
System Automation for z/OS

OPC Automation

Programmer’s Reference

and Operator’s Guide

Version 2 Release 3

SC33-7046-08

���

System Automation for z/OS

OPC Automation

Programmer’s Reference

and Operator’s Guide

Version 2 Release 3

SC33-7046-08

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

xi.

Eleventh Edition (October 2005)

This edition applies to System Automation for z/OS Version 2 Release 3 (5645–006), an IBM licensed program, and

to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address given below.

A form for readers’ comments appears at the back of this publication. If the form has been removed, address your

comments to:

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

FAX: (Germany) 07031-16-3456

FAX: (Other countries) (+49)+7031-16-3456

Internet: s390id@de.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1990, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

Notices xi

Trademarks xi

About This Book xiii

Who Should Use This Book xiii

What’s in This Book? xiii

Notation for Format Descriptions xiii

Related Publications xiv

The System Automation for z/OS Library . . . xiv

Related Product Information xv

Using LookAt to look up message explanations xvii

Accessing z/OS licensed documents on the

Internet xvii

Part 1. Introducing OPC Automation 1

Chapter 1. Principal Concepts of

SA z/OS 3

Automation Policies 3

Goal-Driven Automation 4

Dependencies, Request Propagation, and Desired

State 4

Persistency of Requests and Conflicting Requests . . 6

Triggers 7

Service Periods 8

Application Groups 8

SA z/OS and the NetView Automation Table . . . 9

Chapter 2. Functions of OPC

Automation 11

Basic Concepts 11

OPC to SA z/OS functions 11

SA z/OS to OPC functions 11

Defining System Automation for z/OS to Tivoli

Workload Scheduler 12

Defining Tivoli Workload Scheduler to System

Automation for z/OS 12

System Initialization with OPC Automation . . . 13

NetView Interface to OPC Automation 14

OPC Automation Special Resources 14

Possible Uses of OPC Automation 15

Changing Online Hours of Availability 15

Cycling Individual Online Databases 16

Scheduling Time for Testing 17

Distributing and Updating Data Across Multiple

Systems 17

Complex Application Recovery 18

Part 2. Operator’s Guide 21

Chapter 3. Managing the PPI Receivers 23

Starting and Stopping the Request Receiver . . . 23

Starting and Stopping the Command Receivers . . 24

Chapter 4. Managing the OPC Current

Plan 25

Selecting the OPC Controller to Access 25

Using Multiple Resource Definitions 25

Using Wildcards 25

Using Application Groups 25

Indirectly Selecting a Controller 26

Displaying the Current Plan 26

Displaying OPC Applications 26

Displaying OPC Operations 30

Displaying OPC Special Resources 34

Displaying OPC Workstations 34

Displaying OPC Calendars 37

Modifying the Current Plan 38

Line Mode Modifications 38

Modifying OPC Applications via Panel

Interaction 39

Modifying OPC Operations via Panel Interaction 39

Modifying OPC Special Resources via Panel

Interaction 41

Modifying OPC Workstations via Panel

Interaction 41

Chapter 5. Monitoring using SDF . . . 43

Chapter 6. NMC Display Support . . . 47

NMC Resource Definitions 47

OPC Naming Convention 47

TSO Naming Convention 47

NMC BuildViews for OPC objects 47

Part 3. Programmer’s Reference . . 49

Chapter 7. Installing OPC Automation 51

Enabling and Disabling OPC Automation 51

Defining System Automation Policy 51

Define SA z/OS Automation Operators 52

RMTCMD Security Considerations 52

Define Optional Workstations 52

Non-MVS Subsystem Definition for the OPC

Request Server 53

Non-MVS subsystem definition for the OPC

Command Server 54

Define Workstation Domain Entries 54

Define Controller Details 54

Define System Details 54

Define Special Resources Policy 54

Define or Modify Subsystem Messages/User

Data 54

Define SDF Statuses 55

© Copyright IBM Corp. 1990, 2005 iii

 | |

Defining the SA z/OS Status Observer 55

Status Observer Definitions 56

Chapter 8. Submitting NetView

Commands from a Batch Job 59

Sample Batch Job JCL 59

Command Statement Syntax 59

Valid Command Types 60

Command Continuation 60

Command Output Re-Direction 60

Executing a Command on a Different NetView . . 60

Chapter 9. The Batch Command

Interface 61

JCL for the Batch Command Interface 61

EVJRYCMD Description 63

Chapter 10. Using OPC Special

Resources 65

OPC Special Resource Definition 65

Enabling SA z/OS OPC Special Resources 65

Using SA z/OS OPC Special Resources in an

Application 66

Holding an Operation until an SA z/OS

Resource Reaches a Desired State 66

Starting or Stopping an SA z/OS Resource . . . 67

Chapter 11. The Structure of OPC

Request Automation 69

Flow Overview 69

Initialization 69

Request Flow 69

Automated Operator Tasks 77

Initialization 77

Startup of OPC Components 77

Startup of OPC-Controlled Subsystems 78

Request and Confirmation Transaction Flow . . . 79

Request Buffers and OPC Automation Log Entries 81

Request Handling in the OPC Controller System . . 82

Request Handling in the OPC Tracker System . . . 84

Completion and Timer Flags 85

Operations Control 85

EVJESPIN Module 85

Obtaining Information from OPC 86

Automated Recovery 87

Chapter 12. Automating Applications

with OPC Automation 89

Defining Automated OPC Applications 89

Defining Information for OPC Automation in

OPC 89

Example of an Application Making a Request . . 92

Executing OPC Requests with OPC Automation . . 96

OPC Requests and MESSAGES/USER DATA

Keywords 96

Request Parameters and the &EHKVARi

Variables 98

Request Types 100

Chapter 13. MESSAGES/USER DATA

Entries and USER E-T Pairs for OPC

Automation 103

Translating Format Descriptions 103

OPC-Specific MESSAGES/USER DATA Keywords 108

OPCA 109

OPCACMD 112

OPCAPARM 116

Chapter 14. OPC Automation Common

Routines and Data Areas 119

OPC Automation Common Routines 119

EVJESHUT 120

OPCACAL 121

OPCACMD 122

OPCACOMP 124

OPCALIST 125

OPCAMOD 127

OPCAPOST 130

OPCSRST 131

Data Areas 132

Requestor ID Block (&EHKVAR9) 132

Request Buffer 133

Chapter 15. Guidelines for

User-Written Operations 135

User Functions Related to an SA z/OS-Defined

Subsystem 135

Flow of Control 135

Implementing Completion of a Request . . . 136

Non-Subsystem Operations 139

Flow of Control 140

Parameters Passed to a User Exit 141

Interaction with CICS Automation 141

Interaction with IMS Automation 142

Chapter 16. OPC Automation Operator

Commands 145

OPC Automation Main Menu and Tutorials . . . 146

DFCRIT 147

DFUPDT 148

EVJESPIN — Initialization 149

OPCACMD — Interacting Dynamically with OPC 149

DFTSOU 150

OPCAQRY — Display Status of Operations . . . 151

Selecting Actions 152

OPCAPOST — Posting an OPC Operation from

SA z/OS 154

SRSTAT — Determining OPC Special Resource

Status 155

Chapter 17. Resynchronization and

Recovery Considerations 157

Examples and Scenarios 157

Loss of Contact Between OPC and OPC

Automation 157

Backup on a Different Processor 158

Long Term Outage 159

iv System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Example Using Doubly-Defined NetView

Domain IDs 160

Automated Recovery Functions 161

OPC Actions in a Loss of Contact Situation . . 161

OPC Automation Actions in a Loss of Contact

Situation 161

Glossary of Terms 163

Index 171

Contents v

vi System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Figures

 1. Example of Start Dependencies 5

 2. Example of Conflicting Requests 6

 3. Example of a Request Involving a Group 9

 4. Example of Cycling Individual Online

Databases 16

 5. OPC Applications Interface Panel 27

 6. OPC Applications Interface Panel, Screen 2 28

 7. OPC Applications Interface Panel, Screen 3 29

 8. OPC Operations Interface Panel 30

 9. OPC Operations Interface Panel, Screen 2 31

10. OPC Operations Interface Panel, Screen 3 32

11. OPC Operations Interface Panel, Screen 4 33

12. OPC Special Resources Interface Panel . . . 34

13. OPC Workstations Interface Panel 35

14. OPC Workstations Interface Panel, Screen 2 36

15. OPC Calendar Interface Panel 37

16. OPC Applications Modification Panel 39

17. OPC Operations Modification Panel 40

18. OPC Operations Modification Panel, Screen 2 40

19. OPC Operations Modification Panel, Screen 3 41

20. OPC Special Resources Modification Panel 41

21. OPC Workstations Modification Panel 42

22. Status Display Facility Main Panel 44

23. The OPC Monitor Panel 44

24. Sample OPC Buildviews Statements 47

25. Sample TSO Buildviews Statements 48

26. Defining Workstation User Message Policy 53

27. OPC Observer Relationships 56

28. Sample JCL for the Batch Command Interface 62

29. Creating a Special Resource 66

30. Creating the Operations 67

31. Special Resource for Operation 005 67

32. NetView-OPC Interface Flow 70

33. EQQUX007 Exit 71

34. PPI Dispatcher 72

35. Verify Module 72

36. Request Module 74

37. Status Change Module 75

38. Timer Module 76

39. OPCAPOST Command Processor 76

40. OPC/ESA Startup During IPL Process . . . 78

41. NetView–OPC Interface Flow 80

42. NetView Log Entry of an OPC Generated

Request 82

43. Request Handling in the OPC Controller

Processor 83

44. Request Flow for a Base SA z/OS Function 84

45. Sample NVxx Workstation Definition in OPC 90

46. Defining the MAINT Application in OPC 91

47. ’Operations’ OPC Panel Showing OPC

Automation Requests 91

48. Request Using Optional Parameters 92

49. Browsing Operations Including OPC

Automation Requests 92

50. RMF Maintenance Application Primary Panel

in OPC 93

51. Operations in the MAINT Application . . . 93

52. Operations Text Detail Panel 94

53. Using Time as a Dependency 95

54. OPC/ESA Operations Panel 97

55. Specifying the Command for a Request 97

56. Specifying Expected Status and Time Interval 98

57. Specifying a Command that Requires

Parameter Information 99

58. Specifying Expected Status and Time Interval

for Different Request Parameters 100

59. Message Processing Panel of the

Customization Dialogs 1 104

60. CMD Processing Panel of the Customization

Dialogs 105

61. Message Processing Panel of the

Customization Dialogs 2 106

62. Code Processing Panel of the Customization

Dialogs 107

63. OPCACMD in a USER E-T Pair 108

64. Request Flow for a Subsystem-Related User

Function 136

65. User Exit UXxxxxxx Flow 139

66. Condition Code Driven Application Flow 140

67. OPCACMD Entry for Interaction with CICS 142

68. Defining Sample CICS Application in OPC 142

69. OPCACMD Entry for Interaction with IMS 143

70. Defining Sample IMS Application in OPC 143

71. SA/OPC – Main Menu 146

72. SA/OPC - Operation Status Display Panel 151

73. OPC Automation: Operation Status Detail

Panel 153

74. Mapping of NVxx Workstations to Domain

IDs 160

© Copyright IBM Corp. 1990, 2005 vii

viii System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Tables

 1. System Automation for z/OS Library xiv

 2. Related Products Books xv

 3. OPC Resource Type Selection Criteria

Parameters 38

 4. INGOPC TYPE= Parameters Matched to OPC

Resource Types. 39

 5. Automation Operators 52

 6. OPC Status Observer Application Policy

Definitions 56

 7. OPC Automation Items Defined in OPC 89

 8. Lengths and Values of Task Global Variable

(EHKVAR9) 132

 9. Request Buffer Layout for Standard

Subsystem Operations 133

10. Request Buffer Layout for Non-Subsystem,

User Extension (UXaaaaaaa) Operations . . . 133

11. OPC Automation Commands 145

© Copyright IBM Corp. 1990, 2005 ix

x System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of

the intellectual property rights of IBM may be used instead of the IBM product,

program, or service. The evaluation and verification of operation in conjunction

with other products, except those expressly designated by IBM, are the

responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Deutschland Entwicklung GmbH

 Department 3248

 Schoenaicher Strasse 220

 D-71032 Boeblingen

 Federal Republic of Germany

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries:

 CICS IBM IMS

MVS MVS/ESA NetView

OS/390 PR/SM RACF

RMF S/390 SP

Tivoli VTAM z/OS

© Copyright IBM Corp. 1990, 2005 xi

xii System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

About This Book

This book describes how to customize and operate OPC Automation. The OPC

Automation part of Tivoli® System Automation for z/OS® (SA z/OS) brings

together batch and online console automation into a common focal point. OPC

Automation automates, simplifies, and standardizes console operations and the

management of component, application, and production related tasks.

Note: OPC Automation is now a part of IBM® Tivoli Workload Scheduler. For

consistency, references to OPC and OPC Automation have been maintained

in this book. However, there are some references to Tivoli Workload

Scheduler, which you should read as OPC Automation.

Who Should Use This Book

This book is intended for the following user groups:

v System programmers, system designers, and application designers who will

customize OPC Automation.

For these users, all three parts of the book will be of interest.

Installing and customizing OPC Automation requires a programmer’s

understanding of NetView, OPC, SA z/OS, and OPC Automation, because most

of the definitions take place in these programs. Also, you will modify JCL,

command lists, and programs for some of the automation functions

v Operators and administrators who manage and monitor OPC.

For operators, a working knowledge of OPC will be assumed.

What’s in This Book?

This book contains the following:

Part 1, “Introducing OPC Automation”

Explains some main concepts of SA z/OS and describes the functions of

OPC Automation.

Part 2, “Operator’s Guide”

Describes the actions that an operator can perform with OPC Automation

commands.

Part 3, “Programmer’s Reference”

Describes the information needed by system programmers to install and

customize the OPC Product Automation of System Automation for z/OS. It

also describes the old SA z/OS OPC Automation interfaces. These

interfaces are provided for compatibility and may be removed in a future

release.

Notation for Format Descriptions

The reference sections of this manual contain format descriptions of commands

and of entries in the SA z/OS policy database. The notation used for these

descriptions is as follows:

v Items shown in braces { } represent alternatives. You must choose one. For

example,

© Copyright IBM Corp. 1990, 2005 xiii

{A|B|C}

indicates that you must specify one item only: A, B, or C.

v Items shown in brackets [] are optional. You may choose one. For example,

[A|B|C]

indicates that you may enter A, B, or C, or you may omit the operand.

v A series of three periods (...) indicates that a variable number of items may be

included in the list.

v An underscored item shows the default that the system will choose if you do

not specify an item. For example,

[A|B|C]

indicates that if no operand is specified, B is assumed.

v Lowercase italicized items are variables; substitute your own value for them.

v Uppercase items must be entered exactly as shown.

v Parentheses must be entered as shown.

v Where operands can be abbreviated, the abbreviations are shown in capital

letters. For example, ALL can be entered as A or ALL.

v Commas are used as delimiters between parameters. The last parameter does

not require a comma after it. Because of this, we place the comma in front of a

parameter to show that if you add this parameter, you need a comma, as for

example in

XYZ [A[,B[,C]]]

However, the comma follows the preceding parameter and needs to be on the

same line as that parameter.

Related Publications

The System Automation for z/OS Library

The following table shows the information units in the System Automation for

z/OS library:

 Table 1. System Automation for z/OS Library

Title Order Number

System Automation for z/OS Planning and Installation SC33-8260

System Automation for z/OS Customizing and Programming SC33-8261

System Automation for z/OS Defining Automation Policy SC33-8262

System Automation for z/OS User’s Guide SC33-8263

System Automation for z/OS Messages and Codes SC33-8264

System Automation for z/OS Operator’s Commands SC33-8265

System Automation for z/OS Programmer’s Reference SC33-8266

System Automation for z/OS CICS Automation Programmer’s Reference and

Operator’s Guide

SC33-8267

System Automation for z/OS IMS Automation Programmer’s Reference and

Operator’s Guide

SC33-8268

System Automation for z/OS OPC Automation Programmer’s Reference and

Operator’s Guide

SC23-8269

System Automation for z/OS Licensed Program Specifications GI11-2690

xiv System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

The System Automation for z/OS books are also available on CD-ROM as part of

the following collection kit:

 IBM Online Library z/OS Software Products Collection (SK3T-4270)

SA z/OS Home Page

For the latest news on SA z/OS, visit the SA z/OS home page at

http://www.ibm.com/servers/eserver/zseries/software/sa

Related Product Information

The following table shows the books in the related product libraries that you may

find useful for support of the SA z/OS base program.

 Table 2. Related Products Books

Title Order Number

ISPF User’s Guide SC34-4484

ISPF Dialog Management Guide and Reference SC34-4266

MVS/ESA™ MVS Configuration Program Guide and Reference GC28-1817

MVS/ESA Planning: Dynamic I/O Configuration GC28-1674

MVS/ESA Support for the Enterprise Systems Connection GC28-1140

MVS/ESA Planning: APPC Management GC28-1110

MVS/ESA Application Development Macro Reference GC28-1822

OS/390®: MVS System Commands GC28-1781

MVS/ESA SPL Application Development Macro Reference GC28-1857

OS/390 Hardware Configuration Definition: User’s Guide SC28-1848

OS/390 Information Roadmap GC28-1727

OS/390 Information Transformation GC28-1985

OS/390 Introduction and Release Guide GC28-1725

OS/390 JES Commands Summary GX22-0041

OS/390 Licensed Program Specifications GC28-1728

OS/390 Printing Softcopy Books S544-5354

OS/390 Starting Up a Sysplex GC28-1779

OS/390 Up and Running! GC28-1726

Planning for the 9032 Model 3 and 9033 Enterprise Systems

Connection Director

SA26-6100

Resource Access Control Facility (RACF®) Command Language

Reference

SC28-0733

S/390® MVS Sysplex Overview -- An Introduction to Data Sharing

and Parallelism

GC23-1208

S/390 MVS Sysplex Systems Management GC23-1209

S/390 Sysplex Hardware and Software Migration GC23-1210

S/390 MVS Sysplex Application Migration GC23-1211

S/390 Managing Your Processors GC38-0452

Tivoli/Enterprise Console User’s Guide Volume I GC31-8334

Tivoli/Enterprise Console User’s Guide Volume II GC31-8335

About This Book xv

http://www.ibm.com/servers/eserver/zseries/software/sa

Table 2. Related Products Books (continued)

Title Order Number

Tivoli/Enterprise Console Event Integration Facility Guide GC31-8337

Tivoli NetView® for OS/390 Administration Reference SC31-8222

Tivoli NetView for OS/390 Application Programming Guide SC31-8223

Tivoli NetView for OS/390 APPN Topology and Accounting Agent SC31-8224

Tivoli NetView for OS/390 Automation Guide SC31-8225

Tivoli NetView for OS/390 AON Customization Guide SC31-8662

Tivoli NetView for OS/390 AON User’s Guide GC31-8661

Tivoli NetView for OS/390 Bridge Implementation SC31-8238

Tivoli NetView for OS/390 Command Reference Vol. 1 SC31-8227

Tivoli NetView for OS/390 Command Reference Vol. 2 SC31-8735

Tivoli NetView for OS/390 Customization Guide SC31-8228

Tivoli NetView for OS/390 Customization: Using Assembler SC31-8229

Tivoli NetView for OS/390 Customization: Using Pipes SC31-8248

Tivoli NetView for OS/390 Customization: Using PL/I and C SC31-8230

Tivoli NetView for OS/390 Customization: Using REXX and CLIST

Language

SC31-8231

Tivoli NetView for OS/390 Data Mode Reference SC31-8232

Tivoli NetView for OS/390 Installation: Getting Started SC31-8767

Tivoli NetView for OS/390 Installation: Migration Guide SC31-8768

Tivoli NetView for OS/390 Installation: Configuring Graphical

Components

SC31-8770

Tivoli NetView for OS/390 Installation: Configuring Additional

Components

SC31-8769

Tivoli NetView for OS/390 Messages and Codes SC31-8237

Tivoli NetView for OS/390 MultiSystem Manager User’s Guide SC31-8607

Tivoli NetView for OS/390 NetView Management Console User’s

Guide

GC31-8665

Tivoli NetView for OS/390 User’s Guide SC31-8241

Tivoli NetView for OS/390 RODM and GMFHS Programming Guide SC31-8233

Tivoli NetView for OS/390 Security Reference SC31-8606

Tivoli NetView for OS/390 SNA Topology Manager and APPN

Accounting Manager Implementation Guide

SC31-8239

Tivoli Management Platform Reference Guide GC31-8324

TSO/E REXX/MVS User’s Guide SC28-1882

TSO/E REXX/MVS Reference SC28-1883

VM/XA SP™ GCS Command and Macro Reference SC23-0433

VSE/SP Unattended Node Support SC33-6412

VTAM® Messages and Codes SC31-6493

VTAM V3R3 Network Implementation Guide SC31-6404

VTAM V3R4 Network Implementation Guide SC31-6434

xvi System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most messages

you encounter, as well as for some system abends and codes. Using LookAt to find

information is faster than a conventional search because in most cases LookAt goes

directly to the message explanation.

You can access LookAt from the Internet at:

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/ or from anywhere in

z/OS or z/OS.e where you can access a TSO/E command line (for example,

TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS).

The LookAt Web site also features a mobile edition of LookAt for devices such as

Pocket PCs, Palm OS, or Linux-based handhelds. So, if you have a handheld

device with wireless access and an Internet browser, you can now access LookAt

message information from almost anywhere.

To use LookAt as a TSO/E command, you must have LookAt installed on your

host system. You can obtain the LookAt code for TSO/E from a disk on your z/OS

Collection (SK3T-4269) or from the LookAt Web site’s Download link.

Accessing z/OS licensed documents on the Internet

z/OS licensed documentation is available on the Internet in PDF format at the IBM

Resource Link™ Web site at:

http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to

these documents requires an IBM Resource Link user ID and password, and a key

code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that

includes this key code.

1

To obtain your IBM Resource Link user ID and password, log on to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered

for access to them and received an e-mail confirmation informing you that

your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or

IBM Resource Link to print licensed documents.

1. z/OS.e™ customers received a Memo to Licensees, (GI10-0684) that includes this key code.

About This Book xvii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

xviii System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Part 1. Introducing OPC Automation

This part describes some main concepts of SA z/OS, including some

NetView-related information, and gives an overview of the facilities offered by

OPC Automation.

Subtopics:

v Principal Concepts of SA z/OS

v Functions of OPC Automation

© Copyright IBM Corp. 1990, 2005 1

2 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 1. Principal Concepts of SA z/OS

This section sketches some fundamentals of SA z/OS. For more detailed

information see the SA z/OS documentation.

Automation Policies

System automation primarily deals with starting and stopping applications in

accordance with their interrelationships. These interrelationships include

dependencies of applications on other applications as well as being a component

application of an application complex. Also, system automation supports

permanent availability of an application by moving the application to another

system in case of an unrecoverable abend (see “Application Groups” on page 8).

All applications and systems that you want to include in automation must be

defined to SA z/OS in an automation policy database. This database contains the

objects to be managed by SA z/OS, and the rules according to which automation

of these objects proceeds. You access the policy database from the so-called

customization dialogs. The customization dialogs are described in System Automation

for z/OS Defining Automation Policy.

The objects that are defined in the policy database are called policy objects or entries.

Applications and systems, for example, are policy objects. Every policy object

belongs to an entry type which is identified by a three letter code; thus, applications

belong to the entry type APL.

Policy objects have automation-related properties and are associated with one

another; these properties and connections are called policy items. For example, there

is a policy item STARTUP for applications that specifies how SA z/OS is to start

the application.

What you enter in the policy database are policy objects. However, the objects that

can be automated are not these policy objects, but so-called resources, which are

automatically generated from the policy objects.

This is especially important in the case of applications, since the resources that

correspond to an application always represent a subsystem, that is, a combination of

the application with a system on which it is intended to run; thus, one application

can correspond to several subsystems. These resources are generated when an

application is linked to a system in the policy database. Note also that some

properties and connections are defined on the application (policy object) level (see

“Triggers” on page 7) and handed down to all corresponding resources, while

others are specified at the resource level (see “Dependencies, Request Propagation,

and Desired State” on page 4), and therefore only apply to that resource.

The names of the resources have the following format:

resource_name/entry_type[/system_name]

The most common entry types are APL (application), APG (application group), and

SYS (system). The system name is omitted when the resource is associated with a

sysplex, and not a single system.

© Copyright IBM Corp. 1990, 2005 3

The policy database must be converted into an automation control file (ACF) in order

to be accessible to SA z/OS.

Goal-Driven Automation

A basic concept of SA z/OS is to distinguish between the desired state of a resource

and (broadly speaking) its actual state. Every resource has a desired state, which is

either AVAILABLE or UNAVAILABLE; AVAILABLE is the default. This desired

state, which is also called the automation goal, can be different from the actual

state; a resource whose desired state is to be running (AVAILABLE), can actually

be down. SA z/OS always tries to keep the actual state in line with the desired

state, but sometimes this is not possible.

SA z/OS is called goal driven because all requests that can be made to it from the

outside refer to the desired state of the target resource. When an operator passes a

start request for a resource to SA z/OS, this is a request to set the desired state of

the resource to AVAILABLE. It is up to SA z/OS to decide whether (1) this is at all

possible, and if so, whether (2) the actual state can be modified accordingly:

1. Making a request does not automatically lead to a change of the desired state

of the target resource. Rather, SA z/OS compares the priority of the new

request with that of the last successful request. Only when the new request has

a higher priority does SA z/OS change the desired state of the resource. Note

that this presupposes that the old request is still available. For more details on

this topic, see “Persistency of Requests and Conflicting Requests” on page 6.

