status and trigger the predefined commands to be executed by the
consumer application.

The messages defined in the consumer application MESSAGE/DATA policy item
are as follows (subsys is the provider subsystem name):
v UP_subsys - actions taken by the consumer, when the provider changes to an

UP status,
v DN_subsys - actions taken by the consumer, when the provider changes to

DOWN status,

:
+ IPSFP INGY1305I Job Log Monitoring has been started for

HIR-HIRZJLMS-JOB09337-AAAZOUT.
:
" IPSFP
Status of task INGTJLM: ACTIVE
Owner Jobname Jobid DDname Status Freq. Last Read Passed
-------- -------- -------- -------- -------- ----- -------- ------- -------
HIR HIRZJLMS JOB09337 AAAZOUT -----M-I 0:10 n/a 0 0

0 0
*** Status complete ***
:
" IPSFP
Status of task INGTJLM: ACTIVE
Owner Jobname Jobid DDname Status Freq. Last Read Passed
-------- -------- -------- -------- -------- ----- -------- ------- -------
HIR HIRZJLMS JOB09337 AAAZOUT -AO--M-- 0:10 10:38:20 3 2

3 2
*** Status complete ***
:
" IPSFP
Status of task INGTJLM: ACTIVE
Owner Jobname Jobid DDname Status Freq. Last Read Passed
-------- -------- -------- -------- -------- ----- -------- ------- -------
HIR HIRZJLMS JOB09337 AAAZOUT -AO--MJ- 0:10 10:38:51 3 2

0 0
*** Status complete ***
:
+ IPSFP INGY1306I Job Log Monitoring has been stopped for

HIR-HIRZJLMS-JOB09337-AAAZOUT.

Figure 5. Monitoring a non-SA z/OS controlled job.. For a detailed description of the status
fields refer to "Status Information".

INGLINK

98 System Automation for z/OS: Programmer's Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|

|
|
|
|

|
|

|
|

v ISUP_subsys - actions taken by the consumer, when it comes UP and the
provider status is UP,

v ISDN_subsys - actions taken by the consumer, when it comes UP and the
provider status is DOWN.

Note that there are no messages for when the consumer application goes down.

Syntax

�� INGLINK ACTIVATE consumer provider
user_data

DEACTIVATE consumer provider
LIST

��

Parameters
A(CTIVATE)

Activates a link between a consumer and a provider application that is defined
as a dynamic link in the automation policy. The link state changes to ACTIVE.

This function requires a fully-qualified consumer and provider name, that is,
the name cannot contain any wildcards. You do not need to specify the full
resource name.

Subsystem or job names are accepted. Subsystem names have preference.

D(EACTIVATE)
Deactivates a link between a consumer and a provider application that is
defined as a dynamic link in the automation policy. The link state changes to
INACTIVE.

This function requires a fully-qualified consumer name. The provider name can
be either fully-qualified (that is, the name cannot contain any wildcards) or an
asterisk '*' to refer to all providers.

Subsystem or job names are accepted. Subsystem names have preference.

L(IST)
Displays links between consumer and provider applications and their current
state.

This function supports wildcard names for consumers and providers. The
consumer and provider names must be subsystem names.

consumer
The subsystem name of an application that uses services provided by another
application.

provider
The subsystem name of an application that provides services used by another
application.

user_data
User data can be set when you use the ACTIVATE function. The data is stored
as additional information that is related to the activated link.

The data is provided in variables &EHKVAR1 through &EHKVAR9 and
&EHKVART when a provider status change is processed by the ACTIVMSG or
TERMMSG command. These variables can be used when defining commands
for the UP_provider, DN_provider, ISDN_provider, ISUP_provider message ID
of the consumer.

INGLINK

Chapter 2. SA z/OS System Operations Commands 99

|
|

|
|

|
|
|
|
|

Return Codes
0 Normal completion.
4 Incorrect parameter.
5 Other error.
6 Initialization of the automation environment is not complete.
8 The link is not defined in the policy.

Restrictions and Limitations
Static and dynamic links can be defined in the policy between consumer and
provider applications that are running on the same system.

The ACTIVATE function requires fully-qualified consumer and provider names,
that is, the names cannot contain any wildcards.

The DEACTIVATE function requires a fully-qualified consumer name (that is, the
name cannot contain any wildcards) and a fully-qualified provider name or an
asterisk to refer to all providers.

Instead of using subsystem names, job names can also be used for the ACTIVATE
and DEACTIVATE actions. INGLINK looks for a matching subsystem name first. If
no matching subsystem name is found, it looks for a job name.

The LIST function allows wildcard names as consumer or provider names. Job
names cannot be used.

INGLINK maintains the status of links based on common global variables. Access
to these variables is made through the consumer's work operator in order to
guarantee serialized exclusive access.

Usage
Static and dynamic links can be defined in the SA z/OS customization dialog.
There you can define pseudo-messages in the MESSAGES/USER DATA policy of
the consumer application with the prefix UP_ , DN_, ISUP_, or ISDN_ followed by
the provider subsystem name (for example, UP_TCPIP). You can define a
command action for these messages that is executed when the provider enters an
UP or DOWN state (UP_, DN_) or if the consumer application comes up and the
provider is in an UP or DOWN state (ISUP_, ISDN_). No additional definitions are
required for the provider application.

For static links, no further definitions are required for the consumer application.
Using INGLINK LIST you can list any static or dynamic links. Static links are
always active links. Thus INGLINK ACTIVATE or INGLINK DEACTIVATE cannot
be used for static links.

For dynamic links, a USER action must be applied to the pseudo-messages in the
MESSAGES/USER DATA policy by setting the keyword to DYNAMIC and the
value to YES. Dynamic links are initially inactive. These links can be activated with
INGLINK ACTIVATE and deactivated with INGLINK DEACTIVATE. Dynamic
links have the advantage that they can be activated and deactivated at run time.
This may be necessary if a consumer requires services that can only be determined
at run time.

Typically a user routine is required to identify the current provider. After the
provider has been determined, INGLINK ACTIVATE can be called from the user

INGLINK

100 System Automation for z/OS: Programmer's Reference

|
|
|
|
|
|
|
|

|
|
|
|

routine to activate the link to that provider. A configured action can be taken by
the consumer if a provider starts or terminates only when a link is active.

The user routine is typically started along with the consumer application.

Examples

Example 1
Activating a dynamic link that is in an 'inactive' state:
INGLINK ACT MQ TCPIP1 optional user data

Console Output: ING004I REQUEST >INGLINK ACTIVATE< SUBMITTED

Log Output: AOF367I LINK ACTIVATED BETWEEN MQ AND TCPIP1

Example 2
Deactivating a dynamic link that is in an 'active' state:
INGLINK DEACT MQ TCPIP1

Console Output: ING004I REQUEST >INGLINK DEACTIVATE< SUBMITTED

Log Output: AOF368I LINK DEACTIVATED BETWEEN MQ AND TCPIP1

Example 3
You can list all links with the following command:
INGLINK LIST * *

The output lists all dynamic and static links that are defined in the automation
policy.
NV54 SA34 NM Tivoli NetView IPUFA NETOP1 12/20/10 14:06:48
! IPUFA
Consumer Provider UP DN ISUP ISDN User Parameters
----------- ----------- -- -- ---- ---- ---------------
CS1TRANS PS1TRANS - - S S
CS2 PS2A - - S S
CS2 PS2B - - S S
CS2 PS2C - - S S
CS2A PS2 - - S S
CS2B PS2 - - S S
CS2C PS2 - - S S
CS2TRANS PS2TRANS - - S S
CS3 PCS3 - - S S
CS4 CS4 - - S S
CS5 PS5 - - S S
C1 P1REN - - S S
GFG2 PD2 S S I I
PCD3 PD3 - - I I
PCS3 PS3 - - S S

CS1 PS1 - - S S
CS1OTHER PS1OTHER - - S S

INGMON

Purpose
INGMON is a command that can be called from the NetView automation table.
You use it to inform SA z/OS of the status of a monitoring resource and to issue
commands in response to a message or an OMEGAMON® exception.

INGLINK

Chapter 2. SA z/OS System Operations Commands 101

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Syntax

�� INGMON monitor
object STATUS=status INFO=(MSG,text)

text
NONE

�

�
MSG=message MSGTYPE=type

Code Entries
CLEARING=YES

EHKVAR=YES
EHKVAR=NO

�

�
JOBNAME=jobname WAIT=nnn

��

Code Entries:

CODE1=code CODE2=code CODE3=code PASSES= NO
YES

Parameters
monitor

This is the name of a monitor resource. It can be specified in automation
manager notation (for example, SAPMON/MTR/AOC8) or in agent notation.

Note: If you specify monitor in automation manager notation (that is,
xxx/MTR/yyy) and such a resource does not exist on the local system,
no search for a monitored object is performed. An error message is
issued instead.

object
This is the name of a monitored object as defined in the MTR policy in the
customization dialog. INGMON automatically finds the corresponding monitor
resources and operates on them.

Note that a monitor resource with that name is searched first. Then, if it is not
found, a search for a monitored object is performed.

Notes:

1. Be careful not to specify objects that have the same name as an existing
monitor resource, otherwise INGMON will only find the entry for the
monitor resource and not for the object. For example, if you have a monitor
resource, ABC, and you define a second monitor resource, XYZ, with a
monitored object called ABC, the call INGMON ABC will always find the
monitor resource ABC and never the object ABC that has been defined for
XYZ.

2. If you specify object in automation manager notation (that is,
xxx/MTR/yyy) and such a resource does not exist on the local system, no
search for a monitored object is performed. An error message is issued
instead.

STATUS
This is the new state that the monitor has determined. The state represents

INGMON

102 System Automation for z/OS: Programmer's Reference

either the health status of the objects that the monitor is watching, or the state
that the monitor is in. The latter can be one of the following:

FAILED
The monitor has failed. Recovery may be in progress. No acceptable health
status was provided.

BROKEN
Both the monitor and recovery failed. This is a permanent condition. The
monitor will not be re-invoked.

The health status of the object, or objects, that the monitor is watching are as
follows, from the least to the most serious:

UNKNOWN
The health status is not yet available.

NORMAL
The monitor has obtained good results from the object, or objects, that it is
watching.

WARNING
The monitor detected a certain degree of degradation in the operation of
the monitored object.

MINOR
The same as WARNING, but more severe.

CRITICAL
The same as MINOR, but more severe.

FATAL
The same as CRITICAL, but more severe.

INFO
This defines the message that is associated with the new health status. The
parameter value must be enclosed in parentheses, or single or double
quotation marks. If not present, the value of the MSG parameter will be used
instead. If neither parameter is present, text will be constructed from whatever
is in the default safe.

MSG,text
The specified text is associated with the new health status.

In SDF, when displaying the new health status via message AOF550I, the
text is shortened to "MESSAGE message_ID RECEIVED", where message_ID
is the first token of the given text.

text
The specified text is associated with the new health status.

NONE
No message is associated with the status.

MSG
This defines the text of the message that commands or replies are defined for
in the MESSAGES/USER DATA policy item of the policy database.

message
The message must be enclosed in parentheses, or single or double
quotation marks. If not present, the content of the default safe will be
taken instead.

INGMON

Chapter 2. SA z/OS System Operations Commands 103

MSGTYPE
This is the value entered in the Message ID field in the customization dialog
for the MESSAGES/USER DATA policy item (the entry type field in the
automation control file entry for the command). MSGTYPE is typically coded
with the message ID or the OMEGAMON exception identifier, such as XCHN
or SWPC. If not present, the first token of the value of MSG parameter will be
used instead. If neither parameter is present, the message ID will be extracted
from the message in the default safe.

The task global variables EHKVARn contain the parsed message from either
the MSG parameter or, if not present, the message in the default safe.

CODEn
When specified, the passed codes are used to search the code entries for a
particular Message ID or exception that is specified in the policy item
MESSAGES/USER DATA. The first token of the value returned is used as an
option to select the commands to be issued from the automation control file
(the value gives a set of commands). If no match occurs for the specified codes,
or if no codes are specified, the value ALWAYS is used to select the commands
to be issued.

As a selection you must specify one of the following:

Perform pass processing and execute all commands with a selection
matching the current pass or blank.

Note that this overrides the PASSES keyword with YES.

#type Interpret type as a message type. Perform pass processing for this
message and execute all commands with a selection matching the
current pass or blank.

Note that this overrides the PASSES keyword with YES.

This is like calling INGMON with MSGTYPE=type.

Others
Execute all commands with the given selection, or blank.

The second token of the value returned is used to determine the health status
to be set. If specified it must denote on of the values listed under the STATUS
keyword. If no match occurs, or the second token is omitted, the value given
on the STATUS keyword is used.

The CODE parameters are mutually exclusive to the PASSES=YES parameter.

PASSES
Specifies whether passes are used to issue the commands. The INGMON
command interrogates the automation control file to see if passes are specified
in the command entries. If so, PASSES=YES is defaulted unless PASSES=NO
was specified when calling INGMON.

NO Passes are not used to issue the commands.

YES
Passes are used to issue the commands. The pass count is incremented
every time INGMON is called. The pass count is keyed by monitor name
and by message type or exception (that is, the OM exception). The count is
automatically reset when the monitor resource is deactivated, or when
INGMON is invoked with the CLEARING option.

CLEARING
Indicates that this is a clearing event. The situation that caused the message or

INGMON

104 System Automation for z/OS: Programmer's Reference

exception is no longer present. It resets the pass count and removes the mask
(DISABLETIME) for this message or exception.

EHKVAR
This parameter determines whether the tokens of the parsed message text are
to be stored in task global variables EHKVAR0 through EHKVAR9 and
EHKVART.

YES
The tokens of the triggering message are to be assigned to the task global
variables EHKVARn.

NO No values are to be assigned to the task global variables EHKVARn.

JOBNAME
Indicates that the job name that is given is to be used rather than the one
obtained by the jobname() function to match a monitored object to the
corresponding monitor resources.

If the monitor resource contains a value in the monitored job name field it is
only considered a match when both the monitored object and the given job
name match.

If JOBNAME is omitted the jobname() function is used to determine the name
of the job that issued the triggering message. If a job name cannot be
determined the value N/A is used.

JOBNAME is required when INGMON is not message driven.

WAIT
Specifies the number of seconds to wait before reporting that a timeout
occurred if the automation manager does not provide the requested data. The
maximum time interval is 999 seconds.

If omitted, the time interval is 30 seconds.

Return Codes
0 Okay.
1 An error occurred.
2 A monitor resource or monitored object with the specified name does not exist.

Restrictions and Limitations
Status cannot be changed via STATUS=option while the monitor is in status
BROKEN. Consider the RESET=YES option.

Usage
You should normally call the INGMON command from the NetView automation
table.

For more details about the task global variables that can be used with INGMON
see “Task Global Variables” in IBM Tivoli System Automation for z/OS Customizing
and Programming.

The message that caused the INGMON call is stored in the SAFE named
AOFMSAFE. All commands and replies that are triggered through INGMON have
access to this SAFE.

INGMON

Chapter 2. SA z/OS System Operations Commands 105

|
|

Examples

Example 1
This example demonstrates a call pager routine when channel path 26 is not
operational. The MESSAGE/USER DATA policy definition contains an entry for “+
XCHN” as follows:

CMD entry

PAGER &SUBSAPPL,&EHKVAR0,&EHKVAR4

Where:
v PAGER is the name of the clist that handles the paging
v &SUBSAPPL contains the monitor name
v &EHKVAR0 contains the exception ID
v &EHKVAR4 contains the CHPID

Note that the “+ ” prefix, written as a '+' followed by a blank in front of the
exception identifier, is used to distinguish a normal message from an
OMEGAMON exception.

CODE entry

Code 1 Code 2 Code 3 Value Returned
26 * ALWAYS
* * IGNORE

OVR entry
The standard AT entry pattern is generated by SA z/OS. You can change the
condition statement to assign TOKEN(10), which contains the missing channel
number to a variable, for example, MISSCHAN.

The pattern of the action statement would be changed to pass that variable to
INGMON, that is:
EXEC (CMD(’INGMON monitor CODE1=’MISSCHAN))

It is assumed that token 10 in message ING080I contains the channel path. The
command fragment up to the monitor name is automatically generated by the
customization dialog. The message type (that is, exception ID) is available to
INGMON indirectly through the default SAFE.

You can append additional parameters through such an OVR entry.

Example 2
Suppose the installation fixed the problem with the missing channel path as shown
in the previous example. To indicate that the situation that caused the exception no
longer exists and that the recovery action has been successfully processed, use:
INGMON monitor MSGTYPE=XCHN CLEARING=YES

Example 3
This example shows how to send an alert when CICS Link LNKA2B is not
operational. The MONITOR INFO policy definition contains the following
information:

Monitored Object
CPSM.CICSA.CONNECT.LNKA2B

Inform List
IOM

INGMON

106 System Automation for z/OS: Programmer's Reference

The MESSAGE/USER DATA policy definition contains an entry for ING150I as
follows:

CODE entry

Code 1 Code 2 Code 3 Value Returned
L* * * NOP WARNING
HW * * NOP MINOR
*HS * * #MSGCRIT CRITICAL
* * * NOP NORMAL

Because no commands should be issued for the health statuses WARNING,
MINOR, and NORMAL, use an arbitrary selection (NOP). A selection is required
because the health status must be the second token.

For the CRITICAL case we have INGMON jump to message type MSGCRIT and
execute the commands listed there. In our example this would probably be an
INGALERT command.

We want the pass counts to be reset as soon as the health status returns to
NORMAL, so we specify in the HEALTHSTATE policy definition:
INGMON monitor MSGTYPE=MSGCRIT CLEARING=YES

INGMTRAP

Purpose
The INGMTRAP command facilitates the use of INGOMX for OMEGAMON
exception monitoring using Monitor Resources. It traps one or more OMEGAMON
exceptions of interest and generates ING080I messages exposed to automation for
each exception that is found, in order to set the Monitor Resource's health state
and to issue commands to react to such exceptional conditions.

Syntax

�� INGMTRAP NAME=session_name �

,

XTYPE= (exception) ��

Parameters
NAME=session_name

This is the name of the OMEGAMON session as defined in the automation
policy that exceptions should be monitored from.

XTYPE=exception_list | exception
A list of one or more OMEGAMON exceptions. If the list consists of more than
one exception, it must be put in quotation marks or parentheses, and either
commas or blanks must be used to separate the exceptions.

Return Codes
1 BROKEN

INGMTRAP failed to communicate with the OMEGAMON monitor denoted
by the session_name. Either SA z/OS was unable to create the session, or the
session was prematurely terminated for other reasons and could not be

INGMON

Chapter 2. SA z/OS System Operations Commands 107

re-established. In general, whenever the state of a session is neither INACTIVE
nor ACTIVE, the health status BROKEN indicates that operator intervention is
required.

2 FAILED
INGOMX detected that the session denoted by session_name exists but no
output was received by OMEGAMON, for example due to a timeout. This
situation may go before the monitor runs the next time. In general, whenever
the state of a session is ACTIVE, the health status FAILED indicates a
temporary problem that is likely solved the next time the monitor runs.

3 NORMAL
No exceptions have tripped. The health state of this Monitor Resource is
therefore normal. Message ING081I was built and added to the Monitor
Resource's history to indicate that no exception was found. ING081I will not be
exposed to automation.

8 DEFER
Exceptions have tripped and message ING080I was built for each. The health
state of the Monitor Resource will be set on behalf of message automation for
ING080I when the message is processed by the automation table. An existing
health state remains in effect until a new health state is set during message
automation.

Usage
To monitor OMEGAMON exceptions with a Monitor Resource, specify
INGMTRAP as the monitor command in the customization dialog when defining
the Monitor Resource. INGMTRAP will generate an ING080I message for each
exception that tripped and that was specified with XTYPE and exposes the
message to automation.

In order to react to such exceptions, use the MESSAGES/USER DATA policy item
for that Monitor Resource to specify the health status and optionally the recovery
activities for each exception. As indicated by the return code DEFER, the health
status of the Monitor Resource will only be updated if an ING080I message was
correctly processed.

Example
To monitor the existence of a LOGN exception that is issued by OMEGAMON for
DB2 whenever the number of primary active logs falls below the
installation-specified threshold, enter the following as a monitor command in the
MTR policy:
INGMTRAP NAME=OMSY4DB XTYPE=LOGN

INGOMX

Purpose
INGOMX is a programming interface that provides interaction capabilities with
OMEGAMON. It allows a program or command list to invoke OMEGAMON
exception analysis in order to trap one or more exceptions of interest or to issue
one or more OMEGAMON commands. The response generated by OMEGAMON
on behalf of a request is written to the console but not exposed to automation.

Additionally, it provides an interface to communicate with an IBM Tivoli
Monitoring SOAP server to issue SOAP messages and to process the response from

INGMTRAP

108 System Automation for z/OS: Programmer's Reference

the SOAP server. While INGOMX handles the communication and the envelope of
the SOAP message, it is the responsibility of the caller to provide an appropriate
body either dynamically or in a data set of choice. The body consists of specific
elements in XML notation that denote the particular request, the target application
for this request, user ID and password, and other request-specific information.

Syntax

�� INGOMX

�

SOAPREQ Soap
EXECUTE Command NAME=session

OMWAIT=nn
,

TRAP XTYPE=(exception)

�

�
WAIT=YES
WAIT=nn ��

Soap:

SERVER=server
PORT=port PATH=path

TYPE=ITM
TYPE=NONE

CCSID=1047
CCSID=ccsid �

�
DATA=*
DATA=dataset

USER=userid PW info PROTOCOL=HTTP

PROTOCOL=HTTPs

PW info:

PASSWORD=SAFPW
PASSWORD=password

Command:

CMD= *
command

MOD=modifier PARM=parm

Parameters
ATTACHSESSION

This is the function code to request that an OMEGAMON session with a
named set of attributes is established and a user (according to these attributes)
is logged on.

DETACHSESSION
This is the function code to request that the user that is currently logged on to
the OMEGAMON session is logged off and that the OMEGAMON session
specified by session_name is destroyed.

TERMSESSION
This is the function code to end the OMEGAMON session. The function is
similar to the DETACHSESSION request but, in addition, the session is locked

INGOMX

Chapter 2. SA z/OS System Operations Commands 109

and ATTACHSESSION is not allowed. This function code is used only by
SA z/OS initialization and only SA z/OS initialization can unlock the session.

SOAPREQ
The function code to send a SOAP message to the SOAP server designated by
server. The SOAP message to be sent can be built dynamically and passed to
INGOMX through the default safe or it can be in a user-defined data set.

SERVER=server
server refers to the SOAP server defined in the SOAP SERVER policy of the
NETWORK (NTW) entry in the automation policy.

Alternatively, server can be the IP-address (if it starts with a digit or
contains ‘:’) or the symbolic host name. If a SOAP SERVER policy is found
for server, it will be used preferably.

PORT=port
port refers to the port number that the SOAP server is listening to. This is
optional and only required if server does not denote a definition in the
SOAP SERVER policy.

PATH=path
path refers to the absolute path that, together with the host address and the
port number, forms the address of the SOAP service. An absolute path
must start with a slash ('/'). This is optional and only required if server
does not denote a definition in the SOAP SERVER policy.

TYPE={ITM|NONE}
The type refers to the kind of SOAP request that is being issued. For ITM
type SOAP requests, the response document is transformed into messages
that can be processed further using NetView PIPEs. For other SOAP
requests, the response is returned in XML format instead.

CCSID=ccsid
ccsid refers to the character set identifier used to encode the XML source
and target documents. The SOAP request is translated from ccsid to UTF-8
before it is sent to the SOAP server and it is translated back to ccsid upon
receipt.

DATA={*|dataset}
If * is specified, the SOAP message is located in the default SAFE. This
assumes that the caller has either created the SOAP message dynamically
or obtained it from some other source and passed it to INGOMX via a
PIPE input stream. See also “Example 3: Send SOAP Message Using the
Default Safe” on page 116.

dataset refers to the name of either a sequential data set or a partitioned
data set, including the member name where INGOMX finds the SOAP
message.

See paragraph “Using INGOMX Directives” on page 112, “Example 8:
Using INGOMX Directives for defining SOAP Data” on page 119, and
“Example 9: Using Ingomx_SOAP_Envelope Directive for SOAP12” on
page 119 for the usage of the alternate definition of SOAP Body, SOAP
Envelope, and HTTP header records using directives.

USERID=userid
The userid required for authentication to the SOAP server, if security is
enabled at the SOAP server.

PASSWORD=SAFPW|password
The password required for authentication, specified either in plain text, or

INGOMX

110 System Automation for z/OS: Programmer's Reference

|
|
|
|
|

deposited in NetView's Password Data Set under the domain name SOAP.
In this case, the real password must be specified under NetView using the
following NetView command:
GETPW userid SOAP,INIT=password

PROTOCOL
The protocol for the socket connection type. TLS/SSL security is selected
with HTTPS, and the default is HTTP. It is flagged as an error if you define
it in addition to a server object.

EXECUTE
The function code to issue a command to the OMEGAMON session that is
specified by session_name. The command and its parameters are specified by
the CMD, MOD, and PARM keywords. The output of this command
corresponds to the output produced by the OMEGAMON monitor on a 3270
screen.

CMD={command|*}
This is the pure 1 to 4 character OMEGAMON command that is issued on
the OMEGAMON session without parameters.

If an asterisk ('*') is passed instead of a command, INGOMX expects a list
of up to 22 OMEGAMON commands in the default SAFE. This allows a
programmer to issue multiple commands at once, in particular, minor
commands that require the presence of an appropriate major command.

When commands are passed within the default SAFE, the same syntax
rules apply as denoted in the syntax diagram above, that is, each
command is specified with the CMD keyword followed by an optional
modifier and optional parameter string.

The command that is specified or the first command in the default SAFE
will be logged in the NetView log with message ING083I.

MOD=modifier
modifier is an optional additional character that will be inserted by
SA z/OS in front of a command to modify the behavior of that command.
For example, a '<' modifies the command ALLJ such that instead of one line
of address spaces, all address spaces are returned at once. Refer to the
OMEGAMON command manual for a reference of modifiers allowed for
each particular command. The default modifier is a blank character.

PARM=parm
parm is an optional parameter string of up to 74 characters. The parameter
string will be appended by SA z/OS to the command, if specified. The
default parameter is a NULL-string.

OMWAIT=nn
Several OMEGAMON commands begin a process that accumulates data
over a small period of time. For example, the OMEGAMON for MVS
command MCPU accumulates data about CPU status, and then displays
this data. To mimic this functionality, OMWAIT can be used, where nn is
the optional time during which data is accumulated before the command is
issued again, and can be between 0 and 59 seconds. The default wait time
is 0.

TRAP
This is the function code to filter exceptions that are reported by the
OMEGAMON session specified by session. The exceptions that should be
filtered are specified by the XTYPE keyword. The output of this command

INGOMX

Chapter 2. SA z/OS System Operations Commands 111

corresponds to filtered output produced by the OMEGAMON monitor
exception analysis on a 3270 screen, where only the selected exceptions are
included.

XTYPE={exception_list|exception}
A list of one or more OMEGAMON exceptions. If the list consists of more
than one exception, it must be put in quotation marks or parentheses, and
either commas or blanks used to separate the exceptions.

NAME=session
This is the name of the OMEGAMON session as defined in the automation
policy.

WAIT={YES|nnn}
This parameter determines the interval after which a request is terminated
with a timeout condition.

If WAIT=YES is specified (default), either the default wait time is used as a
timeout value (WAITTIME) or, for OMEGAMON sessions, the timeout that is
specified in the OMEGAMON SESSION policy. The parameter default variable
INGOMX_WAIT can be used to override the default value in WAITTIME.

If WAIT=nnn is specified, nnn denotes a positive number in units of seconds.

Using INGOMX Directives
The SOAP message specified in parameter DATA is a section of XML used as a
SOAP body, which is enclosed in a SOAP 1.1 Envelope and prefixed with HTTP 1.1
records. If these data are not sufficient for the requested webservice, for example, if
there is a missing SOAPAction, it is possible to redefine or define additional SOAP
and HTTP fields using the alternative INGOMX directives.

If the SOAP message in DATA starts with a Ingomx_Directives tag, the whole
DATA parameter is expected to be a Directive XML using the following tags to
describe the user data:

<Ingomx_SoapAction>
this field replaces the default SOAPAction field.

<Ingomx_SOAP_Body>
this field contains the SOAP Body parameter to INGOMX. If this directive is
specified, the default SOAP envelope is added.

<Ingomx_SOAP_Envelope>
this field contains the complete SOAP message, for example, the SOAP
envelope and the SOAP Body WITHOUT the one line XML declaration. The
default XML declaration <?xml version ="1.0" encoding="utf-8"?> will be
inserted by INGOMX automatically. Use this tag, when you need full control of
the SOAP envelope content.

Note: Ingomx_SOAP_Envelope and Ingomx_SOAP_Body tags are mutually
exclusive.

<Ingomx_ContentType>
this field replaces the default Content-Type record.

<Ingomx_Host>
this field replaces the default HTTP HOST header record.

<Ingomx_POST>
this field even replaces the default HTTP POST request record.

INGOMX

112 System Automation for z/OS: Programmer's Reference

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

<Ingomx_HTTP_Addon>
this field may specify an additional HTTP header record.

If a tag is specified without data, like <Ingomx_Host/>, the whole record is
removed from the SOAP request.

Return Codes
0 Normal completion. The filtered output of the exception analysis or the

response of the OMEGAMON command or the SOAP request, respectively, is
written to the console.

-3 The operator invoking INGOMX is not authorized to issue this request for any
of the following reasons::
v The caller is not allowed to access the session indicated by session_name
v The caller is not allowed to issue the OMEGAMON command (or

commands) specified by CMD
v The caller is not allowed to send the SOAP message to the SOAP server

indicated by server_name

Update the NetView command authorization table or the RACF definitions, or
both, for the named session, the named SOAP server, and command (or
commands).

NetView issues BNH236E and BNH237E with detailed error information.
1 INGOMX failed to communicate with the session whose session_name was

passed as input. The session_name is unknown or does not refer to a valid
OMEGAMON session. In case of an invalid OMEGAMON session, message
ING084I is written to the netlog.

If the target was a SOAP server, the server_name is unknown or does not refer
to a host that can be reached through the IP network. Refer to message
ING164I for further diagnostic details in the netlog.

3 An internal error occurred. Message ING084I is written to the netlog and
provides more detailed error information.

4 Syntax error. Invalid parameters were passed to INGOMX. Refer to the netlog
for additional error information.

5 Timeout occurred. The requested operation was interrupted due to a timeout
as specified for this session in the customization dialog. The timeout value
might be too low or more session operators might be required.

6 The command environment for INGOMX was not appropriately initialized at
the time this command was issued. Possible reasons are that the agent is
currently being initialized or a cold start of the automation control file is being
done.

7 Creation of the NetView Terminal Access Facility (TAF) session failed or VTAM
is not available. Message ING084I is written to the netlog and provides more
detailed error information.

8 The user ID that is specified in the session definition for session_name cannot
log on to OMEGAMON. Session creation failed.

9 The requested function is not allowed within the current session state. Refer to
the INGSESS command (in IBM Tivoli System Automation for z/OS Operator’s
Commands) for the current state and available options.

10 A SOAP request could be delivered, but the SOAP server failed to interpret the
request correctly. Messages ING162I and ING163I are returned to the caller for
further information about this failure.

11 A SOAP request could not be delivered to the SOAP server because the service
has been moved to a new location. Message ING167I is returned to the caller
indicating the new location that must be used instead.

INGOMX

Chapter 2. SA z/OS System Operations Commands 113

|
|

|
|

12 The specified data set containing the SOAP request could not be allocated or
read. Message ING164I is written to the netlog indicating the code returned
from PIPE QSAM.

13 The specified CCSID does not exist. Specify a valid CCSID.

Usage
Invoke INGOMX in a PIPE to capture and further analyze the output produced by
OMEGAMON. Alternatively, INGOMX can also be called directly from the
operator console, but note that INGOMX does not issue any confirmation messages
and that output is only written to the console when INGOMX returned with code
0.

Refer to “Controlling Access to IBM Tivoli Monitoring Products” in IBM Tivoli
System Automation for z/OS Planning and Installation for Command Authorization
Table identifiers supported by INGOMX.

Examples

Example 1: Use of INGOMX in a User-Written Monitor Command
Routine
The following command list is specified as the monitor command that is
periodically invoked to find out the usage of CSA and SQA below 16MB
monitored by OMEGAMON for MVS. The session was defined under the session
name OMSY4MVS. The OMEGAMON command for this purpose is "CSAA." The
monitor command will return the following health states:
v NORMAL (3) when the utilization of both CSA and SQA is below 50%
v WARNING (4) when the utilization is below 70%
v MINOR (5) if below 80%
v CRITICAL (6) if below 90%
v FATAL (7) otherwise
/*---*/
/* Constants and variables */
/*---*/
Rc_Unknown = 0
Rc_Failed = 2
Rc_Normal = 3
Rc_Warning = 4
Rc_Minor = 5
Rc_Critical = 6
Rc_Fatal = 7

health_state = Rc_Unknown
lrc = 0

ss=’ff’x
ec=’fe’x
dc=’fd’x
/*---*/
/* Use PIPE to call INGOMX */
/*---*/
"PIPE (STAGESEP "||ss||" END "||ec||" NAME API)",

" NETV (MOE) INGOMX EX,NAME=OMSY4MVS,CMD=CSAA",
ss||"A: LOCATE 1.8 /DWO369I /",
ss||" VAR dwo369",
ec||"A: ",
ss||" STEM output."

/*---*/

INGOMX

114 System Automation for z/OS: Programmer's Reference

/* Monitor failed if INGOMX return code was not zero */
/*---*/
if symbol(’dwo369’) = ’VAR’ then

do
parse var dwo369 . ’RETURN CODE’ lrc ’.’
monmsg = ’INGOMX return code was RC=’lrc+0
health_state = Rc_Failed

end
else
/*---*/
/* Filter CSA and SQA percentages to derive health state */
/*---*/

do
csa = 0; sqa = 0
do i=1 to output.0

if pos(’+ CSA’,output.i) > 0 then
parse var output.i . ’CSA’ csa ’%’ .

if pos(’+ SQA’,output.i) > 0 then
parse var output.i . ’SQA’ sqa ’%’ .

end i
select

when csa < 50 & sqa < 50 then health_state = Rc_Normal
when csa < 70 & sqa < 70 then health_state = Rc_Warning
when csa < 80 & sqa < 80 then health_state = Rc_Minor
when csa < 90 & sqa < 90 then health_state = Rc_Critical
otherwise

health_state = Rc_Fatal
end
monmsg = ’CSA usage is ’csa+0’%, SQA usage is ’sqa+0’%.’

end

’PIPE VAR monmsg | CONSOLE ONLY’

Return health_state

Example 2: Use of INGOMX to Display Jobs of Interest
The following command list can be entered from the console to show a list of jobs
that have fixed storage occupancy greater than 1 MB. The command list traps the
FXFR exception that is reported by OMEGAMON for MVS with the session name
OMSY4MVS. From the list of exception lines that is returned by OMEGAMON, the
command list selects those jobs that obtain more than 1 MB of fixed storage.
/*---*/
/* Constants and variables */
/*---*/
OneMB = 1024 * 1024
fframes = 0 /* Number of fixed frames */
fstor = 0 /* Fixed storage [Bytes] */
out. = 0 /* Jobs with >1MB fixed frames */
j = 0 /* Miscellaneous counter */
lrc = 0 /* Local return code */
ss = ’ff’x
ec = ’fe’x

/*---*/
/* Use PIPE to call INGOMX */
/*---*/
"PIPE (STAGESEP "||ss||" END "||ec||" NAME API)",

" NETV (MOE) INGOMX TRAP,NAME=OMSY4MVS,XTYPE=FXFR",
ss||"A: LOCATE 1.8 /DWO369I /",
ss||" VAR dwo369",
ec||"A: ",
ss||" STEM output."

/*---*/
/* Command failed if INGOMX return code was not zero */
/*---*/

INGOMX

Chapter 2. SA z/OS System Operations Commands 115

if symbol(’dwo369’) = ’VAR’ then
do

parse var dwo369 . ’RETURN CODE’ lrc ’.’
’MESSAGE DSI072 FXSHOW INGOMX ’lrc+0

end
else
/*---*/
/* Produce list of address spaces with >1MB fixed frames */
/* + FXFR STC NETVBDOW | Fixed Frames in use = 414 */
/*---*/

do
out.1 = ’FXMON: Jobs with fixed storage > 1MB’
out.0 = 1
do i=2 to output.0

parse var output.i ’+ FXFR’ . job . ’Frames in use = ’fframes .
fstor = fframes * 4096
if fstor > OneMB then

do
j = out.0 + 1
out.j = left(job,8) format(fstor/OneMB,4,2)||’MB’
out.0 = j

end
end i

’PIPE STEM out. | CONSOLE ONLY’
end

Exit 0

Example 3: Send SOAP Message Using the Default Safe
This example assumes that the SOAP server SOAPHUB was defined in the
SA z/OS customization dialog SOAP SERVER policy. To request a list of address
spaces starting with TEST and analyze their CPU utilization, you can construct and
send a SOAP message like the one below to SOAPHUB in the following way:
smsg.1 = ’<CT_Get>’
smsg.2 = ’ <object>Address_Space_CPU_Utilization</object>’
smsg.3 = ’ <attribute>job_name</attribute>’
smsg.4 = ’ <attribute>asid</attribute>’
smsg.5 = ’ <attribute>tcb_percent</attribute>’
smsg.6 = ’ <afilter>Job_Name;LIKE;TEST*</afilter>’
smsg.7 = ’</CT_Get>’
smsg.0 = 7

’PIPE (NAME SOAPREQ)’,
’| STEM smgs.’,
’| SAFE *’,
’| NETV INGOMX SOAPREQ SERVER=SOAPHUB DATA=*’

Example 4: Send SOAP Message Using a Data Set
As an alternative, the XML source in “Example 3: Send SOAP Message Using the
Default Safe” can also be stored in a data set. The invocation of INGOMX would
then be:
’PIPE (END % NAME SOAPREQ)’,
’| NETV (MOE) INGOMX SOAPREQ SERVER=SOAPHUB DATA=USER.SOAP.DATA(GET)’,
’| L: LOC 1.8 ’del||’DWO369I ’||del,
’| EDIT SKIPTO ’del||’RETURN CODE’||del,
’ UPTO ’del||’.’||del,
’ WORD 3 1’,
’| VAR my_retcode’,
’% L:’,
’| CON ONLY’

The variable del is a delimiter character that does not appear in the data stream
that is returned, for example, X'0D'.

INGOMX

116 System Automation for z/OS: Programmer's Reference

Example 5: Explicit Specification of SOAP Server
Here an example is shown where the SOAP server is not defined in a SOAP server
policy but directly in the invocation of INGOMX:
Server = ’boekeya.boeblingen.de.ibm.com’
Path = ’///cms/soap’

Address Netvasis ’PIPE (END % NAME SOAPREQ)’,
’| NETVASIS NETV (MOE) INGOMX SOAPREQ SERVER=’Server,
’PORT=1920 PATH="’Path’" DATA=USER.SOAP.DATA(GET)’,
’| L: LOC 1.8 ’del||’DWO369I ’||del,
’| EDIT SKIPTO ’del||’RETURN CODE’||del,
’ UPTO ’del||’.’||del,
’ WORD 3 1’,
’| VAR my_retcode’,
’% L:’,
’| CON ONLY’

Note that the path is passed in double-quotation marks to preserve its case.

Example 6: Explicit Specification of SOAP Server, User ID, and
Password
The following is an example where the SOAP server, user ID, and password are
specified at the invocation of INGOMX:
Server = ’boekeya.boeblingen.de.ibm.com’
Userid = ’SoapUser’
Path = ’///cms/soap’
Address Netvasis ’PIPE (END % NAME SOAPREQ)’,
’| NETVASIS NETV (MOE) INGOMX SOAPREQ SERVER=’Server,
’USERID="’Userid’" PASSWORD="SAFPW"’,
’PORT=1920 PATH="’Path’" DATA=USER.SOAP.DATA(GET)’,
’| L: LOC 1.8 ’del||’DWO369I ’||del,
’| EDIT SKIPTO ’del||’RETURN CODE’||del,
’ UPTO ’del||’.’||del,
’ WORD 3 1’,
’| VAR my_retcode’,
’% L:’,
’| CON ONLY’

Note that the path, user ID and password are passed in double quotation marks to
preserve their case. If the specified password is “SAFPW”, the actual password is
taken from the NetView Password Data Set. The password must be stored in the
Password Data Set before it is used by using the following command:
GETPW SoapUser SOAP,INIT=password

Example 7: Secure Socket Connection
This example shows usage of secure port 3661 and prerequisites in z/OS.
Address Netvasis ’PIPE (END %NAME SOAPTLS)’,
’|NETVASIS NETV (MOE)INGOMX SOAPREQ SERVER=<ip_addr of TEMS>’,
’PORT=3661 PATH=///cms/soap PROTOCOL=HTTPS DATA=USER.SOAP.DATA(GET)’,
’|L:LOC 1.8 ’del||’DWO369I’||del,
’|EDIT SKIPTO ’del||’RETURN CODE’||del,
’UPTO’del||’.’||del,
’WORD 3 1 ’,
’|VAR my_retcode’,
’% L:’,
’| CON ONLY’

The following steps are required to exploit secure sockets:
v Policy Agent Setup
Please refer to the z/OS Communication Server documentation for details. Be aware

INGOMX

Chapter 2. SA z/OS System Operations Commands 117

that the TCP/IP profile has to contain the statement "TCPCONFIG TTLS" to result
in the activation of the processed policy definitions.
v AT-TLS Policy
Figure 6 is a sample AT-TLS policy with the highest TCPIP trace. Please specify
<tlsKeyring> and <ip_addr> accordingly.

v Certificate registration in keyring

The ITM Soap Server sends a self-signed certificate which has to be registered in
the keyring. The certificate can be obtained easily if a webrequest is sent from a
workstation browser. Use the following URL for this purpose:
https://<ip_addr>:3661///cms/soap/kshhsoap.htm.

You are asked to accept or deny the certificate. Store this certificate in X.509 PEM
format (base64), upload this file to z/OS with Ascii to Ebcdic translation and add
it to your keyring.

For RACF users, the following commands would complete the job:

TTLSRule NV_TEMS_WIN
{
LocalAddr ALL
RemoteAddrRef addr_TEMS
LocalPortRange 0
RemotePortRange 3661
Direction Outbound
Priority 255
TTLSGroupActionRef XXGRP
TTLSEnvironmentActionRef XXENV
TTLSConnectionActionRef XXCON
}
TTLSGroupAction XXGRP
{
TTLSEnabled On
}
TTLSEnvironmentAction XXENV
{
HandshakeRole Server
EnvironmentUserInstance 0
TTLSKeyringParmsRef keyRing
TTLSEnvironmentAdvancedParmsRef XXADV
Trace 255
}
TTLSConnectionAction XXCON
{
HandshakeRole Client
Trace 255
}
TTLSEnvironmentAdvancedParms XXADV
{
ApplicationControlled Off
ClientAuthType PassThru

}
TTLSKeyringParms keyRing
{
Keyring <tlsKeyring>
}
IpAddr addr_TEMS
{
addr <ip_addr>
}

Figure 6. Sample AT-TLS policy

INGOMX

118 System Automation for z/OS: Programmer's Reference

racdcert id(stcuser) add (’<UID.ITM.PEM>’) WITHLABEL (’ITM’) TRUST
racdcert id(stcuser) addring(<keyring>)
racdcert id(stcuser) connect (ID(stcuser) RING(<keyring>) LABEL(’ITM’) USAGE(CERTAUTH)
setropts raclist (digtring) refresh
setropts raclist (digtcert) refresh

Example 8: Using INGOMX Directives for defining SOAP Data
The following is an example that demonstrates the use of a SOAPAction header.
server = ’www.mywebservice.com’
port = 80
path = ’"/stockprice.asmx"’
data =,
’<Ingomx_Directives>’||,
,

’<Ingomx_SoapAction>’||,
’SOAPAction: "http://www.mywebservice.com/GetPrice"’||,
’<Ingomx_SoapAction>’||,

,
’<Ingomx_SOAP_Body>’||,

,
’ <GetPrice xmlns="http://www.mywebservice.com/">’||,
’ <symbol>IBM</symbol>’||,
’ </GetPrice>’||,
,

’<Ingomx_SOAP_Body>’||,
,
’</Ingomx_Directives>’

address NetVAsIs ’PIPE VAR DATA | COLLECT’
’|NETV INGOMX SOAP SERVER=’server ’PORT=’port,
’PATH=’path ’DATA=* TYPE=NONE PROTOCOL=HTTP’,
’|CONSOLE ONLY’

Example 9: Using Ingomx_SOAP_Envelope Directive for SOAP12
server = ’www.mywebservice.com’
port = 80
path = ’"/weather.asmx"’
data =,
’<Ingomx_Directives>’||,
,
’<Ingomx_Host>’||,
’Host: www.mywebservice.com’||,
’<Ingomx_Host>’||,
,
’<Ingomx_SoapAction>’||,
’SOAPAction: "http://www.mywebservice.com/GetWeather"’||,
’</Ingomx_SoapAction>’||,
,
’<Ingomx_ContentType>’||,
’Content-Type: application/soap+xml; charset=utf-8’||,
’</Ingomx_ContentType>’||,
,
’<Ingomx_SOAP_Envelope>’||,
,

’<soap12:Envelope’||,
’xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"’||,
’xmlns:xsd="http://www.w3.org/2001/XMLSchema"’||,
’xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">’||,

’<soap12:Body>’||,
’<GetWeather xmlns="http://www.mywebservice.com">’||,

’<City>Stuttgart</City>’||,
’<Country>Germany</Country>’||,

’</GetWeather>’||,
’</soap12:Body>’||,
’</soap12:Envelope’||,

,

INGOMX

Chapter 2. SA z/OS System Operations Commands 119

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

’</Ingomx_SOAP_Envelope>’||,
,
’</Ingomx_Directives>’

address NetVAsIs ’PIPE VAR DATA | COLLECT’
’|NETV INGOMX SOAP SERVER=’server ’PORT=’port,
’PATH=’path ’DATA=* TYPE=NONE PROTOCOL=HTTP’,
’|CONSOLE ONLY’

INGPOST

Purpose
The INGPOST command posts status notifications to SA z/OS's NMC-based user
interface.

Syntax

�� INGPOST RESOURCE=resource_name
MINOR=minor_type/minor_name

�

�
EVENT=event_text

�

�
COLOR = GREEN
STATE RED / S

WHITE C S
UNKNOWN L C S
LIME L C S
CYAN L C
PINK L
YELLOW
ALERT
WARNING
TRANSITION
OK
DELETE
DELETE_ALL
SUSPEND
UNSUSPEND
AUTO
UNAUTO
HIDE
UNHIDE

�

�
MESSAGE=message_text SAFE=safe_name D3=string TAG=tag

��

Parameters
RESOURCE

Specifies the name of the major resource that the notification is associated with.

resource_name
Is a standard SA z/OS resource name. The format is either name/type or
name/type<</system>>.

INGOMX

120 System Automation for z/OS: Programmer's Reference

|
|
|
|
|
|
|
|

Note that there are a number of special resources that act as anchors for
dynamic objects that are created by INGPOST. The format of an anchor
resource_name is ANCHOR/MJR/NameOfAnchor. You define the anchors in the
automation policy with the NMC DEFINITIONS policy item. For more details,
see IBM Tivoli System Automation for z/OS Defining Automation Policy.

MINOR
Specifies the minor resource name associated with the notification

minor_name
This is, more or less, a free-form field for specifying the minor resource
name. The value must be valid as part of a RODM object name and may
have requirements placed upon it by your BLDVIEWS implementation.

If not specified, the minor resource name defaults to null.

EVENT
Specifies a short 'status' value that is appended to the resource's
DisplayResourceName.

event_text
Is a single word that will be folded to upper case and appended to the
DisplayResourceName for the corresponding RODM object. It should be
informative and short.

If not specified the event text will be null and only the resource name and the
minor resource name will be present in the DisplayResourceName.

COLOR
Specifies the new DisplayStatus to be posted for the object within RODM.

GREEN or 129 or OK
Sets the object's DisplayStatus to Satisfactory

LIME or 144
Sets the object's DisplayStatus to Medium Satisfactory

CYAN or 145
Sets the object's DisplayStatus to Low Satisfactory

WHITE or 131 or TRANSITION
Sets the object's display status to Intermediate

YELLOW or 161 or WARNING
Sets the object's DisplayStatus to Low Unsatisfactory

PINK or 160
Sets the object's DisplayStatus to Medium Unsatisfactory

RED or 130 or ALERT
Sets the object's DisplayStatus to Unsatisfactory

UNKNOWN or 132
Sets the object's DisplayStatus to Unknown

Note that the syntax diagram does not show the numeric values for the
statuses. However, they are accepted and processed correctly.

There are some special values that trigger different processing.

DELETE
Can only be used against a minor resource. It will delete a single minor
resource object that is associated with the major resource.

INGPOST

Chapter 2. SA z/OS System Operations Commands 121

DELETE_ALL
Should be used with a major resource and deletes all minor resource
objects associated with that major resource.

SUSPEND and UNSUSPEND
Changes the setting of the 'suspended from aggregation' part of the object.

AUTO and UNAUTO
Changes the setting of the 'automation in progress' part of the object.

HIDE and UNHIDE
Changes the setting of the 'excluded from exception views' part of the
object.

The second part of the value is a set of up to 4 SCL flags. The first set applies
to the 'operator marked' part, the second to the 'automation in progress' part,
the third to the 'suspended from aggregation' part and the fourth to the
'exclude from exception views' part. The following are valid flags:

S Sets the bit

C Clears the bit

L Leaves the bit unchanged

These flags reduce the number of updates needed to perform a status change.
Typically, when a resource changes from, for example, Awaiting Automation to
Automation In Progress, you need to:
1. Change its color and status
2. Clear its 'operator marked' bit
3. Set its 'automation in process' bit

With these bits, the update can be done with one single call, posting the status
as 144/CS. Without these flags this would require three separate calls. When
the resource status changes from Automation In Progress to Satisfactory or
Degraded, one would post statuses of GREEN/LC or WHITE/LC.

MESSAGE
Specifies a message to be shipped with the status update. It ends up in the
DisplayResourceOtherData field.

message_text
This is the text of the message.

The maximum text length is 140 characters.

If it is not specified, and if a message is available from the safe, that message
will be used.

SAFE
This specifies the name of the safe that holds the message that the default
message text is to be taken from.

safe_name
This is the name of the safe.

If not specified the default safe (called *) will be used.

If the safe is empty, the default message text is null.

D3 When specified this populates the Data3 field on NMC with the given string.

INGPOST

122 System Automation for z/OS: Programmer's Reference

string
This is the string that populates the Data3 field.

TAG
This can be specified when posting a minor resource against a major resource.

tag
This is the tag that is attached to the object in RODM (as an index). The
same tag value can subsequently be used to restrict the scope of a
STATUS=DELETE_ALL call for the major resource, so that it will only
delete all attached minor resources with the same major resource.

INGQRY

Purpose
The INGQRY REXX function returns the value of the specified attribute for a
particular resource.

Syntax

�� Value=
,'VERBOSE=NO'

INGQRY(res_name,attribute)
,'VERBOSE=YES'

��

Parameters
res_name

The name of the resource. This value can be a subsystem name or job name.
The search sequence is:
1. Subsystem name
2. Job name

attribute
The name of the attribute. It is one of the following (note that, for different
resources, not all of these may be available):

APPL
Returns the subsystem name of the resource. This assumes that the
specified resource name is a job name.

ASID
Returns the address space ID of the resource.

CATEGORY
Returns the resource category, such as JES2,IMS,DB2.

CMDPFX
Returns the command prefix of the resource.

FILE
Returns the file information that represents the resource.

FILTER
Returns information about the command parameters that are specified to
make the process unique.

IPSTACK
Returns the IP stack name of the resource.

INGPOST

Chapter 2. SA z/OS System Operations Commands 123

|
|

JOB
Returns the job name of the resource.

JOBTYPE
Returns the job type of the resource (MVS, NONMVS or TRANSIENT).

OPER
Returns the work operator that is associated with the resource.

OWNER
Returns the owner information of the resource.

PARENT
Returns the parent information for the resource. Parent information is
derived from the HasParent relationship that has a sequence number
assigned to it.

PATH
Returns the information about what UNIX process the resource represents.

PID
Returns the USS Process ID (PID) that is associated with the resource.

PLEX
Returns the name of the plex that is associated with the resource.
Currently, this attribute is only used for the IMSplex name as specified in
the IMS CONTROL Policy Item.

PORT
Returns the TCPIP port that is represented by the resource.

PROCESS
Contains START or STOP if the resource is in the startup or shutdown
phase.

STAT
Returns the agent status of the resource.

SUBCAT
Returns the subcategory of the resource, for example, AOR or TOR for
CICS.

SUBID
Returns the MVS subsystem identifier of the resource.

SYMBOLn
Returns the requested application symbol, where n is 1–9.

USER
Returns the USS user ID that is associated with the resource.

WLMNAME
Returns the WLM resource name that is associated with the resource.

WTOR
Returns the outstanding reply IDs.

A null value is returned if an unknown subsystem name, job name or variable
name is given, or a syntax error is encountered.

VERBOSE

NO This is the default. The returned value is null.

INGQRY

124 System Automation for z/OS: Programmer's Reference

|
|
|
|

YES
Causes an error message to be issued if an unknown subsystem name, job
name or variable name is given, or a syntax error encountered.

Usage
INGQRY can only be used in the REXX environment.

Examples
The following example obtains the status of resource TSO:
stat = INGQRY('TSO’,’STAT’)

The following example obtains the subcategory of resource TDBDB001 and a
message is issued if resname is unknown or a syntax error is encountered.
resname = ’TDBDB001’
subcat = INGQRY(resname,’SUBCAT’,’VERBOSE=YES’)

INGRCHCK

Purpose
The INGRCHCK command checks whether a particular resource is in a specific
state by checking the observed status of the resource. If the resource is not in the
expected state, INGRCHCK waits until the resource reaches this status.

Syntax

�� INGRCHCK resource OBSERVED=status
INTERVAL=nnn

��

Parameters
resource

This is the name of the resource. It can be either a subsystem name or a
resource name in automation manager notation.

OBSERVED
This is the observed status that the resource should be in. You can specify
more than one status. If you specify more than one status, they must be
separated by a blank character and enclosed in parentheses. The observed
status can be abbreviated, for example, SO for softdown.

INTERVAL
This specifies the time interval that the routine uses to periodically check
whether the resource is in the expected state. The default is 5 seconds. The
maximum is 999 seconds.

Examples
INGRCHCK AM2/APL/AOC8 OBSERVED=(SO HA)

INGQRY

Chapter 2. SA z/OS System Operations Commands 125

INGRCLUP

Purpose
The INGRCLUP command is used to cancel address spaces that may be left over
by a resource that did not properly shut down. Multiple address spaces with the
same name can be cancelled.

Syntax

�� INGRCLUP jobname
type command

��

Parameters
jobname

The job name of one or more address spaces that must be canceled. The job
name can contain wildcard characters except for the first character. An asterisk
(*) matches a string of arbitrary length and a percentage sign (%) matches a
single character.

type
An optional parameter that indicates the type of address space. It can be one of
the following:
A ATX
J Job
M Mount
S Started task
* System address space

command
This is the command to be issued. The default is Cancel.

Restrictions and Limitations
Primarily INGRCLUP is meant to be called from within the automation policy
(that is, the SHUTDOWN policies).

The percentage sign (%) cannot be used as a wildcard in the first character of
jobname.

Return Codes
0 Processing was successful.
4 Parameters are invalid.

Examples
The following example cancels all REXX system address spaces:
INGRCLUP AXR0* *

INGRDS

Purpose
The INGRDS command provides Relational Data Services (RDS) exclusively for the
System Automation environment.

INGRCLUP

126 System Automation for z/OS: Programmer's Reference

|

|
|
|
|
|

|
|

|

|

|

|
|

|

|
|

System Automation now offers basic access methods for relational data services
(RDS). It is close to the concept of SQL but without the full SQL language parser
and with a built-in for System Automation store of its own. A database such as
DB2 cannot be attached.

The supporting System Automation command is INGRDS. The entity maintained
by INGRDS is a relational data service table, short RDS table or relational data
table. The relational data service tables are held in GETMAIN storage of the
NetView address space. The available amount of free memory in the NetView
address space limits the amount of data that can be stored by RDS. Persistency is
achieved by a separate task (see the chapter "Enabling Relational Data Services
(RDS)" in IBM Tivoli System Automation for z/OS Customizing and Programming). For
example, the tables will be periodically saved every 30 seconds into a VSAM KSDS
file (see DD INGEMUGL). The tables will be restored during System Automation
initialization when NetView and System Automation is started.

Syntax

�� INGRDS function options ��

function options:

CREATE table COLUMNS (col_spec)
TOKEN(name)

INSERT table COLUMNS (col_spec) values options
TOKEN(name)

WHERE(*)
UPDATE table SET (set_spec)

TOKEN(name) WHERE(where_spec)
WHERE(*)

DELETE table
WHERE(where_spec) TOKEN(name)

DROP table
TOKEN(name)

WHERE(*)
COPY table NEWTABLE(name)

WHERE(where_spec)
IMPORT table DSNAME(dsname)

(*) TOKEN(name)
FORMAT(TEXTAB)

EXPORT table DSNAME(dsname)
TOKEN(name) FORMAT(FB80)

TOKEN(*)
LOCK table

TOKEN(name)
TOKEN(*)

UNLOCK table
TOKEN(name)

WHERE(*) OUTPUT(LINE)
QUERY table stem/format options

WHERE(where_spec) OUTPUT(QUEUE)
OUTPUT(STEM)

LIST

stem/format options:

STEM(name)
TEXT

FORMAT= TEXTHDR
TEXTAB
FB80

INGRDS

Chapter 2. SA z/OS System Operations Commands 127

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

||||||||||||||
|

|

||

|

|

|||||||||||||||||||||||||

|

values options:

VALUES (val_spec)

Parameters
Function/Command

Available functions are:

CREATE
Creates a relational data table and defines the column definition. Same
characters as for OPSVALUE.

INSERT
Inserts a row into the table. If a column is not specified it will be
NULL.

DELETE
Delete row(s) into the table. The WHERE clause is a filter for rows to
be deleted.

UPDATE
Update existing row(s). The WHERE clause is a filter and SET
overwrites the columns.

QUERY
Displays a table with specified columns. Default is columns(*).

DROP Deletes the entire table and all data of this table.

COPY Copies an existing table into a non-existent new table.

IMPORT
Imports a table from a backup data format.

EXPORT
Exports a table into a backup data format.

LIST Shows a list of existing tables.

LOCK Locks a table in order to protect it against changes.

UNLOCK
Removes the lock.

Table
The table name is a string of up to 30 characters. The same character set as
defined for OPSVALUE.

col_spec
For function CREATE the syntax is : COLUMNS (Colname1 Char(n1), Colname2
Char(n2),...) where colname is an alphanumeric string with some special
characters but without blanks. n1, n2 .. is a number that defines the
maximum length of the characters. Only data type Char is supported. For
function INSERT and QUERY syntax is : COLUMNS (Colname1, Colname2,...)

val_spec
For function INSERT syntax is: VALUES ('string1','string2',.....). The
sequence of string correlates to the sequence of columns specified in col_spec.
Omitted values are replaced by NULL if denoted by two commas.

INGRDS

128 System Automation for z/OS: Programmer's Reference

|

|||||||||||||||
|

|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

||

||

|
|

|
|

||

||

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

set_spec
For function UPDATE syntax is: SET (Colname1='string1',
Colname2='string2',...)

WHERE
For function QUERY, INSERT, COPY, and UPDATE, see “Syntax of WHERE
clause” on page 132.

OUTPUT
Defines how the output of the function QUERY will be returned.

QUEUE
Writes the output lines into the external data queue.

STEM Writes the output lines into stem specified with parameter
STEM('out.'). Default stem name is 'rdsout'.

LINE Writes the output lines to CONS ONLY. This is useful for PIPE. LINE
is default.

FORMAT
Defines the data format of the output lines.

TEXT Writes the query output in text format padded with blanks until
maximum column length is reached.

TEXTHDR
Like TEXT, but with two additional headlines.

TEXTAB
Like TEXTHDR, but with one additional descriptor.

FB80 Fixed Block 80 format (FB80) should be specified only for INGRDS
EXPORT and not INGRDS QUERY.

STEM
Defines the name of the stem when needed in conjunction with function
QUERY.

DSNAME
Defines the name of a data set when needed in conjunction with function
IMPORT/EXPORT.

NEWTABLE
Defines the name of the new table used by function COPY.

TOKEN
Defines the Lock token.

Examples
Using the command INGRDS
INGRDS CREATE mytable COLUMNS(NAME Char(30),FIRST_NAME Char(20),CITY Char(10))
INGRDS INSERT mytable COLUMNS(NAME, FIRST_NAME, CITY)

VALUES(’Smith’, ’John’, ’New York’)
INGRDS QUERY mytable COLUMNS(NAME, FIRST_NAME, CITY) WHERE(*)
INGRDS DROP mytable
INGRDS DELETE mytable WHERE NAME=’Smith’)
INGRDS UPDATE mytable WHERE(NAME=’Smith’) SET(CITY=’Los Angeles’)

Restrictions and Limitations
The implementation of RDS has some restrictions:
v the number of possible tables is limited to around about 250

INGRDS

Chapter 2. SA z/OS System Operations Commands 129

|
|
|

|
|
|

|
|

|
|

||
|

||
|

|
|

||
|

|
|

|
|

||
|

|
|
|

|
|
|

|
|

|
|

|

|

|
|
|
|
|
|
|

|

|

|

v only the data type CHAR is supported (which is stored as variable string
internally)

v maximum length of a table row is restricted to 32000 bytes
v less complex WHERE-clause(s) are supported (see “Syntax of WHERE clause”

on page 132)
v primary key is not supported. Therefore a table row could be inserted twice. No

checking for unique key
v keywords such as WHERE, SET, for example, must follow a bracket. Blanks

between keyword and bracket are not recognized
v rows are not sorted since INGRDS does not support a primary key. Therefore

function DELETE, UPDATE and QUERY processes all matching rows.

Usage

Hints and Tips

1. Within VALUES() and SET() you may set a hex string such as '00'X or
'01020A0B'X.

2. Within WHERE() you may search for a hex string such as '00'X or
'01020A0B'X.

3. The command INGRDS makes a difference between the empty string and
NULL.
A table cell is empty when the value has length zero.
A table cell is NULL when the value is one byte hex zero, REXX '00'X.
An un-initialized table cell has value NULL.

CREATE a Table
This example creates a table with name TAB1 (the table name is translated to
uppercase). A pair for column name and char(nn) is required separated by a
comma. The data of a column is always mixed case and can also be hex data.
Maximum data length is 10 bytes in this case for all columns.

INGRDS CREATE tab1 COLUMNS (col1 char(10), col3 char (10))

INSERT Row into a Table
Examples 1 and 2 insert a new row with col1='c11',col2='00'X and col3='c13'.

Example 3 inserts a new row with col1='c11', col2='c12' and col3='c13'

Example 4 inserts a new row with col1='c11', col2='00'X and col3='c13'
1. INGRDS INSERT tab1 COLUMNS(col1 col3) VALUES('c11','c13')

2. INGRDS INSERT tab1 COLUMNS(col1 col2 col3) VALUES('c11’,'c13')

3. INGRDS INSERT tab1 COLUMNS(col1 col2 col3) VALUES('c11','c12','c13')

4. INGRDS INSERT tab1 COLUMNS(col1 col2 col3) VALUES('c11','00'X,'c13')

DELETE Row from a Table
Example 1 deletes all rows where col3 has the specified value.

Example 2 deletes rows where col3 is the empty string.

Example 3 deletes rows where col2 is the NULL string.
1. INGRDS DELETE tab1 WHERE(col3='c13')

INGRDS

130 System Automation for z/OS: Programmer's Reference

|
|

|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

|

|

||||

|
|
|
|
|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

2. INGRDS DELETE tab1 WHERE(col3=' ')

3. INGRDS DELETE tab1 WHERE(col2='00'X)

UPDATE Row of a Table
The examples update all rows where col1 has the specified value.

Example 1 updates col2 to c22 at all rows where col1 is the c21.

