System Automation for z/0S
Version 3 Release 4

Customizing and Programming

Note!
FBefore using this information and the product it supports, read the information in|[Appendix G, “Notices,” on page 291

This edition applies to IBM Tivoli System Automation for z/OS (Program Number 5698-SA3) Version 3, Release 4,
an IBM licensed program, and to all subsequent releases and modifications until otherwise indicated in new
editions.

This edition replaces SC34-2570-03.

IBM welcomes your comments. You may forward your comments electronically, or address your comments to:
IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Strasse 220
71032 Boeblingen
Germany

If you prefer to send comments electronically, use one of the following methods:
FAX (Germany): 07031 16-3456
FAX (Other Countries): +49 7031 16-3456
Internet: s390id@de.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures.IX
TablesXi

Accessibility xiii

Using assistive technologies L Xxiid
Keyboard navigation of the user 1nterface xiid
z/0S informationxii

Dotted decimal syntax diagrams. . . . xv

How to send your comments to IBM xvii
If you have a technical problem xvii

About ThisBook Xix

Who Should Use This Book.xix
Prerequisites. . . S ... L XX
Where to Find More Inforrnat10n .o .. Xix
The System Automation for z/OS lerary ..oxix
Related Product Information. . . . XX
Using LookAt to look up message explanatrons XX
Summary of Changes for SC34-2644-00 xx
New Informationxxi
Changed Information xxii
Moved Information xxiii
Deleted Information. xxii

Chapter 1. How to Add a New
Application to Automation. .
Preparation Before Automating an Application .
Address Space properties .
Step 1 - Application Start .
Step 2 - Application Stop .
Step 3 - Application Events
Step 4 - Application Monitoring .
Outstanding Reply Processing
Topology
Adding the Apphcatlon to Automat1on
Define an Application Policy Object
Using Automated Discovery to Define Appl1cat10n

U101LHQH>J>®N>—\>—kb—\—‘

Policy Objects . . .6
Build New Automation Conflguratlon Flles . .6
Chapter 2. How to Create Automation
Procedures . .7
How Automation Procedures Are Called .7
How Automation Procedures Are Structured . 8
Performing Initialization Processing . .9
Determining whether Automation Is Allowed .9
Performing Automation Processing10
How to Make Your Automation Procedures Generic 14
Processor Operations Commands14

© Copyright IBM Corp. 1996, 2012

Developing Messages for Your Automation

Procedures15
Example AOCMSG Call15
Example Automation Procedure16
Notes on the Automation Procedure Example .17
Installing Your Automation Procedures18
Testing and Debugging Automation Procedures . . 18
The Assist Mode Facility18
Using Assist Mode to Test Automatlon
Procedures19
Using AOCTRACE to Trace Automatron
Procedure Processing . . R
NetView Testing and Debugglng Fac1ht1es ... 20
Where to Find More Testing Information . . .21
Coding Your Own Information in the Automation
Status File. . . . A |
Programming Recommendat1ons e |
Global Variable Names22

Chapter 3. How to Add a Message to
Automation.23

Conceptual Overview23
Defining Actions for Messages23
Defining CMD or REP Actions24
Defining AT Actions . . .
Defining Message Overr1des L.26
Extended Status Command Support27
Policy Definitions27
Defining Entries for the Message Rev1s1on Table . .29
Build . . e 1)
AT and MRT Bu1ld Concept T 0]
Load30
Listings.30
A Guide to SA z/ OS Automat1on Tables 1 |
NetView Automation Table Structure. 31
Integrating Automation Tables32
Generic Automation Table Statements 33
System Operations Automation Flow.34
Inheritance Rules for Classes35
Define Application Information.35
Define Relationships35
Define Application Messages and User Data . .35
Define Startup Procedures36
Define Shutdown Procedures36
Define Error Thresholds36
Define IMS Subsystem-Specific Data36

Chapter 4. How to Monitor Appllcatlons 39

Observed Status Monitoring. 39
Health Monitoring40
Overview 40
Monitor Resource Commands S |
Writing a Recovery Routine42
Active Health Monitoring43
Passive, Event-Based Health Monltorrng R ¥
iii

Programming Techniques.46

Health Monitoring using OMEGAMON48
Overview48
Assumptions
OMEGAMON Interactlon .o . .49
Health Monitoring Based on OMEGAMON
Exceptions. . . . 53
Health Monltormg Based on OMEGAMON XE
Situationsb5

Health Monitoring usmg CICSPlex SMb58
Component Overview 58
Creating an Application to Manage the VOST . 58
Defining the Monitor Resources59

Monitoring JES3 Components59
AOFRJ3MN Routine60
AOFRJ3RC Routine.62

JES2 Spool Monitoring.63

DB2 Connection Monitoring.63

IMS Component Monitoring.63

Chapter 5. Joblog Monltorlng . 65

Overview65
Limitations66

Customization66

Status Information70

Chapter 6. Alert-Based Notification . . 71

Overview . . . TR |
Communication Flow A |
Enabling Alerting72

SetupinSA z/OS72
INGALERT Command.76

Chapter 7. Availability and Recovery

Time Reportlng .77
Overview . . . 4
Resource Lifecycle77
Layout of the SMF Record78
Enabling SMF Records.79
The INGPUSMF Utility80
Output . . . B
The INGPUSMF Ut111ty]CL80
Return Codes. . . . <1 |
Writing the SMF Report to DB2 J Y < 2
Customization82
Output.83

Chapter 8. How to Automate Processor

Operations-Controlled Resources . . 85

Automating Processor Operations Resources of

z/0S Target Systems Using Proxy Definitions . . . 85
Concept8
Customizing Automatlon for Proxy Resources . 86
Preparing Message Automation.88

Automating Linux Console Messages.88
The Linux Console Connection to NetView. . . 88
Linux Console Automation with Mixed Case
Character Data88
Security Considerations89
Restrictions and Limitations.89

iv System Automation for z/OS: Customizing and Programming

How to Add a Processor Operations Message to

Automation 89
Messages Issued by a Processor Operatlons
Target System89
Building the New Automatlon Defmltlons .. .93

Loading the Changed Automation Environment 93
Using Pipes and ISQCCMD for Synchronous HW

Commands 94

Automating Asynchronous Hardware Commands

with ISQCCMD and PIPES9

VM Second Level Systems Support96
Guest Target Systems96
Customizing Target Systems.97

Chapter 9. How to Automate USS

Resources. . 101
Integration of z/OS UNIX System Serv1ces . 101
Infrastructure Overview . .o . 102
Setting Up z/0S UNIX Automatlon . 102
Customization of z/OS UNIX Resources . 102
Example: sshd . . 108
Hints and Tips . . 111
Trapping UNIX syslogd Messages 111
Debugging . . 112
Chapter 10. Command Receivers . . 113
Setting Up the Command Receiver . . 113
Setting Up TSO/Batch Environment . . 113
Defining Command Receiver as a Subsystem
Automated by SA z/0S. . . 114
Defining Command Work Tasks Used by the
Command Receiver . 115
Starting and Stopping the Command Recelver . 115
Submitting NetView Commands from a Batch Job 115
Sample Batch Job JCL . 115
Command Statement Syntax . 116
Executing a Command on a Different NetVlew 117
JCL for the Batch Command Interface . 117
Chapter 11. Enabling Relational Data
Services (RDS). . 121
Enable/Disable Persistent Relational Data Services 121
Import System Automation Resources . . 121
Regular Snapshot . . 122
RDS Initialization . . 122
RACEF Protection of INGRCRDX under TSO . 122
Enable and Disable RACF Checking. . 122
RACEF Profile and Class . . 123
Install SA Provided Authorized TSO Command 123
RDS Table Editor . . 123
Add SA TSO REXX lerary . . 124
Define a RDS Working Data Set for
Viewing/Editing under TSO . 124
Chapter 12. How to Enable Sysplex
Automation . 127
Sysplex Functions . . . 127
Managing Couple Data Sets . 127
Managing the System Logger . . 128

Managing Coupling Facilities .
Recovery Actions .
Hardware Validation .
Enabling Hardware-Related Automatlon
Step 1: Defining the Processor . .
Step 2: Using the Policy Item PROCESSOR
INFO . ..
Step 3: Defining Logical Partitions
Step 4: Defining the System

Step 5: Connecting the System to the Processor

Step 6: Defining Logical Sysplexes
Step 7: Defining the Physical Sysplex

Sets .
Enabling WTO(R) Buffer Shortage Recovery
Enabling System Removal . .
Step 1: Defining the Processor and System
Step 2: Defining the Application with
Application Type IMAGE .
Step 3: Defining an Application Group
Step 4: Automating IXC102A and IXC402D
Messages . .
Step 5: Verify Automatlon table entrles
Enabling Long Running Enqueues (ENQs)
Step 1: Defining Resources . . .
Step 2: Making Job/ASID Deflmtrons
Step 3: Defining IEADMCxx Symbols
Step 4: Defining Commands .
Step 5: Defining Snapshot Intervals .
Enabling Auxiliary Storage Shortage Recovery
Step 1: Defining the Local Page Data Set .
Step 2: Defining the Handling of Jobs .
Defining Common Automation Items .
Customizing the System to Use the Functions
Additional Automation Operator IDs
Switching Sysplex Functions On and Off .

Chapter 13. Automating Networks

Automation Network Definition Process
Defining an SDF Focal Point System.
Defining Gateway Sessions .

Defining Automatically-Initiated TAF Fullscreen

Sessions .

Chapter 14. Defining a VTAM
Application to SA z/0OS .

Registering VTAM Application Subsystems with

SA z/0OS Recovery

Chapter 15. Shutting Down z/OS
systems in a GDPS Environment .
Example Definition

Chapter 16. WTOR Processing .
Process Flow of WTORSs.
Actions in Response to Incoming WTORs .
Customizing how WTORs Are Stored by
SA z/0S. .
Processing of Prlmary WTORs
Usage Notes. o

Enabling Continuous Availability of Couple Data

. 129
. 131
. 138
. 140
. 140

. 140
. 140
. 140

140

. 141
. 141

. 141
. 142
. 142
. 143

. 143
. 143

. 143
. 145
. 145
. 145
. 145
. 146
. 146
. 146
. 146
. 146
. 146
. 146
. 147
. 147
. 147

. 149
. 149
. 149
. 150

. 152

. 155

. 155

. 157
. 157

. 159
. 159
. 160

. 160
. 161
. 162

Chapter 17. SA z/OS User Exits . . . 163

Initialization Exits. 164
AOFEXDEF.165
AOFEXIO1T165
AOFEXI02165
AOFEXI0O3165
AOFEXIO4165
AOFEXIOS166
AOFEXI0O616
AOFEXINT166

Environmental Setup Exits 166
Parameters166
Return Codes167
Usage Notes.167

Static Exits167
AOFEXSTA167
AOFEXX02168
AOFEXX03168
AOFEXX04169
AOFEXX05169
AOFEXX15169

Flag Exits.169
Parameters . . . P V4 |
Task Global Varlables FE A V422
Return Codes172

Customization Dialog Exits.172
User Exits for BUILD Processing 173
User Exits for COPY Processing 174
User Exits for DELETE Processing 174
User Exits for CONVERT Processing 175
User Exits for RENAME, and IMPORT
Functions. 175
Invocation of Customlzatlon D1alog Ex1ts .. . 176

Command Exits176
AOFEXC00176
AOFEXCO01177
AOFEXC02177
AOFEXC03177
AOFEXC04177
AOFEXC05177
AOFEXC06177
AOFEXCO07178
AOFEXCO8178
AOFEXC09178
AOFEXC10178
AOFEXC11178
AOFEXC12178
AOFEXC13179
AOFEXC14179
AOFEXC15179
AOFEXC16179
AOFEXC17179
AOFEXC18179
AOFEXC19180
AOFEXC20180
AOFEXC21180
AOFEXC2218
AOFEXC23181
AOFEXC24181

Pseudo-Exits 181

Automation Control F11e Reload Perrmssron Exrt 181

Contents V

Automation Control File Reload Action Exit .

Subsystem Up at Initialization Commands
Testing Exits.

Chapter 18. Automation Solutions
LOGREC Data Set Processing .

SMF Data Set Processing

SYSLOG Processing .

System Log Failure Recovery

SVC Dump Processing

Deletion of Processed WTORs from the Dlsplay

AMREF Buffer Shortage Processing .
Drain Processing Prior to JES2 Shutdown .
IMS Transaction Recovery .

AOFRSA0Q1 .

AOFRSAQ2 .

AOFRSAQ3 .

AOFRSAQ8 .

AOFRSAQC .

AOFRSACQE .

AOFRSA0G .

AOFRSDO07 .

AOFRSDO09 .

AOFRSDOF .

AOFRSDOG .

AOFRSDOH .

HASP099 .

INGRMJSP .

INGRCJSP (AOFRSDOl)

INGRTAPE . .

INGRX740

Chapter 19. Automated System

Resource Discovery

Disclaimer . .

Components OverV1ew . .

Overview of Using the Automated System

Resource Discovery Process
Step 1: Using The Discovery Engme
Step 2: Building the Automation Policy.

Extending Automated Modelling .

Mapping Files . .

Finalizing the Target Pohcy . .
Creating and preparing a Reference Pohcy
Importing from the Reference Policy
Avoiding multiple entries for the same
application .

Changing the Name of an APL

Target Policy Ready for Build .
Building the Configuration Control Data .
Troubleshooting

Appendix A. Global Variables
Read-Only Variables .

Read/Write Variables. .
Parameter Defaults for Commands .

Appendix B. Customizing the Status

Display Facility
Overview of the Status Display Fac111ty

vi System Automation for z/OS: Customizing and Programming

. 181
. 181
. 182

. 183
. 183
. 184
. 184
. 184
. 185

185

. 185
. 186
. 186
. 186
. 187
. 189
. 192
. 194
. 197
. 198
. 199
. 200
. 202
. 204
. 205
. 207
. 207
. 209
. 210
. 211

. 215
. 215
. 216

. 218
. 218
. 220
. 224
. 225
. 225
. 225
. 226

. 226
. 227
. 227
. 227
. 227

. 229
. 229
. 230
. 238

. 243
. 243

How the Status Display Fac1hty Works .
Types of SDF Panels . .
Status Descriptors .

SDF Tree Structures

How Status Descriptors Affect SDF
How SDF Helps Operations to Focus on Spec1f1c
Problems . o
How SDF Panels Are Defmed .
Dynamically Loading Tree Structure and Panel
Definition Members . . .

Using SDF for Multiple Systems .

SDF Components . .

How the SDF Task Is Started and Stopped

SDF Definition Process
Step 1: Defining SDF H1erarchy
Step 2: Defining SDF Panels
Step 3: (Optional) Customizing SDF
Initialization Parameters. .

Step 4: (Optional) Defining SDF in the
Customization Dialog .

Appendix C. How System Operations
Coordinates with Automatic Restart
Manager

Defining an ARM Element Name .
Defining a MOVE Group for Automatic Restart
Manager . o

Appendix D. Message Automation
Generic Synonyms: AOFMSGSY . . .
SA z/0OS Message Presentation: AOFMSGSY
Operator Cascades: AOFMSGSY .
SA z/0S Topology Manager for NMC:
AOFMSGST . . .

Appendix E. TSO User Monitoring

Appendix F. Autodiscovery Mapper
Files and Report Formats .
Mapper Files
Functions. .
Address Space Identlflcatlon Mapplng Flle (
INGSMAID / INGSMAIU) . . .o
XCF Group Identification Mapping Flle (
INGSMGRP / INGSMGRU) .
XCF Group Member Identification Mappmg F11e
(INGSMGMB / INGSMGMU) . .
USS Process Identification Mapping File
(INGSMUID / INGSMUIU)
Policy Mapping File INGSMPLU / INGSMPLY)
Variable Mapping File (INGSMVRS /
INGSMVRU) . .
Preloader Reports .
Summary Report .
XCFGROUP Report
ARMGROUP Report .
ASDETAIL Report.
EXCLUDE Report .
CONSTRCT Report

. 243
. 243
. 244
. 245

. 246

. 249
. 249

. 250
. 251
. 251
. 252
. 252
. 253
. 254

. 258

. 258

. 259
. 259

. 260

. 261
. 261

262

. 264

. 267

. 269

. 271
. 271
. 271

. 272

. 273

. 274

. 275
275

. 277
. 277
. 279
. 281
. 282
. 283
. 284
. 285

SYMBOLS Report .
KBIMPORT Report
KBMAP Report.
SUBSYS Report.

Appendix G. Notices

Programming Interface Information .

. 287
. 288
. 289
. 290

. 291
. 292

Trademarks .

Glossary

Index .

. 292

. 293

. 315

Contents

vii

viii System Automation for z/OS: Customizing and Programming

Figures

@

*® N U

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.
28.
29.
30.
31.

32.

Application Lifecycle.

Automation Procedures for System Operatlons

Automation Procedures for Processor
Operations . .

Skeleton of an Automatlon Procedure
AT Structure .

Sample Monitor Command

Take Action Dialog .

ISPF dialog defining the]oblog momtormg for

an application.

ISPF dialog defining the]oblog mon1tor1ng of

all JESMSGLG messages (1/3)

ISPF dialog defining the joblog monitoring of

all JESMSGLG messages (2/3)

ISPF dialog defining the automation of spec1f1c

messages

ISPF dialog defmmg the]oblog monltormg of

specific messages

Common MAT entry for message INGY13OOI
and jobs defining a message id for monitoring .
ISPF dialog defining the joblog monitoring of

all JESMSGLG messages (3/3)

Common MAT entry for message INGY13OOI

and jobs without defining a message id for
monitoring . .
Joblog monitoring status 1nformat10n .
Alert Communication Flow .

Events in the Lifecycle of an Apphcat1on
SMF Processing with z/OS Offloader .
Stop Definitions for a Process .

Delete a File .

SSH Daemon Listening

Example of a UNIX Message .
Sample Panel for Command Processing
Sample Panel for Code Processing

Focal Point Forwarding Definitions for
Systems .

Automation Operator Def1n1t10ns Panel

Automation Operator NetView Userids Panel

Fullscreen TAF Application Definition Panel
Example Processing of a Primary WTOR
SA z/0S Exit Sequence during SA z/0S
Initialization .

Threshold Definitions for MVS Component
LOGREC .

© Copyright IBM Corp. 1996, 2012

.4
8

. 8

. 14
.31
. 44

. 57

. 66

. 67

. 68

. 68

. 68

69

. 69

. 69
. 70
.72

77

. 82
. 107
. 108
. 110
. 112

144

. 144

. 150

151
152
153
162

. 164

. 188

33.

34.

35.

36.

37.

38.
39.
40.
41.
42.
43.
44.
45.

46.

47.
48.
49.
50.
51.
52.
53.

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

MESSAGES/USER DATA Policy Item for
Entry/Type-Pair MVSESA /LOGREC.
Threshold Definitions for MVS Component
SMFDUMP . .
MESSAGES/USER DATA Pohcy Item for
Entry/Type-Pair MVSESA/SMFDUMP .
Threshold Definitions for MVS Component
SYSLOG . . .
MESSAGES/USER DATA Pohcy Item for
Entry/Type-Pair MVSESA /SYSLOG .
MVSDUMP Thresholds .

MVSESA AMRF Command Def1n1t10ns
JES2 DRAIN Specifications Panel .
DISPACF Panel .

DISPACF JES2 INITDRAIN Panel

JES2 SPOOLSHORT Recovery Definition
DISPACF Command Response Panel
Threshold Definitions for MVS Component
LOG .
MESSAGES/ USER DATA Pohcy Item for
Entry/Type-Pair MVSESA/LOG .
Automated Discovery Overview .
Discovery Engine Overview.

Preloader Processes

Flat File Processing

Example SDF Panels .

Example SDF Tree Structure

Status Descriptors Chained to Status
Components . .

Example Tree Structure Defm1t10n
Example SDF Panel

Example Panel Definition Entry

The SUMMARY Report .

The XCFGROUP Report .

The ARM Group Report .

The ASDETAIL Report

The EXCLUDE Report

The CONSTRCT Report . .

The CONSTRCT Report (second sectlon)
The CONSTRCT Report (third section)

The SYMBOLS Report

The SYMBOLS Report (second sectlon)
The KBIMPORT Report . .

The KBMAP Report

The SUBSYS Report

. 189

. 191

. 191

. 193

. 193
. 196

199

. 203
. 203
. 204

206
206

. 212

. 213
. 216
. 219
. 221
. 224
. 244
. 245

. 247
. 254
. 255
. 256
. 280
. 281
. 282
. 283
. 284
. 285

285
286

. 287

287

. 288
. 289
. 290

ix

X System Automation for z/OS: Customizing and Programming

Tables

0P NSO XN

11.
12.
13.

14.
15.
16.

17.

18.

19.
20.
21.
22.
23.

System Automation for z/OS Library xix
Application Start1
Application Stop (1)2
Application Stop (2)3
Observed Status Monitor Routines. 39
Health Status Return Codes43
Inform List Policy Items73
Inform List Communication Methods .. .73
Code Processing Example for the INGALERT

Message ID76
Layout of the SMF Record .. .78

Format of INGPUSMF Utility Data Set Records 80
SINGSAMP SA z/0OS Sample Library Routines 91
Example Customization Dialog Definitions for

sshd . . 109
Pass description for sshd . . 110
INGUSS Command and USS Pipe Summary 111
Policy Entry Names and Types for Command
Receivers . . 113
Sample Names and Load Modules for a
TSO/Batch Environment . . . 113
Functions and Operators for SA and NetVrew
respectively . . . 115
Receiver Names and Related P011c1es 121
RDS/SA Functions and NetView Operators 122
WTOBUF Recovery Process . Lo 132
Auxiliary Storage Management . 137
Example SYSTEM_SHUTDOWN Command
Processing Entry 157

© Copyright IBM Corp. 1996, 2012

24.
25.

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.
42.

Externalized Common Global Variables
Global Variables to Enable Advanced
Automation (CGLOBALS)

Global Variables That Define the Installatlon
Defaults for Specific Commands .

SDF Components .

Panel Definition Entry Descrlptlon

Input Columns for Address Space
Identification Mapping File .

Output columns for Address Space
Identification Files .

Job Prefix Values .

Address Space Type Values

Input Columns for XCF Group Identrﬁcatlon
Mapping File .

Output Columns for XCF Group
Identification Mapping File . .

Input Columns for XCF Group Member
Identification Mapping File . . .
Output Columns for XCF Group Member
Identification Mapping File .

Input Columns for USS Process Identrﬁcatlon
Mapping File .

Output Columns for USS Process
Identification Mapping File . .

Input Columns for Policy Mapping Frle
Output Columns for Policy Mapping File
Input Columns for Variable Mapping File
Output Columns for Variable Mapping File

229

. 230
. 238
. 251
. 256
. 272
. 272
. 272
. 273
. 274
. 274
. 274
. 274
. 275

. 275

276
276
277
277

xi

xii System Automation for z/OS: Customizing and Programming

Accessibility

Publications for this product are offered in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when using PDF files, you may view the information through the
7/0S® Internet Library website or the z/OS Information Center. If you continue to
experience problems, send an email to mhvrcfs@us.ibm.com or write to:

IBM® Corporation

Attention: MHVRCEFS Reader Comments

Department HGMA, Building 707

2455 South Road

Poughkeepsie, NY 12601-5400

US.A.

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

* Use assistive technologies such as screen readers and screen magnifier software
¢ Operate specific or equivalent features using only the keyboard
* Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPE. Refer to |z/OS TSO/E|
[Primer} z/OS TSO/E User’s Guide} and |z/OS ISPF User’s Guide Vol I| for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

z/0S information

z/0OS information is accessible using screen readers with the BookServer or Library
Server versions of z/OS books in the Internet library at:

[rttp://www.ibm.com/systems/z/0s/zos/bkserv/|

© Copyright IBM Corp. 1996, 2012 xiii

http://www.ibm.com/systems/z/os/zos/bkserv/

xiv System Automation for z/OS: Customizing and Programming

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users accessing the
Information Center using a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line,
because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1%,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

* ? means an optional syntax element. A dotted decimal number followed by the ?
symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are

© Copyright IBM Corp. 1996, 2012 XV

xvi

optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!
(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

* means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.

+ means a syntax element that must be included one or more times. A dotted
decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

System Automation for z/OS: Customizing and Programming

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:
1. Send an email to s390id@de.ibm.com

2. Visit the EA z/ OS| home page at |http: //www.ibm.com/systems/z/0s/zos/ |
|features /system_automation /|

3. Visit the |Contact z/ OS| web page at |http: / /www.ibm.com/systems/z/0s/zos /|

|webg|s.htm!|

Mail the comments to the following address:
IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Str. 220
D-71032 Boeblingen
Federal Republic of Germany

E

5. Fax the comments to us as follows:
From Germany: 07031-16-3456
From all other countries: +(49)-7031-16-3456

Include the following information:

* Your name and address

* Your email address

* Your telephone or fax number

* The publication title and order number:
IBM Tivoli System Automation for z/OS V3R4.0 Customizing and
Programming
SC34-2644-00

¢ The topic and page number related to your comment

¢ The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit.

If you have a technical problem

Do not use the feedback methods listed above. Instead, do one of the following:
* Contact your IBM service representative
* Call IBM technical support

* Visit the [BM zSeries support web page|at fwww.ibm.com /systems/z/support/|

© Copyright IBM Corp. 1996, 2012 xvii

http://www.ibm.com/systems/z/os/zos/features/system_automation/
http://www.ibm.com/systems/z/os/zos/features/system_automation/
http://www.ibm.com/systems/z/os/zos/features/system_automation/
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xviii System Automation for z/OS: Customizing and Programming

About This Book

This book describes how to adapt your completed standard installation of IBM

Tivoli® System Automation for z/OS (SA z/0S) as described in |[BM Tivoli Systen]

lAutomation for z/OS Planning and Installation) to your environment. This book
contains information on how to add new applications to automation and how to
write your own automation procedures. It also contains information about how to

add new messages for automated applications.

Who Should Use This Book

This book is primarily intended for automation programmers responsible for:

 Customizing system automation and the operations environment

* Developing automation procedures and other operations capabilities

Prerequisites

Throughout this book, it is expected that readers are familiar with System

Automation for z/OS and the following documentation:
« |IBM Tivoli System Automation for z/OS Operator’s Commands|
« |IBM Tivoli System Automation for z/OS Programmer’s Referencd

* |IBM Tivoli System Automation for z/OS Defining Automation Polici]

Where to Find More Information

The System Automation for z/OS Library
shows the information units in the System Automation for z/OS library:

Table 1. System Automation for z/OS Library

Title Order Number
lIBM Tivoli System Automation for z/OS Planning and Installation| SC34-2645
lIBM Tivoli System Automation for z/OS Customizing and Programming]| SC34-2644
lIBM Tivoli System Automation for z/OS Defining Automation Policy| SC34-2646
[IBM Tivoli System Automation for z/OS User’s Guide| SC34-2647
lIBM Tivoli System Automation for z/OS Messages and Codes| SC34-2648
[IBM Tivoli System Automation for z/OS Operator’s Commands S5C34-2649
l[BM Tivoli System Automation for z/OS Programmer’s Reference] SC34-2650
IBM Tivoli System Automation for z/OS Product Automation Programmer’] |SC34-2643
Reference and Operator’s Guide]

IBM Tivoli System Automation for z/OS TWS Automation Programmer’s| S5C34-2651
Reference and Operator’s Guide|

IIBM Tivoli System Automation for z/OS End-to-End Automation Adapter| 5C34-2652
IBM Tivoli System Automation for z/OS Monitoring Agent Confiquration and|| SC34-2653
User’s Guidf_zl

© Copyright IBM Corp. 1996, 2012

Xix

The System Automation for z/OS books are also available on CD-ROM as part of
the following collection kit:

IBM Online Library z/OS Software Products Collection (SK3T-4270)

SA z/OS Home Page
For the latest news on SA z/0S, visit the SA z/0OS home page at
lhttp: / /www.ibm.com/systems/z/0s/zos/features /system_automation|

Related Product Information

You can find books in related product libraries that may be useful for support of
the SA z/OS base program by visiting the z/OS Internet Library at
lhttp:/ /www.ibm.com /systems/z/0s/zos /bkserv]

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for
z/0S elements and features, z/VM®, z/VSE®, and Clusters for AIX® and Linux:

e The Internet. You can access IBM message explanations directly from the LookAt
Website at [www.ibm.com /systems/z/0s/zos/bkserv /lookat/index.html|

* Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e
systems to access IBM message explanations using LookAt from a TSO/E
command line (for example: TSO/E prompt, ISPF, or z/OS UNIX System
Services).

* Your Microsoft Windows workstation. You can install LookAt directly from the
(SK3T-4269) or the z/OS and Software Products DVD Collection
(SK3T-4271) and use it from the resulting Windows graphical user interface
(GUI). The command prompt (also known as the DOS > command line) version
can still be used from the directory in which you install the Windows version of
LookAt.

* Your wireless handheld device. You can use the LookAt Mobile Edition from
[www.ibm.com /systems/z/0s/zos/bkserv /lookat/lookatm.html| with a handheld
device that has wireless access and an Internet browser (for example: Internet
Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for Linux
handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from:

* A CD-ROM in the [/OS Collection| (SK3T-4269).

* The z/OS and Software Products DVD Collection (SK3T-4271).

* The LookAt Website (click Download and then select the platform, release,
collection, and location that suit your needs). More information is available in
the LOOKAT.ME files available during the download process.

| Summary of Changes for SC34-2644-00

I This document contains information previously presented in System Automation
I for z/OS V3R3.0 Customizing and Programming, SC34-2570-03.

XX System Automation for z/OS: Customizing and Programming

http://www.ibm.com/systems/z/os/zos/features/system_automation/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/index.html
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html

New Information

Recovering Auxiliary Storage Shortage
The capacity to allocate local data page sets for preventing auxiliary
storage shortages is described and added in [‘Recovering Auxiliary Storage|
Shortage” on page 136.|

Autodiscovery
A discovery utility has been introduced to search multiple customer
systems for automation information and import it into a SA z/OS policy
database. See [Chapter 19, “Automated System Resource Discovery,” on|
page 215.[[Appendix F, “Autodiscovery Mapper Files and Report Formats,’|
on page 271|is added outlining the report formats and mapper files used
for the Autodiscovery process.

JobLog Monitoring
A facility to set up a monitoring function for JES2 Spool files is now
provided and described in [Chapter 5, “Joblog Monitoring,” on page 65)

Command Receivers
A new chapter describing how to enable the general purpose command
receivers used for passing commands to SA z/OS is available in
Chapter 10, “Command Receivers,” on page 113 This chapter also contains
information about Submitting NetView Commands from a Batch Job
moved from [IBM Tivoli System Automation for z/OS TWS Automation|
[Programmer’s Reference and Operator’s Guidel This section now contains the
syntax explanation for the REXX procedure/command AOFRYCMD
(identical to EVJRYCMD, but named differently here).

Relational Data Services
A new chapter describing the Relational Data Services (RDS) provided for
System Automation is available in [Chapter 11, “Enabling Relational Data
Services (RDS),” on page 121 The following variables for customizing this
facility are available: AOF_AAO_RDS_TSO_DSN,
AOF_AAO_RDS_TSO_RACFHLQ. See [“Read /Write Variables” on page|
230,

AOFRYCMD (based on EVJRYCMD) command
The ASIS parameter is added for the AOFRYCMD REXX
procedure/command. See [“AOFRYCMD Description” on page 117]

AQOFEXXO05 static exit
The [“AOFEXX05” on page 169|static exit is added to ['Static Exits” on page]

fe7]

INGRTAPE automation routine documentation
Documentation for INGRTAPE automation routine is added in
‘INGRTAPE” on page 210|located in [Chapter 18, “Automation Solutions,”]

on page 183.|

INGROMON monitoring routine
The INGROMON monitoring routine is added to [‘Observed Status|
Monitoring” on page 39

INGHIST_WIMAX parameter
The INGHIST _WIMAX parameter has been added in [‘Parameter Defaults|
for Commands” on page 23§ for defining a maximum number of history
items displayed when using the INGHIST command.

About This Book Xxi

xxii

INGRUN_WAIT parameter
The INGRUN_WAIT parameter has been added in [“Parameter Defaults for|
[Commands” on page 238 for defining the WAIT parameter of the INGRUN
command.

INGUXPPI PPI interface
Use of the program-to-program interface INGUXPPI for USS process

initialization and termination status updates is added in|“Infrastructur
Overview” on page 102| of [Chapter 9, “How to Automate USS Resources,’|

on page 101.|

IP Stack
IP stack information has been added to ['Customization of z/OS UNIX]|
[Resources” on page 102

Additional Read Only Global Variables for SA z/OS
AQOFBFP, AOFCFP, and AOFPFP, have been added in |“Read-Only
[Variables” on page 229

Additional Read/Write Global Variables for SA z/OS
Additional variables are added and described in [“Read /Write Variables”|
« AOF_AAQ_SHUTSYS_OLD
+ AOF_AAO_OMVS_SHUTDOWN
* AOF_AAO_AAREQUEST_MAX_WAIT
« AOF_AAO_SHUTDOWN_STOPAPPL
* AOF_AAQO_RDS_TSO_DSN
* AOF_AAQO_RDS_TSO_RACFHLQ
* INGCICS_WAIT
* INGRAITF_WAIT
* INGCICS_CORRWAIT

Changed Information

AOFSMARTMAT
The AOFSMARTMAT global variable settings have been updated to
provide settings for AT and MRT load options when refreshing an
automation agent. See [“AOFSMARTMAT” on page 237|in[“Read /Write|
[Variables” on page 230

Extended Status Commands
New pseudo-message definitions for application linking are added in
[‘Extended Status Command Support” on page 27/

The INGJRMJSP automation routine
This routine now appears as the INGRMJSP routine. See ['INGRMJSP” on|

INGVOTE_SOURCE global installation variable
A new global installation variable INGVOTE_SOURCE replaces
INGVOTE_VERIFY in [“Parameter Defaults for Commands” on page 238

&*JOBNAME. variable
A new variable &*JOBNAME. available as part of an automation table (AT)
condition statement is described in [“Defining Message Overrides” on page|

System Automation for z/OS: Customizing and Programming

SSHD Example
Examples for the Secure Shell Daemon (SSHD) application are now given
and replace inetd examples for encrypted listening and communication
within a Unix environment. See [“Example: sshd” on page 108.|

SDF Global Read/Write Variables
Former global variable AOF_AAO_SDFROOT_LIST is amended to allow
four variables AOF_AAQO_SDFROOT_LISTn where n can be 1 to 4, for
defining a value for &SDFROOT in SDF panels. See
[Variables” on page 230

Moved Information

The following routines are moved to [[BM Tivoli System Automation for z/OS Product|
|Automation Programmer’s Reference and Operator’s Guide]

e EVEERTRN
* EVIECTOX
e EVISTRCT
* EVIEETO00
» EVIEIO06

e EVISTRMN

The following routines are moved to [[BM Tivoli System Automation for z/OS TWS|
lAutomation Programmer’s Reference and Operator’s Guidel

« EVJEAC04
- EVJEOBSV
« EVJRACO5
« EVJRSACT
- EVJRSJOB

Deleted Information

Defining the AT/MRT Scope
This section is now removed from [Chapter 3, “How to Add a Message tq
[Automation,” on page 23|

EVIEI00Q
The EVIEIO0Q routine is removed from IMS™ Transaction Recovery in
(Chapter 18, “Automation Solutions,” on page 183

AOFEXX16
This SA z/OS Static Exit is removed from |[Chapter 17, “SA z/0S User
[Exits,” on page 163.]
%AOFSIRTASK%
This generic synonym has been retired for use in the AOFMSGSY member

used as a NetView® automation table. See [“Generic Synonyms|
IAOFMSGSY” on page 261 |

You may notice changes in the style and structure of some content in this
document—for example, headings that use uppercase for the first letter of initial
words only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
documents.

About This Book Xxxiii

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

xxiv System Automation for z/OS: Customizing and Programming

Chapter 1. How to Add a New Application to Automation

This chapter outlines the requirements to add and monitor a new application for
SA z/0S.

Preparation Before Automating an Application

Before you can automate a product you need to extract its characteristics like its
start and stop behaviour and parameters like its jobname.

The following steps should help you to obtain these characteristics. Once you have
finished you need to add the application to your automation policy. Refer to

[Tivoli System Automation for z/OS Defining Automation Policy| for this activity. The

main requirements for the automation of an application are:

Address Space properties
Application Start

Application Shutdown
Application Events
Application Monitoring
Outstanding Reply Processing
Topology

Address Space properties

When adding an new application, you need to know the following most important
characteristics of the application:

Jobname
JCL procedure name
Is it scheduled by the Master Scheduler or a scheduling subsystem?

Is it an MVS™, OMVS application or another kind of application (for example a
NetView task)?

Location for running the application: every sysplex's system, once in the sysplex
or on a subset of systems within the sysplex?

The application's general properties are mostly defined in the APPLICATION
INFO policy.

Step 1 -

Application Start

Before you can introduce a new application you should consider how it is started
and all the actions required to make it operational. Therefore it is important to
know:

Table 2. Application Start

Actions Required Available Functionality
Are there any actions to complete before To include these actions in automation, use
the application itself could be started? the application's PRESTART policy. Any

command specified there is issued prior to
the insertion of the start command.

© Copyright IBM Corp. 1996, 2012

How to Add a New Application to Automation

2

Table 2. Application Start (continued)

Actions Required

Available Functionality

What is the application's start command?
And are there different start commands
depending on the startup mode of an
application (for example, the normal and
the light start for a DB2® database)?

The start command should be located in the
STARTUP policy. It also provides the full
flexibility for different start commands by
specifying different start types. Once a start
type is set, the specified command will be
chosen. The start type easily can be
chosen/changed at System Automation's
runtime.

Who starts the application when it is not
started by System Automation? Is it started
by another instance?

The APPLICATION INFO policy lets you
specify an EXTERNAL STARTUP parameter.

Are there any actions to complete after the
application initialization?

Use the POSTSTART policy to issue
additional commands after the full
initialization of the application.

Note: All startup policies support flexible start types.

Step 2 - Application Stop

Once the application is no longer required, you need to take all the necessary steps
to bring it down in a planned way. Therefore it is important to know:

Table 3. Application Stop (1)

Actions Required

Available Functionality

Should you issue commands to prepare the
application shutdown ?

Use the SHUTDOWN INIT policy to identify
additional commands to be issued before the
application termination can be initiated.

Which command initiates the termination
process? And what happens when the stop
command does not take effect?

System Automation has the concept of
command escalation. It provides the capacity
to specify an order of termination
commands. System Automation will issue
the first command and verify the effect
before it inserts the next more effective
command. There are three policies
(SHUTDOWN NORM, IMMED, FORCE)
where you can specify different shutdown
command sequences for different shutdown

types.

Who stops the application when it is not
stopped by System Automation? Is there
another instance controlling the
application?

The APPLICATION INFO policy lets you
specify an EXTERNAL SHUTDOWN
parameter.

Are there any final termination actions to
complete after an orderly application
termination?

Use the SHUTDOWN FINAL policy to issue
additional commands after the termination
of the application.

Sometimes it can happen that an application terminates unexpectedly. In this case
it might be necessary to complete some cleanup actions before the application can
be restarted. Consequently it is necessary to know:

System Automation for z/OS: Customizing and Programming

How to Add a New Application to Automation

Table 4. Application Stop (2)

Actions Required

Available Functionality

Are there any necessary cleanup activities
to be completed before the application can
be restarted?

The concept of status commands addresses
this issue. Once the application reaches a
specific status, the defined command will be
issued.

Is the application restartable in case of an
unexpected termination?

System Automation recognizes several
termination situations for applications.
Depending on the situation System
Automation is able to distinguish between a
recoverable and an unrecoverable error. As a
result, System Automation determines
whether to restart the application or not.
This concept is Code Match processing.
Additionally the RESTART option in the
APPLICATION INFO policy defines the
circumstances when System Automation
should restart the application.

Is the application restarted automatically
by another application? Is the application
ARM (Automatic Restart Manager) enabled
and will it be restarted automatically?

System Automation provides the concept of
Move groups to accomplish the same
behavior as the ARM mechanism does. It is
recommended to use Move groups for
achieving high availability of applications.

Step 3 - Application Events

System Automation reacts to events. More specifically, it reacts to messages sent by

applications or the system itself.

There are many kinds of applications. Each of them sends a varying degree of
messages which can be used to determine its status. The messages represent
different states during an application's life-cycle. Normally MVS resources provide
proper messages to determine the status of an application. Resources within OMVS

are mostly silent.

Step 3 points you to important messages in the life-cycle of the application. As you
can see below a resource is started once. After an amount of initialization time it is
fully operational. When the resource is no longer needed a stop command is
invoked to terminate it. After the termination processing it does not exist any

longer.

Chapter 1. How to Add a New Application to Automation 3

How to Add a New Application to Automation

4

Initialization Complete Stop Command

T T

Start Command Termination Complete

Figure 1. Application Lifecycle

What are the important messages at the points in the application’s life-cycle as
ﬁ

illustrated in |Figure 1| above?

For example a message IEF4031 is sent when the system observes that an
application has been started. IEF404I is issued when the application terminated.

Are there are other kinds of usable events at the specific points?
Step 3 discusses also the situation of an unplanned application termination.

Are there important messages at point 3 and 4 of in case of an unplanned
termination?

For example a message IEF4501 points to an unplanned termination.

Step 4 - Application Monitoring

Automating resources does not only consist of starting and stopping the resources.
It is also important to know methods that determine whether the component is
working as expected or already terminated. System Automation provides proper
monitoring routines to be able to determine its state.

What kind of an application is it and could the state of the application be
determined by:

¢ The existence of an address space

* The existence of a USS process

* The status of a NetView task

The corresponding monitor could be specified in the field MONITOR ROUTINE.

Step 4 presents messages issued by applications and how communicative they are.
So it is useful to decide whether an application must be actively monitored or its
state could be reliably derived from messages. If this is the case the MONITOR
INTERVAL could be set to NONE. It helps to reduce the messages in the NetView
log and to reduce unnecessary system activity. The monitoring action itself takes
place at the startup and shutdown cycle to verify the state of the application.

System Automation for z/OS: Customizing and Programming

How to Add a New Application to Automation

In contrast, there are less communicative applications. In this case a well balanced
monitor interval (specific enough) ensures a periodic monitoring service to verify
the applications status.

Sometimes it is not enough to know whether a resource is running or not. Many
situations require more detailed information as well as its status. The concept of
monitor resources provides the infrastructure to evaluate the status of resources in
detail and to react properly to the specific situation.

Outstanding Reply Processing

SA z/0S keeps track of all outstanding Write-to-Operator Replies (WTORs) that it
receives if it does not reply to them immediately. Because some applications may
have more than one outstanding WTOR at the same time, and not all WTORs are
equally important, they are classified accordingly. For more details refer to
(Chapter 16, “WTOR Processing,” on page 159,

Topology

Normally the application to be automated depends on the underlying
infrastructure, like JES2 or TCPIP. This means that this infrastructure must be
available before you can start the application.

Vice versa the application can be a prerequisite for other applications, before they
can be started.

Likewise you need to think about which other applications must be terminated
prior to the termination of the application.

As described above, there are relationships between the applications.

At this point it might be helpful to draw a picture and to visualize the
relationships between the application in case of a start and a stop situation.

SA z/0S provides Best Practice policies containing solutions for several products.
The solutions are illustrated in PDF file format located in: /usr/lpp/ing/doc/
policies.

Please refer to the appropriate file to find out more information about the solution
you are trying to automate.

Adding the Application to Automation

Define an Application Policy Object

To add a new application to SA z/0S, you must create and define a new
Application policy object using the SA z/OS customization dialog. With the
customization dialog, you also define how the new application should be
automated by SA z/OS, for example:

* Specifying startup or shutdown commands for the application,
* Specifying the appropriate monitoring routine,

* Specifying relationships to correlate it with other applications,
* Linking the application into an application group,

* Considering where the applications should be visible.

SA z/0S provides Best Practice policies containing solutions for several products.

Chapter 1. How to Add a New Application to Automation 5

How to Add a New Application to Automation

How to add a new application and how to access System Automation's Best
Practice solutions is described in detail in |[BM Tivoli System Automation for z/OS|
[Defining Automation Policy}

Using Automated Discovery to Define Application Policy
Objects

This functionality is primarily intended to build a basic automation policy. You can
discover z/OS system resources like address spaces and along with SA z/OS
delivered policies you can map the discovered address spaces to applications
defined in the SA z/OS delivered policies. Thus, a new user policy can be
populated with APL policy objects.

For more information, refer to[Chapter 19, “Automated System Resourc]
Discovery,” on page 215

Build New Automation Configuration Files

When you finish defining the application in the customization dialog, build the
new automation configuration files from the updated policy database. See
[Tivoli System Automation for z/OS Defining Automation Policy| for more information.

After you have completed this step, the application is known to SA z/OS and can
therefore be automated according to the policy that was defined in
[Application Policy Object” on page 5.

6 System Automation for z/OS: Customizing and Programming

Chapter 2. How to Create Automation Procedures

You can write additional automation procedures to supplement the basic
automation procedures that are supplied by SA z/OS. For example, you may want
to develop procedures to automate an application that is used exclusively on your
system or to perform specialized automated operations for a subsystem.

SA z/0OS commands and routines perform basic functions such as logging
messages and checking automation flags. You can use them in your own
automation procedures.

SA z/0S automation routines are convenience routines that provide your
automation procedures with a simple, standard way of interfacing with the
automation control file, automation status file, and NetView log file. It is strongly
recommended that you use these routines wherever possible in your own code.

{(“How Automation Procedures Are Structured” on page 8| describes how to
structure your automation procedures. Refer to [[BM Tivoli System Automation for|
/OS Programmer’s Referencd for detailed descriptions and examples of the
automation routines and file manager commands you can use in your automation
routines.

How Automation Procedures Are Called

There are several ways to call an automation procedure including:

* Calling the automation procedure from the NetView automation table using
SA z/0S automation

* Keying in the automation procedure name or its synonym into a NetView
command line

* Calling the automation procedure from another program
* Starting the automation procedure with a timer
 Starting the automation procedure with the NetView EXCMD command

* Starting the automation procedure on an automation operator with the SA z/OS
AOFEXCMD command routine

* In the customization dialog, entering your automation procedure name in the
Command text or Command field of various policy items for the following

entry types:
Application

MVS Component
Timers

— Monitor Resources

Note: Not all routines can be called through all interfaces as some require
extensive environmental setup before they are invoked.

© Copyright IBM Corp. 1996, 2012 7

How Automation Procedures Are Structured

How Automation Procedures Are Structured

It is recommended that the structure of automation procedures contain three main
parts, as follows:

1. Perform initialization processing
2. Determine whether automation is allowed

3. Perform automation processing.

Figure 2|illustrates the structure of automation procedures for system operations
and [Fig

for processor operations.

11 [Initialization
processing

v

2| Automation
check
(AOCQRY)

3 Automation-unique processing

l‘___';
|
1
|
| v v v .
1
| . ;
| Log or notify Check thresholds File manager |
! (AOCMSG) (CHKTHRES) (AGEEORY) (ACF) '
| (ASF) (ASFUSER) \
I (AOCUPDT) !
| (INGSET) !
! A 4 :
|
| Status update Issue commands Perform error Customer-written 1
| and log or or replies code matching code for timers, 1
notify messages (ACFCMD) (CDEMATCH) logic and other |
! (AOCUPDT) (ACFREP) functions |
| (INGPOST) 1
|
1
|

Figure 2. Automation Procedures for System Operations

11 Initialization
processing

v

2| Automation
check
(ISQCHK)

3 Automation-unique processing

v v v

I

I

I

I

! Initialize or

: shutdown a Complete target Issue prc:jcessor
target system system data commands

! (AgTIVX‘TE) fields (ISQSEND)

: (DEACTIVATE) (ISQSEND) (ISQCCMD)

I

I

Figure 3. Automation Procedures for Processor Operations

8 System Automation for z/OS: Customizing and Programming

How Automation Procedures Are Structured

The following sections provide more details about each part of an automation
procedure.

Performing Initialization Processing

Initialization processing may not be required for simple automation procedures.

Initialization processing is responsible for:
* Setting up any error trap routines.

¢ Identifying the automation procedure by setting a local variable either explicitly
or at execution time. This step makes it simpler to code routines that log
messages and send notifications.

* Declaring the global variables, such as common and task global variables, that
are used for subsystem definition values in the automation procedure.

See[Appendix A, “Global Variables,” on page 229|for descriptions of global
variables.

* Checking whether debugging is on.
* Issuing debugging messages, if debugging is turned on.
* Validating the automation procedure call.

This step can help prevent an operator from calling the automation procedure
inappropriately. Automation procedures can also be validated using command
authorization checking methods provided by NetView or an SAF product.

* Saving NetView message parameters. This step is necessary if your automation
procedure uses the NetView WAIT statement and you need to access the original
message text or control information.

For more information on coding automation procedure initialization sections, refer
to ["Example Automation Procedure” on page 16) to Tivoli NetView for z/OS
Customization Guide and to Tivoli NetView for z/OS Automation Guide.

Determining whether Automation Is Allowed

System Operations

Automation procedures for applications and MVS components that are called from
the NetView automation table should always perform an automation check by
calling the AOCQRY automation routine. AOCQRY checks that the automation
flags allow automation. These checks eliminate the risk of automating messages for
applications that should not be automated, or for which automation is turned off.
AOCQRY also initializes most of the common and task global variables that are
used in the automation procedure with values specific to the application.

Refer to [IBM Tivoli System Automation for z/OS Programmer’s Reference for more
information on coding the automation check routine.

Processor Operations

Most of the processor operations commands run only when processor operations
has been started. To determine whether processor operations is active, you can use
the ISQCHK command in your automation routines. If processor operations is not
running, ISQCHK returns return code 32 and issues the message:

1SQ0301 Cannot run cmd-name command until Processor Operations has started.

Your application can then issue the ISQSTART command to begin processor
operations.

Chapter 2. How to Create Automation Procedures 9

How Automation Procedures Are Structured

10

Performing Automation Processing

Automation processing is performed by any combination of SA z/OS routines and
your own code. The following documentation gives more information on coding
automation procedures:

« |“Automation Processing in System Operations”]

* |“Automation Processing in Processor Operations” on page 11|

Automation Processing in System Operations
This section contains information on how to customize automation processing for
system operations.

Updating Status Information: You can update status information by calling
AOCUPDT. This routine is used when a message indicates a status change. This
would normally be done from the automation routines ACTIVMSG, HALTMSG,
and TERMMSG. Making your own status updates may cause unpredictable results.

For more information, see [BM Tivoli System Automation for z/OS Programmer’s|

Logging Messages and Sending Notifications: You can log messages and send
notifications by calling AOCMSG.

AOCMSG performs the following actions:
* Formats a message for display or logging
* Issues messages as SA z/OS notification messages to notification operators

For more information, see [[BM Tivoli System Automation for z/OS Programmer’s|

Issuing Commands and Replies: You can issue commands and replies by calling
ACFCMD and ACFREP. You can use these routines to:

* Issue one or more commands in response to a message.

* Issue a single reply in response to a message.

* Use the step-by-step (PASS) concept to react to or recover from an automation
event.

ACFCMD issues one or more commands. It supports both a single reaction and the
step-by-step (PASS) concept. For more information, see|IBM Tivoli System|
lAutomation for z/OS Programmer’s Referencel

ACEFREP issues a single reply. It supports both a single reaction and the
step-by-step (PASS) concept. For more information see llBM Tivoli System|
|Automation for z/OS Programmer’s Referencel

In many cases you may be able to use the ISSUEACT automation procedure that
also supports single and pass processing.

Checking Thresholds: You can check and update thresholds by calling the
CHKTHRES automation routine. Use CHKTHRES to track and maintain a
threshold, and to change the recovery action based on the threshold level
exceeded. For more information see |[BM Tivoli System Automation for z/OS
[Programmer’s Referencd,

System Automation for z/OS: Customizing and Programming

How Automation Procedures Are Structured

Checking Error Codes: You can check error codes by calling CDEMATCH. It
compares error codes in a message to a set of automation-unique error codes to
determine the action to take. For more information, see [[BM Tivoli System|
lAutomation for z/OS Programmer’s Referencel

In some cases you may be able to use the code matching capabilities of ISSUEACT
and TERMMSG.

Using File Manager Commands: You can use file manager commands to access
SA z/0S control files such as the automation control file and automation status
file:

¢ Use the ACF command if you need to load or display the automation control
file.

* Use the ACFFQRY command to query the automation control file quickly.
¢ Use the ASF command to display the automation status file.

* Use the ASFUSER command to modify the automation status file fields reserved
for your own information.

For more information, see [[BM Tivoli System Automation for z/OS Programmer’s|

Using External Code for Timers, Logic, and Other Functions: Your automation
procedures may require code to set timers, to perform logic unique to your
enterprise or to the automation procedure itself, and to perform other functions.
Some examples include:

* Issuing commands and trapping responses.

You can issue commands and trap responses using the NetView WAIT or PIPE
commands. You may need to use these commands in your code if it is necessary
to check the value or status of a system component or application before
continuing processing. For more information, see Tivoli NetView for z/OS
Customization Guide.

* Setting Common Global and Task Global values to control processing.

You can set Common and Task Global values by using NetView commands. You
may need to set these values if it is necessary to set a flag indicating progress,
message counts, and other indicators that must be kept from one occurrence of a
message to the next. See [IBM Tivoli System Automation for z/OS Defining]
[Automation Policy|for a table of all externalized SA z/OS global variables.

Also refer to the discussion of common and task global variables in Tivoli
NetView for z/OS Customization Guide.

* Setting timer delays to resume processing.

You can set timer delays by using the NetView AT, AFTER, EVERY and CHRON
commands. You can use these commands when an automation procedure must
either resume processing or initiate another automation procedure after a given
time to do additional processing. For example, you could use these commands
to perform active monitoring of subsystems. For more information, see the
discussion of AT, AFTER, EVERY and CHRON commands in Tivoli NetView for
z/OS Automated Operations Network User’s Guide.

Automation Processing in Processor Operations
This section contains information on how to customize automation processing for
processor operations.

Initializing a Target System: If your routines need to start target systems
(hardware and/or operating system), issue the ISQCCMD ACTIVATE command.

Chapter 2. How to Create Automation Procedures 11

How Automation Procedures Are Structured

Shutting Down a Target System: If your routines need to shut down a target
system, issue the ISQCCMD DEACTIVATE OCF command. Before issuing the
command to close the target system, shut down all of your functioning
subsystems. This avoids any unexpected situations at the target system.

Issuing Other OCF Commands: All OCF commands supported by processor
operations can be issued from automation routines. See [[BM Tivoli System|
lAutomation for z/OS Operator’s Commands| for details about these commands.

Reserved SA z/OS Commands: The SA z/0OS commands ISQISUP, ISQISTAT,
ISQCMMT, ISQSTRT, ISQXIPM, ISQGPOLL, and ISQGSMSG are not intended for
your use. Do not use these in your automation routines. Unexpected results may
occur.

The following commands can only be used from an operator console and should
not be used in your automation routines or with ISQEXEC: ISQXDST, ISQXOPT,
and ISQHELP.

The following commands are for automation and should not be used in your
automation routines: ISQI101, ISQI212, ISQMCLR, ISQI320, ISQIUNX, I1SQI347,
ISQI470, ISQI886, ISQI88S, ISQI8SY, ISQI128, ISQIVMT, ISOMVMI1, ISQMVMI2,
ISOMWAIT, ISOMDCCE, ISQM020, and ISQIPLC.

Serializing Command Processing: Serializing command processing ensures that
commands and automation routines are processed in the order in which they are
sent to a target system console. It can also prevent the command sequence from
being interrupted by other tasks.

Specific target control tasks are assigned to specific target systems during
initialization of the target system. More than one target system can share a target
control task, but a target system never has more than one target control task
allocated to it to perform work.

When a command or an automation routine is sent to a target system, it can be
processed partly in the issuing task (a logged-on operator or an autotask) and
partially in a target control task. When the command or automation routine is to
be processed by a target control task, it is either allocated to the target control task
and processed, or queued to be processed by the target control task. This serializes
the processing of commands and automation routines. Serializing ensures that they
are processed in the order in which they were sent to the target system console.

The NetView program has priority defaults established during its initialization.
Usually, everything running under NetView has a low priority. You can use the
NetView DEFAULTS command to see what the settings are, but you should not
change them. For SA z/0OS command processing to be serialized as designed, all
commands used in SA z/OS must have a priority setting of “low”. If you change
the priorities or have more than one priority for commands used in SA z/0S, the
difference in the priorities may defeat the serialization that results from the
architecture of the target control task.

Sending an Automation Routine to a Target Control Task: If you run the same
series of SA z/0OS commands regularly, you can program the commands into a
NetView automation routine. Follow the guidelines you use for any NetView
automation routine.

12 System Automation for z/OS: Customizing and Programming

How Automation Procedures Are Structured

A NetView autotask or a logged-on operator can then run this routine or send it to
a target control task. Use the following command to transfer an automation routine
to a target control task:

ISQEXEC target-system-name SC routine-name

When you issue the ISQEXEC command to process an automation procedure, all of
the commands are processed in the order in which they occur in the automation
procedure. This is because the ISQEXEC command sends work to a target control
task, which processes commands serially. Any other commands or automation
routines issued to the same console by the ISQEXEC command are queued for
processing by the target control task and do not start until the previous command
or automation procedure completes.

The ISQEXEC command also frees the original task from any long-running
command sequence. This lets you use the issuing task, such as an OST, for other
work.

The ISQEXEC command does not lock consoles to ensure command serialization;
the command serialization process is due to the target control task allocation
scheme. Commands and automation routines are processed in the order in which
they occur; however, it is possible for commands from other tasks to interrupt the
command sequence.

For more information about the ISQEXEC command, see [BM Tivoli System|
[Automation for z/OS Operator’s Commands)

Locking a Console: Several routines and operators may attempt to address the
same console at the same time. The ISQEXEC command does not prevent other
tasks from interrupting the sequence of commands being processed by the target
control task; it does not lock the console.

To prevent a sequence of commands from being interrupted, use the ISQXLOC and
ISQXUNL commands. The ISQXLOC command locks access to the console. If a
task attempts to issue a command to a locked console, the task is told that the
console is locked, and the command fails. When you are finished with the
sequence of commands that must be processed without interruption, issue the
ISQXUNL command to unlock access to the console.

You can use the ISQXLOC and ISQXUNL commands within automation routines to
ensure that they complete without interference from other tasks. For automation
routines that issue a number of SA z/0OS commands, put the following command
after the ISQEXEC command and near the beginning of the routine:

ISQXLOC target-system-name SC

This locks access to the target system console to the current task until the lock is
dropped by the command:

ISQXUNL target-system-name SC

Only the task that issued ISQXLOC can successfully issue ISQXUNL. If an
ISQXLOC command is issued from a locked sequence of commands, it is rejected
because the console is already locked.

When you lock a system console for a target system running on a logical partition,
you lock that system console for all other target systems using that processor. A
command sent to a system console for any other target system (logical partition)
on that target hardware definition does not run until the console is unlocked.

Chapter 2. How to Create Automation Procedures 13

How Automation Procedures Are Structured

If your automation routine cannot wait for a console to be released, use the
ISQOVRD command to gain control of the console. Use the following command
only in critical automation routines:

ISQOVRD target-system-name SC

When the routine issuing the override command completes, the lock is removed
and the console is available.

How to Make Your Automation Procedures Generic

By using the SA z/OS automation routines, you can make your own automation
procedures generic. A generic automation procedure comprises three parts. For
each part, there are special automation routines that help you to fulfill your tasks:

Preparation
Check if automation is allowed and should be done. Use automation
routine AOCQRY.

Evaluation
What should be done? Use automation routine CDEMATCH.

Execution
Do what should be done. Use automation routine ACFCMD or ACFREP.

EEEE R

*kkkKhhk Preparation *kkKkhh*
T

AOCQRY
- check if the resource is controlled by SA z/0S
- check if automation is allowed

- prepare/set task global variables for CDEMATCH, ACFCMD and ACFREP

CDEMATCH
- code matching (table search in ACF)

- find out required action

ACFCMD/ACFREP

- do required action:
issue command / respond reply

Figure 4. Skeleton of an Automation Procedure

For more information on the mentioned automation routines refer to [[BM Tivoli
[System Automation for z/OS Programmer’s Reference] For more information on

command processing or reply processing refer to|[BM Tivoli System Automation for|
/OS User’s Guide

Processor Operations Commands

Whenever possible, your automation routines should make use of SA z/OS's
processor operations OCF commands, also called common commands. These

14 System Automation for z/OS: Customizing and Programming

How to Make Your Automation Procedures Generic

commands are independent of the hardware type of the target system's processor.
Therefore, the use of these commands minimizes the need for changes to your
automation routines if you need to add new processors to your configuration. See
[[BM Tivoli System Automation for z/OS Operator’s Commandd for a detailed
description of the processor operations commands.

Developing Messages for Your Automation Procedures

Depending on the scope of additional programming, creating new automation
procedures may also require developing additional messages.

Some SA z/0OS facilities and commands you can use to develop messages include:
+ The AOCMSG automation routine (see [[BM Tivoli System Automation for z/OS)
[Programmer’s Referencd).

+ The AOCUPDT automation routine (see [[BM Tivoli System Automation for z/OS)|
[Programmer’s Referencd).

The following steps summarize the message development process.
1. Choose a message ID. Make sure it is unique.
2. Use NetView message services to define the message to NetView.

Put an entry for the message in a DSIMSG data set. This data set must be
identified in a DSIMSG data definition (DD) name.

3. Use the AOCMSG automation routine to issue the message (see [[BM Tivoli
[System Automation for z/OS Programmer’s Referencd).

4. Add an entry for the message to your production copy of the NetView
DSIMSG data set.

Example AOCMSG Call
This example shows how to code AOCMSG to issue message ABC123L

Entries for messages in DSIMSG member DSIABC12 are as follows:

O
1201 ...

1211 ...

1221 ...

1231 10 40 THE EAGLE HAS &1

1241 ...

EE R

Your automation procedure contains the following AOCMSG call:
fother automation procedure code>

AOCMSG LANDED,ABC123

<other automation procedure code>

When AOCMSG is called as specified in the automation procedure, DSIMSG
member DSIABC12 is searched for message ABC123I. Substitution for variable &1
occurs, and the following message is generated:

ABC123I THE EAGLE HAS LANDED

Note that the message is defined with a 10 and a 40 between the message ID and
the first word of the message. These are the SA z/OS message classes to which the

Chapter 2. How to Create Automation Procedures 15

Developing Messages for Your Automation Procedures

message belongs. When the message is issued a copy is sent to every notification

operator who is assigned class 10 or class 40 messages.

Refer to Tivoli NetView for z/OS Customization Guide for further information on

developing new messages.

Example Automation Procedure

16

This section provides an example of an application program that handles a z/OS
message. The automation procedure uses a subset of the SA z/OS automation

routines.

/* Example SA z/0S Automation Procedure */

2]

Sig

Signal on Novalue Name Aof Error; Signal on Syntax Name Aof Error

Par

nal on Halt Name Aof_Error; Signal on Failure Name Aof_Error

se source . . ident .

"GLOBALV GETC AOFDEBUG AOF."||ident||".ODEBUG AOF."||ident||".OTRACE"

If

loc.
loc.

loc.

If
1
T

End

sav
sav
Trc

/*

If
E

End

IIGL

cmd =

cmd
svr
If

%
*%
%
*%

Sel
W

E

W

E
0

AOFDEBUG = 'Y' Then

AOCMSG "||ident|]",700,L0G,"||time()||","||opid()|]","||Arg(1)
Odebug = AOF.ident.ODEBUG

Otrace = AOF.ident.0TRACE

Ome ident

loc.Otrace <> '' Then Do

oc.0debug = "'

race Value Toc.0trace

e msg = msgid()
e_text = msgstr()
=0

This procedure can only be called for msg IEAQ99A =/
save_msg <> 'IEAQ99A' Then Do

AOCMSG "||Toc.Ome||",203,"||time()||","||opid()

xit

OBALV GETC AOFSYSTEM"
'AOCQRY '||save_msg||' RECOVERY '||AOFSYSTEM

etcode = rc

loc.0debug = 'Y' Then

PIPE LIT /Called AOCQRY; Return Code was "||svretcodel||"/" ,
"| LOGTO NETLOG"

0 = ok 1 = global flag off

2 = specific flag off 3 = resource not in ACF
4 = bad parms 5 = errors/timeout

ect

hen svretcode >= 3 Then Do
"AOCMSG "Toc.Ome",206,,"time()",,,"cmd" ,RETCODE="svretcode
Trc =1
nd
hen svretcode > 0 Then Do
"GLOBALV GETT AUTOTYPE SUBSAPPL SUBSTYPE SUBSJOB"
"AOCMSG "Toc.Ome",580,,"time()","SUBSAPPL","SUBSTYPE"," ,
SUBSJOB", "AUTOTYPE", "save_msg
Trc =1
nd
therwise Do

System Automation for z/OS: Customizing and Programming

%
*%
%
*%

Example Automation Procedure

Parse Var save_text With . 'JOBNAME=' save job 'ASID=' save_asid .

ehkvarl = save_job
ehkvar2 = save_asid
"GLOBALV PUTT EHKVAR1 EHKVAR2"
cmd = 'ACFCMD ENTRY="'||AOFSYSTEM||',MSGTYP="||save_msg
cmd
svretcode = rc
If Toc.0debug = 'Y' Then
"PIPE LIT /Called ACFCMD; Return Code was "||svretcodel||"/" ,
"| LOGTO NETLOG"

[* e e e e *%
*% Check return code from ACFCMD *%
x 0 = ok 1 = no commands found in ACF ==
** 4 = bad parms 5 = errors/timeout *k
KK e m m —— — m —m m—m— —— ———mm—m —m e ————— */

If svretcode > 1 Then Do
"AOCMSG "Toc.Ome",206,,"time()",,," ' "cmd"',RETCODE="svretcode
Trc =1

End

End
End /* End of Select svretcode */

Exit Trc

Aof_Error:

Signal Off Halt; Signal Off Failure
Signal Off Novalue; Signal Off Syntax
errtype = condition('C')

errdesc
Select

condition('D")

When errtype = 'NOVALUE' Then rc = 'N/A'
When errtype = 'SYNTAX' Then errdesc = errortext(rc)
Otherwise Nop

End
"AOCMSG "errtype",760,,"loc.Ome","sigl","rc","errdesc
Exit -5

Notes® on the Automation Procedure Example

This step sets error traps for negative return codes, operator halt
commands, and REXX programming errors.

This step defines the identity of the automation procedure.

This step handles the debug and trace settings (refer to["Using]
IAOCTRACE to Trace Automation Procedure Processing” on page 19

Save the NetView message variables the automation procedure uses.

Perform authorization check. This procedure can only be called for a
particular message.
This section performs the automation check:

1. Fetch the AOFSYSTEM common global variable that contains the
information under which entry name the system messages are stored in
the automation control file (ACF).

2. The automation procedure calls the AOCQRY command. This performs
the automation flag check and presets some task global variables that
are used by other automation routines like ACFCMD.

Issue message AOF206I if call to AOCQRY fails.

Issue message AOF580I if automation flag is off.

Chapter 2. How to Create Automation Procedures 17

Example Automation Procedure

9] Get the job name and asid reported in the message.
Set EHKVARn variables for ACFCMD.

Call ACFCMD to issue the command specified in the configuration files.
The Automation Control File entry for the message IEA099A could look
like this:

MVSESA IEAQ99A,
CMD=(,, 'MVS C &EHKVAR1,A=&EHKVAR2')

Issue message AOF206I if call to ACFCMD fails.
Exit with return code that indicates successful or unsuccessful processing.

This code logs a message if an error is trapped at step EY.

Installing Your Automation Procedures

The installation process for a new automation procedure depends on the language
in which the automation procedure is written.

* If the automation procedure uses a compiled language, such as PL/I, C, or
Assembler:

1. Compile or assemble your source into an object module.
2. Link-edit the object module into a NetView load library.

3. Include an entry for the automation procedure in the CNMCMDU member
of the NetView DSIPARM data set.
e If the automation procedure uses an interpreted language such as NetView
command list or REXX:
1. Copy the automation procedure into a NetView command list library

2. Optionally include an entry for this automation procedure in the DSICMD
member of the NetView DSIPARM data set. Then it is more quickly found
and invoked.

For more information on preparing your code for use and installing it, refer to
Tivoli NetView for z/OS Customization Guide

Testing and Debugging Automation Procedures

18

This section describes SA z/OS and NetView facilities you can use for testing
automation procedures, including:

e SA z/0S assist mode
* SA z/0S AOCTRACE operator facility
* NetView testing and debugging facilities

The Assist Mode Facility

SA z/0S provides an assist mode facility, so that you can verify actions of
automation procedures and automation policy before letting them run in a
completely automated environment.

When assist mode is on, actions that are normally taken by SA z/OS automation
procedures, such as issuing a command or reply or calling an automation routine,
are not performed. Instead messages that describe what would have happened are
written to the netlog.

System Automation for z/OS: Customizing and Programming

Testing and Debugging Automation Procedures

The assist mode is associated with automation flags (Automation, Initstart, Start,
Recovery, Terminate or Restart). Whether assist mode is used for any action is
determined by the automation flag. This is checked to see whether that action is
permitted.

Cases where you might want to use assist mode include:
* During early stages of developing and using your automation policy

* After changing your automation policy, such as after adding an application to
automation

* After adding a new automation procedure to the SA z/0S code

Using Assist Mode to Test Automation Procedures

Assist mode can help you to detect problems with your automation procedures
before they are added to your production code. Assist mode works by intercepting
commands and replies before they are issued through NetView. The intercepted
commands and replies, as coded in the automation policy, are reformatted into a
message that is sent to the NetView log.

The reformatted command is issued in message AOF320I and the reformatted reply
in message AOF323I. Each message contains detailed information about the action
defined in the automation policy and the actual action to be issued.

During run time of SA z/0OS, the assist mode can be enabled with the INGAUTO
command to set the related automation flag to the value L. The DISPFLGS
command can be used to view the current automation flag settings. Any other
value for the automation flag deactivates assist mode.

When an event triggers an automated action and assist mode is enabled, SA z/0OS
logs the action in the NetView log. The log can be reviewed to ensure that
automation has run as expected.

Assist mode works for all routines that call the SA z/OS automation routines, after
having checked the automation flag by calling AOCQRY.

Using AOCTRACE to Trace Automation Procedure Processing

The AOCTRACE command dialog maintains both global execution flow traces and
automation procedure-specific debugging flags. Setting the global flag causes all
routines that support tracing and all message IDs to record a statement in the
NetView log whenever they are invoked. The AOFDEBUG global variable is used
to pass the global flag information to the automation procedure. The global flag is
set to null if the global trace is off, or Y if the global trace is on.

Setting the automation procedure-specific flags lets you obtain information about
what the automation procedure is doing when it executes, or lets you activate a
REXX trace. The debug flag is either null or Y, and is stored in the
AOF.list.)ODEBUG common variable (where clist is the true automation procedure
name).

The trace flag is set to null or a valid REXX trace type, as follows:
* A (Al

* R (Results)

e I (Intermediate)

* C (Commands)

e E (Errors)

Chapter 2. How to Create Automation Procedures 19

Testing and Debugging Automation Procedures

» F (Failures)
* L (Labels)
O (Off)

* N (Normal)

The S (Scan) trace type cannot be used.

The trace flag is stored in the common global variable AOF. clist. OTRACE (where
clist is the true automation procedure name).

Message tracing can only be set from the command line, using the command
AOCTRACE MSG/id,ON|0FF where id is the message to be traced.

AOCTRACE is documented in [BM Tivoli System Automation for z/OS Operator’s|

ommands

REXX Coding Example

For examples of code that can be placed at the beginning and end of your REXX
automation procedures to handle trace and debug settings, see AOFEXC00 in the
SINGSAMP library.

When writing code to support the debug feature, you should expose loc. on all
your procedures and insert fragments of code to check the value of the loc.0debug
flag and output relevant information. The loc.0me assignment makes the
automation procedure name available everywhere, so you can prefix all debug
messages with it. You can then tell where the messages are coming from. For
example:
Myproc:
Procedure expose Toc.
If Toc.0debug = 'Y' Then
'"PIPE LIT /' loc.0debug ' has called procedure MYPROC/',

"| LOGTO NETLOG'
Return

NetView Testing and Debugging Facilities

NetView provides several facilities to assist in testing and debugging automation
procedures.

To do detailed testing, you may want to trace every statement issued from
automation procedures. This type of testing is enabled through the &CONTROL
statement for NetView command lists and through the TRACE statement for REXX
procedures.

You can also specify less detailed tracing on the TRACE and &CONTROL
statements, so that only commands are traced. A comparable facility, the interactive
debugging aid, is available for programs coded in PL/I and C.

Perform specific tracing by issuing NetView MSG LOG, PIPE LOGTO NETLOG
commands at appropriate points throughout a NetView command list, REXX
procedure, or PL/I routine.

To test for proper parsing and reaction to a message, write a short automation
procedure to issue a NetView WTO command. This WTO is processed by the
NetView automation table and triggers the appropriate automation procedure. If
the automation procedure requires the job name, the job name must be temporarily
hard-coded to the appropriate name. In this case, because the WTO was issued

20 System Automation for z/OS: Customizing and Programming

Testing and Debugging Automation Procedures

from the NetView region, the job name associated with the message is the NetView
region. A sample automation procedure follows:

WRITEWTO CLIST
WTO &PARMSTR
&EXIT

The sample automation procedure can issue any single-line message by calling the
routine. For example, to issue message ABC123I, which indicates the start of a
program, the command is:

WRITEWTO ABC123I My testprogram PRGTEST has started.

Where to Find More Testing Information
More information on testing can be found in the following books:
¢ Tivoli NetView for z/OS Customization Guide

This book lists requirements for your programs, including preparing your code
for use, and detailed information on writing exit routines and command
processors.

* Tivoli NetView for z/OS Automation Guide

This book has guidelines for creating new automation procedures, including a
recommended development process.

Coding Your Own Information in the Automation Status File

You can code your own information in the automation status file with the
ASFUSER command.

The automation status file has 40 user data fields that are associated with each
resource that is defined within it. You may use these fields to store persistent
information about resources that your code needs to access later. The information
in the ASF is not lost when SA z/OS is shut down. It lasts until one of the
following events occurs:

e The ASF VSAM data set is deleted and redefined,

* You bring SA z/OS up with an automation control file that does not include the
application that the information has been defined for

Note that you should verify that the information you have stored in the
automation status file is accurate whenever SA z/OS initializes, as circumstances
may have changed while SA z/OS was down.

Each automation status file field reserved for your data can contain up to 20
characters. The ASFUSER command allows you to update and display data in
these fields. See [[BM Tivoli System Automation for z/OS Programmer’s Reference| for
the ASFUSER command description.

Programming Recommendations

This section contains tips and techniques that may help to reduce the coding effort
required when writing your own automation procedures, and to improve
performance of your automation procedures.
» Use variables, such as &IDENT, &SUBSAPPL, &SUBSTYPE, and &SUBSJOB in
place of parameter values.
Using &IDENT for automation procedure names allows for changes to
automation procedure names (only the &IDENT variable value needs changing).

Chapter 2. How to Create Automation Procedures 21

Programming Recommendations

The &SUBSxxx variables allow for subsystem and job name changes (changes to
subsystem and job names need only be made in automation policy).

Using NetView command list language variable JOBNAME for the resource field
on an AOCQRY call, an automation procedure can be written to support a
known message for any job that can issue a message.

Use defaults when possible to minimize coding.

Use generic error codes (see CDEMATCH).

Use available message parsing techniques:

— Use the NetView command PARSEL2R or REXX PARSE command to parse a
message without relying on a field position in a message.

— Parse a message in the NetView automation table and send only necessary
fields to an automation procedure.

Consider not coding the ENTRY field in CDEMATCH calls (default is the
SUBSAPPL returned from the last AOCQRY call).

Use appropriate automation flags.

Review the coding requirements in Tivoli NetView for z/OS Customization Guide
including restrictions to consider when writing code, such as:

— Restrictions when TVBINXIT is on

Variable names

— Macro use

— Register use

— Re-entering programs

Use SA z/0OS automation routines where possible, because they reduce your
maintenance overhead.

Use SA z/0OS's processor operations common commands where possible,
because these:

1. Are independent of the hardware type of the target system's processor
2. Minimize the need for changes to your automation routines as you add new
processors to your enterprise

Consider using the NetView VIEW command to display online help text
associated with new code, and to develop a fullscreen interface for new
commands that are a part of the new code. Refer to Tivoli NetView for z/OS
Customization Guide for information on the VIEW command.

Global Variable Names

22

When creating your own automation procedures, you must ensure that the names
of any global variables you create do not clash with SA z/OS external or internal
global variable names. In addition, you must not use names beginning with:

CFG
AOF
ING
1SQ
EVI
EVE
EV]

System Automation for z/OS: Customizing and Programming

Chapter 3. How to Add a Message to Automation

SA z/0S exploits the NetView automation table (AT) and message revision table
(MRT). The AT contains traps for messages that must be automated. If an action
must be taken in response to a message, this action needs to be defined in the
customization dialog. A related AT entry is required to call a routine to execute the
action. The MRT allows you to modify message attributes such as color, route
code, descriptor code, display and syslog settings, and text of original z/OS
messages (rather than copies).

SA z/0OS automatically generates the ATs and MRT.

Conceptual Overview

This section gives a brief overview of the main aspects of SA z/OS message
automation:

A list of messages that are involved in SA z/OS automation is generated by
SA z/0S. This can then be used as a message processing facility (MPF) member.

* Message automation is a process that is based on the NetView AT and MRT.
* The AT and MRT are generated by SA z/OS.

* AT entries are created for messages that actions are defined for.

* Messages can be defined to indicate a status change.

* Messages can be marked to be ignored or suppressed, thus not generating an AT
or MRT entry.

* Messages can be marked to be captured for further display.

* Most AT entries trap messages independent of the issuing product instance,
component or module.

* Predefined AT entries can be changed.

* You can define the AT/MRT scope to determine precisely if and what kind of
ATs or MRT are built.

Defining Actions for Messages

AT entries are generated by SA z/OS for messages that are defined for APL, MTR,
or MVC policy entries and that have actions (for example, CMD or REP) defined
for them.

Note: Throughout this chapter, whenever the term policy entry is used, it implies
either an APL, MTR, or MVC policy entry, unless otherwise stated.

The first step in defining actions is to select a policy entry from the Policy Selection
panel. From its policy selection list, select the MESSAGES/USER DATA policy
item. This leads to the Message Processing panel, where you can then define
actions for message IDs. If an AT entry is built according to the action, it only
checks for the message ID by default, independent of the product instance,
component or module issuing that message. If this is not intended, you can use the
AT action (see [‘Defining Message Overrides” on page 26).

There are many messages that are already prepared by SA z/OS. For these
messages specific AT entries are predefined by SA z/OS, see the

© Copyright IBM Corp. 1996, 2012 23

Defining Actions for Messages

24

+SA_PREDEFINED_MSGS MVS component entry. If you want to know what kind
of AT entry is built for automating a particular message, you can view it on the
Message Automation Overview panel.

Note: You must not use SA z/0OS symbols (AOCCLONES) or system symbols for
or in message IDs because a correct AT cannot be built.

Defining CMD or REP Actions

Suppose, for example, that you define a CMD or REP action for message XYZ2221
on the Message panel, where XYZ222I is a completely new message that is not
predefined by SA z/0OS.

This definition leads to the creation of an AT entry for message XYZ222I using the
ISSUEACT command after the next Configuration Build process.

Note: If you have code definitions that you expect to be passed to ISSUEACT, you
have to manage the AT overrides to do this. This is not done by SA z/0OS.
See |[“Defining Message Overrides” on page 26

Note that for MVC entries, messages have the parameter SYSTEMMSG=YES added to
the SA z/0OS command (ISSUEACT).

Defining AT Actions

You can define various AT actions for messages using the Message Automation
Overview panel:

* The condition in the AT entry

 Status changes for messages

* Capturing messages to be displayed but not automated
¢ Preventing the building of AT entries

You can also edit the AT entries directly using the AO option from this panel. Note
that if you use one of the other options after you have specified an override,

SA z/0S requires you to confirm whether you want to delete the override that
exists for the message because it cannot be combined with the other options.

Defining Conditions for AT Entries

You can improve the efficiency of AT processing by controlling where entries are
placed within the AT and by specifying more precise conditions to trap the
message. SA z/0S allows you to do this with the AT Entry Conditions panel,
which you reach from the Message Automation Overview panel by entering the
AC option.

Defining Status Messages

Many messages that indicate a state change of APL, MTR, and MVC resources are
known to SA z/OS. The related AT entries are already predefined. For these
messages there is no need to define them in the policy database.

If necessary, you can define additional application messages that indicate a state
change. The AT action leads to the Message Automation Overview panel, where
you can enter the AS option to display the AT Status Specification panel that lists
resource states.

The Status Message Report shows all status messages. It lists all user-defined and
predefined status messages and their associated statuses.

System Automation for z/OS: Customizing and Programming

Defining Actions for Messages

Status messages can be defined for MVC policy entries as well as for APL and
MTR instances or classes. As an example, to define an UP state indicated by
message XYZ444l, enter A in the Cmd field next to the message ID on the Message
Processing panel. On the Message Automation Overview panel, enter the AS
option to display the AT Status Specification panel and select the UP status. Here,
XYZ4441 is a message that is unknown to SA z/OS.

This definition leads to the creation of an AT entry for message XYZ444I using the
ACTIVMSG command after the next configuration build process, as shown on the
Message Automation Overview panel.

Notes:

1. There are certain messages that can be used as status messages, but for some
messages, COD definitions are required (for example, IEF450I). TERMMSG sets
the status depending on these definitions. For more details about TERMMSG,
see [BM Tivoli System Automation for z/OS Programmer’s Referencd,

2. Automation table entries are generated based on the messages that are defined
with MESSAGES/USER data. For size and performance reasons, these entries
are message-oriented rather than job-oriented.

This means that an AT action (except IGNORE or SUPPRESS) for a particular
message generates an AT entry. This entry traps that message independently of
the issuing subsystem. It then sets the subsystem state as selected via the AT
action.

If a state message should be processed for a particular subsystem only, you can
define an AT override action.

Defining Captured Messages

If messages only need to be captured to be displayed but not automated, the AT
Status Specification panel provides an additional Capture option for APL and MVC
entries.

Messages that have a CMD or REP action defined for them or that are defined as
status message are implicitly captured. There is no need to explicitly define these
messages to be captured.

For example, to define message XYZ555I to be captured, enter option AS on the
Message Automation Overview panel to display the AT Status Specification panel
and select the Capture option. Here XYZ5551 is a message that is unknown to

SA z/0S.

This definition leads to the creation of an AT entry for message XYZ555I using the
AOFCPMSG command after the next configuration build process, as shown on the
Message Automation Overview panel.

Note: The status (AUTO) action is mutually exclusive with the OVR action.
Preventing the Building of AT, MRT and MPF Entries

Inhibiting AT, MRT, and MPFLSTSA Entries: Using the AUTO action you can
select IGNORE or SUPPRESS for certain messages:

* Messages that are marked IGNORE do not cause an AT entry, MRT entry, or an
MPFLSTSA entry to be generated.

* Messages that are marked SUPPRESS do not cause an AT entry or MRT entry to
be generated. An MPFLSTSA entry is generated with the options
SUP(YES),AUTO(NO).

Chapter 3. How to Add a Message to Automation 25

Defining Actions for Messages

26

IGNORE and SUPPRESS overrule other actions that are defined for the same
message.

The MPFLSTSA member is built for each policy database. Because IGNORE and
SUPPRESS affect the build of the MPFLSTSA member, these definitions also have a
policy database-wide scope. The MPFLSTSA member is built at an enterprise level,
so whenever IGNORE is defined the MPF table is not built.

AT Entries That Are Never Built: There are many keywords that can be entered
as message IDs in the customization dialog (for example, message
MVSDUMPFULL). No AT entry is built for these keywords. A list of these
keywords is given in the online help.

Defining Message Overrides

You can apply an override on the Message Processing panel for a message ID for
an APL instance, APL class or an MVC entry.

The Message Automation Overview panel allows you to preview an AT entry and
MRT entry as it would be built according to the actions that are defined for the
message. If you have not made a specification that would produce an AT or MRT
entry, you are informed of this in the preview section of the panel.

The AO option on the Message Automation Overview panel allows you to
override an AT entry. You can change any part of the AT entry. Condition and
action statements can be changed, added or deleted. Deleting the condition
statement removes the AT override. Note that a syntax check is not performed, you
have to ensure that the specification obeys NetView automation table syntax rules.

If you define a message with an AT action or condition, and then invoke the
override panel, the preview of the AT entry is shown on the override editor screen.
You can use this as a model for your own AT definition. Use the CANCEL
command to exit the editor without saving your changes.

Note that if you specify an AT status selection or an MRT action selection for a
message with an AT or MRT override then a confirmation panel for the "override
delete" is displayed because an override cannot be combined with the other
specifications.

You can define "&*JOBNAME." as part of an AT override. The variable will be
replaced by the jobnames of the applications for which the AT is specified. This is
very valuable when defining an AT entry for an application class with "...&
JOBNAME="&*JOBNAME."...." as part of the AT condition. In the generated AT
each linked instance will have its own AT entry with its jobname in the condition.
Checking for the jobname may also be required if multiple applications issue the
same message but not all of them should be affected by that message.

You can include SA z/OS symbols (AOCCLONESs) and system symbols in an AT
or MRT override definition. They are resolved at AT load time.

You can define '&*JOBNAME." as part of an AT condition statement that will be
replaced by the jobname of the given policy entry when building the AT. This is
very valuable when defining an AT entry for an APL class. Then each APL instance
linked to that class will have its own AT entry with its jobname in the AT
condition statement. Checking for the jobname may also be required if different
instances of a product issue the same message but you only want certain jobs to be
affected by that message.

System Automation for z/OS: Customizing and Programming

Defining Actions for Messages

To define an override for message XYZ666I, for example, on the Message
Processing panel, you can either change an existing AT entry that then becomes a
user-defined AT entry, or, if no predefinitions are available, you can define a
user-specific AT entry. For example, if message XYZ666I should be trapped, and
routine MYREXX1 should be called as a result, enter:

IF MSGID = 'XYZ666I' THEN
EXEC(CMD('MYREXX1') ROUTE(ONE %AOFOPWTORS%));

This definition leads to the creation of an AT entry for message XYZ666I using the
routine MYREXX1 after the next configuration build process.

If you specify an override, nothing is added by SA z/OS during AT build because
the override applies to all applications. Only the initial conversion of the policy
database creates an override that contains all of the AT entries that would be built.
After conversion, nothing else is added to the override. Thus if there is a message
with an override and then, for some application with that message, a command is
added, you have to ensure that the command is honored.

Extended Status Command Support

The status command concept has been extended so that commands can be issued if
two linked or dependent applications reach an “up” or “down” state. Thus, a
command can be issued for one application (APL1) when another one APL2”
enters or is in a certain state. Application APL1 is a consumer that consumes
services provided by application APL2 which is a provider. In certain cases it is
valuable to trigger a consumer action if the provider enters an UP or DOWN state.
Alternatively the consumer may take an action when coming up, which depends
on the state of the provider.