2. The latter decision mainly depends on the dependencies between the target

resource and other resources, and on the triggers that may have been associated

with it. Dependencies and triggers are defined in the policy database. For more

information, see “Dependencies, Request Propagation, and Desired State,” and

“Triggers” on page 7.

Dependencies, Request Propagation, and Desired State

One of the main tasks of system automation when starting or stopping a resource

is to consider the dependencies that exist between the resource to be

started/stopped and other resources. Certain resources can only be started when

certain other resources are already running (start dependencies), and certain

resources can only be stopped when certain other resources are already down (stop

dependencies). Note that start and stop dependencies are in principle independent

of each other, although if A can only be started when B is running, then it will, as

a rule, not be possible to stop B unless A has been stopped beforehand.

Such dependencies can be specified in the policy database. The only restriction is

that the dependent and the supporting resource must belong to the same sysplex

(they need not reside on the same system). SA z/OS takes dependencies into

account when it is requested to start or to stop a resource. By default, it will try to

start/stop all resources on which the target resource of the request directly or

indirectly depends. The mechanism by which this is accomplished is called request

propagation. It is best explained by an example.

Example 1: Let A, B, and C be resources so that A can only be started when B is

running, and B can only be started when C is running. C is supposed

to have no start dependencies. Suppose, furthermore, that A, B, and C

are all actually down, and that this conforms to their desired state

(which is UNAVAILABLE).

4 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Finally, assume that A, B, and C are not associated with any trigger

(for the significance of this, see “Triggers” on page 7), and that there

are no requests pending for any of the three resources (see

“Persistency of Requests and Conflicting Requests” on page 6).

This situation is displayed in Figure 1. The labels of the arrows specify the

dependency type. MakeAvailable/WhenAvailable is the format in which SA z/OS

specifies that the dependent (lower) resource, which is referred to by

MakeAvailable, can only be started when the supporting (upper) resource, referred

to by WhenAvailable, is running.

 When SA z/OS receives a request to start A, the following chain of events will

occur:

1. The request is propagated:

a. Since A can only be started when B is running, a start request is put to B.

b. Since B can only be started when C is running, a start request is put to C.
2. In response to these requests, the desired state of all three resources is changed

to AVAILABLE.

3. SA z/OS tries to change the actual state of the resources according to their

desired state:

a. At first, only C, which has no start dependencies, can be started. B and A

cannot be started because C and B are not yet running.

b. Then B will be started, because C is now available.

c. Finally, A is started.

The propagated requests are usually called votes instead of requests.

In example 1, the request propagation is uniform; the desired state of all three

resources is set to AVAILABLE because the condition of the dependency

relationships is WhenAvailable in both cases. This is not always the case, as the

following example shows.

Example 2: Modify example 1 to the effect that B can only be started when C is

unavailable, and that C is running, in accordance with its desired state

AVAILABLE, when the request comes in.

To reflect this modification, the upper arrow label of Figure 1 would

have to be changed to MakeAvailable/WhenDown. This expresses that

Figure 1. Example of Start Dependencies

Chapter 1. Principal Concepts of SA z/OS 5

the dependent (lower) resource can only be started when the

supporting (upper) resource is unavailable (down).

In example 2, the request must be transformed when propagated from B to C,

because in order to start B and then A, C must be down. Therefore, SA z/OS

would put a stop request to C in this case, and the desired state of C would be set

to UNAVAILABLE.

By propagating requests, SA z/OS actively supports the start or stop request. You

can also switch off request propagation for a resource. If this were to be done for

resource A in example 1, then A would not be started because B is not available,

and SA z/OS would do nothing to start B. In this case A would only be started

after B had been started, directly or indirectly, through another request.

Persistency of Requests and Conflicting Requests

Requests (and the votes derived from them) are persistent. They are stored in

SA z/OS and continue to be taken into account until you explicitly remove them.

This implies that there can be more than one request (vote) for the same resource

at the same time, and these requests (votes) can be contradictory, as shown in the

following example.

Example 3: Expand example 1 by a resource D, also depending on C, which can

only be started if C is down. A, B, and C are as in Figure 1 on page 5;

D is supposed to be down, and its desired state to be UNAVAILABLE.

Figure 2 contains a graphical presentation of example 3.

 Now assume that first a request to start A and then a request to start D are passed

to SA z/OS. The first request results in setting the desired state of C to

AVAILABLE. Thereafter the propagation of the start request for D results in a vote

to stop C. Since votes are persistent, the previous vote to start C is still existent,

and we have two contradictory votes for C. In such a situation, SA z/OS uses the

priority of the original requests to decide which one of the two votes wins.

When the priority of the old start vote for A is higher than that of the new vote to

start D, then the desired state of D will be changed to AVAILABLE, but that of C

will remain AVAILABLE; accordingly, SA z/OS will not try to stop C, and thus D

cannot be started. If, on the other hand, the vote to stop C has the higher priority,

Figure 2. Example of Conflicting Requests

6 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

then the desired state of C is changed to UNAVAILABLE, and SA z/OS will try to

stop C in accordance with its desired state, and then to start D. When two

contradictory votes have the same priority, a start vote wins over a stop vote.

The persistency concept implies that the losing vote is not automatically discarded.

If, for instance, the start request for A wins, the start request for D and the

propagated stop vote for C continue to be stored in SA z/OS, and can still be

fulfilled after the request for A, and therefore also the start vote for C which was

derived from it, have been removed by an operator. After the removal, SA z/OS

will determine the desired state of C again and will set it to UNAVAILABLE in

response to the stop vote propagated from the start request for D, if no other vote

is pending for C. After that, C will be stopped, and then D will be started.

Note that persistency of requests does not apply to successive requests of the same

operator. In this case the second request will replace the earlier one.

Triggers

Triggers specify necessary conditions for starting or stopping an application;

’necessary’ means that the application can only be started or stopped when the

condition is satisfied. Triggers are defined independently of applications. In this

way the same trigger can be associated with more than one application. Triggers

are defined and linked to an application in the policy database.

The conditions contained in a trigger are either startup conditions or shutdown

conditions; there can be more than one startup condition, and also more than one

shutdown condition. When a trigger is associated with an application, the

resources generated from this application can only be started if at least one of the

startup conditions in this trigger is satisfied; analogously, they can only be stopped

if at least one of the shutdown conditions is fulfilled.

A trigger condition consists of a set of events. An SA z/OS event represents an

external event that is not under control of SA z/OS, but is relevant to the state of

the application associated with the trigger. The information that the external event

has or has not occurred is passed to SA z/OS by setting or unsetting the SA z/OS

event; this must be done by an operator or by an automation procedure. A trigger

condition is only satisfied when all its events are set.

The following example illustrates the use of triggers and their interrelations with

dependencies and request propagation.

Example 4: Expand example 1 to the effect that resource C is associated with a

trigger that contains only one startup condition. This condition consists

of two events, EVENT1 and EVENT2. EVENT1 is set, EVENT2 is

unset.

When the request to start A arrives at SA z/OS, it will set off the same sequence

of events as with example 1 up to step 2 on page 5. Since, however, the only

startup condition of the trigger is not satisfied, C will not be started, and therefore

B and A will not be started either. In order to start A, EVENT2 must be set, for

example, by an operator. This will lead to a re-evaluation of the startup condition.

Since this condition is now satisfied, SA z/OS will start C, and subsequently B

and A.

Chapter 1. Principal Concepts of SA z/OS 7

Service Periods

So far we have always assumed that the start or stop requests are made by a

human operator. However, SA z/OS also provides the possibility to make start

and stop requests at specified points in time independently of human intervention.

The objects that are able to do this are called service periods. Service periods are

defined in the policy database.

A service period is a set of time intervals, so-called service windows, during which

an application should be available or unavailable. Service periods are defined

independently of applications and can then be associated with one or more

applications or application groups (see “Application Groups”). When an

application is associated with a service period, the service period makes a start

request for the application whenever the start time of a service window arrives;

this request is canceled when the stop time of the service window arrives. You can

also specify service windows during which the application should be unavailable;

in this case, a stop request is made at the start, and canceled at the stop time of the

service window. The following example is again an expansion of example 1.

Example 5: Resource A of example 1 is associated with a service period that

contains at least one service window during which A should be

available.

If the start time of this service window arrives, the same sequence of events will

occur as with example 1.

An operator can temporarily modify a service period (this is called a schedule

override). In case of a conflict between a request made by an operator and a request

from a service period, the operator request wins when its priority is not lower than

that of the service period request.

Application Groups

Modern applications often consist of more than one component, and these different

components can be distributed among different systems. SA z/OS provides the

possibility to combine different components of an application on one or more

systems within a sysplex into an application group. This allows you to start and stop

a complex application by a single command, and to integrate it into automation

processes as a whole.

Example 6: Suppose that resource B of example 1 is an application group with the

members B1 and B2, and declare A dependent on group B (not on the

individual group members), and B dependent on C. You can define B

so that every request made to the group as a whole is automatically

propagated to every group member.

Figure 3 on page 9 contains a graphical presentation of example 6.

8 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Then, if you request A to be started, SA z/OS will first, as before, propagate the

request to group B and to application C. After C has been started and therefore

group B can be started (step 3b on page 5 of example 1), a start vote will be

propagated to every member of B. After the desired state of B1 and B2 has been set

to AVAILABLE and both resources have been started, B will be considered

available, and only then will SA z/OS start A.

In this type of group (which is called BASIC) the group members form a complex

entity, and therefore the group is only considered available when all its members

are available.

The group concept is also used to move applications from their primary system to

a backup system when the primary system has failed (group type MOVE). In this

case the members of the group are instances of the same application on different

systems. In accordance with their purpose, MOVE groups are declared available

when exactly one of their members is available. You assign preferences to the

elements in order to determine which group member is to be started when a start

request is put to the group, and which group member takes over when the

currently available member is not restartable any more.

SERVER groups are a third type of group. They are a variant of move groups and

differ from these mainly in that you can specify how many of its members must be

available before the group is considered available. As with move groups, you

assign preferences to the members to determine which of them are to be started

when a start request is put to the group, and which group members takes over

when one of the currently available members is no longer restartable.

Groups can be nested. Suppose, for example, that you have a complex application

that you want to be able to move from one system to another. Here you can first

define two basic groups G1 and G2, each containing the application on a different

system, and then define a move group that contains G1 and G2 as its members.

SA z/OS and the NetView Automation Table

The implementation of SA z/OS is based on NetView. One important area, where

SA z/OS relies on NetView functionality, is the NetView Automation Table (AT).

This table serves to automate operator responses to messages that are sent to

NetView. It contains instructions of the general form:

Figure 3. Example of a Request Involving a Group

Chapter 1. Principal Concepts of SA z/OS 9

When message ABC arrives then issue command XYZ.

Whenever NetView receives a message, it scans the AT. If it finds an entry for the

message, it issues the command specified in that entry.

With applications controlled by SA z/OS, the command will typically be one of

the generic routines that are shipped with SA z/OS (see System Automation for

z/OS Programmer’s Reference). Many of these routines retrieve information from the

ACF and then act according to that information.

A typical example for such information is the MESSAGES/USER DATA policy item

of the APPLICATION policy object. Within the MESSAGES/USER DATA policy

item, you can associate a command with a message ID (see System Automation for

z/OS Defining Automation Policy). If you connect this message ID with the generic

routine ISSUECMD in the AT, then NetView will execute ISSUECMD when the

application sends the message in question to NetView. ISSUECMD, in its turn, will

search for the message ID in the ACF entry for this application, and if the message

ID is associated there with a command, it will issue this command. For more

information on ISSUECMD, see System Automation for z/OS Programmer’s Reference.

For example, you could associate the message ID AHL031I, which is the ID of the

startup message sent by the application GTF, with the command MVS $DMRO’GTF IS

NOW UP’ in the MESSAGES/USER DATA policy item for GTF. Then the AT would

have to contain an entry like the following:

IF MSGID = ’AHL031I’

THEN EXEC(CMD(’ISSUECMD AUTOTYP=START’) ROUTE(ONE *));

Now, when NetView receives the AHL031I message it extracts the job name from

the message and calls ISSUECMD. ISSUECMD knows where to find the job name

and searches the ACF for the associated application. When it finds GTF, it will look

for the AHL031I entry in the MESSAGES/USER DATA policy item and will issue

the command that is associated with AHL031I for GTF,

MVS $DMRO’GTF IS NOW UP’.

For more information on the AT, see Tivoli NetView for OS/390 Automation Guide.

OPC Automation also has some special generic routines, see Chapter 14, “OPC

Automation Common Routines and Data Areas,” on page 119.

10 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 2. Functions of OPC Automation

This chapter describes the basic concept of OPC Automation, explains some aspects

of its implementation, and sketches possible uses of OPC Automation.

Basic Concepts

OPC Automation is an extension of SA z/OS that capitalizes on the strengths of

NetView, SA z/OS, and OPC by providing the ability to greatly expand job

execution, scheduling, monitoring, and alert notification capabilities.

The implementation of OPC Automation requires the introduction of new objects

in OPC and in SA z/OS.

Tivoli Workload Scheduler for z/OS Automation consists of two basic functions.

1. Requests from OPC to SA z/OS and associated status updates.

2. Requests from SA z/OS to OPC and associated status updates.

OPC to SA z/OS functions

Tivoli Workload Scheduler needs to be able to request desired state changes to

subsystems under the control of System Automation for z/OS. A new request

interface has been provided. This interface is designed to work with OPC in a way

that is natural for OPC. It takes the form of a batch job that can be used to execute

any NetView or SA z/OS command on any NetView interconnected in the

enterprise.

The batch job may execute on any system in the sysplex that contains an SA z/OS

Agent or NetView Agent running the OPC PPI batch command receiver. This

command receiver is a NON-MVS System Automation for z/OS subsystem and

may be controlled via the same interfaces as any other System Automation for

z/OS subsystem.

The Tivoli Workload Scheduler status change exit has been changed to support

WTO’d status changes. The purpose of the exit is to provide information to System

Automation for z/OS, which in turn will notify operators via NMC and SDF.

SA z/OS to OPC functions

System Automation for z/OS needs to be able to control the operation of Tivoli

Workload Scheduler. OPC operations can be made to wait until a previously

requested SA z/OS state change has occurred. SA z/OS will make subsystem,

application group, system and system group statuses available to OPC. This is

done by reflecting the SA z/OS status in a pair of OPC Special Resources. OPC

operations may be coded to wait until the appropriate special resource is in the

desired state, thus preventing the batch job stream from proceeding until an OPC

request to SA z/OS has been completed.

A new interface, the INGOPC/INGTWS command, has been provided to allow an

SA z/OS operator or automation function to request changes to the OPC current

plan. This interface may be used for any Controller defined to SA z/OS or any

Tracker (defined to SA z/OS) that represents a foreign Controller.

© Copyright IBM Corp. 1990, 2005 11

Note: The old SA z/OS OPC commands have been deprecated. They are provided

in this release for compatibility purposes and to allow for the migration to

the new commands. They will be removed in a future release. The

commands concerned are as follows:

1. OPCACMD

Replaced by INGOPC REQ=LIST.

2. OPCALIST

Replaced by INGOPC REQ=LIST.

3. OPCAMOD

Replaced by INGOPC REQ=MOD.

4. OPCAPOST

Replaced by INGOPC REQ=MOD.

Defining System Automation for z/OS to Tivoli Workload

Scheduler

There are no required Tivoli Workload Scheduler definitions. As the interface is a

normal batch job as submitted by OPC, there are no extra OPC definitions. You

may optionally create a batch job submission workstation that is used to submit

the batch jobs to run commands against SA z/OS. The advantage in doing this is

that the command processor that the batch job runs can automatically stop the

workstation if the SA z/OS Agent or NetView Agent is not up or the PPI interface

is not responding. When the SA z/OS Agent or NetView Agent starts up it will

automatically restart the previously stopped workstation.

Currently only one PPI receiver non-MVS subsystem is provided in the sample

configuration. However, you may start more by specifying a different PPI receiver

name for each one to be started. Batch jobs have a parameter that can be used to

select the appropriate PPI receiver to execute the commands against. By specifying

multiple OPC workstations, one per PPI receiver, OPC can schedule batch jobs to

the appropriate receiver and thus get a better throughput of requests. However,

only one of the workstations will be restarted when the SA z/OS Agent or

NetView Agent starts up. The user can use OPC variable substitution to resolve the

name of the PPI receiver from the name of the Workstation the job is assigned to.

Defining Tivoli Workload Scheduler to System Automation for

z/OS

The Tivoli Workload Scheduler Installation manual insists that each OPC

subsystem in a sysplex is uniquely named. If the old SA z/OS OPC Automation

interfaces are not required, then it is possible with the new interfaces to accomplish

this requirement. Detailed instructions for defining this configuration can be found

in System Automation for z/OS Defining Automation Policy, however, basically what is

required is a set of AOCCLONE variables that represent the names of the

subsystems on each system and a set of subsystem definitions to make use of these

CLONE variables.

Tivoli Workload Scheduler consists of a number of MVS™ and non-MVS

subsystems that need to be defined to SA z/OS. These are:

1. The OPC Controller subsystems.

2. The OPC Tracker subsystems.

3. The OPC Server subsystems.

4. The OPC Data Server subsystems.

12 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

5. The SA z/OS Batch Job Command Receiver subsystems.

6. The SA z/OS Request receiver subsystems.

7. The SA z/OS Observer subsystem.

Each will be described in turn.

The OPC Controller Subsystems

OPC Controller subsystems may be defined to start simultaneously across multiple

systems in a sysplex. However, only one of these subsystems will become the

active subsystem. All other Controller subsystems will go into standby mode.

Controller subsystems may be defined in a sysplex group, or in a system group

that is attached to multiple systems. Controller subsystems require Tracker

subsystems to manage the batch job stream.

The OPC Tracker Subsystems

OPC Tracker subsystems may be defined to start simultaneously across multiple

systems in a sysplex. Tracker subsystems may be defined in a sysplex group, or in

a system group that is attached to multiple systems. Tracker subsystems usually

require that JES is running before they can operate correctly.

The OPC Server Subsystems

OPC Server subsystems are usually automatically started by the Controller

subsystem that has taken on the ACTIVE role.

The OPC Data Server Subsystems

OPC Data Server or Data Store subsystems contain SYSOUT information collected

from JES on behalf of the active Controller.

The SA z/OS Batch Job Command Receiver Subsystems

These subsystems are non-MVS NetView subsystems that run in an SA z/OS

Agent or NetView Agent. They provide PPI communications for servicing Batch

Job Commands. This allows a batch job to execute a NetView or SA z/OS

command and to get the output of the command back at the batch job.

The SA z/OS Request Receiver Subsystems

These subsystems are non-MVS subsystems that run in the SA z/OS NetView

Agent. They provide PPI communications to the OPC Controller that allows the

OPC Controller to inject requests into the SA z/OS Manager. This allows OPC to

control the status of resources being managed by SA z/OS.

System Initialization with OPC Automation

JES starts OPC, which is usually operational at all times, as a task without

SA z/OS. OPC Automation then transfers the responsibility of starting OPC from

JES to SA z/OS, as described in the following scenario:

v The OPC Tracker has JES as a parent.

v During the IPL process, as soon as JES is running, SA z/OS issues a start

command for the Tracker subsystem.

v Once the Tracker has started, SA z/OS issues a start command for the OPC

Controller on the control host(s) only.

v Automation continues to initialize the rest of the tasks that are defined to it.

OPC Automation restores the status of any OPC-controlled tasks to the last

status requested by OPC and waits for OPC to issue new requests.

Chapter 2. Functions of OPC Automation 13

NetView Interface to OPC Automation

The program-to-program interface (PPI), a high-performance interface, provides

synchronization and bi-directional command and message flow between NetView

and other applications. OPC provides additional application programming

interfaces (APIs), which allow it to be updated by other programs.

The implementation of these interfaces in OPC Automation provides the following

capabilities:

v Automation of OPC startup and termination

v Interception of OPC alerts for analysis by the alert operator

v Expansion of the Status Display Facility to provide information about TSO users,

batch jobs, critical messages, and OPC errors

v Implementation of a two-way interface between OPC and NetView with

SA z/OS:

– OPC defines and controls interactive applications. Support is provided to start

and stop subsystems that are defined to the SA z/OS application.

– Database tasks can run in both interactive and batch systems with full

synchronization between the activities.

– SA z/OS operators can access OPC calendars and other information as well

as update OPC information using the INGOPC or INGTWS command.
v Two user extensions:

– OPCACOMP allows the start up and shut down of subsystems independently

of automation status changes.

– UXxxxxxx allows automation of activities not associated with a specific

subsystem.

OPC Automation provides commands and panels that allow a NetView operator to

make inquiries and issue requests to OPC without actually logging on to OPC.

OPC Automation Special Resources

OPC Automation is able to globally control the creation and setting of OPC special

resources based on the status of SA z/OS monitored subsystems. This will allow

OPC to resolve job scheduling dependencies based on the status of SA z/OS

managed resources.

The OPC special resources created/set by this function are as follows:

ING.res_sys.res_type.res_name.UP, and

ING.res_sys.res_type.res_name.DOWN

where:

res_sys is the MVS sysid of the system where the subsystem status change

was detected. If the resource is a SYSPLEX application group, then

the value SYSPLEX is used.

res_type is one of APL, APG, SYS, SYG, or GRP.

res_name is the name of the resource.

UP is a literal that defines the resource as being available only when

the resource has an observed status of AVAILABLE and a desired

status of AVAILABLE.

14 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

DOWN is a literal that defines the resource as being available only when

the observed status of the resource is one of the following

Automation Manager statuses:

 SOFTDOWN, HARDDOWN, STANDBY, UNKNOWN, SYSGONE,

 and when its desired status is UNAVAILABLE.

Possible Uses of OPC Automation

In data centers, certain groups assume responsibility for the daily operation of the

systems. Frequently, these groups are split into these two areas that perform the

following tasks:

v Controlling online systems

v Processing all batch work

User requests for hours of service form the basis for online planning decisions. The

time available to process the jobs required for online systems for the next day, as

well as requests for other batch work, determines batch processing.

A system using OPC executes the current plan (CP), which contains the

information for batch processing. A help desk, hotline, or service-contact point

merge user-change requests into the overall schedule. While processing control

executes batch processing, operations or master terminal operators control the

online systems, thus adding to the confusion. Changes to online availability are

frequently manual in nature. For example, instructions to change online availability

often consist of slips of paper or phone calls to the operator.

OPC Automation allows changes which influence both batch and online systems

through simple OPC dialogs. Because OPC manages both batch and online

systems, these changes are needed only in one place. Because the processes are

automated with SA z/OS and OPC, no interoperator communications are required.

In fact, in a highly automated environment, no operator intervention or awareness

of these user-requested changes is necessary.

OPC Automation can automate some of the more complex operator procedures

and thereby provide several new functions. The following topics give some

examples and scenarios which demonstrate these functions.

Changing Online Hours of Availability

Several possible methods exist for changing the hours of availability of online

services. To illustrate these methods, consider the example of a service such as

IMS™. Assume that the scheduled hours of availability for the IMS online service

are 7 a.m. to 6 p.m. In NetView, under control of the current plan, OPC

Automation performs the timed start and stop events.

v The help desk gets a request from a user group to extend the IMS hours of

availability, for today only, from the original plan of 6 p.m. to 8 p.m. (extended

service period).

v The help desk ensures that this extended service is acceptable within the service

level agreement for this user group.

v The help desk now makes a change to the OPC current plan to reflect this

extended IMS period.

v When the revised scheduled time is reached, now two hours later than usual,

OPC executes the operation, requesting that OPC Automation stop IMS.

v OPC Automation requests that SA z/OS application stops IMS.

Chapter 2. Functions of OPC Automation 15

v Once SA z/OS has successfully stopped IMS, OPC Automation returns an

operation-ended status to OPC, fulfilling OPC’s dependencies on the online IMS.

v Jobs dependent on the termination of IMS are now released for execution.

No restructuring of the batch processing is necessary if the request is within

planned service bounds.

Cycling Individual Online Databases

OPC Automation allows OPC to interact not only with the SA z/OS functions, but

also with the MVS and MTO consoles, which enables the scheduling of interrelated

sequences of events. For example, it is possible to cycle individual databases rather

than the complete online system. Figure 4 shows how this scheduling results in

minimum disruptions to online applications.

In Figure 4, the online databases are structured so that you can vary specific ones

offline, without an impact to the system, as in the case of databases structured on a

geographic or application basis. This process flows as follows:

1. Based on the current plan, OPC begins the READY TO START DATABASE

UPDATE job.

2. A request is sent to OPC Automation to issue the command required to vary

the subject database offline to allow for batch processing.

3. The request is issued through the MTO interface.

4. OPC Automation ensures that the database is offline.

5. OPC Automation posts the operation as completed in OPC.

6. With the operation completed, OPC dependency starts the batch processing for

this database.

7. When the batch process is completed, OPC once again triggers OPC

Automation, and the proper MTO command is issued to vary the database

online to IMS.

When individual databases accomplish this type of process, the database/data

communications (DB/DC) system is always up, and certain small portions of the

Figure 4. Example of Cycling Individual Online Databases

16 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

data is unavailable for short periods. In some cases, you can restructure the

databases to further shorten periods of data unavailability.