Example 2 updates col2 to '00'X (NULL) at all rows where col1 is the c21.
1. INGRDS UPDATE tab1 SET(col2='c22') WHERE(col1='c21')

2. INGRDS UPDATE tab1 SET(col2='00'X) WHERE(col1='c21')

DROP a Table
Dropping a table removes all data from the GETMAIN storage immediately. Since
normally the archive command is scheduled periodically every 30 seconds (see
resource RDSARCH in IBM Tivoli System Automation for z/OS Customizing and
Programming) the data that is related to the dropped table will also be removed
from the VSAM file at this time.

Note: If you recycle NetView after dropping a table and before the archive
command, running the DROP command may have no permanent effect and
the table might be restored again during SA initialization.

A table might have a lock. In this case you cannot drop the table (example 1) and
you must specify the token associated to the lock. Use command "INGRDS LIST"
to find the tables and the associated name of the locks. Example 2 drops table
TAB1 with lock NET$BDOW.
1. INGRDS DROP tab1

2. INGRDS DROP tab1 TOKEN(NET$BDOW)

COPY a Table
You can copy an existing table to a new table with a different name. The new table
must not exist. If the table has a lock, the lock will be copied as well.
1. INGRDS COPY tab1 NEWTABLE(tab2)

LOCK and UNLOCK a Table
You can create a table and assign it a lock, see example 1.

The lock protects the table from modification. It does not protect the table being
unlocked by another user if the user knows the token. Note, the default token is
JOB$userid (TSO) or NET$userid (NetView®).

Example 1 shows how to assign a lock to an existing table.

Examples 2 and 3 create a table with lock and removes the lock from it.
1. INGRDS LOCK tab1 TOKEN(mylock1)

2. INGRDS CREATE tab2 TOKEN(mylock2) COLUMNS(...)

3. INGRDS UNLOCK tab2 TOKEN(mylock2)

Invoking from TSO
You can run all functions from command INGRDS on TSO.

INGRDS

Chapter 2. SA z/OS System Operations Commands 131

|

|

|
|

|

|

|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

|

|

|
|
|

|

|
|

|
|
|

|

|

|

|

|

|
|

For that purpose, the command INGRCRDX serves as the client API to the remote
NetView server. It sends the corresponding INGRDS command to NetView and
receives the response. Output is written to the TSO terminal:

General Syntax: INGRCRDX function table list_of_keywords

For example:

INGRCRDX QUERY tab1

INGRCRDX CREATE tab1 COLUMNS(col1 char(1), col2 char(20))

Syntax of WHERE clause
The command INGRDS has some restrictions with the WHERE clause in
comparison to full SQL.

Restrictions

v Join, subquery and aggregate functions are not supported.
v Host variables are not supported.
v Only a limited set of functions are supported.
v REXX rules apply for expressions.

REXX Where-Clause Expression

The finally parsed and resolved WHERE-clause, resolved_where_clause, is treated
as a string that will be executed by the REXX interpreter via the following REXX
instruction:
if (resolved_where_clause) then

bool=1
else

bool=0

The REXX rules for expressions and operators apply
For example the operator AND has higher priority than OR. Also the rules
for how parentheses are handled is defined by the REXX rules. Restrictions
that apply due to the usage of this technique can never be resolved!

Restricted Syntax Checking

The syntax parser finds that a column name is invalid/not known, for example,
"xxx='abc'":
ING338I Function or command INGRCRDS failed, RC=116 REASON=QUERY
TABLE MYTAB Invalid column name xxx

In many cases the syntax parser detects that a quote is missing, for example,
'xxx='abc ":
ING338I Function or command INGRCRDS failed, RC=115 REASON=QUERY
TABLE MYTAB WHERE/SET=clause parser error 46

But for many other invalid WHERE-clauses the SA syntax parser is less restrictive.

INGRDS

132 System Automation for z/OS: Programmer's Reference

|
|
|

|

|

|

|

|
|
|

|

|

|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
||||

|

|
|

|
|

|
|

|
|

|

For example, if the operator is not valid or not specified at all such as "name
'abc'"(rather than " name='abc'") or "name like %abc%" (rather than "name like
'%abc%'") the final expression results in a REXX error.

If such a REXX error occurs in resolved_where_clause then the message ING338I
reports the error.

Error Message examples:

v "'1'/2" results in:
ING338I Function or command INGRCRDS failed, RC=116 REASON=QUERY TABLE MYTAB
No match due to bad WHERE-clause: Logical value not 0 or 1

v "name like %aa%" results in:
ING338I Function or command INGRCRDS failed, RC=116 REASON=QUERY TABLE MYTAB
No match due to bad WHERE-clause: Invalid expression

v "name like abc" results in:
ING338I Function or command INGRCRDS failed, RC=116 REASON=QUERY TABLE MYTAB
No match due to bad WHERE-clause, error near: abc

Supported Syntax

�� WHERE([NOT]{predicate} [AND|OR [NOT] predicate]) ��

Examples:

WHERE(NAME='Bond' AND CITY='London')

The following list of expressions can be used to construct the WHERE clause:
1. Predicate is an expression that can be true or false and can contain either

uppercase or lower case characters. You can specify the following types of
predicates:
v Comparison predicates
v IN predicate
v LIKE predicate

2. Character function such as substring function. The substring function allows
you to retrieve parts of character strings that are to be used as search criteria.
The substring function and the lower/upper function may be used in
conjunction with the predicates previously mentioned.

3. You can combine predicates and the character functions into compound
Boolean Expressions. For example, you can create a WHERE clause like the
following:
(NAME = ’BOND’ and CITY <>BIRTHCITY) OR FIRST_NAME = ’James’
AND STREET IN(’Central Avenue’,’Lincoln Road’,’Catwalk’)

Comparison Predicate

A comparison predicate uses the syntax: colname relationaloperator value

The relationaloperator can be any of the following:

INGRDS

Chapter 2. SA z/OS System Operations Commands 133

|
|
|

|
|

|

|

|
|

|

|
|

|

|
|

|

|||||||
|

|

|

|

|
|
|

|

|

|

|
|
|
|

|
|
|

|
|

|

|

|

Table 7. Relational Operator Listing

Relational Operator Description

= equal

<> not equal

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Example: DESIRED_STATE <> 'down'

IN Predicate

An IN predicate compares the column name to one or more strings. The maximum
number of strings is 20. Use the following syntax to specify an IN predicate:
colname IN (string1,string2,...,string20)

For example, NAME IN(’Ashton’,’Bond’,’Connory’,’Jones’,’Tong’)

LIKE Predicate

A LIKE predicate compares a column to a wildcard value you specify and selects
columns conforming to the wildcard value. Use this syntax for a LIKE predicate:
colname LIKE ’wildcard’

You must enclose the wildcard value in single quotes. A wildcard can include any
combination of characters and either the percentage sign (%) or the underscore(_).

The percentage sign denotes any set of characters, including blanks.

For example, the following clause: NAME LIKE ’%on%’ selects from the NAME
column all of the following values: Ashton,Bond,Connory,Jones,Tong

The underscore sign denotes only one character in a specific position. For each
character of column data you do not want to match, the wildcard must include an
underscore. For example, the following clause: NAME LIKE ’_on_’ selects from the
NAME column that contains all of the following values: Bond, Tong

Restrictions for ESCAPE keyword

v ESCAPE character cannot be specified. It is always backslash (\)
v The ESCAPE keyword can be specified but will be ignored.

When the percentage sign (%) or underscore character is part of the column data,
use the ESCAPE character backslash \. The ESCAPE character prevents INGRDS
from interpreting the percentage sign (%) and underscore characters in column text
as wildcards. For example, to find the columns containing the characters I_MS1
and I_MS2, use the following predicate: NAME LIKE ’I_MS_’

Character Functions

The operands of a character string function can be literal character strings or
column names. The following character functions are supported:

INGRDS

134 System Automation for z/OS: Programmer's Reference

||

||

||

||

||

||

||

||
|

|

|

|
|
|

|

|

|
|
|

|
|

|

|
|

|
|
|
|

|

|

|

|
|
|
|
|

|

|
|

v SUBSTR (argument FROM n FOR m)
v UPPER (argument)
v LOWER (argument)

The argument may be either a column name or a literal.

Examples:

SUBSTR (NAME FROM 3 for 2) = ’nd’

UPPER (NAME)= UPPER(’bond’)

The SUBSTR clause takes from the column name argument starting at position n
as many characters as specified with n. For example SUBSTR (CITY FROM 5 FOR
4) returns the string 'York' if the CITY is 'New York'.

The LOWER function translates a character string literal or column value to all
lower case characters.

The UPPER function translates a character string literal or column value to all
upper case characters.

Example of a Complex WHERE-clause

The purpose of this WHERE-clause is simply to show how to combine predicates.
It shows an example of combinations of comparison predicates, IN and LIKE
predicates and character functions SUBSTR and UPPER.
table = ’sample’

/*define query*/
where_clause =,
"(NAME=’Bond’ AND CITY <> ’London’)",
"OR (’James’ <> FIRST_NAME)"
"OR NOT (CITY=’Berlin’)",
"AND CITY IN (’Paris’,’London’,’New York’)",
"AND FIRST_NAME LIKE ’%ame%’",
"AND SUBSTR (CITY FROM 4 FOR 3)=’don’",
"AND UPPER (NAME)=UPPER(’james’)",
"AND LOWER (NAME)=’james’"

/*execute query*/
’INGRDS QUERY’ table ’WHERE(’where_clause ’) OUTPUT(STEM) STEM(out.) FORMAT(TEXT)’

/*show query output*/
if(rc=0) then do

do i=1 to out.0
say out.i

end

The RDS Table Output
A RDS table can be retrieved via the subcommand QUERY. The parameter
OUTPUT defines the output destination and the parameter FORMAT defines the
data format. For example, a table can be displayed on the NetView console via
command:
INGRDS QUERY tab1 WHERE(*) OUTPUT(LINE) FORMAT(TEXTHDR)

TEXT FORMAT: Here you see an example of FORMAT(TEXTHDR). The first two
lines are the headline followed by the table rows.

INGRDS

Chapter 2. SA z/OS System Operations Commands 135

|

|

|

|

|

|

|

|
|
|

|
|

|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

The first line defines the column names as specified in the subcommand CREATE.

The second line defines the maximum length of a column. However if the column
name is longer than the maximum length, then the length of the column name is
used.

The table row lines display the cell data padded with blanks up to the maximum
column length.

NAME FIRST_NAME CITY

Bond James London
Smith John New York
Schulz Emma Berlin
Metzger NULL München
Wagner Frankfurt

Note that INGRDS makes a difference between "empty string" and "NULL".

An empty string is a character string with length 0, for example the FIRST_NAME
of Wagner is the empty string. But the FIRST _NAME of Metzger is NULL.

Viewing a RDS Table within NetView: You may want to use the NetView
window command in order to display a RDS table using the following command:
WINDOW INGRDS QUERY MYTAB FORMAT(TEXTHDR)

List of Existing Tables
You can get a listing of all existing tables via command:
INGRDS LIST

v 1st column of the listing is the table name
v 2nd column of the listing is the internally used pool name
v 3rd and 4th column of the listing is the number of rows and columns of the

table
v The last column is the list of column name.

The command output looks like following (list of column names is truncated):

TABLE NAME POOL ROW COL LOCK COLUMNS
____________________________ ________ _____ ______ __________________ _________
TA1 !RD!TA1 124 015 JOB$BDOW RES JOB OWN TY
TA2 !RD!TA2 005 015 UNLOCKED RES JOB OWN TY
JOBINFO !RD!JI08 005 007 UNLOCKED CICSID VS DS C
MYAUDIT !RD!MUT1 073 023 UNLOCKED DSN CDT CNT VO
SYSTASKS !RD!SAS8 127 011 UNLOCKED JOBNAME TASK_S
WINDOWS !RD!WDS7 162 007 UNLOCKED JOBNAME STATUS
X1 !RD!X1 000 002 NET$BDOW COL1 COL2

Obtain and Release Table Lock
The command INGRDS allows you to obtain and release a lock for a specific table.
A lock is a token with a maximum length of 16 bytes. A lock token must not
contain blanks. A lock token cannot be the empty string.

The token 'UNLOCKED' is reserved and should not be used as lock token.

INGRDS

136 System Automation for z/OS: Programmer's Reference

|

|
|
|

|
|

|
|
|
|
|
|
|
||

|

|
|

|
|

|

|
|

|

|

|

|
|

|

|

|
|
|
|
|
|
|
|
|
||

|
|
|
|

|

The purpose of the table lock is to protect a table from modification while another
user has access to it. For example if you edit the table on TSO via command
'INGRCRDX EDIT table' the table will be locked with the corresponding TSO user
id.

If a table already has a lock the following subcommands are rejected with return
code 102 if the lock does not match the token specified via parameter TOKEN:
DROP, INSERT, UPDATE, DELETE, IMPORT

For example, the following command deletes the table if the table has the lock
'JOB$ABC':
INGRDS DROP table TOKEN(JOB$ABC)

Note: The lock token associated with a table is much less restrictive than, for
example, an ENQ lock. The lock token is not associated with a task or an
address space. It is like an attribute of the table that can be set or removed.
Any NetView operator or TSO user (that is allowed to use INGRCRDX) can
set or remove the lock token. Therefore it might be possible (but not
recommended) by a NetView operator or a TSO user userid to set manually
the lock token to JOB$userid2, where userid2 is a foreign TSO userid. Of
course, in this case, the TSO user userid2 is able to access and overwrite the
table although it was locked by userid1. Also it is recommended that you do
not use a lock token that starts with NETV$ or JOB$ yourself.

Obtaining a Lock: You can obtain a lock for an existing table via the following
commands:
INGRDS LOCK table [TOKEN(*|token)]
INGRDS CREATE table [TOKEN(*|token)]...
INGRDS EXPORT table [TOKEN(*|token)]...
INGRDS IMPORT table [TOKEN(*|token)]...

Release a Lock: You can remove the table lock via following command:
INGRDS UNLOCK table TOKEN(*|token)

When importing a table from a data set it is also possible to remove the lock via
command:
INGRDS IMPORT table TOKEN(UNLOCKED)...

Default Lock: The default lock token is:
v for NetView NETV$xxxx
v for TSO JOB$xxxx

where xxxx is the NetView task id or TSO user id.

If you omit the parameter TOKEN for subcommand LOCK or UNLOCK the
default is assumed.

If the parameter TOKEN is not specified for any other subcommand then no
default token is assumed. In this case you must specify parameter TOKEN if
needed.

If you specify the parameter TOKEN with value * then the default token is used.

Import/Export SQL Tables
With the command INGRDS you may backup a specific RDS table and restore it
later on.

INGRDS

Chapter 2. SA z/OS System Operations Commands 137

|
|
|
|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|

|

|
|

|

|

|

|

|

|
|

|
|
|

|

|
|
|

One of the following data formats is supported:
1. FB80 format - may be used to backup an RDS table into a data set with fixed

block 80 format.
2. TEXTAB format - may be used to import easily external data into an RDS table.

Data layout is the same as used for 'INGRDS QUERY table FORMAT(TEXTAB)'.
Refer also to 'SA TSO Table Editor INGRCRDX' section in the "Enabling
Relational Data Services (RDS)" chapter of IBM Tivoli System Automation for
z/OS Customizing and Programming.

Note: The import/export data set must exist already before invoking the
command INGRDS.

Import Function: The command syntax that imports a SQL table is as follows:
INGRDS IMPORT table | * DSNAME(dataset)

The data set name might be in quotes but also no quotes are accepted. It must be a
fully qualified data set name.

The command INGRDS reads the data format identifier from the first record of the
data set. If the format checking is successful then INGRDS reads the data from the
data set and extracts the table name, the column names and the size of the
columns. It creates the table and inserts each row. If the table already exists it will
be deleted first.

If the table name is specified then the import data is used to create a table with the
name specified in the INGRDS command. If the table name * is specified then the
table name from the import data is used.

Export Function: System Automation exports a table into a data set with the same
data layout as required by the import function.

The command syntax that exports a SQL table is as follows:
INGRDS EXPORT table DSNAME(dataset) FORMAT(FB80|TEXTAB)

The logical length of the data set or member of the PDS must be large enough to
hold the maximum length of an output record. This is 80 byte for FORMAT(FB80)
but could be much larger for FORMAT(TEXTAB).

INGRTCMD

Purpose
The INGRTCMD command can be used as a second level NMC command exit for
issuing commands from NMC. It takes an object ID and a command string and
substitutes object parameters into the command string before routing it to the
appropriate system for execution.

Syntax

�� INGRTCMD object_id cmd_string ��

INGRDS

138 System Automation for z/OS: Programmer's Reference

|

|
|

|
|
|
|
|

|
|

|

|

|
|

|
|
|
|
|

|
|
|

|
|

|

|

|
|
|

Parameters
object_id

Is the RODM object ID that the command should be issued against. It is used
to determine the substitution parameters as well as the target sysplex for the
command. The command is sent to the system within the target sysplex that
the currently received heartbeats and status change notifications originate from.

cmd_string
Is the command to be issued. It may include substitution tokens.

INGSIT

Purpose
The INGSIT command allows you to report an event to SA z/OS. To allow
SA z/OS to react to that event, it must be associated with one or more Monitor
Resources through the monitored object name and optionally a job name. Refer to
IBM Tivoli System Automation for z/OS Customizing and Programming for a
description of Monitor Resources and the concept of a monitored object.

The event information consists of the monitored object name, an optional event
severity, an optional job name, and optional related data. INGSIT transforms the
event into a well-formed ING150I message that can subsequently be automated on
behalf of the monitored object according to the definitions in the automation
policy.

Syntax

�� INGSIT monitored_object_name
severity JOBNAME=name

�

�
DATA=(data)

PREFIX=ITM

PREFIX=prefix
��

Parameters
monitored_object_name

This is the name of the monitored object without the prefix associated with one
or more Monitor Resources. To report IBM Tivoli Monitoring situations to
SA z/OS (for example, from OMEGAMON XE for z/OS) use the situation as
the monitored object and specify its name in uppercase with a prefix of ITM in
the MONITOR INFO policy when defining the Monitor Resource.

The monitored object name, including the prefix, can be up to 50 characters
long and consist of any character except any of the following characters: ’ " ,
() = ? * and blanks. The monitored object name is case-sensitive.

severity
This is the severity associated with the event. If it is omitted, the text string
WARNING is used as the default severity. To report IBM Tivoli Monitoring
situations to SA z/OS (for example, from OMEGAMON XE for z/OS) you can
use the alert severity that was optionally assigned to the situation or any other
severity string if the default does not meet your requirements.

INGRTCMD

Chapter 2. SA z/OS System Operations Commands 139

When processing message ING150I via the NetView Automation Table, the
severity string is passed as the CODE1 parameter to the INGMON generic
monitoring command. If you want to map this severity to a health status, you
have to ensure that there is a matching CODE entry in the MESSAGES/USER
DATA policy for message ING150I. The health status, if any, is specified as the
second word in the value returned for that CODE.

If there are several different severities for the same monitored object and you
want to react in different ways to such an event, you also have to ensure that
there is a matching CODE entry in the MESSAGES/USER DATA policy for
message ING150I. The first word in the value returned is then treated as the
command selection. Alternatively, return a # to perform PASS processing for
ING150I, or #usermsg to perform independent PASS processing for the message
entry, usermsg.

Refer to IBM Tivoli System Automation for z/OS Customizing and Programming for
examples of how to set up your automation policy to react to message ING150I
as described.

JOBNAME=name
This is an optional job name. If it is specified, it is compared with the job name
specified for a monitored object to match this situation to a particular monitor
resource. If a job name is not passed, the event reported through this
invocation of INGSIT may only match monitor resources that are defined
without a job name.

DATA=(data)
This is an optional string of additional information that is related to the event.
The parentheses are required if you want to pass a string that contains blanks
or commas. For a single word, the parentheses can be omitted. data is
appended to message ING150I without further analysis to be used for any
optional user-specified purposes by the automation.

PREFIX=prefix
This is the prefix followed by a period that precedes the specified
monitored_object_name. The default prefix is ITM. The monitored object name
appear in message ING150I as: prefix.monitored_object_name

Return Codes
0 Normal completion.
1 Syntax error. Invalid parameters were passed to INGSIT. Refer to the netlog for

additional error information.
2 The command environment for INGSIT was not appropriately initialized at the

time that this command was issued. Possible reasons are that the agent is
currently being initialized or a cold start of the automation control file is being
performed.

Restrictions and Limitations
For situations, monitored object names cannot be distinguished by case. The
situation must be specified as monitored object in uppercase in the MONITOR
INFO policy.

Usage
The ING150I message that is generated as a result of the event transformation may
or may not cause an automated response. If a monitored object was specified but a
Monitor Resource was not found for it, no automation is triggered.

INGSIT

140 System Automation for z/OS: Programmer's Reference

The health status of a Monitor Resource that matches the monitored object name is
not changed unless you map the severity (either your own input or the default of
WARNING) explicitly to a health status using a CODE entry in the
MESSAGES/USER DATA policy for message ING150I.

Examples

Example 1: Using the Default Severity
The following example reports the situation OS390_Local_PageDS_PctFull_Warn to
SA z/OS. A default severity of WARNING is used and the related data passed to
SA z/OS is substituted from the page data set utilization attribute, which here is
25%.
INGSIT OS390_LOCAL_PAGEDS_PCTFULL_WARN DATA=(25)

This yields:
ING150I 09:34:37 08/01/2007 : ITM.OS390_LOCAL_PAGEDS_PCTFULL_WARN
WARNING N/A DATA= 25

Example 2: Using an Explicit Severity
The following example reports the situation OS390_PageDSNotOperational_Warn
to SA z/OS. The severity, although it indicates a warning-level situation, is
reported as minor and the count of non-operational data sets is passed as the
related data, which here is 1.
INGSIT OS390_PAGEDSNOTOPERATIONAL_WARN Minor Data=1

This yields:
ING150I 09:35:42 08/01/2007 : ITM.OS390_PAGEDSNOTOPERATIONAL_WARN
MINOR N/A DATA= 1

INGSTOBS

Purpose
The INGSTOBS command lets you subscribe as a status observer for one or more
resources. Whenever a status change occurs, the automation manager sends you a
notification. The following statuses are applicable:

Observed
Is the current status of the resource monitored by the automation manager.

Desired
Is the status the resource should be in. The automation manager attempts to
put the resource into this state. This is also called the 'goal' of the resource.

Automation
Is the current status of the resource within the automation process of SA z/OS.

Compound
Is the summary of all statuses and a few other indicators.

Startability
Indicates whether the resource is ready to be started when a start command is
issued.

Health
Application-specific performance and health monitoring provides a separate
status to inform you about the application's health.

INGSIT

Chapter 2. SA z/OS System Operations Commands 141

To register as a status observer, specify the name of a REXX exit. SA z/OS invokes
this exit for each status change. The following parameters are passed to the exit:
v The name of the resource, for example, TSO/APL/SYS1
v The observed status
v The automation status
v The desired status
v The compound status
v The startability status
v The health status

The parameters are separated by a comma.

Syntax

�� INGSTOBS REGISTER
DEREGISTER
LIST

,exitname
, autoop

�, resource

�

� , options ��

options:

INITNTFY=YES

INITNTFY=NO

WAIT=YES

WAIT=NO
WAIT=nnn

Parameters
REGISTER

Performs the subscription by linking the specified exit to each resource
specified.

Each subsequent status change of the resource triggers the exit to be invoked.

DEREGISTER
Breaks the link between the exit and the resource. The exit is no longer
invoked if a status change of the resource occurs.

LIST
Displays the resources that are subscribed and linked to the specified exit.

exitname
Specifies the name of the REXX exit to be invoked when a status change of the
resource occurred.

autoop
The automated function that the autotask name is defined from. The exit is
scheduled to run on the autotask associated with the automated function. If
omitted, the exit runs on the SA z/OS task responsible for communicating
with the automation manager. It is recommended to use a different task.

resource
Specifies the name of the resource or family of resources, via wildcard, for

INGSTOBS

142 System Automation for z/OS: Programmer's Reference

|||
|

|
||||||||||||
|

|

||||||||||||||||||||||||||||||

|

example, TSO/APL/*. The resource names must be separated by a blank.
Alternatively, the list of resources can be passed to the command with a
NetView default Pipe Safe.

The parameters must be separated by a comma.

INITNTFY
Specifies whether the automation manager sends the status change
immediately:

YES
The automation manager sends the status change immediately. This causes
a call to the user exit immediately.

NO This causes the automation manager to send the status change with the
next subsequent status change.

WAIT
Specifies whether to wait until the automation manager has processed the
request.
YES

Wait for completion. This is the default.
NO This causes the subscription request to be sent to the automation manager

without waiting for its completion.
nnn

This is the number of seconds to wait before giving up and reporting that
a timeout has occurred. The maximum time interval is 999 seconds. If
omitted, the time interval is 30 seconds.

Restrictions and Limitations
The INGSTOBS command can only be issued for a local system.

Examples
To register TEST2 as a status observer exit for all resources starting with CICS,
specify:
INGSTOBS REGISTER,TEST2,MSG2OPER,CICS*/APL/AOC8

When the exit is invoked it runs on the autotask that is associated with the
MSG2OPER automated function.

To display the resources that are associated with the status observer exit TEST2,
specify:
INGSTOBS LIST,TEST2

Figure 7 on page 144 shows exits and associated resources:

INGSTOBS

Chapter 2. SA z/OS System Operations Commands 143

INGSTX

Purpose
INGSTX controls user-defined status items. Status items can be defined, updated,
queried, and deleted. They are stored in the status item repository within the
SA z/OS automation manager.

Each status item has the following attributes that are either set or modified
through INGSTX:
v STIORIGN — Status item originator. This field contains the name of the system

that the status item is collected from. This field cannot be updated.
v STISTGRP — Status item group. If the status item was defined in the form of

two subfields separated by a period, this is the first subfield. Otherwise, the field
is empty (null string). This field cannot be updated.

v STISTNAM — Status item name. If the status item was defined in the form of
two subfields separated by a period, this is the second subfield. Otherwise, this
is the complete name that was specified when the status item was created. This
field cannot be updated.

v STIVALUE — Status item’s current value. An arbitrary positive or 0 integer
value expressing the status item’s current condition. This field can be updated.

v STIDESCR — Status item description. A textual description of the status. This
field can be updated.

v STITRTXT — Status item transient user text. This field can be used to store
transient user data. This field can be updated.

v STITCHNG — Status item change time. The format of this field is:
CYYMMDDHHMMSSmmm. This field is updated by SA z/OS when a status
time was set the last time. Format = GMT.

v STIPERST — Status item persistency. This field is set upon first mention of this
status item. A value of 1 means it is persistent; 0 means it is non-persistent.

Syntax
To define or update a status item, use the following syntax:

�� INGSTX SET
SETL

namespec
SCOPE=LOCAL

attributes �

Resource Exits...
------------------------ -----------------
AMSINGLE/APG/AOC1 INGRYSOS/MSGOPER
FEATEMUL/APG/AOC1 INGRYSOS/MSGOPER
MOVSYSTM/APG/AOC1 INGRYSOS/MSGOPER
PARCHILD/APG/AOC1 INGRYSOS/MSGOPER
PBBB1/APG/AOC1 INGRYSOS/MSGOPER
PBBC1/APG/AOC1 INGRYSOS/MSGOPER
PBMA1/APG/AOC1 INGRYSOS/MSGOPER
SYSSRV1/APG/AOC1 INGRYSOS/MSGOPER
SYSSRV2/APG/AOC1 INGRYSOS/MSGOPER
*** End of Display ***

Figure 7. Exits and Associated Resources

INGSTX

144 System Automation for z/OS: Programmer's Reference

�
PERSISTENT=NO
PERSISTENT=YES

WAIT=YES
WAIT=NO
WAIT=nnn

��

attributes:

STIDESCR=description STIVALUE=value STITRTXT=transientText

To query a status item, use the following syntax:

�� INGSTX QUERY namespec
SCOPE=LOCAL
SCOPE=SYSPLEX

WAIT=YES
WAIT=nnn ��

To delete a status item, use the following syntax:

�� INGSTX DELETE namespec
SCOPE=LOCAL
SCOPE=SYSPLEX

WAIT=YES
WAIT=NO
WAIT=nnn

��

Parameters
SET/SETL

This is the function code to define or update a status item. A status item is
defined implicitly upon the first mention of the item name. At definition time,
you can determine whether the status item should be persistent across
SA z/OS sessions or even across IPLs. The PERSISTENT keyword is ignored
on subsequent updates of the same status item.

With function code SET the change time in the STITCHNG field is in GMT. If
you want to use the local time, use the alternate function code SETL.

QUERY
This is the function code to query one or more status items that match the
pattern denoted by namespec. The status item attribute values are positional
and are returned in the following format (all on one line):
STIORIGNSTISTGRPSTISTNAMSTIVALUESTIDESCR
STITRTXTSTITCHNGSTEPERST

where is a non-ambiguous delimiter character. For an attribute that has
not been specified, a null string is returned, that is, . STISTGRP is
the first substring, if any, of the status item name, and STISTNAM is the
remainder, if any, excluding the period.

 is the character h, which represents X'FF'.

DELETE
This is the function code to delete one or more status items that match the
pattern denoted by namespec.

namespec
This is either the complete specification of a status item or a specification
pattern using the asterisk (*) wildcard character.

INGSTX

Chapter 2. SA z/OS System Operations Commands 145

Each status item has a system scope. To enable grouping of status items, the
name can be divided into two substrings separated by a period (.). For each
substring, only alphanumeric characters and the national characters $, &, and #
are allowed. The second substring can contain additional periods for
readability purposes. The first character must not be a period or a numeric
character. Its maximum length cannot exceed 32 characters.

When a wildcard is used, it can be specified at the beginning or at the end of
each substring. The following are examples of valid namespecs:
v CICSREGA.MAXTASKS
v CICS*.MAX*
v *.MAX*
v JOB*

Status item names are case-sensitive.

Avoiding the '.' for Status Items with Group names: If a Take Action
command on the Tivoli Enterprise Portal (TEP) refers to a namespec of type
Group.Name, it is difficult to generate a one word argument with a dot as a
separator. You can therefore use a colon (:) as a separator instead, resulting in a
namespec of type Group:Name. The corresponding notation in the Take Action
command is therefore:
&Status_Items.Group:&Status_Items.Name

attributes
Each status item has a set of optional attributes. They are specified in
attribute=value pairs. If the value is a string that contains blanks, or you want
to preserve the case of the characters, enclose value in single or double
quotation marks.

Valid attributes are:

STIDESCR=description
A textual description of the status item. The maximum length is 32
characters. Basically, all readable characters are allowed.

STITRTXT=transientText
User-specific text that provides further details about the status item’s
value. The maximum length is 128 characters. Basically, all readable
characters are allowed.

STIVALUE=value
An arbitrary 4-byte positive or 0 (zero) integer value of the status item, up
to 2,147,483,647. If not specified, the default is set to 0.

SCOPE
This keyword indicates whether the request that is specified addresses status
items from the local system only or from all systems in the sysplex (more
specifically, all systems connected to the automation manager’s XCF group).

SCOPE=LOCAL
Only status items bound to the local system are addressed. This is the
default.

SCOPE=SYSPLEX
Status items from all systems in the same sysplex are addressed. This scope
is not allowed for SET requests.

WAIT
This keyword indicates whether the request is executed synchronously or

INGSTX

146 System Automation for z/OS: Programmer's Reference

asynchronously and, if synchronously, how long the caller is willing to wait for
an answer. A request will be discarded if the default or user-specified wait
time expires.

Note: This parameter is always either YES or a time period for QUERY
requests.

WAIT=YES
The request is executed synchronously, that is, the caller regains control
only when the request has been processed by the automation manager,
either completely or after waiting for more than 30 seconds. If the request
could not be processed within this time, it is discarded. This is the default
option.

WAIT=NO
The request is executed asynchronously, that is, the caller regains control
immediately after the request was accepted by the automation manager.
The automation manager executes the request in the background.

WAIT=nnn
This option is similar to WAIT=YES with the difference that the maximum
time the caller waits for the request to complete is specified as nnn
seconds. Specify any value between 1 and 999 seconds.

PERSISTENT
A status item can be defined as persistent to live across SA z/OS sessions or
IPLs. Non-persistent status items are implicitly removed from the status item
repository in the SA z/OS automation manager upon disconnecting a system
from the sysplex XCF group.

PERSISTENT=NO
Status item is non-persistent. This is the default.

PERSISTENT=YES
Status item is persistent.

Return Codes
The following return codes are passed back upon completion of INGSTX:
0 Normal completion.
–3 The operator that invoked INGSTX is not authorized to set, query, or delete a

status item.
1 Keyword PERSISTENT was specified for an update request of an existing

status item. It is ignored.
2 Function QUERY or DELETE was specified but no status item was found in

the status item repository that matches the given namespec.
3 The request could not be processed successfully by the automation manager.

Refer to the NETLOG for additional error information.
4 Syntax error. Invalid parameters where passed to INGSTX. Refer to the

NETLOG for additional error information.
6 The command environment for INGSTX was not appropriately initialized at

the time this command was issued. Possible reasons are that the SA z/OS
agent is currently being initialized or a cold start of the automation control file
is being done.

7 INGSTX failed to create a system resource list for requests with
SCOPE=SYSPLEX. Refer to the NETLOG for additional error information.

Examples

Example 1
To define two new non-persistent status items called CSA and ECSA, specify:

INGSTX

Chapter 2. SA z/OS System Operations Commands 147

INGSTX SET CSA stidescr="CSA Below" stivalue=0
stitrtxt="Utilization 10%"

INGSTX SET ECSA stidescr="CSA Above" stivalue=0
stitrtxt="Utilization 12%"

Example 2
To update the status item CSA that was defined in the previous example, specify:
INGSTX SET CSA stivalue=10 stitrtxt="Utilization 31%"

Example 3
To query all status items on the local system that end with the three letters CSA,
specify:
INGSTX QUERY *CSA

For the status items defined in examples 1 and 2, this query returns output similar
to:
SYS1hhCSAh10hCSA BelowhUtilization 31%h1060203100659000h0
SYS1hhECSAh0hCSA AbovehUtilization 12%h1060203100105000h0

Where h represents X'FF'.

Example 4
To delete all status items that originated on the local system, specify:
INGSTX DELETE *

INGTIMER

Purpose
The INGTIMER command links NetView timer commands to subsystems. This
means that the timer is only active when the subsystem is active. When the
subsystem terminates, the timer commands are automatically purged. To deactivate
the timers at SHUTINIT time, you can specify the INGTIMER subsystem PURGE
command as a SHUTINIT command.

Syntax

�� INGTIMER subsystem AT time task command
date, *

AFTER interval
EVERY timespecs

dayofweek,time
date,time

PURGE

��

timespecs:

(interval)
dayofweek, ,starttime

-endtime

INGSTX

148 System Automation for z/OS: Programmer's Reference

Parameters
subsystem

Specifies the name of the subsystem.

AT Specifies the start time of the command.

AFTER
Specifies the time interval that must elapse after the subsystem became active.
When this time interval has elapsed, the command runs. For example, if the
subsystem becomes active at 12:00 am and you specify 2 hours, the command
runs at 2:00 pm.

EVERY
Specifies the times when the command is to be repeated between the start time
and end time.

PURGE
Specifies that all timers associated with the subsystem are purged.

date
Specifies the date, in mm/dd/yy format, that the command should run on.
You can specify one or more Xs for the year or both the year and month. The
command will then run at the next month or year increment. For example:
mm/dd/XX07
mm/dd/XXX8
Xm/dd/XXXX
XX/dd/XXXX

time
Specifies the time that the command is to run at. The format is hh[:mm[:ss]].
Instead of entering digits, you can specify one or more Xs at the beginning. If
the time begins with an X or multiple Xs instead of a number, the command is
set to begin at the next increment of time.

interval
Specifies the time interval that is to elapse before the command runs. The
format is hh[:mm[:ss]]. Minutes and seconds are optional values.

starttime
Specifies the start time of the command, which is when it is to be run for the
first time. The format is hh[:mm[:ss]]. Minutes and seconds are optional values.

The specified time can be earlier than the current time. The command is then
run at the next regular interval after the current time, with intervals calculated
based on the start time.

If the time begins with an X or multiple Xs instead of a number, the command
is set to begin at the next time increment.

endtime
Specifies the time when the interval is to end. The format is hh[:mm[:ss]].
Minutes and seconds are optional values. Applies only when the interval is
shorter than 24 hours.

dayofweek
Specifies the day of the week when the timer command should run. Specify
MON through SUN, WEEKDAY, WEEKEND, or ALL.

task
Specifies the user ID of the operator that the command is to be executed from.
It can also be an automated function. The default is the work operator that is
associated with the subsystem. The timer itself runs on the PPT task.

INGTIMER

Chapter 2. SA z/OS System Operations Commands 149

* This is a placeholder that indicates that the default is used. The default is the
work operator that is associated with the subsystem.

command
Specifies the command to be issued when the timer expires.

All timers are converted to the NetView CHRON command format. Thus,
daylight-saving-time switching is supported. The timer runs on the PPT task.

Note: Storing the timer in the NetView save/restore database is unnecessary
because the timer is only active while the subsystem is in an UP state.

Restrictions and Limitations
None.

Usage
To link a timer to a subsystem, you must register the NetView timer command as
follows:
v At subsystem post-start time (use SHUTDOWN policy of the customization

dialog). This associates the timer command with the subsystem and activates the
timer.

v Whenever NetView is restarted (use pseudo message ID ACORESTART). This
activates the timer command again.

v The timer commands can also be defined under pseudo message ID INGTIMER.
In this case they do not need to be specified in the subsystem's POSTSTART and
ACORESTART definitions.

The timers are only in effect when the subsystem that they are defined for is
active. This is useful for applications that can be moved within the sysplex.

Examples
To issue a command that should run every 30 minutes between 10:00 am and 2:00
pm, specify the following:
INGTIMER TSO EVERY (00:30,10:00-14:00) * F MVS &SUBSJOB,GETLSEQ

To issue a command that should run 10 minutes after a certain subsystem became
available, specify the following:
INGTIMER &SUBSAPPL AFTER 00:10 * MSG,ALL Subsystem is now active

To issue a command that should run each Friday at 5:00 pm, specify the following:
INGTIMER &SUBSSYS EVERY FRI,17:00 PPT MVS D T

INGUSS

Purpose
The INGUSS command allows an automation procedure to send commands to
z/OS UNIX System Services.

Syntax

��
NETVASIS

INGUSS
JOBNAME=INGCUNIX

JOBNAME=jobname

FDOPEN=NO

FDOPEN=YES
�

INGTIMER

150 System Automation for z/OS: Programmer's Reference

|
|
|

|
|

|
|
|

|

�
STDENV=pathenv STDIN=pathin STDOUT=pathout STDERR=patherr

�

�
(1)

UNIX_command <arguments> ��

Notes:

1 <arguments> may include redirection (see “Examples” on page 153).
Redirection arguments are passed to, and processed by, the specified UNIX
command and not by INGUSS.

By default the standard streams (fd0, fd1 and fd2) are set to /dev/null. This
may cause problems for commands that expect fd0, fd1 and fd2 to be
assigned stdin, stdout and stderr (for example, cron). Redirection can be used
to bypass this problem (see “Examples” on page 153).

Parameters
NETVASIS

Prefix the INGUSS command with NETVASIS if you want to pass the
command text or the various path specifications (STDIN,STDOUT,STDERR,
STDENV) in lower or mixed case.

JOBNAME=jobname
This is the MVS job name used for the newly created address space that runs
the specified command. If you do not specify a job name, INGCUNIX is the
default.

FDOPEN
This parameter is used to determine whether INGUSS opens STDOUT and
STDERR before invoking the specified UNIX command.

NO (DEFAULT)
STDIN, STDOUT and STDERR are not opened.

YES STDOUT and STDERR are assigned to /dev/console and opened,
unless otherwise specified.

STDENV
This optional parameter is used to specify a path for STDENV.

pathenv The path name to be assigned to STDENV. It must point to a
file that contains the environment variable definitions. Data
lines starting with a blank or # will be ignored respectively and
not used for setting environment variables. A variable
definition must be placed in one line and cannot be continued
in the next line.

STDIN
This optional parameter is used to specify a path for STDIN.

pathin The path name that is to be assigned to STDIN.

STDOUT
This optional parameter is used to specify a path for STDOUT.

pathout The path name that is to be assigned to STDOUT.

STDERR
This optional parameter is used to specify a path for STDERR.

INGUSS

Chapter 2. SA z/OS System Operations Commands 151

|

|
|
|
|

|
|

||
|
|
|
|
|

patherr The path name that is to be assigned to STDERR.

UNIX_command
This is the z/OS UNIX command that is issued under the user ID of the
resource that this command belongs to. It is not possible to issue commands
for other user IDs. It can be any z/OS UNIX command or the name of a shell
script (both fully qualified). The resource that issues this command must have
an application type USS.

Return Codes
0 Command Issued

4 Resource is not type USS

8 OMVS is inactive

12 Command not issued; failure in INGPYXSR

16 Command not issued; parameter(s) wrong/missing

1nnn
Command not issued; failure in USS INGCCMD routine, where nnn is the RC
received from INGCCMD.

Restrictions and Limitations
The INGUSS command can be called only by another automation procedure or by
a command processor. The AOCQRY command must be invoked first to set the
necessary task global variables.

Note: The INGUSS command can only be used if the primary JES is available.
Therefore, z/OS UNIX resources that use INGUSS need a HASPARENT
dependency to JES. Most z/OS UNIX applications have this dependency. If
you want to issue prestart commands, an additional PREPAVAILABLE
dependency is necessary. This is because SA z/OS does not create an
address space without JES.

Usage
The following list provides details of some of the variables that can be used to
obtain resource data if INGUSS is issued from the automation policy (see “Task
Global Variables” on page 44 for a complete list of task global variables that are
provided by AOCQRY):

&SUBSPATH
The path statement of the resource. The resource must be a process.

&SUBSFILE
The filename of the resource. The resource must be a file.

&SUBSPID
The ID for the USS process. See also “%PID%” on page 153. &SUBSPID is the
process ID returned from the host service BPX1SPN while %PID% is the
process ID that is returned from the USS call getpsent().

IBM recommends the use of &SUBSPID in preference to %PID% because
problems can arise retrieving the PID in an environment where there are
multiple uid 0 users active.

&SUBSPORT
The port number of the resource. The resource must be a port.

INGUSS

152 System Automation for z/OS: Programmer's Reference

|

||

||

||

||

||

|
|
|

&SUBSUSSJOB
The job name assigned to a process. The resource must be a process.

&SUBSAPPL
The application name.

&SUBSASID
The address space ID of the address space the process runs in. The resource
must be a process.

The information for &SUBSUSSJOB and &SUBSASID is refreshed with each
monitoring cycle. If a process forks and gets a new job name (normally a digit is
appended at the end of the original job name), SA z/OS will detect the new job
name after the next scheduled monitoring. This works only if SA z/OS internal
process monitoring is used.

When the resource becomes inactive, the values of &SUBSUSSJOB and
&SUBSASID are cleared.

In addition, for process resources %PID% can be used to get the PID of a process.
The command INGUSS /bin/kill %PID% results in determining the PID of the
process defined by the path of the resource and replacing %PID% by the real value
of the process ID.

When issuing a command, SA z/OS switches to the user's home directory and sets
the following environment variables for the user that the resource belongs to:
v HOME
v USER
v SHELL

The login shell uses these environment variables to detect which UNIX profiles to
execute. If the started program should get the whole environment of the user as if
this user was logged on, you must use a login shell as the start command.

Recommendation:

When using INGUSS to start applications, IBM recommends that you use the
JOBNAME parameter in order to get a unique job name. For example:
INGUSS JOBNAME=&SUBSJOB UNIX_start_command

Otherwise, all applications started by SA z/OS without this parameter will have
the same job name of INGCUNIX (if the application itself does not change the job
name).

If the job name is not unique, specify job type MVS.

Examples
1. To start inetd through a login shell, issue the following command:

INGUSS JOBNAME=INETD /bin/sh -L -c ’/usr/sbin/inetd /etc/inetd.conf’

where:

JOBNAME=INETD
This is optional. It assigns the MVS job name 'INETD' to the started
process.

INGUSS

Chapter 2. SA z/OS System Operations Commands 153

/bin/sh
The shell.

-L The option for the login shell.

-c The option to the shell to execute the following command.

'/usr/sbin/inetd /etc/inetd.conf'
This is the command that is executed by the login shell

2. To start inetd through a login shell, issue the following command:
INGUSS JOBNAME=INETD /bin/sh -L -c ’/usr/sbin/inetd /etc/inetd.conf
>/tmp/inetd.out 2>/tmp/inetd.err’

where:

>/tmp/inetd.out
This redirects the command output to /tmp/inetd.out rather than
/dev/null.

2>/tmp/inetd.err
This redirects the error output to /tmp/inetd.err rather than /dev/null.

3. To start cron through a login shell, issue the following command:
INGUSS JOBNAME=CRON /bin/sh -L -c ’/usr/sbin/cron </tmp/cron.in
>/tmp/cron.out 2>/tmp/cron.err’

where:

</tmp/cron.in
This redirects the command input to /tmp/cron.in rather than /dev/null.

>/tmp/cron.out
This redirects the command output to /tmp/cron.out rather than
/dev/null.

2>/tmp/cron.err
This redirects the error output to /tmp/cron.err rather than /dev/null.

In the example above the redirection is necessary. If not specified, cron will not
hold the pid lock file, and thus multiple pid processes could be started.

INGVARS

Purpose
The INGVARS command is the interface for you to either get or set a shared
variable. The shared variable can be associated with an application resource, a
system or the sysplex itself.

Syntax

�� INGVARS GET
SET
DEL
SWAP

res_name var_name var_value
WAIT=YES

WAIT=NO
WAIT=nnn

�

INGUSS

154 System Automation for z/OS: Programmer's Reference

�
TARGET= sysname

domain
sysplex

OUTMODE= LINE
AUTO
NETLOG

��

Parameters
GET

Obtains the shared variables.

SET
Sets the shared variable. Passing a null string resets the variable.

DEL
Deletes the variable.

SWAP
Replaces the current setting of the user variable only if the “old” value
matches the current setting.

In this case, the specified variable value must consist of two pieces separated
by a delimiter. The first piece represents the “old” value while the 2nd piece is
the “new” value.

The first character of the variable value is considered to be the delimiter. It can
be any printable character, for example /value1/value2.

Note: The following restrictions apply when using the SWAP function:
1. Although the specified resource name can contain a wildcard, only 1

resource is allowed.
2. Although the specified variable name can contain a wildcard, only 1

variable name can be specified.
3. Before making the comparison, leading and trailing blanks will be

removed.

res_name
The name of the resource in automation manager format, for example,
TSO/APL/AOC8. A wildcard can be specified.

var_name
The name of the variable. Maximum length is 32 bytes. Can be a wildcard, for
example, abc*, *abc or *abc* The variable name cannot contain a comma.

var_value
The value of the variable. Only applicable for the SET function. The value can
contain embedded blanks or a keyword/value pair. The value is stored in
character format.

WAIT
Specifies whether to wait until the automation manager has processed the
request.
YES

Wait for completion. This is the default.
NO This causes the subscription request to be sent to the automation manager

without waiting for its completion.
nnn

This is the number of seconds to wait before giving up and reporting that
a timeout has occurred. The maximum time interval is 999 seconds. If
omitted, the time interval is 30 seconds.

INGVARS

Chapter 2. SA z/OS System Operations Commands 155

TARGET
For information on the TARGET parameter, refer to IBM Tivoli System
Automation for z/OS Operator’s Commands.

OUTMODE
For information on the OUTMODE parameter, refer to IBM Tivoli System
Automation for z/OS Operator’s Commands.

Assigning shared variables to resources provides an automatic cleanup of the
shared variables. If the resource that the shared variable is associated with is
removed (for example, due to an INGAMS refresh), the shared variables are
automatically removed as well.

The automation manager provides the following “anchor points” for a shared
variable:

Application resource
TSO/APL/sysname - this can also be a group resource, for example, CICS/APG

System
Resource sysname/SYS/sysname

Sysplex
Resource SYSPLEX/GRP

Return Codes
0 OK, continue.

1 An error occurred.

16 The “old” value does not match the current value of the user variable.

Restrictions and Limitations
None.

Usage
Because the automation manager has knowledge of all resources in the sysplex and
the automation manager object structures are maintained in a persistent manner, it
provides an excellent base for shared variable support.

The automation manager is thus used to manage shared variables. These variables
are persistent across automation manager sessions and takeovers and are stored in
the takeover file (VSAM). Only when doing a cold start are the shared variables
wiped out.

Examples

Line-mode Output
Figure 8 on page 157 shows the result of the GET function. The first column is the
resource name, the second column is the variable name and the third column is the
value of the shared variable.

INGVARS

156 System Automation for z/OS: Programmer's Reference

INGVSTOP

Purpose
The INGVSTOP command allows an automation procedure to stop a virtual
operator station task (VOST).

Syntax

��
DETACH

INGVSTOP FORCE
TASK
IMMED
UNCOND

��

Parameters
DETACH

Specifies that the VOST is to be stopped with the DETACH command.

FORCE
Specifies that the VOST is to be stopped with the STOP FORCE command.

TASK Specifies that the VOST is to be stopped with the STOP TASK command.

IMMED
Specifies that the VOST is to be stopped with the STOP IMMED command.

UNCOND
Specifies that the VOST is to be stopped with the STOP UNCOND
command.

Restrictions and Limitations
The INGVSTOP command can be called only by another automation procedure or
by a command processor. The AOCQRY command must be invoked first to set the
necessary task global variables. In particular, the SUBSJOB variable must be set. Its
content is used as the attach name of the VOST.

Note that the VOST may be still active for a certain time after INGVSTOP has
ended with RC=0.

Return Codes
0 Stopping of the VOST was initiated successfully.
4 Invalid parameters were specified.
6 Environment check failed.
8 DETACH or STOP command failed.

>> ingvars get child* don* outmode=line
CHILD11/APL/AOC8 DONALD BOEBLINGEN
CHILD31/APL/AOC8 DONALD SMITH
CHILD31/APL/AOC8 DON STUTTGARTERSTR
*** End of Display ***

Figure 8. INGVARS Command Line-Mode Output

INGVSTOP

Chapter 2. SA z/OS System Operations Commands 157

Messages
The following messages are issued by INGVSTOP:
AOF010I WRONG NUMBER OF PARAMETERS ENTERED
ING153I command OF name SUCESSFUL
ING154I command OF name FAILED WITH RC=rc
ING155I ENVIRONMENT CHECK FAILED FOR command. REASON=rs

Usage
Use INGVSTOP as a stop command of a NONMVS type APL.

Consider using INGVSTRT as a start command and INGVMON as a monitor
routine. (See “INGVSTRT” on page 158 and “INGVMON” on page 185).

Note: It is not recommended to use STOP IMMED because the target task may
lose storage or other resources.

You are strongly urged never to use STOP UNCOND because it destroys
important task control information in NetView. You might not be able to
restart NetView until the next IPL of MVS.

Examples
To stop a VOST using the DETACH command, enter the following as a stop
command in the VOST management APL:
INGVSTOP DETACH

INGVSTRT

Purpose
The INGVSTRT command allows an automation procedure to start a virtual
operator station task (VOST).

Syntax

�� INGVSTRT mode command ��

mode:

SYNC,

ASYNC,

Parameters
mode This is a positional parameter that defines the mode that command operates

in. It is required only if command starts with SYNC or ASYNC. It clarifies
whether command operates synchronously (the default) or asynchronously
(it terminates but leaves the VOST active).

It has the following values, which must be followed by a comma:

SYNC Use SYNC as a positional parameter if command operates
synchronously. This is the default.

INGVSTOP

158 System Automation for z/OS: Programmer's Reference

ASYNC
Use ASYNC if command operates asynchronously, that is, it
terminates and leaves the VOST active. This prevents message
ING156I from being issued.

command
The command, including all parameters, to be executed in the VOST. This
can be mixed-case and can also be a REXX CLIST.

Restrictions and Limitations
The INGVSTRT command can be called only by another automation procedure or
by a command processor. The AOCQRY command must be invoked first to set the
necessary task global variables. In particular, the SUBSJOB variable must be set. Its
content is used as the attach name of the VOST.

The ATTACH command is used to start the VOST and therefore the restrictions of
the attach command also apply to the command that is specified with INGVSTRT.

Return Codes
0 VOST started successfully.
4 Invalid parameters were specified.
6 Environment check failed.
8 ATTACH command failed.

Messages
The following messages are issued by INGVSTRT:
AOF010I WRONG NUMBER OF PARAMETERS ENTERED
ING151I ATTACH OF name SUCESSFUL
ING152I ATTACH OF name FAILED WITH RC=rc
ING155I ENVIRONMENT CHECK FAILED FOR command. REASON=rs

Usage
Use INGVSTRT as the start command for an APL of type NONMVS.

Consider using INGVSTOP as a stop command and INGVMON as a monitor
routine. (See “INGVSTOP” on page 157 and “INGVMON” on page 185).

Examples
To start the CLIST myclist in a VOST, create an APL of type NONMVS and enter,
for example, the following as a start command:
INGVSTRT MYCLIST PARM1,2ND,THIRD

Note that parameters can be in mixed case.

INGVTAM

Purpose
The INGVTAM command lets you:
v Register an application with VTAM application node recovery.
v Issue recovery commands for all applications registered with VTAM application

node recovery when VTAM has restarted.
v List applications that are registered for application node recovery.

INGVSTRT

Chapter 2. SA z/OS System Operations Commands 159

v List major nodes that are in use by applications. When the subsystem terminates,
the major nodes are automatically purged.

Syntax

�� INGVTAM
subsystem

LIST
REQ= ACTIVATE

DEACTIVATE

�

,

MAJNODE=(major_node)

�

�
TARGET=target

��

Parameters
subsystem

The subsystem parameter specifies the name of the subsystem that is
registering with SA z/OS VTAM application recovery. This parameter is
required with REQ=ACTIVATE to register a subsystem. If it is omitted with
REQ=ACTIVATE, all subsystems currently registered will have the VTAMUP
message command policy driven to allow them to take actions when VTAM is
restored to active service. This parameter is required with REQ=DEACTIVATE.

REQ
Specifies the request. It can be one of the following:

LIST
If no subsystem is specified, it lists all subsystems registered for VTAM
application node recovery. If a subsystem is specified, it lists all the major
nodes registered for that subsystem.

ACTIVATE
If the subsystem parameter is specified, it registers the list of major nodes
as specified in the MAJNODE= parameter and issues VTAM ACTIVATE
commands for them. If the subsystem parameter is not specified,
REQ=ACTIVATE issues the commands in the messages policy VTAMUP for
every subsystem that is registered for application node recovery.

DEACTIVATE
A subsystem must be specified for this request. This request issues VTAM
INACT commands for the major nodes that were previously registered.
INACT commands are not issued for any major node that contains model
resources or is in use by another registered application.

MAJNODE
This defines a list of VTAM application major nodes that will be acted on.

TARGET
For information on the TARGET parameter, refer to IBM Tivoli System
Automation for z/OS Operator’s Commands.

Return Codes
0 Normal End.
4 Warning (Vary command failed).
8 Error.

INGVTAM

160 System Automation for z/OS: Programmer's Reference

Restrictions and Limitations
To use the INGVTAM command SA z/OS must be fully initialized.

Usage
It is recommended that you issue the REQ=ACTIVATE and REQ=DEACTIVATE
commands on the same system as the subsystems concerned. It is recommended
that you place REQ=ACTIVATE in the application's PRE-START and
ACORESTART policies. However, REQ=DEACTIVATE should be placed in the
application's SHUTFINAL policy. For the VTAM subsystem, the INGVTAM
REQ=ACTIVATE command should be defined to the UP message policy as a
command.

Examples
If you enter INGVTAM REQ=LIST the output is similar to Figure 9.

If you enter INGVTAM subsystem REQ=LIST the output is similar to Figure 10.

To register a subsystem for application node recovery, specify, for example:
INGVTAM &SUBSAPPL REQ=ACTIVATE MAJNODE=(IPSMBC)

To deregister a subsystem for application node recovery, specify, for example:
INGVTAM &SUBSAPPL REQ=DEACTIVATE

ISSUEACT (ISSUECMD, ISSUEREP)

Purpose
ISSUEACT, ISSUECMD, and ISSUEREP are defined as synonyms for the same
command that can be used to trigger your own commands, replies, or both, from
messages that are defined in the automation policy item MESSAGES/USER DATA
under consideration of the automation flags.

If the command is called as ISSUECMD, only commands are issued, whereas if it is
called as ISSUEREP, only replies are issued. When called as ISSUEACT, it issues
commands and replies according to the given selection criteria that are passed as
parameters.

In addition, the ISSUEACT command includes special message processing for some
critical DB2 messages and for JES2 message $HASP099. For further details see the
sections “Critical Event Monitoring” and “JES2 Shutdown Processing” in IBM
Tivoli System Automation for z/OS Customizing and Programming.

List of subsystems registered with VTAM
Subsystem Subsystem Subsystem Subsystem
EYUCMS1A
*** End of Display ***

Figure 9. INGVTAM REQ=LIST Output

List of major nodes registered with subsystem subsys
Major Node Type Major Node Type
KEY1BCPA APPL
*** End of Display ***

Figure 10. INGVTAM subsys REQ=LIST Output

INGVTAM

Chapter 2. SA z/OS System Operations Commands 161

Syntax

�� ISSUEACT
ISSUECMD
ISSUEREP

AUTOTYP= NOCHECK
flag

�

,

MSGTYPE=(type)

�

�
EHKVAR=YES

EHKVAR=NO ENTRY=entry SYSTEMMSG=YES
SYSTEMMSG=NO

JOBNAME=jobname
�

�
REPLYID=replyid CODE1=code1 CODE2=code2 CODE3=code3

�

�
PASSES=YES
PASSES=NO

SEL=selection THRES=YES
THRES=NO

�

� �
(1)

TGLOBn=(var,value)
��

Notes:

1 The variable n can be 1–10 (that is, TGLOB1,TGLOB2,...,TGLOB10)

Parameters
AUTOTYP

The automation flag that is to be checked. If the flag is turned off no
commands or replies are issued.

NOCHECK
If NOCHECK is specified, the RECOVERY flag is checked, but the
commands or replies (or both) are issued regardless of its setting.

flag
This must be one of the following values:
v AUTOMATION
v INITSTART
v RECOVERY
v RESTART
v START
v TERMINATE

If SYSTEMMSG=YES is specified, NOCHECK, AUTOMATION, and
RECOVERY are the only valid values for AUTOTYP.

If no AUTOTYP value is coded and SYSTEMMSG=YES, AUTOTYP defaults to
RECOVERY.

ISSUEACT

162 System Automation for z/OS: Programmer's Reference

|

If no AUTOTYP value is coded and SYSTEMMSG=NO, the default value is
determined according to the following steps:
1. If startup of the application is in progress, AUTOTYP=START
2. If shutdown of the application is in progress, AUTOTYP=TERMINATE
3. If neither a startup nor a shutdown is in progress, a value for AUTOTYP is

taken that corresponds to the actual status of the application:

AUTOTYP Actual Status

START ACTIVE, ENDING, EXTSTART, RESTART, RUNNING,
STARTED, STARTED2

TERMINATE ABENDING, AUTOTERM, BREAKING, HALFDOWN,
STOPPING, STUCK, ZOMBIE

RECOVERY AUTODOWN, BROKEN, CTLDOWN, DOWN, ENDED,
FALLBACK, HALTED, INACTIVE, MOVED, STOPPED, UP

4. If no actual status information is available, RECOVERY is taken as the
default value for AUTOTYP

MSGTYPE
This value is a list of the message IDs in the MESSAGES/USER DATA policy
item where the commands or replies (or both) to be issued are defined. It
defaults to the ID of the message that initiated ISSUEACT, ISSUECMD or
ISSUEREP, if the command is called from the NetView automation table. If the
command is not driven by a message, you must supply this parameter.

The embedding brackets are not needed if only one message ID is specified.

EHKVAR
This parameter determines whether the tokens of the parsed message text are
to be stored in task global variables EHKVAR0 through EHKVAR9 and
EHKVART.

YES The tokens of the triggering message are to be assigned to the task
global variables EHKVARn.

NO No values are to be assigned to the task global variables EHKVARn.
The values in EHKVARn remain unchanged.

ENTRY
This value is the entry name of the definition in the automation policy where
the commands or replies (or both) to be issued are defined.
v If ISSUEACT, ISSUECMD or ISSUEREP is called from the NetView

automation table, entry defaults to:
– The application name, as determined from the job name, for application

messages
– The system type (MVSESA) for system messages

Otherwise you must supply this parameter.

JOBNAME
This parameter is used to pass the job name when ISSUEACT, ISSUECMD or
ISSUEREP is not called from the NetView automation table.

REPLYID
This parameter is used to pass the reply ID when the command has to reply to
a WTOR, but has not been called from the NetView automation table.

Note: This parameter is not valid if the command is called as ISSUECMD.

ISSUEACT

Chapter 2. SA z/OS System Operations Commands 163

|
|

SYSTEMMSG
Indicates whether the message is a system message or an application message.

YES
The message was issued by a system rather than an application.
SYSTEMMSG defaults to YES if no job name can be obtained from the
message details, and neither the JOBNAME nor the ENTRY parameter is
specified. Furthermore it defaults to YES, if the job name that is obtained is
not defined to SA z/OS and if, in addition, no ENTRY parameter is
specified or its value is the system type (MVSESA).

NO The message was issued by an application that must be defined to
SA z/OS.

CODE1=code1 CODE2=code2 CODE3=code3
When specified, the codes that are passed are used to search for code entries
for a particular message ID that is specified in the automation policy
MESSAGES/USER DATA.

If the command is called as ISSUEACT or ISSUEREP, and if there are no
command or reply entries besides the code definition to the given message ID,
the response to the matching entry is used as the reply to a WTOR.

Otherwise the response to the matching entry is used as the option to select
the commands or replies (or both) to be issued from the automation control
file. If no code match occurs for the specified codes, the value ALWAYS is used
to select the commands or replies (or both) to be issued.

A selection string of "*IGNORE*" that is returned from the code match function
is treated as a no-operation instruction. This can help make the CODE
definitions in the automation policy simpler because you can filter out the
entries that no processing should be done for by SA z/OS.

The CODE parameters are mutually exclusive to the PASSES=YES and SEL
parameters.

MSG
This parameter is used to pass an alternate message text when ISSUEREP or
ISSUEACT is triggered by a WTOR. The value of this parameter is used as the
message text instead of the message text of the triggering message to be
forwarded to SDF and NMC.

This parameter is rejected if the command is called as ISSUECMD.

PASSES
Specifies whether passes are used to issue the commands or replies.

YES
Passes are used to issue the commands or replies. The pass count is
incremented only if the automation flag is turned on. The pass count is
keyed by message ID, and for normal messages the count is reset when the
application is shut down. For system messages, the pass count is reset
when NetView is recycled.

This value is mutually exclusive to the CODE parameters.

NO Passes are not used to issue the commands or replies.

If PASSES is not coded, it defaults to YES if the AUTOTYP parameter has a
value other than START or TERMINATE, and the command or reply
entries of the specified ENTRY and MSGTYPE in the automation control
file use pass selection options. When START or TERMINATE is the value
for the AUTOTYP parameter, YES is only assumed as the default value for

ISSUEACT

164 System Automation for z/OS: Programmer's Reference

|
|
|
|

|
|

the PASSES parameter if there are no command or reply entries defined
with a selection name other than PASSnn. In all other cases, the default
value to PASSES is set to NO.

SEL
Specifies a selection string that is to be used to determine the commands or
replies that are to be issued, along with all commands or replies defined
without a selection value.

This parameter is mutually exclusive to the CODE parameters.

THRES
Specifies whether defined thresholds for the minor resource entry.type are
checked before issuing commands or replies.

YES Thresholds are checked before issuing commands or replies.

An error record for minor resource entry.type is written to the
automation status file and the frequency of the written error records is
compared with the defined threshold levels for this resource.

As long as no option has been derived from other criteria (such as the
start or stop type, the PASSES parameter or CODE parameters), the
name of the exceeded threshold level (ALWAYS, INFR, FREQ, or CRIT)
is used to select defined commands or replies with these selection
options. If no commands or replies with these selection options are
defined, all commands or replies defined for the given entry and type
are issued if the critical threshold has not been exceeded.