In addition to runtime variables such as &SUBSAPPL or &SUBSJOB, there are
provider-specific runtime variables that can be used within a command or reply as
specified for a Message ID in the MESSAGES/USER DATA policy. These variables
start with &SU2 instead of &SUB. For a list of supported provider runtime
variables, see ACFCMD and ACFREP in |IBM Tivoli System Automation for z/OS|
[Programmer’s Referencd.

Policy Definitions

Links must be defined in the APL policy for the consumer application. A link is a
data pair that is represented by a consumer and a provider subsystem name:

* The consumer name is defined as the Subsystem Name of the consumer APL

* The provider name is defined in the MESSAGES/USER DATA policy item of the
consumer APL as part of a pseudo Message ID

In order to execute a command by a consumer APL whenever a provider APL
becomes UP or DOWN, use:

» UP_provider-subsys - to hold the commands that are executed when
provider-subsys becomes UP

* DN_provider-subsys - to hold the commands that are executed when
provider-subsys becomes DOWN.

A dynamic link is created by defining a USER action with the Keyword/Data pair
DYNAMIC=YES for the pseudo message ID.

Chapter 3. How to Add a Message to Automation 27

Defining Actions for Messages

28

Other pseudo messages are available to hold sets of commands on a consumer
APL that are executed whenever the consumer becomes UP and the provider APL
is UP or DOWN respectively:

* ISUP_provider-subsys - to hold the commands that are executed when the
provider-subsys is UP

* ISDN_provider-subsys - to hold the commands that are executed when the
provider-subsys is DOWN.

No commands are issued when the consumer becomes DOWN. For dynamic links
the commands are executed when the link is activated and the provider is in the
appropriate status.

For example, if you want to start the MQ Listener for the MQCHIN application
whenever the TCPIP application reaches an up state, you define a command for
the message ID UP_TCPIP using the MESSAGES/USER DATA policy item of
MQCHIN. On the Message Processing panel, enter the line command C for the
UP_TCPIP message ID and on the subsequent Command Processing panel enter
MVS START LISTENER in the Command Text field.

For dynamic links, you need to define message IDs for all the providers that might
be used by a consumer. There are several alternatives for defining when a link is
activated:

1. In the POSTSTART phase of the STARTUP policy item

2. Based on a user-selectable message before the consumer is in the UP state
3. Based on the “up” state (this can be UP or ENDED)

4. Based on a user-selectable message after the consumer is in the UP state

You can make these definitions in either the STARTUP or MESSAGES/USER
DATA policy item. Corresponding policy definitions are required for link
deactivation either in the SHUTDOWN or MESSAGES/USER DATA policy item.

You must supply a user-written REXX automation procedure that:
1. Identifies the provider
2. Issues the INGLINK command to activate the link, if required

All the dynamic links of a consumer are automatically DEACTIVATED after the
consumer is shut down. Thus you only need to define DEACTIVATE commands if
you want this process to happen at an earlier point in time. Furthermore, you must
not define a DEACTIVATE if the consumer is its own provider since this
DEACTIVATE may take place before the DN_ message can be processed.

There is no difference in the DN_ and UP_ message processing between normal
and transient applications, with one exception: when stopping a transient provider
the corresponding DN_ message on the consumer is not processed.

Special Considerations

You can define a consumer as its own provider. This can be done to perform a
predefined action for an application whenever it enters any “down” state. A
“down” state in this context is an agent state of:

+ DOWN

* RESTART

+ AUTODOWN

* STOPPED

+ CTLDOWN

* BROKEN

System Automation for z/OS: Customizing and Programming

Defining Actions for Messages

Thus you no longer need to define the same action for each of the agent states. To
achieve this, define the same name in the DN_ message and subsystem name field
of an application policy entry. You should note, however, that:

¢ If the consumer and provider applications are different, the action defined under
DN_ is only executed, when the consumer application is in the “up” state.
However if the consumer and provider applications are the same, the action
defined under DN_ is executed even when the consumer application is not in
the “up” state.

* Dynamic link definitions are not required. If you define a dynamic link, it is
ignored.

* The action defined for the DN_message is not executed if the status change
resulted from a failed startup.

Defining Entries for the Message Revision Table

The message revision table (MRT) enables user-defined modification of attributes
such as color, route code, descriptor code, display and syslog settings, and text of
original z/OS messages (rather than copies). You can make decisions about the
message based on its message ID, job name, and many other properties. You can
have only one MRT active per system.

Any MRT specifications that you make are independent of any AT entry data for
the message. Thus if you make a definition for the MRT but not for the AT, any
existing data for AT entry is still in effect.

The MS option on the Message Automation Overview panel allows you to define
conditions and attributes that are used to generate NetView message revision table
(MRT) entries for a message ID. Use the options on the Message Revision Table
Conditions panel to specify the following:

* Delete the message completely (if you select this, no other selection is valid)
* Whether to automate the message

* Suppress the message from the console or system log

¢ Translate the message text to uppercase or append further text to it

* Change the color, highlighting, and intensity (if your terminal supports high
intensity) attributes of the message. Only one selection for each of these
attributes is allowed.

A syntax check is not made of the MRT entry because any system-specific
definitions (for example, symbols) can only be verified on the system where the
MRT is to run.

You should check that routines that are triggered by the AT entry for the message
ID are compatible with any text that you append to the original message text.

You can also use the MO option on the Message Automation Overview panel to
define the MRT entry directly using a fullscreen editor. Note that a syntax check is
not performed on this panel. You must ensure that your specifications follow
NetView message revision table syntax rules.

For more details, see the chapter “The Message Revision Table” in IBM Tivoli
NetView for z/OS Automation Guide.

Chapter 3. How to Add a Message to Automation 29

Build

Build

Once you have made all the message definitions that you need, you can start the
Configuration Build Process to build the configuration files containing the AT,
MRT, and MPF table. For more information about the build function, see the
chapter “Building and Distributing Configuration Files” in [[BM Tivoli Systen|
|Automation for z/OS Defining Automation Policy}

The AT fragments, MRT, and the MPFLSTSA member are built into the
configuration data output data set.

This may require more space than you have allocated for the output data set. Thus
enlarging the output data set may be required.

This also applies to the DSILIST data set where the listings are stored.

It is recommended that you copy the build output to a Generation Data Group
(GDG) to avoid token mismatch conditions and AT or MRT load errors.

AT and MRT Build Concept

The AT and MRT are built if necessary.

Note: If the MPF Header or Footer definitions have changed, an MPFLSTSA build
is not performed. The changes are taken into account at the next build.

Load

After the NetView automation tables have been generated using the customization
dialog, they are ready to be loaded. INGAMS REFRESH can be used to refresh the
complete SA z/OS configuration, that is, the Automation Manager Configuration
(AMC), the agent's Automation Control Files (ACFs) and the related NetView
Automation Tables (ATs) as they are defined in the SA z/OS Policy Database.
Alternatively, ATs can be loaded using ATLOAD.

The common global variable AOFSMARTMAT controls whether the AT and MRT
fragments generated at Automation Control File build should be used. For
compatibility reasons the provided default is 2 indicating that the generated AT
fragment is loaded at SA z/OS initialization time or during an INGAMS
REFRESH. The recommended value of AOFSMARTMAT is 3 indicating that the
generated AT and MRT fragments are loaded at SA z/OS initialization time or
during an INGAMS REFRESH.

For more information about the values refer to|” AOFSMARTMAT” on page 237
Appendix A of [[BM Tivoli System Automation for z/OS Customizing and Programming]

Some AT entries are required for SA z/OS to operate properly. These entries reside
in a separate AT that is loaded during SA z/OS initialization. This AT is called
INGMSGSA. Do not edit it.

Listings

The DSILIST data set is used to store listings. For example, if you want to view the
listing of the AT INGMSGO01, issue the command:

br dsilist.ingmsg01

30 System Automation for z/OS: Customizing and Programming

Load

To view the listing of the MRT, issue:
br dsilist.ingmrt01

A listing is produced whenever SA z/OS loads an AT or MRT. You can use the
advanced automation option (AAO) AOFMATLISTING to suppress listings by
setting it to zero (see [Appendix A, “Global Variables,” on page 229).

The AT can be reloaded at configuration refresh INGAMS, ACF ATLOAD).
Because of this you should:

* Use a separate DSILIST data set for each NetView
* Allocate the DSILIST data set as a PDSE in order to prevent Sx37 errors

If the testing or loading of an AT or MRT fails, a special INGERRLS listing that
contains the data of the failing AT or MRT is written to DSILIST. To view this
listing issue the following command:

br dsilist.ingerrls

A Guide to SA z/OS Automation Tables

NetView Automation Table Structure

SA z/0S provides a ready-to-use AT, INGMSGO1. To activate the AT, perform the
following steps:

1. Define the AT member INGMSGO01 in the SYSTEM INFO policy of the system
in the customization dialogs

2. Build the automation configuration files
3. Refresh the configuration using INGAMS REFRESH

4. Restart NetView with the new configuration

The SA z/0S AT contains:

e All entries for the SA z/OS basic automation infrastructure, which reside in
INGMSGSA

¢ AT entries for messages that are defined in the PDB
* User include fragments

You do not have to customize the AT INGMSGO01. All unused entries are disabled
automatically according to the configuration that you use. If you want to have
additional entries that are valid only for your environment, you can use either a
separate AT (specified in the customization dialog) or use one of the user includes.

shows the structure of the AT:

INGMSGO1

—— %INCLUDE AOFMSGSY
—— %INCLUDE INGMSGU1

—— %INCLUDE INGMSGO2 (auto-generated)

%INCLUDE INGMSGU2

Figure 5. AT Structure

Chapter 3. How to Add a Message to Automation 31

NetView Automation Table Structure

32

For information about how to use the INCLUDE fragments that SA z/0S
provides, refer to[“Using SA z/0S %INCLUDE Fragments.”|

The following fragments are used by the AT:

Synonym Definitions
There is one fragment, AOFMSGSY, that is used to initialize the various
synonyms used throughout the rest of the table. SA z/OS requires the
synonyms to be suitably customized to reflect your environment. See
[“Generic Synonyms: AOFMSGSY” on page 261|for more details about the
synonyms.

SA z/OS Functional Definitions
These definitions (located in the fragment that is loaded as INGMSGO02)
contain automation table statements for specific functions of SA z/OS. You
should not change these statements. Any modifications can be made in
INGMSGUL.

Master Automation Tables
This section discusses the three master automation tables that SA z/OS provides.

INGMSGO00: The automation table INGMSGOO is used for SA z/OS initialization.
INGMSGO0 should not have be modified by the user.

This table makes use of the synonyms that are defined in AOFMSGSY.
INGMSGO01: INGMSGOL1 is suitable for use as a primary automation table.

INGMSGO1 should not be included into any other table but should be activated as
a separate table.

AOFMSGST: This is a table suitable for a NetView with a SA z/OS Satellite
installed.

Integrating Automation Tables

If you have any user-written automation table statements that you still want to
use, you must now combine your primary table with SA z/OS's. There are several
approaches to achieve this.

Refer to the NetView documentation for more information on how to use NetView
automation tables.

Multiple Master Automation Tables

Besides INGMSGO1, you can specify multiple additional NetView automation
tables for a system in the customization dialog. The tables are concatenated as
entered in this panel and processed in this concatenation order.

You need not modify the INGMSGO1 automation table or any of the fragments,
except AOFMSGSY. 1t is easy to maintain SA z/OS automation table fragments.
However, you have to watch for new messages. It is easy to maintain your entries,
because they are independent from SA z/OS entries.

Using SA 2/OS %INCLUDE Fragments

INGMSGO1 is the master include member. It provides some message suppression
that is necessary to prevent mismatches and duplicate automation before the first
%INCLUDE fragment.

System Automation for z/OS: Customizing and Programming

Integrating Automation Tables

The INGMSGU1 fragment can be used for user entries. These entries have
precedence over the SA z/OS entries. The default INGMSGU1 fragment is an
empty member.

The INGMSGU2 fragment can be used for all entries that SA z/OS does not
provide any entries for. The default INGMSGU?2 fragment is an empty member.
During ACF COLD or WARM start the AT or ATs are loaded and they write a
listing to the DSILIST data set. This enables the use of the NetView AUTOMAN
command to monitor and manage the ATs. Make sure that the size of your
DSILIST data set is sufficient to store these listings. Without these listings you can
only monitor or manage the ATs using AUTOTBL. It is recommended that you
define your DSILIST data set as a PDSE so that regular data set compression is not
required. You should also make sure that the DSILIST DSN is unique to your
NetView procedure.

Examples: An example output of AUTOTBL STATUS:

BNH361I THE AUTOMATION TABLE CONSISTS OF THE FOLLOWING LIST OF MEMBERS:
AUTO2 COMPLETED INSERT FOR TABLE #1: INGMSGO1 AT 04/16/02 19:34:59
AUTO2 COMPLETED INSERT FOR TABLE #2: HAIMSGOL AT 04/16/02 19:35:00

IPSNO

BNH3631 THE AUTOMATION TABLE CONTAINS THE FOLLOWING DISABLED STATEMENTS:
TABLE: INGMSGO1 INCLUDE: _n/a__ GROUP : INGCICS

TABLE: INGMSGO1 INCLUDE: __n/a___ GROUP : INGIMAGE

TABLE: INGMSGO1 INCLUDE: _ n/a___ GROUP : INGIMS

TABLE: INGMSGO1 INCLUDE: _ n/a___ GROUP : INGJES3

TABLE: INGMSGO1 INCLUDE: __ n/a___ GROUP : INGOPC

An example of the AUTOMAN panel:

/kZLKATGB AUTOMATION TABLE MANAGEMENT h
MEMBER TYPE LABEL/BLOCK/GROUP NAME(S) STATUS NUMBER OF STATEMENTS
INGMSGO2 GROUP INGCICS DISABLED 222
INGMSGO2 GROUP INGDB2 ENABLED 120
INGMSGOZ2 GROUP INGIMAGE DISABLED 1
INGMSGOZ2 GROUP INGIMS DISABLED 107
INGMSGO2 GROUP INGJES?2 ENABLED 1
INGMSGO2 GROUP INGJES3 DISABLED 1
INGMSGOZ2 GROUP INGOPC DISABLED 10

\}NGMSG@Z GROUP INGUSS ENABLED 1)

In this example the configuration loaded does not use the IMS, CICS®, OPC
product automation and the IXC102A automation. It uses JES2, DB2 and USS
automation.

Restriction: The NetView AUTOMAN cannot be used to RELOAD INGMSGO1.

Generic Automation Table Statements

The basic automation table contains a number of generic automation table entries
that can reduce your automation table overhead considerably. These samples use

some of the advanced features of SA z/OS to make automating your applications
as simple and reliable as possible.

For some of these entries (IEF403I and IEF404I in particular) the message flow may
be quite high. To handle this, you can insert additional entries in INGMSGU1 to

Chapter 3. How to Add a Message to Automation 33

Generic Automation Table Statements

suppress a block of messages. For example, if all your batch jobs started with the
characters BAT or JCL, then the following entry would suppress them:
IF MSGID = 'IEF40'. & DOMAINID = %AOFDOM% THEN BEGIN;

*
IF (TOKEN(2) = 'BAT'. | TOKEN(2) = 'JCL'.)
THEN DISPLAY(N) NETLOG(N);

*

END;

System Operations Automation Flow

34

SA z/0S uses dedicated work operators for all subsystem-related processing in
order to:

* Keep the extra message-related workload off the NetView subsystem interface
router task (CNMCSSIR) and primary POI task PPT

¢ Establish even load balancing
* Ensure that all messages for a subsystem are processed in the correct sequence

You define work operators in the customization dialog using the Automation
Operators entry type (AOP). Here you define automated functions that allow you
to specify automation operators, which are the NetView task name. This
two-staged definition gives the flexibility to specify a second operator as a backup
within the same Automated Function definition. The automation operator name
that is specified here is the name of the task in NetView.

Note that the automation operators also need to be defined in the DSIOPF member
in the NetView DSIPARM data set or in the SAF product.

By default SA z/OSS provides 20 Automated Functions, AOFWRKO1 through
AOFWRK?20, with the automation operator names AUTWRKxx. The number can
be increased according to the installation needs.

During SA z/O0S initialization or refresh the subsystems that are defined in the
configuration file are evenly distributed among the automation operators in a
round-robin manner. Thus each automation operator has a list of subsystems that it
is responsible for. Each automation operator then subscribes for the messages of
those subsystems via the NetView ASSIGN command. Finally the initial
monitoring of SA z/OS is run on the appropriate automation operator, which is
then locked until message AOF5401 is issued.

When SA z/0S is fully initialized all messages for a subsystem are queued to the
same automation operator. This ensures that all messages are processed in the
order they have been received.

If the automation table action uses standard SA z/OS capabilities (that is,

SA z/0S commands), the message is processed at the automation operator in the

following three steps. However, if there is a complete user defined automation

table entry (that is, an AT override), only the first step can be run:

1. The message is driven through the NetView automation tables.

2. If there is a match, the SA z/OS data model is applied, which includes
automation flag checking, code matching, threshold comparison, pass
evaluation, and message capturing.

3. Finally the command is executed or the outstanding reply is answered.

There are two places where this processing can be modified for single messages:

System Automation for z/OS: Customizing and Programming

Generic Automation Table Statements

* The assignment of messages to AUTWRKxx automation operators can be
overruled.

To do this, the AOF_ASSIGN_JOBNAME advanced automation option must be
set to 0, which lets ASSIGN BY MESSAGE ID take precedence over the ASSIGN
BY JOBNAME that is established by SA z/OS.

An ASSIGN command with the MSG parameter must be issued to redirect the
message. That particular message is then assigned according to the user
specification while all other messages still run on the automation operators that
are assigned by SA z/0S. However this should be used with care because it
suspends SA z/0OS load balancing and breaks the serialized command
processing for that subsystem.

¢ Execution of the command on the automation operator that has been assigned
by SA z/OS can be overruled by specifying an Automated Function name
together with the command in the MESSAGES/USER DATA policy in the
customization dialog.

Execution of the command is then routed to the task that has been specified for
the Automated Function. The automation table and data model processing is still
run on the automation operator and thus proper sequencing is guaranteed.

SA z/0S internally uses the AOFEXCMD command (described in
[System Automation for z/OS Programmer’s Referencd) to queue the command to the
specified automation operator. The routine checks whether the requested
automation operator is available and, if this is not the case, it queues the
command to a backup operator, so that in any case the command does not run
on the current automation operator.

It is recommended that you use this only if there are special reasons, for
example, for long running commands, because it may break the serialized
command processing for that subsystem (if not all commands are executed on
the same automation operator).

Inheritance Rules for Classes

Bear in mind the following inheritance rules for class data when building AT
entries.

Define Application Information

Data is inherited in the APPLICATION INFO policy item per individual field,
independent from each other (except for Transient Rerun). If a field is blank, the
class value is inherited (if it is available). There are a few exceptions where the
inheritance can be blocked without specifying an instance value with the special
value NONE , for example, Restart after IPL.

Define Relationships

The External Startup and External Shutdown fields in the sub header area show
inherited data individually in the same way as in the APPLICATION INFO policy
item. However the relationships are only inherited as a whole if no relationships
are defined for the child object.

Define Application Messages and User Data

Data is inherited per message ID. For example, assume a message ID has a
command definition for the instance, and the same message ID is defined for a
class with reply data. The command and reply data is not merged on the instance,

Chapter 3. How to Add a Message to Automation 35

Generic Automation Table Statements

36

and the class definitions are not inherited at all. Message overrides (OVR) are not
inherited at all. All OVRs are used to generate AT entries at the level where they
are specified.

Define Startup Procedures

The STARTUP policy offers two panels. The Subsystem Startup Processing panel
with a subheader section with input fields that may show inherited values, and for
each selected startup phase there is a Startup Command Processing panel with a
command input area that also may show inherited data.

Subsystem Startup Processing

Data in the subheader section is inherited per individual field, similar to the
APPLICATION INFO policy. Command definitions for the three phases
PRESTART, STARTUP, and POSTSTART are inherited per start phase. So if
PRESTART commands are defined for the instance and both PRESTART and
STARTUP commands are defined for a class, the instance inherits the STARTUP
commands from the class.

Startup Command Processing

Within each start phase the commands are inherited all together. So if a PRESTART
command is defined for the instance and other PRESTART commands are defined
for a class, none of the commands are merged on the instance. Instead the instance
has only the one command defined there. No PRESTART commands are inherited
from the class.

Define Shutdown Procedures

Shutdown specifications are inherited per phase. So if a SHUTINIT command is
defined for the instance and both SHUTINIT and SHUTNORM commands are
defined for a class, the instance inherits the SHUTNORM commands from the
class. Furthermore, command and reply definitions for one phase are inherited
together. So if for SHUTFORCE a command is defined for the instance, and the
class has a reply defined for SHUTFORCE, nothing is inherited by that instance.

Changes within inherited data result in creating definitions for the current
application. So if for a phase, commands and reply definitions are inherited, and
then commands are modified, both the reply and the command definitions become
data of the current application. If only commands are inherited for a phase, and
then reply data is specified, the command definitions are also copied to the phase
definition of the current application.

Define Error Thresholds

The data is inherited as a whole if no thresholds are defined for the child object —
it is not possible to specify a level for Critical, Frequent, or Infrequent alone for an
instance and inherit the other threshold levels from a class.

Define IMS Subsystem-Specific Data

This policy combines fields that are built into the IMSCNTL and the
ENVIRONMENT structures of the configration files. The fields within a structure
are inherited all together, but each structure is inherited independently from the
other. Furthermore the IMSCNTL fields do not allow definitions for a class (though
they are displayed on the class panel). And finally for a subtype other than CTL
only a subset of the fields is available.

Thus there are three variations of this panel:

System Automation for z/OS: Customizing and Programming

Generic Automation Table Statements

1. Instance of subtype CTL with all IMSCNTL and all ENVIRONMENT fields
2. Class of subtype CTL with all ENVIRONMENT fields

3. Instance or Class of subtype other than CTL with a subset of ENVIRONMENT
fields (2 fields)

The first four fields (APPLid, Default HSBID, Startup parm1, Startup parm?2) are
never inherited. They cannot be specified for a class. The remaining fields are
inherited all together in a blocks.

Automatic AT Generation

CMD (Command), REP (Reply), COD (Code), and USR (User Data) are inherited
per message ID. For example, assume a message ID has a command definition on
the instance, and the same message ID is defined for a class with reply data. The
command and reply data are not merged on the instance, and the class definitions
are not inherited at all.

Messsage Overrride and Status specifications provide instructions for the
generation of the AT entry. This data is never inherited, but is used to create one
AT entry for the object where they are specified. Remember that the AT is message
oriented and the AT entry usually has the message ID as a condition, so for
example, inheriting a Status would create duplicate entries.

Chapter 3. How to Add a Message to Automation 37

38 System Automation for z/OS: Customizing and Programming

Chapter 4. How to Monitor Applications

System Automation for z/OS provides different ways to monitor your applications:

 Using observed status monitoring routines, SA z/OS can determine whether your
applications and several other automated resources are active, inactive, or in the
process of being started. It is recommended to always enable observed status
monitoring routines and to use the product-provided routines where possible.
See [“Observed Status Monitoring”| for further details.

* With monitor resources you can optionally monitor the health of your applications
and recover them on health status changes. SA z/OS distinguishes between
active health monitoring and passive event-based health monitoring. See
[Monitoring” on page 40| for further details.

Active and passive health monitoring is supported by SA z/OS in the following
areas:

* Health monitoring of JES3, based on console messages

* Health monitoring of z/OS, DB2, CICS, IMS and other components, based on
IBM Tivoli OMEGAMON 1II exceptions or IBM Tivoli OMEGAMON XE
situations

* Health monitoring of CICS, based on CICSPlex® SM
* Health monitoring of IMS, based on console messages

Observed Status Monitoring

SA z/0S determines the observed status of an application by running a routine
identified by the policy administrator in the customization dialog. The routine can
be specified for an individual application (refer to [[BM Tivoli System Automation for|
k/OS Defining Automation Policy), and a default monitor routine can be specified for
all applications on an entire system (see the AUTOMATION INFO policy item in
the customization dialog).

lists the routines that can be specified as application monitors.

Table 5. Observed Status Monitor Routines

AOFADMON This routine has been deprecated and is provided only for compatibility
with earlier releases.This routine determines the status of an application
by issuing the MVS D A, jobname command. The job name used is the
job name defined in the customization dialog for the application.
Possible values for the application monitor status as determined by this
routine are Active, Starting, Inactive. IBM recommends to use
INGPJMON instead of AOFADMON.

AOFATMON This routine is used to determine the status of a task operating within
the NetView environment.

AOFAPMON This routine determines the status of a program-to-program interface
(PPI) receiver.

AOFCPSM This routine is a dedicated routine used to monitor the status of the
SA z/0OS processor operations applications.

AOFNCMON This routine is used to determine the status of the NETCONV
connection running between the NMC server and NetView for z/OS.

© Copyright IBM Corp. 1996, 2012 39

Observed Status Monitoring

Table 5. Observed Status Monitor Routines (continued)

AOFUXMON This routine determines the status of a resource with application type
USS. This resource can either be a z/OS UNIX process, a file system in
the UNIX file system (HFS), or a TCP port. Depending on the nature of
the resource (process, file, or port) AOFUXMON decides which internal
monitoring method to use.

INGPJMON This routine determines the status of an application by searching z/OS
for address spaces with a particular job name. The job name used is the
job name defined in the customization dialog for the application.

INGMTSYS With this routine, IMAGE applications for BCPII usage can be
monitored.

INGROMON With this routine, OMVS can be monitored.

INGPSMON This routine monitors the subsystem's registration to the subsystem
interface.
ISQMTSYS With this routine, a processor operations target system resource

represented by its proxy can be monitored. See |“Automating Processor]|
Operations Resources of z/OS Target Systems Using Proxy Definitions”]
on page 85 for examples of how to use a proxy definition. Active
operator console connections are mandatory and are used for sending a
z/0S command (for example, d t) and receiving the related response.

SA z/0OS expects certain return codes from all monitor routines, either from
SA z/0S provided ones or from your own routines. These can be one of the

following:

RC Meaning
0 Active

4 Starting
8 Inactive
12 Error

Health Monitoring

40

Overview

Health monitoring is accomplished using special resources called monitor resources.
Monitor resources, which have a resource type MTR, are policy objects that are
used to obtain the health status of other resources, typically applications or
application groups, or more generally, any object that can be monitored. The health
status is useful when you need to know how well a resource is performing and not
simply that it is active.

The health status can be used to provide application-specific performance and
health monitoring information, for example, an application may be active but it is
failing to meet performance objectives defined by the system administrator. The
health status can be used either for information only, or by the automation
manager to make decisions and, if necessary, trigger automation for the
application.

Monitor resources are defined in the customization dialog with entry type MTR.
They are resources with similar characteristics as all other SA z/OS resources.

Monitor resources are connected to application resources (APLs) or application
group resources (APGs). The health status of the monitored object is propagated to

System Automation for z/OS: Customizing and Programming

Health Monitoring

the APLs and APGs and results in a combined health status there. You can define
and connect MTRs in the customization dialog (see|IBM Tivoli System Automation]|
ffor z/OS Defining Automation Policy).

Monitor resources obtain the health status of an object in two different ways:
 Actively, by polling—that is executing a monitoring command periodically

* Dassively, by processing events

Active monitors are scheduled periodically based on the interval defined in the
MTR policy.

Passive monitors do not have a monitor interval but can have a monitor command
defined for them for initial health status determination. They rely on other events
to set the health status using the INGMON command.

Monitor resources can be explicitly bound to the object that they are monitoring
and optionally to a job. This allows SA z/OS to handle a variety of monitoring
events in a generic way. A monitored object can be, for example, an OMEGAMON
XE situation, or an event posted by CICSPlex System Manager (CICSPlex SM). See
[“Passive, Event-Based Health Monitoring” on page 44| Note that the monitored
object is derived from the monitor resource name, if none was specified.

There can be one or more recovery commands associated with each health status
(NORMAL, WARNING, MINOR, CRITICAL and FATAL). These commands are
invoked by SA z/OS when the monitor resource switches to the corresponding
health status.

You can display and control monitor resources with the DISPMTR command.
Monitor resources are also displayed on the Tivoli Enterprise Portal (TEP) as well
as SDF and NMC, provided that the appropriate inform list specifications have
been made.

Monitor Resource Commands

When defining a monitor resource you can specify activate, deactivate and monitor
commands. Any command is suitable that can be executed in the NetView
environment. These commands are divided into two groups:

* NetView activate and deactivate commands that expect a return code of zero

* Monitor commands that return a health status

The main difference between these two groups is that the activate and deactivate
commands are executed only once, and SA z/0OS expects a return code of zero.

If the activate command ended with a non-zero return code, the monitor resource
remains in an INACTIVE status. The monitor resource ends in a BROKEN status if
the deactivate command ended with a non-zero return code.

* The activate command is optional and can be used to establish the environment
the monitoring routine can run in. The command is executed every time the
monitor is started. The command must exit with return code 0.

* The deactivate command is optional and can be used to cleanup the
environment. The command is executed every time the monitor is stopped. The
command must exit with return code 0.

e The monitor command is executed after the activate command and then
periodically if a monitoring interval is given. SA z/OS expects the monitor
command to return a valid health status code. Additionally the monitor

Chapter 4. How to Monitor Applications 41

Health Monitoring

command can issue a message that is then attached to the health status. The
absence of a monitoring interval indicates that the given monitor resource is a
passive or event-based health monitor. In this case, the monitor command is
optional and, if specified, it is invoked for initial health monitoring only.
Otherwise, if a monitoring interval is provided, the given monitor resource is an
active health monitor. In this case, a monitor command must be provided to
return a health status.

The activate, deactivate and monitor command can be a command procedure
written in any language that is supported by NetView: REXX, Assembler, PL/I, C,
or the NetView Command List Language (NCLL). Writing a monitor routine can
be simple or it can be complex. The complexity depends upon the application that
you are attempting to monitor.

Writing a Recovery Routine

The recovery routine is invoked every time the monitor resource switches to the
health status that the recovery routine is defined for. The goal of the recovery
routine is to bring the monitor resource, and thus the monitored object, back to a
health status of NORMAL.

Recovery Techniques

User data in the MESSAGES/USER DATA policy item can be used to disable
additional recovery processing while other recovery is already in progress. In
combination with the predefined keyword DISABLETIME, the recovery disable
time can be specified in the formats hh:mm:ss, mm:ss, :ss, or mm. While recovery
is disabled, no commands are processed on behalf of this monitor resource for
messages and exceptions that are specified in the MESSAGES/USER DATA policy
item.

Recovery is automatically enabled after the recovery disable time has expired.
Recovery can also be enabled prematurely by calling the INGMON command with
the option CLEARING=YES, for example:

INGMON CIZ2XREP MSGTYPE=XREP CLEARING=YES

In some cases, it is necessary to force increasingly strong recovery actions over a
period of time. This can be accomplished using a PASS count that starts at 1 and
runs to 99. SA z/0OS maintains the PASS count individually per message or
exception, and increments the PASS count each time that message or exception is
processed. Upon successful recovery, it is the installation's responsibility to reset
the PASS count. When specified with option CLEARING=YES, INGMON enables
command processing for messages and exceptions, and resets the PASS count.

Task Global Variables for Recovery Routines
The following task global variables can be accessed by the recovery routine:

Task Global Variable | Value

&EHKVARI1 Contains the monitor name

&EHKVAR2 Contains the current health status

&EHKVAR3 Contains the old health status

&EHKVAR4 Contains the message that is associated with the health status
&EHKVAR5 Contains the object name of the monitor

&EHKVAR6 Contains the job name

&SUBSAPPL Contains the monitor name

42 System Automation for z/OS: Customizing and Programming

Health Monitoring

Task Global Variable | Value
&SUBSTYPE Contains the string MONITOR

Active Health Monitoring

In general, the monitor command needs to issue one or more commands to
generate data, process the data, and set a return code. The return code is then used
by SA z/OS to determine the health status for the resource. The possible return
codes and the corresponding health status are given in

Table 6. Health Status Return Codes

Return Code Health Status Description

1 BROKEN The monitor detected an unrecoverable error.
SA z/0OS stops monitoring.

2 FAILED The monitor is currently unable to obtain a health
status. SA z/OS keeps the monitor active because
the problem might disappear.

3 NORMAL The monitor detected normal operation of the
monitored object.

4 WARNING The monitor detected a certain degree of
degradation in the operation of the monitored object.

5 MINOR The same as WARNING, but more severe.

6 CRITICAL The same as MINOR, but more severe.

7 FATAL The same as CRITICAL, but more severe.

8 DEFER Used internally.

The health status values affect the compound status in the automation manager.

Most monitor commands use UNKNOWN, NORMAL, and WARNING statuses.
The MINOR, CRITICAL, and FATAL statuses can be used as gradients to indicate
that a problem is getting worse. BROKEN and FAILED are statuses that describe
the status of the monitor itself and may be seen if an error is encountered with the
monitor command. A health status of FATAL will trigger an application move as
part of automated recovery.

FATAL is a guaranteed automatic ForceDown, and, if available, failover for the
application associated with the monitor.

Optionally, the monitor routine can issue a message describing the condition that is
trapped by the SA z/OS process that invoked the monitor. The message can be
viewed on the DISPMTR panel.

Every monitor command needs several basic steps:
1. Issue one or more commands to collect data and interrogate the results.

2. Based on the results from the command or commands, set the return code to a
value from 1 through 8 and, optionally, perform processing based on that
value.

3. Optionally, supply more descriptive information about the health status in a
message that can be viewed with the DISPMTR command.

4. Exit with the return code so SA z/OS can set the health status appropriately.

Chapter 4. How to Monitor Applications 43

Health Monitoring

is an example using the NetView PING command within a PIPE to query
the status of a TCP/IP stack on a remote system. The IP address is passed on
input. The routine uses the average round trip time (RTT) for the request provided
in message BNH770I to determine the health.

/*REXX MYMON */
Arg parm
monrcs="'BROKEN FAILED NORMAL WARNING MINOR CRITICAL FATAL DEFER'
"PIPE (STAGESEP | NAME PING)',
"| NETV PING' parm,
'"| LOCATE 1.8 /BNH770I /',
"l STEM out.'
if out.0 = 0 then
Trc = wordpos ('FATAL',monrcs)
else
do
parse var out.l . 'averaging' ms 'ms' .
say 'PING lasted' ms 'ms'

select
when ms < 10 then Trc = wordpos('NORMAL',monrcs)
when ms < 20 then Trc = wordpos('WARNING',monrcs)
when ms < 30 then 1rc = wordpos('MINOR',monrcs)
when ms < 40 then Trc = wordpos('CRITICAL',monrcs)
otherwise Trc = wordpos('FATAL',monrcs)

end

end
Return Trc

Figure 6. Sample Monitor Command

Passive, Event-Based Health Monitoring

Overview

Passive, event-based monitoring allows you to react to events, for example a
message, an OMEGAMON XE situation, or a CICSPlex SM event, directly. In
contrast to active health monitoring, SA z/OS does not have to query the
monitored object status periodically but is informed only when such an event has
occurred.

The definitions in the MONITOR INFO policy item for a monitor resource allow
you to define an object that the monitor resource is bound to and optionally a job
that the monitor resource accepts events from.

The Monitored Object specification for the monitor resource can follow any
naming convention that might be required for the monitoring process. For
example, for CICS monitoring it has the prefix CPSM, followed by the CICS name,
the type (such as a connection), and the name. For a link called CT12, the
monitored object is called as follows, for example:

CPSM.CICSTOR1.CONNECT.CT12.

Whereas for monitoring OMEGAMON XE situations, it has the prefix ITM,
followed by the situation name, for example: ITM.MYAUXSHORTAGE_WARN.

There can be only one monitored object per monitor resource but more than one
monitor resource can be bound to a monitored object, for example, several IMS
monitors might specify OLDS as an object.

You can also optionally specify the Monitored Jobname that a monitor resource
accepts events from. Thus, for example in the case of IMS monitor resources, you

44 System Automation for z/OS: Customizing and Programming

Health Monitoring

might specify a job name of IMS1 for monitor resource MTR1 and IMS2 for MTR2.
If an event arrives for OLDS and the issuer is IMS1 only MTR1 is affected.

Event Types

In the simplest case, an event is represented by a plain message issued by a job.
All monitor resources that register for a particular message accept this message
unless you also specified the monitored job name.

In other cases, for example for OMEGAMON XE situations or events reported by
CICSPlex SM, the event is represented by a triggering message provided by

SA z/OS for the purpose of health monitoring only. This message, ING150I, that
contains the monitored object name or the job can then be used by SA z/0OS to
locate the monitor resource and to set the health status or issue commands. This
allows SA z/0S to handle a variety of monitoring events.

INGMON, the command that is responsible for health monitoring, is invoked from
the NetView automation table whenever ING150I or any other message a monitor
resource has registered for is issued. It locates the monitor resource for a given
monitored object or job and then looks up the code match table for the health
status or commands, or both, that should be issued whenever the triggering event
occurs.

Code Matching for Event-Triggering Messages

INGMON allows you to pass up to three codes that, when specified, are used to
determine a specific set of commands to be issued in case of an event-triggering
message. For message ING150I, SA z/OS creates an automation table entry where
Code 1 is used to select commands by event severity. For other messages, you can
override the default automation table entry and pass the appropriate tokens in
Code 1, Code 2, and Code 3, as you require.

In any case, the Value Returned field contains one or two tokens separated by a
blank. The first token is a required command selector that can be one of the
following:

selection
Execute commands with the given selection or commands for which no
selection is specified.

Perform pass processing and execute all commands that match the current
pass.
#selection

Interpret selection as another pseudo message ID. Perform pass processing
for this message and execute all commands that match the current pass.

This is useful for pass processing on behalf of the event triggering
message, for example, ING1501. Suppose you have one entry for
WARNING and one for CRITICAL. When you do pass processing for
ING1501I your pass counter may be on 5, for example, when the first
CRITICAL event comes in (because you already had 4 WARNING events).

However, with #selection you can specify, for example, a value returned of
#MYWARN WARNING and #MYCRIT CRITICAL for the corresponding
levels. INGMON performs pass processing for the pseudo-message
MYWARN and set the health status WARNING for a WARNING event.
For a CRITICAL event it performs independent pass processing for the
pseudo-message MYCRIT and finally sets a health status of CRITICAL.

Chapter 4. How to Monitor Applications 45

Health Monitoring

Remember to set the IGNORE action for the pseudo-messages to avoid AT
entries being built.

The second token in the Value Returned column of the Code Processing panel
indicates the optional health status to be set. If specified, it must be separated by a
blank from the selection criterion.

Programming Techniques

Commands that are called by INGMON have access to the message that triggered
the invocation using the NetView SAFE, AOFMSAFE, for example:

/* MYCLIST, called by INGMON =/
'PIPE SAFE AOFMSAFE | STEM MSG.'
If msg.0 > 0 Then
msgtext = msg.1 /* first message line */

In addition, INGMON fills the task global variables &EHKVARO, &EHKVAR1-9,

and &EHKVART with tokens that are derived from the message or exception that
INGMON was invoked by. For messages, the assignment starts with the message
ID, and for exceptions, it starts with the exception ID.

INGMON also sets the following task global variables:

&SUBSAPPL Contains the monitor name.

&SUBSTYPE Contains the string MONITOR.

&SUBSDESC Contains the description of the monitor resource.

The following examples illustrate how message and exception tokens are assigned
to these task global variables.

Example 1:
$HASP9211 JES MAIN TASK NOT RUNNING. DURATION- hh:mm:ss.xx
Task Global Variable Value
&EHKVARO $HASPI211
&EHKVAR1 JES
&EHKVAR2 MAIN
&EHKVAR3 TASK
&EHKVAR4 NOT
&EHKVARS RUNNING.
&EHKVAR6 DURATION-
&EHKVAR7 hh:mm:ss.xx
&EHKVARS NULL
&EHKVAR9
&EHKVART
Example 2:
INGO8OI CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS XREP Number of Outstanding Replies = 4
Task Global Variable Value
&EHKVARO XREP
&EHKVAR1 Number

46 System Automation for z/OS: Customizing and Programming

Health Monitoring

Task Global Variable Value
&EHKVAR2 of
&EHKVAR3 Outstanding
&EHKVAR4 Replies
&EHKVAR5 =
&EHKVAR6 4
&EHKVAR7 NULL
&EHKVARS

&EHKVAR9

&EHKVART

When defining commands to be issued by the INGMON command, the
&EHKVARX variables can be used to be replaced by the corresponding tokens of
the message or exception.

When INGMON looks up the monitor resource for a given monitored object or job
name, or both, it is possible to skip monitor resource processing dynamically
through a user-specified REXX expression. In the absence of such a REXX
expression, INGMON locates the monitor resource with the given monitored object
name for the job that issued the message and proceeds with health status setting
and commands as defined in the automation policy. By adding a REXX expression
to the User Defined Data panel within the MESSAGES/USER DATA policy item
for the automated message, further processing can be disabled depending on the
result of this REXX expression.

To do this, the predefined keyword INGMON_FUNCTION is specified as a
keyword and an arbitrary REXX expression is defined as the value in the User
Data Processing panel. If the result of the REXX expression is false (that is, 0),
processing is stopped, otherwise INGMON processing continues. The following
example for the message ID MYMTR controls monitor resource processing, based
on the day of week that is defined in the common global variable DAY_OF_WEEK.
(processing continues only if the current day is not a Sunday):

Keyword INGMON_FUNCTION
Data cglobal('DAY_OF _WEEK') \= 'SUN'

When a monitor resource is defined with a monitor command but without an
interval, the initial health status of such a passive monitor resource is obtained at
monitor resource start time only. Any other health status update must be derived
from events that the monitor resource has registered for.

It is however possible to issue the monitor command at any point in time by
executing the command AOFRCMTR. This command expects the monitored object
name and optionally a job name as parameters. It locates the corresponding
monitor resource and, if specified, issues the monitor command.

See IBM Tivoli System Automation for z/OS Programmer’s Reference|for the syntax of
AOFRCMTR.

Chapter 4. How to Monitor Applications 47

Health Monitoring using OMEGAMON

Health Monitoring using OMEGAMON

SA z/0S allows you to interact with IBM Tivoli OMEGAMON II and IBM Tivoli
OMEGAMON XE products to collect key performance indicators that represent the
health status of address spaces, middleware, or even the system. The following
sections show you how to interact with these products using monitor resources.

Overview

The SA z/0OS OMEGAMON interface lets you gather a wide range of performance
data on a system. You can gather data from the following performance monitoring
products:

* IBM Tivoli OMEGAMON II for MVS

» IBM Tivoli OMEGAMON II for CICS

 IBM Tivoli OMEGAMON II for IMS

+ IBM Tivoli OMEGAMON II for DB2

* IBM Tivoli OMEGAMON XE products

¢ Other IBM Tivoli Monitoring products running on z/OS

Exception analysis is an OMEGAMON feature that monitors predefined thresholds in
a system. Each time exception analysis is invoked, an exception is displayed on the
OMEGAMON console if a threshold is exceeded. Using SA z/0OS, you can then act
on these exception alerts by running execs or issuing commands, including issuing
commands back to the host OMEGAMON.

Situations are much like exceptions but they are based on a combination of logical
expressions and even on the status of other embedded situations. Each product
based on the IBM Tivoli Monitoring infrastructure, such as IBM Tivoli
OMEGAMON XE, provides a set of predefined situations that you can use as is, or
modify as you wish. You can also create your own situations to tailor the
monitoring to your specific needs. Situations are edited and displayed on the Tivoli
Enterprise Portal (TEP). Using a TEP function called Reflex Automation, you can
inform SA z/OS about a particular situation and then act upon it.

IBM Tivoli Monitoring services also allow you to interact with each and every
product based on this infrastructure through a standardized SOAP services
interface on the Tivoli Enterprise Monitoring Server (TEMS). SOAP services exist,
for example, to obtain data from a particular object collected by Tivoli
OMEGAMON XE for z/0OS. Other services allow you to automatically manage
situations and TEP workflow policies, or to send universal messages to the
universal message console.

You can set up monitor resources to:

* Monitor sets of exceptions that may be of interest using an active monitor
resource and set an application's health status based on the existence of such
exceptions

* React to and resolve conditions that cause those exceptions

* Monitor sets of situations that may be of interest using a passive monitor
resource, set an application's health status and react to and resolve conditions
that cause those situations

Assumptions

Various topologies are possible for SA z/OS with IBM Tivoli OMEGAMON II
monitors and IBM Tivoli Monitoring products such as OMEGAMON XE:

48 System Automation for z/OS: Customizing and Programming

Health Monitoring using OMEGAMON

* There can be one or more monitoring product per system

* Connectivity is through VTAM® and the NetView Terminal Access Facility (TAF)
for OMEGAMON 1II and through TCP/IP for OMEGAMON XE

* A TEMS SOAP Server is running locally, on a remote system or on a distributed
system

* SA z/OS can act as a focal point either:

— Globally, monitoring data from monitoring products running on different
systems

— Locally, monitoring data from monitoring products running on the local
system

The following assumptions are made about the topologies that can be adopted for
interaction with OMEGAMON II:

1. The OMEGAMON product is installed on each system where MVS and CICS,
DB2, or IMS is installed.

2. OMEGAMON monitors are installed and configured already to support
multiple VTAM-based connections to it. For interoperability with SA z/OS,
logical units of type 3270 model 2 (24x80) are required.

3. OMEGAMON monitors are setup to interact with an external security product
such as IBM SecureWay Security Server for z/OS (formerly RACF®).

4. OMEGAMON exceptions are reported when the threshold that is defined in
OMEGAMON is exceeded. That threshold must be agreed within an
installation because it must cater for the least severe condition that there might
be an alert for.

The following assumption is made regarding the interaction with OMEGAMON
XE:

1. Reflex automation is executed on the OMEGAMON XE agent that created the
corresponding situation event

OMEGAMON Interaction

The following subsections assume that, for OMEGAMON II interaction, you have
defined one or more OMEGAMON sessions and automated functions that are
designated to handle network communication using the SA z/OS customization
dialog. For details on defining OMEGAMON sessions, refer to the OMEGAMON
SESSIONS and AUTHENTICATION policy items in the Network (NTW) entry type
and to the OPERATORS policy in the Auto Operators (AOP) entry type described
in {[BM Tivoli System Automation for z/OS Defining Automation Policy}

For OMEGAMON XE interaction using SOAP services you have to specify each
SOAP server in the automation policy that you want to connect to. For details on
defining SOAP servers, refer to the SOAP SERVER policy item in the Network
(NTW) entry type described in [[BM Tivoli System Automation for z/OS Defining|
|Automation Policy}

Using the INGOMX Programming Interface

INGOMX acts as the interface between operators (or auto-operators) and
OMEGAMON. This includes not only any of the classic OMEGAMON monitors
for CICS, DB2, IMS, and MVS, but also OMEGAMON XE monitors and other IBM
Tivoli Monitoring products running on z/OS.

For the classic OMEGAMON monitors, INGOMX can be used to issue
OMEGAMON major, minor, and immediate commands, and to filter one or more

Chapter 4. How to Monitor Applications 49

Health Monitoring using OMEGAMON

exceptions of interest from the list of exceptions reported by OMEGAMON
exception analysis. Each request is written to the console (but not exposed to
NetView) in the format as produced by the OMEGAMON monitor. When
exception filtering is requested, multiple exception lines for one exception are
combined into a single line and written to the console as a single message if the
filter criterion (XTYPE) matches. INGOMX is best used within a NetView PIPE.

The INGOMX SOAP interface allows you to issue any of the SOAP services
supported by the TEMS SOAP server, for example to

* Obtain attributes of interest from a particular OMEGAMON XE object, for
example, Job_name and CPU_percent from the OMEGAMON XE for z/OS
object Address_Space_CPU_Utilization

* Start and stop situations as well as TEP workflow policies
* Issue a universal message
* Send an event into the IBM Tivoli Monitoring platform

The full set of SOAP services and a description of the XML-syntax is described in
IBM Tivoli Monitoring Administrator’s Guide.

The following examples illustrate the use of INGOMX. They are based on an
OMEGAMON for MVS session with the name OMSY4MVS. The same techniques
also apply to other OMEGAMON monitors. For more details, refer to
[System Automation for z/OS Programmer’s Reference)

Example 1. Returning Information on Common Storage Utilization Using the
CSAA Command:

/;NGOMX EXECUTE,NAME=OMSY4MVS , CMD=CSAA A
IPXNG CSAA SUMMARY
IPXNG +
IPXNG + System
IPXNG + Maximum Pre-CSAA Orphan Usage
MWHE & 2 oooocon comoooes comemes comcomcereceees 02 4 68 100
IPXNG + CSA 3312k 1247K 0 1247K 37.6%|------ > |
IPXNG + ECSA 307740K 78797K 0 78797K 25.6%|----> |
IPXNG + SQA 1620K 660K 0 660K 40.8%|------- > |
IPXNG + ESQA 145696K 23930K 0 23930K 16.4%|--> [
. J
Example 2. Using OMEGAMON Command Modifiers:
INGOMX EXECUTE,NAME=0MSY4MVS,CMD=ALLJ,MOD=#
| IPXNG #ALLJ 166
INGOMX EXECUTE,NAME=0MSY4MVS,CMD=ALLJ,MOD=<
| IPXNG <ALLJ *MASTER= PCAUTH RASP TRACE DUMPSRV XCFAS GRS SMSPDSE+
I IPXNG + CONSOLE WLM ANTMAIN ANTAS000 OMVS TEFSCHAS ~ JESXCF ALLOCAS+
IPXNG

50 System Automation for z/OS: Customizing and Programming

Health Monitoring using OMEGAMON

Example 3. Trapping Outstanding Operator Replies:

INGOMX TRAP,NAME=0MSY4MVS,XTYPE=(XREP)
| IPXNG + XREP Number of Outstanding Replies = 5

Example 4. Issuing OMEGAMON Minor Commands:

4 . N
/* REXX-Routine EXMINOR =*/
cmd.1 = "CMD=SYS" /* Major command, issued ahead of its minors =x/
cmd.2 = "CMD=FCSA" /% Minor: CSA frames below 16M x/
cmd.3 = "CMD=FCOM" /% Minor: CSA, LPA, SQA, and nucleus below 16M */
cmd.0 = 3
'"PIPE STEM cmd. COLLECT',
'| NETV INGOMX EXECUTE,NAME=0OMSY4MVS,CMD=x",
"| CONSOLE ONLY'
* IPXNG EXMINOR
| IPXNG SYS >> WLM Goal mode OPT=00 SYSRES=(150526,8812) <<
| IPXNG fcsa 328 1312 K
| IPXNG fcom 849 3396 K
o %

There is no need to explicitly establish a session between an operator and a
particular OMEGAMON monitor before using INGOMX; such sessions are
established automatically on their first use.

Selective protection of individual OMEGAMON sessions and commands, or both,
is possible based on the NetView Command Authorization Table. Details can be
found in the appendix, “Security and Authorization”, in |[BM Tivoli System)
[Automation for z/OS Planning and Installation)

To use a SOAP service, for example to obtain certain attributes from an
OMEGAMON XE object, you first have to describe the request's parameters in the
form of an XML document. The XML document is validated and rejected by the
SOAP server if it is found to be incorrect or incomplete. The spelling of the names
enclosed in '<' and '>' is significant because XML is a case-sensitive document
description language. Also, because the structure of every XML document is
hierarchical, each element must be enclosed by an opening name (for example,
'<CT_Get>") and a corresponding closing name denoted by a forward slash
preceding the name (for example, '</CT_Get>").

The following is an example that describes the request parameters to retrieve the
Job_Name, the address space ID (ASID), and the CPU_Percent attributes from the
OMEGAMON XE for z/OS object, Address_Space_CPU_Ultilization, for all jobs
with a CPU percentage greater than 1.0. In this example, the object that has been
queried is collected on the TEMS called KEYAS:CMS.
<CT_Get>

<target>KEYAS:CMS</target>

<object>Address_Space_CPU_Utilization</object>

<attribute>Job_Name</attribute>

<attribute>ASID</attribute>

<attribute>CPU_Percent</attribute>

<afilter>CPU_Percent;GT;10</afilter>
</CT_Get>

You can pass this XML document either by pointing INGOMX to a sequential or

partitioned data set, or in the default SAFE, assuming INGOMX is invoked in a
NetView PIPE.

Chapter 4. How to Monitor Applications 51

Health Monitoring using OMEGAMON

52

When INGOMX is invoked, the SOAP server that is connected to must be
specified. In the following example, it is assumed that you have defined a SOAP
server called KEYAYA in the SOAP SERVER policy item of the Network (NTW)
entry type using the SA z/OS customization dialog. This definition includes the
host name or IP address, the SOAP server's port and the path name of the SOAP
service. The request parameters as shown above are located in the member
GETCPU in the partitioned data set SYS1.SOAP.DATA:

soapds = 'SYS1.SOAP.DATA(GETCPU)"

soapsrv = 'KEYAYA'

Address NETVASIS 'PIPE (END % NAME GETCPU)',

"| NETV (MOE) INGOMX SOAPREQ SERVER='soapsrv' DATA='soapds,
"| L: LOC 1.8 'd||'DW0369I '||d,

"| EDIT SKIPTO 'd||'RETURN CODE'||d,
: UPTO 'd||'."]||d,

: WORD 3 1',

| VAR omx_rc',
SL:',
| CON ONLY'

On the successful return of INGOMX, the output of the SOAP server is returned in
the multiline ING160I message:

ING160I RESPONSE FROM SOAP SERVER: 9.xxx.xXxXx.xxx:1920///cms/soap
Job_Name:ASID:CPU_Percent

IXGLOGR:20:2.1

NET:59:2.1

RMFGAT:89:6.9

SDM1IRLM:108:1.7

BB0S001S:113:22.1

YANAMSJH:117:3.9

The first row of this message documents the IP address of the SOAP server that
responded, that is, KEYAYA in the example (IP address anonymized).

The second row describes the names of the attributes returned by the SOAP server.
The attribute names are separated from each other by the non-printable character
XFF' (represented by a :).

The third and all following rows contain the actual data that has been requested.
The attribute values are presented in the same sequence as the corresponding
attribute names in the second row. Also, like the attribute names, the attribute
values are separated from each other by the non-printable character X'FF'
(represented by a :).

The tabular structure of this message allows you to easily process it in a NetView
PIPE.

Using the INGMTRAP Monitor Command

INGMTRAP is a customized interface to INGOMX that provides filtering
capabilities for exceptions of interest as reported by OMEGAMON exception
analysis and triggering of automation on behalf of such exceptions. For each
exception that matches the XTYPE filter that is provided by the caller, INGMTRAP
issues message INGO80I, which is exposed to NetView. For example:

INGO8OI CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS XREP Number of Outstanding Replies = 4

If no exception matches the XTYPE filter that is provided by the caller,
INGMTRAP creates a INGO81I message that is not exposed to NetView but written
to the monitor resource's log to document that no exception has been found. For
example:

System Automation for z/OS: Customizing and Programming

Health Monitoring using OMEGAMON

INGO81I CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS NO EXCEPTION FOUND

INGMTRAP can only be used as a monitor command. This means that it has to be
specified directly as a monitor command in the definition of a monitor resource, or
it has to be called on behalf of such a monitor command. The following example
illustrates what you need to specify on the MONITOR INFO policy in entry type
monitor resource (MTR) in order to trap outstanding operator replies that are
reported by OMEGAMON for MVS session OMSY4MVS:

INGMTRAP NAME=0MSY4MVS,XTYPE=(XREP)

Be careful when specifying a list of exceptions: each exception may cause an
INGO80I message to be issued. Because each occurrence of an ING080I message
triggers health status processing of the monitor resource, make sure you
understand the impact that this may have on the monitor resource's final health
status.

For more details about INGMTRAP refer to|[BM Tivoli System Automation for z/OS|
Programmer’s Referencd For more details about defining monitor resources, refer to
[BM Tivoli System Automation for z/OS Defining Automation Polici}

Health Monitoring Based on OMEGAMON Exceptions

This section describes how to set up the monitor resources for health-based
monitoring based on OMEGAMON exceptions using the customization dialogs,
provides a sample scenario, and gives recommendations when using
OMEGAMON in combination with monitor resources.

Defining the Monitor Resources

By combining monitor resources and the OMEGAMON interaction methods
described in ["OMEGAMON Interaction” on page 49) automation can be triggered
as a result of analyzing the output reported by OMEGAMON and by the setting of
an appropriate health status.

OMEGAMON exceptions can be periodically monitored using a monitor resource
and the monitor command INGMTRAP. There are a variety of ways to handle such
exceptions:

1. In the customization dialog, the MESSAGES/USER DATA policy of a given
monitor resource needs to state the health status of each exception that
INGMTRAP has been set up to monitor. Unlike messages, OMEGAMON
exceptions are denoted by a '+' sign, followed by a blank and then a 4-character
OMEGAMON exception ID.

2. In addition to the health status, a series of one or more commands can be
specified to handle that particular exception. Commands are processed in the
same way as for any other resources that a MESSAGES/USER DATA policy is
provided for, such as applications (APL). This includes escalation processing
based on a PASS count, or processing based on a selection value that can be
defined using CODEs that are derived from a message.

3. The HEALTHSTATE policy can be used to issue recovery commands on behalf
of an OMEGAMON exception each time the health status changes.

No matter which method or combination of method are chosen, the process of
handling an exception is triggered by the occurrence of an ING080I message for a
particular monitor resource and exception. The automation table that is built from
the definitions in the MESSAGES/USER DATA policy contains statements that
invoke the INGMON command to set the monitor resource's health status and to
issue commands in response to exceptions. In most cases, the necessary entries in

Chapter 4. How to Monitor Applications 53

Health Monitoring using OMEGAMON

54

the NetView Automation Table are created automatically by SA z/OS. In some
rare cases when, for example, command selection should be based on CODEs, it is
necessary to override the automation table definition of the exception, and to
specify up to 3 codes (CODE1, CODE2, and CODE3) on the invocation of
INGMON.

Alternatively, an installation-written monitor command can be used to issue
INGOMX for a series of exceptions to one or more OMEGAMON monitor. Such a
monitor command then returns with an appropriate health status that is based on
the analysis of the output produced by INGOMX. The recovery commands that are
issued when the health status changes are specified in the HEALTHSTATE policy
of that monitor resource.

Example Scenario
To illustrate how SA z/OS and OMEGAMON operate together, consider the
following scenario.

Suppose there is a DB2 application that should be continuously monitored. Of
particular interest is the availability of primary active logs. The LOGN
exception indicates that fewer primary active logs exist than specified by the
respective threshold value. This is considered a critical health indicator
because it can cause a DB2 hang situation if the last primary active log
becomes 100% full. Such a situation can only be resolved by making one or
more additional primary active logs available again.

In order to monitor this situation and react accordingly, the automation policy has
to be changed. First, define the session attributes for the OMEGAMON for DB2
monitor, if they do not yet exist, to be able to establish a VTAM connection. The
OMEGAMON session is referred to by its session name. Then review the number of
session operators (automation operators) that are started to handle the VTAM
session traffic and add an additional one if a higher degree of parallelism is
required. You need to ensure that the number of session operators and predefined
NetView tasks are identical.

Next, add a new monitor resource (MTR) that periodically requests exception
information from this OMEGAMON session. Add the MTR by means of a
HasParent relationship to the DB2 subsystem to be monitored. This ensures that the
MTR is activated when the DB2 subsystem is started, and deactivated when the
DB2 subsystem is stopped. Also define the MTR via a HasMonitor relationship to
the DB2 subsystem to ensure that the monitor's health status can be propagated to
the application.

While the MTR is active, it uses the monitor command, INGMTRAP, to gather
OMEGAMON exceptions that currently exist, based on the thresholds that are
defined in the OMEGAMON for DB2 installation profile. INGMTRAP analyses all
exceptions returned by OMEGAMON and filters out those exceptions that the
MTR is interested in, in this example, LOGN. SA z/OS subsequently issues
message INGO80I to initiate exception processing.

Finally, also add a new rule to the NetView automation table (using the SA z/OS
policy) that executes a REXX automation procedure to add a new log data set to
the pool of primary active data sets whenever the LOGN exception is reported and
the health status is CRITICAL (6). The MTR's health status is considered CRITICAL
if the number of available primary active logs is equal to 1. If the LOGN exception
is reported again in the next monitor interval, a second rule in the automation
table sets the MTR's health status to FATAL (7), which triggers an application move

System Automation for z/OS: Customizing and Programming

Health Monitoring using OMEGAMON

because normal recovery handling doesn't seem to work anymore. In addition, an
alert is sent to the operator to inform him about this situation. If the LOGN
exception is no longer reported, the MTR's health status is set to NORMAL (3).

The health status assigned to the MTR by means of the automation table is
propagated to the DB2 application that owns this MTR. Thus, you can see at a
glance whether the DB2 subsystem is okay or not.

Recommendations
You should consider the following recommendations when using OMEGAMON in
combination with monitor resources:

* Avoid monitoring multiple exceptions using INGMTRAP. Note that there can be
more than one exception that may trip and thus multiple INGO80I messages may
be generated. The monitor resource's health status, however, depends on the last
INGO80I message.

* Avoid setting different health statuses for the same exception that is monitored
by different monitor resources using INGMTRAP. Note that only one automation
table entry is generated by SA z/OS to process message ING080I for such an
exception.

In these cases, the use of INGOMYX, invoked from an installation-written monitor
command, to determine a combined health status from multiple exceptions or to
determine an individual health status for each monitor resource, is preferred to
using INGMTRAP.

Health Monitoring Based on OMEGAMON XE Situations

This section gives an overview of passive, event-based monitoring of
OMEGAMON XE situations and describes how to set up the monitor resources
using the customization dialogs.

Overview

Unlike the exception-based monitoring that SA z/OS uses for classic
OMEGAMON monitors, the IBM Tivoli Monitoring infrastructure provides the
means to react to situations whenever they occur. On the Tivoli Enterprise Portal
(TEP), a user can specify what kind of automated response (reflex automation)
should be triggered for each individual situation.

SA z/0S makes use of this capability by providing a simple command called
INGSIT. The ITM administrator enters this command on the TEP with the Situation
Editor dialog for those situations where SA z/OS health monitoring or
health-based automation should take place. For more details about INGSIT refer to
[[BM Tivoli System Automation for z/OS Programmer’s Reference,

The Take Action command is carried out on the agent, for example, OMEGAMON
XE for z/0OS, and not the Tivoli Enterprise Monitoring Server (TEMS) unless the
TEMS is running on the same system. This is because it is possible that the hub
TEMS may not reside on z/OS and so the command may not be delivered.

INGSIT triggers message ING1501 that allows you to set the health status of
individual monitor resources. It is then possible to issue commands, such as
recovery or notification commands, to automatically fix the situation. You can
specify what the health status is and what associated commands are issued in the
customization dialog.

Defining the Monitor Resources
To set up the monitor resources:

Chapter 4. How to Monitor Applications 55

Health Monitoring using OMEGAMON

56

1. Define one MTR for each OMEGAMON XE situation that you want to respond
to.

2. In the MONITOR INFO policy item fill in the following fields:

Monitored Object
Enter the name of the OMEGAMON XE situation in uppercase with a
prefix of ITM, for example, ITM.MYSIT

Monitored Jobname
Enter an optional job name to match this situation to a particular
monitor resource.

3. Define codes for the message ID ING150I in the MESSAGE /USER DATA policy
of the MTR to yield the commands that are to be issued and to map the
severity to a valid health status.

Example Scenario: Consider the following scenario:

The PAGEADD command is to be issued when an auxiliary storage shortage
is detected, based on page data set utilization and page data sets that are not
operational.

A situation called MyAuxShortage_Warn is defined by the installation that is true
when both predefined situations OS390_Local_PageDS_PctFull_Warn and
05390_PageDSNotOperational_Warn are true.

As reflex automation, the following system command is issued on the managed
system, that is, the system that produced the situations:

F NETV,INGSIT MyAuxShortage_Warn,warn

Where NETV is the job name of NetView address space.

This command is issued from the Take Action dialog, as shown in [Figure 7 on pagéd

System Automation for z/OS: Customizing and Programming

Health Monitoring using OMEGAMON

& Formula Distribution | TP Expert Advice | 7 Action | g Urtil

Action Selection

(%) System Command () Universal Message

Systermn Command
F METY INGSIT MybuxShortage Warn warn

% Attribute Substitution. ..

Ifthe condition is true far more than one manitared item:

(%) Dinly take action on first terr

() Take action on each item

Where should the Action be executed (perfarmed):
{?} Execute the Action at the Managed System (Lgent)
C} Execute the Action at the Managing Systerm (TEMS)

[fthe condition stays true over multiple intervals:
{?} D't take action twice in & rowe (wait urtil stustion goes falze then true againd

() Take action in each interval

Figure 7. Take Action Dialog

INGSIT is called and produces an ING1501 message, which contains the situation
name that is mapped to the monitored object. Other optional information includes:

* The severity of the situation
* A job name that matches this situation to a particular monitor resource
* Other data that contains information related to the event

In this example, the situation, MyAuxShortage_Warn, and its severity, warn, are
included.

Using the customization dialog, a monitor resource, for example, AUXSHORT, is
created that specifies ITM.MYAUXSHORTAGE_WARN (in uppercase) as its
monitored object.

ING1501 is then specified in the MESSAGE/USER DATA policy item of the
AUXSHORT monitor resource. In this example, the following code entry could be
used to derive selection ADD and set the health status to MINOR:

Code 1 warn
Code 2 *

Code 3 *

Value Returned ADD MINOR

In addition, one or more commands can be specified for ING1501 for the selection
that resulted from code match processing. In the example above, the PAGEADD

Chapter 4. How to Monitor Applications 57

Health Monitoring using OMEGAMON

command would be specified for selection ADD.

After executing all the commands that have been specified in the Command
Processing panel for the selection, the health status that was mapped in the code
processing is set (in this example, it was MINOR). Note that if no health status was
specified in the code match table, it remains unchanged.

In a more sophisticated extension of this scenario, the situation,
MyAuxShortage_Warn, as shown on the TEP is automatically acknowledged using
SOAP services. To do this, a small request parameter XML-document must be
created and sent to the TEMS SOAP server for processing. To acknowledge a
situation, a CT_Acknowledge request must be issued as shown in the following
example:
<CT_Acknowledge>

<target>KEYAS:CMS</target>

<name>MyAuxShortage_Warn</name>

<source>KEYAPLEX:SYS1:MVSSYS</source>

<data>System Automation is taking care of this</data>
</CT_Acknowledge>

The XML-document above references the TEMS that manages the situation (target),
the situation itself (name), and the so-called monitoring agent (source) that is the
source of this situation. With the data-element, you can pass any additional textual
information to the person that is looking into this situation on the TEP.

As described in [“OMEGAMON Interaction” on page 49 |INGOMX is used to issue
the SOAP request to the TEMS SOAP server. Once the situation has been
acknowledged, it can be recognized as such on the TEP's situation event console or
navigator flyover list.

Health Monitoring using CICSPlex SM

This section introduces the components of event-based CICS monitoring and
describes how to set up the monitor resources using the customization dialogs.

Component Overview

Event-based CICS link and health monitoring is implemented using CICSPlex
System Manager (CICSPlex SM) objects. Whenever an event is received from
CICSPlex SM, message ING150I is issued.

INGCPSM is the event listener for CICSPlex SM. Because it is a long-running
automation procedure it needs to be run in a virtual operator station task (VOST).
It scans the configuration on startup and listens for events. It then periodically
checks whether the configuration has changed (that is, monitor resources have
been added, deleted, or changed, etc.) or monitor resources are waiting for initial
monitoring (that is, they have STATUS=ACTIVE and HEALTH=UNKNOWN).

Creating an Application to Manage the VOST

You can manage the VOST that executes INGCPSM using an application of type
NONMVS:

e Start the VOST by using the INGVSTRT command as the start command of the
APL, where its job name is used as the attach_name of the VOST.

* Stop the VOST using a sequence of INGVSTOP stop commands in the
management APL.

58 System Automation for z/OS: Customizing and Programming

Health Monitoring using CICSPlex SM

* Monitor the status of the VOST using the INGVMON monitoring routine in the

management APL.

For more details, see [[BM Tivoli System Automation for z/OS Programmer’s Referencel

Defining the Monitor Resources

To set up the monitor resources:

1.
2.

Define one MTR for each CPSM object (for example, each connection).

Fill in the Monitored Object field in the MONITOR INFO policy item
according to the naming conventions, for example,
CPSM.CICSITOR.CONNECT.CON1

Leave the Monitored Jobname field empty.

Define codes for the message ID ING150I in the MESSAGE/USER DATA policy
of the MTR to map the CPSM severities to valid health statuses, for example:

Code 1 Value Returned
VLS * NORMAL

LS * WARNING

LW * WARNING

HW * MINOR

Refer to the *CICS add-on policy for sample definitions to monitor the connection
between two CICS resources.

Monitoring JES3 Components

The concept of a monitor resource is used to monitor the health of various JES3
components. SA z/OS provides two commands that support a strict separation of
the monitoring part and the resulting recovery processing;:

* AOFRJ3MN: used to monitor components in the JES3 environment, for example

spool space.

* AOFRJ3RC: used to perform recovery actions against the monitored JES3 object.

The following example defines a spool space monitor:

1.

4.

Define a monitor resource with a “HasParent” relationship to the corresponding
JES3 because it only makes sense to monitor the spool space when JES3 is
active.

Activate and deactivate commands are not necessary for the spool monitor.

Use the AOFRJ3MN command as the monitor command and setup the
monitoring interval as desired. In this example, spool usage of up to 60% is
NORMAL, 61-70% WARNING, 71-80% MINOR, 81-90% CRITICAL and greater
than 90% FATAL.

G\OFR\BMN JES3_subys SPOOLSHORT 60,70,80,90)

Define the recovery action in the HEALTHSTATE policy, for example:

NORMAL : AOFR3RC JES3_subsys SPOOLSHORT RESET
CRITICAL: AOFRJ3RC JES3_subsys SPOOLSHORT 05
FATAL : AOFRJ3RC JES3_subsys SPOOLSHORT 01

Chapter 4. How to Monitor Applications 59

Monitoring JES3 Components

60

Issue one recovery command every minute. The commands are read from the
SPOOLSHORT policy of the JES3 subsystem. When the spool usage goes down
to 60% or less, the health status goes to NORMAL. This causes to invoke the
AOFR3RC command but now with the RESET option - the RESET option stops
recovery. It is recommended that you use JESOPER as the auto-operator for the
recovery commands. Note, that the recovery commands for the SPOOLSHORT
condition must be defined for the JES3 subsystem.

5. For the JES3 subsystem, define the necessary actions that should be performed
for SPOOLSHORT in the Message/User data policy:

Pass | Automated Function | Command

1 JESOPER MVS &SUBSCMDPFEXF U,Q=HOLD,AGE=30D,N=ALL,C
2 JESOPER MVS &SUBSCMDPEXF U,Q=HOLD,AGE=10D,N=ALL,C
3 JESOPER MVS &SUBSCMDPEXF U,Q=HOLD,AGE=3D ,N=ALL,C
10 JESOPER MVS &SUBSCMDPEXF U,Q=HOLD,AGE=1D,N=ALL,C

This purges all jobs from the hold queue that are older than 30 days in the first
pass. On pass 2, all jobs older than 10 days are purged. On pass 3 all jobs older
than 3 days are purged. Finally, after 10 times the pass interval (in our example
5 minutes), all jobs older than 1 day are deleted if the recovery action is not
reset in the meantime.

AOFRJ3MN Routine

Use this routine to monitor various objects in a JES3 environment. The following
objects can be monitored:

¢ MDS queues (Fetch queue, Verify queue, Wait volume queue, Error queue,
Allocation queue, Breakdown queue, Unavailable queue, Restart queue, System
select queue, System verify queue)

* Current® setup depth
* Spool space

For each of the 10 JES3 MDS queues, thresholds may be set for each of the 4 health
statuses (Warning, Minor, Critical and Fatal) indicating the number of jobs that
particular queue may contain causing to set the corresponding health status. If, for
example, the WARNING threshold for the Error queue is set to 5, if 5 or more jobs
are pending on the MDS Error queue, the health status is set to Warning.

For the spool space the thresholds define the amount of used space that when
exceeded causes to set the corresponding health status.

Whenever AOFRJ3MN is called, it issues the appropriate JES3 command (*,Q,S for
SPOOLSHORT and *I,S for the MDS queues) and parses the response. The value
extracted from the message text is compared with the thresholds and then the
return code is set to the corresponding health status. This simply sets the health
status of the Monitor resource (MTR). No recovery action is taken by AOFRJ3MN
routine. Use the HEALTHSTATE policy of the Monitor resource to define a
recovery action for each health status, if necessary.

The syntax of the AOFRJ3MN routine is as follows:

»—AOFRJ3MN—jes3apl—| object |—| threshold-1ist i ><

System Automation for z/OS: Customizing and Programming

object:

—MDSCOUNTQ

Monitoring JES3 Components

—MDSCOUNTF—
—MDSCOUNTV—
—MDSCOUNTW—
—MDSCOUNTE—
—MDSCOUNTA—
—MDSCOUNTB—
—MDSCOUNTU—
—MDSCOUNTR—
—MDSCOUNTSS—
—MDSCOUNTSV—
—SPOOLSHORT—

threshold-list:

f—warning,minor,critical,fatal

jes3apl

Specifies the name of an APL of category JES3 for which this monitor

works.

monitor

Specifies the JES3 object to be monitored:

MDSCOUNTQ
MDSCOUNTF
MDSCOUNTV
MDSCOUNTW
MDSCOUNTE
MDSCOUNTA
MDSCOUNTB
MDSCOUNTU
MDSCOUNTR
MDSCOUNTSS
MDSCOUNTSV
SPOOLSHORT
threshold-list

Current setup depth
Fetch queue

Verify queue

Wait volume queue
Error queue
Allocation queue
Breakdown queue
Unavailable queue
restart queue
System select queue
System verify queue

Spool

Specifies a list of four threshold values separated by commas:

warning Set health status to WARNING if this value is exceeded
minor Set health status to MINOR if this value is exceeded
critical Set health status to CRITICAL if this value is exceeded
fatal Set health status to FATAL if this value is exceeded

If warning is not exceeded the health status is set to NORMAL.

Chapter 4. How to Monitor Applications

61

Monitoring JES3 Components

62

Note that for SPOOLSHORT the values are in percent but for the MDS
queues they are absolute numbers. No value checking is done by
AOFR]J3MN except for whole numbers.

Note also that the thresholds are tested from FATAL to WARNING. So if
you want to go directly from NORMAL to FATAL, you could specify
50,50,50,50

AOFRJ3RC Routine

This routine performs the recovery action against a monitored object in a JES3
environment.

When AOFR]3RC is called, it checks whether the system that it is running that
holds the JES3 global processor. If not AOFRJ3RC terminates without any further

action.

The syntax of the AOFRJ3RC routine is as follows:

»—AOFRJSRC—jes3apZ—msg-type—[pass-znterval ><

jes3apl Specifies the name of an APL of category JES3.

msg-type
Specifies the message type within the given JES3 APL that the recovery
commands are to be read from:

pass-interval
Specifies the time interval that AOFRJ3RC should wait before
executing the next pass. The format is in NetView notation (mm,
hh:mm, hh:mm:ss or :ss).

RESET
If RESET is specified AOFR]3RC stops the recovery.

AOFRJ3RC looks into the MESSAGE/USER DATA policy definition of the specified
JES3 APL. It issues the command that is defined for PASS1 of the given message
type. As long as there are commands in higher passes it sets up a NetView timer
that re-calls AOFRJ3RC after the given pass interval. Whenever AOFRJ3RC is
executed the command that is defined for the next pass is issued as long as one
exists.

If RESET is specified instead of a pass interval any pending timer is killed and
processing stops.

The return code is always zero.

Note: AOFRJ3RC issues the recovery commands in a fire-and-forget manner. It does
not check whether the recovery action has the desired result. This is done by
the monitor. After one or more monitor intervals the health status changes
to a less severe one if the recovery shows an effect. If you want to stop
recovery actions when the health status returns to NORMAL, for example,
you have to code a HEALTHSTATE command that calls AOFRJ3RC with
RESET.

System Automation for z/OS: Customizing and Programming

JES2 Spool Monitoring

JES2 Spool Monitoring

An SA z/0OS monitor resource (MTR) is used to monitor JES2 spool file usage.
This can be accomplished with an active monitor that queries the spool usage
periodically or a passive monitor that listens for HASP050 and HASP355 events.

The JES2 spool monitoring function that is provided includes the following items:

e Automation routines INGRMJSP, INGRCJSP (AOFRSD01), AOFRSD09, and
AOFRSDOH. See [“INGRMJSP” on page 207/['INGRCJSP (AOFRSD01)” on page]
[209)I“ AOFRSD09” on page 200,and [*AOFRSDOH” on page 205]

¢ Automation table entries for system messages HASP050 and HASP355.

 Configuration parameters for the JES2 spool recovery process in the JES2
SPOOLSHORT and JES2 SPOOLFULL policy items of the JES2 application.

DB2 Connection Monitoring

SA z/0S allows you to monitor DB2 connections for both CICS and IMS:

CICS The CICS command CEMT INQUIRE DB2CONN is issued regularly after
each monitor interval to query the status of the CICS DB2 connection.

For more details, see the sections “Monitoring of CICS DB2 Connections”
and “INGRMCDB Routine for the Monitoring of CICS DB2 Connections”
in [[BM Tivoli System Automation for z/OS Product Automation Programmer’s
[Reference and Operator’s Guide]

IMS The IMS command DISPLAY SUBSYS is issued regularly after each
monitor interval and the response to this command is analyzed with
respect to the status of the connection to a DB2 subsystem.

For more details, see the sections “Monitoring of IMS DB2 Connections”
and “INGRMIDB Routine for the Monitoring of IMS DB2 Connections” in
[BM Tivoli System Automation for z/OS Product Automation Programmer’s
Reference and Operator’s Guidd

IMS Component Monitoring

For IMS automation, SA z/OS enables the monitoring of online log data sets
(OLDS) and recovery control data sets (RECON) of IMS control regions, and allows
the status checking of the VTAM Application Control Blocks (ACB) and the
enablement of logons.

The monitor routines that are provided for this and the necessary definitions to

enable the monitoring functions are described in IBM Tivoli System Automation for
z/OS Product Automation Programmer’s Reference and Operator’s Guide.

Chapter 4. How to Monitor Applications 63

64 System Automation for z/OS: Customizing and Programming

Chapter 5. Joblog Monitoring

This section introduces the components of joblog monitoring and describes how to
set up the monitoring function using the customization dialogs.

Overview

Joblog monitoring is designed to monitor JES2 spool files only. The current
implementation supports any JES2 spool output file regardless of whether the job
is executing or the job has finished. However, in the latter case the output must
still be available on the JES2 output queue and the user has to ensure that the
output is processed only once.

The monitoring function is controlled by SA z/OS based on the definitions of the
customization dialog. However, you can monitor jobs which are not controlled by
SA z/0S with the following restrictions:

1. You cannot specify any filter criteria to limit the data that is passed to
automation. This means any line of data except an empty line which is
generally excluded is forwarded to the message automation.

2. The message that is forwarded to message automation is always queued to the
autotask LOGOPER. For SA z/OS controlled jobs those messages are queued
to the autotask that is responsible for the job in view of SA z/OS.

3. You need to start the monitoring manually using the command INGJLM START.
Required parameters are the job name and the monitoring interval. In case you
want to monitor a data set other than the default data set JESMSGLG you also
need to specify the appropriate ddname. The specification of the owner or the
job id are necessary only when multiple jobs with the same job name exist. This
could be the case when the job already ended and the output is held on the
output queue. In this case it is your responsibility that the job is monitored
only once.

You can stop the monitoring function for a particular job at any time using the
command INGJLM STOP even for SA z/OS controlled jobs. Normally, the
monitoring is automatically stopped when the job has ended. For SA z/0OS
controlled jobs this is done when the job reaches a termination status like
AUTOTERM, ENDING, and so forth. For non-SA z/OS controlled jobs the
monitoring is automatically stopped when the job has ended and the monitoring
interval has expired twice.

The monitoring task can be suspended for an indefinite time frame using the
command INGJLM SUSPEND. The accumulated output of all monitored jobs is
processed not before the task has been restarted. The output of jobs that have
finished in the meantime is lost unless the output is still held on the JES2 output
queue. Jobs that have been started after the task was suspended will not be
monitored after the task has been restarted. To restart the task use the NetView
command START TASK=INGTJLM.

In the case of an abend condition the monitoring task performs an internal
suspend command with the following exception. The job that caused the error
condition is marked "in error" and will be excluded from monitoring when the task
is restarted.

© Copyright IBM Corp. 1996, 2012 65

Joblog Monitoring

Note: The monitoring task must be terminated before JES2 is shut down. For this
reason the default policy has been updated and the following STOP
command has been added to the SHUTINIT phase of JES2:

PIPE NETV INGJLM STATUS
LOC /INGTJLM: ACTIVE/
EDIT /STOP TASK=INGTJLM/ 1
NETV

Limitations

1. The implementation supports ddnames like SYSPRINT rather than the 4th part
of the internal data set name of a SYSOUT data set like
userid.jobname.jobid.DOOONNNN.* which makes the data set name unique.
However, this limits the monitoring of ddnames that are specified more than
once in a multi-step job. In this case only the last ddname is and can be
monitored.

2. Executing SA z/0OS controlled jobs which are running less than two seconds
are probably not monitored. One reason is that the automation does not find
the job active any longer. Or, JES has deallocated the resource before the
monitoring task could allocate it. The latter case is also true for non-SA z/0S
controlled jobs when the output is not held on the JES output queue after the
job ended. In any case specify a message class when starting the job that leaves
the output on the JES output queue and trigger the monitoring manually.

Customization

66

For SA z/0OS controlled jobs you have to define the monitoring interval, the
messages and data sets to be monitored for each job in the customization dialog.
The main definition which actually initiates the monitoring for a job is the
definition of the monitoring interval. You specify the interval at the policy
"APPLICATION INFO".

Note: Without the interval definition no monitoring takes place regardless of what
the policy "MESSAGES/USER DATA" specifies.

4 .]] N
Application Information Line 00000001

Command ===> Scroll ===> CSR__

Entry Type : Application PolicyDB Name : SAMPLE_PDB

Entry Name : JLMS05 Enterprise Name : KEYPLEX

JCL Procedure Name AAAZJLMS

Job Log Monitor Interval . 00:17 (mm:ss NONE)

Captured Messages Limit (0 to 999)

N y

Figure 8. ISPF dialog defining the joblog monitoring for an application. The dialog accepts an
interval time from 1 second up to 1 hour.

One predefined message id exists to trap all messages of a particular ddname:

JOBLOGALL
forwards all non-empty messages to automation. It requires the Key/Data
pair "JLM_OFFSET NO" (see below) for building the appropriate ACF
fragment. You can optionally specify the keyword JLM_DDNAME for
monitoring a different ddname than JESMSGLG.

Three keywords are supported for trapping dedicated messages that should be
forwarded to automation:

System Automation for z/OS: Customizing and Programming

Joblog Monitoring

JLM_DDNAME
defines the ddname of the data set that contains the message id. By default
the ddname JESMSGLG is used.

Note: You can specify multiple ddnames for the same message id.

JLM_OFFSET
defines the offset of the message id in the data set. For dummy message
ids specify the offset 0. In this case you also need to define Key/Data pair
of keyword JLM_TOKEN.

JLM_TOKEN
consists of two values enclosed in parentheses and separated by a comma.
The first value defines the token number while the second value defines
the value to be checked. The wildcard *' is supported.

Notes:

1. For the JESMSGLG data set the token number depends on the message
line that is to be checked.

2. Generally speaking, the message text starts at column 20.

3. The very first line of a message shows the time and the job id in the
first 19 columns.

4. The wrapped text shows blanks in the first 19 columns.

5. Follow-on lines of a multi-line message show the number ending the
first line in the first 19 columns.'

Dedicated messages that should be automated must be defined by specifying the
offset of the message id within a single line and optionally one or more tokens
making the message unique. An offset value of 0 indicates a message without a
particular id. In this case at least one token pair must be defined to identify the
message. In case all messages are relevant and should be automated the common
message id value JOBLOGALL is to be specified. This id does not require any further
user data specification. However, the dialog will not generate an ACF fragment
unless the message id has attached any of the definitions "S", "C", "R", "K", or "U".
For this reason, the user data keyword/value pair JLM_OFFSET=NO is required.

7 N\
Message Processing Line 00000001 Col 001 075

Command ===> Scroll ===> CSR__

Entry Type : Application PolicyDB Name : SAMPLE_PDB

Entry Name : JLMS05 Enterprise Name : KEYPLEX

Cmd Message id Description Cmd Rep Cod Usr A M

u__ JOBLOGALL Automate all JESMSGLG messages *
N y

Figure 9. ISPF dialog defining the joblog monitoring of all JESMSGLG messages (1/3)

Note: Each message id processed by joblog monitoring must be excluded from the
AT, the MRT, and the MPF member unless the message id is also processed
by another automation function which requires an entry in one or all

1. For example specifying JLM_TOKEN (4,'1") results in checking:
* the 1st token after the message id or the 2nd token of the message text without a message id
* the 4th token of the message text
* the 3rd token of the message text.

Chapter 5. Joblog Monitoring 67

Joblog Monitoring

indicated members.

User Data Processing : JOBLOGALL Line 00000001 Col 001 075
Command ===> Scroll ===> CSR__
Cmd Keyword Data

__ JLM_OFFSET NO

Figure 10. ISPF dialog defining the joblog monitoring of all JESMSGLG messages (2/3)

When specific messages are monitored the keyword JLM_OFFSET must define the
actual offset of the message id in the corresponding SYSOUT data set. For the
JESMSGLG data set the offset of all text begins at column 20 regardless of whether
it is a multi-line message or the message text is wrapped because it is longer than
126 characters (including the 19 bytes prefix). Follow-on lines of a multi-line
message show the console id of the multi-line message at column 4. Wrapped
message text shows blanks in the first 19 columns. Thus, trapping tokens of such
messages requires the knowledge of the exact position of each token. The first two
tokens of the first line of each message are the time and the job id. Other SYSOUT
data sets certainly have different layouts.

The first token definition in the sample below ends with the character . This
indicates that the message tokens are checked for all characters up to the star
character only. The star character and all immediately following non-blank
characters are ignored. The indicated message is passed to automation when its id
is found at column 21 and the next token after the id has the value '3' and the 7th
token begins with KEY=.

User Data Processing : cccnnnna Line 00000001 Col 001 075
Command ===> Scroll ===> CSR__
Cmd Keyword Data
___ JLM_OFFSET 21
__ JLM_TOKEN (7, "KEY=+")

__ JLM_TOKEN (4,'3")

Figure 11. ISPF dialog defining the automation of specific messages. The value of the token
must be enclosed in apostrophes.