OPC Automation does not directly support the preceding example, which requires

some user-written modules. (See “Interaction with CICS Automation” on page 141

and “Interaction with IMS Automation” on page 142 for some examples of this

type of user-written module.) OPC Automation transports the request to the

appropriate system and prepares the information for the user code. OPC

Automation then returns the resulting status to the operation in OPC. OPC

Automation also ensures that the actions requested are serialized with other

requests to that specific target subsystem and that the status of the subsystem is

such that it can accept the requests.

Scheduling Time for Testing

Another example is an automated mechanism that prepares a logically partitioned

mode (LPAR) on a process resource/system management (PR/SM™) complex for

testing periods.

In this example, a system programmer or application developer makes a request

through the help desk for testing. The help desk checks that the resources for the

test period are available and invokes a prepared OPC-controlled application,

updating the information required to set up the time and duration of the test. No

other action is needed.

At the proper time, OPC begins execution. It sends the requests to the target

system control facility (processor operations) application to set up the LPAR for the

test period, and to IML and IPL the PR/SM partition. If the requestor of the test

period prepares the test system, so it is ready and waiting at the start of the test

period, there is no waiting for an operator to set up the test environment or to

structure the system as required by the testing.

Distributing and Updating Data Across Multiple Systems

As centralization of operations and support progresses, preparing data at a central

site and then distributing it to other systems becomes necessary. Controlled

execution of batch utilities is often required to update the target systems.

Installation of system maintenance provides an example of this type of

distribution. Program temporary fixes (PTFs) are installed and tested at a central

site. The PTFs are then shipped to target systems and applied with a system

modification program (SMP/E). Frequently, a system programmer performs this by

logging on to the target system and executing the job streams manually.

Another example is the creation of office system files on a central system, such as

electronic telephone directories. These files are then distributed to the target

systems.

OPC can control network job entry (NJE) jobs for the distribution of data, and thus

controls the execution of the jobs on the target systems, to apply the data, using

dependency control, if required.

OPC Automation extends this OPC capability and allows necessary cycling of the

target system application once the maintenance is applied successfully. You can

schedule this in such a way as to minimize any impact on the end-user

community. The following is a typical scenario:

Chapter 2. Functions of OPC Automation 17

1. A PTF is installed, tested, and found acceptable. This PTF is then applied to all

copies of TSO in a multisystem environment.

2. The application is defined to OPC. In most cases, the application is simply

updated since it is already defined.

3. OPC presents the batch jobs that control the SMP/E process to the systems

programmer for modifications, if required.

4. OPC schedules the transmission of the jobs to the target systems using NJE.

The scheduling can use a time when network traffic is low.

5. Once the jobs are in the target system, OPC dependency control is used to

schedule the SMP/E job execution.

6. OPC ensures that the SMP/E jobs run correctly. If OPC encounters problems,

the OPC application provides backout procedures.

7. After installing the PTFs, OPC selects the appropriate time to issue a request to

OPC Automation to restart TSO.

8. Since OPC fully controls the process for this PTF update, you can inquire at

any time to see the progress of the operations. If errors or problems occur, OPC

Automation informs the SA z/OS notification operator.

Complex Application Recovery

As computer applications become more critical to the daily operation of your

enterprise, disaster recovery takes on an added significance. Usually, installations

have the necessary equipment and facilities for disaster recovery, but the

operational processes are so complicated that the chance of a successful backup in

a short period, lasting from many minutes to no more than a few hours, is highly

unlikely.

OPC Automation allows full or partial automation of this type of activity between

systems and sites. In some cases, changing the NVxx-to-NetView domain ID

relationship is adequate to transfer the control of the work load to a different

system. However, the change may require some manual intervention for

synchronization. Chapter 17, “Resynchronization and Recovery Considerations,” on

page 157 discusses several scenarios and the process of synchronization.

Although not all steps are required each time, most recoveries consist of three

major operational steps that are executed sequentially and provide the following

functions:

Step 1: Preparing the recovery system

This may require stopping some or all the applications on the recovery

systems, unloading data from disk-storage devices to tape, and

reconfiguring the recovery system.

Step 2: Starting the critical applications on the recovery system.

This can include the following:

v Loading databases and applications from tape-to-disk devices

v Starting the recovery system

v Updating data from checkpoint data, logs, or other sources

v Starting critical applications.

Step 3: Returning to the original production system

This is a reversal of the recovery process. These procedures are as complex

as the original recovery process, but are scheduled and do not have the

urgency of the original recovery.

18 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

In the following example, a series of applications need starting on a system after

the failure of the original system or possibly even the site. Assume that the

installation has prepared properly for this type of problem. This implies tested

procedures, current levels of the affected applications and operating environment,

and data at the backup site. To simplify this example, assume that the database at

the recovery site is adequate for a contingency recovery situation.

v Prior to the need, a series of interdependent recovery applications are defined to

OPC, but not scheduled.

v The decision to recover the critical applications at the backup site is made. The

scheduler uses normal OPC panels to modify the current plan to schedule the

first backup application.

v Before recovery, several factors, which can result in modifications to procedures

and JCL, need considering. These modifications are then presented to operators

at manual workstations with instructions in the operator instruction files of

OPC. They are also presented to systems programmers at JCL workstations.

v The work load on the recovery system is stopped by scheduling a request to

SA z/OS to stop all subsystems other than JES.

v Once the subsystems are stopped, a series of jobs are scheduled to transfer data

from disk-to-tape to accommodate the requirements of the critical applications

that are recovered.

v Depending on the situation, the same system is reused or restructured, and then

followed by an IML and IPL of the recovery system. If this is the case, the focal

point implementation option of SA z/OS is used to partially or completely

automate this phase of the recovery. Regardless of the specifics, the result is an

operating system platform ready to accept the recovery environment.

v OPC schedules a series of JES jobs that restore the databases from backup.

v OPC triggers NetView to issue the appropriate commands to start the

subsystem.

v In some cases, NetView requires access to MTO functions to issue specific

procedures before the DB/DC system can resume transaction processing. If that

is the case, user-provided modules are required to fully automate the recovery.

At this point, the recovery is completed. Normal operating procedures should

apply to the environment. Because a recovery situation creates an environment

where resources are scarce, the actual applications that are offered are frequently a

subset of the normal applications. To accommodate this environment, OPC and

OPC Automation may need to change the scheduling of some of the applications

controlled by OPC.

After recovery occurs and you resolve the problems which forced the original

backup, the applications should be moved back to the original system. The

scenario for this move is similar to the one above except that this move is planned

instead of forced. This allows you to move specific applications one at a time, as

opposed to the all-at-once scenario that a critical situation requires. The fact that

some of the applications are moved to an already working system makes the

takeback more complex than the original recovery.

Give special consideration to any synchronization procedure in an OPC

Automation environment. For more information on the synchronization process,

see Chapter 17, “Resynchronization and Recovery Considerations,” on page 157.

Chapter 2. Functions of OPC Automation 19

20 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Part 2. Operator’s Guide

This part describes the actions that an operator can perform with OPC Automation

commands.

Subtopics:

v Managing the PPI Receivers

v Managing the OPC Current Plan

v Monitoring Using SDF

v NMC Display Support

© Copyright IBM Corp. 1990, 2005 21

22 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 3. Managing the PPI Receivers

This chapter describes how to start up and shut down the NetView PPI receivers.

There are two types of receiver subsystems. The ″Request″ receiver is responsible

for handling status updates and requests from the OPC exit. The ″Command″

receiver is a new receiver that is responsible for handling commands issued from a

batch program.

If requests for automation services from OPC need to be stopped for some reason,

then the OPC Request Receiver in the appropriate SA z/OS Agent or NetView

Agent should be stopped. Requests are typically starting or stopping a SA z/OS

resource and are OPC operations assigned to a workstation with a name like NV**.

If batch interface commands are to be stopped for some reason, then the OPC

Command Receiver in the appropriate SA z/OS Agent or NetView Agent should

be stopped. Batch commands are typically used to gather information for further

processing.

Use the following procedures to start and/or stop the desired PPI receivers.

Because there may be more than one Command or Request receiver involved, you

should check with your System Programmer to determine the correct subsystems

to start and/or stop.

Subtopics:

v Starting and Stopping the Request Receiver

v Starting and Stopping the Command Receivers

Starting and Stopping the Request Receiver

The Request receiver is controlled by SA z/OS. It is defined to SA z/OS as a

NON-MVS subsystem. If the system programmer has taken the defaults when

customizing OPC Automation, then the name of the Request receiver will be

TWSREQSRVR. If this is not the case, then you must find out the SA z/OS

subsystem name of the Request receiver from the system programmers.

To start the Request receiver, Issue the INGREQ REQ=START command against the

appropriate subsystem, for example:

INGREQ TWSREQSRVR/APL/KEY1 REQ=START

You should not have to start the Request receiver in normal circumstances because

it should automatically start when the SA z/OS Agent registers with the

Automation Manager.

To stop the Request receiver, Issue the INGREQ REQ=STOP command against the

appropriate subsystem, for example:

INGREQ TWSREQSRVR/APL/KEY1 REQ=STOP

© Copyright IBM Corp. 1990, 2005 23

Starting and Stopping the Command Receivers

The Command receivers are controlled by SA z/OS. They are defined to SA z/OS

as NON-MVS subsystems. If the system programmer has taken the defaults when

customizing OPC Automation, then there will be only one Command receiver and

its name will be TWSCMDSRVR. However, there can be multiple Command

receivers and you need to find the names of them from the system programmers.

To start the Command receiver, Issue the INGREQ REQ=START command against

the appropriate subsystem, for example:

INGREQ TWSCMDSRVR/APL/KEY1 REQ=START

You should not have to start the Command receiver in normal circumstances

because it should automatically start when the SA z/OS Agent registers with the

Automation Manager.

To stop the Command receiver, Issue the INGREQ REQ=STOP command against

the appropriate subsystem, for example:

INGREQ TWSCMDSRVR/APL/KEY1 REQ=STOP

24 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 4. Managing the OPC Current Plan

A new function has been introduced to allow SA z/OS operators to manage an

OPC Current Plan. The operator can list or modify any current plan Application,

Operation, Special Resource and Workstation. The operator may list any current

plan Calendar. This function is performed via the INGOPC command as described

in the System Automation for z/OS Operator’s Commands.

Selecting the OPC Controller to Access

The INGOPC command allows you to select the OPC Controller to access via the

OPC API.

The positional parameter specifies the SA z/OS resource name of the OPC

Controller. If the OPC Controller is in a sysplex and may have active and standby

Controllers, you may specify an SA z/OS Application Group that contains the set

of OPC Controller resources. The INGOPC command will automatically select the

active Controller.

Using Multiple Resource Definitions

The Resource Parameter can take multiple arguments contained in brackets and

separated by commas, for example:

INGOPC (CTL1/APL/SYS1,CTL2/APL/SYS2)

In this case both CTL1 and CTL2 OPC Controller subsystems will be scanned to

see which is the Active Controller. The Active Controller is the subsystem that is in

the AVAILABLE Automation Manager state and has its associated Automation

Manager variable ’TWSACT’ (accessed via the INGVARS command) set to

’ACTIVE’.

Using Wildcards

The Resource Parameter can take wildcards as defined in the INGLIST command,

for example:

INGOPC CTL*/APL/*

In this case both CTL1 and CTL2 would be scanned as in the example for multiple

resource definitions, however, the user specification is shorter.

Using Application Groups

The Resource Parameter may be SA z/OS Application Groups, for example:

INGOPC CTLR/APG

or:

INGOPC CTLG/APG/SYS1

Both SYSPLEX and SYSTEM type application groups are allowed. The members of

the application groups are found and checked to see if they are OPC type

applications. Only the OPC type applications with a subtype of CONTROLLER or

TRACKER are checked.

© Copyright IBM Corp. 1990, 2005 25

|
|
|
|
|

Indirectly Selecting a Controller

In most cases the resource specification will resolve to a single OPC Controller

subsystem. However, there are occasions when the Controller subsystem is not

present on any system that SA z/OS has access to. In these cases, there must be at

least one Tracker on the system or sysplex that SA z/OS is managing. This Tracker

must have the ″OPC Control″ policy with the ″Controller ID″ and the ″API LU

Name″ policy items specified.

If the INGOPC command cannot resolve the resources that you specify as an active

OPC Controller, a final attempt is made to see if any of the resources are an OPC

Tracker. If a single OPC Tracker is found in an AVAILABLE state and has an

LUNAME policy entry, then this tracker will be used. If multiple controllers or

trackers (or both) are found, and INGOPC is running in full screen mode, then a

selection list is displayed; when OUTMODE=LINE is specified an error message is

displayed.

The Tracker selected will be used to refer to a remote Controller via the definitions

in the ″OPC Control″ policy as specified above.

Displaying the Current Plan

To display the Current Plan, use the INGOPC command with REQ=LIST and

specify the type of OPC resource required from:

v APPL for applications

v OP for operations

v SR for special resources

v WS for workstations

v CAL for calendars

Displaying OPC Applications

If you specify TYPE=APPL, this will select OPC Applications for display. To reduce

the number of applications that are listed, you can use the optional parameters of

AD= and IA= to specify the application ID and the Input Arrival time of the

application.

In OUTMODE=LINE, a set of messages will be returned that contains all the data

for the selected applications.

26 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

|
|
|
|
|

The Fullscreen interface is shown in Figure 5.

 You can scroll left and right with the PF11 (Next) and PF10 (Previous) keys. If

more data is available than is displayed on the screen, use the PF8 (Down) or PF7

(Up) keys to scroll the data up or down.

The field descriptions for this panel are:

CMD This accepts the two commands that are available on this panel:

v The A command will invoke the Update panels that allow you to modify

the OPC Application.

v The B command will set a filter to display the operations belonging to

the OPC Application.

Application ID

The Application ID of the OPC Application.

Input Arrival Date/Time

The Input Arrival Date and Time of the Application. The date and time

formats are as specified in the OPC Controller not the formats of the

NetView.

Status The OPC status of the application.

Error Code

The Error code of the OPC Application.

Description

The description of the OPC Application.

Figure 6 on page 28 is displayed if you press the PF11 key.

 INGKYST0 SA z/OS - Command Dialogs Line 1 of 6

 Domain ID = IPSFM -------- INGOPC --------- Date = 09/25/02

 Operator ID = KAT Sysplex = KEY1PLEX Time = 10:20:33

 CMD: A Update B Operations / scroll

 Application Occurrance List

 Input Arrival Error

 CMD Application Id Date Time Status Code Description

 --- ---------------- -------- ----- --------- ----- ------------------------

 BIGGERLONGERNAME 02/01/01 10:00 Error

 JKOPCTST1 02/04/17 06:30 Error jjk1 Test Batch Iface

 JKTEST1 02/04/17 08:00 Completed JJK2 This is a test

 IEFBR14 02/04/17 08:01 Completed dummy job

 JKOPCTST1 02/04/18 00:01 Error Test Batch Iface

 JKTEST1 02/04/18 00:08 Completed This is a test

 Command ===>

 PF1=Help PF2=End PF3=Return PF5=Filters PF6=Roll

 PF9=Refresh PF10=Previous PF11=Next PF12=Retrieve

Figure 5. OPC Applications Interface Panel

Chapter 4. Managing the OPC Current Plan 27

The field descriptions for this panel are:

CMD This accepts the two commands that are available on this panel:

v The A command will invoke the Update panels that allow you to modify

the OPC Application.

v The B command will set a filter to display the operations belonging to

the OPC Application.

Application ID

The Application ID of the OPC Application.

Deadline Date/Time

The Date and Time by which this application must have completed.

Actual Arrival Date/Time

The Date and Time when the Application was actually started.

Completion Date/Time

The Date and Time when the Application completed processing.

Figure 7 on page 29 is displayed if you press the PF11 key.

 INGKYST0 SA z/OS - Command Dialogs Line 1 of 6

 Domain ID = IPSFM -------- INGOPC --------- Date = 09/25/02

 Operator ID = KAT Sysplex = KEY1PLEX Time = 10:26:36

 CMD: A Update B Operations / scroll

 Application Occurrance List

 Deadline Actual Arrival Completion

 CMD Application Id Date Time Date Time Date Time

 --- ---------------- -------- ----- -------- ----- -------- -----

 BIGGERLONGERNAME 02/06/04 10:01 02/06/04 06:15 / / :

 JKOPCTST1 02/04/17 23:00 02/04/18 07:22 / / :

 JKTEST1 02/04/17 11:55 02/08/15 10:02 02/08/26 05:04

 IEFBR14 02/04/17 23:00 02/04/17 05:42 72/00/00 09:37

 JKOPCTST1 02/04/18 23:59 02/04/17 05:42 / / :

 JKTEST1 02/04/18 23:00 02/04/17 05:42 02/04/24 05:27

 Command ===>

 PF1=Help PF2=End PF3=Return PF5=Filters PF6=Roll

 PF9=Refresh PF10=Previous PF11=Next PF12=Retrieve

Figure 6. OPC Applications Interface Panel, Screen 2

28 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

The Field descriptions on this panel are as follows:

CMD This accepts the two commands that are available on this panel:

v The A command will invoke the Update panels that allow you to modify

the OPC Application.

v The B command will set a filter to display the operations belonging to

the OPC Application.

Application ID

The Application ID of the OPC Application.

Critical W.S.

The workstation that is responsible for running an operation in the

application that is on the critical path.

Critical OP#

The operation number of the operation in this application that is on the

critical path

Operations Number

The number of operations in this application.

Operations Compl

The number of operations that have been completed in this application.

Operations Error

The number of operations that have ended in error in this application.

Operations Undec.

The number of operations that OPC is undecided about in this application.

Operations Started

The number of operations that are running in this application.

Operations Crit.

The Duration in minutes of operations remaining on the critical path.

 INGKYST0 SA z/OS - Command Dialogs Line 1 of 6

 Domain ID = IPSFM -------- INGOPC --------- Date = 09/25/02

 Operator ID = KAT Sysplex = KEY1PLEX Time = 10:29:02

 CMD: A Update B Operations / scroll

 Application Occurrance List

 Critical -------------Operations----------------

 CMD Application Id W.S. Op# Number Compl Error Undec. Started Crit.

 --- ---------------- ---- ---- ------ ----- ----- ------ ------- -----

 BIGGERLONGERNAME NV01 1 1 0 1 0 1 610

 JKOPCTST1 NV01 1 1 0 1 0 1 10

 JKTEST1 0 3 3 0 0 6 0

 IEFBR14 0 1 1 0 0 0 0

 JKOPCTST1 N001 1 1 0 1 0 2 1

 JKTEST1 0 3 3 0 0 0 0

 Command ===>

 PF1=Help PF2=End PF3=Return PF5=Filters PF6=Roll

 PF9=Refresh PF10=Previous PF11=Next PF12=Retrieve

Figure 7. OPC Applications Interface Panel, Screen 3

Chapter 4. Managing the OPC Current Plan 29

Displaying OPC Operations

If you specify TYPE=OP, this will select OPC Operations for display. To reduce the

number of operations that are listed, you can use the optional parameters of AD=,

IA= and OPNO= to specify the application ID, the Input Arrival time of the

application and the operation number.

In OUTMODE=LINE, a set of messages will be returned that contains all the data

for the selected operations.

The Fullscreen interface is shown in Figure 8.

 You can scroll left and right with the PF11 (Next) and PF10 (Previous) keys. If

more data is available than is displayed on the screen, use the PF8 (Down) or PF7

(Up) keys to scroll the data up or down.

CMD The A command will invoke the Update panels that allow you to modify

the OPC Operation.

Op. Num.

The Operation Number is a unique number within an application that is

assigned to an operation.

JES Name

The JES Job Name of the operation.

JES Number

The JES Job Number of the operation if it has been started or submitted.

Status The Status of the operation.

Reason

A reason supplied by OPC for a possible error condition suffered by the

operation.

Err. Code

The final error code of the operation.

 INGKYST0 SA z/OS - Command Dialogs Line 1 of 3

 Domain ID = IPSFM -------- INGOPC --------- Date = 09/25/02

 Operator ID = KAT Sysplex = KEY1PLEX Time = 10:31:53

 CMD: A Update / scroll

 Operations List

 Op. -------JES------- Err. Work

 CMD Num. Name Number Status Reason Code Stn.

 --- ---- -------- -------- --------- ------------------------------ ---- ----

 1 JKTST1 JOB01543 Completed N001

 5 JKTST2 JOB01544 Completed N001

 10 JKTST3 JOB01545 Completed N001

 Command ===>

 PF1=Help PF2=End PF3=Return PF5=Filters PF6=Roll

 PF9=Refresh PF10=Previous PF11=Next PF12=Retrieve

Figure 8. OPC Operations Interface Panel

30 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Work Stn.

The workstation that the operation is assigned to run on.

Figure 9 is displayed if you press the PF11 key.

 The field descriptions for this panel are:

CMD The A command will invoke the Update panels that allow you to modify

the OPC Operation.

Op. Num.

The Operation Number is a unique number within an application that is

assigned to an operation.

Job Name

The JES Job Name of the operation.

Planned Start Date/Time

The Date and Time that OPC planned for the operation to start.

Planned End Date/Time

The Date and Time that OPC planned for the operation to end.

Operation Arr. Date/Time

The Date and Time that the operation actually arrived at the workstation

for execution.

Deadline Date/Time

The Date and Time by which this operation must have completed.

Figure 10 on page 32 is displayed if you press the PF11 key.

 INGKYST0 SA z/OS - Command Dialogs Line 1 of 3

 Domain ID = IPSFM -------- INGOPC --------- Date = 09/25/02

 Operator ID = KAT Sysplex = KEY1PLEX Time = 10:34:34

 CMD: A Update / scroll

 Operations List

 Op. Job Planned Start Planned End Operation Arr. Deadline

 CMD Num. Name Date Time Date Time Date Time Date Time

 --- ---- -------- -------- ----- -------- ----- -------- ----- -------- -----

 1 JKTST1 02/04/17 00:08 02/04/17 00:08 / / : 02/04/17 11:55

 5 JKTST2 02/04/17 00:08 02/04/17 00:08 / / : 02/04/17 11:55

 10 JKTST3 02/04/17 00:08 02/04/17 00:08 / / : 02/04/17 11:55

 Command ===>

 PF1=Help PF2=End PF3=Return PF5=Filters PF6=Roll

 PF9=Refresh PF10=Previous PF11=Next PF12=Retrieve

Figure 9. OPC Operations Interface Panel, Screen 2

Chapter 4. Managing the OPC Current Plan 31

The Field descriptions on this panel are as follows:

CMD The A command will invoke the Update panels that allow you to modify

the OPC Operation.

Op. Num.

The Operation Number is a unique number within an application that is

assigned to an operation.

Job Name

The JES Job Name of the operation.

Actual Start Date/Time

The Actual Date and Time that the operation started.

Actual End Date/Time

The Actual Date and Time that the operation ended.

Est. Dur.

The Estimated Duration of the operation in hours and minutes as

calculated by OPC.

Act. Dur.

The Actual Duration of the operation in hours and minutes.

Pri. The Priority of the operation.

Predecessors Num.

The number of predecessor operations that this operation may wait on.

Predecessors Comp

The number of predecessor operations that have completed.

Figure 11 on page 33 is displayed if you press the PF11 key.

 INGKYST0 SA z/OS - Command Dialogs Line 1 of 3

 Domain ID = IPSFM -------- INGOPC --------- Date = 09/25/02

 Operator ID = KAT Sysplex = KEY1PLEX Time = 10:36:33

 CMD: A Update / scroll

 Operations List

 Op. Job Actual Start Actual End Est. Act. Predecessors

 CMD Num. Name Date Time Date Time Dur. Dur. Pri. Num. Comp

 --- ---- -------- -------- ----- -------- ----- ----- ----- ---- ---- ----

 1 JKTST1 02/08/26 05:04 02/08/26 05:04 00:01 00:00 3 0 0

 5 JKTST2 02/08/26 05:04 02/08/26 05:04 00:01 00:00 3 1 1

 10 JKTST3 02/08/26 05:04 02/08/26 05:04 00:01 00:00 3 1 1

 Command ===>

 PF1=Help PF2=End PF3=Return PF5=Filters PF6=Roll

 PF9=Refresh PF10=Previous PF11=Next PF12=Retrieve

Figure 10. OPC Operations Interface Panel, Screen 3

32 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

The field descriptions for this panel are:

CMD The A command will invoke the Update panels that allow you to modify

the OPC Operation.

Op. Num.

The Operation Number is a unique number within an application that is

assigned to an operation.

Job Name

The JES Job Name of the operation.

Job Sts

The JES Job Status of the job.

High RC

The highest Return Code set by any step in the job.

Restart & Cleanup Mode

The Automatic restart mode for the job.

Restart & Cleanup Status

The Automatic restart status for the job.

Workstation Name

The name of the workstation that controls the job.

Workstation Type

The type of workstation that controls the job.

Workstation Status

The status of the workstation that controls the job.

Workstation Sub.

If the primary workstation is not able to control the operation, this is the

name of a substitute workstation that takes over control.

 INGKYST0 SA z/OS - Command Dialogs Line 1 of 3

 Domain ID = IPSFM -------- INGOPC --------- Date = 09/25/02

 Operator ID = KAT Sysplex = KEY1PLEX Time = 10:38:16

 CMD: A Update / scroll

 Operations List

 Op. Job Job High -Restart & Cleanup- -------Workstation-------

 CMD Num. Name Sts RC Mode Status Name Type Status Sub

 --- ---- -------- ---- ---- --------- --------- ---- -------- ------- ---

 1 JKTST1 Rel. 0 None N001 Computer Active

 5 JKTST2 Rel. 0 None N001 Computer Active

 10 JKTST3 Rel. 0 None N001 Computer Active

 Command ===>

 PF1=Help PF2=End PF3=Return PF5=Filters PF6=Roll

 PF9=Refresh PF10=Previous PF11=Next PF12=Retrieve

Figure 11. OPC Operations Interface Panel, Screen 4

Chapter 4. Managing the OPC Current Plan 33

Displaying OPC Special Resources

If you specify TYPE=SR, this will select OPC Special Resources for display. To

reduce the number of special resources that are listed, you can use the optional

parameter of SRNAME= to specify the special resource name.