If a selection option has already been provided by other criteria to
select commands and replies, these commands or replies are only
issued if the critical threshold has not been exceeded.

NO Thresholds are not checked before issuing commands or replies.

If THRES is not coded, its value defaults to YES if there are thresholds
defined for the minor resource entry.type. Otherwise the value of
THRES is assumed to be NO.

TGLOBn
This parameter instructs ISSUEACT to store a certain value in a given task
global variable. You can specify up to 10 variables.

var
The name of the task global variable that is to be set.

value
The value that is to be stored in the task global variable

Note: Be careful not to specify the names of other task global variables (for
example, EHKVARn) because they will be overwritten.

Restrictions and Limitations
v ISSUEACT, ISSUECMD and ISSUEREP will only work when SA z/OS is fully

initialized.
v SYSTEMMSG=YES is only accepted if no job name is provided by the

JOBNAME parameter and no ENTRY parameter is specified or the value of the
common global variable AOFSYSTEM is passed as the value for it.

v SYSTEMMSG=YES is only valid in combination with the AUTOTYP values
NOCHECK, RECOVERY, or AUTOMATION.

ISSUEACT

Chapter 2. SA z/OS System Operations Commands 165

|
|
|
|

|

v If ISSUEACT, ISSUECMD or ISSUEREP is driven by a delete operator message,
no commands or replies are issued that are driven by such a message.

v The command must run on the working operator task of the application.

Usage
You should normally call the ISSUEACT command from the NetView automation
table.

The triggering message of the ISSUEACT command is stored in the SAFE called
AOFMSAFE. All commands that are triggered through ISSUEACT and that are
executed on the task that is currently executing ISSUEACT have access to this
SAFE.

Do not call OUTREP in addition to the ISSUEACT command for a triggering
WTOR. If the triggering WTOR is not replied to in ISSUEACT (or ISSUECMD or
ISSUEREP), OUTREP is automatically called to record the WTOR.

If AUTOTYP=START is flagged and you specify PASSES=NO and no CODE
parameters, the current start type is taken as the selection for the commands or
replies to be issued. If no start type is provided, NORM is assumed as the default
start type.

If AUTOTYP=TERMINATE is flagged and you specify PASSES=NO and no CODE
parameters, the current stop type will be taken as the selection for the commands
or replies to be issued. If no stop type is provided, NORM is assumed as the
default stop type.

If no selection option has been derived from criteria such as start or stop type,
PASSES parameter, CODE parameters or the result of threshold checking, ALWAYS
is assumed as the default option for selecting defined commands or replies to be
issued.

If the value of the advanced automation option AOFSTATUSCMDSEL is set to
zero, all defined commands or replies for a specified status as message ID are
issued, regardless of any defined selection option. That is, no option from criteria
such as start or stop type, PASSES parameter, CODE parameters or the results of
threshold checking is used to select defined commands or replies. No minor
resource threshold checking is done in this case.

Task Global Variables
EHKVAR0 through EHKVAR9 and EHKVART

When defining the commands or replies in the automation policy that are to be
issued by this command, the variables &EHKVAR0 through &EHKVAR9 and
&EHKVART can be used to be substituted by the tokens of the parsed message
that has driven this command. &EHKVAR0 will be substituted by the message
ID, &EHKVAR1 by the first token of the message text after the message ID,
&EHKVAR2 with the second token and so forth. &EHKVART will be
substituted by the trailing message text after the 9th token.

Examples

Example 1
This example shows an automation procedure that calls the ISSUEACT command
to handle the HSM subsystem message, ARC0027I.

ISSUEACT

166 System Automation for z/OS: Programmer's Reference

The automation policy is as follows:

The NetView automation table entry to call ISSUEACT is:
IF MSGID = ’ARC0027I’ THEN
EXEC(CMD(’ISSUEACT’) ROUTE(ONE %AOFOPGSSOPER%));

The automation flag to check depends on the phase in the life cycle of the HSM
subsystem. If no start up or shutdown is in progress for the application, ISSUEACT
checks the recovery flag to validate that automation is allowed before issuing the
command. If automation is allowed and message ARC0027I is received for job
DFHSM, relating to the HSM subsystem, a command is issued that saves the HSM
data set. If message ARC0027I is received for any job other than DFHSM, the
message is not automated.

If you specify a clist named MYCLIST instead of an MVS command for the
message ARC0027I in the message policy of the customization dialog, this clist can
access the original message that triggered ISSUEACT via the named safe
AOFMSAFE. Thus you are able to access the message attributes and all lines of a
multiline message. The code to access this safe should look similar to the
following:
/* MYCLIST */

...

/* Get the message from the SAFE called AOFMSAFE */
"PIPE (STAGESEP | NAME GETMSG)" ,

"SAFE AOFMSAFE" ,
"| STEM orig_msg."

...

Exit

Example 2
This example shows how ISSUEACT can be used to automatically respond to
WTOR AHL125A, which is issued by GTF during initialization and which allows
SA z/OS to accept or reject the trace options that GTF will use.

To enable SA z/OS to automatically accept the trace options, define value U as the
reply to message AHL125A. To do this, select the MESSAGES/USER DATA policy
item from the Policy Selection panel for the GTF subsystem in the customization
dialog. In the Message Processing panel, specify AHL125A as the message ID and
call action REP to get the related Reply Processing panel. Specify U in the Reply
Text field.

AOFK3D0X SA z/OS - Command Response Line 1 of 4
Domain ID = IPSNO ---------- DISPACF ---------- Date = 07/19/00
Operator ID = SAUSER Time = 18:20:45

Command = ACF ENTRY=HSM,TYPE=ARC0027I,REQ=DISP
SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= HSM

AUTOMATION CONFIGURATION DISPLAY - ENTRY= HSM
TYPE IS ARC0027I
CMD = (,,’MVS S HSMPLOGB’)
END OF MULTI-LINE MESSAGE GROUP

Figure 11. DISPACF Sample Panel

ISSUEACT

Chapter 2. SA z/OS System Operations Commands 167

Return to the Message Processing panel.

When you call action OVR, you can see that the automation table entry that will be
created during the build process for the automation policy:
IF MSGID = ’AHL125A’ THEN
EXEC(CMD(’ISSUEACT’) ROUTE(ONE %AOFOPGSSOPER%));

ISSUEACT is called without parameters. Therefore the automation flag to be
checked depends on the phase in the lifecycle of the GTF subsystem. Because
message AHL125A is issued during the initialization of GTF, ISSUEACT checks the
start flag to validate that automation is allowed before issuing the reply.

If automation is allowed and message AHL125A is received for job GTFPROD that
is related to the GTF subsystem, ISSUEACT replies with value U to accept the
trace options and to continue its initialization. If message AHL125A is received for
any job other than GTFPROD, the message is not automated.

MDFYSHUT

Purpose
The MDFYSHUT command sets the AOFSHUTMOD task global variable to
whatever value is contained in the MDFYSHUT parameter string. The
AOFSHUTMOD value is then used by the shutdown program.

MDFYSHUT also provides support for a SUSPEND function.

Syntax

�� MDFYSHUT
subsystem

NOW
ABORT
DELAY time
NEXTPASS pass
SUSPEND flag pass

��

Parameters
Subsystem

Specifies the subsystem involved in the shutdown. If omitted, the SUBSAPPL
task global variable is used to identify the subsystem.

NOW
The next shutdown pass will occur as soon as possible.

ABORT
Stops the shutdown process bringing the subsystem in HALFDOWN status.

DELAY
The next shutdown pass that will occur after time instead of the shut delay
defined for the subsystem. Time must be in the hh:mm:ss format. If only a
2-digit value is specified for time, SA z/OS assumes it to be a value for
minutes. If only a 2-digit value preceded by a colon is specified for time,
SA z/OS assumes it to be a value for seconds.

NEXTPASS
The next shutdown pass that will be processed (after the subsystem shut
delay) is the pass value (2nd parameter), not the current pass plus one.

ISSUEACT

168 System Automation for z/OS: Programmer's Reference

||

|
|
|

|
|

|
|
|
|
|
|

|
|
|

SUSPEND
Determines how the shutdown is suspended, where:

flag
Is the name of a common global variable that is used to determine how the
shutdown is suspended. If the flag is set off (meaning its value is 0), the
shutdown will be stopped and the flag will be checked again on the next
pass. If the flag is set on (meaning its value is 1) the shutdown will
continue, that is, it is no longer suspended. After stopping, the value of the
common global variable is set back to 0.

pass
Is the number of the pass that the MDFYSHUT SUSPEND command is
coded on. It must be included so that MDFYSHUT can return to this pass
and recheck the flag.

Note: The SUSPEND parameter can only be used in the Shutdown definitions
of the automation policy.

Restrictions and Limitations
The MDFYSHUT command can be used on any pass of the shutdown.

The routine that contains MDFYSHUT must run on the default task, that is, leave
the task field blank.

The routine that contains MDFYSHUT cannot be rescheduled with a CMD LOW.

OUTREP

Purpose
The OUTREP command captures and saves MVS reply identifiers for applications
that issue outstanding replies. Some applications issue an outstanding reply when
they start, and that reply is used for critical operator communication or shutdown
commands. This command captures these reply IDs and their message text and
saves them in case the automation code needs them for recovery or shutdown.

Typically, OUTREP is called from the NetView automation table.

Syntax

�� OUTREP
message

��

Parameters
message

The message text for the outstanding reply. If not specified it will be picked up
from the default safe.

Restrictions and Limitations
If another command such as ISSUEACT/ISSUEREP/ISSUECMD, ACTIVMSG,
HALTMSG, TERMMSG or INGMON is called for the WTOR, you should not code
an additional call to OUTREP for the same WTOR. If the command cannot find a

MDFYSHUT

Chapter 2. SA z/OS System Operations Commands 169

|
|
|
|
|
|

|
|
|

|
|

value to reply to the WTOR with, it automatically calls OUTREP to record the
WTOR. This also happens if the command is called and finds that the automation
for the message is turned off.

Usage
You should normally call the OUTREP command from the NetView automation
table.

The OUTREP command attempts to determine the application name from the job
name that is associated with the message. It then calls CDEMATCH with:
CODE1=msgid
CODE2=jobname

to determine what is to be done with the outstanding WTOR.

If an application is found, CDEMATCH searches the Automation Control File for
CODE entries that are associated with ENTRY-TYPE pairs of application-WTORS
where application is the application name as determined from the job name.

If an application cannot be found, or there is no match from the first search,
CDEMATCH searches CODE entries that are associated with ENTRY-TYPE keys of
MVSESA-WTORS.

If a successful match occurs, CDEMATCH returns a value consisting of two words
that instruct OUTREP what to do with the WTOR:
v First word: Assigns the severity that determines the color of the WTOR in SDF

and NMC.
v Second word: Assigns the priority. WTORs with a priority of PRIMARY are

used by SA z/OS as outstanding WTORs but those with a priority of
SECONDARY are not.

The following table shows the valid values for the severity with the resulting
status in SDF and the colors of the WTORs in SDF and NMC.

Severity Status in SDF Default Color in
SDF

Color in NMC

NORMAL NWTOR Green Green

UNUSUAL UWTOR Yellow White

IMPORTANT IWTOR Pink Pink

CRITICAL CWTOR Red Red

IGNORE – – –

Any definite abbreviation can be used to specify the severity.

By default an incoming WTOR is considered to be of priority PRIMARY with a
severity of UNUSUAL. This also means that any code definitions where you have
entered incorrect data in the Value Returned field default to UNUSUAL PRI.

The codes that CDEMATCH is to search on are entered against a message ID of
WTORS in the Code Processing panels of the customization dialogs. Figure 12 on
page 171 shows an example of code definitions to the message ID WTORS that are
specified at the entry of the NetView application with job name NETVAPPL.

OUTREP

170 System Automation for z/OS: Programmer's Reference

Figure 13 shows an example of code entries for the MVSESA resource.

These code entries result in the following behavior:
v If the job NETVAPPL issues one of the messages DSI802A or DSI803A, it is

assigned a severity of NORMAL and is displayed in the related color in SDF
and NMC. SA z/OS can use this outstanding reply, for example, to shut down
job NETVAPPL.

v If any Clist running in NetView with job name NETVAPPL issues a WTOR with
message ID TEST001, it is also assigned a severity of NORMAL and is displayed
in the relating color in SDF and NMC, but it cannot be used to shut down this
NetView.

v If one of the messages defined in the code entries to the MVSESA resource in
Figure 13 is issued by any application or MVS component, and no replies are
defined in SA z/OS to be issued in response to them, these messages are stored
as secondary WTORs and are displayed in SDF and NMC with the specified
severity.

Task Global Variables
None.

Examples
The following is an example of calling the OUTREP command directly from the
NetView automation table:
IF MSGID=’DSI802A’ & DOMAINID = %AOFDOM%
THEN
EXEC(CMD('OUTREP’) ROUTE(ONE %AOFOPSYSOPER%));

In this example, OUTREP is called for the NetView outstanding reply message,
DSI802A. %AOFDOM% is a synonym defined to be the current domain.
%AOFOPSYSOPER% is a cascade for processing WTORs. Both are defined in
AOFMSGSY.

TERMMSG

Purpose
You can use the TERMMSG command to respond to the termination message of an
application by changing the SA z/OS status of the application. TERMMSG calls
the ISSUEACT command to also issue commands and replies that are defined in

Code 1 Code 2 Code 3 Value Returned
DSI802A * NORMAL PRI
DSI803A * NORMAL PRI
TEST001 * NORMAL SEC

Figure 12. Code Processing Panel for an Application Resource

Code 1 Code 2 Code 3 Value Returned
IEA793A * IMPORTANT SEC
IEC507D * NORMAL SEC
IEF235D * NORMAL SEC
IEF238D * IMPORTANT SEC
IEF455D * NORMAL SEC
IEF458D * NORMAL SEC

Figure 13. Code Processing Panel for the MVSESA Resource

OUTREP

Chapter 2. SA z/OS System Operations Commands 171

the automation policy for the ID of the termination message and for the new
status. Typically, TERMMSG is called from the NetView automation table.

The status that the application is placed in by TERMMSG depends on a number of
conditions, including the values of the FINAL, ABEND, and BREAK parameters.
The values of the FINAL, ABEND and BREAK parameters may in turn depend on
the values of the CODE parameters. The following table shows the statuses that
TERMMSG may place an application in.

Table 8. TERMMSG Status Transitions

Status Description Final Abend Break

STOPPING Application terminated externally N N N

ENDING For transient applications N N N

ABENDING Application abend N Y N

BREAKING Non-recoverable abend N N Y

STOPPED Application shutdown externally Y N N

ENDED Transient application shutdown Y N N

BROKEN Non-recoverable abend Y N Y

RESTART Restart after abend Y Y N

AUTOTERM No change during shutdown N N N

AUTODOWN or
RESTART

System is being shut down. The status
will depend on the shutdown
parameters.

Y ? ?

ZOMBIE Occurs if there are problems with the
address space cleanup.

Y ? ?

For information about how the CODE parameters can affect the values of FINAL,
ABEND, and BREAK see the description of “The CODE Parameter” on page 174.

Syntax

�� TERMMSG
JOBNAME=jobname MSGTYPE=type EHKVAR=YES

EHKVAR=NO

�

�
FINAL=NO

FINAL=YES

ABEND=NO

ABEND=YES

BREAK=NO

BREAK=YES REPLY=NO
REPLY=YES

PASSES=NO
PASSES=YES

�

�
CODE1=code1 CODE2=code2 CODE3=code3 PID=number

�

�
ASID=asid

��

TERMMSG

172 System Automation for z/OS: Programmer's Reference

Parameters
JOBNAME

The name of the job that the message is for. If not specified, the job name is
taken from the message's job name field. You must supply a value for the job
name if you are calling TERMMSG from a CLIST.

MSGTYPE
This parameter is used to search for command and reply entries to
subsystem/msgtype-pairs in the automation control file, where subsystem is the
subsystem name derived from the job name.

When a match occurs, the commands associated with the entries are issued.

If the MSGTYPE parameter is not specified, the message identifier of the
message that TERMMSG is called for is taken as the default.

EHKVAR
This parameter determines whether the tokens of the parsed message text are
to be stored in task global variables EHKVAR0 through EHKVAR9 and
EHKVART.

YES
The tokens of the triggering message are to be assigned to the task global
variables EHKVARn.

NO No values are to be assigned to the task global variables EHKVARn.

FINAL
Indicates whether this is the final termination message. If no FINAL value is
coded, TERMMSG defaults to FINAL=NO.

YES
The message is the final termination message for the application. The
application will be placed into the appropriate status, depending on the
values of the ABEND and BREAK parameters. See Table 8 on page 172 for
details. If it is monitorable, the application is not placed into a down status
until an application monitor check confirms that it has left the machine. If
it is not monitorable, the application is placed into a down status after its
termination delay time.

NO This is not the final termination message.

ABEND
Indicates whether the application is suffering a recoverable abend. If no
ABEND value is coded, TERMMSG defaults to ABEND=NO.

YES
The application is suffering a recoverable abend. The application will be
placed into the appropriate status, depending on the value of the FINAL
parameter. See Table 8 on page 172 for details.

When the final termination message for an abending application
(FINAL=YES) is received, the error threshold is checked and the
application is restarted if it has not exceeded its critical error threshold.

NO The application is not suffering a recoverable abend.

BREAK
Indicates whether the application is suffering a non-recoverable abend. The
application will be placed into the appropriate status, depending on the value
of the FINAL parameter. If no BREAK value is coded, TERMMSG defaults to
BREAK=NO.

TERMMSG

Chapter 2. SA z/OS System Operations Commands 173

YES
The application is suffering a non-recoverable abend and should be placed
into BREAKING status. When its final termination message is received
(FINAL=YES) it is placed into BROKEN status. SA z/OS will not restart it
from this status without human intervention through the SETSTATE
command dialog.

NO The application is not suffering a non-recoverable abend.

REPLY
This parameter determines whether a defined reply is issued for a message
that TERMMSG has been called for.

YES
A defined reply in the automation policy for the message that is being
handled by TERMMSG is issued. REPLY=YES is assumed as the default if
the message is a WTOR, otherwise the default is REPLY=NO.

NO A defined reply for a WTOR that is being handled by TERMMSG is not
issued.

PASSES
Specifies whether passes are used to issue commands or replies (or both) that
have been defined in the automation policy.

YES
PASSES=YES is passed to the ISSUEACT command.

NO PASSES=NO is passed to the ISSUEACT command.

CODE1=code1
CODE2=code2
CODE3=code3

When specified, the codes that are passed are used to search for code
definitions for the termination message in the automation policy
MESSAGES/USER DATA. First the automation policy is searched for code
definitions against the message ID of the subsystem that issued the termination
message. If these cannot be found, the automation policy is searched for code
definitions against the message ID MVSESA.

The meaning of the codes depends on the NetView automation table entry that
invoked TERMMSG.

The value returned for the matching code definition can consist of two tokens.
The first token is used as the action to modify the FINAL, ABEND and BREAK
parameters of TERMMSG in the following way:

Action Final Abend Break

STOPPING – – –

STOPPED Yes – –

ABENDING – Yes –

ABENDED Yes Yes –

BREAKING – – Yes

BROKEN Yes – Yes

IGNORE – – –

TERMMSG

174 System Automation for z/OS: Programmer's Reference

If IGNORE is returned as the first token, the processing of TERMMSG stops. In
this case the second token of the returned value is not considered. The status
of the application is not updated and no command or reply is issued by
TERMMSG.

If specified, the second token of the returned value is used as the start type for
the subsystem's next startup. The next start type is set with the INGSET
command.

TERMMSG does not apply the code values for selecting defined commands or
replies to be issued.

Note: An action of IGNORE can be used for messages not resulting in the
termination of the application. TERMMSG will not perform any status
change and will simply stop processing.

PID
The process ID of the resource. Together with the ASID, it uniquely identifies
the resource.

ASID
The ASID that is associated with the resource. Together with the PID, it
uniquely identifies the resource.

Restrictions and Limitations
v If TERMMSG is driven by a delete operator message, no action is taken in

response to this message.
v If a normal termination message (ABEND=NO,BREAK=NO) is received for an

application that is not being shut down by SA z/OS (and is already in the
AUTOTERM status), it is placed into the STOPPING status. When its final
termination message has been processed, its Restart option is checked. If this is
ALWAYS it is placed into the RESTART status. If the Restart option is not
ALWAYS it is placed into the STOPPED status.
This behavior can be changed using the AOFRESTARTALWAYS advanced
automation option.

v Once an application has entered a serious error condition (a status of
AUTOTERM, STOPPING, ABENDING, or BREAKING), termination messages
indicating less important error conditions are ignored.

v Commands for a status are only issued the first time the status is entered.
v If the TERMMSG command is called on a task other than the AOFWRKxx auto

operator that is responsible for the subsystem, TERMMSG will schedule itself to
that AOFWRKxx auto operator. That is, when the calling procedure regains
control, the status of the subsystem may not yet have changed.

v Only termination messages for applications with known address space IDs are
processed by TERMMSG.
The address space ID is not checked if TERMMSG is called from an automation
procedure (CLIST), or if TERMMSG has been triggered by message BPXF024I.
The address space ID is also ignored if the job name parameter that was
specified differs from the job name associated with the triggering message.

Usage
The definition of termination messages ensures early detection of any problems
with subsystems. A number of termination messages is already known to
SA z/OS. You can define an additional termination message using the
MESSAGES/USER DATA policy item of the application to set the AT status of

TERMMSG

Chapter 2. SA z/OS System Operations Commands 175

the message as terminating or terminated. During the automation policy build an
appropriate NetView automation table statement is created that calls TERMMSG.
See the MESSAGES/USER DATA policy item in IBM Tivoli System Automation for
z/OS Defining Automation Policy for more details about defining termination
messages.

Message IEF404I is used by SA z/OS as the final termination message for all
applications. The following example shows how TERMMSG is called by IEF404I in
the automation table:
IF MSGID=’IEF404I’ & TOKEN(2) = SVJOB & DOMAINID=%AOFDOM%

& ATF(’ING$QRY APPL,,JOB=’VALUE(SVJOB)) ^= ’’
THEN
EXEC(CMD(’TERMMSG FINAL=YES,JOBNAME=’ SVJOB) ROUTE(ONE %AOFOPGSSOPER%));

The ING$QRY NetView automation table function is used to screen the message
before invoking TERMMSG. See Chapter 4, “ING$QRY NetView Automation Table
Function,” on page 187 for more information.

Using code definitions to a message avoids having to code multiple automation
table statements or to issue multiple commands to call TERMMSG.

The following example shows how TERMMSG is called by generic message
IEF450I:
IF MSGID=’IEF450I’ & TOKEN(2) = SVJOB & DOMAINID=%AOFDOM%

& ATF(’ING$QRY APPL,,JOB=’VALUE(SVJOB)) ^= ’’
& TEXT = . ’ABEND=’ SCODE UCODE .

THEN
EXEC(CMD(’TERMMSG JOBNAME=’SVJOB ’,CODE1=’ SVJOB ’,CODE2=’

SCODE ’,CODE3=’ UCODE) ROUTE(ONE %AOFOPGSSOPER%));

If you are calling TERMMSG from an automation procedure, and this calling
procedure is not running on the AOFWRKxx automation operator that is
responsible for the affected subsystem, the TERMMSG command will be routed to
that operator. The TERMMSG command will run asynchronously to the calling
procedure. This means that when the calling procedure regains control, the status
of the affected subsystem may not yet have changed.

All commands and replies that are triggered through TERMMSG have access to the
SAFE, called AOFMSAFE, that stores the message that caused the TERMMSG call.

Task Global Variables
EHKVAR0 through EHKVAR9 and EHKVART

When defining the commands in the automation control file to be issued by
TERMMSG command , the variables &EHKVAR0 through &EHKVAR9 and
&EHKVART can be used to be substituted by the tokens of the parsed message
that has driven TERMMSG. &EHKVAR0 will be substituted by the message ID,
&EHKVAR1 will be substituted by the first token of the message text after the
message ID, &EHKVAR2 with the second token and so on. &EHKVART will be
substituted by the trailing message text after the 9th token.

Examples
TERMMSG is called with CODE1=ABENDED and CODE2=S222 by the
termination message of an application that has the following codes defined for it:
Code 1 Code 2 Code 3 Value Returned
ERROR* $PJF STOPPING
ABEND* S222 ABENDING HOT

TERMMSG

176 System Automation for z/OS: Programmer's Reference

A match occurs with the second code definition, and the application is placed in
the status ABENDING and the start type for the next application startup is set to
HOT.

on

TERMMSG

Chapter 2. SA z/OS System Operations Commands 177

TERMMSG

178 System Automation for z/OS: Programmer's Reference

Chapter 3. Monitoring Routines

SA z/OS offers several routines that can be used to monitor various aspects of
your enterprise.

AOFADMON

Purpose
The AOFADMON routine is used to determine the status of a job within the
operating system using the MVS D A method.

It is strongly recommended that you use INGPJMON rather than AOFADMON.

Syntax

�� AOFADMON jobname ��

Parameters
jobname

The job name that the operating system knows the associated application by.

Return Codes
0 The job is active.
4 The job is starting.
8 The job is inactive.
12 Parameter error.

AOFAPMON

Purpose
The AOFAPMON routine is used to determine the status of a PPI receiver. It calls
DISPPI and checks if a specific PPI receiver is active.

Syntax

�� AOFAPMON ppiname ��

Parameters
ppiname

The name of the PPI receiver this routine searches for. When the PPI receiver is
active, the system issues return code 0. Otherwise return code 8 is issued.

Restrictions and Limitations
None.

© Copyright IBM Corp. 1996, 2012 179

Return Codes
0 The resource is active.
8 The resource is inactive.

AOFATMON

Purpose
The AOFATMON routine is used to determine the status of a task operating within
the NetView environment. When the application is defined using the SA z/OS
customization dialogs, the application job name must be defined to be the NetView
task name.

Syntax

�� AOFATMON taskname ��

Parameters
taskname

The name of the NetView task whose status is to be obtained. This name is the
same as the application job name.

Return Codes
0 The task is active.
4 The task is starting.
8 The task is inactive.
12 Parameter error.

AOFCPSM

Purpose
The AOFCPSM routine is used to determine the status of processor operations.

Syntax

�� AOFCPSM jobname ��

Parameters
jobname

The job name that SA z/OS knows the processor operations application by.

Return Codes
0 The task is active.
8 The task is inactive.
12 Error.

AOFAPMON

180 System Automation for z/OS: Programmer's Reference

AOFNCMON

Purpose
The AOFNCMON routine is used to determine the status of the NETCONV
connection running between the NMC server and z/OS NetView. The connection
type can either be a TCPIP or SNA connection. It runs on the related work
operator taking care of it.

Syntax

�� AOFNCMON jobname ��

Parameters
jobname

The job name that automation knows the associated application as. This can be
obtained from the SUBSJOB task global variable that is returned by AOCQRY.

Return Codes
0 The connection is active.
8 The corresponding work operator does not hold a connection. The connection

is inactive.
12 The connection status cannot be determined.

AOFUXMON

Purpose
The AOFUXMON routine is used to determine the status of a resource with
application type USS. This resource can either be a z/OS UNIX process, a file in
the z/OS UNIX file system (HFS), or a TCP port. Depending on the kind of
resource (process, file, or port) AOFUXMON decides which internal monitoring
method to use.

Syntax

�� AOFUXMON jobname ��

Parameters
jobname

The job name that SA z/OS knows the associated USS process, file, or port by.

Restrictions and Limitations
AOFUXMON should only be used as a programming facility because its only
output is a return code.

AOFUXMON uses active rather than passive monitoring for ports. Active
monitoring will cause a connection to be established to an active port. If this is not
desirable then a customer supplied monitoring routine should be used instead of
AOFUXMON for port monitoring.

AOFNCMON

Chapter 3. Monitoring Routines 181

Return Codes
0 The resource is active.
4 The resource is starting.
8 The resource is inactive or OMVS is inactive.
12 One of the following parameter errors occurred:

The jobname parameter was not specified.

The jobname parameter does not represent a USS type resource.

The jobname parameter does not represent a USS PATH, PORT or FILE.
20 A return code other than 0, 4 or 8 was returned from the USS INGCCMD

routine. Check for related messages or turn on debug for AOFUXMON (this
also turns on debug for INGCCMD).

INGPJMON

Purpose
The INGPJMON routine is used to determine the status of a job as known by the
operating system. This is not the SA z/OS status of the job, which should be
determined using AOCQRY.

INGPJMON does the following:
v It optionally returns the jobname and address space ID that match passed

criteria
v It allows you to search for all address spaces that match the specified jobname
v It supports optional address-space search criteria

This monitoring routine is the foundation for supporting duplicate job names
because standard address space monitoring takes the address space ID associated
with the job into account. This allows you to distinguish between multiple
occurrences of the same job in the system.

Syntax

�� INGPJMON jobname
,asid ,stem ,options

��

Note: All parameters are positional and must be replaced by a comma if omitted
and followed by another operand.

Parameters
jobname

This is the name of the job to be searched for. An asterisk (*) must be specified
as a placeholder if no job name is given.

asid
This is the address space ID (in hex) associated with the job. If omitted, the
INGPJMON routine returns the first address space that matches the job name.

stem
This is the name of a NetView task global stem variable that will contain the
job name and ASID of the address space that has been found.

AOFUXMON

182 System Automation for z/OS: Programmer's Reference

|
||

|

|

|

The parameter is optional. If a task global name is specified, the following data
are returned separated by a comma:
1. Job name.
2. Address space ID. If more than one ASID are returned, they are separated

by a blank.

options
These are additional options, as follows:

*ALL
Causes the monitoring routine to return all ASIDs that match the specified
job name.

*TRACE
Causes the monitoring routine to trace its processing by means of the
component trace.

The following example shows how to retrieve data via a NetView task global stem:
’INGPJMON WEBSERVER,,STEM01,*ALL’
’GLOBALV GETT STEM01.0 STEM01.1’
exit 0

After executing the sample REXX the following data will be returned:
stem01.0 = 1
stem01.1 = WEBSERVER,0028 0033 0045,

In this example WEBSERVER is running in three address spaces.

A maximum of 48 ASIDs can be returned in each stem variable due to the NetView
restriction of 256 bytes per variable. If more than 48 ASIDs are returned then
additional ASIDs will be returned in additional stem variables. The last ASID is
terminated by a comma.

Return Codes
0 The job is active.
4 The job is starting.
8 The job is inactive.
12 Parameter error.

INGPSMON

Purpose
The INGPSMON routine is used to determine the status of an MVS subsystem.
Unlike INGPJMON it does not search MVS address space control blocks but
monitors the status of the specified job name via the IEFSSI service.

Syntax

�� INGPSMON jobname
,varname ,options

��

INGPJMON

Chapter 3. Monitoring Routines 183

Parameters
jobname

This is the job name that is assigned to the subsystem. The job name must be
identical to the MVS subsystem name. Specify !PRI for the primary subsystem.

varname
This is the name of a NetView task global stem variable that contains
information about the MVS subsystem.The output that is returned in the task
global variable is as follows:

Byte Length Description

1 4 Name of MVS subsystem

5 1 Delimiter, contains blank

6 1 Contains P if primary subsystem

7 1 Contains D if dynamic

8 1 Contains S if subsystem accepts SETSSI command

9 1 Contains A if subsystem is active

options
These are additional options, as follows:

*TRACE
Causes the monitoring routine to trace its processing by means of the MVS
component trace function.

Return Codes
0 The job is active.
4 The job is starting.
8 The job is inactive.
12 Parameter error.

INGROMON

Purpose
The INGROMON routine is used to determine the status of the OMVS address
space.

Syntax

�� INGROMON ��

Return Codes
0 OMVS is fully initialized.
4 OMVS is starting. INGROMON will always ensure that the AT is loaded prior

to returning this code.
8 OMVS is inactive.

INGPSMON

184 System Automation for z/OS: Programmer's Reference

|
|

|

|
|

|

|||||||
|

|
||
||
|
||

INGVMON

Purpose
The INGVMON routine is used to determine the status of a virtual operator station
task (VOST). It should be used as monitoring routine in a VOST management APL.

Syntax

�� INGVMON jobname ��

Parameters
jobname

Specifies the job name that SA z/OS knows the associated VOST
management APL as. This can be obtained from the SUBSJOB task global
variable returned by AOCQRY.

Restrictions and Limitations
INGVMON should only be used as a programming facility because its only output
is a return code.

Return Codes
0 The VOST is ACTIVE.
8 The VOST is INACTIVE.
12 Monitoring failed.
16 One of the following parameter errors occurred:

v The jobname parameter was not specified.
v The jobname parameter is not a valid job name.

ISQMTSYS

Purpose
The ISQMTSYS routine monitors processor operations target system resources. It is
used to verify the availability of a target system according to a timer defined by
the user.

Syntax

�� ISQMTSYS jobname ��

Parameters
jobname

The job name that SA z/OS knows the processor operations target system by.

Return Codes
0 The target system is active.
4 The target system is starting.
8 The target system is inactive.
12 The resource could not be found.

INGVMON

Chapter 3. Monitoring Routines 185

ISQMTSYS

186 System Automation for z/OS: Programmer's Reference

Chapter 4. ING$QRY NetView Automation Table Function

ING$QRY

Purpose
SA z/OS provides a NetView Automation Table Function (ATF), called ING$QRY.
This allows you to query or compare the status and other important attributes of
jobs that are controlled by SA z/OS from within the AT and use the result as a
condition in the AT statement. INGQUERY is an alias of ING$QRY.

Refer to “the attribute parameter description” for the attributes that can be queried
and used in an AT entry. The routine returns the attribute or comparison result as
the function value of the NetView ATF function so that it can be used within the
AT statement.

Format

�� ATF ('ING$QRY attribute

�, comp_item

,JOB=jobname
,APPL=subsys

')=value ��

Parameters
The program name and the parameters must be specified with a literal quoted
string. However, variable values can be passed as ATF parameters using the
VALUE (varname) syntax.

attribute
This identifies the particular attribute of the job. It can be one of the following:

APPL
The subsystem name of the resource. This assumes that the specified
resource name is a job name. It can be used to check if the job is controlled
by SA z/OS.

ASID
The address space ID of the resource.

CATEGORY
The category of the resource (for example, CICS, IMS, DB2, and so on).

CMDPFX
The command prefix of the resource.

FILE
The file information of the resource.

FILTER
Returns information about the command parameters that are specified to
make the process unique.

IPSTACK
Returns the IP stack name of the resource.

© Copyright IBM Corp. 1996, 2012 187

|
|

JOB
The name of the job. It can be used to check whether the resource
(subsystem) is managed by SA z/OS.

JOBTYPE
The job type of the resource (MVS, NONMVS or TRANSIENT).

OPER
The work operator that is associated with the resource.

OWNER
The owner information of the resource.

PARENT
The parent information for the resource. Parent information is derived
from the HasParent relationship that has a sequence number assigned to it.

PATH
Information about the UNIX process that the resource represents.

PID
The USS Process ID (PID) that is associated with the resource.

PLEX
Returns the name of the plex that is associated with the resource.
Currently, this attribute is only used for the IMSplex name as specified in
the IMS CONTROL Policy Item.

PORT
The TCPIP port that is associated with the resource.

PROCESS
Contains START or STOP if the resource is within the startup or shutdown
phase, respectively.

STAT
The agent status of the resource.

SUBCAT
The subsystem subcategory (for example, IRLM, TRACKER, TOR, AOR,
and so forth).

SUBID
The MVS subsystem identifier of the resource.

SYMBOLn
Returns the requested application symbol, where n is 1–9.

USER
The USS user ID that is associated with the resource.

WLMNAME
The WLM resource name that is associated with the resource.

WTOR
This attribute returns all outstanding reply IDs.

comp_item
Defines the string that the attribute value should be compared against. More
than one compare item can be specified, separated by a blank character. The
compare item can be a wildcard, for example, abc*

If the attribute value matches one of the items in the compare string, the ATF
value is set to string 'TRUE', otherwise it is set to string 'FALSE'.

188 System Automation for z/OS: Programmer's Reference

|
|
|
|

If no compare item is specified, the ING$QRY ATF function returns the
attribute value.

jobname
The name of the job that the attribute value should be returned for or
compared against. The default is the job that issued the message.

subsys
The name of the subsystem that the attribute value should be returned for or
compared against.

Return codes
The ING$QRY routine sets the following return code when returning to NetView:
0 Normal completion.
1 The specified variable name is unknown.
2 An error occurred and no output was provided. This may be due to:

v Invalid parameters were passed to the routine.
v Returning the common global variable failed.
v The job does not belong to a subsystem that is controlled by SA z/OS.

Restrictions
None.

Usage
This routine is used as a NetView Automation Table Function (ATF) within an AT
condition statement to query and compare attributes of SA z/OS-controlled
subsystems.

Examples
1. The following example checks whether the status of the resource that issued

message WAS001I is UP and if so triggers exit AOFRIMSG:
IF MSGID = ’WAS001I’ & ATF(’ING$QRY STAT’) = ’UP’ THEN

EXEC(CMD(’AOFRIMSG’) ROUTE(ONE *));

2. The following example returns the status of the resource that issued message
WAS002I in variable MYVAR:
IF MSGID = ’WAS002I’ & ATF(’ING$QRY STAT’) = MYVAR THEN

EXEC(CMD(’AOFRIMSG ’MYVAR) ROUTE(ONE *));

3. The following example checks whether the status of the resource that issued
message WAS003I is either DOWN or UP. If so, it triggers exec AOFRIMSG:
IF MSGID = ’WAS003I’ & ATF(’ING$QRY STAT,DOWN UP’) = ’TRUE’ THEN

EXEC(CMD(’AOFRIMSG’) ROUTE(ONE *));

4. The following example checks whether the status of job AMY0 is UP when
message WAS004I is issued and if so, issues command INGLIST:
IF MSGID = ’WAS004I’ & ATF(’ING$QRY STAT,UP,JOB=AMY0’) = ’TRUE’ THEN

EXEC(CMD(’INGLIST AM* OUTMODE=NETLOG’) ROUTE(ONE *));

5. The following example uses a wildcard in the compare items list. In this case it
would return a list of AUTO... matches:
IF MSGID = ’WAS005I’ & ATF(’ING$QRY STAT,AU* DOWN’) = ’TRUE’ THEN

EXEC(CMD(’RES’) ROUTE(ONE *));

6. The following example checks whether the subsystem is controlled by
SA z/OS, assuming that the 2nd token of the message contains the job name:
IF MSGID = ’WAS006I’ & TOKEN(2) = SVJOB & ATF(’ING$QRY JOB’) = VALUE(SVJOB) THEN
EXEC(CMD(’AOFRIMSG’) ROUTE(ONE *));

Chapter 4. ING$QRY NetView Automation Table Function 189

190 System Automation for z/OS: Programmer's Reference

Part 3. SA z/OS I/O Operations Commands

Chapter 5. I/O Operations Commands (API) . . 193
Using I/O Operations Commands for
Programming 193

Calling the I/O Operations API 193
Safe Switching 195
FICON Switches 195
FICON Cascaded Switches 195
Common Elements 196

Common Syntax Elements 196
Common Parameters 197
Common Query Commands Syntax 201
Common Query Entity/Interface Output
Header 203
Common Query Relation Output Format . . . 204

DELETE FILE 209
QUERY ENTITY CHP 210
QUERY ENTITY CNTLUNIT 215
QUERY ENTITY DEV 218
QUERY ENTITY HOST 222
QUERY ENTITY SWITCH 225
QUERY FILE 228
QUERY INTERFACE CNTLUNIT. 229
QUERY INTERFACE SWITCH 235
QUERY RELATION CHP 243
QUERY RELATION CNTLUNIT 244

QUERY RELATION DEV 244
QUERY RELATION HOST 246
QUERY RELATION SWITCH 246
QUERY SWITCH 247
REMOVE and RESTORE CHP. 250
REMOVE DEV and RESTORE DEV 254
WRITEFILE 259
WRITEPORT 261
WRITESWCH 266

Chapter 6. Invoking I/O Operations using the
API 273
API Calls by REXX EXECs 273

Rules for Calls by a REXX EXEC 273
Two Examples of REXX EXEC Calls 274
Generalized Example of a REXX EXEC Call . . 274

API Calls by the CALL Macro 275
General Information 275
The Parameter Lists 275
The Caller Should Check Register 15 Upon
Return From the Call 275
Calling Program Uses IHVAPI2 276
Calling Program Uses IHVAPI. 278

This part describes SA z/OS I/O operations (I/O-Ops) commands that are
available through the API only.

For general information about the SA z/OS commands, see IBM Tivoli System
Automation for z/OS User’s Guide.

All commands described in IBM Tivoli System Automation for z/OS Defining
Automation Policy are also available through the API.

© Copyright IBM Corp. 1996, 2012 191

192 System Automation for z/OS: Programmer's Reference

Chapter 5. I/O Operations Commands (API)

Using I/O Operations Commands for Programming
In addition to the I/O-Ops commands described in IBM Tivoli System Automation
for z/OS Operator’s Commands, the following commands are available to
programmed API calls:
v DELete File
v Query Entity Chp
v Query Entity CntlUnit
v Query Entity Dev
v Query Entity Host
v Query Entity Switch
v Query File
v Query Interface CntlUnit
v Query Interface Switch
v Query Relation Chp
v Query Relation CntlUnit
v Query Relation Dev
v Query Relation Host
v Query Relation Switch
v Query Switch
v Remove and Restore Chp
v Remove and Restore Dev
v WRITEFILE
v WRITEPORT
v WRITESWCH

Calling the I/O Operations API
I/O-Ops application program interfaces support:
v Invocations from an EXEC written in the REXX programming language.
v Invocations from a user program written in a language that adheres to the

Assembler Language CALL macro interface conventions used by MVS/ESA.
This type of caller is referred to as a program that uses the CALL macro. For
information on the CALL macro, refer to MVS/ESA Application Development
Macro Reference. These callers can invoke IHVAPI; however IHVAPI2 is
recommended.

v All variables, except arrays, data blocks, tables and tokens, must be in
uppercase.

v Programs that use the CALL macro to invoke IHVAPI2 (preferred for the
following reasons):
– IHVAPI2 lets the caller choose between managing the command response area

or letting I/O-Ops do so. IHVAPI requires the user to manage the response
area.

– IHVAPI2 can return data in a response area that exceeds 64KB; IHVAPI
cannot.

© Copyright IBM Corp. 1996, 2012 193

– IHVAPI2 accepts all the variables needed by the I/O-Ops commands,
including multisystem commands. IHVAPI accepts only 24-character variables
as input parameters except those that specify an array, data block, or table.
For those operands, it accepts a variable long enough to contain the array or
table.

v Tokens
v The MVS REXX Call invocation in addition to the Address Link invocation.
v TSO/E (optional). For further information about how to invoke I/O-Ops by a

REXX EXEC call, refer to Chapter 6, “Invoking I/O Operations using the API,”
on page 273.

General Information About the Response Area
For most commands, I/O-Ops returns data to the caller in a response area.

The Data In the Response Area: When data is returned in the response area, it is
either a single record or a concatenation of records in character or hexadecimal
format, or both, which overlays any previous data.

For most commands, I/O-Ops returns at least one message in the response area.
However, there are exceptions. For example, the multisystem commands can return
no data, one or more messages, or a data block. Also, failed commands do not
always return data in the response area.

When I/O-Ops returns a message, the first 3 characters are IHV, which identify
I/O-Ops. Although the messages resulting from most commands are concatenated,
up to four blank 80-character records can intervene between two successive
I/O-Ops messages.

The Length of the Response Area: The amount of data that can be returned by a
multisystem command can be very large, so the following approximate maximum
lengths are provided.

For DISPLAY DEVICE, DISPLAY RESULTS, and DISPLAY VARY commands,
assume that 65,528 bytes (64KB) suffice.

For REMOVE DEV, RESTORE DEV, and the QUERY commands, calculate
100 + (1 + x)*y*z, where:

x Is one of the following:
v The number of objects in a QUERY ENTITY, REMOVE DEV, or RESTORE

DEV command
v The number of interfaces in a QUERY INTERFACE command
v The number of paths in a QUERY RELATION command (in this context,

number is the number from one host's perspective)

y The number of hosts scoped in the command

z The size of the output row (the following sizes are approximations):
v 250 for a REMOVE DEV or RESTORE DEV command
v 300 for a QUERY ENTITY or QUERY INTERFACE command
v 500 for a QUERY RELATION command

For all other commands, assume that 25,600 bytes (24KB) suffice.

For invocations by a REXX EXEC, the final size should be doubled because
I/O-Ops uses the IRXEXCOM facility to access ihvrc, ihvreas, and ihvresp, and
it uses the STORE function of IRXEXCOM to set them.

Using I/O Operations Commands for Programming

194 System Automation for z/OS: Programmer's Reference

Safe Switching
I/O-Ops varies paths online or offline when, because of port manipulation, the
path from a channel to a device either becomes valid or is no longer valid.

The term safe-switching means that all vary path offline requests due to an
I/O-Ops connectivity command are backed out if one of these requests fails and
BACKOUT was specified at command invocation. All requests means those
requests on all systems that have access to the switch (or switches) that are affected
by the command.

For FICON® switches, safe-switching also includes the entire vary process for
connectivity commands that affect Inter-Switch-Link ports (E-ports). Because
I/O-Ops does not know the topology between the entry switch and the destination
switch of a path, paths that go through an ISL link will not be varied when an
E-port is the target of a connectivity command.

The following conditions result in the failure of a request:
v A vary path offline request fails when the request would disable the last path

to a device that is currently in use.
v If no VTAM connection could be established between two systems that have

access to a switch and run I/O-Ops, I/O-Ops on the local system (that is, where
the command is entered) assumes that the command fails on the remote system.
To avoid this, exclude this system from consensus processing using the
command RESET HOST vtamname PURGE.

v For other reasons refer to the section “Making Connectivity Changes” in the
appendix, “Definitions for I/O Operations Commands” in IBM Tivoli System
Automation for z/OS Operator’s Commands.

FICON Switches
FICON switches allow imbedded space characters on port names. Consequently,
I/O-Ops will not issue message IHVD106I when detecting imbedded blanks in
port names of FICON switches.

However, I/O-Ops does not support imbedded blanks on port names, either in the
ISPF dialogs or in the console command interface. The reason is that generic names
and port names must not contain imbedded blanks when used in I/O-Ops console
commands.

FICON Cascaded Switches
I/O-Ops supports cascaded switches with some restrictions:
1. For CTC connections on cascaded switches, I/O-Ops can neither display CTC

control unit data nor manage CTC devices. The reason for this is that when
I/O-Ops attempts to determine the attached NDs of such a device, it can get
stuck behind a never-ending channel program on the device.

2. The Block command is not supported on Inter-Switch-Link ports (E_Ports).
When an E_Port is affected by the command, it is rejected with return code 8
and reason code X'49'. In addition, the message IHVC913I is issued, showing
the first or only port that is affected by the command.

3. All other I/O-Ops commands affecting E_Ports (Allow, Prohibit, Unblock, and
WRITEPORT) must specify the command option IGNore when an E_Port is
involved. Otherwise the command is rejected with return code 8 and reason

Using I/O Operations Commands for Programming

Chapter 5. I/O Operations Commands (API) 195

code X'49'. In addition, the message IHVC913I is issued, showing the first or
only port that is affected by the command.
The IGNore option makes the issuer of the command aware that safe-switching
can no longer be guaranteed.

4. If an attached Node Descriptor of a device cannot be determined because the
path or channel is offline, the Display Device command does not show any
control unit data for the particular channel path id.

5. A dynamic configuration change that results in the allocation or dealloction of a
cascaded switch is currently not supported.

Note: It is recommended that all switches are defined to the Hardware
Configuration Definition (HCD) including their device numbers. This allows
I/O-Ops to also show the LSN for cascaded switches.

Common Elements
Many of the commands described in this chapter share several elements (such as
syntax, parameters, output headers, etc.) that are described in this section. To help
make the command descriptions that follow a little clearer, the descriptions of
these common parameters will not be repeated. Instead, you will be referred to the
relevant part of this section.

The common elements are:
v Various syntax elements, see “Common Syntax Elements”
v Various parameters, see “Common Parameters” on page 197
v The syntax for Query Entity/Interface/Relation commands, see “Common

Query Commands Syntax” on page 201
v Output header for all Query Entity/Interface output structures, see “Common

Query Entity/Interface Output Header” on page 203
v Output for all Query Relation commands, see “Common Query Relation Output

Format” on page 204

Common Syntax Elements
The following syntax elements are common to several commands:
v Object Format
v Single_object_identifier
v Range_object_identifier
v Scope
v Host_object_identifier

In the syntax diagrams for the commands in this chapter these syntax elements are
shown only as syntax fragments.

Using I/O Operations Commands for Programming

196 System Automation for z/OS: Programmer's Reference

Object Format

�� Value Single_object_identifier
Range Range_object_identifier
Array Array_Header Object_identifier
Table Q_R_response

��

Single_object_identifier:

*
res_number

RNUM(*)
res_number

HNUM(* . *)
I/O-Ops_hostname res_number

XNUM(* . * . *)
SYSPLEX_name System_name res_number

PTOK(physical_token)

Range_object_identifier:

*
resource_no– res_number

RNUM(*)
resource_no– res_number

HNUM(I/O-Ops_hostname. *)
resource_no– res_number

XNUM(SYSPLEX_name.System_name. *)
resource_no– res_number

PTOK(physical_token)
physical_token–

Scope:

Value Host_object_identifier
Array Array_header Host_object_identifer

Host_object_identifier:

*
I/O-Ops_hostname

HOST(*)
I/O-Ops_hostname

XSYS(* . *)
SYSPLEX_name System_name

Common Parameters
These common parameters are:
v Object Identifier (see “Object Identifiers” on page 198):

– Value
– Range
– Array
– Table

Common Elements

Chapter 5. I/O Operations Commands (API) 197

v I/O resource identifiers (see “I/O Resource Identifiers”):
– RNUM
– HNUM
– XNUM
– PTOK
– LTOK

v Host identifiers (see “Host Identifiers” on page 200):
– HOST
– XSYS
– SCOPE

Object Identifiers
Value value|*

Specify V or VALUE. Then, specify either a single element or asterisk (*) for all
elements known to the issuing I/O-Ops. (If * is specified, output array elements
are sorted by searched element.)

Note: An element can either be a CHIPID, CONTROL UNIT or a DEVICE
NUMBER.

Range lower-upper|lower-*
Specify R or RANGE. Specify the lower limit, followed by a hyphen, followed
either by the upper limit of the range or an asterisk '*' to specify the highest
number. Output array elements are sorted by number.

Array
Specify A or ARRAY. The output of array elements is returned in the input
order. Specify the input array in the following format:

Table 9. Standard SA z/OS Array Format

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) UNSIGNED 4 NUM_ROWS Number of elements

1... FMT Array format
1 SA z/OS formatted array

4 (4) UNSIGNED 1 FMT_ID Format identifier. Only 0 is valid for
SA z/OS arrays

5 (5) CHARACTER 3 * Reserved
Array elements

8 (8) CHARACTER 38 OBJ_ID(*) Object identifier

Notes:

1. Up to 32767 (decimal) CHPIDs can be entered for CHP, but for CNTLUNIT
and DEV the overall size is restricted to 32000 control unit numbers or
device numbers respectively.

2. SA z/OS continues to support the ESCON® Manager Release 2 format for
input arrays. For information about this format, see Using the Enterprise
Systems Connection Manager.

Table
Specify T or TABLE. Requires CODE=1 and the RESPONDER host application
name must match the scope host name to be operated on. The table format is
identical to the output format of a QUERY RELATION command.

I/O Resource Identifiers
An I/O resource identifier type can be one of the following:

Common Elements

198 System Automation for z/OS: Programmer's Reference

RNUM
RNUM is an identifier value that is a resource number. All I/O resource object
types have a resource number. Each object type specifies it differently, such as:
CHP

Channel path identifier
CU Control unit number
DEV

Device number
SWITCH

Switch device number

The value for RNUM must be from 1 to 4 hexadecimal characters or an
asterisk (*).

Examples:
*
40
40-*
40-4F
RNUM(*)
RNUM(100)
RNUM(100-*)
RNUM(100-10F)

HNUM
HNUM is an identifier value that is qualified by an I/O-Ops host name. It is a
specific host's resource number. HNUM must be 1 to 8 alphanumeric
characters for the host name (or be an asterisk), followed by a period (.),
followed by 1 or 2 hexadecimal characters for the resource number (or be an
asterisk).

Examples:
HNUM(*.*)
HNUM(*.40)
HNUM(H1.*)
HNUM(H1.40)
HNUM(H1.40-*)
HNUM(H1.40-4F)

XNUM
XNUM is an identifier value that is qualified by a sysplex name and a system
name. It is a specific sysplex system's resource number. XNUM must be 1 to 8
alphanumeric characters for the sysplex name (or be an asterisk), followed by a
period (.), followed by 1 to 8 alphanumeric characters for the system name (or
be an asterisk), followed by a period (.), followed by 1 or 2 hexadecimal
characters for the resource number (or be an asterisk).

Examples:
XNUM(*.*.*)
XNUM(*.S1.40)
XNUM(X1.*.40)
XNUM(X1.S1.*)
XNUM(X1.S1.40)
XNUM(X1.S1.40-*)
XNUM(X1.S1.40-4F)

PTOK
PTOK is an identifier value that is a physical token. PTOK is a 32-character
field. Refer to IBM Tivoli System Automation for z/OS Operator’s Commands for
further information about physical tokens.

Examples:

Common Elements

Chapter 5. I/O Operations Commands (API) 199

PTOK(.... 009032002IBM0200000000000100)
PTOK(.... 009032002IBM0200000000000100-....009032002IBM02000009999999900)

LTOK
LTOK is an identifier value that is a logical token. LTOK is a 32-character field.
Refer to IBM Tivoli System Automation for z/OS Operator’s Commands for further
information about logical tokens.

Examples:
LTOK(0123456789ABCDEF0123456789ABCDEF)
LTOK(0123456789ABCDEF0123456789ABCDEF-0123456789ABCDEF0123456789ABCDEF)

Host Identifiers
A host identifier type can be one of the following:

HOST
HOST is an identifier value that is the VTAM application name or TCP/IP host
name of an I/O-Ops. HOST must be 1–8 alphanumeric characters for the host
name (or be an asterisk).

Examples:
HOST(*)
HOST(H1)
HOST(H1-*)
HOST(H1-H9)

XSYS
XSYS is an identifier value that is a sysplex name, or a system name, or both.
The rules are:
v If both a sysplex name and system name are specified, only that system in

the sysplex is considered for the command
v If a specific sysplex name is specified, only the systems in that sysplex are

considered for the command
v If a specific system name is specified, only the systems with that name are

considered for the command

XSYS must be from 1 to 8 alphanumeric characters for the sysplex name (or be
an asterisk), followed by a period (.), followed by 1 to 8 alphanumeric
characters for the system name (or be an asterisk).

Examples:
XSYS(*.*)
XSYS(*.S1)
XSYS(X1.*)
XSYS(X1.S1)
XSYS(*.S1-*)
XSYS(*.S1-S9)
XSYS(X1.S1-*)
XSYS(X1.S1-S9)

SCOPE
SCOPE specifies the set of I/O-Ops hosts that respond to a multisystem
command.

NOPATHTEST
No checking is done on the command to verify that the path from the CHPID
to the device exists.

Note: For QUERY RELATION HOST, the NOPATHTEST option is only valid
on the QUERY RELATION HOST to Device command.

Common Elements

200 System Automation for z/OS: Programmer's Reference

PATHTEST
If you specify Pathtest on the command, checking is done to verify that the
device is physically there with relation to each CHPID.

Note: For QUERY RELATION HOST, the PATHTEST option is only valid on
the QUERY RELATION HOST to Device command.

Notes:

1. When ARRAY is the Object_format_type, the Object_Identifier_Types can be mixed
and every Object_Identifier_Type must match the class of the specified
Object_Type (all must be I/O_resources or all must be Hosts). For example, Q E
HOST can accept only HOST and XSYS entries in the array.

2. The Array_header contains the number of elements in the array.
3. PTOK is valid with RANGE but you should be fully aware of PTOK structure. For

example, RANGE PTOK could be used to specify all of the serial numbers of a
certain type of device. However, certain PTOK values may cause unpredictable
results with RANGE.

4. When ARRAY is the SCOPE_format_type, the Host_Object_Identifier_Types can be
mixed (HOST and XSYS).

5. Output from a QUERY ENTITY command consists of a header, which is
identical for each entity with the exception of the "Eye-Catcher" (offset 0),
followed by the substructures, which are unique to each type of entity.

6. If not otherwise stated at the particular command descriptions no input port
information is returned by a QUERY RELATION command when the command
specifies a switch that is the destination switch of a cascaded switch pair.

Common Query Commands Syntax
The following syntax is common for all Query Entity/Interface/Relation
commands.

(Host_)Entity_Object:

�Array Array_Header Single_Object
Range Range_Object
Table Q_R_Response
Value Generic_Object

Interface_Object:

�Array Array_Header resource_interface_number
Range resource_interface_number– *

resource_interface_number
Value *

resource_interface_number

(Host_)Relation_Object:

Common Elements

Chapter 5. I/O Operations Commands (API) 201

�Array Array_Header Single_Object
Range Range_Object
Value Generic_Object

Single_Object (when object type is I/O resource):

resource_number
RNUM()

HNUM(I/O-Ops_hostname .resource_number)
LTOK(logical_token)
PTOK(physical_token)
XNUM(sysplex_name.system_name.resource_number)

Single_Object (when object type is HOST):

I/O-Ops_hostname
HOST()

XSYS(sysplex_name.system_name)

Generic_Object (when object type is I/O resource):

*
RNUM(resource_number)

HNUM(* . *)
I/O-Ops_hostname resource_number

LTOK(logical_token)
PTOK(physical_token)
XNUM(* . * . *)

sysplex_name system_name resource_number

Generic_Object (when object type is HOST):

*
HOST(I/O-Ops_hostname)

XSYS(* . *)
sysplex_name system_name

Range_Object (when object type is I/O resource):

resource_number= *
RNUM(resource_number)

HNUM(I/O-Ops_hostname .resource_number= *)
resource_number

PTOK(physical_token=physical_token)
XNUM(sysplex_name.system_name.resource_number= *)

resource_number

Range_Object (when object type is HOST):

Common Elements

202 System Automation for z/OS: Programmer's Reference

I/O-Ops_hostname = *
HOST(I/O-Ops_hostname)

XSYS(sysplex_name.system_name= *)
system_name

PTOK(physical_token=physical_token)
XNUM(sysplex_name.system_name.resource_number= *)

resource_number

I/O-Ops_hostname:

I/O-Ops_vtamname
I/O-Ops_tcphostname

Scope:

�

SCOPEValue*

SCOPE Value Host_Generic_Object

Array Array_Header Host_Single_Object

Options:

NOPATHTEST
PATHTEST

Common Query Entity/Interface Output Header
Table 10 shows the common output header that is produced for all QUERY
ENTITY/INTERFACE output structures.

Table 10. Header for all Query Entity/Interface Output Formats

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE 80 HDR
0 (0) CHARACTER 4 EYE_CATCHER Identifies the control block:

QEC Query Entity Chp
QED Query Entity Device
QEH Query Entity Host
QES Query Entity Switch
QEU Query Entity Cntlunit
QIS Query Interface Switch
QIU Query Interface Cntlunit

4 (4) UNSIGNED 2 HDR_SIZE Size of this header
6 (6) UNSIGNED 2 ROW_SIZE Size of array element
8 (8) CHARACTER 8 ESCM_HOST Responding host VTAM application

name or TCP/IP host name
16 (10) CHARACTER 4 ESCM_REL SA z/OS version and release
20 (14) CHARACTER 32 HOST_PID Host physical identifier
20 (14) BITSTRING 1 *

111. VALIDITY 0 = Valid
1 = Not current
2 = Not valid

...1 1111 * Reserved

Common Elements

Chapter 5. I/O Operations Commands (API) 203

Table 10. Header for all Query Entity/Interface Output Formats (continued)

Offset

Dec Hex Type Len Name(Dim) Description
21 (15) CHARACTER 3 * Reserved
24 (18) CHARACTER 6 TYPE_NUM Processor type, for example, 002064
30 (1E) CHARACTER 3 MODEL_NUM Processor model, for example, 108
33 (21) CHARACTER 3 MFR Manufacturer, for example, IBM
36 (24) CHARACTER 2 PLANT Where manufactured
38 (26) CHARACTER 12 SEQUENCE_NUM Serial number
50 (32) BITSTRING 2 STATUS Status of PID

1... AMBIGUOUS Ambiguous state detected on PID
.1.. REFLECTED PID is derived from attached ND
..11 1111 >> * Reserved

52 (34) UNSIGNED 4 NUM_ROWS Dimension of array following this
header

56 (38) UNSIGNED 1 FORMAT_ID Identifies format of data
57 (39) BITSTRING 1 *

1... MORE_DATA 0 = All data that satisfies query is
returned here.

1 = More data satisfies query (but
won't fit now). Ask again with
RANGE parameter type.

.1.. TCP_HOST 1 = ESCM_HOST contains the
TCP/IP host name

.111 1111 * Reserved
58 (3A) CHARACTER 8 PLEX_NAME Sysplex name (blank if none)
66 (42) CHARACTER 8 SYST_NAME System name
74 (4A) CHARACTER 2 * Reserved
76 (4C) UNSIGNED 4 NUM_HOSTS Number of hosts responding

Common Query Relation Output Format
Table 11 shows the output that is common to all Query Relation commands.

Table 11. Output Format for all Query Relation Commands

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE * QRO
0 (0) CHARACTER 48 HDR Header data
0 (0) CHARACTER 4 EYE_CATCHER Identifies control block ('QRO ')
4 (4) UNSIGNED 2 HDR_SIZE Length of (this) QRO.HDR
6 (6) UNSIGNED 2 ROW_SIZE Length of 1 ROW
8 (8) CHARACTER 8 ESCM_HOST Responding host VTAM application

name or TCP/IP host name
16 (10) CHARACTER 4 ESCM_REL SA z/OS version and release
20 (14) UNSIGNED 4 NUM_ROWS ROW dimension
24 (18) UNSIGNED 1 FORMAT_ID Identifies format of table
25 (19) BITSTRING 1 *

1... MORE_DATA 0 = Entire Query response in QRO
1 = Query response too large to fit

in QRO (ask again, use
RANGE)

.1.. PATHTEST 1 = PATHTEST requested

.1.. TCP_HOST 1 = ESCM_HOST contains the
TCP/IP host name

Common Elements

204 System Automation for z/OS: Programmer's Reference

Table 11. Output Format for all Query Relation Commands (continued)

Offset

Dec Hex Type Len Name(Dim) Description
..11 1111 * Reserved

26 (1A) CHARACTER 8 PLEX_NAME Sysplex name (blank if none)
34 (22) CHARACTER 8 SYST_NAME System name
42 (2A) CHARACTER 2 * Reserved
44 (2C) UNSIGNED 4 NUM_HOSTS Number of hosts responding

Path descriptions
48 (30) CHARACTER 372 ROW(*) Indexed by HDR.NUM_ROWS
48 (30) CHARACTER 8 HOST_APPL Host VTAM application name
56 (38) UNSIGNED 1 CHPID Channel path identifier (00-FFx)
57 (39) UNSIGNED 1 PORTIN When data is flowing from the

host, the input port on the switch
(if a switch is in the path)

58 (3A) UNSIGNED 2 SW_DEVN Switch device number (if a switch
is in the path).

60 (3C) UNSIGNED 1 LSN Logical switch number (that goes
with SW_DEVN) when a switch is
in the path.