In the case where you want to monitor data sets other than the JESMSGLG data
set you need to qualify your message definition(s). The following sample shows
you that the SYSOUT data sets referenced by the ddname AAAZOUT and
SYSPRINT pass every message to automation.

User Data Processing : JOBLOGALL Line 00000001 Col 001 075
Command ===> Scroll ===> CSR__
Cmd Keyword Data
__ JLM_OFFSET NO
__ JLM_DDNAME SYSPRINT

~__ JLM_DDNAME AAAZOUT

Figure 12. ISPF dialog defining the joblog monitoring of specific messages. The parameter
JLM_DDNAME defaults to JESMSGLG when omitted.

The build process will automatically generate the following common MAT entry
for automating the message INGY1300I but only for SA z/OS controlled jobs:

68 System Automation for z/OS: Customizing and Programming

Joblog Monitoring

* INGY1300I for jobs defining a message id
IF MSGID = 'INGY1300I' & TOKEN(6) -= 'N/A'
& TOKEN(3) = SVJOB & TOKEN(6) = MSGTYPE THEN
DISPLAY(N) NETLOG(Y) SYSLOG(N)
EXEC(CMD('ISSUEACT JOBNAME='SVJOB' MSGTYPE='MSGTYPE)
ROUTE (ONE %AOFOPGSSOPER%)
)s

Figure 13. Common MAT entry for message INGY 1300/ and jobs defining a message id for
monitoring. The value N/A indicates a message coming from a job that has not defined a
message id for monitoring.

This just needs the definition of the command(s) that should be executed on behalf
of the message id, for example:

/ N
Message Processing Line 00000001 Col 001 075

Command ===> Scroll ===> CSR__

Entry Type : Application PolicyDB Name : SAMPLE_PDB

Entry Name : JLMSO5 Enterprise Name : KEYPLEX

Cmd Message id Description Cmd Rep Cod Usr A M

c__ JOBLOGALL Automate all JESMSGLG messages 1 x x
N y

Figure 14. ISPF dialog defining the joblog monitoring of all JESMSGLG messages (3/3)

Note that the message INGY1300I is a multi-line message. The first line is the label
line which provides the following tokens OWNER, JOBNAME, JOBID, DDNAME,
MSGID in the sequence as shown. The latter token is exactly the message id that
you have specified on the 'Message Processing' dialog. Each subsequent line
represents a line of the original message.

If you want to monitor jobs that are not defined in the policy or that are defined in
the policy but do not have defined a message id for monitoring, you need to add a
MAT entry manually like the following:

* INGY1300I for jobs having no message id defined
IF MSGID = 'INGY1300I' & TOKEN(6) = 'N/A' THEN
DISPLAY(N) NETLOG(Y) SYSLOG(N)
EXEC (CMD (' XXXXXXXX ...)
ROUTE (ONE %AOFOPGSSOPER%)
)s

Figure 15. Common MAT entry for message INGY 1300/ and jobs without defining a message
id for monitoring

In both cases you have to start the monitoring manually. And, since no filter
criteria are defined all messages are passed to automation.

Note: When you use the NetView PIPE stage SAFE for retrieving the message you
will find the message in the named area "™'.

Chapter 5. Joblog Monitoring 69

Joblog Monitoring

Status Information

The command INGJLM STATUS which can also be issued in a NetView PIPE returns
the current status of the monitoring task and its monitored data sets:

Status of task IGNTJLM: {ACTIVE|INACTIVE|SUSPENDED}

Owner Jobname Jobid DDname Status Freq. Last Read Passed

XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX mMm:SS hh:mm:ss nnnnnnn nnnnnnn
nnnnnnn nnnnnnn

XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX Mm:SS n/a nnnnnnn nnnnnnn
nnnnnnn nnnnnnn

%% Status complete #*x

Figure 16. Joblog monitoring status information

The status of a data set shows the following information:

E..o'tn The data set is marked "in error" and is not monitored any longer.

Al The data set is allocated.

..0..... The data set has been opened successfully.

SN | R The user is not allowed to read the data set.

R The monitoring of the data set is ACF-based.

ceealMe All messages are passed to automation.

ceeeadd The corresponding job has not been found on the chain of active
address spaces.

....... I The spool data set is not initialized. The allocation of the data set is

retried at the next monitoring interval. This repeats until the data
set has been initialized.

The frequency shows the interval in minutes and seconds between two checks for
accumulated messages. The next column shows the time when the last check
occurred. The last two numbers show the total number of messages that have been
read as well as the number of messages that have been passed to the automation
table. The second status line of each data set shows the number of messages read
and passed to automation since the last check.

70 System Automation for z/OS: Customizing and Programming

Chapter 6. Alert-Based Notification

SA z/0OS provides an alert-based notification service that enables you to alert
subject-matter experts. You can escalate automation problems that require manual
intervention by sending alerts, events or trouble tickets to different kinds of
notification targets. SA z/OS supports several communication methods that allow
you to deliver alerts to notification targets such as:

* System Automation for Integrated Operations Management (SA IOM)
¢ Tivoli Enterprise Console (TEC)

* Tivoli NETCOOL/OMNIbus

« IBM Tivoli Service Request Manager®

* A user-defined alert handler

Overview

The alert-based notification service of SA z/OS allows alerts to be sent to
operators or system programmers for predefined situations. You can also customize
when to issue alerts, if desired, using the customization dialog and the INGALERT
utility. Alerts can only be issued for applications (APL), monitor resources (MTR),
application groups (APG), and MVS components.

An alert is a set of information that is collected and sent by an SA z/OS
automation agent to a target for notification processing. The information that is
sent consists of the text that is to be forwarded to the alerted person or group. This
information is supplemented by additional options that determine in detail the
processing at the different kinds of notification targets.

In SA z/OS there are several predefined alert points that trigger alerts whenever a
command encounters a problem situation, such as a resource becoming degraded
or not being up within a given time interval.

Alerting can be enabled or disabled at various levels:

* Globally using the INGCNTL command

* Resource-specific using the resource's Inform List

¢ Alert-specific using code definitions for the message ID INGALERT

Communication Flow

[Figure 17 on page 72 outlines the communication between the automation manager
and the automation agents.

© Copyright IBM Corp. 1996, 2012 71

Alert-Based Notification

Sysplex SYS1
’ Automation Agent
subscribe |
for APGs
Detects problem with
APL or MTR on SYS1 <«
iy EEfEit 5 Handles alerts for system
and sysplex APGs
\ 4
Automation Manager INGALERT
Detects problem with APG, pass request AIert;erA\rsl’_i érg(cgrzMTR
and notifies all subcsribed agents
A L SYS2
notify agent 3»| Automation Agent
Detects problem with <
subscribe APL or MTR on SYS2

forAPGs ~ |
Handles alerts for system
and sysplex APGs

Figure 17. Alert Communication Flow

The automation agents on the systems in the sysplex subscribe to the automation
manager to be alerted about problems with system or sysplex application groups
(APGs). This is because the automation manager cannot itself send alerts to the
notification targets. Whenever the automation manager detects a problem with an
APG it sends an alert to the subscribed automation agents (one in case of a system
APG, and all in case of a sysplex APG). Any alerts for sysplex APGs are handled
by only one automation agent in the sysplex.

The automation agents can also receive alerts for applications, application groups,
or monitor resources via the INGALERT command. If the affected resource is
managed by a different automation agent, the request is passed on. The
automation agent that manages the resource sends the alert to the notification
target. If, for whatever reason, this automation agent cannot send the alert, it
passes on the request to the next automation agent in the sysplex. This can happen
several times until the alert is successfully sent or no more automation agents are
available.

For each alert, the automation agent connects to a notification target, sends the
alert and then disconnects. The automation agent does not maintain a permanent
connection to the SA IOM server.

Enabling Alerting

72

By default alerting is not enabled. To activate it you must perform setup actions in
both SA z/OS and notification target.

Setup in SA z/0S

You can turn alerting on or off at three different levels in SA z/OS:

e The system level, via the INGCNTL command. Turning off alerting means that
no alerts are detected or accepted by the system. Alerting must be turned on
explicitly either globally or selectively for at least one notification target.

* The resource level, via the Inform List policy field. Turning off alerting means
that no alerts are detected or accepted for the resource. The notification target
must be explicitly specified (or inherited from the defaults) to activate alerting
for it.

System Automation for z/OS: Customizing and Programming

Alert-Based Notification

¢ The alert ID level, via code definitions for the INGALERT message ID of the
resource or MVS component entry.

INGCNTL Command

By default alerting is not enabled. You have to issue the INGCNTL command to
enable it and set the connection properties for the notification target. This can be
done as follows:

* In the NetView style sheet using auxiliary commands:

B R S

* Auxiliary commands
kkhkkkkhkkhkkhkkhkhkkkhhkkhkhhkkhkhkkhkhkkhkkhkhkkhkhkk,k*x

* Enable Alerting and set connection properties
auxInitCmd.A = INGCNTL SET ALERTMODE=IOM ALERTHOST=saiom:1040:SAALERT

* From the AOFEXDEF exit that is supplied with SA z/OS:
"INGCNTL SET ALERTMODE=IOM ALERTHOST=saiom:1040:SAALERT'

See IBM Tivoli System Automation for z/OS Programmer’s Reference|for more
information about the INGCNTL command.

Inform List
You have to include the appropriate communication method for the notification

target in the Inform List field of the appropriate policy item to explicitly enable
alerting for specific resources or classes of resources, as shown in

Table 7. Inform List Policy Items

Policy Object Policy Item

Application Group (APG) APPLGROUP INFO *

Application (APL) APPLICATION INFO *

Monitor Resource (MTR) MONITOR INFO *

MVSCOMP Defaults (MDF) MVSESA INFO *

System Defaults (SDF) AUTOMATION OPTIONS

Sysplex Defaults (XDF) RESOURCE INFO

" Leaving the Inform List field blank allows the policy object to inherit the value specified
in the system defaults or sysplex defaults definition.

You must also specify the appropriate communication method for the desired

notification target as shown in

Table 8. Inform List Communication Methods

Value in Inform List Communication Method Supported Notification
Target in SA z/OS
I0M Peer-to-peer protocol of IBM |SA IOM

Tivoli System Automation for
Integrated Operations
Management (SA IOM)

EIF Tivoli Event Integration TEC or OMNIbus
Facility (EIF)
TTT XML TSRM via TDI
USR Command call User-defined alert handler

You can specify a blank-separated list of values to enable alerting for several
notification targets.

Chapter 6. Alert-Based Notification 73

Alert-Based Notification

74

Code Processing

Code processing with the INGALERT message ID allows you to define additional
characteristics for events to be passed to the notification target or to prevent event
creation for certain alerts. Such definition can be made, dependent on the alert ID,
issuing job and type of notification target.

Code definitions for message ID INGALERT can be used for resources of type
APL, APG, MTR, and for MVS components. If no matching code definitions are
found for the APL, APG or MTR resources, the INGALERT code definitions are
checked for the corresponding MVS component entry on the system where the
resource resides.

Enter the following in the Code Processing panel for the INGALERT message ID:

Code 1 The alert ID that identifies the type of alert. SA z/OS provides the
following set of built-in alert points:

For Resource

Alert ID Description Type
CMD_FAILED Return code checking is on and APL, MTR
the command ended with RC=0
COMM_FAILED An error was detected during APL
communication to another system
CRITICAL_WTOR |WTOR defined as CRITICAL APL

without defined REPLY.

MSG/Message ID | Messages with a critical severity. | APL, APG, MTR
The message can be abbreviated
by means of wildcard, for
example, MSG/DFS54*

OS_DEGRADED | The observed status of the APL
resource has become degraded

OS_PROBLEM The automation status is ZOMBIE | APL
or BROKEN, or a shutdown
outside SA z/0OS and restart is
not allowed

REC_FAILED Automation was halted because APL
the critical threshold for a minor
resource was exceeded

REP_FAILED No further outstanding WTORs APL
that are stored by SA z/0S need
to be replied to

START_FAILED The start command failed APL

START_PENDING |The up message was not received | APL
within the timeout interval

STOP_PENDING |Ran out of stop commands APL

CS_PROBLEM The compound status PROBLEM | APG
has been set

OPCERR Indicates a status change to a APL
TWS resource as reported by
message EV]1201

System Automation for z/OS: Customizing and Programming

Code 2

Code 3

Alert-Based Notification

You can also use any user-defined alert ID. Simply specify it in the
corresponding code entry and call INGALERT with this ID.
Wildcards are supported.

For APL this is the job name that alerting should be done for. For
MVC it contains MVSESA. For APG and MTR Code 2 is ignored.
Wildcards are supported. This allows you to set alerting for several
APLs at once by using APL classes.

The communication method that is used to send the alert to the
notification target. Valid values are IOM, EIF, TTT or USR.
Wildcards are supported.

Value Returned

This can be either IGNORE to prevent event creation, or parameters
that are sent to the notification target together with the passed
event. The meaning of these parameters depends on the type of
communication method, as follows:

IOM The first two tokens of the Value Returned are considered
to be:

* The priority of the alert (0-999).
e The escalation ID that is used in SA IOM to define the

rules that determine how the alert should be processed.
The length of this value is limited to 20 characters.

If the first two tokens have invalid values, the Value
Returned is assumed to be IGNORE.

If you specify more than two tokens in the Value Returned
field, the superfluous tokens are ignored.

EIF The Value Returned is considered to be the event severity.
Valid values are HARMLESS, WARNING, MINOR,
CRITICAL or FATAL, or a corresponding number between
1 and 5, where 1 corresponds to HARMLESS, etc. Both
alternatives for specifying a severity can be used for events
to TEC or NETCOOL/OMNIbus. When specifying the
severity as a number, the code definition can also be used
to send alerts to SA IOM.

If you do not specify a valid severity, the Value Returned is
assumed to be IGNORE.

Superfluous tokens in the Value Returned field are ignored.
TTT If TSRM is the notification target, the values in Value

Returned are used as:

* The priority of the trouble ticket as it is initially reported
(1-5)

¢ The urgency, which is a indication of how quickly a
trouble ticket should be resolved (1-5)

* The business impact or severity of the trouble ticket (1-5)

These values are not validated because other targets may
expect other values.

If you specify more than three tokens in the Value
Returned field, the superfluous tokens are ignored. If you
specify less than three tokens, they are used according to
their position and the missing tokens default to N/A.

Chapter 6. Alert-Based Notification 75

Alert-Based Notification

USR The content of the Value Returned field is passed to the
user-defined alert handler that is called.

Code Definitions Example: Consider the example in
Table 9. Code Processing Example for the INGALERT Message ID

Code 1 Code 2 Code 3 Value Returned
START_FAILED IMS=* I0M 500 IMS_start
START_FAILED DB2+* EIF CRITICAL

* * * IGNORE

The code definitions in this example result in the following behavior:
 Alerts with the alert ID START_FAILED for jobs with the name prefix IMS are
sent to IOM with priority 500 and escalation ID IMS_start.

* Alerts with the alert ID START_FAILED for jobs with the name prefix DB2 are
sent as EIF events to TEC or NETCOOL/OMNIbus with event severity
CRITICAL.

 All other alerts are ignored for all notification targets.

INGALERT Command

76

You can use the INGALERT command to inject alerts into a system. This can be
from either the NetView automation table, an automation procedure, or the
command line.

You can specify the following parameters:
* A resource name , the text MVSESA, or a job or subsystem name.
* The alert ID, for example, CS_PROBLEM, CMD_FAILED, etc.

* A message ID that identifies the message text or a text string that is passed to
the notification target.

For example, the following can be used from the command line or an automation
procedure:

INGALERT MYGRP/APG/SYS1 ID=MYALERT TEXT=(MYGRP HAS A PROBLEM)

In this example, INGALERT uses the alert ID, MYALERT, to obtain additional
parameters via a matching code definition for the message ID INGALERT, and it
uses the TEXT parameter value for the alert text.

The following can be used from the NetView automation table to send an alert
whenever message ABC123] is issued:
IF MSGID="ABC123I'

THEN
EXEC(CMD(' INGALERT'));

INGALERT uses ABC123I as the alert ID and the complete text of message
ABC123I as the alert text. The resource parameter of INGALERT is defaulted to the
job name of the subsystem that issued the message.

See [IBM Tivoli System Automation for z/OS Programmer’s Reference|for more
information about the INGALERT utility.

System Automation for z/OS: Customizing and Programming

Chapter 7. Availability and Recovery Time Reporting

SA z/0S introduces support to assist you in billing users or reporting reliability of
your critical applications or the software that those applications are dependent on.
For example, you might want to charge accurately based on the amount of time
required to run an application. This is of importance for non-MVS resources, such
as USS applications, or monitoring resources that might run in the NetView
address space.

Overview

SA z/0S collects and records job-related information, and writes System
Management Facility (SMF) records at specific events in the lifetime of a resource.
This resource can be:

* A subsystem (APL)

* An application group (APG) that is hosted by the local system as well as sysplex
application groups

* A monitor resource (MTR)

The INGPUSMF batch utility produces a report file that you can import into a
spreadsheet. You can also convert and write the report into DB2 tables that are
provided and exploited by the IBM Tivoli System Automation Application
Manager. For more details, see [“Writing the SMF Report to DB2” on page 82]

You can control whether a record is written for a resource by entering the value
SMF in the Inform List field in the resource's information policy item.

Resource Lifecycle

shows the events in the lifetime of an application when SA z/OS records
information.

Stop order or
external stop

Start order or
external start

UP event DOWN event
Active, running
<
L G
$.
X %
%) (o
—— 3 3
t t t, t, =t
Last down Startup Active Shutdown
phase phase phase phase

Figure 18. Events in the Lifecycle of an Application

These events are:

© Copyright IBM Corp. 1996, 2012 77

Availability and Recovery Time Reporting

* Start order received from the automation manager (t;)

* UP signal received (t,)

 Stop order received from the automation manager (t;)

* DOWN signal received (t,=t,)

By examining these records you can establish the following information for a given
time period:

* Application up time and downtime

* Application startup and shutdown time

¢ The number of scheduled stoppages and the approximate amount of scheduled
downtime

* The number of unscheduled stoppages and the approximate amount of
unscheduled downtime

To make using SA z/0OS SMF records easier, the following periods are

automatically calculated and stored (in units of seconds) in the SMF record:

* The startup time (t,—t;)

* The shutdown time (t,~t;)

* The time the application was active (t;-t,)

* The last down time (t;—t,)

You therefore have a precise view of the lifecycle of the application.

Layout of the SMF Record

able 1(] provides details of the data that is stored in the SMF record.
Table 10. Layout of the SMF Record

Offset Length |Format |Description

00 2 Binary Record length. This field and the next (a total of 4 bytes)
form the record descriptor word (RDW).

02 2 Binary Segment descriptor. This is zero.

04 1 Binary System Indicator Bit:
0 Reserved
1 Subtypes used

05 1 Binary SMF Record Type. This is 114.

06 4 Binary The time, since midnight, that the record was moved into
the SMF buffer (in hundredths of a second).

10 4 Packed |The date when the record was moved into the SMF
buffer, in the form OcyydddF.

14 4 EBCDIC |System Identification (from the SID parameter).

18 2 Binary Record subtype:
1 Automation tracking record

20 2 Binary Record version.

22 2 — Reserved.

24 4 Binary Offset to product section from start of record, including
the record descriptor word (RDW).

28 2 Binary Length of product section.

30 2 Binary Number of product sections. This is always 1.

78 System Automation for z/OS: Customizing and Programming

Availability and Recovery Time Reporting

Table 10. Layout of the SMF Record (continued)
Offset Length |Format |Description

32 4 Binary Offset to resource section from start of record, including
the record descriptor word (RDW).

36 2 Binary Length of resource event section.

38 2 Binary Number of resource event sections. This is always 1.

40 8 — Reserved.

Product Section

00 16 EBCDIC | Product name, for example SA z/OS V3R2MO.

16 8 EBCDIC |Name of the SYSPLEX.

24 8 EBCDIC |Domain identifier.

32 8 EBCDIC |MYVS System name.

40 8 EBCDIC | XCF group name.

Automation Section

00 24 EBCDIC |Resource name (in automation manager notation).

24 8 EBCDIC |]Job name (optional).

32 2 Binary Event type:

X'0001" Starting
X'0002" Active
X'0003' Stopping
X'0004' Inactive
X'0005" Degraded

34 2 — Reserved.

36 12 EBCDIC | Automation agent status (optional).

48 12 EBCDIC | Start type.

60 12 EBCDIC | Stop type.

72 5 EBCDIC | Termination type (abend code). Optional.

77 3 — Reserved.

80 4 Binary Total startup time in seconds.

84 4 Binary Elapsed time in seconds that the resource was active.
88 4 Binary Total shutdown time in seconds.

92 4 Binary Last down time of resource in seconds.

Enabling SMF Records

To enable SMF records for a resource:

1. Ensure that the SMFPRMxx member in SYS1.PARMLIB is set up to collect type
114 SMF records by adding type 114 to the SYS(TYPE statement:

SYS(TYPE(30,...,114)

2. Specify SMF in the Inform List of the APPLICATION INFO policy item for the
resource.

Chapter 7. Availability and Recovery Time Reporting 79

Availability and Recovery Time Reporting

The INGPUSMF Utility

You can use the INGPUSMF utility to analyze SMF records and produce a data set
that can be imported into a spreadsheet program. The data set contains the type
114 records that SA z/OS produces in a format that can easily be imported. By
default, the fields are semicolon delimited.

Output

The first record in the data set is a title record that describes each column. The
remaining records are the data records. One data record is written for each type
114 SMF record.

able 11| describes the format of each record.

Table 11. Format of INGPUSMF Ultility Data Set Records

Column Description

SMF system ID

Date when SMF record was written, in YYYYMMDD format

Time when SMF record was written, in hhmmss format

SA z/0S product name, including release level

Name of sysplex

System name

NetView domain ID

XCF group name

O[O || |G| |[W|N|~

Resource name in automation manager notation

10 Job name, if present

11 Event

12 Automation agent status
13 Startup time in seconds

14 Active time in seconds

15 Shutdown time in seconds
16 Down time in seconds

17 Start type

18 Stop type

19 Termination (abend) code

The INGPUSMF Utility JCL
The INGPUSMF utility runs as a batch job. See INGEUSMF for a sample. The
meaning of the DD statements is as follows:

STEPLIB
The load library that contains the INGPUSMF utility. The utility resides in
the SINGMOD1 library.

REPORT
The output data set that contains the spreadsheet import data set in a
semicolon-delimited format. The record size is 255 bytes.

80 System Automation for z/OS: Customizing and Programming

Availability and Recovery Time Reporting

SYSPRINT
Contains information that is written by the utility.

HSATRACE
Is used for debugging purposes only. If present, the INGPUSMF utility
writes trace entries to record the process flow.

SMFDATA
Contains the SMF records. The record format is: Variable, blocked,
spanned.

USRPARMS
Contains user options, such as filter criteria or a specific separator
character.

User Options

You can specify various options in the USRPARMS data set that control the
processing of the utility. You must specify each option in a separate record. The
option are defined as keyword=value pairs. If you specify an option several times,
the last occurrence is used. The keyword must start in column 1 of the record. No
blanks are allowed in front of or after the equal sign (=). A asterisk (*) is
considered to be a comment.

The following options are supported:

SEPCHAR=char
Defines the separator character to be used to separate the columns. The
default is a semicolon (;) if omitted

SYSID
Defines the SMF system ID used as a filter. Only SMF records that are
generated by that system are taken. The value can be 1-4 characters.

FROM-=date
The starting date used as a filter. The format is YYYYMMDD. All SMF
records written on the specified date or later are taken.

TO=date
The ending date used as a filter. The format is YYYYMMDD All SMF
records that are written no later than the specified date are taken.

RESOURCE=
Defines the resources in automation manager notation used as a filter. You
can specify up to 10 resource names. The name can be a wildcard, such as
abc, abc or *abc*.

Return Codes

The following return codes are set by the utility:

0 Normal completion.

8 Invalid option detected in the USRPARMS data set.
12 REPORT data set is not accessible.

16 A severe error occurred, for example, an open error for the SMFDATA data set,
or writing a record to the REPORT file.

Chapter 7. Availability and Recovery Time Reporting 81

Availability and Recovery Time Reporting

Writing the SMF Report to DB2

You can convert and write the SMF report that is produced by INGPUSMEF into
DB2 tables that are provided and exploited by the IBM Tivoli System Automation
Application Manager.

The following reports are provided:
* Startup and Shutdown Reports:

- Report the cumulative startup and shutdown times for a resource, including
its dependencies.

— Report resources with the longest startup and shutdown times in a selected
domain.

* Availability and Recovery Reports:

— Report a resource's uptimes and downtimes, unexpected outages and
corresponding recovery times.

— Report resources that had the highest number of unexpected outages in a
selected domain.

A conversion utility, known as the z/OS offloader, delivers the z/OS domain data
that is required to run these reports.

The z/OS offloader component runs as a batch job (see Figure 19) and uses
existing and new programs that are installed into the end-to-end automation
adapter HFS directory, which is normally /ust/lpp/ing/adapter.

Job for SMF processing

MVS data set
D—, Jobstep1 write |

INGPUSMF data

SMF INGPUSMF
data sets Report read
data
Java VM
JDBC connection
ks st L, 20S offioader > DB2
HFS
//_\[]
stdout
Job step 3 stderr
OCOPY\/G
| SYsout
Figure 19. SMF Processing with z/OS Offloader
You can use the sample job INGXRPRT to run the z/OS offloader.
Customization
After installing the z/OS offloader you must carry out the following customization
steps:

Step 1. Customize the script /usr/lpp/ing/adapter/ingreport.sh.
Adapt the installation path:

82 System Automation for z/OS: Customizing and Programming

Availability and Recovery Time Reporting

INSTALL DIR=/usr/1pp/ing/adapter
Step 2. Copy the sample job INGXRPRT and follow the steps as described in it.

There are several input parameters that you need to set correctly
otherwise the conversion utility cannot access the DB2 table:

Parameter Details

INGDSN=HLQ.SMF.REPORT The data set of the SMF report created by the
INGPUSMEF utility.

INGSEPCHAR=; This must be the separator as used by the INGPUSMF
utility.

INGDOMAIN=MyDomain The name of the E2E domain as specified in the E2E

adapter configuration file, ing.adapter.plugin.properties.
If omitted the default is used, which consists of the
sysplex name and XCF group name.

INGDB2_USER=dbZ2inst1 The DB2 user name for remote logon.

INGDB2_PSW=db2admin The DB2 password for remote logon.

INGDB2_PORT=50000 The TCP/IP port to connect to the remote DB2.

INGDB2_SERVER=db2-host-name The TCP/IP host name to connect to the remote DB2.

INGDB2_NAME=EAUTODB The DB2 name or the DB2 location if DB2 resides on
z/0S.

INGDB2_SCHEMA=EAUTOUSR The DB2 schema of the table.

Step 3. (Optional) If the database is located on a z/OS system, a DB2 license file
is required. An appropriate license file for the z/OS platform,
db2jcc_license_*jar, must be installed in the application classpath.
Connectivity to z/OS databases is enabled with the license file as defined
by the following table.

Update DB2 database From==> To License file required
Distributed system ==> z/0S DB2 db2jcc_license_cisuz.jar
z/0S system ==>z/0S DB2 db2jcc_license_cisuz.jar
z/0S system ==> distributed DB2 db2jcc_license_cu.jar

a. Copy the appropriate license file, for example, from
DB2_INSTALL_PATH/db2/db2v8/jcc/classes/db2jcc_license_cisuz.jar
to the directory /usr/lpp/ing/adapter/lib.

b. Modify the classpath in the script /usr/lpp/ing/adapter/ingreport.sh
and add the license file for example:

DB2_LICENSE=$INSTALL_LIB/db2jcc_license_cu.jar

Step 4. Run the INGXRPRT job that copies the SMF report to DB2.

Output

The output of the ingreport.sh shell script shows the progress of the z/OS
offloader. Any errors that occur are reported in this output. See [IBM Tivoli System|
[Automation for z/OS Messages and Codes| for details of these messages (INGX9850E,
INGX9855E, and INGX9856E).

Chapter 7. Availability and Recovery Time Reporting 83

84 System Automation for z/OS: Customizing and Programming

Chapter 8. How to Automate Processor Operations-Controlled
Resources

This chapter contains information on how to customize your SA z/OS installation
to enable the automation of messages coming from target systems that are
controlled by processor operations. These target systems or resources are referred
to as processor operations resources in the following.

Processor Operations, which is a focal point type function, allows you to monitor
and control processor hardware including Coupling Facility images, from a single
NetView, the processor operations focal point.

Notes:

1. VM guest systems are treated the same as any other target systems that are
controlled by ProcOps (see [IBM Tivoli System Automation for z/OS Operator’y

for details).

2. PSMs are "virtual" hardware and therefore not all target hardware commands
apply (see [[BM Tivoli System Automation for z/OS Operator’s Commands for
details).

With the method described in this chapter, you can use SA z/OS system
operations to react on these messages. This information is contained in

“ Automating Processor Operations Resources of z/OS Target Systems Using Proxyl
Definitions,”] which introduces the general process how to achieve such message
automation.

Automating Processor Operations Resources of z/OS Target Systems
Using Proxy Definitions

SA z/0S processor operations can be used to automate messages that cannot be
automated on the target systems themselves. Typically these messages include
those appearing at IPL time.

In a sysplex environment there are additional messages (XCF WTORs) being
displayed at IPL time when joining the sysplex and at shutdown time when a
system is leaving a sysplex. These WTOR messages cannot be automated yet
because SA z/OS system operations is not active at that time.

With the XCF message automation framework described in this chapter, you have
a method of exploiting your own XCF message automation.

Note: There are XCF WTOR messages which are automatable by Sysplex Failure
Management (SFM). In these cases, to avoid conflicting automation, it is not
recommended that you automate these messages by SA z/OS.

Concept

You can use the SA z/OS standard interface and routines to handle system
external messages in almost the same way as system internally generated
messages. This applies to the way of defining message automation in the
customization dialog as well as to the means available for controlling message
automation at automation time.

© Copyright IBM Corp. 1996, 2012 85

How to Automate Processor Operations Controlled Resources

86

To exploit the system operations mechanism for message automation, a proxy
resource representing the processor operations resources must be generated in the
customization dialog as entry type Application (APL).

There is a one-to-one relation between a proxy and a processor operations resource
(target system). How to implement this relation in the customization dialog is
described in the following subsections.

Messages that are generated on external systems, where no SA z/OS is active or
not yet active, can also be automated. The resources generating these messages are
called processor operations resources. They are defined in the customization dialog as
entry type System (SYS).

Customizing Automation for Proxy Resources

It is assumed that you have already used the customization dialog to define
processor operations target systems and made these systems accessible to the
processor operations focal point via the Processor Control file (see also m
[System Automation for z/OS Defining Automation Policijf). So for every processor
operations target system that has been defined on the processor operations focal
point, you should define a proxy resource. You do this by defining the proxy
resource as entry type Application (APL) in the customization dialog.

Note: If you want to define many proxy resource applications, you can use the
application class concept as described in|IBM Tivoli System Automation for]
[z/0S Defining Automation Policy).

Defining the proxy resource as an Application (APL) has another advantage: The
system is then visible in the INGLIST panel and it can be managed and monitored
like an application resource. SA z/OS users are able to not only use message
automation for target system messages, they can also issue start and stop
commands to IPL and shut down systems. These commands can be defined like
any start and stop command for an application. Unlike application resources, target
systems are managed by processor operations commands (for example, ISQCCMD
target_system_name ACTIVATE FORCE(NO) or ISQSEND target_system_name OC
vary xcf target_system_name,off,retain=yes). Processor operations commands allow
you to send MVS commands to target systems as well as hardware commands to
the processor (support element).

The rules that you need to obey when defining the proxy resource are as follows:

1. You need to define (or have defined) the processor operations target systems
that you want to automate. For those systems, the following rule applies:
MVS SYSNAME = ProcOps name

The MVS SYSNAME must be identical with the ProcOps name.
If this is not the case, you need to change it subsequently.
2. Job Name = ProcOps name

The Job Name of the application for the proxy resource must match the
processor operations target system's name as defined when creating this
system in the customization dialog.

3. Job Type = NONMVS

The Job Type for the proxy application must be NONMVS.
4. The Monitor Routine for the proxy application must be ISOMTSYS.
5. Sysname = MVS SYSNAME

System Automation for z/OS: Customizing and Programming

How to Automate Processor Operations Controlled Resources

The Sysname for the proxy application must match the MVS SYSNAME
defined for the processor operations target system. This definition is used for
resource monitoring.

6. If you want to inhibit operators from performing a startup or shutdown for a
target system resource using the INGREQ command, External Startup and
External Shutdown must be set to '"ALWAYS'.

7. If you do not want the proxy resource to be automatically started, you should
set the Restart after IPL option to NO.

8. Because you can only automate applications by linking them to systems via an
application group, you need to define an application group for the proxy
applications. Do not merge the proxy applications with other applications into
this application group because destructive requests applied to a merged
application group would also affect the proxy resources contained in that
group.

You may choose PASSIVE behavior to not forward requests against the
application group to each member. This prevents you from unintentionally
sending requests to processor operations target systems represented by their
proxies.

9. In the Message Processing panel for the proxy application define the messages
to be automated in the Message ID column. Do not specify message ID
ISQ900I, as this message is used as a carrier for the original target system
message.

Enter cmd in the Action column to specify the command to be processed if the
defined message occurs.

10. If the message to be automated is a WTOR, the variable &EHKVARI1 contains
the reply ID. This variable may then be used as a parameter to the ISQSEND
command:

ISQSEND &SUBSJOB OC R &EHKVAR1,COUPLE=00

Startup and Shutdown Considerations
Processor operations commands must be used to start or stop processor operations
resources, for example:

* Start example:

ISQCCMD &SUBSJOB LOAD FORCE(NO)
* Stop example:

Pass 1 ISQSEND &SUBSJOB OC Z EOD

Pass 2 ISQSEND &SUBSJOB OC VARY XCF,&SUBSAPPL,OFF,RETAIN=YES

Note:
If the delay time between sending the commands in pass 1 and pass 2 is
not appropriate, you can define a resource-specific Shut Delay in the
Application Automation Definition panel.

For more details about processor operations commands refer to [BM Tivoli System|
lAutomation for z/OS Operator’s Commands)

Chapter 8. How to Automate Processor Operations-Controlled Resources 87

How to Automate Processor Operations Controlled Resources

Preparing Message Automation

The interaction with target systems is based on the SA z/OS processor operations
component. Therefore the installation and customization of this component must
be complete at this point.

Operating System messages from processor operations target systems receiving at
the focal point are transferred to ISQ900I messages.

ISQ901I is not relevant. It is used to inform interested operators about target
system messages. It is not used for automation purposes.

— MSCOPE() parameter in CONSOLxx member
MSCOPE allows you to specify those systems in the sysplex from which this
console is to receive messages not explicitly routed to this console. An
asterisk (*) indicates the system on which this CONSOLE statement is
defined. Because the default is *ALL, indicating that unsolicited messages
from all systems in the sysplex are to be received by this console, this
parameter must be set to *' for correct automation by SA z/OS processor
operations.

Automating Linux Console Messages

88

The Linux Console Connection to NetView

When a Linux target system IPLs, its boot messages are displayed on the Console
Integration facility (CI) of the System z® or 390-CMOS processor Support Element
(SE). For SA z/0OS processor operations, CI is the only supported interface to
communicate with the Linux operating system. The communication between the
processor operations focal point and CI is based on the NetView RUNCMD and
the Support Element's Operator Command Facility (OCF), an SNA application. In
SA z/0OS processor operations, this connection path is referred to as a NetView
Connection (NVC).

Linux Console Automation with Mixed Case Character Data

Unlike operating systems which translate console command input into uppercase
characters, Linux is case sensitive. The NetView automation table syntax allows the
use of mixed case characters in compare arguments of an IF statement. When an
automation command is to be scheduled as a result of such a comparison, any
message token arguments passed, are not translated into uppercase by NetView.
Make sure that your automation routine does not do an uppercase translation of
parameters passed. For example, in REXX use the statement PARSE ARG P1 P2
instead of ARG P1 P2, which implicitly performs a translation into uppercase. If a
Linux message invokes your automation code and the message information is
retrieved using NetView's GETMLINE function, no uppercase translation occurs. In
order to send mixed case command data to the Linux console consider the
following REXX statement:

Address Netvasis 'ISQsend MY1linux Oc whoami'

The addressed REXX command environment, Netvasis, passes the command string
without doing an uppercase translation. The ISQSEND command internally
translates its destination parameters into MYLINUX and OC but leaves command
whoami as is.

System Automation for z/OS: Customizing and Programming

Automating Linux Console Messages

Security Considerations

After Linux system initialization, usually a LOGIN prompt message is displayed
allowing users defined to the system to login. The ISQSEND command interface
does not suppress any password data from being displayed. You may use the
NetView LOG suppression character to avoid the password information to be
visible in the NetView log. In Support Element log files, such password data can
be viewed in text form.

Restrictions and Limitations
The following Linux systems are supported:

* Linux systems running in an LPAR of a System z or 390-CMOS processor
hardware

* Linux systems running on a System z or 390-CMOS processor hardware,
configured in Basic mode

* Linux systems running as VM guest machines under z/VM Version 4.3 or higher

Linux systems running under a VM, which itself runs as a VM guest, are not
supported.

In the command shell environments of a Linux console it is possible to pass control
keys as character strings instead of pressing the keyboard control key combination
to perform functions like Control-C. The current Linux support of SA z/0OS
processor operations has not been tested using this Linux capability. Any Linux
program or command script that requires a user interaction with control keys
should not be invoked using the SA z/OS processor operations ISQSEND
interface.

How to Add a Processor Operations Message to Automation

Use the NetView automation table (AT) and the SA z/0OS command set to
implement console automation. You can automate the routine functions that an
operator performs when a particular message is generated. For more information
see [[BM Tivoli System Automation for z/OS Defining Automation Policy}, SC33-7039.

Messages Issued by a Processor Operations Target System

When a target system issues a message, the message is forwarded to the processor
operations focal point system. The focal point system repackages the message
within an SA z/0S ISQ900I message, an ISQ9011 message, or both, and routes the
message to the appropriate task:

* ISQ900I messages are routed to SA z/OS processor operations autotasks. If you
want automation that you write to receive ISQ900I messages, use the ISQEXEC
command to run the automation in a target control task. For information about
using the ISQEXEC command, see section Sending an Automation Routine to a
Target Control Task in [“Issuing Other OCF Commands” on page 12.| Your
NetView automation table entries for SA z/OS should acknowledge the ISQ900I
identifier for all target system messages forwarded to the processor operations
focal point system. You can specify your ISQ900I automation table entries to be
target system specific, however, this is not recommended.

* ISQ901I messages are routed to all logged-on operators identified as interested
operators by the ISQXMON command or marked as such in the customization
dialog.

For information about the ISQEXEC and ISQXMON commands, see |IBM Tivoli
[System Automation for z/OS Operator’s Commands)

Chapter 8. How to Automate Processor Operations-Controlled Resources 89

How to Add a Processor Operations Message to Automation

90

A message forwarded from an SNMP connection consists of the following:

* ISQ900I or ISQ901I message identifier

* Name of target system where the message originated

* Console designator form describing where the message originated

* Message identifier and text of the original message from the target system

For example, if a NetView connection forwards the message IEA101A SPECIFY
SYSTEM PARAMETERS from the operating system to the focal point system, SA z/OS
creates one or both of the following SA z/0OS messages:

1SQ9001 target-system-name OC IEA101A SPECIFY SYSTEM PARAMETERS
1SQ9011I target-system-name OC IEA1Q1A SPECIFY SYSTEM PARAMETERS

This message format applies to all processor operations target system messages. It
is independent of the target system resource that generated the original message.

The processor operations target system message is sent in the same format as it
would be displayed on the processor Support Element (SE) or Hardware
Management Console (HMC).

— Specifics of VM second level systems:
Messages from guest machine operating system appear in the following
format:

ISQ900I psm-name.guest-name OC IEA101A SPECIFY SYSTEM PARAMETERS

Messages from CP on the virtual machine appear in the following format:

ISQ900I psm-name.guest.name OC HCPGSP26271 The virtual machine is
placed in CP mode due to a SIGP initial CPU reset from CPU 00.

Messages from the PSM itself appear in the following format:
I1SQ700I psm-name SC ISQCSO314E Message Handler has failed.

— Note:
Make sure your consoles issue messages in the format that you expect and
write your NetView automation table entries accordingly.

Sample NetView Automation Table Statements
The following message response example presents a request for system parameters
when the message ID string contains TEAT01A":
IF TEXT = . 'IEA101A SPECIFY SYSTEM PARAMETERS'
& MSGID = 'ISQ9oe0I' .

THEN EXEC(CMD('ISQI101 ') ROUTE (ONE %))
DISPLAY(N) NETLOG(Y);

This NetView automation table statement initiates the ISQI101 routine when the
message condition is true.

Note: Text within messages may be in mixed case. Be sure your coding accounts
for mixed case text.

System Automation for z/OS: Customizing and Programming

How to Add a Processor Operations Message to Automation

Message 1SQ211l

Some SA z/0OS commands attempt to lock and unlock ports. Where an operator
owns the lock for a port, the SA z/OS unlock command, ISQXUNL, returns RC=12
associated with message ISQ211I Unable to unlock target name console.

In such a case, you have the choice of either using the ISQOVRD command to
force an unlock or you may end your automation with a message. Thereafter, you
can view your NetView log to find out the reason for the lock of the port.

Your automation may encounter this message ISQ211I frequently. Attempting to
unlock a locked port is not an error condition; however, it may be a sign that the
calling command did not succeed. Schedule your automation from messages that
indicate positively that a command did not run, not from the ISQ211I message.

Processor Operations Command Messages

Some SA z/0OS commands run on the target system. The message returned from
these commands indicates only that the support element was told to schedule the
operation. Consequently, the operation at the target system may not complete even
though the SA z/0OS message indicates a successful completion.

SA z/0S acknowledges only that the command was successfully forwarded to the
support element. An unsuccessful operation at the target system generates an
unsolicited message that the support element forwards to the focal point system in
an ISQ900I message. Schedule your automation from the message that positively
indicates that a target system operation did or did not complete.

The SINGSAMP SA z/OS sample library contains the PL/I source code for several
automation routines that issue responses to selected messages. You can select the
response that is most appropriate for your enterprise. You can also use them as
models to create your own automation routines. The list in summarizes
these routines, the messages they respond to, and the responses they issue initially.

Table 12. SINGSAMP SA z/OS Sample Library Routines

SINGSAMP
Member Routine Description
INGEI120 ISQI120 Responds to the following messages:

IEA120A Device ddd volid read, reply cont or wait.
I10S120A Device ddd shared (PR volid not read.)
the recovery task, reply cont or wait.

Issues the following response to the target: CONT

INGEI357 ISQI357 Responds to the following message:
IEE357A Reply with SMF values or U.

Issues the following response to the target: U

INGEI426 1SQI426 Responds to the following message:
$HASP426 Specify options - subsystem_id.

Issues the following response to the target: WARM, NOREQ.

INGEI502 ISQI502 Responds to the following message:

ICH502A Specify name for primary/backup
RACF data set sequence nnn or none.

Issues the following response to the target: NONE

Chapter 8. How to Automate Processor Operations-Controlled Resources 91

How to Add a Processor Operations Message to Automation

Table 12. SINGSAMP SA z/OS Sample Library Routines (continued)

SINGSAMP
Member Routine Description
INGEI877 ISQI877 Responds to the following message:

IEA877A Specify full DASD SYS1.DUMP data sets
to be emptied, tape units to be used as
SYS1.DUMP data sets or GO.

Issues the following response to the target: GO

INGEI956 ISQI956 Responds to the following message:

IEE956A Reply - ftime = hh.mm.ss,
name = operator,reason = (ipl,reason)
or u.

Issues the following response to the target: U

The SA z/0OS automation table entries in the ISQMSG0 member of the
SINGNPRM data set include inactive entries that call these automation routines. To
incorporate these routines into your automation, do the following:

1. Remove the comments from the corresponding automation table entries for the
messages that initiate the automation routines you want to use. If you perform
these steps as part of the initial SA z/OS installation, make these changes
before you incorporate the SA z/OS entries. If you do this after the initial
SA z/0S installation, change the NetView automation table.

2. Code the routines you are using to issue the responses you want.

3. Compile the PL/I source code for the routines you want to use, and link the

resulting object code to your PL/I library.
4. Recycle the NetView program to activate the new entries.

For automation processing to occur, each message in the NetView automation table
at the focal point system and at each target system must be made available to the
system's NetView program. In z/OS, MPF controls message availability to the
NetView program. Examine the MPF list member in the SYSI.PARMLIB data set to
ensure that the necessary messages are marked for automation. For target systems
using other operating systems, check the message suppression facilities used on

those systems.

Testing Messages

SA z/0S provides a collection of NetView automation table entries for your

SA z/0S configuration. NetView automation table entries are in the AOFCMD
member of the SA z/OS SINGNPRM installation data set. When these entries are
moved to your NetView automation table, they may need additional editing.

For example, you may already test for a particular message in your production
NetView automation table. If you add an entry that tests for that same message,
your automation table will not run as you expect. After a match with the test
criteria is found, the search of the automation table is aborted. The second
NetView automation table statement is not found. Consequently, the message does

not drive all of your required actions.

To avoid this, combine entries into a single test condition. This ensures that all
required actions are scheduled for all messages. For the following message:

TEA320A RESPECIFY PARAMETERS OR CANCEL

92 System Automation for z/OS: Customizing and Programming

How to Add a Processor Operations Message to Automation

your NetView automation table may already have the following entry: ()

IF MSGID = 'IEA320A'
THEN EXEC (CMD('USERJOB') ROUTE(ONE =*)) CONINUE(Y);

With SA z/0S installed, the following message appears when forwarded from
System z or 390-CMOS processor hardware:

I1SQ900I SYS1 OC IEA320A RESPECIFY PARAMETERS OR CANCEL

After the SA z/0S entries are added, the NetView automation table includes the
following entry:
IF TEXT = . 'IEA320A RESPECIFY PARAMETERS' .
& MSGID = 'ISQ900I' .
THEN

EXEC (CMD('ISQI320 ') ROUTE(ONE *))
DISPLAY(N) NETLOG(Y);

In this case, the first entry satisfies the IF test and the command USERJOB runs
(). The second command, ISQI320, is not scheduled to run because once the
message matches a table entry, the autotask stops searching. Combine these two
entries into a single entry, such as:
IF TEXT = . 'IEA320A RESPECIFY PARAMETERS' .
& MSGID = 'ISQ9eer’ .

THEN

EXEC(CMD('ISQI320 ') ROUTE(ONE =))

EXEC(CMD('USERJOB ') ROUTE(ONE =))

DISPLAY(N) NETLOG(Y);

When you use the second example, both commands are scheduled.

If your NetView automation table tests the text of SA z/OS messages, the message
format must match the character case for which you test. This can be done by
requiring all sites to use the same format for their messages, or by duplicating AT
entries in uppercase and in mixed formats.

Building the New Automation Definitions

When you are finished using the customization dialog to add message response
and automation operator information to the automation policy, you need to build
the system operations control files. The complete description of how to build and
distribute these files is provided in |[BM Tivoli System Automation for z/OS Defining]
[Automation Policy}

The SA z/0OS build function places the new automation definitions in the data set
defined in the Build Parameters panel.

Copy the new automation definitions into the SA z/OS NetView DSIPARM
concatenation in the NetView startup procedures, or concatenate it to the NetView
DSIPARM data set.

Loading the Changed Automation Environment

To reload the AMC file, automation control file and the AT perform the following
actions:

To reload the MPF list, enter the following command:
e From the z/0OS console:
SET MPF=xx

Chapter 8. How to Automate Processor Operations-Controlled Resources 93

Loading the Changed Automation Environment

* From a NetView console using the MVS prefix:
MVS SET MPF=xx

Where xx is the suffix of the MPF member in the SYS1.PARMLIB data set to load.

To reload the automation manager configuration file, all updated automation
control files and the automation tables issue:

INGAMS REFRESH

Specify a data set name or an asterisk (*) which means reload the current data set.

Using Pipes and ISQCCMD for Synchronous HW Commands

94

The System Automation for z/OS Hardware interfaces command, ISQCCMD,
available for Processor Operations SNMP connections and with imitations for BCP
Internal Interface connections, allows the management and control of processors
and logical partitions, as well as hardware activation profiles. When used in
automation procedures, ISQCCMD provides an easy-to-use interface to automate
processor operations management and configuration tasks.

The following HW commands return all their response information immediately to
NetView on command completion and are therefore called synchronous commands:

* CCNTL

* CONDATA

* CPCDATA

* GETCLUSTER

* GETISTAT

» GETIINFO

* GETSDGA

* GETSINFO

e GETSSTAT

* ICNTL

* PROFILE

* STPDATA

* TCDATA

For SNMP and BCPii connections, ISQCCMD supports NetView PIPES. On
completion of the ISQCCMD command, a PIPE KEEP with the name ISQ.SNMP

contains the immediate command response of the HW command that was issued,
for example:

* ISQCCMD G14 GETSINFO
ISQ4171 GETSINFO STATUS(SUCCESS)
1SQ900I G14.KEY3 SC AOFAGO17 GETSINFO G14 STATUS(OPERATING) PDATA(TYPE(2084)
,MODEL(B16),S/N(000020016F7A)) MODE(LPAR) APROF() CPCSNAME(IBM390PS.G14) NAME(G14)
TSTIME(070825131936)
| ISQ4191 ISQCCMD GETSINFO processing on Gl4 is complete.
* IPSFO PIPE KEEP ISQ.SNMP | CONS
IPSFO AOFAQO17 GETSINFO G14 STATUS(OPERATING)
PDATA(TYPE(2084) ,MODEL (B16) ,S/N(000020016F7A)) MODE(LPAR) APROF ()
CPCSNAME (IBM390PS.G14) NAME(G14) TSTIME(070825131936)

In the example above, the HW common command GETSINFO was issued at a
NetView console. Embedded in the ‘ISQ" messages the response from the hardware
is displayed on the console, starting at report ID AOFA0017.

System Automation for z/OS: Customizing and Programming

Using Pipes and ISQCCMD for Synchronous HW Commands

The same information is available if you reference the PIPE KEEP with the name
ISQ.SNMP, once the ISQCCMD command completed, as shown in the example,
with the content of ISQ.SNMP displayed on the console.

In an automation procedure, this can be coded as shown in the following example:

/*ReXXx/
/* Display CPC information using the ISQ.SNMP KEEP =/
Arg cpcname
"ISQCCMD 'cpcname' GETSINFO'
If RC = 0 Then Do
'"PIPE KEEP ISQ.SNMP ' |
' LOC /AOFAGO17/ ' ,
' LOC /'cpcname'/"' ,
' CONS ONLY'
End

As an alternative, you can get the immediate ISQCCMD HW responses directly
into the PIPE input stream if you use the PIPE NETVIEW stage followed by an
EXPOSE TOTRAP stage. In this case, all ISQ messages and the AOFA0017 report
data is available for PIPE processing.

/*ReXX*/

/* Display CPC information in a PIPE %/

Arg cpcname

'"PIPE NETV ISQCCMD 'cpcname' GETSINFO' ,

! EXPOSE TOTRAP ' ,

' LOC /1SQ96/ , /* takes ISQ901I or ISQ900I =/
' LOC /AOFAGO17/

' LOC /'cpcname'/"' ,

' CONS ONLY'

Automating Asynchronous Hardware Commands with ISQCCMD and

PIPES

The following ISQCCMD hardware commands return two messages to NetView.
First a message that the HW command has either been accepted for execution or
rejected. Second, if an acceptance message was issued, a completion event message
that contains the actual success or failure information of the command is sent
asynchronously.

* ACTIVATE
« CBU

* CTRLCONS
* DEACTIVATE
e EXTINT

« LOAD

* OOCOD

e RESERVE

e RESTART

e START

e STOP

» STP

e SYSRESET
« TCM

Automation scripts using the ISQCCMD interface must distinguish between the
accepted or rejected response of an asynchronous HW command and the actual

Chapter 8. How to Automate Processor Operations-Controlled Resources

95

Automating Asynchronous Hardware Commands with ISQCCMD and PIPES

command completion information, which may either indicate successful execution
or a failure. The asynchronous command completion events from the hardware are
made available for message automation and TRAP AND WAIT processing by
ProcOps. Application scripts using the ISQCCMD interface can get the Accepted or
Rejected responses directly at ISQCCMD termination time. The Accepted response
can then be used to wait for the command completion event message.

Member INGEI004 of the SINGSAMP library provides a REXX sample illustrating
how asynchronous hardware commands can be automated using ISQCCMD and
NetView PIPES, together with TRAP and WAIT.

VM Second Level Systems Support

96

This feature provides ProcOps support to control and monitor guest machines
running under VM.

ProcOps allows an operating system to be IPLed into a processor, amongst other
facilities. Such an operating system is VM. Within VM other operating systems can
be IPLed as guest machines. Of particular interest are LINUX guest machines, but
MVS, VSE and even VM guest machines may be possible. (Lower levels of guest
machines are not considered). Previously there was no effective way to enter
commands to and receive messages from such a guest target system in order to
validate that it had IPLed correctly, or that it is behaving correctly.

With second level guest machine support you can:

* Capture messages issued by the guest machine itself and route these back to the
ProcOps process for display or automated processing, or both

* Send commands to the guest machine from ProcOps, either as operator requests
or automated actions

Guest Target Systems

The most likely guest machine that is used as a target system is a LINUX system.
When a LINUX machine has a secondary user, the secondary user can use CP
SEND commands to:

* Issue CP commands to the guest machine
* Log on as a user to LINUX
* Enter LINUX commands (after logging on)

(It is also possible to set up the LINUX system in such a way that LINUX
commands can be entered on the VM console without logging on to LINUX.)

The secondary user receives:

* All "boot up messages"

* Responses to CP commands that are run on the guest machine
* Responses to logon and LINUX commands

MVS machines are more complex. When an MVS machine is running, the original
VM user first becomes an NIP console and then an MCS console. In these console
modes MVS takes over all I/O to and from the console, and MVS messages to it
cannot be intercepted by any CP facilities. Hence the SCIF SEND command cannot
be used to send commands to MVS, nor can MVS messages to this console be
intercepted.

System Automation for z/OS: Customizing and Programming

VM Second Level Systems Support

However a "virtual SCLP console" for the guest machine can be used. During the
NIP phase of initialization, use of this console can be forced by configuring the
guest virtual machine so that it has no usable 3270 consoles. NIP then directs its
messages to the guest machine as line mode commands. This is analogous to the
stream of messages sent to the Operating System Messages (OSM) window on an
HMC by an MVS system running in a logical partition.

Responses to any NIP messages are entered using the CP VINPUT command.
Internally this is done when an ISQSEND command is issued to the operator
console (OC) of the target system. To ensure that such VINPUT commands are
processed correctly, the guest machine must be operating in RUN ON state at this
time.

To ensure that RUN ON state is set, a CP SET RUN ON command is sent to all
MVS guest machines at the time when the guest machine is started by the PSM.

Once MCS operation is established, important messages requiring operator action
are directed to the guest machine. Again, these are analogous to the stream of
messages directed to the OSM window of the HMC. Initially, commands cannot be
entered to MVS. To do so, it is necessary to enter "Problem Determination Mode".
To enter this mode, a VARY CONSOLE(*),ACTIVATE command must be entered.
Once this is done:

e All MVS messages that are displayed are routed to the guest machine
* Commands may be entered using the CP VINPUT command.

Problem Determination is not generally recommended.

To enter LINUX commands it is normally necessary to log on to LINUX. This
requires a user ID and a password. So, to provide for LINUX commands would
require the specification of a user ID and a password to ProcOps, with all the
attendant difficulties in the area of security. At present the LINUX system is
considered IPL COMPLETE when specified messages have appeared. These do not
require a user logon.

VM machines may also be guest machines. Third level guest machines are not
supported.

VSE machines may also be guest machines.

Customizing Target Systems

LINUX

The LINUX target system should have in its VM Directory entry, a CONSOLE
statement that sets its PSM as its default secondary user. For example, if the virtual
machine LNXAOL1 is controlled by a PSM running in virtual machine ISQPSM1,
then its CONSOLE statement might be:

CONSOLE 009 3215 T ISQPSM1

When a LINUX target system is to be deactivated a FORCE command is used to
shut it. The default guest signal timeout interval values (set by the SET SIGNAL
command) and values defined for the guest machine determine the interval used
when allowing the LINUX system to shut in an orderly fashion. If this function is
required for a guest, you must ensure that this is set accordingly.

Such actions may include updating the etc/inittab entry on the LINUX system
itself, and setting up a SHUTTRAP module on the VM host.

Chapter 8. How to Automate Processor Operations-Controlled Resources 97

VM Second Level Systems Support

98

MVS
This too should have a CONSOLE statement in its VM directory entry that defines
its PSM as its secondary user:

CONSOLE 01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is
IPLed it should run a PROFILE EXEC that includes the statements similar to the
following:

SET RUN ON

DETACH OIF
IPL 7700

The SET RUN ON is needed so that when a response is to be sent to a NIP console
the VINPUT command used is effective.

The DETACH is used so that when the MVS system IPLs it finds none of its
defined 3270 consoles available to it. (You should also ensure that no user issues a
VM DIAL to an address that is defined as a NIP or MCS console.)

The IPL command is used to IPL the MVS system.

The MVS system itself should have included in its active CONSOLxx definition a
CONSOLE statement for the SYSCONS so that commands can be entered to MVS
after it is IPLed, for example:
CONSOLE DEVNUM(SYSCONS)

ROUTCODE (ALL)

AUTH (MASTER)

MSCOPE (*)

CMDSYS (*)

uD(Y)

VM
This too should have a CONSOLE statement in its VM directory entry that defines
its PSM as its secondary user:

CONSOLE 01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is
IPLed it should run a PROFILE EXEC that includes the statements similar to the
following:

SET RUN ON
DETACH O1F
IPL 7700

The SET RUN ON is needed so that when a response is to be sent to a console the
VINPUT command used is effective.

The DETACH is used so that when the VM system IPLs it finds none of its defined
3270 consoles available to it. (You should also ensure that no user issues a VM
DIAL to an address that is defined as a Operator Console)

The IPL command is used to IPL the VM system.

The VM system itself should include within its OPERATOR_CONSOLES statement
in the SYSTEM CONFIG file (which resides on the "parm disk") a specification for
the emulated system console, for example:

OPERATOR _CONSOLES 01F 020 System_Console

System Automation for z/OS: Customizing and Programming

VM Second Level Systems Support

This ensures that when VM IPLs and finds no regular consoles available, it then
uses the emulated system console. This in turn directs the messages to the
secondary user as a stream of line-mode messages.

VSE

This too should have a CONSOLE statement in its VM directory entry that defines
its PSM as its secondary user:

CONSOLE 01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is
IPLed it should run a PROFILE EXEC that includes the statements similar to the
following:

TERM CONMODE 3215

IPL 7700

The TERM CONMODE 3215 command sets the console into line mode.

Chapter 8. How to Automate Processor Operations-Controlled Resources 99

100 System Automation for z/OS: Customizing and Programming

Chapter 9. How to Automate USS Resources

This chapter describes how z/0OS UNIX System Services are integrated into
SA z/0S, how to set up z/OS UNIX automation, and provides tips about using
z/0S UNIX automation.

— Note
USS tasks behave differently when started as STCs rather than directly in the
USS environment.

When a USS task is started as an STC, the starting user ID may differ so that,
in most cases, the AOFUXMON monitor routine is not able to internally
trigger ACTIVMSG UP=YES.

In this case it is much simpler for SA z/OS to start these applications with
INGUSS. An AT entry is then not required for the UP message. SA z/0S is
able to internally simulate this so that you do not have to worry about UP

messages.

Job names (that is, the last character of the job name) are not predictable for
USS resources. However, AOFUXMON is able to handle this by monitoring
the path within USS and changing the defined job name in SA z/0OS
accordingly.

For the syslog daemon you would define the job name as SYSLOGD. When
the application is started and changes the job name to, say, SYSLOGD?,
AOFUXMON adjusts the SA z/OS data model to reflect this. However, this
cannot be handled in the AT with a generic entry for SYSLOGD*. This is
because the change in the job name is caused by the USS process that creates
a new address space with a new name, so that the old address space with the
old name terminates. This means that you get an ended message for the old
address space and an UP message for the new address space. The sequence of
these messages is also unpredictable.

Integration of z/0S UNIX System Services

The following functions are supported by SA z/OS for z/OS UNIX applications:
 Starting and stopping of applications
* Monitoring of:

— Processes (represented by the command or path and user ID)

— TCP Ports

— Files and file systems

— Generic User Monitoring (the user supplies a z/OS UNIX monitoring routine
or script)

* Using an API to execute z/OS UNIX commands (INGUSS command)

© Copyright IBM Corp. 1996, 2012 101

How to Automate USS Resources

Infrastructure Overview

The z/0OS UNIX resources that should be automated must run in the z/OS UNIX
of a z/OS system that is already automated by SA z/OS. From the automation
manager's perspective the NetView agent of this system is responsible for the z/OS
UNIX resources.

For command execution through INGUSS or user-defined monitoring, a z/OS
UNIX program (provided by SA z/0S) is directly invoked by SA z/OS. This
program (ingccmd) executes UNIX commands and runs when started by SA z/0S
with the jobname INGCUNIX. The ingccmd program is the extension of the
NetView-based agent into z/OS UNIX. To monitor the standard z/OS UNIX
resources (processes, ports, or files) an internal SA z/OS routine is started.

Process initialization and termination status updates of USS resources are directly
reported from system exits to the SA z/OS environment by the
program-to-program interface INGUXPPI. A NetView task with the same name
immediately posts the UP or DOWN status. The automation agent recognizes and
then sets the correct automation status for the resource.

For this functionality, the NetView Subsystem Interface (SSI) is required. For a
correct customization of the SSI, refer to Step 5 in the chapter "Installing SA z/0OS
on Host Systems" in [[BM Tivoli System Automation for z/OS Planning and Installation)

When monitoring of the USS process indicates that it is down, its status is updated
to AUTODOWN. However, because it may take some time before a USS process
has ended (that is, to clean up the resources that is had acquired), monitoring is
repeated after a cleanup delay. If you define your own USS processes, you should
specify a suitable cleanup delay using the APPLICATION INFO policy item.
Consider using an application class if you need to define several processes.

Setting Up z/OS UNIX Automation

102

Customization of z/0OS UNIX Resources

z/0S UNIX resources are introduced to SA z/OS by defining them in the
SA z/0S customization dialogs.

The customization dialogs support the application type USS. If USS is selected, you
can enter z/OS UNIX-specific data such as a UNIX user ID, command or path,
filename, or monitored port. Choose one of these fields to enter the data.

The start and stop definitions can be varied between MVS and z/0OS UNIX
commands. For example, to stop an application you can issue a UNIX kill
command first and (if this was not successful) you can perform an MVS cancel
later.

Definitions for Automation Setup
The USS path where the program shipped with SA z/OS is located must be
defined in the USS Automation Path field of the System Info policy.

Definitions for z/0OS UNIX Resources

To define a new application entry (APL, class, or instance), specify the application
type USS on the Define New Entry panel. When choosing the application type
USS, the option USS Control is displayed on the Policy Selection panel.

System Automation for z/OS: Customizing and Programming

Setting Up z/0S UNIX Automation

Select USS Control on the Policy Selection panel to enter the data for the new
z/0S UNIX resource. You can specify only the user ID and the z/OS UNIX
monitoring routine for a class on this panel. All other definitions (for example,
from/to, dependencies, and so on.) can be entered as usual. For more details about
this panel, see [[BM Tivoli System Automation for z/OS Defining Automation Polici}

USS applications must be defined with a HASPARENT relationship to JES.

Use the USS Control Specification policy item for an object of type INSTANCE to
define the resource as a:

Process
Enter the path of the command that is running (as shown by the UNIX
command ps -e) in the Process Command/Path field.

Filter Enter additional filter criteria to uniquely identify the USS process. The
field is optional and can only be specified if a 'Command/Path'
specification is available.

TCP port
Enter the TCP port number that the resource is to listen to on the local
host in the Port Number field.

File Enter the path of a file in the HFS in the File Name field.

IP Stack
For TCP port monitoring, you may enter optionally the name of the IP
stack if multiple IP stacks are configured.

Often the command /path specification, especially for Java processes, is not unique.
The Filter field allows you to uniquely identify the USS process if this is not
possible.

There are two methods of monitoring USS applications:

* The standard method is to specify the monitoring routine AOFUXMON in the
APPLCATION INFO policy item, which is called by SA z/OS for UNIX System
Services resources.

* If you choose to use your own script or program in the HFS, this is called by
AOFUXMON. You must then specify the script or program in the Monitoring
Command field of the USS CONTROL policy item, and you must also specify
AOFUXMON in the APPLCATION INFO policy item.

If this program does not begin with a forward slash (/) it must reside in the same
directory as the z/OS UNIX ingccmd routine that is supplied by SA z/OS.

Otherwise the name specified is considered to be an absolute path identifier.

The UNIX monitoring routine must have an exit value. It can be one of the

following:

0 Resource is available

4 Resource is starting

8 Resource is unavailable

12 Error occurred

If the user-specified monitoring routine loops, it receives a SIGKILL after the
AOFUSSWAIT time (defined in the NetView stylesheet).

Chapter 9. How to Automate USS Resources 103

Setting Up z/OS UNIX Automation

104

Hint:
It is possible to write a message from this UNIX monitoring routine to the
MVS system log, in order to trigger an action or perform a status change
through the NetView Automation Table (AT).

The monitoring routine AOFUXMON must be specified, otherwise the default
monitoring routine (usually INGPJMON) is called, which is not sufficient for z/OS
UNIX resources.

The Job Type field can be either MVS or NONMYVS:

MVS Is only used for resources that represent a process with a unique jobname.
For these resources SA z/0OS accepts the following messages for status
changes:

» IEF403I Job started
» IEF4041 Job ended

» IEF450I Job abended

If no start command is specified, the default MVS start method
(s <JOBNAME>) is used.

NONMVS
SA z/0S ignores the messages listed above for status changes. This is
necessary if the job name is not unique.

For z/OS UNIX resources the Start Delay interval that has been defined begins
when SA z/0S issues a start command for an application. SA z/OS is informed
by z/OS that the resource that is to be monitored has started. This results in the
USS resource being set in the status ACTIVE. After the first start delay interval and
successful monitoring, the ACTIVMSG comand is triggered, which sets the agent
status to UP. The default value for the Start Timeout is 2 minutes.

If you set the Skip ACTIVE status field in the APPLICATION INFO policy item to
YES, the resource is immediately set to UP when SA z/0S is informed by z/0OS
that the process is running.

For application shutdown, SA z/OS is informed by z/OS as soon as the process
has ended. At this point, SA z/OS immediately sets the resource into the
AUTODOWN status.

As a result of this behavior you should carefully consider how you set the
following parameters in the APPLICATION INFO policy item, either for the
application or at the class level:

e Start Delay

 Start Cycles

* Skip ACTIVE status

e Shutdown Pass Interval
* Cleanup Delay

For more information, see the *USS best practices policy.

System Automation for z/OS: Customizing and Programming

Setting Up z/0S UNIX Automation

Automated Resources

Process Monitoring: No UNIX process identifiers (PIDs) can be monitored. The
monitoring routine needs the start command and the user ID that the process
belongs to. This information can be obtained with the UNIX command ps. In the
following example all processes that belong to the user USER are displayed:

USER:/u/user/ingcmd>ps -e

PID COMMAND
33554481 /bin/sh
50331698 /usr/sbin/rlogind2
33554486 /usr/1pp/netview/bin/cnmeunix
67108927 /bin/sh
83886176 /bin/ps
33554821 /usr/sbin/inetd
83886472 FTPD
67109276 /bin/sh
16777629 /usr/shin/rlogind2
33554924 HSAPYTCP

This means that automation could not distinguish between the two processes
started by /usr/sbin/rlogind2. Processes started by identical commands must
have different user IDs.

Alternative 1: If it is necessary to automate processes running multiple instances, a
user could use softlinks to distinguish between the different processes. For
example, the process:

/u/user/usstest/testme

should be started more than once. In this case, create some softlinks:

USER:/u/user/usstest> In -s testme testl
USER:/u/user/usstest> In -s testme test2

This results in:

USER:/u/user/usstest>1s -al

total 216

drwxrwxr-x 2 USER DE#03243 8192 Jan 24 16:24 .

drwxr-xr-x 19 USER DE#03243 8192 Jan 24 16:23 ..

Trwxrwxrwx 1 USER DE#03243 6 Jan 24 16:24 testl -> testme
Trwxrwxrwx 1 USER DE#03243 6 Jan 24 16:24 test2 -> testme
-rwxrwxr-x 1 USER DE#03243 94208 Jan 24 16:23 testme

These three programs (being the same "real" program) can be automated with the
three different start commands testl, test2, and testme. These links may be created
as a prestart command and deleted as a shutfinal command.

Note: Only the command is used, not the parameters that were used to start the
program. This is because a program may be started by SA z/OS with
different startup parameters, depending on what the automation manager
told the automation agent to do. In this case, the only constant value is the
command, not the parameters.

Alternative 2: The same program can run in parallel several times by using
different startup parameters (like Java programs). In this case it is inefficient to
automate these processes as described above. Java programs run in a Java
environment and are visible as Java processes, for example:

ps -e
PID TTY TIME CMD
50331734 ? 5h24 .../V6R1/AP/AppServer/java/bin/java

Chapter 9. How to Automate USS Resources 105

Setting Up z/OS UNIX Automation

106

83886173 ? 1:44 .../V6R1/AP/AppServer/java/bin/java
60341724 ? 2h36 .../V6R1/AP/AppServer/java/bin/java
73392173 ? 1:02 .../V6R1/AP/AppServer/java/bin/java

It is impossible in this case to distinguish and evaluate the process that should be
monitored.

The command ps -ef shows the same processes (for example, programs running
in a Java environment), without the fully-qualified Java path but with a parameter
chain that is used for startup.

#ps -ef
uID PID PPID C STIME TTY TIME CMD
EEZDMN 50331734 1 - Jun277? 5h25 java -Djava.util.logging.configureByServer=true

EEZDMN 83886173 1 Jun 27 ? 1:44 java -Dcom.ibm.eez.adapter.debug=true
EEZDMN 60341724 1 Jun 27 ? 2h36 java -Djava.util.logging.manager=connect
EEZDMN 73392173 1 Jun 27 ? 1:02 java -Djava.security.auth.login.config=/etc/security.conf

Mapping the output of both commands using the matching PID, a unique process
can be evaluated and monitored. The process that is distinguished is then:

/SYSTEM/1ocal/WebSphere/V6R1/AP/AppServer/java/bin/java
-Djava.util.logging.configureByServer=true

Where the data that is specified in the UNIX Control Specification panel in the
Process Command/Path field is /SYSTEM/Tocal/WebSphere/V6R1/AP/AppServer/
java/bin/java and in the with Filter field is the filter
-Djava.util.Togging.configureByServer=true.

If the USS program has the sticky bit set, the MVS load is performed using the
symbolic link name. For example, running two instances of syslogd requires the
usage of a symbolic link, for example, /tmp/syslogd. A separate /tmp directory
must be used so that the same name (syslogd) can be created.

TCP Port Monitoring: Exactly one TCP port number can be entered for one
resource. SA z/OS monitors the local host as returned by the function
gethostid(). When this port has a state of 'listening," this resource is considered to
be 'available' in terms of SA z/OS. All other states of the port map to 'unavailable.'

No user ID is required for definitions.

If your system is configured with multiple IP stacks you may specify the name of
the corresponding IP stack for the defined port in the IP Stack field.

File or File-System Monitoring: The existence of a file (belonging to a certain
user) is verified. Many applications create files at startup and delete these files
when terminating normally. If more than one file should be monitored, this can be
modeled as an application group (APG) in the automation manager.

This monitoring can be used to determine if a certain file system is mounted. The
start command for this resource would be a UNIX 'mount' command, the stop
command a UNIX 'umount'.

Start and Stop Definitions (INGUSS Command)

If the resource is to be controlled by traditional MVS commands, this could be
done in the same way as for all other MVS applications. Issuing commands in the
z/0S UNIX environment is done by specifying the INGUSS command in the start
or stop definitions for the resource.

System Automation for z/OS: Customizing and Programming

Setting Up z/0S UNIX Automation

To issue commands in the USS environment use the INGUSS command (for more
details see |[BM Tivoli System Automation for z/OS Programmer’s Reference).

Note: INGUSS can only be used if the primary JES is available. Therefore, z/OS
UNIX resources using INGUSS need a HASPARENT dependency to JES.
Most z/OS UNIX applications have this dependency. If you want to issue
prestart commands, an additional PREPAVAILABLE dependency is
necessary.

z/0S UNIX and MVS commands can be mixed in different shutdown passes.
Command Examples:

Start Command for a Process: To start a process with the command and job name
specified in the customization dialogs, enter INGUSS JOBNAME=&SUBSJOB &SUBSPATH
&SUBSFILTER in the Command Text field on the Startup Command Processing panel
of the STARTUP policy item of the resource.

Only the command that was used to start an application or a process can be
monitored. If the same program is to be started multiple times, a softlink as
prestart command could be used to distinguish the processes.

Use a Softlink to Distinguish Processes That Run the Same Executable File as a Prestart
Command: To create a softlink for &SUBSPATH (the path parameter of the
resource issuing the command, for example, /u/userl/ussl) and link to the file
/u/userl/usstest, enter the following command in the Command Text field on the
PRESTART Command Processing panel:

INGUSS /bin/1n -s /u/userl/usstest &SUBSPATH

When looking at the HFS, this results in:

USER1:/u/userl>1s -1

total 408

Trwxrwxrwx 1 USER1 DE#03243 7 Feb 13 12:44 ussl -> usstest
-rwxrwxr-x 1 USER1 DE#03243 163840 Jan 29 14:55 usstest

Stop Commands for a Process: A z/OS UNIX process may be stopped in different
ways (using escalation passes). For example, you can first use the z/OS UNIX ki1l
command, if that does not work use z/OS UNIX kill -9, and finally enter an MVS
cancel command.

Enter the definitions for this example as shown in on the Command
Processing panel for the normal shutdown phase of the resource (via its
SHUTDOWN policy item).

Cmd Ps AutoFn/* Command Text

1 INGUSS /bin/kill &SUBSPID
3 INGUSS /bin/kill -9 8SUBSPID
Z MVS C 8SUBSUSSJOB,A=8SUBSASID

Figure 20. Stop Definitions for a Process
&SUBSPID is replaced at run time by the real PID of the process.

Stop Command for a File: A stop command for a file may be deleting the file. The
file name entered in the customization dialogs can be found in &SUBSFILE, as
shown in [Figure 21 on page 108

Chapter 9. How to Automate USS Resources 107

Setting Up z/OS UNIX Automation

108

1 INGUSS /bin/rm &SUBSFILE

Cmd Ps AutoFn/* Command Text :)

Figure 21. Delete a File

Example: sshd

The Secure Shell Daemon application (SSH daemon or sshd) is the daemon
program for ssh. This program is an alternative to rlogin and rsh and provides
encrypted communications between two untrusted hosts over an insecure network.
The sshd is the daemon that listens for connections from clients on port 22. It is
normally started when z/OS UNIX is initialized. It forks a new process for each
incoming connection. The forked processes/connections handle key exchange,
encryption, authentication, command execution, and data exchange. These
connections show the same jobname and Command/Path and Filter as the SSH
daemon does. At sshd startup time its process ID (pid) is written in the
/var/run/sshd.pid file.

Any adaptation and configuration changes to the sshd can be done in the sshd
configuration file sshd_config. It is located in the /etc/ssh directory.

Keeping the Secure Shell Daemon application (sshd) highly available requires that
the sshd will not be detached from its parent process. Additionally, the sshd must
be started in a separate shell environment. This shell is needed to establish a
unique process which can be monitored. It can be accomplished by starting the
sshd with option -D

For shutdown purposes it is required that the process ID file (sshd.pid) is written
to your file system. This process ID will be read from that file and used to identify
the sshd to terminate.

The ps -ef command supplies further parameters to identify the process
referenced as Filter , for example:

ps -ef | grep ssh

uID PID PPID C STIME TTY TIME CMD

AUTO1 83886553 67109368 - 14:53:27 ? 0:00 -sh -c /usr/sbin/sshd -D
AUTO1 83886563 50335037 - 14:53:37 ttyp0000 0:00 grep ssh

AUTO1 83887096 83886553 - 14:53:28 ? 0:00 /usr/sbin/sshd -D

Process 83886553 represents the address space containing the covering parent shell
process for monitoring purposes. Process 83887096 is the sshd itself.

From this output, set the Filter as -c '/usr/sbin/sshd -D' .

Note: Even though the quotation marks are not shown in the output for the
command ps -ef, they must not be defined in the Filter field of the USS
Control policy.

To check for the required information for the Command/Path issue the ps -e
command and look for the process Id of the parent shell:

PID TTY TIME COMMAND
83886553 ? 14:53:27 /bin/sh

67109368 ? 14:34:28 BPXBATCH
83887096 ? 14:53:28 /usr/sbin/sshd

or issue ps -e | grep 83886553 to get the process directly:

System Automation for z/OS: Customizing and Programming

Setting Up z/0S UNIX Automation

83886553 ? 14:53:27 /bin/sh

This shows the process ID (PID) for the sshd monitoring process. From this output,
set the Command/Path as /bin/sh

Next find out the z/OS user ID that the process is running on by issuing the
following z/OS command and locating the user ID in the first column where the
process ID (PID) is listed:

D OMVS,PID=83886553

The following output is displayed:

BPX0070I 19.01.02 DISPLAY OMVS 035

OMVS 000E ACTIVE OMVS=(PA,F9,11,L0,50,09)

USER JOBNAME ASID PID PPID STATE START CT_SECS
OMVSKERN SSHD 00DO 83886553 67109368 1WI----- 14.53.27 .0
LATCHWAITPID= 0 CMD=-sh -c /usr/sbin/sshd -D

THREAD_ID TCB@ PRI_JOB USERNAME ACC_TIME SC STATE
21ADFO0000000001 OO8FF1CO OMVS .006 WAT W

From this output, set the User ID to OMVSKERN

Verify that sshd listens on port 22 as stated above. Use the netstat -a command
and evaluate the output by looking for the SSHD jobname:

netstat -a

SSHD 00000049 Listen
Local Socket: 0.0.0.0..22
Foreign Socket: 0.0.0.0..0

From this output, set the port to 22.

You can define the UNIX internet daemon (sshd) using the fields of the USS

Control policy item for applications (APLs) of type USS in the customization
dialogs with, for example, the data in [Table 1

Table 13. Example Customization Dialog Definitions for sshd

Process File Port

Application Name* SSHD/APL SSH_FILE/APL SSH_PORT/APL

User ID OMVSKERN
Process /bin/sh
Command /Path
Filter -¢ '/usr/sbin/sshd
D'
File Name /var/run/sshd.pid
PORT 22
IP Stack TCPIP**

* This is the name that was specified for the applications when they were created.
** Only if the system is configured for multiple IP stacks.

Define a basic group containing all resources with relationships that indicate that:

¢ The group containing all sshd related resources depends on TCPIP

* The file is created by the sshd process and can never be started or created
directly by SA z/0S

Chapter 9. How to Automate USS Resources

109

Setting Up z/OS UNIX Automation

110

* The sshd process listening on the port can never be started or created directly by
SA z/08S.

illustrates the SSHD (modeled as a group) as up and running when the
process /bin/sh -c '/usr/sbin/sshd -D' started by user OMVSKERN appears, the
file /var/run/sshd.pid exists, and port 22 is in the status 'listen’ (sshd listens to
this port for incoming login requests). You can only choose a port that is defined in
/etc/ssh/sshd_config .

HASPARENT

Externally
StartsMe

HASPARENT

MakeAvailable StartsMeStopsMe

WhenAvailable
OrStarting

MakeUnavailable
WhenDown

SSH_FILE SSH_PORT

SSH_DAEMON_GROUP

Figure 22. SSH Daemon Listening

Start definition for SSHD_ FILE/APL
None.

Start definition for SSHD PORT/APL
None.

Start definition for SSHD/APL
CMD: INGUSS JOBNAME=&SUBSJOB &SUBSPATH &SUBSFILTER (&SUBSxxx
variables are substituted at run time)

Stop definitions for SSHD_FILE/APL
These commands remove the file if it has not yet been removed by the
sshd process.

Table 14. Pass description for sshd

Number

of Pass | Pass Description Command

1 If not done yet by sshd INGUSS /bin/rm &SUBSFILE

4 If Pass 1 did not remove the file INGUSS /bin/rm -f &SUBSFILE

Stop definitions for SSHD/APL
When stopping the SSHD the correct proccess ID from the sshd.pid file
must be extracted. The kill command is used to terminate the sshd process

System Automation for z/OS: Customizing and Programming

Setting Up z/0S UNIX Automation

itself. Once the sshd command is issued the parent shell used for
monitoring purposes terminates and the SSHD/APL will go into a

AUTODOWN status.

Use the following commands:

CMD:INGUSS /bin/sh -c '/bin/ps -ef | /bin/grep ~/bin/cat
/var/run/sshd.pid™ | /bin/grep -q sshd && /bin/kill ~/bin/cat

/var/run/sshd.pid™'

CMD:INGUSS /bin/sh -c '/bin/ps -ef | /bin/grep ~/bin/cat
/var/run/sshd.pid~ | /bin/grep -q sshd && /bin/kill -9 ~/bin/cat

/var/run/sshd.pid™"
CMD:INGRCLUP &SUBSJOB

These commands and the USS pipe are described here:

Table 15. INGUSS Command and USS Pipe Summary

Command Task
INGUSS Is the interface to USS
/bin/sh -¢ .. Provides a fully-equipped shell environment

to extract the pid of the sshd

*/bin/cat /var/run/sshd.pid’

Subshell extracts the pid of the sshd: the
extract pid is represented by 'extracted_pid'
in the left column

/bin/ps -ef

Asks for all USS processes

| /bin/grep extracted_pid

Shows only the sshd process

| /bin/grep -q sshd

Suppresses output and returns the
appropriate return code:

return code 0: sshd process exists

return code 1: sshd process does NOT exist

&&

Continues only if return code is 0 / if sshd
exists

/bin/kill extracted_pid or /bin/kill -9
extracted_pid

Issues SIGTERM signal against the 'extracted
pid' of the sshd

In case, the ki1l command does not terminate the sshd process use
INGRCLUP routine to invoke a z/OS CANCEL command against the
address spaces of the sshd and the monitored parent shell.

SA z/0S provides the *USS best practices policy that provides definitions for
several automated USS daemons, such as sshd. Common definitions for USS
resources can be found in the APL classes starting with C_USS_xxx .

Use also the Unix man pages to get more information about the used USS

commands and their parameters.

Hints and Tips
Trapping UNIX syslogd Messages

To trap UNIX syslogd messages, an entry must be added to the syslogd
configuration file /etc/syslog.conf in order to forward the messages to the MVS
system log. Thus, messages can be processed by the NetView automation table

(AT).

Chapter 9. How to Automate USS Resources 111

Hints and Tips

To forward all messages to the MVS log add the following entry:
*.% /dev/console

To send special messages to the MVS log only, follow the syslog message naming
guidelines (for example, for warning messages use *.warn). You can use
/dev/console as an ordinary file to write to.

To test this, issue the following UNIX command from a USS console:
echo 'This is a test message' >>/dev/console

The UNIX messages have the MVS message ID BPXF(024I and are multiline
messages.

shows an example of the output of the UNIX command in the system
log.

M 13:45:21.34 STC03602 00000090 BPXFO241 (USER) Feb 13 13:45:21 SYS1 syslogtest 67109100 : This is

S
D

498

498 00000090 a test message

Figure 23. Example of a UNIX Message

Debugging

Debugging can be activated for z/OS UNIX monitoring and command execution
on the AOCTRACE panel. The automation procedure for monitoring is
AOFUXMON and for command execution AOFRSUSS.

Turning on debugging for AOFRSUSS implicitly turns on debugging for ingccmd
(the SA z/0OS command server).

The debugging messages are written to the netlog and to the z/OS UNIX system
log (syslogd).

112 System Automation for z/OS: Customizing and Programming

Chapter 10. Command Receivers

This chapter describes how to set up and use command receivers for general use.
The command receiver is able to pass NetView, SA z/OS or MVS commands to
SA z/0S for execution. The command receiver is able to dispatch incoming
commands to a dedicated group of tasks, called the command work tasks. The
command receiver uses a round robin algorithm that ensures, on average, each of
the associated automated functions has the same number of commands to process.
In short, the technique enables the execution of multiple received commands in
parallel.

The command receiver is used by:
¢ the Batch Command Interface

* SA z/0S provided REXX functions running in a TSO environment emulating
function calls of other automation products.

Setting Up the Command Receiver

Setting up the command receiver consists of the following:

1. Setting up the TSO/Batch environment by means of establishing the
INGTXFPG REXX function package. This function package is necessary for PPI
communication with the local NetView

2. Defining the command receiver as a subsystem automated by SA z/0OS

3. Defining the command work tasks used by the command receiver.

It is recommended to use the SA resources defined in the add-on policy
*IBMCOMP. Select the following entries:

Table 16. Policy Entry Names and Types for Command Receivers

Policy Entry Name Policy Entry Type
CMDRCVR APL
CMD_RECEIVER APG
CMD_RECEIVER_AUTOOPS AOP

These SA z/0S resources ensure that the command receiver task is started at

SA z/O0S initialization time and ready to receive commands. The operator is able
to monitor the status of the command receiver by means of the INGLIST command
via SDF.

Setting Up TSO/Batch Environment

Add REXX function package INGTXFPG in the appropriate TSO module below.
TSO/E provides the following samples in SYS1.SAMPLIB that you can use to code
your own load modules:

Table 17. Sample Names and Load Modules for a TSO/Batch Environment

Sample Name Load Module name
IRXREXX1 IRXPARMS for MVS
IRXREXX2 IRXTSPRM for TSO/E
IRXREXX3 IRXISPRM for ISPF

© Copyright IBM Corp. 1996, 2012 113

Command Receivers

There are various considerations for providing your own parameter modules. For
details, see the section "Function Package Table" in chapter "Language Processor
Environments" of TSO REXX Reference. The different considerations depend on
whether you want to change a parameter value only for an environment that is
initialized for:

+ ISPF

* both TSO/E and ISPF sessions

* anon-TSO/E address space

Select the appropriate sample parameters modules, for example, IRXREXX2 for

TSO/E also for batch PGM=IKJEFTO01, and add function package INGTXFPG as a
system function package.

The following must be considered:

1. You must link-edit the REXX default parameters module with the
corresponding names. For example, the load for the sample IRXREXX2 must
have the name IRXTSPRM

2. Place the resultant REXX default parameter module in the Linklist
3. Make sure that also the function package INGTXFPG resides in the Linklist.

Defining Command Receiver as a Subsystem Automated by SA z/0OS

114

Import the CMDRCVR and CMD_RECEIVER objects from the sample policy
*IBMCOMP. This creates an application group containing a non-MVS subsystem
called CMDRCVR presenting the command receiver. The command receiver task
will run in a VOST. The name of the VOST is the name of the associated resource,
in this case CMDRCVR.