In OUTMODE=LINE, a set of messages will be returned that contains all the data

for the selected special resources.

The Fullscreen interface is shown in Figure 12.

 If more data is available than is displayed on the screen, use the PF8 (Down) or

PF7 (Up) keys to scroll the data up or down.

The field descriptions for this panel are:

CMD The A command will invoke the Update panels to allow you to modify the

OPC Special Resource.

Name The Name of the special resource.

Actual Av.

The Actual Availability of the special resource.

Actual Quant.

The Actual Quantity of the special resource.

Default Av.

The Default Availability of the special resource.

Default Quant.

The Default Quantity of the special resource.

Displaying OPC Workstations

If you specify TYPE=WS, this will select OPC Workstations for display. To reduce

the number of workstations that are listed, you can use the optional parameter of

WSNAME= to specify the workstation name.

 INGKYST0 SA z/OS - Command Dialogs Line 1 of 40

 Domain ID = IPSFM -------- INGOPC --------- Date = 09/25/02

 Operator ID = KAT Sysplex = KEY1PLEX Time = 10:40:48

 CMD: A Update / scroll

 Special Resources List

 --Actual-- -Default--

 CMD Name Av. Quant. Av. Quant.

 --- -- --- ------ --- ------

 ING.KEY1.APL.CICS_SA_PPI.DOWN No 1 Yes 1

 ING.KEY1.APL.CICS_SA_PPI.UP Yes 1 Yes 1

 ING.KEY1.APL.CICSK1G.DOWN No 1 Yes 1

 ING.KEY1.APL.CICSK1G.UP Yes 1 Yes 1

 ING.KEY1.APL.CICSK1G_PPI.DOWN No 1 Yes 1

 ING.KEY1.APL.CICSK1G_PPI.UP Yes 1 Yes 1

 ING.KEY1.APL.CICSK1H.DOWN No 1 Yes 1

 ING.KEY1.APL.CICSK1H.UP Yes 1 Yes 1

 ING.KEY1.APL.CICSK3E.DOWN No 1 Yes 1

 ING.KEY1.APL.CICSK3E.UP No 1 Yes 1

 ING.KEY1.APL.RMF.DOWN No 1 Yes 1

 ING.KEY1.APL.RMF.UP Yes 1 Yes 1

 Command ===>

 PF1=Help PF2=End PF3=Return PF5=Filters PF6=Roll

 PF8=Forward PF9=Refresh PF10=Previous PF11=Next PF12=Retrieve

Figure 12. OPC Special Resources Interface Panel

34 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

In OUTMODE=LINE, a set of messages will be returned that contains all the data

for the selected workstations.

The Fullscreen interface is shown in Figure 13.

 You can scroll left and right with the PF11 (Next) and PF10 (Previous) keys. If

more data is available than is displayed on the screen, use the PF8 (Down) or PF7

(Up) keys to scroll the data up or down.

The field descriptions for this panel are:

CMD The A command will invoke the Update panels to allow the user to modify

the OPC Workstation.

Name The Name of the workstation.

Status The Status of the workstation.

Type The Type of the workstation.

Reporting Attribute

The Reporting Attribute of the workstation.

JCL Prep.

If YES then this workstation is used to prepare JCL for submission.

STC If YES then this workstation starts tasks via the started task interface of

MVS.

WTO If YES then this workstation can write messages to the system operator.

ReRoute

If YES then when this workstation is not able to process operations, they

may be re-routed to the alternate workstation.

Alt. WS

The name of an alternate workstation that operations will be re-routed to

when this workstation is unable to process operations.

 INGKYST0 SA z/OS - Command Dialogs Line 1 of 7

 Domain ID = IPSFM -------- INGOPC --------- Date = 09/25/02

 Operator ID = KAT Sysplex = KEY1PLEX Time = 10:42:34

 CMD: A Update / scroll

 Work Stations List

 Reporting JCL Alt. Para.

 CMD Name Status Type Attribute Prep STC WTO ReRoute WS Server

 --- ---- ------- ---------- ---------- ---- --- --- ------- ---- ------

 NV01 Unknown General Automatic No No No No No

 NV02 Unknown General Automatic No No No No No

 NV03 Unknown General Automatic No No No No No

 OPR1 Unknown General Completion No No No No No

 WTO1 Active General Automatic No No Yes No No

 CPU1 Active Computer Automatic No No No No No

 N001 Active Computer Automatic No No No No No

 Command ===>

 PF1=Help PF2=End PF3=Return PF5=Filters PF6=Roll

 PF9=Refresh PF10=Previous PF11=Next PF12=Retrieve

Figure 13. OPC Workstations Interface Panel

Chapter 4. Managing the OPC Current Plan 35

Para. Server

If YES then this workstation is a parallel server workstation and may run

multiple operations simultaneously.

Figure 14 is displayed if you press the PF11 key.

 The field descriptions for this panel are:

CMD The A command will invoke the Update panels to allow the user to modify

the OPC Workstation.

Name The Name of the workstation.

Comp. Ops.

Completed Operations assigned to this workstation.

Num. The number of completed operations.

eDur The estimated duration in minutes of completed operations.

aDur The actual duration in minutes of completed operations.

Int. Ops.

Interrupted Operations assigned to this workstation.

Num. The number of interrupted operations.

eDur The estimated duration in minutes of interrupted operations.

aDur The actual duration in minutes of interrupted operations.

Started

Started Operations assigned to this workstation.

Num. The number of started operations.

eDur The estimated duration in minutes of started operations.

Ready Ready Operations assigned to this workstation.

Num. The number of ready operations.

eDur The estimated duration in minutes of ready operations.

 INGKYST0 SA z/OS - Command Dialogs Line 1 of 7

 Domain ID = IPSFM -------- INGOPC --------- Date = 09/25/02

 Operator ID = KAT Sysplex = KEY1PLEX Time = 10:45:31

 CMD: A Update / scroll

 Work Stations List

 --Comp. Ops.-- --Int. Ops.--- -Started- --Ready-- -Waiting-

 CMD Name Num. eDur aDur Num. eDur aDur Num. eDur Num. eDur Num. eDur

 --- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

 NV01 0 0 0 0 0 0 0 0 0 0 0 0

 NV02 0 0 0 0 0 0 0 0 0 0 0 0

 NV03 0 0 0 0 0 0 0 0 0 0 0 0

 OPR1 0 0 0 0 0 0 0 0 0 0 0 0

 WTO1 0 0 0 0 0 0 0 0 0 0 0 0

 CPU1 1 0 0 0 0 0 0 0 0 0 0 0

 N001 6 10 0 0 0 0 0 0 0 0 0 0

 Command ===>

 PF1=Help PF2=End PF3=Return PF5=Filters PF6=Roll

 PF9=Refresh PF10=Previous PF11=Next PF12=Retrieve

Figure 14. OPC Workstations Interface Panel, Screen 2

36 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Waiting

Waiting Operations assigned to this workstation.

Num. The number of waiting operations.

eDur The estimated duration in minutes of waiting operations.

Displaying OPC Calendars

If you specify TYPE=CAL, this will select OPC Calendars for display. To reduce the

number of calendars that are listed, you can use the optional parameter of

CALENDAR= to specify the calendar name.

In OUTMODE=LINE, a set of messages will be returned that contains all the data

for the selected calendars.

The Fullscreen interface is shown in Figure 15.

 You can scroll left and right with the PF11 (Next) and PF10 (Previous) keys. If

more data is available than is displayed on the screen, use the PF8 (Down) or PF7

(Up) keys to scroll the data up or down.

The field descriptions for this panel are

CMD No commands are currently allowed for the Calendar display.

Name The name of the calendar.

Days The number of days in the calendar definition. Usually 7 days are always

present to represent the 7 days of the week.

Shift The time of the start of the shift in HHMM format.

Description

The description of the calendar.

 INGKYST0 SA z/OS - Command Dialogs Line 1 of 2

 Domain ID = IPSFM -------- INGOPC --------- Date = 09/25/02

 Operator ID = KAT Sysplex = KEY1PLEX Time = 10:47:14

 CMD: No Commands allowed / scroll

 Calendar List

 CMD Name Days Shift Description

 --- ---------------- ---- ----- ------------------------------

 APC 8 0000 general APC calendar

 DEFAULT 8 0000 general APC calendar

 Command ===>

 PF1=Help PF2=End PF3=Return PF5=Filters PF6=Roll

 PF9=Refresh PF10=Previous PF11=Next PF12=Retrieve

Figure 15. OPC Calendar Interface Panel

Chapter 4. Managing the OPC Current Plan 37

Modifying the Current Plan

To modify the Current Plan, use the INGOPC command with REQ=MOD and

specify the type of OPC resource required from:

v APPL for Applications

v OP for Operations

v SR for Special Resources

v WS for Workstations

v CAL for Calendars

Alternatively you can use the modify line commands in the INGOPC display

panels.

Line Mode Modifications

You can use the INGOPC command to modify OPC Current Plan resources in line

mode. First, you must specify the OPC resource, and then specify the data that is

to be modified.

You specify the OPC resource with, selection criteria parameters that are different

for each OPC resource type, as shown in Table 3:

 Table 3. OPC Resource Type Selection Criteria Parameters

OPC Resource Type Selection Criteria Parameters

APPL

AD= The Application Description of the applications

occurrence in the current plan.

IA= The Applications Input Arrival Time of the applications

occurrence in the current plan.

OP

AD= The Application Description of the application to which

the operation belongs in the current plan.

IA= The Applications Input Arrival Time of the application

to which the operation belongs in the current plan.

OPNO=

The Operation Number of the operation in the current

plan.

SR

SRNAME=

The Special Resource Name in the current plan of the

required special resource.

WS

WSNAME=

The Work Station Name in the current plan of the

required work station.

You can specify the data to be modified for a given OPC resource in two ways:

v Firstly, via the command parameter UPDATE=. The data are specified as

keyword value pairs separated by an equals sign (=). Pairs of data are separated

by the semi-colon character (;). For example:

INGOPC ... UPDATE=(PRIORITY=3;STATUS=A)

v Secondly, via the default safe as passed to the INGOPC command. The data are

specified as keyword value pairs separated by ″ = ″ (the blanks either side of

the equals sign are required). Each pair is contained as a separate message in the

default safe. For example:

38 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

updateStem.0 = 2

updateStem.1 = ’PRIORITY = 3’

updateStem.2 = ’STATUS = A’

’PIPE STEM updateStem. | COLLECT | SAFE * ’

’PIPE NETV INGOPC ’

The valid keywords are derived from the OPC-related manual, Tivoli Workload

Scheduler for z/OS Programming Interfaces (SH19-4545-00). Any keyword as specified

in the ″Modify Request″, ″Arguments″ section may be used. Table 4 matches the

INGOPC TYPE= parameter value to the OPC resource types.

 Table 4. INGOPC TYPE= Parameters Matched to OPC Resource Types.

TYPE= OPC Current Plan Resource OPC Manual Section

APPL CPOC Modify CPOC Arguments

OP CPOP Modify CPOP Arguments

SR CSR Modify CSR Arguments

WS CPWS Modify CPWS Arguments

Modifying OPC Applications via Panel Interaction

From a list of applications (TYPE=APPL) use the ″A″ (modify) line command

against an application. The panel shown in Figure 16 will be displayed:

 Fill in the fields to achieve the desired result and press the ENTER key.

Modifying OPC Operations via Panel Interaction

From a list of operations (TYPE=OP) use the ″A″ (modify) line command against

an operation. The panel shown in Figure 17 on page 40 will be displayed:

 EVJKYRQ1 SA z/OS - Command Dialogs

 Domain ID = IPSFM ---------- INGOPC ---------- Date = 09/27/02

 Operator ID = KAT Time = 07:22:37

 Application Modification

 Application => BIGGERLONGERNAME

 IA Date/Time=> 0201011000 (YYMMDDHHMM)

 New IA => (YYMMDDHHMM)

 Deadline => (YYMMDDHHMM)

 Priority =>

 Error Code =>

 Status => (C or W)

 Group Def. =>

 JCL Var.Tbl.=>

 Monitor ALL => External Monitor all operations (Y or N)

 Command ===>

 PF1=Help PF2=End PF3=Return PF6=Roll

 PF12=Retrieve

Figure 16. OPC Applications Modification Panel

Chapter 4. Managing the OPC Current Plan 39

Fill in the fields to achieve the desired result, then press the ENTER key or press

PF11 key to scroll to the next page. If you press the PF11 key, the panel shown in

Figure 18 is displayed:

 Fill in the fields to achieve the desired result, then press the ENTER key or press

PF11 key to scroll to the next page. If you press the PF11 key, the panel shown in

Figure 19 on page 41 is displayed:

 EVJKYRQ2 SA z/OS - Command Dialogs Page 1 of 3

 Domain ID = IPSFM ---------- INGOPC ---------- Date = 09/27/02

 Operator ID = KAT Time = 08:57:26

 Operation Modification

 Application => JKTEST1

 IA Date/Time=> 0204170800 (YYMMDDHHMM)

 Operation # => 1

 Oper. Cmd. => (EX=Execute/MH=Hold/MR=Release/NP=Nop

 UN=Un-Nop)

 Status => (A/C/E/I/R/S/U/W/*)

 Error Code =>

 JOB Name =>

 WS Name => Workstation job is to run on

 Description =>

 Est. Duratn => Estimated duration of operation (HHMM)

 Parallel Srv=> Number of parallel servers used

 R1 Use => Number of type 1 resources used

 R2 Use => Number of type 2 resources used

 JCL Class => Job Class

 Command ===>

 PF1=Help PF2=End PF3=Return PF6=Roll

 PF11=Next PF12=Retrieve

Figure 17. OPC Operations Modification Panel

 EVJKYRQ3 SA z/OS - Command Dialogs Page 2 of 3

 Domain ID = IPSFM ---------- INGOPC ---------- Date = 09/27/02

 Operator ID = KAT Time = 09:00:46

 Operation Modification

 Auto. Error => Automatic Error Completion (Y or N)

 Auto. Submit=> Automatic JOB submission (Y or N)

 Auto. Hold => Automatic JOB hold/release (Y or N)

 Time Depend.=> Job is dependent on time (Y or N)

 WLM critical=> Critical WLM Job (Y or N)

 WLM policy => WLM Assist Policies (/L/D/S/C)

 Cancel Late => Cancel job if LATE (Y or N)

 Highest RC => Highest acceptable Return Code

 Form => Print form name

 OP. IA => Operation Input Arrival (YYMMDDHHMM)

 OP. Deadline=> Operation Deadline (YYMMDDHHMM)

 Re-Route => Re-Route JOB to Alt. WS (Y or N)

 User Data =>

 Re-startable=> Operation is restartable (Y or N)

 Deadline WTO=> Issue deadline WTO (Y or N)

 DSN Clean => Dataset Cleanup Type (A/I/M/N)

 Command ===>

 PF1=Help PF2=End PF3=Return PF6=Roll

 PF10=Previous PF11=Next PF12=Retrieve

Figure 18. OPC Operations Modification Panel, Screen 2

40 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Fill in the fields to achieve the desired result, then press the ENTER key.

Modifying OPC Special Resources via Panel Interaction

From a list of special resources (TYPE=OP) use the ″A″ (modify) line command

against an special resource. The panel shown in Figure 20 will be displayed:

 Fill in the fields to achieve the desired result and press the ENTER key.

Modifying OPC Workstations via Panel Interaction

From a list of workstations (TYPE=OP) use the ″A″ (modify) line command against

an work station. The panel shown in Figure 21 on page 42 will be displayed:

 EVJKYRQ4 SA z/OS - Command Dialogs Page 3 of 3

 Domain ID = IPSFM ---------- INGOPC ---------- Date = 09/27/02

 Operator ID = KAT Time = 09:18:07

 Operation Modification

 Expanded JCL=> Expanded JCL Option (Y or N)

 User SYSOUT => User SYSOUT Support (Y or N)

 Ext. Monitor=> External Monitor (Y or N)

 Command ===>

 PF1=Help PF2=End PF3=Return PF6=Roll

 PF10=Previous PF12=Retrieve

Figure 19. OPC Operations Modification Panel, Screen 3

 EVJKYRQ5 SA z/OS - Command Dialogs

 Domain ID = IPSFM ---------- INGOPC ---------- Date = 09/27/02

 Operator ID = KAT Time = 09:21:04

 Special Resource Modification

 SR Name => ING.KEY1.APL.CICS_SA_PPI.DOWN

 Used For => (C/P/B/N)

 ON Error => (/F/FX/FS/K)

 Deviation =>

 Available => (Y or N)

 Quantity =>

 Default Values

 Available => (Y or N)

 Quantity =>

 Command ===>

 PF1=Help PF2=End PF3=Return PF6=Roll

 PF12=Retrieve

Figure 20. OPC Special Resources Modification Panel

Chapter 4. Managing the OPC Current Plan 41

Fill in the fields to achieve the desired result and press the ENTER key.

 EVJKYRQ6 SA z/OS - Command Dialogs

 Domain ID = IPSFM ---------- INGOPC ---------- Date = 09/27/02

 Operator ID = KAT Time = 09:23:52

 Workstation Modification

 Workstation => NV01

 Reporting => (A/C/N/S)

 Par. Servers=> Number of parallel Servers

 R1 Resources=> Number of type 1 resources

 R2 Resources=> Number of type 2 resources

 Status => (A/F/O)

 START act. => (R/E/L)

 Alt. WS =>

 WS Linked => (L/U/)

 Command ===>

 PF1=Help PF2=End PF3=Return PF6=Roll

 PF12=Retrieve

Figure 21. OPC Workstations Modification Panel

42 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 5. Monitoring using SDF

The Status Display Facility uses color to represent the various subsystem resource

statuses such as error, warning, action, or informational states. Typically, a

subsystem shown in green on a Status Display Facility status panel indicates that it

is up, whereas red indicates a stopped or problem state.

The Status Display Facility status display panels can be tailored to present the

status of system components in a hierarchical manner. The hierarchical display of

status information is implemented using tree structures. A tree structure always

starts with the system name as the root component. The ″leaves″ of the tree are the

monitored resources.

Color can be propagated up or down the leaves of the tree structure based on the

order of dependencies. The effect of propagation is to consolidate, at the root

component, the status of all the monitored resources in that system. In this way,

the color of the root component reflects the most important or critical status in a

computer operations center. If all the monitored resources are green, the root

component (the system) will be green.

OPC Automation provides additional Status Display Facility panels that monitor

the events that occur in the following areas for all OPC regions defined to OPC

Automation:

Applications in Error

Shows the OPC applications that have encountered an error.

Batch Jobs

Shows the Status of OPC Batch jobs in the system.

TSO Users

Shows the Status of TSO Users in the system.

To use the OPC Automation Status Display Facility panels, enter SDF on a NetView

panel command line. A panel similar to Figure 22 on page 44 will be displayed.

© Copyright IBM Corp. 1990, 2005 43

Note: Sample Status Display Facility panels are provided with OPC Automation.

The programmer customizes the panels for your specific environment, so the

panels shown here will not look exactly like your panels.

This could be your primary panel that lists the systems and their status. The color

of KEY1 through KEY4 will reflect the most critical status of any resource in that

system.

If you place the cursor under the letter O on the panel displayed in Figure 22 and

press PF8, the panel shown in Figure 23 is displayed (assuming you are using the

default sample panels).

 SYSTEM SA z/OS - SUPPORT SYSTEMS

 System Subsystems WTORs Gateways Products System

 KEY1 IM631C4 NETBTST1 IPSFNO C I D O S C M B T U

 KEY2 C I D O S C M B T U

 KEY3 C I D O S C M B T U

 KEY4 C I D O S C M B T U

 XXXX C I D O S C M B T U

 06/18/02 10:45

 ===>

1=HELP 2=DETAIL 3=RETURN 6=ROLL 8=NEXT SCR 10=LEFT 11=RIGHT 12=TOP

Figure 22. Status Display Facility Main Panel

 KEY1O OPC MONITOR PANEL

 Applications in Error

 Batch Jobs

 TSO Users

 06/18/02 11:25

 ===>

PF1=HELP 2=DETAIL 3=END 6=ROLL 7=UP 8=DN 12=TOP

Figure 23. The OPC Monitor Panel

44 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

This shows several categories in which OPC status is important. If the letter O

shown on the previous panel was red, then at least one of the items on the OPC

Monitor panel will be red.

Chapter 5. Monitoring using SDF 45

46 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 6. NMC Display Support

SA z/OS OPC Product Automation will display the status of OPC applications or

operations in error. In addition, the status of TSO users may optionally be

displayed.

NMC Resource Definitions

OPC Naming Convention

For OPC status monitoring a new anchor ″OPC″ has been created. This will enable

the status of OPC operations to be accessed without the need to know the name of

the currently active OPC Controller. OPC resources are represented by objects with

a minor name of:

jobname

TSO Naming Convention

For TSO user monitoring a new anchor ″TSO″ has been created. This likewise

enables the status of all TSO users to be accessed from one view. TSO users are

represented by objects with a minor name of:

systemId_tsoUserName

where:

systemId is the name of the system that the TSO user is logged onto.

tsoUserName is the name of the TSO user.

NMC BuildViews for OPC objects

To show the OPC objects on a view off the main tree, use the buildviews

statements shown in Figure 24:

 To show the TSO objects on a view off the main tree, use the buildviews

statements shown in Figure 25 on page 48:

 VIEW=K1.OPC,

 ANNOTATION=’OPC Monitoring in Sysplex K1’

 WILDCARD=(?,*)

 NONSNA=K1.OPC/ANCH*,

 QUERYFIELD=MYNAME

Figure 24. Sample OPC Buildviews Statements

© Copyright IBM Corp. 1990, 2005 47

VIEW=K1.TSO,

 ANNOTATION=’TSO Monitoring in Sysplex K1’

 WILDCARD=(?,*)

 NONSNA=K1.TSO/ANCH*,

 QUERYFIELD=MYNAME

Figure 25. Sample TSO Buildviews Statements

48 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Part 3. Programmer’s Reference

This part describes the information needed by system programmers to install and

customize the OPC Product Automation of System Automation for z/OS. It also

describes the old SA z/OS OPC Automation interfaces. These interfaces are

provided for compatibility and may be removed in a future release.

Subtopics:

v Installing OPC Automation

v Submitting NetView Commands from a Batch Job

v The Batch Command Interface

v Using OPC Special Resources

v The Structure of OPC Request Automation

v Automating Applications with OPC Automation

v MESSAGES/USER DATA Entries and USER E-T Pairs for OPC Automation

v OPC Automation Common Routines and Data Areas

v Guidelines for User-Written Operations

v OPC Automation Operator Commands

v Resynchronization and Recovery Considerations

© Copyright IBM Corp. 1990, 2005 49

50 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 7. Installing OPC Automation

This chapter describes the steps to follow when installing OPC Automation.

Enabling and Disabling OPC Automation

SA z/OS OPC Automation may be disabled and enabled by specification of

subsystems with an application type of OPC.

To disable SA z/OS OPC Automation, do not specify any OPC applications in the

Policy Database for the System that is to have OPC Automation disabled. Disabling

occurs on a system by system basis, so by not linking OPC type applications to a

system, automatically disables OPC Automation.

Disabling OPC Automation causes the message traps in the SA z/OS NetView to

also be disabled. This will speed message processing for those systems that do not

participate in OPC functions. Disabling OPC Automation does not prevent

execution of the INGOPC command. As long as at least one system in the sysplex

contains a Controller or Tracker, the INGOPC command will work.

If you disable SA z/OS OPC Automation for any reason, be sure to unlink the

OPC Command Receiver NON-MVS subsystem and the OPC Request Receiver

NON-MVS subsystem from systems for which OPC Automation is disabled.

To enable SA z/OS OPC Automation, specify the OPC applications for the

Controllers and Trackers in the Policy Database of all systems that have either

Controllers and Trackers running on them. Include any Trackers that belong to

foreign Controllers. That is Controllers not present anywhere in the sysplex that

the Trackers belong to.

Defining System Automation Policy

Several automation policy items are required for correct operation of OPC

Automation. These policy items are:

v The Automation Operators that are required for function enablement.

v The required non-MVS subsystem that is the PPI request server. This subsystem

provides support for the compatible execution of requests from OPC to

SA z/OS.

v The optional new non-MVS subsystem that defines the PPI batch command

interface server.

v The definition of OPC Controller, Tracker and Server subsystems.

v The definition of WORKSTATION names to be automatically activated on

System Automation for z/OS Agent startup.

v Definition of the status observer subsystem to ensure that SA z/OS status

changes are reflected in OPC special resource statuses.

© Copyright IBM Corp. 1990, 2005 51

Define SA z/OS Automation Operators

The Automation Operators that are required for correct operation of SA z/OS OPC

Automation are listed in Table 5.

 Table 5. Automation Operators

Automation Operator Description Messages

OPCAMSTR Main Automation Operator, required to

enable SA z/OS OPC Automation

EVJ*

OPCAOPR2 OPC Request execution operator none

OPCACMDR (new) OPC Batch Command Execution operator none

These automation operator definitions can be found in the *SYSPLEX sample PDB

definitions under the Auto Operators policy with the name ″OPC_AUTO_OPS″.