61 (3D) UNSIGNED 1 PORTOUT When data is flowing from the
host, the output port on the switch
(if a switch is in the path)

62 (3E) UNSIGNED 2 CU_NUMBER Control unit number
64 (40) UNSIGNED 2 DEV_NUMBER Device number

The following bits describe the validity of the data in the corresponding row
66 (42) BITSTRING 2 STATBITS Indicate row data validity

1... VALID_DATA 1 = This row contains a valid path
0 = This row does not contain a

valid path. Eeither the entity2
is not found in the database at
all or there is no relation
between the entity1 and
entity2 specified

.1.. INCOMPLETE 0 = Queried data is in database
(that is, not a proxy request)

1 = Queried data not known (that
is, secondary host databases
are not known)

The following bits describe switch data validity
..1. VALID_SW 1 = SW_DEVN is valid (switch

either is or was operational)
...1 VALID_LSN 1 = LSN is valid (path is

switched)
.... 1... VALID_PORTIN 1 = PORTIN value is verified
.... .1.. VALID_PORTOUT 1 = PORTOUT value is verified

The following bits indicate which path elements are detected to be involved in an
ambiguous state

.... ..1. AMBIG_PORTIN 1 = CHCH, CHCU detected on
PORTIN

.... ...1 AMBIG_PORTOUT 1 = CHCU detected on PORTOUT
The following bits indicate whether ports (paths) are involved with chained or cascaded
switches

67 (43) 1... CHAIN_PORTIN 1 = PORTIN is part of CHAIN
.1.. CHAIN_PORTOUT 1 = PORTOUT is part of CHAIN

Common Elements

Chapter 5. I/O Operations Commands (API) 205

Table 11. Output Format for all Query Relation Commands (continued)

Offset

Dec Hex Type Len Name(Dim) Description
..1. VALID_DEVNUM 1 = DEV_NUMBER contains data

and the DEV_NUMBER is
defined in the configuration

...1 PATHTEST 1 = PATHTEST data is available

.... 1... VALID_CUNUM 1 = CU_NUMBER contains data
and the CU_NUMBER is
defined in the configuration

.... .1.. CU_ISA_CF 1 = CU in this row is a coupling
facility so PTOK mapping is
for ND (when 0, PTOK
mapping is for NED)

.... ..1. VALID_CHP 1 = CHPID contains a value that
is defined in the configuration

.... ...1 CASCADED_SW 1 = If PORTOUT is valid it
represents the output port on
the destination switch

The following indicates whether the current row is to be processed when this table is used
as the input (to a Query Entity command)

68 (44) UNSIGNED 1 CODE For Query Entity command. This
space is used to tell IHV whether to
operate on the given row.
0 = Ignore this row
1 = Operate on is row
2–255 =

Reserved (row ignored if
specified)

69 (45) CHARACTER 1 * Workarea for internals
The following bits describe the data validity of the destination (cascaded) switch

70 (46) BITSTRING 1 STATBITS2 Indicate data validity
1... VALID_DEST_LSN 1 = LSN of destination switch is

valid
.1.. VALID_DEST_SW 1 = Device number of destination

switch is valid
..11 1111 * Reserved

71 (47) BITSTRING 1 *
1... TCPNAMER 1 = APPLNAMER contains the

TCP/IP host name
.111 1111 * Reserved

72 (48) CHARACTER 8 SYSPLEX Sysplex name (blank if none)
80 (50) CHARACTER 8 SYSTEM System name
88 (58) CHARACTER 24 RESPONDER Responder ID
88 (58) CHARACTER 8 APPLNAMER Responder host VTAM application

ID or TCP/IP host name
96 (60) CHARACTER 8 SYSPLEXR Responder host sysplex name

104 (68) CHARACTER 8 SYSTEMR Responder host system name
112 (70) UNSIGNED 4 RCODE Return or reason code for row

A PATH_AVAIL is returned ONLY when chp/switdevn, chp/cunum or chp/devnum are in
the row. In other words, the following commands will return PATH_AVAIL data (when the
row contains valid and complete data): Query Relation Host or Chp to Switch (where
SWDEVN is set), Query Relation Host or Chp to CntlUnit or Dev, and Query Relation Dev
or CU or Switch to Host or Chp

116 (74) BITSTRING 4 PATH_AVAIL Last known state of this path from
CHSC "Store Sch Path Info"
instruction

Common Elements

206 System Automation for z/OS: Programmer's Reference

Table 11. Output Format for all Query Relation Commands (continued)

Offset

Dec Hex Type Len Name(Dim) Description
116 (74) BITSTRING 1 CHSC_LEVEL Level (that is, scope) of

information:
’10’x = Error affects entire chp
’20’x = Error affects destination link
’30’x = Error affects logical path
’40’x = Error affects I/O on logical path

117 (75) BITSTRING 2 CHSC_CODE Status code and modifier:
117 (75) BITSTRING 1 STATCODE Status code
118 (76) BITSTRING 1 MODCODE Modifier code

’0000’x = No data available (ESCM value)
’00FF’x = Available, operational last time used

’1010’x = Chpid type does not match hardware type
’1020’x = Serial CTC feature not installed
’1030’x = ESCON chp connected to ESCON chp (defn err)
’1040’x = SCTC connected to ESCON CU
’1050’x = Non-CVC connected to converter
’1060’x = CVC channel without converter
’1070’x = CNC/multiple CU connection with no ESCD
’1080’x = No CU link address defined
’1090’x = Duplicate link address with port and CU
’10A0’x = Msg facility channel connected to another msg facility

channel
’10C0’x = Buffer sizes incompatible between msg facility channel and

msg-processor intersystem channel
’10xx’x = Path in definition error, no further info
’2010’x = Chpid not configured online
’2020’x = Chpid is in check stop state
’2030’x = Chpid is in permanent error
’20xx’x = Chpid is unavailable
’30FF’x = Wrap block is installed
’40FF’x = Chpid is in terminal state
’5010’x = Loss of signal or sync
’5020’x = Not-op sequence recognized
’5030’x = Sequence timeout
’5040’x = Illegal sequence received
’50xx’x = Link failure detected
’60FF’x = In offline reception state
’7010’x = Port reject—address invalid
’7011’x = Undefined destination error
’7012’x = Destination port malfunction
’7013’x = Port intervention required
’70xx’x = Port reject (when no other applies)
’8001’x = Link reject—transmit error
’8005’x = Link reject—dest. address invalid or error
’8007’x = Reserved field error
’8008’x = Unrecognized link control function
’8009’x = Protocol error
’800A’x = ALA error
’800B’x = Unrecognized device level
’80xx’x = Link level reject encountered

Common Elements

Chapter 5. I/O Operations Commands (API) 207

Table 11. Output Format for all Query Relation Commands (continued)

Offset

Dec Hex Type Len Name(Dim) Description
’9010’x = Connection error
’9020’x = Channel detected transmission error
’9030’x = Protocol error
’9040’x = Destination address invalid
’9050’x = Device level error
’90xx’x = Channel link level error
’A001’x = Pacing parameters error
’A002’x = Logical path resource unavailable
’A004’x = CU image does not exist
’A005’x = Logical path precluded at CU
’A0xx’x = Logical path unavailable
’B010’x =

CU device initialization in progress
’B020’x =

Link busy last encountered
’B030’x =

Port busy last encountered
’B040’x =

Chpid busy last encountered
’B0xx’x =

Path initialization in progress
’C010’x = Select-in or address exception
’C0xx’x = SCH path OK but device not operational
’FFFF’x = Unknown state or no further info available

SCPSTATE is returned ONLY when a complete path from chpid to device (or switch device)
is in the row.

120 (78) BITSTRING 1 SCPSTATE State of path from SCP
1... ONLINE 1 = Path is online to SCP
.1.. OFFLINE 1 = Path is offline to SCP
..11 1111 * Reserved

Destination switch information
121 (79) UNSIGNED 1 DEST_SWCH_LSN LSN of destination switch
122 (7A) UNSIGNED 2 DEST_SWCH_DEVNDevice number of destination

switch
A LPE_STATUS.ESCON is returned whenever there is a chpid in the row. LPE_STATUS.LPE
is ONLY returned when the row contains a valid chpid along with valid switch devnum,
cunum or device number.

124 (7C) BITSTRING 1 LPE_STATUS Logical path established indicators
1... LPE_VALID 1 = This path supports LPEs AND

LPE info is valid
.1.. LPE 0 = No path established.

1 = A logical path is established
(CHSC info). LPE_VALIDbit
validates this field.

..11 1111 * Reserved
A PTMSG is returned ONLY when PATHTEST is specified in the command. If PATHTEST is
not specified, binary zeros are returned in this field.

125 (7D) CHARACTER 71 PTMSG MVS or ESCM message due to
issuing I/O down this path. Valid
only when PATHTEST specfd.

TOKS are returned for every command where the associated (RNUM) item is set.
Additionally, CU & DEV physical tokens are refreshed for each row when PATHTEST is
specified.
Note: Logical tokens consisting of 32 bytes of binary zeros denotes that the LTOK is not
valid/available.

Common Elements

208 System Automation for z/OS: Programmer's Reference

Table 11. Output Format for all Query Relation Commands (continued)

Offset

Dec Hex Type Len Name(Dim) Description
196 (C4) CHARACTER 224 TOKS Logical/Physical tokens

Chpid tokens:
196 (C4) CHARACTER 32 CHP_PTOK Actually determined ND

Chpids do not have logical tokens
Switch tokens:
For Query Relation Switch-Switch commands, the tokens returned here are for the entity2
(chained) switch.

228 (E4) CHARACTER 32 SWIT_PTOK Switch NED if switch is OPEN, or
PID if switch is not open (or
defined?).

260 (104) CHARACTER 32 SWIT_LTOK Only valid if this switch is defined
as a device to this host–then
inherited from CU for this switch.

Control Unit tokens:
292 (124) CHARACTER 32 CU_PTOK NED (or ND if CU_ISA_CF)
324 (144) CHARACTER 32 CU_LTOK From HCD

Device tokens:
356 (164) CHARACTER 32 DEV_PTOK NED
388 (184) CHARACTER 32 DEV_LTOK From HCD
420 (1A4) CHARACTER 0 * Reserved (to round)

DELETE FILE

Purpose
Use the DELETE FILE command at the I/O-Ops API to delete a saved switch
configuration that is stored at the switch specified in the command. The switch
must be allocated to the issuing I/O-Ops.

Syntax

�� DELete File filename swchdevn ��

Parameters
filename

Specify the file name in 1 through 8 valid EBCDIC codes. Valid codes are
uppercase alphabetical characters (A-Z), digital characters (0-9), and 2 special
character: the underscore (_) and the hyphen (-). However, do not specify the
following file names: AUX, COMn (where n=1-4), CON, IPL, LPTn (where
n=1-3), NUL, or PRN.

swchdevn
Specify the switch device number in up to 4 hexadecimal digits. The switch
must be allocated, or attached, to the issuing I/O-Ops. You can issue the
DISPLAY SWITCH command to obtain a list of these switches.

Usage
You cannot delete the switch IPL file, which is supplied with each IBM Director
and is activated automatically when the unit is powered on.

Common Elements

Chapter 5. I/O Operations Commands (API) 209

QUERY ENTITY CHP

Purpose
Use the QUERY ENTITY CHP command at the API to obtain data about the
channel path (Chp) that you specify.

Query Parameters

�� Query Entity Chp Entity_Object Scope ��

Output
The format of the output from QUERY ENTITY CHP is as follows:

Table 12. QUERY ENTITY CHP Output

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE * QEC

The header for all Query Entity/Interface output structures is not listed here. Its size is 80
bytes. For details see “Common Query Entity/Interface Output Header” on page 203.

80 (50) CHARACTER 184 CHPS(*) Individual chp data
80 (50) UNSIGNED 1 CHPID Channel path ID
81 (51) BITSTRING 1 STATBITS

1... VALID_DATA 1 = This chpid is defined
on host

.111 111. * Reserved

.... ...1 TCPNAMER 1 = APPLNAMER
contains the TCP/IP
host name

82 (52) CHARACTER 32 CHP_PTOK Physical Token
82 (52) CHARACTER 32 ND_DET Determined ND: "who am

I"
114 (72) CHARACTER 32 ND_ATT Attached ND: "who are

you"
146 (92) UNSIGNED 1 TYPE

’00’x = UNDEF Unknown
’01’x = BLOCK Parallel block multiplex
’02’x = BYTE Parallel byte multiplex
’03’x = CNC_P ESCON point to point
’04’x = CNC_? ESCON switched or point to point
’05’x = CNC_S ESCON switched point to point
’06’x = CVC ESCON path to a block converter
’07’x = NTV Native interface
’08’x = CTC_P CTC point to point
’09’x = CTC_S CTC switched point to point
’0A’x = CTC_? CTC switched or point to point
’0B’x = CFS Coupling facility sender
’0C’x = CFR Coupling facility receiver
’0F’x = CBY ESCON path to a byte converter
’10’x = OSE OSA express
’11’x = OSD OSA direct express
’12’x = OSA Open systems adapter

QUERY ENTITY CHP

210 System Automation for z/OS: Programmer's Reference

Table 12. QUERY ENTITY CHP Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
’13’x = ISD Internal system device
’16’x = CBS Cluster bus sender
’17’x = CBR Cluster bus receiver
’18’x = ICS Internal coupling sender
’19’x = ICR Internal coupling receiver
’1A’x = FC FICON point to point
’1B’x = FC_S FICON switched
’1C’x = FCV FICON to ESCON bridge
’1D’x = FC_? FICON incomplete
’1E’x = DSD Direct system device
’1F’x = EIO Emulated I/O
’21’x = CBP Integrated cluster bus peer
’22’x = CFP Coupling facility peer
’23’x = ICP Internal coupling peer
’24’x = IQD Internal queued direct comm
’25’x = FCP

FCP channel
Other values are reserved

147 (93) CHARACTER 1 TRAITS Chp characteristics
1... ONLINE 1 = Chpid is operational

on this host
.1.. DCM_MANAGED 1 = Chpid is DCM

managed on this host
..11 * Reserved
.... 1111 PROTOCOL Interface protocol used:

0 = Unspecified
1 = LED
2 = Laser
3 = Laser-1 (shortwave)
4 = Laser-2 (shortwave)
5 = Laser-3 (longwave)
Other values are reserved

Entity Attribute Mask
148 (94) BITSTRING 4 EAM

1111 LOG_CLASS Logical entity classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
7 = Ambiguous (CHCU,

etc)
other values are reserved

QUERY ENTITY CHP

Chapter 5. I/O Operations Commands (API) 211

Table 12. QUERY ENTITY CHP Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
.... 1111 PHYS_CLASS Physical entity

classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
6 = ESCON mod2

converter
7 = Ambiguous (link is

static (no ND_ATT)
and IODEF is
ambiguous)

8 = CF internal path (only
set for CUs)

other values are reserved
149 (95) BITSTRING 2 STATE State of the entity

1... LOGICAL 1 = Entity is logical
.1.. P_CURR 1 = Entity is physically

current
..1. P_HIST 1 = Entity is physical

history
...1 LOG_OTHER 1 = Logical by another

interface
.... 1... P_OTHER_CURR 1 = Physical by another

interface
.... .1.. P_OTHER_HIST 1 = Physical history by

other interface
.... ..1. P_INDIRECT 1 = The EAM validity

was derived from the
attached (ND)
interfaces from the
control unit

0 = The EAM validity
was obtained from
the CU itself (can
only be true for
opened switches)

.... ...1 P_AMB 1 = Physical ambiguous
configured on some
interface

150 (96) 1... LOG_AMB 1 = Logical ambiguous
configured on some
interface

.1.. CLASS_AMB 1 = Logical and physical
classes are not
compatible

..11 1111 >> * Reserved
End of Entity Attribute Mask
Attached Entity Attribute Mask

152 (98) BITSTRING 4 AEAM

QUERY ENTITY CHP

212 System Automation for z/OS: Programmer's Reference

Table 12. QUERY ENTITY CHP Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
1111 LOG_CLASS Logical entity classification:

0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
7 = Ambiguous (CHCU,

etc)
other values are reserved

.... 1111 PHYS_CLASS Physical entity
classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
6 = ESCON mod2

converter
7 = Ambiguous (link is

static (no ND_ATT)
and IODEF is
ambiguous)

8 = CF internal path (only
set for CUs)

other values are reserved
153 (99) BITSTRING 2 STATE State of the entity

1... LOGICAL 1 = Entity is logical
.1.. P_CURR 1 = Entity is physically

current
..1. P_HIST 1 = Entity is physical

history
...1 LOG_OTHER 1 = Logical by another

interface
.... 1... P_OTHER_CURR 1 = Physical by another

interface
.... .1.. P_OTHER_HIST 1 = Physical history by

other interface
.... ..1. P_INDIRECT 1 = The attached ND for

the entity being
queried is history but
we got the chpid's
validity from the
chpid's det ND
(which is always
valid) so the AEAM is
marked P_CURR for
the (attached) chpid

0 = The attached ND and
AEAM have the same
validity

.... ...1 P_AMB 1 = Physical ambiguous
configured on some
interface

QUERY ENTITY CHP

Chapter 5. I/O Operations Commands (API) 213

Table 12. QUERY ENTITY CHP Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
154 (9A) 1... LOG_AMB 1 = Logical ambiguous

configured on some
interface

.1.. CLASS_AMB 1 = Logical and physical
classes are not
compatible

..11 1111 >> * Reserved
End of extrapolated entity descriptions

156 (9C) CHARACTER 36 OTHERS
156 (9C) CHARACTER 32 ND Extrapolation ND. This

field is only valid when
AEAM.P_OTHER or
AEAM.P_OTHER_HIST are
set (on). This ND can be
expected to contain a value
when either:

v The PID and ND
validities differ (and the
validity of this thing
better be the same as the
PID if there is a PID)

v There is more than 1
physical (only) path to
an attached entity and
the path that is being
queried is not the most
valid path. This ND
should contain the
identity of the more
(most) valid (physical)
path.

156 (9C) BITSTRING 1 *
111. NDVALID Indicates validity of this

ND
...1 1111 * Reserved

157 (9D) CHARACTER 31 * Rest of ND
188 (BC) UNSIGNED 2 LOG Extrapolated logical ID

This is the lowest logically
defined config number
assigned to the entity. This
field is only valid when
AEAM.LOG_OTHER is set
(on).

190 (BE) CHARACTER 2 * Reserved
192 (C0) CHARACTER 24 RESPONDER Responding host ID
192 (C0) CHARACTER 8 APPLNAMER VTAM application name or

TCP/IP host name
200 (C8) CHARACTER 8 SYSPLEXR Sysplex name
208 (D0) CHARACTER 8 SYSTEMR System name
216 (D8) UNSIGNED 4 RCODE Row return/reason code
220 (DC) CHARACTER 5 CHPIDTYP Channel type as string
225 (E1) UNSIGNED 1 CSSID Channel subsystem ID
226 (E2) CHARACTER 38 CHPIDINFO Resource Information
226 (E2) CHARACTER 32 IODF_DESC HCD User description

QUERY ENTITY CHP

214 System Automation for z/OS: Programmer's Reference

Table 12. QUERY ENTITY CHP Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
258 (102) BITSTRING 1 *

111. CONFIG_STATE Configure state of channel
0 = Reserved
1 = Online
2 = Offline/standby
6 = Offline/reserved

...1 1111 * Reserved (round to byte)
259 (103) CHARACTER 1 * Reserved (round to even)
260 (104) BITSTRING 4 ERROR_STATE Availability information

Last known state of this
path from CHSC Store SCH
Path Information
(ERROR_STATE=0 -> no
data avail)

260 (104) BITSTRING 1 CHSC_LEVEL Level (that is, scope) of
information

’00’x = No information available (I/O-Ops')
’10’x = Error affects entire chp
’20’x = Error affects destination link
’30’x = Error affects logical path
’40’x = Error affects I/O on the logical path

261 (105) BITSTRING 2 CHSC_CODE Status code with modifier
261 (105) BITSTRING 1 STATCODE Status code
262 (106) BITSTRING 1 MODCODE Status modifier value

’0000’x = No data available (I/O operations value)
’00FF’x = Available, operational last time used
’1010’x = Chpid type does not match hardware type
’1020’x = Serial CTC feature not installed
’1030’x = ESCON chp connected to ESCON chp (definition err)
’1040’x = SCTC connected to ESCON CU
’1050’x = Non-CVC connected to converter
’1060’x = CVC channel without converter
’1070’x = CNC/multiple CU connection with no ESCD
’1080’x = No CU link address defined
’1090’x = Duplicate link address with port and CU
’10xx’x = Path in definition error, no further information

QUERY ENTITY CNTLUNIT

Purpose
Use the QUERY ENTITY CNTLUNIT command at the API to obtain data about the
specified control unit (CU).

Query Parameters

�� Query Entity CntlUnit Entity_Object Scope ��

QUERY ENTITY CHP

Chapter 5. I/O Operations Commands (API) 215

Output
The format of the output from QUERY ENTITY CNTLUNIT is as follows:

Table 13. QUERY ENTITY CNTLUNIT Output

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE * QEU

The header for all Query Entity/Interface output structures is not listed here. Its size is 80
bytes. For details see “Common Query Entity/Interface Output Header” on page 203.

80 (50) CHARACTER 200 CUS(*) Control unit descriptions
80 (50) UNSIGNED 2 CU_NUMBER Control unit number
82 (52) CHARACTER 1 STATBITS

1... VALID_DATA 1 = This control unit is
defined in the IOCDS

.1.. CU_IS_SWITCH 1 = This control unit is a
switch

..1. CU_IS_CF 1 = CU is a coupling
facility

...1 111. * Reserved

.... ...1 TCPNAMER 1 = APPLNAMER
contains the TCP/IP
host name

83 (53) UNSIGNED 1 CUADD (IOCP) logical address
Physical (neighbor "who am I") Data

84 (54) CHARACTER 32 PID CU's DERIVED physical
identity (same format as in
HDR)

116 (74) CHARACTER 32 CU_PTOK Physical Token...remaps the
NED (when the CU_IS_CF
bit is off) or is an ND
(when the CU_IS_CF bit is
on (='1'b)). See macro
IXLMG for definition of the
ND when the CU is a
coupling facility.

116 (74) CHARACTER 32 NED Node Element
Descriptor—CU's physical
ID read from the control
unit when this CU is not a
coupling facility

11.. NED_VALID Validity bits for
PTOK=NED
0 = Unused (not valid)
1 = Reserved
2 = Reserved
3 = Valid NED

116 (74) CHARACTER 32 ND Node Descriptor = CF
PTOK

111. ND_VALID Validity bits for PTOK=ND
0 = Valid, current
1 = Valid, not current
2 = Not valid

148 (94) CHARACTER 4 * Reserved
Entity Attribute Mask

152 (98) BITSTRING 4 EAM

QUERY ENTITY CNTLUNIT

216 System Automation for z/OS: Programmer's Reference

Table 13. QUERY ENTITY CNTLUNIT Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
1111 LOG_CLASS Logical entity classification:

0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
7 = Ambiguous (CHCU,

etc)
other values are reserved

.... 1111 PHYS_CLASS Physical entity
classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
6 = ESCON mod2

converter
7 = Ambiguous (link is

static (no ND_ATT)
and IODEF is
ambiguous)

8 = CF internal path (only
set for CUs)

other values are reserved
153 (99) BITSTRING 2 STATE State of the entity

1... LOGICAL 1 = Entity is logical
.1.. P_CURR 1 = Entity is physically

current
..1. P_HIST 1 = Entity is physical

history
...1 LOG_OTHER 1 = Logical by another

interface
.... 1... P_OTHER_CURR 1 = Physical by another

interface
.... .1.. P_OTHER_HIST 1 = Physical history by

other interface
.... ..1. P_INDIRECT 1 = The EAM validity

was derived from the
attached (ND)
interfaces from the
control unit

0 = The EAM validity
was obtained from
the CU itself (can
only be true for
opened switches)

.... ...1 P_AMB 1 = Physical ambiguous
configured on some
interface

154 (9A) 1... LOG_AMB 1 = Logical ambiguous
configured on some
interface

QUERY ENTITY CNTLUNIT

Chapter 5. I/O Operations Commands (API) 217

Table 13. QUERY ENTITY CNTLUNIT Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
.1.. CLASS_AMB 1 = Logical and physical

classes are not
compatible

..11 1111 >> * Reserved
End of Entity Attribute Mask

156 (9C) CHARACTER 48 IODFDATA Information from HCD
156 (9C) UNSIGNED 4 GROUP Group class (encoded field)

1 = DASD
2 = Tape
3 = Cluster controller
4 = Communications

controller
5 = MICR/OCR
6 = Graphics
7 = Unit record device
8 = Card

reader/punch
9 = Display

10 = Term printer
255 = Other

160 (A0) CHARACTER 8 UNIT Control Unit Type
168 (A8) CHARACTER 4 MODEL Control Unit Model
172 (AC) CHARACTER 32 DESCRIPTION HCD user description of

this object
204 (CC) BITSTRING 1 SCPSTATE For Coupling Facility only

1... CONNECTED 1 = MVS allows
operations

.1.. MANAGED 1 = MVS policy exists

..1. AVAILABLE 1 = Physical path exists

...1 UNAVAILABLE 1 = No physical path

.... 1111 * Reserved
205 (CD) CHARACTER 3 * Reserved
208 (D0) CHARACTER 8 CFNAME Coupling Facility name
216 (D8) CHARACTER 32 CU_LTOK Logical Token (is binary

zeros when not available)
248 (F8) CHARACTER 24 RESPONDER Responding host ID
248 (F8) CHARACTER 8 APPLNAMER VTAM application name or

TCP/IP host name
256 (100) CHARACTER 8 SYSPLEXR Sysplex name
264 (108) CHARACTER 8 SYSTEMR System name
272 (110) UNSIGNED 4 RCODE Row return/reason code
276 (114) CHARACTER 8 * Reserved

QUERY ENTITY DEV

Purpose
Use the QUERY ENTITY DEV command at the API to obtain data about the
specified device.

QUERY ENTITY CNTLUNIT

218 System Automation for z/OS: Programmer's Reference

Query Parameters

�� Query Entity Dev Entity_Object Scope ��

Output
The format of the output from QUERY ENTITY DEV is as follows:

Table 14. QUERY ENTITY DEV Output

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE * QED

The header for all Query Entity/Interface output structures is not listed here. Its size is 80
bytes. For details see “Common Query Entity/Interface Output Header” on page 203.

80 (50) CHARACTER 184 DEVS(*) Individual device data
80 (50) UNSIGNED 2 DEV_NUMBER Device number
82 (52) CHARACTER 1 STATBITS

1... VALID_DATA 1 = This device is defined
.1.. DEV_IS_SWITCH 1 = This device is a

switch
..1. DEV_IS_CF 1 = This device is a

coupling facility
...1 SELF_DESCR 1 = This device supports

self-description
.... 111. * Reserved
.... ...1 TCPNAMER 1 = APPLNAMER

contains the TCP/IP
host name

Entity Attribute Mask
83 (53) BITSTRING 4 EAM

1111 LOG_CLASS Logical entity classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
7 = Ambiguous (CHCU,

etc)
other values are reserved

.... 1111 PHYS_CLASS Physical entity
classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
6 = ESCON mod2

converter
7 = Ambiguous (link is

static (no ND_ATT)
and IODEF is
ambiguous)

8 = CF internal path (only
set for CUs)

other values are reserved

QUERY ENTITY DEV

Chapter 5. I/O Operations Commands (API) 219

Table 14. QUERY ENTITY DEV Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
84 (54) BITSTRING 2 STATE State of the entity

1... LOGICAL 1 = Entity is logical
.1.. P_CURR 1 = Entity is physically

current
..1. P_HIST 1 = Entity is physical

history
...1 LOG_OTHER 1 = Logical by another

interface
.... 1... P_OTHER_CURR 1 = Physical by another

interface
.... .1.. P_OTHER_HIST 1 = Physical history by

other interface
.... ..1. P_INDIRECT 1 = The EAM validity

was derived from the
attached (ND)
interfaces from the
control unit

0 = The EAM validity
was obtained from
the CU itself (can
only be true for
opened switches)

.... ...1 P_AMB 1 = Physical ambiguous
configured on some
interface

85 (55) 1... LOG_AMB 1 = Logical ambiguous
configured on some
interface

.1.. CLASS_AMB 1 = Logical and physical
classes are not
compatible

..11 1111 >> * Reserved
End of Entity Attribute Mask

87 (57) CHARACTER 20 * Reserved
107 (6B) CHARACTER 24 RESPONDER Responding host ID
107 (6B) CHARACTER 8 APPLNAMER VTAM application name or

TCP/IP host name
115 (73) CHARACTER 8 SYSPLEXR Sysplex name
123 (7B) CHARACTER 8 SYSTEMR System name
131 (83) CHARACTER 1 * Reserved
132 (84) UNSIGNED 4 RCODE Row return/reason code
136 (88) CHARACTER 32 DEV_PTOK Physical Token
136 (88) CHARACTER 32 NED Node Element Descriptor
168 (A8) CHARACTER 6 VOLSER Volume serial ID (DASD

only, device NED indicates
device type)

174 (AE) CHARACTER 2 * Reserved
176 (B0) BITSTRING 4 SCPSTATE Operating system state

1... BOXED 1 = Boxed
.1.. NOTREADY 1 = Not ready
..1. BUSY 1 = Busy
...1 RESERVED 1 = Reserved
.... 1... ALLOCATED 1 = Allocated
.... .1.. ONLINE 1 = Online

QUERY ENTITY DEV

220 System Automation for z/OS: Programmer's Reference

Table 14. QUERY ENTITY DEV Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
.... ..1. UNLOAD 1 = Unload pending
.... ...1 MOUNT 1 = Mount pending

177 (B1) 1... RESPENDING 1 = Reserve pending
.1.. PENDING 1 = Pending offline
..1. OFFALLOC 1 = Offline—allocated to

SCP
...1 OFFESCM 1 = Offline due to I/O

operations
.... 1... OFFCUIR 1 = Offline due to CUIR
.... .1.. OFFTAPE 1 = Offline due to tape
.... ..1. OFFHIERCH 1 = Offline due to

hierarchy reason
.... ...1 OFFOPER 1 = Offline due to

operator
178 (B2) 1... OFFLINE 1 = Offline

.1.. INUSE 1 = Device is in use
(message device only)

..1. OPERATIONAL 1 = Device is operational
(message device only)

...1 NOTOP 1 = Device is not
operational (message
device only)

.... 1... AUTOSW 1 = Device is set
autoswitch

.... .111 >> * Reserved
180 (B4) CHARACTER 48 IODFDATA HCD information
180 (B4) UNSIGNED 4 GROUP Generic type encode:

1 = DASD
2 = Tape
3 = Cluster controller
4 = Communications

controller
5 = MICR/OCR
6 = Graphics
7 = Unit record device
8 = Card

reader/punch
9 = Display

10 = Term printer
255 = Other

184 (B8) CHARACTER 8 UNIT Unit
192 (C0) CHARACTER 4 MODEL Model
196 (C4) CHARACTER 32 DESCRIPTION HCD user description data
228 (E4) CHARACTER 32 DEV_LTOK Logical Token (is binary

zeros when not available)
260 (104) CHARACTER 4 * Reserved

QUERY ENTITY DEV

Chapter 5. I/O Operations Commands (API) 221

QUERY ENTITY HOST

Purpose
Use the QUERY ENTITY HOST command at the API to obtain data about one or
more SA z/OS base programs (hosts) that are known to the issuing SA z/OS
(primary host).

Query Parameters

�� Query Entity Host Host_Entity_Object Scope ��

Output
Output from a QUERY ENTITY command consists of a header, which is identical
for each entity with the exception of the "Eye-Catcher" (offset 0), followed by the
substructures, which are unique to each type of entity.

The format of the output from QUERY ENTITY HOST is as follows:

Table 15. QUERY ENTITY HOST Output

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE * QEH

The header for all Query Entity/Interface output structures is not listed here. Its size is 80
bytes. For details see “Common Query Entity/Interface Output Header” on page 203.

80 (50) CHARACTER 208 HOSTS(*) Individual host data
80 (50) CHARACTER 8 APPL_NAME VTAM application name
82 (52) CHARACTER 1 STATBITS

1... VALID_DATA 1 = This host is known
.1.. HOST_OFF 1 = This host is reset off
..1. IN_SESSION For PRIMARY HOST only

1 = I/O
operations/VTAM
communication ok

0 = No I/O
operations/VTAM
communication

For SECONDARY HOST
only
1 = Appl-to-appl session

ok
0 = No session setup

...1 BACKING_OUT 1 = Backout in progress
0 = No backout

processing
.... 1... IN_SESSION2 For PRIMARY HOST only:

1 = I/O-Ops/TCP
communication ok

0 = No I/O-Ops/TCP
communication

.... .11. * Reserved

.... ...1 TCPNAMER 1 = APPLNAMER
contains the TCP/IP
host name

QUERY ENTITY HOST

222 System Automation for z/OS: Programmer's Reference

Table 15. QUERY ENTITY HOST Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
89 (59) CHARACTER 4 VER_REL SA z/OS version and

release on this host
93 (5D) CHARACTER 32 PID This host PID (same format

as in HDR)
Entity Attribute Mask

125 (7D) BITSTRING 4 EAM
1111 LOG_CLASS Logical entity classification:

0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
7 = Ambiguous (CHCU,

etc)
other values are reserved

.... 1111 PHYS_CLASS Physical entity
classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
6 = ESCON mod2

converter
7 = Ambiguous (link is

static (no ND_ATT)
and IODEF is
ambiguous)

8 = CF internal path (only
set for CUs)

other values are reserved
126 (7E) BITSTRING 2 STATE State of the entity

1... LOGICAL 1 = Entity is logical
.1.. P_CURR 1 = Entity is physically

current
..1. P_HIST 1 = Entity is physical

history
...1 LOG_OTHER 1 = Logical by another

interface
.... 1... P_OTHER_CURR 1 = Physical by another

interface
.... .1.. P_OTHER_HIST 1 = Physical history by

other interface
.... ..1. P_INDIRECT 1 = The EAM validity

was derived from the
attached (ND)
interfaces from the
control unit

0 = The EAM validity
was obtained from
the CU itself (can
only be true for
opened switches)

QUERY ENTITY HOST

Chapter 5. I/O Operations Commands (API) 223

Table 15. QUERY ENTITY HOST Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
.... ...1 P_AMB 1 = Physical ambiguous

configured on some
interface

127 (7F) 1... LOG_AMB 1 = Logical ambiguous
configured on some
interface

.1.. CLASS_AMB 1 = Logical and physical
classes are not
compatible

..11 1111 >> * Reserved
End of Entity Attribute Mask

129 (81) CHARACTER 8 SYSPLEX Sysplex name (blank if
none)

137 (89) CHARACTER 8 SYSTEM System name
145 (91) CHARACTER 24 RESPONDER Responding host ID
145 (91) CHARACTER 8 APPLNAMER VTAM application name or

TCP/IP host name
153 (99) CHARACTER 8 SYSPLEXR Sysplex name
161 (A1) CHARACTER 8 SYSTEMR System name
169 (A9) CHARACTER 3 * Reserved
172 (AC) UNSIGNED 4 RCODE Row return/reason code
176 (B0) CHARACTER 64 HCD_DATA HCD data
176 (B0) CHARACTER 44 IODF_DSN HCD IODF dataset name
220 (DC) UNSIGNED 4 IODFACT Hardware and software

(CSS/IODF) synch status.
Possible values:
1 = HW and SW of the

active IODF are in
sync

2 = HW and SW are out
of sync

3 = No valid HW token
exists

224 (E0) CHARACTER 16 IODFNAME World-wide unique name
of the active configuration

240 (F0) CHARACTER 16 LOCKOWNER Process lock owner
This field is only valid
when this host is the same
as the responding host. For
other hosts, this field will
be blank.

240 (F0) CHARACTER 8 SYSTEML Application name of user
holding process lock

248 (F8) CHARACTER 8 USER Userid of lock owner
256 (100) BITSTRING 1 R3_FNS Additional functions

installed beyond Release 3
1... SPE1 1 = Byte Pacer. OSA,

Downlevel MVS, no
switch dependency
are supported.

.111 1111 * Reserved
257 (101) CHARACTER 3 OSLEVEL Operating system
257 (101) CHARACTER 1 NAME M = MVS

V = VM

QUERY ENTITY HOST

224 System Automation for z/OS: Programmer's Reference

Table 15. QUERY ENTITY HOST Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
258 (102) CHARACTER 1 VERSION Decimal 0-9
259 (103) CHARACTER 1 RELEASE Decimal 0-9
260 (104) CHARACTER 8 CPUID Processor ID (results of

STIDP, will be blank when
not set)

268 (10C) UNSIGNED 2 CPUADD Processor address (results
of STADP, will be blank
when not set)

270 (10E) 1 * Reserved
271 (10F) BITSTRING 1 COMMFLAGS Communication flags

1... VTAMINSTALLED 1 = VTAM is installed on
this host

.1.. TCPINSTALLED 1 = TCP/IP is installed on
this host

..1. IPV6ONLY 1 = TCP/IP supports only
IPv6 on this host

272 (110) CHARACTER 8 TCPHOSTNAME TCP/IP host name
273 (118) CHARACTER 8 * Reserved

QUERY ENTITY SWITCH

Purpose
Use the QUERY ENTITY SWITCH command at the API to obtain data about the
specified switch.

Query Parameters

�� Query Entity Switch Entity_Object Scope ��

Output
The format of the output from QUERY ENTITY SWITCH is as follows:

Table 16. QUERY ENTITY SWITCH Output

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE * QES

The header for all Query Entity/Interface output structures is not listed here. Its size is 80
bytes. For details see “Common Query Entity/Interface Output Header” on page 203.

80 (50) CHARACTER 192 SWITCHES(*) Individual switch data
80 (50) UNSIGNED 2 SW_DEVN Switch device number
82 (52) CHARACTER 1 STATBITS

1... VALID_DATA 1 = This switch is in
database

.1.. VALID_SWDEVN 1 = Switch device number
valid

..1. * Reserved

...1 OPEN 1 = Switch is opened (by
I/O operations)

.... 1... INVALID_LSN 1 = LSN is invalid

QUERY ENTITY HOST

Chapter 5. I/O Operations Commands (API) 225

Table 16. QUERY ENTITY SWITCH Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
.... .11. * Reserved
.... ...1 TCPNAMER 1 = APPLNAMER

contains the TCP/IP
host name

83 (53) UNSIGNED 1 LSN Logical switch number
84 (54) CHARACTER 32 SW_PTOK Physical Token
84 (54) CHARACTER 32 NED Node Element Descriptor

116 (74) CHARACTER 32 PID Unique (physical) ID (same
format as in HDR)

148 (94) UNSIGNED 1 NPINST Number of installed ports
149 (95) UNSIGNED 1 NPIM Number of implemented

ports (ports ABLE to be
installed)

150 (96) UNSIGNED 1 OP_STATUS Operational status
0 = Unspecified
1 = Not open
2 = In contention
3 = H/W error
4 = System error
5 = I/O error
6 = Operational
7 = Reserved
8 = Read only (HCP set)
Other values are reserved

151 (97) UNSIGNED 1 A_CUP CUP port address
152 (98) UNSIGNED 4 STATUS_CODE Error code (if any)

Entity Attribute Mask
156 (9C) BITSTRING 4 EAM

1111 LOG_CLASS Logical entity classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
7 = Ambiguous (CHCU,

etc)
other values are reserved

.... 1111 PHYS_CLASS Physical entity
classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
6 = ESCON mod2

converter
7 = Ambiguous (link is

static (no ND_ATT)
and IODEF is
ambiguous)

8 = CF internal path (only
set for CUs)

other values are reserved

QUERY ENTITY SWITCH

226 System Automation for z/OS: Programmer's Reference

Table 16. QUERY ENTITY SWITCH Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
157 (9D) BITSTRING 2 STATE State of the entity

1... LOGICAL 1 = Entity is logical
.1.. P_CURR 1 = Entity is physically

current
..1. P_HIST 1 = Entity is physical

history
...1 LOG_OTHER 1 = Logical by another

interface
.... 1... P_OTHER_CURR 1 = Physical by another

interface
.... .1.. P_OTHER_HIST 1 = Physical history by

other interface
.... ..1. P_INDIRECT 1 = The EAM validity

was derived from the
attached (ND)
interfaces from the
control unit

0 = The EAM validity
was obtained from
the CU itself (can
only be true for
opened switches)

.... ...1 P_AMB 1 = Physical ambiguous
configured on some
interface

158 (9E) 1... LOG_AMB 1 = Logical ambiguous
configured on some
interface

.1.. CLASS_AMB 1 = Logical and physical
classes are not
compatible

..11 1111 >> * Reserved
End of Entity Attribute Mask

160 (A0) CHARACTER 32 IODFDESC HCD's user description of
this object

192 (C0) CHARACTER 7 ECLEVEL Hardware EC level
199 (C7) UNSIGNED 1 LOWPORT Lowest port address on

this switch
200 (C8) BITSTRING 4 SCPSTATE Operating system state

1... BOXED 1 = Boxed
.1.. NOTREADY 1 = Not ready
..1. BUSY 1 = Busy
...1 RESERVED 1 = Reserved
.... 1... ALLOCATED 1 = Allocated
.... .1.. ONLINE 1 = Online
.... ..1. UNLOAD 1 = Unload pending
.... ...1 MOUNT 1 = Mount pending

201 (C9) 1... RESPENDING 1 = Reserve pending
.1.. PENDING 1 = Pending offline
..1. OFFALLOC 1 = Offline—allocated to

SCP
...1 OFFESCM 1 = Offline due to I/O

operations
.... 1... OFFCUIR 1 = Offline due to CUIR

QUERY ENTITY SWITCH

Chapter 5. I/O Operations Commands (API) 227

Table 16. QUERY ENTITY SWITCH Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
.... .1.. OFFTAPE 1 = Offline due to tape
.... ..1. OFFHIERCH 1 = Offline due to

hierarchy reason
.... ...1 OFFOPER 1 = Offline due to

operator
202 (CA) 1... OFFLINE 1 = Offline

.1.. INUSE 1 = Device is in use
(message device only)

..1. OPERATIONAL 1 = Device is operational
(message device only)

...1 NOTOP 1 = Device is not
operational (message
device only)

.... 1... AUTOSW 1 = Device is set
autoswitch

.... .111 >> * Reserved
204 (CC) CHARACTER 32 SW_LTOK Logical Token (inherited

from CU for this switch—is
binary zeros when not
available)

236 (EC) CHARACTER 24 RESPONDER Responding host ID
236 (EC) CHARACTER 8 APPLNAMER VTAM application name or

TCP/IP host name
244 (F4) CHARACTER 8 SYSPLEXR Sysplex name
252 (FC) CHARACTER 8 SYSTEMR System name
260 (104) UNSIGNED 4 RCODE Row return/reason code
264 (108) CHARACTER 8 * Reserved

QUERY FILE

Purpose
Use the QUERY FILE command at the API to retrieve either a single saved switch
configuration or a list of all the configurations saved at a switch returned to the
caller in the IHVRESP or other user-designated response area. The switch must be
allocated, or attached, to the issuing I/O-Ops.

Syntax

�� Query File *
filename

swchdevn ��

Parameters
* Specify * to get a list of the saved switch configurations that are stored at the

specified switch.

filename
Specify a file name in 1 through 8 valid EBCDIC codes to obtain a single saved
configuration. Valid codes are uppercase alphabetical characters (A-Z), digital
characters (0-9), and 2 special characters: the underscore (_) and the hyphen (-).

QUERY ENTITY SWITCH

228 System Automation for z/OS: Programmer's Reference

However, the following file names are not valid: AUX, COMn (where n=1-4),
CON, LPTn (where n=1-3), NUL, or PRN.

swchdevn
Specify the switch device number in up to 4 hexadecimal digits. The switch
must be allocated, or attached, to the issuing I/O-Ops. You can use the Display
Switch command to obtain a list of these switches.

Usage
v A maximum number of saved configurations can be stored at a switch. At an

IBM Director, you can store 15 saved switch configurations. In addition, the IPL
file can be loaded from, and restored at, the IBM Director. The IPL file is
supplied with the unit and activated automatically when the Director is powered
on.

v You can query the IPL file only if the Active=Save mode is disabled, which
means when any changes being made to the active file are not being saved. (For
the status of this mode, see the QFILAS field in the format of the output
returned from Q F *)

Output
The format of the output from QUERY FILE filename is an array of 257 80-byte
records. The data is returned in IHVRESP if the caller is a REXX EXEC and in a
return area designated by the user if the caller is an assembler program.
v One 80-byte record is returned for each of the 256 ports that can be addressed.

The format for these records is the same as given in “Output” on page 248.
v One 80-byte record is returned to identify the file in the following format:

Table 17. QUERY FILE Output of a Particular Configuration

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) CHARACTER 8 * Reserved
8 (8) CHARACTER 48 QFILBODY Configuration file

description (same format as
below)

56 (38) CHARACTER 24 * Reserved

QUERY INTERFACE CNTLUNIT

Purpose
Use the QUERY INTERFACE CNTLUNIT command at the API to obtain data from
the specified control unit regarding its interfaces.

Query Parameters

�� Query Interface CntlUnit Single_Object �

� Interface_Object Scope ��

Parameters
The QUERY INTERFACE CONTROL UNIT command is designed to work only
with ESCON control units because control unit interfaces are physical items and

QUERY FILE

Chapter 5. I/O Operations Commands (API) 229

only ESCON control units support the architecture to return physical information.
No IOCDS pathing information is used to obtain control unit interface responses
unless a control specified is a coupling facility control unit. Only IOCDS pathing
information is used to obtain the control unit interfaces.

The interface you specify in the command corresponds to the TAG (last 2 bytes,
unsigned 2-byte value) field of the node descriptor (ND) associated with the
control unit interface.

If the control unit you are querying is a dynamic switch, the interface you specify
corresponds to the port number of the port that represents the interface.
v For object_identifier, specify the control unit number whose interfaces you want

to query.
v For interface_identifier, specify a single physical interface for the specified control

unit.
v Specify * if you want to receive data about all the physical interfaces for the

specified control unit. Output array elements are sorted by the DTAG field.
For Interface_identifier with Range:

v For lower-upper, specify an inclusive range of interfaces (or port numbers if the
specified control unit is a switch control unit) on the specified control unit.
Output array elements are sorted by the DTAG field.

v Specify lower-* if you want to receive data about the interfaces from the specified
interface to (and including the highest interface. Output array elements are
sorted by the DTAG field.

Output
The format of the output from the QUERY INTERFACE CONTROL UNIT
command is as follows:

Table 18. QUERY INTERFACE CNTLUNIT Output

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE * QIU

The header for all Query Entity/Interface output structures is not listed here. Its size is 80
bytes. For details see “Common Query Entity/Interface Output Header” on page 203.

80 (50) CHARACTER 312 INTERFACES(*) CU interface descriptions
80 (50) BITSTRING 1

1... VALID_DATA 1 = This element contains
valid data

.111 111. * Reserved

.... ...1 TCPNAMER 1 = APPLNAMER
contains the TCP/IP
host name

81 (51) CHARACTER 7 * Reserved
88 (58) CHARACTER 32 ND_DET Interface physical identity

120 (78) CHARACTER 32 ND_ATT Interface neighbor physical
identity

Attached Entity Attribute Mask
152 (98) BITSTRING 4 AEAM

QUERY INTERFACE CNTLUNIT

230 System Automation for z/OS: Programmer's Reference

Table 18. QUERY INTERFACE CNTLUNIT Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
1111 LOG_CLASS Logical entity classification:

0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
7 = Ambiguous (CHCU,

etc)
other values are reserved

.... 1111 PHYS_CLASS Physical entity
classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
6 = ESCON mod2

converter
7 = Ambiguous (link is

static (no ND_ATT)
and IODEF is
ambiguous)

8 = CF internal path (only
set for CUs)

other values are reserved
153 (99) BITSTRING 2 STATE State of the entity

1... LOGICAL 1 = Entity is logical
.1.. P_CURR 1 = Entity is physically

current
..1. P_HIST 1 = Entity is physical

history
...1 LOG_OTHER 1 = Logical by another

interface
.... 1... P_OTHER_CURR 1 = Physical by another

interface
.... .1.. P_OTHER_HIST 1 = Physical history by

other interface
.... ..1. P_INDIRECT 1 = The attached ND for

the entity being
queried is history but
we got the chpid's
validity from the
chpid's det ND
(which is always
valid) so the AEAM is
marked P_CURR for
the (attached) chpid

0 = The attached ND and
AEAM have the same
validity

.... ...1 P_AMB 1 = Physical ambiguous
configured on some
interface

QUERY INTERFACE CNTLUNIT

Chapter 5. I/O Operations Commands (API) 231

Table 18. QUERY INTERFACE CNTLUNIT Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
154 (9A) 1... LOG_AMB 1 = Logical ambiguous

configured on some
interface

.1.. CLASS_AMB 1 = Logical and physical
classes are not
compatible

..11 1111 >> * Reserved
End of Attached Entity Attribute Mask
Extrapolated entity descriptions

156 (9C) CHARACTER 36 OTHERS
156 (9C) CHARACTER 32 ND Extrapolation ND. This

field is only valid when
AEAM.P_OTHER or
AEAM.P_OTHER_HIST are
set (on). This ND can be
expected to contain a value
when either:
v The PID and ND

validities differ (and the
validity of this thing
better be the same as the
PID if there is a PID)

v There is more than 1
physical (only) path to
an attached entity and
the path that is being
queried is not the most
valid path—this ND
should contain the
identity of the more
(most) valid (physical)
path.

111. NDVALID Indicates validity of this
ND

...1 1111 * Not explictly referenced
157 (9D) CHARACTER 31 * Rest of ND
188 (BC) UNSIGNED 2 LOG Extrapolated logical ID

This is the lowest logically
defined config number
assigned to the entity. This
field is only valid when
AEAM.LOG_OTHER is set
(on).

190 (BE) CHARACTER 2 * Reserved
End of extrapolated entity descriptions

192 (C0) CHARACTER 24 RESPONDER Responding host ID
192 (C0) CHARACTER 8 APPLNAMER VTAM application name or

TCP/IP host name
200 (C8) CHARACTER 8 SYSPLEXR Sysplex name
208 (D0) CHARACTER 8 SYSTEMR System name
216 (D8) UNSIGNED 4 RCODE Row return/reason code

Control unit description
220 (DC) CHARACTER 168 CU
220 (DC) UNSIGNED 2 CU_NUMBER Control unit number
222 (DE) CHARACTER 1 STATBITS

QUERY INTERFACE CNTLUNIT

232 System Automation for z/OS: Programmer's Reference

Table 18. QUERY INTERFACE CNTLUNIT Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
1... * 1 = CU is defined in the

IOCDS
.1.. CU_IS_SWITCH 1 = CU is a switch control

unit
..1. CU_IS_CF 1 = CU is a coupling

facility
...1 1111 * Reserved

223 (DF) UNSIGNED 1 CUADD IOCP logical address
224 (E0) CHARACTER 32 PID CU's derived physical

identity
256 (100) CHARACTER 32 CU_PTOK Physical Token remaps the

NED (when the CU_IS_CF
bit is off) or is an ND
(when the CU_IS_CF bit is
on (=1)). See macro IXLMG
for definition of the ND
when the CU is a coupling
facility.

256 (100) CHARACTER 32 NED Node Element Descriptor
CU's physical ID read from
the control unit when this
CU is not a coupling
facility

11.. NED_VALID Validity bits for
PTOK=NED
0 = Unused (not valid)
1 = Reserved
2 = Reserved
3 = Valid NED

256 (100) CHARACTER 32 ND Node Descriptor = CF
PTOK

111. ND_VALID Validity bits for PTOK=ND
0 = Valid, current
1 = Valid, not current
2 = Not valid

288 (120) CHARACTER 4 * Reserved
End of control unit description
Entity Attribute Mask

292 (124) BITSTRING 4 EAM
1111 LOG_CLASS Logical entity classification:

0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
7 = Ambiguous (CHCU,

etc)
other values are reserved

QUERY INTERFACE CNTLUNIT

Chapter 5. I/O Operations Commands (API) 233

Table 18. QUERY INTERFACE CNTLUNIT Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
.... 1111 PHYS_CLASS Physical entity

classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
6 = ESCON mod2

converter
7 = Ambiguous (link is

static (no ND_ATT)
and IODEF is
ambiguous)

8 = CF internal path (only
set for CUs)

other values are reserved
293 (125) BITSTRING 2 STATE State of the entity

1... LOGICAL 1 = Entity is logical
.1.. P_CURR 1 = Entity is physically

current
..1. P_HIST 1 = Entity is physical

history
...1 LOG_OTHER 1 = Logical by another

interface
.... 1... P_OTHER_CURR 1 = Physical by another

interface
.... .1.. P_OTHER_HIST 1 = Physical history by

other interface
.... ..1. P_INDIRECT 1 = The EAM validity

was derived from the
attached (ND)
interfaces from the
control unit

0 = The EAM validity
was obtained from
the CU itself (can
only be true for
opened switches)

.... ...1 P_AMB 1 = Physical ambiguous
configured on some
interface

294 (126) 1... LOG_AMB 1 = Logical ambiguous
configured on some
interface

.1.. CLASS_AMB 1 = Logical and physical
classes are not
compatible

..11 1111 >> * Reserved
End of Entity Attribute Mask

296 (128) CHARACTER 48 IODFDATA Information from HCD

QUERY INTERFACE CNTLUNIT

234 System Automation for z/OS: Programmer's Reference

Table 18. QUERY INTERFACE CNTLUNIT Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
296 (128) UNSIGNED 4 GROUP Group class (encoded field)

1 = DASD
2 = Tape
3 = Cluster controller
4 = Communications

controller
5 = MICR/OCR
6 = Graphics
7 = Unit record device
8 = Card

reader/punch
9 = Display

10 = Term printer
255 = Other

300 (12C) CHARACTER 8 UNIT Control Unit Type
308 (134) CHARACTER 4 MODEL Control Unit Model
312 (138) CHARACTER 32 DESCRIPTION HCD user description of

this object
344 (158) BITSTRING 1 SCPSTATE For Coupling Facility only

1... CONNECTED 1 = MVS allows
operations

.1.. MANAGED 1 = MVS policy exists

..1. AVAILABLE 1 = Physical path exists

...1 UNAVAILABLE 1 = No physical path

.... 1111 * Reserved
345 (159) CHARACTER 3 * Reserved
348 (15C) CHARACTER 8 CFNAME Coupling Facility name
356 (164) CHARACTER 32 CU_LTOK Logical token (is binary

zeros when not available)
388 (184) CHARACTER 4 * Reserved

QUERY INTERFACE SWITCH

Purpose
Use the QUERY INTERFACE SWITCH command at the API to obtain data about
the specified switch regarding its ports.

Query Parameters

�� Query Interface Switch Single_Object Interface_Object Scope ��

Parameters
v For object_identifier, specify the switch device number that you want to receive

data about.
v For interface_identifier or *, a single addressable port on the switch or * for all the

addressable ports on the specified switch. Output array elements are sorted by
port address. Do not enclose the port address in parentheses for this
command.

For Interface_identifier with Range:

QUERY INTERFACE CNTLUNIT

Chapter 5. I/O Operations Commands (API) 235

v For lower-upper, specify an inclusive range of port addresses on the specified
switch. Output array elements are sorted by port address.

v Specify lower-*, if you want to receive data on port addresses, starting with the
specified address * to the highest implemented port address on the specified
switch.

v When the CODE value in a row is set to 1, the PORTIN and PORTOUT columns
of the table are queried.

Output
The format of the output from the QUERY INTERFACE SWITCH command is as
follows:

Table 19. QUERY INTERFACE SWITCH Output

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE * QIS

The header for all Query Entity/Interface output structures is not listed here. Its size is 80
bytes. For details see “Common Query Entity/Interface Output Header” on page 203.

80 (50) CHARACTER 360 PORTS(*) Individual port data
80 (50) UNSIGNED 1 PORT_NUMBER Port Number
81 (51) UNSIGNED 1 PORT_ADDRESS Port Address (interface

value)
82 (52) BITSTRING 1

1... VALID_DATA 1 = This PORTS element
contains valid data

.1.. MID_PORT 1 = This port is midport
in chain

..1. CHAINED 1 = This port is chained

...1 1... DCM_STATE 0x =
This port is not DCM
eligible

10 =
Port is DCM eligible
but not allowed for
DCM activities

11 = Port is eligible and
allowed for DCM
activities

.... .11. * Reserved

.... ...1 TCPNAMER 1 = APPLNAMER
contains the TCP/IP
host name

83 (53) CHARACTER 37 PIB Port Information Block
83 (53) BITSTRING 4 PDB Port descriptors

1... UNIMPLEMENTED 1 = Unimplemented port
.1.. BLOCKED 1 = Port is blocked
..1. SOME_PDCM_BIT_SET 1 = At least 1 prohibit
...1 STATIC 1 = This port has static

connection
.... 1... * Reserved

QUERY INTERFACE SWITCH

236 System Automation for z/OS: Programmer's Reference

Table 19. QUERY INTERFACE SWITCH Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
.... .111 PORT_TECH Indicates technology of

port H/W
0 = Either port not

installd or technology
is unknown

1 = This is an internal
port

3 = This port uses LED
fiber

4 = This port uses LASER
fiber technology

Other values are reserved
84 (54) 1... UNINSTALLED 1 = Port is not installed

.1.. LINK_FAIL 1 = Link failure
(hardware fence)

..1. SPARE 1 = This is a spare port

...1 OFFLINE 1 = Offline (hardware
fence)

.... 1... MAINT_MODE 1 = In diagnostic (maint)
mode

.... .1.. CUP 1 = This port is a CUP

.... ..1. SERVICE 1 = Service required

.... ...1 CFG_ERR 1 = Invalid (ND)
attachment

85 (55) 1... B_PORT 1 = This is a bridge port
.1.. PRT_NOTUSABLE 1 = Port number not

usable
..1. B_PRT_DEGRADED 1 = Bridge port degraded
...1 1... * Reserved
.... .111 B_PRT_OFFL >0 =

Bridge port held
offline

86 (56) 1... ERR_THRESHOLD 1 = Error threshold
exceed

.111 PORT_TT Transceiver technology
valid if PORT_TECH=4:
0 = Unspecified
1 = GSM
2 = GLS
3 = GLX

.... 1... * Reserved

.... .111 PORT_PT Protocol type:
0 = ESCON
1 = Reserved
2 = FICON Bridge
3 = FICON Fabric
4 = FICON E-Port
5 = FICON L-Port
6 = FICON G-Port

87 (57) UNSIGNED 1 OTHER_STATIC_PORT Port that this port is
connected to (on same
switch)

QUERY INTERFACE SWITCH

Chapter 5. I/O Operations Commands (API) 237

Table 19. QUERY INTERFACE SWITCH Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
88 (58) BITSTRING 32 PDCM Prohibit Dynamic

Connectivity Mask
0 = Communication is

allowed
1 = Communication is not

allowed
120 (78) CHARACTER 24 LNAME Port logical name
144 (90) UNSIGNED 1 IODEF Port "type"

0 = Unspecified
1 = CH (channel)
2 = CU
3 = CHCU
4 = CHCH
5 = PC
6 = PCCU
other values are reserved

145 (91) CHARACTER 3 * Reserved
148 (94) CHARACTER 32 ND_DET Determined ND—"who am

I"
180 (B4) CHARACTER 32 ND_ATT Attached ND—"who are

you"
End of switch description
Attached Entity Attribute Mask

212 (D4) BITSTRING 4 AEAM
1111 LOG_CLASS Logical entity classification:

0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
7 = Ambiguous (CHCU,

etc)
other values are reserved

.... 1111 PHYS_CLASS Physical entity
classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
6 = ESCON mod2

converter
7 = Ambiguous (link is

static (no ND_ATT)
and IODEF is
ambiguous)

8 = CF internal path (only
set for CUs)

other values are reserved
213 (D5) BITSTRING 2 STATE State of the entity

1... LOGICAL 1 = Entity is logical
.1.. P_CURR 1 = Entity is physically

current

QUERY INTERFACE SWITCH

238 System Automation for z/OS: Programmer's Reference

Table 19. QUERY INTERFACE SWITCH Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
..1. P_HIST 1 = Entity is physical

history
...1 LOG_OTHER 1 = Logical by another

interface
.... 1... P_OTHER_CURR 1 = Physical by another

interface
.... .1.. P_OTHER_HIST 1 = Physical history by

other interface
.... ..1. P_INDIRECT 1 = The attached ND for

the entity being
queried is history but
we got the chpid's
validity from the
chpid's det ND
(which is always
valid) so the AEAM is
marked P_CURR for
the (attached) chpid

0 = The attached ND and
AEAM have the same
validity

.... ...1 P_AMB 1 = Physical ambiguous
configured on some
interface

214 (D6) 1... LOG_AMB 1 = Logical ambiguous
configured on some
interface

.1.. CLASS_AMB 1 = Logical and physical
classes are not
compatible

..11 1111 >> * Reserved
End of Attached Entity Attribute Mask
Extrapolated entity descriptions

216 (D8) CHARACTER 36 OTHERS

QUERY INTERFACE SWITCH

Chapter 5. I/O Operations Commands (API) 239

Table 19. QUERY INTERFACE SWITCH Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
216 (D8) CHARACTER 32 ND Extrapolation ND. This

field is only valid when
AEAM.P_OTHER or
AEAM.P_OTHER_HIST are
set (on). This ND can be
expected to contain a value
when either:
v The PID and ND

validities differ (and the
validity of this thing
better be the same as the
PID if there is a PID)

v There is more than 1
physical (only) path to
an attached entity and
the path that is being
queried is not the most
valid path—this ND
should contain the
identity of the more
(most) valid (physical)
path.

111. NDVALID Indicates validity of this
ND

...1 1111 * Not explictly referenced
217 (D9) CHARACTER 31 * Rest of ND
248 (F8) UNSIGNED 2 LOG Extrapolated logical ID

This is the lowest logically
defined config number
assigned to the entity. This
field is only valid when
AEAM.LOG_OTHER is set
(on).

250 (FA) CHARACTER 2 * Reserved
End of extrapolated entity descriptions

252 (FC) CHARACTER 24 RESPONDER Responding host ID
252 (FC) CHARACTER 8 APPLNAMER VTAM application name or

TCP/IP host name
260 (104) CHARACTER 8 SYSPLEXR Sysplex name
268 (10C) CHARACTER 8 SYSTEMR System name
276 (114) UNSIGNED 4 RCODE Row return/reason code

Switch description
280 (118) CHARACTER 156 SWITCH Switch description (entity1)
280 (118) UNSIGNED 2 SW_DEVN Switch device number
282 (11A) CHARACTER 1 STATBITS

1... VALID_DATA 1 = This switch is in
database

.1.. VALID_SWDEVN 1 = Switch device number
valid

..1. * Reserved

...1 OPEN 1 = Switch is opened (by
I/O operations)

.... 1... INVALID_LSN 1 = LSN is invalid

.... .111 * Reserved

QUERY INTERFACE SWITCH

240 System Automation for z/OS: Programmer's Reference

Table 19. QUERY INTERFACE SWITCH Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
283 (11B) UNSIGNED 1 LSN Logical switch number
284 (11C) CHARACTER 32 SW_PTOK Physical Token
284 (11C) CHARACTER 32 NED Node Element Descriptor
316 (13C) CHARACTER 32 PID Unique (physical) ID (same

format as in HDR)
348 (15C) UNSIGNED 1 NPINST Number of installed ports
349 (15D) UNSIGNED 1 NPIM Number of implemented

ports (ports ABLE to be
installed)

350 (15E) UNSIGNED 1 OP_STATUS Operational status
0 = Unspecified
1 = Not open
2 = In contention
3 = H/W error
4 = System error
5 = I/O error
6 = Operational
7 = Reserved
8 = Read only (HCP set)
Other values are reserved

351 (15F) UNSIGNED 1 A_CUP CUP port address
352 (160) UNSIGNED 4 STATUS_CODE Error code (if any)

End of switch description
Entity Attribute Mask

356 (164) BITSTRING 4 EAM
1111 LOG_CLASS Logical entity classification:

0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
7 = Ambiguous (CHCU,

etc)
other values are reserved

.... 1111 PHYS_CLASS Physical entity
classification:
0 = Unspecified
1 = Host
2 = Chpid
3 = Switch
4 = Control unit
5 = Device
6 = ESCON mod2

converter
7 = Ambiguous (link is

static (no ND_ATT)
and IODEF is
ambiguous)

8 = CF internal path (only
set for CUs)

other values are reserved
357 (165) BITSTRING 2 STATE State of the entity

1... LOGICAL 1 = Entity is logical

QUERY INTERFACE SWITCH

Chapter 5. I/O Operations Commands (API) 241

Table 19. QUERY INTERFACE SWITCH Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
.1.. P_CURR 1 = Entity is physically

current
..1. P_HIST 1 = Entity is physical

history
...1 LOG_OTHER 1 = Logical by another

interface
.... 1... P_OTHER_CURR 1 = Physical by another

interface
.... .1.. P_OTHER_HIST 1 = Physical history by

other interface
.... ..1. P_INDIRECT 1 = The EAM validity

was derived from the
attached (ND)
interfaces from the
control unit

0 = The EAM validity
was obtained from
the CU itself (can
only be true for
opened switches)

.... ...1 P_AMB 1 = Physical ambiguous
configured on some
interface

358 (166) 1... LOG_AMB 1 = Logical ambiguous
configured on some
interface

.1.. CLASS_AMB 1 = Logical and physical
classes are not
compatible

..11 1111 >> * Reserved
End of Entity Attribute Mask

360 (168) CHARACTER 32 IODFDESC HCD's user description of
this object

392 (188) CHARACTER 7 ECLEVEL Hardware EC level
399 (18F) UNSIGNED 1 LOWPORT Lowest port address on

this switch
400 (190) BITSTRING 4 SCPSTATE Operating system state

1... BOXED 1 = Boxed
.1.. NOTREADY 1 = Not ready
..1. BUSY 1 = Busy
...1 RESERVED 1 = Reserved
.... 1... ALLOCATED 1 = Allocated
.... .1.. ONLINE 1 = Online
.... ..1. UNLOAD 1 = Unload pending
.... ...1 MOUNT 1 = Mount pending

401 (191) 1... RESPENDING 1 = Reserve pending
.1.. PENDING 1 = Pending offline
..1. OFFALLOC 1 = Offline—allocated to

SCP
...1 OFFESCM 1 = Offline due to I/O

operations
.... 1... OFFCUIR 1 = Offline due to CUIR
.... .1.. OFFTAPE 1 = Offline due to tape

QUERY INTERFACE SWITCH

242 System Automation for z/OS: Programmer's Reference

Table 19. QUERY INTERFACE SWITCH Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
.... ..1. OFFHIERCH 1 = Offline due to

hierarchy reason
.... ...1 OFFOPER 1 = Offline due to

operator
402 (192) 1... OFFLINE 1 = Offline

.1.. INUSE 1 = Device is in use
(message device only)

..1. OPERATIONAL 1 = Device is operational
(message device only)

...1 NOTOP 1 = Device is not
operational (message
device only)

.... 1... AUTOSW 1 = Device is set
autoswitch

.... .111 >> * Reserved
404 (194) CHARACTER 32 SW_LTOK Logical Token (inherited

from CU for this switch—is
binary zeros when not
available)

436 (1B4) CHARACTER 4 * Reserved

QUERY RELATION CHP

Purpose
Use the QUERY RELATION CHP command at the API to obtain data regarding
the IOCDS relationship between the two specified entities (objects). Output is
based on IOCDS definitions, but it can be influenced by configuration mismatches
that have been detected by I/O-Ops.