When the CMDRCVR starts, it starts the PPI receiver by means of command:
INGRCRCV START OPF=AOFCMDOPER

The default PPI receiver identifier is INGRCRCYV, but can be changed to any other
name. If you want to use a different PPI receiver ID you must specify the
parameters PPI and CSAKEY. The CSAKEY parameter defines a key that all
command receiver clients are using for communicating with the receiver.
EMULATOR is the only key supported. The INGRCRCV command would look
like:

INGRCRCV START PPI=xxxxxxxx CSAKEY=EMULATOR OPF=AOFCMDOPER

where xxxxxxxx is the PPI name of choice.

Be aware that the command receiver is not able to route the incoming command to
one of the command work tasks when the OPF=AOFCMDOPER parameter is
missing. In this case, all incoming commands are processed sequentially by the
VOST task hosting the command receiver.

When subsystem CMDRCVR terminates, it stops the command receiver by means
of INGRCRCV STOP command.

Notice that the sample definition has escalation commands defined for the stop
process. It uses the INGVSTOP DETACH and INGVSTOP TASK commands for the
stop passes. These commands stop the VOST hosting the command receiver
directly rather than terminating the command receiver gracefully.

System Automation for z/OS: Customizing and Programming

Command Receivers

Defining Command Work Tasks Used by the Command Receiver

Import object CMD_RECEIVER_AUTOOQOPS from the sample policy *IBMCOMP.
This object import defines a set of automated functions named AOFCMDnn where
nn starts from 1 running up. By default 5 command work tasks are defined. You
may add more command work tasks if needed.

Notes:

1. The command receiver checks if the automated functions (command work
tasks) are defined and active. If this is not the case, the command receiver
terminates with error message ING3471.

2. Note that the names of NetView Automation Operators must match those that
you define in member ING.SINGNPRM(AOFOPFSO). You may customize this
sample to your needs. By default, the following map is used:

Table 18. Functions and Operators for SA and NetView respectively

SA Automated Function NetView Automation Operator

AOFCMDO01 | AOFCMDnn AUTCMDO01 | AUTCMDnn

Starting and Stopping the Command Receiver

The command receiver is controlled by SA z/OS. It is defined as a non-MVS
subsystem. Unless changed, the name of the command receiver subsystem is
CMDRCVR. To start the command receiver, issue the INGREQ REQ=START
command against the appropriate subsystem, for example:

INGREQ CMDRCVR/APL/SYS1/ REQ=START

You should not have to start the command receiver in normal circumstances,
because it should start automatically when the SA z/0OS agent registers with the
automation manager.

To stop the command receiver, issue the INGREQ REQ=STOP command against
the appropriate subsystem, for example:

INGREQ CMDRCVR/APL/SYS1 REQ=STOP

To see the list of VOSTs used by the command receiver(s) use the INGRCRCV
QUERY command.

Submitting NetView Commands from a Batch Job

This section describes how to execute NetView commands from a Batch job. This is
particularly useful for Tivoli Workload Scheduler, but can be used stand alone.

Sample Batch Job JCL

A sample batch job can be found in the System Automation for z/OS Installation
library SINGSAMP. Member EVJSJ001 contains the sample JCL. The batch job must
be run on the same system as the SA z/OS Agent that contains the command
receiver specified by the batch job. In most cases there will be a command receiver
running on every SA z/OS Agent. The use of the general purpose command
receiver is recommended since it can handle the execution of multiple commands
concurrently. The use of the general purpose command receiver is triggered by the
SERVER=* parameter. However, customization of the command receivers can alter
the names of the command receivers and also the number and configuration of the

Chapter 10. Command Receivers 115

Sample Batch Job JCL

116

command receivers. You should check with your system programmers to
determine the correct system and command receiver to use for these batch jobs.

Command Statement Syntax

The commands supplied to the batch job in the //SYSIN ddname have the
following syntax:

> line-mode-command >«
|—>DDNAMEJ |—" - "J

*comment

—_

. All blank lines are ignored.

A

All lines starting with an asterisk (*) are comment lines and are printed in the
output but otherwise ignored.

Comments on the end of commands are not allowed.

Comments are not allowed between continuation lines.

A command can be continued by appending a dash (-) to the line.
Command output normally goes to //SYSTSPRT.

Command output may be redirected to other DDNAMESs. The default for this is
the right angle bracket (>) symbol.

8. PIPE > stage is prohibited. Use PIPE QSAM instead.
9. Fullscreen commands are not allowed.

N o~

Valid Command Types
Any command, clist or REXX program that issues correlated line messages may be
used.

This means almost all NetView commands, all SA z/OS commands that support
OUTMODE=LINE and any clist or REXX program that either issues SAY messages
or PIPES the messages to CONSOLE.

The return code from the command can be used to stop the remaining commands
from being executed. See the ['MAXRC parameter” on page 118|of the AOFRYCMD
procedure definition.

Command Continuation
Commands are continued across lines by appending a dash to the end of the
command, for example:

PIPE NETVIEW LIST STATUS=0PS | -
CONSOLE ONLY

Command Output Redirection

Normally command output is printed on the //SYSTSPRT DDNAME. However,
the output of commands may be redirected to other DDNAMEs. This is achieved
via a redirection symbol. The default is the > symbol, for example:

PIPE NETVIEW LIST STATUS=OPS | CONSOLE ONLY >MYOUTPUT

This allows subsequent steps in the batch job or other batch jobs to use the output
of the command for their own purpose.

You can change the redirection symbol with the REDIRECT parameter of
AOFRYCMD if, for example, you use > as a command prefix. Note that the

System Automation for z/OS: Customizing and Programming

Command Statement Syntax

redirection symbol must not be the same as any of the characters that occur in the
command. For more details, see |”AOFRYCMD Description.”|

The DCB characteristics of the output DDNAME should be as follows:
LRECL=132,RECFM=FB

Executing a Command on a Different NetView

Almost all SA z/OS commands can specify the TARGET= parameter to force the
command to execute on the target system. If a command does not have this facility,
for example the NetView LIST command, you can use PIPE labels to send the
command to the appropriate NetView, for example:

PIPE CC dom@l: LIST STATUS | CONSOLE ONLY

Or even:
PIPE CC dom@l/autol: LIST STATUS=0PS | CONSOLE ONLY

JCL for the Batch Command Interface

You will find the sample JCL EVJSJ001 to execute commands on
SA z/0S/NetView agents in the SA z/OS product sample library (SINGSAMP).

AOFRYCMD Description

Purpose: AOFRYCMD is a REXX procedure that issues commands to a SA z/OS
agent and receives the results of those commands.

Note: AOFRYCMD is identical to EVJRYCMD. For an easy migration EVJRYCMD
still exists in the library SINGNREX while AOFRYCMD resides in
SINGTREX. The use of AOFRYCMD is recommended.

SERVER=AOFCMDRV— |—TIMEOUT=60

»>—AQFRYCMD |_ _| |_ _| l >
wsid NOWKSTS SERVER=—[n%— TIMEOUT=seconds—
* TIMEOUT=NONE

—HIGHRC=0—— |—MAXRC=999— |—SYSIN=SYSIN—|
'"HIGHRC=return_code— lMAXRC=r‘etur‘n_code— [SYSIN=DDnameJ
—REDIRECT=> |—ASIS=NO—|
'‘REDIRECT=chars— lASIS=YESJ

Parameters:
wsid This parameter is optional.

This parameter specifies the name of the TWS workstation that submitted
this batch job. This information is used by the command to disable the
workstation in the event that communications between the batch job and
the SA z/0S Agent cannot be established.

If this parameter is specified, any NetView PPl communications problem
will cause the command to issue a TWS WSSTAT command to place the
workstation offline.

Chapter 10. Command Receivers 117

JCL for the Batch Command Interface

118

NOWKSTS

This parameter is optional. It is also deprecated. It is preferable to omit the
workstation ID.

This parameter modifies the behavior of the command. In the event of a
failure in communications to the SA z/OS Agent, this parameter prevents
the command from disabling the TWS workstation that is defined with the
wsid parameter.

SERVER

This parameter is optional.

The default for this parameter is EVJCMDRV. This parameter specifies the
name of the PPI receiver in the SA z/OS Agent NetView that commands
will be sent to. Specifying SERVER=* causes the command receiver to pass
the command to one of the associated work tasks to enable parallel
processing of commands. The command receiver EVJCMDRYV is deprecated
but still exists for compatability reasons.

For details on defining EVJCMDRY, refer also to the *IBMCOMP Add-on
policy.
Note: When using the general purpose command receiver by coding

SERVER=*, the SINGTREX library must be added to the SYSPROC
concatenation chain.

TIMEOUT

This parameter is optional.
The default for this parameter is 60 seconds.

This parameter specifies the time in seconds that the batch job will wait for
a command to execute in the SA z/OS Agent NetView. This timeout is
applied separately to each command. If the timeout is set to NONE, no
timeout will be applied to the batch job.

Note: It is recommended that the INGREQ timeout (as defined with the
FDBK parameter) should be less than the TIMEOUT= parameter for
the job.

This is because the INGREQ command's FDBK parameter can be
used to specify a WAIT period that will result in the command
waiting until the desired status change is complete. For example, if
the TIMEOUT parameter is defaulted to 60 seconds, the INGREQ
FDBK parameter should be coded as, say, FDBK=(WAIT, :55)

HIGHRC

This parameter is optional.
The default for this parameter is 0 (zero).

This parameter specifies the highest acceptable Return Code for the job.
Any return codes from commands that are less than or equal to this value
will reset the JCL Step return code to zero. Any command return code that
is greater than this value will be passed as the JCL Step return code.

Note: The JCL Step return code will be the highest return code of all the
command return codes.

MAXRC

This parameter is optional.

System Automation for z/OS: Customizing and Programming

JCL for the Batch Command Interface

The default for this parameter is 999.

This parameter specifies the maximum acceptable return codes from
commands issued by the batch job. If a command return code is higher
than the value specified, the batch job is aborted and any remaining
commands will not be executed.

The return code that is reported to the JCL is determined by the HIGHRC
parameter.

SYSIN
This parameter is optional.

The default for this parameter is SYSIN.

This parameter sets the DDNAME of the input file that contains the
command to be executed.

REDIRECT
This parameter is optional.

The default for this parameter is >.

This parameter defines the redirection character. Enclose it in quotes or
double-quotes if the string contains special characters, such as the equal
sign. It must not be the same as any of the characters that occur in the
command.

ASIS This parameter is optional.
The default for this parameter is NO.

This parameter enables the submission of a required command in mixed
case, to be executed as presented, when the parameter value is YES.

Usage: When the SA z/OS Agent is started, it will automatically issue a WSSTAT
command to mark the workstation online. The specifications of which workstations
to mark online at agent restart are contained in the WORKSTATION message/user
data policy for the tracker or controller. Multiple workstations may be defined.
Workstations that are assigned to trackers should have their WORKSTATION
policy defined to the same trackers that they are assigned to.

Each command is submitted in turn and the results of the command are retrieved.
These results are then written to either SYSTSPRT or to the output redirection
DDNAME.

Whether or not the command completed successfully is indicated by message
ING330I for satisfactory completion or message ING332I when the command
failed. Message ING332I shows the return code of the command completion. These
messages are written to SYSPRINT (//SYSTSPRT DDName).

Note: The DW03691 message that might have been requested when using the

NetView PIPE command with the MOE option or automatically injected by
SA when the command completed successfully is no longer passed along.

Chapter 10. Command Receivers 119

120 System Automation for z/OS: Customizing and Programming

Chapter 11. Enabling Relational Data Services (RDS)

SA z/0S provides Relational Data Services (RDS) which are available through the
INGRDS command. It provides basic access methods for SA z/OS built-in
relational data tables. The syntax of the command INGRDS is close to the concept
of SQL but much simpler and without the support of the full SQL language parser.
SA z/0OS saves the relational data tables in VSAM files.

For fast access, the relational data tables are held in the GETMAIN storage of the
NetView address space. The available amount of free memory in the NetView
address space limits the amount of data that can be stored in the RDS tables.
Persistency is achieved by an algorithm that periodically saves the tables into a
VSAM KSDS file with DD INGEMUGL The tables will be restored during SA
initialization when NetView is started.

Each SA z/0OS agent maintains its own VSAM data file and in memory tables that
only hold data associated with it. When the SA z/OS agent is down, the table data
cannot be accessed.

Note: There is one VSAM KSDS file per SA/NetView agent which holds the
persistent RDS tables. Accessing the RDS tables is only possible via INGRDS
if the SA/NetView is running.

Enable/Disable Persistent Relational Data Services

Relational Data Services (RDS) are by default disabled since an extra DD is
required in the NetView startup procedure.

RDS will be initialized and enabled if the SA automated function AOFRDSAR is
defined (see AOP entry RDS_AUTOOPS below).

RDS needs an extra VSAM cluster in order to make the RDS tables persistent.
Refer to the step "Install Relational Data Services" in the chapter "Installing SA
z/0OS on Host Systems" of |IBM Tivoli System Automation for z/OS Planning and)

Once RDS is initialized you may disable making RDS tables persistent by stopping
the resource RDSARCH. This will stop archiving the RDS tables. However RDS
still works with the in-memory RDS tables.

Import System Automation Resources

It is recommended you use the SA z/OS resources defined in the add-on PDB
*IBMCOMP. Select the following entries:

Table 19. Receiver Names and Related Policies

Policy Entry Name Policy Entry Type
RDSARCH APL
RDS_ARCHIVER APG
RDS_AUTOOPS AOP

© Copyright IBM Corp. 1996, 2012 121

Enabling Relational Data Services (RDS)

These SA resources ensure that the RDS archive task makes the RDS table
persistent. The advantage is to start or stop archiving easily. Error situations
reflected by error messages such as VSAM IO error could also be trapped in the
message table and associated with the SA resource. The resource status might
become broken indicating a severe error.

After importing the RDS_ARCHIVER and RDSARCH, the SA z/OS customization
dialog defines an APG resource group that includes an APL resource RDSARCH. It
has the function to start or stop RDS archiving. Using INGTIMER as a pre-start
command, the RDS archiving command will be scheduled on the automated
function AOFRDSAR.

After importing RDS_AUTOOPS the SA customization dialog defines the
corresponding automated functions AOFRDSAR and AOFRDSEV. Note that the
names of the NetView Automation Operators must match those that you define in
member ING.SINGPRM(AOFOPFSO). You may customize this sample to your
needs. By default the following mapping is used:

Table 20. RDS/SA Functions and NetView Operators

SA Automated Function/Operator NetView Automated Operator
AOFRDSAR AUTRDSAR
AOFRDSEV AUTRDSEV

Regular Snapshot

By default, the RDS archiving resource RDSARCH issues the command
"INGVALUE ARCHIVE" every 30 seconds. It runs on the automated function
AOFRDSAR. Archiving and restoring must run always on the same task. Make
sure that the RDS archiving works well and periodically performs the backup of
RDS tables.

RDS Initialization

During SA z/OS initialization the persistent RDS tables are restored into memory,
if the SA z/0S automated function AOFRDSAR is defined.

If this status of the RDS initialization is not OK then the following message may
appear:

ING388I Function or command INGRCVAC failed, RC=36 REASON=ARCHIVE rejected INIT STATUS=xxxx

If xxxx is a NULL string then the initialization of RDS was not performed.

RACF Protection of INGRCRDX under TSO

This section provides some general guidelines for System Automation(SA)
Relational Data Services on TSO.

Enable and Disable RACF Checking

In order to enable RACF checking for INGRCRDX on TSO you must set the CSA
key following AAO to a value of your choice denoting the RACF high level
qualifier, for example, to ING, via the new AAO:

AOF_AAO_RDS_TSO_RACFHLQ=ING

122 System Automation for z/OS: Customizing and Programming

Enabling Relational Data Services (RDS)

The value ‘ING’ is the high level qualifier used as prefix when the emulator builds
the RACF profile. The high level qualifier could be up to 26 bytes long and may
contain dots (for example, MY.HLQ). You may disable RACF checking again when
you remove the AAO or set it to the empty string or to #RACFHLQ#.

RACF Profile and Class

The RACEF class is always FACILITY and cannot be changed. If RACF checking is
enabled, Relational Data Services commands/functions on TSO perform
automatically authorization checking. It checks whether the current TSO user id
has UPDATE authority to the profile of following format:

<EMU.RACF.HLQ>.EMULATOR. SQL

and <EMU.RACEHLQ> is the value of your choice previously defined above in
the AAO above.

Examples for profiles with the assumption that <EMU.RACEHLQ> was set to
ING:

ING.EMULATOR. SQL

Important:
Read the section [“Install SA Provided Authorized TSO Command”|on how to
install INGPAUTH as authorized TSO command. If RACF protection is
enabled the receiver commands will use INGPAUTH under the cover for
RACEF checking.

Install SA Provided Authorized TSO Command

System Automation delivers an authorized TSO command with
ING.SINGMOD1(INGPAUTH). The Relational Data Services require that the TSO
command INGPAUTH must be defined as authorized command in TSO. This can
be achieved by adding the command name to the PARMLIB member IKJTSOO00 in
SYS1.PARMLIB under AUTHCMD. Use the TSO/E command PARMLIB
UPDATE(00), or MVS command SET IKJTSO=00, to activate the new settings. Be
sure that INGPAUTH is in the LINKLIST.

RDS Table Editor

System Automation provides support for the ISPF editor on TSO in order to edit a
RDS table and to save changes made at the RDS table. While editing a RDS table it
is protected against modification by other users via a LOCK token. The lock token
is JOB$xxx where xxx is the TSO user id.

Note: If you have defined the data set with variable records you may get the
warning message below. It is acceptable that all trailing blanks are removed.
Saving the table again will work anyway. "Truncation warning. The data
you are editing is variable Tength data with at least one record that
ends with a blank. Saving the data will result in removal of any
trailing blanks from all records. ..."

For an ISPF EDIT example see screenshot below:

Chapter 11. Enabling Relational Data Services (RDS) 123

Enabling Relational Data Services (RDS)

124

4 ™\
000001 @SA RDS TABLE: TABLE1 (30,20,15)
000002 NAME FIRST_NAME CITY
000003 === === === m o e e m -
000004 Bond James London
000005 Smith John New York
000006 Schulz Emma Berlin
000007 Metzger NULL Miinchen
000008 Wagner Frankfurt
000009 Schiller Eva Stuttgart
000010 Schmidt Hugo Hamburg
000011 Fischer Egon Hamburg

KrKKKE KAKFIARFRIRR R IRk h kR khhkkhhxxkkxxx BOLtom Of Data ***rxkkhkrkkhrkrhhrkrhhhrkkhhkkrhhrkkhhhrsA

$S55SSSN
Truncation warning. The data you are editing is variable Tength data with at e
least one record that ends with a blank. Saving the data will result in

removal of any trailing blanks from all records. You can issue the PRESERVE
ON command if you don't want the blanks removed. e
\fssib

@ @

Note: Trailing blanks can be removed to save space.

Add SA TSO REXX Library

SA provides an extra library for use by SA REXX clists under TSO.

Make sure that the library ING.SINGTREX is added to the TSO allocation chain for
REXX clists.

Define a RDS Working Data Set for Viewing/Editing under TSO

Viewing and editing a table is done by use of a temporary member of a dedicated
PDS. NetView and TSO must have read and write access to this PDS. The PDS is
reserved for this function. It must have maximum record length big enough to
support table rows with longest length that fit to your needs. A unique temporary
member will be created on behalf of the TSO user that calls INGRDS EDIT or
VIEW. For that purpose the TSO user id is used. The member will always be
overwritten with subsequent calls to INGRDS EDIT or VIEW.

The RDS working data set must be made know to all TSO address spaces and to
NetView via following AAO:

AOF_AAO_RDS_TSO_DSN=HLQ.RDS. WORK

The data set name HLQ.RDS.WORK is customizable. You may create a PDS with a
name of its own.

Sample of a PDS characteristics with maximum records length of 1000 if the total
sum of all columns definition of a table is smaller 1000 bytes:

Organization . . . : PO
Record format . . . : VB
Record length . . . : 1000
Block size : 32000

Data set name type : PDS

Viewing a RDS Table within TSO
You use the following command on TSO:

INGRCRDX VIEW mytab
INGRCRDX BROWSE mytab

System Automation for z/OS: Customizing and Programming

Enabling Relational Data Services (RDS)

It retrieves the table mytab and displays it using the ISPF editor.
Editing a RDS Table via TSO

You use the following command on TSO:
INGRCRDX EDIT mytab

It retrieves the table mytab and displays it using the ISPF editor. You may change
the table. Please observe the rules of column specifications as described below.
Changes to the table will be saved in a temporary file and imported to the RDS
table mytab. A table lock is obtained until the table is saved or quit.

The following rules apply:
1. Respect the column length and keep one blank between each column.

2. For an existing table you should not delete columns or insert new columns
because you cannot overwrite column definitions.

3. For a table that does not exist yet: After you modified the table name in line 1
and saved the table you can delete, insert and rename columns. Make sure that
the numbers in parenthesis match the column width. The new table name must
not exist. If the new table name exists already the old column definitions are
used.

Chapter 11. Enabling Relational Data Services (RDS) 125

Enabling Relational Data Services (RDS)

126 System Automation for z/OS: Customizing and Programming

Chapter 12. How to Enable Sysplex Automation

This chapter covers SA z/OS specific capabilities for Parallel Sysplex® automation,
how to use the SA z/OS customization dialogs to enable them, and how to
customize your system.

Note: If you use a host code page other than 037, the hexadecimal representation
of the at sign (@) can be different. Use the letter represented by the hex code
X'7C' for the at sign.

Sysplex Functions

The following functions are described:

+ [“Managing Couple Data Sets”]

+ [“Managing the System Logger” on page 128|

+ [“Managing Coupling Facilities” on page 129|

* [“Recovery Actions” on page 131]

+ |“Hardware Validation” on page 138]

Managing Couple Data Sets

Couple data sets (CDSs) contain control information about the sysplex and its
resources, and are of crucial importance for the functioning of a Parallel Sysplex.
Particularly important are the SYSPLEX couple data set, which contains
information about the systems and the communication structure (XCF groups) of
the sysplex, and the CFRM couple data set, which specifies its coupling facilities
(CFs) and structures (see|“Managing Coupling Facilities” on page 129). Every MVS
system in a Parallel Sysplex must have access to these CDSs, and to those of all
other implemented sysplex functions, such as SEM and Application Response
Measurement (ARM).

If a member system cannot access a CDS, the corresponding sysplex function is
impacted, and in some cases the sysplex goes down. It is therefore recommended
that you define two CDSs to XCF for every CDS type required for the
implementation of the sysplex. One of these, the primary CDS, is the one that is
actually used. The other, which is called the alternate CDS, serves as a backup copy.
The two CDSs contain the same data. Whenever the primary CDS changes, XCF
updates the alternate CDS accordingly. If an alternate CDS is available for a certain
type, XCF automatically switches to this alternate CDS whenever a member can no
longer access the primary CDS.

All CDSs except the sysplex couple data set contain one or more user-defined
configurations, called policies. For each CDS type, only one policy can be active.
However, it is possible to switch the active policy at run time. Refer to
[System Automation for z/OS Operator’s Commands| for further information about the
INGPLEX command.

SA z/0S offers two functions for easier CDS management:

e Automated creation and recovery of alternate couple data sets for continuous
availability

* INGPLEX CDS, which simplifies management of couple data sets

© Copyright IBM Corp. 1996, 2012 127

Managing Couple Data Sets

128

Ensuring Continuous Availability of Couple Data Sets

When an alternate CDS exists for a given CDS type and the current primary CDS
fails, XCF makes this alternate the primary CDS. After this switch, however, an
alternate CDS no longer exists, and if the current primary CDS also fails, the
problems that were to be avoided by the creation of an alternate occur again. To
avoid this single-point-of-failure situation, SA z/OS provides a recovery
mechanism that tries to ensure that an alternate CDS is always available for every
CDS type used.

SA z/0OS creates a new alternate CDS in the following two situations:

* During initialization, SA z/OS checks that an alternate CDS is specified for
every primary CDS. If there is a primary CDS for which no alternate CDS exists,
SA z/0S automatically creates it.

e At run time, SA z/0S ensures that a new alternate is created whenever the
current alternate has been removed or switched to the primary one.

Customization
Recovery of alternate CDSs is initiated either by the CDS function of INGPLEX or
in the background (for example, at initialization time). Background recovery can be

switched on and off by using the SA z/OS customization dialogs. Automatic
re-creation with INGPLEX CDS is always enabled.

You must specify the spare volumes that SA z/OS may use for creating missing
alternate CDSs (using the policy item SYSPLEX from the Policy Selection panel for
sysplex groups). This is also required for automatic creation with INGPLEX CDS.
Every CDS type has its own pool of spare volumes. Note that if you do not define
spare volumes for a CDS type, no recovery is performed for this type. For details
on the use of the customization dialogs, see [“Enabling Continuous Availability of|
[Couple Data Sets” on page 141

You can control access to those functions of INGPLEX CDS that modify the sysplex
configuration. Refer to Appendix A of |IBM Tivoli System Automation for z/OS|
[Planning and Installation| for details.

Managing the System Logger

Terms and Concepts

The system logger provides a sysplex-wide logging facility. Applications that use the
system logger write their log data into log streams. Within a Parallel Sysplex, these
log streams are usually associated with a coupling facility structure. For further
information about coupling facility structures, refer to ['Managing Coupling]|
[Facilities” on page 129] By using a coupling facility log stream, members of a
multisystem application can merge their logs even when residing on different
systems.

When an application writes data to a log stream this data is stored at first
temporarily in the associated structure (coupling facility log stream) or a local
buffer (DASD-only log stream). From there, it is off-loaded into a log stream data
set which is automatically allocated by the system logger. When this log stream
data set is full, the system logger allocates a second one, and so on.

The control information for the system logger, which includes a directory for the
log stream data sets of every log stream, is contained in the LOGR couple data set.
The total number of log stream data sets that can be allocated by the system logger
is determined when the LOGR couple data set is formatted.

System Automation for z/OS: Customizing and Programming

Managing the System Logger

Two problems that can arise in connection with the log stream data sets are a
shortage of directory space in the LOGR CDS and incorrect share options for the
log stream data sets. SA z/OS provides the following recovery actions for these
problems:

¢ The primary and alternate LOGR CDSs are automatically re-sized if there is a
directory shortage

* The operator is notified if the share options for log stream data sets are not
defined correctly

Resizing the LOGR Couple Data Sets in Case of Directory
Shortage

The LOGR CDS contains information about the log stream data sets used by the
system logger. This information is stored in directory extents. Every directory extent
record can hold information about up to 168 log stream data sets. The number of
directory extents available in a LOGR CDS is specified when the CDS is formatted
(DSEXTENT parameter). When all available directory extents are used up the system
logger can no longer allocate new log stream data sets. This can cause considerable
problems for applications that use the system logger.

With SA z/0S, you can avoid this situation. If you switch on logger recovery,
SA z/0OS automatically reformats your primary and alternate LOGR CDS with an
increased DSEXTENT parameter whenever the system reports a directory shortage.

Customization
Automation of system logger recovery is enabled through the SA z/0OS
customization dialogs. For more details, see [‘System Log Failure Recovery” on|

Managing Coupling Facilities
A coupling facility (CF) is a logical partition that provides storage for data exchange
between components of an application that is distributed across different systems
in a Parallel Sysplex. A Parallel Sysplex can contain more than one CF. The storage
of a coupling facility is divided into areas that are called structures. You can
imagine a structure as a special kind of data set. It is these structures, which are
identified by their name, that are accessed for reading and writing by the
application components.

The association between CFs and structures is dynamic. A structure that is used by
an application need not be allocated at all (for example, when the application is
not running), and can be allocated on different CFs at different points in time. For
every structure, there exists a preference list that defines the CFs on which it may be
allocated. The order of the CFs in that list determines which CF is selected when
more than one member of the list satisfies all allocation requirements (for example,
provides enough space).

The preference list, the space requirements, and other properties of the structures
are defined in the active CFRM policy. This policy is contained in the CFRM
couple data set. Refer to [“Managing Couple Data Sets” on page 127 for further
information.

XES allocates a structure that does not yet reside on any CF when an application
component needs to be connected to it. Note that the application component only
specifies the name of the structure that it wants to access. It is XES that decides on
which CF the structure is allocated. This decision is influenced by the structure
definition in the active CFRM policy. After the structure has been allocated, the

Chapter 12. How to Enable Sysplex Automation 129

Managing Coupling Facilities

130

requesting application component can access it, and further components of this
application can require to connect to it. An application component that has access
to an allocated structure is referred to as an active connector to this structure.

In the simplest case, XES deallocates a structure when all connected application
components have disconnected from the structure. However, an application
component can require that the structure or its own connection to the structure be
persistent. When the structure is persistent it remains allocated even when the
application component is no longer connected to it. When a connection is persistent
the structure remains allocated after a failure of that connection. The application
component in question remains a connector to the structure, although not an active
one. It is now a failed persistent connector. In both cases, you can force the
deallocation of the structure as soon as it no longer has active connectors.

Allocated structures can be rebuilt. Rebuilding is the process of reconstructing a
structure on the same or another CE. A rebuild consists of three main steps. First,
XES allocates the new structure instance. Then, the data of the old structure is
reconstructed in the new structure. Finally, XES deallocates the old structure
instance. Note that you cannot specify the target CF in your rebuild request. As
with structure allocation, XES selects it from the preference list.

There are two methods for rebuild: user-managed and system-managed. With
user-managed rebuild, the active connectors are responsible for reconstructing the
data. With system-managed rebuild, XES transfers the data to the new structure
instance. System-managed rebuild is thus also available for structures without
active connectors. These structures can either themselves be persistent or have
failed persistent connections.

When an application component connects to a structure, it specifies whether it
allows the structure to be rebuilt through user-managed or system-managed
rebuild. For structures with active connectors, both rebuild methods require that all
active connectors allow the respective rebuild method.

You can also duplex structures. Duplexing means maintaining two instances of the
same structure on different CFs at the same time. Duplexing serves to increase
availability and usability of a structure.

Typical management tasks for CFs are removing a CF from the sysplex and
reintegrating it again. These tasks have several steps that must be performed in a
certain order and can be quite complex. To simplify these operations, SA z/0OS
offers the INGCF command. INGCF has several functions, which serve to
manipulate structures and the CFs themselves. For more information, see
[Tivoli System Automation for z/OS Operator’s Commands| and the online help.

Some functions deal with the sender paths of a coupling facility. They have the
following limitations. First, at least one system in the sysplex that is running the
automation must know the control unit ID (CUID) of the coupling facility. If this is
not the case, no missing sender paths can be resolved.

A missing sender path occurs when a coupling facility is deactivated prior to a
system IPL (or relPL) and then activated afterwards. The system that has been
IPLed (or relPLed) does not recognize the coupling facility. To determine the
missing sender paths, the automation calls the HOM interface of HCD. Resolving
the missing path information is only possible when either the complete network
address is defined in HCD along with the processor ID, or you provide the CPC

System Automation for z/OS: Customizing and Programming

Managing Coupling Facilities

synonym used by the automation as the processor ID. However, it is recommended
that you define both. If neither is defined, the system that misses the sender paths
must run the automation.

Recovery Actions
Resolving WTO(R) Buffer Shortages

When all WTO(R) buffers are in use, it is possible that commands can no longer be
processed. To resolve this, there are several options: you can extend the buffer,
change the properties of the affected consoles, or cancel jobs that issue WTO(R)s.

SA z/0S provides recovery of buffer shortage in two stages. It first tries to extend
the buffer and modify the console characteristics, if applicable. If this does not
help, it then cancels jobs that issue WTO(R)s. You must specify which jobs can be
canceled by SA z/OS if there is a buffer shortage.

Customization: Automation of buffer shortage recovery is enabled using the
SA z/0S customization dialogs. For more information, see [“Enabling WTO(R))|
[Buffer Shortage Recovery” on page 142.

WTO Recovery is performed when different messages are received by SA z/OS.
The action taken when each of these messages is received is described in [Table 2]

Chapter 12. How to Enable Sysplex Automation 131

Recovery Actions

Table 21. WTOBUF Recovery Process

the message AOF929 for permanent changes (RLIM).

Recovery |Message Command
WTO IEA405E Set the console attributes.
If the deletion mode is not roll or wrap, set the mode to roll. K S,DEL=R,L=x
If any out-of-line display area exists, delete the status display. K E,D,L=x
If the interval between message rolls is greater than 1 second and |K S,RTME=1/4,L=x
not *', set the interval to 0.25 seconds.
If the console receives messages not only from the local system V CN(x),MSCOPE=(1)
and the WTO message buffer size has reached its maximum,
remove the buffering systems from the list and add the local
system to the list.
IEA404A | Suspend the console.
Requeue the messages to the hardcopy log. K Q,L=x
Vary the active console (COND=A) offline. For SMCS consoles, V {CN(x),OFFLINE
issue the appropriate VTAM command. |NET,TERM, LUL=x,
TYPE=FORCE
}
Cancel the job or TSO user that caused the shortage, but only C {jobnm,A=asid
when defined as a candidate during customization. £U=user1' d
IEA4061 Resume the console if it was suspended and if it is not a SMCS V CN(x),ONLINE
console.
Restore the console attributes.
Set the deletion mode to the value before the buffer shortage K S,DEL=01d,L=x
occurred.
Set the interval between message rolls to the value before the K S,RTME=01d,L=x
buffer shortage occurred.
Set the list from which the console is to receive unsolicited V CN(x),MSCOPE=(1)
messages to the list before the buffer shortage occurred.
Increase the WTO message buffer size to minimise future shortages | K M,MLIM=new
as follows:
new = min(9999
,max (1500
,1.2 * current MLIM
)
)
Issue the message AOF929 for permanent changes (MLIM).
WTOR IEA230E |Increase the maximum number of reply IDs to the maximum K M,RMAX=9999
allowable value if the maximum number of systems in the sysplex
is greater than 8 or the system runs in local mode.
Increase the WTOR message buffer size if the current RMAX value |K M,RLIM=new
is greater than the current RLIM value as follows:
new = min(9999
,max (10 + 2 * maxsys_in_sysplex
,1.2 * current RLIM
)
)
IEA231A | Cancel all jobs and TSO users that have outstanding WTORs and C {jobnm,A=asid
that are defined as candidates during the customization. {U=user1’ d
IEA2321 Issue the message AOF928 for irreversible changes (RMAX). Issue

132 System Automation for z/OS: Customizing and Programming

Recovery Actions

Handling Long-Running Enqueues (ENQs)

This type of recovery is divided into the following individual functions:
* Long-running enqueue recovery

* "Hung" command recovery

* Command flooding recovery

All these recoveries can be enabled and disabled individually or globally.

The long-running enqueue recovery function lets you:

* Check which resources are blocked

¢ Customize automation to cancel or keep the jobs that block the resource

* Customize automation to dump the jobs before they are canceled

You can determine which resources you want to monitor. You can define a value
for the maximum time a job can lock a resource while other jobs are waiting for it.
If this amount of time is exceeded, recovery takes place. Identification of and

elimination of these potential bottlenecks helps to reduce the risk of a Parallel
Sysplex outage.

While the time definition describes an inclusion list, you also have the possibility
to define an exclusion list of resources that are not monitored at all.

For more information about enabling the ENQ function, see [“Enabling Long]
[Running Enqueues (ENQs)” on page 145

This function has been extended by two supplementary functions:

¢ [“"Hung" Command Recovery’]

+ [“Command Flooding Recovery” on page 134

"Hung" Command Recovery: The purpose of this function is to detect hung
commands that often result in multisystem outages. We distinguish three
situations:

1. Commands that inhibit other commands from completing execution
2. Commands that inhibit jobs from completing execution
3. Jobs that inhibit commands from completing execution

Automation examines ENQ contention associated with command processing and
builds a list of blockers and waiters. The SA z/OS policy is then examined to see
how long waiting commands and waiting jobs are allowed to wait before
automated action is taken. The policy is also examined to determine what action
(DUMP, NODUMP, KEEP or exclude) is to be taken against the blocking command
or job, as follows:

1. When a command inhibits other commands from completing and no policy
definitions exist for any of the waiting commands, no automated action is
taken.

2. When a command inhibits jobs from completing and no policy definitions exist
for the blocking command, no automated action is taken.

3. When a job inhibits commands from completing and no policy definitions exist
for any of the waiting commands, no automated action is taken.

Chapter 12. How to Enable Sysplex Automation 133

Recovery Actions

If long-running ENQ and hung command recovery detect that the same resource
requires automated action at the same time, the hung command recovery policy
definitions take precedence and hung command recovery automates the resource.

The action taken (DUMP, NODUMP, KEEP or exclude) is identical to the
long-running ENQ recovery action.

In either case only commands that are waiting on blocked resources are
considered. "Hung" command recovery only considers those resources that are not
being monitored by long-running ENQ recovery. If long-running ENQ recovery is
disabled then all resources, even those defined as long-running ENQ resources, are
considered for "hung" command recovery. It is also important to realize that if
long-running ENQ recovery is enabled and a generic "catchall" resource definition
applies, then "hung" command recovery cannot occur, because long-running ENQ
recovery always take precedence.

Commands are executed by the master and console address spaces. Thus when a
resource blocker is from either of these address spaces it is considered to be a
blocking command rather than a blocking job.

As with resources, you can make similar definitions for commands that determine
how long a command is permitted to lock a resource while other commands are
waiting for the resource.

If the resource blocker is a job then recovery actions are only taken when the job
has blocked the command for 3 consecutive iterations of "hung" command
recovery processing. This results in a job blocking a command for no more than 90
to <120 seconds.

Recovery action for the blocking job or the job that issued the blocking command
is the same as that specified for long-running ENQ recovery automation.

Command Flooding Recovery: The purpose of this function is to detect jobs that
flood a command class. Command flooding can cause log buffer shortages and
inhibits other commands from executing. Both can lead to a multisystem outage.

When all (50) TCBs that are reserved for command processing are in use, new
commands are queued to the waiting queue. In this case the system issues message
IEE806A which triggers this function to evaluate what jobs are causing the
situation.

Jobs that just issue a set of commands, such as 200 (or more) "VARY dev,ONLINE"
commands should not be considered during the evaluation. This is achieved by
comparing the current and the previous snapshot of the affected command class.

Snapshot processing is scheduled when message IEES806A is trapped. The interval
time between the snapshots is 3 seconds by default (see [“Enabling Long Running]
[Enqueues (ENQs)” on page 145|for details about adjusting this value if necessary).
The interval should give these jobs enough time to finish issuing commands before
the first snapshot is taken. Only jobs that issue commands on two consecutive
snapshots become subject of the recovery action.

Before the recovery action takes place, the number of commands that are issued by
the job must exceed a threshold (see below) and at least one of the commands
must not be involved in a lock contention that is handled by the "hung" commands
recovery.

134 System Automation for z/OS: Customizing and Programming

Recovery Actions

The recovery action depends on the job definitions (see [“Enabling Long Running]|
[Enqueues (ENQs)” on page 145). If the job can be canceled, the recovery also
removes its waiting commands and terminates its executing commands. The
recovery action is completed either with message ING922E or with message
ING924E. The latter message is repeatedly issued approximately every minute until
the waiting queue becomes empty.

The threshold is calculated by subtracting the number of jobs that are issuing
commands in the command class from the total number of TCBs (50) that are
reserved for command processing. This prevents jobs that repeatedly issue few
commands from being evaluated.

The recovery ends when the message IEE061I is issued.

Note: The dump definitions are not in effect if a dump should be taken when the
job is canceled. This is because the recovery routine of the job that is being
canceled can suppress the dump.

Customization: Automation of handling long-running enqueues is enabled
through the SA z/0OS customization dialogs. For more details, see [“Enabling Long]|
[Running Enqueues (ENQs)” on page 145/

Managing System Removal

The purpose of this function is to isolate failed systems from a Parallel Sysplex by
removing them as quickly as possible. It also ensures fast mean time to recovery
(MTTR) for those system images that you wish to restart immediately if an
unavoidable outage occurs.

Note: This function is unavailable when running on a z/OS image which runs
under z/VM, even if the function is enabled.

In particular, the function automates the messages IXC102A and IXC402D.

The automation of the IXC102A message completes the Sysplex Failure
Management (SFM). Under certain circumstances SFM cannot complete the
isolation of a failed system. This is because SFM's HW isolation, resetting the
channel subsystem (CSS) of the failed system, is driven through the CE. When
connectivity between the system image and the coupling facility is lost, SFM
cannot perform the hardware isolation (ISOLATE command) and defers resetting
the system image until manual operator intervention occurs. Message IXC102A
tells the operator to manually reset the HW and then reply "DOWN" to the
message, after which SFM safely partitions the system image out of the sysplex.
The longer the delay lasts, the more the components and applications that rely on
XCF messaging are impacted. The delay can eventually lead to a sysplex outage
when the failed system has I/O operations pending. Automation of this message
minimizes the delay.

Message IXC402D has the same impact as IXC102A. However, this message
indicates a possible temporary inoperative status of the system due to a missing
status update. For this reason the automation gives the system the chance to
recover before the removal takes place by replying "INTERVAL=sss" to the first
occurrence of message IXC402D. The interval time, sss, is the failure detection
interval that is displayed by the command D XCF,CPL.

The automation does the removal of a system in two stages. The first stage clears
any pending I/O operations by sending a hardware command to the Support

Chapter 12. How to Enable Sysplex Automation 135

Recovery Actions

Element. This requires information about the software running on the hardware.
Because the system issuing message IXC102A or IXC402D does not necessarily
have access to the hardware of the failed system, the automation needs predefined
mapping between software and hardware. Depending on this mapping, it then
routes the hardware command to the system that has access to the hardware of the
failed system. For information about how to do the mapping refer to
|System Removal” on page 142] For further information about the hardware

requirements refer to [[BM Tivoli System Automation for z/OS Planning and|

The second stage replies to the outstanding WTOR with "DOWN" triggering the
removal of the system from the sysplex.

Customization: Automation of message IXC102A is enabled through the SA z/0S
customization dialogs. For more details, see ['Step 4: Automating IXC102A and|
[IXC402D Messages” on page 143

Recovering Auxiliary Storage Shortage

With the automation of local page data sets that is controlled by the recovery flag
of the automation flag MVSESA.PAGE, you can prevent auxiliary storage shortage
outages by dynamically allocating spare local page data sets when needed. The
function checks which job causes the shortage condition and whether additional

page data sets can be added. If this is not possible, the job that is causing the
shortage will be cancelled if this has been defined. For more details see [Table 22 o
I' &

To enable local page data set automation, you should customize the PAGTOTL
parameter (defined in one of the IEASYSxx PARMLIB members used during IPL).
Make sure that you set the PAGTOTL parameter to a value greater than the
number of local page data sets currently used.

Local page data sets must be defined in the master catalog and should not be
SMS-managed. It is recommended that you use pre-allocated local data sets instead
of dynamically allocated ones. This makes the process faster because formatting
newly allocated page data sets is time-consuming. Each predefined local page data
set should be allocated with 10% space of local page space that is currently used
by the system. If predefined page data sets can no longer be allocated, new local
page data sets will be created dynamically.

The following table shows the recovery actions in detail. Generally speaking;

* In case the recovery cannot complete successfully it always terminates with
message AOF953 and a specific reason code.

* On invocation the recovery first checks whether some preformatted page data
sets and the HLQ for data sets that should be dynamically created have been
defined. If none has been defined the recovery terminates with RSN=4.

* If the command PAGEADD returns a message other than IEE782I and IEE783I
the recovery is terminated with RSN=24.
* If an IDCAMS service fails the recovery is terminated with RSN=16.

MVS WorkLoad Manager (WLM) - responsible for the Auxiliary Storage
Management (ASM) - recommends that you automate the message IRA210E rather
than message IRA206E which has replaced the message IRA204E since z/OS
release 1.10. The reason is that the system has already identified the address space
that caused the shortage.

136 System Automation for z/OS: Customizing and Programming

Table 22. Auxiliary Storage Management

Recovery Actions

Recovery |Message Command
MSG IRA2051 Check the maximum number of local page data sets. When the |MVS D ASM,LOCAL
IRA200E value PAGTOTL is reached the recovery is terminated RSN=20.
IRA201E Add a free page data set that has been allocated and formatted = |MVS PAGEADD
in a prior recovery.
If the previous action was unsuccessful and message is not MVS PAGEADD
IRA201E create and add a page data set.
If the previous action was unsuccessful add a pre-formatted data |MVS PAGEADD
set.
If the previous action was unsuccessful and message is IRA201E | MVS PAGEADD
create and add a page data set.
If PAGEADD was successful schedule timer INGT742P for AFTER 00.00:10,
adding more page data sets in case this action was insufficient. | ID=INGT742P
Otherwise, the recovery is terminated with RSN=8 or RSN=12.
IRA204E Save the jobname of the very first message only. Next, check if AT hh:mm:ss
IRA210E the job has been defined for cancellation. Finally, schedule a ID=INGT742J
timer to pop up 10 seconds later than the timer INGT742P. If this
timer does not exist, use the current time.
IRA2021 Delete any pending recovery action. MVS D ASM,LOCAL
PURGE
TIMER=INGT742P
PURGE
TIMER=INGT742J
ILROO9E Mark the page data set “unuseable” if it is a spare data set and |MVS D ASM,LOCAL
remove the volume from the list of available volumes for
dynamic allocation.
If the data set was a spare data set:
* Check the maximum number of local page data sets. When the | pAGEADD
value PAGTOTL is reached the recovery is terminated with
RSN=20
* Create and add a page data set. If PAGEADD was
unsuccessful the recovery is terminated with RSN=8 or
RSN=12
IEE2051 Mark the page data set ‘free’ if it is a spare data set.
PAGE n/a Repeats the recovery of messages IRA200E and IRA205I after the
timer INGT742P has expired.
PAGECRIT [n/a Repeats the recovery of messages IRA201E after the timer
INGT742P has expired.
JOB n/a Cancels the job that caused the recovery after the timer INGT742] | MVS CANCEL

has expired.

Chapter 12. How to Enable Sysplex Automation

137

Hardware Validation

138

Hardware Validation

This function performs cross-validation of the hardware configuration mapped out
in the customization dialogs against the actual hardware configuration that is
running. This information is critical to accurately control logical partitions (LPARs)
on any supported CPC within the HMC/SE LAN over the BCP Internal Interface.

Hardware validation uses the CPC name, Partition name and Partition number to
ensure that the LPARs defined in the customization dialogs are on the correct CPC
and located on the correct partition number. However, this helps only for coupling
facilities because their partition identifiers must be defined in the active CFRM

policy.

For MVS images, information from the HMC/SE (such as system name and
sysplex name that are stored during initialization) is used to verify the
corresponding customization dialog definitions. During initialization of the
automation's Hardware Command Interface and just before a disruptive request is
sent to a partition, new checks are made to ensure that everything matches
correctly.

Note: Only active images can be verified. For inactive images we must still rely on
definitions made in the customization dialogs.

An active system in this context is a system belonging to the same sysplex
as the system that runs the hardware validation, that is SA z/OS checks
only systems and coupling facilities within its own sysplex.

Hardware validation runs on an SA z/OS system primarily during startup, and
subsequently when changes to the definition in the customization dialogs are
applied through the INGAMS REFRESH command. The validation checks the
definitions of all registered systems, that is whenever an SA z/OS system
performs the hardware validation, it validates all systems and coupling facilities
that are active in the sysplex at this point in time. Registered systems are systems
running msys for Operations or SA z/OS that have joined the same XCF group.

The validation of active systems and coupling facilities requires that the CPCs that
host the active systems must all be defined in the customization dialogs.

The data for inactive systems cannot be verified. However, these definitions are
checked for consistency across all registered systems. As soon as one of these
inactive systems or coupling facilities joins the sysplex or is made available for use,
the validation is run for the particular image only.

Retrieving actual hardware information can take up to 5 minutes per CPC
depending on the model and its LPARs. During the time that the hardware
validation takes place all other hardware-related automation is either delayed or
cannot be performed, depending on the type of recovery. For this reason the
validation carries out "delta" processing. That is validating only the data that has
changed. This also includes the absence of data resulting in terminating CPC
connections when CPC definitions are missing that have been applied by a prior
validation. The actions resulting from the validation are performed on ALL
registered systems. This has two advantages:

e you don't need to recycle NetView for changes in hardware definitions.
* you only need to make the changes available to one system.

System Automation for z/OS: Customizing and Programming

Hardware Validation

The first part of the hardware validation triggered by the ACF command or the
automation startup determines what CPC connections must be terminated and
initiated, namely in this sequence. The resulting actions are performed on all
registered systems. When this step has been completed successfully the image
validation is performed.

The image validation collects actual hardware information, and verifies the current
hardware definitions against the actual data and the definitions found on all other
registered systems. It informs you if:

* A real system or coupling facility could not be validated because either actual
hardware information or user definitions are not available

* The image definitions could not be evaluated because the actual hardware
information is not available

* The real system or coupling facility is not active and the image definitions of
some of the registered systems are different

* Any definition value has been corrected that was improperly defined or not
defined at all

Changes in hardware definitions can be made available to all registered systems by

simply invoking the command INGAMS REFRESH on only one of the these

systems. There is one exception: the change of the authorization token value used

for the communication with a particular CPC. A change of this value requires 3

steps:

1. In the first step you must remove the particular CPC definition and then
invoke the ACF command as above.

2. When the command completes successfully the next step is to change the
authorization token value of the CPC at the Support Element.

3. The final step is to define the CPC again with the new token value and invoke
the ACF command again.

Note: This behavior of the INGAMS command applies to the hardware definitions
only.

The second part of the validation is triggered by either the message IXC517I that is
issued when a coupling facility is made available for use, or by the automation
itself when notified that a system joined the sysplex. Both trigger the automation
to perform only the validation of the new system or coupling facility. Multiple
occurrences of messages for the same system or coupling facility are ignored while
this system or coupling facility is validated. In case of a new system, the advantage
here is that the real hardware is validated before the system starts NetView and
the automation. If this automation then detects no difference between its current
definitions and the definitions of the other registered systems—which is the normal
case—only a consistency check takes place. This check does not require any real
hardware information.

Prerequisites

Note: Hardware validation is not supported on MVS systems running under
z/VM.

Chapter 12. How to Enable Sysplex Automation 139

Enabling Hardware-Related Automation

Enabling Hardware-Related Automation

140

To enable the sysplex automation that SA z/OS provides for recovery actions and
coupling facility management, the following definitions must be made in the
customization dialog.

Step 1: Defining the Processor

Use the customization dialog to define a new processor of Entry Type PRO. The
name should be the real physical name of the processor defined in HCD. For more
information, refer to the online help or the section "Creating a New Processor" in
[[BM Tivoli System Automation for z/OS Defining Automation Polici}

Step 2: Using the Policy Item PROCESSOR INFO

Use the Processor Information panel, to define a processor using entry type PRO.

Note: The connection type protocol must be INTERNAL

For more information, refer to the online help or the section "More about Policy
Item PROCESSOR INFO" in [[BM Tivoli System Automation for z/OS Defining|
[Automation Policy)

Step 3: Defining Logical Partitions

If the processor that you have defined runs in LPAR mode, define its logical
partitions using the LPAR Definitions panel. You should define all LPARs that are
physically available on your processor, together with the systems that run on them.

For more information, refer to the online help or the section "More about Policy
Item LPARS AND SYSTEMS" in [[BM Tivoli System Automation for z/OS Defining]
[Automation Policy)

Step 4: Defining the System

Define a system using entry type SYS, and the Define New Entry panel.

Note: To avoid receiving hardware validation messages during SA z/0S
initialization, you should define all your systems (including your coupling
facilities).

For more information, refer to the online help or the section "Creating a New

System" in [BM Tivoli System Automation for z/OS Defining Automation Policy}

Step 5: Connecting the System to the Processor

Connect this system to the processor that you defined in[“Step 2: Using the Policy|
litem PROCESSOR INFO”|and to its logical partition (if you set the processor mode
as LPAR).

Connect this system to the sysplex or standard group (see|“Step 6: Defining|
Logical Sysplexes” on page 141|and [“Step 7: Defining the Physical Sysplex” on|

page 141|).

Note: MVS SYSNAME and the Image/ProcOps Name must be the same.

Restriction:

System Automation for z/OS: Customizing and Programming

Enabling Hardware-Related Automation

Usually, the MVS SYSNAME may begin with a number. However, in this case, it
must be the same as the Image/ProcOps Name, which cannot begin with a number.
Therefore, this naming restriction also applies to the MVS SYSNAME.

Step 6: Defining Logical Sysplexes
Define EACH logical sysplex (systems within the same XCF group ID) using entry
type GRP with group type SYSPLEX.

Use policy SYSPLEX to enter the real physical sysplex name. You can use the same
name in several SYSPLEX GRPs.

Use policy SYSTEMS to connect all systems within the same XCF group ID to the
SYSPLEX GRP. A system can only be connected to one SYSPLEX GRP.

Step 7: Defining the Physical Sysplex
Define your real physical sysplex using entry type GRP with group type
STANDARD.

Use policy SYSTEMS to connect all systems of your physical sysplex to the
STANDARD GRP.

Enabling Continuous Availability of Couple Data Sets

Couple data sets (CDSs) contain important information about how to manage
certain aspects of your sysplex. For example, the SFM CDS (sysplex failure
management couple data set) defines how the system manages system and
signalling connectivity failures and PR/SM™ (Processor Resource/Systems
Manager) reconfiguration actions.

The following couple data sets are particularly important for the functioning of
your Parallel Sysplex:

e The SYSPLEX couple data set, which defines the systems and the XCF groups of
the sysplex

* The CFRM couple data set, which defines the coupling facilities and structures
of the sysplex

It is recommended that you define alternate couple data sets for all couple data
sets in your sysplex. These alternate couple data sets serve as backups when the
primary CDS fails.

With the customization dialog you can specify a series of spare volumes for every
CDS type, for example, SYSPLEX, ARM, CFRM. The first volume in the series is
used to create an alternative CDS if one of the primary alternate CDSs fails.

In the customization dialog you define the potential alternate couple data sets
using the Group entry type. Select a sysplex group, then select its policy item
SYSPLEX (define sysplex policy) from the panel Policy Selection.

The Sysplex Policy Definition panel is displayed if you select policy item SYSPLEX
from the Policy Selection panel for sysplex groups.

For a description of this panel refer to the online help or the section "More About
Polici Item SYSPLEX" in [[BM Tivoli System Automation for z/OS Defining Automation|

Chapter 12. How to Enable Sysplex Automation 141

Enabling WTO(R) Buffer Shortage Recovery

Enabling WTO(R) Buffer Shortage Recovery

You can customize the WTO(R) buffer shortage recovery of SA z/OS with the
MESSAGES/USER DATA policy item of the customization dialog for the MVS
Component entry type (MVC). Code definitions for the message ID WTOBUF are
used to specify jobs that are canceled or kept in case a WTO(R) buffer shortage is
threatening. The jobs that you select for cancelation will then no longer issue
WTO(R)s.

Specify code definitions for message ID WTOBUF with the following values:

CODE1
Specifies the name of the job which might or might not be canceled.

CODE2
This must be WTO, WTOR, or * to indicate which requests the job (or jobs)
might or might not be canceled for. Use just * to specify WTO and WTOR
requests.

CODE3
This must be blank.

Value Returned
This must be CANCEL to indicate that the job (or jobs) might be canceled
or KEEP to indicate that they might not.

Example:
Code 1 Code 2 Code 3 Value Returned
JOB1 WTOR KEEP
JOB2* WTO KEEP
JOB3* * CANCEL
JOB4* * KEEP
* * KEEP

To set up the default behavior for all jobs not explicitly defined, a specification of
CODE1=* and CODE2=* is needed. To indicate that all other jobs might be
canceled specify CANCEL in the Value Returned field, otherwise specify KEEP.

The job name *MASTER* cannot be entered in the Code 1 field. Even if your
default behavior is set up to cancel all jobs that have not been explicitly defined, a
cancel command is not issued against *“MASTER* if it is the job name being
checked. This is because *MASTER* is non-cancelable.

Enabling System Removal

142

SA z/0S helps you to resolve pending 1/0Os for systems being removed from the
sysplex. See[“Recovery Actions” on page 131|and [“Managing System Removal” on|

|Eage 13§| for further details.

Because the automation must know where the system is located to send the
command to the appropriate Support Element, you must use the customization
dialog to define its hardware configuration.

The BCP Internal Interface allows you to perform hardware operations from each
NetView in your sysplex member as long as its processor hardware supports this.
Refer to[IBM Tivoli System Automation for z/OS Planning and Installation| for more
information.

System Automation for z/OS: Customizing and Programming

Enabling System Removal

— Hint:
If you want to use the IXC102A automation, make sure there is no processor
operation related IXC102A automation defined in your automation policy.
Likewise, if you want to continue to use the processor operations based
automation of messages IXC102A and IXC402D, the IXC102A automation flag
must be disabled.

Step 1: Defining the Processor and System

The processor and system must be defined as described in
[Hardware-Related Automation” on page 140

Step 2: Defining the Application with Application Type IMAGE

Use entry type APL to define a new application with Application Type IMAGE and
subsystem name that is the same as the Image Name of the system that this
application represents (as defined in [“Step 4: Defining the System” on page 140).

Use entry type APL and select policy item APPLICATION INFO for your system.
On the panel Application Information you can define a new application type IMAGE.
For more information, refer to the online help or the section "Policy Items for
Applications" in[IBM Tivoli System Automation for z/OS Defining Automation Policy}

Because the application has been defined as type IMAGE, the job name is set by
default to the subsystem name and cannot be changed.

The Subtype, Scheduling Subsystem, JCL Procedure Name, ARM Element Name,
and WLM Resource Name are forced to be blank.

Some other definitions in the policy item APPLICATION INFO are also defaulted:
¢ the Job Type is forced to NONMVS
* the Monitor Routine is defaulted to INGMTSYS if nothing is specified

* the External Startup is defaulted to ALWAYS if the Monitor Routine is
INGMTSYS

¢ the External Shutdown is defaulted to ALWAYS if the Monitor Routine is
INGMTSYS

For more information, refer to the online help or the section "More About Policy
Item APPLICATION INFO" in [IBM Tivoli System Automation for z/OS Defining|
[Automation Policy)

Step 3: Defining an Application Group

Because you can only automate applications by linking them to systems via an
application group, you need to define an application group for the IMAGE
applications.

Step 4: Automating IXC102A and IXC402D Messages

You can automate IXC102A and IXC402D messages to avoid sysplex outages.

Note: The following shows examples for defining commands and codes for
message IXC102A.

Chapter 12. How to Enable Sysplex Automation 143

Enabling System Removal

144

You can specify one of the following four hardware commands for each system in
the sysplex that is automated. If you specify nothing SYSRESET CLEAR is used.

* SYSRESET [CLEAR]

* DEACTIVATE

* ACTIVATE [P(image_profile_name)]
* LOAD [P(load_profile_name)]

Where:
CLEAR Indicates that the storage is cleared
P Specifies the profile to be used. The name can consist of up to 16
alphanumeric characters. If the parameter is omitted, the last used
profile is taken.
— Note:
The following restriction applies to the hardware commands ACTIVATE and
LOAD:

Both commands invoke processor functions that can cause asynchronous
events such as operator messages at BCP (Basic Control Program) Internal
Interface initialization time or processor hardware wait states. Currently, the
BCP Internal Interface does not allow the monitoring and control of these
events.

Use policy item MESSAGES/USER DATA of the SA z/OS customization dialog
within the application type IMAGE you created to define commands and codes for
message IXC102A and IXC402D. Enter C or S in the Cmd column and IXC102A in
the Message ID column (or IXC402D for IXC402D message automation). For more
information, refer to the online help or the section "MESSAGES/USER DATA
Policy Item for Applications " in[IBM Tivoli System Automation for z/OS Defining|
lAutomation Policy} The definitions here also apply to message IXC402D.

Pressing Enter displays the CMD Processing panel, as shown in Use this
panel to specify a valid hardware command for the image in the Command Text
column and a "Pass/Selection" value that must match the "Value Returned"
definition specified on the Code Processing panel.

Cmd Ps AutoFn/+ Command Text
. ACTCODE LOAD P (LOADPROF)

Figure 24. Sample Panel for Command Processing

On the Message Processing panel enter k to define codes. Specify on the Code
Processing panel, as shown in the following:

Code 1 Code 2 Code 3 Value Returned
IXC102A BCPII ACTCODE

Figure 25. Sample Panel for Code Processing

If you want to automate messages IXC102A and IXC402D , you must enter IXC102A
for Code 1 and BCPII for Code 2 for both messages.

System Automation for z/OS: Customizing and Programming

Enabling System Removal

Step 5: Verify Automation table entries

Verify that the entries of IXC102A and IXC402D of the predefined messages are
used in your automation table and that the auto-operator AUTXCF and AUTXCF2
are defined (see *BASE sample policy).

Enabling Long Running Enqueues (ENQs)

If you automate long running ENQs, you must define the following:
* The resource or resources that are being checked
* The time frame when a long ENQ is detected

If you automate "hung" commands, you must define the following:

* The command (or commands) that are being monitored or excluded from
monitoring

* The time frame for each command that a command is granted for completion or,
if commands are to be excluded from monitoring, the exclusion keyword

* The action to be taken against this command if this command is determined to
be a blocker of other commands or jobs

In addition, the following definitions can be made:

¢ The names of jobs that should be canceled or kept when detecting a long ENQ,
a "hung" command, or command flooding

* The snapshot interval for a command class

* The title of the dump taken before the job is cancelled

e The default storage areas to be dumped

* Symbol definitions to be used when the dump specifications are provided by a
PARMLIB member

Use the entry type GRP in the customization dialog to define the following

policies:

* Resource definition

JOB/ASID definitions

IEADMCxx symbols

¢ Command definition

* Snapshot interval definition

Step 1: Defining Resources

Use the Long Running ENQ Resource Definition panel to define your resources.
This panel is displayed if you select policy item RESOURCE DEFINITIONS from
the Long Running Enqueue Policy section of the Policy Selection panel for sysplex
groups. For more information, refer to the online help or the section "More About
Policy Item RESOURCE DEFINITIONS" in [[BM Tivoli System Automation for z/OS|
IDefining Automation Policy}

Step 2: Making Job/ASID Definitions

Use the Long Running ENQ Job/ASID Definitions panel that is displayed if you
select policy item JOB/ASID DEFINITIONS from the Long Running Enqueue
Policy section of the Policy Selection panel for sysplex groups. For more
information, refer to the online help or the section "More About Policy Item
JOB/ASID DEFINITIONS" in |[BM Tivoli System Automation for z/OS Defining|
[Automation Policy}

Chapter 12. How to Enable Sysplex Automation 145

Enabling Long Running Enqueues (ENQs)

Step 3: Defining IEADMCxx Symbols

Use the Long Running ENQ IEADMCxx Symbols panel that is displayed if you select
policy item IEADMCxx SYMBOLS from the Long Running Enqueue Policy section

of the Policy Selection panel for sysplex groups. For more information, refer to the

online help or the section "More About Policy Item IEADMCxx SYMBOLS" in

[Tivoli System Automation for z/OS Defining Automation Policy}

Step 4: Defining Commands

Use the Long Running Command Definition panel to define your commands. This
panel is displayed if you select policy item COMMAND DEFINITIONS from the
Long Running Enqueue Policy section of the Policy Selection panel for sysplex
groups. For more information, refer to the online help or the section "More About
Policy Item COMMAND DEFINITIONS" in [[BM Tivoli System Automation for z/OS|
IDefining Automation Polici}

Step 5: Defining Snapshot Intervals

Use the Command Flooding Definition panel to define the individual snapshot
times. This panel is displayed if you select policy item COMMAND FLOODING
from the Long Running Enqueue Policy section of the Policy Selection panel for
sysplex groups. For more information, refer to the online help or the section "More
About Policy Item COMMAND FLOODING" in [IBM Tivoli System Automation for]
z/OS Defining Automation Polici]

Enabling Auxiliary Storage Shortage Recovery

To prevent auxiliary storage shortage outages you can predefine local page data
sets, using the SA z/OS customization dialog for entry type GRP to define the
following:

* local page data set
* job definitions

Step 1: Defining the Local Page Data Set

Use the Local Page Data Set Recovery panel that is displayed if you select policy
item LOCAL PAGE DATA SET from the Local Page Data Set Policy section of the
Policy Selection panel for sysplex groups. For more information, refer to the online
help or the section "More About Policy Item LOCAL PAGE DATA SET" in
[Tivoli System Automation for z/OS Defining Automation Polici]

Step 2: Defining the Handling of Jobs

Use the Local Page Data Set Recovery Job Definition panel that is displayed if you
select policy item JOB DEFINITIONS from the Local Page Data Set Policy section
of the Policy Selection panel for sysplex groups. For more information, refer to the
online help or the section "More About Policy Item JOB DEFINITIONS" in
[Tivoli System Automation for z/OS Defining Automation Policy}

Defining Common Automation ltems

146

There are definitions that relate to utilities running as a started task. The first one
(Temporary Data Set HLQ/TEMPHLQ) replaces the usage of the first qualifier of
the automation status file. The second definition (Started Task Job
Name/STCJOBNM) allows the unique assighment of started task job names
scheduled by the automation in case you have dedicated job name assignments
that conflict with the procedure names provided by the automation.

System Automation for z/OS: Customizing and Programming

Defining Common Automation ltems

It is recommended that you define the Temporary Data Set HLQ/TEMPHLQ. If it
is not defined, the automation uses the first qualifier of the automation status file.

You can define both of these items using the Sysplex Policy Definition panel that is
displayed if you select the policy item SYSPLEX from the Policy Selection panel for
sysplexes. For more information, refer to the online help or the section "More
About Policy Item SYSPLEX" in [IBM Tivoli System Automation for z/OS Defining
|Automation Policy}

Customizing the System to Use the Functions

Additional Automation Operator IDs
To automate the Parallel Sysplex, you must define the additional automation
operator IDs. Refer to Table 7 of [[BM Tivoli System Automation for z/OS Defining]
lAutomation Policyl You can import these auto-operator definitions from the *BASE
sample policy provided.

Switching Sysplex Functions On and Off

Use the SA z/0S customization dialog to specify the following minor resource

names:

CDS For the recovery of alternate CDSs.

ENQ Enables the handling of the next four individual recoveries.
ENQ.CMDFLOOD

Enables the handling of commands that flood a particular
command class.

ENQ.HUNGCMD
Enables the handling of jobs and commands that inhibit other
commands from completing execution.

ENQ.LONGENQ
Enables the handling of long-running ENQs.

LOG For the recovery of the system log.

LOGGER For the recovery of the system logger.

PAGE For the recovery of auxiliary storage shortage.
WTO For the recovery of WTO(R) buffer shortages.
XCF For automating messages IXC102A and IXC402D.

By default, all recovery actions are enabled. If you want to disable them, use the
customization dialog Flag Automation Specification and set the recovery flag to NO.

Note: You can change the automation recovery flag during run time by using the
command INGAUTO.

Chapter 12. How to Enable Sysplex Automation 147

Customizing the System to Use the Functions

148 System Automation for z/OS: Customizing and Programming

Chapter 13. Automating Networks

Automation Network Definition Process

This section summarizes the steps for defining an automation network to
SA z/0OS. More detail for each step of the process is provided later in this chapter.

1. Define your message forwarding paths between different systems. To do this,
you define:

* A primary focal point, where all notifications are sent.

¢ An optional backup focal point, used when the primary focal point is
unavailable.

¢ Target systems, which are monitored and controlled by the focal point
system.

* Gateway sessions between the systems.

[“Defining Gateway Sessions” on page 150 describes how to define gateway
sessions.

2. Modify the NetView definitions to reflect your automation network
configuration. The chapter on how to install SA z/OS on host systems in
[Tivoli System Automation for z/OS Planning and Installation| provides details.

For an example of the automation network definition process, see also the chapter
about installing SA z/OS on host systems in [IBM Tivoli System Automation for z/OS|
(Planning and Installation|

These definitions create a path allowing message forwarding from target systems
to the focal point system.

A message forwarding path is best implemented by defining systems in the
following top-down manner:

1. Primary focal point system
2. Backup focal point system
3. Target systems

Defining the primary focal point first ensures that it is ready to handle forwarded
messages as soon as forwarding is turned on for the target systems.

If the message forwarding path is not yet implemented on all systems in an
automation network, messages are displayed to notification operators on the target
systems. Once the message forwarding path is implemented, notifications are
forwarded to the focal point system.

If the target systems are implemented first, additional overhead occurs because the
target systems unsuccessfully attempt to forward notifications, and the notifications
are logged in the NetView log.

Defining an SDF Focal Point System

The focal point system and backup focal point systems are defined using the
Network entry type in the customization dialog. Each system has a single entry in
the automation policy defining the next system or domain in the message
forwarding path. [Figure 26 on page 150 shows an example automation network. In

© Copyright IBM Corp. 1996, 2012 149

Automation Network Definition Process

150

this example, the primary focal point system is CHIO1. The backup focal point is

CHIO2.
Primary focal point Backup focal point
—» CHIO1 CHIO02
7y P Y
v
Target system ATLO1 ¢
Targetsystem | — - ATL02 |«

Figure 26. Focal Point Forwarding Definitions for Systems

SA z/0S always displays messages on the local system. It forwards them to a
focal point, if there is one defined.

Defining Gateway Sessions

To define gateway sessions:

1. For each system, define the outbound gateway autotask (GATOPER) on the
Automation Operators policy object of the customization dialog. See
[an Outbound Gateway Autotask”|for details.

2. On the SA z/0S Network policy object, use the GATEWAY policy item to

define the domains of all systems within the network which need to
communicate with each other.

3. Define operator IDs used for all inbound and outbound gateway autotasks
used on the system in the NetView DSIPARM data set member DSIOPFE. See the
chapter on how to install SA z/OS on host systems in |[IBM Tivoli Syster]
[Automation for z/OS Planning and Installation| for details.

Defining an Outbound Gateway Autotask
In any system, only the outbound gateway task is defined using the Automation
Operators entry type.

If GATOPER has not previously been defined, type the automation operator name,
gatoper, in the Automated Function field of the Auto Operator Definition policy item,
as shown in [Figure 27 on page 151|

System Automation for z/OS: Customizing and Programming

Automation Network Definition Process

~
COMMANDS ACTIONS HELP
AOFPIA00 Automation Operator Definitions Row 1 to 10 of 20
Command ===> SCROLL===> PAGE
Entry Type : Automation Operators PolicyDB Name : USER_PDB
Entry Name : GATEWAY_AUTOOPS Enterprise Name : USER_ENTERPRISE
Actions: S = Select M = Move B = Before A = After I = Insert
Automated
Action Function Messages for this Operator (* notation ok)
gatoper
& %

Figure 27. Automation Operator Definitions Panel

You do not need to specify any messages for GATOPER. When you press Enter,
the Automation Operator NetView Userids panel is displayed, as shown in
[Figure 28 on page 152

If GATOPER has previously been defined, select it by entering an S in the Action
column.

Enter the NetView operator ID that is associated with the GATOPER function on
the Automation Operator NetView Userids panel.

Note:
’(This NetView operator ID must be unique within the enterprise.

For example, to define the outbound gateway autotask for system CHIO1 in the
automation network shown in [[BM Tivoli System Automation for z/OS Planning and|
the values shown in [Figure 28 on page 152 are specified.

Chapter 13. Automating Networks 151

Automation Network Definition Process

~
COMMANDS HELP
AOFPIAO1 Automation Operator Definitions
Command ===>
Entry Type : Automation Operators PolicyDB Name : USER_PDB
Entry Name : GATEWAY_AUTOOPS Enterprise Name : ENTERPRISE_NAME
Automated Function: GATOPER
Messages assigned:
MVS Console Name . . Console for NetView cmds
Enter automation operators and NetView operator(s) to receive messages.
Automation Operators NetView Operators
Primary . . GAT&DOMAIN. Id1 ..
Backup. . . Id2 ..
Id 3 . .
Id 4 . .
Id 5 . .
Id 6 . .
- S J

Figure 28. Automation Operator NetView Userids Panel

Note: This generic GATOPER definition works because the &DOMAIN. symbol is
not resolved until the ACF is loaded by the automation agent - at which
point it resolves to that agent's NetView domain. As a result, provided your
NetView domains are unique within your enterprise it will generate a set of
unique GATOPER operator ids.

Defining Automatically-Initiated TAF Fullscreen Sessions

152

You can automatically establish Terminal Access Facility (TAF) fullscreen sessions
for applications that SA z/OS monitors, so that the operators need not define the
sessions on a daily basis.

These TAF fullscreen sessions are defined in the FULL SESSIONS policy item for a
Network policy object.

In addition to defining TAF fullscreen sessions using the customization dialog, you
follow the NetView process for customizing TAF fullscreen sessions, as outlined in
Tivoli NetView for z/OS Customization Guide.

Once TAF fullscreen sessions are set up, they can be managed using the TAF
Fullscreen Menu in the SA z/0S Operator Interface. See [[BM Tivoli Systent]
|Automation for z/OS User’s Guide| for more information on managing TAF fullscreen
sessions.

To define an application on the Fullscreen TAF Application Definition panel that
you reach by selecting the FULL SESSIONS policy item of a Network policy object,
specify the following;:

* The session name, or the name of the application that a TAF fullscreen session is
to be established for, for example, TSO. This name is displayed in the
Description field on the TAF Fullscreen Menu operator panel. This value can be
the same as that used for the application ID.

* The application ID. You can obtain this value from the library containing the
network definitions (VTAMLST) or from your network system programmer.

System Automation for z/OS: Customizing and Programming

Defining Automatically-Initiated TAF Fullscreen Sessions

¢ The system name that the application runs on, for example, CHIO1. This is an
information-only field and is displayed in the System field on the TAF
Fullscreen Menu operator panel.

For example, the following panel defines a TAF fullscreen session for TSO in
system CHIO1:

~N
COMMANDS ~ HELP
AOFPINE3 Fullscreen TAF Application Definition Row 1 to 10 of 20
Command ===> SCROLL===> PAGE
Entry Type : Network PolicyDB Name : USER_PDB
Entry Name : FOCAL_NETWORK Enterprise Name : USER_ENTERPRISE
Enter the applications with which SA z/0S operators can establish TAF
sessions automatically using the operator interface.
Session Name AppTlication ID System
TSO TAIN1 CHIO1
& — %

Figure 29. Fullscreen TAF Application Definition Panel

Chapter 13. Automating Networks 153

154 System Automation for z/OS: Customizing and Programming

Chapter 14. Defining a VTAM Application to SA z/0S

VTAM applications need to have Application nodes activated for the application to
operate correctly. This is normally not a problem if an application is to run on a
single system. However, if the application is to be switched from one system to
another (via a move group or server group), the application node definition must
be deleted from the system that the application is moving from. If this is not done,
users may not be able to log on to the application because there is a definition for
the application node that is not active, that is, the application has not opened the
node ACB.

To alleviate this problem, the application node must be deleted from the old
system and created on the new system. Unfortunately, the only way to delete a
node in VTAM is to deactivate its major node, that is, the member that it is defined
in.

Newer releases of VTAM have introduced the concept of Model node definitions. In
this case a major node is created with the type of node and a name that includes
wildcards. Whenever a node of the type is accessed, VTAM will use the name
requested to match the models. It will then dynamically create a node based on the
model definitions with the name requested. When the node is no longer required it
will delete it. What this means for application nodes is that a model definition can
be defined once on each VTAM in the network that the application might be run
on. Then when the application is started and opens its ACB, VTAM will
dynamically create the node for it. Likewise when moving the application, upon
closing the ACB, VTAM will delete the node and another VTAM on another
system will dynamically create the node.

VTAM applications may require recovery commands to be issued if VTAM is
restarted, or the VTAM application node is reactivated. These commands differ
from subsystem to subsystem and can be specified in the Messages/User Data
policy items as described in the following section.

The INGVTAM command provides a method of activating the Major Nodes for an
application before the application is started, and deactivating the Major Nodes
after it is down. To enable the function you must code the INGVTAM command in
the prestart, ACORESTART, post-shut policies. In addition, if VTAM should ever
be restarted whilst the applications are running, the major nodes must be
reactivated. This can be accomplished by coding the INGVTAM command in the
UP messages/user data policy for the VTAM subsystem.

Registering VTAM Application Subsystems with SA z/OS Recovery

To enable VTAM application recovery to take place, the subsystems must be
registered with the SA z/OS recovery code. This is achieved by using the
INGVTAM command that is described in [[BM Tivoli System Automation for z/OS)
IProgrammer’s Referencd. The following application policy items must be customized:
1. PRE-START policy
The PRE-START policy must have at least a NORMal start item with the
INGVTAM command to activate a list of major nodes. The following command
can be used as an example:
INGVTAM &SUBSAPPL REQ=ACTIVATE MAJNODE=(majnodel,majnode2,...)

© Copyright IBM Corp. 1996, 2012 155

Defining a VTAM Application to SA z/0OS

156

Where majnoden are VTAM application major nodes. Each major node will be
varied active to VTAM when the subsystem prestart commands are issued.
Note, it is expected that only one of the major nodes will contain the minor
node that the VTAM application subsystem will use.

2. POST-SHUTDOWN policy
The POST-SHUTDOWN policy is used to deregister the subsystem with
SA z/0OS VTAM application recovery. Use the INGVTAM REQ=DEACTIVATE
command in the policy. For example:

INGVTAM &SUBSAPPL REQ=DEACTIVATE

The DEACTIVATE request issues a vary net inactive for each major node
registered by the REQ=ACTIVATE. The vary is not done if the major node is
shared by other subsystems that have also registered the major node. When the
last subsystem registered issues an INGVTAM REQ=DEACTIVATE, the major
node will be varied inactive. The only exception to this is when the major node
contains model resources with wildcards in the node definition. In this case the
major node is never inactivated.

3. ACORESTART Messages/User Data policy
The ACORESTART message policy must have the same definition as the
PRE-START policy. This policy item is used to reregister the subsystem with
SA z/0OS VTAM application recovery.

4. VIAMUP Messages/User Data policy
Enter commands that are issued when the VTAM subsystem is restarted.
Typically these commands reopen the VTAM ACB that the subsystem uses to
communicate with VTAM.

5. Relationships policy
Optionally enter a relationship for the subsystem to ensure that the prestart
commands are only issued when VTAM is up. The required relationship is:
PrepAvailable(WhenAvailable),Passive,Weak -> VTAM/APL/=

Where VTAM is the name of the VTAM subsystem and that is the supporting
resource. Passive forces the relationship to wait until VTAM is UP. Weak
specifies that only the supporting resource status is checked.

In addition the UP message for VTAM should have the following command:
INGVTAM REQ=ACTIVATE

When INGVTAM is executed with REQ=ACTIVATE and no positional subsystem,
it finds all the subsystems that had previously registered via INGVTAM and issues
Vary NET ACT commands for their major nodes. After this has been done, it will
execute any policy command(s) that is/are specified to USER MESSAGE VTAMUP
for the subsystems.

System Automation for z/OS: Customizing and Programming

Chapter 15. Shutting Down z/OS systems in a GDPS

Environment

SA z/0S allows you to shutdown z/OS systems either through the INGREQ ALL
command in a GDPS® production environment or from a GDPS controlling system.
There are three distinct phases in the final shutdown processing that are defined
using the special message id SYSTEM_SHUTDOWN message/user data policy
item for the MVS Component entry type:

Phase 0
This phase is entered prior to shutting down the resource that is identified
by the GDPS STOPAPPL parameter (the STOPAPPL resource). In this phase
you can perform any action before the actual system shutdown starts.

Phase 1
This phase begins when the resource that is identified by the GDPS
STOPAPPL parameter (the STOPAPPL resource) has been terminated. In
this phase you can specify additional INGREQ stop commands or any
other commands through NetView to terminate any subsystems that are
still present.

Phase 2
This phase begins after the termination of OMVS and any local automation
manager (PAM and SAMs). Only NetView commands or z/OS commands
issued through NetView can be specified. For example, the MVS Z EOD
command.

Notes:

1. OMVS and all local automation managers are always shutdown by
SA z/0S automatically. Do not specify termination commands for
OMVS or automation managers in PHASE1 or PHASE2.

2. Be aware that the NetView address space is still present and must stay
up in order to signal the nearly termination of the system to GDPS.

3. Whenever NetView is ended without its CLOSE command being
invoked, it cannot automatically archive recent messages in its active
Canzlog. This can be accomplished instead by invoking NetView 's
CANZLOG CUE command during Phase 2.

The scenario is based on the provided best practice policies *BASE and *GDPS. For
more details refer to the MVC entry GDPS_SYSTEM_SHUTDOWN in the *GDPS
best practice policy.

Example Definition

The actions you take to shutdown z/OS systems from within GDPS are defined
using the SYSTEM_SHUTDOWN message/user data policy item for the MVS
Component entry type. These actions can include instructing SA z/OS to
shutdown resources out of the affected dependency path of GDPS STOPAPPL,
shutdown file systems, and so on.

Table 23. Example SYSTEM_SHUTDOWN Command Processing Entry

Cmd

Ps/Select

AutoFn/* Command Text

PHASE1

INGREQ RACF/APL/&SYSNAME. REQ=STOP PRECHECK=NO REMOVE=SYSGONE VERIFY=NO OUTMODE=LINE

© Copyright IBM Corp. 1996, 2012 157

Shutting Down z/OS systems in a GDPS Environment

Table 23. Example SYSTEM_SHUTDOWN Command Processing Entry (continued)

Cmd

Ps/Select

AutoFn/* Command Text

PHASE1

INGREQ RRS/APL/&SYSNAME. REQ=STOP PRECHECK=NO REMOVE=SYSGONE VERIFY=NO OUTMODE=LINE

PHASE1

INGREQ GDPS_ALL/APG/&SYSNAME. REQ=STOP PRECHECK=NO REMOVE=SYSGONE VERIFY=NO OUTMODE=LINE

PHASE1

INGREQ LOOKASIDE/APG/&SYSNAME. REQ=STOP PRECHECK=NO REMOVE=SYSGONE VERIFY=NO OUTMODE=LINE

PHASE1

INGRCHCK BASE_SYS/APG/&SYSNAME.OBSERVED=(SO HA)

PHASE1

INGRCHCK LOOKASIDE/APG/&SYSNAME.OBSERVED=(SO HA)

PHASE?2

MVS Z EOD

158

[Table 23 on page 157| shows example definitions for the SYSTEM_SHUTDOWN
entry that place stop votes against the listed resources in PHASE] in a sequential
order. The desired completion of the resource shutdown is processed in parallel.
The specified INGRCHCK command at the end of the PHASE1 sequences waits for
the completion of the stop requests for the specified resources.

For example:
INGRCHCK LOOKASIDE/APG/&SYSNAME OBSERVED=(SOFTDOWN HARDDOWN)

For more information about the INGRCHCK command, see [[BM Tivoli Systerm|
|Automation for z/OS Programmer’s Referencel

If synchronization is necessary, the FDBK option for the INGREQ command
permits waiting until the appropriate subsystem has been shutdown. The
FDBK=WAIT option causes an INGREQ stop command to be processed
sequentially. In this way it slows down the shutdown process.

The primary and all secondary automation managers (PAM and SAMs) on the
local system will be shutdown by SA z/OS automatically unless they are moved
to another system. OMVS will be shutdown by SA z/OS automatically too. Only
the MVS Z OED command is issued in PHASE2.

System Automation for z/OS: Customizing and Programming

Chapter 16. WTOR Processing

When System Automation for z/OS receives WTORs (write-to-operator-with-reply
requests), it either automatically replies to them, or stores them if they are to be
used for recovery or to shut down the subsystem that issued them. WTORs that
are stored for later use are known as outstanding WTORs.

Process Flow of WTORs

All WTORs that are issued at a system should be forwarded to NetView.
Otherwise SA z/0S is not able to process them.

From NetView V5R2 the following definition in the message revision table ensures
that all WTORs are provided to NetView for automation:
UPON (ALWAYS)
SELECT
* Ensure all WTORs are being automated
WHEN (WQE SUBSTR 345 C2D "= "+0")
REVISE("Y" AUTOMATE)
OTHERWISE
END

For earlier releases of NetView:

¢ The known WTORs that are to be forwarded to NetView have to be defined for
automation in the MPF table

¢ The unknown WTORs have to be forwarded by means of an assembler exit

Incoming WTORs are processed by the NetView automation table (AT) and this
triggers commands according to the processing purpose:

Called automation routine Processing Purpose

ISSUEACT 1

. Issue commands or replies (or both) that have been
defined to a subsystem.

2. Store the WTOR if it has not been replied to.

ACTIVMSG, HALTMSG, 1. Update the status of the subsystem that issued the
TERMMSG WTOR.

2. Issue defined commands or replies (or both).
3. Store the WTOR if it has not been replied to.
INGMON 1

. Issue commands or replies (or both) that have been
defined to a monitor resource.

2. Store the WTOR if it has not been replied to.
OUTREP Store the WTOR.

The commands (other than OUTREP) are routed to the first active task that is
defined in the AT synonym %AOFOPGSSOPER%. Thus they are usually routed to
the work operator of the subsystem that issued the WTOR. This is done based on
the job name that is associated with the WTOR.

© Copyright IBM Corp. 1996, 2012 159

WTOR Processing

Automation routines that process WTORs from subsystems that are not defined in
SA z/OS or are from MVS components are routed to tasks that the WTORs have
been assigned to based on their message ID.

The OUTREP command is routed to the first active task that is defined in the AT
synonym %AOFOPSYSOPER%.

Actions in Response to Incoming WTORs

You can use the MESSAGES/USER DATA automation policy item to define what

response SA z/0S should make to incoming WTORs for applications, monitor

resources and MVS components, as follows:

¢ Use the CMD action (possibly combined with the CODE action) to define
commands that are to be issued in response to an incoming WTOR.

* Use the REP action (possibly combined with the CODE action) to define a reply
that is to be made immediately in response to an incoming WTOR.

* Use the AUTO action to define the incoming WTOR as a status message that
changes the status of the subsystem that issued the WTOR.

NetView automation table statements are created that call the relevant command,
depending on the defined actions.

If you used CODE definitions to define actions, the automation table statements
that are created have to be supplemented with an OVR action to tell SA z/OS
what variable information is to be extracted from the WTOR and how to pass this
data as code values to the related command.

WTORs that have no actions defined for them are stored by SA z/OS via
OUTREP. Appropriate automation table statements are created for this purpose.

Customizing how WTORs Are Stored by SA z/0OS

SA z/0S keeps track of all outstanding WTORs that have not yet been replied to
and displays them via SDF or NMC.

These outstanding WTORs include:

* Permanent outstanding WTORs that are issued by applications at startup and
thus provide an interface for critical operator communication and shutdown

* WTORs that no replies have been defined for in the SA z/0OS automation policy

* WTORs that were issued before SA z/OS had initialized or during down time
of SA z/0S

You can use the automation policy to define the severity for outstanding WTORs
and a priority that allows you to distinguish between primary and secondary
WTORSs:

Severity
The severity of a WTOR determines the color of the WTOR in SDF and
NMC. The following values can be specified for the severity:

NORMAL Ordinary messages that do not indicate a problem.
UNUSUAL Messages that might indicate a problem.
IMPORTANT Messages that indicate serious problems.