RMTCMD Security Considerations

NetView RMTCMD is used to communicate with remote domains (that is, gateway

connected domains outside the system/sysplex where the TWS/OPC Controller is

running). RMTCMD will be used if OPC Automation is controlling applications on

a remote domain and recovery is required for the OPC Automation-controlled

operations after the remote system or gateway has failed.

The operator IDs for OPCAMSTR and OPCAOPR2 (AUTOPCP and AUTOPCE or

user specified operator ID) must have the appropriate NetView or RACF authority

to use RMTCMD on the local system (that is, the system running the TWS/OPC

Controller). NetView or RACF definitions may also be required on the remote

systems. For more details about the NetView or RACF security implications when

using RMTCMD please refer to the Tivoli NetView Security Reference.

Also, the recommendation for OPC Automation is to use the SA z/OS policy to

define SENDCMD operators to map the OPC autotasks (AUTOPCP and

AUTOPCE) to appropriate autotasks at the remote site. This is particularly

important for remote systems running NetView 1.3 or below to ensure that the

autotask is available to receive incoming RMTCMDs.

Define Optional Workstations

The batch jobs that execute NetView and SA z/OS commands may be submitted

by any OPC Computer/Automated Workstation. However, if the NetView PPI

receiver is not operational at the time of execution of the batch job, the batch job

may optionally set the workstation that submitted it to an inoperative state. If this

function is to be used, which is the default for the batch job, then it may be

prudent to create additional batch job submission workstations to which these

NetView-related batch jobs are assigned. This will allow the rest of the batch job

stream to be submitted, whilst holding the NetView-related jobs until NetView

starts.

The Workstations that are automatically re-enabled at SA z/OS startup are those

defined on the WORKSTATION User message policy for either the Trackers or

Controllers defined to SA z/OS. An example of this is shown in Figure 26 on page

53, which shows the definition of workstation N001 against subsystem OPCF,

where:

v CODE1 represents the name of the sysplex that the Batch Command Server

non-MVS subsystem is running on.

52 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

v CODE2 represents the name of the system that the Batch Command Server

non-MVS subsystem is running on.

v CODE3 is not used.

This allows the same Controller or Tracker subsystem definition to be run on

different systems or sysplexes and the name of the workstation can be different on

each sysplex or system combination.

Non-MVS Subsystem Definition for the OPC Request Server

This non-MVS subsystem is required to allow requests from Tivoli Workload

Scheduler to System Automation for z/OS. This interface is provided for

compatibility with the previous method of handling requests from OPC to

SA z/OS.

For new users of System Automation for z/OS V2.2, the sample PDB *SYSPLEX

contains a subsystem definition TWS_REQUEST_SERVER. This subsystem

definition contains the policy definition for the OPC Request Server.

For existing users of SA z/OS, a sample part EVJCFPPI has been supplied. Please

note that this part contains definitions for both the Request Receiver and the

Command Receiver, so that this action will only need to be done once. Migrate this

part into a dummy SYSTEM on the existing PDBs. This will automatically create

the TWS_REQUEST_SERVER subsystem. Link this subsystem to an application

group that will connect it to each system that runs a System Automation for z/OS

Agent. The recommendation for this group is that it be linked to each system that

is defined in the PDB and that it be a SYSTEM type group. This will allow the

shutdown of each system to operate independently from other systems.

No relationship definitions are required for this subsystem.

 COMMANDS HELP

--

 Code Processing Row 1 to 21 of 21

Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : SA22_KEYPLEX

Entry Name : TWS_V810_CONTROLLER Enterprise Name : KEY1FAMILY

Subsystem : OPCF

Message ID : WORKSTATION

Enter the value to be passed to the calling CLIST when this resource

issues the selected message and the following codes are contained in

the message.

Code 1 Code 2 Code 3 Value Returned

* * * N001

******************************* Bottom of data ********************************

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 26. Defining Workstation User Message Policy

Chapter 7. Installing OPC Automation 53

Non-MVS subsystem definition for the OPC Command Server

This non-MVS subsystem is required to allow commands from the new Batch

Command Interface to System Automation for z/OS.

For new users of System Automation for z/OS V2.2, the sample PDB *SYSPLEX

contains a subsystem definition TWS_COMMAND_SERVER. This subsystem

definition contains the policy definition for the OPC Command Server.

For existing users of SA z/OS, a sample part EVJCFPPI has been supplied. Please

note that this part contains definitions for both the Request Receiver and the

Command Receiver, so that this action will only need to be done once. Migrate this

part into a dummy SYSTEM on the existing PDBs. This will automatically create

the TWS_COMMAND_SERVER subsystem. Link this subsystem to an application

group that will connect it to each system that runs an System Automation for

z/OS Agent. The recommendation for this group is that it be linked to each system

that is defined in the PDB and that it be a SYSTEM type group. This will allow the

shutdown of each system to operate independently from other systems.

No relationship definitions are required for this subsystem.

Define Workstation Domain Entries

Customize the WORKSTATION DOMAINS (ODM entry type) policy objects in the

SA z/OS policy database and connect them to all systems where the TWS/OPC

controller may run.These policy objects map OPC workstations to NetView domain

IDs.

Define Controller Details

Customize the CONTROLLER DETAILS (OCS entry type) policy objects in the

SA z/OS policy database and connect them to all systems where the TWS/OPC

controller may run and all systems where applications will be automated by OPC

Automation (that is, Tracker only systems).These objects specify the location of a

controller and can be associated with a set of OPC special resources. See System

Automation for z/OS Defining Automation Policy for more information.

Define System Details

Customize the OPC SYSTEM DETAILS policy objects (OEN entry type) in the

SA z/OS policy database and connect them to systems where the TWS/OPC

controller may run and all systems where applications will be automated by OPC

Automation (that is, Tracker only systems). These objects contain control

information for OPC Automation. See System Automation for z/OS Defining

Automation Policy for more details.

Define Special Resources Policy

If required, define OPC special resources as OPC SPECIAL RESOURCES policy

objects (OSR entry type) in the SA z/OS policy database and link them to

CONTROLLER DETAILS objects. See System Automation for z/OS Defining

Automation Policy for more information.

Define or Modify Subsystem Messages/User Data

You must define each subsystem you wish to automate from OPC to SA z/OS. In

many cases, you will also have to define OPCA and OPCACMD entries in the

MESSAGES/USER DATA policy item for these subsystems (see “Executing OPC

Requests with OPC Automation” on page 96).

54 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

|
|
|
|

|
|
|
|
|
|

Define SDF Statuses

The following SDF Statuses are required for correct operation of DFCRIT and

DFUPDT.

EVENTR PRIORITY=50 COLOR=R HIGHLIGHT=N CLEAR=(Y,RV*)

EVENTP PRIORITY=150 COLOR=P HIGHLIGHT=N CLEAR=(Y,RV*)

EVENTY PRIORITY=250 COLOR=Y HIGHLIGHT=N CLEAR=(Y,RV*)

EVENTW PRIORITY=350 COLOR=W HIGHLIGHT=N CLEAR=(Y,RV*)

EVENTC PRIORITY=450 COLOR=T HIGHLIGHT=N CLEAR=(Y,RV*)

EVENTL PRIORITY=550 COLOR=T HIGHLIGHT=R CLEAR=(Y,RV*)

EVENTG PRIORITY=650 COLOR=G HIGHLIGHT=N CLEAR=(Y,RV*)

EVENTD PRIORITY=750 COLOR=G CLEAR=(Y,RV*) REQ=NOADD

These statuses may need to be defined for back level releases of System

Automation for z/OS for both targets and focal points.

Defining the SA z/OS Status Observer

SA z/OS OPC Automation provides a facility that echoes the status of SA z/OS

resources in OPC Special Resources. This facility allows the user to define OPC

operations that will wait until SA z/OS resources reach a desired state. Currently

only two desired states are allowed. The UP state is when the Automation

Manager sets the resource to the AVAILABLE state. The DOWN state is when the

Automation Manager sets the resource to the UNAVAILABLE state.

The Status observer is implemented as an Automation Agent function. This

function, registers with the Automation Manager and receives status changes. It

then translates the status changes to the appropriate OPC special resources and

issues a MVS subsystem broadcast to all OPC Controllers and Trackers on the

system that the Agent is running on.

The SA z/OS Status Observer is defined as a non-mvs SA z/OS subsystem. This

subsystem should run on the system that contains the OPC Controller or

alternatively an OPC Tracker. Figure 27 on page 56 shows the relationships

required for the definition of the OPC Observer.

Chapter 7. Installing OPC Automation 55

Status Observer Definitions

The Application definitions for the OPC Status Observer are as in Table 6:

 Table 6. OPC Status Observer Application Policy Definitions

Policy Item Value(s)

Application Type STANDARD

Job Name OPCOBSVR

Job Type NONMVS

Monitor Routine EVJRSMON

Periodic Interval 00:10:00 or a suitable interval

Relationships v forceDown(WhenObservedWasAvailable) to supporting resource

sanetview/APL/=

v forceDown(WhenObservedHardDown) to supporting resource

opcController/APL/=

v hasParent to supporting resource opcController/APL/=

Startup NORM: EVJEOBSV START

 ACTIVMSG JOBNAME=&SUBSJOB,UP=YES

Shutdown NORMAL: EVJEOBSV STOP

 TERMMSG JOBNAME=&SUBSJOB,FINAL=YES

The relationships are defined to ensure that the observer subsystem is forced to

autodown if either the OPC Controller or the NetView containing the observer

subsystem are unavailable. This will force the OPC Observer resource to

unavailable and will allow a move group to select a working OPC Observer to

start.

In a single system, these relationships will simply have the effect of cleaning up

the status of the OPC Observer subsystem.

Figure 27. OPC Observer Relationships

56 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

For a sysplex, you should define a sysplex move group and put the OPC Observer

subsystem in it. Connect the move group to all the systems in the sysplex that

have an OPC Controller defined to them. Set the preferences to ensure that the

appropriate system is selected that matches the Active OPC Controller. The above

definitions will ensure that the OPC Observer will be moved to a new system if

either the system, NetView or OPC Controller currently active fails. The definitions

will not select a system where the new active OPC Controller resides. It will

merely select the next active system based on preferences. You can manually adjust

the preferences to move the OPC Observer to the new Active OPC Controller

system if required.

Chapter 7. Installing OPC Automation 57

58 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 8. Submitting NetView Commands from a Batch Job

This chapter will describe how to execute NetView commands from a Batch job.

This is particularly useful for Tivoli Workload Scheduler, but can be used stand

alone without either Tivoli Workload Scheduler or Operations Planning for

Control.

Subtopics:

v Sample Batch Job JCL

v Command Statement Syntax

v Valid Command Types

v Command Continuation

v Command Output Re-Direction

v Executing a Command on a Different NetView

Sample Batch Job JCL

A sample batch job can be found in the System Automation for z/OS Installation

library SINGSAMP. Member EVJSJ001 contains the sample JCL. The batch job must

be run on the same system as the SA z/OS Agent that contains the Command

receiver specified by the batch job. In most cases there will be a Command receiver

running on every SA z/OS Agent . However, customization of the Command

receivers can alter the names of the Command receivers and also the number and

configuration of the Command receivers. You should check with your system

programmers to determine the correct system and command receiver to use for

these batch jobs.

Command Statement Syntax

The commands supplied to the batch job in the //SYSIN ddname have the

following syntax:

�� line-mode-command

*

comment

>

DDNAME

″-″
 ��

1. All blank lines are ignored.

2. All lines starting with an asterisk (*) are comment lines and are printed in the

output but otherwise ignored.

3. Comments on the end of commands are not allowed.

4. Comments are not allowed between continuation lines.

5. A command can be continued by appending a ″-″ (dash) to the line.

6. Command output normally goes to //SYSTSPRT.

7. Command output may be redirected to other DDNAMEs via the ″>″ (right

angle bracket) symbol.

8. PIPE > stage is prohibited. Use PIPE QSAM instead.

9. Full Screen commands are not allowed.

© Copyright IBM Corp. 1990, 2005 59

Valid Command Types

Any command, clist or Rexx program that issues correlated line messages may be

used.

This means almost all NetView commands, all SA z/OS commands that support

OUTMODE=LINE and any clist or Rexx program that either issues SAY messages

or PIPES the messages to CONSOLE.

The return code from the command can be used to stop the remaining commands

from being executed. See the HIGHRC= parameter of the EVJRYCMD procedure

definition in Part 3, “Programmer’s Reference,” on page 49.

Command Continuation

Commands are continued across lines by appending a dash to the end of the

command, for example:

PIPE NETVIEW LIST STATUS=OPS | -

CONSOLE ONLY

Command Output Re-Direction

Normally command output is printed on the //SYSTSPRT DDNAME. However,

the output of commands may be re-directed to other DDNAMEs. This is achieved

via the ″>″ symbol, for example:

PIPE NETVIEW LIST STATUS=OPS | CONSOLE ONLY >MYOUTPUT

This allows subsequent steps in the batch job or other batch jobs to use the output

of the command for their own purpose.

The DCB characteristics of the output DDNAME should be as follows:

LRECL=132,RECFM=FB

Executing a Command on a Different NetView

Almost all SA z/OS commands can specify the TARGET= parameter to force the

command to execute on the target system. If a command does not have this facility,

for example the NetView LIST command, you can use PIPE labels to send the

command to the appropriate NetView, for example:

PIPE CC dom01: LIST STATUS | CONSOLE ONLY

or even

PIPE CC dom01/auto1: LIST STATUS=OPS | CONSOLE ONLY

60 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 9. The Batch Command Interface

This chapter describes the OPC batch command interface.

JCL for the Batch Command Interface

Figure 28 on page 62 shows the sample from the product sample library

(SINGSAMP).

© Copyright IBM Corp. 1990, 2005 61

Please ensure that the appropriate NetView library is assigned to //STEPLIB. This

library should contain the DSIPHONE module.

S0 This Step deletes a temporary listing data set that is used for

concatenation of output from the command.

//EVJSJ011 JOB (ACCT),’SAMPLE OPC/TWS JOB’

//**START OF COPYRIGHT NOTICE**

//* *

//* PROPRIETARY STATEMENT: *

//* *

//* 5645-006 *

//* LICENSED MATERIALS - PROPERTY OF IBM *

//* (C) COPYRIGHT IBM CORP. 2002 ALL RIGHTS RESERVED. *

//* *

//* US GOVERNMENT USERS RESTRICTED RIGHTS - *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY *

//* GSA ADP SCHEDULE CONTRACT WITH IBM CORP. *

//* *

//* STATUS= JKYS203 *

//* *

//**END OF COPYRIGHT NOTICE**

//* *

//* DESCRIPTION: OPC/TWS SAMPLE BATCH JOB TO EXECUTE COMMMANDS ON *

//* SYSTEM AUTOMATION NETVIEWS *

//* *

//* CHANGE CODE VRSN DATE WHO DESCRIPTION *

//* ----------- ---- ------- ---- -----------------------------------*

//* $L0=FEATURE,SA22,23JAN02,APC(JJK): INITIAL VERSION *

//* $L1=MISOPC ,SA23,02MAR04,APC(JJK): ADD NETVIEW V5 COMMENTS *

//***

//*--***

//S0 EXEC PGM=IEFBR14

//CONCAT DD DSN=TEMP.CONCAT.LIST,

// DISP=(MOD,DELETE,DELETE),

// UNIT=SYSDA,SPACE=(1,1),AVGREC=M,

// LRECL=132,RECFM=FB,STORCLAS=SMS

//*--***

//*%OPC SCAN

//S1 EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4M,

// PARM=’EVJRYCMD &OWSID SERVER=EVJCMDRV HIGHRC=16’

//STEPLIB DD DSN=SYS1.NETV.V130.SEKGLNK1,DISP=SHR NETVIEW LIBRARY

//*TEPLIB DD DSN=SYS1.NETV.V510.SCNMLNKN,DISP=SHR NETVIEW V5 LIB

//SYSPROC DD DSN=SYS1.SAM.V220.SINGNREX,DISP=SHR SA LIBRARY

//EQQMLIB DD DSN=SYS1.TWS.V810.SEQQMSG0,DISP=SHR TWS LIBRARY

//OUTPUT DD SYSOUT=*

//CONCAT DD DSN=TEMP.CONCAT.LIST,

// DISP=(MOD,CATLG),

// UNIT=SYSDA,SPACE=(1,1),AVGREC=M,

// LRECL=132,RECFM=FB,STORCLAS=SMS

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD DUMMY

//SYSIN DD *

* THIS IS A COMMENT

MVS D A,L >OUTPUT

D NET,MAJNODES >CONCAT

PIPE NETV WHO | -

 NLOC /AUT/ | -

 CONS ONLY

INGLIST */APL/* OUTMODE=LINE >CONCAT

/*

Figure 28. Sample JCL for the Batch Command Interface

62 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

%OPC This statement is used to tell OPC to begin scanning for OPC

substitution variables and to replace them when found with their

contents.

S1 This Step executes a BATCH TSO TMP to run the Rexx command

that sends commands to a SA z/OS Agent.

EVJRYCMD This is the Command that runs to process batch commands.

&OWSID This is a Tivoli Workload Scheduler substitution variable that

represents the name of the workstation that submitted the job.

//STEPLIB The NetView library SEKGLNK1 (or equivalent) is used to provide

the DSIPHONE Rexx function. Please substitute the correct library

name for the appropriate release of NetView that is being used by

SA z/OS.

 If Module EQQYCOM cannot be found in the system LINK LIST,

then concatenate the appropriate TWS Load library here.

//SYSPROC The SA z/OS library that contains the EVJRYCMD Rexx

procedure.

//EQQMLIB The Tivoli Workload Scheduler for z/OS message library.

//OUTPUT Optional output DDname for command output redirection.

//CONCAT Optional output DDname for command output redirection. In this

case a data set that will have successive command output

concatenated to it.

//SYSTSPRT Required TSO TMP output DDNAME.

//SYSTSIN Required TSO TMP command input DDNAME. Dummied out

because the only command to be executed is in the parameter to

the TSO TMP.

//SYSIN Commands to be executed in the SA z/OS Agent.

EVJRYCMD Description

Purpose

EVJRYCMD is a REXX procedure that will issue commands to a SA z/OS Agent

and will receive the results of those commands.

�� EVJRYCMD wsid

NOWKSTS

EVJCMDRV

SERVER

=

server

 �

�
60

TIMEOUT

=

seconds

HIGHRC

=

return_code
 ��

Parameters

wsid This is a required parameter.

 This parameter specifies the name of the Tivoli Workload Scheduler work

station that submitted this batch job. This information is used by the

command to disable the work station in the event that communications

between the batch job and the SA z/OS Agent cannot be established. See

“the NOWKSTS parameter” on page 64 to modify this behavior. This

Chapter 9. The Batch Command Interface 63

parameter must be specified, even if it is not to be used. In the case of the

NOWKSTS parameter being specified or the batch job is submitted

manually or by a product other than Tivoli Workload Scheduler, specify

any non-blank character sequence.

NOWKSTS

This parameter is optional.

 This parameter modifies the behavior of the command. In the event of a

failure in communications to the SA z/OS Agent, this parameter prevents

the command from disabling the Tivoli Workload Scheduler work station

as defined by the wsid parameter. If this parameter is not specified, any

NetView PPI communications problem will cause the command to issue a

TWS WSSTAT command to place the work station offline.

SERVER=

This parameter is optional.

 The default for this parameter is EVJCMDRV. This parameter specifies the

name of the PPI receiver in the SA z/OS Agent NetView to which

commands will be sent.

TIMEOUT=

This parameter is optional.

 The default for this parameter is 60 seconds.

 This parameter specifies the time in seconds that the batch job will wait for

a command to execute in the System Automation Agent NetView. This

timeout is applied separately to each command.

HIGHRC=

This parameter is optional.

 The default for this parameter is 0 (zero).

 This parameter specifies the highest acceptable Return Code for the job.

Any return codes from commands that are less then or equal to this value

will reset the JCL Step return code to zero. Any command return code that

is greater than this value will be passed as the JCL Step return code.

Note: The JCL Step return code will be the highest return code of all the

command return codes.

Usage

When the SA z/OS Agent is started, it will automatically issue a WSSTAT

command to mark the work station online. The specifications of which work

stations to mark online at agent restart is contained in the WORKSTATION

message/user data policy for the tracker or controller. Multiple work stations may

be defined. Work stations that are assigned to trackers should have their

WORKSTATION policy defined to the same trackers that they are assigned to. See

“Define Optional Workstations” on page 52.

Each command is submitted in turn and the results of the command are retrieved.

These results are then written to either SYSTSPRT or to the output redirection

DDNAME.

64 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 10. Using OPC Special Resources

This chapter describes the OPC Special Resources created by SA z/OS and how to

use them.

SA z/OS can dynamically create OPC special resources based on the status of

SA z/OS resources. These OPC special resources can in turn be used to control the

flow of applications and operations in OPC.

OPC Special Resource Definition

SA z/OS creates OPC Special Resources if allowed to via policy definitions. The

definition of the name of these special resources is as defined in “OPC Automation

Special Resources” on page 14.

Each SA z/OS Resource (application, application group, system or system group)

has two OPC special resources. One tracks the state of the SA z/OS resource in

the UP case. The other tracks the state of the SA z/OS resource in the DOWN

case. Setting the availability of these two OPC special resources are independent of

each other. It is possible for the SA z/OS resource to have both the UP and

DOWN OPC special resources UNAVAILABLE. This can occur when the SA z/OS

resource is starting for example. It is neither UP or DOWN.

It should not normally be possible to have both OPC special resources AVAILABLE

at the same time.

Enabling SA z/OS OPC Special Resources

To enable the SA z/OS OPC Special Resource tracking the following have to be

done.

1. Ensure that the SA z/OS Resources that are to be monitored are defined

SA z/OS.

All these policy items are described in System Automation for z/OS Defining

Automation Policy in the section ″Defining Automation for OPC Components″:

a. Set the OPCA PCS Special Resources Policy.

 Use NO if you do not want any Special Resources Set.

 Use ALL if you want ALL SA z/OS Resources echoed as OPC Special

Resources (this will create a large number of OPC special resources).

 Use YES if you want a selection of SA z/OS Resources echoed as OPC

Special Resources.
b. If YES was specified above, ensure that the OPC Special Resources policy

item is updated with the appropriate resource masks and linked to the

appropriate systems via the WHERE USED entry.
2. Ensure that the definitions for the OPC Status Observer are entered into the

Automation Policy. The instructions for this are given in “Defining the

SA z/OS Status Observer” on page 55.

3. Ensure that OPC option RESOPTS DYNAMICADD(YES) is specified.

© Copyright IBM Corp. 1990, 2005 65

Using SA z/OS OPC Special Resources in an Application

Holding an Operation until an SA z/OS Resource Reaches a

Desired State

To use a SA z/OS special resource to hold an operation until the appropriate

status is achieved do the following:

1. Create the special resource in the OPC Database.

Use the OPC ISPF dialog to create the special resource. Set the Availability of

the special resource to N, as shown in Figure 29.

2. Create the Operations in the application:

The first operator should submit the batch job to execute the requested

function.

The second operation runs at a General Completion Workstation and waits for

the appropriate Special Resource, as shown in Figure 30 on page 67.

 ------------------------- CREATING A SPECIAL RESOURCE -------------------------

 Option ===>

 Select one of the following:

 1 INTERVALS - Specify intervals

 2 WS - Modify default connected workstations

 SPECIAL RESOURCE ===> ING.KEY1.APL.CICSK1G.UP_____________________

 TEXT ===> __

 SPECRES GROUP ID ===> ________

 Hiperbatch ===> N DLF object Y or N

 USED FOR ===> B Planning and control C , P , B or N

 ON ERROR ===> __ On error action F , FS , FX , K or blank

 Defaults

 QUANTITY ===> 1_____ Number available 1-999999

 AVAILABLE ===> N Available Y or N

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 29. Creating a Special Resource

66 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

3. The Special resource for operation 005 is as shown in Figure 31.

4. Make sure you define the Special Resource to OPC with an initial Availability

of N.

In this case Operation Number 005 will wait until SA z/OS sets the special

resource ING.KEY1.APL.CICSK1G.UP to Y. This will only happen if the observed

and desired status of CICSK1G/APL/KEY1 are both AVAILABLE.

Starting or Stopping an SA z/OS Resource

To start or stop a SA z/OS Resource, use the previous section as a base.

1. In the JCL for job SAMPJOB copy the sample job EVJSJ001 from SINGSAMP

and tailor it for your environment.

 --------------------------------- OPERATIONS ----------------- Row 1 to 2 of 2

 Command ===> Scroll ===> CSR

 Enter/Change data in the rows, and/or enter any of the following

 row commands:

 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

 S - Select operation details, J - Edit JCL

 Enter the TEXT command above to include operation text in this list, or,

 enter the GRAPH command to view the list graphically.

 Application : JKOPCTST1 Test Batch Iface

 Row Oper Duration Job name Internal predecessors Morepreds

 cmd ws no. HH.MM.SS -IntExt-

 ’’’’ N001 001 00.00.01 SAMPJOB ___ ___ ___ ___ ___ ___ ___ ___ 0 0

 ’’’’ GAC1 005 00.05.00 ________ 001 ___ ___ ___ ___ ___ ___ ___ 0 0

 ******************************* Bottom of data ********************************

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 30. Creating the Operations

 ------------------------------ SPECIAL RESOURCES ------------- Row 1 to 1 of 1

 Command ===> Scroll ===> CSR

 Enter/Change data in the rows, and/or enter any of the following

 row commands:

 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

 Operation : GAC1 005

 Row Special Qty Shr Keep On

 cmd Resource Ex Error

 ’’’’ ING.KEY1.APL.CICSK1G.UP_____________________ 1_____ S _

 ******************************* Bottom of data ********************************

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 31. Special Resource for Operation 005

Chapter 10. Using OPC Special Resources 67

2. Put the INGREQ command in the //SYSIN and specify the OUTMODE=LINE

option for INGREQ.