Note: The format of the output from all Query Relation commands is the same.
For further information, see “Common Query Relation Output Format” on
page 204.

Query Parameters

�� Query Relation Chp Single_Object �

� CntlUnit Relation_Object Scope Options
Dev
Host
Switch

��

Parameters
v This command returns data about the logical relationships (in IOCDS) between

the first entity, which is a single CHPID, and the second entity or entities.
v For a QUERY RELATION command, the first entity (host name) must be known

to the issuing I/O-Ops (primary host). The command returns an indication
whether the specified CHPID is defined in IOCDS to the issuing I/O-Ops.

QUERY INTERFACE SWITCH

Chapter 5. I/O Operations Commands (API) 243

v If you specify switches as the second entity, the command returns an indication
whether the CHPID in the first entity has defined paths through the switches.

QUERY RELATION CNTLUNIT

Purpose
Use the QUERY RELATION CNTLUNIT command at the API to obtain data
regarding the IOCDS relationship between the two specified entities (objects).
Output is based on IOCDS definitions, but it can be influenced by configuration
mismatches that have been detected by I/O-Ops.

Note: The format of the output from all Query Relation commands is the same.
For further information, see “Common Query Relation Output Format” on
page 204.

Query Parameters

�� Query Relation CntlUnit Single_Object �

� Chp Relation_Object Scope
Dev
Host
Switch

��

Parameters
v This command returns data about the relationships between the specified control

unit and the second entity in the command.
v If the second entity is Host and the issuing I/O-Ops is included in the

parameters, this command returns indications of what CHPIDs have (IOCDS)
defined paths to the control unit specified in the first entity.

v If the second entity is Host and a voting I/O-Ops is included in the parameters,
this command returns only an indication that the I/O-Ops (secondary host)
known to the issuing I/O-Ops. No pathing data can be returned.

v If the second entity is Chp, the command returns indications of whether the
specified CHPIDs have (IOCDS) defined paths to the specified control unit for
the issuing I/O-Ops (primary host).

v If the second entity is Switch, the command returns indications of whether the
control unit specified has (IOCDS) defined paths through the specified switch(es)
for the issuing I/O-Ops.

v If the second entity is Dev, the command returns indications of whether the
specified control unit has (IOCDS) defined paths through the specified devices
for the issuing I/O-Ops.

QUERY RELATION DEV

Purpose
Use the QUERY RELATION DEV command at the API to obtain data regarding the
IOCDS relationship between the two specified entities (objects). Output is based on
IOCDS definitions, but it can be influenced by configuration mismatches that have
been detected by I/O-Ops.

QUERY RELATION CHP

244 System Automation for z/OS: Programmer's Reference

Note: The format of the output from all Query Relation commands is the same.
For further information, see “Common Query Relation Output Format” on
page 204.

Query Parameters

�� Query Relation Dev Single_Object �

� Chp Relation_Object Scope Options
CntlUnit
Host
Switch

��

Parameters
v This command returns data about the relationships between the specified device

and the second entity in the command.
v If the second entity is Host and the issuing I/O-Ops is specified, the command

returns indications of whether the device has (IOCDS) defined paths to that
host. If a voting I/O-Ops is specified, an indication is returned that the host is
known, but pathing information is not available.

v If the second entity is Chp, the command returns indications of whether the
specified device has (IOCDS) defined paths to the specified CHPID(s).

v If the second entity is Switch, the command returns indications of whether the
control unit specified has (IOCDS) defined paths through the specified switch(es)
for the issuing I/O operations.

v If the second entity is CntlUnit, the command returns indications of whether the
specified control unit(s) have (IOCDS) defined paths through them to the
specified device for the issuing I/O-Ops.

Notes:

1. When ARRAY is the Object_format_type, the Object_Identifier_Types can be mixed
and every Object_Identifier_Type must match the class of the specified
Object_Type (all must be I/O_resources or all must be Hosts). For example, Q E
HOST can accept only HOST and XSYS entries in the array.

2. The Array_header contains the number of elements in the array.
3. PTOK is valid with RANGE but you should be fully aware of PTOK structure. For

example, RANGE PTOK could be used to specify all of the serial numbers of a
certain type of device. However, certain PTOK values may cause unpredictable
results with RANGE.

4. When ARRAY is the SCOPE_format_type, the Host_Object_Identifier_Types can be
mixed (HOST and XSYS).

5. If you need to translate a QUERY RELATION command to a new format due
to an overflow condition reported by a return code and reason code, you may
need to begin the new command with the last value that was returned or some
pathing information could be lost.

QUERY RELATION DEV

Chapter 5. I/O Operations Commands (API) 245

QUERY RELATION HOST

Purpose
Use the QUERY RELATION HOST command at the API to obtain data regarding
the IOCDS relationship between the two specified entities (objects). Output is
based on IOCDS definitions, but it can be influenced by configuration mismatches
that have been detected by I/O-Ops.

Note: The format of the output from all Query Relation commands is the same.
For further information, see “Common Query Relation Output Format” on
page 204.

Query Parameters

�� Query Relation Host *
Host_Single_Object

�

� Chp Host_Relation_Object Scope Options
CntlUnit
Dev
Host
Switch

��

Parameters
v For a QUERY RELATION command, the first entity (host name) must be known

to the issuing I/O-Ops (primary host).
v For Q R H S, you can specify any I/O-Ops that participates in vary path

consensus processing initiated by the issuing I/O-Ops. However, data indicating
CHPID attachments to the switches is returned only for the issuing I/O-Ops

Notes:

1. When ARRAY is the Object_format_type, the Object_Identifier_Types can be mixed
and every Object_Identifier_Type must match the class of the specified
Object_Type (all must be I/O_resources or all must be Hosts). For example, Q E
HOST can accept only HOST and XSYS entries in the array.

2. The Array_header contains the number of elements in the array.
3. PTOK is valid with RANGE but you should be fully aware of PTOK structure. For

example, RANGE PTOK could be used to specify all of the serial numbers of a
certain type of device. However, certain PTOK values may cause unpredictable
results with RANGE.

4. When ARRAY is the SCOPE_format_type, the Host_Object_Identifier_Types can be
mixed (HOST and XSYS).

QUERY RELATION SWITCH

Purpose
Use the QUERY RELATION SWITCH command at the API to obtain data
regarding the IOCDS relationship between the two specified entities (objects).
Output is based on IOCDS definitions, but it can be influenced by configuration
mismatches that have been detected by I/O-Ops.

QUERY RELATION HOST

246 System Automation for z/OS: Programmer's Reference

Note: The format of the output from all Query Relation commands is the same.
For further information, see “Common Query Relation Output Format” on
page 204.

Query Parameters

�� Query Relation Switch Single_Object �

� Chp Relation_Object Scope
CntlUnit
Dev
Host
Switch

��

Parameters
v This command returns data about the relationships between the specified switch

and the second entity in the command.
v If you specify the issuing I/O-Ops (host) as the second entity, 1 ROW is

returned for each channel that I/O-Ops perceives as being connected to the
switch. (If the physical settings at the switch indicate differently from the
IOCDS, I/O-Ops "perceives" the physical settings to be accurate.)
If the switch specifies the destination switch of a cascaded switch pair, the
relationship will return one row for each CHP that defines a path to the CUP
device of the switch with the following differing information:
– The output port information shows X'FE' indicating the CUP device of a

cascaded switch
v If you specify a voting I/O-Ops (host) as the second entity, only 1 ROW is

returned, indicating that the host is able to communicate with, and control, the
switch. No CHPIDs are returned, and the incomplete bit is set for that host.

v If you specify CHP as the second entity, the command returns indications of
what channel(s) are defined in IOCDS to be attached to the switch. To obtain
data on what channels are defined to communicate with a switch, specify Q R
CU C, specifying the control unit port, or the Q R D C, specifying the switch
device number.

v If you specify Switch as the second entity, the command returns indications:
– Of what chains have been established with the first entity (ESCON only)
– Whether both switches build the entry and destination switch of any path

defined (FICON only)
v If you specify CntlUnit or Dev as the second entity, the command returns

indications whether the specified switch has IOCDS-defined paths through it to
the specified control units or devices.

QUERY SWITCH

Purpose
Use the QUERY SWITCH command at the API to obtain an array of port
information blocks (PIBs) and related data from the specified switch.

QUERY RELATION SWITCH

Chapter 5. I/O Operations Commands (API) 247

Syntax

�� Query Switch swchdevn ��

Parameters
swchdevn

Specifies the switch to be queried. The switch must be allocated to, or attached
to, the issuing I/O-Ops. Refer to IBM Tivoli System Automation for z/OS
Operator’s Commands for further information about switches.

Output
The data is presented as an array of 80-byte entries, as shown in Table 20. 256
entries are returned. (The first array is for port address 00.)

Table 20. QUERY SWITCH Output

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE 80 QSWT
0 (0) BITSTRING 1 QSWTFLAG1 Flags byte 1

1... QSWTLAST End of list indicator
0 = More records
1 = Last record in array

.1.. QSWTMDPT Midport
1 = This port is the

midport of a defined
chain

..11 QSWTFORM Format ID
0 = Format 0 (original

format)
.... 1111 * Reserved

1 (1) BITSTRING 1 QSWTFLAG2 Flags byte 2
1111 11.. * Reserved
.... ..11 QSWT_DCM_STATE 0x = Port not DCM

eligible
10 = Port DCM eligible

but not allowed
for DCM activities

11 = Port DCM eligible
and allowed for
DCM activities

2 (2) UNSIGNED 2 QSWTSWIT Switch device number
4 (4) CHARACTER 48 QSWTLAIB Port information block
4 (4) CHARACTER 1 * Reserved
5 (5) UNSIGNED 1 LAIBNUMB Port number
6 (6) UNSIGNED 1 LAIBADDR Port address
7 (7) CHARACTER 1 * Reserved
8 (8) BITSTRING 4 LAIBDESC Port descriptors

1... LAIBUNMP Port implementation
0 = Port is implemented
1 = Port is not

implemented
.1.. LAIBFBIT Port fence information

0 = Port is not blocked
1 = Port is blocked

QUERY SWITCH

248 System Automation for z/OS: Programmer's Reference

Table 20. QUERY SWITCH Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
..1. LAIBIC Prohibit port connection

0 = No prohibits for this
port

1 = Prohibits defined
..1. LAIBLEDEXT Port hardware (FICON

only)
0 = 8 Gbit/sec laser fiber

optic
1 = 10 Gbit/sec laser fiber

optic
2 = 16 Gbit/sec laser fiber

optic
3 = Reserved

...1 LAIBSBIT Port connection (ESCON
only)
0 = Port is not connected
1 = Port is connected

.... 1... * Reserved (ESCON only)

.... .111 LAIBLED Port hardware
0 = Unspecified
1 = Internal
2 = Electrical
3 = LED fiber optic
4 = Laser fiber optic

9 (9) 1... LAIBNBIT 1 = Not installed
.1.. LAIBLFBIT 1 = Link failure
..1. LAIBSP 1 = Swapped port
...1 LAIBOLBIT 1 = Offline
.... 1... LAIBDMBIT 1 = Port in maintenance

mode
.... .1.. LAIBCUPBIT 1 = This port is a CUP
.... ..1. LAIBSERVICE 1 = Service required
.... ...1 LAIBINVATT 1 = Port has an invalid

attachment
10 (A) 1... LAIBBRGPRT 1 = This is a bridge port

.1.. LAIBPRTNUU 1 = Port number not
usable

..1. LAIBBPDEG 1 = Bridge port degraded

...1 1... * Reserved

.... .111 LAIBBPOFF >0 =
Bridge port held
offline

11 (B) 1... LAIBETE 1 = Error threshold
exceeded

.111 LAIBTT Transeiver technology
0 = Unspecified
1 = GSM
2 = GLS
3 = GLX

.... 1... * Reserved

QUERY SWITCH

Chapter 5. I/O Operations Commands (API) 249

|
|
||
|
||
|
||
|
||
|
|

|

Table 20. QUERY SWITCH Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
.... .111 LAIBPT Protocol type:

0 = ESCON
1 = Reserved
2 = FICON Bridge
3 = FICON Fabric
4 = FICON E-Port
5 = FICON L-Port
6 = FICON G-Port

12 (C) CHARACTER 1 * Reserved
13 (D) UNSIGNED 1 LAIBESVR Number of ESCON server

ports
14 (E) UNSIGNED 1 LAIBSADR Static connection address
15 (F) CHARACTER 5 * Reserved
20 (14) BITSTRING 32 LAIBICM Port prohibit dynamic

connection mask (PDCM)
52 (34) CHARACTER 24 QSWTNAME Port logical name
76 (4C) UNSIGNED 2 QSWTCSWIT Switch device number for

chained device
78 (4E) UNSIGNED 1 QSWTCPORT Chained port address
79 (4F) CHARACTER 1 * Reserved

Examples

Note: If a port is not implemented, only the switch number, port address, and
unimplemented bit contain valid data; all other fields are set to binary zeros.

The following sample output shows that port address F3 has been assigned port
name 0500X0600. It is statically connected to port address E1 on switch device
number 0500. As one would expect from the port name, port address F3 is chained
to port address D0 on switch device number 0600.

REMOVE and RESTORE CHP

Purpose
Use the REMOVE CHP command at the I/O-Ops API to configure a chpid or
chpids offline to one or more hosts.

Switch device number

Port address

00000500

00000000

FFFFFFFF

0000100D

40404040

00F3F300

FFFFFFFF

FFFFFFFF

F0F5F0F0

40404040

10000000

FFFFFFFF

FFFFFFFF

E7F0F6F0

40404040

0000E100

FFFFFFFF

00000000

F0404040

0600D000

Connected port

Chained port

Chained switch device number

Start port name

Figure 14. QUERY SWITCH Command - Sample Output.

QUERY SWITCH

250 System Automation for z/OS: Programmer's Reference

Use the RESTORE CHP command at the I/O-Ops API to configure a chpid or
chpids online to one or more hosts.

Syntax

�� Remove
Restore

Object Scope Options ��

Object:

Chp Object_format

Object_format

�

chpid
Value Object_identifier
Range Object_identifier_pair

Array Array_header Object_identifer

Object_identifier:

chpid
RNUM(chpid)
HNUM(I/O-Ops_hostname .chpid)

THIS-SYS
XNUM(SYSPLEX_name.System_name.chpid)
PTOK(physical_token)

Object_identifier_pair:

chpid-chpid
RNUM(chpid-chpid)
HNUM(I/O-Ops_hostname .chpid-chpid)

THIS-SYS
XNUM(SYSPLEX_name.System_name. chpid-chpid)
PTOK(physical_token-physical_token)

Scope:

�

*
I/O-Ops_hostname

THIS-SYS
SCOPE Value Host_object_identifier

Array Array_header Host_object_identifer

Host_object_identifier:

REMOVE and RESTORE CHP

Chapter 5. I/O Operations Commands (API) 251

*
I/O-Ops_hostname

THIS-SYS
HOST(*)

I/O-Ops_hostname
THIS-SYS

XSYS(SYSPLEX_name.System_name)

I/O-Ops_hostname:

I/O-Ops_vtamname
I/O-Ops_tcphostname

Options:

Vary NOForce BAckout

NOcheck NOBackout
Force NOBackout

NOVAry Force NOBackout

CONDitional

UNCONDitional
�

�
OUTputALL

OUTputERRor
OUTputNOne

Parameters
A host identifier type can be one of the following keywords:

Vary
This is the default option and it indicates that appropriate processing must be
done at the host to support the REMOVE and RESTORE CHP commands.

NOVary
This option is not valid for the REMOVE and RESTORE CHP commands.

Force
This option says to execute the command in the best manner possible. For
example, if one of the specified hosts does not respond, the command is still
performed on all other hosts.

NOForce
This is the default option and indicates that if there is any failure, the
command should not continue and a return and reason describing the failure
will be returned.

NOCheck
The NOCheck option overrides the detection of two conditions that would
cause the failure of the command under the default NOForce option:
1. Detection of systems in the scope of the command that I/O-Ops is not

operating on
2. Detection of downlevel I/O-Ops's operating on systems in the scope of the

command

If either of these conditions is detected, a return code of 4 is returned.

REMOVE and RESTORE CHP

252 System Automation for z/OS: Programmer's Reference

BAckout
This is the default option and indicates that if any failure is reported by any of
the participating systems, any successful REMOVE and RESTORE CHP actions
for all the participating host systems will be backed out.

NOBackout
This option indicates that if any error condition is detected during the
REMOVE and RESTORE CHP processing, I/O-Ops will not attempt to change
any REMOVE and RESTORE CHP actions that have been performed.

CONDitional
This is the default option for both the REMOVE and RESTORE CHP
commands. It indicates that no special configure offline or configure online
action should be performed.

UNCONDitional
For the REMOVE CHP command, this option puts the specified chpids
immediately into pending offline status, even if the chpids are currently active,
allocated, or reserved.

For the RESTORE CHP command, this option brings the specified chpids
online, even if there are no paths to the chpids, or if the chpids are pending
offline and boxed.

OUTputALL
This is the default and it allows all results from REMOVE and RESTORE CHPs
performed (regardless of return code) to be returned to the API invoker.

OUTputERRor
This option allows only error results (REMOVE and RESTORE CHPs that had
a return code > = 4, plus other errors that occurred during the processing of
the command) to be returned to the API invoker.

OUTputNOne
This option allows only the return and reason code (no text information) to be
returned to the API invoker. If the return code from the command is > = 4, a
detailed message (IHVC00I, IHVC001I, or IHVC002I) is also returned.

Notes:

1. This form, with no keyword, is supported for compatibility with the previously
existing syntax of this command.

2. ARRAY does not have a short form for this command (in other multisystem
commands A is used as a short form). That is to avoid the need to look ahead
in parsing "Remove Chp A..." to distinguish between removing the CHP with
ID 'A" and removing an array of CHPs.

3. In this command, THIS-SYS is a means to refer to the primary host (the one
that the command is being input to). It is accepted by the primary regardless of
whether VTAM is operational or not.

4. When ARRAY is the Object_format_type, the Object_Identifier_Types may be
mixed (for example, HOST and XSYS), and every Object_Identifier_Type must be
an I/O resource type. For example, an HNUM and an XNUM entry can be in
the same array.

5. The Array_header contains the number of elements in the array.
6. PTOK is valid with RANGE but you should be fully aware of PTOK structure.

Certain PTOK values may cause unpredictable results with RANGE.
7. When ARRAY is the SCOPE_format_type, the Host_Object_Identifier_Types may be

mixed (for example, HOST and XSYS).

REMOVE and RESTORE CHP

Chapter 5. I/O Operations Commands (API) 253

REMOVE DEV and RESTORE DEV

Purpose
Use the REMOVE DEV command at the I/O-Ops API to configure a device or
devices offline to one or more hosts.

Use the RESTORE DEV command at the I/O-Ops API to configure a device or
devices online to one or more hosts.

Syntax

�� Remove
Restore

Object Scope Options ��

Object:

Dev Object_format

Object_format

�

Value Single_object_identifier
Range Range_object_identifier

Array Array_header Object_identifer

Single_object_identifier:

*
resource_number

RNUM(*)
resource_number

HNUM(* . *)
I/O-Ops_hostname resource_number

XNUM(* . * . *)
SYSPLEX_name System_name resource_number

PTOK(physical_token)
LTOK(logical_token)

Range_object_identifier:

*
resource_number- resource_number

RNUM(*)
resource_number- resource_number

HNUM(I/O-Ops_hostname . *)
resource_number- resource_number

XNUM(SYSPLEX_name.System_name. *)
resource_number- resource_number

PTOK(physical_token)
physical_token-

LTOK(logical_token)
logical_token-

REMOVE DEV and RESTORE DEV

254 System Automation for z/OS: Programmer's Reference

Scope:

�

SCOPE Value Host_object_identifier

Array Array_header Host_object_identifer

Host_object_identifier:

*
I/O-Ops_hostname

HOST(*)
I/O-Ops_hostname

XSYS(* . *)
SYSPLEX_name System_name

I/O-Ops_hostname:

I/O-Ops_vtamname
I/O-Ops_tcphostname

Options:

Vary NOForce BAckout

NOcheck NOBackout
Force NOBackout

CONDitional

UNCONDitional
SHare
REset
AutoSwitch

�

�
OUTputALL

OUTputERRor
OUTputNOne

Parameters
A host identifier type can be one of the following keywords:

Vary
This is the default option and it indicates that appropriate processing must be
done at the host to support the REMOVE and RESTORE DEVICE commands.

Note: This does not mean that the paths to this device are varied.

NOVary
This option is not valid for the REMOVE and RESTORE DEVICE commands.

Force
This option says to execute the command in the best manner possible. For
example, if one of the specified hosts does not respond, the command is still
performed on all other hosts.

REMOVE DEV and RESTORE DEV

Chapter 5. I/O Operations Commands (API) 255

NOForce
This is the default option and indicates that if there is any failure, the
command should not continue and a return and reason describing the failure
will be returned.

NOCheck
The NOCheck option overrides the detection of two conditions that would
cause the failure of the command under the default NOForce option:
1. Detection of systems in the scope of the command that I/O-Ops is not

operating on
2. Detection of downlevel ESCON Managers operating on systems in the

scope of the command

If either of these conditions is detected, a return code of 4 is returned.

BAckout
This is the default option and indicates that if any failure is reported by any of
the participating systems, any successful REMOVE and RESTORE DEVICE
actions for all the participating host systems will be backed out.

NOBackout
This option indicates that if any error condition is detected during the
REMOVE and RESTORE DEVICE processing, I/O operations will not attempt
to change any REMOVE and RESTORE DEVICE actions that have been
performed.

CONDitional
This is the default option for both the REMOVE and RESTORE DEVICE
commands. It indicates that no special Vary offline or Vary online action
should be performed.

UNCONDitional
For the REMOVE DEVICE command, this option puts the specified devices
immediately into pending offline status, even if the devices are currently
active, allocated, or reserved.

For the RESTORE DEVICE command, this option brings the specified devices
online, even if there are no paths to the devices, or if the devices are pending
offline and boxed. This option is ignored if it is specified for a tape or a direct
access device.

SHaRe
For the REMOVE DEVICE command, this option provides no function.

For the RESTORE DEVICE command, this option permits any device that
supports multisystem assign to be shared among other processors. If the device
does not support multisystem assign, this option is ignored.

REset
For the REMOVE DEVICE command, this option provides no function.

For the RESTORE DEVICE command, this option allows the device to be
varied online even if it is currently in use by control unit initiated
reconfiguration.

AutoSwitch
The AutoSwitch option is valid only for a tape device such as an IBM 3480 or
3490 (or equivalent). You use Restore Dev AutoSwitch to set the option on and
Remove Dev AutoSwitch to set the option off.

REMOVE DEV and RESTORE DEV

256 System Automation for z/OS: Programmer's Reference

Setting AutoSwitch on allows a tape device to be switched serially from one
system to another in a sysplex environment without the need for operator
intervention.

Note: A coupling facility is required for sysplex tape sharing to be available.

OUTputALL
This is the default and it allows all results from REMOVE and RESTORE
DEVICE actions that have been performed (regardless of return code) to be
returned to the API invoker.

OUTputERRor
This option allows only error results (that is, REMOVE and RESTORE DEVICE
actions with a return code > = 4, plus other errors that occurred during the
processing of the command) to be returned to the API invoker.

OUTputNOne
This option allows only the return and reason code (no text information) to be
returned to the API invoker. If the return code from the command is > = 4, a
detailed message (IHVC00I, IHVC001I, or IHVC002I) is also returned.

Notes:

1. When ARRAY is the Object_format_type, the Object_Identifier_Types can be mixed
and every Object_Identifier_Type must be an I/O resource type. For example, an
HNUM and an XNUM entry can be in the same array.

2. The Array_header contains the number of elements in the array.
3. PTOK is valid with RANGE but you should be fully aware of PTOK structure.

For example, RANGE PTOK could be used to specify all of the serial numbers
of a certain type of device. However, certain PTOK values may cause
unpredictable results with RANGE.

4. When ARRAY is the SCOPE_format_type, the Host_Object_Identifier_Types can be
mixed (HOST and XSYS).

Output
The format of the output from the REMOVE DEV and RESTORE DEV command is
as follows:

Table 21. REMOVE DEV and RESTORE DEV Output

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE * VDCB
0 (0) CHARACTER 80 VDCB_HDR VDCB header
0 (0) CHARACTER 4 VDCH_ID Eyecatcher ('VDCB')
4 (4) UNSIGNED 2 VDCH_HLEN Header length
6 (6) UNSIGNED 2 VDCH_RLEN Row length
8 (8) UNSIGNED 4 VDCH_NR Number of rows

12 (C) UNSIGNED 4 VDCH_NHR Number of host summary
rows

16 (10) UNSIGNED 1 VDCH_FMTID Format ID
17 (11) CHARACTER 7 * Reserved

Information on the command and options
24 (18) BITSTRING 2 VDCH_CMD Vary device command flags

1... VDCH_VOFF 1 = Vary OFF device
.1.. VDCH_VON 1 = Vary ON device
..1. VDCH_VBKOUT 1 = Vary backout initiated
...1 1111 >> * Reserved

REMOVE DEV and RESTORE DEV

Chapter 5. I/O Operations Commands (API) 257

Table 21. REMOVE DEV and RESTORE DEV Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
26 (1A) BITSTRING 2 VDCH_OPTIONS Vary device options flags

1... VDCH_FORCE 1 = Force specified
.1.. VDCH_NOFORCE 1 = NOForce specified
..1. VDCH_BKOUT 1 = BAckout specified
...1 VDCH_NOBKOUT 1 = NOBackout specified
.... 1... VDCH_NOCHECK 1 = Nocheck specified
.... .1.. VDCH_COND 1 = CONDitional

specified
.... ..1. VDCH_UNCOND 1 = UNConditonal

specified
.... ...1 VDCH_SHARE 1 = SHare specified

27 (1B) 1... VDCH_RESET 1 = REset specified
.1.. VDCH_AUTOSW 1 = AutoSwitch specified
..11 1111 * Reserved

28 (1C) CHARACTER 4 * Reserved
Invoker's system and user ID

32 (20) CHARACTER 16 VDCH_USER
32 (20) CHARACTER 8 VDCH_SYSID System ID
40 (28) CHARACTER 8 VDCH_USRID User ID

Information on primary responding host
48 (30) CHARACTER 8 VDCH_APPL I/O operations VTAM

application name
56 (38) CHARACTER 16 VDCH_SYSPLEX
56 (38) CHARACTER 8 VDCH_SPLX Sysplex name
64 (40) CHARACTER 8 VDCH_SYST System name
72 (48) CHARACTER 4 VDCH_ESCMREL SA z/OS release
76 (4C) CHARACTER 4 * Reserved

Vary device information
80 (50) STRUCTURE 296 VDCB_ROW(*)
80 (50) UNSIGNED 2 VDCR_FORMAT Row format code
82 (52) CHARACTER 6 * Reserved

Responding host
88 (58) CHARACTER 8 VDCR_APPL I/O operations VTAM

application name
96 (60) CHARACTER 16 VDCR_SYSPLEX
96 (60) CHARACTER 8 VDCR_SPLX Sysplex name

104 (68) CHARACTER 8 VDCR_SYST System name
Device identification

112 (70) BITSTRING 2 VDCR_FLAGS Vary device flags
1... VDCR_RNUMV 1=RNUM is valid
.111 1111 * Reserved

113 (71) 1... VDCR_COUPL 1 = Device is a coupling
facility

.1.. VDCR_NOVARY 1 = Don't vary device for
row

..1. VDCR_NOTFND 1 = Device not found for
host

...1 VDCR_BKOUT 1 = Backout attempted,
msg present

.... 1111 * Reserved
114 (72) UNSIGNED 2 VDCR_DEVNUM Device number
116 (74) BITSTRING 4 VDCR_SCPSTS Operating system state

REMOVE DEV and RESTORE DEV

258 System Automation for z/OS: Programmer's Reference

Table 21. REMOVE DEV and RESTORE DEV Output (continued)

Offset

Dec Hex Type Len Name(Dim) Description
120 (78) CHARACTER 32 VDCR_PTOKN Physical token
152 (98) CHARACTER 32 VDCR_LTOKN Logical token

Vary results
184 (B8) CHARACTER 96 VDCR_VRESULTS
184 (B8) BITSTRING 2 VDCR_VFLAGS Vary flags

1... VDCR_VMVS_MSG 1 = Vary message is MVS
.1.. VDCR_VDBCS 1 = Vary message is

DBCS
..11 1111 >> * Reserved

186 (BA) CHARACTER 2 * Reserved
188 (BC) UNSIGNED 4 VDCR_VESCMRC I/O operations Severity

code (used for backout,
msg screen)

The following information is valid only when VDCR_NOVARY is not set
192 (C0) UNSIGNED 4 VDCR_VMVSRC Return code from

VARYDEV macro
196 (C4) UNSIGNED 4 VDCR_VMVSRSN Reason Code from

VARYDEV macro
200 (C8) CHARACTER 80 VDCR_VMVSMSG Msg from VARYDEV

macro or I/O operations
based on macro RC/RSN

Backout results
280 (118) CHARACTER 96 VDCR_BRESULTS
280 (118) BITSTRING 2 VDCR_BFLAGS Backout flags

1... VDCR_BMVS_MSG 1 = Backout message is
MVS

.1.. VDCR_BDBCS 1 = Backout message is
DBCS

..11 1111 >> * Reserved
282 (11A) CHARACTER 2 * Reserved
284 (11C) UNSIGNED 4 VDCR_BESCMRC I/O operations Severity

code
The following information is valid only when I/O operations backout occurs
(VDCH_BKOUT=1) and there are no communication errors reported

288 (120) UNSIGNED 4 VDCR_BMVSRC Return code from
VARYDEV macro

292 (124) UNSIGNED 4 VDCR_BMVSRSN Reason code from
VARYDEV macro

296 (128) CHARACTER 80 VDCR_BMVSMSG Msg from VARYDEV
macro or I/O operations
based on macro RC/RSN

WRITEFILE

Purpose
Use the WRITEFILE command at the I/O-Ops API to store a saved switch
configuration at the switch specified in the command.

To use the WRITEFILE command, the switch must be allocated, or attached, to the
issuing I/O-Ops.

REMOVE DEV and RESTORE DEV

Chapter 5. I/O Operations Commands (API) 259

Syntax

�� WRITEFILE filename filedescriptor datablock ��

Parameters
filename

Specify the file name in 1 through 8 valid EBCDIC codes. Valid codes are
uppercase alphabetical characters (A-Z), digital characters (0-9), and 2 special
characters: the underscore (_) and the hyphen (-). However, the following file
names are not valid: AUX, COMn (where n=1-4), CON, LPTn (where n=1-3),
NUL, or PRN.

filedescriptor
Specify the file descriptor in exactly 24 characters in the range X'40' through
X'FE'.

datablock
Specify a 20480-byte data block in the format listed under the Query Switch
command. The data block allows an 80-byte record for 256 ports. Specify the
ports in ascending hexadecimal order.

Usage
v A maximum number of saved switch configurations can be stored at a switch.

At an IBM Director, you can store up to 15 saved configurations. In addition,
you can load and restore the IPL file, which is supplied with each Director and
is activated automatically when the unit is powered on.

v You can only write the IPL file if the Active=Save Mode at the switch is
disabled. If the mode is disabled, any changes being made to the active
configuration at the switch are not saved. The mode setting is displayed on the
screen of the switch console. The status is also returned in the QFILAS field in
the output returned with the Q F * command.

v You must specify the switch device number in the data block. (Unlike the
WRITESWCH command, the switch device number in the Writefile command
must be the same in each record.)

v If you do not want to write an entire block, you can edit an existing one. For
example, you can use the Query File command to get a file, edit it, and then use
the WRITEFILE command to store it.

WRITEFILE

260 System Automation for z/OS: Programmer's Reference

Input
Each 80-byte record of the WRITEFILE data block has the following format:

Table 22. WRITEFILE Input Format

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE 80 WTFL Writefile record
0 (0) BITSTRING 1 WTFLFLAG1

1... WTFLLAST End of list indicator
0 = More records in list
1 = Last record in list

.1.. * Reserved

..11 WTFLFORM Format ID
00 = Format 0 (original

format)
.... 1111 * Reserved

1 (1) CHARACTER 1 * Reserved
2 (2) UNSIGNED 2 WTFLSWIT Switch device number
4 (4) CHARACTER 48 WTFLLAIB Switch port information

block
4 (4) CHARACTER 2 * Reserved
6 (6) UNSIGNED 1 LAIBADDR Port address
7 (7) CHARACTER 1 * Reserved
8 (8) BITSTRING 4 LAIBDESC Port descriptors

1... LAIBUNMP Port implementation
0 = Implemented port
1 = Unimplemented port

.1.. LAIBFBIT Blocked port
0 = Port is not blocked
1 = Port is blocked

..1. LAIBIC Prohibited port connection
0 = No prohibits for this

port
1 = Prohibits defined

...1 LAIBSBIT Port connection
0 = Port is not connected
1 = Port is connected

.... 1111 >> * Reserved
12 (C) CHARACTER 2 * Reserved
14 (E) UNSIGNED 1 LAIBSADR Static connection address
15 (F) CHARACTER 5 * Reserved
20 (14) BITSTRING 32 LAIBICM Link ICM
52 (34) CHARACTER 24 WTFLNAME Port logical name
76 (4C) CHARACTER 4 * Reserved

WRITEPORT

Purpose
Use the Writeport command at the I/O-Ops API to define or to change the
connectivity attributes for a single port on a specified switch.

WRITEFILE

Chapter 5. I/O Operations Commands (API) 261

Syntax

�� WRITEPORT (portaddress_x)
portname_x

swchdevn one_blank_character
Block
Unblock

�

� one_blank_character one_blank_character
Connect (portaddress_y)
disconNect portname_y

one_blank_character
port_mask

�

�
IGNore

Vary NOForce BAckout

NOCheck NOBackout
Force NOBackout

NOVary Force NOBackout

��

Parameters
(portaddress_x)|portname_x

Specifies the target port by its port address (enclosed in parentheses) or by its
port name.

swchdevn|*
Specifies the target switch device number. The switch must be allocated to, or
attached to, the issuing I/O-Ops.

one_blank_character|Block|Unblock
Specifies one of the following: the blocking attribute should be unchanged
(X'40'); the port should be blocked; the port should be unblocked.

one_blank_character|Connect|disconNect
Specifies one of the following: the dynamic connection attribute should be
unchanged (X'40'); the port should be statically connected to the port specified
in the next operand; the port should be disconnected from that port.

(portaddress_y)|portname_y
Specifies the other port in the static connection by its port address or port
name.

one_blank_character|port_mask
A blank character specifies that the allow and prohibit attributes of port_x
should be unchanged. The 256-character (32-byte) mask specifies an A (Allow)
or a P (Prohibit) as the attribute for each port in the range X'00–FF'. The
character representing port_x must and all unimplemented ports must be P,
while the character representing the control unit port (CUP) must be A.

IGNore
You must specify this option when an Inter-Switch-Link port (E_Port) is
involved. Otherwise the command is rejected with return code 8 and reason
code X'49'. The reason is I/O-Ops can no longer guarantee safe-switching
when an E_Port is involved.

"Safe-switching" sets the paths and devices online or offline when the path
from a chpid to a device either becomes valid or is no longer valid because of
a port manipulation.

WRITEPORT

262 System Automation for z/OS: Programmer's Reference

Vary
This is the default option and it indicates that appropriate processing must be
done at the host to support the REMOVE and RESTORE CHP commands.

NOVary
This option is not valid for the WRITEPORT command.

Force
This option says to do the command in the best manner possible. For example,
if one of the specified hosts does not respond, the command is still performed
on all other hosts.

NOForce
This is the default option and indicates that if there is any failure, the
command should not continue and a return call and reason describing the
failure will be returned.

NOCheck
The NOCheck option overrides the detection of two conditions that would
cause the failure of the command under the default NOForce option:
1. Detection of systems in the scope of the command that I/O-Ops is not

operating on
2. Detection of downlevel I/O-Ops's operating on systems in the scope of the

command

If either of these conditions is detected, a return code of 4 is returned.

BAckout
This is the default option and indicates that if any failure is reported by any of
the participating systems, any successful WRITEPORT actions for all the
participating host systems will be backed out.

NOBackout
This option indicates that if any error condition is detected during the
WRITEPORT processing, I/O-Ops will not attempt to change any WRITEPORT
actions that have been performed.

Usage
Using the Writeport command is a tool that helps you simplify the installation, set
up, and recovery of a switch's configuration. Note, however, that the WRITESWCH
command lets you manipulate attributes of all the ports on a switch.

The number and placement of implemented ports depends on the model of the
switch. You can display the addressable ports with the commands described under
“QUERY SWITCH” on page 247.

Also, see Planning for the 9032 Enterprise Systems Connection Director or Planning for
the 9033 Enterprise Systems Connection Director for CUP information pertinent to the
ESCON Directors.

Examples
the following is a segment of an MVS REXX EXEC that contains the command
WRITEPORT (C3) 0500 B C (C1):
IHVRC = 0 /* Return code; it must be */

/* called IHVRC. */
/* */

IHVREAS = 0 /* Reason code; it must be */
/* called IHVREAS. */
/* */

WRITEPORT

Chapter 5. I/O Operations Commands (API) 263

IHVRESP = ’ ’ /* Response area; it must be */
/* called IHVRESP. */
/* */

cmd = ’WRITEPORT’ /* Command name (required) */
opr1 = ’(C3)’ /* Port address/port name (required) */
opr2 = ’0500’ /* Switch device number (required) */
opr3 = ’BLOCK’ /* Block/Unblock/blank (required) */
opr4 = ’CONNECT’ /* Connect/discoNnect/blank (required) */
opr5 = ’(C1)’ /* Port/Port name/blank (required) */
opr6 = ’ ’ /* 256 characters or 1 blank (required) */

/* */
opt1 = ’NOFORCE’ /* Force/NOForce (options) */
opt2 = ’VARY’ /* Vary/NOVary (options) */
opt3 = ’BACKOUT’ /* BAckout/NOBackout (options) */

/* */
ADDRESS LINK ’IHVAPI’ cmd opr1 opr2 opr3 opr4 opr5 opr6 opt1 opt2 opt3
/***/

The following example is one way to construct the 256-character allow or prohibit
string. Port C3 is allowed to communicate to every other implemented port. The
variables M1, M2, M3, and M4 are used to represent 64 characters each. The
numbers in the comment lines are the ports.
/*CCCCCCCCCCCCCCCCDDDDDDDDDDDDDDDDEEEEEEEEEEEEEEEEFFFFFFFFFFFFFFFF*/
/*0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF*/

/*0000000000000000111111111111111122222222222222223333333333333333*/
/*0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF*/
M1=’PP’

/*4444444444444444555555555555555566666666666666667777777777777777*/
/*0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF*/
M2=’PP’

/*88888888888888889999999999999999AAAAAAAAAAAAAAAABBBBBBBBBBBBBBBB*/
/*0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF*/
M3=’PP’

/*CCCCCCCCCCCCCCCCDDDDDDDDDDDDDDDDEEEEEEEEEEEEEEEEFFFFFFFFFFFFFFFF*/
/*0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF*/
M4=’AAAPAAPPAP’

This statement concatenates the four variables into the 256-character operand used
in the command:
opr6 = M1 || M2 || M3 || M4

The attributes of the remaining ports must be determined according to the
configuration requirements of the user's computer complex.

Example of Modifying Allow or Prohibit Attributes:

This section shows examples of how to use the WRITEPORT command to modify an
Enterprise System Connection Director so that:
v Port C2 is prohibited from dynamically connecting to ports C4 and C6.
v Port C6 is prohibited from dynamically connecting to port C8.

To accomplish this, you must use two WRITEPORT commands: the first command
must specify C2 in the first operand (Example 1); the second command must
specify C6 in the first operand (Example 2).
/***/
/* Example 1: Using WRITEPORT to Prohibit C2 from C4 and C6 */
/***/
cmd = ’WRITEPORT’ /* Command (required) */

WRITEPORT

264 System Automation for z/OS: Programmer's Reference

opr1 = ’(C2)’ /* Port/Port name (required) */
opr2 = ’0500’ /* Switch device number (required) */
opr3 = ’ ’ /* Block/Unblock/blank (required) */
opr4 = ’ ’ /* Connect/discoNnect/blank (required) */
opr5 = ’ ’ /* Port/Port name/blank (required) */

/* Allow/Prohibit string as follows: */

/* CCCCCCCCCCCCCCCCDDDDDDDDDDDDDDDDEEEEEEEEEEEEEEEEFFFFFFFFFFFFFFFF */
/* 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF */
/* | | | Vertical lines point to prohibited ports || | */
M=’AAPAPAPAAAPPAP’

/* */
opr6 = COPIES(’P’,192) || M /* Allow/prohibit attributes */

/* */

ADDRESS LINK ’IHVAPI’ cmd opr1 opr2 opr3 opr4 opr5 opr6
/***/

In Example 1, switch 0500 has 60 available ports (C0 through FB). The variable M
has been used to represent these ports. The first operand (opr1) is given the value
of C2. Port C2 is set to P, as well as ports C4 and C6. This prohibits dynamic
connections from port C2 to port C4 and from port C2 to port C6. However,
connectivity between ports C4 and C6 has not been interrupted.

Example 2 shows how to prohibit port C6 from dynamically connecting with port
C8, while maintaining the attributes set in Example 1. Port C2 is set to P, as well as
ports C6 and C8. This is because each WRITEPORT command writes over the
attributes of the previous settings. If port C2 had not been set to P, dynamic
connectivity between ports C2 and C6 would have been allowed. Remember, the
original goal was to prohibit port C2 from connecting with ports C4 and C6 and to
prohibit port C6 from connecting with ports C2 and C8.
/***/
/* Example 2: Using WRITEPORT to Prohibit C6 from C8 */
/***/
cmd = ’WRITEPORT’ /* Command (required) */
opr1 = ’(C6)’ /* Port/Port name (required) */
opr2 = ’0500’ /* Switch device number (required) */
opr3 = ’ ’ /* Block/Unblock/blank (required) */
opr4 = ’ ’ /* Connect/discoNnect/blank (required) */
opr5 = ’ ’ /* Port/Port name/blank (required) */

/* Allow/Prohibit string as follows: */

/* CCCCCCCCCCCCCCCCDDDDDDDDDDDDDDDDEEEEEEEEEEEEEEEEFFFFFFFFFFFFFFFF */
/* 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF */
/* | | | Vertical lines point to prohibited ports || | */
M=’AAPAAAPAPAAAPPAP’

/* */
opr6 = COPIES(’P’,192) || M /* Allow/prohibit attributes */

/* */

ADDRESS LINK ’IHVAPI’ cmd opr1 opr2 opr3 opr4 opr5 opr6
/***/

In the previous examples, discussion was limited to ports C2, C4, C6, and C8.
Remember, however, that each WRITEPORT command defines and possibly changes
the connectivity attributes for every implemented port on the specified switch.
Therefore, construct the allow or prohibit string with special care.

It is advisable to use the active attribute string as a starting point. Sending the
Query Switch command is a convenient way for an application program to obtain
the active attribute string.

WRITEPORT

Chapter 5. I/O Operations Commands (API) 265

WRITESWCH

Purpose
Use the WRITESWCH command at the API to make changes (update) up to 512
addressable ports on any number of switches that are allocated to, or attached to,
the issuing I/O-Ops. This command is available only at the API because it requires
input in hexadecimal format.

Syntax

�� WRITESWCH wswt_datablock
Vary NOForce BAckout

NOCheck NOBackout
Force NOBackout

NOVary Force NOBackout

��

Parameters
Vary

This is the default option and it indicates that appropriate processing must be
done at the host to support the WRITESWCH command.

NOVary
This option is not valid for the WRITESWCH command.

Force
This option says to do the command in the best manner possible. For example,
if one of the specified hosts does not respond, the command is still performed
on all other hosts.

NOForce
This is the default option and indicates that if there is any failure, the
command should not continue and a return and reason describing the failure
will be returned.

NOCheck
The NOCheck option overrides the detection of two conditions that would
cause the failure of the command under the default NOForce option:
1. Detection of systems in the scope of the command that I/O-Ops is not

operating on
2. Detection of downlevel I/O-Ops's operating on systems in the scope of the

command

If either of these conditions is detected, a return code of 4 is returned.

BAckout
This is the default option and indicates that if any failure is reported by any of
the participating systems, any successful WRITESWCH actions for all the
participating host systems will be backed out.

NOBackout
This option indicates that if any error condition is detected during the
WRITSWCH processing, I/O-Ops will not attempt to change any
WRITESWCH actions that have been performed.

WRITESWCH

266 System Automation for z/OS: Programmer's Reference

Input
The format of the WSWT_datablock is an array of 1 or more entries of the following
structure:

Table 23. WRITESWCH Input

Offset

Dec Hex Type Len Name(Dim) Description
0 (0) STRUCTURE 80 WSWT
0 (0) BITSTRING 1 WSWTFLAG1 Flags byte 1

1... WSWTLAST End of list indicator
0 = More records
1 = Last record in array

.1.. WSWTMDPT Midport
1 = This port is the midport

of a defined chain
..11 WSWTFORM Format ID

0 = Format 0 (original
format)

.... 1... WSWTMBSR Modify block state request
0 = No change to block state
1 = Change block state

.... .1.. WSWTMCSR Modify connect state request
0 = No change to connect

state
1 = Change connect state

.... ..1. WSWTLNVB Logical name validity
0 = Ignore logical name

information
1 = Write logical name to

port address
.... ...1 WSWTCIVB Chain information validity

0 = Ignore chain information
1 = Set up chain

1 (1) BITSTRING 1 WSWTFLAG2 Flags byte 2
1... WSWTMMR Modify mask request

0 = No change to current
PDCM

1 = Change current PDCM
.1.. WSWTAMR AND mask request

0 = No change to current
PDCM

1 = AND given mask with
current PDCM

..1. WSWTOMR OR mask request
0 = No change to current

PDCM
1 = OR given mask with

current PDCM
...1 1111 * Reserved

2 (2) UNSIGNED 2 WSWTSWIT Switch device number
4 (4) CHARACTER 48 WSWTLAIB Port information block
4 (4) CHARACTER 1 * Reserved
5 (5) UNSIGNED 1 LAIBNUMB Port number
6 (6) UNSIGNED 1 LAIBADDR Port address
7 (7) CHARACTER 1 * Reserved
8 (8) BITSTRING 4 LAIBDESC Port descriptors

1... LAIBUNMP Port implementation
0 = Port is implemented
1 = Port is not implemented

.1.. LAIBFBIT Port fence information
0 = Port is not blocked
1 = Port is blocked

WRITESWCH

Chapter 5. I/O Operations Commands (API) 267

Table 23. WRITESWCH Input (continued)

Offset

Dec Hex Type Len Name(Dim) Description
..1. * Reserved
...1 LAIBSBIT Port connection

0 = Port is not connected
1 = Port is connected

.... 1111 >> * Reserved
12 (C) CHARACTER 2 * Reserved
14 (E) UNSIGNED 1 LAIBSADR Static connection port address
15 (F) CHARACTER 5 * Reserved
20 (14) BITSTRING 32 LAIBICM Port prohibit dynamic

connection mask (PDCM)
52 (34) CHARACTER 24 WSWTNAME Port logical name
76 (4C) UNSIGNED 2 WSWTCSWIT Switch device number for

chained switch
78 (4E) UNSIGNED 1 WSWTCPORT Chained port address
79 (4F) CHARACTER 1 * Reserved

How to Set Up the Data Block

By using the described data block, an API user can change the connectivity
attributes of a port. The changes that are requested are controlled by Request bits
in the beginning of the block that must be used in order to say what type of action
is requested. If no request bits are set then the given block is skipped and treated
as a no-op.

The following list shows the commands that can be processed with 1 WSWT block.
The bits that must be set are also listed as well as the data required to make the
change.

Remember that you can make more than one change on a port block by setting the
appropriate combination of bits. For example, you can effectively enter a Block and
a Connect command at the same time by making sure that all the bits that are
relevant for both commands are set on the same block.

Block

WSWTMBSR
Must be set to 1 to indicate that the block state should be changed.

LAIBFBIT
Must be set to 1 to indicate that the port should be blocked.

LAIBADDR
Contains the port address.

WSWTSWIT
Contains the switch that the port address is on.

WSWTFORM
Must be set to 00.

Unblock

WSWTMBSR
Must be set to 1 to indicate that the block state should be changed.

LAIBFBIT
Must be set to 0 to indicate that the port should be unblocked.

WRITESWCH

268 System Automation for z/OS: Programmer's Reference

LAIBADDR
Contains the port address.

WSWTSWIT
Contains the switch that the port address is on.

WSWTFORM
Must be set to 00.

Connect

WSWTMCSR
Must be set to 1 to indicate that the connection state should be changed.

LAIBSBIT
Must be set to 1 to indicate that the port should be connected.

LAIBADDR
Contains the port address.

LAIBSADR
Contains the port address that LAIBADDR should be connected to.

WSWTSWIT
Contains the switch that the port addresses are on.

WSWTFORM
Must be set to 00.

Disconnect

WSWTMCSR
Must be set to 1 to indicate that the connection state should be changed.

LAIBSBIT
Must be set to 0 to indicate that the port should be disconnected.

LAIBADDR
Contains the port address.

LAIBSADR
Contains the port address that LAIBADDR should be disconnected from.

WSWTSWIT
Contains the switch that the port addresses are on.

WSWTFORM
Must be set to 00.

Chain

WSWTCIVB
Must be set to 1 to indicate that the chain information is valid and you
want to change it.

WSWTMDPT
Must be set to 1 to indicate that this port is the midport on the chain.

WSWTMCSR
Must be set to 1 to indicate that the connection state should be changed.

LAIBSBIT
Must be set to 1 to indicate that the port should be chained by setting a
connection between LAIBADDR and LAIBSADR.

LAIBADDR
Contains the port address.

WRITESWCH

Chapter 5. I/O Operations Commands (API) 269

LAIBSADR
Contains the port address that LAIBADDR should be connected to.

WSWTSWIT
Contains the switch that the port addresses are on.

WSWTCPORT
Contains the chained port address that LAIBADDR should be chained to.

WSWTCSWIT
Contains the switch that the chained port address is on.

WSWTFORM
Must be set to 00.

Unchain

WSWTCIVB
Must be set to 1 to indicate that the chain information is valid and you
want to change it.

WSWTMDPT
Must be set to 1 to indicate that this port is the midport on the chain.

WSWTMCSR
Must be set to 1 to indicate that the connection state should be changed.

LAIBSBIT
Must be set to 0 to indicate that the port should be unchained by
disconnecting LAIBADDR and LAIBSADR.

LAIBADDR
Contains the port address.

LAIBSADR
Contains the port address that LAIBADDR should be disconnected from.

WSWTSWIT
Contains the switch that the port addresses are on.

WSWTCPORT
Contains the chained port address that LAIBADDR should be unchained
from.

WSWTCSWIT
Contains the switch that the chained port address is on.

WSWTFORM
Must be set to 00.

Write

WSWTLNVB
Must be set to 1 to indicate that the logical name field is valid.

LAIBADDR
Contains the port address.

WSWTNAME
Contains the logical name that should be assigned to the port address
given in LAIBADDR.

WSWTSWIT
Contains the switch that the port addresses are on.

WRITESWCH

270 System Automation for z/OS: Programmer's Reference

WSWTFORM
Must be set to 00.

Modify PDCM

WSWTMMR
Must be set to 1 to indicate that the PDCM should be modified.

LAIBADDR
Contains the port address.

LAIBICM
Contains the new PDCM for the given port.

WSWTSWIT
Contains the switch that the port addresses are on.

WSWTFORM
Must be set to 00.

And PDCM

WSWTAMR
Must be set to 1 to indicate that the given PDCM should be AND'ed with
the current PDCM.

LAIBADDR
Contains the port address.

LAIBICM
Contains the PDCM to be AND'ed for the given port.

WSWTSWIT
Contains the switch that the port addresses are on.

WSWTFORM
Must be set to 00.

Or PDCM

WSWTOMR
Must be set to 1 to indicate that the given PDCM should be OR'ed with
the current PDCM.

LAIBADDR
Contains the port address.

LAIBICM
Contains the PDCM to be OR'ed for the given port.

WSWTSWIT
Contains the switch that the port addresses are on.

WSWTFORM
Must be set to 00.

Usage
v The WSWT data block that you enter is a series of 80-byte WSWT structures that

I/O-Ops processes sequentially. Be sure to take this into account. For example,
assume ports FB and EA are statically connected, and you want ports C0 and EA
to be statically connected instead.

WRITESWCH

Chapter 5. I/O Operations Commands (API) 271

Note: If the WSWT structure contains an “AND PDCM” or an “OR PDCM” bit
setting, there may only be one “AND PDCM”/ “OR PDCM” and no
“MODIFY PDCM”, in the structure.

1. In the data block, disconnect FB and EA first.
2. Then, connect CO, and EA.

If you reverse the order, the command will fail because EA is already statically
connected.

v If you specify Vary, I/O-Ops varies the relevant paths in all the WSWT
structures offline first. If these operations are all successful or if you specified
Force, the program then sends all the WSWT structures to the affected
switch(es). If these operations are successful, I/O-Ops then varies the
appropriate paths online.

v The Writeswch command is used implicitly when you activate a switch
configuration in matrix format by using either the I/O-Ops ISPF dialog or the
workstation feature.

WRITESWCH

272 System Automation for z/OS: Programmer's Reference

Chapter 6. Invoking I/O Operations using the API

API Calls by REXX EXECs

Rules for Calls by a REXX EXEC
Separate the parameters as follows:
v If the REXX EXEC uses the address link invocation to call the API, the

parameters must be separated by blanks as shown:
address link ’IHVAPI’ parm1 ... parmn

v If the REXX EXEC uses the REXX call to call the API, the parameters must be
separated by commas as shown:
call ’IHVAPI’ parm1,parm2,parm3,...

Specify the following variables:
ihvrc

To receive the return code
ihvreas

To receive a reason code
ihvresp

As the response area to receive the command output if there is any

When specifying the variables listed above, note the following:
v The return code is in printable decimal format, while the reason code is in

printable hexadecimal format. See SA OS/390 Messages and Codes for a list of
reason codes.

v A return code and reason code are not provided if more parameters were
specified in the input parameter list than are allowed for a REXX EXEC. A REXX
error message is sent instead.

v If ihvrc and ihvreas are not specified, I/O operations can still process the
command. However, the EXEC might not be able to check whether the
command was processed successfully because no return code or reason code can
be checked.

v If ihvresp is not specified, I/O operations can process the command but cannot
return data to the REXX EXEC.

Literal Values
If the REXX EXEC calls I/O operations using literal values, the literal value for
each parameter should be enclosed in single quotes (') to avoid ambiguity during
processing.

Optional Variables
Optionally, a REXX EXEC caller can:
v Set a variable equal to the name of the command being specified
v Set a variable for each operand and option associated with the command being

specified.

© Copyright IBM Corp. 1996, 2012 273

Two Examples of REXX EXEC Calls

Example of a Call to Connect Two Ports
In the following example, the caller enters the CONNECT command to connect
port C0 statically, or dedicate it, to port E0 on switch 100.
/* Connect EXEC */
ihvrc = 0 /* Return code must be called */

/* */
ihvreas = 0 /* Reason code must be called */

/* ihvreas. Name must be in EXEC. */
/* */

ihvresp = ’ ’ /* Response area must be called */
/* ihvresp. Name must be in EXEC. */
/* */

parm1 = ’CONNECT’ /* Command name */
parm2 = ’(C0)’ /* First port address (operand) */
parm3 = ’(E0)’ /* Second port address (operand) */
parm4 = ’0100’ /* Switch device number (operand) */
parm5 = ’NOFORCE’ /* These are the default options */
parm5 = ’VARY’ /* that do not have to be */
parm7 = ’BACKOUT’ /* specified in the EXEC. */

If the Caller Uses the Address Link Invocation:
address link ’IHVAPI’ parm1 parm2 parm3 parm4 parm5 parm6 parm7
say "RETURN CODE = " ihvrc
say "REASON CODE = " ihvreas
say "RESPONSE AREA = " ihvresp
/* Assume screen is 80 characters - */
/* Will appear to be printing 80-character records */

EXIT

If the Caller Uses the REXX Call:
call ’IHVAPI’ parm1,parm2,parm3,parm4,parm5,parm6,parm7
say "RETURN CODE = " ihvrc
say "REASON CODE = " ihvreas
say "RESPONSE AREA = " ihvresp
/* Assume screen is 80 characters - */
/* Will appear to be printing 80-character records */

EXIT

Generalized Example of a REXX EXEC Call
When processed, the following REXX EXEC can be used to enter any I/O
operations command. The 80-character output is assumed to be in message format,
so QUERY output will not be readable.
/* */
/* Initialization */
/* */
linelength = 80 /* length of 1 response line */
/* */
/* Get the command as specified by the user */
/* */
Parse Upper Arg IHVX1 IHVX2 IHVXPARMS
/* */
/* Correct basic syntax errors for the user */
/* */
/* - Capitalize command keywords (must be caps for IHV) */
/* - Strip out extraneous blanks (must have only 1 for IHV) */
/* */
IHVXCMD = Space(IHVX1 IHVX2 IHVXPARMS,1)
Drop IHVX1 IHVX2 IHVXPARMS
/* */

274 System Automation for z/OS: Programmer's Reference

/* Tell the user what we are about to do */
/* */
Say ’Issuing the IHV command:’ IHVXCMD
/* */
/* Issue the command */
/* */
Address LINK ’IHVAPI’ IHVXCMD
If IHVRC > 4
Then /* Command failed */
Do;

Say ’Return code:’ IHVRC ’Reason code:’ IHVREAS
End;
/* */
/* Show the user the response from the command */
/* */
Do lineindex = 1 to Length(IHVRESP) by linelength;

Say Substr(IHVRESP,lineindex,linelength);
End;
/* */
/* Return to the caller */
/* */
Exit IHVRC;

API Calls by the CALL Macro

General Information
I/O operations allows a program that uses the CALL macro to invoke either
IHVAPI2 or IHVAPI.

The Parameter Lists
The caller must pass a variable-length parameter list, where:
v Each item in the list is an address of a parameter in the calling program. (The

language that the program is written in must allow the program to alter the
parameters for return code, reason code, and response area.)

v The high-order bit of the last parameter address must be set to 1 to indicate the
end of the list.

v Register 0 must be set to 0 (zero) so that I/O operations knows the invocation is
from an assembled user program, and not an interpreted REXX EXEC.

v Register 1 must contain the address of the parameter list.

The Caller Should Check Register 15 Upon Return From the
Call

If not enough parameters were passed on the CALL, I/O operations returns a
reason code of X'D0xx0001' in register 15. This code specifies that either an empty
or an incorrect parameter list has been sent.
v If IHVAPI2 was invoked, at least 5 parameters are needed: the command name

and the last four variables listed in “The Second Parameter in the Parameter
List” on page 276.

v If IHVAPI was invoked, at least 4 parameters are needed: the command name
and the variables listed in “The First Parameter in the Parameter List” on page
276.
If more than 25 parameters were passed on the CALL, I/O operations returns a
reason code of X'D0xx0007' in register 15. This code specifies that the list
contained too many parameters.

Chapter 6. Invoking I/O Operations using the API 275

For a comparison between IHVAPI2 and IHVAPI, refer to “Calling the I/O
Operations API” on page 193.

Calling Program Uses IHVAPI2

Pass the Following Parameters in the Parameter List:
v One 38-character variable (padded on the right with blanks) equal to the name

of the I/O operations command being specified.
v As many 38-character variables (each padded on the right with blanks) as

needed for the operands in the command with the following exceptions:
– For a range, specify a 71-character variable.
– For an array, data block, or table, specify a variable long enough to contain it.

v As many 38-character variables (each padded on the right with blanks) as
needed for the options associated with the command.

v As the fourth-from-last and the third-from-last variables, specify information
related to the response area. Because these two parameters are interdependent,
they are listed in the table following this list.

v As the second-from-last (or next-to-last) variable, specify a 4-byte field in
hexadecimal format for the return code.

v As the last variable, specify a 4-byte field in hexadecimal format for the reason
code.

4th-From-Last
Parameter

3rd-From-Last
Parameter

When the Response Area Is To Be
Managed By:

0 (zero) any value I/O operations with a new output buffer

Response area
address

0 (zero) I/O operations with a re-used output buffer

Response area
address

Response area length Caller

Notes:

1. Initialize the response area.
2. If I/O operations manages the response area, the caller must not modify any of

the fields in the prefix area, which is described in “A Prefix Area Can Precede
the Response Area.” If a field is modified, the results are unpredictable.

3. On return from the call, I/O operations puts the length of the response area
that it used in the third-from-last parameter. It returns a length of 0 (zero) if no
response data is returned. Therefore, the caller should save the input value of
this parameter before invoking I/O operations.

4. If the caller manages the response area, the caller should update the
third-from-last parameter for each invocation.

To Invoke IHVAPI2, Specify the Following:
CALL IHVAPI2,addrPARM1, ... addrPARMn

A Prefix Area Can Precede the Response Area
If I/O operations manages the response area, it returns a prefix area as well. Use
the following information when you need to release these areas.

x Is the address of the response area, which is contained in the
fourth-from-last parameter.

276 System Automation for z/OS: Programmer's Reference

x-4 Is the 4-byte address of the prefix area, which immediately precedes the
response area.

x-12 Bytes is the 1-byte 'subpool number '0'.

x-16 Bytes is the 4-byte length of the prefix area plus the contiguous response
area.

For further information, refer to “General Information About the Response Area”
on page 194 and to the following example.

Example of a Caller Invoking IHVAPI2
ESCMSAMP CSECT

* Issue multisystem QUERY INTERFACE Switch to get switch port
* information. R1 points to a 4 character switch device number.