IGNORE Messages that are to be ignored by SA z/0OS.

160 System Automation for z/OS: Customizing and Programming

WTOR Processing

Priority
A primary WTOR is stored and can later be used for operator
communication and to shut down the subsystem that issued it. In contrast,
secondary WTORs are replied to immediately, or may be stored to be
displayed in SDF and NMC.

This customization is done with code definitions in the MESSAGES/USER DATA
policy item for a message ID of WTORS. For details see the description of the
OUTREP command in [[BM Tivoli System Automation for z/OS Programmer’s Reference}

Processing of Primary WTORs

To prevent SA z/OS from replying to primary WTORs as soon as they are
received, the replies are not defined directly for the message ID of the primary
WTOR. Instead, the issuing of replies to primary WTOR:s is invoked by other
messages or executed commands. Thus the replies for primary WTORs that are to
be deferred are defined for the ID of these invoking messages, or the replies to be
issued are provided for a predetermined message ID. For example, the
SHUTDOWN automation policy item is used to define the replies to be issued
during shutdown.

The reply ID of any stored, primary WTOR to a subsystem can be used for
operator communication or the shutdown of this subsystem.

If SA z/OS has to communicate with a subsystem by issuing a reply but an
outstanding WTOR has not yet been stored for the subsystem, the RETRY option is
used to wait for the required WTOR.

You can define multiple replies with the same pass or selection option for a
message ID. These replies can be used in response to a sequence of incoming
primary WTORs.

Example

Message ABC123D is issued by application ABCAPPL during startup as
permanent, outstanding WTOR and SA z/OS stores it as primary WTOR for this
application. During the lifetime of the application, whenever message ABC789I is
issued in special situations, a reply should be issued to the permanent, outstanding
WTOR ABC123D for this application. The MESSAGES/USER DATA automation
policy item for message ID ABC789I of the application is used to define this reply.

When message ABC789I is issued by the application, SA z/OS retrieves the reply
ID of the permanent, outstanding WTOR and issues command MVS R 117,ABC
RESTORE, as shown in|[Figure 30 on page 162

Chapter 16. WTOR Processing 161

WTOR Processing

Reply defined for message ABC789I:

Entry Name : ABCAPPL Message ID : ABC789I

Pass/ Retry Reply Text
Selection Count

ABC RESTORE

Primary WTOR stored for application ABCAPPL:

‘ 117 ABC123D REPLY WITH VALID COMMAND

1
1
1
I
1
|
I
1
|
1
1
|
1
1

1
"~~~ Command issued: o

: N
IIncomlng message ABC?89I> ‘ MVS R 117,ABC RESTORE

Figure 30. Example Processing of a Primary WTOR

Restrictions

The reply IDs of a subsystem's outstanding primary WTORs are stored by

SA z/0S as a blank-separated list without leading zeros. The storage for this is
restricted to 255 bytes. If this limit is reached, the reply IDs of further incoming

primary WTORs are ignored.

Usage Notes

When storing incoming WTORs, a search for code definitions for the message ID,
WTORS, is first made in the entry for the subsystem that issued the WTOR. If the
subsystem itself cannot be found in the automation policy or the code definitions
that are searched for are not found for the subsystem, they are searched for under
the MVSESA entry. For subsystems such as IMS or NetView that have a permanent
outstanding reply, you should specify the code definitions for the subsystem
entries themselves instead of MVSESA. This improves performance by reducing

searches within the automation policy.

162 System Automation for z/OS: Customizing and Programming

Chapter 17. SA z/OS User Exits

To allow user-specific activities that are not covered by the customization dialogs,
SA z/0S provides support for the following classes of user exits:

» Initialization exits that are called at the start of SA z/OS initialization, before
message AOF603D is issued, see [‘Initialization Exits” on page 164

e Static exits that are called at fixed points during SA z/OS processing, see
[Exits” on page 167]

* Flag exits that are called when SA z/OS needs to evaluate an automation flag,
see [“Flag Exits” on page 169|

¢ Customization Dialog exits that can be called during certain phases when
working with the customization dialog, see [‘Customization Dialog Exits” on|
‘

¢ Command exits that can be called during the processing of certain commands,
see [‘Command Exits” on page 176|

Additionally, SA z/OS has a number of facilities that behave in an exit-like
manner, see [“Pseudo-Exits” on page 181)

[Figure 31 on page 164 shows the sequence that exits may be invoked in during
SA z/0S initialization.

© Copyright IBM Corp. 1996, 2012 163

Initialization Exits

Exit Sequence during SA z/OS Initialization

NetView initialized ACF COLD

CNMCSSIR started

AOFEXDEF initialization MVSESA.RELOAD.CONFIRM

exit invoked |

I
AOFEXI01 initialization exit

MVSESA.RELOAD.ACTION

AOF603D WTOR
...initialization process...

AOFEXI02 initialization exit

>l
«

A 4

AOFEXSTA static exit may
be invoked from here

AOF 1101 message issued

Flag exits
may be invoked

Environmental setup
exits invoked

AOF511] message issued

AOFEXINT initialization exit
invoked or scheduled

AOF5401 message issued

A 4 A 4 A 4

Initialized

|
| Figure 31. SA z/OS Exit Sequence during SA z/OS Initialization

Initialization EXxits

| These exits are invoked during SA z/OS initialization:
I * AOFEXDEF

I * AQOFEXI01

I » AOFEXI02

I * AOFEXI03

I » AOFEXI04

I * AQOFEXI05

I * AOFEXI06

164 System Automation for z/OS: Customizing and Programming

Initialization Exits

e AOFEXINT

* Environmental Setup Exits

AOFEXDEF

This exit is called at the start of SA z/OS initialization, before message AOF603D
is issued. For example, using AOFEXDEF you can load a different MPF table.

This exit is run on AUTOL.
Parameters: None.

Return Codes: 0 is expected.

AOFEXIO01

This exit is invoked before the AOF603D ENTER AUTOMATION OPTIONS reply
is issued. It is invoked in a NetView PIPE and gets the data that is displayed in the
AOQF7671 message as input in the default SAFE. With this exit you can add or
remove lines from the message and add additional options to the reply.

Parameters: The Load Type is passed on input.

IPL|RECYCLE

IPL Indicates that SA z/OS has been started after an IPL.
RECYCLE Indicates that NetView and therefore SA z/OS has been
restarted.

Return Codes: 0 is expected.

AOFEXI02

This exit is invoked after the operator has replied to the AOF603D reply. It gets the
operator's response to the reply as input in the default safe and it can remove, add,
or change the options that the operator has entered.

Parameters: The Load Type is passed on input. See [*AOFEXI01.”

Return Codes: 0 is expected.

AOFEXI03
This exit is invoked before SA z/0S loads NetView automation table. It can be
used to create statistics of the currently loaded ATs. Together with the AT listings
that SA z/OS produces at load, these statistics can be used for any purpose.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI04

This exit is invoked after SA z/OS loads NetView automation tables. It can be
used to store the AT listings that SA z/OS produces at load.

Parameters: None.

Return Codes: 0 is expected.

Chapter 17. SA z/OS User Exits 165

Initialization Exits

AOFEXI05

This exit is called before either an ACF load or refresh takes place. The parameter
indicates what action the automation agent is going to process: REFRESH or
LOAD.

Parameters: Type of ACF action (REFRESH or LOAD).

Return Codes: 0 (Note: the return code is ignored by the caller).

AOFEXI06

This exit is called after an ACF process (LOAD or REFRESH) has completed
(AOFCOMPL=YES) and before the AOF540I message is issued.

Parameters: Type of ACF action (REFRESH or LOAD).

Return Codes: 0 (Note: the return code is ignored by the caller).

AOFEXINT

This exit is called when SA z/OS initialization is complete, before message
AOF540I is issued. You can use AOFEXINT to call your own initialization
processing after SA z/OS has finished. Refer also to the description of the global
variable AOFSERXINT in [“AOFSERXINT global variable” on page 236

Parameters: The input parameter is the Starttype which is one of the following;:
RESYNC, IPL, REFRESH, RELOAD, RECYCLE.

Return Codes: 0 is expected.

| Environmental Setup Exits

The SA z/0OS customization dialog allows you to define a string of exits that are
invoked during SA z/OS initialization processing. These exits are defined using
the SYSTEM INFO policy item of the System (SYS) entry type. See
[System Automation for z/OS Defining Automation Polici| for more information.

Environmental setup exits are invoked after SA z/OS has started its various tasks,
but before the primary automation table has been loaded. You can use these exits
to initiate your own automation, but some SA z/OS services may be unavailable
because SA z/OS has not yet finished initializing when these exits are called. In
particular, status information may be inaccurate because SA z/OS may not have
finished resynchronization. Environmental setup exits run on AUTO1.

Parameters

Parameters are passed in sequence, delimited by blanks.

INITIALIZATION
INITIALIZATION is a constant.

RELOAD | REFRESH| IPL|RECYCLE

RELOAD Indicates that the automation control file has been reloaded.

REFRESH Indicates that the automation control file has been refreshed.

IPL Indicates that SA z/0OS has just been restarted after a system
IPL.

RECYCLE Indicates that NetView has been restarted.

166 System Automation for z/OS: Customizing and Programming

Environmental Setup Exits

Return Codes

0 is expected. If you return a non-zero return code you may prevent other exits
from being invoked or disrupt SA z/OS initialization.

Usage Notes

* These exits are not driven if you run RESYNC.

 Unlike the other static exits, you must specify the name of the routine or
routines to invoke in the automation control file.

Static Exits

These exits are invoked at fixed points in SA z/OS processing. They are always
invoked if they are found in the DSICLD concatenation. Positive return codes from
these exits are generally ignored, though it is recommended that you always exit
with a return code of 0.

The main purpose of static exits is to allow you to take your own actions at
specific points during SA z/OS processing. The static exits available are described
below.

AOFEXSTA

This exit is called from AOCUPDT every time the automation status of an
application is updated.

Note: It is not necessary for AOCUPDT to change an application automation status
for this exit to be called. The exit is still invoked if the update does not
result in a change of status.

AOFEXSTA can be used to perform any special status transition processing that
cannot be triggered by other methods.

Note: This exit is invoked frequently, and is invoked at times when SA z/OS is
not fully initialized. Your exit code should be as robust and efficient as
possible.

SA z/0S attempts to load AOFEXSTA into storage at initialization. If this attempt
fails, AOFEXSTA is not invoked on any AOCUPDT calls. To activate the exit it
must be present in the DSICLD concatenation when the automation control file is
loaded or reloaded.

AOFEXSTA runs on the task that called AOCUPDT, after all other processing has
finished.

Attention: AOFEXSTA is scheduled with EXCMD opid(). If your operators are
issuing commands that change application statuses and you want to use
AOFEXSTA, you may have to modify your command authorization definitions.

Parameters: Parameters are passed in sequence, delimited by commas.

Resource type
SA z/0S uses types of SUBSYSTEM, MVSESA, WTORS, and SPOOL. Other
users may use other resource types.

Resource Name
For an application, this is the name of the subsystem it is defined as.

Chapter 17. SA z/OS User Exits 167

Static Exits

Automation Status

For an application, this is one of the automation statuses that is supported by
SA z/0S.

SDF Root
This is the SDF Root, as specified in the customization dialog, for the system
that originated the status update. Generally the exit is driven only for status
changes on other systems on the automation focal point.

Return Codes: 0 is expected.

Restrictions:

* Because the exit is scheduled with EXCMD, the status update and subsequent
processing in the caller will have completed before the exit is invoked.

* Check the resource type and the SDF root to ensure you are only trying to
process the right things.

* Plan carefully before you take any action to change the status of an application
from this exit. If you are not careful you may create a loop (AOCUPDT to
AOFEXSTA to AOCUPDT to AOFEXSTA).

— Note:
Consider using ISSUEACT or status change commands as alternatives to
AOFEXSTA, because AOFEXSTA is invoked for every status update that
seriously degrades performance.

If the advanced automation options are set up appropriately, the ACTIVMSG
and TERMMSG commands issues commands whenever an application
changes to a particular status. It may be more appropriate to place commands
here, rather than in the status change exit, which gets driven for every status
update of every resource. It is recommended to use status change commands
for better performance.

AOFEXX02

The exit allows the installation to decide whether or not an SDF update should be
performed for the specified resource.

A non-zero return code from the exit causes the SDF update processing to be
skipped, both locally as well as for the focal point.

This exit is called prior to posting entries to SDF to provide the facility to filter out
specific events.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXX03

The exit allows the installation to decide whether or not status change notification
should be forwarded to the NMC focal point for the specified resource.

A non-zero return code from the exit causes status change forwarding to be
skipped.

168 System Automation for z/OS: Customizing and Programming

Static Exits

This exit is called prior to posting entries to NMC to provide the facility to filter
out specific events.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXX04

This exit is called from CHKTHRES every time that this routine is called to check
the number of errors recorded in the automation status file for a given resource
against error thresholds that are defined in the automation control file.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXX05

The exit is driven by SA z/OS at initialization time when setting up the SDF
panels or by means of the RESYNC SDFDEFS command.

The exit is used by the installation to replace user variables in the SDF panel
definition. A user variable must follow the same convention as a z/OS system
symbol, that means it must start with an ampersand (&) and finish with a dot(.).
An example is &MVDOMAIN.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXX15

This exit allows you to write a log entry for each status change notification that
arrives at the NMC focal point.

Refer to the sample exit for details of the parameters passed to the exit.

Flag Exits

Using automation flag exits you can cause your automated operations code to exit
normal SA z/OS processing to an external source, such as a scheduling function,
to determine whether automation should be on or off for a given resource at that
particular instant.

Flag exits can be defined for any flag (AUTOMATION, INITSTART, START,
RECOVERY, TERMINATE, or RESTART) on any major or minor resource. See the
description of the MINOR RESOURCES policy item in |[BM Tivoli System|
|Automation for z/OS Defining Automation Policy|for more information on minor
resources.

You can specify multiple exits for each flag.

A flag exit is invoked only if SA z/OS checks the value of the current flag setting
during the flag evaluation process of AOCQRY, as described in |IBM Tivoli System
lAutomation for z/OS Programmer’s Referencel If one of the global or specific flags,
which have to be checked in one iteration step during the evaluation process over
the inheritance hierarchy levels is set to NO, the other flag no longer has to be
checked.

Chapter 17. SA z/OS User Exits 169

Flag Exits

With the default BYPASS option of AOCQRY, exits that have been defined for the
automation flag of a resource are executed when that automation flag is checked
during flag evaluation and the flag value is EXITS.

With the FORCED option of AOCQRY, exits that have been defined for the
automation flag of a resource are executed when that automation flag is checked
during flag evaluation, independent of the flag value, as long as it is not empty.

If an automation flag is set to EXITS, the flag value is assumed to be YES during
flag checking as long as none of the exits that have been defined for the checked
resource switch the flag to NO. Exits that are forced to execute do not change the
flag value.

Flag settings are determined by:

e The automation policy settings

* NOAUTO periods (the flag is OFF during a NOAUTO period)
* The user-entered INGAUTO command

For example, if you enter the following flag settings:

Resource Flag Setting

DEFAULTS AUTOMATION YES

SUBSYSTEM RESTART NO

JES2 AUTOMATION Exit J2AUT

JES2 START Exit J2STR

JES2 RECOVERY NO

JES2 TERMINATE Exits J2SD1 and J2SD2

The effective flags for JES2 are:

170

Flag Effective setting
AUTOMATION YES, Exit J2AUT
INITSTART YES

START YES, Exit J25TR
RECOVERY NO

TERMINATE YES, Exits J25D1 and J25D2
RESTART NO

When SA z/OS checks the current value of any flag for the JES2 application, the

process is as follows:

Flag

Process

AUTOMATION

1. Call exit J2AUT.

2. If the exit returns:
* RC=0: AUTOMATION flag is YES
* RC>0: AUTOMATION flag is NO

System Automation for z/OS: Customizing and Programming

Flag Exits

Flag Process

INITSTART 1. Call exit J2AUT (because of AUTOMATION global flag).
2. If the exit returns:

* RC=0: INITSTART flag is YES

* RC>0: INITSTART flag is NO

START 1. Call exit J2AUT (because of AUTOMATION global flag).
2. If exit returns RC=0, call exit J2STR.
3. If:

* Both flags return RC=0: START flag is YES

* Either flag returns RC>0: START flag is NO

RECOVERY RECOVERY flag is NO

TERMINATE 1. Call exit J2AUT (because of AUTOMATION global flag).
2. If exit returns RC=0, call exit J2SD1.
3. If exit J2SD1 returns RC=0, call exit J2SD2.
4. If:

* Both flags return RC=0: TERMINATE flag is YES
* Either flag returns RC>0: TERMINATE flag is NO

RESTART 1. Call exit J2AUT (because of AUTOMATION global flag).
2. Regardless of the return code, the RESTART flag is NO.

Note: Normally the START and RECOVERY flags are checked by SA z/OS only
for minor resources but not for the subsystem itself.

Parameters

Parameters are supplied in sequence, delimited by blanks.

Flag
This is the name of the flag that is being checked. Possible values are
AUTOMATION, INITSTART, START, RECOVERY, TERMINATE or RESTART.

Time Setting
Time Setting is a constant. It can be either:

AUTO
Automation is currently turned on.

NOAUTO
Automation is currently turned off.

A value of NOAUTO is possible only if AOCQRY is called with the parameter
EXITS=FORCED.

Note: This ensures that the exit is invoked, but it is not possible for an exit to
override a NOAUTO period.

Resource Name
This is the name of the resource that the flag is being requested for. For minor
resources it contains the fully qualified minor resource name. Given no flag
definition for TSO.USER.MAGT1 and an exit enabled for TSO.USER, the
resource name passed to the exit would be TSO.USER.MAGTI if a check was
made for TSO.USER.MAGI.

Chapter 17. SA z/OS User Exits 171

Flag Exits

Resource Type

This is the type of the resource that the flag is being requested for. Possible
values are DEFAULTS, SUBSYSTEM, or MVSESA (the value of the common
global variable AOFSYSTEM).

Target Prefix

This is the TGPEX value with which AOCQRY was invoked. If TGPEX is not
specified, the value SUB is passed.

Task Global Variables

The task global variables that are set by the AOCQRY command are available in
flag exits.

Return Codes

0 Automation is allowed by the exit.
>0 Automation is not allowed.
Notes:

1.

Flag exits are always called through the AOCQRY command. This means that
the task global variables for the resource have been primed and are available
for use. Normally the names of the task global variables are prefixed with SUB,
but if AOCQRY is called with a different value for parameter TGPFEX, they are
found in variables that are prefixed with that value. You should use the TGPFX
parameter that is passed to locate the task global variables.

The set of task global variables that are set by AOCQRY depends on the values
for the resource and request parameter. Make sure that the task global variables
that you rely on in your exit are being set up.

If an exit is invoked for a minor resource, the task global variables are set for
the major resource that is associated with that minor resource.

If you call AOCQRY from within your exit you must specify a TGPEX value
that is different from the TGPFX parameter value you were passed. You are
responsible for ensuring the uniqueness of all TGPFXs if you nest AOCQRY
exits. Because this can become quite complex, it is recommended you avoid
nesting exits.

Do not code calls to ACFCMD, ACFREP, or CDEMATCH because these use
task global variables that are prefixed with SUB that may not be set up for the
application that you want to process.

Do not change any of the task global variables that have been set by AOCQRY.
Flag exits may be called frequently, so performance is important.

If AOCQRY is specified with FORCE and multiple exits are defined for a flag,
the exits are called in order.

Customization

172

Dialog Exits

SA z/0S provides a series of user exits that can be invoked during certain phases
while working with the customization dialog. They are:

“User Exits for BUILD Processing” on page 17?3|

“User Exits for COPY Processing” on page 174

“User Exits for DELETE Processing" on page 174|

“User Exits for CONVERT Processing” on page 175

“User Exits for RENAME, and IMPORT Functions” on page 175|

System Automation for z/OS: Customizing and Programming

Customization Dialog Exits

[“Invocation of Customization Dialog Exits” on page 176 provides information on
how to activate the user exits.

User Exits for BUILD Processing

The following user exits are provided for the process of building the automation
control file.

e INGEX10:: This is called before the automation control file build function starts.
This exit is only available when the build process is initiated from the
customization dialogs.

¢ INGEXO01:: This is called before the automation control file build function starts.
starts. This exit is available when the build process is initiated from the
customization dialogs, from a batch job submitted via the customization dialogs,
or from a batch job submitted independently from the customization dialogs.

When a BUILD mode of BATCH is selected in the customization dialogs, the
JCL for the batch job is submitted and INGEXO1 is called when the job begins
execution and before the automation control file build function starts in batch.

* INGEXO02:: This is called after the configuration file build has ended. This exit is
available when the BUILD process is initiated from the customization dialogs,
from a batch job submitted through the customization dialogs, or from a batch
job submitted independently from the customization dialogs.

The following parameters are passed to both INGEX01 and INGEX02 exits,
separated by commas:

¢ Parml = PolicyDB name

¢ Parm2 = Enterprise name

e Parm3 = BUILD output data set

e Parm4 = entry type (or blank)

e Parm5 = entry name (or blank)

e Parmé6 = BUILD type (MOD/ALL)

* Parm?7 = BUILD mode (ONLINE/BATCH)

* Parm8 = Configuration (0=NORMAL/1=ALTERNATE)
* Parm9 = Sysplex name (or blank)

e Parm10 = Build option (1,2, or 3)

* Parmll = return code (for INGEXO02 only)

If user exit INGEX10 produces return code RC = 0, build processing continues. If a
return code RC > 0 is produced, an error message is returned and the build
processing terminates.

If user exit INGEX10 ends with return code RC > 0, user exits INGEX01 and
INGEXO02 are not called. Processing terminates.

If user exit INGEX10 ends with return code RC > 0 and a BUILD mode of BATCH
was selected in the customization dialogs, no JCL is submitted to run the build in
batch. Processing terminates.

If user exit INGEXO01 produces return code RC = 0, build processing continues. If a
return code RC > 0 is produced, an error message is returned and build processing
terminates. If the build is run in batch mode, and a return code RC > 0 is
produced, the job finishes with a return code RC 08.

If user exit INGEX01 ended with return code RC > 0, user exit INGEXO02 is not
called because the build function was not started. Processing terminates.

Chapter 17. SA z/OS User Exits 173

Customization Dialog Exits

User exit INGEXO02 is always called when the BUILD process has started,
irrespective of whether it has completed or not.

If user exit INGEX02 produces a return code RC > 0, an error message is
displayed. If the build is run in batch mode, and a return code RC > 0 is produced,
the job completes with a return code RC 04. If a severe build error occurred, the
job completes with a return code RC 20.

The return codes and their meaning are as follows:
0 Successful

4 Build with minor errors

12 No build (data is inconsistent)

20 No build (severe errors)

User Exits for COPY Processing
Two user exits are implemented for the COPY processing.

1. INGEXO03: This is called before the COPY function starts. The following
parameters are passed:

¢ Entry name of the entry to be copied to (target)
¢ Entry name of the entry to be copied from (source)
* Entry type (for example, APL)

2. INGEX04: This is called after the COPY function has ended. The following
parameters are passed:

¢ Entry name of the entry to be copied to (target)
* Entry name of the entry to be copied from (source)
* Entry type (for example, APL)

¢ Indicator whether the COPY process was successful or not (S=successful,
U=unsuccessful)

If user exit INGEX03 produces return code RC = 0, COPY processing continues. If
a return code RC > 0 is produced, an error message is displayed, the COPY
function does not start, and processing terminates.

If user exit INGEX03 ended with return code RC > 0, the user exit INGEX04 is not
called because the COPY processing will terminate.

User exit INGEX04 is always called once the COPY function has started. The
information about the success or failure of the COPY function is passed as a
parameter.

If user exit INGEX04 produces a return code RC > 0, an error message is
displayed.

User Exits for DELETE Processing
Two user exits are implemented for the DELETE processing.

1. INGEXO05: This is called before the DELETE process starts. The following
parameters are passed:

* Entry name of the entry to be deleted
¢ Entry type (for example, APL)

174 System Automation for z/OS: Customizing and Programming

Customization Dialog Exits

2. INGEXO06: This is called after the DELETE process has ended. The following
parameters are passed:

* Entry name of the entry to be deleted
* Entry type (for example, APL)

¢ Indicator whether the DELETE process was successful or not (S=successful,
U=unsuccessful)

If user exit INGEXO05 produces return code RC = 0, the DELETE processing
continues. If a return code RC > 0 is produced, an error message is displayed, the
DELETE function does not start and the processing terminates.

If user exit INGEX05 ended with a return code RC > 0, user exit INGEXO06 is not
called because the DELETE processing will terminate.

User exit INGEXO06 is always called once the DELETE function has started. The
information about the success or failure of the DELETE function is passed as a
parameter.

If user exit INGEX06 produces a return code RC > 0, an error message is
displayed.

User Exits for CONVERT Processing

Two user exits are implemented for the CONVERT processing.

1. INGEXO07: This is called before the CONVERT process starts. No parameters are
passed.

2. INGEXO08: This is called after the CONVERT process has ended. No parameters
are passed.

If user exit INGEX07 produces return code RC = 0, the CONVERT processing
continues. If a return code RC > 0 is produced, an error message is displayed, the
CONVERT function does not start and the processing terminates.

If user exit INGEX07 ended with a return code RC > 0, user exit INGEXO08 is not
called because the CONVERT processing will terminate.

User exit INGEXO08 is always called once the CONVERT function has started.

If user exit INGEX08 produces a return code RC > 0, an error message is
displayed.

User Exits for RENAME, and IMPORT Functions

The following user exits are provided for the renaming, and import functions.

1. INGEXO09: This is called when the log data set is switched, usually because the
current data set is full. One parameter is passed:

* Name of current log data set, for example, the data set that went out of
space

2. INGEX15: This is called before an entry is renamed. The following parameters
are passed:

* Entry Name
* Entry Type

3. INGEX16: This is called after an entry has been renamed. The following
parameters are passed:

Chapter 17. SA z/OS User Exits 175

Customization Dialog Exits

* Entry Type
* Old Entry Name
* New Entry Name

4. INGEX17: This is called during the IMPORT function, when reading data from

the source policy database. One parameter is passed:

* Name of copy data work table. This table contains the entry types and entry
names of the data to be copied.

INGEX18: This is called after the IMPORT function has ended. INGEX18 is

only called if INGEX17 was called at the beginning of the IMPORT function. If

checks have been made that prevent INGEX17 being called, INGEX18 is not

called either.

One parameter is passed:

¢ Indicator whether the IMPORT process was successful (S=successful,
U=unsuccessful)

INGEX20: This is called after the links have been changed. No parameters are

passed.

INGEX21: This is called before the policy database report is invoked. No
parameters are passed.

Invocation of Customization Dialog Exits

The user exits are part of the SA z/OS product. Therefore they are supplied in the
same data set as all other ISPF REXX modules (part of SINGIREX). All of the
supplied samples just perform a 'RETURN' with return code RC=0.

You have two possibilities to apply your user modifications:

1.

Edit the user exit (or exits) in the supplied library. Your changes do not have
any consequences for the code of the SA z/OS product. These exits are not
serviced (via PTF) by IBM because they do not include any code at the time of
product delivery.

Supply the modified user exit in a private data set. Then you have to
concatenate your private data set to your SYSEXEC library chain. As INGDLG
supports multiple data set names specified for ddname SYSEXEC, this can be
done in the following way:

INGDLG SELECT(ADMIN) ALLOCATE(YES) HLQ(SYS1)

SYSEXEC (usr.private.dsn SYS1.SINGIREX)

This example assumes that the high level qualifier of the data sets where the
IBM supplied parts exist is SYS1.

If you specify the SYSEXEC parameter in the INGDLG call, you need to specify
the IBM supplied library explicitly with its fully qualified data set name.

Command Exits

These exits can be called during the processing of certain commands.

AOFEXCO00

The AOFEXCO00 exit routine is called if the selection L has been entered in the AOC
command dialog. No parameters are passed to the routine. The purpose of this
routine is to act as the starting point for installation-provided local functions.

176 System Automation for z/OS: Customizing and Programming

Command Exits

AOFEXCO1

If this exit is defined, it is invoked during INGREQ processing before Precheck and
Verification processing.

The exit allows you to modify the parameters that are passed.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXCO02

If this exit routine is defined, it is invoked during INGSCHED processing before
the schedule override file is updated. The parameters are positional and separated
by a comma.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXCO03

If this exit routine is defined, it is invoked by the DISPINFO command slave to
retrieve user-supplied information about the subsystem. The input for the routine

is the subsystem name. The data returned by the exit is shown as part of the
DISPINFO output.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXCO04

If this exit routine is defined, the command code U is supported for the DISPMTR,
DISPSTAT, and INGLIST commands. The input for the AOFEXC04 exit is the
resource name (subsystem name for DISPSTAT) and the location of the resource.
The location is either the system name if the resource resides on a system member
of the local sysplex, or the domain ID if the resource resides on a system which is
outside of the local sysplex. The parameters are separated by a comma.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXCO05

This exit is called on entry of the INGLIST command. The exit allows you to
modify the input parameters. The modified input parameters are returned to the
INGLIST command by sending a message (single or multiline) to the console, for
example:

OBSERVED=+ DESIRED=#

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXCO06

This exit is called on entry of the INGSET command with the SET action. The exit
allows you to perform authorization checking of the resources for the INGSET
command.

Chapter 17. SA z/OS User Exits 177

Command Exits

178

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXCO07

This exit is called on entry of the INGIMS command. The exit allows you to
perform authorization checking of the IMS subsystem that is the subject of the
INGIMS command.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXCO08

This exit is called on entry of the INGVOTE command. The exit allows you to
perform authorization checking of the resources for the INGVOTE command.
Because the INGSET CANCEL/KILL action uses the INGVOTE command, this exit
is also called when performing this action.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXCO09

This exit is called on entry of the SETSTATE command. The exit allows you to
perform authorization checking of the resources for the SETSTATE command.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC10

This exit is called on entry of the INGEVENT command. The exit allows you to
perform authorization checking of the resources for the INGEVENT command.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC11

This exit is called on entry of the INGCICS command. The exit allows you to
perform authorization checking of the resources for the INGCICS command.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC12

This exit is called on entry to the command slave (EVJRVCMD) for the TWS
command server (EVJRVCMO). The exit allows you to perform authorization
checking of the commands scheduled via the TWS batch interface (EVJRYCMD)
against the user ID of the batch job requesting the command.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

System Automation for z/OS: Customizing and Programming

Command Exits

AOFEXC13

This exit is called on entry to the INGGROUP and INGMOVE commands. The exit
allows you to perform authorization checking of the user ID that issues the
command.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXC14

This exit is called by the SA z/0OS GDPS termination routine INGRGDPS) after
stopping the PAM or selecting a SAM to become the PAM.

Refer to the sample exit for details of the return codes.

AOFEXC15

If this exit routine is defined, it is invoked during INGREQ processing after the
GO confirmation has been received.

The user exit is called in a PIPE. Refer to the sample exit for details of the
parameters that are passed to the exit.

AOFEXC16

This exit is invoked by the INGTHRES command prior to updating or deleting the
thresholds for a given resource. It allows you to perform authorization checking of
the requested action. If the exit returns with a non-zero return code and additional
data is written to the console, this data is shown in the message panel. If no
additional data is passed back in the exit, message AOF2271 is issued.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC17

This exit is invoked by the INGALERT command. It allows you to:
* Modify the event text

¢ Reduce the Inform List with event notification targets such as IOM, EIF, TTT,
and USR

* Modify the value that is returned from the matching code definition with
information such as the event severity or whether to ignore the event

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC18

This exit is invoked by the INGLKUP command. It is driven prior to stopping or
canceling the specified address space. It allows you to perform authorization
checking of the requested action. If the exit returns with a non-zero return code
and additional data is written to the console, this data is shown in the message
panel. If no additional data is passed back in the exit, message AOF2271 is issued.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

Chapter 17. SA z/OS User Exits 179

Command Exits

AOFEXC19

This exit is invoked by the INGAMS command. It is driven in the following cases:
* Enabling or disabling access to the takeover file

* Suspending or resuming systems

* Refreshing the configuration

¢ Performing a diagnostic action (starting or stopping recording, taking a
snapshot)

* Switching the primary automation manager

The exit allows you to perform authorization checking of the INGAMS command.
If the exit returns with a non-zero return code and additional data is written to the
console, this data is shown in the message panel. If no additional data is passed
back in the exit, message AOF2271 is issued.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC20

This exit is called when a command is passed via the TWS request interface. The
exit allows the installation to perform authorization checking. Optionally, the exit
can modify the command and/or the completion information by returning up to
two data lines:

* line 1 is the modified command including all its parameters. A null string must
be returned when the command is not modified. This is only necessary when
modifying the completion information via the exit

* line 2 is the completion information:
— maximum return code
— completion checking coding.

The parameters must be separated by a comma. Error code U010 will be posted
when one of the parameters is wrong.

The installation exit is called in a PIPE. If the exit returns a bad return code and
additional data is written to the console, this data is written in the netlog. If no
additional data is passed in the exit, message AOF227I is issued.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC21

This exit is invoked by the INGOPC command with the option REQ=MOD. It
allows you to perform authorization checking of the requested action. If the exit
returns with a non-zero return code and additional data is written to the console,
this data is shown in the message panel. If no additional data is passed back in the
exit, message AOF2271 is issued.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC22

This exit is called when a trouble ticket is created using the INGALERT command.
It allows you to determine the trouble ticket detail data that is to be written to the
detail data set.

180 System Automation for z/OS: Customizing and Programming

Command Exits

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC23

This exit is invoked when a request is passed via the TWS interface. It allows you
to perform authorization checking of the requested action. If the exit returns a
non-zero return code and additional data is written to the console, this data is
taken as a message. If no additional data is passed back in the exit, message
AOF2271 is issued.

Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC24

If this exit is defined, it is invoked during INGRUN processing. This exit allows
you to modify the parameters that are passed. Refer to the sample exit for details
of the parameters that are passed to the exit and the return codes.

Pseudo-Exits

This section discusses a number of places where SA z/OS either makes special use
of a flag exit or has a function with certain, exit-like, qualities.

Automation Control File Reload Permission Exit

When an operator issues the ACF COLD command, SA z/OS checks the global
AUTOMATION flag of minor resource MVSESA.RELOAD.CONFIRM. If the flag is
set to NO, the automation control file reload is not allowed. If the flag is set to
YES, the task global AOFCONFIRM is checked. If AOFCONFIRM has been set to a
non-null value, the user is prompted to confirm that they want the automation
control file to be reloaded.

Notes:
1. Note that an exit can be associated with the global AUTOMATION flag for this
resource.

2. An automation control file cannot be loaded if the global AUTOMATION flag
for the major resource MVSESA is set to N. If the global AUTOMATION flag
for the minor resource MVSESA . RELOAD.CONFIRM is set to Y, reloading the
ACF is permitted.

Automation Control File Reload Action EXxit

After the automation control file reload permission exit is checked, when SA z/0OS
is committed to reloading the automation control file, it checks the global
AUTOMATION flag for minor resource MVSESA.RELOAD.ACTION. The actual
setting of this flag (ON or OFF) is ignored, but any exits defined for it are invoked.
All exits should return a return code of 0.

Subsystem Up at Initialization Commands

Using the customization dialog you can specify commands that are run if

SA z/0S finishes resynchronizing statuses and an application is found to be up.
These commands can be useful for synchronizing local automation that has been
built on top of SA z/OS.

Chapter 17. SA z/OS User Exits 181

Testing Exits

Testing Exits

Exits should be well tested with a variety of different input parameters before they
are put into production. For exits that need AOCQRY task globals, you can call
AOCQRY to set up the globals without evaluating the flag exits, and then invoke
the exit on its own for testing purposes. This method saves the overhead of calling
AOCQRY every time you run the exit.

Attention:

If you have a syntax error or a no-value-condition in your exit it can cause parts of
SA z/0S to abend, resulting in severe disruption of your automation.

182 System Automation for z/OS: Customizing and Programming

Chapter 18. Automation Solutions

SA z/0S provides solutions that enable automatic processing of z/OS
components, data sets and job scheduling systems as well as automation
procedures that are useful tools in the automation processing context. By using
these prefabricated automation procedures you can save the time to develop your
own procedures to handle the processing in corresponding situations.

In particular these automation routines provide solutions for:
* |"LOGREC Data Set Processing’]

* |"SMF Data Set Processing” on page 18

* ["SYSLOG Processing” on page 184
+ |“System Log Failure Recovery” on page 184|

* |[“SVC Dump Processing” on page 185|

« |“Deletion of Processed WTORs from the Display” on page 185|
+ |“AMREF Buffer Shortage Processing” on page 185|
+ |“JES2 Spool Monitoring” on page 63|

* [“Drain Processing Prior to JES2 Shutdown” on page 186]

+ |“IMS Transaction Recovery” on page 186|

The solutions for automatic processing of these situations include definitions in the
automation configuration files and automation procedures.

It is common to all the solutions that are provided that the automation procedures
first determine whether automation is allowed by checking the corresponding
automation flags with the AOCQRY command. See(IBM Tivoli System Automation)
for z/OS Defining Automation Policy|for further information concerning types and
settings of automation flags. Use the DISPFLGS command to display or
temporarily change the current settings of the automation flags.

Some of the automation routines respond to messages by issuing commands from
the automation configuration files. Most of these automation routines keep track of
the reception of these messages and compare the frequency of the incoming
messages with predefined thresholds of infrequent, frequent, and critical levels. If
such a defined threshold is exceeded, it is used as the option for selecting the
appropriate commands according to the first field in the command entry of the
MESSAGES/USER DATA policy item of the configuration file. If no threshold is
exceeded the commands defined for the selection option ALWAYS are issued. See
“How SA z/0S Uses Error Thresholds” in |[BM Tivoli System Automation for z/OS|
for further information on setting up thresholds.

This chapter describes the details of the automation functions that are provided
with SA z/0S.

LOGREC Data Set Processing

The logrec recovery function responds to system messages that indicate that the
logrec data set is full or nearly full. The recovery function issues predefined
commands to dump and clear the logrec data sets. While the recovery function is
in progress, it prevents the automation processing being started a second time.

© Copyright IBM Corp. 1996, 2012 183

LOGREC Data Set Processing

The logrec recovery function includes the following items:

 Automation routines AOFRSA01 and AOFRSA02, see|[”AOFRSA(01” on page 186
and ["AOFRSA02” on page 187]

* Automation table entries for system messages IFB0401, IFBO60E, IFBOSOE,
IFB081I, and IFC001I

* Error threshold definitions for MVS component minor resource LOGREC

¢ Command specification in the MESSAGES/USER DATA automation policy item
for the special message ID LOGREC

SMF Data Set Processing

The SMF recovery function that is provided responds to system messages that
indicate that the SMF data set is full or has been switched. Predefined commands
from the configuration files are selected to dump and clear the contents of the SMF
data set. The commands to be selected can be defined depending on the occurrence
of the incoming messages. Additionally SA z/OS checks at initialization time
whether SMF data sets need to be dumped and triggers the appropriate recovery
action (see [“AOFRSA03” on page 189 for further details). The SMF recovery
function includes the following items:

+ Automation routine AOFRSAOQ3, see [“AOFRSA03” on page 189

e Automation table entries for system messages IEE362A, IEE362I, IEE391A and
IEE3921

* Error threshold definitions for MVS component minor resource SMFDUMP

* Command specification in the MESSAGES/USER DATA automation policy item
for the special message ID SMFDUMP

SYSLOG Processing

The syslog function that is provided responds to messages that are queued to the
syslog. The function starts an external writer to save the syslog that was queued.
The commands to be selected can be defined depending on the occurrence of the
incoming messages.

The syslog function includes the following items:
* Automation routine AOFRSA0S, see [”AOFRSA08” on page 192|
¢ Automation table entry for system message IEE043I

* Error threshold definitions for MVS component minor resource SYSLOG

* Command specification in the MESSAGES/USER DATA automation policy item
for the special message ID SYSLOG

System Log Failure Recovery

184

The system log failure recovery function that is provided responds to a system log
inactive message by restarting the system log. If the system log should be available
to be used as the hardcopy medium, the recovery function assigns the system log
as the hardcopy medium.

The recovery commands are only issued if the occurrence of the system log
inactive message that is received does not exceed a defined critical threshold.

The system log failure recovery function that is provided includes the following
items:

System Automation for z/OS: Customizing and Programming

System Log Failure Recovery

+ Automation routine INGRX740, see ["'INGRX740” on page 211|

* Automation table entries for system messages IEE037D, IEE0411, IEES33E,
IEE769E, IEE0431

* Recovery automation flag for the MVS component minor resource LOG

* Error threshold definitions for the MVS component minor resource LOG

* Command specification in the MESSAGES/USERDATA automation policy item
for the special message ID LOG

SVC Dump Processing

The SVC dump processing function that is provided responds to an SVC
dump-taken message by issuing predefined commands from the configration files
to handle the dump. The commands to be selected can be defined depending on
the occurrence of the incoming messages.

The provided SVC dump processing function includes the following items:
+ Automation routine AOFRSAOC, see [*AOFRSA0C” on page 194
* Automation table entries for system messages IEA6111 and IEA911E

* Error threshold definitions for MVS component minor resource MVSDUMP

* Command specification in the MESSAGES/USER DATA automation policy item
for the following special message IDs:
- MVSDUMP
- MVSDUMPTAKEN
- MVSDUMPRESET

Deletion of Processed WTORs from the Display
The WTOR processing function that is provided deletes WTORs from SA z/0OS

display capabilities when they are replied to or canceled.

The WTOR processing function includes the following items:
+ Automation routine AOFRSAQE, see [AOFRSAOE” on page 197
* Automation table entries for system messages IEE400I and IEE600I

AMRF Buffer Shortage Processing

The AMREF buffer shortage processing function that is provided responds to
messages that report buffer shortage of the action message retention facility
(AMRE). The function issues commands from the configuration files to process
buffer shortage automation.

The AMREF buffer shortage processing function that is provided includes the
following items:

+ Automation routine AOFRSAOG, see [YAOFRSA0G” on page 198
* Automation table entries for system messages IEA359E, IEA360A and IEA3611

* Command specification in the MESSAGES/USER DATA automation policy item
for the following special message IDs:

— AMRFSHORT
- AMRFFULL
- AMRFCLEAR

Chapter 18. Automation Solutions 185

Drain Processing Prior to JES2 Shutdown

Drain Processing Prior to JES2 Shutdown

SA z/0S provides functions for drain processing of JES2 resources prior to JES2
shutdown.

The JES2 drain processing function that is provided includes the following items:

+ Automation routines AOFRSD07, AOFRSDOF, AOFRSDOG. See [“AOFRSD07” on|
[page 199 |I”AOFRSDOE” on page 202|and [“AOFRSDOG” on page 204/

* Automation table entries for system message HASP607.

* Specifications in the JES2 DRAIN automation policy item for the JES2
applications that are to be drained and how they are to be drained prior to JES2
shutdown.

IMS Transaction Recovery

SA z/0S provides an IMS transaction recovery function. This responds to an IMS
application program abend message by issuing predefined replies or commands
from the configration files for recovery purposes. A recovery action is not issued if
the program is excluded from recovery processing, or the occurrence of the
incoming message exceeds a predefined critical threshold.

The IMS transaction recovery function that is provided by SA z/OS includes the
following;:

* A NetView automation table entry for the application program abend message,
DFS554A

e The subsystem that issues the abend message has the following automation

policy definitions:

— Error threshold definitions in the MINOR RESOURCE policy item for the
minor resource PROG.progid or TRAN.tran

— Code definitions in the MESSAGES/USER DATA policy item for the message
types ABCODEPROG . progid, ABCODEPROG, ABCODETRAN!.tran, or
ABCODETRAN

— Reply or command specifications in the MESSAGES/USER DATA policy item
for the message ID DFS554A

AOFRSAO01

186

Purpose

You can use the AOFRSAQ1 automation routine to respond to logrec data set
nearly full or full messages from your system by issuing commands from the
configration files to dump and clear the contents of the logrec data set.

AOFRSAQ1 keeps track of the incoming logrec data set messages and compares
their occurrence with predefined thresholds of infrequent, frequent, and critical
level. An exceeded threshold is used as the option to select the appropriate
commands according to the first field in the command entry of the

MVSESA /LOGREC entry/type-pair in the configuration file. If no threshold is
exceeded the commands defined for the selection option ALWAYS are issued.

AOFRSAO01 should be called from the NetView automation table.

System Automation for z/OS: Customizing and Programming

AOFRSA01

Syntax

»»>—AQFRSAOL »><

Restrictions

Usage

¢ Actions are only taken in AOFRSAO01 if the recovery automation flag for
LOGREC is on.

* Processing in AOFRSAO01 is only done if it is called from NetView automation
table by one of the expected messages IFB040I, IFB060E, IFBOSOE or IFBO81L

¢ The commands from automation policy to dump and clear the LOGREC data set
are only issued if a LOGREC recovery function is not already in progress.

Automation routine AOFRSAQL1 is intended to respond to the following messages:

IFBO4OI SYS1.LOGREC AREA IS FULL, hh.mm.ss
IFBO6OE SYS1.LOGREC NEAR FULL

IFBO8OE LOGREC DATA SET NEAR FULL, DSN=dsname
IFBO81I LOGREC DATA SET IS FULL,hh.mm.ss, DSN=dsn

The commands to issue are selected from the command entry of the
MVSESA /LOGREC entry/type-pair in the configuration file.

If no threshold is reached when one of the expected messages arrive, all
commands to entries with no selection option and to selection option ALWAYS are
selected. If the threshold at level infrequent is exceeded, all commands to entries
with no selection specification option and to selection option INFR are selected. In
the same way a level of frequent corresponds to selection option FREQ and a level
of critical corresponds to selection option CRIT.

Make sure that the automation routine AOFRSAQ2 is issued by message IFC001I
from the NetView automation table, to indicate the completion of the LOGREC
recovery function.

Global Variables

&EHKVAR1
When defining the commands in the configuration files to dump and clear
the contents of the LOGREC data set, the variable &EHKVAR1 can be used
for the name of the LOGREC data set. This variable is substituted with the
complete data set name of the LOGREC data set name.

AOFRSA02

Purpose

You can use the AOFRSAQ2 automation routine to respond to the initialization
message of the LOGREC data set to reset the flag, which indicates that the
LOGREC recovery function is in progress

AOFRSAQ2 should be called from the NetView automation table.

Chapter 18. Automation Solutions 187

AOFRSA02

Syntax

»>—AOFRSAO2 e

Restrictions

* Actions are only taken in AOFRSAQ2 if the recovery automation flag for
LOGREC is on.

* Processing in AOFRSAO02 is only done if it is called from NetView automation
table.

Usage
Automation routine AOFRSAQ2 is intended to respond to the following message:
IFCO01I D=devtyp N=x F=trackl* L=track2x S=recd** DIP COMPLETE

This is produced during the initialization of the LOGREC data set and describes
the limits of the data set.

The flag, indicating that the LOGREC recovery function is in progress, is used by
automation routine AOFRSA(Q1.

Examples

This example shows a sample scenario for LOGREC data set processing:

The following entries in the NetView automation table are created automatically to
issue the appropriate automation routine when one of the expected messages

arrives:

IF MSGID = 'IFBO40OI' MSGID = 'IFBO6OE' |
MSGID = 'IFBO8OI' MSGID = 'IFBO8LI'

THEN

EXEC(CMD('AOFRSAO1')ROUTE (ONE %AOFOPRECOPER%));

IF MSGID = 'IFCOOLI'
THEN
EXEC(CMD('AOFRSA02')ROUTE (ONE %AOFOPRECOPER%));

~
COMMANDS HELP
Thresholds Definition
Command ===>
Entry Type : MVS Component PolicyDB Name : DATABASE_NAME
Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE
Resource : MVSESA.LOGREC
Critical Number 0o 8 (1 to 50)
Critical Interval 00:05 (hh:mm or hhmm, 00:01 to 24:00)
Frequent Number 3 (1 to 50)
Frequent Interval 00:30 (hh:mm or hhmm, 00:01 to 24:00)
Infrequent Number 3 (1 to 50)
\Infr‘equent Interval 24:00 (hh:mm or hhmm, 00:01 to 24:00))

Figure 32. Threshold Definitions for MVS Component LOGREC

188 System Automation for z/OS: Customizing and Programming

AOFRSA02

Pass/Selection Automated Function/'*'
Command Text

MVS S CLRLOG,DSN=&EHKVAR1

Figure 33. MESSAGES/USER DATA Policy Item for Entry/Type-Pair MVSESA/LOGREC

Assume that the following message arrives the first time for one day:
IFBO8OE LOGREC DATA SET NEAR FULL, DSN=SYS1.AOC1.MAN3

Because none of the defined thresholds is exceeded, the automation routine
AOFRSAQ1 searches for defined commands without selection option and to
selection option ALWAYS to be issued. With the control file shown above the
command MVS S CLRLOG,DSN=&EHKVARL is selected. Before issuing this command,
the variable &EHKVARLI is substituted by the data set name of the received
message resulting in MVS S CLRLOG,DSN=SYS1.AOCL1.MAN3.

If message IFBOSOE continues to arrive and the occurrence of the expected
messages thus exceeds the infrequent, frequent or critical threshold, the automation
routine AOFRSAQ1 searches for defined commands without selection option and to
selection option INFR, FREQ or CRIT to be issued.

Because no command is defined with any selection option, only the defined
command with no selection option is selected and issued, as in the previous case.

Message AOF5891, AOF588I or AOF5871 is issued in cases, where an infrequent,
frequent or critical threshold has been exceeded. These messages indicate that an
infrequent, frequent or critical threshold action has been processed.

If the recovery processing for a LOGREC data set is still in progress when an
expected error message arrives, the following message is issued:

AOF585I 15:45 : RECOVERY OF LOGREC IS ALREADY IN PROGRESS -

The recovery process is considered to be finished, when message IFC001I arrives
telling that the LOGREC data set has been initialized.

AOFRSAO03

Purpose

You can use the AOFRSAQ3 automation routine to respond to SMF data set full or
switch messages from your system. AOFRSAQ3 issues commands from the
configuration files to dump and clear the contents of the SMF data set.

AOFRSAQ3 keeps track of incoming SMF data set messages and compares their
occurrence with predefined thresholds at infrequent, frequent, and critical levels.
An exceeded threshold is used as the option for selecting the appropriate
commands according to the first field in the command entry of the

MVSESA /SMFDUMP entry/type pair in the configuration file. If no threshold is
exceeded the commands that are defined for the selection option ALWAYS are
issued.

AOFRSAO03 should be called from the NetView automation table.

Chapter 18. Automation Solutions 189

AOFRSA03

Besides that kind of automation, SA z/OS also checks for full SMF data sets which
were filled up while SA z/OS was not active. For each data set where a dump is
required a command is issued if the selection option is set to '"ALWAYS'.
&EHKVAR contains fully qualified SMF data set name.

Syntax

»>—AQFRSAO3

v
A

Restrictions

* Processing in AOFRASAQ3 is done if it is called from NetView automation table
by one of the expected messages: IEE362A, IEE2621, IEE391A or IEE3921.

* If AOFRASAQ3 was triggered by one of the above messages, then actions are
only taken if the recovery automation flag for SMFDUMP is on.

¢ Actions in AOFRSAOQ3 are only taken if the recovery automation flag for
SMFDUMP is on.

* Processing in AOFRSAO03 is only done if it is called from the NetView
automation table by one of the expected messages: IEE362A, IEE262I, IEE391A or
IEE392L.

Usage
Automation routine AOFRSAQ3 is intended to respond to the following messages:

TIEE362A SMF ENTER DUMP FOR dsname ON ser
TIEE3621 SMF ENTER DUMP FOR dsname ON ser
TEE391A SMF ENTER DUMP FOR DATA SET ON VOLSER ser, DSN=dsname
TEE3921 SMF ENTER DUMP FOR DATA SET ON VOLSER ser, DSN=dsname

that indicate that the SMF data set is ready to be dumped.

Global Variables

&EHKVAR1
When defining the commands in the configuration file to dump and clear
the contents of the SMF data set, the variable &EHKVAR1 can be used for
the name of the SMF data set. This variable is substituted with the
complete data set name by AOFRSA03 when message IEE391A or IEE392]
is received. In case of message IEE362A or IEE362I this variable is
substituted with MANN, the second part of the SMF data set name.

&EHKVAR2
When defining the commands in the configuration file to dump and clear
the contents of the SMF data set, the variable &EHKVAR?2 can be used for
the name of the SMF data set. This variable is substituted with the
complete data set name by AOFRSA03 when message IEE391A, IEE392],
IEE362A, or IEE3621 is received.

Examples

This example shows SMF data set processing when AOFRSAOQ3 is called from the
automation table.

The following entries in the NetView automation table are created automatically to

issue the appropriate automation routine when one of the expected messages
arrives:

190 System Automation for z/OS: Customizing and Programming

AOFRSA03

IF (MSGID
MSGID

THEN

EXEC(CMD('AOFRSAO3"')ROUTE(ONE %AOFOPRECOPER%)) ;

'"TEE362I' | MSGID
"TEE391A" | MSGID

'TEE362A" |
'TEE3921')

~
COMMANDS HELP
Thresholds Definition
Command ===>
Entry Type : MVS Component PolicyDB Name : DATABASE_NAME
Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE
Resource : MVSESA.SMFDUMP
Critical Number 0 8 (1 to 50)
Critical Interval 00:05 (hh:mm or hhmm, 00:01 to 24:00)
Frequent Number 3 (1 to 50)
Frequent Interval 00:30 (hh:mm or hhmm, 00:01 to 24:00)
Infrequent Number 8 (1 to 50)
Infrequent Interval 24:00 (hh:mm or hhmm, 00:01 to 24:00) Y

Figure 34. Threshold Definitions for MVS Component SMFDUMP

Pass/Selection Automated Function/'x'
Command Text

MVS S SMFDUMP1,DA="&EHKVARZ'

Figure 35. MESSAGES/USER DATA Policy Item for Entry/Type-Pair MVSESA/SMFDUMP

Assume that the following message arrives the first time on one day:
IEE391A SMF ENTER DUMP FOR DATASET ON VOLSER 123, DSN=SYS1.AOC1.MAN3

Because none of the defined thresholds has been exceeded, the AOFRSA03
automation routine searches for commands to issue that have been defined without
a selection option or with the selection option ALWAYS. With the control file
shown above the command MVS S SMFDUMP1,DA="&EHKVAR2' is selected. Before
issuing this command, the variable &EHKVART1 is substituted with the data set
name from the received message, resulting in MVS S
SMFDUMP1,DA="SYS1.AOC1.MAN3".

If message IEE391A continues to arrive and the occurrence of the expected
messages thus exceeds the infrequent, frequent or critical thresholds, the
AOFRSAQ3 automation routine searches for commands to issue that have been
defined without a selection option or with selection option INFR, FREQ or CRIT.

Because no command has been defined with a selection option, only the command
that has been defined without a selection option is selected and issued, as in the
previous case.

Message AOF5891, AOF588I or AOF5871 is issued in cases where an infrequent,

frequent or critical threshold has been exceeded. These messages indicate that an
infrequent, frequent or critical threshold action has been processed.

Chapter 18. Automation Solutions 191

AOFRSA08

AOFRSA08

Purpose

You can use the AOFRSAQ8 automation routine to respond to syslog being queued
messages by starting an external writer to save the syslog that was queued.

AOFRSAQS keeps track of the incoming syslog queued messages and compares
there occurrence with predefined thresholds at infrequent, frequent, and critical
levels. An exceeded threshold is used as the option for selecting the appropriate
commands according to the first field in the command entry of the

MVSESA /SYSLOG entry/type-pair in the configuration file. If no threshold is
exceeded the commands that are defined for the selection option ALWAYS are
issued.

AOFRSAO08 should be called from the NetView automation table.

Syntax

»>—AOFRSA08

v
A

Restrictions

* Processing in AOFRSAO08 is only done if it is called from NetView automation
table by the expected message IEE0431.

* Actions are only taken in AOFRSAOQS if the recovery automation flag for
SYSLOG is on and if the status of JES is UP or HALTED.

Usage
Automation routine AOFRSAQS is intended to respond to the message:
IEEO43I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS class

which indicates that the system closed the system log (SYSLOG) data set and
queued the data set to a SYSOUT class.

The commands to issue are selected from the command entry of the
MVSESA /SYSLOG entry/type-pair in the configuration file.

If no threshold is reached when one of the expected messages arrive, all
commands that are defined for entries without a selection option and for the
selection option ALWAYS are selected.

If the threshold at the infrequent level is exceeded, all commands that are defined
for entries without a selection specification option and for entries with the selection

option INFR are selected.

In the same way, a level of frequent corresponds to the selection option FREQ and
a level of critical corresponds to the selection option CRIT.

Examples
This example shows a sample scenario for SYSLOG processing:

192 System Automation for z/OS: Customizing and Programming

AOFRSA08

The following entry in the NetView automation table is created automatically to
issue AOFRSAQS as response to the incoming IEE043] message:
IF MSGID = 'IEE043I'

THEN
EXEC (CMD (' AOFRSAQ8') ROUTE (ONE %AOFOPRECOPER%)) ;

~
COMMANDS HELP
Thresholds Definition
Command ===>
Entry Type : MVS Component PolicyDB Name : DATABASE_NAME
Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE
Resource : MVSESA.SYSLOG
Critical Number 08 (1 to 50)
Critical Interval . 00:05 (hh:mm or hhmm, 00:01 to 24:00)
Frequent Number o 8 (1 to 50)
Frequent Interval . 00:30 (hh:mm or hhmm, 00:01 to 24:00)
Infrequent Number o 8 (1 to 50)
Infrequent Interval 24:00 (hh:mm or hhmm, 00:01 to 24:00))

Figure 36. Threshold Definitions for MVS Component SYSLOG

Pass/Selection Automated Function/'x'
Command Text

MVS S SAVELOG

Figure 37. MESSAGES/USER DATA Policy Item for Entry/Type-Pair MVSESA/SYSLOG

Assume that the following message arrives the first time for one day:
TEEO43I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS A

Because none of the defined thresholds is exceeded, the automation routine
AQOFRSAQ8 searches for defined commands without selection option and to
selection option ALWAYS to be issued. With the control file shown above the
command MVS S SAVELOG is selected.

If message IEE0431 continues to arrive and the occurrence of the expected
messages thus exceeds the infrequent, frequent or critical threshold, the automation
routine AOFRSAQS searches for defined commands without selection option and to
selection option INFR, FREQ or CRIT to be issued.

Because no command is defined with any selection option, only the defined
command with no selection option is selected and issued, as in the previous case.

Message AOF5891, AOF588I or AOF5871 is issued in cases, where an infrequent,

frequent or critical threshold has been exceeded. These messages indicate that an
infrequent, frequent or critical threshold action has been processed.

Chapter 18. Automation Solutions 193

AOFRSAO0C

AOFRSA0OC

Purpose

You can use the AOFRSAOC automation routine to respond to a SVC dump taken
to a dump data set message by issuing commands from the configuration file to
format the dump, to clear the dump data sets, or to prevent further dumping. The
commands to issue are taken from the MVSESA/MVSDUMP and

MVSESA /MVSDUMPTAKEN entry/type-pairs and selected according to the
frequency of the incoming messages and the thresholds defined in the automation
policies. The first field in the command entry gives detailed criteria to select the
appropriate commands from the configuration file.

AOFRSAOQC should be called from the NetView automation table.

Syntax

»>—AOFRSAOC >

Restrictions

Usage

* Actions in AOFRSAQC are only taken if the recovery automation flag for
MVSDUMP is on.

* Processing in AOFRSAOQC is only done if it is called from NetView automation
table by one of the expected messages IEA6111 or IEA911E.

Automation routine AOFRSAQC is intended to respond to the following messages:

TEA6111 {COMPLETElPARTIAL} DUMP ON dsname
DUMPID=dumpid REQUESTED BY JOB (jobname)
FOR ASIDS(id,id,...)

TEA911E {COMPLETElPARTIAL} DUMP ON SYS1.DUMPnn
DUMPid=dumpid REQUESTED BY JOB (jobname)
FOR ASIDS(id,id,...)

These indicate that the system wrote a complete or partial SVC dump to an
automatically allocated or pre-allocated dump data set on a direct access storage
device or a tape volume.

AOFRSAQC keeps track on the reception of these messages and compares the
frequency of the incoming messages with predefined thresholds of infrequent,
frequent and critical level, where the thresholds to MVS component MVSDUMP
are considered. The commands to issue are selected according to the frequency of
the incoming messages.

If no threshold is reached, all commands to entries with no selection option and to
selection option ALWAYS are selected. If the threshold at level infrequent is
exceeded, all commands to entries with no selection option and to selection option
INFR are selected. In the same way a level of frequent corresponds to selection
option FREQ and a level of critical corresponds to selection option CRIT.

194 System Automation for z/OS: Customizing and Programming

AOFRSAO0C

The commands to issue are taken from MVSESA/MVSDUMP entry/type-pair of
the configuration file with respect to the frequency of the incoming of these
messages.

If AOFRSAOC has been triggered by receipt of message IEA911E, all the commands
from the MVSESA/MVSDUMPTAKEN entry/type-pair of the configuration file are
also selected and issued, as long as the critical threshold has not been exceeded.

After dump processing has been done, AOFRSAQC further monitors the frequency
of messages IEF6111 and IEF911E in intervals of 15 minutes. As soon as the
frequency falls below the infrequent threshold, all the commands of

MVSESA /MVSDUMPRESET entry/type-pair are issued.

Global Variables

When defining the commands in the configuration file to handle the SVC dump
data set, the variables &EHKVARI to &EHKVARG6 can be used to be substituted by
variable contents of message IEA6111 or IEA911E. The variables &EHKVARI to
&EHKVARG are not available in command entries of type MVSDUMPRESET.
These variables are substituted as follows:

&EHKVAR1
The dsname of IEA6111 or suffix of SYS1.DUMPnn in IEA911E

&EHKVAR2
The data set name

&EHKVAR3
The dump ID

&EHKVAR4
The job name

&EHKVARS
The ID of address space

&EHKVARG6
The dump type (PARTIAL or COMPLETE)

Examples

This example shows the use of automation routine AOFRSAQC in a sample
context:

An entry in the NetView automation table is used to issue AOFRSAOC when one
of the expected messages arrives:
IF MSGID = 'IEA611I' | MSGID = 'IEA91LE'

THEN
EXEC(CMD('AOFRSAOC ')ROUTE(ONE %AOFOPRECOPER%));

Three threshold levels are defined in the automation policy for MVS component
MVSDUMP:

Chapter 18. Automation Solutions 195

AOFRSAO0C

4] N
AOFKAASR SA z/0S - Command Dialogs
Domain ID = IPSNO =---------- INGTHRES ---------- Date = 08/28/03
Operator ID = SAUSER Time = 09:38:02
Specify thresholds and resource changes:
Resource => MVSESA.MVSDUMP Group or specific resource
System => KEY3 System name, domain ID, sysplex name or *all
Critical => 6 errors in 00:30 Time (HH:MM)
Frequent => 4 errors in 00:20 Time (HH:MM)
Infrequent => 2 errors in 00:20 Time (HH:MM)
Pressing ENTER will set the THRESHOLD values
Command ===>
PF1=Help PF2=End PF3=Return PF6=Ro11
PF12=Retrieve
o J

Figure 38. MVSDUMP Thresholds

The MESSAGES/USER DATA automation policy item of the MVSESA/MVSDUMP
entry/type-pair contains the following command entries for the message ID
MVSDUMP with selection options at different levels:

Ps/Select Command Text

FREQ 'MVS DD ALLOC=INACTIVE'
INFR 'MVS DD ALLOC=ACTIVE'
CRIT '"MVS DD ALLOC=INACTIVE'

The MESSAGES/USER DATA automation policy item of the MVSESA /
MVSDUMPTAKEN entry/type-pair contains the following entry without any
selection options:

'MVS DD CLEAR,DSN=&EHKVARL'

The MESSAGES/USER DATA automation policy item of the MVSESA/
MVSDUMPRESET entry /type-pair contains the following entry without any
selection options:

'MVS DD ALLOC=ACTIVE'

As long as no threshold is exceeded at receipt of one of the IEA611I and IEA911E
messages, no action is taken.

If dumps have been taken more often than defined with the infrequent threshold,
the command MVS DD ALLOC=ACTIVATE, specified in entry type MVSDUMDP, is
issued. This makes sure that automatic dump data set allocation is enabled. In
cases when the dump has been written to a pre-allocated SYS1.DUMP data set,
additionally the data set is cleared using the command MVS DD
CLEAR,DSN=&EHKVARI, specified in the entry type MVSDUMPTAKEN. Variable
&EHKVARLI is substituted by the numeric suffix of the SYSI.DUMP data set.

The same processing is done in cases when the incoming dump data set messages
exceeds the frequent level.

196 System Automation for z/OS: Customizing and Programming

AOFRSAO0C

As soon as the critical threshold is exceeded, the automation routine stops clearing
pre-allocated SYS1.DUMP data sets.

After commands having been issued by the automatic processing of dump data
sets, automation routine AOFRSAQC checks every 15 minutes whether the
infrequent threshold is satisfied again. As soon as this situation is reached,
automatic dump data set allocation is enabled again by command MVS DD
ALLOC=ACTIVE, as defined in entry type MVSDUMPRESET.

AOFRSAOE

Purpose
Automation routine AOFRSAQE deletes WTORs from SA z/OS display capabilities
when they are replied to or canceled.

Syntax
»>—AOFRSAOE— >

Lo

Parameters
id The reply identifiers for cancelled messages.

Restrictions
Processing in AOFRSAQE is only done if it is called from NetView automation
table by message IEE4001I or IEE600I or if one of these messages are passed by
parameter.

Usage
Automation routine AOFRSAOQE is intended to respond to the following messages:
IEE400I THESE MESSAGES CANCELED- id,id,1id
IEE6OOI REPLY TO id IS; text
Message IEE400I says that the system cancelled messages because the issuing task
ended or specifically requested that the messages be cancelled. Message IEE6001
notifies all consoles that received a message that the system accepted a reply to the
message.
As well AOFRSAQE can extract the identifiers of the messages to delete from
passed parameters.

Example

The following example shows how to issue AOFRSAQE from the NetView
automation table:

IF MSGID = 'IEE400I' | MSGID = 'IEE600I'
THEN
EXEC(CMD('AOFRSAOE ')ROUTE(ONE %AOFOPWTORS%));

Chapter 18. Automation Solutions 197

AOFRSAO0G

AOFRSA0G

Purpose

You can use the AOFRSAOG automation routine to respond to messages reporting
buffer shortage of the action message retention facility (AMRF) by issuing
commands from the configuration file to process buffer shortage automation.

In the case of an incoming buffer shortage message, the commands to issue are
taken from the MVSESA /AMRFSHORT entry/type-pair with the selection option
PASS1 and reissued at 1 minute intervals with an incremented pass count.

In the case of a buffer full message, the commands to issue are taken from the
MVSESA /AMRFFULL entry/type-pair. If buffer shortage relieved is reported, the
commands that are defined for the MVSESA/AMRFCLEAR entry/type-pair are
selected.

AOFRSAOQG should be called from the NetView automation table.

Syntax

»>—AOQFRSAOG

A\
A

Restrictions

Usage

* Actions are only taken in AOFRSAOG if the recovery automation flag for AMRF
is on.

* Processing of system messages in AOFRSAOQG is only done if it is called from
NetView automation table by message IEA359E, IEA360A or IEA3611.

Automation routine AOFRSAQG is intended to respond to the messages:

IEA359E BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 80% FULL
IEA360A SEVERE BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 100% FULL
IEA361I BUFFER SHORTAGE RELIEVED FOR RETAINED ACTION MESSAGES

IEA359E and IEA360A reports buffer shortage of the buffer area for immediate
action messages, non-critical and critical eventual action messages and WTOR
messages. IEA361I indicates the reduction of the number of retained action
messages so that the buffer is now less than 75% full.

If AOFRSAOG has been triggered on receipt of message IEA359E the commands to
issue are taken from entry/type-pair MVSESA /AMRFSHORT, starting at selection
option PASS1 and continuing with incremented selection options in 1 minute
intervals until message IEA361 reports that buffer shortage has relieved. After
arriving the maximal used selection option for a defined command processing
restarts at selection option PASS1.

If AOFRSAOG has been triggered on receipt of message IEA360A all commands
from entry/type-pair MVSESA /AMRFFULL are issued.

If AOFRSAOG has been triggered on receipt of message IEA3611 all commands
from entry/type-pair MVSESA/AMRFCLEAR are issued.

198 System Automation for z/OS: Customizing and Programming

AOFRSA0G

Examples

The following example shows a sample scenario for AMRF shortage processing;:

Entries in the NetView automation table are used to issue AOFRSAQOG when
message IEA359E, IEA360E or IEA361I arrives:

IF MSGID = 'IEA359E'

THEN

EXEC(CMD('AOFRSAOG')ROUTE (ONE %AOFOPRECOPER%));
IF MSGID = 'IEA360A'

THEN

EXEC(CMD('AOFRSAOG')ROUTE (ONE %AOFOPRECOPER%)) ;
IF MSGID = 'IEA361I'

THEN

EXEC (CMD('AOFRSAOG')ROUTE(ONE %A0FOPRECOPER%));

To specify how to respond to message IEA359E and IEA3611, the following
command definitions are made in the automation policy under the entry/type-pair
MVSESA/AMRFFULL and MVSESA /AMRFCLEAR:

/Command = ACF ENTRY=MVSESA,TYPE=AMRF=*,REQ=DISP
SYSTEM = AOC1 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA
AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA
TYPE IS AMRFCLEAR
CMD = (,,'MVS CONTROL M,AMRF=Y'")
TYPE IS AMRFULL
CMD = (,,'MVS CONTROL M,AMRF=N")
\END OF MULTI-LINE MESSAGE GROUP

Figure 39. MVSESA AMRF Command Definitions

If for example message
IEA360A SEVERE BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 100% FULL

arrives, AOFRSAOG is issued by the shown statement in the NetView automation
table, which causes the command CONTROL M,AMRF=N to be issued to clear the
AMREF bulffers.

After AMRF buffer shortage is relieved, the incoming message
IEA3611 BUFFER SHORTAGE RELIEVED FOR RETAINED ACTION MESSAGES

causes command CONTROL M,AMRF=Y to be issued to reactivate AMRF.

AOFRSDO07

Purpose

You can use the AOFRSD07 automation routine to respond to a JES2 not dormant
message during JES2 shutdown by issuing commands for resources that are not
drained.

The commands to issue are taken from the automation policy item JES2 DRAIN of
application JES2.

Additionally AOFRSDO07 calls AOFRSDOF which outputs a list of all active jobs and
started tasks and a list of all resources not yet drained.

AOFRSDO07 should be called from the NetView automation table.

Chapter 18. Automation Solutions 199

AOFRSDO07

Syntax

»»>—AQFRSDO7 ><

Restrictions

Usage

Processing in AOFRSDO7 is only done if:
* It is called from NetView automation table by JES2 message HASP607
¢ The terminate automation flag for JES2 is on

* JES2 is in shutdown progress

Automation routine AOFRSDO7 is intended to respond to message
HASP607 JES2 NOT DORMANT -- MEMBER DRAINING, RC=rc text

which indicates in case the P JES2 command was entered to withdraw JES2 from
the system that not all of JES2's functions have completed.

To find out all resources not drained, the response to JES2 command DU,STA is
processed. For each resource in status DRAINING the corresponding command
from the automation policy item JES2 DRAIN for this resource type to force drain
is issued. Resources in status ACTIVE are first stopped with JES2 command P
resource, before the command from the automation policy item to force drain is
issued. Resources in status INACTIVE are only stopped with JES2 command P
resource.

In cases, where the automation is unable to issue actions on not yet drained
resources, JES2 is set to status STUCK and a message is issued which tells that an
operator action is required. Those situations occur if no command is specified in
automation policy item JES2 DRAINED of JES2 to drain a resource or if a not yet
drained resource is in an unknown status

AOFRSDO09

Purpose

Automation routine AOFRSD09 is used for JES2 spool recovery. It is called by
AOEFRSDO1 via a timer every retry interval to monitor spool utilization of JES2 and
to successive issue the recovery commands of policy item JES2 SPOOLSHORT or
JES2 SPOOLFULL.

For this purpose AOFRSD09 processes the following steps:

* AOFRSDO09 issues the JES2 command D SPOOL to obtain the current spool
usage.

* AOFRSDO09 re-evaluates the target of recovery process based on the actual
warning threshold for TG and the buffer value from the configuration file.

* If the recovery target has not yet been achieved and the current JES2 subsystem
is responsible for the spool recovery, AOFRSD09 increments the pass count and
issues the appropriate commands from the configuration file. In a shared JES2
environment, where all JES2 subsystems receive a copy of the spool shortage
message, AOFRD09 determine the appropriate JES2 subsystem for spool
recovery. To do this, AOFRD09 compares the list of cpuids, as defined in
configuration file, with the response to JES2 command D

200 System Automation for z/OS: Customizing and Programming

AOFRSDO09

MEMBER,STATUS=ACTIVE. The first active cpuid on the list is considered to be
the appropriate JES2 subsystem for spool recovery.

* In case the spool shortage problem has already been relieved, AOFRSD09 stops
the recovery process and sets a timer to reset the pass count for the recovery
commands after the reset interval.

You define recovery commands and configuration parameters for JES2 recovery
processing, such as buffer value, reset interval and cpuid list, using automation
policy item JES2 SPOOLSHORT for spool shortage recovery processing and JES2
SPOOLFULL for spool full recovery processing.

For further information about the JES2 SPOOLSHORT and JES2 SPOOLFULL
automation policy items see [[BM Tivoli System Automation for z/OS Defining|
lAutomation Polic

Syntax

»»>—AOFRSDO9—subsystem—recovery type >

Parameters

subsystem
The subsystem name of JES2. This parameter is required.

recovery type
This parameter is used to distinguish between a JES2 spool shortage and a
JES2 spool full condition. This parameter is required.

SHORT
The automatic recovery from a JES2 spool shortage condition is to be
processed.

FULL The automatic recovery from a JES2 spool full condition is to be
processed.

Restrictions

Usage

* Processing of recovery commands in AOFRSDQ9 is only done if the recovery
automation flag for JES2 is on. Otherwise the recovery process is suspended and
the pass count for selection recovery commands from the configuration file is
not incremented.

* Automation routine AOFRSD09 should be processed by JESOPER. If it is called
on another task it is routed back to JESOPER.

* Processing in AOFRSD09 is only done if the specified type of spool recovery
process has been initiated by automation routine AOFRSDO1.

* During a SPOOLFULL recovery condition, the processing for SPOOLSHORT
recovery is suspended.

The recovery commands to issue are selected from the command entry of policy
item JES2 SPOOLSHORT or JES2 SPOOLFULL. A pass count is used as selection
option and incremented at each successive processing of automation routine
AOFRSD09. At initialization of the recovery process, the pass count is set to value
PASS1 by automation routine AOFRSDO1.

Chapter 18. Automation Solutions 201

AOFRSD09

If pass processing runs out of defined recovery commands before the spool
shortage condition is resolved, AOFRSD(9 re-executes the recovery sequence from
PASS1. You can change this behavior by setting the appropriate advanced
automation option at start up of System Automation. You can use the
AOFSPOOLSHORTCMD variable (for SPOOLSHORT conditions) and the
AOFSPOOLFULLCMD variable (for SPOOLFULL conditions) to tell automation
routine AOFRSD(9 to stop recovery attempts when all commands have been
executed and to issue message AOF294I to inform the operator that manual
intervention is required in order to resolve the spool condition. For more
information about advanced automation options refer to [‘Read /Write Variables”]

Global Variables

When defining the commands in the SPOOLFULL or SPOOLSHORT processing
panel of the configuration file to handle the recovery, the variables &EHKVARI1
and &EHKVAR2 can be used to be substituted by variable contents. Variable
&EHKVARLI is substituted by the current spool utilization and &EHKVAR2
contains the recovery target.

AOFRSDOF

202

Purpose

Automation routine AOFRSDOF is used by AOFRSD07 for drain processing prior
to JES2 shutdown. Every shutdown delay interval, AOFRSDOF displays all JES2
resources not yet drained. For this purpose it scans the response to JES2 command
DA,S for executing tasks, the response to JES2 command DA,J for executing jobs
and the response to JES2 command DU,STA for started devices or lines not yet
drained and displays the result in a message.

Syntax
»»>—AQFRSDOF—subsystem ><
Parameters
subsystem
The subsystem name of JES2.
Restrictions

Processing in AOFRSDOF is only done if the following conditions are met:
* The subsystem is of type JES2

* JES2 is in shutdown progress

* The terminate automation flag is on

Usage
This automation routine is performed as part of the SHUTDOWN processing.

Examples

This example shows a sample scenario for JES2 drain processing prior to JES2
shutdown.

System Automation for z/OS: Customizing and Programming

AOFRSDOF

The following statement shows how AOFRSD07 is issued from the NetView
automation table by JES2 message
$HASP607: IF MSGID(2) = 'HASP607'

THEN
EXEC (CMD (' AOFRSDO7 ') ROUTE (ONE %AOFOPJESOPER%)) ;

Assume the following drain processing specifications in automation policy item
JES2 DRAIN:

~
COMMANDS HELP
JES2 DRAIN Specifications
Command ===>
Entry Type : Application PolicyDB Name : DATABASE_NAME
Entry Name : JES2 Enterprise Name : YOUR_ENTERPRISE
Subsystem: JES2
Enter information (Yes or No) for initial drain to bring down JES2 facilities.
LIN YES Drain Tines
oG YES Drain JES2-VTAM interface
OFF NO Drain spool offloaders
PRT YES Drain printers
RDR YES Drain readers
PUN YES Drain punches
Enter information (Command or No) for force drain if normal drain fails.
LIN $E Force drain Tines
Log $E Force drain JES2-VTAM interface
0FF 6 6 0 o o NO Force drain spool offloaders
R 0 0 0 o o $T Force drain printers
RDR $C Force drain readers
F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE)

Figure 40. JES2 DRAIN Specifications Panel

The list of commands to force drain of JES2 resources are passed to the
JES2/FORCEDRAIN entry/type-pair in the configuration file and can be displayed
with the DISPACF command:

/Command = ACF ENTRY=JES2,TYPE=FORCEDRAIN,REQ=DISP A
SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
TYPE IS FORCEDRAIN
LIN = IIII$EIIII
LOG =N II$EII n
OFF =N IINOIIII
PRT = n II$IIIII
RDR = uwngenn
PUN =N II$EIIII
END OF MULTI-LINE MESSAGE GROUP)

Figure 41. DISPACF Panel

Assume that during a shutdown of JES2 message $HASP607 arrives, indicating
that not all of JES2's functions have completed and that JES2's response to
command $DU, STATUS is:

$HASP636 13.53.22 $DU,STA
LINE1 UNIT=0FF3,STATUS=ACTIVE/BOEVM9,DISCON=NO

Automation routine AOFRSDO07 first issues JES2 command $PLINE1 to stop the line

and then issues JES2 command $E, according to the policy specifications FOR
entry/type-pair JES2/FORCEDRAIN.

Chapter 18. Automation Solutions 203

AOFRSDOF

Then automation routine AOFRSDOF is executed every shutdown delay interval, to
list all JES2 resources not drained.

AOFRSDOG

204

Purpose

You can use the AOFRSD0G automation routine to drain JES2 resources prior to
JES2 shutdown. AOFRSDOG issues commands to drain the initiators, offloader
tasks, lines, printers, punches and readers, depending on which resources are listed
and enabled in the automation policy item JES2 DRAIN of application JES2.

AOFRSDOG is used by the DRAINJES command.

Syntax

»»>—AQFRSDOG—subsystem ><

Parameters

subsystem
The subsystem name of JES2.

Restrictions
* Processing in AOFRSDOG is only done if the subsystem is of type JES2.

Usage

For all resources enabled to initial drain in automation policy item JES2 DRAIN of
application JES2 the JES2 command P is issued.

Example
Call AOFRSDOG JES2 to stop all resources enabled in JES2 DRAIN for init drain.

These resources can be listed with command DISPACF JES2 INITDRAIN.

/Command = ACF ENTRY=JES2,TYPE=INITDRAIN,REQ=DISP

SYSTEM = AOC1 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

TYPE IS INITDRAIN
LIN =
LOG
OFF
PRT

wnypgun
nnypgun
wungn e
nnypquun
RDR wnypgun
PUN nnypquun
END OF MULTI-LINE MESSAGE GROUP

Figure 42. DISPACF JES2 INITDRAIN Panel

System Automation for z/OS: Customizing and Programming

AOFRSDOH

AOFRSDOH

Purpose

The AOFRSDOH automation routine is used for JES2 spool recovery. It is called by
AOFRSD09 with a timer command after the reset interval and cleans up the pass
counter for the pass processing of the recovery commands of the configuration file.

Syntax

A\
A

»»>—AOFRSDOH—subsystem—recovery type

Parameters

subsystem
The subsystem name of JES2. This parameter is required.

recovery type

This parameter is used to distinguish between a JES2 spool shortage and a
JES2 spool full condition. This parameter is required.

SHORT
The pass counter for spool shortage recovery processing is to be reset.

FULL The pass counter for spool full recovery processing is to be reset.

Restrictions

¢ The AOFRSDOH automation routine should be processed by JESOPER. If it is
called on another task it is routed back to JESOPER.

* Each recovery action during the reset interval

* AOFRSDOH is only scheduled after the reset interval if no new recovery action
of the corresponding type SHORT or FULL has been taken during this time.

* The pass counter for spool full recovery processing is reset by AOFRSDOH after
the reset interval, even if spool short recovery is still in progress.

Examples

The following example shows a sample scenario for JES2 spool recovery
processing:

The following entries in the NetView automation table are used to issue the
AOFRSDO01 automation routine from the NetView automation table, when one of
the expected messages arrives:

IF MSGID(2) = 'HASPO50' & TEXT = .'TGS'.

THEN

EXEC (CMD (' AOFRSDO1 ') ROUTE (ONE %AOFOPJESOPER%)) ;
IF MSGID(2) = 'HASP355'

THEN

EXEC (CMD('AOFRSDO1')ROUTE (ONE %AOFOPJESOPER%)) ;

The SPOOLSHORT recovery is configured using the automation policy item JES2
SPOOLSHORT as shown in [Figure 43 on page 206}

Chapter 18. Automation Solutions 205

AOFRSDOH

COMMANDS ~ HELP
SPOOLSHORT Processing

Command ===>
Entry Type : Application PolicyDB Name : DATABASE_NAME
Entry Name : JES2 Enterprise Name : YOUR_ENTERPRISE
Enter SPOOLSHORT settings.
Retry Time 00:05:00 Spool recovery attempt interval (hh:mm:ss)
Buffer 5 Recovery target below TGWARN (0->50)
Reset Time 00:15:00 Recovery reset interval (hh:mm:ss)
Priority of systems for spool recovery:
CPUID 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32
Edit Spoolshort Pass Commands . . YE YES NO

Ao — %

Figure 43. JES2 SPOOLSHORT Recovery Definition

Because no cpuids are defined, the own JES2 subsystem is responsible for JES2
spool recovery processing. Entering YES in Edit Spoolshort Pass Commands field
allows you to edit the pass recovery commands that are defined as shown in the
response panel to command DISPACF JES2, .

/,Command = ACF ENTRY=JES2,TYPE=+,REQ=DISP
SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
TYPE IS SPOOLSHORT
CMD = (PASS1,,'MVS $PQ,Q=N,A=3")
CMD = (PASS1,,'MVS $0Q,Q=N,A=3,CANCEL")
CMD = (PASS1,,'MVS $PQ,Q=V,A=3")
CMD = (PASS1,,'MVS $0Q,Q=V,A=3,CANCEL")
CMD = (PASS2,,'MVS $PQ,ALL,A=4")
CMD = (PASS2,,'MVS $0Q,ALL,A=4,CANCEL")
CMD = (PASS3,,'MVS $PQ,ALL,A=3")
CMD = (PASS3,,'MVS $0Q,ALL,A=3,CANCEL")
CMD = (PASS4,,'AORRSPLS RANGE=J0B1-5000,NAME=T*")
CMD = (PASS4,,'AORRSPLS RANGE=J0B5000-10000,NAME=T=*")
CMD = (PASS4,,'AORRSPLS RANGE=J0B10000-15000,NAME=T*")
CMD = (PASS4,, 'AORRSPLS RANGE=J0B15000-20000,NAME=T=*")

- J
Figure 44. DISPACF Command Response Panel

Assume that a JES2 spool shortage problem is reported by the following message:
$HASPO50 JES RESOURCE SHORTAGE OF TGS - 80% UTILIZATION REACHED

This issues the AOFRSDO01 automation routine by the appropriate NetView
automation table entry. AOFRSDO1 initiates the JES2 SPOOLSHORT recovery
process and sets an every timer to call the pass processing routine by issuing
AOFRSD09 JES2 SHORT every 5 minutes, as defined in the customization dialog

for SPOOLSHORT processing, see

AOFRSD09 redetermines the actual spool usage, compares it with the defined
TGWARN of 80% and calculates the target of recovery as difference of TGWARN
and the buffer value resulting in a value of 75. If this value is exceeded by the
actual spool usage, all recovery commands with the PASS1 selection option in the
configuration file for the SPOOLSHORT recovery type are issued. After the retry
interval of 5 minutes, AOFRSD(Q9 is reissued by the timer.

206 System Automation for z/OS: Customizing and Programming

AOFRSDOH

If AOFRSD09 now determines that the JES2 spool shortage problem has been
relieved, it stops recovery processing and sets a timer to issue AOFRSDOH JES2 SHORT
after the reset interval of 15 minutes.

If none of the expected JES2 messages arrives by the end of the reset interval, the
AOFRSDOH automation routine resets the pass count to 1 so that the next
SPOOLSHORT recovery process issues recovery commands beginning again at
PASS] selection option.

HASP099

Restrictions

Usage

Shutdown processing of the JES2 message HASP(099 is only done if:
* Shutdown automation for JES2 is on
» JES2 is in the process of being shut down

The ISSUEACT command responds to message:
HASPO99 ALL AVAILABLE FUNCTIONS COMPLETE

This indicates that all JES2 job processors have become dormant, and no JES2 RJE
lines are active.

INGRMJSP

Purpose

You use the INGRMJSP automation routine to monitor JES2 spool file usage. It
queries the spool usage to obtain the current spool usage and the warning level. If
necessary it calls the INGRCJSP automation routine for JES2 spool recovery
processing.

The INGRM]JSP command also updates the SPOOL entry in the status display
facility (SDF) every time it is called.

Syntax

»>—TINGRMJISP ><

Restrictions

Usage

* Monitoring by INGRM]JSP is only done if it has been defined as the monitor
command for an appropriate monitor resource in the customization dialog.

The INGRM]JSP monitoring routine queries the spool usage by issuing the D

SPOOLDEF,TGSPACE command to obtain the current spool usage and the warning

level as set up by the JES2 system programmer:

* If the spool file is full, INGRM]JSP sets the health status to CRITICAL and calls
INGRC]JSP.

Chapter 18. Automation Solutions 207

INGRMJSP

* If the spool usage is above the warning level, INGRM]JSP sets the health status
to WARNING and calls INGRCJSP.