3. If you are starting a resource (APL or APG) update the Special Resource for the

operation 005 to reflect the name of the resource specified in the INGREQ

command. e.g. for INGREQ TEST/APG/SYS1 use special resource

ING.SYS1.APG.TEST.UP.

4. If you are stopping a resource (APL or APG) update the Special Resource for

the operation 005 to reflect the name of the resource specified in the INGREQ

command. e.g. for INGREQ TEST/APG/SYS1 use special resource

ING.SYS1.APG.TEST.DOWN.

5. Remember to create the special resource in the OPC Database via option 1.6 in

the OPC dialogs.

The operation is now ready for LTP and Current Plan planning functions.

When OPC submits the first operation, the JCL will run the Batch Command

Interface and execute the INGREQ command on the SA z/OS Agent. SA z/OS

will then process the command and issue the appropriate orders to the Agents to

achieve the desired status. When the resource has achieved the desired status,

SA z/OS will notify OPC that this has occurred by updating the special resource.

This will cause operation number 005 to be marked Complete - especially if you

assign it to a General Non-Reporting work station. Operations and Applications

that have a predecessor of operation number 005 will now be able to run.

68 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 11. The Structure of OPC Request Automation

This chapter explains the structure of OPC request automation in some detail.

Flow Overview

OPC Automation is an interface between NetView, OPC, and SA z/OS. These

components provide the facilities which make up the interface. This section

provides an introduction to these components and their interactions.

Initialization

Initialization involves the following two sequences:

1. Initialization of the OPC components.

2. Initialization of OPC Automation functions in each NetView. “Startup of

OPC-Controlled Subsystems” on page 78 describes this. OPC Automation

initialization includes the automated recovery sequences described in

“Automated Recovery” on page 87.

Request Flow

This section contains a detailed description of the flow of a request from OPC to

NetView and the return confirmation. This flow provides an explanation of the

involved modules. “Request and Confirmation Transaction Flow” on page 79

summarizes this request.

Figure 32 on page 70 uses a request to start RMF™, located in a NetView domain

NVREG with a workstation definition of NV04. This request is an operation in an

OPC-defined application known as MAINT.

© Copyright IBM Corp. 1990, 2005 69

Using dependency control to ensure an orderly flow of operations, OPC defines

the OPC-controlled application named MAINT. OPC defines the application on an

automatic general workstation, specifying the NetView to which the request is sent.

NVxx specifies a NetView automatic general workstation with a NetView domain

index of xx, which is resolved in the Controller NetView into the target NetView

domain ID through the definitions in the SA z/OS policy database. OPC can

define the NVxx workstation with all regular specifications, such as parallel servers

and special resources.

In the MAINT example in Figure 32, OPC defines the last batch application

processed before starting RMF with an operation number of 15. Once this

completes properly, the normal OPC dependency control readies the NV04_20

operation on the NV04 workstation. This signifies that the request contained within

the operation description field is sent to the NetView with a domain ID of NVREG.

OPC Automation uses the NetView PPI to transfer the request from OPC to

NetView. This transfer is through the EQQUX007 exit in the OPC/ESA controller.

EQQUX007 Exit

Each change of status on any workstation causes OPC to call user exit 7

(EQQUX007). The OPC Automation user exit EVJUX007 calls modules EVJ07001

and EVJ07004.

Figure 32. NetView-OPC Interface Flow. Syntax and definition errors, target system

availability, recovery, and resynchronization via OPC API and NetView program-to-program

interface are not shown in this example.

70 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

v EVJ07001 sends automation commands and data across the NetView PPI for all

status changes on NVxx workstations.

v EVJ07004 WTO’s Operation status information for any operation that ends in

Error or is changed from Error state to any other OPC state. This information is

used to update SDF and NMC monitoring of OPC operations.

Figure 33 shows the flow of the EVJ07001 exit.

When an NVxx workstation moves to the R status, the workstation generates a

request buffer. Fields pointed to by registers in the EQQUX007 exit provide all of

the data for the request buffer. For the layout of the fields in the request buffer, see

Table 9 on page 133 and Table 10 on page 133.

OPC Automation supplied EQQUX007 exit logic verifies that all fields exist (except

the optional request parameter fields). If this exit logic determines that any field is

missing or the value is not valid, it issues an error WTO and changes the operation

to E status, with an error code indicating a user-definition error. Since the

EQQUX007 exit contains no capability to directly change the status of an OPC

operation when an error code is posted to OPC, the EQQUX007 exit uses the

EQQUSINT module to respond.

If the information is correct, OPC builds the request buffer and calls the

CNMCNETV module, which is the NetView program-to-program interface module.

This module transfers the request to the Controller-NetView, where OPC verifies

the return codes from the call function to ensure that there are no errors. If OPC

detects errors, the EQQUSINT module changes the status to E (ended-in-error),

with the error code on the basis of the PPI module return code. The module issues

a WTO and completes processing the EQQUX007 logic. OPC Automation then

restores registers and returns control to OPC.

If the OPC Automation EQQUX007 exit is unable to load the CNMCNETV module

or use it to send data, it directs OPC to mark the requested operation in error, with

an error code of UNTV. OPC Automation will attempt to reset operations which

have ended in a UNTV error, subject to a user-defined time limitation, whenever

the OPC controller is restarted.

Program-to-Program (PPI) Interface Dispatcher

The NetView program-to-program interface passes the request buffer to the PPI

dispatcher task in the SA z/OS application. The PPI dispatcher task (EVJTOPPI), a

Figure 33. EQQUX007 Exit

Chapter 11. The Structure of OPC Request Automation 71

NetView subtask, receives the requests for an SA z/OS action from the buffers

from the EQQUX007 exit. Figure 34 shows this flow.

On the basis of the sending task identifier, the PPI dispatcher determines the

function in SA z/OS that is sent. For OPC Automation, the dispatcher selects the

verify function.

Verify Module (EVJESPVY)

The verify module, which runs on a NetView autotask, runs only in the Controller

NetView. This module receives the action request buffer from the PPI dispatcher

task. Figure 35 shows this process.

The verify module uses the NVxx index to obtain the destination NetView domain

ID from the SA z/OS policy database. If the relevant NVxx index specifies

SYSPLEX, then all SA z/OS systems in the local sysplex are queried for the status

of the application associated with the job name of the request. The destination is

determined to be the system which has the application in the most active state.

If the destination NetView and the requesting NetView are the same, OPC

Automation logs the request buffer and invokes the request module. If the

Figure 34. PPI Dispatcher

Figure 35. Verify Module

72 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

destination NetView and the requesting NetView are different, OPC Automation

sends the request to the proper NetView domain by message forwarding.

If OPC Automation does not find the NVxx index then OPC Automation issues a

message, posts the operation status to E (ended-in-error, U003), and logs the

results. No communications can occur with this workstation until the definition is

corrected. On the domain where the OPC controller is running, the workstation

must be defined in the WORKSTATION DOMAINS policy object (ODM entry

type). You must manually reset operations that are posted-in-error since OPC

Automation carries out no automated recovery for definition errors.

If NVxx is associated with the sysplex on which the OPC controller is running

(SYSPLEX keyword in the WORKSTATIONS DOMAIN entry) and OPC

Automation does not find the job defined to any online SA z/OS in the local

sysplex, then OPC Automation issues a message, posts the operation status to E

(ended-in-error, S998), and logs the results. To cater for the situation where all

domains where the job runs are offline, the operation will be retried if a gateway

connection to another SA z/OS becomes active.

If OPC Automation successfully forwards messages, it logs the request buffer and

returns control to the module. If OPC Automation cannot send the request, it

issues an error message and logs it to indicate communication loss with the

requested NetView domain. OPC Automation then posts the operation status to E

(ended-in-error, S999) due to loss of contact. When OPC Automation re-establishes

communications with this NetView domain, it checks for all outstanding errors

because of loss of communications on this workstation. If OPC Automation finds

any of these errors, it resets the OPC-operation status to R (ready), which

re-invokes the EQQUX007 exit.

Request Module (EVJESPRQ)

The arrival of a request from the verify module drives the request module in the

Tracker NetView. OPC Automation installs the request module on each system

running an OPC/ESA Tracker. Figure 36 on page 74 shows the flow of this process.

The main function of the request module is to translate the OPC-generated request

into a subsystem related command, or to schedule a user-defined function that is

not related to a subsystem. The control flow of the module is shown in Figure 36

on page 74.

Chapter 11. The Structure of OPC Request Automation 73

If required, the request module uses definitions in the SA z/OS policy database to

create the command that initiates the function requested. The policy database

contains entries (OPCA, OPCACMD keywords; see Chapter 13,

“MESSAGES/USER DATA Entries and USER E-T Pairs for OPC Automation,” on

page 103) from which the command text and the parameter syntax for the actual

request are obtained. If any of these entries are not found, the processing cannot

continue. The OPCAPOST module posts an error to OPC, which logs the error and

issues a WTO. Since this is a user-definition error, OPC attempts no automation

recovery. The user must correct the definitions and reset the operations in error.

In Figure 36, the request module translates the requested action in the buffer to the

SA z/OS command required to start RMF. The SA z/OS command then starts

RMF.

Except for starting, stopping, or recycling SA z/OS-controlled subsystems, other

functions may require user programming. To support these functions, OPC

Automation provides a user exit capability. For a detailed description of user

responsibilities required to handle a user call, see Chapter 15, “Guidelines for

User-Written Operations,” on page 135.

For subsystem-related operations, the OPCAPOST command processor posts to

OPC if the required entries are found in the policy database. OPC changes the

status from R (ready) to S (started). OPC Automation then issues a timer request

on the basis of the delay specified in the policy database (OPCA keyword, see

“OPCA” on page 109), issues the command, and checks the return code. Then the

request module terminates.

A change of subsystem status calls the status-change exit module. If the status

change does not occur, the timer-driven module executes when the timer interval

expires. This ensures that a request resulting in an unexpected status processes. For

Figure 36. Request Module

74 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

example, if OPC requests a START operation, and the subsystem fails to start due

to a JCL error or other problem, then the OPCAPOST module posts OPC with an

error status.

OPC Automation dynamically generates the OPC request by using definitions in

the policy database and dynamic substitution of command fragments on the basis

of the parameters.

Status Change Module (EVJESPSC)

SA z/OS calls the status-change module for each change of status. This module

determines whether a status change is the result of a previous OPC Automation

request. If the status change is not the result of a previous request, OPC

Automation ignores the status change. Figure 37 shows the flow of this process.

If an outstanding request for the changed subsystem exists, and the new status is

compliant with the expected status, OPC Automation cancels the timer.

OPCAPOST updates the OPC operation status to C (completed) status.

With the timer values properly set and the operation processing normally, the

change of status should always occur before the timer interval expires.

Timer Module (EVJESPTE)

Under normal conditions, a request passed to SA z/OS results in the desired

status change before the timer expires, and OPC Automation purges the timer.

When this sequence does not occur, and the timer remains at the end of the timer

interval, SA z/OS drives the timer module.

Figure 37. Status Change Module

Chapter 11. The Structure of OPC Request Automation 75

For subsystem related functions, the SA z/OS status file provides the current

status, and EVJESPTE compares this with the expected status. If a match is

obtained, the OPCAPOST command processor posts a C (completed) status to

OPC. If EVJESPTE determines a mismatch between the current and expected

status, OPCAPOST posts an error to OPC for review by the OPC administrator.

Figure 38 shows the flow of this process.

OPCAPOST Command Processor

The OPCAPOST command processor calls EQQUSINT, which passes the

completion code to the OPC Tracker in this system. The OPC Tracker forwards the

completion code to the system running the Controller through the mechanism used

by OPC/ESA. Figure 39 shows the flow of this process.

Other functions use the OPCAPOST command. See “OPCAPOST” on page 130 for

documentation on the syntax.

This module completes the processing for this specific OPC operation. If the

request executes successfully, OPC Automation sets the OPC operation status to C

Figure 38. Timer Module

Figure 39. OPCAPOST Command Processor

76 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

(completed) and normal OPC-dependency control allows the next operation to

start. See the CPU_25 batch job in Figure 39 on page 76. If the operation completes

in error, OPC Automation sets an E status and a 4-character return code. The

application does not continue processing until some intervention occurs. An

operator or OPC Automation’s recovery can sometimes provide this intervention.

Automated Operator Tasks

OPC is an SA z/OS-controlled subsystem. Normal definitions in the SA z/OS

policy database can describe OPC. In addition, SA z/OS defines an automated

operator task (called automated function by SA z/OS) for the OPC Controller in the

system containing the Controller, as well as one for the OPC Tracker in each

system. These automated operator tasks perform the OPC-requested functions in

the SA z/OS application.

OPC Automation requires actions in a specific order. Changes in this order can

result in unpredictable and undesirable results. To ensure that a proper sequence of

processing is maintained, you must complete the actions in a single-thread fashion.

In OPC, this is the responsibility of the user and is achieved through dependency

control or critical resource specifications.

NetView maintains this control by ensuring that actions are executed sequentially

through the use of automated operator tasks. Specify only one automated operator

task for the OPC Controller functions and only one for the Tracker functions.

Stipulating any additional automated operator tasks for OPC Automation results in

loss of synchronization. This, in turn, can create an uncontrolled environment,

requiring a substantial amount of operator/system programmer effort to recover,

and additional loss of synchronization until a single automated operator task for

the Tracker and Controller functions is reinstated. When OPC Automation detects

any violations, it checks for out-of-sequence requests and stops processing for a

specific application through an error code to OPC Automation.

However, separate automated operator tasks for Controller and Tracker are

required. Running OPC Automation on the Controller system with a single

automated operator task specified for both Controller and Tracker functions results

in a lockout condition. Consider this especially on backup systems, which do not

normally run Controller functions. If you specify only one automated operator task

for both systems, each task runs properly until they become an active backup

system and lock.

For the automated operator task OPCAMSTR, the operator ID must be AUTOPCP.

For the automated operator task OPCAOPR2, you may specify whatever operator

ID meets your installation standards. However, do not change the OPC

Automation operator task names OPCAMSTR and OPCAOPR2.

Initialization

SA z/OS initialization involves two phases:

v The first starts OPC components so the scheduling process is active.

v The second restores the status of any OPC-controlled tasks to the last status

requested by OPC and waits for OPC to issue new requests.

Startup of OPC Components

The first phase involves the initialization of the OPC components. In normal mode

of operations, OPC remains operational at all times. Without the SA z/OS

Chapter 11. The Structure of OPC Request Automation 77

application, OPC starts as a JES task. With OPC Automation, the responsibility of

starting OPC transfers from JES to the SA z/OS application. Figure 40 shows an

example of the startup of OPC/ESA during an IPL process.

The following scenario describes this type of environment:

v The OPC/ESA Tracker has JES as a parent. A small portion of OPC/ESA starts

before JES. During system IPL, the master scheduler invokes this program

(EQQUNIT).

v During the IPL process, JES issues a start command for the OPC/ESA Tracker

task as soon as it is running as part of the normal SA z/OS-controlled flow.

v Once OPC/ESA Tracker starts, the SA z/OS application issues a start command

for the OPC/ESA controller on the control host only.

v The SA z/OS application continues to initialize the rest of the tasks that are

defined to it.

This completes the initialization phase.

Startup of OPC-Controlled Subsystems

After the SA z/OS application has completed initializing its defined tasks, the

startup phase of the OPC-controlled subsystems starts.

OPC Automation uses a status file record for each subsystem defined to it. This

record keeps information such as the last completed action, any request in

progress, or the last processed request if no request is processing. The status file

record provides a means of maintaining this information across NetView failures

and restarts.

During the initialization of OPC Automation, its initialization module runs. This

module carries out several functions that result in every OPC Automation

subsystem resynchronizing to a known status. The initialization module also sets

OPC Automation status-record-locking flags to a null value.

Figure 40. OPC/ESA Startup During IPL Process

78 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

During OPC Automation startup, OPC Automation examines the SA z/OS

database for OPC Automation entries. If new entries are found, OPC Automation

creates status file records and initializes them to a null value (never a used status).

OPC Automation attempts no action for these subsystems until it receives a request

from OPC. This allows coding entries into the policy database before defining the

subsystems in the rest of SA z/OS or OPC. For existing OPC Automation status

file entries, OPC Automation resets the timer and completion flags to a null value,

which allows handling of new requests.

On the system where the OPC Controller runs, OPC Automation initialization

takes an additional step. This step drives the automated recovery function and

determines whether OPC has any requests which ended-in-error (S999 or UNTV)

because of the unavailability of NetView. If any ended-in-error requests are found,

OPC Automation resets the operations.

Initialization Module (EVJESPIN)

The initialization module carries out two functions.

v OPC Automation uses the first function during initialization as previously

described.

v An operator command accesses the second. This function also builds and

resynchronizes OPC Automation status file records dynamically. For a

description of the uses of the initialization command, refer to “EVJESPIN —

Initialization” on page 149.

Request and Confirmation Transaction Flow

Figure 41 on page 80 shows the flow from an OPC application requested action

through to NetView and the return confirmation of the action. This example

illustrates the request to start the resource management facility (RMF), located in a

remote host with a NetView domain identifier of NVREG. OPC contains a

representation of this host with a workstation definition of NV04. The request to

start RMF is part of an OPC application known as MAINT. In Figure 41 on page

80, the jobname is specified as RMF and the operation text is START.

Chapter 11. The Structure of OPC Request Automation 79

The OPC application named MAINT is defined to OPC, using dependency control,

to ensure an orderly flow of operations. NV04 defines an OPC automatic general

workstation which is resolved by NetView into the target NetView domain ID

through OPC Automation parameter definitions.

Figure 41 shows CPU_15 as the last batch step which needs processing prior to

starting RMF. Once this completes properly, OPC dependency control makes the

NV04_20 operation ready on the NV04 workstation. This causes the creation of a

request buffer for the request to start RMF which is then forwarded to NetView

Domain NVREG. For the request buffer, see “Request Buffers and OPC Automation

Log Entries” on page 81.

OPC Automation uses the NetView PPI to transfer the request buffer from OPC to

NetView. This transfer of the request from OPC to NetView is through the use of

the status change exit (exit 7) in OPC.

�1� The NetView PPI passes the request buffer to the PPI dispatcher task in

SA z/OS. This task dispatches the request to the OPC Automation verify routine,

which translates the workstation name into the NetView domain ID through

definitions in the SA z/OS policy database.

�2� The request is forwarded to the appropriate NetView domain for execution.

Figure 41. NetView–OPC Interface Flow. Syntax and definition errors, target system

availability, recovery, and resynchronization via OPC API and NetView PPI are not shown in

this example.

80 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

�3� The target NetView translates the request text into MVS console commands

using information stored in the SA z/OS policy database. In Figure 41 on page 80,

the request module translates the request buffer into a command to start RMF. This

start command must be specified with the OPCACMD keyword in the

MESSAGES/USER DATA policy item of the RMF application (for details, see “OPC

Requests and MESSAGES/USER DATA Keywords” on page 96). It can be an MVS

START command, or the INGREQ SA z/OS command (which is recommended). In

the latter case, the command could be:

INGREQ RMF REQ=START,TYPE=NORM,SOURCE=EXTERNAL

Functions other than START and STOP of subsystems based on SA z/OS may

require user programming.

The command is dynamically generated using definitions in the SA z/OS policy

database. A check determines whether the command is properly accepted. During

this process, WTOs and the OPCAPOST command report errors. OPCAPOST sends

an error indication back to OPC. If the command is issued correctly, a timer

request is made. The timer intercepts a condition, where the request does not

execute in a reasonable amount of time, which is user-selectable.

�4� A change-of-status SA z/OS function intercepts all changes-of-status. This

allows the completion of outstanding requests as soon as the request is executed.

�5� When the request is completed, the OPCAPOST command processor is

invoked. OPCAPOST calls EQQUSINT which passes the completion code to the

OPC Tracker on this system. The OPC Tracker forwards the completion code to the

OPC Controller.

In a user-supported function, the timer and completion validation are a user

responsibility. Once the user code determines that the function is completed, it

should call the OPCACOMP function. This function assures that actions are

accomplished in the correct sequence, performs some housekeeping, returns a good

or bad completion code, and calls the OPCAPOST command processor.

This terminates the processing for this specific OPC operation. If the request is

executed without problems, the operations status is set to C (completed), and

normal OPC dependency control allows the next operation to start. See the

CPU_25 batch job in Figure 41 on page 80.

If the operation completes in error, an E status and a 4-character return code is set,

and the application does not continue processing until a person or OPC intervenes.

Errors reset by OPC Automation are the result of regained availability of a target

NetView domain to which communications are lost. The error codes are set to:

v Uxxx when human intervention is required.

v Sxxx when OPC Automation attempts to recover. This occurs when an operation

that did not complete properly is resolved and completed.

Request Buffers and OPC Automation Log Entries

Requests are specified to OPC Automation in the Operation text field of the

Operations panel (see “Defining Applications for OPC Automation in OPC” on

page 90 for details). The EQQUX007 exit logic creates a request buffer that contains

the request and all additional information that is needed

v To pass the request to its proper destination, and

Chapter 11. The Structure of OPC Request Automation 81

v To inform the requesting workstation of the result of the request.

Before processing takes place, the request buffers received by OPC Automation

from OPC are copied to the NetView log for tracking purposes, such as verification

of correct operations and error logging.

Figure 42 shows the request buffer log entry for the example of Figure 41 on page

80, if we suppose that an OPC controller running on domain NVDOM has made

the request to OPC Automation to perform START for the RMF subsystem. When

this action is completed, OPC Automation changes the status of the NV04_20

operation in the MAINT application to C (completed).

 The operation number is needed in order to inform OPC Automation which

operation in OPC must be notified of the result of the request. In the example, the

request contains no parameters. When a request does contain parameters they are

inserted in the log entry between the request type (function) and the domain name

of the requesting OPC controller. For more information on request parameters, see

“Request Parameters and the &EHKVARi Variables” on page 98.

Request Handling in the OPC Controller System

In an OPC-controlled application, defining specific parameters for an operation

generates a request. These parameters are defined for an operation on an NVxx

workstation, where NVxx represents a NetView domain. When the daily planned

execution of OPC makes this NVxx workstation ready, OPC Automation starts

through the EQQUX007 OPC/ESA user exit. See Figure 43 on page 83 for an

illustration of this flow.

Figure 42. NetView Log Entry of an OPC Generated Request

82 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Each OPC change of status drives the OPC/ESA EQQUX007 exit. OPC Automation

logic in the exit intercepts a change of status to R (ready) for an NVxx workstation.

OPC Automation logic in the exit intercepts a change of status and verifies the

request for required fields, correct lengths, and appropriate use of alphanumerics.

However, OPC Automation does not validate fields for specific content. From the

information in the OPC control blocks, OPC Automation logic builds a request

buffer to identify the request, application, and workstation in OPC.

Once OPC Automation builds this request buffer, the PPI calls NetView. The PPI

dispatcher in NetView receives the request buffer and sends it to the appropriate

module. In this case, it is the OPC Automation verify module, which runs under

the NetView Controller automated-operator task.

Figure 43. Request Handling in the OPC Controller Processor

Chapter 11. The Structure of OPC Request Automation 83

If OPC Automation is unable to call the NetView interface module, it marks the

operation with a status of E and an error code of UNTV. OPC Automation will tell

OPC to reset operations which have ended with a UNTV error every time OPC or

SA z/OS is restarted, provided these errors occurred less than a user-specified

time interval. This time interval is defined in the Operation reset delay field of the

OPC SYSTEM DETAILS policy object; see System Automation for z/OS Defining

Automation Policy.

The verify module translates the NVxx identifier to a real NetView domain ID, and

sends the request buffer to the appropriate domain through forwarding functions

of SA z/OS. If the request is destined for the same system as the one that the OPC

Controller is on, OPC Automation transfers the request to the request module

running under the NetView Tracker automated operator task.

Request Handling in the OPC Tracker System

Figure 44 describes the flow of OPC Automation for a request invoking a base

function of the SA z/OS-defined subsystem.

The request module (EVJESPRQ), a part of the Tracker portion of OPC

Automation, runs under the NetView Tracker automated operator task. This

module issues the command associated with the request that is contained in the

request buffer. The OPCACMD entry for each subsystem (see “OPC Requests and

MESSAGES/USER DATA Keywords” on page 96) defines the actual command.

This permits the coding of generic requests in the application descriptions in OPC.

This request flow also allows customizing requests for each system and avoids

changes in the target systems reflected in the focal-point system.

The user is responsible for controlling requests and not issuing multiple requests to

the same subsystem on a given target. Use dependency control or critical resource

definitions in OPC to control the sequencing of requests.

EVJESPRQ uses a timer and completion flag as a locking mechanism to ensure that

there is only one outstanding request for a subsystem at a given time. If OPC

Automation receives a request before completing a previous request, OPC

Automation posts the operation to OPC with a return code of U005, indicating a

user sequence error. You must then use a manual recovery function to synchronize

Figure 44. Request Flow for a Base SA z/OS Function

84 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

OPC and OPC Automation. The initialization command (EVJESPIN) contains the

following two parameters for this purpose:

v RESET

v SYNC

The request module sets a timer for every command issued. This ensures that no

lockout condition occurs. The timer value specified in the OPCA entry of the

policy database should be large enough to accommodate the longest interval of

time that the requested function may take under normal operating conditions.