MVC SWITCH_DEVICE(4),0(R1) Get Switch device number
MVC HNUM+14(4),0(R1) Set number in query command
SR R0,R0 Required by I/O Operations
CALL IHVAPI2,(QUERY,INTERFACE,SWITCH,HNUM,VALUE, X

ASTERISK,SCOPE,VALUE,ASTERISK, X
QIS@,QISLENGTH,RC,REASON),VL

CLC RC,=F’0’ 0 means all hosts responded ok
BNE FREE If not, then free storage

* Map the QUERY INTERFACE Switch row data.

QISOK L R10,QIS@ Point to I/O Operations output area
USING QISINFO,R10 Map query interface info
LH R9,HDRSIZE Get the QIS header size
AR R9,R10 Point to the first port row
USING PORTROW,R9 Map port interface row
:

* A port that needs blocking is found, so block it.

UNPK PORTNUMBER+1(3),PORTNUM(2) Convert 1 byte hex port
TR PORTNUMBER+1(2),TRANTAB-C’0’ number to EBCDIC
MVI PORTNUMBER+3,C’)’ Restore trailing ")"
MVC BLKLENGTH,=F’0’ Let manage the buffer
SR R0,R0 Required by I/O Operations
CALL IHVAPI2,(BLOCK,PORTNUMBER,SWITCH_DEVICE, X

BLOCK@,BLKLENGTH,RC,REASON),VL
CLC RC,=F’4’ Block worked?
BNE NOBLOCK No, then process error
:

* Now done with ESCM obtained storage, so release it.

DROP R10
FREE L R10,QIS@ Get Query output buffer
C R10,=F’0’ I/O Operations Query buffer exists?
BE CONTINUE No, continue
S R10,=F’16’ Address I/O Operations Query buffer
USING ESCMPREFIX,R10
L R2,BUFLENGTH Get buffer length
L R3,BUFSUBPOOL Get buffer subpool
STORAGE RELEASE,LENGTH=(R2),ADDR=BUF@,SP=(R3)
L R10,BLOCK@ Get Block output buffer
C R10,=F’0’ I/O Operations Block buffer exists?
BE CONTINUE No, continue
S R10,=F’16’ Address I/O Operations Query buffer

Chapter 6. Invoking I/O Operations using the API 277

L R2,BUFLENGTH Get buffer length
L R3,BUFSUBPOOL Get buffer subpool
STORAGE RELEASE,LENGTH=(R2),ADDR=BUF@,SP=(R3)
:

* I/O Operations API parameters

QIS@ DC A(0)
QISLENGTH DC F’0’
BLOCK@ DC A(0)
BLKLENGTH DC F’0’
RC DC F’0’
REASON DC F’0’
QUERY DC CL38’QUERY’
INTERFACE DC CL38’INTERFACE’
SWITCH DC CL38’SWITCH’
VALUE DC CL38’VALUE’
ASTERISK DC CL38’*’
SCOPE DC CL38’SCOPE’
BLOCK DC CL38’BLOCK’
HNUM DC CL38’HNUM(THIS-SYS.XXXX)’
PORTNUMBER DC C’(’,CL2’ ’,C’)’,CL34’ ’
SWITCH_DEVICE DC CL38’ ’
*
TRANTAB DC CL16’0123456789ABCDEF’
*
QISINFO DSECT QUERY INTERFACE Switch output
DS CL4
HDRSIZE DS H Size of this header
ROWSIZE DS H Size of each row
DS CL44
NUMROWS DS F Number of rows
*
PORTROW DSECT
PORTNUM DS XL1 Port number
DS CL155
ROWCODE DS F Query row code (see below)
PORTROW EQU 0 Port row with no error
SUMMROW EQU X’5100FFFF’ Summary row
*
ESCMPREFIX DSECT I/O Operations supplied buffer info
BUFLENGTH DS F Buffer length
BUFSUBPOOL DS FL1 Subpool number
DS F
BUF@ DS A Buffer address
:

Calling Program Uses IHVAPI

Pass the Following Parameters in the Parameter List:
v A 24-character variable (padded on the right with blanks) equal to the name of

the I/O operations command being specified.
v A 24-character variable (padded on the right with blanks) for each operand in

the command—with the exception of an operand that contains an array, data
block, or table. In these cases, specify a variable that is long enough to contain
the item. (Note, however, that I/O operations only uses 64KB of the response
area on an IHVAPI call.)

v A 24-character variable (padded on the right with blanks) for each option in the
command.

v As the third-from-last variable, specify the address of the response area.
(Initialize the response area.)

278 System Automation for z/OS: Programmer's Reference

When a caller invokes IHVAPI, I/O operations can return up to 64KB of data in
the response area. If the command output exceeds this amount, I/O Operations
fills the response area and notifies the caller that an overflow condition has
occurred. Assume, however, that an area of 24KB is sufficient for most
commands. Exceptions can be such commands as the DISPLAY DEVICE,
DISPLAY RESULTS, DISPLAY VARY, QUERIES, REMOVE DEV, and RESTORE
DEV commands.

v As the second-from-last variable, specify a 4-byte field in hexadecimal format for
the return code.

v As the last variable, specify a 4-byte field in hexadecimal format for the reason
code.

To Call IHVAPI, Specify the Following:
CALL IHVAPI,(CMD,PARM1,...PARMn,IHVRESP,IHVRC,IHVREAS),VL

Chapter 6. Invoking I/O Operations using the API 279

280 System Automation for z/OS: Programmer's Reference

Part 4. Status Display Facility Definitions

Chapter 7. SDF Initialization Parameters . . . 283
DCOLOR. 283
DPFKnn 284
DPFKDESC1 285
DPFKDESC2 285
EMPTYCOLOR. 286
ERRCOLOR 287
INITSCRN 287
MAXOPS. 288
PFKnn. 288
PRIORITY 290
PRITBLSZ 291
PROPDOWN 292
PROPUP 292
SCREENSZ 292
TEMPERR 293
Priority and Color Default Assignments 294

Subsystem 294
Gateway 295
Spool 296
WTOR. 296
Monitor Resource 296
Captured Message. 296
TWS Automation 297
Groups 297
Processor Operations 297

Chapter 8. SDF Definition Statements 299
AOFTREE 299

BODY 302
BODYHEADER 303
BODYTEXT 305
CELL 305
DATETIME 307
ENDPANEL 308
INPUTFIELD 308
PANEL 309
PFKnn. 311
STATUSFIELD 311
STATUSTEXT 314
TEXTFIELD 315
TEXTTEXT 317
Example SDF Definition 318

SDF Tree Structure Definitions. 318
SDF Panel Definitions 320
SDF Initialization Parameters in AOFINIT . . . 324
SDF Status Detail Definitions 325

Example Of A Large SDF Panel 325

Chapter 9. SDF Commands 331
Using SDF Commands 331

Dynamically Loading Panels and Tree Structures 331
SCREEN 333
SDF 333
SDFCONF 334
SDFPANEL 335
SDFTREE. 336
Navigation Commands 337

This part describes the definitions for the status display facility (SDF). See IBM
Tivoli System Automation for z/OS User’s Guide for information about how to set up
the display panels and how to use SDF.

© Copyright IBM Corp. 1996, 2012 281

||
||
||
||
||
||
||
||
||
||

||
||

||

||

||
||

||

282 System Automation for z/OS: Programmer's Reference

Chapter 7. SDF Initialization Parameters

The SDF initialization parameters are:

DCOLOR Default status descriptor color, see “DCOLOR”

DPFKnn PF key settings for detail status panel, see “DPFKnn” on page 284

DPFKDESC1 PF key descriptions for detail status panel, see “DPFKDESC1” on
page 285

DPFKDESC2 PF key descriptions for detail status panel, see “DPFKDESC2” on
page 285

EMPTYCOLOR Default color for status component without a status descriptor, see
“EMPTYCOLOR” on page 286

ERRCOLOR Default color for status component without a tree structure entry,
see “ERRCOLOR” on page 287

INITSCRN Initial screen, see “INITSCRN” on page 287

MAXOPS Maximum operator logon limit, see “MAXOPS” on page 288

PFKnn Default PF key settings, see “PFKnn” on page 288

PRIORITY Priority and color definitions, see “PRIORITY” on page 290

PRITBLSZ Priority and color table size, see “PRITBLSZ” on page 291

PROPDOWN Propagate status downward in SDF tree structure, see
“PROPDOWN” on page 292

PROPUP Propagate status upward in SDF tree structure, see “PROPUP” on
page 292

SCREENSZ Screen size, see “SCREENSZ” on page 292

TEMPERR Temporary error limit value, see “TEMPERR” on page 293

DCOLOR

Purpose
The DCOLOR parameter defines the color that is used for a status descriptor that
is outside any of the defined priority and color ranges. This parameter is optional.
If it is not coded, the program default color is White.

Syntax

��
DCOLOR=White

DCOLOR=color
��

Parameters
color

The color that is used for the status descriptor. It can be one of the following:
R Red

© Copyright IBM Corp. 1996, 2012 283

P Pink
Y Yellow
T Turquoise
G Green
B Blue
W White

The default is White.

Restrictions and Limitations
In member AOFINIT, if the number of PRIORITY parameters (see “PRIORITY” on
page 290) exceeds the default PRITBLSZ parameter value of 7 (see “PRITBLSZ” on
page 291), the DCOLOR parameter must follow the PRITBLSZ parameter.

Usage
The recommended value for DCOLOR is White. It is supplied in the SA z/OS
SINGNPRM member AOFINIT. It does not conflict with existing status and color
definitions.

Examples
DCOLOR = WHITE

DPFKnn

Purpose
The DPFKnn parameter defines all PF keys unique to a detailed status panel.

Syntax

�� DPFKnn=command ��

Parameters
nn PF key number. Values can range from 1 to 24. You can modify all PF key

definitions.

command
The command executed when the defined PF key is pressed.

Restrictions and Limitations
This parameter must be specified on one line. Continuation lines are not allowed.
The total length of the parameter and parameter value specification cannot exceed
72 characters.

PF keys defined by DPFKnn statements are only active when the detail panel is
displayed and override the default settings defined with the PFKnn parameter.

Usage
Table 24 on page 289 shows variables that you can use as part of the command
specified on the DPFKnn parameter.

DCOLOR

284 System Automation for z/OS: Programmer's Reference

Examples
DPFK9 = SCREEN VTAMSTAT

DPFKDESC1

Purpose
The DPFKDESC1 parameter defines the first part of the PF key description
appearing at the bottom of the detail screen. This text is concatenated with the text
defined with the DPFKDESC2 parameter.

Syntax

�� DPFKDESC1=text ��

Parameters
text

The text of the detail PF key description. The length of text allowed for this
parameter depends on the total parameter length limit (72 characters) and the
total text length limit defined by DPFKDESC1 and DPFKDESC2 (80
characters). For example, when defining a detail PF key description that is 79
characters long, you can define the first 60 characters of text on DPFKDESC1
and the remainder of the text on DPFKDESC2.

Restrictions and Limitations
v This parameter must be specified on one line. Continuation lines are not

allowed. The total length of the parameter and parameter value specification
cannot exceed 72 characters.

v The total length of the PF key description defined by DPFKDESC1 and
DPFKDESC2 cannot exceed 80 characters.

Examples
DPFKDESC1=PF3=RET 6=ROLL 7=UP 8=DN 9=AST 10=DEL

DPFKDESC2

Purpose
The DPFKDESC2 parameter defines the second part of the PF key description
appearing at the bottom of the detail screen. This text is concatenated with the text
defined with the DPFKDESC1 parameter.

Syntax

�� DPFKDESC2=text ��

Parameters
text

The text of the continued PF key description, begun in a previous DPFKDESC1

DPFKnn

Chapter 7. SDF Initialization Parameters 285

statement. The length of the text depends on the length specified on the
previous DPFKDESC1 statement, because the total description text defined by
DPFKDESC1 and DPFKDESC2 cannot exceed 80 characters.

Restrictions and Limitations
v This parameter must be specified on one line. Continuation lines are not

allowed. The total length of the parameter and parameter value specification
cannot exceed 72 characters.

v The total length of the PF key description defined by DPFKDESC1 and
DPFKDESC2 cannot exceed 80 characters.

Examples
DPFKDESC2=11=BOT 12=TOP

EMPTYCOLOR

Purpose
The EMPTYCOLOR parameter defines the color displayed for a status component
that has no status descriptor associated with it. This parameter is optional. If it is
not coded, the default color is Blue.

Syntax

��
EMPTYCOLOR=Blue

EMPTYCOLOR=color
��

Parameters
color

The color that is used for the status descriptor. It can be one of the following:
R Red
P Pink
Y Yellow
T Turquoise
G Green
B Blue
W White

The default is Blue.

Usage
The recommended value for EMPTYCOLOR is Blue. It is supplied in SA z/OS
SAOFNPRM member AOFINIT. It does not conflict with existing status and color
definitions. This parameter can be overridden in the AOFTREE member.

Examples
EMPTYCOLOR = BLUE

DPFKDESC2

286 System Automation for z/OS: Programmer's Reference

ERRCOLOR

Purpose
The ERRCOLOR parameter defines the color displayed for a status component that
does not have a corresponding entry in the SDF tree structure.

This parameter is optional. If it is not coded, the default color is White.

Syntax

��
ERRCOLOR=White

ERRCOLOR=color
��

Parameters
color

The color that is used for the status component. It can be one of the following:
R Red
P Pink
Y Yellow
T Turquoise
G Green
B Blue
W White

The default is White.

Examples
ERRCOLOR = YELLOW

INITSCRN

Purpose
The INITSCRN parameter defines the initial panel displayed by SDF.

Syntax

�� INITSCRN=panel_name ��

Parameters
panel_name

Any valid alphanumeric name with a maximum length of sixteen.

Usage
If you change the name of the initial panel defined in the AOFPNLS member of
the NetView DSIPARM data set, you must also change the panel name in the
INITSCRN parameter.

ERRCOLOR

Chapter 7. SDF Initialization Parameters 287

|

Examples
INITSCRN = SYSTEMA1

MAXOPS

Purpose
The MAXOPS parameter defines the maximum number of logged-on operators
that can use the SDF. This parameter is optional. If it is not coded, a program
default of 30 is used.

Syntax

��
MAXOPS=30

MAXOPS=number
��

Parameters
number

The number of maximum operators. Values can range from 1 to 999. The
default is 30.

Usage
If the number of operators trying to use the SDF is more than the number defined
in MAXOPS, additional operators are denied access to the SDF, because the
dynamic update facility keeps an internal count of logged-on operators.

Examples
MAXOPS = 35

PFKnn

Purpose
The PFKnn parameter defines the default PF key settings for SDF panels.

Syntax

�� PFKnn=command ��

Parameters
nn Values can range from 1 to 24.

command
The command issued when the defined PF key is pressed.

Restrictions and Limitations
This parameter must be specified on one line. Continuation lines are not allowed.
The total length of the parameter and parameter value specification cannot exceed
72 characters.

INITSCRN

288 System Automation for z/OS: Programmer's Reference

|
|

Usage
Table 24 shows the variables that can be used as part of the command specified on
the PFKnn parameter.

Notes:

1. Use of these variables (that is, their appropriate translation from variables to
values) is valid on a detail status panel or on a status panel when the cursor is
on a status field.

2. The '#' character can be used alternatively instead of the '&' character in order
to avoid name clashes with system symbol names.

Table 24. Variables for the PFKnn and DPFKnn Parameters

Variable Translated To

&CO or &COLOR The color of the detail entry

&COMP or &RESOURCE The component name

&DA or &DATA or
&DISPDETL

The actual message text

&DATE The date the detail entry was added

&DCOMP The displayed component name

&HL or &HIGHLITE The highlight level of the detail entry

&IN or &INFO Detail entry information displayed on the status panel

&PR or &PRIORITY The priority of the detail entry

&QCOMP The component name that the status was queued to by SDF

&RESAPPL or &COMPAPPL The component name and the alternate component name, if
used, to queue the status

&ROOT or &SYSTEM Root or system

&RV or &REFVALUE The reference value of the detail entry

&SENDERID or &SID The reporter submitting the detail entry

&SNODE or
&SENDERNODE

The node of the reporter submitting the detail entry

&SO or &SOURCE The name of the reporter submitting the detail entry

&SYSDATE System date

&SYSTIME System time

&TIME The time the detail entry was added

Examples
To issue MVS D A,TSO when PF4 is pressed with the cursor placed on the TSO entry
on the status screen:
PFK4 =MVS D A,&INFO

The following example assigns the SDFCONF command to the PF4 key to delete
SDF entries. This is useful because it prompts you for confirmation before
performing the actual deletion. If you do not want the prompt panel to appear,
then add ",VERIFY=NO" to the end of the SDFCONF command.

Note: VFY can be used as an abbreviation for VERIFY should a parameter length
restriction apply.

PFK4=SDFCONF &ROOT,&COMPAPPL,&RV,&SID,&SNODE,&DATE,&TIME,&DA

PFKnn

Chapter 7. SDF Initialization Parameters 289

|
|
|
|

|
|

|

When SDFCONF deletes an exceptional message entry from the SDF control
structure it also removes the message from all other interfaces that the message has
been sent to, for example, TEP and NMC.

PRIORITY

Purpose
The PRIORITY parameter defines the relationship between colors and priority
ranges. This parameter is optional. If it is not coded, program defaults are used.

Syntax

��
PRIORITY=program_defaults

PRIORITY=nnn,mmm,color
��

Parameters
nnn

The lower limit of the priority range. It can be any valid number between 001
and 99999999.

mmm
The upper limit of the priority range. It can be any valid number between 001
and 99999999. It must be equal to or greater than the value specified in nnn.

color
The color that is used for a particular priority range. It can be one of the
following:
R Red
P Pink
Y Yellow
T Turquoise
G Green
B Blue
W White

program_defaults
These are:

Priority Range Color
001–199 RED
200–299 PINK
300–399 YELLOW
400–499 TURQUOISE
500–599 GREEN
600–699 BLUE

Restrictions and Limitations
v This parameter must be specified on one line. Continuation lines are not

allowed. The total length of the parameter and parameter value specification
cannot exceed 72 characters.

PFKnn

290 System Automation for z/OS: Programmer's Reference

|
|
|

v In the AOFINIT member, if the number of PRIORITY parameters defining
priority and color ranges (see “PRIORITY” on page 290) exceeds the default
PRITBLSZ parameter value of 7 (see “PRITBLSZ”), the DCOLOR parameter
must follow the PRITBLSZ parameter.

v Default values for priorities and colors are used if and only if no PRIORITY
parameters are defined. If you choose to customize any priority and color
definitions, you must specify all priority and color definitions in AOFINIT,
rather than customizing the one priority and color definition and using the
defaults for the remaining definitions.

Usage
It is recommended that you use the priority and color values that are supplied
with the SA z/OS DSIPARM member AOFINIT.

Examples
Priority = 001,199,RED
Priority = 200,299,PINK
Priority = 300,399,YELLOW
Priority = 400,499,TURQUOISE
Priority = 500,599,GREEN
Priority = 600,699,BLUE

PRITBLSZ

Purpose
The PRITBLSZ parameter defines the number of priority and color ranges defined
by the PRIORITY entries. This parameter is optional. The default is 7.

Syntax

��
PRITBLSZ=7

PRITBLSZ=nn
��

Parameters
nn The number of priority and color ranges. It can be any number greater than or

equal to 7. The default is 7.

Restrictions and Limitations
In the AOFINIT member, if the number of PRIORITY parameters defining priority
and color ranges (see “PRIORITY” on page 290) exceeds the default PRITBLSZ
parameter value of 7 (see “PRITBLSZ”), the DCOLOR parameter must follow the
PRITBLSZ parameter.

Usage
The recommended value for PRITBLSZ is 7. It is supplied with the SA z/OS
DSIPARM member AOFINIT.

Examples
PRITBLSZ = 7

PRIORITY

Chapter 7. SDF Initialization Parameters 291

PROPDOWN

Purpose
The PROPDOWN parameter defines whether status information should be sent
down the status tree as a system default or not. This parameter is optional. The
default is NO.

Syntax

��
PROPDOWN=NO

PROPDOWN=YES
��

Parameters
None.

Usage
The recommended value for PROPDOWN is NO. This parameter can be
overridden with individual requests to add a status descriptor to a status
component.

PROPUP

Purpose
The PROPUP parameter defines whether status information should be sent up the
status tree as a system default. This parameter is optional. The default is YES.

Syntax

��
PROPUP=YES

PROPUP=NO
��

Parameters
None.

Usage
The recommended value for PROPUP is YES. This parameter can be overridden
with individual requests to add a status descriptor to a status component.

SCREENSZ

Purpose
The parameter SCREENSZ defines the buffer size as well as the screen size. The
screen size is used for verifying panel definitions of panels with an undefined
screen size.

PROPDOWN

292 System Automation for z/OS: Programmer's Reference

|

|
|
|

The first value of the SCREENSZ parameter defines the screen buffer size. The
buffer size must be as large as the largest panel size. The size of each panel can be
calculated as follows:
v Count the number of CELL definitions that fit into the associated body section.

Repeat this for each body section
v Accumulate the counts
v Multiply the sum by 17
v Add the length of each CELL definition that has been counted in step 1
v Count the STATUSFIELD, TEXTFIELD, and BODYHEADER definitions
v Multiply the count by 13 and add the value to the result of step 4
v Add the length of each STATUSFIELD, TEXTFIELD, and BODY
v Add twice the maximum panel width
v Add 32
v Round the total size to the next higher multiple of 8

Syntax

��
SCREENSZ=3000,24,80

SCREENSZ=number,rows,cols
��

Parameters
number

Buffer size value. Values can range from 3000 to 99999. The default is 3000.

rows
The minimum number of rows. Values can range from 24 to 62. The default is
24.

cols
The minimum number of columns. Values can range from 80 to 160. The
default is 80.

Examples
SCREENSZ = 4000,43,80

TEMPERR

Purpose
The TEMPERR parameter defines the maximum number of temporary
input/output errors when trying to display a SDF panel. This parameter is
optional. The default is 3.

Syntax

��
TEMPERR=3

TEMPERR=number
��

SCREENSZ

Chapter 7. SDF Initialization Parameters 293

|
|
|

|
|

|

|

|

|

|

|

|

|

|

||

|

|
|
|

|
|
|

|

Parameters
number

Values can range from 3 to 99. The default is 3.

Usage
The recommended value for TEMPERR is 3. It is supplied with the SA z/OS
DSIPARM member AOFINIT.

Examples
TEMPERR = 3

Priority and Color Default Assignments
In SDF and the DISPSTAT command dialog, subsystems appear in different colors
that indicate their status. The condition of WTORs, application groups (APGs),
monitor resources (MTRs), tapes requests, TWS automation messages and
gateways are also indicated by color.

You can modify the default assignments when you define your SA z/OS policy.
Refer to the "Status Display Entry Type" in IBM Tivoli System Automation for z/OS
Defining Automation Policy for how to change the default assignments or to define
your own status values.

Some of the default assignments show the value 'NOADD' in the field 'Req'. This
means that the component with the corresponding status is not added to the SDF
chain.

Note: Combining NOADD with 'Clear=Y' causes the component to be removed
from the SDF display when this status is reached.

Subsystem
The color and highlighting of a subsystem in SDF indicate the current status of a
subsystem (the possible status conditions are defined in "Automation Agent
Statuses" in IBM Tivoli System Automation for z/OS User’s Guide).

Table 25 shows the default color and highlighting that is assigned to each status by
SA z/OS. White is also used by default to identify status components without a
tree structure. These colors may have been changed for your SDF display.

Blinking as a means of highlighting is not used by every type of display, in
particular when you are using 3270 terminal emulation on a PC. You may see
another type of highlighting, for example, black text on a white background.

Table 25. Table of Default Subsystem Status Colors and Priorities

Status Priority Color Highlight

BROKEN 120 Red Reverse

BREAKING 130 Blinking

STOPPED 140 Normal

TEMPERR

294 System Automation for z/OS: Programmer's Reference

|

|
|
|
|

|
|
|
|

|
|
|

|
|

|

|
|
|

|
|
|

|
|
|

||

||||

||||

|||

|||

Table 25. Table of Default Subsystem Status Colors and Priorities (continued)

Status Priority Color Highlight

HALFDOWN 220 Pink Normal

STARTED2 230 Blinking

STUCK 240 Underline

ZOMBIE 250 Reverse

ABENDING 320 White Reverse

HALTED 330 Underline

STOPPING 420 Yellow Reverse

AUTOTERM 430 Normal

ENDING 440 Underline

RUNNING 520 Turquoise Blinking

ACTIVE 530 Reverse

STARTED 540 Underline

RESTART 550 Normal

EXTSTART 550 Blinking

UP 640 Green Normal

ENDED 650 Underline

DOWN 730 Blue Underline

AUTODOWN 740 Normal

INACTIVE 740 Normal

CTLDOWN 750 Reverse

MOVED 760 Reverse

FALLBACK 770 Normal

Each automation status is assigned a priority number that SDF uses to determine
what color to display if there are multiple status conditions present in a system.
The status conditions are listed in Table 25 on page 294 in order of descending
priority, that is, statuses listed first have higher priorities, and their color is
displayed.

Gateway
In addition to displaying the status of subsystems, SDF uses colors to show the
status of gateway sessions. The following list explains what the gateway colors
indicate:

Table 26. Table of Default Gateway Status Colors and Priorities

Status Priority Color Highlight Clear

COMMLOST 110 Red Reverse Y

ACTIVE 530 Turquoise Reverse Y,RV*

Priority and Color Default Assignments

Chapter 7. SDF Initialization Parameters 295

|

||||

||||

|||

|||

|||

||||

|||

||||

|||

|||

||||

|||

|||

|||

|||

||||

|||

||||

|||

|||

|||

|||

|||
|

|
|
|
|
|

|

|
|
|

||

|||||

|||||

|||||
|

Spool
SDF uses the following colors to show the status of spools.

Table 27. Table of Default Spool Status Colors and Priorities

Status Priority Color Highlight Clear Req

SPLFULL 150 Red Normal Y,RV –

SPLSHORT 450 Yellow Normal Y,RV –

SPLOK 550 Green Normal Y –

SPLGONE 550 – Y,RV NOADD

WTOR
SDF also uses colors to show what type of WTOR each displayed WTOR is, based
on classifications that have been specified using the customization dialog. See IBM
Tivoli System Automation for z/OS Defining Automation Policy for more details.

Table 28. Table of Default WTOR Status Colors and Priorities

Status Priority Color Highlight Clear Req

CWTOR 50 Red Normal Y –

IWTOR 250 Pink Normal Y –

UWTOR 450 Yellow Normal Y –

NWTOR 550 Green Normal Y –

RWTOR 750 Green – Y,RV NOADD

Monitor Resource
SDF uses the following colors to show the status of monitor resources (MTRs).

Table 29. Table of Default Monitor Resource Status Colors and Priorities

Status Priority Color Highlight Clear

FATAL 110 Red Reverse Y,RV*

CRITICAL 140 Normal Y,RV*

MINOR 410 Yellow Blinking Y,RV*

WARNING 450 Normal Y,RV*

FAILED 550 Turquoise Normal Y,RV*

NORMAL 650 Green Normal Y,RV*

UNKNOWN 730 Blue Normal Y,RV*

Captured Message
Captured exceptional messages that are shown in SDF have the following status
definitions:

Priority and Color Default Assignments

296 System Automation for z/OS: Programmer's Reference

|

|

||

||||||

||||||

||||||

||||||

|||||
|

|

|
|
|

||

||||||

||||||

||||||

||||||

||||||

||||||
|

|

|

||

|||||

|||||

||||

|||||

||||

|||||

|||||

|||||
|

|

|
|

Table 30. Table of Default Captured Message Status Colors and Priorities

Status Priority Color Highlight Clear Req

CMSG 50 Red Normal Y –

IMSG 250 Pink Normal Y –

UMSG 450 Yellow Normal Y –

DELETE 750 Green – Y NOADD

TWS Automation
TWS automation messages that are shown in SDF have the following status
definitions:

Table 31. Table of Default TWS Automation Status Colors and Priorities

Status Priority Color Highlight Clear Req

OPCERR 190 Red Normal Y –

BTCHEND 750 Green – Y,RV* NOADD

Groups
Groups that are shown in SDF have the following status definitions:

Table 32. Table of Default Group Status Colors and Priorities

Status Priority Color Highlight Clear

APG_PROB 150 Red Normal Y,RV*

APG_ERR 450 Yellow Normal Y,RV*

APG_OK 650 Green Normal Y,RV*

APG_DOWN 750 Blue Normal Y,RV*

Processor Operations
Processor Operations (ProcOps) elements that are shown in SDF have the following
status definitions.

Note: To avoid any conflict with other status elements each ProcOps status
element begins with the # (hash) sign.

Table 33. Table of Ensemble Status Colors and Priorities

Status Priority Color Highlight ProcOps Ensemble Status

#SESSPRB 140 Red Normal SESSION PROBLEM

#SUSPEND 250 Pink Normal SUSPENDED

#DORMANT 350 White Normal DORMANT

#CONNECT 380 White Normal CONNECTING

#CLOSED 450 Turquoise Normal CLOSED

#ACTIVE 550 Green Normal ACTIVE

#UNKNOWN 680 Blue Normal UNKNOWN

Priority and Color Default Assignments

Chapter 7. SDF Initialization Parameters 297

||

||||||

||||||

||||||

||||||

||||||
|

|

|
|

||

||||||

||||||

||||||
|

|

|

||

|||||

|||||

|||||

|||||

|||||
|

|

|
|

|
|

||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

Table 34. Table of Processor Status Colors and Priorities

Status Priority Color Highlight ProcOps Processor Status

#PROBLEM 120 Red Reverse LPAR DEFINITION
PROBLEM

#PROBLEM 120 Red Reverse TARGET HARDWARE
PROBLEM

#SERVREQ 220 Pink Normal SERVICE REQUIRED

#SUSPEND 250 Pink Normal SUSPENDED

#PORREQ 320 Yellow Normal POWER-ON-RESET
REQUIRED

#SERVICE 330 Yellow Normal SERVICE

#DEGRAD 340 Yellow Normal DEGRADED

#POWSAV 420 Turquoise Normal POWER® SAVE

#ACTIVE 550 Green Normal OK

#ACTIVE 550 Green Normal OPERATING

#POWOFF 600 Blue Normal POWERED OFF

#UNKNOWN 680 Blue Normal UNKNOWN

Table 35. Table of LPAR Status Colors and Priorities

Status Priority Color Highlight ProcOps LPAR Status

#DISWAIT 110 Red Blink DISABLED WAIT

#CRIALRT 150 Red Normal SERIOUS ALERT

#LOADERR 160 Red Normal LOAD FAILED

#DCCF 170 Red Normal DCCF

#NOTOPER 240 Pink Normal NOT OPERATING

#SUSPEND 250 Pink Normal SUSPENDED

#CLOSED 450 Turquoise Normal CLOSED

#INITIAL 540 Green Normal INITIALIZED

#IPLCOMP 550 Green Normal IPL COMPLETE

#INACTIV 650 Blue Normal NOT ACTIVE

#UNKNOWN 680 Blue Normal UNDECIDABLE

#UNKNOWN 680 Blue Normal UNKNOWN

Priority and Color Default Assignments

298 System Automation for z/OS: Programmer's Reference

||

|||||

|||||
|

|||||
|

|||||

|||||

|||||
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|
|

Chapter 8. SDF Definition Statements

The status display facility (SDF) provides a display of automated systems and
resources using assigned status colors. An operator monitors the status of
automated systems and resources by viewing the SDF main panel.

Typically, an application shown in green on an SDF status panel indicates the
application is up, while red indicates the application is stopped or in a problem
state. Operators can use the SDF to monitor the system and decide what actions to
take when problems occur.

See IBM Tivoli System Automation for z/OS Defining Automation Policy for
information on how to define the SDF in the customization dialogs. You only need
to change these entries if you use values other than the SA z/OS-provided
defaults.

Attention: Using a single quote as a parameter requires you to specify it as four
single quotes. Furthermore, when a single quote is part of a string it must be
replaced by two single quotes. Or, when used as a string delimiter, the string or
each partial string, if the string is spread over two or more lines, must be enclosed
in single quotes. Otherwise, unpredictable results occur.

AOFTREE

Purpose
AOFTREE is a NetView DSIPARM member containing tree structure definitions, or
referencing other tree structure definition members by using %INCLUDE
statements. The tree structure definitions specify the propagation hierarchy that is
used for status color changes.

Syntax
Each tree structure definition entry must be in the following format:

�� level_number status_component
,empty_chain_color

��

Parameters
level_number

The level number assigned to each component in the tree structure. It can be
any valid number between 1 and 9999. A tree structure must start with the root
as level number 1.

If a level number is less than that of the preceding status component, the level
number that is used must be defined in the tree structure as a superior node to
that status component. For example, the following tree structure definition is
incorrect:
1 SY1
3 APPLIX
2 GATEWAY

© Copyright IBM Corp. 1996, 2012 299

|
|
|
|
|

Multiple roots can be defined in the same member, using 1 as the level
number.

status_component
The status component that is associated with the level_number. It can be any
application or subsystem that status information is to be displayed for. System
symbols are supported for the status component name. This can help reduce
both customization work and errors.

Uses the subsystem entry name as defined in the automation control file. The
status component entry for the root must match the SDFROOT value specified
on the SA z/OS Environment Setup panel in the customization dialogs that
define the current automation policy.

empty_chain_color
The color that a status component is displayed in on the SDF status panel if no
status descriptor is associated with a status component. It can be one of the
following:
R Red
P Pink
Y Yellow
T Turquoise
G Green
B Blue
W White

This entry is optional. If it is not coded, the value specified for the SDF
initialization parameter EMPTYCOLOR in member AOFINIT is used. See
“EMPTYCOLOR” on page 286 for more details.

Usage
SA z/OS uses the following status components:

BATCH Batch job related events
CPMSGS Exceptional messages
GATEWAY Gateway events
GROUPS APG resources
MONITOR MTR resources
OPCERR TWS events
SPOOL Spool events
SUBSYS APL resources (subsystems)
TAPE Tape-related events
TSOUSERS TSO users
WTOR WTOR messages

Processor Operations related status components
ENS zEnterprise® ensemble resources
TGT LPAR resources
THW Processor resources

When creating tree structure definitions, consider the following:
v Level numbers define the order of dependence. As an example, in “Examples”

on page 301, AOFAPPL is defined to depend on AOFSSI because AOFAPPL
relies on AOFSSI for its message traffic. With propagation, any AOFSSI status
change is reflected on both AOFAPPL and SY1 status components.

v Duplicate status components in the same tree structure should not be used.

AOFTREE

300 System Automation for z/OS: Programmer's Reference

||
||
||
||
||
||
||
||
||
||
||
||

|
||
||
||

v Not all status components defined in a tree structure require a corresponding
panel entry. That is, you can define entries in a tree structure that do not have a
corresponding panel display. However, every panel should have a corresponding
entry in the tree structure.

v To avoid addressing conflicts, each root name must be unique. SDF addresses
each status component defined in the tree structure as
root_component.status_component

Examples
This example defines two separate tree structures, SY1 and SY2, representing two
different MVS systems. SY1 is the focal point and SY2 is the target system.

Figure 15 and Figure 16 on page 302 show the tree structures that must be defined
in the tree structure definition member for SY1. /* denotes a comment field.
/* TREE STRUCTURE FOR SYSTEM SY1
1 SY1
2 SUBSYS
3 AOFAPPL
4 AOFSSI
3 JES2
4 SPOOL
3 VTAM
3 RMF

/* TREE STRUCTURE FOR SYSTEM SY2 ON SY1
1 SY2
2 SUBSYS
3 AOFAPPL
4 AOFSSI
3 JES2
4 SPOOL
3 VTAM
3 RMF
3 TSO

3 AOFAPPL 3 JES2 3 VTAM 3 RMF

4 AOFSSI 4 SPOOL

1 SY1

2 APPLICATION

Figure 15. Example Tree Structure Definitions: System SY1. The diagram following the tree
structure code for SY1 shows how the order of dependence relates to level number. The
diagram is not actually in AOFTREE.

AOFTREE

Chapter 8. SDF Definition Statements 301

|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

These tree structures are referenced in the AOFTREE member on SY1 by the
following %INCLUDE statements:
%INCLUDE(SY1TREE)
%INCLUDE(SY2TREE)

The AOFTREE member in system SY2 contains only a %INCLUDE statement
referencing the tree structure for SY2.

Both tree structures start with level number 1. While the tree structures have
unique root names, they can have similar status component names, such as JES2,
and TSO. The corresponding settings for the root component can be defined in the
system policy and SYSTEM INFO definitions.

BODY

Purpose
The BODY statement is used to define the section in the panel that can be used by
SDF to display the various status components listed in the order of their priority,
as well as the layout of the table.

Syntax

��
1 5

BODY (status_comp , start_line , end_line , ,
#_cols distance

�

�
1 *

, ,)
start_pos end_pos

��

Parameters
status_comp

The name of the status component as defined in the AOFTREE member. It can
be optionally prefixed with the root component name.

start_line
The line number where the body section begins. You can specify either the
absolute number or use relative addressing based on the bottom line of the
panel. Relative addressing uses a notation if *-n where n is the displacement
from the bottom line.

end_line
The last line of the body section. You can specify either the absolute number or

3 AOFAPPL 3 JES2 3 VTAM 3 RMF 3 TSO

4 AOFSSI 4 SPOOL

1 SY2

2 APPLICATION

Figure 16. Example Tree Structure Definitions: System SY2. The diagram following the tree
structure code for SY1 and SY2 shows how the order of dependence relates to level number.
The diagram is not actually in AOFTREE.

AOFTREE

302 System Automation for z/OS: Programmer's Reference

|

|
|
|
|

||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||

|

|
|
|
|
|

use relative addressing based on the bottom line of the panel. Relative
addressing uses a notation of *-n where n is the displacement from the bottom
line.

#_cols
Specifies the number of columns to be generated. The default is 1.

This variable can also be asterisk (*). In this case, SA z/OS attempts to fill the
entire BODY width with columns.

distance
Specifies the distance between columns. The default is 5.

start_pos
Specifies the column number where the body section begins. The default is 1.

end_pos
Specifies the column number where the body section ends. The default is the
screen width.

Restrictions and Limitations
The distance between two columns appears one character more than as specified.
This is caused by a 'START FIELD' order which terminates each cell.

You can specify up to 16 BODY sections per panel.

Examples
The examples below assume a 43x80 screen size. The next example shows the
definition that is needed for a Subsystem Status display where the panel body
starts at line 4 and runs to line 39. The section begins at column 1 and ends at
column 80. The panel layout is 2 columns.
BODY(&SDFROOT..SUBSYS,04,*-4,2,2)

This example shows the definition that is needed for a Monitor Status display
where the panel body starts at line 23 and runs to line 40. The section begins at
column 41 and ends at column 80. The panel layout is as many columns as fit in
40-character width.
BODY(&SDFROOT.MONITOR,*-20,*-3,*,1,41,*)

BODYHEADER

Purpose
The BODYHEADER statement is used to define a descriptive header and the
scrolling information of the body section. The length of the header is implicitly
defined by the body width.

Note: The scrolling information is only displayed when the header is long enough
to show the complete information, that is, "�nn/nnn(nnn)". It may overwrite
the title defined by BODYTEXT.

Syntax

�� BODYHEADER
BH

Left Scrollinfo
(start_line, ,

alignment scroll_info
�

BODY

Chapter 8. SDF Definition Statements 303

|
|

|
|

|
|
|

|
|

|

|
|
|
|

|
|

|

|
|
|

|
|
|

|

|||||||||||||||||||||||||||||||||
|

||

�
Neutral Normal

, , , fill_chars)
color highlight

��

Parameters
start_line

The line number that the header should be displayed on. You can specify
either the absolute number or use relative addressing based on the bottom line
of the panel. Relative addressing uses a notation of *-n where n is the
displacement from the bottom line.

alignment
The justification of the text specified in the corresponding BODYTEXT
statement. It can be one of the following:
C Center
L Left (default)

scroll_info
Specifies whether scroll information is displayed or not. It can be one of the
following:
S Scroll information is displayed right-justified at the end of the header line

(default).
N No scroll information is displayed.

color
The color that the text specified in the corresponding BODYTEXT statement is
displayed in. It can be one of the following:
B Blue
G Green
N Neutral (=White)
P Pink
R Red
T Turquoise
W White
Y Yellow

highlight
Specifies the type of highlighting to be used for information units of the status
component. The value can be one of the following:
N Normal (default)
B Blink
R Reverse
U Underscore

fill_chars
You can specify a string of up to 6 characters that replaces the spaces in the
header line.

Restrictions and Limitations
Not more than one header can be specified per body.

This statement must follow its associated 'BODY' definition statement.

BODYHEADER

304 System Automation for z/OS: Programmer's Reference

|
|
|||||||||||||||||||||||||||||

|

|

|
|
|
|
|

|
|
|
||
||

|
|
|
||
|
||

|
|
|
||
||
||
||
||
||
||
||

|
|
|
||
||
||
||

|
|
|

|

|

|

Examples
This example defines the header line being on line 3. The title is centered and
supplemented with scroll information on the right side. Spaces are replaced by
hyphens. The whole text is displayed in turquoise, and uses reverse highlighting.
BH(03,Center,,Turquoise,Reverse,-)

BODYTEXT

Purpose
The BODYTEXT statement defines the text displayed in the panel header line (see
“BODYHEADER” on page 303).

Syntax

�� BODYTEXT
BT

(text) ��

Parameters
text

The text displayed in the header line. The length of the text determines the
width of the corresponding BODY definition.

Restrictions and Limitations
The total length of the BODYTEXT cannot be exceed the field length defined by
the combination of BODY start_pos and end_pos parameter values.

This statement must follow its associated 'BODY' definition statement.

Usage
To continue a BODYTEXT statement, insert a delimiting comma and leave the
remaining columns up to and including column 72 blank. Resume the text
definition in column 1 of the following line. See “TEXTTEXT” on page 317 for an
example of a continued statement.

Examples
The example shows the definitions that are needed for the Subsystem Status
display from “BODY” on page 302.
BT(Subsystem Status)

CELL

Purpose
The CELL statement is used to define the various information units to be displayed
for a status component and their placement in the body section.

Syntax

BODYHEADER

Chapter 8. SDF Definition Statements 305

|

|
|
|

|

|
|

|

|
|

|

||||||||||||||||

|

|

|
|
|

|

|
|

|

|

|
|
|
|

|

|
|

|

|
|

�� CELL (start_pos , end_pos , highlight , X) ��

Parameters
start_pos

Specifies the starting position that the status component information unit is to
be placed on.

end_pos
Specifies the position where the information unit ends. You can also specify an
asterisk (*) to indicate that the information unit ends at the end of the body
section.

highlight
Specifies the type of highlighting to be used for this information unit of the
status component. The value can be one of the following:
N Normal
B Blink
R Reverse
U Underscore

The highlight attribute is overwritten by the corresponding attribute of the
status component descriptor when specified. Refer to “Priority and Color
Default Assignments” on page 294 for the actual highlighting value.

X Denotes the type of information to be displayed. If omitted, the MVS job name
is displayed if the resource is a subsystem or WTOR.

See “STATUSFIELD” on page 311 for list of valid types.

To allow for the attribute type, there must be a minimum of two spaces between
the ending position of one field and the beginning position of the next. For
example, if the end-position of a CELL is in column 10, the start-position of the
next CELL must be column 12 or later.

Restrictions and Limitations
v You can specify a maximum of 12 cells.
v A start_pos parameter value of 1 is not allowed.

Examples
This example shows the definitions that are needed for the Subsystem Status
display from “BODY” on page 302. The gap between the columns is 2 plus the
indentation of the first cell, which is 5. There are three information units shown in
each column line. The information units are
v Job name
v Date
v Time
CELL(05,12,N)
CELL(14,21,N,D)
CELL(23,30,N,T)

CELL

306 System Automation for z/OS: Programmer's Reference

|||||||||||||||||||||
|

|
|
|

|
|
|

|
|
|
|

|

|

DATETIME

Purpose
The DATETIME statement defines the location and attributes of the current date
and time. When specified, it replaces the date and time displayed on the message
line.

The field has a fixed length of 17. The presentation of the date and time values
derives from the NetView DEFAULTS templates LONGDATE and LONGTIME.

Syntax
Parameters are positional.

�� DATETIME
DT

(start_line , start_pos
Neutral

,
color

�

�
Normal

,)
highlight

��

Parameters
start_line

The line number that the field should be displayed on. You can specify either
the absolute number or use relative addressing based on the bottom line of the
panel. Relative addressing uses a notation of *-n where n is the displacement
from the bottom line.

The resulting value must be in the range specified in the length parameter in
the PANEL definition statement (see “PANEL” on page 309).

start_pos
The column number that the field is placed in. You can specify either the
absolute number or use relative addressing based on the width of the panel.
Relative addressing uses a notation of *-n where n is the displacement from
the rightmost column.

The resulting value must be in the range specified in the width parameter in
the PANEL definition statement (see “PANEL” on page 309) minus the length
of this field.

color
The color that the date and time are displayed in. It can be one of the
following:
R Red
P Pink
Y Yellow
T Turquoise
G Green
B Blue
W White (=Neutral)

highlight
Determines how the date and time are displayed. It can be one of the
following:

DATETIME

Chapter 8. SDF Definition Statements 307

|
|

|

|
|
|

|
|

|

|

|||||||||||||||||||||||||||||||
|

|
|||||||||||||||||

|

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
||
||
||
||
||
||
||

|
|
|

N Normal
B Blink
R Reverse
U Underscore

Restrictions and Limitations
v The length of the field is fixed to 17 characters.
v Not more than one DATETIME field can be specified per panel.

Examples
This example defines the DATETIME field as being on line 1, positioned at the end
of the line. The date and time are displayed in white, and use normal highlighting.
DATETIME(01,*-16,WHITE,NORMAL)

ENDPANEL

Purpose
The ENDPANEL statement identifies the end of a panel.

Syntax

�� ENDPANEL
EP (panel_name)

��

Parameters
panel_name

The name of the panel. This parameter is optional. If specified, this parameter
value must match the name specified on the previous PANEL statement.

Restrictions and Limitations
None.

INPUTFIELD

Purpose
The INPUTFIELD (IF) statement defines the location of the input field. Previously,
the input field was the penultimate line of the panel. The IF statement gives you
the flexibility to place the input field (command line) anywhere in the panel. In
addition, it lets you define the message line to be placed below or above the input
field.

Syntax

�� INPUTFIELD
IF

(start_line , start_pos
Above

,)
msg_pos

��

DATETIME

308 System Automation for z/OS: Programmer's Reference

||
||
||
||

|

|

|

|

|
|

|

|

|
|
|
|
|

||||||||||||||||||||||||||||||||

|

Parameters
start_line

The line number that the input field should be displayed on. You can specify
either the absolute number or use relative addressing based on the bottom line
of the panel. Relative addressing uses a notation of *-n where n is the
displacement from the bottom line.

The resulting value must be in the range specified in the length parameter in
the PANEL definition statement (see “PANEL”).

start_pos
The offset in the specified line where the input fields begins.

msg_pos
The position of the message line relative to the input field. The value can be
one of the following:

A Above (default)

B Below

The input field is automatically terminated by any BODY, STATUSFIELD, or
TEXTFIELD statement placed after it, either on the same line or the next.

Restrictions and Limitations
Not more than one input field can be specified per panel.

Examples
This example shows the definition that is needed for an input field that is 2 lines
above the last line:
IF(*-2,01)

PANEL

Purpose
The PANEL statement identifies the start of a new panel and its general attributes.

Syntax
Parameters are positional.

�� PANEL
P

24 80
(panel_name, , ,

length width top_panel
�

� , , ,
up_panel down_panel left_panel

,
right_panel

�

� ,)
IGNore

��

INPUTFIELD

Chapter 8. SDF Definition Statements 309

|
|
|

||

||

|
|

|

|||||

||||

|||

Parameters
panel_name

The name of the panel. It can be any panel name up to 16 characters long.

length
The number of lines or rows in the panel. It must be numeric. Supported
values are 24, 32, 43, 62, or * (the screen size at logon). The default is 24.

width
The number of columns in the panel. It must be numeric. This can be 80, 132,
160, or * (the screen width at logon). The default is 80.

top_panel
The panel displayed when the TOP PF key is pressed or the TOP command is
issued.

up_panel
The panel displayed when the UP PF key is pressed or the UP command is
issued.

down_panel
The panel displayed when the DOWN PF key is pressed or the DOWN
command is issued.

left_panel
The panel displayed when the left panel PF Key is pressed or the LEFT
command is issued. The panel name can be *, allowing vertical scrolling
through the displayed information of a body section.

right_panel
The panel displayed when the right panel PF key is pressed or the RIGHT
command is issued. The panel name can be *, allowing vertical scrolling
through the displayed information of a body section.

IGNore
This option causes SDF to ignore the UP/DOWN command when used in a
BODY section.

Usage
v The default initial panel name that is supplied with SA z/OS is SYSTEM. If you

change this name, also change the INITSCRN parameter value in the AOFINIT
member (see “INITSCRN” on page 287 for details).

v If there is more data than can be displayed on a single screen, you can define
continuation panels using the following parameters:
– left_panel
– right_panel
– down_panel

v To continue a PANEL statement on another line after a delimiting comma, leave
the remaining columns up to and including column 72 blank. The next
positional parameter must begin in column 1 of the following line.

Examples
This example defines SY1SYS as the panel name. The length is 24 lines and the
width is 80 characters. The panel named SYSTEM is displayed when the TOP and
UP commands are used. No entries are defined for the DOWN, LEFT, or RIGHT
commands.
PANEL(SY1SYS,24,80,SYSTEM,SYSTEM)

PANEL

310 System Automation for z/OS: Programmer's Reference

|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

PFKnn

Purpose
The PFKnn entry defines all PF keys unique to a panel.

The definitions defined by PFKnn are only active when the status panel is
displayed. They override the default settings defined with the initialization PFKnn
statement in member AOFINIT (see “PFKnn” on page 288).

Syntax

�� PFKnn (command ,)
variable

��

Parameters
nn The PF key number. It can range from 1 through 24.

command
The command called when the defined PF key is pressed. If you need to use
commas in the command, enclose the entire command string in apostrophes.

variable
Variables can be used as part of the command specified in the PFKnn
statement. “PFKnn” on page 288 shows variables that can be used.

Examples
This example results in issuing MVS D A,TSO when PF4 is pressed and the cursor is
on the TSO entry: PFK4(’MVS D A,&INFO’)

STATUSFIELD

Purpose
The STATUSFIELD statement defines the location of the status component on a
panel and the panels that display when the UP and DOWN commands are used.

A STATUSFIELD statement is always accompanied by a STATUSTEXT statement
(see “STATUSTEXT” on page 314) in a panel definition.

Syntax
Parameters are positional.

�� STATUSFIELD
SF

(root_comp.status_comp , start_line , start_pos �

� , end_pos
Normal

,
highlight

, ,
up_panel down_panel

�

PFKnn

Chapter 8. SDF Definition Statements 311

� ,)
status_descriptor_no

��

Parameters
root_component

The root component name as defined in the root node of the tree structure. The
root component (as opposed to the status component alone) must always be
coded, because different systems can have status components with the same
name, such as VTAM or JES2, in their tree structures. Because the root
component is always unique, each status component in a tree structure can be
uniquely identified using the root component as a prefix.

status_comp
The status component name as defined in the AOFTREE member. Maximum
length is 16 characters.

start_line
The line number that the status component should be displayed on. You can
specify either the absolute number (it should be numeric and in the range
specified in the length parameter of the PANEL definition statement) or you
can use relative addressing based on the bottom line of the panel. Relative
addressing uses a notation of *-n where n is the displacement from the bottom
line.

start_pos
The actual column number within the specified start_line that the status
component is to be placed on. There must be a minimum of two spaces
between the ending position of one field and the beginning position of the next
field to allow for attribute type. For example, if the end-position of a
STATUSFIELD is in column 10, the start-position of the next STATUSFIELD
must be column 12.

end_pos
The column number that the status component definition ends in. It is
governed by the length of text defined in the STATUSTEXT definition. For
example, if JES2 is to be defined, the length of the STATUSTEXT is four and
the end position is the start position plus three. See “STATUSTEXT” on page
314 for more details.

highlight
The type of highlighting that is used on the panel. It can be one of the
following:
N Normal
B Blink
R Reverse
U Underscore

The highlight attribute is overwritten by the corresponding attribute of the
status component descriptor when specified. Refer to “Priority and Color
Default Assignments” on page 294 for the actual highlighting value.

up_panel
The panel displayed when the UP PF key is pressed.

down_panel
The panel displayed when the DOWN PF key is pressed.

STATUSFIELD

312 System Automation for z/OS: Programmer's Reference

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

status_descriptor_number
The status descriptor number of the panel. This number specifies the status
descriptor displayed in each field. It must be numeric. The default is 0.

A status descriptor number of 0 causes the text as defined in the STATUSTEXT
statement for this field (see “STATUSTEXT text Parameter” on page 314) to be
displayed with the color and highlighting associated with the first status
descriptor chained to the status component. A status descriptor of 1 essentially
does the same, except that the status text is replaced by information contained
in the first status descriptor chained to the status component. A status
descriptor of 2 or higher has the same effect as a value of 1, except that the
numbered status descriptor is used rather than the first.

Status descriptors are chained with the status component in ascending order of
priority.

The status descriptor number may be prefixed with a letter denoting the type
of information to be displayed. If no prefix is supplied, the MVS job name is
displayed if the resource is a subsystem or WTOR. Valid prefixes are as
follows:
C Displays the name of the status component
D Displays the date the record was created
M Displays the associated message text
P Displays the priority of the record
Q Displays the reference value for the record
R Displays the name of the root component
S Displays the reporting operator ID
T Displays the time the record was created
U Displays the number of duplicate records
V Displays the job name or other information about the request
X Displays the reporting domain ID

Restrictions and Limitations
A start_line and start_position parameter value combination of 1,1 is not allowed.

SDF panels that contain STATUSFIELD entries that refer to status descriptors other
than the first one may not be updated dynamically if the panel is not made
resident either using the SDFPANEL ...,ADD command or during SDF
initialization. Automatic updates on dynamically loaded panels may be obtained
by coding a dummy panel containing STATUSFIELD entries that refer to the status
component with a status descriptor number greater than 1.

At least one undefined (blank) position must be provided immediately preceding a
STATUSFIELD. If start_position is specified as 1, the last position on the preceding
line must not be defined.

Usage
v When designing a panel for any status component, make the end position

greater than or equal to the start position. Otherwise, an error condition will
occur during SDF initialization.

v To continue a STATUSFIELD statement on another line after a delimiting
comma, leave the remaining columns up to and including column 72 blank. The
next positional parameter must begin in column 1 of the following line. An
example of a continued STATUSFIELD statement is:
STATUSFIELD(SY.VTAM,
04,10,13,NORMAL)

STATUSFIELD

Chapter 8. SDF Definition Statements 313

v For better performance, make sure that every status component referred to in the
panel is defined in the corresponding AOFTREE member.

Examples
Example 1

In this example, the status component VTAM on SY1 starts on line 4 in column 10,
ends in column 13, and has normal highlighting. No entries are defined for the UP
or DOWN commands.
STATUSFIELD(SY1.VTAM,04,10,13,NORMAL)
:

Example 2

In this example, the status component SYSTEM starts on line 2 in column 04, ends
in column 06, and has normal highlighting. No entries are defined for the UP
panel. Panel SY1SYS is displayed when the DOWN command is issued.
SF(SY1.SYSTEM,02,04,06,N,,SY1SYS)
:

Example 3

In this example, three STATUSFIELD entries are defined for the same status
component, SY1.GATEWAY. The highest-priority status descriptor is displayed in
the first entry, the next highest-priority status descriptor is displayed in the second
entry, and so on.
SF(SY1.GATEWAY,02,04,06,NORMAL,,,1)
SF(SY1.GATEWAY,03,04,06,NORMAL,,,2)
SF(SY1.GATEWAY,04,04,06,NORMAL,,,3)
:

STATUSTEXT

Purpose
The STATUSTEXT statement defines the text data displayed in the STATUSFIELD
statement (see “STATUSFIELD” on page 311). This text data is typically the status
component name.

Syntax

�� STATUSTEXT
ST

(text) ��

Parameters
text

The default data displayed for the status component defined in the
STATUSFIELD statement. This text can be replaced by text from a status
descriptor chained to the status component if the status_descriptor_number
parameter value on the corresponding STATUSFIELD statement is non-zero.
The recommended value is the status component name. For example, for status
component SY1.VTAM, specify VTAM for the text value. The length of text
determines the end position coded in the STATUSFIELD statement.

STATUSFIELD

314 System Automation for z/OS: Programmer's Reference

||||||||||||||||

|

Restrictions and Limitations
v Each STATUSFIELD statement must have a STATUSTEXT statement associated

with it in a panel definition.
v The total length of the STATUSTEXT text cannot exceed the status field length

defined by the combination of STATUSFIELD start_position and end_position
parameter values.

v This statement must follow its associated 'STATUSFIELD' definition statement.

Usage
To continue a STATUSTEXT statement, insert a delimiting comma and leave the
remaining columns up to and including column 72 blank. Resume the text
definition in column 1 of the following line.

Examples
Example 1

The following statement defines status text 1234567890 for a status field:
STATUSTEXT(12345,
67890)

Example 2

This example defines that IMS on SY2 displays as ACCOUNTS on the status
display panel. Any status descriptors added for SY2.IMS are displayed using the
ACCOUNTS entry.

Note: The end position in the STATUSFIELD statement reflects the length of
ACCOUNTS.

STATUSFIELD(SY2.IMS,06,10,17,NORMAL)
STATUSTEXT(ACCOUNTS)

TEXTFIELD

Purpose
The TEXTFIELD statement defines the location and attributes of fields that remain
constant on the panels, such as panel headings, field names, and PF key
designations.

Each TEXTFIELD statement must have a TEXTTEXT statement associated with it
(see “TEXTTEXT” on page 317) in a panel definition.

Syntax
Parameters are positional.

�� TEXTFIELD
TF

(start_line , start_pos , end_pos
Neutral

,
color

�

STATUSTEXT

Chapter 8. SDF Definition Statements 315

|

|||||||||||||||||||||||||||||||||
|

||

�
Normal

,
highlight

Left
,

alignment
,)

fill_chars
��

Parameters
start_line

The line number that the text field should be displayed on. You can specify
either the absolute number or use relative addressing based on the bottom line
of the panel. Relative addressing uses a notation of *-n where n is the
displacement from the bottom line.

The resulting value must be in the range specified in the length parameter in
the PANEL definition statement (see “PANEL” on page 309).

start_pos
The column number that the text field is placed in.

end_pos
The column number that the data specified in entry TEXTTEXT ends in. See
“TEXTTEXT” on page 317 for more details.

color
The color that text specified in the corresponding TEXTTEXT statement is
displayed in. It can be one of the following:
R Red
P Pink
Y Yellow
T Turquoise
G Green
B Blue
W White (=Neutral)

highlight
Determines how the text specified in the corresponding TEXTTEXT statement
is displayed. It can be one of the following:
N Normal (default)
B Blink
R Reverse
U Underscore

alignment
The alignment of the text specified in the corresponding TEXTTEXT statement.
It can be one of the following:
C Center
L Left (default)

fill_chars
You can specify a string of up to 6 characters that replaces the spaces in the
text field.

Restrictions and Limitations
v A start_line and start_position parameter value combination of 1,1 is not allowed.
v If your text definition for an area of a panel requires more than 72 characters,

continue the definition in additional TEXTFIELD and TEXTTEXT statement
pairs. See “TEXTTEXT” on page 317 for an example of continuing definitions in
additional TEXTFIELD and TEXTTEXT pairs.

TEXTFIELD

316 System Automation for z/OS: Programmer's Reference

||||||||||||||||||||||||||||||||||||

|

|

|
|
|
||
||

|
|
|

v At least two undefined (blank) positions must be provided immediately
preceding a TEXTFIELD if it follows a STATUSFIELD. If start_position is
specified as 1, the last two positions on the preceding line must not be defined.

v At least one undefined (blank) position must be provided immediately
preceding a TEXTFIELD if it follows another TEXTFIELD. If start_position is
specified as 1, the last position on the preceding line must not be defined.

Usage
v When designing a panel, for any TEXTFIELD, make the end_position of the

TEXTFIELD greater than or equal to the start_position. Otherwise, an error
condition will occur during SDF initialization.

v To continue a TEXTFIELD statement on another line after a delimiting comma,
leave the remaining columns up to and including column 72 blank. The next
positional parameter must begin in column 1 of the following line. An example
continued TEXTTEXT statement is:
TEXTFIELD(01,
25,57,WHITE,NORMAL)

Examples
This example defines the TEXTFIELD as being on line 1, starting in column 25,
ending in column 57. The text is displayed in white, and uses normal highlighting.
TEXTFIELD(01,25,57,WHITE,NORMAL)

TEXTTEXT

Purpose
The TEXTTEXT statement defines the data displayed in the corresponding
TEXTFIELD entry (see “TEXTFIELD” on page 315).

Each TEXTFIELD statement must have a TEXTTEXT statement associated with it in
a panel definition.

Syntax

�� TEXTTEXT
TT

(text) ��

Parameters
text

The data displayed for the TEXTFIELD statement. The length of the data
determines the end position coded in the TEXTFIELD entry.

Restrictions and Limitations
The total length of the TEXTTEXT text cannot exceed the text field length defined
by the combination of TEXTFIELD start_position and end_position parameter values.

This statement must follow its associated 'TEXTFIELD' definition statement.

TEXTFIELD

Chapter 8. SDF Definition Statements 317

|

Usage
To continue a TEXTTEXT statement, insert a delimiting comma and leave the
remaining columns up to and including column 72 blank. Resume the text
definition in column 1 of the following line. See the “TEXTTEXT” on page 317 for
an example continued statement.

Examples
Example 1

In this example, “Data center systems” is displayed on the status display panel in
white.
TEXTFIELD(01,25,57,WHITE,NORMAL)
TEXTTEXT(Data center systems)

Example 2

In this example, all PF key settings are displayed on line 24 of the status display
panel.
TF(24,01,79,TURQUOISE,NORMAL)
TEXTTEXT(PF1=HELP 2=DETAIL 3=END 6=ROLL 7=UP 8=DN ,
10=LF 11=RT 12=TOP)

Example SDF Definition
This section shows an example of defining SDF. This example is not reflected by
the SA z/OS DSIPARM member AOFTREE. In this example, two separate systems
(SY1 and SY2) are defined to SDF so that SDF can monitor both systems. The
example shows the entries that are required to define and customize SDF,
including:
v SDF tree structure definitions
v SDF panel definitions
v SDF initialization parameters in AOFINIT
v SDF Status Details definitions

Notes:

1. This example assumes that SA z/OS focal point services are already
implemented so that status can be forwarded from one system to another using
notification messages.

2. It is also assumed that the advanced automation option (AAO) common global
AOF_AAO_SDFROOT_LISTn defines the SDF root names that are to be applied (see
IBM Tivoli System Automation for z/OS Customizing and Programming). If the
common global is not specified SA z/OS will automatically set the global to
the local system name.

SDF Tree Structure Definitions
Two tree structure definitions are required to set up the SDF hierarchy for systems
SY1 and SY2. Figure 17 on page 319 shows the tree structure definition for both
systems. This tree structure is defined in a NetView DSIPARM data set member
named SY1TREE.

TEXTTEXT

318 System Automation for z/OS: Programmer's Reference

|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

SDF initialization uses the common global AOF_AAO_SDFROOT_LISTn to generate as
many tree structures as system names are found in the global for each structure
that starts with 1 &SDFROOT..

Figure 18 shows the hierarchy of monitored resources defined by the SY1 tree
structure.

This structure contains specific entries for the major system components, JES,
RMF™, VTAM, and TSO, as well as NetView (AOFAPPL) and the NetView SSI
(AOFSSI). Note that the hierarchy differs from that defined in the SA z/OS
automation control file. This is because the operator's view of these subsystems
differs from the logical sequence that they are managed in by SA z/OS for startup
and shutdown purposes.

The SYSTEM, APPLIC, and ACTION entries are logical, and may be used to view
the status of all entries below them in priority order.

The SUBSYS, WTOR, and GATEWAY entries are also logical, and may be used to
display the status of SUBSYSTEM, WTOR, and GATEWAY resource types. The
status of any subsystem not appearing elsewhere in the tree will be queued under
the SUBSYS entry. Similarly, WTORs and gateway status will be queued under
WTOR and GATEWAY respectively.