Depending on the spool full percentage and the warning level, one of the
following return codes is set:

Return code Meaning

1 A severe error occurred:

* The monitor does not have a job name

¢ The monitored object is not SPOOL or associated with JES2
¢ The specified job name does not refer to a JES2 resource

* No command prefix for JES2 was found

2 Monitoring command failed:
* The D SPOOLDEF command failed

3 OK: Spool usage is below the warning level
4 WARNING: Spool usage is above the warning level
6 CRITICAL: The spool file is full

Example

To create a spool usage monitor in the customization dialog you must define the
following items:

1. A monitor resource (MTR) with INGRMJSP as the monitoring command. For
example, if you create a monitor resource called JES2SPOOL with the short
description JES2 Spool Monitor, specify the following information in the
MONITOR INFO policy item:

208

Monitored Object SPOOL
Monitored Jobname JES2
Activate Command

Deactivate Command

Monitor Command INGRM]JSP
Monitoring interval 00:15
Captured Messages Limit 20
Desired Available

Inform List SDF
Owner

Info Link

2. The following relationships to the JES2 application using the RELATIONSHIPS

policy item:

Relationship type Supporting Resource Condition
HasParent JES2/APL/=
ForceDown JES2/APL/= WhenObservedDown

The monitor has a HasParent relationship to the corresponding JES2 resource
because it only makes sense to monitor the spool usage when JES2 is active.

3. The following recovery actions in the HEALTHSTATE policy item:

System Automation for z/OS: Customizing and Programming

INGRMJSP

State Command
WARNING INGRCJSP
CRITICAL INGRCJSP

INGRCJSP (AOFRSDO01)

Purpose

You can use the INGRCJSP automation routine for JES2 spool recovery processing.
It responds to JES2 spool shortage messages by initiating the recovery process for
JES2 spool shortage. It responds to JES2 spool full messages by initiating the
recovery process for JES2 spool full to downgrade the problem of excessive spool
usage.

The INGRCJSP routine does the following:

* Makes linear and first order predictions of spool usage, based on actual and
historical values.

 Posts the spool status to the status display facility (SDF).

¢ Determines the target of recovery processing as the difference between the actual
warning threshold for track groups and the buffer value from the configuration
file. The spool shortage condition is considered as relieved if the recovery
process achieves this target.

¢ Initiates pass processing to execute the recovery commands of the configuration
file, as defined with the JES2 SPOOLSHORT or JES2 SPOOLFULL policy item.
The pass processing itself is done by the AOFRSD09 automation routine, which
is issued every retry interval. The retry interval is taken from the configuration
file.

You define recovery commands and configuration parameters for JES2 recovery
processing, such as buffer value and retry interval, using automation policy item
JES2 SPOOLSHORT for spool shortage recovery processing and JES2 SPOOLFULL
for spool full recovery processing.

For further information about the JES2 SPOOLSHORT and JES2 SPOOLFULL
automation policy items see [[BM Tivoli System Automation for z/OS Defining]
[Automation Policy}

INGRC]JSP should be called from the NetView automation table.
Syntax

»>—INGRCJISP

A\
A

Restrictions

* Processing in INGRCJSP is only done if it is called from NetView automation
table by JES2 messages HASP050 or HASP355.

e Message HASP355 is only processed if it reports a shortage of track groups (TG).

Chapter 18. Automation Solutions 209

INGRCJSP (AOFRSDO01)

Usage

The INGRCJSP automation routine is intended to respond to the following
messages:

HASPO50 JES2 RESOURCE SHORTAGE OF TGs - nnn% UTILIZATION REACHED

HASP355 SPOOL VOLUMES ARE FULL

HASPO050 indicates that JES2 has a shortage of track groups and the current spool
utilization exceeds the current TGWARN value on this JES. TGNWARN is defined
in the SPOOLDETF statement in the JES initialization member and can be changed
dynamically.

HASP355 indicates that a request for JES2 direct access spool space cannot be
processed because all available space has been allocated to JES2 functions or no
spool volumes are available. Therefore the recovery targets in this case are based
on a figure of 100% spool utilization.

You should code TGWARN in the SPOOLDEF statement in the JES initialization
member so that SPOOLSHORT recovery is initiated before a SPOOLFULL
condition is reached. If you do not do this the recovery process may become
unpredictable.

When resetting after a SPOOLFULL condition, the problem is downgraded to a
SPOOLSHORT condition. SA z/OS expects the SPOOLSHORT recovery that was
previously running to activate and try to downgrade the problem to an OK.
Without the prior SPOOLSHORT recovery, the spool status remains in
SPOOLSHORT after a successful SPOOLFULL recovery.

The NetView automation table entries for JES2 messages must respect the one
character prefix in front of the message identifier of JES2 messages that identifies
the issuing JES.

The spool status is posted to SDF under the SPOOL generic, with the name of the
subsystem as its specific name. To have these displayed on an SDF panel, you need
status fields for xxxx.SPOOL, elements 1 through 71, where 7 is the number of
different subsystems that use the spool.

INGRTAPE

Purpose

INGRTAPE maintains tape status details under SDF and NMC. When SA z/0S

detects an outstanding tape mount request then it feeds the related message into
SDF and/or NMC. If the request is not satisfied before the warning interval has

expired, the status will change to warning.

If the tape mount request is still not satisfied after the alert delay, the status will
change to alert.

The tape mount request is deleted from SDF and/or NMC dynamically when the
related tape is mounted or the requesting job is canceled.

The routine INGRTAPE automation routine is used to visualize the pending tape
mount requests within SDFE. Its behaviour is based on the definitions in the "Tape

210 System Automation for z/OS: Customizing and Programming

INGRTAPE

Attendance' policy entry. For information about activating and customizing Tape
attendance, refer to [[BM Tivoli System Automation for z/OS Defining Automation|

Syntax

»—INGRTAPE

v
A

Usage
Automation routine INGRTAPE is intended to respond to the following messages:
IEC501E, IEC501A, IEC502E, IEC5031, IEC507D, IEC509A, IEC510D, IEC512],
IEC513D, IEC514D, IEC701D, IEC7021, IEC703I, IEC704A, IEC7061, IEC7071,
IEC708I, IEC708D, IEC7091, IEC710I, IEC7111, IEC712I, IEC713I, IEC714I, IEC715I,
IEF233A, IEF233D,IEF234E, IEF455D, IAT5210, TMS001, TMS002, TMS0012

Restrictions

The monitoring of tape mounts is only enabled when activated via the
Customization Dialogs.

INGRX740

Purpose

You can use the INGRX740 automation routine to respond to some syslog related
system messages by issuing defined recovery actions from the automation control
file to restart the syslog or to assign the syslog as a hardcopy medium.

INGRX740 keeps track of the incoming IEE037D syslog inactive message and
compares its occurrence with predefined thresholds for the MVS component minor
resource, LOG. As long as the critical threshold level is not exceeded, a recovery
action related to a previously received system message is issued.

If one of the messages IEE043], IEES33E or IEE769E is received prior to the
IEE037D message that is currently being processed, the commands that have been
defined for IEE043I, IEES33E or IEE769E in the MVSESA /msgid entry/type-pair of
the configuration file are issued. If none of these messages has been received prior
to the IEE037D message that is currently being processed, the command MVS
WRITELOG START is issued.

The recovery routine INGRX740 also responds to an incoming IEE041] message if
this indicates that the SYSLOG data set is available for use as a hardcopy log.
Commands are issued in response to message IEE041I that are defined in the
MVSESA /IEE0411 entry/type-pair of the configuration file. An appropriate
command in this case would be MVS VARY SYSLOG,HARDCPY to have the
SYSLOG receive the hardcopy log.

INGRX740 should be called from the NetView automation table.

Syntax

»>—INGRX740 >

Chapter 18. Automation Solutions 211

INGRX740

212

Restrictions and Limitations

Usage

Processing in routine INGRX740 is only done if the following conditions are met:
* The recovery automation flag for LOG is on.
* The routine is running on an automation task.

* The routine is called from NetView automation table by one of the expected
messages

IEE037D

IEE0411

IEE533E

IEE769E

IEE043I1

Actions in response to message IEE037D are only taken in INGRX740, if the Job
Entry Subsystem is up and running.

Automation routine INGRX740 responds to the following messages:

IEEO37D LOG NOT ACTIVE

IEEQ411 THE SYSTEM LOG IS NOW ACTIVE[-MAY BE VARIED AS HARDCOPY LOG]
IEEO43I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS class
IEES33E SYSTEM LOG INITIALIZATION HAS FAILED

IEE769E SYSTEM ERROR IN SYSTEM LOG

Example

This example shows a sample scenario for system log failure recovery.

The following entry in the NetView automation table is provided by SA z/OS to
issue INGRX740 in response to incoming messages IEE043I and IEE037D:

IF MSGID = 'IEEO37D' THEN

EXEC(CMD (' INGRX740')ROUTE (ONE %AOFOPRECOPER%)) ;

IF MSGID = 'IEEO43I' THEN

EXEC(CMD (' INGRX740')ROUTE (ONE %AOFOPRECOPER%)) ;

Assume that the following threshold levels are defined in the automation policy
for MVS component minor resource, LOG.

COMMANDS HELP
Thresholds Definition
Command ===>

Entry Type : MVS Component PolicyDB Name : DATABASE_NAME
Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE
Resource : MVSESA.LOG

Critical Number 0o 8 (1 to 50)

Critical Interval . 00:05 (hh:mm or hhmm, 00:01 to 24:00)
Frequent Number 0o 8 (1 to 50)

Frequent Interval . 00:30 (hh:mm or hhmm, 00:01 to 24:00)
Infrequent Number o 8 (1 to 50)

Infrequent Interval 24:00 (hh:mm or hhmm, 00:01 to 24:00)

-

Figure 45. Threshold Definitions for MVS Component LOG

Assume that a command is defined for message IEE043I in the automation policy
item MESSAGES/USER DATA of MVS components, as shown in the following

System Automation for z/OS: Customizing and Programming

INGRX740

figure.
~
COMMANDS ~ HELP
CMD Processing Row 1 to 4 of 20
Command ===> SCROLL===> PAGE
Entry Name : MVS_COMPONENTS Message ID : IEEQ43I

Enter commands to be executed when resource issues the selected message.
or define this message as status message.

Status . . . ('?" for selection Tist)

Pass/Selection Automated Function/'x'
Command Text

MVS WRITELOG START
\C J
Figure 46. MESSAGES/USER DATA Policy Item for Entry/Type-Pair MVSESA/LOG

Assume that the following messages arrive the first time for one day, while the Job
Entry Subsystem is up and running and the recovery automation flag for the MVS
component minor resource LOG has not been switched off:

IEEO43T A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS 1
IEEO37D LOG NOT ACTIVE

Because IEE043I has been received prior to message IEE037D and the critical
threshold that has been defined for message IEE037D has not been exceeded, the
command that has been defined for message IEE043I is issued in response to
message IEE037D.

Chapter 18. Automation Solutions 213

INGRX740

214 System Automation for z/OS: Customizing and Programming

Chapter 19. Automated System Resource Discovery

The discovery utility can be run against one or multiple customer systems,
extracting all automation relevant data from the currently active address spaces.
That will let SA z/OS make a simple link between the address spaces details (job
name, command prefix, start command, and so forth) and a class definition that
provides messages, dependencies and appropriate automation policy. It runs
through the control blocks, pulling out not only job names, but also procedure and
step names. It pulls out the start commands, and the PGM name from the JCL. It
can search through CICS and IMS implementations to pull out lists of dependent
regions. All that data is then imported into the customer's Policy DB which will
create a basic automation policy for them.

This policy then requires manual steps to create a ready to run automation policy.
The policy will contain:

* Sysplex Group(s)
e Systems

* A System APG w/o Automation name where all applications found on that
system are linked to

e APL Classes
e APL Instances, linked to classes
* Basic dependency structures

Note, there is no intention to discover any service period (schedule) related data.
Furthermore, only applications that are running when the discovery utility is run
would be included in the SA z/OS policy.

In a subsequent step, rerunning the discovery utility and re-importing it will
update the policy DB to add any newly discovered APLs.

The discovery utility can be used when:
¢ installing and setting up SA z/0OS,

* customers who need basic automation want a simplified way to maintain their
policies.

Note: Automated System Resource Discovery is designed to support you when
setting up a new policy. The generated policy requires manual steps to
adapt the policy to your installation. You therefore need to be familiar with
the SA z/0OS Customization Dialogs.

Disclaimer

The Autodiscovery function provides a basic automation policy which must be
finalized. It is the responsibility of the user to finalize the policy in a way that does
not cause unwanted effects in the user's installation.

© Copyright IBM Corp. 1996, 2012 215

Components Overview

Components Overview

There are three major process elements to this design. They are the discovery
engine, the preloader and the file update facility of the SA z/OS Customization
Dialog, here called 'importer'. In this overview you will read about the purpose of
these processes and the data they require and generate.

Target System Customization Dialog System
Knowledge Base
Target
PDB
Mapper
Files
Disc_overy
Engine P SA z/0S |
Preloader Importer
by SAZ/OS
Customization
Dialog
B Y|
Snapshot Snapshot /
File 19 File
i Report Flat File

Figure 47. Automated Discovery Overview

216

DISCOVERY ENGINE

The DISCOVERY engine runs on each target system. It non-disruptively
extracts information from the system's current workload and writes it to a
system specific SNAPSHOT file.

SNAPSHOT FILE
The SNAPSHOT file is a regular text file and can be browsed with the ISPF
browser. It should not be edited. It mainly contains resources such as
address spaces which were active at that point in time when the discovery

System Automation for z/OS: Customizing and Programming

Components Overview

engine was running. The snapshot file is then sent over to the central
system where the customer is running the SA z/0OS Customization
Dialogs.

PRELOADER

The PRELOADER reads the data from the SNAPSHOT file, applies the
rules encoded in the MAPPER FILES to the data, extracts the relevant
policy from the KNOWLEDGE BASE and then determines a delta update
that needs to be made to the PDB to add the newly discovered data. It
writes out a set of instructions for the IMPORTER in a FLAT FILE.

KNOWLEDGE BASE

The KNOWLEDGE BASE represents two automation policies, a best
practice policy provided by SA z/OS and an installation specific
automation policy. The SA z/OS provided policy already contains a
variety of different applications that are expected to be encountered on a
customer's system. This policy cannot be changed by users. The
installation's automation policy is a PDS that must be created by the
installation using the Customization Dialog. It is intended to be populated
with automation policy items to be used as a model for entities that you
have identified in your installation's MAPPER FILES.

MAPPER FILES

PDB

The MAPPER FILES primarily describe how the PRELOADER has to map
a resource listed in the SNAPSHOT file to a policy entry contained in the
KNOWLEDGE BASE. Besides those mapper files, which are predefined by
SA z/0OS , there may be installation defined mapper files. The preloader
will first try to map a discovered resource using the installation's mapper
file. If no mapping was found, the preloader will continue using the

SA z/0S provided mapper file. The MAPPER FILES are regular text files
and can be processed with a normal text editor.

The PDB - also referred to as "Target PDB' - is an SA z/OS Policy Database
that the user has created to hold the definitions of the discovered data. The
user may have manually updated it to add or customize specific policies.

FLAT FILE

The FLAT FILE is read in by the IMPORTER, and the instructions
contained within it are then executed to edit the PDB that it is being
imported into. This will create the policy elements that represent the
discovered data.

FLAT FILES are regular text files and can be processed with a normal text
editor. They should be edited with caution however as they both need to
follow the syntax rules for the SA Customization Dialogs file update utility
and the introduction of even a small error or incompatibility will prevent
the whole file from loading.

IMPORTER

The IMPORTER is just a short term for the file update facility of the
SA z/0OS Customization Dialog. It reads a FLAT FILE and imports the
data into the Target PDB.

Chapter 19. Automated System Resource Discovery 217

Overview of Using the Automated System Resource Discovery Process

Overview of Using the Automated System Resource Discovery

Process

The Automated System Resource Discovery process can be considered as two
separate steps: Gathering data and feeding the discovered data into a policy.

Step 1: Scan each of the systems to be modelled with a discovery tool - the
'Discovery Engine'. For that purpose, you will need to install this tool on each
system to be modelled, unless there is a full SA z/OS installation on it. When the
discovery engine is run, it produces a SNAPSHOT data file containing information
about the system resources. This snapshot file then needs to be sent to the system
where you will run the SA z/OS customization dialogs.

Step 2: During this step the snapshot files are consolidated and accumulated into a
Policy Database. The consolidation process involves:

Step2a: running each discovered data file through a PRELOADER which will
apply some identification heuristics to the discovered data and construct a delta
update to the PDB in order to:

Step2b: add in the newly discovered applications through the IMPORTER.

At the start of Step 2 you need to identify the PDB that you are going to add the
data to — it can be a newly allocated one or an existing one. You then run each
data file through the preloader (Step 2a) and import it into the PDB (Step 2b)
before you process the next data file.

During the preloader's analysis phase the discovery data is run through a set of
heuristic rules, as defined in MAPPER FILES, to classify it. Once it has been
classified, its classification is utilized to select the automation policy that will be
used as a model for it during the construction phase.

You may specify your own policy selection rules to supplement those supplied and
maintained by System Automation. System Automation provides best practice'
automation policy models for many applications — and provides the ability for you
to supplement or replace them with your own policy models. The output of all of
this processing is a flat file containing PDB update statements that can be applied
to the PDB through the Customization Dialog's Data Management function.

You have an opportunity to inspect the flat file and the reports produced by the
preloader before you import it into the PDB, so you can return to the analysis and
construction process to refine the identification and selection rules and then rerun
the preloader, if it is necessary to do so. Once you have imported the flat file into
your PDB, you can move onto running the next data file through the preloader.

Step 1: Using The Discovery Engine

The 'DISCOVERY Engine' scans each of the systems to be modelled and stores its
output in a system specific snapshot data file.

218 System Automation for z/OS: Customizing and Programming

Step 1: Using the Discovery Engine

Target System

Discovery
Engine

“\

Snapshot
File

Figure 48. Discovery Engine Overview

Extraction of the Discovery Engine

If the systems you wish to automatically model do not have a full installation of

SA z/0S upon them, you will need to submit a supplied sample job to extract the

discovery engine from a SA z/OS Installation. The sample jobs are located in the

SINGSAMP data set.

1. Job INGEDEXO should be run on a system where a full SA z/OS is installed. It
needs to be edited to specify the userid and system that the discovery engine
should be sent to prior to submission.

2. Job INGEDEX1 should be sent to the target system.

Receive the transmitted data sets on the target system.

4. Job INGEDEX1 should then be run on the target system. It will unpack the data
sets sent by INGEDEXO after allocating the appropriate data sets to hold them.
It needs editing to specify some details of the data sets prior to submission.

w

You then need to make the code available to all systems where it will be run and
to secure it to prevent unauthorized execution.

Preparing the Discovery Jobs

There is a single piece of JCL that needs to be submitted to run the discovery for a

system. It has two parameters — the system affinity setting in the JCL and the name

of the output data set. Prior to running the discovery job there is some set up that

is required:

1. APF authorize the library the discovery code will be executed out of. For a full
SA installation this has probably already been done.

2. Ensure that the user you will be executing the discovery process under has
appropriate authority — permission to enter authorized mode on the z/OS side
and superuser access on the USS side. These permissions are only needed

Chapter 19. Automated System Resource Discovery 219

Step 1: Using the Discovery Engine

220

during the running of the discovery code and may be revoked afterwards. Note
that this has to be done for each system.

3. Produce the JCL to discover each system, with the system affinity and output
data set properly set. You can use the INGEDDSC sample member to do this.
You need to edit it to specify some of the details before you run it.

Running the Discovery Jobs
When you are prepared, submit the discovery jobs to:

¢ step through all address space control blocks and return information for each
address space that is active at the time the discovery runs. If the address space
hosts an USS process, information about the USS process are returned as well.

* provide information about all XCF groups defined for the local system
* provide information about all ARM elements defined for the local system
* provide information about all locally defined system symbols.

This data is then written to a snapshot file.

It is better to submit all the jobs to the discovery systems within the same sysplex
at around the same time, as it provides a more consistent view of activity across
the sysplex. Ideally, the job should be run at a point in time when most of the
applications are active. If your workload changes significantly during the day or
week, you can rerun the discovery process (once you have saved the output data
files) to get a view of the systems other workload. These can then be integrated
into the PDB, although you will need to manually create and link the Service
Periods to automatically switch between the workloads.

Step 2: Building the Automation Policy

This step is performed on that system, where you run the SA z/0S Customization
Dialog to build the target PDB.

Step 2a: The Preloader

The Preloader will analyze the data in a single snapshot and produce a
corresponding model of those resources within a flat file suitable for the dialogs to
import.

System Automation for z/OS: Customizing and Programming

Step 2: Building the Automation Policy

Knowledge Base

AzIOS i

Preloader

« > temporary
files

Snapshot
File
Report

Flat File

Figure 49. Preloader Processes

Gathering of the Snapshot Files

You need to have identified the system where you run your SA z/0S
Customization Dialogs as this is usually where you want to run the preloader to
transform the snapshot data files into flat files you can import through the

Customization Dialog's data management function. Then the snapshot data files
from the system discovery jobs need to be transmitted to the system where you

will run the preloader and stored there.

Note: If you choose to run the preloader on a different system to the one where
you keep your PDBs and run the Customization Dialogs, then you will need
to make the PDB and KNOWLEDGE BASEs available to it and to bring the
flat files back to your Customization Dialog system for import.

Chapter 19. Automated System Resource Discovery

221

Step 2: Building the Automation Policy

222

Preparing the Preloader Job
Before you can run the preloader you need to do a few things:

Customize the preloader job. A sample JCL is shipped as member INGEDPLD
located in the ING.SINGSAMP data set. You need to customize a copy of
INGEDPLD as described in its prolog. Here are the major steps:

1.

SA z/OS Knowledge Database PDB: Identify the HLQ of your SA z/0S
installation's target library. The HLQ is used to locate the SA z/0OS Knowledge
Base PDB. This automation policy is generated based upon best practice
policies supplied by SA z/OS. It contains the models for all of the resources
identified in the System Automation provided mapper files (and for a few
others).

User's Knowledge Database PDB: Create or locate your installation's
Knowledge Base PDB. Even though you will not have edited your installation's
mapping files yet if this is your first time through, you need to have an
installation's Knowledge Base PDB, which initially might be empty. Later on
you might want to populate this knowledge base. This is recommended if you
need to deviate from the SA z/OS knowledge base or if you want to enhance
the knowledge base with your own entries.

Target PDB: Select the Target PDB. This is the PDB that you are going to
update. It is recommended that this is either a newly allocated, empty PDB or
one that has previously been occupied with automatically modelled data. If you
use a PDB containing hand modelled data or data from our hand modelling
samples, you are likely to get a lot of duplication, as the automatically
modelled entries tend to be more complete, containing data that isn't
necessarily specified on a hand made models.

Snapshot File: Locate the snapshot file which you want to process with this
preloader run. For each target system, you will have a snapshot file containing
all discovered system resources and definitions. You need to invoke the
preloader for each snapshot file separately. Before processing another snapshot
file with the preloader, the generated flat file must be fed into the target PDB
by the importer. This is required because the preloader needs to know the
current content of the target policy to avoid generating invalid flat files.

Mapper files: Locate the mapper files. They are members of the SINGIMAP
data set. There are some SA ones and some user ones. The users' mapper files
end in a U. When you want to modify them, you should allocate a new PDS
where you copy and maintain them. User mapper files must exist even though
they initially may not contain any mappings.

You will find the mapper files documented in |[Appendix F, “Autodiscovery|
[Mapper Files and Report Formats,” on page 271

Flat File: This is the output file of the preloader. It must exist before the
preloader job is submitted. After the flat file was generated and before another
flat file will be generated, it is mandatory to import it into the target policy.

Report Data Set: When generating a flat file, the preloader documents its
progress in various members of a report data set. The report is always
generated and the partitioned data set must exist before starting the preloader
job.

You will find the report members documented in |[Appendix F, “Autodiscovery]|
[Mapper Files and Report Formats,” on page 271

The Preloader takes two parameters that affect its' output: Unless you have
been specifically requested to do so by service, you would normally omit the
DEBUG parameter.

System Automation for z/OS: Customizing and Programming

Step 2: Building the Automation Policy

e - DISPLAY - Which causes the contents of generated reports to also appear in
the JOBLOG.

* - DEBUG - Which causes detailed debugging information to appear in the
JOBLOG. Specifying DEBUG forces the DISPLAY option, even if you have
not specified it.

You may wish to create one copy of the preloader job per target system, that is for
each snapshot file. You are now ready to run the preloader.

Running the Preloader Job
The sequence for running the preloader is:

1. Verify the preloader job to point to the correct input and output data sets for
the first target system's snapshot file.

2. Submit the preloader job.
3. Inspect the output from the preloader.

Hint:
Before processing the next snapshot file with the preloader, the generated flat
file must be imported into the target PDB (see Step 2b). Then the target PDB
is prepared to serve as input to the preloader job for its next run. This
sequence helps to avoid conflicts when importing flat files described below.

Chapter 19. Automated System Resource Discovery 223

Step 2: Building the Automation Policy

Step 2b: The Importer
This is the Data Management function of the SA z/OS Customization Dialog to
update a policy database with data from a file.

Target
PDB

/

IMPORTER

SA z/OS
Customization
Dialog

Flat File

Figure 50. Flat File Processing

You can either use the customization dialogs to select the target PDB and then use
the Data Management option to import the flat file into the target PDB, or you can
use a batch job to perform the import. You should do so only once you are happy
with the contents of the flat file, as it is virtually impossible to unimport it unless
you have saved a copy of the PDB prior to performing the import.

Sample job INGEBFLT is provided as a sample batch job to run the import. Once
the import is complete you can run the preloader against another data file. You
have to run it this way — preload/import — as the preloader uses the information
from the extract to prepare a delta update in the flatfile, that is, one that contains
things that are different. If you were to run multiple preloads against the same
extract file, you could end up with conflicts between the data in the flat files that
would produce an invalid model when they were imported.

Extending Automated Modelling

224

SA z/0OS ships with a large number of presets for IBM and some 3rd party
software. There will, undoubtedly, be address spaces on your system that it has
either not identified or which it has identified incorrectly or incompletely. Some of
this will be because the applications are unique to your systems, some of it will be

System Automation for z/OS: Customizing and Programming

Extending Automated Modelling

because the allowed customization of the application is such that we do not have a
suitable "hook' to hard code into the files that we ship to reliably identify it.

Mapping Files

The Automated Modelling Tool is extended by adding statements to a set of user
mapping files that are processed by the preloader. System Automation (SA)
versions of these files are also provided and should be used in conjunction with
your user files to take full advantage of the automated modelling capabilities. The
mapping files are listed below. The first name is the SA member, the second is a
user member that you should edit your own policy into. Refer also to the appendix
section ["Mapper Files” on page 271.|

INGSMAID / INGSMAIU
This is the Address Space Identification Mapping file. It contains rules for
identifying Address Spaces from the data discovered about the address
space.

INGSMGRP / INGSMGRU
This is the XCF Group identification file. It contains rules for identifying
the XCF groups that were found to have been established.

INGSMGMB / INGSMGMU
This is the XCF Group Member identification file. It contains rules for
identifying members of XCF groups based upon the type of the group and
the name that the member joined the group with.

INGSMUID / INGSMUIU
This is the USS Address Space Identification Mapping file. It contains rules
for identifying processes that were found running under USS.

INGSMPLU / INGSMPLY
This is the Policy Mapping file. If contains rules for selecting which
identified Address Spaces will be converted into SA policy, what model
policy, if any, will be used for them and which of their established fields
will be over written.

INGSMVRS / INGSMVRU
This is the variable mapping file. It is used to define symbols — in addition
to those found by the discovery process — that can be used in the field
value formulas in the policy mapping file.

The supplied user files contain some sample values that will probably not work on
your system. You should remove them.

Finalizing the Target Policy

After the systems have been discovered and the target policy has been populated,
manual updates are required in order to get an operational automation policy.

The steps below will lead you to an operational policy which supports starting,
stopping and restarting resources in place where all applications are linked to a
common application group (APG) per system.

Creating and preparing a Reference Policy

There are a few definitions to be made in the target policy, which best can be
imported from another policy. That policy is intended to serve as a reference
policy. If you do not have such a policy yet, you may create it now while selecting
those Best Practice policies, which contain samples for the discovered applications.

Chapter 19. Automated System Resource Discovery 225

Finalizing the Target Policy

226

As an example: if z/OS base components and DB2 were discovered, the *BASE
and *DB2 Best Practice policies should be selected. This new policy also serves as
the source, where missing policy elements can be copied from later on.

Importing from the Reference Policy

Switch to the Target PDB. Navigate to the 'Import entries from a Policy Database'
panel and select the reference policy as 'Source Policy Database'.

Enter 'GRP" as the 'Entry Type'and "YES' in the 'Import Linked Entries' field. Then
continue with selecting the sysplex(es) and proceed to panel 'Selected Entry Names
for Import'.

This panel lists all policy entries as contained in the reference policy. It allows you
to add additional entries to your target policy. Because all entries are imported by
default -if they do not already exist- into your target policy, you need to:

1. Overtype the GRP and SYS entry names in the 'Entry Name' column with those
names used in the installation, so they match the Sysplex and System names in
the target policy. As a result you will find a 'Y" in column 'D".

2. Remove each entry from the list, which should not be imported. In order to get
an initial operational policy, remove all entries from the 'Selected Entry Names
for Import' panel except those entries of type MVC, SDF, ADE, AOP, NFY, NTW
and XDF.

Then run the import.

If you have more sysplexes and/or systems in your target policy, you need to
repeat this import step for each of the installation's sysplexes and systems.

Avoiding multiple entries for the same application

In some situations you may be able to reduce the number of policies required by
specifying values utilizing AOCCLONE variables. For example, if an application
has an Application Restart Management (ARM) Element name like ABC@DEF and
ABC@H]I]J then you could choose to use an AOCCLONE value as the system
dependent part. In the variable mapping file, add a rule for each system that
specifies the correct system dependent value for that system:

PLEX1 SYS1 AOCCLONEA DEF
PLEX1 SYS2 AOCCLONEA HIJ

Then in the user policy mapping file, specify that the ARM Element name for the
address space should be modelled as ABC@&AOCCLONEA. You may need to
copy the mapping rule from the SA supplied mapping file.

This should result in the generation of an APL that has an ARM Element name of
ABC@&AOCCLONEA. And which can be used on both the SYS1 and the SYS2
systems. The AOCCLONEA values would also be set on those two systems.

In situations where the values cannot be specified in the APL policy using
AOCCLONE values, your options are more limited — clean up your system to
reduce the variability or live with multiple application instances. In the latter case,
you may want to create a class to hold the common policy and just leave the
instances holding the discovered data values. This will give you a single place to
change the automation policy for the APLs.

System Automation for z/OS: Customizing and Programming

Finalizing the Target Policy

Changing the Name of an APL.

You can use the dialogs RENAME function to rename APLs that have been created
by the automated modelling tool. Provided you do not change any of the
discovered data values the preloader will recognize the renamed APL if it is run
again and will not create a new APL.

This works because the preloader creates a signature for each APL, based upon the
discovered data values — Jobname, ARM Element name, Procedure Name, and so
forth, and uses this to match discovered APLs to pre-existing APLs.

If you want to make the change on the preloader, find or copy the policy rule for it
into your user policy mapping file and change its entry name to reflect the name
you wish it to have.

Target Policy Ready for Build

Your target policy is now ready for running the build process.

You can enhance the capabilities of this policy as you proceed with your
automation needs. Importing from the reference policy can be repeated for further
entries like application groups, monitors and transient applications. Their names,
relationships and links need to be adapted according to the reference policy.

Building the Configuration Control Data

You may either build the Configuration Control Data using the online or batch
build process. During the build process, WARNINGs may be issued. Please review
the build report after the build process completed. WARNINGs due to the
following reasons are expected:

* relationships to non-existent APGs,
¢ HASMONITOR relationships to non-existent MTRs,

* missing subtype specifications and subsequent warnings related to a missing
subtype definition

* missing Automation Name for automatically generated APGs
(LK_sysname_plexname).

The steps below will lead you to an operational policy which supports starting,
stopping and restarting resources in place where all applications are linked to a
common application group (APG) per system.

Troubleshooting

My Application is Missing From the Flatfile

Check first that the APL has not already been imported. You need to open
the PDB up in the customization dialogs and look at the APLs to check
this. It may have been renamed. If the APL is already in the PDB, it will
not be included in the Flatfile.

Next you need to check the EXCLUDE report to see if the address space is
mentioned in there. If it is, you need to look at the Policy Mapping rule
that it hit. If it is an exclusion rule, you need to add a new policy mapping
rule to link the address space to the correct APL model for it.

For the APL import to work correctly, you need three things — correct
identification of the address space, model automation policy in one of the

Chapter 19. Automated System Resource Discovery 227

Troubleshooting

KB data sets (either an unmodified SA sample or an entry from your user
KB) and a rule in the policy mapping files to tie the two together.

Multiple Entries are Generated for the same Application
See the above section [‘Avoiding multiple entries for the same application”]

228 System Automation for z/OS: Customizing and Programming

Appendix A. Global Variables

You must ensure that the names of any global variables you create do not clash
with SA z/OS external or internal global variable names. You should check the
following tables before creating any global variables of your own.

Read-Only Variables

There are two different classes of variables, based on the level of access available to
the programmer:

Class 1:
Read-only variables. These variables are set by SA z/OS and require at
minimum an automation control file reload to be changed.

Class 2:
Read-only variables. These variables are set by SA z/OS CLISTs. They
should not be changed except by calling the appropriate CLISTs.

Table 24. Externalized Common Global Variables

Variable Name Description Class | Reference

AOQOF.clist. ODEBUG Contains either a Y or blank. If it contains | 2
Y an intermediate level of debug that is
supported by SA z/OS automation
procedures is turned on.

AOF.list. OTRACE Contains a REXX trace setting to be used |2
by the automation procedure clist.

AOFAOCCLONEx Where x either does not exist 1 See the description of the
(AOFAOCCLONE) or is a value from 1 System policy object inIIBT/II
through 9 or A through Z. The Tivoli System Automation for]
AOFAOCCLONEYXx global variables /OS Defining Automation|
contain the values specified for the PoliC}A.

&AOCCLONEX. variables for this system.

AOFBFP Contains the backup focal point. 1

AOFCFP Contains the domain ID of the current 1
focal point.

AOFPFP Contains the primary focal point. 1

AOFCOMPL Contains YES if initialization is complete. |2

AOFDEBUG Contains a REXX trace setting to be used |2 See |IBM Tivoli System|
globally. Automation for z/OS Planning]

ind Instullationl

AOFINITIALSTARTTYP Contains the value TPL' or ' RECYCLE' 1
depending on whether SA z/OS has
been started the first time after an IPL or
after a NetView recycle.

© Copyright IBM Corp. 1996, 2012

229

Global Variables

Table 24. Externalized Common Global Variables (continued)

Variable Name

Description

Class

Reference

AOF_PRODLVL

The values are:

SA z/OS 3.4
SA x/0S,V3R4MO

SA z/OS 3.3
SA z/0S,V3R3M0

SA z/OS 3.2
SA z/0S,V3R2MO

Contains the release level of SA z/0S.

AOFJESPREFX

scheduling subsystem.

The command prefix for the primary

AOFSUBSYS

scheduling subsystem.

The subsystem name of the primary

AOFSYSNAME

Contains the name of the system. 1

See AOCUPDT in |iBM Tivolzl
System Automation for z/OS)|
Programmer’s Referencel

AOFSYSTEM

Contains the system type (MVSESA) as 1
defined in the customization dialog.

The SYSTEM INFO panel of
the customization dialog.

Read/Write Variables

lists the common global variables that can be user-defined. You can set
them in your startup exit to change the way that SA z/OS behaves. These
variables should be set only once for an SA z/OS system. You can enable or
disable advanced automation options (AAOs) by changing the settings of the
global variables in your CNMSTGEN stylesheet. For example:

EE R R R R R R R R R o R R R R T T

* System Automation AAO CGlobals

B R R o e e R T T e T T

COMMON.AOFCNMASK = 290CODOEOF101518
COMMON. INGREQ_ORIGINATOR =1
COMMON . AOFRESTARTALWAYS = 0
COMMON.AOFUPDRODM = NO
COMMON.AOFUPDAM = NO
COMMON . AOFSMARTMAT = 0

After modifying the exit, an SA z/OS COLD START is required for these changes

to take effect.

Table 25. Global Variables to Enable Advanced Automation (CGLOBALS)

Variable

Value

Effect

AOF_AAO_INJECT_NOFORCE_REQ

Any value

SA z/0S does not inject a STOP vote with Priority
Force for source *RECYCLE when processing an
INGREQ REQ=STOP RESTART=YES request. Instead
the regular stop request is passed to the automation
manager and removed automatically when the resource
is down. This also removes any previous request for the
resource that was made by the same source.

AOF_AAO_AAREQUEST_MAX_
WAIT

1 to 999 seconds

Defines the maximum wait time in seconds. Is used
when the MAXWAIT parameter is not specified for the
workload. See MAXWAIT parameter for valid range.

230 System Automation for z/OS: Customizing and Programming

Global Variables

Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable

Value

Effect

AOF_AAO_MSG_EHKVAR

YES

This indicates that when calling commands, the tokens
of the triggering message are to be stored in variables
EHKVARO through EHKVAR9 and EHKVART, if not
specified in parameter EHKVAR.

YES is the default.

NO

This indicates that the tokens of the triggering message
are not to be stored in EHKVAR variables, if not
specified in parameter EHKVAR.

AOF_AAO_MVSTAPEMON

>0

Set this value to represent the number of iterations for
INGRTAPE to continue monitoring using MVS
commands after the LATE alert has been reached. A
non-zero entry also indicates using MVS commands for
all tape mount monitoring prior to the LATE alert.

INGRTAPE relies on the receipt of the DOMMED
message to satisfy any outstanding alerts.

AOF_AAO_OMVS_SHUTDOWN

NOWAIT

This causes the wait for a complete termination of
OMVS to be skipped.

AOF_AAO_RDS_TSO_DSN

User-defined

Must be set in order to use the RDS table editor under
TSO. Specify a name of the RDS working data set.

AOF_AAO_RDS_TSO_RACFHLQ

User-defined

Must be set in order to use RACF protection of the RDS
table editor under TSO. Specify high level qualifier
which could be up to 26 bytes long and may contain
dots.

AOF_AAQO_RETENTIONPERIOD

0 to 1440

Defines how long (in minutes) SA z/OS should keep
the CGLOBALS that are used to keep track of command
requests that are received from TWS. The default is 60
minutes.

AOF_AAQ_SDFROOT_LIST
AOF_AAQ_SDFROOT_LIST#n (where
nis 1 to 4)

User-defined

Defines the value of the &SDFROOT variable that is
used as the root name for the sample SDF panels that
are provided with SA z/0S.

The value can be the name of a single system or a list of
system names separated by a blank character. A list can
be used at the SDF focal point to have SA z/OS
generate the necessary panel definitions for all systems
in the list.

Use the AOF_AAO_SDFROOT_LISTn variables to honor
the maximum length of common global variables within
the NetView environment.

The system name can be appended by one or more
member names separated by slashes, the first name
refers to the panel definitions, and the second name
refers to the tree definitions, for example SYS1
SYS2/MYPNLS SYS3//MYTREE SYS4/MYPNLS/MYTREE. Refer to
"Status Component Panel Definition" in |IBM Tivol]
|System Automation for z/OS Programmer’s Reference for the
interpretation of these definitions.

AOF_AAO_SHUTDOWN_STOPAPPL

User

Specifies the name of the defined resource (in AM
notation) to be used for the shutdown.

Appendix A. Global Variables 231

Global Variables

Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable

Value

Effect

AOF_AAO_SHUTSYS_OLD

YES

Indicates that SA z/OS should not redirect the INGREQ
ALL REQ=STOP command to the GDPS STOPAPPL
resource when the GDPS tower is active.

AOF_AAO_TRANRERUN

YES

This indicates that a transient job can be rerun within
the lifecycle of a particular z/OS, if not specified
otherwise in the automation policy for this job.

NO

This indicates that a transient job is only run once in the
lifecycle of a particular z/OS, if not specified otherwise
in the automation policy for this job. NO is the default
value.

AOF_AAO_TWS_CMD_OUTPUT_
NETLOG

YESINO

Set this AAO to YES to place the output of the
command execution in the netlog.

AOF_AAO_TWS_ERRMSG

This AAO can be used to inhibit the ERRMSG
parameter. If set to NON BLANK, it erases the contents
of the ERRMSG parameter.

AOF_AAO_TWS_MAX_WAIT_TIME

Defines the installation default for the maximum wait
time for the INGREQ and INGMOVE command. The
default is taken when no wait time is specified in the
completion information parameter.

AOF_AAO_TWS_RESYSPLEX

YESINO

This AAO can be used to allow the TWS special
resource name to use the SA z/OS Sysplex name
instead of SYSPLEX to facilitate an enterprise wide
naming convention.

Default: NO for SYSPLEX

AOF_AAO_VPCEINIT

SA z/0S does not invoke the GDPS initialization exit,
VPCEINIT,

AOF_ASSIGN_JOBNAME

This indicates that SA z/OS exploits the NetView
"ASSIGN BY JOBNAME" feature with a higher priority
than the "ASSIGN BY MESSAGE ID" feature (priority
level 3).

This is the default setting.

SA z/0S exploits the NetView "ASSIGN BY JOBNAME"
feature with a lower priority than the "ASSIGN BY
MESSAGE ID" feature (priority level 4).

AOF_E2E_EAS_PPI

User-defined

PPI receiver ID of the event/automation service to be
used to forward events to the end-to-end automation
adapter.

AOF_E2E_EVT_RETRY

lton

Specifies the number of retries, at intervals of one
second, that are used to transfer events via PPI
TECROUTE to the message adapter of the
event/automation service. The events are then
forwarded to the end-to-end automation adapter.

AOF_E2E_EXREQ_NETLOG

The output to requests received from the end-to-end
automation adapter and issued by the primary
automation agent, is logged to the NetView log.

The output to those requests is not logged to the
NetView log.

0 is the default setting.

232 System Automation for z/OS: Customizing and Programming

Global Variables

Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable

Value

Effect

AOF_E2E_TKOVR_TIMEOUT

hh:mm:ss

If a hot restart of the automation manager takes longer
than the value specified in this variable, the end-to-end
automation manager is informed about the outage and
has to resynchronize with the first-level automation.

AOF_EMCS_AUTOTASK _
ASSIGNMENT

SA z/0S assigns an autotask to extended MCS consoles
with a console status of MASTER or ACTIVE

SA z/0OS does not assign an autotask to extended MCS
consoles with a console status of MASTER or ACTIVE

0 is the default.

AOF_EMCS_CN_ASSIGNMENT

SA z/0S obtains an extended MCS console with a
unique name for operator station tasks (OSTs). If an
MVS console was obtained for the OST previously, it is
released.

1 is the default setting.

SA z/0OS does not obtain an extended MCS console
with a unique name for OSTs and the command
AOCGETCN is disabled.

AOFACFINIT

This indicates that SA z/OS attempts to proceed with
initialization despite error messages during the
processing of the automation control file.

1 is the default setting.

SA z/0S stops the initialization process upon such
errors.

AOFARMQUERYRETRYS

User-defined
numeric value

The number of times AOFPARMQ is called to query the
ARM status of an element after a status of UNKNOWN
is returned. If the ARM status does not change to
another status before the number of retries is exhausted,
SA z/0OS continues processing and assume the element
is not ARM-enabled.

The default is 10.

AOFARMQUERYWAIT

User-defined
numeric value

The number of seconds to wait between retries as
specified in the AOFARMQUERYRETRYS value above.

The default is 15.

Appendix A. Global Variables 233

Global Variables

Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable

Value

Effect

AOFCNMASK

User-defined

The characters that are used in determining unique
console names can be tailored by updating the common
global variable AOFCNMASK. This global is used as a
hex mask to extract characters from the following string
when generating unique console names with command
AOCGETCN:
Teft(opid(),8)||right(opid(),8),

Teft(aofsysname,4) | |right (aofsysname,4),

Teft(applid(),8)||right(applid(),8),
' ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$8#155; 46 172"

Where
* opid() is a function that returns the OST task name

¢ aofsysname is a common global that stores the system
name

* applid() is a function that returns VTAM LU name

The default for AOFCNMASK is 290C0DOE0F101718.
X29' selects character A in position 41, X'0C' through
X'10" selects the last five characters of the opid in
positions 12 to 16, X'17" and X'18' select the last two
characters of the sysname in positions 23 and 24.

If AOFCNMASK is null, AOCGETCN attempts to obtain
a unique extended MCS console after a 1 minute
interval, followed by a two minute interval and so forth
for a maximum of 5 passes (15 minutes elapsed from the
initial invocation of the command).

For example, with
AOFCNMASK: 2A01020304051718

X2A' selects character B in position 42, X'01' through
X'05' selects the first five characters of the opid in
positions 1 to 5, X'17' and X'18' select the last two
characters of the sysname in positions 23 and 24.

AOFDEFAULT_TARGET

User-defined

Sets a default for the TARGET parameter for all
commands where this parameter is used.

AOFDESCA 0100001000001000 | Descriptor code for action messages
AOFDESCD 0100001000001000 | Descriptor code for decision messages
AOFDESCE 0010001000001000 | Descriptor code for eventual action messages
AOFDESCI 0000011000001000 | Descriptor code for informational messages
AOFDESCW 1000001000001000 | Descriptor code for wait messages

AOFEXPLAIN_USER

User-defined

The EXPLAIN command accepts this variable to include
help support for customer installation supplied terms. It
can hold one or more pairs of term/help panel
specifications separated by a blank. If the specified
status in the EXPLAIN command is not a valid

SA z/0S status, the command routine checks whether it
is an installation defined term. If so, the associated help
panel is displayed.

234 System Automation for z/OS: Customizing and Programming

Global Variables

Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable Value Effect
AOFINITREPLY hh:mm:ss The initial reply AOF603D is issued and automatically
responded after hh:mm:ss.
00:02:00 (2 minutes) is the default setting.
0 The initial reply AOF603D is not issued and automation

continues with the default start without asking the
operator.

AOF_INIT_MCSFLAG

User-defined valid
value

This variable contains the MCSFLAG that is used for
WTOs and WTORs that are issued by SA z/OS during
initialization.

The default is '00000000'".

AOF_INIT_ROUTCDE

User-defined valid
value

This variable contains the ROUTCDE (routing code) that
is used for WTOs and WTORs that are issued by
SA z/0OS during initialization.

The default is '01000000'".

AOF_INIT_SYSCONID

User-defined valid
value

This variable contains the SYSCONID that is used for
WTOs and WTORs that are issued by SA z/0S during
initialization.

The default is blank.

AOFLOCALHOLD 0 INGNTFY and SA z/OS initialization executes the
SETHOLD AUTO command on the notify operator.
0 is the default setting.
1 SETHOLD must be manually invoked.
AOFMATLISTING 0 Setting this variable means that the NetView automation
table listing is not placed in the DSILIST data set at
NetView automation table load time.
AOFOPCCMDMSG 0 OPCAMOD only produces messages that are generated
by INGOPC.
0 is the default setting.
1 OPCAMOD produces EV]0111, EV]4121I, EV]420I, and
EVJ423I messages.
AOFPAUSE 0to5 This is the number of seconds that SA z/OS allows for

applications that have shut down to be cleared by MVS,
in addition to their termination delay. As the
AOFPAUSE value is applied to all applications it should
be kept small. AOFPAUSE may be useful on a slow
machine, where allowing an extra second or two before
SA z/0S checks if the application has been cleared
could avoid the need to use a termination delay timer.

No matter how AOFPAUSE is set, the application status
is not updated to AUTODOWN or CTLDOWN until
SA z/0S is sure that the application has been cleared
from the system by MVS.

0 is the default setting.

Appendix A. Global Variables 235

Global Variables

Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable

Value

Effect

AOFRESTARTALWAYS

1

An application that has been shut down normally,
outside the control of SA z/0S, with
RESTARTOPT=ALWAYS, is restarted regardless of
whether or not it has reached its critical error threshold.

An application that has been shut down normally,
outside the control of SA z/0S, with
RESTARTOPT=ALWAYS, is not restarted if it has
reached its critical error threshold.

0 is the default setting.

AOFRMTCMDWAIT

See NetView
RMTCMD

Contains the installation wait time when RMTCMD is
used for communication.

60 seconds is the default setting for RMTCMD.

AOFRPCWAIT

Oton

This is the number of seconds that SA z/0OS waits for
command responses from other systems in the sysplex.

10 is the default setting.

AOFSENDALERT

Yes or No

This defines whether NetView alert forwarding (YES) or
the command handler (NO) is used to forward data to
the focal point.

Yes is the default setting.

AOFSERXINT

The exit AOFEXINT is processed under the BASEOPER
automation operator under the initialization process.
This is the default.

The exit AOFEXINT execution is serialized within the
initialization process.

AOFSHUTDELAY

0 to 59

This is the number of minutes that SA z/OS waits for a
termination message before continuing the shutdown
process. Any values outside this range are treated as 0.
With a setting of 0, message AOF745E is not issued.

0 is the default setting.

236 System Automation for z/OS: Customizing and Programming

Global Variables

Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable

Value

Effect

AOFSMARTMAT

0

The SA z/OS Agent is disabled from refreshing ATs and
the MRT. The user must supply an AT member
INGMSGO02 which is included when SA z/OS initially
loads INGMSGO1.

The SA z/0S Agent is enabled to refresh ATs when an
INGAMS REFRESH is issued. The AT fragment built by
the customization dialog is nof loaded; the user must
supply a member INGMSGO02 which is used instead.

The ATs are loaded after a successful test load. This will
allow the agent to notify the AM about a load problem
of the AT. The agent may notify the AM of an AT load
failure, thus stopping the configuration refresh. The

SA z/0S Agent will not load any MRT.

The SA z/0S Agent is enabled to load the AT that is
generated by the customization dialog and to refresh
ATs when an INGAMS REFRESH is issued. The AT that
is built by the customization dialog is dynamically
loaded into storage as the INGMSGO02 fragment.

The ATs are loaded after a successful test load. This
allows the agent to inform the AM about any load
problem for the AT. The agent may notify the AM of an
AT load failure, thus stopping the configuration refresh.

The SA z/0S Agent will not load any MRT.

This is the default value.

The SA z/0S automation agent is enabled to load the
MRT that is generated by the customization dialog and
to refresh the MRT when an INGAMS REFRESH is
issued. The AT built by the customization dialog is
dynamically loaded into storage as the INGMSG02
fragment. The MRT built by the customization dialog is
dynamically loaded as INGMRTO1. The ATs and the
MRT will be loaded after a successful test load. If an
error is detected in the MRT, then the Agent
initialization is not interrupted and no MRT is loaded. If
an error is detected when a configuration refresh is
requested, then the refresh is not performed.

AQOFSPOOLFULLCMD

SA z/0S does not execute the Spool recovery passes
more than once. Message AOF29411 is issued if the
SPOOLFULL condition persists.

SA z/0S re-executes the Spool recovery commands.

0 is the default setting.

AOFSPOOLSHORTCMD

SA z/0S does not execute the Spool recovery passes
more than once. Message AOF29411 is issued if the
SPOOLSHORT condition persists.

SA z/0S re-executes the Spool recovery commands.

0 is the default setting.

Appendix A. Global Variables 237

Global Variables

Table 25. Global Variables to Enable Advanced Automation (CGLOBALS) (continued)

Variable

Value

Effect

AOFSTATUSCMDSEL

0

Issue all status commands or replies that are associated
with the new status, without respect to any specified
selection values. No thresholds are checked for the
minor resource subsystem.status to derive selection
criteria or prevent the issuing of commands or replies if
critical thresholds are exceeded.

If AOFSTATUSCMDSEL is not set, or it is set to a value
other than 0, only commands or replies with a given
selection criterion such as starttype or stoptype are
issued.

AOFUPDAM

Yes or No

This controls whether updates are made in the
automation manager.

No is the default setting.

AOFUPDRODM

Yes or No

This controls whether updates are made in RODM and
must be set to the same value for each system within a
sysplex.

No is the default setting.

AOFUSSWAIT

lton

This is the number of seconds SA z/0OS waits for the
completion of a user-defined z/OS UNIX monitoring
routine (specified in the z/OS UNIX Control
Specification panel) until it receives a timeout. When the
timeout occurs, SA z/OS no longer waits for a response
from the monitoring routine and sends a SIGKILL to the
monitoring routine.

10 is the default setting.

INGCICS_CORRWAIT

User-defined

numeric value

The number of seconds that INGCICS waits for output
from a CICS transaction. If not specified, INGCICS uses
a default CORRWAIT (CCDEF) value.

INGIMS_CORRWAIT

User-defined
numeric value

The number of seconds that INGIMS waits for output
from an IMS command. If not specified, INGIMS uses
the default CORRWAIT (CCDEF) value.

INGOPC_MULTIPLIER

lton

This is used in conjunction with AOFRMTCMDWAIT
and AOFRPCWAIT to determine how long to wait
before giving up.

INGRAITF_WAIT

User-defined
numeric value

The number of seconds that the INGRAITF routine
waits.

INGREQ_ORIGINATOR

1

Indicates that SA z/OS assigns individual originator
IDs for each operator issuing an INGREQ command.

All operators are grouped under originator ID
OPERATOR.

0 is the default setting.

Parameter Defaults for Commands

Table 26. Global Variables That Define the Installation Defaults for Specific Commands

Variable Name Description Reference '

AOFSETSTATEOVERRIDE | Sets the default OVERRIDE value for the SETSTATE command. SETSTATE

238 System Automation for z/OS: Customizing and Programming

Global Variables

Table 26. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference !

AOFSETSTATESCOPE Allows you to override the predefined default for the SCOPE SETSTATE
parameter of the SETSTATE command.

AOFSETSTATESTART Allows you to override the predefined default for the START SETSTATE
parameter of the SETSTATE command.

DISPEVT_WAIT Sets the WAIT parameter of the DISPEVT command to the specified DISPEVT
value.

DISPEVTS_WAIT Sets the WAIT parameter of the DISPEVTS command to the specified | DISPEVTS
value.

DISPTRG_WAIT Sets the WAIT parameter of the DISPTRG command to the specified | DISPTRG
value.

INGAUTO_INTERVAL Sets the default for the INTERVAL parameter of the INGAUTO INGAUTO
command.

INGEVENT_WAIT Sets the WAIT parameter of the INGEVENT command to the specified | INGEVENT
value. The parameter specifies whether or not to wait until the request
is complete.

INGEXEC_RESP Sets the RESP parameter of the INGEXEC command to the specified INGEXEC
value.

INGEXEC_SELECT Sets the SELECT parameter of the INGEXEC command to the specified | INGEXEC
value.

INGEXEC_WAIT Sets the WAIT parameter of the INGEXEC command to the specified |INGEXEC
value.

INGGROUP_WAIT Sets the WAIT parameter of the INGGROUP command to the specified | INGGROUP
value. The parameter specifies whether or not to wait until the request
is complete.

INGHIST_MAX Sets the MAX parameter of the INGHIST command to the specified INGHIST
value.

INGHIST_WIMAX Sets the WIMAX parameter of INGHIST command to the specified INGHIST
value.

INGIMS_CMDWAIT Sets the CMDWAIT parameter (the maximum wait time for a INGIMS
command to complete) of the INGIMS command to the specified
value.

INGIMS_REQ Sets the REQ parameter (the request to be issued to the IMS INGIMS
subsystem) of the INGIMS command to the specified value.

INGINFO_WAIT Sets the WAIT parameter of the INGINFO command to the specified |INGINFO
value.

INGLIST_WAIT Sets the WAIT parameter of the INGLIST command to the specified INGLIST
value.

INGMON_WAIT Sets the WAIT parameter of the INGMON command to the specified INGMON
value.

INGMOVE_WAIT Sets the WAIT parameter of the INGMOVE command to the specified |INGMOVE
value.

INGRELS_SHOW Sets the SHOW parameter of the INGRELS command to the specified |INGRELS
value.

INGRELS_WAIT Sets the WAIT parameter of the INGRELS command to the specified INGRELS
value.

INGREQ_EXPIRE Sets the default EXPIRE parameter of the INGREQ command to the INGREQ

specified value.

Appendix A. Global Variables 239

Global Variables

Table 26. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name

Description

Reference !

INGREQ_INTERRUPT

Sets the default INTERRUPT parameter of the INGREQ command to
the specified value. The parameter specifies whether or not the
automation manager should wait until the resource has reached its UP
state, but the resource is still in the startup phase when the higher
priority stop request is given.

INGREQ

INGREQ_OVERRIDE

Sets the default OVERRIDE parameter of the INGREQ command to
the specified value.

INGREQ

INGREQ_PRECHECK

Sets the default PRECHECK parameter of the INGREQ command to
the specified value.

INGREQ

INGREQ_PRI

Sets the default priority (PRI parameter) of the INGREQ command to
the specified value.

INGREQ

INGREQ_PRIL.E2EMGR

Specifies the priority that incoming requests from the end-to-end
automation manager are executed at. Default: LOW

INGREQ

INGREQ_REMOVE

Sets the default value for the REMOVE parameter of the INGREQ
command to the specified value. It the resource reaches the specified
status (condition), the request is automatically removed.

INGREQ

INGREQ_REMOVE.START

Sets the default value for the REMOVE parameter of the INGREQ
START command. If not specified the value set by INGREQ_REMOVE
is used.

INGREQ

INGREQ_REMOVE.STOP

Sets the default value for the REMOVE parameter of the INGREQ
STOP command. If not specified the value set by INGREQ_REMOVE
is used.

INGREQ

INGREQ_RESTART

Sets the default for the RESTART parameter of the INGREQ command
when shutting down the resource.

INGREQ

INGREQ_SCOPE

Sets the SCOPE parameter of the INGREQ command to the specified
value.

INGREQ

INGREQ_SOURCE

Sets the default SOURCE parameter of the INGREQ command to the
specified value. The parameter specifies the originator of the request.

INGREQ

INGREQ_TIMEOUT

Sets the interval in minutes used to check for the INGREQ command
used to check whether the request has been successfully completed,
and whether to send a message or cancel the request if it has not been
satisfied after that time.

INGREQ

INGREQ_TYPE

Sets the default startup/shutdown type (TYPE parameter) of the
INGREQ command to the specified value.

INGREQ

INGREQ_VERIFY

Sets the default VERIFY parameter of the INGREQ command to the
specified value.

INGREQ

INGREQ_WAIT

Sets the WAIT parameter of the INGREQ command to the specified
value.

INGREQ

INGRPT_WAIT

Sets the WAIT parameter of the INGRPT command to the specified
value.

INGRPT

INGRUN_WAIT

Sets the WAIT parameter of the INGRUN command to the specified
value.

INGRUN

INGSCHED_WAIT

Sets the WAIT parameter of the INGSCHED command to the specified
value. The parameter specifies whether or not to wait until the request
is complete.

INGSCHED

INGSET_VERIFY

Sets the default VERIFY parameter of the INGSET command to the
specified value.

INGSET

240

System Automation for z/OS: Customizing and Programming

Global Variables

Table 26. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference '

INGSET_WAIT Sets the WAIT parameter of the INGSET command to the specified INGSET
value. The parameter specifies whether or not to wait until the request
is complete.

INGSTX_WAIT Sets the WAIT parameter of the INGSTX command to the specified INGSTX
value.

INGTRIG_WAIT Sets the WAIT parameter of the INGTRIG command to the specified |INGTRIG
value.

INGVOTE_EXCLUDE Sets the EXCLUDE parameter of the INGVOTE command to the INGVOTE

specified value. The parameter specifies the resource types (for
example SVP or GRP) to be excluded when showing all requests.
Resources of that type are filtered out.

INGVOTE_SOURCE Sets the default SOURCE parameter of the INGVOTE command to the | INGVOTE
specified value.
INGVOTE_STATUS Sets the STATUS parameter of the INGVOTE command to the INGVOTE

specified value. The parameter specifies which requests should be
displayed: winning, losing or all.

INGVOTE_WAIT Sets the WAIT parameter of the INGVOTE command to the specified |INGVOTE
value.

1. See the specified command in [[BM Tivoli System Automation for z/OS Operator’s Commands|

Appendix A. Global Variables 241

Global Variables

242 System Automation for z/OS: Customizing and Programming

Appendix B. Customizing the Status Display Facility

Overview of the Status Display Facility

This appendix explains how to customize the Status Display Facility (SDF) panels,
descriptors, and operations.

How the Status Display Facility Works

The SA z/OS Status Display Facility (SDF) uses colors and highlighting to
represent subsystem resource states. Typically, a subsystem shown in green on the
SDF status panel indicates it is up, while red indicates a subsystem in a stopped or
problem state. SDF can be tailored to present the status of system components in a
hierarchical manner.

Note: SDF works only with MVS systems and resources.

Types of SDF Panels

[Figure 51 on page 244] shows several SDF screens for system CHIO1. This figure
shows the main types of panels used in SDF:

* The root component
* The status component
* The detail status display

In addition to these panel types, you can create other types of panels according to
your system requirements and the applications you are monitoring.

© Copyright IBM Corp. 1996, 2012 243

Overview of the Status Display Facility

244

///7 DATA CENTER SYSTEMS
CHIOL
///7 CHIOL SYSTEM STATUS
JES2
RMF //// \\\\
——— DETAIL STATUS DISPLAY ——- 1L oF 3
VTAM
COMPONENT : JES2 SYSTEM : CHIOL
TSO
COLOR : GREEN PRIORITY : 550
NETVIEW
s DATE : 09/08/90 TIME : 09:02:17
1=HELP REPORTER : GATACOS6 NODE . CHIOL
REFERENCE VALUE: JES2
s AOF571I 08:59 : JES2 SUBSYSTEM STATUS FOR
1—HELP JOB JES2 IS UP - AT NETVIEW INITALIZATION
—==>
Root Component \\iTHELP 3=RETURN 6=ROLL 7=UP 8=DOWN ///

(System Panel)

Status Component
(Monitored Resources)

Detail Status Display

Figure 51. Example SDF Panels

Root Component

The root component is typically an element appearing on the first screen displayed
when SDF is started. In the CHIO1 system is the root component.

Status Component

Resources monitored by SDF are called status components. In system
CHIO1 has JES2, RMF'", VTAM, TSO, and NetView status components, as shown
on the CHIO1 System Status panel. The status component panel displays all
monitored resources in a system. Each monitored resource is shown in the color of

its current status. For example, JES2 is shown in green if it is up.

Detail Status Display

A detail status display is built from information in a status descriptor (see
. This panel is displayed by tabbing to the appropriate resource on
the status component panel and pressing the detail PF key. Each status component
can have one or more status descriptors, or detail records, associated with it.

|Eiéure 51: shows an example detail status display for a JES2 status descriptor. The 1
of 3 on the panel indicates that JES2 currently has three status descriptors, and
therefore three detail status displays, associated with it.

Status Descriptors

A status descriptor is a detailed record of information about a resource status. In its
raw form, a status descriptor is a multiline SA z/OS message containing
information such as:

¢ Root component and status component to which the status descriptor applies

System Automation for z/OS: Customizing and Programming

Overview of the Status Display Facility

* Priority, color, and highlighting associated with the status descriptor (see
[Status Descriptors Affect SDF” on page 246 for more information)

* Date and time the status descriptor was generated

* Actual resource status information; for example, an SA z/0OS message indicating
the resource is up

SDF uses information in a status descriptor to generate a detail status display (see
[“Detail Status Display” on page 244). You do not usually look directly at a status
descriptor; rather, you look at portions of it through a detail status display. For
example, in [Figure 51 on page 244} the detail status display presents information
from a status descriptor for status component JES2. The 1 of 3 on the panel
indicates that JES2 currently has three status descriptors associated with it.

SDF generates, displays, and deletes status descriptors.

SDF Tree Structures

SDF uses tree structures to set up the hierarchy of monitored resources displayed on
SDF status panels. An SDF tree structure always starts with the system name as
the root node and has a level number of one. Tree structure levels subordinate to
the root node are the monitored resources. The level numbers of these resources
reflect their dependency on each other.

You define SDF tree structures in NetView DSIPARM data set member AOFTREE.

shows an example SDF tree structure. [Figure 51 on page 244| shows how
these statements result in a tree structure.

1Syl
2 SYSTEM
3 WTOR
3 APPLIC
4 AOFAPPL
5 AOFSSI
4 JES
4 VTAM
3 TSO
3 RMF
2 GATEWAY
2 MONITOR
2 APG
3 GROUP

Figure 52. Example SDF Tree Structure

SA z/0S supplies a sample SDF tree structure in the SA z/OS sample library. This
tree structure is referenced by a %INCLUDE statement in member AOFTREE in the
NetView DSIPARM data set. You can customize this sample tree structure to meet
your requirements. This order of dependency does not have to be the same as that
used for system startup or shutdown using SA z/0OS. System symbols are
supported for the tree structure. This can help reduce both customization work and
errors.

For example, using the tree structure in if there is a problem with TSO,
it is not desirable to also change the VTAM status color, because VTAM is not
having any problems. In contrast, in the SA z/OS startup and shutdown
procedures, TSO is dependent on VTAM.

Appendix B. Customizing the Status Display Facility 245

Overview of the Status Display Facility

More details on SDF tree structure definitions are in [‘Step 1: Defining SDF|
[Hierarchy” on page 253

How Status Descriptors Affect SDF

Status descriptors are the main units of information SDF uses. The information in
status descriptors determines how your SDF status displays look at any point in
time. This section explains how SDF uses status descriptors.

Priority and Color Assignments

Status descriptors are assigned both a priority number and a color. These color and
priority assignments determine the colors in which status components are
displayed. In SDEF, a lower number indicates a higher priority. Status descriptors
are connected to the status component in ascending order of priority.

Color and priority assignments for status descriptors are defined in two places:

* In the PRIORITY parameter in the AOFINIT member of the NetView DSIPARM
data set. This parameter defines initial priority and color assignments used for
status descriptors. The values defined in AOFINIT are used if no further
customization is done to priority and color assignments. The default priority
ranges and colors used in AOFINIT are:

Priority Range Color

001 to 199 Red

200 to 299 Pink

300 to 399 Yellow
400 to 499 Turquoise
500 to 599 Green
600 to 699 Blue

White is used as the default status descriptor color (the DCOLOR parameter in
member AOFINIT, described in [BM Tivoli System Automation for z/OS|
[Programmer’s Reference) and as the default color for a status component without a
tree structure entry (the ERRCOLOR parameter in member AOFINIT, described
in|IBM Tivoli System Automation for z/OS Programmer’s Referencd). For more
information on the PRIORITY parameter, see [BM Tivoli System Automation for]
[z/OS Programmer’s Referencd

* In the SDF definitions in the Status Details policy object. These entries define
colors, highlighting, and priorities used for particular resource statuses. Color
and priority assignments defined in the customization dialog can be used to
override assignments in the AOFINIT member.

Note: Some of the resource statuses that appear in SDF displays do not directly
correspond to resource statuses used in the automation status file.

[IBM Tivoli System Automation for z/OS User’s Guide| shows the default resource

status types, colors, highlighting, and priorities provided with SA z/0OS. These

settings define to SA z/OS the parameters used when adding status descriptors

to SDE.

For more information on the SDF Status Details definition, see |”Step 4:|
[(Optional) Defining SDF in the Customization Dialog” on page 258

Chaining of Status Descriptors to Status Components
A resource status change causes a status descriptor to be generated. SDF adds this
status descriptor to a chain of status descriptors. Chained status descriptors

246 System Automation for z/OS: Customizing and Programming

Overview of the Status Display Facility

determine the status and color of status components. The highest-priority status
descriptor in a chain determines the initial color in which the status component is
displayed. The underlying chained priority numbers determine the color that
successive detail status displays are shown in.

Status descriptors are chained off each level of status component in a tree
structure. Status descriptors chained to lower-level status components are also
chained to a higher-level status component, again in order of priority. Status
descriptors are also chained off the root component. These status descriptors are all
the status descriptors that currently exist at all levels of the tree structure.

For example, shows status descriptors currently generated for system
SY1. The priority for each status descriptor is shown by a number.

Status descriptors for SY1 root component

1100 50 |- 10 [7 |- 5 H 1 }—@ <« Root Component

Status descriptors for SYSTEM status component

(50 {10 7 H 5 [4 }—‘ZSYSTEM \ ‘ZGATEWAY‘

100 <4—— Status descriptor
for GATEWAY
status component

t t

Status descriptors
for JES2 status

component
Status descriptor Status descriptor
for RMF status for VTAM status
component component

Figure 53. Status Descriptors Chained to Status Components

The status components at the lowest level in this tree structure, JES2, RMF, and
VTAM, have status descriptors chained off them. Status component JES2 has three
status descriptors chained, with priorities 1, 10, and 50. Because 1 is the highest
priority, the status descriptor with priority 1 is organized first in the chain. This
highest-priority status descriptor determines the color in which JES2 is displayed
on the status panel. If an operator uses the detail PF key to view detail status
displays for JES2, the information contained in the status descriptor with priority 1
is displayed first, then the detail status display for the status descriptor with
priority 10, and so on.

At the SYSTEM status component level in the tree structure, all status descriptors
from the lower-level status components are also chained. Because the status
descriptors chained to RMF and VTAM have higher priorities than the priority 10
and 50 status descriptors for JES2, they are organized after the priority 1 status
descriptor in the chain. An operator using the detail PF key at the SYSTEM level
could view five detail status displays, ranging from priority 1 to priority 50.

Similarly, at the SY1 level in the tree structure, all status descriptors chained to all
status components in the tree structure are chained in order of priority. An
operator using the detail PF key at the SY1 level could view six detail status
displays, ranging from priority 1 to priority 100.

Appendix B. Customizing the Status Display Facility 247

Overview of the Status Display Facility

248

If a status component has multiple status descriptors with equal priorities, the
status descriptors are chained off the status component in order of arrival time.

When a status descriptor no longer accurately reflects the actual status of a
resource, SDF automatically deletes it from status descriptor chains. As an example
of how priority determines order of status descriptors, suppose two status
descriptors currently exist for status component JES2. If there are two status
descriptors for JES2 with priorities of 120 and 140, the status descriptor with
priority 120 is displayed first. In both cases, JES displays in red on the SDF status
panel.

In SA z/0S, all statuses are defined in the automation control file. When an
automation event occurs, the SA z/0OS AOCUPDT command scans the automation
control file for the SDF entry for that status. SA z/OS issues a request to add the
status using the information from the automation control file.

For example, suppose subsystem RMEF, shown on the example SDF panels in
[Figure 51 on page 244} is set to a STOPPING state. The SA z/0OS AOCUPDT
command scans the automation control file for the STOPPING state entry for SDF
and generates a status descriptor, specifying a priority of 330. SDF adds the status
descriptor to the RMF status component. RMF appears as yellow and blinking on
the status panel. Once RMF is in a stopped state, the AOCUPDT command scans
the automation control file for the STOPPED state SDF entry and generates a status
descriptor with priority 130. SDF adds this new status descriptor to the RMF status
component. Now, RMF appears in red on the SDF status panel.

Propagating Status Descriptors Upward and Downward in a Tree
Structure

Based on the order of dependencies defined in a tree structure, status descriptors
can be propagated upward or downward to status components in a tree structure.
This propagation of status descriptors affects the color in which status components
are displayed, as well as the detail status displays operators can view by using the
detail PF key on a particular status component.

Propagation of status upward and downward in a tree structure is defined by the
PROPUP and PROPDOWN parameter in the AOFINIT member (see |[BM Tivoli

[System Automation for z/OS Programmer’s Reference|for descriptions).

The SA z/OS-provided defaults for status propagation in the AOFINIT member
are to propagate status upward (PROPUP=YES) but not downward
(PROPDOWN=NO).

When status is propagated upward in a tree structure, if a status descriptor is
added or deleted at a lower level in the tree structure, it is also added or deleted
from the cumulative chain of status descriptors at a higher-level node in the tree
structure.

Propagation of status upward in a tree structure consolidates the status of all
monitored resources in the system at the root node. In this way, the color of the
root node reflects the most important or critical status in a computer operations
center. For example, in [Figure 52 on page 245| any color changes for AOFSSI are
reflected in AOFAPPL, APPLIC, SYSTEM, and SY1, if SDF propagates status
changes upward in the tree structure. In[Figure 51 on page 244} if all monitored
resources are green, the root node CHIO1 on the Data Center Systems panel is also
shown in green.

System Automation for z/OS: Customizing and Programming

Overview of the Status Display Facility

When status is propagated downward in a tree structure, if a status change occurs
at a higher level in a tree structure, the changes are sent downward in the tree
structure. This propagating downward could cause status descriptors at lower
levels in the tree structure to be added or deleted.

Propagating status downward can be useful when an entire system is down. In
such a case, you want SDF status panels to accurately reflect the system status. You
do not want status components lower in the tree structure to retain previously
generated status descriptors indicating that the components are up and running,
because these status descriptors do not accurately reflect the status of the
components. You can configure your SDF implementation to propagate status
downward, and remove all status descriptors from all status components in a tree
structure. If an operator tries displaying detailed status about any of the status
components lower in the tree structure, they receive "NO DETAIL INFO
AVAILABLE" messages. The empty chain color, defined by the EMPTYCOLOR
parameter in member AOFINIT with a default color of blue, is also used to
indicate that no detail information is available. See[IBM Tivoli System Automation fo]
/OS Programmer’s Referencd for the EMPTYCOLOR description.

How SDF Helps Operations to Focus on Specific Problems

SDF structure and processing allows the program identifying a problem to be
concerned only with the specific problem.

For example, suppose an application program detects a warning message for status
component JES on CHIO1. The following processing steps occur:

1. The application program issues a request to SDF to add a status descriptor for
JES.

2. The status entry for JES on system CHIO1 now indicates there is a problem
with JES. If the SDF is configured to propagate status up the hierarchical tree
structure, the status for system CHIO1 also reflects the problem state. See
[Tivoli System Automation for z/OS Programmer’s Referencel for details on the
PROPUP SDF initialization parameter.

3. Now, suppose another more serious problem occurs. The application program
which detects this new problem issues another request to SDF to add a status
descriptor having a lower priority number than the status descriptor for the
first problem.

4. Because status descriptors are chained in order of priority, the JES status now
reflects the status descriptor color of the more serious problem.

5. When the more serious problem is resolved, the application program detecting
the problem resolution issues a request to SDF to remove the status descriptor
for this problem from the chain of JES status descriptors.

6. The status panel is updated to reflect the first problem.

How SDF Panels Are Defined

All SDF status panels, apart from detail status display panels, are defined in the
AOFPNLS member of the NetView DSIPARM data set.

Member AOFPNLS can contain either one or both of the following;:

* %INCLUDE statements referencing other NetView DSIPARM members
containing definitions of panels. The %INCLUDE statement causes the named
panel definition member to be loaded. This is the recommended method, and

Appendix B. Customizing the Status Display Facility 249

Overview of the Status Display Facility

250

the method used in the SA z/OS-provided version of AOFPNLS. System
symbols are supported for the %INCLUDE statements. This can help reduce
both customization work and errors.

* Panel structure definitions for all SDF panels.

Panel members defined or referenced in AOFPNLS are loaded into system
memory, and may be deleted, replaced, or temporarily made resident using the
SDFPANEL command (see [[BM Tivoli System Automation for z/OS Programmer’s|
for command description).

Panels that are to be dynamically loaded as needed (see|“Dynamically Loading]
[Tree Structure and Panel Definition Members”) must be defined in a NetView
DSIPARM member having the same member name as the panel itself.

It is recommended that you include only frequently used panels in AOFPNLS, to
conserve system memory. Other panels can be dynamically loaded when needed,
either by pressing a SDF function key or by using the SCREEN command.

Note: Dynamic refresh only works with panels that are defined in AOFPNLS.

SDF internally formats and builds detail status display panels from the information
in a status descriptor. You do not have to define and format detail status display
panels. Status components defined in the panel definitions must also be defined in
the corresponding tree structure. However, not all status components defined in
the tree structure require a corresponding entry on the SDF status panel. For
example, in [Figure 52 on page 245, the APPLIC status component is only a
pseudo-entry and may not actually be displayed on any SDF status display panel.

SDF status panels can be customized to reflect any environment. For example, you
can define a panel to show the status of all JES subsystems on all processors in a
computer operations center. The JES operator can view the panel to determine the
status of any JES subsystem in the complex.

For detailed information on defining SDF panels, see|“Step 2: Defining SDH
[Panels” on page 254

Dynamically Loading Tree Structure and Panel Definition
Members

Using %INCLUDE statements in the main SDF tree structure and panel definition
members allows you to dynamically load tree structure and panel definition
members without restarting SDF (see [[BM Tivoli System Automation for z/OS|
[Programmer’s Referencd). The SDFTREE command loads a tree structure definition
member. The SDFPANEL command loads a panel definition member. You can
dynamically reload members AOFTREE and AOFPNLS themselves.

The RESYNC SDFDEFS command generates the SDF panels using the advanced
automation option (AAO) AOF_AAO_SDFROOT_LIST#n for the SDF root names
that are to be applied. (See [[BM Tivoli System Automation for z/OS Operator’s|

ommands|).

Refer to the "Status Component Panel Definition" in [[BM Tivoli System Automation]
[for z/OS Programmer’s Reference| for the setup of AOF_AAO_SDFROOT_LISTn
variables.

System Automation for z/OS: Customizing and Programming

Overview of the Status Display Facility

Using SDF for Multiple Systems

You can configure SDF so that multiple systems in an automation network can
forward their resource status information to the SDF on the focal point system. In a
multiple-system environment, the following must be defined:

* The tree structure for each system must be defined in the AOFTREE member of
NetView DSIPARM on the focal point system SDF. The root name must be
unique for each system tree structure.

* For target system SDF status update to occur on a focal point SDF, SA z/0S
focal point services must already be implemented.

Because each root name must be unique in a multiple-system environment, any
status component on any system defined to the focal point SDF can be uniquely
addressed by prefixing the status component with the root component name:

ROOT_COMPONENT . STATUS_COMPONENT

For example:
SY1.JES2

Similarly, any SDF status descriptors forwarded from the target system to the focal
point SDF are prefixed with the root name of the target system by SA z/0S
routines.

SDF Components

SDF consists of the following components:

Table 27. SDF Components

Name Type Purpose

AOFTDDF Task Initializes SDF and maintains the status database. This
initialization is an automated function.

SDF Command Starts an SDF operator session.

SDFTREE Command Dynamically loads or deletes an SDF tree structure

definition member from the NetView DSIPARM data set.

SDFPANEL Command Dynamically loads or deletes an SDF panel definition
member from the NetView DSIPARM data set.

AOFINIT Input file Contains SDF initialization parameters defined with the
statements described in |IBM Tivoli System Automation for|
[z/0S Programmer’s Referencef AOFINIT is in the NetView
DSIPARM data set.

AOFTREE Input file Contains tree structures described in[IBM Tivoli System|
[Automation for z/OS Programmer’s Reference] This member
usually consists of a list of %INCLUDE statements
referencing other members containing tree structures.
AOFTREE is in the NetView DSIPARM data set.

AOFPNLS Input file Contains SDF panel parameters defined by the statements
described in|“Step 2: Defining SDF Panels” on page 254
This member usually consists of a list of %INCLUDE
statements referencing other members containing panel
definitions. AOFPNLS is in the NetView DSIPARM data
set.

Appendix B. Customizing the Status Display Facility 251

Overview of the Status Display Facility

Table 27. SDF Components (continued)

Name Type Purpose

panel_name Input file A DSIPARM member containing the definition of one or
more SDF panels or %INCLUDE statements identifying
other DSIPARM panel definition members. It is highly
recommended that panel definition members contain the
definition of a single panel having the same name as the
member.

tree_name Input file A DSIPARM member containing the definition of one or
more tree structures. It is highly recommended that tree
definition members contain the definition of a single tree
having the same root component name as the member
name.

How the SDF Task Is Started and Stopped

During SA z/OS initialization, the AOFTDDF task loads members defining panel
format, panel flow, and tree structures. Member AOFINIT defines parameters
common to all SDF panels and basic initialization specifications, such as screen
size, default PF keys, and the initial screen displayed when a SDF session is
started. These AOFINIT parameters are described in [[BM Tivoli System Automatiorn]
ffor z/OS Programmer’s Referencel

Starting the SDF Task
In SA z/0OS code, the AOFTDDF task is started by the following command:

START TASK=AOFTDDF

Stopping the SDF Task
In SA z/0S code, the AOFTDDF task is stopped by the following command:

STOP TASK=AOFTDDF

Note: When SDF is restarted, all existing SDF status descriptors are lost, as they
are kept only in memory.

SDF Definition

Process

Use the following procedure to define the panels displayed in an SDF session.
Details on each step are provided later in this chapter and in [[BM Tivoli Systeml|
lAutomation for z/OS Programmer’s Referencel

1. Define the hierarchy of monitored resources used for your SDF panels, using
tree structure statements in NetView DSIPARM data set members. These tree
structure definition members should be referenced by %INCLUDE statements
in the main SDF tree structure definition member, AOFTREE, in the NetView
DSIPARM data set. See |[BM Tivoli System Automation for z/OS Programmer’s|

for details.

2. Define SDF status panels using panel definition statements in NetView
DSIPARM data set members. Panels can either be automatically loaded when
SDF starts, or dynamically loaded using the SDFPANEL command. For panels
to be automatically loaded, add a %INCLUDE statement specifying the panel
definition member to the main panel definition member, AOFPNLS, in the
NetView DSIPARM data set. See [“Step 2: Defining SDF Panels” on page 254] for
details.

Define and customize SDF status panels in the following general order:
a. Root panel

252 System Automation for z/OS: Customizing and Programming

SDF Definition Process

b. Status component panel for each entry on the root panel
c. Any other customized status panels.

3. Customize the SDF initialization parameters in NetView DSIPARM member
AOFINIT, if necessary (optional), or use defaults. See |[[BM Tivoli System|
[Automation for z/OS Programmer’s Reference| for detailed descriptions of SDF
initialization parameters. Using defaults is recommended.

4. Define SDF resource status, color, highlight and priority values using the
customization dialog to edit the SDF Status Display policy object, or use
defaults. This step is optional. See [[BM Tivoli System Automation for z/OS|
[Defining Automation Policy| for the description of the Status Display policy
object. Using defaults is recommended.

Notes:
1. Resources that SA z/OS is not currently automating are not displayed on SDF
panels.

2. To display the status of multiple systems and forward status from target
systems to SDF on a focal point system, SA z/OS focal point services must
already be implemented. See [[BM Tivoli System Automation for z/OS Defining]
[Automation Policy| for details on configuring focal point services.

Step 1: Defining SDF Hierarchy

Member AOFTREE in the NetView DSIPARM data set contains a set of definitions
that define the propagation hierarchy for status color changes. When the status
changes for a component, the corresponding color change is propagated up or
down the tree to the next higher or lower level component. The level is determined
by the level number assigned to each component. The type of propagation is
determined either by the entry in the AOFINIT member or by individual requests
to add a status descriptor to a status component.

Note: SA z/OS does not use this SDF hierarchy for subsystem shutdown or
startup procedures. Instead, SA z/OS uses subsystem entries defined in the
automation policy to determine startup and shutdown relationships and
hierarchies.

Tree Structure Definitions
AOFTREE contains tree structure definitions. To define tree structures, you can:

¢ Use %INCLUDE statements that reference other members containing definitions
for specific tree structures. This is the recommended method, and the method
used in the SA z/OS-provided version of AOFTREE.

On the %INCLUDE statement, the name of the referenced member must be
enclosed in parentheses.

¢ Place all tree structure definitions in AOFTREE.
e Use a combination of both.

System symbols are supported wherever they are used in the AOFTREE, AOFINIT
and AOFPNLS members. This can help reduce both customization work and
errors.

[Figure 54 on page 254 shows a typical tree structure definition:

Appendix B. Customizing the Status Display Facility 253

SDF Definition Process

254

1 SY1
2 SYSTEM
3 WTOR
3 APPLIC
4 AOFAPPL
5 AOFSSI
4 JES
4 VTAM
3 TSO
3 RMF
2 GATEWAY
2 MONITOR
2 APG
3 GROUPS

Figure 54. Example Tree Structure Definition

In this tree structure, SY1 is the root component. This definition is in a separate
member, named SY1. It is referenced by the following statement in the AOFTREE
member:

%INCLUDE (SY1TREE)

Loading Tree Structures: All tree structures need not be loaded during
initialization. Some can be loaded dynamically after SDF is started. To do this, use
AOFTREE to define those tree structure entries that are loaded during
initialization, then use the SDFTREE command to load additional tree structures as
needed. For more information, see [[BM Tivoli System Automation for z/O9
[Programmer’s Referencd.

Tree structures loaded after SDF is started must be contained in separate members.
Each member must be named after the root component for which the tree structure
is defined.

Step 2: Defining SDF Panels

SDF status panels are defined in NetView DSIPARM member AOFPNLS. SA z/0S
loads the panel definitions in AOFPNLS when SDF is initialized.

Panel Definition Methods

To define panels in AOFPNLS, you can:

* Use %INCLUDE statements referencing separate NetView DSIPARM members
containing panel definitions. This is the recommended method, and the method
used in the SA z/0OS-provided version of AOFPNLS. See
[Statement for SDF Panels” on page 257 for details on using the %INCLUDE
statement for SDF panel definition members.

* Include actual definitions for all panels.
* Use a combination of both %INCLUDE statements and panel definitions.

* Include a subset of panel entries to load during initialization, so that additional
panel definitions can be loaded only when needed (see [[BM Tivoli Systen]
[Automation for z/OS Programmer’s Reference).

System symbols are supported wherever they are used in the AOFTREE, AOFINIT
and AOFPNLS members. This can help reduce both customization work and
erTors.

Panel Definition Structure
The structure of each panel definition is as follows:

* Begin panel definition statement (PANEL)

System Automation for z/OS: Customizing and Programming

 Status component definition statements, consisting of pairs of the following
statements:
— STATUSFIELD: defines location of a status component on a panel
— STATUSTEXT: defines the text displayed in the STATUSFIELD

 Text fields and data definition statements, consisting of pairs of the following
statements:
— TEXTFIELD: defines locations and attributes for constant fields on panels
— TEXTTEXT: defines text displayed in the TEXTFIELD

* Status panel PF key definitions (PFKnn)
You should assign the SDFCONF command to the PF4 key. Use the following
definition:
PFK4=SDFCONF &ROOT,&COMPAPPL,&RV,&SID,&SNODE,&DATE,&TIME,&DA

Using SDFCONEF to delete a record in SDF is useful because it prompts you for
confirmation before performing the actual deletion. If you do not want the
prompt panel to appear, then add ", VERIFY=NO" to the end of the SDFCONF
command.

You must call SDFCONF to delete exceptional messages, that is, captured
messages with the severity Unusual, Important and Critical. The SDFCONF
command removes a message entry from the SDF control structure and also
from all other interfaces where the message is shown, for example, TEP and
NMC.