The occurrence of the subsystem status change invokes the status change module

(EVJESPSC). If the module completes before the expiration of the timer, this avoids

delaying the process. With a properly set timer delay, the status change function

should always gain control before the expiration of the timer. When the status

change module gains control, the module cancels the timer if it is still outstanding.

If the timer interval expires before the timer is cancelled, OPC Automation logs

this event and indicates performance or other problems.

The timer module (EVJESPTE) and the status change module update the OPC

Automation status file record and use the OPCAPOST command processor to post

the appropriate status and return code to OPC.

Completion and Timer Flags

Both the status change and timer modules check for each other’s completion. If

one function completes first, the second function exits to avoid false double

posting to OPC. Double posting is avoided by using timer and completion flags, as

the following text discusses.

NetView schedules work on automated operator tasks on a first-in/first-out basis.

Work elements resulting from the status change or timer modules become ready as

NetView schedules them on the queue. Since NetView automated operator tasks

process in a sequential manner, the queue can hold both the status change and the

timer work elements at the same time. When this occurs, NetView must process

only one work element, because handling both results in double posting to OPC,

leading to errors in the OPC-defined application.

To avoid these errors, OPC Automation uses two flags in the automation status file

entry. One of these flags is related to the status change module, the other to the

timer module. When the modules are called, they examine the flags. If neither flag

is on, the respective module turns on the flag associated with the active function

and continues processing. If a flag is found on, the function exits, because the

processing is completed by the other function while this work element was

queued. This process depends on defining a single automated operator task for

each NetView Tracker.

Operations Control

This section discusses the EVJESPIN module and obtaining information from OPC.

“EVJESPIN — Initialization” on page 149 describes operator commands and their

actions.

EVJESPIN Module

This EVJESPIN module, which is also used as a command, provides two separate

capabilities:

v Creating an OPC Automation status file record

Chapter 11. The Structure of OPC Request Automation 85

v Resynchronizing or unlocking a given subsystem

In certain situations, usually because of user definition or sequence errors, the

timer and completion flags prevent OPC Automation from accepting any new

requests for a subsystem on a target NetView. This flow ensures that errors are

caught, actions of OPC Automation for the given subsystem are halted, and

creation of additional problems is avoided before the original error is corrected. For

example, if a subsystem startup request is in operation, then it is not prudent to

process a shutdown request in the same interval. By not accepting any requests

after an error is detected, the information in OPC Automation status file record

then reflects the request that caused the problem. This should simplify problem

determination.

Two correction methods are provided.

RESET This method resets the timer and completion flags to null. OPC

Automation takes no other action since the flags are reset. OPC

Automation then accepts new requests for this subsystem.

Restarting the application at an appropriate point can control

recovery from OPC/ESA.

SYNC The OPC Automation status file record contains the status of the

subsystem that was the result of the last successful request; this

status is either UP or DOWN. With the SYNCH option, EVJESPIN

tries to synchronize the actual status of the subsystem with this

information. When both are at variance, OPC Automation issues a

SA z/OS startup or shutdown command to change the status of

the subsystem to match that in the status file record. The SYNC

function does not post to OPC on completion of the SA z/OS

function. OPC’s requests for the subsystem synchronize SA z/OS.

If you have defined a new subsystem to SA z/OS since last initializing NetView,

you can create a single OPC Automation status file record. The (CREATE) option

creates an OPC Automation status file record dynamically for the specified

subsystem. OPC Automation initializes the record to a null condition, so that the

subsystem can accept OPC Automation commands.

OPC Automation provides no automated function to remove an old OPC

Automation status file record.

Obtaining Information from OPC

The application program interface of OPC/ESA allows OPC Automation to act

directly on the OPC current plan. Using this interface, OPC Automation directly

requests and updates OPC-based information.

Recovery operations provide one possible use of the OPC API by OPC

Automation. For example, if a communications link to a target NetView is not

available, the operator can use the OPCACMD command to manually post events

that have occurred.

You can also use this interface when manual intervention is required, for example,

when a user sequence error is detected. Use the OPCACMD operator command to

manually access the information from OPC about operations in the current plan

through the OPC API. This allows the determination and resolution of the

sequence error to occur from a single NetView console.

86 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

The host with the OPC Controller task provides the only availability to the OPC

API interface. Because of this, all recovery is done only in the NetView on the

processor running the OPC Controller task. Sometimes, when a user-written

module utilizes this function, another NetView requires the information. OPC

Automation maintains an entry in the policy database to allow OPC Automation to

determine the domain ID of the OPC NetView to which the request is sent

(CONTROLLER DETAILS policy object, OCS entry type). This entry has the

domain ID of the NetView on the processor running the OPC Controller. In this

manner, all the SA z/OS applications can easily determine where to direct OPC

Controller requests.

A user-written task or CLIST can also access the OPC Controller. Your own

routines can list operations in the current plan with the OPCALIST command. You

can modify the data in current plan operations with OPCAMOD. You can query

the OPC calendar with OPCACAL. You can synchronize OPC with OPCACOMP,

or OPCAPOST when you write your own automation routines, and you can

update the status of special resources in OPC with OPCSRST or with the SRSTAT

CLIST. This way you can trigger operations to run which have a special resource

dependency in OPC. For more information, see

v “OPCALIST” on page 125,

v “OPCAMOD” on page 127,

v “OPCACAL” on page 121,

v “OPCACOMP” on page 124,

v “OPCAPOST” on page 130,

v “OPCSRST” on page 131.

Automated Recovery

OPC Automation provides an automated recovery function for requests that could

not reach their destination because of connectivity problems, or because the

NetView PPI was unavailable. Whenever a request fails because a connectivity

problem exists, OPC Automation posts OPC with an error status and a return code

of S999, S998 or UNTV.

Whenever the OPC Automation initiates a request and NetView or its

program-to-program interface (PPI) is down or unavailable, OPC Automation posts

OPC with an error status and a return code of UNTV.

When an OPC workstation (NVxx) is associated with the sysplex of the OPC

controller (SYSPLEX keyword) but a search of all online systems in the local

sysplex cannot find a definition for the supplied job name then it is assumed that

the job runs on a sysplex member which is not up. OPC Automation posts OPC

with a status of E (error) and a return code of S998.

When a required NNT connection is not available OPC Automation posts OPC

with a status of E (error) and a return code of S999.

If the operator resets these operations, OPC Automation does not attempt any

recovery. If the error code is not changed, OPC Automation invokes the operation

again when connectivity is re-established, or when the OPC Controller is restarted.

OPC Automation calls the automated recovery function as part of the initialization

of OPC Automation in a domain where the OPC Controller runs. OPC Automation

Chapter 11. The Structure of OPC Request Automation 87

also invokes this function for S999 or S998 errors whenever an NNT link

(automation gateway) is re-established to a domain where the OPC Controller

runs.

When either of these two conditions occur, OPC Automation uses the OPC API

function to obtain a list of all operations ended-in-error for the appropriate NVxx

workstation or workstations. OPC Automation scans this list to find error codes

starting with S. If any codes of this type are found, OPC Automation issues

OPCAPOST for that operation with an X (reset) status. This resets the operation to

the R (ready) status and re-invokes the EQQUX007 exit. OPC Automation attempts

no other recovery.

88 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 12. Automating Applications with OPC Automation

This chapter explains how to set up OPC Automation in OPC and in SA z/OS.

Defining Automated OPC Applications

This section describes what you need to do when you define an application in

OPC that you can automate using OPC Automation.

Note: This section contains some specific details about how to define applications

and other items to OPC. However, it does not explain basic OPC functions

because it assumes that you have a prerequisite knowledge of OPC and will

refer to the OPC documentation when necessary.

Defining Information for OPC Automation in OPC

The information that is passed to OPC Automation is entered in standard OPC

description fields. This information is used to route requests where they are

verified and executed. When the request is completed, a status change for the

operation is sent back to OPC. The minimum information that needs transferring

to accomplish this is listed in Table 7.

 Table 7. OPC Automation Items Defined in OPC

Definition in OPC Information item Refer to

General reporting

workstations that represent

target NetView domains

OPC workstation ID

representing the NetView

domain ID

“Defining the Target

NetView Domains” on page

89

OPC-defined application

making requests to OPC

Automation

Application name Application field in Figure 46

on page 91

Target subsystem, such as

RMF, for which this function

is executed

Job name Job name field in Figure 46

on page 91

Operations executed within a

job

Operation number or

numbers

No. field in Figure 46 on

page 91

Request and request

parameters to be performed

for the specific operation

A request, such as STOP or

START, and optional

parameters

Operation text field in

Figure 47 on page 91 and

Figure 48 on page 92

Defining the Target NetView Domains

To define an OPC request that OPC Automation can use, a workstation

representing the target NetView domain is required. This workstation, which is

defined with OPC using the standard OPC dialogs, should be a general, automatic

reporting workstation. Its name must have the format

NVxx

Note: Reserve NVxx workstations for OPC Automation. Unpredictable and

undesirable results may occur if these workstation names are used for other

workstations.

© Copyright IBM Corp. 1990, 2005 89

Figure 45 shows a typical definition.

Entries in the SA z/OS policy database (WORKSTATION DOMAINS policy object,

entry type ODM) translate NVxx to an actual NetView domain ID. The automation

programmer defines these entries. In this manner, the scheduler defining the OPC

applications does not need to know the NetView domain ID names, but rather

works with the workstation representation of those names. This allows changes to

the relationship of workstations to NetView domain IDs without modifying the

OPC definitions.

Note: You may use OPC database management dialogs or batch loader jobs to

define the NVxx workstations.

Defining Applications for OPC Automation in OPC

Standard OPC application description panels are used to define applications that

put requests to OPC Automation. The following items are defined:

v Application making the request

v Function requested

Application Making the Request: The application making the request is defined

to OPC with operations specified on the NVxx workstation, as shown in Figure 46

on page 91.

--------------------- BROWSING A WORK STATION DESCRIPTION ---------------------

 Command ===>

 Enter the command R for resources or A for availability above.

 Work station : NV00

 Description : NetView AOFS6 for test

 Work station type : General

 Reporting attribute : Automatic

 Printout routing : SYSPRINT

 Control on servers : No

 Splittable : No

 Job setup : No

 Sub/Rel data set :

 Transport time : 0:00

 Duration :

 Last updated by : COLEY on 05/08/95 at 09:54

Figure 45. Sample NVxx Workstation Definition in OPC

90 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Function Requested: The function requested and the request parameters, if any,

are not standard OPC definitions. Enter these fields in the Operation text field

using blanks as delimiters.

Figure 47 shows an example of how to define a request to stop and start RMF.

OPC Automation permits the inclusion of two optional parameters in the request

buffer. The target system builds the required command with these parameters,

using information contained in the SA z/OS policy database. Alternatively, the

parameters pass control information to optional user-written modules. Figure 48 on

page 92 shows an example of the request using these optional parameters.

--------------------------------- OPERATIONS --------------------- ROW 1 OF 2

 Command ===> Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following

 row commands:

 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

 S - Select operation details

 Enter the PRED command above to include predecessors in this list, or,

 enter the GRAPH command to view the list graphically.

 Application : MAINT Test for maint appl

 Row Oper Duration Job name Operation text

 cmd ws no. HH.MM

 ’’’’ NV04 005 0.01 RMF_____ STOP____________________

 │ │ │

 │ │ │

 │ │ └────� The subsystem

 │ └──────────────────� The operation

 └───────────────────────� The NetView Domain ID workstation

Figure 46. Defining the MAINT Application in OPC

--------------------------------- OPERATIONS --------------------- ROW 1 OF 2

 Command ===> Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following

 row commands:

 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

 S - Select operation details

 Enter the PRED command above to include predecessors in this list, or,

 enter the GRAPH command to view the list graphically.

 Application : MAINT Test for maint appl

 Row Oper Duration Job name Operation text

 cmd ws no. HH.MM

 ’’’’ NV04 005 0.01 RMF_____ STOP____________________

 ’’’’ NV04 010 0.01 RMF_____ CANCEL___________________

Figure 47. ’Operations’ OPC Panel Showing OPC Automation Requests

Chapter 12. Automating Applications with OPC Automation 91

Displaying OPC Automation Requests in OPC

Since OPC Automation requests are stored as operation text, you can view them in

OPC, as shown in Figure 49.

The following list defines several of the fields that are shown on the panel in

Figure 49.

NV04 Represents the target NetView domain or the

sysplex the request is sent to.

RMFBKUP The application submitting the request to OPC

Automation.

RMF Target subsystem. This looks like a job to OPC, but

is actually a subsystem.

005 and 010 Standard operation sequence numbers used by

OPC.

STOP and START Requested function. There are no parameters in

this example.

Example of an Application Making a Request

This section provides an example of how an application that puts a request to OPC

Automation is defined in OPC.

The application name is MAINT. This application consists of three operations:

--------------------------------- OPERATIONS --------------------- ROW 1 OF 2

 Command ===> Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following

 row commands:

 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

 S - Select operation details

 Enter the PRED command above to include predecessors in this list, or,

 enter the GRAPH command to view the list graphically.

 Application : FORCE Test for maint appl

 Row Oper Duration Job name Operation text

 cmd ws no. HH.MM

 ’’’’ NV04 005 0.01 RMF_____ STOP FORCE IMM__________

Figure 48. Request Using Optional Parameters

----------------------------- BROWSING OPERATIONS ---------------- ROW 1 OF 2

 Command ===> Scroll ===> PAGE

 Enter the PRED command above to include predecessors in this list, or,

 enter the GRAPH command above to view operations graphically.

 Enter the row command S to select the details of an operation.

 Application : RMFBKUP RMF Backup Processing

 Row Oper Duration Job name Operation text

 cmd ws no. time

 ’ NV04 005 0:01 RMF STOP

 ’ NV04 010 0:01 RMF START

 ******************************* BOTTOM OF DATA ********************************

Figure 49. Browsing Operations Including OPC Automation Requests

92 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

v Stop RMF on the target system

v Schedule a batch job

v Restart RMF on successful completion of the batch job

Figure 50 shows the initial panel in the application creation process.

In Figure 50, certain fields, such as calendar ID, are not used. However, OPC

Automation does not preclude the use of normal application and operation

functions.

Selecting OPER as a primary command allows the entry of the individual

operations for this application.

In Figure 51, three operations are defined. The first and third send requests to OPC

Automation in the NetView domain that is associated with the NV00 workstation.

The second is a batch job named RMFMAINT that performs the batch maintenance

tasks.

--------------------------- CREATING AN APPLICATION ---------------------------

 Command ===> oper

 Enter/Change data below:

 Enter the RUN command above to select run cycles or enter the OPER command

 to select operations.

 Application id : MAINT

 Valid from - to : 95/04/17 - 99/12/31

 APPLICATION TEXT ===> RMF maintenance_________

 Descriptive text of application

 Owner:

 ID ===> NSC02___________

 TEXT ===> ________________________

 Descriptive text of application owner

 PRIORITY ===> 5 A digit 1 to 9 , 1=low, 8=high, 9=urgent

 VALID FROM ===> 95/04/17 Date in the format YY/MM/DD

 STATUS ===> A A - Active, P - Pending

 AUTHORITY GROUP ID ===> ________ Authorization group ID

 CALENDAR ID ===> ________________

 For calculation of work and free day

Figure 50. RMF Maintenance Application Primary Panel in OPC

--------------------------------- OPERATIONS --------------------- ROW 1 OF 2

 Command ===> text Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following

 row commands:

 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

 S - Select operation details

 Enter the TEXT command above to include operation text in this list, or,

 enter the GRAPH command to view the list graphically.

 Application : MAINT RMF maintenance

 Row Oper Duration Job name Internal predecessors More preds

 cmd ws no. HH.MM -Int-Ext-

 ’’’’ NV00 005 0.01 RMF_____ ___ ___ ___ ___ ___ ___ ___ ___ 0 1

 ’’’’ CPU1 010 0.10 RMFMAINT 005 ___ ___ ___ ___ ___ ___ ___ 0 0

 ’’’’ NV00 015 0.01 RMF_____ 010 ___ ___ ___ ___ ___ ___ ___ 0 0

 ******************************* BOTTOM OF DATA ********************************

Figure 51. Operations in the MAINT Application

Chapter 12. Automating Applications with OPC Automation 93

Selecting TEXT as a primary command allows entry of the operation text. OPC

Automation uses the Operation text field to contain the request and up to two

optional parameters for operations with the workstation defined for OPC

Automation. Figure 52 shows the resulting operations text detail panel.

In the applications, OPC Automation defines OPC requests in a generic manner.

Figure 52 shows the MAINT application with the first and last operations defined

for the NetView workstation NV00. The requests that are forwarded to the

NetView workstation NV00 are STOP and START. These requests are expanded by

definitions in the policy database into commands; see “Executing OPC Requests

with OPC Automation” on page 96.

Handling Time Dependencies

If you require a time dependency, do not place the time consideration on the NVxx

defined operation because the status change drives the OPC user exit EQQUX007,

regardless of the timer status. For a general workstation, such as those defined for

OPC Automation, this occurs when all dependencies are fulfilled except the time

consideration.

To avoid this problem, define a dummy, non-reporting workstation. Place the timer

dependency on this dummy workstation. Define any dependencies on the dummy

workstation, which is the predecessor to the NVxx workstation. Once you satisfy

all other dependencies and complete the time dependency, the dummy timer

workstation completes immediately and starts the operation on the NVnn

workstation.

As an example, redefine the MAINT application shown in Figure 50 on page 93,

and Figures 51 and 52 on page 94, with a timer dummy workstation (TIMR) as the

first operation of the application. The panel in Figure 53 on page 95 shows this

new definition.

--------------------------------- OPERATIONS --------------------- ROW 1 OF 2

 Command ===> Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following

 row commands:

 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

 S - Select operation details

 Enter the PRED command above to include predecessors in this list, or

 enter the GRAPH command to view the list graphically.

 Application : MAINT RMF maintenance

 Row Oper Duration Job name Operation text

 cmd ws no. HH.MM

 ’’’’ NV00 005 0.01 RMF_____ STOP____________________

 ’’’’ CPU1 010 0.11 RMFMAINT ________________________

 ’’’’ NV00 015 0.01 RMF_____ START___________________

 ******************************* BOTTOM OF DATA ********************************

Figure 52. Operations Text Detail Panel

94 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

With this type of structure, OPC Automation can schedule the NVxx operation,

rather than the timer-dependent dummy workstation, if the application needs

scheduling on demand or restarting. This manually initiated procedure is

independent of the time consideration, if appropriate.

Changes to the Status of the Operation

The operation with the NVxx workstation goes through several status changes as

the request defined in the operator text is processed. The initial trigger is one of

three status changes. When the operation moves to the A (arrival), R (ready), or *

(ready with non-reporting predecessor) status, the OPC Automation function in the

EQQUX007 exit is triggered. The exit then examines the request. If the request is

valid, the exit transfers it to the target NetView.

If any definition problems are determined, OPC Automation updates the status to

E with an error code of Uxxx. See System Automation for z/OS Messages and Codes.

OPC Automation takes no further action. The user is then responsible for

correcting the error and restarting the application at the failed operation.

If OPC Automation encounters a connectivity problem, it marks the operation with

a status of E (error) and an error code of Sxxx. If this happens, OPC Automation

automatically restarts the operation once the connectivity problem is resolved.

However, if the operation status is changed manually, the automatic restart is

suppressed.

After OPC Automation resolves the request and verifies it, the status is updated to

S (started) before OPC Automation submits it. Once the request is submitted and

action is requested, OPC Automation updates the status to C (completed).

If the desired result did not occur within the time period specified, the operation

ends with an E status and a Uxxx code, indicating that user intervention is

required.

Extending the Daily Plan

OPC Automation does not call EQQUX007 for time-delay operations added at

daily planning. To provide time-delay operations added at daily planning, you

need to define an operation on a dummy workstation as a predecessor to the NVxx

workstation. The operation on that workstation completes immediately after the

daily plan is extended, and the operation on the NetView workstation is READY

--------------------------------- OPERATIONS --------------------- ROW 1 OF 2

 Command ===> Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following

 row commands:

 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

 S - Select operation details

 Enter the TEXT command above to include operation text in this list, or,

 enter the GRAPH command to view the list graphically.

 Application : MAINT RMF maintenance

 Row Oper Duration Job name Internal predecessors More preds

 cmd ws no. HH.MM -Int-Ext-

 ’’’’ TIMR 005 0.01 ________ ___ ___ ___ ___ ___ ___ ___ ___ 0 1

 ’’’’ NV00 010 0.01 RMF_____ 005 ___ ___ ___ ___ ___ ___ ___ 0 0

 ’’’’ CPU1 015 0.10 RMFMAINT 010 ___ ___ ___ ___ ___ ___ ___ 0 0

 ’’’’ NV00 020 0.01 RMF_____ 015 ___ ___ ___ ___ ___ ___ ___ 0 0

 ******************************* BOTTOM OF DATA ********************************

Figure 53. Using Time as a Dependency

Chapter 12. Automating Applications with OPC Automation 95

when all of its other dependencies are satisfied. See “Handling Time

Dependencies” on page 94 for more information and an example of this technique.

Defining an operation on a dummy workstation is required because the

operation-status-change exit is called whenever an operation in the current plan

changes status. That exit is also called when a new operation has been added to

the current plan by a function other than daily planning jobs, for example, by PIF

or by the MCP dialog. The exit is called when the operation is added either to an

existing occurrence or as a result of a new occurrence being added to the current

plan.

Sending a Request to Optional Installation-Provided Functions

OPC Automation allows installation-specific extensions through optional

user-provided modules. Two types of functions are supported:

v Issuing a non-SA z/OS command or request

v Sending a request through to OPC Automation to an installation extension

Because these user-provided modules are unique to your installation, you need to

obtain information from your systems programmer/analyst on the use and syntax

of these functions.

Executing OPC Requests with OPC Automation

Generally, you must use the OPC-specific OPCA, OPCACMD, and (optionally)

OPCAPARM keywords to put an application defined to SA z/OS under the

control of OPC Automation. You must define these entries under the

MESSAGES/USER DATA policy item of the respective application in the SA z/OS

policy database. See System Automation for z/OS Defining Automation Policy for more

information on the MESSAGES/USER DATA policy item, and Chapter 13,

“MESSAGES/USER DATA Entries and USER E-T Pairs for OPC Automation,” on

page 103 for the OPC-specific keywords.

You can vary the amount of fine-tuning considerably. If you only want to start and

stop subsystems known to SA z/OS through OPC in a standard way, you need

not even code any of these keywords. On the other hand, you can call user-written

modules with OPCACMD that perform tasks not related to any SA z/OS

subsystem and that must inform OPC about the success of their execution

independently of OPC Automation.

The following sections explain the connection between the OPC request and the

OPC-specific MESSAGES/USER DATA keywords by a fairly typical example,

describe the use of request parameters, and give an overview of the different

request types.

OPC Requests and MESSAGES/USER DATA Keywords

You put a request to OPC Automation by specifying the requested function and

(optionally) one or two parameters in the Operation text field of the Operations

panel for an OPC application (for details, see “Defining Applications for OPC

Automation in OPC” on page 90). For example:

96 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

The request is START in both entries. The second entry has one parameter, namely

COLD.

OPCACMD Keyword

OPC Automation uses the Job name and the Operation text fields of the OPC

operation to translate requests into commands. After identifying the subsystem

through the Job name entry, it consults the OPCACMD entry in the

MESSAGES/USER DATA policy item of this subsystem. The CMD attributes of

this entry contain the commands that are to be issued in response to various

requests, or combinations of request and parameter(s), that can be specified in the

Operation text field. The following panel gives an example entry for RMF:

 These entries specify in the Command Text field the commands that are to be

issued for RMF when START, respectively, OPMSG requests are put to OPC

Automation. Thus, when the 005 request of Figure 54 has been put to OPC

Automation, OPC Automation will issue the command

INGREQ RMF REQ=START,TYPE=NORM,SOURCE=EXTERNAL

 --------------------------------- OPERATIONS --------------------- ROW 1 OF 2

 Command ===> Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following

 row commands:

 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

 S - Select operation details

 Enter the PRED command above to include predecessors in this list, or,

 enter the GRAPH command to view the list graphically.

 Application : MAINT Test for maint appl

 Row Oper Duration Job name Operation text

 cmd ws no. HH.MM

 ’’’’ NV04 005 0.01 RMF_____ START___________________

 ’’’’ NV04 010 0.01 CICS1H__ START COLD______________

Figure 54. OPC/ESA Operations Panel

 COMMANDS HELP

 --

 CMD Processing Row 1 to 2 of 20

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : RMF Enterprise Name : TEST

 Subsystem : RMF

 Message ID : OPCACMD

 Enter commands to be executed when resource issues the selected message.

 Pass/Selection Automated Function/’*’

 Command Text

 START_____ ________

 INGREQ RMF REQ=START,TYPE=NORM,SOURCE=EXTERNAL________________________________

 OPMSG_____ ________

 MSG ALL RMF MSG___

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 55. Specifying the Command for a Request

Chapter 12. Automating Applications with OPC Automation 97

OPCA Keyword

Besides specifying the command to be issued in response to the request, you must

also tell OPC Automation

v which status you expect the subsystem to assume as a result of this command,

and

v the time interval within which the subsystem must assume this status.