A similar tree structure must be provided for SY2. As both systems are running the
same set of base software, the tree structures are identical, except for the root (level
1) name, which will be SY2 rather than SY1. The member holding the tree structure
must be defined in the NetView DSIPARM data set on each system. The tree
structure is referenced by %INCLUDE statements in the base SDF tree definition
member, AOFTREE, as follows:
%INCLUDE(SYXTREE)

1 &SDFROOT.
2 SYSTEM
3 JES
3 VTAM
3 RMF
3 TSO
3 AOFAPPL
4 AOFSSI
3 APPLIC
4 SUBSYS

2 ACTION,GREEN
3 WTOR,GREEN
2 GATEWAY

Figure 17. SDF Example: Tree Structure Definition for SY1 and SY2

1 SY1
│

┌────────────────────────────────┴─────────────────┬─────────────────┐
│ │ │

2 SYSTEM 2 ACTION 2 GATEWAY
│ │

┌─────────────┬───────────┬──────┴─────┬──────────────┬────────────┐ │
│ │ │ │ │ │ │

3 JES 3 VTAM 3 RMF 3 TSO 3 AOFAPPL 3 APPLIC 3 WTOR
│ │

4 AOFSSI 4 SUBSYS

Figure 18. SDF Example: Hierarchy Defined by SY1 Tree Structure. The diagram shows how
the order of dependence relates to level number.

SDF Definitions

Chapter 8. SDF Definition Statements 319

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

Because SY1 is the focal point system in this example, the global
AOF_AAO_SDFROOT_LISTn on system SY1 must define both systems, SY1 and SY2.

Because our example does not require SY2 to function as a backup focal point
system, the global AOF_AAO_SDFROOT_LISTn system SY2 does not need to be
specified.

SDF Panel Definitions
Following are panel definitions for:
v The root component or system panel, named SYSTEM
v The status component panel for system SY1, named SY1

Each panel definition is followed by the screen it defines.

SA z/OS provides samples similar to those described, as well as a sample
GATEWAY panel definition for use on SY1.

On system SY1, these panel definitions are referenced by %INCLUDE statements in
the main SDF panel definition member, AOFPNLS, as follows:

The GATEWAY, SY1, and SY2 panels must be resident as they contain generic field
definitions.
%INCLUDE(SYSTEM)
%INCLUDE(GATEWAY)
%INCLUDE(SYX)

Root Component Panel Definition
First, the root panel, named SYSTEM, is defined. Figure 19 shows the panel
definition statements that define the SYSTEM panel. This panel is the default initial
SDF panel as assigned in the SDF initialization parameter member, AOFINIT. Three
panels are accessed by pressing the DOWN PF key (PF8), GATEWAY, SY1, and
SY2. All status components are prefixed with the root component and are listed in
the corresponding tree structure. Each STATUSFIELD (SF) statement is followed by
the corresponding STATUSTEXT (ST) statement. Similarly, each TEXTFIELD (TF)
statement is followed by the corresponding TEXTTEXT (TT) statement.

This panel shows the layout defined by the statements in Figure 19:

/* DEFINE SYSTEM STATUS PANEL
P(SYSTEM,24,80)
TF(01,02,10,WHITE,NORMAL)
TT(SYSTEM)
TF(01,25,57,WHITE,NORMAL)
TT(DATA CENTER SYSTEMS)
SF(SY1.SYSTEM,04,04,11,N,,SY1)
ST(SY1)
SF(SY2.SYSTEM,06,04,11,N,,SY2)
ST(SY2)
SF(SY1.GATEWAY,02,70,77,N,,GATEWAY)
ST GATEWAY
TF(24,01,48,T,NORMAL)
TT(1=HELP 2=DETAIL 3=RET 6=ROLL 8=DN)
TF(24,51,79,T,NORMAL)
TT(10=LF 11=RT 12=TOP)
EP

Figure 19. SDF Example: System Panel Definition Statements

SDF Definitions

320 System Automation for z/OS: Programmer's Reference

|
|

|
|
|

SYSTEM DATA CENTER SYSTEMS
GATEWAY

SY1

SY2

1=HELP 2=DETAIL 3=RET 6=ROLL 8=DN 10=LF 11=RT 12=TOP

Status Component Panel Definition
Next, the panels for the status components, SY1 and SY2, are defined. These panels
can be accessed by pressing the DOWN PF key (PF8) on the root component panel,
after placing the cursor under the desired system name. They can also be accessed
directly by entering SDF SY1 or SDF SY2 from the NetView NCCF command line,
or entering SCREEN SY1 from within SDF.

Because these panels contain dynamic status elements, it is necessary for them to
be made resident. This is done by referring to them in %INCLUDE statements in
the main SDF panel definition member.

Figure 20 on page 322 shows a sample panel definition for panel SY1 and SY2.

SDF Definitions

Chapter 8. SDF Definition Statements 321

SDF initialization uses the common global AOF_AAO_SDFROOT_LISTn to generate as
many panels as system names are found in the global for each panel that specifies
P(&SDFROOT.,...).

Figure 21 on page 323 shows the layout defined by the statements in Figure 20 for
system SY1.

Note: Three of the four available WTOR dynamic fields have been filled with the
WTOR number and the name of the job that issued them. WTORs will
appear whether or not their source is defined to SA z/OS.

If you do not define the common global AOF_AAO_SDFROOT_LISTn it defaults to the
local system name and SDF initialization members AOFPNLS and AOFTREE like
the following REXX statement:
SAY "SDFROOT="cglobal(AOF_AAO_SDFROOT_LIST)

results in
SDFROOT=sysname

/* Panel definition statements for SY1/SY2 panel
P(&SDFROOT.,24,80,SYSTEM,SYSTEM)
TF(01,02,10,WHITE,NORMAL)
TT(&SDFROOT.)
TF(01,27,47,WHITE,NORMAL)
TT(&SDFROOT. SYSTEM STATUS)
SF(&SDFROOT..JES,04,16,24,N)
ST(JES)
SF(&SDFROOT..RMF,06,16,24,N)
ST(RMF)
SF(&SDFROOT..VTAM,08,16,24,N)
ST(VTAM)
SF(&SDFROOT..TSO,10,16,24,N)
ST(TSO)
SF(&SDFROOT..AOFAPPL,12.16,24,N)
ST(NetView)
SF(&SDFROOT..AOFSSI,14,18,28,N)
ST(NetView SSI)
SF(&SDFROOT..WTOR,4,45,50,N)
ST(WTORs:)
SF(&SDFROOT..WTOR,4,53,56,N,,,c1)
SF(&SDFROOT..WTOR,4,59,67,N,,,1)
SF(&SDFROOT..WTOR,5,53,56,N,,,c2)
SF(&SDFROOT..WTOR,5,59,67,N,,,2)
SF(&SDFROOT..WTOR,6,53,56,N,,,c3)
SF(&SDFROOT..WTOR,6,59,67,N,,,3)
SF(&SDFROOT..WTOR,7,53,56,N,,,c4)
SF(&SDFROOT..WTOR,7,59,67,N,,,4)
SF(&SDFROOT..APPLIC,9,45,57,N)
ST(Applications:)
SF(&SDFROOT..APPLIC,9,59,67,N,,,1)
SF(&SDFROOT..APPLIC,10,59,67,N,,,2)
SF(&SDFROOT..APPLIC,11,59,67,N,,,3)
SF(&SDFROOT..APPLIC,12,59,67,N,,,4)
SF(&SDFROOT..APPLIC,13,59,67,N,,,5)
SF(&SDFROOT..APPLIC,14,59,67,N,,,6)
PFK4(’SDFCONF #ROOT,#COMPAPPL,#RV,#SID,#SNODE,#DATE,#TIME,#DA’)
TF(24,01,79,T,NORMAL)
TT(’1=HELP 2=DETAIL 3=RET 4=DELETE 6=ROLL 7=UP’
’ 10=LF 11=RT 12=TOP’)
EP

Figure 20. SDF Example: Status Component Panel Definition Statements for SY1 and SY2

SDF Definitions

322 System Automation for z/OS: Programmer's Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|

|

However you can specify other member names than the default member names,
for example:
SYS1 SYS2/MYPNLS SYS3//MYTREE SYS4/MYPNLS/MYTREE

Assuming AOFPNLS and MYPNLS contain two INCLUDE statements.
AOFPNLS MYPNLS
%INCLUDE(ABC) DYNAMIC &INCLUDE(ABC) DYNAMIC
%INCLUDE(CDE) DYNAMIC &INCLUDE(XYZ) DYNAMIC

and all members define only one panel like "P(&SDFROOT.member_name,...)" the
following panels are generated when SDF initializes it:

For member ABC
SYS1ABC, SYS2ABC, SYS3ABC, SYSABC4

For member CDE
SYS1CDE, , SYS3CDE

For member XYZ
SYS2XYZ, SYS4XYZ

The fields defined for JES, RMF, VTAM, TSO, NetView and the NetView SSI are
static in that only the color of the predefined status text changes when the highest
priority status descriptor that is queued for the underlying status component
changes. The fields defining WTORs: and Applications: are also static, but do not
refer to a specific subsystem. These fields will also assume the color of the highest
priority status descriptor that is queued. The WTORs: field is green when no
replies are outstanding due to the SDF tree definition for the underlying status
component, SY1.WTOR. The remaining static fields will appear turquoise, or the
EMPTYCOLOR that is defined in the AOFINIT NetView DSIPARM member.

The status fields following WTORs: and Applications: are dynamic in that both
their content and color depend on the status descriptor that they represent. The

SY1 SY1 SYSTEM STATUS

JES WTORs: 14 MSGPROC
18 NETVIEW

RMF 22 MYJOB

VTAM
Applications: MSGPROC

TSO WTR00E
IMS

NetView CICS
ETC1

NetView SSI ETC2

===>
1=HELP 2=DETAIL 3=RET 4=DELETE 6=ROLL 7=UP 10=LF 11=RT 12=TOP

Figure 21. Sample SY1 SDF Panel

SDF Definitions

Chapter 8. SDF Definition Statements 323

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|

|
|

|

|

|

|

ability to select both the type of data and the status descriptor number that the
data is obtained from allows generic status fields to be defined (see
“STATUSFIELD” on page 311). This takes advantage of an SDF feature that allows
the status descriptor to be queued under an alternate component should the
primary status component not be defined in the SDF tree structure. For
subsystems, the status component name is the subsystem name, and the alternate
component is SUBSYS. WTORs are queued using the reply ID as the status
component name, and WTOR as the alternate component name.

The use of generic field definitions has several advantages, and may considerably
reduce the amount of maintenance required, particularly in large, multisystem
environments. Using this method, the status components are displayed in priority
order, so the most critical status subsystem is presented first. Also, if more
subsystems are defined to SA z/OS than are defined on the panel, you will be
notified of only the most critical situations. It is also possible to continue the list of
statuses presented on additional panels if required.

You should note that using this method, subsystems do not always appear in the
same position on the panel, which may make it difficult to find a specific
subsystem. Also, some transient conditions can cause a subsystem to appear twice
on the display. This can be eliminated by changing the SDF Status Detail definition
to CLEAR=Y for the transient status definitions.

SDF Initialization Parameters in AOFINIT
For this example, the default AOFINIT entries that are supplied with SA z/OS are
used. For more information on setting SDF initialization parameters see Chapter 7,
“SDF Initialization Parameters,” on page 283.
SCREENSZ=10000,24,80
INITSCRN=SYSTEM
MAXOPS=10
PROPUP=YES
PROPDOWN=NO
TEMPERR=3
/* Status panel PF keys and description --------------------------------
PFK1=AOCHELP SDF
PFK2=DETAIL
PFK3=RETURN
PFK4=BACKWARD
PFK5=FORWARD
PFK6=ROLL
PFK7=UP
PFK8=DOWN
PFK9=
PFK10=LEFT
PFK11=RIGHT
PFK12=TOP
PFK13=AOCHELP SDF
PFK14=DETAIL
PFK15=RETURN
PFK16=BACKWARD
PFK17=FORWARD
PFK18=ROLL
PFK19=UP
PFK20=DOWN
PFK21=
PFK22=LEFT
PFK23=RIGHT
PFK24=TOP
/* Detail panel PF keys and description --------------------------------
DPFK1=AOCHELP SDF
DPFK2=

SDF Definitions

324 System Automation for z/OS: Programmer's Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DPFK3=RETURN
/* Use the command below if you wish to delete without confirming
/* DPFK4=SDFCONF #ROOT,#COMPAPPL,#RV,#SID,#SNODE,#DATE,#TIME,#DA,VFY=NO
DPFK4=SDFCONF #ROOT,#COMPAPPL,#RV,#SID,#SNODE,#DATE,#TIME,#DA
DPFK5=
DPFK6=ROLL
DPFK7=UP
DPFK8=DOWN
DPFK9=
DPFK10=
DPFK11=BOT
DPFK12=TOP
DPFK13=AOCHELP SDF
DPFK14=
DPFK15=RETURN
/* Use the command below if you wish to delete without confirming
/* DPFK16=SDFCONF #ROOT,#COMPAPPL,#RV,#SID,#SNODE,#DATE,#TIME,#DA,VFY=NO
DPFK16=SDFCONF #ROOT,#COMPAPPL,#RV,#SID,#SNODE,#DATE,#TIME,#DA
DPFK17=
DPFK18=ROLL
DPFK19=UP
DPFK20=DOWN
DPFK21=
DPFK22=
DPFK23=BOT
DPFK24=TOP
DPFKDESC1=1=HELP 3=RETURN 4=DELETE 6=ROLL 7=UP 8=DOWN
DPFKDESC2=11=BOTTOM 12=TOP
/* Priority/color relationships (default values) -----------------------
PRITBLSZ=7
PRIORITY=1,199,RED
PRIORITY=200,299,PINK
PRIORITY=300,399,YELLOW
PRIORITY=400,499,TURQUOISE
PRIORITY=500,599,GREEN
PRIORITY=600,699,BLUE
DCOLOR=WHITE
EMPTYCOLOR=BLUE

Note: /* denotes a comment field, where /* must be followed by a blank.

SDF Status Detail Definitions
Please refer to the Table in the section "Subsystem Colors and Priorities" of IBM
Tivoli System Automation for z/OS User’s Guide for a list of SDF default settings.

Example Of A Large SDF Panel
This section shows an example of a large SDF panel that consolidates the tree
definitions of SA z/OS default member INGTALL into a single display panel:

SDF Definitions

Chapter 8. SDF Definition Statements 325

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

P(&SDFROOT.,62,160,SYSTEM,SYSTEM, ,*,*)
TF(01,02,05,PINK,REVERSE)
TT(&SDFROOT.)
TF(01,67,92,WHITE,NORMAL)
TT(A l l R e s o u r c e s)
/*- (1) --
IF(03,02,BELOW)
/*- (2) --
BODY(&SDFROOT..SUBSYS,06,35,*,1,02,27)
BH(05,,,T,R,-)
BT(Subsystem Status)
CELL(02,12,N,C)
/*- (3) --
BODY(&SDFROOT..GROUPS,38,47,*,1,02,27)
BH(37,L,S,T,R,+-)
BT(Application Group Status)
CELL(02,12,N,C)
/*- (4) --
BODY(&SDFROOT..MONITOR,50,*-3,*,1,02,27)
BH(49,C,N,T,R)
BT(Monitor Status)
CELL(02,12,N,C)
/*- (5) --
BODY(&SDFROOT..WTOR,06,15,*,1,29,*)
BODYHEADER(05,LEFT,SCROLLINFO,T,R,-)
BODYTEXT(Jobname , Reply ID / Message text)
CELL(02,09,N) CELL(12,*,N,M)

Figure 22. SDF definitions of a large display panel (Part 1 of 2). The sample includes all new
definitions statements as well as the modified statements like INPUTFIELD.

Large SDF Panel

326 System Automation for z/OS: Programmer's Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*- (6) --
BODY(&SDFROOT..CPMSGS,18,27,*,1,29,*)
BH(17,LE,SCROLL,TURQUOISE,REVERSE,+-)
BT(Jobname , Message text)
CELL(02,09,N) CELL(12,*,N,M)
/*- (7) --
BODY(&SDFROOT..GATEWAY,30,39,*,1,29,*)
BH(29,LE,SCROLL,TURQUOISE,REVERSE,/-**-\)
BT(Gateway Message text)
CELL(02,07,N,C)
CELL(10,*,N,M)
/*- (8) --
BODY(&SDFROOT..TAPE,42,46,*,1,29,*)
BH(41,LE,SCROLL,TURQUOISE,REVERSE,+)
BT(Device Message text)
CELL(02,05,N,C)
CELL(09,*,N,M)
/*- (9) --
TF(49,30,33,T,N)
TT(Date)
TF(49,40,43,T,N)
TT(Time)
TF(49,50,58,T,N)
TT(Subsystem)
TF(49,62,73,T,N)
TT(Message text)
BODY(&SDFROOT..OPCERR,50,*-3,*,1,29,*)
BH(48,C,,TURQUOISE,REVERSE)
BT(Applications in ERROR)
CELL(02,09,N,D)
CELL(12,19,N,T)
CELL(22,32,N,C)
CELL(34,*,N,M)
/*--
PFK3(UP)
PFK9(CLEAR)
PFK13(’EXPLAIN #COMP,TARGET=#SNODE’)
PFK14(’SDFCONF #ROOT,#COMPAPPL,#RV,#SID,#SNODE,#DATE,#TIME,#DA’)
PFK15(’INGMSGS TARGET=&SDFROOT.’)
PFK16(’DISPGW TARGET=&SDFROOT.’)
PFK17(’SETSTATE #COMP,TARGET=#SNODE’)
PFK18(’INGVOTE #COMP/APL/#ROOT,TARGET=#SNODE’)
PFK19(’INGREQ #COMP/APL/#ROOT,TARGET=#SNODE’)
PFK20(’OPC TARGET=&SDFROOT.’)
PFK22(’DISPMTR #COMP,REQ=DETAIL,TARGET=#SNODE’)
PFK23(’INGLIST #COMP/APL/#ROOT,TARGET=#SNODE’)
PFK24(’INGINFO #COMP/APL/#ROOT,TARGET=#SNODE’)
TF(*-1,02,13,T,NORMAL)
TT(1=Help)
TF(*-1,15,26,Y,NORMAL)
TT(2=Detail)
TF(*-1,28,159,T,NORMAL)
TT(3=Up 4=Backward ,
5=Forward 6=Roll ,
9=Clear 10=Previous 11=Next 12=Top)
TF(*,02,159,Y,NORMAL)
TT(13=EXPLAIN 14=SDFCONF 15=INGMSGS 16=DISPGW ,
17=SETSTATE 18=INGVOTE 19=INGREQ 20=OPC ,

22=DISPMTR 23=INGLIST 24=INGINFO)
EP

Figure 22. SDF definitions of a large display panel (Part 2 of 2). The sample includes all new
definitions statements as well as the modified statements like INPUTFIELD.

Large SDF Panel

Chapter 8. SDF Definition Statements 327

|

|

Figure 23. Snapshot of the large display panel (left side) followed by Snapshot of the large
panel (right side)

Large SDF Panel

328 System Automation for z/OS: Programmer's Reference

|

|
|
|

||

Large SDF Panel

Chapter 8. SDF Definition Statements 329

|

|

Large SDF Panel

330 System Automation for z/OS: Programmer's Reference

Chapter 9. SDF Commands

Using SDF Commands
SDF commands allow you to:
v to load one or more tree structures defined in a single member or to delete a

single tree structure, see “SDFTREE” on page 336
v to load one or more panels defined in a single member or to delete a single

panel, see “SDFPANEL” on page 335
v to initially display an SDF panel, “SDF” on page 333
v to move between panels, see “Navigation Commands” on page 337
v to move around the panels for each SDF display hierarchy, see “SCREEN” on

page 333
v to delete an SDF record, see “SDFCONF” on page 334.

Dynamically Loading Panels and Tree Structures
You can dynamically load panels and tree structures without restarting SDF. With
this dynamic loading, you can load a small number of panels during initialization,
and add or delete panel subsets when required during SDF operation. This can
significantly reduce the number of panels kept resident at any one time.

When you are dynamically loading panels or tree structures, there must be a
member in the NetView DSIPARM data set with the same name as the panel name
or the root component in the tree structure. If not, a “not found” error message is
generated.

Note: Only panels that are loaded with the SDFPANEL command are available to
all logged-on SA z/OS operators. All others are loaded only for the operator
that calls them.

Dynamically Loading Panels
You can load panels dynamically in the following ways:
v With the SDFPANEL command, as described in “SDFPANEL” on page 335.
v With the SCREEN command, as described in “SCREEN” on page 333.
v When any of the following PANEL statement parameters call a panel not

defined in AOFPNLS, and a member with the same name as that panel is found
in the NetView DSIPARM data set:
– top_panel_name

– up_panel_name

– down_panel_name

– left_panel_name

– right_panel_name

See “PANEL” on page 309 for the PANEL statement description.

© Copyright IBM Corp. 1996, 2012 331

Performance hint:
Dynamically loading panels reduces storage requirements. However, using
the SCREEN command or PANEL statements that refer to the panels that are
not defined in AOFPNLS can result in increased processor usage. For better
performance, ensure the panels are included in the AOFPNLS member either
directly or by an %INCLUDE.

Dynamically Loading Tree Structures
You can load SDF tree structures dynamically with the SDFTREE command, as
described in “SDFTREE” on page 336.

When you load a new tree structure to replace an existing one, any status
descriptors with identical names in both tree structures are copied to the new tree
structure.

Dynamic Loading Example
Suppose you change the tree structure for root component SY1 and the panel
named SY1SYS. The tree structure and panel definitions are maintained in separate
members (instead of being directly coded in AOFTREE or AOFPNLS). Use the
following commands to load the new definitions:
SDFTREE SY1,ADD
SDFPANEL SY1SYS,ADD

For more information, see “SDFTREE” on page 336 and “SDFPANEL” on page 335.

Dynamic Loading Commands
Use the following commands to dynamically load SDF tree structures and panels,
and to confirm that a panel was loaded:

SDFTREE
Load Tree Structure Definition Member

SDFPANEL
Load Panel Definition Member

SCREEN
Display a SDF Panel

When an error is detected while any of these dynamic loading commands is
processing, no action is taken to change the existing tree structure or panel
definitions. For example, if one of several panels defined or referenced by
%INCLUDE statements in a panel definition member contains an error, none of the
panels are placed into active use. Similarly, if an error is detected in a panel you
attempt to load using the SCREEN command, the panel is not displayed.

Verifying Dynamic Loading of Panels
Use the SCREEN command to verify that a panel was correctly loaded. See
“SCREEN” on page 333 for the SCREEN command description.

You might want to create a test version of a panel you are modifying and display
it using the SCREEN command to verify that your changes are correct. To do this:
1. Copy the existing panel definition member into another panel definition

member.

332 System Automation for z/OS: Programmer's Reference

2. Modify the panel definition statements in the new panel definition member.
Use a different name for the panel on the PANEL statement.

3. Use the SCREEN command to verify that the changes to the panel are correct.
4. If you see anything in the displayed panel that should change, correct the panel

definition statements.
5. Rename the panel to the name that is used for the production version of the

panel. To do this, change the name specified on the PANEL statement.
6. Use the SDFPANEL command to load the new panel and put it into

production. This SDFPANEL command causes the new panel to overwrite the
old panel.

SCREEN

Purpose
The SCREEN command displays a specific SDF panel.

Syntax

�� SCREEN panel_name ��

Parameters
panel_name

The name of the panel to be displayed. panel_name is the name of the panel as
it appears in the upper left hand corner of the screen.

Restrictions and Limitations
SCREEN can be issued only within SDF.

Usage
v If the specified panel is not in memory when the command is issued, the

NetView DSIPARM data set is searched for a member name matching the
specified panel name. If one is found, that member is loaded for the operator
that the request was made from, and the panel defined in the member is
displayed.

v If an error is detected in a panel you attempt to load using the SCREEN
command, the panel is not displayed.

v If you plan to use the SCREEN command frequently in your SDF
implementation, you might want to define a PF key that issues the SCREEN
command.

Examples
SCREEN SY1 displays the panel named SY1.

SDF

Purpose
Start the SDF dialog.

Chapter 9. SDF Commands 333

|

|
|

|

|

Syntax

�� SDF
panel_name

��

Parameters
panel_name

The name of the panel that is initially displayed. If the name is not coded, the
panel specified for the SDF initialization parameter INITSCRN in member
AOFINIT is displayed (see “INITSCRN” on page 287).

Restrictions and Limitations
The command can be invoked on OST tasks only.

Usage
v If the specified panel is not in memory when the command is issued, the

NetView DSIPARM data set is searched for a member name matching the
specified panel name. If one is found, that member is loaded for the operator
that the request was made from, and the panel defined in the member is
displayed.

v If an error is detected in the panel you attempt to display initially, the panel is
not displayed.

Examples
SDF displays the panel that has been specified for the SDF initialization parameter
INITSCRN in member AOFINIT.

SDFCONF

Purpose
The SDFCONF command is used to confirm an SDF record for deletion. This
command is usually assigned to the PF4 key. It shows a confirmation panel before
deleting the SDF record.

Syntax

��
,VeriFY=YES

SDFCONF #ROOT,#COMPAPPL,#RV,#SID,#SNODE,#DATE,#TIME,#DA
,VeriFY=NO

��

Parameters
The following parameters are displayed for the selected SDF record.

SDF Root Name
The name of the SDF root component.

SDF Component Name
The name of the component, for which SDF is presenting details.

Reference Value
A reference value assigned for this component.

SDF

334 System Automation for z/OS: Programmer's Reference

|

||||||||||||||

|

|

|
|
|
|

|

|

|

|
|
|
|
|

|
|

|

|
|

|
|

|

|
|
|

|

||||||||||||||||

|

|

|

|
|

|
|

|
|

Originating Operator ID (reporter)
The reporter submitting the component detail entry.

Originating Node Name (domain)
The originating node of the reporter submitting the component detail entry.

Originating Date
The system date.

Originating Time
The system time.

Detail Data (message)
The actual message text for the component.

Additional Options VERIFY|VFY={YES|NO}
Specifies whether the confirmation panel is shown or not. The default is YES.
VFY is the same as VERIFY, but is used for static SDF 72 character limitation.

SDFPANEL

Purpose
SDFPANEL dynamically loads a panel member from the NetView DSIPARM data
set or deletes a panel member. When loading a panel member you can additionally
specify the minimum number of rows and columns that SDF uses to validate
panels of undefined screen sizes.

SDFPANEL can be issued from a console.

Syntax
To add or delete a panel member use the following syntax:

�� SDFPANEL
,24,80

panel_member, Add
DISKonly ,rows,cols

panel_name,DELete

��

Parameters
panel_member

The name of the member containing the panel to load.

panel_name
The name of the panel to delete. While you add panels by specifying the panel
member name, you delete panels by specifying the actual panel name.

ADD
Specifies that you want to add the specified panel member.

DELete
Specifies that you want to delete the specified panel.

DISKonly
Specifies that you want to add the specified panel member. However, any
member previously loaded into storage is ignored.

rows
The minimum number of rows. Values can range from 24 to 62. The default is
24.

SDFCONF

Chapter 9. SDF Commands 335

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

||||

|
|
|

|
|
|

cols
The minimum number of columns. Values can range from 80 to 160. The
default is 80.

Restrictions and Limitations
Panel definition members dynamically loaded by the SDFPANEL command are not
reloaded when SDF is restarted. Only member AOFPNLS and any members
referenced by %INCLUDE statements in AOFPNLS are reloaded. You must either
add the panel definitions to AOFPNLS (using %INCLUDE statements) before SDF
is restarted, or manually reload them using the SDFPANEL command after SDF is
restarted.

Usage
If one of several panels defined or referenced by %INCLUDE statements in a panel
definition member contains an error, this panel is not placed in use.

A panel which does not contain an error but defines the variable %SDFROOT
anywhere in its definition statements is replicated according to rules described in
“Status Component Panel Definition” on page 321 with the following exception. If
the member name that includes the panel does not occur in the
AOF_AAO_SDFROOT_LISTn globals, the panel is replicated for each system name found
in the globals.

Examples
SDFPANEL NEWPANEL,ADD loads member NEWPANEL into memory. This loading
allows operators to access the panel defined in NEWPANEL.

SDFPANEL VARPANEL,43,80 loads member VARPANEL into memory. SDF uses the
screen size 43x80 instead of the screen size defined at the initialization parameter
“SCREENSZ” on page 292. You may omit the column parameter. In this case the
minimum number of columns defaults to the number of columns defined in the
initialization parameter.

SDFTREE

Purpose
SDFTREE dynamically loads an SDF tree structure definition member from the
NetView DSIPARM data set or deletes a tree member from system memory.

SDFTREE can be issued from a console.

Syntax
To load or delete a tree structure definition member use the following syntax:

�� SDFTREE tree_member, Add
DISKonly

root_component_name,DELete

��

Parameters
tree_member

The name of the member containing the tree structure to load.

SDFPANEL

336 System Automation for z/OS: Programmer's Reference

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

||

root_component_name
The name of the root component, which is the name that is used for level 1 in
the tree structure that you want to delete. While you add a tree structure
definition members by specifying a tree member name, you delete tree
structure definition members by specifying a root component name.

Add
Specifies that you want to add the specified tree structure definition member.

DISKonly
Specifies that you want to add the specified tree structure member. However,
any member previously loaded into storage is ignored

DELete
Specifies that you want to delete a tree structure definition member.

Restrictions and Limitations
Tree structure definition members dynamically loaded by the SDFTREE command
are not reloaded when SDF is restarted. When SDF is restarted, only members
AOFTREE and any members referenced by %INCLUDE statements in AOFTREE
are reloaded. You must either add the tree definitions to AOFTREE (using
%INCLUDE statements) before SDF is restarted, or manually reload them using the
SDFTREE command after SDF is restarted.

Usage
v When a new tree structure is loaded to replace an existing tree structure, the

status descriptors of any status component with identical names in both trees are
copied to the new tree.

v When an error is detected while this command is processing, no action is taken
to change the existing tree structure.

Examples
SDFTREE NEWTREE,ADD loads member NEWTREE into system memory. This loading
allows operators to access the tree structure defined in NEWTREE.

Navigation Commands
The following navigation commands are available within an SDF panel hierarchy:

BACKWARD
No action applies when entered in the detail panel.

When entered in the status panel, scrolls to the refreshed status panel in the
stack.

BOT
When entered in the detail panel, displays the detail panel of the last status
element in the chain.

No action applies when entered in the status panel.

DETAIL
No action applies when entered in the detail panel.

When entered in the status panel and the cursor is positioned at a status field
or cell, displays the detail panel of the appropriate status element.

SDFTREE

Chapter 9. SDF Commands 337

|
|

|
|
|

|
|

|

|

|
|

|
|

|
|
|

|

|
|

|
|

DOWN
When entered in a detail panel, displays the detail panel for the next status
element in the chain.

When entered in a status panel:
v cursor in status element, displays the panel specified as "down" panel in

the appropriate Status Field statement, if specified, otherwise the "down"
panel specified in the PANEL statement,

v cursor not in status element, displays the panel specified as "down" panel
in the PANEL statement,

v cursor in the body section,
– ignores the command when the parameter IGNore has been specified in

the PANEL statement,
– displays the panel specified as "up|down" panel in the PANEL

statement when the parameter IGNore has not been specified in the
PANEL statement.

FORWARD
No action applies when entered in the detail panel.

When entered in the status panel, scrolls to the refreshed panel that succeeds
the panel in the stack.

LEFT
No action when entered in the detail panel.

When entered in a status panel, displays the "left" panel specified in the
PANEL statement.

RETURN
When used in the detail panel, returns to the refreshed status panel.

When entered in the status panel, exits SDF.

RIGHT
No action when entered in the detail panel.

When entered in a status panel, displays the "right" panel specified in the
PANEL statement.

SCREEN panelname
Displays the specified panel.

TOP
When entered in a detail panel, displays the detail panel of the first status
element in the chain.

When entered in the status panel, displays the "top" panel specified in the
PANEL statement.

UP When entered in a detail panel, displays the detail panel for the previous
status element in the chain.

When entered in a status panel:
v cursor in status element, displays the panel specified as "up" panel in the

appropriate Status Field statement, if specified, otherwise the "up" panel
specified in the PANEL statement,

v cursor not in status element, displays the panel specified as "up" panel in
the PANEL statement,

v cursor in the body section,

Navigation Commands

338 System Automation for z/OS: Programmer's Reference

|
|
|

|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|
|

|
|

||
|

|

|
|
|

|
|

|

– ignores the command when the parameter IGNore has been specified in
the PANEL statement,

– displays the panel specified as "up|down" panel in the PANEL
statement when the parameter IGNore has not been specified in the
PANEL statement.

The navigation commands DOWN, LEFT, RIGHT, SCREEN, TOP, and UP put the
panel name onto a stack. The navigation commands BACKWARD and FORWARD
can be used to scroll thru the stack for displaying a panel. If the stack which holds
at most 16 entries becomes full the first stack entry is removed before the current
panel name is put onto the stack.

Navigation Commands

Chapter 9. SDF Commands 339

|
|
|
|
|

|
|
|
|
|

Navigation Commands

340 System Automation for z/OS: Programmer's Reference

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Websites are provided for
convenience only and do not in any manner serve as an endorsement of those
Websites. The materials at those Websites are not part of the materials for this IBM
product and use of those Websites is at your own risk.

© Copyright IBM Corp. 1996, 2012 341

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information
This book documents programming interfaces that allow the customer to write
programs to obtain the services of System Automation for z/OS.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at www.ibm.com/legal/
copytrade.shtml.

342 System Automation for z/OS: Programmer's Reference

www.ibm.com/legal/copytrade.shtml
www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Appendix. Notices 343

344 System Automation for z/OS: Programmer's Reference

Glossary

This glossary includes terms and definitions from:
v The IBM Dictionary of Computing New York:

McGraw-Hill, 1994.
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies can be
purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018. Definitions are identified by
the symbol (A) after the definition.

v The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee
1, of the International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of
this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

The following cross-references are used in this
glossary:

Contrast with. This refers to a term that has
an opposed or substantively different
meaning.
Deprecated term for. This indicates that the
term should not be used. It refers to a
preferred term, which is defined in its proper
place in the glossary.
See. This refers the reader to multiple-word
terms in which this term appears.
See also. This refers the reader to terms that
have a related, but not synonymous, meaning.
Synonym for. This indicates that the term has
the same meaning as a preferred term, which
is defined in the glossary.
Synonymous with. This is a backward
reference from a defined term to all other
terms that have the same meaning.

A
ACF. See automation configuration file.

ACF/NCP. Advanced Communications Function for
the Network Control Program. See Advanced
Communications Function and Network Control
Program.

ACF/VTAM. Advanced Communications Function for
the Virtual Telecommunications Access Method.
Synonym for VTAM. See Advanced Communications
Function and Virtual Telecommunications Access
Method.

active monitoring. In SA z/OSautomation control file,
the acquiring of resource status information by
soliciting such information at regular, user-defined
intervals. See also passive monitoring.

adapter. Hardware card that enables a device, such as
a workstation, to communicate with another device,
such as a monitor, a printer, or some other I/O device.

adjacent hosts. Systems connected in a peer
relationship using adjacent NetView sessions for
purposes of monitoring and control.

adjacent NetView. In SA z/OS, the system defined as
the communication path between two SA z/OS
systems that do not have a direct link. An adjacent
NetView is used for message forwarding and as a
communication link between two SA z/OS systems.
For example, the adjacent NetView is used when
sending responses from a focal point to a remote
system.

Advanced Communications Function (ACF). A group
of IBM licensed programs (principally VTAM, TCAM,
NCP, and SSP) that use the concepts of Systems
Network Architecture (SNA), including distribution of
function and resource sharing.

advanced program-to-program communication
(APPC). A set of inter-program communication
services that support cooperative transaction processing
in a Systems Network Architecture (SNA) network.
APPC is the implementation, on a given system, of
SNA's logical unit type 6.2.

alert. (1) In SNA, a record sent to a system problem
management focal point or to a collection point to
communicate the existence of an alert condition. (2) In
NetView, a high-priority event that warrants immediate
attention. A database record is generated for certain
event types that are defined by user-constructed filters.

alert condition. A problem or impending problem for
which some or all of the process of problem
determination, diagnosis, and resolution is expected to
require action at a control point.

© Copyright IBM Corp. 1996, 2012 345

alert focal-point system. See NPDA focal point
system.

alert threshold. An application or volume service
value that determines the level at which SA z/OS
changes the associated icon in the graphical interface to
the alert color. SA z/OS may also issue an alert. See
warning threshold.

AMC. (1) See Automation Manager Configuration. (2)
The Auto Msg Classes entry type.

American Standard Code for Information Interchange
(ASCII). A standard code used for information
exchange among data processing systems, data
communication systems, and associated equipment.
ASCII uses a coded character set consisting of 7-bit
coded characters (8-bit including parity check). The
ASCII set consists of control characters and graphic
characters. See also Extended Binary Coded Decimal
Interchange Code.

APF. See authorized program facility.

API. See application programming interface.

APPC. See advanced program-to-program
communication.

application. In SA z/OS, applications refer to z/OS
subsystems, started tasks, or jobs that are automated
and monitored by SA z/OS. On SNMP-capable
processors, application can be used to refer to a
subsystem or process.

Application entry. A construct, created with the
customization dialogs, used to represent and contain
policy for an application.

application group. A named set of applications. An
application group is part of an SA z/OS enterprise
definition and is used for monitoring purposes.

application program. (1) A program written for or by
a user that applies to the user's work, such as a
program that does inventory or payroll. (2) A program
used to connect and communicate with stations in a
network, enabling users to perform application-oriented
activities.

application programming interface (API). An
interface that allows an application program that is
written in a high-level language to use specific data or
functions of the operating system or another program.

ApplicationGroup entry. A construct, created with the
customization dialogs, used to represent and contain
policy for an application group.

ARM. See automatic restart management.

ASCB. Address space control block.

ASCB status. An application status derived by
SA z/OS running a routine (the ASCB checker) that
searches the z/OS address space control blocks
(ASCBs) for address spaces with a particular job name.
The job name used by the ASCB checker is the job
name defined in the customization dialog for the
application.

ASCII. See American Standard Code for Information
Interchange.

ASF. See automation status file.

authorized program facility (APF). A facility that
permits identification of programs that are authorized
to use restricted functions.

automated console operations (ACO). The use of an
automated procedure to replace or simplify the action
that an operator takes from a console in response to
system or network events.

automated function. SA z/OS automated functions
are automation operators, NetView autotasks that are
assigned to perform specific automation functions.
However, SA z/OS defines its own synonyms, or
automated function names, for the NetView autotasks,
and these function names are referred to in the sample
policy databases provided by SA z/OS. For example,
the automation operator AUTBASE corresponds to the
SA z/OS automated function BASEOPER.

automatic restart management (ARM). A z/OS
recovery function that improves the availability of
specified subsystems and applications by automatically
restarting them under certain circumstances. Automatic
restart management is a function of the Cross-System
Coupling Facility (XCF) component of z/OS.

automatic restart management element name. In MVS
5.2 or later, z/OS automatic restart management
requires the specification of a unique sixteen character
name for each address space that registers with it. All
automatic restart management policy is defined in
terms of the element name, including SA z/OS’s
interface with it.

automation. The automatic initiation of actions in
response to detected conditions or events. SA z/OS
provides automation for z/OS applications, z/OS
components, and remote systems that run z/OS.
SA z/OS also provides tools that can be used to
develop additional automation.

automation agent. In SA z/OS, the automation
function is split up between the automation manager
and the automation agents. The observing, reacting and
doing parts are located within the NetView address
space, and are known as the automation agents. The
automation agents are responsible for:
v Recovery processing
v Message processing

346 System Automation for z/OS: Programmer's Reference

v Active monitoring: they propagate status changes to
the automation manager

automation configuration file. The SA z/OS
customization dialogs must be used to build the
automation configuration file. It consists of:
v The automation manager configuration file (AMC)
v The NetView automation table (AT)
v The NetView message revision table (MRT)
v The MPFLSTSA member

automation control file (ACF). In SA z/OS, a file that
contains system-level automation policy information.
There is one master automation control file for each
NetView system that SA z/OS is installed on.
Additional policy information and all resource status
information is contained in the policy database (PDB).
The SA z/OS customization dialogs must be used to
build the automation control files. They must not be
edited manually.

automation flags. In SA z/OS, the automation policy
settings that determine the operator functions that are
automated for a resource and the times during which
automation is active. When SA z/OS is running,
automation is controlled by automation flag policy
settings and override settings (if any) entered by the
operator. Automation flags are set using the
customization dialogs.

automation manager. In SA z/OS, the automation
function is split up between the automation manager
and the automation agents. The coordination, decision
making and controlling functions are processed by each
sysplex's automation manager.

The automation manager contains a model of all of the
automated resources within the sysplex. The
automation agents feed the automation manager with
status information and perform the actions that the
automation manager tells them to.

The automation manager provides sysplex-wide
automation.

Automation Manager Configuration. The Automation
Manager Configuration file (AMC) contains an image
of the automated systems in a sysplex or of a
standalone system. See also “automation configuration
file.”

Automation NetView. In SA z/OS the NetView that
performs routine operator tasks with command
procedures or uses other ways of automating system
and network management, issuing automatic responses
to messages and management services units.

automation operator. NetView automation operators
are NetView autotasks that are assigned to perform
specific automation functions. See also automated
function. NetView automation operators may receive
messages and process automation procedures. There are
no logged-on users associated with automation

operators. Each automation operator is an operating
system task and runs concurrently with other NetView
tasks. An automation operator could be set up to
handle JES2 messages that schedule automation
procedures, and an automation statement could route
such messages to the automation operator. Similar to
operator station task. SA z/OS message monitor tasks
and target control tasks are automation operators.

automation policy. The policy information governing
automation for individual systems. This includes
automation for applications, z/OS subsystems, z/OS
data sets, and z/OS components.

automation policy settings. The automation policy
information contained in the automation control file.
This information is entered using the customization
dialogs. You can display or modify these settings using
the customization dialogs.

automation procedure. A sequence of commands,
packaged as a NetView command list or a command
processor written in a high-level language. An
automation procedure performs automation functions
and runs under NetView.

automation routines. In SA z/OS, a set of
self-contained automation routines that can be called
from the NetView automation table, or from
user-written automation procedures.

automation status file (ASF). In SA z/OS, a file
containing status information for each automated
subsystem, component or data set. This information is
used by SA z/OS automation when taking action or
when determining what action to take. In Release 2 and
above of AOC/MVS, status information is also
maintained in the operational information base.

automation table (AT). See NetView automation table.

autotask. A NetView automation task that receives
messages and processes automation procedures. There
are no logged-on users associated with autotasks. Each
autotask is an operating system task and runs
concurrently with other NetView tasks. An autotask
could be set up to handle JES2 messages that schedule
automation procedures, and an automation statement
could route such messages to the autotasks. Similar to
operator station task. SA z/OS message monitor tasks
and target control tasks are autotasks. Also called
automation operator.

available. In VTAM programs, pertaining to a logical
unit that is active, connected, enabled, and not at its
session limit.

B
Base Control Program (BCP). A program that
provides essential services for the MVS and z/OS
operating systems. The program includes functions that

Glossary 347

|
|
|
|

manage system resources. These functions include
input/output, dispatch units of work, and the z/OS
UNIX System Services kernel. See also Multiple Virtual
Storage and z/OS.

basic mode. A central processor mode that does not
use logical partitioning. Contrast with logically
partitioned mode.

BCP. See Base Control Program.

BCP Internal Interface. Processor function of
CMOS-390 and System z® processor families. It allows
for communication between basic control programs
such as z/OS and the processor support element in
order to exchange information or to perform processor
control functions. Programs using this function can
perform hardware operations such as ACTIVATE or
SYSTEM RESET.

beaconing. The repeated transmission of a frame or
messages (beacon) by a console or workstation upon
detection of a line break or outage.

blade. A hardware unit that provides
application-specific services and components. The
consistent size and shape (or form factor) of each blade
allows it to fit in a BladeCenter chassis.

BladeCenter chassis. A modular chassis that can
contain multiple blades, allowing the individual blades
to share resources such as management, switch, power,
and blower modules.

BookManager®. An IBM product that lets users view
softcopy documents on their workstations.

C
central processor (CP). The part of the computer that
contains the sequencing and processing facilities for
instruction execution, initial program load (IPL), and
other machine operations.

central processor complex (CPC). A physical
collection of hardware that consists of central storage,
one or more central processors, timers, and channels.

central site. In a distributed data processing network,
the central site is usually defined as the focal point for
alerts, application design, and remote system
management tasks such as problem management.

CFR/CFS and ISC/ISR. I/O operations can display
and return data about integrated system channels (ISC)
connected to a coupling facility and coupling facility
receiver (CFR) channels and coupling facility sender
(CFS) channels.

channel. A path along which signals can be sent; for
example, data channel, output channel. See also link.

channel path identifier. A system-unique value
assigned to each channel path.

channel-attached. (1) Attached directly by I/O
channels to a host processor (for example, a
channel-attached device). (2) Attached to a controlling
unit by cables, rather than by telecommunication lines.
Contrast with link-attached. Synonymous with local.

CHPID. In SA z/OS, channel path ID; the address of
a channel.

CHPID port. A label that describes the system name,
logical partitions, and channel paths.

CI. See console integration.

CICS/VS. Customer Information Control System for
Virtual Storage. See Customer Information Control
System.

CLIST. See command list.

clone. A set of definitions for application instances
that are derived from a basic application definition by
substituting a number of different system-specific
values into the basic definition.

clone ID. A generic means of handling system-specific
values such as the MVS SYSCLONE or the VTAM
subarea number. Clone IDs can be substituted into
application definitions and commands to customize a
basic application definition for the system that it is to
be instantiated on.

CNC. A channel path that transfers data between a
host system image and an ESCON control unit. It can
be point-to-point or switchable.

command. A request for the performance of an
operation or the execution of a particular program.

command facility. The component of NetView that is
a base for command processors that can monitor,
control, automate, and improve the operation of a
network. The successor to NCCF.

command list (CLIST). (1) A list of commands and
statements, written in the NetView command list
language or the REXX language, designed to perform a
specific function for the user. In its simplest form, a
command list is a list of commands. More complex
command lists incorporate variable substitution and
conditional logic, making the command list more like a
conventional program. Command lists are typically
interpreted rather than being compiled. (2) In
SA z/OS, REXX command lists that can be used for
automation procedures.

command procedure. In NetView, either a command
list or a command processor.

348 System Automation for z/OS: Programmer's Reference

|
|
|
|

|
|
|
|

command processor. A module designed to perform a
specific function. Command processors, which can be
written in assembler or a high-level language (HLL),
are issued as commands.

command processor control block. An I/O operations
internal control block that contains information about
the command being processed.

Command Tree/2. An OS/2-based program that helps
you build commands on an OS/2 window, then routes
the commands to the destination you specify (such as a
3270 session, a file, a command line, or an application
program). It provides the capability for operators to
build commands and route them to a specified
destination.

common commands. The SA z/OS subset of the CPC
operations management commands.

Common User Access (CUA) architecture. Guidelines
for the dialog between a human and a workstation or
terminal.

communication controller. A type of communication
control unit whose operations are controlled by one or
more programs stored and executed in the unit or by a
program executed in a processor to which the controller
is connected. It manages the details of line control and
the routing of data through a network.

communication line. Deprecated term for
telecommunication line.

connectivity view. In SA z/OS, a display that uses
graphic images for I/O devices and lines to show how
they are connected.

console automation. The process of having NetView
facilities provide the console input usually handled by
the operator.

console connection. In SA z/OS, the 3270 or ASCII
(serial) connection between a PS/2 computer and a
target system. Through this connection, the workstation
appears (to the target system) to be a console.

console integration (CI). A hardware facility that if
supported by an operating system, allows operating
system messages to be transferred through an internal
hardware interface for display on a system console.
Conversely, it allows operating system commands
entered at a system console to be transferred through
an internal hardware interface to the operating system
for processing.

consoles. Workstations and 3270-type devices that
manage your enterprise.

Control units. Hardware units that control I/O
operations for one or more devices. You can view
information about control units through I/O

operations, and can start or stop data going to them by
blocking and unblocking ports.

controller. A unit that controls I/O operations for one
or more devices.

converted mode (CVC). A channel operating in
converted (CVC) mode transfers data in blocks and a
CBY channel path transfers data in bytes. Converted
CVC or CBY channel paths can communicate with a
parallel control unit. This resembles a point-to-point
parallel path and dedicated connection, regardless
whether it passes through a switch.

couple data set. A data set that is created through the
XCF couple data set format utility and, depending on
its designated type, is shared by some or all of the
z/OS systems in a sysplex. See also sysplex couple data
setand XCF couple data set.

coupling facility. The hardware element that provides
high-speed caching, list processing, and locking
functions in a sysplex.

CP. See central processor.

CPC. See central processor complex.

CPC operations management commands. A set of
commands and responses for controlling the operation
of System/390® CPCs.

CPC subset. All or part of a CPC. It contains the
minimum resource to support a single control program.

CPCB. See command processor control block.

CPU. Central processing unit. Deprecated term for
processor.

cross-system coupling facility (XCF). A component of
z/OS that provides functions to support cooperation
between authorized programs running within a
sysplex.

CTC. The channel-to-channel (CTC) channel can
communicate with a CTC on another host for
intersystem communication.

Customer Information Control System (CICS). A
general-purpose transactional program that controls
online communication between terminal users and a
database for a large number of end users on a real-time
basis.

customization dialogs. The customization dialogs are
an ISPF application. They are used to customize the
enterprise policy, like, for example, the enterprise
resources and the relationships between resources, or
the automation policy for systems in the enterprise.
How to use these dialogs is described in IBM Tivoli
System Automation for z/OS Customizing and
Programming.

Glossary 349

CVC. See converted mode.

D
DataPower X150z. See IBM Websphere DataPower
Integration Appliance X150 for zEnterprise (DataPower
X150z).

DASD. See direct access storage device.

data services task (DST). The NetView subtask that
gathers, records, and manages data in a VSAM file or a
network device that contains network management
information.

data set. The major unit of data storage and retrieval,
consisting of a collection of data in one of several
prescribed arrangements and described by control
information to which the system has access.

data set members. Members of partitioned data sets
that are individually named elements of a larger file
that can be retrieved by name.

DBCS. See double-byte character set.

DCCF. See disabled console communication facility.

DCF. See Document Composition Facility.

DELAY Report. An RMF report that shows the
activity of each job in the system and the hardware and
software resources that are delaying each job.

device. A piece of equipment. Devices can be
workstations, printers, disk drives, tape units, remote
systems or communications controllers. You can see
information about all devices attached to a particular
switch, and control paths and jobs to devices.

DEVR Report. An RMF report that presents
information about the activity of I/O devices that are
delaying jobs.

dialog. Interactive 3270 panels.

direct access storage device (DASD). A device that
allows storage to be directly accessed, such as a disk
drive.

disabled console communication facility (DCCF). A
z/OS component that provides limited-function console
communication during system recovery situations.

disk operating system (DOS). (1) An operating
system for computer systems that use disks and
diskettes for auxiliary storage of programs and data. (2)
Software for a personal computer that controls the
processing of programs. For the IBM Personal
Computer, the full name is Personal Computer Disk
Operating System (PCDOS).

display. (1) To present information for viewing,
usually on the screen of a workstation or on a
hardcopy device. (2) Deprecated term for panel.

distribution manager. The component of the NetView
program that enables the host system to use, send, and
delete files and programs in a network of computers.

Document Composition Facility (DCF). An IBM
licensed program used to format input to a printer.

domain. (1) An access method and its application
programs, communication controllers, connecting lines,
modems, and attached workstations. (2) In SNA, a
system services control point (SSCP) and the physical
units (PUs), logical units (LUs), links, link stations, and
associated resources that the SSCP can control with
activation requests and deactivation requests.

double-byte character set (DBCS). A character set,
such as Kanji, in which each character is represented by
a 2-byte code.

DP enterprise. Data processing enterprise.

DSIPARM. This file is a collection of members of
NetView’s customization.

DST. Data Services Task.

E
EBCDIC. See Extended Binary Coded Decimal
Interchange Code.

ECB. See event control block.

EMCS. Extended multiple console support. See also
multiple console support.

ensemble. A collection of one or more zEnterprise
nodes (including any attached zBX) that are managed
as a single logical virtualized system by the Unified
Resource Manager, through the Hardware Management
Console.

ensemble member. A zEnterprise node that has been
added to an ensemble.

enterprise. The composite of all operational entities,
functions, and resources that form the total business
concern and that require an information system.

enterprise monitoring. Enterprise monitoring is used
by SA z/OS to update the NetView Management Console
(NMC) resource status information that is stored in the
Resource Object Data Manager (RODM). Resource status
information is acquired by enterprise monitoring of the
Resource Measurement Facility (RMF) Monitor III service
information at user-defined intervals. SA z/OS stores
this information in its operational information base,
where it is used to update the information presented to
the operator in graphic displays.

350 System Automation for z/OS: Programmer's Reference

|
|
|
|
|

|
|

Enterprise Systems Architecture (ESA). A hardware
architecture that reduces the effort required for
managing data sets and extends addressability for
system, subsystem, and application functions.

entries. Resources, such as processors, entered on
panels.

entry type. Resources, such as processors or
applications, used for automation and monitoring.

environment. Data processing enterprise.

error threshold. An automation policy setting that
specifies when SA z/OS should stop trying to restart
or recover an application, subsystem or component, or
offload a data set.

ESA. See Enterprise Systems Architecture.

eServer™. Processor family group designator used by
the SA z/OS customization dialogs to define a target
hardware as member of the System z or 390-CMOS
processor families.

event. (1) In NetView, a record indicating irregularities
of operation in physical elements of a network. (2) An
occurrence of significance to a task; for example, the
completion of an asynchronous operation, such as an
input/output operation. (3) Events are part of a trigger
condition, such that if all events of a trigger condition
have occurred, a startup or shutdown of an application
is performed.

event control block (ECB). A control block used to
represent the status of an event.

exception condition. An occurrence on a system that
is a deviation from normal operation. SA z/OS
monitoring highlights exception conditions and allows
an SA z/OS enterprise to be managed by exception.

Extended Binary Coded Decimal Interchange Code
(EBCDIC). A coded character set of 256 8-bit
characters developed for the representation of textual
data. See also American Standard Code for Information
Interchange.

extended recovery facility (XRF). A facility that
minimizes the effect of failures in z/OS, VTAM, the
host processor, or high availability applications during
sessions between high availability applications and
designated terminals. This facility provides an alternate
subsystem to take over sessions from the failing
subsystem.

F
fallback system. See secondary system.

field. A collection of bytes within a record that are
logically related and are processed as a unit.

file manager commands. A set of SA z/OS
commands that read data from or write data to the
automation control file or the operational information
base. These commands are useful in the development
of automation that uses SA z/OS facilities.

focal point. In NetView, the focal-point domain is the
central host domain. It is the central control point for
any management services element containing control of
the network management data.

focal point system. (1) A system that can administer,
manage, or control one or more target systems. There
are a number of different focal point system associated
with IBM automation products. (2) NMC focal point
system. The NMC focal point system is a NetView
system with an attached workstation server and LAN
that gathers information about the state of the network.
This focal point system uses RODM to store the data it
collects in the data model. The information stored in
RODM can be accessed from any LAN-connected
workstation with NetView Management Console
installed. (3) NPDA focal point system. This is a
NetView system that collects all the NPDA alerts that
are generated within your enterprise. It is supported by
NetView. If you have SA z/OS installed the NPDA
focal point system must be the same as your NMC
focal point system. The NPDA focal point system is
also known as the alert focal point system. (4) SA z/OS
Processor Operations focal point system. This is a
NetView system that has SA z/OS host code installed.
The SA z/OS Processor Operations focal point system
receives messages from the systems and operator
consoles of the machines that it controls. It provides
full systems and operations console function for its
target systems. It can be used to IPL these systems.
Note that some restrictions apply to the Hardware
Management Console for an S/390® microprocessor
cluster. (5) SA z/OS SDF focal point system. The
SA z/OS SDF focal point system is an SA z/OS
NetView system that collects status information from
other SA z/OS NetViews within your enterprise. (6)
Status focal point system. In NetView, the system to
which STATMON, VTAM and NLDM send status
information on network resources. If you have a NMC
focal point, it must be on the same system as the Status
focal point. (7) Hardware Management Console.
Although not listed as a focal point, the Hardware
Management Console acts as a focal point for the
console functions of an S/390 microprocessor cluster.
Unlike all the other focal points in this definition, the
Hardware Management Console runs on a
LAN-connected workstation,

frame. For a System/390 microprocessor cluster, a
frame contains one or two central processor complexes
(CPCs), support elements, and AC power distribution.

full-screen mode. In NetView, a form of panel
presentation that makes it possible to display the
contents of an entire workstation screen at once.

Glossary 351

Full-screen mode can be used for fill-in-the-blanks
prompting. Contrast with line mode.

G
gateway session. An NetView-NetView Task session
with another system in which the SA z/OS outbound
gateway operator logs onto the other NetView session
without human operator intervention. Each end of a
gateway session has both an inbound and outbound
gateway operator.

generic alert. Encoded alert information that uses
code points (defined by IBM and possibly customized
by users or application programs) stored at an alert
receiver, such as NetView.

group. A collection of target systems defined through
configuration dialogs. An installation might set up a
group to refer to a physical site or an organizational or
application entity.

group entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a group.

group entry type. A collection of target systems
defined through the customization dialog. An
installation might set up a group to refer to a physical
site or an organizational entity. Groups can, for
example, be of type STANDARD or SYSPLEX.

H
Hardware Management Console (HMC). A user
interface through which data center personnel
configure, control, monitor, and manage System z
hardware and software resources. The HMC
communicates with each central processor complex
(CPC) through the Support Element. On an IBM
zEnterprise 196 (z196), using the Unified Resource
Manager on the HMCs or Support Elements, personnel
can also create and manage an ensemble.

Hardware Management Console Application
(HWMCA). A direct-manipulation object-oriented
graphical user interface that provides a single point of
control and single system image for hardware elements.
The HWMCA provides grouping support, aggregated
and real-time system status using colors, consolidated
hardware messages support, consolidated operating
system messages support, consolidated service support,
and hardware commands targeted at a single system,
multiple systems, or a group of systems.

heartbeat. In SA z/OS, a function that monitors the
validity of the status forwarding path between remote
systems and the NMC focal point, and monitors the
availability of remote z/OS systems, to ensure that
status information displayed on the SA z/OS
workstation is current.

help panel. An online panel that tells you how to use
a command or another aspect of a product.

hierarchy. In the NetView program, the resource
types, display types, and data types that make up the
organization, or levels, in a network.

high-level language (HLL). A programming language
that provides some level of abstraction from assembler
language and independence from a particular type of
machine.For the NetView program, the high-level
languages are PL/I and C.

HLL. See high-level language.

host (primary processor). The processor that you enter
a command at (also known as the issuing processor).

host system. In a coupled system or distributed
system environment, the system on which the facilities
for centralized automation run. SA z/OS publications
refer to target systems or focal-point systems instead of
hosts.

HWMCA. See Hardware Management Console
Application.

Hypervisor. A program that allows multiple instances
of operating systems or virtual servers to run
simultaneously on the same hardware device. A
hypervisor can run directly on the hardware, can run
within an operating system, or can be imbedded in
platform firmware. Examples of hypervisors include
PR/SM, z/VM, and PowerVM Enterprise Edition.

I
IBM blade. A customer-acquired, customer-installed
select blade to be managed by IBM zEnterprise Unified
Resource Manager. One example of an IBM blade is a
POWER7 blade.

IBM Smart Analyzer for DB2 for z/OS. An optimizer
that processes certain types of data warehouse queries
for DB2 for z/OS.

IBM System z Application Assist Processor (zAAP).
A specialized processor that provides a Java execution
environment, which enables Java-based web
applications to be integrated with core z/OS business
applications and backend database systems.

IBM System z Integrated Information Processor
(zIIP). A specialized processor that provides
computing capacity for selected data and transaction
processing workloads and for selected network
encryption workloads.

IBM Websphere DataPower Integration Appliance
X150 for zEnterprise (DataPower X150z). A
purpose-built appliance that simplifies, helps secure,
and optimizes XML and Web services processing.

352 System Automation for z/OS: Programmer's Reference

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

IBM Enterprise 196 (z196). The newest generation of
System z family of servers built on a new processor
chip, with enhanced memory function and capacity,
security, and on demand enhancements to support
existing mainframe workloads and large scale
consolidation.

IBM zEnterprise BladeCenter Extension (zBX). A
heterogeneous hardware infrastructure that consists of
a BladeCenter chassis attached to an IBM zEnterprise
196 (z196). A BladeCenter chassis can contain IBM
blades or optimizers.

IBM zEnterprise BladeCenter Extension (zBX) blade.
Generic name for all blade types supported in an IBM
zEnterprise BladeCenter Extension (zBX). This term
includes IBM blades and optimizers.

IBM zEnterprise System (zEnterprise). A
heterogeneous hardware infrastructure that can consist
of an IBM zEnterprise 196 (z196) and an attached IBM
zEnterprise BladeCenter Extension (zBX) Model 002,
managed as a single logical virtualized system by the
Unified Resource Manager.

IBM zEnterprise Unified Resource Manager. Licensed
Internal Code (LIC), also known as firmware, that is
part of the Hardware Management Console. The
Unified Resource Manager provides energy monitoring
and management, goal-oriented policy management,
increased security, virtual networking, and data
management for the physical and logical resources of a
given ensemble.

I/O operations. The part of SA z/OS that provides
you with a single point of logical control for managing
connectivity in your active I/O configurations. I/O
operations takes an active role in detecting unusual
conditions and lets you view and change paths
between a processor and an I/O device, using dynamic
switching (the ESCON director). Also known as I/O
Ops.

I/O Ops. See I/O operations.

I/O resource number. Combination of channel path
identifier (CHPID), device number, etc. See internal
token.

images. A grouping of processors and I/O devices
that you define. You can define a single-image mode
that allows a multiprocessor system to function as one
central processor image.

IMS. See Information Management System.

IMS/VS. See Information Management System/Virtual
Storage.

inbound. In SA z/OS, messages sent to the
focal-point system from the PC or target system.

inbound gateway operator. The automation operator
that receives incoming messages, commands, and
responses from the outbound gateway operator at the
sending system. The inbound gateway operator handles
communications with other systems using a gateway
session.

Information Management System (IMS). Any of
several system environments available with a database
manager and transaction processing that are capable of
managing complex databases and terminal networks.

Information Management System/Virtual Storage
(IMS/VS). A database/data communication (DB/DC)
system that can manage complex databases and
networks. Synonymous with Information Management
System.

INGEIO PROC. The I/O operations default procedure
name. It is part of the SYS1.PROCLIB.

initial microprogram load. The action of loading
microprograms into computer storage.

initial program load (IPL). (1) The initialization
procedure that causes an operating system to
commence operation. (2) The process by which a
configuration image is loaded into storage at the
beginning of a workday or after a system malfunction.
(3) The process of loading system programs and
preparing a system to run jobs.

initialize automation. SA z/OS-provided automation
that issues the correct z/OS start command for each
subsystem when SA z/OS is initialized. The
automation ensures that subsystems are started in the
order specified in the automation control files and that
prerequisite applications are functional.

input/output configuration data set (IOCDS). A
configuration definition built by the I/O configuration
program (IOCP) and stored on disk files associated
with the processor controller.

input/output support processor (IOSP). The hardware
unit that provides I/O support functions for the
primary support processor and maintenance support
functions for the processor controller.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogs between the
application programmer and the terminal user. See also
Time Sharing Option.

interested operator list. The list of operators who are
to receive messages from a specific target system.

internal token. A logical token (LTOK); name by which
the I/O resource or object is known; stored in IODF.

Glossary 353

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

IOCDS. See input/output configuration data set.

IOSP. See input/output support processor..

IPL. See initial program load.

ISPF. See Interactive System Productivity Facility.

ISPF console. You log on to ISPF from this 3270-type
console to use the runtime panels for I/O operations
and SA z/OS customization panels.

issuing host. The base program that you enter a
command for processing with. See primary host.

J
JCL. See job control language.

JES. See job entry subsystem.