* End panel statement (ENDPANEL)

Descriptions of these panel definition statements are in [[BM Tivoli System|
[Automation for z/OS Programmer’s Referencel

Recommended Order for Defining Panels

When defining panels, it is recommended that you define them in the following
order:

1. The root panel

2. The status components for each item listed on the root panel

3. Any other customized status panels

Note: This order of defining panels is a recommendation only. You can define your
SDF panels in any order desired.

Example Panel Definition
shows how an example SDF panel looks when it is displayed.

- N
SYSTEM DATA CENTER SYSTEMS
SY1 GATEWAY
===>
\}=HELP 2=DETAIL 3=RET 6=ROLL 7=UP 8=DN 10=LF 11=RT 12=TOP)

Figure 55. Example SDF Panel

[Figure 56 on page 256(shows the panel definition statements required to define the

panel in|Figure 55

Appendix B. Customizing the Status Display Facility 255

256

PANEL (SYSTEM, 24,80)
TEXTFIELD(01,02,10,WHITE,NORMAL)
TEXTTEXT (SYSTEM)
TF(01,25,57,WHITE,NORMAL)
TT(DATA CENTER SYSTEMS)
STATUSFIELD(SY1,04,04,11,N,,SY1SYS
STATUSTEXT(SY1)
SF(SY1.GATEWAY,02,40,47,N, ,GATEWAY
ST(GATEWAY)
TF(24,01,79,T,NORMAL)

TT(1=HELP 2=DETAIL 3=RET 6=ROLL
10=LF 11=RT 12=TOP)

PFK1(AOCHELP SDF)

PFK2 (DETAIL)

PFK3 (RETURN)

PFK6 (ROLL)

PFK7 (UP)

PFK8 (DOWN)

PFK10(LEFT)

PFK11(RIGHT)

PFK12 (TOP)

ENDPANEL

)
)

7=UP 8=DN s

Figure 56. Example Panel Definition Entry

In the panel name is SYSTEM. This panel definition can either be in a

separate member referenced by a

%INCLUDE statement in AOFPNLS or be

directly coded in AOFPNLS. The recommended method is to use a separate
member and a %INCLUDE statement. If it is in a separate member, the member
name is SYSTEM. You do not have to explicitly define every PF key for the panel.
PF key definitions not specified are picked up from definitions in NetView

DSIPARM member AOFINIT.

describes each statement

in [Figure 56,

Table 28. Panel Definition Entry Description

Statement

Description and Example Value

PANEL (SYSTEM, 24,80)

The panel definition statement. The panel name is
SYSTEM, the panel length is 24, and the panel width
is 80.

TEXTFIELD(01,02,10,WHITE,NORMAL)

The text location statement defining constant panel
fields. This field starts on line 01 in position 02 and
ends in position 10. The color of the field is white
and highlighting is normal.

TEXTTEXT (SYSTEM)

The text data statement specifying the actual data
that goes in the text field just defined. This field
contains the word SYSTEM.

TEXTFIELD and TEXTTEXT are always grouped in
pairs.

TF(01,25,57 ,WHITE,NORMAL)

Another TEXTFIELD statement for another constant
field.

TT(DATA CENTER SYSTEMS)

Another TEXTTEXT statement for the text field just
defined.

STATUSFIELD(SY1,04,04,11,N,,SY1SY

5The location of the status component field. The status
component is SY1. This field starts on line 04 in
position 04 and ends in position 11. The highlighting
level is normal. The next panel displayed when the
Down PF key is pressed is SY1SYS.

System Automation for z/OS: Customizing and Programming

Table 28. Panel Definition Entry Description (continued)

Statement

Description and Example Value

STATUSTEXT(SY1)

The text data used for the name of the field just
defined with the STATUSFIELD statement. In this
case, the field name is SY1.

STATUSFIELD and STATUSTEXT statements are
grouped in pairs.

SF(SY1.GATEWAY,02,40,47,N, ,GATEWA

YAnother STATUSFIELD definition.

ST (GATEWAY)

Another STATUSTEXT definition.

TF(24,01,79,T,NORMAL)
TT(1=HELP 2=DETAIL 3=RET 6=ROLL

Here, TEXTFIELD and TEXTTEXT are used to display
PHJRgy definitions. For this panel, these are the

8=DN 10=LF 11=RT

12=TOP) default definitions defined in AOFINIT. If you need
values differing from the defaults, there is a
statement for defining PF keys unique to this panel,
DPFKnn. See|IBM Tivoli System Automation for z/OS)|
[Programmer’s Referencelfor a description of this

statement.

PFK1(AOCHELP SDF)
PFK2 (DETAIL)

PFK3 (RETURN)

PFK6 (ROLL)

PFK7 (UP)

PFK8 (DOWN)
PFK10(LEFT)
PFK11(RIGHT)
PFK12 (TOP)

PF key definition statements.

ENDPANEL The end panel statement, indicating that this is the

end of definitions for this panel.

%INCLUDE Statement for SDF Panels

The %INCLUDE statement for SDF has the following features:

The SDF %INCLUDE statement allows the specification of a list of members
rather than a single member only. Each member name in the list represents a
DSIPARM member that is to be loaded. Member names in the list are delimited
by a comma.

The SDF %INCLUDE statement requires parentheses around the specified
member or members.

You can specify the option STATIC or DYNAMIC for the SDF %INCLUDE
statement. If you specify DYNAMIC, this generates the panel definitions for all
of the system names that you specify in AOF_AAO_SDFROOT_LISTn common
global variable (see|Table 25 on page 230). STATIC is the default.

The target DSIPARM members may contain only complete panel definitions or
additional %INCLUDE statements. Panel definitions must be contained within a
single member, and therefore cannot be built using commonly defined segments.

System symbols are supported wherever they are used in the AOFTREE, AOFINIT
and AOFPNLS members. This can help reduce both customization work and
errors.

Appendix B. Customizing the Status Display Facility 257

258

Step 3: (Optional) Customizing SDF Initialization Parameters

Member AOFINIT allows you to define parameters common to all SDF panels and
SDF initialization specifications, such as:

¢ Initial screen shown when SDF is started

* Maximum operator logon limit

¢ Default PF key definitions

¢ Detail status display panel PF key definitions
* Detalil status display panel PF key descriptions

* Default priorities and colors
These parameters define values for SDF when it is started.

System symbols are supported wherever they are used in the AOFTREE, AOFINIT
and AOFPNLS members. This can help reduce both customization work and
errors.

This step of SDF customization is optional. Using SA z/OS-provided default
values for these parameters is recommended.

Note: User-defined statuses are not saved across a recycle or a monitor cycle. This
means the status of a subsystem changes from the user-defined status to an
appropriate SA z/OS status.

Step 4: (Optional) Defining SDF in the Customization Dialog

The SDF entries in the Status Display policy object allow you to define statuses
and the priorities assigned to those statuses. These entries are used by SA z/0OS
commands to gather data for requests to add status descriptors to status
components. The format and values used in SDF Status Detail definitions are
described in |[BM Tivoli System Automation for z/OS Programmer’s Reference)

This step of SDF customization is optional. Using SA z/OS-provided definitions
for SDF is recommended.

System Automation for z/OS: Customizing and Programming

Appendix C. How System Operations Coordinates with
Automatic Restart Manager

SA z/0S system operations provides coordination with the Automatic Restart
Manager. The Automatic Restart Manager (ARM) is a base z/OS component. It is a
recovery function that automatically restarts designated applications when:

* The application ends abnormally.

* The system that the application is running on is part of a sysplex, and that
system fails. In this case, ARM will attempt to restart the application on another
system within the sysplex.

SA z/0S coordinates with ARM to:
* Determine which facility is responsible for restarting a specific application.
* Avoid possible duplications or conflicts in application recovery attempts.

* Allow you to take full advantage of SA z/OS fallback capabilities for
applications running on sysplexes. SA z/OS continues to automate an
application after it has been moved to a fallback system, provided SA z/OS is
installed on that system. If it is not installed on the fallback system, SA z/OS is
still aware that the application is active on a system other than its primary one
and does not attempt to restart it.

You have to define the Automatic Restart Manager policy using the administrative
data utility for ARM policy data (IXCMIAPU) described in [z/OS MVS Setting Up 4

SA z/0S resolves Automatic Restart Manager statuses to SA z/OS statuses,
incorporates Automatic Restart Manager-related conditions, and provides one
status related to Automatic Restart Manager:

* EXTSTART - The application is being started or restarted externally.

Defining an ARM Element Name

Automatic Restart Manager uses element names to identify the applications with
which it works. Each Automatic Restart Manager enabled application must have a
unique element name for itself that it uses in all communication with Automatic
Restart Manager. Automatic Restart Manager tracks the element name and has its
policy defined in terms of element names. If an application moves between
systems it MUST continue to use the same element name as it did on the original
system. For more information on defining Automatic Restart Manager names to
SA 7z/0S, see “Application Entry Type” in|[BM Tivoli System Automation for z/OS)|
IDefining Automation Polici,

All Automatic Restart Manager elements are unregistered initially. Transitions
between statuses are caused by:

* IXCARM macro invocations
* Application failures

* System failures

* Timeouts

© Copyright IBM Corp. 1996, 2012 259

Defining an ARM Element Name

A minor resource definition subsystem.0ARM can be used to tailor automation
behaviour during ARM restart processing. As an example, a subsystern.0ARM minor
resource could be specified with a RESTART EXIT enabled to drive a user supplied
exit during ARM restart. The user exit would control additional actions to be taken
during ARM restart of the subsystem. If the RESTART flag for this minor resource
is resolved to 'N', SA z/0OS will not allow ARM to attempt a restart of the
application.

Rather than use the subsystem.0ARM minor resource definition, a RESTART EXIT
could also be specified against the major resource definition for the application. In
this case the exit would be driven for all application restarts, not just ARM.

Other reasons for SA z/OS not to allow ARM to attempt a restart of the
application are:

¢ The application's monitor indicates that the address space is already active.
* The application is involved in a shutdown.
* The application is in status BREAKING, BROKEN, or CTLDOWN.

Defining a MOVE Group for Automatic Restart Manager

260

All resources with the same ARM element name should be linked to one Sysplex
Application Group of nature MOVE (MOVE group).

An application's ARM element name is defined either during creation on the
Define New Entry panel for applications or after creation via policy item
APPLICATION INFO, in both cases in the MVS Automatic Restart Management
Element Name field.

In order to ensure an application in a MOVE group has completely deregistered
from ARM before the automation manager attempts to restart it, a
Prepareavailable/ WhenObservedDown (passive) relationship must be defined for
each ARMed application in the MOVE group with the MOVE group defined as the
supporting resource.

To make sure that the automation manager will start the applications linked to a
MOVE group, the applications should not be in a HardDown status. The Start On
IPL option should not be set to NO.

For more information on how to define MOVE groups see “Creating a New
AiilicationGroup” in [IBM Tivoli System Automation for z/OS Defining Automation|

System Automation for z/OS: Customizing and Programming

Appendix D. Message Automation

Generic Synonyms: AOFMSGSY

This AOFMSGSY NetView automation table (AT) fragment contains a number of
synonyms that must be appropriately set. It is used in most master automation
tables to set up the environmental parameters for the other fragments. The
AOFMSGSY member is supplied by SA z/0S (in the SINGNPRM data set). You
must customize it for each of your systems. The customized copy should be placed
in the domain-specific data set for that system.

Note that many values in this table fragment are enclosed in triple single quotation
marks. This means that the value of the synonym is the value entered surrounded
by a single set of single quotation marks. This is necessary so that the value is
treated as a literal and not an automation table variable.

Synonym

Usage and Default

%AOFALWAYSACTION%

This synonym contains the action statement used for all the
messages within a Begin-End block that SA z/OS does not
trigger any action for.

Default: NULL

The default is that n0 action is taken and the message does
not continue to search for further matches within the same
AT.

%AOFDOM%

This synonym should contain the domain ID of the SA z/OS
NetView on the system that it is automating. The synonym is
used to screen messages to prevent the SA z/OS on this
machine from reacting to a message that originated on
another machine. If not set correctly, your automation fails.

Default: &DOMAIN.

This is a default domain name used in a number of the
samples.

%AOFSYS%

This synonym should contain the system name used in the
last IPL of the system. It is used to screen messages to
prevent the SA z/OS on this machine from reacting to
events that have occurred on other machines. It is important
if you are running on a JES3 global or in a sysplex with
EMCS consoles. If not set correctly, your automation fails.

Default: &SYSNAME.

This is a default system name used in a number of the
samples.

%AOFARMPPI%

This synonym should contain the name of the NetView
autotask that is running the PPI interface from SA z/OS to
z/0S. It is used to route commands from the NetView
automation table to the autotask.

Default: AOFARCAT

© Copyright IBM Corp. 1996, 2012

261

Generic Synonyms: AOFMSGSY

262

Synonym

Usage and Default

% AOFGMFHSWAIT%

The time interval SA z/OS waits after GMFHS initialization
is complete before issuing the command to update the
RODM with the current application automation states.
Following the issuing of message DUI4003] GMFHS
NETWORK CONFIGURATION INITIALIZED
SUCCESSFULLY, GMFHS resets the color of all SA z/0OS
icons to grey (unknown). To set the SA z/OS icons' color to
the current automation states after the initialization of
GMFHS, SA z/0OS must wait and issue the update
command AFTER GMFHS has reset the colors to grey.

Default: 00:02:00

SA z/OS Message Presentation: AOFMSGSY

The presentation of SA z/OS messages (prefixed with AOF, ING, HSA, EV], EVE
and EVI) under NetView is controlled by the automation table. This uses a number
of synonyms and task globals indicating your message display characteristics. The
following synonyms determine the display characteristics for each type of message.
There is one set for the normal presentation of the message (AOFNORMXx) and a
second set for the held presentation (AOFHOLDx).

Synonym

Usage and Default

%AOFHOLDI%

This synonym defines the actions taken for SA z/OS
information (type I) messages that are held on your NCCF
console.

Default: HOLD(Y) COLOR(GRE) XHILITE(REV)

This:
* Ensures that the message is held

* Causes the message to be displayed in reverse video green

%AOFHOLDA%

This synonym defines the actions taken for SA z/OS
immediate action (type A) messages that are held on your
NCCEF console. As a rule, you should specify HOLD(Y) in
the action.

Default: HOLD(Y) COLOR(RED) XHILITE(REV) BEEP(Y)

This:
* Ensures that the message is held
* Causes the message to be displayed in reverse video red

¢ Sounds the terminal alarm when the message is displayed

%AOFHOLDD%

This synonym defines the actions taken for SA z/OS
decision (type D) messages that are held on your NCCF
console. As a rule, you should specify HOLD(Y) in the
action.

Default: HOLD(Y) COLOR(WHI) XHILITE(REV) BEEP(Y)

This:
* Ensures that the message is held
* Causes the message to be displayed in reverse video white

* Sounds the terminal alarm when the message is displayed

System Automation for z/OS: Customizing and Programming

SA z/OS Message Presentation: AOFMSGSY

Synonym Usage and Default
%AOFHOLDE% This synonym defines the actions taken for SA z/OS
eventual action (type E) messages that are held on your
NCCEF console. As a rule, you should specify HOLD(Y) in
the action.
Default: HOLD(Y) COLOR(YEL) XHILITE(REV) BEEP(Y)
This:
* Ensures that the message is held
¢ Causes the message to be displayed in reverse video
yellow
¢ Sounds the terminal alarm when the message is displayed
%AOFHOLDW% This synonym defines the actions taken for SA z/0OS wait
state (type W) messages that are held on your NCCF
console. As a rule, you should specify HOLD(Y) in the
action.
Default: HOLD(Y) COLOR(PIN) XHILITE(REV) BEEP(Y)
This:
* Ensures that the message is held
* Causes the message to be displayed in reverse video pink
* Sounds the terminal alarm when the message is displayed
%AOFNORMI% This synonym defines the actions taken for SA z/OS
information (type I) messages that are not held on your
NCCF console. As a rule, you should not specify HOLD(Y)
in the action.
Default: COLOR(GRE)
This:
* Ensures that the message is not held
* Causes the message to be displayed in green
%AOFNORMA % This synonym defines the actions taken for SA z/OS
Immediate Action (type A) messages that are held on your
NCCEF console. As a rule, you should not specify HOLD(Y)
in the action.
Default: COLOR(YEL) XHILITE(REV) BEEP(Y)
This:
* Ensures that the message is held
¢ Causes the message to be displayed in yellow
* Sounds the terminal alarm when the message is displayed
%AOFNORMD% This synonym defines the actions taken for SA z/OS

Decision (type D) messages that are held on your NCCF
console. You may find it beneficial to force these messages to
be held.

Default: COLOR(WHI) XHILITE(BLI)

This:

* Ensures that the message is held

 Causes the message to be displayed in blinking white

Appendix D. Message Automation 263

SA z/OS Message Presentation: AOFMSGSY

264

Synonym

Usage and Default

%AOFNORME%

This synonym defines the actions taken for SA z/OS
Eventual Action (type E) messages that are not held on your
NCCEF console. As a rule, you should not specify HOLD(Y)
in the action.

Default: COLOR(YEL)
This:
* Ensures that the message is not held

¢ Causes the message to be displayed in yellow

%AOFNORMW %

This synonym defines the actions taken for SA z/OS Wait
State (type W) messages that are held on your NCCF
console. You may find it beneficial to force these messages to
be held.

Default: HOLD(Y) COLOR(PIN) XHILITE(REV) BEEP(Y)

This:
* Ensures that the message is held
* Causes the message to be displayed in reverse video pink

e Sounds the terminal alarm when the message is displayed

Operator Cascades: AOFMSGSY

The next set of synonyms defines a series of operator cascades. A cascade is basically
a list of automation operators used in many of the fragments to route commands.
If %CASCADE% is defined as a synonym for 'AUTMON AUTBASE AUTO1' and you route a
command to it with ROUTE (ONE %CASCADE%) on an EXEC statement, the command is
run on the first autotask in the cascade that is logged on. This provides you with a
flexible, controllable means of providing backup processing tasks in case one of
your normal tasks is unavailable.

Synonym

Usage and Default

% AOFLOPAUTOX%

This cascade defines the actions taken for SA z/0OS
information (type I) messages that are being held on your
NCCEF console. Given the number of informational messages
that SA z/OS produces you may find it beneficial HOLD(N)
to stop them from being held even if the user has asked for
them to be held.

Default: ' 'AUTOX "'

%AOFOPAUTO1%

This cascade is used to route commands to AUTOL. If you
have renamed AUTO1 you must change the synonym.

Default: AUTO1

There is no backup for AUTOLI. If it fails when it is needed,
many other things will probably fail as well.

%AOFOPAUTO2

This cascade is used to route commands to AUTO2. If you
have renamed AUTO2 you must change this synonym.

Default: AUT02 AUTO1

If AUTO2 is not active, AUTO1 does its work.

System Automation for z/OS: Customizing and Programming

Operator Cascades: AOFMSGSY

Synonym

Usage and Default

%AOFOPBASEOPER %

This cascade is used to send commands to BASEOPER. If
you are not using the standard names for SA z/0S
autotasks you must change this synonym. BASEOPER is
mainly defined as a fallback operator and has very little
work directly routed to it.

Default: AUTBASE AUTO1

AUTBASE is the operator ID that SA z/OS uses for
BASEOPER in its other samples. If AUTBASE is not active,
AUTOL1 is tried.

%AOFOPRPCOPER%

This cascade is used for XCF communication management. If
you are not using the standard names for SA z/0S
autotasks you must change this synonym.

Default: AUTRPC AUTSYS AUTBASE AUTO1

%AOFOPSYSOPER%

This cascade is used to send commands to SYSOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. SYSOPER is mainly defined
as a fallback operator and has very little work directly
routed to it.

Default: AUTSYS AUTBASE AUTO1

AUTSYS is the operator ID that SA z/OS uses for SYSOPER
in its other samples.

%AOFOPMSGOPER%

This cascade is used to send commands to MSGOPER. If you
are not using the standard names for SA z/0OS autotasks
you must change this synonym. MSGOPER is mainly
defined to respond to miscellaneous messages.

Default: AUTMSG AUTSYS AUTBASE AUTO1

AUTMSG is the operator ID that SA z/OS uses for
MSGOPER in its other samples.

%AOFOPNETOPER%

This cascade is used to send commands to NETOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. NETOPER is defined for
VTAM automation.

Default: AUTNET1 AUTNET2 AUTSYS AUTBASE AUTO1

AUTNET1 and AUTNET?2 are the operator IDs that SA z/OS
uses for NETOPER in its other samples. NETOPER is the
only sample automation function to have a backup defined
in the samples.

%AOFOPJESOPER%

This cascade is used to send commands to JESOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. JESOPER is mainly defined
for JES automation.

Default: AUTJES AUTSYS AUTBASE AUTO1

AUTIJES is the operator ID that SA z/OS uses for JESOPER
in its other samples.

Appendix D. Message Automation 265

Operator Cascades: AOFMSGSY

266

Synonym

Usage and Default

% AOFOPMONOPER%

This cascade is used to send commands to MONOPER. If
you are not using the standard names for SA z/0S
autotasks you must change this synonym. MONOPER is
used for regular monitoring and subsystem startups.

Default: AUTMON AUTSYS AUTBASE AUTO1

AUTMON is the operator ID that SA z/OS uses for
MONORPER in its other samples.

%AOFOPRECOPER%

This cascade is used to send commands to RECOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. RECOPER is used for
recovery processing.

Default: AUTREC AUTSYS AUTBASE AUTO1

AUTREC is the operator ID that SA z/OS uses for
RECOPER in its other samples.

%AOFOPSHUTOPER%

This cascade is used to send commands to SHUTOPER. If
you are not using the standard names for SA z/0S
autotasks you must change this synonym. SHUTOPER
coordinates automated shutdowns.

Default: AUTSHUT AUTSYS AUTBASE AUTO1

AUTSHUT is the operator ID that SA z/OS uses for
SHUTOPER in its other samples.

%AOFOPGSSOPER %

This cascade is used to send commands to GSSOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. GSSOPER is used for
generic subsystem automation.

Default: * AUTGSS AUTSYS AUTBASE AUTO1

AUTGSS is the operator ID that SA z/OS uses for GSSOPER
in its other samples.

If you want to turn off the "ASSIGN BY JOBNAME" feature,
that is, the advanced automation CGLOBAL variable
AOF_ASSIGN_JOBNAME (see|Appendix A, “Global
[Variables,” on page 229) has been set to 0, you must remove
the asterisk (*), because this may cause serialization
problems.

Note: NetView's ASSIGN-BY-JOBNAME command that
occurs before automation table processing only affects
messages that are associated with an MVS job name.

%AOFOPWTORS%

This cascade is used to route commands concerning WTORS.
If you are not using the standard names for SA z/0S
autotasks you must change this synonym. Its use ensures
that all WTOR processing is done on the same task and this
is serialized.

Default: * AUTGSS AUTSYS AUTBASE AUTO1

This specifies that AUTSYS is to do all the WTOR
processing.

System Automation for z/OS: Customizing and Programming

Operator Cascades: AOFMSGSY

Synonym

Usage and Default

%AOFOPGATOPER%

This cascade is used to route commands to this domain's
gateway autotask. Because the autotask name contains the
domain ID you must modify this synonym.

Default: GATRdomain.

AOF01 is the default domain used in the other samples.
There is no backup as the gateway CLISTs expect to be
running on GATOPER.

SA z/OS Topology Manager for NMC: AOFMSGST
These synonyms are used and defined in the AOFMSGST fragment.

Synonym

Usage and Default

%AOFOPTOPOMGR%

This is the name of the autotask that the SA z/OS topology
manager runs on this system.

Default: &DOMAIN.TPO

% AOFINITOPOCMD%

This is the command issued to initialize the SA z/OS
topology manager.

Default: INGTOPO INIT &DOMAIN.TPO

%AOFOPHB%

This is the name of the heart beat task needed on focal point.

Default: AUTHB

Appendix D. Message Automation 267

SA z/OS Topology Manager for NMC: AOFMSGST

268 System Automation for z/OS: Customizing and Programming

Appendix E. TSO User Monitoring

Active TSO users can be monitored in NMC and SDF using the SA z/0S
command DFTSOU (EVJETSOU). To enable TSO user monitoring add the
following entry to user AT include fragment INGMSGUT1 (or to your own user
message table):

IF (MSGID='IEF125I' | MSGID='IEF1261' | MSGID='IEF4501")
THEN EXEC(CMD('DFTSOU UPDATE') ROUTE(ALL *))
DISPLAY(N) NETLOG(N) CONTINUE(Y);

Also, put 'DFTSOU SCAN' in the ACORESTART message for the TSO subsystem.

When DFTSOU is called with the UPDATE parameter then:

* For IEF125], an ADD request is sent to SDF and NMC for the TSO user that
produces the message.

* For IEF126l, a DELETE request is sent to SDF and NMC for the TSO user that
produces the message.

 For IEF4501, a DELETE request is sent to SDF and NMC for the failing TSO user.
When IEF4501 is specified, and the trap is coded in INGMSGU1, then
CONTINUE(Y) must also be coded.

When DFTSOU is called with the SCAN parameter, an MVS D TS,L command is
issued to identify all currently active TSO users. This data is then passed to SDF
and NMC.

NMC updates are associated with NMC object TSO. SDF updates are associated
with SDF tree entry TSOUSERS.

© Copyright IBM Corp. 1996, 2012 269

270 System Automation for z/OS: Customizing and Programming

Appendix F. Autodiscovery Mapper Files and Report Formats

Mapper Files

The mapping files all conform to the same set of syntax rules.

The first line is a version indicator.
Comments are prefixed by a hash (‘#) sign.

Data lines are tabular, with the layout of the columns being fixed for each
mapping file. If the data gets out of alignment the mappings will not work.

The columns in each mapping file are split into input and output columns. The
input columns are used to search the data table, and the resulting output
columns are applied to the data. In most of the files only the first match is used
— and the user data is searched before the System Automation (SA) data. A
match in the user data will prevent the SA data from being searched. The
exception is the variable mapping file, where all matching data lines are
processed and the SA data is processed before the user data. This allows the
user data to overwrite values generated by the SA data.

The values specified in the columns can be exact matches or can use the
following wildcards:

— An asterisk (*') will match any number of characters, including none.
— A percentage sign ('%') will match a single, required character.

— You can use a backward slash ('\') as an escape character, causing the
following wildcard character to be treated as a literal character — so * would
match an * in the input data.

For example, to match a string of 4 or more characters followed by IPC, you
would need to specify %%%%*IPC. The four percent signs require that there are
at least 4 characters before the IPC, the * matches whatever character(s), if any,
come next and the TPC' constant is required at the end. It will match ABCDIPC,
ABCDEIPC or ABCDEFGHIPC.

In almost all cases the width of the input column is the maximum length of the
data value. The exceptions are single character values where you need to use an
escape character. These are 2 characters wide to allow for the escape character
and the match value (a "*).

Functions

Some mapping files support the entry of formulas into their output columns.
When entering these you need to follow these rules:

Functions and constants follow REXX syntax, and you can use the full set of
REXX functions.

Constants need to be delimited by single quotes.

Symbols can be substituted in using &symbol. syntax. For example
&JOBNAME.'@&AOCCLONE9. would produce the jobname for the address
space followed by an @ followed by the value of &AOCCLONE9 - for example,
NET@IPCSD.

There are some columns that support the entry of formulas with unresolved
&AOCCLONEX. values. These values get resolved later at SA load time, and
allow the same APL to be used with &AOCCLONE values from different
systems, dynamically generating different values. When entering a formula into
these, care must be taken, as you cannot use a REXX function on an unresolved

© Copyright IBM Corp. 1996, 2012 271

Mapper Files

&AOCCLONEX. value. The workaround is to establish the value you want to
use in the variable mapping file and use that in the formula in the policy file.

Note however that the value will be fixed and not dynamic like the
&AOCCLONEX. values.

Address Space Identification Mapping File (INGSMAID /
INGSMAIU)

This file contains rules to identify address spaces from their discovery data. To see
data about the Address Spaces that have been discovered and how they have been
identified, see the [ASDETAIL Report” on page 283

Table 29. Input Columns for Address Space Identification Mapping File

Input Column Number of Characters Values Used
SYSPLEX 8 chars

SYSTEM 8 chars

AS TYPE 2 chars A, I, J, M, S, U, » or blank
JOB PREFIX 1 char T, S, J or blank
JOB NAME 8 chars

PROC NAME 8 chars

STEP NAME 8 chars

USERID 8 chars

CMD PREFIX 8 chars

SUBSYS NAME 8 chars

PRIMARY SUBSYS? 1 char P or blank

ASC SUBSYS NAME 8 chars

SCHED SUBSYS NAME |8 chars

PREVIOUS ID 24 chars

PROG NAME 8 chars

PROG PARMS 100 chars

Table 30. Output columns for Address Space Identification Files

Column Name Number of Characters

NEW ID 24 chars

The data searched against the table is the raw discovery data before any other
identification has been performed. The PREVIOUS ID value will either be a value
from the discovery engine or blank. The value in the NEW ID column overwrites
the PREVIOUS ID value for the Address Space.

Table 31. Job Prefix Values

Value Job name

J Job

S Started Task
T TSO User
blank Unknown

272 System Automation for z/OS: Customizing and Programming

Mapper Files

Table 32. Address Space Type Values

Value Address Space Type

A ATX (APPC Transaction)
I Initiator

J Job

M Mount job

S Started Task

U TSO User

* System (use * to match)

XCF Group ldentification Mapping File (INGSMGRP /
INGSMGRU)

This file contains rules to identify established XCF Groups. To see details of the

XCF Groups discovered and how they have been identified, see the ["’XCFGROUP

[Report” on page 281.|

Appendix F. Autodiscovery Mapper Files and Report Formats

273

Mapper Files

Table 33. Input Columns for XCF Group Identification Mapping File

Input Column

Name Number of Characters
SYSPLEX 8 chars
SYSTEM 8 chars

XCF GROUP NAME |8 chars

Table 34. Output Columns for XCF Group Identification Mapping File

Column Name Number of Characters

GROUP TYPE 24 chars

While the SA provided file contains identification rules for some applications with
hard-coded XCF Group names — SA itself, for example, always names its main
group INGXSGxx — there are a number of other applications — such as Tivoli
Workload Scheduler — that leave the entire construction of the name up to you.
Entries for such applications need to be made in your user mapping file, reflecting
the naming conventions used within the target sysplex. The GROUP TYPE values
listed in the SA provided file are the only SA defined values in the group
identification space. Currently they only have to correspond with GROUP TYPE
entries in the XCF Group Member Mapping files.

XCF Group Member Identification Mapping File (INGSMGMB /
INGSMGMU)

This files contains rules for identifying members of XCF groups. To see details of
the XCF Groups and their Members that were discovered and how they have been
identified, refer to the “XCFGROUP Report” on page 281|

Table 35. Input Columns for XCF Group Member Identification Mapping File

Input Column Name Number of Characters
SYSPLEX 8 chars

SYSTEM 8 chars

XCF GROUP TYPE 24 chars

XCF MEMBER NAME 16 chars

XCF MEMBER 8 chars

JOBNAME

Table 36. Output Columns for XCF Group Member Identification Mapping File

Output Column Name |Number of Characters

Address Space Type 24 chars

The XCF GROUP TYPE comes from the XCF GROUP identification mapping file.
The Address Space ID replaces any previous identification of the address space by
the discovery engine or the Address Space Identification mapping file. In some
cases, simple membership of an XCF Group implies the nature of the members. In
other cases, there is a specific naming convention that can be used to determine the
role. Trackers for Tivoli Workload Scheduler may join the group with a TRK suffix,

274 System Automation for z/OS: Customizing and Programming

Mapper Files

while controllers may join with a CTL suffix, but this is up to your local naming
conventions. In some cases the XCF group member name is the only way to
distinguish the application instances.

USS Process Identification Mapping File (INGSMUID /
INGSMUIU)

This file contains rules for identifying USS Processes. It is applied after the Address

Space Identification rules and the XCF Group Member Identification rules. The
USS data for the processes has been linked to the z/OS aspect of those processes
through matching ASID values. To see the USS Process details that have been

discovered, look in the |[“ASDETAIL Report” on page 283.|
Table 37. Input Columns for USS Process Identification Mapping File

Input Column Name

Number of Characters

SYSPLEX 8 chars
SYSTEM 8 chars
JOB NAME 8 chars
z/0OS USERID 8 chars
USS USERID 8 chars
PREVIOUS ID 24 chars
z/0S PROG NAME 8 chars
USS COMMAND 256 chars

Table 38. Output Columns for USS Process Identification Mapping File

Output Column Name |Number of Characters

NEW ID 24 chars

The z/0OS values come from the automated Address Space data rather than from
the discovered USS data. This file is useful for identifying applications that run
under USS, many of which can be indistinguishable just by looking at the z/OS
side of the discovered data.

Policy Mapping File (INGSMPLU / INGSMPLY)

This file contains records that perform three tasks. The first is to select which
Address Spaces are to be modelled in SA policy and which are not. This is
controlled by the Model Location field. A value of X will exclude the address space
from the model, while values of U or S will cause it to be included. The second is
to select the model that will be used to represent the address space. This is done
via the Model Entry Type and Model Entry Name fields. At present only entries of
type APL may be modelled. If these fields are blank, no model will be used and
just a basic APL entry will be created for the address space (which will require
manual completion before it can be used successfully for automation). If they are
not, they indicate an APL entry in either the SA KB (Model Location: S) or the User
KB (Model Location: U) that will be used as a model for the APL entry that is
created for the address space. The third is to provide non-default values for some
attributes of the APL entry that will be created. Note that the Jobname and ARM
Element Name fields support delayed resolution of &AOCCLONE values in their
formula. You may not use REXX functions on &AOCCLONE values in these fields.

Appendix F. Autodiscovery Mapper Files and Report Formats 275

Mapper Files

Table 39. Input Columns for Policy Mapping File

Input Column Name Number of characters
SYSPLEX 8 chars

SYSTEM 8 chars

ADDRESS SPACE ID 24 chars

JOBNAME 8 chars

PROCNAME 8 chars

Table 40. Output Columns for Policy Mapping File

Output

Column Name |Number of characters Values Used
MODEL 1 char S, U, or X
LOCATION

MODEL 3 chars APL
ENTRY TYPE

MODEL 20 chars

ENTRY NAME

ENTRY NAME |40 chars
AUTOMATION | 40 chars

(Formula - 20 chars)

(Formula - 11 chars)

NAME

JOBNAME 40 chars (Formula - 8 chars*)
ARM 40 chars (Formula - 16 chars*)
ELEMENT

NAME

APL TYPE 12 chars

APL SUBTYPE |12 chars

CLASS 40 chars (Formula - 20 chars)

The Entry name defaults first to the jobname. If this is not unique, it is suffixed
with the sysplex name. If this is still not unique, it is suffixed with a sequential
number. If you specify a specific entry name it will still be subject to the same
uniqueness checking as the jobname. If you do not like the entry name you can use
the customization dialog facilities to rename it. This will not cause a second copy
to appear if you rerun the discovery, preload and import process.

The Automation Name defaults to the jobname, because this is the name your
operators will use to interact with the application under SA's control and it is a
name that they are already familiar with. The jobname should be unique on each
system, so we should not get naming clashes.

The jobname defaults to the jobname, but we allow you to enter a formula for it if
you wish to add an AOCCLONE value into it. This will not be reflected in the
Automation Name. The formula must evaluate to the discovered value.

The ARM Element Name also defaults to the discovered value and, again, we have
provided you with a way of overriding it with a formula including an

&AOCCLONE value. The formula must evaluate to the discovered value.

Some Address Space specific symbols are available to use in the formulas:

276 System Automation for z/OS: Customizing and Programming

Mapper Files

&JOBNAME .
&PROCNAME .
&CMDPREFIX.
&ARM_ELEMENT.
&SCHED_SUB.

If you open up the SA KB, you can inspect the APL models that SA provides. Do
not change the contents of this PDB as it can be updated by APAR, which would
overwrite your changes. To create your own user models, you need to define your
User KB PDB and create/copy entries into it. SA provides a sample PDB you can
use to seed it which contains a class for a generic APL that is automated by IEF403
and 404 messages only. While it is far from the best model for most APLs, it is a
good starting point. You can also copy and modify samples from the SA KB PDB.
If you copy an entry into the User KB PDB, you should copy the entry from the
SA Policy Mapping File into your User Policy Mapping File and edit it to point to
the model you have created in your User KB.

The use of classes in the KB is strongly recommended and SA will copy them over
if a model requires them — but note that once they have been copied, it will not
recopy them. This is to protect any changes that you may have manually made to
the class after it was copied out of the KB.

Variable Mapping File INGSMVRS / INGSMVRU)

This file contains rules defining symbols that can be used in formulas.

Table 41. Input Columns for Variable Mapping File

Input Column Name | Number of Characters
SYSPLEX 8 chars
SYSTEM 8 chars

Table 42. Output Columns for Variable Mapping File

Output Column Name |Number of Characters
VAR NAME 16 chars
VAR FORMULA 48 chars

Note that any variables called AOCCLONE, or AOCCLONEXx (where x is 0-9, A-Z)
will end up in the customization dialogs set as an AOCCLONE value on the
system being discovered.

Preloader Reports

The reports generated by the preloader are:

SUMMARY
An overview of the import process.

XCFGROUP
Details of XCF groups found and identified, along with members found
and identified. You need the data from this report to construct your own
XCF Group and Member identification records.

ARMGROUP
Details of Automatic Restart Groups and Elements that were discovered.

Appendix F. Autodiscovery Mapper Files and Report Formats 277

Preloader Reports

ASDETAIL
Details of Address Spaces found and Identified, along with all of their
discovery data. You need the information from this report to construct
your own Address Space identification and Policy mapping records.

EXCLUDE
This contains the results of running the identified address spaces through
the policy mapping file. It shows which address spaces have been included
in the policy and which have been excluded.

CONSTRCT
This contains information about how the flatfile was constructed. For each
address space it will indicate whether or a new APL was constructed or an
existing one was relinked. It indicates which sample policy (if any) was
copied from the KB and which classes (if any) were also copied.

SYMBOLS
This contains information about the list of symbolic values that were
discovered on the target system, along with data about any variables
defined in the variable mapping files.

KBIMPORT
This contains information about which entries were imported from the SA
and User KBS.

KBMAP
This is an 'index' for the SA and User KBs, listing which entries are in
which KB.

SUBSYS
This lists the z/OS subsystems that were identified, which address space is
providing them, which other address spaces are associated with it and
which address spaces are being scheduled under it. The following section
describes the reports in detail. Note that it is not possible for you to add
additional reports or to customize the existing reports.

278 System Automation for z/OS: Customizing and Programming

Preloader Reports

Summary Report

This report contains basic information summarizing the preloader process —
elapsed times for various steps and counts of things discovered, excluded,
included and so forth. The phases of the discovery data import are:

Parameter Review
The first phase resolves the mapping files and the report that will be used.

Discovery Import
The raw snapshot file is read in, the variable and ID mapping files are
consulted and the address spaces are identified. It generates the
ASDETAIL, XCFGROUP and SYMBOLS reports.

PDB Import
The extract of the Target PDB is read in and analyzed. Entries for the read
entities are output into the CONSTRCT report.

Generation Phase
The policy mapping file is read and applied. This is where the decision is
made as to whether an Address Space is a new APL or a previously
known one. It produces the EXCLUDE report and the second part of the
CONSTRCT report.

KB Import
The extracts of the two KB PDBs are read in and analyzed.

KB Xref
A second pass through the KB data to resolve dependencies between
instances.

Output Phase
The flat file is assembled and output. This produces the second part of the
CONSTRCT report.

The SUMMARY report gives an overview of activity in these phases.

Appendix F. Autodiscovery Mapper Files and Report Formats 279

Preloader Reports

-
System Automation for z/0S V3R4 Discovery Import

Parameters

SA Mapping file..........: KEY.DRIVER.AINGIMAP
Installation mapping file: KEY.DRIVER.AINGIMAP
Report File..............: MIK.DISCO.REPORT.LOAD1

Generated: 24 Feb 2011 08:30:06

Start of Discovery Import Phase
Data is for KEY1PLEX.KEY1
Discovered 104 address spaces.

Discovery Import Phase complete - 0.851825 seconds

Starting PDB Import Phase

Loaded from target PDB:
1 Group(s)

1 System(s)

1 Application Group(s)
16 Application(s)

PDB Import Phase Complete - 0.278650 seconds

Starting Policy Generation Phase
Generating policy for KEYIPLEX.KEY1
Policy mapping results:

91 Address spaces excluded by policy mapping rules.
13 Address spaces included.

Figure 57. The SUMMARY Report

280 System Automation for z/OS: Customizing and Programming

Preloader Reports

XCFGROUP Report

This report contains details of the XCF groups located, their identification, the

associated members and their identification. Note that only members on the system

being modelled will be identified in the report.

Vs
System Automation for z/0S V3R4 Discovery Import

Parameters

SA Mapping file..........: KEY.DRIVER.AINGIMAP
Installation mapping file: KEY.DRIVER.AINGIMAP
Report File..............: MIK.DISCO.REPORT.LOAD1

Generated: 24 Feb 2011 08:30:06
XCF Groups and members:

XCF Group: SYSXCF

Id : GROUP_JES2_XCF

Members:

KEY1 KEY1.XCFAS - SYSTEM_XCFAS
KEY2 KEY2.XCFAS

KEY3 KEY3.XCFAS

KEY4 KEY4.XCFAS

XCF Group: SYSGRS

Id : GROUP_SYSTEM_GRS
Members :

KEY1 KEY1.GRS - SYSTEM_GRS
KEY2 KEY2.GRS

KEY3 KEY3.GRS

KEY4 KEY4.GRS

~

Figure 58. The XCFGROUP Report

Appendix F. Autodiscovery Mapper Files and Report Formats

281

Preloader Reports

282

ARMGROUP Report

This report contains details of Automatic Restart Management Groups and
Elements that were discovered. Note that it does not contain any details about

which systems, if any, each element could be moved to.

e
System Automation for z/0S V3R4 Discovery Import

Parameters

SA Mapping file..........: KEY.DRIVER.AINGIMAP
Installation mapping file: KEY.DRIVER.AINGIMAP
Report File..............: MIK.DISCO.REPORT.LOAD1

Generated: 10 Mar 2011 07:47:46
Extracting Automatic Restart Management data
Groups and members:

Group : DEFAULT

Members:

SYS_RRS_KEY1 NET@IPSVM EZAY1TCPIP M8SGN801001
MISGN901001 N913001 MIDGN9IODOOL HSAAM_KEY1$$$$1
DB2§D911 1911001 OPCKEY10PCI DBNASNA1
OPCKEY10PC8 DXNAINA1001

Elements:

Element: SYS_RRS_KEY1
Jobname: RRS

Group : DEFAULT
Systems: KEY1 -> KEY1
Level : 2

ETement: NETGIPSVM
Jobname: NET

Group : DEFAULT
Systems: KEY1 -> KEY1
Level : 1

Element: EZAYITCPIP
Jobname: TCPIP

Group : DEFAULT
Systems: KEY1 -> KEY1
Level : 1

-

Figure 59. The ARM Group Report

System Automation for z/OS: Customizing and Programming

ASDETAIL Report

Preloader Reports

This report contains details of the address spaces discovered, united with their USS
data, Automatic Restart Management data and after the advanced identification
heuristics have been run. This data is the input into the policy mapping phase.

/;ystem Automation for z/0S V3R4 Discovery Import h

Parameters

SA Mapping file..........: KEY.DRIVER.AINGIMAP
Installation mapping file: KEY.DRIVER.AINGIMAP
Report File..............: MIK.DISCO.REPORT.LOAD1
Generated: 24 Feb 2011 08:30:06

Address space: - ALLOCAS - 0012

Id : SYSTEM_ALLOCAS

Proc : Step : ALLOCAS

Prog : Parms :

Subsys : Assoc :

User Type : *

Prefix : Job px:

Primary: Sched :

ARM Ele:

ARM Grp:

ARM Lvl: Local :

USS Data : <-

Jobname: User

Command:

Address space: - ANTAS000 - 000C

Id : SYSTEM_ANTAS

Proc : IEFPROC Step : ANTAS000

Prog : ANTXAINI Parms :

Subsys : Assoc

User Type : *

Prefix : Job px:
Primary: Sched : MSTR

ARM Ele:

ARM Grp:

ARM Lvl: Local :

USS Data : <-

Jobname: User :

Command:

& %

Figure 60. The ASDETAIL Report

Appendix F. Autodiscovery Mapper Files and Report Formats 283

Preloader Reports

EXCLUDE Report

This report contains details of all address spaces and whether or not they were
included in the flat file, along with an identification of the rule in the policy
mapping file that excluded them (or an indication that they did not match any of
the rules in the policy mapping files).

e
System Automation for z/0S V3R4 Discovery Import

Parameters

SA Mapping file..........: KEY.DRIVER.AINGIMAP
Installation mapping file: KEY.DRIVER.AINGIMAP
Report File..............: MIK.DISCO.REPORT.LOAD1

Generated: 24 Feb 2011 08:30:06
Exclusion report

ALLOCAS Excluded by mapping (23)
ANTAS000 Excluded by mapping (23)
ANTMAIN Excluded by mapping (23)
APPC Excluded by mapping (23)
ASCH Excluded by mapping (23)
AUXMON Excluded by mapping (23)
AXR Excluded by mapping (23)
AXRO2 Excluded by mapping (23)
BPXOINIT Excluded by mapping (23)
CATALOG Excluded by mapping (23)
CAZ0O Excluded by mapping (23)
CEA Excluded by mapping (23)
EYUX310 Excluded by mapping (23)
FFST Excluded by mapping (23)
FTPS1 Excluded by mapping (23)
GEOXHSWP Included by mapping (12)
GRS Excluded by mapping (23)
GRSMON Excluded by mapping (23)
HSM Excluded by mapping (23)
\\IEFSCHAS Excluded by mapping (23)

Figure 61. The EXCLUDE Report

284 System Automation for z/OS: Customizing and Programming

Preloader Reports

CONSTRCT Report

This report contains three distinct sections. The first section describes the loading
of data from the Target PDB Extract. This shows all GRPs, SYSs, APGs and APLs
loaded.

Loading data from Target PDB

Entry for sysplex GRP: KEY1PLEX
Signature : GRP-KEY1PLEX
Loaded GRP: KEYIPLEX (Index: 1)

Entry for system SYS: KEY1PLEX.KEY2
Signature : SYS-KEY2

Loaded SYS: KEY2 (Index: 1)
...linked to GRP KEY1PLEX

Entry for APL BPXOINIT
Signature : APL-USS-BPXOINIT-0-0
\\Loaded APL: BPXOINIT (Index: 1)

Figure 62. The CONSTRCT Report

The second section describes the processing of the discovered data, seeing which existing
entries can be reused and deciding if new entries need to be created. At the end of this
section, the preloader has the PDB delta information in storage.

Generating policy for KEYIPLEX.KEY1

Entry for sysplex GRP: KEY1PLEX
Signature: GRP-KEY1PLEX
...mapped to GRP KEY1PLEX (index: 1)

Entry for system SYS: KEY1PLEX.KEY1
Signature : SYS-KEY1

Creating New SYS: KEY1 (Index: 2)
...linked to GRP KEY1PLEX

Entry for APG LK_KEYIPLEX_KEY1

Signature : APG-SYSTEM-BASIC--LK KEYIPLEX KEY1
Creating New APG: LK KEY1PLEX KEY1 (Index: 2)
...linked to SYS KEY1

Address space: 001F - GEOXHSWP

Entry for APL GEOXHSWP

Signature : APL-z0S--GEOXHSWP-HIPER-MSTR-

...sig mapped to APL GEOXHSWP (index: 6)
\\...]inked to AGP: LK KEY1PLEX KEY1

Figure 63. The CONSTRCT Report (second section)

The third section describes the creation of the flat file to hold the update, including
the editing of the model policy, the cross referencing of model resources to real
resources for relationships and the inclusion of classes from the KBs.

Appendix F. Autodiscovery Mapper Files and Report Formats 285

Preloader Reports

286

-
Constructing flat file for: KEYIPLEX.KEY1

NEW SYS KEY1
--> GRP KEY1PLEX

NEW APG LK_KEY1PLEX_KEY1
--> SYS KEY1

UPD APL GEOXHSWP
--> APG LK KEYIPLEX KEY1

UPD APL JES2
--> APG LK_KEYIPLEX_KEY1

UPD APL LLA
--> APG LK_KEYIPLEX_KEY1

Figure 64. The CONSTRCT Report (third section)

System Automation for z/OS: Customizing and Programming

Preloader Reports

SYMBOLS Report

This report has three sections. The first section shows the symbols that were
discovered on the target system and their values:

/biscovered symbols: h

&BACKFPT. = IPSFO

&BPXPARM. = 10,L0

&BPXSHARE. =

&CLOCK. = ET

&CLOCKEV. =

&CNMNETID. = DEIBMIPS

&CNMPRTCT. = IPSFN

&CNMRODM. = EKGXRODM

&CNMTCPN. = TCPIP

&COUPLE. = SY

&EKGYRODM. = EKGYRODM

&FOCALPT. = IPUNM

&FSTYPE. = HFS

%

Figure 65. The SYMBOLS Report
The second section shows additional variables that were defined in the
INGSMVRU and INGSMVRS mapping files:
o N

Loading VAR Formulas from: KEY.DRIVER.AINGIMAP(INGSMVRS)

Loaded variables:

Loading VAR Formulas from: KEY.DRIVER.AINGIMAP(INGSMVRU)

Loaded variables:

AOCCLONE1 &SYSCLONE. Y2

AOCCLONE2 RIGHT(&SYSNAME.,1) 2

AOCCLONE3 RIGHT(&SYSNAME.,2) Y2)

Figure 66. The SYMBOLS Report (second section)

The third section shows any errors that occurred in processing formulas using
these symbols.

Appendix F. Autodiscovery Mapper Files and Report Formats 287

Preloader Reports

KBIMPORT Report

This report first lists the data imported from the SA KB and then the data
imported from the User KB.

s
Loading KB Data from: INGSAQRY as S

Loaded: S GRP SYSPLEX1 - 7 records
Loaded: S SYS SYS1 - 77 records
Loaded: S SYS SYS2 - 77 records
Loaded: S SYS SYS3 - 77 records
Loaded: S APG AM_X - 23 records
Loaded: S APG BASE_APPL - 23 records
Loaded: S APG BASE_SUPP - 23 records
Loaded: S APG BASE_SYS - 23 records
Loaded: S APG BASE_USS - 46 records
Loaded: S APG BBO_ADMIN - 23 records
Loaded: S APG BBO_CELL - 23 records
Loaded: S APG BBO_DMGR - 23 records
Loaded: S APG BBO_DMN - 23 records
Loaded: S APL ASCH - 64 records
Loaded: S APL BBO_CLASS - 79 records
Loaded: S APL BLSJPRMI - 52 records
Loaded: S APL BIAGT - 74 records
Loaded: S APL BIDMGR - 74 records
Loaded: S APL BIDMN - 98 records
Loaded: S APL BISR1 - 74 records
Loaded: S APL C_AM - 106 records
Loaded: S APL C_APPL - 73 records
Loaded: S APL C_CICS - 298 records
Loaded: S APL C_CICS_CMAS - 81 records
Loaded: S APL C_CICS_SHAREDSERVERS - 82 records
Loaded: S APL C_CICS_TG - 79 records
-

Figure 67. The KBIMPORT Report

288 System Automation for z/OS: Customizing and Programming

Preloader Reports

KBMAP Report

This report is a compiled 'index’ of the SA and User KBs. It lists the entries found
for each type (APL, APG, and so on) along with an indication of which KB they
were found in.

/Entries for type: APL h
S U APL AM SA Automation Manager
S APL AM2 Spare SA Automation Manager
S U APL APPC Advanced Peer-to-Peer Communication
S U APL ASCH APPC Scheduler
S APL BBO_CLASS WebSphere class with general definitions
S APL BLSJPRMI ~ Build SNAP Tables for IPCS
S APL BI1AGT WAS V7 Node Agent
S APL BIDMGR WAS V7 Deployment Manager
S APL BIDMN WAS V7 Daemon
S APL BISR1 WAS V7 Application Server
S APL C_AM Class for Automation Manager Definitions
S APL C_APPL Class for general APL definitions
S APL C_CICS Class for CICS
S APL C_CICS_CMAS Class for CICS CPSMCMAS
S APL TWSTRKR TWS/OPC Tracker
S U APL VLF Virtual Lookaside Facility
S U APL VTAM Virtual Telecommunication Access Method
S APL WEBSRV IBM HTTP Server
S APL ZFS z/0S File System
U APL AADUMMY Used for checking policy defs
U APL ABC XPCS Test
U APL ABC2 XPCS Test
U APL AM1 Automation manager...
U APL BOBHTST1 as
U APL BOBHTST2 test scheduler workitems
& %
Figure 68. The KBMAP Report
Appendix F. Autodiscovery Mapper Files and Report Formats 289

Preloader Reports

SUBSYS Report

This report gives a list of all of the z/OS subsystems that were discovered, and

identifies the address space providing the subsystem, any other address spaces that

are associated with it and any address spaces that are scheduled under it.

e

Subsystem ¢ JES2

Provider : JES2 - SYSTEM_JES

Schedules : EYUCAS1B GRSMON IMS921I1 IMS9210M IMS921SI IMS922I1
IMS9220M IMS922SI IMS923I1 JES2AUX MIKDISC2 NET

NETBTST2 0AM OPCH OPCI 0PC82S 0PC85S

PCAUTH PORTMAP Q3EIMSTR RASP SDSF SMS

SMSPDSE SNA2DBM1 SNA2DIST SNA2IRLM SNA2MSTR SYSLOGD1

TCPIP TNF TN3270 TN3270F TN3270N TRACE

TSO VMCF YWHITAM2

Subsystem : MSTR

Provider : -

Schedules : ANTASO00 ANTMAIN APPC ASCH AXR BPXOINIT
CATALOG CEA DEVMAN DFSZFS DUMPSRV ~ FFST

GEOXHSWP IOSAS JESXCF JES2 JESZMON LLA
MVSNFSCS NETBSSI5 OMVS RACF RESOLVER RRS
SMF VLF WLM XCFAS

Subsystem : SNA2
Provider : SNA2MSTR - DB2_MSTR
Associated: SNA2DBM1 SNA2DIST

~

Figure 69. The SUBSYS Report

290 System Automation for z/OS: Customizing and Programming

Appendix G. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Websites are provided for
convenience only and do not in any manner serve as an endorsement of those
Websites. The materials at those Websites are not part of the materials for this IBM
product and use of those Websites is at your own risk.

© Copyright IBM Corp. 1996, 2012 291

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland Research & Development GmbH
Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information

This publication documents information that is not intended to be used as a
programming interface of IBM Tivoli System Automation for z/OS.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at www.ibm.com /legal /|
lcopytrade.shtml|

Java and all Java-based trademarks and logos are trademarks of Oracle and/or its
affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

292 System Automation for z/OS: Customizing and Programming

www.ibm.com/legal/copytrade.shtml
www.ibm.com/legal/copytrade.shtml

Glossary

This glossary includes terms and definitions from:

* The IBM Dictionary of Computing New York:
McGraw-Hill, 1994.

* The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies can be
purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018. Definitions are identified by
the symbol (A) after the definition.

* The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee
1, of the International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of
this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

The following cross-references are used in this
glossary:
Contrast with. This refers to a term that has
an opposed or substantively different
meaning.
Deprecated term for. This indicates that the
term should not be used. It refers to a
preferred term, which is defined in its proper
place in the glossary.
See. This refers the reader to multiple-word
terms in which this term appears.
See also. This refers the reader to terms that
have a related, but not synonymous, meaning.
Synonym for. This indicates that the term has
the same meaning as a preferred term, which
is defined in the glossary.
Synonymous with. This is a backward
reference from a defined term to all other
terms that have the same meaning.

A

ACFE. Seelautomation configuration fild

© Copyright IBM Corp. 1996, 2012

ACF/NCP. Advanced Communications Function for
the Network Control Program. SeelAdvancedl

Communications Function| and [Network Controll

Programl

ACF/VTAM. Advanced Communications Function for
the Virtual Telecommunications Access Method.
Synonym for VTAM. See [Advanced Communications|

Function|and |Virtual Telecommunications Access|

Method|

active monitoring. In SA z/OSautomation control file,
the acquiring of resource status information by
soliciting such information at regular, user-defined
intervals. See also [passive monitoring]

adapter. Hardware card that enables a device, such as
a workstation, to communicate with another device,
such as a monitor, a printer, or some other I/O device.

adjacent hosts. Systems connected in a peer
relationship using adjacent NetView sessions for
purposes of monitoring and control.

adjacent NetView. In SA z/OS, the system defined as
the communication path between two SA z/OS
systems that do not have a direct link. An adjacent
NetView is used for message forwarding and as a
communication link between two SA z/OS systems.
For example, the adjacent NetView is used when
sending responses from a focal point to a remote
system.

Advanced Communications Function (ACF). A group
of IBM licensed programs (principally VTAM, TCAM,
NCP, and SSP) that use the concepts of Systems
Network Architecture (SNA), including distribution of
function and resource sharing.

advanced program-to-program communication
(APPC). A set of inter-program communication
services that support cooperative transaction processing
in a Systems Network Architecture (SNA) network.
APPC is the implementation, on a given system, of
SNA's logical unit type 6.2.

alert. (1) In SNA, a record sent to a system problem
management focal point or to a collection point to
communicate the existence of an alert condition. (2) In
NetView, a high-priority event that warrants immediate
attention. A database record is generated for certain
event types that are defined by user-constructed filters.

alert condition. A problem or impending problem for
which some or all of the process of problem
determination, diagnosis, and resolution is expected to
require action at a control point.

293

alert focal-point system. See [NPDA focal point]

alert threshold. An application or volume service
value that determines the level at which SA z/0OS
changes the associated icon in the graphical interface to
the alert color. SA z/OS may also issue an alert. See
[warning threshold]

AMC. (1) See|Automation Manager Configuration| (2)
The Auto Msg Classes entry type.

American Standard Code for Information Interchange
(ASCII). A standard code used for information
exchange among data processing systems, data
communication systems, and associated equipment.
ASCII uses a coded character set consisting of 7-bit
coded characters (8-bit including parity check). The
ASCII set consists of control characters and graphic
characters. See also[Extended Binary Coded Decimall
[[nterchange Codel

APFE. Seeauthorized program facilityl

APIL See [application programming interfacel

APPC. Seeladvanced program-to-program|

Igommunicatiogl

application. In SA z/0OS, applications refer to z/OS
subsystems, started tasks, or jobs that are automated
and monitored by SA z/0OS. On SNMP-capable
processors, application can be used to refer to a
subsystem or process.

Application entry. A construct, created with the
customization dialogs, used to represent and contain
policy for an application.

application group. A named set of applications. An
application group is part of an SA z/OS enterprise
definition and is used for monitoring purposes.

application program. (1) A program written for or by
a user that applies to the user's work, such as a
program that does inventory or payroll. (2) A program
used to connect and communicate with stations in a
network, enabling users to perform application-oriented
activities.

application programming interface (API). An
interface that allows an application program that is
written in a high-level language to use specific data or
functions of the operating system or another program.

ApplicationGroup entry. A construct, created with the
customization dialogs, used to represent and contain
policy for an application group.

ARM. See |automatic restart managementl

ASCB. Address space control block.

ASCB status. An application status derived by

SA z/0S running a routine (the ASCB checker) that
searches the z/OS address space control blocks
(ASCBs) for address spaces with a particular job name.
The job name used by the ASCB checker is the job
name defined in the customization dialog for the
application.

ASCII. See|American Standard Code for Information|

|Interchang§

ASE. See Jautomation status fild.

authorized program facility (APF). A facility that
permits identification of programs that are authorized
to use restricted functions.

automated console operations (ACO). The use of an
automated procedure to replace or simplify the action
that an operator takes from a console in response to
system or network events.

automated function. SA z/OS automated functions
are automation operators, NetView autotasks that are
assigned to perform specific automation functions.
However, SA z/OS defines its own synonyms, or
automated function names, for the NetView autotasks,
and these function names are referred to in the sample
policy databases provided by SA z/OS. For example,
the automation operator AUTBASE corresponds to the
SA z/0S automated function BASEOPER.

automatic restart management (ARM). A z/0OS
recovery function that improves the availability of
specified subsystems and applications by automatically
restarting them under certain circumstances. Automatic
restart management is a function of the Cross-System
Coupling Facility (XCF) component of z/OS.

automatic restart management element name. In MVS
5.2 or later, z/OS automatic restart management
requires the specification of a unique sixteen character
name for each address space that registers with it. All
automatic restart management policy is defined in
terms of the element name, including SA z/OS’s
interface with it.

automation. The automatic initiation of actions in
response to detected conditions or events. SA z/0OS
provides automation for z/OS applications, z/OS
components, and remote systems that run z/OS.
SA z/0S also provides tools that can be used to
develop additional automation.

automation agent. In SA z/0OS, the automation
function is split up between the automation manager
and the automation agents. The observing, reacting and
doing parts are located within the NetView address
space, and are known as the automation agents. The
automation agents are responsible for:

* Recovery processing

* Message processing

294 System Automation for z/OS: Customizing and Programming

¢ Active monitoring: they propagate status changes to
the automation manager

automation configuration file. The SA z/0S
customization dialogs must be used to build the
automation configuration file. It consists of:

¢ The automation manager configuration file (AMC)
* The NetView automation table (AT)

* The NetView message revision table (MRT)

* The MPFLSTSA member

automation control file (ACF). In SA z/0S, a file that
contains system-level automation policy information.
There is one master automation control file for each
NetView system that SA z/OS is installed on.
Additional policy information and all resource status
information is contained in the policy database (PDB).
The SA z/OS customization dialogs must be used to
build the automation control files. They must not be
edited manually.

automation flags. In SA z/0S, the automation policy
settings that determine the operator functions that are
automated for a resource and the times during which
automation is active. When SA z/0OS is running,
automation is controlled by automation flag policy
settings and override settings (if any) entered by the
operator. Automation flags are set using the
customization dialogs.

automation manager. In SA z/0S, the automation
function is split up between the automation manager
and the automation agents. The coordination, decision
making and controlling functions are processed by each
sysplex's automation manager.

The automation manager contains a model of all of the
automated resources within the sysplex. The
automation agents feed the automation manager with
status information and perform the actions that the
automation manager tells them to.

The automation manager provides sysplex-wide
automation.

Automation Manager Configuration. The Automation
Manager Configuration file (AMC) contains an image
of the automated systems in a sysplex or of a
standalone system. See also [“automation configuration|
ile.”

Automation NetView. In SA z/0S the NetView that
performs routine operator tasks with command
procedures or uses other ways of automating system
and network management, issuing automatic responses
to messages and management services units.

automation operator. NetView automation operators
are NetView autotasks that are assigned to perform
specific automation functions. See also
NetView automation operators may receive

messages and process automation procedures. There are
no logged-on users associated with automation

operators. Each automation operator is an operating
system task and runs concurrently with other NetView
tasks. An automation operator could be set up to
handle JES2 messages that schedule automation
procedures, and an automation statement could route
such messages to the automation operator. Similar to
operator station task. SA z/OS message monitor tasks
and target control tasks are automation operators.

automation policy. The policy information governing
automation for individual systems. This includes
automation for applications, z/OS subsystems, z/OS
data sets, and z/OS components.

automation policy settings. The automation policy
information contained in the automation control file.
This information is entered using the customization
dialogs. You can display or modify these settings using
the customization dialogs.

automation procedure. A sequence of commands,
packaged as a NetView command list or a command
processor written in a high-level language. An
automation procedure performs automation functions
and runs under NetView.

automation routines. In SA z/Q0S, a set of
self-contained automation routines that can be called
from the NetView automation table, or from
user-written automation procedures.

automation status file (ASF). In SA z/0OS, a file
containing status information for each automated
subsystem, component or data set. This information is
used by SA z/OS automation when taking action or
when determining what action to take. In Release 2 and
above of AOC/MVS, status information is also
maintained in the operational information base.

automation table (AT). See [NetView automation table}

autotask. A NetView automation task that receives
messages and processes automation procedures. There
are no logged-on users associated with autotasks. Each
autotask is an operating system task and runs
concurrently with other NetView tasks. An autotask
could be set up to handle JES2 messages that schedule
automation procedures, and an automation statement
could route such messages to the autotasks. Similar to
operator station task. SA z/OS message monitor tasks
and target control tasks are autotasks. Also called
automation operator.

available. In VTAM programs, pertaining to a logical
unit that is active, connected, enabled, and not at its
session limit.

Base Control Program (BCP). A program that
provides essential services for the MVS and z/0S
operating systems. The program includes functions that

Glossary 295

manage system resources. These functions include
input/output, dispatch units of work, and the z/OS

UNIX System Services kernel. See also Multiple Virtuall
[Storage|and |z/ OS]

basic mode. A central processor mode that does not

use logical partitioning. Contrast with

[partitioned mode}

BCP. See [Base Control Program|

BCP Internal Interface. Processor function of
CMOS-390 and System z processor families. It allows
for communication between basic control programs
such as z/0OS and the processor support element in
order to exchange information or to perform processor
control functions. Programs using this function can
perform hardware operations such as ACTIVATE or
SYSTEM RESET.

beaconing. The repeated transmission of a frame or
messages (beacon) by a console or workstation upon
detection of a line break or outage.

blade. A hardware unit that provides
application-specific services and components. The
consistent size and shape (or form factor) of each blade
allows it to fit in a BladeCenter chassis.

BladeCenter chassis. A modular chassis that can
contain multiple blades, allowing the individual blades
to share resources such as management, switch, power,
and blower modules.

BookManager®. An IBM product that lets users view
softcopy documents on their workstations.

C

central processor (CP). The part of the computer that
contains the sequencing and processing facilities for
instruction execution, initial program load (IPL), and
other machine operations.

central processor complex (CPC). A physical
collection of hardware that consists of central storage,
one or more central processors, timers, and channels.

central site. In a distributed data processing network,
the central site is usually defined as the focal point for
alerts, application design, and remote system
management tasks such as problem management.

CFR/CFS and ISC/ISR. I/O operations can display
and return data about integrated system channels (ISC)
connected to a coupling facility and coupling facility
receiver (CFR) channels and coupling facility sender
(CFS) channels.

channel. A path along which signals can be sent; for
example, data channel, output channel. See also @

channel path identifier. A system-unique value
assigned to each channel path.

channel-attached. (1) Attached directly by I/O
channels to a host processor (for example, a
channel-attached device). (2) Attached to a controlling
unit by cables, rather than by telecommunication lines.

Contrast with [link-attached} Synonymous with

CHPID. In SA z/OS, channel path ID; the address of
a channel.

CHPID port. A label that describes the system name,
logical partitions, and channel paths.

CI. Seelconsole integration}

CICS/VS. Customer Information Control System for
Virtual Storage. See [Customer Information Control]

CLIST. See[command Tis{

clone. A set of definitions for application instances
that are derived from a basic application definition by
substituting a number of different system-specific
values into the basic definition.

clone ID. A generic means of handling system-specific
values such as the MVS SYSCLONE or the VTAM
subarea number. Clone IDs can be substituted into
application definitions and commands to customize a
basic application definition for the system that it is to
be instantiated on.

CNC. A channel path that transfers data between a
host system image and an ESCON® control unit. It can
be point-to-point or switchable.

command. A request for the performance of an
operation or the execution of a particular program.

command facility. The component of NetView that is
a base for command processors that can monitor,
control, automate, and improve the operation of a
network. The successor to NCCF.

command list (CLIST). (1) A list of commands and
statements, written in the NetView command list
language or the REXX language, designed to perform a
specific function for the user. In its simplest form, a
command list is a list of commands. More complex
command lists incorporate variable substitution and
conditional logic, making the command list more like a
conventional program. Command lists are typically
interpreted rather than being compiled. (2) In

SA z/0S, REXX command lists that can be used for
automation procedures.

command procedure. In NetView, either a command
list or a command processor.

296 System Automation for z/OS: Customizing and Programming

command processor. A module designed to perform a
specific function. Command processors, which can be
written in assembler or a high-level language (HLL),
are issued as commands.

command processor control block. An I/O operations
internal control block that contains information about
the command being processed.

Command Tree/2. An OS/2-based program that helps
you build commands on an OS/2 window, then routes
the commands to the destination you specify (such as a
3270 session, a file, a command line, or an application
program). It provides the capability for operators to
build commands and route them to a specified
destination.

common commands. The SA z/OS subset of the CPC
operations management commands.

Common User Access (CUA) architecture. Guidelines
for the dialog between a human and a workstation or
terminal.

communication controller. A type of communication
control unit whose operations are controlled by one or
more programs stored and executed in the unit or by a
program executed in a processor to which the controller
is connected. It manages the details of line control and
the routing of data through a network.

communication line. Deprecated term for
[telecommunication line}

connectivity view. In SA z/0S, a display that uses
graphic images for I/O devices and lines to show how
they are connected.

console automation. The process of having NetView
facilities provide the console input usually handled by
the operator.

console connection. In SA z/0S, the 3270 or ASCII
(serial) connection between a PS/2 computer and a
target system. Through this connection, the workstation
appears (to the target system) to be a console.

console integration (CI). A hardware facility that if
supported by an operating system, allows operating
system messages to be transferred through an internal
hardware interface for display on a system console.
Conversely, it allows operating system commands
entered at a system console to be transferred through
an internal hardware interface to the operating system
for processing.

consoles. Workstations and 3270-type devices that
manage your enterprise.

Control units. Hardware units that control I/O
operations for one or more devices. You can view
information about control units through I/O

operations, and can start or stop data going to them by
blocking and unblocking ports.

controller. A unit that controls I/O operations for one
or more devices.

converted mode (CVC). A channel operating in
converted (CVC) mode transfers data in blocks and a
CBY channel path transfers data in bytes. Converted
CVC or CBY channel paths can communicate with a
parallel control unit. This resembles a point-to-point
parallel path and dedicated connection, regardless
whether it passes through a switch.

couple data set. A data set that is created through the
XCF couple data set format utility and, depending on
its designated type, is shared by some or all of the
z/08S systems in a sysplex. See also sysplex couple data|
nd IXCF couple data set]

coupling facility. The hardware element that provides
high-speed caching, list processing, and locking
functions in a sysplex.

CP. Seecentral processod

CPC. See |central processor complex|

CPC operations management commands. A set of
commands and responses for controlling the operation
of System/390° CPCs.

CPC subset. All or part of a CPC. It contains the
minimum resource to support a single control program.

CPCB. See lcommand processor control block

CPU. Central processing unit. Deprecated term for

cross-system coupling facility (XCF). A component of
z/0S that provides functions to support cooperation
between authorized programs running within a
sysplex.

CTC. The channel-to-channel (CTC) channel can
communicate with a CTC on another host for
intersystem communication.

Customer Information Control System (CICS). A
general-purpose transactional program that controls
online communication between terminal users and a
database for a large number of end users on a real-time
basis.

customization dialogs. The customization dialogs are
an ISPF application. They are used to customize the
enterprise policy, like, for example, the enterprise
resources and the relationships between resources, or
the automation policy for systems in the enterprise.
How to use these dialogs is described in |IBM Tivol]
System Automation for z/OS Customizing and
Progmmmingi

Glossary 297

CVC. See

DataPower X150z. See [[BM Websphere DataPower|
[ntegration Appliance X150 for zEnterprise (DataPower]|
X150z)

DASD. See[direct access storage device}

data services task (DST). The NetView subtask that
gathers, records, and manages data in a VSAM file or a
network device that contains network management
information.

data set. The major unit of data storage and retrieval,
consisting of a collection of data in one of several
prescribed arrangements and described by control
information to which the system has access.

data set members. Members of partitioned data sets
that are individually named elements of a larger file
that can be retrieved by name.

DBCS. See|double-byte character set]

DCCE. Seeldisabled console communication facility]

DCE. See [Document Composition Facility]|

DELAY Report. An RMF report that shows the
activity of each job in the system and the hardware and
software resources that are delaying each job.

device. A piece of equipment. Devices can be
workstations, printers, disk drives, tape units, remote
systems or communications controllers. You can see
information about all devices attached to a particular
switch, and control paths and jobs to devices.

DEVR Report. An RMF report that presents
information about the activity of I/O devices that are
delaying jobs.

dialog. Interactive 3270 panels.

direct access storage device (DASD). A device that
allows storage to be directly accessed, such as a disk
drive.

disabled console communication facility (DCCF). A
z/0OS component that provides limited-function console
communication during system recovery situations.

disk operating system (DOS). (1) An operating
system for computer systems that use disks and
diskettes for auxiliary storage of programs and data. (2)
Software for a personal computer that controls the
processing of programs. For the IBM Personal
Computer, the full name is Personal Computer Disk
Operating System (PCDOS).

298

display. (1) To present information for viewing,
usually on the screen of a workstation or on a
hardcopy device. (2) Deprecated term for

distribution manager. The component of the NetView
program that enables the host system to use, send, and
delete files and programs in a network of computers.

Document Composition Facility (DCF). An IBM
licensed program used to format input to a printer.

domain. (1) An access method and its application
programs, communication controllers, connecting lines,
modems, and attached workstations. (2) In SNA, a
system services control point (SSCP) and the physical
units (PUs), logical units (LUs), links, link stations, and
associated resources that the SSCP can control with
activation requests and deactivation requests.

double-byte character set (DBCS). A character set,
such as Kanji, in which each character is represented by
a 2-byte code.

DP enterprise. Data processing enterprise.

DSIPARM. This file is a collection of members of
NetView’s customization.

DST.

E

EBCDIC. See [Extended Binary Coded Decimal|
[Interchange Codé.

Data Services Task.

ECB. Seelevent control block

EMCS. Extended multiple console support. See also
[multiple console supportl

ensemble. A collection of one or more zEnterprise
nodes (including any attached zBX) that are managed
as a single logical virtualized system by the Unified
Resource Manager, through the Hardware Management
Console.

ensemble member. A zEnterprise node that has been
added to an ensemble.

enterprise. The composite of all operational entities,
functions, and resources that form the total business
concern and that require an information system.

enterprise monitoring. Enterprise monitoring is used
by SA z/0S to update the NetView Management Console
(NMC) resource status information that is stored in the
Resource Object Data Manager (RODM). Resource status
information is acquired by enterprise monitoring of the
Resource Measurement Facility (RMF) Monitor III service
information at user-defined intervals. SA z/OS stores
this information in its operational information base,
where it is used to update the information presented to
the operator in graphic displays.

System Automation for z/OS: Customizing and Programming

Enterprise Systems Architecture (ESA). A hardware
architecture that reduces the effort required for
managing data sets and extends addressability for
system, subsystem, and application functions.

entries. Resources, such as processors, entered on
panels.

entry type. Resources, such as processors or
applications, used for automation and monitoring.

environment. Data processing enterprise.

error threshold. An automation policy setting that
specifies when SA z/OS should stop trying to restart
or recover an application, subsystem or component, or
offload a data set.

ESA. See IEnterprise Systems Architecturel.

eServer . Processor family group designator used by
the SA z/OS customization dialogs to define a target
hardware as member of the System z or 390-CMOS
processor families.

event. (1) In NetView, a record indicating irregularities
of operation in physical elements of a network. (2) An
occurrence of significance to a task; for example, the
completion of an asynchronous operation, such as an
input/output operation. (3) Events are part of a trigger
condition, such that if all events of a trigger condition
have occurred, a startup or shutdown of an application
is performed.

event control block (ECB). A control block used to
represent the status of an event.

exception condition. An occurrence on a system that
is a deviation from normal operation. SA z/0S
monitoring highlights exception conditions and allows
an SA z/0S enterprise to be managed by exception.

Extended Binary Coded Decimal Interchange Code
(EBCDIC). A coded character set of 256 8-bit
characters developed for the representation of textual
data. See also[American Standard Code for Information|

|[nterchange|

extended recovery facility (XRF). A facility that
minimizes the effect of failures in z/0OS, VTAM, the
host processor, or high availability applications during
sessions between high availability applications and
designated terminals. This facility provides an alternate
subsystem to take over sessions from the failing
subsystem.

F

fallback system. See kecondary system|

field. A collection of bytes within a record that are
logically related and are processed as a unit.

file manager commands. A set of SA z/0OS
commands that read data from or write data to the
automation control file or the operational information
base. These commands are useful in the development
of automation that uses SA z/OS facilities.

focal point. In NetView, the focal-point domain is the
central host domain. It is the central control point for
any management services element containing control of
the network management data.

focal point system. (1) A system that can administer,
manage, or control one or more target systems. There
are a number of different focal point system associated
with IBM automation products. (2) NMC focal point
system. The NMC focal point system is a NetView
system with an attached workstation server and LAN
that gathers information about the state of the network.
This focal point system uses RODM to store the data it
collects in the data model. The information stored in
RODM can be accessed from any LAN-connected
workstation with NetView Management Console
installed. (3) NPDA focal point system. This is a
NetView system that collects all the NPDA alerts that
are generated within your enterprise. It is supported by
NetView. If you have SA z/OS installed the NPDA
focal point system must be the same as your NMC
focal point system. The NPDA focal point system is
also known as the alert focal point system. (4) SA z/OS
Processor Operations focal point system. This is a
NetView system that has SA z/OS host code installed.
The SA z/0OS Processor Operations focal point system
receives messages from the systems and operator
consoles of the machines that it controls. It provides
full systems and operations console function for its
target systems. It can be used to IPL these systems.
Note that some restrictions apply to the Hardware
Management Console for an S/390° microprocessor
cluster. (5) SA z/OS SDF focal point system. The

SA z/0OS SDF focal point system is an SA z/OS
NetView system that collects status information from
other SA z/OS NetViews within your enterprise. (6)
Status focal point system. In NetView, the system to
which STATMON, VTAM and NLDM send status
information on network resources. If you have a NMC
focal point, it must be on the same system as the Status
focal point. (7) Hardware Management Console.
Although not listed as a focal point, the Hardware
Management Console acts as a focal point for the
console functions of an S/390 microprocessor cluster.
Unlike all the other focal points in this definition, the
Hardware Management Console runs on a
LAN-connected workstation,

frame. For a System/390 microprocessor cluster, a
frame contains one or two central processor complexes
(CPCs), support elements, and AC power distribution.

full-screen mode. In NetView, a form of panel
presentation that makes it possible to display the
contents of an entire workstation screen at once.

Glossary 299

Full-screen mode can be used for fill-in-the-blanks

prompting. Contrast with

G

gateway session. An NetView-NetView Task session
with another system in which the SA z/OS outbound
gateway operator logs onto the other NetView session
without human operator intervention. Each end of a
gateway session has both an inbound and outbound
gateway operator.

generic alert. Encoded alert information that uses
code points (defined by IBM and possibly customized
by users or application programs) stored at an alert
receiver, such as NetView.

group. A collection of target systems defined through
configuration dialogs. An installation might set up a
group to refer to a physical site or an organizational or
application entity.

group entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a group.

group entry type. A collection of target systems
defined through the customization dialog. An
installation might set up a group to refer to a physical
site or an organizational entity. Groups can, for
example, be of type STANDARD or SYSPLEX.

H

Hardware Management Console (HMC). A user
interface through which data center personnel
configure, control, monitor, and manage System z
hardware and software resources. The HMC
communicates with each central processor complex
(CPC) through the Support Element. On an IBM
zEnterprise 196 (z196), using the Unified Resource
Manager on the HMCs or Support Elements, personnel
can also create and manage an ensemble.

Hardware Management Console Application
(HWMCA). A direct-manipulation object-oriented
graphical user interface that provides a single point of

control and single system image for hardware elements.

The HWMCA provides grouping support, aggregated
and real-time system status using colors, consolidated
hardware messages support, consolidated operating
system messages support, consolidated service support,
and hardware commands targeted at a single system,
multiple systems, or a group of systems.

heartbeat. In SA z/0S, a function that monitors the
validity of the status forwarding path between remote
systems and the NMC focal point, and monitors the
availability of remote z/OS systems, to ensure that
status information displayed on the SA z/OS
workstation is current.

300

help panel. An online panel that tells you how to use
a command or another aspect of a product.

hierarchy. In the NetView program, the resource
types, display types, and data types that make up the
organization, or levels, in a network.

high-level language (HLL). A programming language
that provides some level of abstraction from assembler
language and independence from a particular type of
machine.For the NetView program, the high-level
languages are PL/I and C.

HLL. See jhigh-level languagel

host (primary processor). The processor that you enter
a command at (also known as the issuing processor).

host system. In a coupled system or distributed
system environment, the system on which the facilities
for centralized automation run. SA z/OS publications
refer to target systems or focal-point systems instead of
hosts.

HWMCA. See[Hardware Management Console|

|AEEIicatiogl

Hypervisor. A program that allows multiple instances
of operating systems or virtual servers to run
simultaneously on the same hardware device. A
hypervisor can run directly on the hardware, can run
within an operating system, or can be imbedded in
platform firmware. Examples of hypervisors include
PR/SM, z/VM, and PowerVM Enterprise Edition.

IBM blade. A customer-acquired, customer-installed
select blade to be managed by IBM zEnterprise Unified
Resource Manager. One example of an IBM blade is a
POWER? blade.

IBM Smart Analyzer for DB2 for z/OS. An optimizer
that processes certain types of data warehouse queries
for DB2 for z/0OS.

IBM System z Application Assist Processor (zAAP).
A specialized processor that provides a Java execution
environment, which enables Java-based web
applications to be integrated with core z/OS business
applications and backend database systems.

IBM System z Integrated Information Processor
(zIIP). A specialized processor that provides
computing capacity for selected data and transaction
processing workloads and for selected network
encryption workloads.

IBM Websphere DataPower Integration Appliance
X150 for zEnterprise (DataPower X150z). A
purpose-built appliance that simplifies, helps secure,
and optimizes XML and Web services processing.

System Automation for z/OS: Customizing and Programming

IBM Enterprise 196 (z196). The newest generation of
System z family of servers built on a new processor
chip, with enhanced memory function and capacity,
security, and on demand enhancements to support
existing mainframe workloads and large scale
consolidation.

IBM zEnterprise BladeCenter Extension (zBX). A
heterogeneous hardware infrastructure that consists of
a BladeCenter chassis attached to an IBM zEnterprise
196 (z196). A BladeCenter chassis can contain IBM
blades or optimizers.

IBM zEnterprise BladeCenter Extension (zBX) blade.
Generic name for all blade types supported in an IBM
zEnterprise BladeCenter Extension (zBX). This term
includes IBM blades and optimizers.

IBM zEnterprise System (zEnterprise). A
heterogeneous hardware infrastructure that can consist
of an IBM zEnterprise 196 (z196) and an attached IBM
zEnterprise BladeCenter Extension (zBX) Model 002,
managed as a single logical virtualized system by the
Unified Resource Manager.

IBM zEnterprise Unified Resource Manager. Licensed
Internal Code (LIC), also known as firmware, that is
part of the Hardware Management Console. The
Unified Resource Manager provides energy monitoring
and management, goal-oriented policy management,
increased security, virtual networking, and data
management for the physical and logical resources of a
given ensemble.

I/O operations. The part of SA z/OS that provides
you with a single point of logical control for managing
connectivity in your active I/O configurations. I/O
operations takes an active role in detecting unusual
conditions and lets you view and change paths
between a processor and an I/O device, using dynamic
switching (the ESCON director). Also known as I/O
Ops.

/O Ops. See

I/O resource number. Combination of channel path
identifier (CHPID), device number, etc. See

images. A grouping of processors and I/O devices
that you define. You can define a single-image mode
that allows a multiprocessor system to function as one
central processor image.

IMS. See [[nformation Management System|

IMS/VS. See[[nformation Management System/ Virtual|

Etoragel

inbound. In SA z/OS, messages sent to the
focal-point system from the PC or target system.

inbound gateway operator. The automation operator
that receives incoming messages, commands, and
responses from the outbound gateway operator at the
sending system. The inbound gateway operator handles
communications with other systems using a gateway
session.

Information Management System (IMS). Any of
several system environments available with a database
manager and transaction processing that are capable of
managing complex databases and terminal networks.

Information Management System/Virtual Storage
(IMS/VS). A database/data communication (DB/DC)
system that can manage complex databases and
networks. Synonymous with [Information Management]

INGEIO PROC. The I/O operations default procedure
name. It is part of the SYS1.PROCLIB.

initial microprogram load. The action of loading
microprograms into computer storage.

initial program load (IPL). (1) The initialization
procedure that causes an operating system to
commence operation. (2) The process by which a
configuration image is loaded into storage at the
beginning of a workday or after a system malfunction.
(3) The process of loading system programs and
preparing a system to run jobs.

initialize automation. SA z/OS-provided automation
that issues the correct z/OS start command for each
subsystem when SA z/OS is initialized. The
automation ensures that subsystems are started in the
order specified in the automation control files and that
prerequisite applications are functional.

input/output configuration data set (IOCDS). A
configuration definition built by the I/O configuration
program (IOCP) and stored on disk files associated
with the processor controller.

input/output support processor (IOSP). The hardware
unit that provides I/O support functions for the
primary support processor and maintenance support
functions for the processor controller.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogs between the
application programmer and the terminal user. See also
Time Sharing Option.

interested operator list. The list of operators who are
to receive messages from a specific target system.

internal token. A logical token (LTOK); name by which
the I/0O resource or object is known; stored in IODF.

Glossary 301

IOCDS. Seelinput/output configuration data set|.

IOSP. See finput/output support processor].

IPL. Seelinitial program load|

ISPE. See[Interactive System Productivity Facility]

ISPF console. You log on to ISPF from this 3270-type
console to use the runtime panels for I/O operations
and SA z/OS customization panels.

issuing host. The base program that you enter a
command for processing with. See

JCL. See liob control languagel

JES. Seeljob entry subsystem|

JES2. An MVS subsystem that receives jobs into the
system, converts them to internal format, selects them
for execution, processes their output, and purges them
from the system. In an installation with more than one
processor, each JES2 processor independently controls
its job input, scheduling, and output processing. See
also fjob entry subsystem|and [[ES3]

JES3. An MVS subsystem that receives jobs into the
system, converts them to internal format, selects them
for execution, processes their output, and purges them
from the system. In complexes that have several loosely
coupled processing units, the JES3 program manages
processors so that the global processor exercises
centralized control over the local processors and
distributes jobs to them using a common job queue. See
also fjob entry subsystem|and [JES2l

job. (1) A set of data that completely defines a unit of
work for a computer. A job usually includes all
necessary computer programs, linkages, files, and
instructions to the operating system. (2) An address
space.

job control language (JCL). A problem-oriented
language designed to express statements in a job that
are used to identify the job or describe its requirements
to an operating system.

job entry subsystem (JES). An IBM licensed program
that receives jobs into the system and processes all
output data that is produced by jobs. In SA z/0OS
publications, JES refers to JES2 or JES3, unless
otherwise stated. See also and

K

Kanji. An ideographic character set used in Japanese.
See also [double-byte character se

L

LAN. Seellocal area network}

line mode. A form of screen presentation in which the
information is presented a line at a time in the message
area of the terminal screen. Contrast with

link. (1) In SNA, the combination of the link
connection and the link stations joining network nodes;
for example, a System /370 channel and its associated
protocols, a serial-by-bit connection under the control
of synchronous data link control (SDLC). See
|synchronous data link control} (2) In SA z/0OS, link
connection is the physical medium of transmission.

link-attached. Describes devices that are physically

connected by a telecommunication line. Contrast with
channel-attached

Linux on System z. UNIX-like open source operating
system conceived by Linus Torvalds and developed
across the internet.

local. Pertaining to a device accessed directly without
use of a telecommunication line. Synonymous with

channel-attached

local area network (LAN). (1) A network in which a
set of devices is connected for communication. The
can be connected to a larger network. See also
(2) A network that connects several devices in a
limited area (such as a single building or campus) and
that can be connected to a larger network.

logical partition (LP). A subset of the processor
hardware that is defined to support an operating
system. See also[logically partitioned mode}

logical switch number (LSN). Assigned with the
switch parameter of the CHPID macro of the IOCP.

logical token (LTOK). Resource number of an object
in the IODF.

logical unit (LU). In SNA, a port through which an
end user accesses the SNA network and the functions
provided by system services control points (SSCPs). An
LU can support at least two sessions, one with an SSCP
and one with another LU, and may be capable of
supporting many sessions with other LUs. See also
[physical unit|and [system services control poing

logical unit 6.2 (LU 6.2). A type of logical unit that
supports general communications between programs in
a distributed processing environment. LU 6.2 is
characterized by:

* A peer relationship between session partners

* Efficient use of a session for multiple transactions

* A comprehensive end-to-end error processing

302 System Automation for z/OS: Customizing and Programming

* A generic application program interface (API)
consisting of structured verbs that are mapped to a
product implementation

Synonym for [advanced program-to-program|

Igommunicatiogl

logically partitioned (LPAR) mode. A central
processor mode that enables an operator to allocate

system processor hardware resources among several
logical partitions. Contrast with
LOGR. The sysplex logger.