JES2. An MVS subsystem that receives jobs into the
system, converts them to internal format, selects them
for execution, processes their output, and purges them
from the system. In an installation with more than one
processor, each JES2 processor independently controls
its job input, scheduling, and output processing. See
also job entry subsystem and JES3

JES3. An MVS subsystem that receives jobs into the
system, converts them to internal format, selects them
for execution, processes their output, and purges them
from the system. In complexes that have several loosely
coupled processing units, the JES3 program manages
processors so that the global processor exercises
centralized control over the local processors and
distributes jobs to them using a common job queue. See
also job entry subsystem and JES2.

job. (1) A set of data that completely defines a unit of
work for a computer. A job usually includes all
necessary computer programs, linkages, files, and
instructions to the operating system. (2) An address
space.

job control language (JCL). A problem-oriented
language designed to express statements in a job that
are used to identify the job or describe its requirements
to an operating system.

job entry subsystem (JES). An IBM licensed program
that receives jobs into the system and processes all
output data that is produced by jobs. In SA z/OS
publications, JES refers to JES2 or JES3, unless
otherwise stated. See also JES2 and JES3.

K
Kanji. An ideographic character set used in Japanese.
See also double-byte character set.

L
LAN. See local area network.

line mode. A form of screen presentation in which the
information is presented a line at a time in the message
area of the terminal screen. Contrast with full-screen
mode.

link. (1) In SNA, the combination of the link
connection and the link stations joining network nodes;
for example, a System/370 channel and its associated
protocols, a serial-by-bit connection under the control
of synchronous data link control (SDLC). See
synchronous data link control. (2) In SA z/OS, link
connection is the physical medium of transmission.

link-attached. Describes devices that are physically
connected by a telecommunication line. Contrast with
channel-attached.

Linux on System z. UNIX-like open source operating
system conceived by Linus Torvalds and developed
across the internet.

local. Pertaining to a device accessed directly without
use of a telecommunication line. Synonymous with
channel-attached.

local area network (LAN). (1) A network in which a
set of devices is connected for communication. They
can be connected to a larger network. See also token
ring. (2) A network that connects several devices in a
limited area (such as a single building or campus) and
that can be connected to a larger network.

logical partition (LP). A subset of the processor
hardware that is defined to support an operating
system. See also logically partitioned mode.

logical switch number (LSN). Assigned with the
switch parameter of the CHPID macro of the IOCP.

logical token (LTOK). Resource number of an object
in the IODF.

logical unit (LU). In SNA, a port through which an
end user accesses the SNA network and the functions
provided by system services control points (SSCPs). An
LU can support at least two sessions, one with an SSCP
and one with another LU, and may be capable of
supporting many sessions with other LUs. See also
physical unit and system services control point.

logical unit 6.2 (LU 6.2). A type of logical unit that
supports general communications between programs in
a distributed processing environment. LU 6.2 is
characterized by:
v A peer relationship between session partners
v Efficient use of a session for multiple transactions
v A comprehensive end-to-end error processing

354 System Automation for z/OS: Programmer's Reference

v A generic application program interface (API)
consisting of structured verbs that are mapped to a
product implementation

Synonym for advanced program-to-program
communication.

logically partitioned (LPAR) mode. A central
processor mode that enables an operator to allocate
system processor hardware resources among several
logical partitions. Contrast with basic mode.

LOGR. The sysplex logger.

LP. See logical partition.

LPAR. See logically partitioned mode.

LSN. See logical switch number.

LU. See logical unit.

LU 6.2. See logical unit 6.2.

LU 6.2 session. A session initiated by VTAM on behalf
of an LU 6.2 application program, or a session initiated
by a remote LU in which the application program
specifies that VTAM is to control the session by using
the APPCCMD macro. See logical unit 6.2.

LU-LU session. In SNA, a session between two logical
units (LUs) in an SNA network. It provides
communication between two end users, or between an
end user and an LU services component.

M
MAT. Deprecated term for NetView automation table.

MCA. See Micro Channel architecture.

MCS. See multiple console support.

member. A specific function (one or more modules or
routines) of a multisystem application that is defined to
XCF and assigned to a group by the multisystem
application. A member resides on one system in the
sysplex and can use XCF services to communicate
(send and receive data) with other members of the
same group.

message automation table (MAT). Deprecated term
for NetView automation table.

message class. A number that SA z/OS associates
with a message to control routing of the message.
During automated operations, the classes associated
with each message issued by SA z/OS are compared to
the classes assigned to each notification operator. Any
operator with a class matching one of the message’s
classes receives the message.

message forwarding. The SA z/OS process of sending
messages generated at an SA z/OS target system to the
SA z/OS focal-point system.

message group. Several messages that are displayed
together as a unit.

message monitor task. A task that starts and is
associated with a number of communications tasks.
Message monitor tasks receive inbound messages from
a communications task, determine the originating target
system, and route the messages to the appropriate
target control tasks.

message processing facility (MPF). A z/OS table that
screens all messages sent to the z/OS console. The MPF
compares these messages with a customer-defined list
of messages on which to automate, suppress from the
z/OS console display, or both, and marks messages to
automate or suppress. Messages are then broadcast on
the subsystem interface (SSI).

message suppression. The ability to restrict the
amount of message traffic displayed on the z/OS
console.

Micro Channel architecture. The rules that define
how subsystems and adapters use the Micro Channel
bus in a computer. The architecture defines the services
that each subsystem can or must provide.

microprocessor. A processor implemented on one or a
small number of chips.

migration. Installation of a new version or release of a
program to replace an earlier version or release.

MP. Multiprocessor.

MPF. See message processing facility.

MPFLSTSA. The MPFLST member that is built by
SA z/OS.

multi-MVS environment. physical processing system
that is capable of operating more than one MVS image.
See also MVS image.

multiple console support (MCS). A feature of MVS
that permits selective message routing to multiple
consoles.

Multiple Virtual Storage (MVS). An IBM operating
system that accesses multiple address spaces in virtual
storage. The predecessor of z/OS.

multiprocessor (MP). A CPC that can be physically
partitioned to form two operating processor complexes.

multisystem application. An application program that
has various functions distributed across z/OS images in
a multisystem environment.

Glossary 355

multisystem environment. An environment in which
two or more systems reside on one or more processors.
Or one or more processors can communicate with
programs on the other systems.

MVS. See Multiple Virtual Storage.

MVS image. A single occurrence of the MVS
operating system that has the ability to process work.
See also multi-MVS environment and single-MVS
environment.

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture. See z/OS.

MVS/JES2. Multiple Virtual Storage/Job Entry System
2. A z/OS subsystem that receives jobs into the system,
converts them to an internal format, selects them for
execution, processes their output, and purges them
from the system. In an installation with more than one
processor, each JES2 processor independently controls
its job input, scheduling, and output processing.

N
NAU. (1) See network addressable unit. (2) See
network accessible unit.

NCCF. See Network Communications Control Facility..

NCP. (1) See network control program (general term).
(2) See Network Control Program (an IBM licensed
program). Its full name is Advanced Communications
Function for the Network Control Program.
Synonymous with ACF/NCP.

NCP/token ring interconnection. A function used by
ACF/NCP to support token ring-attached SNA devices.
NTRI also provides translation from token
ring-attached SNA devices (PUs) to switched (dial-up)
devices.

NetView. An IBM licensed program used to monitor a
network, manage it, and diagnose network problems.
NetView consists of a command facility that includes a
presentation service, command processors, automation
based on command lists, and a transaction processing
structure on which the session monitor, hardware
monitor, and terminal access facility (TAF) network
management applications are built.

NetView (NCCF) console. A 3270-type console for
NetView commands and runtime panels for system
operations and processor operations.

NetView automation procedures. A sequence of
commands, packaged as a NetView command list or a
command processor written in a high-level language.
An automation procedure performs automation
functions and runs under the NetView program.

NetView automation table (AT). A table against
which the NetView program compares incoming

messages. A match with an entry triggers the specified
response. SA z/OS entries in the NetView automation
table trigger an SA z/OS response to target system
conditions. Formerly known as the message automation
table (MAT).

NetView command list language. An interpretive
language unique to NetView that is used to write
command lists.

NetView Graphic Monitor Facility (NGMF).
Deprecated term for NetView Management Console.

NetView hardware monitor. The component of
NetView that helps identify network problems, such as
hardware, software, and microcode, from a central
control point using interactive display techniques.
Formerly called network problem determination application.

NetView log. The log that NetView records events
relating to NetView and SA z/OS activities in.

NetView Management Console (NMC). A function of
the NetView program that provides a graphic,
topological presentation of a network that is controlled
by the NetView program. It provides the operator
different views of a network, multiple levels of
graphical detail, and dynamic resource status of the
network. This function consists of a series of graphic
windows that allows you to manage the network
interactively. Formerly known as the NetView Graphic
Monitor Facility (NGMF).

NetView message table. See NetView automation
table.

NetView paths via logical unit (LU 6.2). A type of
network-accessible port (VTAM connection) that
enables end users to gain access to SNA network
resources and communicate with each other. LU 6.2
permits communication between processor operations
and the workstation. See logical unit 6.2.

NetView-NetView task (NNT). The task that a
cross-domain NetView operator session runs under.
Each NetView program must have a NetView-NetView
task to establish one NNT session. See also operator
station task.

NetView-NetView task session. A session between
two NetView programs that runs under a
NetView-NetView task. In SA z/OS, NetView-NetView
task sessions are used for communication between focal
point and remote systems.

network. (1) An interconnected group of nodes. (2) In
data processing, a user application network. See SNA
network.

network accessible unit (NAU). In SNA networking,
any device on the network that has a network address,
including a logical unit (LU), physical unit (PU), control
point (CP), or system services control point (SSCP). It is

356 System Automation for z/OS: Programmer's Reference

the origin or the destination of information transmitted
by the path control network. Synonymous with
network addressable unit.

network addressable unit (NAU). Synonym for
network accessible unit.

Network Communications Control Facility (NCCF).
The operations control facility for the network. NCCF
consists of a presentation service, command processors,
automation based on command lists, and a transaction
processing structure on which the network
management applications NLDM and NPDA are built.
NCCF is a precursor to the NetView command facility.

Network Control Program (NCP). An IBM licensed
program that provides communication controller
support for single-domain, multiple-domain, and
interconnected network capability. Its full name is
Advanced Communications Function for the Network
Control Program.

network control program (NCP). (1) A program that
controls the operation of a communication controller.
(2) A program used for requests and responses
exchanged between physical units in a network for
data flow control.

Network Problem Determination Application
(NPDA). An NCCF application that helps you identify
network problems, such as hardware, software, and
microcode, from a central control point using
interactive display methods. The alert manager for the
network. The precursor of the NetView hardware
monitor.

Networking NetView. In SA z/OS the NetView that
performs network management functions, such as
managing the configuration of a network. In SA z/OS
it is common to also route alerts to the Networking
NetView.

NGMF. Deprecated term for NetView Management
Console.

NGMF focal-point system. Deprecated term for NMC
focal point system.

NIP. See nucleus initialization program.

NMC focal point system. See focal point system

NMC workstation. The NMC workstation is the
primary way to dynamically monitor SA z/OS
systems. From the windows, you see messages, monitor
status, view trends, and react to changes before they
cause problems for end users. You can use multiple
windows to monitor multiple views of the system.

NNT. See NetView-NetView task.

notification message. An SA z/OS message sent to a
human notification operator to provide information

about significant automation actions. Notification
messages are defined using the customization dialogs.

notification operator. A NetView console operator
who is authorized to receive SA z/OS notification
messages. Authorization is made through the
customization dialogs.

NPDA. See Network Problem Determination
Application.

NPDA focal-point system. See focal point system.

NTRI. See NCP/token ring interconnection.

nucleus initialization program (NIP). The program
that initializes the resident control program; it allows
the operator to request last-minute changes to certain
options specified during system generation.

O
objective value. An average Workflow or Using value
that SA z/OS can calculate for applications from past
service data. SA z/OS uses the objective value to
calculate warning and alert thresholds when none are
explicitly defined.

OCA. In SA z/OS, operator console A, the active
operator console for a target system. Contrast with
OCB.

OCB. In SA z/OS, operator console B, the backup
operator console for a target system. Contrast with
OCA.

OCF. See operations command facility.

OCF-based processor. A central processor complex
that uses an operations command facility for interacting
with human operators or external programs to perform
operations management functions on the CPC.

OPC/A. See Operations Planning and
Control/Advanced.

OPC/ESA. See Operations Planning and
Control/Enterprise Systems Architecture.

Open Systems Adapter (OSA). I/O operations can
display the Open System Adapter (OSA) channel
logical definition, physical attachment, and status. You
can configure an OSA channel on or off.

operating system (OS). Software that controls the
execution of programs and that may provide services
such as resource allocation, scheduling, input/output
control, and data management. Although operating
systems are predominantly software, partial hardware
implementations are possible. (T)

operations. The real-time control of a hardware device
or software function.

Glossary 357

operations command facility (OCF). A facility of the
central processor complex that accepts and processes
operations management commands.

Operations Planning and Control/Advanced
(OPC/A). A set of IBM licensed programs that
automate, plan, and control batch workload. OPC/A
analyzes system and workload status and submits jobs
accordingly.

Operations Planning and Control/Enterprise Systems
Architecture (OPC/ESA). A set of IBM licensed
programs that automate, plan, and control batch
workload. OPC/ESA analyzes system and workload
status and submits jobs accordingly. The successor to
OPC/A.

operator. (1) A person who keeps a system running.
(2) A person or program responsible for managing
activities controlled by a given piece of software such
as z/OS, the NetView program, or IMS. (3) A person
who operates a device. (4) In a language statement, the
lexical entity that indicates the action to be performed
on operands.

operator console. (1) A functional unit containing
devices that are used for communications between a
computer operator and a computer. (T) (2) A display
console used for communication between the operator
and the system, used primarily to specify information
concerning application programs and I/O operations
and to monitor system operation. (3) In SA z/OS, a
console that displays output from and sends input to
the operating system (z/OS, LINUX, VM, VSE). Also
called operating system console. In the SA z/OS operator
commands and configuration dialogs, OC is used to
designate a target system operator console.

operator station task (OST). The NetView task that
establishes and maintains the online session with the
network operator. There is one operator station task for
each network operator who logs on to the NetView
program.

operator view. A set of group, system, and resource
definitions that are associated together for monitoring
purposes. An operator view appears as a graphic
display in the graphical interface showing the status of
the defined groups, systems, and resources.

OperatorView entry. A construct, created with the
customization dialogs, used to represent and contain
policy for an operator view.

optimizer. A special-purpose hardware component or
appliance that can perform a limited set of specific
functions with optimized performance when compared
to a general-purpose processor. Because of its limited
set of functions, an optimizer is an integrated part of a
processing environment, rather than a stand-alone unit.
One example of an optimizer is the IBM Smart
Analytics Optimizer for DB2 for z/OS.

OS. See operating system.

OSA. See Open Systems Adapter.

OST. See operator station task.

outbound. In SA z/OS, messages or commands from
the focal-point system to the target system.

outbound gateway operator. The automation operator
that establishes connections to other systems. The
outbound gateway operator handles communications
with other systems through a gateway session. The
automation operator sends messages, commands, and
responses to the inbound gateway operator at the
receiving system.

P
page. (1) The portion of a panel that is shown on a
display surface at one time. (2) To transfer instructions,
data, or both between real storage and external page or
auxiliary storage.

panel. (1) A formatted display of information that
appears on a terminal screen. Panels are full-screen
3270-type displays with a monospaced font, limited
color and graphics. (2) By using SA z/OS panels you
can see status, type commands on a command line
using a keyboard, configure your system, and passthru
to other consoles. See also help panel. (3) In computer
graphics, a display image that defines the locations and
characteristics of display fields on a display surface.
Contrast with screen.

parallel channels. Parallel channels operate in either
byte (BY) or block (BL) mode. You can change
connectivity to a parallel channel operating in block
mode.

parameter. (1) A variable that is given a constant value
for a specified application and that may denote the
application. (2) An item in a menu for which the user
specifies a value or for which the system provides a
value when the menu is interpreted. (3) Data passed to
a program or procedure by a user or another program,
specifically as an operand in a language statement, as
an item in a menu, or as a shared data structure.

partition. (1) A fixed-size division of storage. (2) In
VSE, a division of the virtual address area that is
available for program processing. (3) On an IBM
Personal Computer fixed disk, one of four possible
storage areas of variable size; one can be accessed by
DOS, and each of the others may be assigned to
another operating system.

partitionable CPC. A CPC that can be divided into 2
independent CPCs. See also physical partition,
single-image mode, MP, and side.

358 System Automation for z/OS: Programmer's Reference

|
|
|
|
|
|
|
|

partitioned data set (PDS). A data set in direct access
storage that is divided into partitions, called members,
each of which can contain a program, part of a
program, or data.

passive monitoring. In SA z/OS, the receiving of
unsolicited messages from z/OS systems and their
resources. These messages can prompt updates to
resource status displays. See also active monitoring

PCE. A processor controller. Also known as the
support processor or service processor in some
processor families.

PDB. See policy database.

PDS. See partitioned data set.

physical partition. Part of a CPC that operates as a
CPC in its own right, with its own copy of the
operating system.

physical unit (PU). In SNA, the component that
manages and monitors the resources (such as attached
links and adjacent link stations) of a node, as requested
by a system services control point (SSCP) through an
SSCP-PU session. An SSCP activates a session with the
physical unit to indirectly manage, through the PU,
resources of the node such as attached links.

physically partitioned (PP) configuration. A mode of
operation that allows a multiprocessor (MP) system to
function as two or more independent CPCs having
separate power, water, and maintenance boundaries.
Contrast with single-image mode.

POI. See program operator interface.

policy. The automation and monitoring specifications
for an SA z/OS enterprise. See IBM Tivoli System
Automation for z/OS Defining Automation Policy.

policy database. The automation definitions
(automation policy) that the automation programmer
specifies using the customization dialog is stored in the
policy database. Also known as the PDB. See also
automation policy.

POR. See power-on reset.

port. (1) System hardware that the I/O devices are
attached to. (2) In an ESCON switch, a port is an
addressable connection. The switch routes data through
the ports to the channel or control unit. Each port has a
name that can be entered into a switch matrix, and you
can use commands to change the switch configuration.
(3) An access point (for example, a logical unit) for data
entry or exit. (4) A functional unit of a node that data
can enter or leave a data network through. (5) In data
communication, that part of a data processor that is
dedicated to a single data channel for the purpose of
receiving data from or transmitting data to one or more
external, remote devices.

power-on reset (POR). A function that re-initializes all
the hardware in a CPC and loads the internal code that
enables the CPC to load and run an operating system.
See initial microprogram load.

PP. See physical partition.

PPI. See program to program interface.

PPT. See primary POI task.

PR/SM™. See Processor Resource/Systems Manager.

primary host. The base program that you enter a
command for processing at.

primary POI task (PPT). The NetView subtask that
processes all unsolicited messages received from the
VTAM program operator interface (POI) and delivers
them to the controlling operator or to the command
processor. The PPT also processes the initial command
specified to execute when NetView is initialized and
timer request commands scheduled to execute under
the PPT.

primary system. A system is a primary system for an
application if the application is normally meant to be
running there. SA z/OS starts the application on all the
primary systems defined for it.

problem determination. The process of determining
the source of a problem; for example, a program
component, machine failure, telecommunication
facilities, user or contractor-installed programs or
equipment, environment failure such as a power loss,
or user error.

processor. (1) A device for processing data from
programmed instructions. It may be part of another
unit. (2) In a computer, the part that interprets and
executes instructions. Two typical components of a
processor are a control unit and an arithmetic logic
unit.

processor controller. Hardware that provides support
and diagnostic functions for the central processors.

processor operations. The part of SA z/OS that
monitors and controls processor (hardware) operations.
Processor operations provides a connection from a
focal-point system to a target system. Through NetView
on the focal-point system, processor operations
automates operator and system consoles for monitoring
and recovering target systems. Also known as ProcOps.

Processor Resource/Systems Manager™ (PR/SM). The
feature that allows the processor to use several
operating system images simultaneously and provides
logical partitioning capability. See also logically
partitioned mode.

ProcOps. See processor operations.

Glossary 359

ProcOps Service Machine (PSM). The PSM is a CMS
user on a VM host system. It runs a CMS multitasking
application that serves as "virtual hardware" for
ProcOps. ProOps communicates via the PSM with the
VM guest systems that are defined as target systems
within ProcOps.

product automation. Automation integrated into the
base of SA z/OS for the products CICS, DB2, IMS,
TWS (formerly called features).

program operator interface (POI). A NetView facility
for receiving VTAM messages.

program to program interface (PPI). A NetView
function that allows user programs to send or receive
data buffers from other user programs and to send
alerts to the NetView hardware monitor from system
and application programs.

protocol. In SNA, the meanings of, and the
sequencing rules for, requests and responses used for
managing the network, transferring data, and
synchronizing the states of network components.

proxy resource. A resource defined like an entry type
APL representing a processor operations target system.

PSM. See ProcOps Service Machine.

PU. See physical unit.

R
RACF. See Resource Access Control Facility.

remote system. A system that receives resource status
information from an SA z/OS focal-point system. An
SA z/OS remote system is defined as part of the same
SA z/OS enterprise as the SA z/OS focal-point system
to which it is related.

requester. A workstation from that user can log on to
a domain from, that is, to the servers belonging to the
domain, and use network resources. Users can access
the shared resources and use the processing capability
of the servers, thus reducing hardware investment.

resource. (1) Any facility of the computing system or
operating system required by a job or task, and
including main storage, input/output devices, the
processing unit, data sets, and control or processing
programs. (2) In NetView, any hardware or software
that provides function to the network. (3) In SA z/OS,
any z/OS application, z/OS component, job, device, or
target system capable of being monitored or automated
through SA z/OS.

Resource Access Control Facility (RACF). A program
that can provide data security for all your resources.
RACF protects data from accidental or deliberate
unauthorized disclosure, modification, or destruction.

resource group. A physically partitionable portion of a
processor. Also known as a side.

Resource Measurement Facility (RMF). A feature of
z/OS that measures selected areas of system activity
and presents the data collected in the format of printed
reports, System Management Facility (SMF) records, or
display reports.

Resource Object Data Manager (RODM). In NetView
for z/OS, a component that provides an in-memory
cache for maintaining real-time data in an address
space that is accessible by multiple applications. RODM
also allows an application to query an object and
receive a rapid response and act on it.

resource token. A unique internal identifier of an
ESCON resource or resource number of the object in
the IODF.

restart automation. Automation provided by SA z/OS
that monitors subsystems to ensure that they are
running. If a subsystem fails, SA z/OS attempts to
restart it according to the policy in the automation
configuration file.

Restructured Extended Executor (REXX). A
general-purpose, high-level, programming language,
particularly suitable for EXEC procedures or programs
for personal computing, used to write command lists.

return code. A code returned from a program used to
influence the issuing of subsequent instructions.

REXX. See Restructured Extended Executor.

REXX procedure. A command list written with the
Restructured Extended Executor (REXX), which is an
interpretive language.

RMF. See Resource Measurement Facility.

RODM. See Resource Object Data Manager.

S
SAF. See Security Authorization Facility.

SA IOM. See System Automation for Integrated
Operations Management.

SAplex. SAplex or "SA z/OS Subplex" is a term used
in conjuction with a sysplex. In fact, a SAplex is a
subset of a sysplex. However, it can also be a sysplex.
For a detailed description, refer to "Using SA z/OS
Subplexes" in IBM Tivoli System Automation for z/OS
Planning and Installation.

SA z/OS. See System Automation for z/OS.

SA z/OS customization dialogs. An ISPF application
through which the SA z/OS policy administrator

360 System Automation for z/OS: Programmer's Reference

defines policy for individual z/OS systems and builds
automation control data and RODM load function files.

SA z/OS customization focal point system. See focal
point system.

SA z/OS data model. The set of objects, classes and
entity relationships necessary to support the function of
SA z/OS and the NetView automation platform.

SA z/OS enterprise. The group of systems and
resources defined in the customization dialogs under
one enterprise name. An SA z/OS enterprise consists
of connected z/OS systems running SA z/OS.

SA z/OS focal point system. See focal point system.

SA z/OS policy. The description of the systems and
resources that make up an SA z/OS enterprise,
together with their monitoring and automation
definitions.

SA z/OS policy administrator. The member of the
operations staff who is responsible for defining
SA z/OS policy.

SA z/OS satellite. If you are running two NetViews
on an z/OS system to split the automation and
networking functions of NetView, it is common to route
alerts to the Networking NetView. For SA z/OS to
process alerts properly on the Networking NetView,
you must install a subset of SA z/OS code, called an
SA z/OS satellite on the Networking NetView.

SA z/OS SDF focal point system. See focal point
system.

SCA. In SA z/OS, system console A, the active
system console for a target hardware. Contrast with
SCB.

SCB. In SA z/OS, system console B, the backup
system console for a target hardware. Contrast with
SCA.

screen. Deprecated term for panel.

screen handler. In SA z/OS, software that interprets
all data to and from a full-screen image of a target
system. The interpretation depends on the format of the
data on the full-screen image. Every processor and
operating system has its own format for the full-screen
image. A screen handler controls one PS/2 connection
to a target system.

SDF. See status display facility.

SDLC. See synchronous data link control.

SDSF. See System Display and Search Facility.

secondary system. A system is a secondary system for
an application if it is defined to automation on that
system, but the application is not normally meant to be

running there. Secondary systems are systems to which
an application can be moved in the event that one or
more of its primary systems are unavailable. SA z/OS
does not start the application on its secondary systems.

Security Authorization Facility (SAF). An MVS
interface with which programs can communicate with
an external security manager, such as RACF.

server. A server is a workstation that shares resources,
which include directories, printers, serial devices, and
computing powers.

service language command (SLC). The line-oriented
command language of processor controllers or service
processors.

service period. Service periods allow the users to
schedule the availability of applications. A service
period is a set of time intervals (service windows),
during which an application should be active.

service processor (SVP). The name given to a
processor controller on smaller System/370 processors.

service threshold. An SA z/OS policy setting that
determines when to notify the operator of deteriorating
service for a resource. See also alert threshold and
warning threshold.

session. In SNA, a logical connection between two
network addressable units (NAUs) that can be
activated, tailored to provide various protocols, and
deactivated, as requested. Each session is uniquely
identified in a transmission header by a pair of
network addresses identifying the origin and
destination NAUs of any transmissions exchanged
during the session.

session monitor. The component of the NetView
program that collects and correlates session-related data
and provides online access to this information. The
successor to NLDM.

shutdown automation. SA z/OS-provided automation
that manages the shutdown process for subsystems by
issuing shutdown commands and responding to
prompts for additional information.

side. A part of a partitionable CPC that can run as a
physical partition and is typically referred to as the
A-side or the B-side.

Simple Network Management Protocol (SNMP). A
set of protocols for monitoring systems and devices in
complex networks. Information about managed devices
is defined and stored in a Management Information
Base (MIB).

single image. A processor system capable of being
physically partitioned that has not been physically
partitioned. Single-image systems can be target
hardware processors.

Glossary 361

single-MVS environment. An environment that
supports one MVS image. See also MVS image.

single-image (SI) mode. A mode of operation for a
multiprocessor (MP) system that allows it to function as
one CPC. By definition, a uniprocessor (UP) operates in
single-image mode. Contrast with physically
partitioned (PP) configuration.

SLC. See service language command.

SMP/E. See System Modification Program/Extended.

SNA. See Systems Network Architecture.

SNA network. In SNA, the part of a user-application
network that conforms to the formats and protocols of
systems network architecture. It enables reliable
transfer of data among end users and provides
protocols for controlling the resources of various
network configurations. The SNA network consists of
network addressable units (NAUs), boundary function
components, and the path control network.

SNMP. See Simple Network Management Protocol.

solicited message. An SA z/OS message that directly
responds to a command. Contrast with unsolicited
message.

SSCP. See system services control point.

SSI. See subsystem interface.

start automation. SA z/OS-provided automation that
manages and completes the startup process for
subsystems. During this process, SA z/OS replies to
prompts for additional information, ensures that the
startup process completes within specified time limits,
notifies the operator of problems, if necessary, and
brings subsystems to an UP (or ready) state.

startup. The point in time that a subsystem or
application is started.

status. The measure of the condition or availability of
the resource.

status display facility (SDF). The system operations
part of SA z/OS that displays status of resources such
as applications, gateways, and write-to-operator
messages (WTORs) on dynamic color-coded panels.
SDF shows spool usage problems and resource data
from multiple systems.

status focal-point system. See focal point system.

steady state automation. The routine monitoring, both
for presence and performance, of subsystems,
applications, volumes and systems. Steady state
automation may respond to messages, performance
exceptions and discrepancies between its model of the
system and reality.

structure. A construct used by z/OS to map and
manage storage on a coupling facility.

subgroup. A named set of systems. A subgroup is part
of an SA z/OS enterprise definition and is used for
monitoring purposes.

SubGroup entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a subgroup.

subplex. See SAplex.

subsystem. (1) A secondary or subordinate system,
usually capable of operating independent of, or
asynchronously with, a controlling system. (2) In
SA z/OS, an z/OS application or subsystem defined to
SA z/OS.

subsystem interface (SSI). The z/OS interface over
which all messages sent to the z/OS console are
broadcast.

support element. A hardware unit that provides
communications, monitoring, and diagnostic functions
to a central processor complex (CPC).

support processor. Another name given to a processor
controller on smaller System/370 processors. See
service processor.

SVP. See service processor.

switch identifier. The switch device number
(swchdevn), the logical switch number (LSN) and the
switch name

switches. ESCON directors are electronic units with
ports that dynamically switch to route data to I/O
devices. The switches are controlled by I/O operations
commands that you enter on a workstation.

symbolic destination name (SDN). Used locally at the
workstation to relate to the VTAM application name.

synchronous data link control (SDLC). A discipline
for managing synchronous, code-transparent,
serial-by-bit information transfer over a link connection.
Transmission exchanges may be duplex or half-duplex
over switched or nonswitched links. The configuration
of the link connection may be point-to-point,
multipoint, or loop. SDLC conforms to subsets of the
Advanced Data Communication Control Procedures
(ADCCP) of the American National Standards Institute
and High-Level Data Link Control (HDLC) of the
International Standards Organization.

SYSINFO Report. An RMF report that presents an
overview of the system, its workload, and the total
number of jobs using resources or delayed for
resources.

SysOps. See system operations.

362 System Automation for z/OS: Programmer's Reference

|

sysplex. A set of z/OS systems communicating and
cooperating with each other through certain
multisystem hardware components (coupling devices
and timers) and software services (couple data sets).

In a sysplex, z/OS provides the coupling services that
handle the messages, data, and status for the parts of a
multisystem application that has its workload spread
across two or more of the connected processors, sysplex
timers, coupling facilities, and couple data sets (which
contains policy and states for automation).

A Parallel Sysplex® is a sysplex that includes a coupling
facility.

sysplex application group. A sysplex application
group is a grouping of applications that can run on any
system in a sysplex.

sysplex couple data set. A couple data set that
contains sysplex-wide data about systems, groups, and
members that use XCF services. All z/OS systems in a
sysplex must have connectivity to the sysplex couple
data set. See also couple data set.

Sysplex Timer®. An IBM unit that synchronizes the
time-of-day (TOD) clocks in multiple processors or
processor sides. External Time Reference (ETR) is the
z/OS generic name for the IBM Sysplex Timer (9037).

system. In SA z/OS, system means a focal point
system (z/OS) or a target system (MVS, VM, VSE,
LINUX, or CF).

System Automation for Integrated Operations
Management. (1) An outboard automation solution for
secure remote access to mainframe/distributed systems.
Tivoli System Automation for Integrated Operations
Management, previously Tivoli AF/REMOTE, allows
users to manage mainframe and distributed systems
from any location. (2) The full name for SA IOM.

System Automation for OS/390. The full name for
SA OS/390, the predecessor to System Automation for
z/OS.

System Automation for z/OS. The full name for
SA z/OS.

system console. (1) A console, usually having a
keyboard and a display screen, that is used by an
operator to control and communicate with a system. (2)
A logical device used for the operation and control of
hardware functions (for example, IPL, alter/display,
and reconfiguration). The system console can be
assigned to any of the physical displays attached to a
processor controller or support processor. (3) In
SA z/OS, the hardware system console for processor
controllers or service processors of processors
connected using SA z/OS. In the SA z/OS operator
commands and configuration dialogs, SC is used to
designate the system console for a target hardware
processor.

System Display and Search Facility (SDSF). An IBM
licensed program that provides information about jobs,
queues, and printers running under JES2 on a series of
panels. Under SA z/OS you can select SDSF from a
pull-down menu to see the resources’ status, view the
z/OS system log, see WTOR messages, and see active
jobs on the system.

System entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a system.

System Modification Program/Extended (SMP/E). An
IBM licensed program that facilitates the process of
installing and servicing an z/OS system.

system operations. The part of SA z/OS that
monitors and controls system operations applications
and subsystems such as NetView, SDSF, JES, RMF, TSO,
RODM, ACF/VTAM, CICS, IMS, and OPC. Also known
as SysOps.

system services control point (SSCP). In SNA, the
focal point within an SNA network for managing the
configuration, coordinating network operator and
problem determination requests, and providing
directory support and other session services for end
users of the network. Multiple SSCPs, cooperating as
peers, can divide the network into domains of control,
with each SSCP having a hierarchical control
relationship to the physical units and logical units
within its domain.

System/390 microprocessor cluster. A configuration
that consists of central processor complexes (CPCs) and
may have one or more integrated coupling facilities.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

T
TAF. See terminal access facility.

target. A processor or system monitored and
controlled by a focal-point system.

target control task. In SA z/OS, target control tasks
process commands and send data to target systems and
workstations through communications tasks. A target
control task (a NetView autotask) is assigned to a target
system when the target system is initialized.

target hardware. In SA z/OS, the physical hardware
on which a target system runs. It can be a single-image
or physically partitioned processor. Contrast with target
system.

Glossary 363

target system. (1) In a distributed system
environment, a system that is monitored and controlled
by the focal-point system. Multiple target systems can
be controlled by a single focal-point system. (2) In
SA z/OS, a computer system attached to the
focal-point system for monitoring and control. The
definition of a target system includes how remote
sessions are established, what hardware is used, and
what operating system is used.

task. (1) A basic unit of work to be accomplished by a
computer. (2) In the NetView environment, an operator
station task (logged-on operator), automation operator
(autotask), application task, or user task. A NetView
task performs work in the NetView environment. All
SA z/OS tasks are NetView tasks. See also message
monitor task, and target control task.

telecommunication line. Any physical medium, such
as a wire or microwave beam, that is used to transmit
data.

terminal access facility (TAF). (1) A NetView function
that allows you to log onto multiple applications either
on your system or other systems. You can define TAF
sessions in the SA z/OS customization panels so you
don't have to set them up each time you want to use
them. (2) In NetView, a facility that allows a network
operator to control a number of subsystems. In a
full-screen or operator control session, operators can
control any combination of subsystems simultaneously.

terminal emulation. The capability of a
microcomputer or personal computer to operate as if it
were a particular type of terminal linked to a
processing unit to access data.

threshold. A value that determines the point at which
SA z/OS automation performs a predefined action. See
alert threshold, warning threshold, and error threshold.

time of day (TOD). Typically refers to the time-of-day
clock.

Time Sharing Option (TSO). An optional
configuration of the operating system that provides
conversational time sharing from remote stations. It is
an interactive service on z/OS, MVS/ESA, and
MVS/XA.

Time-Sharing Option/Extended (TSO/E). An option
of z/OS that provides conversational timesharing from
remote terminals. TSO/E allows a wide variety of users
to perform many different kinds of tasks. It can handle
short-running applications that use fewer sources as
well as long-running applications that require large
amounts of resources.

timers. A NetView command that issues a command
or command processor (list of commands) at a specified
time or time interval.

Tivoli Workload Scheduler (TWS). A family of IBM
licensed products that plan, execute and track jobs on
several platforms and environments. The successor to
OPC/A.

TOD. Time of day.

token ring. A network with a ring topology that
passes tokens from one attaching device to another; for
example, the IBM Token-Ring Network product.

TP. See transaction program.

transaction program. In the VTAM program, a
program that performs services related to the
processing of a transaction. One or more transaction
programs may operate within a VTAM application
program that is using the VTAM application program
interface (API). In that situation, the transaction
program would request services from the applications
program using protocols defined by that application
program. The application program, in turn, could
request services from the VTAM program by issuing
the APPCCMD macro instruction.

transitional automation. The actions involved in
starting and stopping subsystems and applications that
have been defined to SA z/OS. This can include
issuing commands and responding to messages.

translating host. Role played by a host that turns a
resource number into a token during a unification
process.

trigger. Triggers, in combination with events and
service periods, are used to control the starting and
stopping of applications in a single system or a parallel
sysplex.

TSO. See Time Sharing Option.

TSO console. From this 3270-type console you are
logged onto TSO or ISPF to use the runtime panels for
I/O operations and SA z/OS customization panels.

TSO/E. See Time-Sharing Option/Extended.

TWS. See Tivoli Workload Scheduler.

U
UCB. See unit control block.

unit control block (UCB). A control block in common
storage that describes the characteristics of a particular
I/O device on the operating system and that is used for
allocating devices and controlling I/O operations.

unsolicited message. An SA z/OS message that is not
a direct response to a command.

user task. An application of the NetView program
defined in a NetView TASK definition statement.

364 System Automation for z/OS: Programmer's Reference

Using. An RMF Monitor III definition. Jobs getting
service from hardware resources (processors or devices)
are using these resources. The use of a resource by an
address space can vary from 0% to 100% where 0%
indicates no use during a Range period, and 100%
indicates that the address space was found using the
resource in every sample during that period.

V
view. In the NetView Graphic Monitor Facility, a
graphical picture of a network or part of a network. A
view consists of nodes connected by links and may also
include text and background lines. A view can be
displayed, edited, and monitored for status information
about network resources.

Virtual Server. A logical construct that appears to
comprise processor, memory, and I/O resources
conforming to a particular architecture. A virtual server
can support an operating system, associated
middleware, and applications. A hypervisor creates and
manages virtual servers.

Virtual Server Collection. A set of virtual servers that
supports a workload. This set is not necessarily static.
The constituents of the collection at any given point are
determined by virtual servers involved in supporting
the workload at that time.

virtual Server Image. A package containing metadata
that describes the system requirements, virtual storage
drives, and any goals and constraints for the virtual
machine {for example, isolation and availability). The
Open Virtual Machine Format (OVF) is a Distributed
Management Task Force (DMTF) standard that
describes a packaging format for virtual server images.

Virtual Server Image Capture. The ability to store
metadata and disk images of an existing virtual server.
The metadata describes the virtual server storage,
network needs, goals and constraints. The captured
information is stored as a virtual server image that can
be referenced and used to create and deploy other
similar images.

Virtual Server Image Clone. The ability to create an
identical copy (clone) of a virtual server image that can
be used to create a new similar virtual server.

Virtual Storage Extended (VSE). A system that
consists of a basic operating system (VSE/Advanced
Functions), and any IBM supplied and user-written
programs required to meet the data processing needs of
a user. VSE and the hardware that it controls form a
complete computing system. Its current version is
called VSE/ESA.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected

network capability. Its full name is Advanced
Communications Function for the Virtual
Telecommunications Access Method. Synonymous with
ACF/VTAM.

VM Second Level Systems Support. With this
function, Processor Operations is able to control VM
second level systems (VM guest systems) in the same
way that it controls systems running on real hardware.

VM/ESA®. Virtual Machine/Enterprise Systems
Architecture. Its current version is called z/VM.

volume. A direct access storage device (DASD)
volume or a tape volume that serves a system in an
SA z/OS enterprise.

VSE. See Virtual Storage Extended.

VTAM. See Virtual Telecommunications Access
Method.

W
warning threshold. An application or volume service
value that determines the level at which SA z/OS
changes the associated icon in the graphical interface to
the warning color. See alert threshold.

workstation. In SA z/OS workstation means the
graphic workstation that an operator uses for day-to-day
operations.

write-to-operator (WTO). A request to send a message
to an operator at the z/OS operator console. This
request is made by an application and is handled by
the WTO processor, which is part of the z/OS
supervisor program.

write-to-operator-with-reply (WTOR). A request to
send a message to an operator at the z/OS operator
console that requires a response from the operator. This
request is made by an application and is handled by
the WTO processor, which is part of the z/OS
supervisor program.

WTO. See write-to-operator.

WTOR. See write-to-operator-with-reply.

WWV. The US National Institute of Standards and
Technology (NIST) radio station that provides standard
time information. A second station, known as WWVB,
provides standard time information at a different
frequency.

X
XCF. See cross-system coupling facility.

Glossary 365

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

XCF couple data set. The name for the sysplex couple
data set prior to MVS/ESA System Product Version 5
Release 1. See also sysplex couple data set.

XCF group. A set of related members that a
multisystem application defines to XCF. A member is a
specific function, or instance, of the application. A
member resides on one system and can communicate
with other members of the same group across the
sysplex.

XRF. See extended recovery facility.

Z
z/OS. An IBM mainframe operating system that uses
64-bit real storage. See also Base Control Program.

z/OS component. A part of z/OS that performs a
specific z/OS function. In SA z/OS, component refers
to entities that are managed by SA z/OS automation.

z/OS subsystem. Software products that augment the
z/OS operating system. JES and TSO/E are examples
of z/OS subsystems. SA z/OS includes automation for
some z/OS subsystems.

z/OS system. A z/OS image together with its
associated hardware, which collectively are often
referred to simply as a system, or z/OS system.

z196. See IBM Enterprise 196 (z196).

zAAP. See IBM System z Application Assist Processor
(zAAP).

zBX. See IBM zEnterprise BladeCenter Extension
(zBX).

zBX blade. See IBM zEnterprise BladeCenter
Extension (zBX) blade.

zCPC. The physical collection of main storage, central
processors, timers, and channels within a zEnterprise
mainframe. Although this collection of hardware
resources is part of the larger zEnterprise central
processor complex, you can apply energy management
policies to zCPC that are different from those that you
apply to any attached IBM zEnterprise BladeCenter
Extension (zBX) or blades. See also central processor
complex.

zIIP. See IBM System z Integrated Information
Processor (zIIP).

zEnterprise. See IBM zEnterprise System (zEnterprise).

Numerics
390-CMOS. Processor family group designator used in
the SA z/OS processor operations documentation and
in the online help to identify any of the following

S/390 CMOS processor machine types: 9672, 9674, 2003,
3000, or 7060. SA z/OS processor operations uses the
OCF facility of these processors to perform operations
management functions. See OCF-based processor.

366 System Automation for z/OS: Programmer's Reference

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|

Index

Special characters
&APPLPARMS

ACFCMD command 10
ACFREP command 25

&COMPAPPL variable 289
&DCOMP variable 289
&QCOMP variable 289
&RESAPPL variable 289

Numerics
256-character allow or prohibit

string 261, 263

A
accessibility ix
ACFCMD command 7
ACFFQRY file manager command 16
ACFREP command 21
active message handler 29
ACTIVMSG command 29
address space management

INGRCLUP command 126
allow or prohibit attributes 263

defining 261, 266
AOCFILT command 31
AOCGETCN command 33
AOCMSG command 34
AOCQRES command 39
AOCQRY command 40
AOCQRY task global variables 44
AOCUPDT command 50
AOFADMON monitoring routine 179
AOFAJMON command

See INGPJMON routine
AOFAPMON monitoring routine 179
AOFATMON monitoring routine 180
AOFCPMSG command 55
AOFCPSM monitoring routine 180
AOFEXCMD command 58
AOFNCMON monitoring routine 181
AOFPCHILD.0 task global variable 64
AOFPCHILD.n task global variable 64
AOFRACON command 60
AOFRCMTR command 60
AOFSET command 61
AOFSHUTMOD global variable 168
AOFTREE 299
AOFTREE command 61
AOFUXMON monitoring routine 181
API

assembler language CALLS 278
description 193
with REXX 273

automation control file
issuing commands from 7

automation manager commands
INGPOST 120
INGRTCMD 138

Automation Table Function
ING$QRY 187

AUTOTYPE task global variable 48

B
BODY statement 302
BODYHEADER statement 303
BODYTEXT Statement 305

C
captured message status definitions

captured message colors 296
captured message priorities 296

cascaded switch
FICON 195

CDEMATCH command 66
CELL statement 305
CHKTHRES command 69
CMDCNTHI task global variable 10
code matching 66
colors

captured message 296
gateway sessions 295
groups 297
in DISPSTAT 294
in status display facility (SDF) 294
monitor resource status 296
Processor Operations 297
ProcOps 297
spool status 296
TWS automation 297
WTOR 296

commands
ACFCMD 7
ACFFQRY 16
ACFREP 21
ACTIVMSG 29
AOCFILT 31
AOCGETCN 33
AOCMSG 34
AOCQRES 39
AOCQRY 40
AOCUPDT 50
AOFADMON 179
AOFAPMON 179
AOFATMON 180
AOFCPMSG 55
AOFCPSM 180
AOFEXCMD 58
AOFNCMON 181
AOFRACON 60
AOFRCMTR 60
AOFSET 61
AOFTREE 61
AOFUXMON 181
CDEMATCH 66
CHKTHRES 69
DELETE FILE 209

commands (continued)
DISPSTAT

colors 294
FWDMSG 72
HALTMSG 74
INGALERT 76
INGCLEAN 80
INGCNTL 81
INGCPSM 85
INGDATA 87
INGEXEC 91
INGJLM 95
INGLINK 98
INGMON 101
INGMTRAP 107
INGOMX 108
INGPJMON 182
INGPOST 120
INGPSMON 183
INGQRY 123
INGRCHCK 125
INGRCLUP 126
INGRDS 126
INGRTCMD 138
INGSIT 139
INGSTOBS 141
INGSTX 144
INGTIMER 148
INGUSS 150
INGVARS 154
INGVMON 185
INGVSTOP 157
INGVSTRT 158
INGVTAM 159
ISQMTSYS 185
ISSUECMD 161
MDFYSHUT 168
OUTREP 169
QUERY ENTITY CHP 210
QUERY ENTITY CNTLUNIT 215
QUERY ENTITY DEV 218
QUERY ENTITY HOST 222
QUERY ENTITY SWITCH 225
QUERY FILE 228
QUERY INTERFACE

CNTLUNIT 229
QUERY INTERFACE SWITCH 235
QUERY RELATION CHP 243
QUERY RELATION CNTLUNIT 244
QUERY RELATION DEV 244
QUERY RELATION HOST 246
QUERY RELATION SWITCH 246
QUERY SWITCH 247
REMOVE CHP 250
REMOVE DEV 254
RESTORE CHP 250
RESTORE DEV 254
TERMMSG 171
WRITEFILE 259
WRITEPORT 261
WRITESWCH 266

© Copyright IBM Corp. 1996, 2012 367

communication mask 261, 263
connectivity

defining 261
connectivity, defining 263

D
DATETIME statement 307
DCOLOR parameter 283
default status descriptor color 283
define

color for SDF 286
I/O errors for SDF 293
maximum number of SDF

operators 288
SDF color/priority range 291
SDF color/priority relationship 290
SDF initial panel 287
SDF PF keys 284, 285, 288
SDF screen buffer size 292
status colors 287

DELETE FILE command 209
descriptor codes 35
disability ix
DPFKDESC1 parameter 285
DPFKDESC2 parameter 285
DPFKnn parameter 284

E
EHKACTION task global variable 67
EHKCMD task global variable 10
EHKCMDTEXT task global variable 10
EHKEXITNME task global variable 48
EHKEXITRSN task global variable 48
EHKRPY task global variable 21, 24
EHKRPYHI task global variable 24
EHKRPYTEXT task global variable 24
EHKVARn task global variables 10, 25
EMPTYCOLOR parameter 286
ENDPANEL statement 308
ERRCOLOR 287

F
FALLBACK 295
FICON cascaded switches 195
FICON switches 195
file manager commands

ACFFQRY 16
filtering messages 31
FWDMSG command 72

G
gateway sessions

colors 295
priorities 295

groups
colors 297
priorities 297

H
HALTMSG command 74

I
I/O operations

programming commands 193
safe switching 195

I/O operations commands
DELETE FILE 209
QUERY ENTITY CHP 210
QUERY ENTITY CNTLUNIT 215
QUERY ENTITY DEV 218
QUERY ENTITY HOST 222
QUERY ENTITY SWITCH 225
QUERY FILE 228
QUERY INTERFACE

CNTLUNIT 229
QUERY INTERFACE SWITCH 235
QUERY RELATION CHP 243
QUERY RELATION CNTLUNIT 244
QUERY RELATION DEV 244
QUERY RELATION HOST 246
QUERY RELATION SWITCH 246
QUERY SWITCH 247
REMOVE CHP 250
REMOVE DEV 254
RESTORE CHP 250
RESTORE DEV 254
WRITEFILE 259
WRITEPORT 261
WRITESWCH 266

ING$QRY 187
INGALERT command 76
INGCLEAN command 80
INGCNTL command 81
INGCPSM command 85
INGDATA command 87
INGEXEC command 91
INGJLM command 95
INGLINK command 98
INGMON command 101
INGMTRAP command 107
INGOMX command 108
INGPJMON monitoring routine 182
INGPOST command 120
INGPSMON monitoring routine 183
INGQRY command 123
INGRCHCK command 125
INGRCLUP command 126
INGRDS command 126
INGRTCMD command 138
INGSIT command 139
INGSTOBS command 141
INGSTX command 144
INGTIMER command 148
INGUSS command 150
INGVARS command 154

line-mode output 156
INGVMON monitoring routine 185
INGVSTOP command 157
INGVSTRT command 158
INGVTAM command 159
initialization parameters

DCOLOR 283
DPFKDESC1 285
DPFKDESC2 285
DPFKnn 284
EMPTYCOLOR 286
ERRCOLOR 287
INITSCRN 287

initialization parameters (continued)
MAXOPS 288
PFKnn 288
PRIORITY 290
PRITBLSZ 291
PROPDOWN 292
PROPUP 292
SCREENSZ 292
TEMPERR 293

INITSCRN parameter 287
INPUTFIELD statement 308
ISQMTSYS monitoring routine 185
ISSUEACT command 161
ISSUECMD command 161

K
keyboard ix

L
languages supported by the API

Assembler language 278
REXX 273

MVS REXX example 274
load

QUERY FILE command 228
load SDF tree structure 336
LookAt message retrieval tool xvi

M
mask 261, 263
MAXOPS parameter 288
MDFYSHUT command 168
message forwarding and notification 72
message generation and notification 34
message retrieval tool, LookAt xvi
modifying the current shutdown 168
monitor resource status colors 296
monitoring routine

INGSTOBS 141
monitoring routines

AOFADMON 179
AOFAPMON 179
AOFATMON 180
AOFCPSM 180
AOFNCMON 181
AOFUXMON 181
INGPJMON 182
INGPSMON 183
INGVMON 185
ISQMTSYS 185

MOVED 295
MVS descriptor codes 35
MVS REXX example 274

N
NetView

Automation Table Function
ING$QRY 187

DSIPARM member 299

368 System Automation for z/OS: Programmer's Reference

O
operating environment requirements 193
OUTREP command 169
outstanding WTORs

status display facility (SDF)
colors 296

P
PANEL statement 309
panels

Code Processing 68, 171
DISPACF 167
Message Processing 14

parameter list
for I/O operations API 275

PF key
defining for SDF 288

PFKnn parameter 288
PIB, see port information block 247
port information block (PIB) 247
priorities

captured message 296
gateway sessions 295
groups 297
monitor resource status 296
Processor Operartions 297
ProcOps 297
spool status 296
TWS automation 297
WTOR 296

priorities of subsystems in SDF 294
priority

in status display facility (SDF) 294
PRIORITY parameter 290
PRITBLSZ parameter 291
programming commands, I/O

operations 193
PROPDOWN parameter 292
PROPUP parameter 292

Q
QUERY ENTITY CHP command 210
QUERY ENTITY CNTLUNIT

command 215
QUERY ENTITY DEV command 218
QUERY ENTITY HOST command 222
QUERY ENTITY SWITCH

command 225
QUERY FILE command 228
QUERY INTERFACE CNTLUNIT

command 229
QUERY INTERFACE SWITCH

command 235
QUERY RELATION CHP command 243
QUERY RELATION CNTLUNIT

command 244
QUERY RELATION DEV command 244
QUERY RELATION HOST

command 246
QUERY RELATION SWITCH

command 246
QUERY SWITCH command 247

R
REMOVE CHP command 250
REMOVE DEV command

RESTORE DEV command 254
resource attribute, INGQRY

command 123
RESTORE CHP command 250
REXX coding instructions 273
REXX EXEC

MVS example 274

S
safe switching, I/O operations 195
sample SDF, definition 318, 325
save switch configuration

WRITEFILE command 259
saved switch configuration

load file at IPL 228
scheduling a command 58
SCREEN command 333
SCREENSZ parameter 292
SDF

automation control file entry 283
initialization parameters 283
sample definition 318, 325
tree structure hierarchy 299

SDF Command 333, 334
SDF commands

SCREEN 333
SDF Commands

SDF 333
SDFCONF 334

SDF definition statements
AOFTREE 299
BODY 302
CELL 305
DATETIME 307
DT 307
ENDPANEL 308
EP 308
IF 308
INPUTFIELD 308
P 309
PANEL 309
PFKnn 311
SDFPANEL 335
SDFTREE 336
SF 311
ST 314
STATUSFIELD 311
STATUSTEXT 314
TEXTFIELD 315
TEXTTEXT 317
TF 315
TT 317

SDF Definition Statements
BH 303
BODYHEADER 303
BODYTEXT 305
BT 305

SDF dialog
SCREEN 333

SDF Dialog
SDF 333

SDF navigation commands
BACKWARD 337
BOT 337
DETAIL 337
DOWN 338
FORWARD 338
LEFT 338
RETURN 338
RIGHT 338
SCREEN 338
TOP 338
UP 338

shortcut keys ix
spool status colors 296
status

monitor resource, colors in SDF 296
spool, colors in SDF 296

status definitions, captured message
captured message colors 296
captured message priorities 296

status descriptor color 283
status display facility (SDF)

colors 294
gateway colors 295
gateway priorities 295
monitor resource colors 296
monitor resource priorities 296
priorities 294
spool colors 296
spool priorities 296
WTOR colors 296
WTOR priorities 296

status tree 292
STATUSFIELD statement 311
STATUSTEXT statement 314
store

WRITEFILE command 259
structure definitions

AOFTREE 299
BH 303
BODY 302
BODYHEADER 303
BODYTEXT 305
BT 305
CELL 305
DATETIME 307
DT 307
ENDPANEL 308
EP 308
IF 308
INPUTFIELD 308
P 309
PANEL 309
PFKnn 311
SDFPANEL 335
SDFTREE 336
SF 311
ST 314
STATUSFIELD 311
STATUSTEXT 314
TEXTFIELD 315
TEXTTEXT 317
TF 315
TT 317

SUBPAPPL task global variable 46
SUBPASID task global variable 46

Index 369

SUBPCATEGORY task global
variable 46

SUBPCMDPFX task global variable 46
SUBPDESC task global variable 46
SUBPEXTSTART task global variable 46
SUBPEXTSTOP task global variable 46
SUBPFILE task global variable 46
SUBPFILTER task global variable 46
SUBPINFOLINK task global variable 46
SUBPIPLOPT task global variable 46
SUBPIPSTACK task global variable 46
SUBPJOB task global variable 46
SUBPJOBTYPE task global variable 46
SUBPMDATE task global variable 46
SUBPMTIME task global variable 47
SUBPOPER task global variable 47
SUBPPARENT task global variable 47
SUBPPATH task global variable 47
SUBPPID task global variable 47
SUBPPLEX task global variable 47
SUBPPORT task global variable 47
SUBPPROC task global variable 47
SUBPPROCESS 47
SUBPRSTOPT task global variable 47
SUBPSCHEDSS task global variable 47
SUBPSDATE task global variable 47
SUBPSESS task global variable 47
SUBPSHUTDLY task global variable 47
SUBPSPARM task global variable 47
SUBPSTARTTYPE task global

variable 47
SUBPSTAT task global variable 47
SUBPSTIME task global variable 47
SUBPSTOPTYPE task global variable 47
SUBPSTRTDLY task global variable 47
SUBPSUBCAT task global variable 47
SUBPSUBID task global variable 47
SUBPSUBTYPE task global variable 47
SUBPSYMBOLn task global variable 47
SUBPTERMDLY task global variable 47
SUBPTRANTY task global variable 47
SUBPTYPE task global variable 47
SUBPUSER task global variable 47
SUBPUSSJOB task global variable 47
SUBPWLMNAME task global

variable 47
SUBPWTOR task global variable 47
SUBPxxxxx task global variables 44
SUBSAPPL task global variable 45
SUBSASID task global variable 45
SUBSASSIST task global variable 48

SUBSCATEGORY task global
variable 45

SUBSCMDPFX task global variable 45
SUBSDESC task global variable 45
SUBSEXTSTART task global variable 45
SUBSEXTSTOP task global variable 45
SUBSFILE task global variable 45
SUBSFILTER task global variable 45
SUBSINFOLINK task global variable 45
SUBSIPLOPT task global variable 45
SUBSIPSTACK task global variable 45
SUBSJOB task global variable 45
SUBSJOBTYPE task global variable 45
SUBSMDATE task global variable 45
SUBSMTIME task global variable 45
SUBSOPER task global variable 45
SUBSPARENT task global variable 45
SUBSPATH task global variable 45
SUBSPID task global variable 45
SUBSPLEX task global variable 45
SUBSPORT task global variable 45
SUBSPROC task global variable 45
SUBSPROCESS task global variable 45
SUBSRSTOPT task global variable 45
SUBSSCHEDSS task global variable 45
SUBSSDATE task global variable 45
SUBSSESS task global variable 45
SUBSSHUTDLY task global variable 45
SUBSSPARM task global variable 45
SUBSSTARTTYPE task global

variable 45
SUBSSTAT task global variable 45
SUBSSTIME task global variable 45
SUBSSTOPTYPE task global variable 45
SUBSSTRTDLY task global variable 46
SUBSSUBCAT task global variable 46
SUBSSUBID task global variable 46
SUBSSUBTYPE task global variable 46
SUBSSYMBOLn task global variable 46
SUBSTERMDLY task global variable 46
SUBSTRANTY task global variable 46
SUBSTYPE task global variable 46
SUBSUSER task global variable 46
SUBSUSSJOB task global variable 46
SUBSWLMNAME task global

variable 46, 47
SUBSWTOR task global variable 46
SUBSxxxxx task global variables 44
subsystem colors and priorities in

SDF 294
subsystem priorities in SDF 294

switch
FICON 195
FICON cascaded 195

switching, safe, I/O operations 195
syntax diagrams

how to read 3
system hierarchy tree 61
system operations

commands for programming 7
system operations commands

INGCLEAN 80
INGCNTL 81
INGJLM 95
INGPOST 120
INGQRY 123
INGRCHCK 125
INGRCLUP 126
INGRDS 126
INGRTCMD 138
INGUSS 150
INGVSTOP 157
INGVSTRT 158

T
TEMPERR parameter 293
TERMMSG command 171
TEXTFIELD statement 315
TEXTTEXT statement 317
TWS automation

colors 297
priorities 297

U
user-written programs

calling the API 193

W
WRITEFILE command 259
WRITEPORT command 261

256-character allow or prohibit
string 263

example 264
WRITESWCH command 266
WTORs

status display facility (SDF)
colors 296

370 System Automation for z/OS: Programmer's Reference

	Contents
	Figures
	Tables
	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Dotted decimal syntax diagrams
	How to send your comments to IBM
	If you have a technical problem

	About This Book
	Who Should Use This Book
	Where to Find More Information
	The System Automation for z/OS Library
	Related Product Information
	Using LookAt to look up message explanations

	Summary of Changes for SC34-2650-00
	New Information
	Changed Information
	Moved Information

	Part 1. Introduction
	Chapter 1. Introduction
	Overview of Commands
	Format of Syntax Diagrams

	Part 2. SA z/OS System Operations Commands and Routines
	Chapter 2. SA z/OS System Operations Commands
	Using System Operations Commands for Programming
	ACFCMD
	ACFFQRY
	ACFREP
	ACTIVMSG
	AOCFILT
	AOCGETCN
	AOCMSG
	AOCQRES
	AOCQRY
	AOCUPDT
	AOFCPMSG
	AOFEXCMD
	AOFRACON
	AOFRCMTR
	AOFSET
	AOFTREE
	CDEMATCH
	CHKTHRES
	FWDMSG
	HALTMSG
	INGALERT
	INGCLEAN
	INGCNTL
	INGCPSM
	INGDATA
	INGEXEC
	INGJLM
	INGLINK
	INGMON
	INGMTRAP
	INGOMX
	INGPOST
	INGQRY
	INGRCHCK
	INGRCLUP
	INGRDS
	INGRTCMD
	INGSIT
	INGSTOBS
	INGSTX
	INGTIMER
	INGUSS
	INGVARS
	INGVSTOP
	INGVSTRT
	INGVTAM
	ISSUEACT (ISSUECMD, ISSUEREP)
	MDFYSHUT
	OUTREP
	TERMMSG

	Chapter 3. Monitoring Routines
	AOFADMON
	AOFAPMON
	AOFATMON
	AOFCPSM
	AOFNCMON
	AOFUXMON
	INGPJMON
	INGPSMON
	INGROMON
	INGVMON
	ISQMTSYS

	Chapter 4. ING$QRY NetView Automation Table Function
	ING$QRY

	Part 3. SA z/OS I/O Operations Commands
	Chapter 5. I/O Operations Commands (API)
	Using I/O Operations Commands for Programming
	Calling the I/O Operations API

	Safe Switching
	FICON Switches
	FICON Cascaded Switches
	Common Elements
	Common Syntax Elements
	Common Parameters
	Common Query Commands Syntax
	Common Query Entity/Interface Output Header
	Common Query Relation Output Format

	DELETE FILE
	QUERY ENTITY CHP
	QUERY ENTITY CNTLUNIT
	QUERY ENTITY DEV
	QUERY ENTITY HOST
	QUERY ENTITY SWITCH
	QUERY FILE
	QUERY INTERFACE CNTLUNIT
	QUERY INTERFACE SWITCH
	QUERY RELATION CHP
	QUERY RELATION CNTLUNIT
	QUERY RELATION DEV
	QUERY RELATION HOST
	QUERY RELATION SWITCH
	QUERY SWITCH
	REMOVE and RESTORE CHP
	REMOVE DEV and RESTORE DEV
	WRITEFILE
	WRITEPORT
	WRITESWCH

	Chapter 6. Invoking I/O Operations using the API
	API Calls by REXX EXECs
	Rules for Calls by a REXX EXEC
	Two Examples of REXX EXEC Calls
	Generalized Example of a REXX EXEC Call

	API Calls by the CALL Macro
	General Information
	The Parameter Lists
	The Caller Should Check Register 15 Upon Return From the Call
	Calling Program Uses IHVAPI2
	Calling Program Uses IHVAPI

	Part 4. Status Display Facility Definitions
	Chapter 7. SDF Initialization Parameters
	DCOLOR
	DPFKnn
	DPFKDESC1
	DPFKDESC2
	EMPTYCOLOR
	ERRCOLOR
	INITSCRN
	MAXOPS
	PFKnn
	PRIORITY
	PRITBLSZ
	PROPDOWN
	PROPUP
	SCREENSZ
	TEMPERR
	Priority and Color Default Assignments
	Subsystem
	Gateway
	Spool
	WTOR
	Monitor Resource
	Captured Message
	TWS Automation
	Groups
	Processor Operations

	Chapter 8. SDF Definition Statements
	AOFTREE
	BODY
	BODYHEADER
	BODYTEXT
	CELL
	DATETIME
	ENDPANEL
	INPUTFIELD
	PANEL
	PFKnn
	STATUSFIELD
	STATUSTEXT
	TEXTFIELD
	TEXTTEXT
	Example SDF Definition
	SDF Tree Structure Definitions
	SDF Panel Definitions
	SDF Initialization Parameters in AOFINIT
	SDF Status Detail Definitions

	Example Of A Large SDF Panel

	Chapter 9. SDF Commands
	Using SDF Commands
	Dynamically Loading Panels and Tree Structures

	SCREEN
	SDF
	SDFCONF
	SDFPANEL
	SDFTREE
	Navigation Commands

	Appendix. Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