LP. See |logical partition|

LPAR. See |logically partitioned mode]

LSN. See[logical switch number]|

LU. See[logical unif]
LU 6.2. See Jogical unit 67

LU 6.2 session. A session initiated by VTAM on behalf
of an LU 6.2 application program, or a session initiated
by a remote LU in which the application program
specifies that VTAM is to control the session by using
the APPCCMD macro. See

LU-LU session. In SNA, a session between two logical
units (LUs) in an SNA network. It provides
communication between two end users, or between an
end user and an LU services component.

M

MAT. Deprecated term for|NetView automation table]

MCA. See[Micro Channel architecture}

MCS. See [multiple console support]

member. A specific function (one or more modules or
routines) of a multisystem application that is defined to
XCF and assigned to a group by the multisystem
application. A member resides on one system in the
sysplex and can use XCF services to communicate
(send and receive data) with other members of the
same group.

message automation table (MAT). Deprecated term
for [NetView automation tablel

message class. A number that SA z/OS associates
with a message to control routing of the message.
During automated operations, the classes associated
with each message issued by SA z/OS are compared to
the classes assigned to each notification operator. Any
operator with a class matching one of the message’s
classes receives the message.

message forwarding. The SA z/OS process of sending
messages generated at an SA z/OS target system to the
SA z/0S focal-point system.

message group. Several messages that are displayed
together as a unit.

message monitor task. A task that starts and is
associated with a number of communications tasks.
Message monitor tasks receive inbound messages from
a communications task, determine the originating target
system, and route the messages to the appropriate
target control tasks.

message processing facility (MPF). A z/OS table that
screens all messages sent to the z/OS console. The MPF
compares these messages with a customer-defined list
of messages on which to automate, suppress from the
z/0S console display, or both, and marks messages to
automate or suppress. Messages are then broadcast on
the subsystem interface (SSI).

message suppression. The ability to restrict the
amount of message traffic displayed on the z/OS
console.

Micro Channel architecture. The rules that define
how subsystems and adapters use the Micro Channel
bus in a computer. The architecture defines the services
that each subsystem can or must provide.

microprocessor. A processor implemented on one or a
small number of chips.

migration. Installation of a new version or release of a
program to replace an earlier version or release.

MP. Multiprocessor.

MPE. See message processing facility]|

MPFLSTSA. The MPFLST member that is built by
SA z/0S.

multi-MVS environment. physical processing system
that is capable of operating more than one MVS image.
See also[MVS imagel

multiple console support (MCS). A feature of MVS
that permits selective message routing to multiple
consoles.

Multiple Virtual Storage (MVS). An IBM operating
system that accesses multiple address spaces in virtual
storage. The predecessor of z/OS.

multiprocessor (MP). A CPC that can be physically
partitioned to form two operating processor complexes.

multisystem application. An application program that
has various functions distributed across z/OS images in
a multisystem environment.

Glossary 303

multisystem environment. An environment in which
two or more systems reside on one or more processors.
Or one or more processors can communicate with
programs on the other systems.

MVS. See[Multiple Virtual Storagel

MYVS image. A single occurrence of the MVS
operating system that has the ability to process work.
See also [multi-MVS environment| and |single-M VS|

Ignvironmenﬂ

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture. See

MVS/JES2. Multiple Virtual Storage/Job Entry System
2. A z/OS subsystem that receives jobs into the system,
converts them to an internal format, selects them for
execution, processes their output, and purges them
from the system. In an installation with more than one
processor, each JES2 processor independently controls
its job input, scheduling, and output processing.

N

NAU. (1) See [network addressable unit]. (2) See
[network accessible unif

NCCE. See[Network Communications Control Facility).

NCP. (1) See [network control program| (general term).
(2) See [Network Control Program| (an IBM licensed
program). Its full name is Advanced Communications
Function for the Network Control Program.

Synonymous with |ACF/NC

NCP/token ring interconnection. A function used by
ACF/NCP to support token ring-attached SNA devices.
NTRI also provides translation from token
ring-attached SNA devices (PUs) to switched (dial-up)
devices.

NetView. An IBM licensed program used to monitor a
network, manage it, and diagnose network problems.
NetView consists of a command facility that includes a
presentation service, command processors, automation
based on command lists, and a transaction processing
structure on which the session monitor, hardware
monitor, and terminal access facility (TAF) network
management applications are built.

NetView (NCCF) console. A 3270-type console for
NetView commands and runtime panels for system
operations and processor operations.

NetView automation procedures. A sequence of
commands, packaged as a NetView command list or a
command processor written in a high-level language.
An automation procedure performs automation
functions and runs under the NetView program.

NetView automation table (AT). A table against
which the NetView program compares incoming

messages. A match with an entry triggers the specified
response. SA z/0S entries in the NetView automation
table trigger an SA z/OS response to target system
conditions. Formerly known as the message automation
table (MAT).

NetView command list language. An interpretive
language unique to NetView that is used to write
command lists.

NetView Graphic Monitor Facility (NGMEF).
Deprecated term for [NetView Management Consold

NetView hardware monitor. The component of
NetView that helps identify network problems, such as
hardware, software, and microcode, from a central
control point using interactive display techniques.
Formerly called network problem determination application.

NetView log. The log that NetView records events
relating to NetView and SA z/OS activities in.

NetView Management Console (NMC). A function of
the NetView program that provides a graphic,
topological presentation of a network that is controlled
by the NetView program. It provides the operator
different views of a network, multiple levels of
graphical detail, and dynamic resource status of the
network. This function consists of a series of graphic
windows that allows you to manage the network
interactively. Formerly known as the NetView Graphic
Monitor Facility (NGMEF).

NetView message table. See [NetView automation|

NetView paths via logical unit (LU 6.2). A type of
network-accessible port (VTAM connection) that
enables end users to gain access to SNA network
resources and communicate with each other. LU 6.2

permits communication between processor operations
and the workstation. See [logical unit 6.2
NetView-NetView task (NNT). The task that a
cross-domain NetView operator session runs under.

Each NetView program must have a NetView-NetView
task to establish one NNT session. See also

station tasi{

NetView-NetView task session. A session between
two NetView programs that runs under a
NetView-NetView task. In SA z/0S, NetView-NetView
task sessions are used for communication between focal
point and remote systems.

network. (1) An interconnected group of nodes. (2) In

data i rocessing, a user application network. See

network

network accessible unit (NAU). In SNA networking,
any device on the network that has a network address,
including a logical unit (LU), physical unit (PU), control
point (CP), or system services control point (SSCP). It is

304 System Automation for z/OS: Customizing and Programming

the origin or the destination of information transmitted
by the path control network. Synonymous with
[network addressable unit

network addressable unit (NAU). Synonym for
[network accessible unit

Network Communications Control Facility (NCCF).
The operations control facility for the network. NCCF
consists of a presentation service, command processors,
automation based on command lists, and a transaction
processing structure on which the network
management applications NLDM and NPDA are built.
NCCEF is a precursor to the NetView command facility.

Network Control Program (NCP). An IBM licensed
program that provides communication controller
support for single-domain, multiple-domain, and
interconnected network capability. Its full name is
Advanced Communications Function for the Network
Control Program.

network control program (NCP). (1) A program that
controls the operation of a communication controller.
(2) A program used for requests and responses
exchanged between physical units in a network for
data flow control.

Network Problem Determination Application
(NPDA). An NCCEF application that helps you identify
network problems, such as hardware, software, and
microcode, from a central control point using
interactive display methods. The alert manager for the
network. The precursor of the NetView hardware
monitor.

Networking NetView. In SA z/OS the NetView that
performs network management functions, such as
managing the configuration of a network. In SA z/0S
it is common to also route alerts to the Networking
NetView.

NGME. Deprecated term for [NetView Management|

NGMF focal-point system. Deprecated term for
[focal point system|

NIP. See|nucleus initialization program|

NMC focal point system. See [focal point system|

NMC workstation. The NMC workstation is the
primary way to dynamically monitor SA z/OS
systems. From the windows, you see messages, monitor
status, view trends, and react to changes before they
cause problems for end users. You can use multiple
windows to monitor multiple views of the system.

NNT. See INetView-NetView taskl

notification message. An SA z/OS message sent to a
human notification operator to provide information

about significant automation actions. Notification
messages are defined using the customization dialogs.

notification operator. A NetView console operator
who is authorized to receive SA z/OS notification
messages. Authorization is made through the
customization dialogs.

NPDA. See|Network Problem Determination|

|AEEIicatior_1[

NPDA focal-point system. See |focal point system|

NTRI. See [NCP/token ring interconnection}

nucleus initialization program (NIP). The program
that initializes the resident control program; it allows
the operator to request last-minute changes to certain
options specified during system generation.

)

objective value. An average Workflow or Using value
that SA z/OS can calculate for applications from past
service data. SA z/OS uses the objective value to
calculate warning and alert thresholds when none are
explicitly defined.

OCA. In SA z/OS, operator console A, the active
operator console for a target system. Contrast with
ﬁ

OCB. In SA z/OS, operator console B, the backup
operator console for a target system. Contrast with
oAl

OCF. See|operations command facility|

OCF-based processor. A central processor complex
that uses an operations command facility for interacting
with human operators or external programs to perform
operations management functions on the CPC.

OPC/A. See|Operations Planning and|
|Control / Advanced|

OPC/ESA. See[Operations Planning and|
|Control /Enterprise Systems Architecture|

Open Systems Adapter (OSA). I/O operations can
display the Open System Adapter (OSA) channel
logical definition, physical attachment, and status. You
can configure an OSA channel on or off.

operating system (OS). Software that controls the
execution of programs and that may provide services
such as resource allocation, scheduling, input/output
control, and data management. Although operating
systems are predominantly software, partial hardware
implementations are possible. (T)

operations. The real-time control of a hardware device
or software function.

Glossary 305

operations command facility (OCF). A facility of the
central processor complex that accepts and processes
operations management commands.

Operations Planning and Control/Advanced
(OPC/A). A set of IBM licensed programs that
automate, plan, and control batch workload. OPC/A
analyzes system and workload status and submits jobs
accordingly.

Operations Planning and Control/Enterprise Systems
Architecture (OPC/ESA). A set of IBM licensed
programs that automate, plan, and control batch
workload. OPC/ESA analyzes system and workload
status and submits jobs accordingly. The successor to
OPC/A.

operator. (1) A person who keeps a system running.
(2) A person or program responsible for managing
activities controlled by a given piece of software such
as z/OS, the NetView program, or IMS. (3) A person
who operates a device. (4) In a language statement, the
lexical entity that indicates the action to be performed
on operands.

operator console. (1) A functional unit containing
devices that are used for communications between a
computer operator and a computer. (T) (2) A display
console used for communication between the operator
and the system, used primarily to specify information
concerning application programs and I/O operations
and to monitor system operation. (3) In SA z/0OS, a
console that displays output from and sends input to
the operating system (z/OS, LINUX, VM, VSE). Also
called operating system console. In the SA z/OS operator
commands and configuration dialogs, OC is used to
designate a target system operator console.

operator station task (OST). The NetView task that
establishes and maintains the online session with the
network operator. There is one operator station task for
each network operator who logs on to the NetView
program.

operator view. A set of group, system, and resource
definitions that are associated together for monitoring
purposes. An operator view appears as a graphic
display in the graphical interface showing the status of
the defined groups, systems, and resources.

OperatorView entry. A construct, created with the
customization dialogs, used to represent and contain
policy for an operator view.

optimizer. A special-purpose hardware component or
appliance that can perform a limited set of specific
functions with optimized performance when compared
to a general-purpose processor. Because of its limited
set of functions, an optimizer is an integrated part of a
processing environment, rather than a stand-alone unit.
One example of an optimizer is the IBM Smart
Analytics Optimizer for DB2 for z/OS.

OS. Seefoperating systen

OSA. See|Open Systems Adapter

OST. See|operator station task|

outbound. In SA z/OS, messages or commands from
the focal-point system to the target system.

outbound gateway operator. The automation operator
that establishes connections to other systems. The
outbound gateway operator handles communications
with other systems through a gateway session. The
automation operator sends messages, commands, and
responses to the inbound gateway operator at the
receiving system.

P

page. (1) The portion of a panel that is shown on a
display surface at one time. (2) To transfer instructions,
data, or both between real storage and external page or
auxiliary storage.

panel. (1) A formatted display of information that
appears on a terminal screen. Panels are full-screen
3270-type displays with a monospaced font, limited
color and graphics. (2) By using SA z/OS panels you
can see status, type commands on a command line
using a keyboard, configure your system, and passthru
to other consoles. See also (3) In computer
graphics, a display image that defines the locations and
characteristics of display fields on a display surface.
Contrast with creenl

parallel channels. Parallel channels operate in either
byte (BY) or block (BL) mode. You can change
connectivity to a parallel channel operating in block
mode.

parameter. (1) A variable that is given a constant value
for a specified application and that may denote the
application. (2) An item in a menu for which the user
specifies a value or for which the system provides a
value when the menu is interpreted. (3) Data passed to
a program or procedure by a user or another program,
specifically as an operand in a language statement, as
an item in a menu, or as a shared data structure.

partition. (1) A fixed-size division of storage. (2) In
VSE, a division of the virtual address area that is
available for program processing. (3) On an IBM
Personal Computer fixed disk, one of four possible
storage areas of variable size; one can be accessed by
DOS, and each of the others may be assigned to
another operating system.

partitionable CPC. A CPC that can be divided into 2
independent CPCs. See also |phvsical partitionl
[single-image model @ and |sidgl

306 System Automation for z/OS: Customizing and Programming

partitioned data set (PDS). A data set in direct access
storage that is divided into partitions, called members,
each of which can contain a program, part of a
program, or data.

passive monitoring. In SA z/OS, the receiving of
unsolicited messages from z/OS systems and their
resources. These messages can prompt updates to

resource status displays. See also Jactive monitoring]

PCE. A processor controller. Also known as the
support processor or service processor in some
processor families.

PDB. See

PDS. See|partitioned data set]

physical partition. Part of a CPC that operates as a
CPC in its own right, with its own copy of the
operating system.

physical unit (PU). In SNA, the component that
manages and monitors the resources (such as attached
links and adjacent link stations) of a node, as requested
by a system services control point (SSCP) through an
SSCP-PU session. An SSCP activates a session with the
physical unit to indirectly manage, through the PU,
resources of the node such as attached links.

physically partitioned (PP) configuration. A mode of
operation that allows a multiprocessor (MP) system to
function as two or more independent CPCs having
separate power, water, and maintenance boundaries.
Contrast with [single-image mode}

POI. See|program operator interfacel

policy. The automation and monitoring specifications
for an SA z/OS enterprise. See [IBM Tivoli System|
[Automation for z/OS Defining Automation Polici]

policy database. The automation definitions
(automation policy) that the automation programmer
specifies using the customization dialog is stored in the
policy database. Also known as the PDB. See also
fautomation policy]

POR. See[power-on reset]

port. (1) System hardware that the I/O devices are
attached to. (2) In an ESCON switch, a port is an
addressable connection. The switch routes data through
the ports to the channel or control unit. Each port has a
name that can be entered into a switch matrix, and you
can use commands to change the switch configuration.
(3) An access point (for example, a logical unit) for data
entry or exit. (4) A functional unit of a node that data
can enter or leave a data network through. (5) In data
communication, that part of a data processor that is
dedicated to a single data channel for the purpose of
receiving data from or transmitting data to one or more
external, remote devices.

power-on reset (POR). A function that re-initializes all
the hardware in a CPC and loads the internal code that
enables the CPC to load and run an operating system.
See finitial microprogram load|

PP. See|physical partition|

PPL. See|program to program interfacel

PPT. Seelprimary POI task|

PR/SM. See|Processor Resource/Systems Manager|

primary host. The base program that you enter a
command for processing at.

primary POI task (PPT). The NetView subtask that
processes all unsolicited messages received from the
VTAM program operator interface (POI) and delivers
them to the controlling operator or to the command
processor. The PPT also processes the initial command
specified to execute when NetView is initialized and
timer request commands scheduled to execute under
the PPT.

primary system. A system is a primary system for an
application if the application is normally meant to be
running there. SA z/OS starts the application on all the
primary systems defined for it.

problem determination. The process of determining
the source of a problem; for example, a program
component, machine failure, telecommunication
facilities, user or contractor-installed programs or
equipment, environment failure such as a power loss,
Or USer error.

processor. (1) A device for processing data from
programmed instructions. It may be part of another
unit. (2) In a computer, the part that interprets and
executes instructions. Two typical components of a
processor are a control unit and an arithmetic logic
unit.

processor controller. Hardware that provides support
and diagnostic functions for the central processors.

processor operations. The part of SA z/OS that
monitors and controls processor (hardware) operations.
Processor operations provides a connection from a
focal-point system to a target system. Through NetView
on the focal-point system, processor operations
automates operator and system consoles for monitoring
and recovering target systems. Also known as ProcOps.

Processor Resource/Systems Manager (PR/SM). The
feature that allows the processor to use several
operating system images simultaneously and provides
logical partitioning capability. See also
[partitioned mod

ProcOps. See |processor operationd

Glossary 307

ProcOps Service Machine (PSM). The PSM is a CMS
user on a VM host system. It runs a CMS multitasking
application that serves as "virtual hardware" for
ProcOps. ProOps communicates via the PSM with the
VM guest systems that are defined as target systems
within ProcOps.

product automation. Automation integrated into the
base of SA z/0S for the products CICS, DB2, IMS,
TWS (formerly called features).

program operator interface (POI). A NetView facility
for receiving VTAM messages.

program to program interface (PPI). A NetView
function that allows user programs to send or receive
data buffers from other user programs and to send
alerts to the NetView hardware monitor from system
and application programs.

protocol. In SNA, the meanings of, and the
sequencing rules for, requests and responses used for
managing the network, transferring data, and
synchronizing the states of network components.

proxy resource. A resource defined like an entry type
APL representing a processor operations target system.

PSM. See [ProcOps Service Machine|

PU. See[physical uni

RACE. See [Resource Access Control Facilityl]

remote system. A system that receives resource status
information from an SA z/OS focal-point system. An
SA z/0OS remote system is defined as part of the same
SA z/0S enterprise as the SA z/0S focal-point system
to which it is related.

requester. A workstation from that user can log on to
a domain from, that is, to the servers belonging to the
domain, and use network resources. Users can access
the shared resources and use the processing capability
of the servers, thus reducing hardware investment.

resource. (1) Any facility of the computing system or
operating system required by a job or task, and
including main storage, input/output devices, the
processing unit, data sets, and control or processing
programs. (2) In NetView, any hardware or software
that provides function to the network. (3) In SA z/OS,
any z/0S application, z/OS component, job, device, or
target system capable of being monitored or automated
through SA z/0OS.

Resource Access Control Facility (RACF). A program
that can provide data security for all your resources.
RACEF protects data from accidental or deliberate
unauthorized disclosure, modification, or destruction.

resource group. A physically partitionable portion of a
processor. Also known as a side.

Resource Measurement Facility (RMF). A feature of
z/0S that measures selected areas of system activity
and presents the data collected in the format of printed
reports, System Management Facility (SMF) records, or
display reports.

Resource Object Data Manager (RODM). In NetView
for z/OS, a component that provides an in-memory
cache for maintaining real-time data in an address
space that is accessible by multiple applications. RODM
also allows an application to query an object and
receive a rapid response and act on it.

resource token. A unique internal identifier of an
ESCON resource or resource number of the object in
the IODEF.

restart automation. Automation provided by SA z/OS
that monitors subsystems to ensure that they are
running. If a subsystem fails, SA z/OS attempts to
restart it according to the policy in the automation
configuration file.

Restructured Extended Executor (REXX). A
general-purpose, high-level, programming language,
particularly suitable for EXEC procedures or programs
for personal computing, used to write command lists.

return code. A code returned from a program used to
influence the issuing of subsequent instructions.

REXX. See[Restructured Extended Executor]

REXX procedure. A command list written with the
Restructured Extended Executor (REXX), which is an
interpretive language.

RME. See [Resource Measurement Facility]

RODM. See |[Resource Object Data Manager]

S

SAF. See [Security Authorization Facility|

SA IOM. See|System Automation for Integrated|
|Operations Management

SAplex. SAplex or "SA z/OS Subplex" is a term used
in conjuction with a sysplex. In fact, a SAplex is a
subset of a sysplex. However, it can also be a sysplex.
For a detailed description, refer to "Using SA z/OS
Subplexes" in IBM Tivoli System Automation for z/O9
|Planning and Installation|

SA z/0OS. SeelSystem Automation for z/O9

SA z/OS customization dialogs. An ISPF application
through which the SA z/OS policy administrator

308 System Automation for z/OS: Customizing and Programming

defines policy for individual z/OS systems and builds
automation control data and RODM load function files.

SA z/OS customization focal point system. See

[point system

SA z/OS data model. The set of objects, classes and
entity relationships necessary to support the function of
SA z/0S and the NetView automation platform.

SA z/OS enterprise. The group of systems and
resources defined in the customization dialogs under
one enterprise name. An SA z/OS enterprise consists
of connected z/OS systems running SA z/OS.

SA z/OS focal point system. See [focal point system|

SA z/OS policy. The description of the systems and
resources that make up an SA z/OS enterprise,
together with their monitoring and automation
definitions.

SA z/OS policy administrator. The member of the
operations staff who is responsible for defining
SA z/0S policy.

SA z/OS satellite. If you are running two NetViews
on an z/0S system to split the automation and
networking functions of NetView, it is common to route
alerts to the Networking NetView. For SA z/0S to
process alerts properly on the Networking NetView,
you must install a subset of SA z/OS code, called an
SA z/OS satellite on the Networking NetView.

SA z/OS SDF focal point system. See

SCA. In SA z/OS, system console A, the active
s§stem console for a target hardware. Contrast with

SCB. In SA z/0S, system console B, the backup
sistem console for a target hardware. Contrast with

screen. Deprecated term for

screen handler. In SA z/OS, software that interprets
all data to and from a full-screen image of a target
system. The interpretation depends on the format of the
data on the full-screen image. Every processor and
operating system has its own format for the full-screen
image. A screen handler controls one PS/2 connection
to a target system.

SDF. See |status display facility]

SDLC. See [synchronous data link controll

SDSF. See|System Display and Search Facility|

secondary system. A system is a secondary system for
an application if it is defined to automation on that
system, but the application is not normally meant to be

running there. Secondary systems are systems to which
an application can be moved in the event that one or

more of its primary systems are unavailable. SA z/0S
does not start the application on its secondary systems.

Security Authorization Facility (SAF). An MVS
interface with which programs can communicate with
an external security manager, such as RACF.

server. A server is a workstation that shares resources,
which include directories, printers, serial devices, and
computing powers.

service language command (SLC). The line-oriented
command language of processor controllers or service
processors.

service period. Service periods allow the users to
schedule the availability of applications. A service
period is a set of time intervals (service windows),
during which an application should be active.

service processor (SVP). The name given to a
processor controller on smaller System /370 processors.

service threshold. An SA z/OS policy setting that
determines when to notify the operator of deteriorating
service for a resource. See also jalert threshold| and

[warning threshold]

session. In SNA, a logical connection between two
network addressable units (NAUs) that can be
activated, tailored to provide various protocols, and
deactivated, as requested. Each session is uniquely
identified in a transmission header by a pair of
network addresses identifying the origin and
destination NAUs of any transmissions exchanged
during the session.

session monitor. The component of the NetView
program that collects and correlates session-related data
and provides online access to this information. The
successor to NLDM.

shutdown automation. SA z/OS-provided automation
that manages the shutdown process for subsystems by
issuing shutdown commands and responding to
prompts for additional information.

side. A part of a partitionable CPC that can run as a
physical partition and is typically referred to as the
A-side or the B-side.

Simple Network Management Protocol (SNMP). A
set of protocols for monitoring systems and devices in
complex networks. Information about managed devices
is defined and stored in a Management Information
Base (MIB).

single image. A processor system capable of being
physically partitioned that has not been physically
partitioned. Single-image systems can be target
hardware processors.

Glossary 309

single-MVS environment. An environment that
supports one MVS image. See also

single-image (SI) mode. A mode of operation for a
multiprocessor (MP) system that allows it to function as
one CPC. By definition, a uniprocessor (UP) operates in
single-image mode. Contrast with [physically]
[partitioned (PP) configuration|

SLC. Seelservice language command]

SMP/E. See[System Modification Program/Extended|

SNA. See[Systems Network Architecture}

SNA network. In SNA, the part of a user-application
network that conforms to the formats and protocols of
systems network architecture. It enables reliable
transfer of data among end users and provides
protocols for controlling the resources of various
network configurations. The SNA network consists of
network addressable units (NAUs), boundary function
components, and the path control network.

SNMP. See|Simple Network Management Protocol|

solicited message. An SA z/OS message that directly
responds to a command. Contrast with

SSCP. See [system services control point|

SSI. See|subsystem interfacel

start automation. SA z/OS-provided automation that
manages and completes the startup process for
subsystems. During this process, SA z/OS replies to
prompts for additional information, ensures that the
startup process completes within specified time limits,
notifies the operator of problems, if necessary, and
brings subsystems to an UP (or ready) state.

startup. The point in time that a subsystem or
application is started.

status. The measure of the condition or availability of
the resource.

status display facility (SDF). The system operations
part of SA z/OS that displays status of resources such
as applications, gateways, and write-to-operator
messages (WTORs) on dynamic color-coded panels.
SDF shows spool usage problems and resource data
from multiple systems.

status focal-point system. See [focal point system]

steady state automation. The routine monitoring, both
for presence and performance, of subsystems,
applications, volumes and systems. Steady state
automation may respond to messages, performance
exceptions and discrepancies between its model of the
system and reality.

structure. A construct used by z/OS to map and
manage storage on a coupling facility.

subgroup. A named set of systems. A subgroup is part
of an SA z/OS enterprise definition and is used for
monitoring purposes.

SubGroup entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a subgroup.

subplex. See .

subsystem. (1) A secondary or subordinate system,
usually capable of operating independent of, or
asynchronously with, a controlling system. (2) In

SA z/0S, an z/0OS application or subsystem defined to
SA z/0S.

subsystem interface (SSI). The z/OS interface over
which all messages sent to the z/OS console are
broadcast.

support element. A hardware unit that provides
communications, monitoring, and diagnostic functions
to a central processor complex (CPC).

support processor. Another name given to a processor
controller on smaller System/370 processors. See

service processor

SVP. See|[service processor

switch identifier. The switch device number
(swchdevn), the logical switch number (LSN) and the
switch name

switches. ESCON directors are electronic units with
ports that dynamically switch to route data to I/O
devices. The switches are controlled by I/O operations
commands that you enter on a workstation.

symbolic destination name (SDN). Used locally at the
workstation to relate to the VTAM application name.

synchronous data link control (SDLC). A discipline
for managing synchronous, code-transparent,
serial-by-bit information transfer over a link connection.
Transmission exchanges may be duplex or half-duplex
over switched or nonswitched links. The configuration
of the link connection may be point-to-point,
multipoint, or loop. SDLC conforms to subsets of the
Advanced Data Communication Control Procedures
(ADCCP) of the American National Standards Institute
and High-Level Data Link Control (HDLC) of the
International Standards Organization.

SYSINFO Report. An RMF report that presents an
overview of the system, its workload, and the total
number of jobs using resources or delayed for
resources.

SysOps. See lsystem operations|

310 System Automation for z/OS: Customizing and Programming

sysplex. A set of z/OS systems communicating and
cooperating with each other through certain
multisystem hardware components (coupling devices
and timers) and software services (couple data sets).

In a sysplex, z/OS provides the coupling services that
handle the messages, data, and status for the parts of a
multisystem application that has its workload spread
across two or more of the connected processors, sysplex
timers, coupling facilities, and couple data sets (which
contains policy and states for automation).

A Parallel Sysplex is a sysplex that includes a coupling
facility.

sysplex application group. A sysplex application
group is a grouping of applications that can run on any
system in a sysplex.

sysplex couple data set. A couple data set that
contains sysplex-wide data about systems, groups, and
members that use XCF services. All z/OS systems in a

sysplex must have connectivity to the sysplex couple
data set. See also

Sysplex Timer®. An IBM unit that synchronizes the
time-of-day (TOD) clocks in multiple processors or

processor sides. External Time Reference (ETR) is the
z/0S generic name for the IBM Sysplex Timer (9037).

system. In SA z/0S, system means a focal point
system (z/OS) or a target system (MVS, VM, VSE,
LINUX, or CF).

System Automation for Integrated Operations
Management. (1) An outboard automation solution for
secure remote access to mainframe/distributed systems.
Tivoli System Automation for Integrated Operations
Management, previously Tivoli AF/REMOTE, allows
users to manage mainframe and distributed systems
from any location. (2) The full name for SA IOM.

System Automation for OS/390. The full name for
SA 0S/390, the predecessor to System Automation for
z/0S.

System Automation for z/OS. The full name for
SA z/0S.

system console. (1) A console, usually having a
keyboard and a display screen, that is used by an
operator to control and communicate with a system. (2)
A logical device used for the operation and control of
hardware functions (for example, IPL, alter/display,
and reconfiguration). The system console can be
assigned to any of the physical displays attached to a
processor controller or support processor. (3) In

SA z/0S, the hardware system console for processor
controllers or service processors of processors
connected using SA z/0S. In the SA z/OS operator
commands and configuration dialogs, SC is used to
designate the system console for a target hardware
processor.

System Display and Search Facility (SDSF). An IBM
licensed program that provides information about jobs,
queues, and printers running under JES2 on a series of
panels. Under SA z/OS you can select SDSF from a
pull-down menu to see the resources’ status, view the
z/0S system log, see WTOR messages, and see active
jobs on the system.

System entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a system.

System Modification Program/Extended (SMP/E). An
IBM licensed program that facilitates the process of
installing and servicing an z/OS system.

system operations. The part of SA z/OS that
monitors and controls system operations applications
and subsystems such as NetView, SDSF, JES, RMF, TSO,
RODM, ACF/VTAM, CICS, IMS, and OPC. Also known
as SysOps.

system services control point (SSCP). In SNA, the
focal point within an SNA network for managing the
configuration, coordinating network operator and
problem determination requests, and providing
directory support and other session services for end
users of the network. Multiple SSCPs, cooperating as
peers, can divide the network into domains of control,
with each SSCP having a hierarchical control
relationship to the physical units and logical units
within its domain.

System/390 microprocessor cluster. A configuration
that consists of central processor complexes (CPCs) and
may have one or more integrated coupling facilities.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

T

TAE. See|terminal access facility]

target. A processor or system monitored and
controlled by a focal-point system.

target control task. In SA z/OS, target control tasks
process commands and send data to target systems and
workstations through communications tasks. A target
control task (a NetView autotask) is assigned to a target
system when the target system is initialized.

target hardware. In SA z/0S, the physical hardware
on which a target system runs. It can be a single-image

or physically partitioned processor. Contrast with
i

Glossary 311

target system. (1) In a distributed system
environment, a system that is monitored and controlled
by the focal-point system. Multiple target systems can
be controlled by a single focal-point system. (2) In

SA z/0S, a computer system attached to the
focal-point system for monitoring and control. The
definition of a target system includes how remote
sessions are established, what hardware is used, and
what operating system is used.

task. (1) A basic unit of work to be accomplished by a
computer. (2) In the NetView environment, an operator
station task (logged-on operator), automation operator
(autotask), application task, or user task. A NetView
task performs work in the NetView environment. All
SA z/0S tasks are NetView tasks. See also |message|
[monitor task] and [target control task|

telecommunication line. Any physical medium, such
as a wire or microwave beam, that is used to transmit
data.

terminal access facility (TAF). (1) A NetView function
that allows you to log onto multiple applications either
on your system or other systems. You can define TAF
sessions in the SA z/0S customization panels so you
don't have to set them up each time you want to use
them. (2) In NetView, a facility that allows a network
operator to control a number of subsystems. In a
full-screen or operator control session, operators can
control any combination of subsystems simultaneously.

terminal emulation. The capability of a
microcomputer or personal computer to operate as if it
were a particular type of terminal linked to a
processing unit to access data.

threshold. A value that determines the point at which
SA z/0S automation performs a predefined action. See
[alert threshold [warning threshold} and |error threshold|

time of day (TOD). Typically refers to the time-of-day
clock.

Time Sharing Option (TSO). An optional
configuration of the operating system that provides
conversational time sharing from remote stations. It is
an interactive service on z/0S, MVS/ESA, and
MVS/XA.

Time-Sharing Option/Extended (TSO/E). An option
of z/OS that provides conversational timesharing from
remote terminals. TSO/E allows a wide variety of users
to perform many different kinds of tasks. It can handle
short-running applications that use fewer sources as
well as long-running applications that require large
amounts of resources.

timers. A NetView command that issues a command
or command processor (list of commands) at a specified
time or time interval.

Tivoli Workload Scheduler (TWS). A family of IBM
licensed products that plan, execute and track jobs on
several platforms and environments. The successor to
OPC/A.

TOD. Time of day.

token ring. A network with a ring topology that
passes tokens from one attaching device to another; for
example, the IBM Token-Ring Network product.

TP. See |transaction program|

transaction program. In the VTAM program, a
program that performs services related to the
processing of a transaction. One or more transaction
programs may operate within a VTAM application
program that is using the VTAM application program
interface (API). In that situation, the transaction
program would request services from the applications
program using protocols defined by that application
program. The application program, in turn, could
request services from the VTAM program by issuing
the APPCCMD macro instruction.

transitional automation. The actions involved in
starting and stopping subsystems and applications that
have been defined to SA z/OS. This can include
issuing commands and responding to messages.

translating host. Role played by a host that turns a
resource number into a token during a unification
process.

trigger. Triggers, in combination with events and
service periods, are used to control the starting and
stopping of applications in a single system or a parallel
sysplex.

TSO. See|Time Sharing Option|

TSO console. From this 3270-type console you are
logged onto TSO or ISPF to use the runtime panels for
I/0 operations and SA z/OS customization panels.

TSO/E. See|Time-Sharing Option/Extended]

TWS. See[Tivoli Workload Scheduler]

U

UCB. See [unit control block

unit control block (UCB). A control block in common
storage that describes the characteristics of a particular
I/0O device on the operating system and that is used for
allocating devices and controlling I/O operations.

unsolicited message. An SA z/OS message that is not
a direct response to a command.

user task. An application of the NetView program
defined in a NetView TASK definition statement.

312 System Automation for z/OS: Customizing and Programming

Using. An RMF Monitor III definition. Jobs getting
service from hardware resources (processors or devices)
are using these resources. The use of a resource by an
address space can vary from 0% to 100% where 0%
indicates no use during a Range period, and 100%
indicates that the address space was found using the
resource in every sample during that period.

\'

view. In the NetView Graphic Monitor Facility, a
graphical picture of a network or part of a network. A
view consists of nodes connected by links and may also
include text and background lines. A view can be
displayed, edited, and monitored for status information
about network resources.

Virtual Server. A logical construct that appears to
comprise processor, memory, and I/O resources
conforming to a particular architecture. A virtual server
can support an operating system, associated
middleware, and applications. A hypervisor creates and
manages virtual servers.

Virtual Server Collection. A set of virtual servers that
supports a workload. This set is not necessarily static.
The constituents of the collection at any given point are
determined by virtual servers involved in supporting
the workload at that time.

virtual Server Image. A package containing metadata
that describes the system requirements, virtual storage
drives, and any goals and constraints for the virtual
machine {for example, isolation and availability). The
Open Virtual Machine Format (OVF) is a Distributed
Management Task Force (DMTF) standard that
describes a packaging format for virtual server images.

Virtual Server Image Capture. The ability to store
metadata and disk images of an existing virtual server.
The metadata describes the virtual server storage,
network needs, goals and constraints. The captured
information is stored as a virtual server image that can
be referenced and used to create and deploy other
similar images.

Virtual Server Image Clone. The ability to create an
identical copy (clone) of a virtual server image that can
be used to create a new similar virtual server.

Virtual Storage Extended (VSE). A system that
consists of a basic operating system (VSE/Advanced
Functions), and any IBM supplied and user-written
programs required to meet the data processing needs of
a user. VSE and the hardware that it controls form a
complete computing system. Its current version is
called VSE/ESA.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected

network capability. Its full name is Advanced
Communications Function for the Virtual
Telecommunications Access Method. Synonymous with

ACF/VTAM

VM Second Level Systems Support. With this
function, Processor Operations is able to control VM
second level systems (VM guest systems) in the same
way that it controls systems running on real hardware.

VM/ESA®. Virtual Machine/Enterprise Systems
Architecture. Its current version is called z/ VM.

volume. A direct access storage device (DASD)
volume or a tape volume that serves a system in an
SA z/0S enterprise.

VSE. See|Virtual Storage Extended|

VTAM. See|Virtual Telecommunications Access

|Method|
W

warning threshold. An application or volume service
value that determines the level at which SA z/OS

changes the associated icon in the graphical interface to
the warning color. See falert threshold
workstation. In SA z/0S workstation means the

graphic workstation that an operator uses for day-to-day
operations.

write-to-operator (WTO). A request to send a message
to an operator at the z/OS operator console. This
request is made by an application and is handled by
the WTO processor, which is part of the z/OS
supervisor program.

write-to-operator-with-reply (WTOR). A request to
send a message to an operator at the z/OS operator
console that requires a response from the operator. This
request is made by an application and is handled by
the WTO processor, which is part of the z/OS
supervisor program.

WTO. See

WTOR. See|write-to-operator-with-reply]

WWYV. The US National Institute of Standards and
Technology (NIST) radio station that provides standard
time information. A second station, known as WWVB,
provides standard time information at a different
frequency.

X

XCE. See kross—svstem coupling facilitvl

Glossary 313

XCF couple data set. The name for the sysplex couple
data set prior to MVS/ESA System Product Version 5
Release 1. See also[sysplex couple data set}

XCF group. A set of related members that a
multisystem application defines to XCF. A member is a
specific function, or instance, of the application. A
member resides on one system and can communicate
with other members of the same group across the
sysplex.

XRE. Seelextended recovery facility]

V4

z/OS. An IBM mainframe operating system that uses
64-bit real storage. See also[Base Control Program

z/OS component. A part of z/OS that performs a
specific z/OS function. In SA z/OS, component refers
to entities that are managed by SA z/0OS automation.

z/OS subsystem. Software products that augment the
z/0S operating system. JES and TSO/E are examples
of z/OS subsystems. SA z/OS includes automation for
some z/OS subsystems.

z/OS system. A z/OS image together with its
associated hardware, which collectively are often
referred to simply as a system, or z/OS system.

2196. See [[BM Enterprise 196 (z196)

zZAAP. See [[BM System z Application Assist Processor|

|! zAAP !I

ZBX. See[IBM zEnterprise BladeCenter Extension|

|(ZBX)I

zBX blade. See[I[BM zEnterprise BladeCenter]
[Extension (zBX) blade]

zCPC. The physical collection of main storage, central
processors, timers, and channels within a zEnterprise
mainframe. Although this collection of hardware
resources is part of the larger zEnterprise central
processor complex, you can apply energy management
policies to zCPC that are different from those that you
apply to any attached IBM zEnterprise BladeCenter
Extension (zBX) or blades. See also

zIIP. See [[BM System z Integrated Information|

|Erocessor (ZIIP)i

zEnterprise. See [IBM zEnterprise System (zEnterprise)|

Numerics

390-CMOS. Processor family group designator used in
the SA z/OS processor operations documentation and
in the online help to identify any of the following

S/390 CMOS processor machine types: 9672, 9674, 2003,
3000, or 7060. SA z/OS processor operations uses the
OCEF facility of these processors to perform operations
management functions. See JOCF-based processor|

314 System Automation for z/OS: Customizing and Programming

Index

Special characters

"hung" command recovery 133

A

accessibility xiii
active connector 130
active health monitoring 43
adding
application to automation 1

processor operations message to

automation 89

additional automation operator IDs

additional SA z/OS automation
procedures, programming 7
advanced automation options
exits 165

AOF_AAO_TWS_MAX_WAIT_TIME 232
AOF_AAO_TWS_RESYSPLEX 232
AOF_ASSIGN_JOBNAME 232
AOF_E2E_EAS_PPI 232
AOF_E2E_EVT_RETRY 232
AOF_E2E_EXREQ _NETLOG 232
AOF_E2E_TKOVR_TIMEOUT 233
AOF_EMCS_AUTOTASK _
ASSIGNMENT 233
AOF_EMCS_CN_ASSIGNMENT 233
AOF_INIT_MCSFLAG 235
AOF_INIT_ROUTCDE 235
AOF_INIT_SYSCONID 235
AOF_PRODLVL 230

AOF.O0DEBUG 229

AOFO0TRACE 229

AOFACFINIT 233
AOFAOCCLONE 229

AOFEXPLAIN_USER 234
AOFEXSTA exit 167
AOFEXX02 exit 168
AOFEXX03 exit 168
AOFEXX04 exit 169
AOFEXX05 169
AOFEXX15 exit 169
AOFINITIALSTARTTYP 229
AOFINITREPLY 235
AOFJESPREFX 230
AOFJRYCMD description 117
AOFLOCALHOLD 235
AOFMATLISTING 235
AOFMSGST 32
AOFMSGSY 261
AOFOPCCMDMSG 235
AOFPAUSE 235
AOFRESTARTALWAYS 236

external global variables 229, 230 AOFARMQUERYRETRYS 233 AOFRJ3MN monitoring routine 60
alerts AOFARMQUERYWAIT 233 AOFR]J3RC monitoring routine 62
communication flow 71 AOFBFP 229 AOFRMTCMDWAIT 236
enabling 72 AOFCFP 229 AOFRPCWAIT 236
enabling at alert ID level 74 AOFCNMASK 234 AOFRSAQ1 automation routine 186
enabling at system level 73 AOFCOMPL 229 AOFRSAOQ2 automation routine 187
enabling globally 73 AOFCONFIRM global variable 181 AOFRSA03 automation routine 189
enabling with Inform List 73 AOFDEBUG 229 AOFRSAO08 automation routine 192
enabling with INGCNTL 73, 74 AOFDEBUG global variable 19 AOFRSAQC automation routine 194
notification 71 AOFDEFAULT_TARGET 234 AOFRSAOE automation routine 197
overview 71 AOFDOM 261, 262 AOFRSAOG automation routine 198
alternate CDS 127 AOFEXCO00 exit 176 AOFRSDO01 automation routine 209
turning into primary CDS 128 AOFEXCO01 exit 177 AOFRSD07 automation routine 199
alternate CDS recovery AOFEXCO02 exit 177 AOFRSD09 automation routine 200
customizing 128 AOFEXCO03 exit 177 AOFRSDOF automation routine 202
alternate couple data set AOFEXC04 exit 177 AOFRSDOG automation routine 204
specifying 141 AOFEXCO05 exit 177 AOFRSDOH automation routine 205

AMREF buffer shortage processing 185

AOCMSG call 15
AOCMSG generic routine 10
AOCQRY common routine
automation availability 9
message automation 21
AOCTRACE
use in testing 18
use in traces 19
AOCUPDT command
and AOFEXSTA exit 167
AOCUPDT common routine

to update status information 10

AOFEXCO06 exit 177
AOFEXCO07 exit 178
AOFEXCO08 exit 178
AOFEXC09 exit 178
AOFEXCI1 exit 178
AOFEXC12 exit 178
AOFEXC13 exit 179
AOFEXC14 exit 179
AOFEXCI15 exit 179
AOFEXC16 exit 179
AOFEXC17 exit 179
AOFEXCI18 exit 179
AOFEXC19 exit 180

AOF_AAO_AAREQUEST MAX_WAIT 230 AOFEXC20 exit 180

AOF_AAO_MSG_EHKVAR 231
AOF_AAO_MVSTAPEMON 231
AOF_AAO_OMVS_SHUTDOWN
AOF_AAO_RDS_TSO_DSN 231

AOFEXC21 exit 180
AOFEXC22 exit 180
AOFEXC23 exit 181
AOFEXC24 181

AOFSENDALERT 236
AOFSERXINT 236
AOFSETSTATEOVERRIDE 238
AOFSETSTATESCOPE 239
AOFSETSTATESTART 239
AOFSHUTDELAY 236
AOFSMARTMAT 237
AOFSPOOLFULLCMD 237
AOFSPOOLSHORTCMD 237
AOFSTATUSCMDSEL 238
AOFSUBSYS 230

AOFSYS 261, 262
AOFSYSNAME 230
AOFSYSTEM 230
AOFUPDAM 238
AOFUPDRODM 238
AOFUSSWAIT 238
application

adding to automation 1

health status 39
application monitor status 39
application monitoring 39
application type IMAGE, defining 143
application, VTAM, defining to

SA z/0S 155

applications, z/OS UNIX 101

AOF_AAO_RDS_TSO_RACFHLQ 231 AOFEXDEF exit 165
AOF_AAO_RETENTIONPERIOD 231 AOFEXIO1 exit 165
AOF_AAQO_SDFROOT_LISTn 231 AOFEXI02 exit 165
AOF_AAO_SHUTDOWN_STOPAPPL 231 AOFEXIO3 exit 165
AOF_AAO_SHUTSYS_OLD 232 AOFEXI04 exit 165
AOF_AAO_TRANRERUN 232 AOFEXIO05 exit 166
AOF_AAO_TWS_CMD_OUTPUT_NETLOG AQ¥EXI06 exit 166
AOF_AAO_TWS_ERRMSG 232 AOFEXINT exit 166, 183, 236

© Copyright IBM Corp. 1996, 2012 315

ARM

See Automatic Restart Manager
ASCB chaining

and global variables 233
ASFUSER command 21
assist mode

for testing automation procedures 19

overview 18
assumptions, health monitoring with
OMEGAMON 48
asynchronous hardware commands,
using pipes and ISQCCMD for 95
AT actions, defining for message
automation 24
AT build
concept for message automation 30
message automation 30
AT entries
preventing the building of 25
AT load, message automation 30
Autodiscovery Mapper Files 271
Autodiscovery Report Format 277
Autodiscovery, building configuration
control data 227
Autodiscovery, Components
Overview 216
Autodiscovery, Extended Automated
Modelling 224
Autodiscovery, Finalizing the Target
Policy 225
Autodiscovery, Process Overview 218
automated resources, z/OS UNIX
Automation 105
Automated System Resource
Discovery 215
Automatic Restart Manager 259
defining element name 259
MOVE group for 260
automating
auxiliary storage shortage
recovery 146
enqueues, long running 145
IXC102A message 135
IXC402D message 135
Linux console messages 88
Linux console messages, case
sensitive 88
Linux console messages, restrictions
and limitations 89
Linux console messages, security
considerations 89
long running enqueues 145
message IXC102A 143
message IXC402D 143
USS resources 101
automating processor operations
controlled resources 85
automation
adding an application to 1
advanced functions 230
extending 7
messages 23
sysplex, enabling 127
automation control file
defining SDF = 258
reload action exit 181
reload permission exit 181

automation flag exits
sample 172
automation networks 149
automation operator IDs
additional 147
automation procedures
calling 7
creating 7
debugging 18
description 7
developing messages 15
example 16
external code 11
global variable names 22
initializing 9
installing 18
making generic 14
programming recommendations 21
REXX coding example 20
structure of 8
testing 18
use of commands in 7
use of routines in 7
using AOCTRACE 19
writing your own 7
automation processing
performing 10
automation routine
AMREF buffer shortage
processing 185
AOFRSAQ1 186
AOFRSAQ2 187
AOFRSA03 189
AOFRSA08 192
AOFRSA0C 194
AOFRSAQE 197
AOFRSA0G 198
AOFRSD07 199
AQFRSD09 200
AOFRSDOF 202
AOFRSDOG 204
AOFRSDOH 205
deletion of processed WTO(R)s from
SDF 185
drain processing prior to JES2
shutdown 186
HASP099 207
IMS transaction recovery 186
INGRCJSP 209
INGRMJSP 207
INGRTAPE 210
INGRX740 211
introduction 183
LOGREC data set processing 183
processing 184
SMF data set processing 184
SVC dump processing 185
automation setup, definitions for 102
automation status file
coding your own information 21
using commands 11
automation table
See NetView automation table
auxiliary storage shortage recovery 136
automating 146
defining local page data set 146
defining the handling of jobs 146

316 System Automation for z/OS: Customizing and Programming

availability, reporting 77
INGPUSMF utility 80
INGPUSMF utility JCL 80
INGPUSMEF utility JCL, user

options 81
INGPUSMEF utility outrput 80
INGPUSMF utility return codes 81
overview 77
resource lifecycle 77
SMF record layout 78
writing to DB2 82

B

BASEOPER 236

batch command interface
JCL 117

batch job
command continuation 116
command output redirection 116
command statement syntax 116
sample JCL 115
submitting NetView commands

from 115
valid command types 116
building

new automation definitions 93

C

calling
automation procedures 7
captured messages
defining for message automation 25
cascades 264
case sensitive, Linux console
messages 88
CDEMATCH common routine 21
CDS
See couple data set
CF
See coupling facility
CFRM couple data set 129, 141
CFRM policy 129
CHKTHRES automation procedure 10
CICS health monitoring 55, 58
CICS link monitoring 58
CICS monitoring
component overview 58
defining monitor resources 59
VOST management 58
CICSPlex monitoring 58
clone ID
Automatic Restart Manager 259
clone ID, Automatic Restart
Manager 238
CMD actions, defining for message
automation 24
CNMCMDU member 18
coding information in automation status
file 21
command flooding recovery 134
command output redirection batch
job 116
Command Receivers 113
command, SDFCONF 255

commands

NetView

See NetView commands

processor operations 14

use in automation procedures 7
commands, defining for long running

enqueues 146

commands, monitor resources 41

common automation items, defining 146

common global variables 11, 229
communication flow
alerts 71
connecting
system to processor 140
connector
active 130
failed persistent 130
continuous availability, couple data set
enabling 141
ensuring 128
couple data set 127
alternate CDS 127
alternate CDS, recovery of 128
alternate, specifying 141
CFRM 141
enabling continuous availability
of 141
ensuring continuous availability
of 128
managing 127
policy 127
primary CDS 127
SYSPLEX 141
coupling facility 129
coupling facility, managing 129
creating automation procedures 7
customization dialog exits 172
invocation 176
customization of z/OS UNIX
resources 102
customize automation
for processor operations 11
for system operations 10
customizing
alternate CDS recovery 128
hung command recovery 135
IXC102A message automation 136
IXC402D message automation 136
LINUX target systems 97
MVS target systems 98
proxy resource automation 86
SDF 243
system logger recovery 129
system to use Parallel Sysplex
enhancements 147
target systems 97
VM target systems 98
VSE target systems 99
WTO(R) buffer shortage
recovery 131

D

DB2, writing SMF report to 82
debugging
automation procedures 18
NetView facilities 20

debugging (continued)

z/0OS UNIX Automation 112

defining

actions for message automation 23

application type IMAGE 143

AT actions for message
automation 24

AT entry placement 24

captured messages for message
automation 25

CMD actions for message
automation 24

commands for long running
enqueues 146

common automation items 146

conditions for AT entries 24

gateway sessions 150

handling of jobs for auxiliary storage
shortage recovery 146

IEADMCxx symbols for long running
enqueues 146

IMAGE application type 143

local page data set for auxiliary
storage shortage recovery 146

logical partitions 140

logical sysplex 141

message revision table entries 29

outbound gateway autotask 150

override for message automation 26

physical sysplex 141

processor 140, 143

REPLY actions for message
automation 24

resources for long running
enqueues 145

SDF focal point system 149

SDF in automation control file 258

snapshot intervals for long running
enqueues 146

started task job name 146

status messages for message
automation 24

SYSPLEX policy item 141

system 140

TAF fullscreen sessions 152

temporary data set HLQ 146

VTAM application to SA z/OS 155

definitions for automation setup 102

definitions for z/OS UNIX
resources 102

deletion of processed WTO(R)s from
SDF 185

developing messages for automation
procedures 15

directory extent 129

disability xiii

DISPEVT_WAIT 239

DISPEVTS_WAIT 239

DISPTRG_WAIT 239

drain processing prior to JES2
shutdown 186

DSICMD member 18

DSIPARM data set 18

E

element name, Automatic Restart
Manager
defining 259
element names
in Automatic Restart Manager 259
element names in Automatic Restart
Manager 238
enabling
alerting 72
alerting with INGCNTL 74
alerting, with Inform List 73
alerting, with INGCNTL 73
continuous availability of Couple Data
Sets 141
sysplex automation 127
system removal 142
WTOR(R) buffer shortage
recovery 142
enabling Relational Data Services 121
enabling, command receivers 113
ENQs
See enqueues
enqueues 133
long running, automating 145
long running, customizing recovery
of 135
long running, handling 133
environmental setup exits 166
error codes 11
events, resource lifecycle 77
example automation procedure 16
examples of INGUSS command 107
exits 181

AOFEXC00 176
AOFEXC01 177
AOFEXC02 177
AOFEXC03 177
AOFEXC04 177
AOFEXC05 177
AOFEXC06 177
AOFEXC07 178
AOFEXC08 178
AOFEXC09 178
AOFEXC11 178
AOFEXC12 178
AOFEXC13 179
AOFEXC14 179
AOFEXC15 179
AOFEXC16 179
AOFEXC17 179
AOFEXC18 179
AOFEXC19 180
AOFEXC20 180
AOFEXC21 180
AOFEXC22 180
AOFEXC23 181
AOFEXC24 181
AOFEXDEF 165
AOFEXIO1 165
AOFEXI02 165
AOFEXI03 165
AOFEXI04 165
AOFEXI05 166
AQOFEXI06 166
AOFEXINT 166, 183
AOFEXSTA 167

Index 317

exits (continued)
AOFEXX02 168
AOFEXX03 168
AOFEXX04 169
AOFEXX05 169
AOFEXX15 169
BUILD processing 173
CONVERT processing 175
COPY processing 174
customization dialog exits 172
DELETE processing 174
environmental setup exits 166
flag exits 169
IMPORT functions 175
INGEAXIT 169
INGEX01 173
INGEX02 173
INGEX03 174
INGEX04 174
INGEX05 174
INGEX06 174
INGEX07 175
INGEX08 175
INGEX09 175
INGEX12 175
INGEX14 175
INGEX16 175
INGEX17 175
INGEX18 175
pseudo-exits 181
RENAME functions 175
sample automation flag exits 172
static exits 167
status change commands 168
subsystem up at initialization
commands 181
testing 182
EXPLAIN 234
extended status command support
introduced 27
policy definitions 27
extending automation 7
external code, automation procedures 11
external common global variables 229
EXTSTART status 238, 259

F

failed persistent connector 130

failed system, isolation of 135

file manager commands 11

file monitoring, z/OS UNIX
Automation 106

flag exits 169

focal point system definition 149

G

gateway
inbound 150
outbound 150
gateway sessions
defining 150
GDPS environment, shutting down z/0S
systems in 157

generic
automation 33, 230
generic automation procedures 14
global variable names, for automation
procedures 22
guest machines, processor operations
support 96
guest target systems
LINUX 96
LINUX, user logon 97
MVS 96, 97
MVS, NIP console 96
MVS, NIP messages 96, 97
MYVS, problem determination
mode 97
ProcOps Service Machine 96
VSE 97

H

hardware commands
asynchronous, using pipes and
ISQCCMD for 95
synchronous, using pipes and
ISQCCMD for 94
HASP099 automation routine 207
health monitoring
active 43
event-based 44
overview 40
passive 44
health monitoring, OMEGAMON
exceptions
introduction 53
health monitoring, OMEGAMON XE
situations
introduction 55
health status return codes 43
health-based automation using
OMEGAMON
programming techniques 46
recommendations 55
recovery techniques 42
how to automate USS resources 101
hung command recovery,
customizing 135

IDENT 21
IEADMCxx symbols, defining

for long running enqueues 146
IMAGE application type, defining 143
IMS automation, monitoring 63
IMS transaction recovery 186
inbound gateway 150
INCLUDE statement 257
INGAUTO_INTERVAL 239
INGCF command 130
INGCICS_CORRWAIT 238
INGDLG 176
INGEAXIT exit 169
INGEI004 member 96
INGEVENT_WAIT 239
INGEX01 173
INGEX02 173

318 System Automation for z/OS: Customizing and Programming

INGEX03 174
INGEX04 174
INGEX05 174
INGEX06 174
INGEX07 175
INGEX08 175
INGEXEC_RESP 239
INGEXEC_SELECT 239
INGEXEC_WAIT 239
INGGROUP_WAIT 239
INGHIST_MAX 239
INGHIST_WIMAX 239
INGIMS_CMDWAIT 239
INGIMS_CORRWAIT 238
INGIMS_REQ 239
INGINFO_WAIT 239
INGLIST_WAIT 239
INGMON_WAIT 239
INGMON, programming techniques 46
INGMOVE_WAIT 239
INGMSGO00 32
INGMSGO01 32
INGMTRAP monitor command 52
INGOMX API 49
INGOPC_MULTIPLIER 238
INGPUSMEF utility

introduced 80

JCL 80

JCL, user options 81

output 80

return codes 81
INGRCJSP automation routine 209
INGRELS_SHOW 239
INGRELS_WAIT 239
INGREQ_EXPIRE 239
INGREQ_INTERRUPT 240
INGREQ_ORIGINATOR 238
INGREQ_OVERRIDE 240
INGREQ_PRECHECK 240
INGREQ_PRI 240
INGREQ_PRI.E2EMGR 240
INGREQ_REMOVE 240
INGREQ_REMOVE.START 240
INGREQ_REMOVE.STOP 240
INGREQ_RESTART 240
INGREQ_SCOPE 240
INGREQ_SOURCE 240
INGREQ_TIMEOUT 240
INGREQ_TYPE 240
INGREQ_VERIFY 240
INGREQ_WAIT 240
INGRM]JSP automation routine 207
INGRPT_WAIT 240
INGRTAPE automation routine 210
INGRUN_WAIT 240
INGRX740 automation routine 211
INGSCHED_WAIT 240
INGSET_VERIFY 240
INGSET_WAIT 241
INGSTX_WAIT 241
INGTRIG_WAIT 241
INGUSS command 106

examples 107
INGVOTE_EXCLUDE 241
INGVOTE_SOURCE 241
INGVOTE_STATUS 241
INGVOTE_VERIFY 241

initialization processing,
AOFSERXINT 236

initializing automation procedures 9
installing

automation procedures 18
integration of z/OS UNIX System

Services 101

ISQCCMD

using for asynchronous hardware

commands 95
using for synchronous hardware
commands 94

ISQEXEC command 12, 89
ISQOVRD 91
ISQOVRD command 13
ISQXLOC command 13
ISQXMON command 89
ISQXUNL command 13
IXC102A message

automating 143

automation of 135

customizing automation of 136
IXC402D message

automating 143

automation of 135

customizing automation of 136
IXCARM macro invocations 259
IXCMIAPU 259

J

JES2 spool files

Joblog Monitoring 65
JES2 spool monitoring 63
JES3 monitoring 59
job handling, defining for auxiliary

storage shortage recovery 146

job/ASID definitions, making

for long running enqueues 145
Joblog Monitoring 65

setting up 65

K

keyboard xiii

L

layout, SMF record 78

Linux console connection to NetView 88

Linux console messages
automating 88
case sensitive 88
restrictions and limitations 89
security considerations 89
LINUX guest target systems, user
logon 97

LINUX target systems, customizing 97

local page data set, defining
for auxiliary storage shortage
recovery 146
log stream 128
log stream data set 128
logical partition
defining 140
logical sysplex, defining 141

LOGR couple data set 128, 129
LOGREC data set processing 183
long running enqueues

automating 145

defining commands 146

defining IEADMCxx symbols 146

defining resources 145

defining snapshot intervals 146

handling 133

making job/ASID definitions 145
LookAt message retrieval tool xx

M

making generic automation
procedures 14
making job/ASID definitions
for long running enqueues 145
managing
couple data set 127
coupling facilities 129
system logger 128
master automation tables 32
multiple 32
member, INGEIO04 96
message
forwarding 89
forwarding path, defining 149
ISQ9001 89
ISQ901I 89
IXC102A, automation of 135
IXC402D, automation of 135
testing 90, 92
message automation 23
AT build 30
AT load 30
AT/MRT build concept 30
defining actions 23
defining AT actions 24
defining captured messages 25
defining CMD actions 24
defining conditions for AT entries
defining message revision table
entries 29
defining overrides 26
defining REPLY actions 24
defining status messages 24
Linux console messages 88
Linux console messages, case
sensitive 88
Linux console messages, restrictions
and limitations 89
Linux console messages, security
considerations 89
overview 23
preparing for processor operations
resources 88
preventing the building of AT, MRT
and MPF entries 25
specifying entry placement 24
use of symbols 24
message automation for processor
operations resources 85
message presentation 262
message retrieval tool, LookAt xx
message revision table, defining
entries 29

message testing 92
messages
automation 23
classifications 31
developing for automation
procedures 15
trapping UNIX syslogd 111
minor resources
resource name 171
monitor command, INGMTRAP 52
monitor resources 39
commands 41
defining for CICS monitoring 59
defining for OMEGAMON XE
situations 55
monitor routine
writing your own 40
monitoring
applications 39
CICS health 58
CICS link 58
CICSPlex 58
health with OMEGAMON 48
health, active 43
health, event-based 44
health, overview 40
health, passive 44
IMS automation 63
JES3 components 59
observed status 39
using OMEGAMON XE situations 55
monitoring routines
AOFR]3MN 60
AOFRJ3RC 62
monitoring routines for z/OS UNIX
resources 103
MOVE group for Automatic Restart
Manager 260
MOVED status
Automatic Restart Manager 259
automation 259
MPF list 93
MPFLSTSA entries
preventing the building of 25
MRT build
concept for message automation 30
MRT entries
preventing the building of 25
MTR
See monitor resources
MVS Automatic Restart Manager
clone ID 238
element names 238
global variables 238
MVS guest target systems
NIP console 96
NIP messages 96, 97
problem determination mode 97
MVS target systems, customizing 98
MVSESA RELOAD.ACTION minor
resource 181
MVSESA RELOAD.CONFIRM flag 181
MVSESA . RELOAD.CONFIRM minor
resource 181

Index 319

N

NetView
generic automation table entries 33
Linux console connection to 88
testing and debugging facilities 20
NetView automation table
adding processor operations messages
to 89
AOFMSGSY 261
defining conditions for AT entries 24
fragments 261
generic entries 33
integrating 32
ISQEXEC 12, 89
ISQOVRD 13
ISQXLOC 13
ISOXMON 89
ISQXUNL 13
master automation tables 32
merging entries 93
multiple master automation tables 32
production 92
reloading tables 93
sample entry 90
samples 31
specifying entry placement 24
structure 31
user-written statements 32
NetView commands
executing on a different NetView 117
submitting from a batch job 115
networks automation
definition process 149
new automation definitions
building 93
notification
alerts 71
notifications 10

(0

observed status
monitoring 39
OMEGAMON
assumptions 48
exception analysis 48
exceptions, health monitoring 53
health monitoring 55
health monitoring with 48
health-based automation,
programming techniques 46
health-based automation,
recommendations 55
health-based automation, recovery
techniques 42
interaction 49
monitoring, overview 48
session management, INGMTRAP 52
session management, INGOMX 49
usage scenario 54
OMEGAMON XE situation monitoring
defining monitor resources 55
overview 55
OMEGAMON XE situations,
monitoring 55
operator cascades 264

320

outbound gateway 150

autotask, defining 150
override

defining for message automation 26
overview

alerts 71

message automation 23

monitoring with OMEGAMON 48

P

panels
DISPACF 199, 203, 204
INGTHRES 196
JES2 203, 206
LOGREC 188, 189
SMF 191
SYSLOG 193
passive, event-based health
monitoring 44
persistent connection 130
persistent structure 130
physical sysplex, defining 141
PIPE labels 117
pipes
using for asynchronous hardware
commands 95
using for synchronous hardware
commands 94
policy
CFRM 129
couple data set 127
preference list 129
Preloader Reports 277

preventing
the building of AT, MRT and MPF
entries 25

primary CDS 127
problem determination mode
MVS guest target systems 97
process monitoring, z/OS UNIX
Automation 105
processing, WTOR 159
processor
defining 140, 143
PROCESSOR INFO policy item
using 140
processor operations
guest machines support 96
processor operations command
messages 91
processor operations commands 14
processor operations controlled resources,
automating 85
processor operations resource 85
processor operations resource message
automation 85
ProcOps Service Machine 96
guest target systems 96
programming
additional SA z/0OS automation
procedures 7
recommendations for automation
procedures 21
programming recommendations
automation procedures 21
proxy resource 86

System Automation for z/OS: Customizing and Programming

proxy resources
customizing automation for 86
shutdown considerations 87
startup considerations 87

pseudo-exits 181

PSM
See ProcOps Service Machine

R

RDS Table Editor 123
rebuild 130
system-managed 130
user-managed 130
recommendations
programming, for automation
procedures 21
recovery
"hung" command 133
alternate CDS 128
alternate CDS, customizing 128
auxiliary storage shortage 136
auxiliary storage shortage,
automating 146
command flooding 134
handling long-running enqueues 133
long running enqueues,
customizing 135
system log failure 184
system logger, customizing 129
system logger, directory shortage 129
WTO(R) buffer shortage 131
WTO(R) buffer shortage,
customizing 131
WTOR(R) buffer shortage,
enabling 142
recovery time, reporting 77
INGPUSMEF utility 80
INGPUSMF utility JCL 80
INGPUSMEF utility JCL, user
options 81
INGPUSME utility outrput 80
INGPUSMEF utility return codes 81
overview 77
resource lifecycle 77
SMF record layout 78
writing to DB2 82
redirection, batch job command
output 116
Relational Data Services 121
reload action exit 181
reload permission exit 181
RELOAD.ACTION flag 181
RELOAD.CONFIRM flag 181
reloading NetView automation table 93
REPLY actions
defining for message automation 24
reporting, availability and recovery
time 77
resolving
WTO(R) buffer shortages 131
resource lifecycle, events 77
resources, defining for long running
enqueues 145
restrictions and limitations, Linux console
messages 89
return codes, health status 43

REXX coding example 20
REXX PARSE 21
REXX trace type 19
routines
use in automation procedures 7

S

SA IOM 71
SA z/0S
commands ISQXIPM and
ISQCMMT 12

SA z/0S, defining VTAM application
to 155
sample
automation tables 31
scenario
OMEGAMON 54
SDF
and specific problems 249
components 251
customizing 243
customizing initialization
parameters 258
defining hierarchy 253
defining in automation control
file 258
defining in customization dialog 258
defining panels 254
definition process 252
for multiple systems 251
how it works 243

panels
definition 249, 254
types 243

starting and stopping 252
status descriptors 244
tree structures 245
SDFCONF command 255
second level systems, VM support 96
security considerations, Linux console
messages 89
serialize command processing 12
session management
OMEGAMON, INGMTRAP 52
OMEGAMON, INGOMX 49
setting up z/OS UNIX automation 102
example 108
SFM
See Sysplex Failure Management
shortcut keys xiii
shutdown considerations, proxy resource
automation 87
shutting down z/OS Systems from GDPS
environment 157
SMF data set processing 184
SMF report, writing to DB2 82
snapshot intervals, defining for long
running enqueues 146
spool monitoring, JES2 63
start definitions for z/OS UNIX
resources 106
started task job name
defining 146
startup considerations, proxy resource
automation 87
status change commands 168

status command support, extended
introduced 27
policy definitions 27
status descriptors 246
chaining to status components 246
propagating 248
status information 10
status messages
defining for message automation 24
stop definitions for z/OS UNIX
resources 106
structure 129
allocation 129
automation procedures, of 8
deallocation 130
duplexing 130
persistent 130
preference list 129
rebuild 130
system-managed rebuild 130
user-managed rebuild 130
SUBSAPPL 21

SUBSJOB 21
SUBSTYPE 21
subsystem

adding to automation 1

up at initialization commands 181
SVC dump processing 185
symbols

use with message automation 24
synchronous hardware commands, using

pipes and ISQCCMD for 94
syntax, batch job command
statement 116

SYSLOG processing 184
syslogd messages, trapping 111
sysplex automation

enabling 127
SYSPLEX couple data set 141
Sysplex Failure Management 135
sysplex functions 127

switching on and off 147
SYSPLEX policy item

defining 141
system

connecting to processor 140

defining 140
system log failure recovery 184
system logger

directory extent 129

log stream 128

log stream data set 128

LOGR couple data set 129

managing 128

recovery, customizing 129

recovery, directory shortage 129
system operations control files 93
system removal 135

enabling 142
system-managed rebuild 130

—~

TAF fullscreen sessions
defining 152

target systems, customizing 97

task global variables 11

TCP port monitoring, z/OS UNIX
Automation 106
temporary data set HLQ
defining 146
Terminal Access Facility 152
testing
automation procedures 18
messages 92
more information 21
NetView facilities 20
testing exits 182
Topology Manager 267
transaction recovery
IMS 186
TRAP AND WAIT processing 95
trapping UNIX syslogd messages 111

U

UNIX Automation

automated resources 105

debugging 112

file monitoring 106

hints and tips 111

process monitoring 105

setting up 102

setup example 108

TCP port monitoring 106
UNIX resources

customization of 102

definitions for 102

monitoring routines for 103

start and stop definitions 106
UNIX syslogd messages, trapping 111
UNIX System Services, integration 101
user exits 163

static exits 167
user logon, LINUX guest target

systems 97

user-managed rebuild 130
using

PROCESSOR INFO policy item 140
USS resources

automating 101

\'

VM second level systems support 96
VM target systems, customizing 98
VOST management, CICS monitoring 58
VSE guest target systems 97
VSE target systems, customizing 99
VTAM application, defining to

SA z/0OS 155

w

WTO(R)
processed, deletion from SDF 185
WTO(R) buffer 131
WTO(R) buffer shortage recovery
customizing 131
WTOR processing 159
WTOR(R) buffer shortage
recovery, enabling 142

321

Index

V4

z/0S systems, shutting down in a GDPS

z/0OS UNIX Automation (continued)
debugging 112
file monitoring 106

Environment 157 hints and tips 111

z/0S UNIX applications 101
infrastructure overview 102

z/0S UNIX Automation
automated resources 105

322

process monitoring 105
setting up 102

setup example 108

TCP port monitoring 106

System Automation for z/OS: Customizing and Programming

z/0OS UNIX resources
customization of 102
definitions for 102
monitoring routines for 103
start and stop definitions 106
z/0S UNIX System Services, integration
of 101

	Contents
	Figures
	Tables
	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Dotted decimal syntax diagrams
	How to send your comments to IBM
	If you have a technical problem

	About This Book
	Who Should Use This Book
	Prerequisites
	Where to Find More Information
	The System Automation for z/OS Library
	Related Product Information
	Using LookAt to look up message explanations

	Summary of Changes for SC34-2644-00
	New Information
	Changed Information
	Moved Information
	Deleted Information

	Chapter 1. How to Add a New Application to Automation
	Preparation Before Automating an Application
	Address Space properties
	Step 1 - Application Start
	Step 2 - Application Stop
	Step 3 - Application Events
	Step 4 - Application Monitoring
	Outstanding Reply Processing
	Topology

	Adding the Application to Automation
	Define an Application Policy Object
	Using Automated Discovery to Define Application Policy Objects
	Build New Automation Configuration Files

	Chapter 2. How to Create Automation Procedures
	How Automation Procedures Are Called
	How Automation Procedures Are Structured
	Performing Initialization Processing
	Determining whether Automation Is Allowed
	System Operations
	Processor Operations

	Performing Automation Processing
	Automation Processing in System Operations
	Automation Processing in Processor Operations

	How to Make Your Automation Procedures Generic
	Processor Operations Commands

	Developing Messages for Your Automation Procedures
	Example AOCMSG Call

	Example Automation Procedure
	Notes® on the Automation Procedure Example

	Installing Your Automation Procedures
	Testing and Debugging Automation Procedures
	The Assist Mode Facility
	Using Assist Mode to Test Automation Procedures
	Using AOCTRACE to Trace Automation Procedure Processing
	REXX Coding Example

	NetView Testing and Debugging Facilities
	Where to Find More Testing Information

	Coding Your Own Information in the Automation Status File
	Programming Recommendations
	Global Variable Names

	Chapter 3. How to Add a Message to Automation
	Conceptual Overview
	Defining Actions for Messages
	Defining CMD or REP Actions
	Defining AT Actions
	Defining Conditions for AT Entries
	Defining Status Messages
	Defining Captured Messages
	Preventing the Building of AT, MRT and MPF Entries

	Defining Message Overrides

	Extended Status Command Support
	Policy Definitions
	Special Considerations

	Defining Entries for the Message Revision Table
	Build
	AT and MRT Build Concept
	Load
	Listings

	A Guide to SA z/OS Automation Tables
	NetView Automation Table Structure
	Master Automation Tables

	Integrating Automation Tables
	Multiple Master Automation Tables
	Using SA z/OS %INCLUDE Fragments

	Generic Automation Table Statements

	System Operations Automation Flow
	Inheritance Rules for Classes
	Define Application Information
	Define Relationships
	Define Application Messages and User Data
	Define Startup Procedures
	Subsystem Startup Processing
	Startup Command Processing

	Define Shutdown Procedures
	Define Error Thresholds
	Define IMS Subsystem-Specific Data
	Automatic AT Generation

	Chapter 4. How to Monitor Applications
	Observed Status Monitoring
	Health Monitoring
	Overview
	Monitor Resource Commands
	Writing a Recovery Routine
	Recovery Techniques
	Task Global Variables for Recovery Routines

	Active Health Monitoring
	Passive, Event-Based Health Monitoring
	Overview
	Event Types
	Code Matching for Event-Triggering Messages

	Programming Techniques

	Health Monitoring using OMEGAMON
	Overview
	Assumptions
	OMEGAMON Interaction
	Using the INGOMX Programming Interface
	Using the INGMTRAP Monitor Command

	Health Monitoring Based on OMEGAMON Exceptions
	Defining the Monitor Resources
	Example Scenario
	Recommendations

	Health Monitoring Based on OMEGAMON XE Situations
	Overview
	Defining the Monitor Resources

	Health Monitoring using CICSPlex SM
	Component Overview
	Creating an Application to Manage the VOST
	Defining the Monitor Resources

	Monitoring JES3 Components
	AOFRJ3MN Routine
	AOFRJ3RC Routine

	JES2 Spool Monitoring
	DB2 Connection Monitoring
	IMS Component Monitoring

	Chapter 5. Joblog Monitoring
	Overview
	Limitations

	Customization
	Status Information

	Chapter 6. Alert-Based Notification
	Overview
	Communication Flow
	Enabling Alerting
	Setup in SA z/OS
	INGCNTL Command
	Inform List
	Code Processing

	INGALERT Command

	Chapter 7. Availability and Recovery Time Reporting
	Overview
	Resource Lifecycle
	Layout of the SMF Record
	Enabling SMF Records
	The INGPUSMF Utility
	Output
	The INGPUSMF Utility JCL
	User Options

	Return Codes

	Writing the SMF Report to DB2
	Customization
	Output

	Chapter 8. How to Automate Processor Operations-Controlled Resources
	Automating Processor Operations Resources of z/OS Target Systems Using Proxy Definitions
	Concept
	Customizing Automation for Proxy Resources
	Startup and Shutdown Considerations

	Preparing Message Automation

	Automating Linux Console Messages
	The Linux Console Connection to NetView
	Linux Console Automation with Mixed Case Character Data
	Security Considerations
	Restrictions and Limitations

	How to Add a Processor Operations Message to Automation
	Messages Issued by a Processor Operations Target System
	Sample NetView Automation Table Statements
	Message ISQ211I
	Processor Operations Command Messages
	Testing Messages

	Building the New Automation Definitions
	Loading the Changed Automation Environment

	Using Pipes and ISQCCMD for Synchronous HW Commands
	Automating Asynchronous Hardware Commands with ISQCCMD and PIPES
	VM Second Level Systems Support
	Guest Target Systems
	Customizing Target Systems
	LINUX
	MVS
	VM
	VSE

	Chapter 9. How to Automate USS Resources
	Integration of z/OS UNIX System Services
	Infrastructure Overview

	Setting Up z/OS UNIX Automation
	Customization of z/OS UNIX Resources
	Definitions for Automation Setup
	Definitions for z/OS UNIX Resources
	Automated Resources
	Start and Stop Definitions (INGUSS Command)

	Example: sshd

	Hints and Tips
	Trapping UNIX syslogd Messages
	Debugging

	Chapter 10. Command Receivers
	Setting Up the Command Receiver
	Setting Up TSO/Batch Environment
	Defining Command Receiver as a Subsystem Automated by SA z/OS
	Defining Command Work Tasks Used by the Command Receiver
	Starting and Stopping the Command Receiver
	Submitting NetView Commands from a Batch Job
	Sample Batch Job JCL
	Command Statement Syntax
	Valid Command Types
	Command Continuation
	Command Output Redirection

	Executing a Command on a Different NetView
	JCL for the Batch Command Interface
	AOFRYCMD Description

	Chapter 11. Enabling Relational Data Services (RDS)
	Enable/Disable Persistent Relational Data Services
	Import System Automation Resources
	Regular Snapshot
	RDS Initialization
	RACF Protection of INGRCRDX under TSO
	Enable and Disable RACF Checking
	RACF Profile and Class
	Install SA Provided Authorized TSO Command

	RDS Table Editor
	Add SA TSO REXX Library
	Define a RDS Working Data Set for Viewing/Editing under TSO
	Viewing a RDS Table within TSO
	Editing a RDS Table via TSO

	Chapter 12. How to Enable Sysplex Automation
	Sysplex Functions
	Managing Couple Data Sets
	Ensuring Continuous Availability of Couple Data Sets
	Customization

	Managing the System Logger
	Terms and Concepts
	Resizing the LOGR Couple Data Sets in Case of Directory Shortage
	Customization

	Managing Coupling Facilities
	Recovery Actions
	Resolving WTO(R) Buffer Shortages
	Handling Long-Running Enqueues (ENQs)
	Managing System Removal
	Recovering Auxiliary Storage Shortage

	Hardware Validation
	Prerequisites

	Enabling Hardware-Related Automation
	Step 1: Defining the Processor
	Step 2: Using the Policy Item PROCESSOR INFO
	Step 3: Defining Logical Partitions
	Step 4: Defining the System
	Step 5: Connecting the System to the Processor
	Step 6: Defining Logical Sysplexes
	Step 7: Defining the Physical Sysplex

	Enabling Continuous Availability of Couple Data Sets
	Enabling WTO(R) Buffer Shortage Recovery
	Enabling System Removal
	Step 1: Defining the Processor and System
	Step 2: Defining the Application with Application Type IMAGE
	Step 3: Defining an Application Group
	Step 4: Automating IXC102A and IXC402D Messages
	Step 5: Verify Automation table entries

	Enabling Long Running Enqueues (ENQs)
	Step 1: Defining Resources
	Step 2: Making Job/ASID Definitions
	Step 3: Defining IEADMCxx Symbols
	Step 4: Defining Commands
	Step 5: Defining Snapshot Intervals

	Enabling Auxiliary Storage Shortage Recovery
	Step 1: Defining the Local Page Data Set
	Step 2: Defining the Handling of Jobs

	Defining Common Automation Items
	Customizing the System to Use the Functions
	Additional Automation Operator IDs
	Switching Sysplex Functions On and Off

	Chapter 13. Automating Networks
	Automation Network Definition Process
	Defining an SDF Focal Point System
	Defining Gateway Sessions
	Defining an Outbound Gateway Autotask

	Defining Automatically-Initiated TAF Fullscreen Sessions

	Chapter 14. Defining a VTAM Application to SA z/OS
	Registering VTAM Application Subsystems with SA z/OS Recovery

	Chapter 15. Shutting Down z/OS systems in a GDPS Environment
	Example Definition

	Chapter 16. WTOR Processing
	Process Flow of WTORs
	Actions in Response to Incoming WTORs
	Customizing how WTORs Are Stored by SA z/OS
	Processing of Primary WTORs
	Example
	Restrictions

	Usage Notes

	Chapter 17. SA z/OS User Exits
	Initialization Exits
	AOFEXDEF
	AOFEXI01
	AOFEXI02
	AOFEXI03
	AOFEXI04
	AOFEXI05
	AOFEXI06
	AOFEXINT

	Environmental Setup Exits
	Parameters
	Return Codes
	Usage Notes

	Static Exits
	AOFEXSTA
	AOFEXX02
	AOFEXX03
	AOFEXX04
	AOFEXX05
	AOFEXX15

	Flag Exits
	Parameters
	Task Global Variables
	Return Codes

	Customization Dialog Exits
	User Exits for BUILD Processing
	User Exits for COPY Processing
	User Exits for DELETE Processing
	User Exits for CONVERT Processing
	User Exits for RENAME, and IMPORT Functions
	Invocation of Customization Dialog Exits

	Command Exits
	AOFEXC00
	AOFEXC01
	AOFEXC02
	AOFEXC03
	AOFEXC04
	AOFEXC05
	AOFEXC06
	AOFEXC07
	AOFEXC08
	AOFEXC09
	AOFEXC10
	AOFEXC11
	AOFEXC12
	AOFEXC13
	AOFEXC14
	AOFEXC15
	AOFEXC16
	AOFEXC17
	AOFEXC18
	AOFEXC19
	AOFEXC20
	AOFEXC21
	AOFEXC22
	AOFEXC23
	AOFEXC24

	Pseudo-Exits
	Automation Control File Reload Permission Exit
	Automation Control File Reload Action Exit
	Subsystem Up at Initialization Commands

	Testing Exits

	Chapter 18. Automation Solutions
	LOGREC Data Set Processing
	SMF Data Set Processing
	SYSLOG Processing
	System Log Failure Recovery
	SVC Dump Processing
	Deletion of Processed WTORs from the Display
	AMRF Buffer Shortage Processing
	Drain Processing Prior to JES2 Shutdown
	IMS Transaction Recovery
	AOFRSA01
	AOFRSA02
	AOFRSA03
	AOFRSA08
	AOFRSA0C
	AOFRSA0E
	AOFRSA0G
	AOFRSD07
	AOFRSD09
	AOFRSD0F
	AOFRSD0G
	AOFRSD0H
	HASP099
	INGRMJSP
	INGRCJSP (AOFRSD01)
	INGRTAPE
	INGRX740

	Chapter 19. Automated System Resource Discovery
	Disclaimer
	Components Overview
	Overview of Using the Automated System Resource Discovery Process
	Step 1: Using The Discovery Engine
	Extraction of the Discovery Engine
	Preparing the Discovery Jobs
	Running the Discovery Jobs

	Step 2: Building the Automation Policy
	Step 2a: The Preloader
	Gathering of the Snapshot Files
	Preparing the Preloader Job
	Running the Preloader Job
	Step 2b: The Importer

	Extending Automated Modelling
	Mapping Files

	Finalizing the Target Policy
	Creating and preparing a Reference Policy
	Importing from the Reference Policy
	Avoiding multiple entries for the same application
	Changing the Name of an APL.
	Target Policy Ready for Build

	Building the Configuration Control Data
	Troubleshooting

	Appendix A. Global Variables
	Read-Only Variables
	Read/Write Variables
	Parameter Defaults for Commands

	Appendix B. Customizing the Status Display Facility
	Overview of the Status Display Facility
	How the Status Display Facility Works
	Types of SDF Panels
	Root Component
	Status Component
	Detail Status Display

	Status Descriptors
	SDF Tree Structures
	How Status Descriptors Affect SDF
	Priority and Color Assignments
	Chaining of Status Descriptors to Status Components
	Propagating Status Descriptors Upward and Downward in a Tree Structure

	How SDF Helps Operations to Focus on Specific Problems
	How SDF Panels Are Defined
	Dynamically Loading Tree Structure and Panel Definition Members
	Using SDF for Multiple Systems
	SDF Components
	How the SDF Task Is Started and Stopped
	Starting the SDF Task
	Stopping the SDF Task

	SDF Definition Process
	Step 1: Defining SDF Hierarchy
	Tree Structure Definitions

	Step 2: Defining SDF Panels
	Panel Definition Methods
	Panel Definition Structure
	Recommended Order for Defining Panels
	Example Panel Definition
	%INCLUDE Statement for SDF Panels

	Step 3: (Optional) Customizing SDF Initialization Parameters
	Step 4: (Optional) Defining SDF in the Customization Dialog

	Appendix C. How System Operations Coordinates with Automatic Restart Manager
	Defining an ARM Element Name
	Defining a MOVE Group for Automatic Restart Manager

	Appendix D. Message Automation
	Generic Synonyms: AOFMSGSY
	SA z/OS Message Presentation: AOFMSGSY
	Operator Cascades: AOFMSGSY
	SA z/OS Topology Manager for NMC: AOFMSGST

	Appendix E. TSO User Monitoring
	Appendix F. Autodiscovery Mapper Files and Report Formats
	Mapper Files
	Functions
	Address Space Identification Mapping File (INGSMAID / INGSMAIU)
	XCF Group Identification Mapping File (INGSMGRP / INGSMGRU)
	XCF Group Member Identification Mapping File (INGSMGMB / INGSMGMU)
	USS Process Identification Mapping File (INGSMUID / INGSMUIU)
	Policy Mapping File (INGSMPLU / INGSMPLY)
	Variable Mapping File (INGSMVRS / INGSMVRU)

	Preloader Reports
	Summary Report
	XCFGROUP Report
	ARMGROUP Report
	ASDETAIL Report
	EXCLUDE Report
	CONSTRCT Report
	SYMBOLS Report
	KBIMPORT Report
	KBMAP Report
	SUBSYS Report

	Appendix G. Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