This is done through the OPCA keyword. The following panel continues the

example of Figure 55 on page 97.

 Here, the request is specified in the Code 1 column. The Value Returned column

contains the expected status, the time interval (in minutes), and optionally a timer

name. The Code 2 and Code 3 columns are intended for eventual request

parameters and consequently left blank in this example.

Flow of Control

By the entries of Figure 55 on page 97 and Figure 56, OPC Automation will execute

the start request of Figure 54 on page 97 for RMF as follows:

1. It sets the RMFUTMER timer to two minutes.

2. It issues the command INGREQ RMF REQ=START,TYPE=NORM,SOURCE=EXTERNAL.

3. If RMF has assumed the UP state before two minutes have passed, OPC

Automation cancels the timer and posts the completion code C (for

COMPLETED) back to OPC.

4. After the timer has expired, OPC Automation checks the status of RMF. If RMF

is in the UP status, OPC Automation posts C to OPC; otherwise, it posts E (for

ERROR) and an additional error code.

Request Parameters and the &EHKVARi Variables

Besides the request itself, the OPC request can contain one or two parameters. You

can use this additional information to associate different commands with different

variants of the same request; as an example, consider the different startup types for

CICS®. You can pass the parameters to your command through the task global

&EHKVAR1 and &EHKVAR2 variables.

 COMMANDS HELP

 --

 Code Processing Row 1 to 6 of 21

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : RMF Enterprise Name : TEST

 Subsystem : RMF

 Message ID : OPCA

 Enter the value to be passed to the calling CLIST when this resource

 issues the selected message and the following codes are contained in

 the message.

 Code 1 Code 2 Code 3 Value Returned

 START__________ _______________ _______________ UP,2,RMFUTMER________________

 OPMSG__________ _______________ _______________ UP,1,________________________

 STOP___________ _______________ _______________ DOWN,2,______________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 56. Specifying Expected Status and Time Interval

98 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

As an example, suppose you want to specify the startup type for a CICS

application in an OPC start request. Then you enter it as a request parameter in

the Operation text field (see the 010 request in Figure 54 on page 97) and pass the

startup type to the command specified in the OPCACMD entry by incorporating

the &EHKVAR1 variable in the command text. In the following example, this

command is not an SA z/OS command, but a user-written CLIST named

MYCLIST that uses the startup information to apply the desired startup method.

 Then, when the request of the 010 operation in Figure 54 on page 97 is put to OPC

Automation, MYCLIST will be called with the arguments CICS1H and COLD. A

very simple version of MYCLIST could be as follows:

/* MYCLIST SAMPLE */

PARSE UPPER ARG CICSNAME STARTTYPE

IF STARTTYPE=’COLD’ THEN

 "INGREQ "||CICSNAME||" REQ=START,TYPE=COLD,OUTMODE=LINE"

ELSE

 "INGREQ "||CICSNAME||" REQ=START,TYPE=AUTO,OUTMODE=LINE"

EXIT 0

If you use parameters, you must code an OPCA entry for every parameter

(combination). For the example of Figure 57, the OPCA entry could look like

Figure 58 on page 100.

 COMMANDS HELP

 --

 CMD Processing Row 1 to 2 of 20

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : CICS1H Enterprise Name : TEST

 Subsystem : CICS1H

 Message ID : OPCACMD

 Enter commands to be executed when resource issues the selected message.

 Pass/Selection Automated Function/’*’

 Command Text

 START_____ ________

 MYCLIST CICS1H &EHKVAR1___

 __________ ________

 __

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 57. Specifying a Command that Requires Parameter Information

Chapter 12. Automating Applications with OPC Automation 99

Request Types

OPC requests can be classified into four types depending on the existence or

non-existence of OPC-specific keywords and on the type of command associated

with the OPCACMD keyword. The following sections give an overview of these

types.

Starting and Stopping Subsystems without OPC-Related

Keywords

For START and STOP requests, you need not code any OPC-specific

MESSAGES/USER DATA keyword in the policy database. OPC Automation will

issue a default command when it detects that no OPCA entry exists for the START

or STOP request in the MESSAGES/USER DATA policy item of the subsystem to

be started or stopped. In these cases you can specify a valid startup, respectively,

shutdown type. The valid startup types are NORM and any startup type that has

been defined in the STARTUP policy item of the subsystem to be started. The valid

shutdown types are NORM, IMMED, or FORCE.

The start command issued by OPC Automation will be as follows:

INGREQ subsystem_name REQ=START,OUTMODE=LINE,SOURCE=EXTERNAL

If you specify a startup type, this type will be added to the command.

The format of the stop command issued by OPC Automation is:

INGREQ subsystem_name REQ=STOP,OUTMODE=LINE,SOURCE=EXTERNAL

If you specify a shutdown type, this type will be added to the command.

Note that if you want to add or change any parameter other than the TYPE

parameter, you must specify your INGREQ command in an OPCACMD entry and

code the associated OPCA entry. For more information on INGREQ, see System

Automation for z/OS Operator’s Commands.

 COMMANDS HELP

 --

 Code Processing Row 1 to 6 of 21

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : CICS1H Enterprise Name : TEST

 Subsystem : CICS1H

 Message ID : OPCA

 Enter the value to be passed to the calling CLIST when this resource

 issues the selected message and the following codes are contained in

 the message.

 Code 1 Code 2 Code 3 Value Returned

 START__________ COLD___________ _______________ UP,10,CICS1TMR_______________

 START__________ AUTO___________ _______________ UP,5,CICS1TMR________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 58. Specifying Expected Status and Time Interval for Different Request Parameters

100 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Also note that when a default start or stop is selected, SA z/OS does not set a start

or stop delay timer to ensure that the request finishes within a specified time. If a

start or stop delay timer is required, the OPCA and OPCACMD entries should be

coded.

When the startup or shutdown type is invalid for the subsystem in question, or

when the command encounters any problem, the operation will fail with a user

abend code of U003.

Canceling a Start or Stop Request

In many cases after a subsystem has been started or stopped, the previous request

to SA z/OS needs to be removed to allow normal automation actions to continue.

This can be achieved by issuing a CANCEL request type without parameters.

Internally an INGSET CANCEL command will be issued to remove the previous

START or STOP request for the resource.

Requests Using SA z/OS Automation Functions

These are requests for which an OPCACMD entry is coded, and where the

command specified in that entry changes the automation status of the subsystem

to UP, RUNNING or AUTODOWN. This can be an SA z/OS base command (for

example, INGREQ), but also a user-written command that calls INGREQ. The

name of the request must not begin with ’UX’. When the request contains

parameters, these are stored in the &EHKVAR1 and &EHKVAR2 variables,

respectively, and you can pass them to the command by incorporating these

variables into the command text.

For every OPCACMD entry you must code an associated OPCA entry. An

OPCAPARM entry is not required.

For START and STOP requests, you may want to use this type instead of coding no

OPCACMD entry at all, if you want to override the default values for certain

INGREQ parameters.

Subsystem Related Requests not Using SA z/OS Automation

Functions

These are requests for which an OPCACMD entry is coded, and where the

command specified does not trigger a status change of the subsystem to which it

relates. The name of the request must not begin with ’UX’. When the request

contains parameters, these are stored in the &EHKVAR1 and &EHKVAR2

variables, respectively, and you can pass them to the command via these variables.

For every OPCACMD entry with such a command you must code an associated

OPCA entry. You must also define a corresponding OPCAPARM entry. This entry

must specify a user-written timer module that informs OPC whether or not the

request was successful (by calling OPCACOMP); this module is called by OPC

Automation after the timer defined in the OPCA entry has expired.

For more information on this request type, see “User Functions Related to an

SA z/OS-Defined Subsystem” on page 135.

Non-Subsystem Requests

These are requests for which an OPCACMD entry is coded, and where the

command specified in that entry does not relate to a subsystem known to

SA z/OS. The name of these requests must begin with ’UX’. The OPCACMD entry

for a non-subsystem request must be coded as a USER E-T pair. With requests of

this type, the complete request buffer will be stored in &EHKVAR1, and it is up to

Chapter 12. Automating Applications with OPC Automation 101

|
|
|
|

the user —written command to analyze this information. For the request buffer in

general, see “Request Buffers and OPC Automation Log Entries” on page 81; for

the format of the request buffer for ’UX’ requests, see Table 10 on page 133.

No OPCA or OPCAPARM entry is needed for non-subsystem requests. The

responsibility for informing OPC about the success of the operation lies entirely

with the user-written command.

For more information on this request type, see “Non-Subsystem Operations” on

page 139.

102 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 13. MESSAGES/USER DATA Entries and USER E-T

Pairs for OPC Automation

As OPC Automation is integrated into SA z/OS, you must enter any information

for OPC Automation in the policy database via the customization dialogs. In most

cases the customization dialogs precisely determine the format in which this

information must be entered. There are, however, some OPC application-specific

automation parameters that must or can only be specified as entries in the

MESSAGES/USER DATA policy items of the respective application, or as USER

E-T pairs; for general information on the MESSAGES/USER DATA policy item and

USER E-T pairs, see System Automation for z/OS Defining Automation Policy. In these

cases, the customization panels provide no information about the keywords and

the format of their parameters.

The following chapter contains detailed descriptions of these automation entries.

Note, however, that a general understanding of the MESSAGES/USER DATA

policy item will be assumed.

Translating Format Descriptions

The following two examples show how to convert the formal descriptions of the

keyword parameters into entries in the MESSAGES/USER DATA and USER E-T

PAIRS panels of the customization dialogs.

The first example is the OPCACMD keyword. With this entry, you specify the

command that is executed in response to a certain OPC request (see “OPCACMD”

on page 112 for more details). The format description of OPCACMD is as follows:

Format

OPCACMD CMD=(request,,command)

 .

 .

 .

 [CMD=(request,,command)]

 The NAME=value pairs are called the attributes of the entry. OPCACMD has one

attribute, CMD, which must occur at least once and may occur more than once.

For general information on the format descriptions, see “Notation for Format

Descriptions” on page xiii.

The translation of the format description for OPCACMD depends on whether or

not the specified command is related to a subsystem that is known to SA z/OS. In

the first case (which will also be treated first), the entry is defined in the

MESSAGES/USER DATA item of the respective subsystem; for the second case, in

which it must be entered within a USER E-T pair, see the end of this section on

page 107.

Accordingly, suppose first that a START request is specified in an OPC operation

for the subsystem CICS1H, and that you want to start CICS1H with the INGREQ

command (for the connection between the OPC request and the command, see

Chapter 12, “Automating Applications with OPC Automation,” on page 89). To

© Copyright IBM Corp. 1990, 2005 103

specify an OPCACMD entry for CICS1H in the customization dialogs, you must

call the Message Processing panel for that subsystem:

 In this panel you specify the keyword of the entry (OPCACMD) in the Message

ID field. The attributes are specified through the Action field. Here two cases must

be distinguished according to the following rule:

Rule

v The attribute names CMD, CODE, and REP must be entered in the Action

field; the values for these attributes are specified in a follow-on panel.

v For all other attributes, you must enter USER in the Action field; in this

case, both name and value are entered in a follow-on panel.

 The fields on the right side of the panel specify how many actions of the respective

type are associated with the message ID of the respective line.

To specify the value for the CMD attribute enter CMD in the Action field and press

ENTER. This invokes the CMD Processing panel:

 COMMANDS ACTIONS HELP

--

 Message Processing Row 1 to 4 of 20

Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : SCENARIO

Entry Name : CICS1H Enterprise Name : TEST

Subsystem : CICS1H

Enter messages issued by this resource that will result in automated actions.

Actions: CMD = Command REP = Reply CODE = CODE USER = User defined values

Action Message ID Cmd Rep Code User

 Description

CMD____ OPCACMD_________________________

 Commands for OPC requests______________

_______ ________________________________

_______ ________________________________

_______ ________________________________

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 59. Message Processing Panel of the Customization Dialogs 1

104 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Every entry in this panel consists of three fields that correspond to the three items

of the value list for the CMD attribute. Thus, the general format for the CMD

attribute is

CMD=([Pass/Selection],[Automated_Function],Command_Text)

The format description of the CMD attribute for a certain keyword specifies what

type of information you must enter in the three fields. For the OPCACMD

keyword, the omission of the second value signifies that the Automated Function

field is to be left blank. In the first field, you must specify the request; this is the

first value in the Operation text field of the OPC request. A command text must be

specified in the third field.

For the CMD, REP, and CODE attributes, the following notational conventions

apply:

Notational Conventions for CMD, CODE, REP

v The ’=’ sign, the parentheses enclosing the value list, and the commas

separating the individual values must not be entered in the panels.

They just serve to make the format description more readable and to

identify uniquely the panel field with which a value specification is

associated.

v When the format of any value is specified in more detail, and this

specification itself contains a comma (or blank), the value is enclosed in

single quotes; these quotes must also not be entered in the respective panel

field.

 For more information on the panel fields, see System Automation for z/OS Defining

Automation Policy.

The OPCA entry (see “OPCA” on page 109) supplies the second example. This

entry defines the state that is the expected result of the command specified in the

 COMMANDS HELP

--

 CMD Processing Row 1 to 2 of 20

Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : SCENARIO

Entry Name : CICS1H Enterprise Name : TEST

Subsystem : CICS1H

Message ID : OPCACMD

Enter commands to be executed when resource issues the selected message.

Pass/Selection Automated Function/’*’

Command Text

START_____ ________

INGREQ CICS1H REQ=START,TYPE=AUTO___

__

__________ ________

__

__

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 60. CMD Processing Panel of the Customization Dialogs

Chapter 13. MESSAGES/USER DATA Entries and USER E-T Pairs for OPC Automation 105

OPCACMD entry, and the time interval within which this state must have been

reached. The format of the OPCA entry is as follows:

Format

OPCA CODE=(request,[parm1],[parm2],’expstatus,timerint,timerid’)

 .

 .

 .

 [OPCA CODE=(request,[parm1],[parm2],’expstatus,timerint,timerid’)]

 If the expected status is UP, and this state must have been assumed within three

minutes, you must enter the OPCA entry for CICS1H as follows.

First specify the keyword in the Message Processing panel:

 Now you must enter CODE in the Action column according to the rule stated on

page 104. When you press ENTER, the Code Processing panel is called:

 COMMANDS ACTIONS HELP

--

 Message Processing Row 1 to 4 of 20

Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : SCENARIO

Entry Name : CICS1H Enterprise Name : TEST

Subsystem : CICS1H

Enter messages issued by this resource that will result in automated actions.

Actions: CMD = Command REP = Reply CODE = CODE USER = User defined values

Action Message ID Cmd Rep Code User

 Description

_______ OPCACMD_________________________

 Commands for OPC requests______________

CODE___ OPCA____________________________

 Expected status and time interval______

_______ ________________________________

_______ ________________________________

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 61. Message Processing Panel of the Customization Dialogs 2

106 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Here you must specify the values of the CODE attribute as displayed in Figure 62.

The general format of the CODE attribute is:

CODE=([Code_1],[Code_2],[Code_3],Value_Returned)

For the OPCA keyword, Code 1 must be the request. In the Code 2 and Code 3

fields, you can specify eventual parameters of the request. The Value Returned

must specify the expected status, the time interval, and (optionally) a timer name,

separated by commas.

Note: For other keywords, the fields can have a completely different function from

those discussed above.

An asterisk (*) is admitted as a trailing wildcard character for the three Code fields;

that is, you can specify simply * and ABC*, but not *ABC.

The preceding two examples illustrate how format descriptions are translated into

MESSAGES/USER DATA entries. However, as already indicated, the OPCACMD

entry must be coded in a USER E-T pair if the command to be specified is not

related to a subsystem known to SA z/OS. The following figure provides an

example:

 COMMANDS HELP

 --

 Code Processing Row 1 to 6 of 20

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : CICS1H Enterprise Name : TEST

 Subsystem : CICS1H

 Message ID : OPCA

 Enter the value to be passed to the calling CLIST when this resource

 issues the selected message and the following codes are contained in

 the message.

 Code 1 Code 2 Code 3 Value Returned

 START__________ _______________ _______________ UP,3,RMFUTMER________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 62. Code Processing Panel of the Customization Dialogs

Chapter 13. MESSAGES/USER DATA Entries and USER E-T Pairs for OPC Automation 107

As you can see from Figure 63, you must enter CMD in the Keyword field and the

value list in the Data field.

For the USER E-T pairs, the following translation conventions apply:

Notational Conventions for UET Keyword/Data Pairs

v The ’=’ sign must not be entered in the panels.

v Everything to the right of the ’=’ sign, including parentheses, commas, and

single quotes, must be entered in the Data field.

OPC-Specific MESSAGES/USER DATA Keywords

The following keywords are specific for OPC Automation.

 Entry Description

“OPCA” on page 109. Use this ID to define the expected state of the subsystem

and the time interval within which this state must have

been reached.

“OPCACMD” on page 112. Use this ID to specify the command to be issued in

response to an OPC request.

“OPCAPARM” on page 116. Use this ID to specify modifications of eventual request

parameters and a timer module for user-written commands.

 COMMANDS ACTIONS HELP

 --

 UET Keyword-Data Specification Row 3 from 3

 Command ===> SCROLL===> PAGE

 Entry Type : User E-T Pairs PolicyDB Name : SCENARIO

 Entry Name : NONSUBS Enterprise Name : TEST

 UET Entry : DUMMY UET Type : OPCACMD

 Action Keyword/Data(partial)

 ________ CMD

 (UXCKSPL,,’EVJERUX1 &EHKVAR1’)

 ******************************* Bottom of data ********************************

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 63. OPCACMD in a USER E-T Pair

OPCA

108 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

OPCA

Purpose

With the OPCA entry, you define the state that is the expected result of a request

(with or without parameters), and the time interval within which this state must

have been reached. The OPCA entry is defined in the MESSAGES/USER DATA

policy item of the subsystem which is to be put under control of OPC.

Format

Format

OPCA CODE=(request,[parm1],[parm2],’expstatus,timerint,timerid’)

 .

 .

 .

 [OPCA CODE=(request,[parm1],[parm2],’expstatus,timerint,timerid’)]

Parameters

request

Request specified in the OPC operation text.

parm1

Parameter 1 as specified in the OPC operation text.

parm2

Parameter 2 as specified in the OPC operation text.

expstatus

Expected status of the subsystem at the completion of the request. expstatus

stands for one of the following values: UP, RUNNING or DOWN.

Note: For backward compatibility CTLDOWN and AUTODOWN are also

allowed for this entry and will be treated the same as DOWN.

timerint

Timer interval in minutes. The maximum value permitted is 1439 (23 hours

and 59 minutes).

 Set a timer interval that is long enough for the operation to complete

reasonably. If the operation does not complete in the interval specified, then an

error is posted to OPC.

timerid

Timer ID — from 1 to 8 characters.

 This must be a valid NetView timer ID with a value not equal to ALL or

beginning with SYS, ING, or AOF. This field is optional.

Usage Notes

For every OPCA entry, there must be a corresponding OPCACMD entry.

OPCA

Chapter 13. MESSAGES/USER DATA Entries and USER E-T Pairs for OPC Automation 109

Example 1

 COMMANDS HELP

 --

 Code Processing Row 1 to 6 of 21

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : RMF Enterprise Name : TEST

 Subsystem : RMF

 Message ID : OPCA

 Enter the value to be passed to the calling CLIST when this resource

 issues the selected message and the following codes are contained in

 the message.

 Code 1 Code 2 Code 3 Value Returned

 START__________ _______________ _______________ UP,3,RMFUTMER________________

 STOP___________ _______________ _______________ DOWN,2,RMFDTMER______________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

This panel shows the entries for two requests without parameters.

Example 2

 COMMANDS HELP

 --

 Code Processing Row 1 to 6 of 21

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : CICS1 Enterprise Name : TEST

 Subsystem : CICS1

 Message ID : OPCA

 Enter the value to be passed to the calling CLIST when this resource

 issues the selected message and the following codes are contained in

 the message.

 Code 1 Code 2 Code 3 Value Returned

 START__________ AUTO___________ _______________ UP,5,CICS1TMR________________

 START__________ COLD___________ _______________ UP,10,CICS1TMR_______________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

This example shows two entries, one for an automatic start, and one for a cold

start, of a subsystem called CICS1. The AUTO or COLD parameter is added to the

START request in OPC to indicate which one of several startup procedures is to be

used. Presumably the two operations will take differing amounts of time, so the

timer intervals are different.

This OPCA code entry is used in conjunction with a user-written CLIST, specified

in the OPCACMD entry; see “Example 2” on page 113 for details of that entry and

the sample CLIST.

OPCA

110 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Example 3

 COMMANDS HELP

 --

 Code Processing Row 1 to 6 of 21

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : TESTAPPL Enterprise Name : TEST

 Subsystem : TESTAPPL

 Message ID : OPCA

 Enter the value to be passed to the calling CLIST when this resource

 issues the selected message and the following codes are contained in

 the message.

 Code 1 Code 2 Code 3 Value Returned

 RECYCLE________ _______________ _______________ UP,5,TESTTIMER_______________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

This example shows a RECYCLE type of operation (bring the subsystem down and

restart it immediately) being defined. See also “Example 4” on page 115 for the

corresponding OPCACMD definition.

OPCA

Chapter 13. MESSAGES/USER DATA Entries and USER E-T Pairs for OPC Automation 111

OPCACMD

Purpose

With the OPCACMD entry, you define the command that is executed in response

to a request (with or without parameters). Except for non-subsystem commands,

there must be a corresponding OPCA entry for every OPCACMD entry.

Format

Format

OPCACMD CMD=(request,,command)

 .

 .

 .

 [CMD=(request,,command)]

Parameters

request

Request specified in the OPC operation text.

command

Actual command to be built.

Usage Notes

This entry is necessary for all request types except START, STOP, and CANCEL

requests. If no entries are supplied for START, STOP and CANCEL, the actions

taken are detailed in “Starting and Stopping Subsystems without OPC-Related

Keywords” on page 100 and “Canceling a Start or Stop Request” on page 101. The

place where the OPCACMD entry is defined depends on the request type. When

the request is related to a subsystem, it is defined in the MESSAGES/USER DATA

policy item of the respective application. When the request is a non-subsystem

request (see “Non-Subsystem Operations” on page 139), the OPCACMD entry

must be entered in a USER E-T PAIRS entry.

Use SA z/OS commands to shut down and start up subsystems. This avoids the

problem of having to determine the specific commands required for each

subsystem.

OPCACMD

112 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Example 1

 COMMANDS HELP

 --

 CMD Processing Row 1 to 2 of 20

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : RMF Enterprise Name : TEST

 Subsystem : RMF

 Message ID : OPCACMD

 Enter commands to be executed when resource issues the selected message.

 Pass/Selection Automated Function/’*’

 Command Text

 START_____ ________

 INGREQ RMF REQ=START,VERIFY=NO,SOURCE=EXTERNAL,TYPE=NORM______________________

 STOP______ ________

 INGREQ RMF REQ=STOP,VERIFY=NO,SOURCE=EXTERNAL,TYPE=NORM_______________________

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Example 2

 COMMANDS HELP

 --

 CMD Processing Row 1 to 2 of 20

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : CICS1 Enterprise Name : TEST

 Subsystem : CICS1

 Message ID : OPCACMD

 Enter commands to be executed when resource issues the selected message.

 Pass/Selection Automated Function/’*’

 Command Text

 START_____ ________

 MYCLIST CICS1 &EHKVAR1__

 __________ ________

 __

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

This example assumes that AUTO or COLD is added as a parameter to the START

request in OPC to indicate which one of several startup procedures is to be used.

The command specified in the Command Text field is a user-written CLIST. This

CLIST is passed the parameter value (AUTO or COLD) in the &EHKVAR1

variable.

A very simple version of the CLIST, which could be expanded in your

environment to include other parameters and additional function, could be as

follows:

/* MYCLIST SAMPLE */

PARSE UPPER ARG CICSNAME STARTTYPE

IF STARTTYPE=’COLD’ THEN

OPCACMD

Chapter 13. MESSAGES/USER DATA Entries and USER E-T Pairs for OPC Automation 113

"INGREQ "||CICSNAME||" REQ=START,TYPE=COLD,OUTMODE=LINE"

ELSE

 "INGREQ "||CICSNAME||" REQ=START,TYPE=AUTO,OUTMODE=LINE"

EXIT 0

The OPCACMD entry of this example must be supplemented by an OPCA entry as

in “Example 2” on page 110.

Example 3

 COMMANDS ACTIONS HELP

 --

 UET Keyword-Data Specification Row 3 from 3

 Command ===> SCROLL===> PAGE

 Entry Type : User E-T Pairs PolicyDB Name : SCENARIO

 Entry Name : NONSUBS Enterprise Name : TEST

 UET Entry : DUMMY UET Type : OPCACMD

 Action Keyword/Data(partial)

 ________ CMD

 (UXCINITS,’MVS $TI20-30,C=P’)

 ******************************* Bottom of data ********************************

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

This example shows a command that is not related to a subsystem known to

SA z/OS (see “Non-Subsystem Operations” on page 139), and which, accordingly,

must be defined as a USER E-T pair (see “Non-Subsystem Operations” on page

139). The jobname of the OPC request would be DUMMY.

OPC Automation recognizes such requests by the fact that the request name begins

with ’UX’. In the example, OPC Automation simply issues the MVS command

$TI20-30,C=P, which tells JES to change initiators 20 to 30 so that they process jobs

of class P.

OPCACMD

114 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Example 4

 COMMANDS HELP

 --

 CMD Processing Row 1 to 2 of 20

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : TESTAPPL Enterprise Name : TEST

 Subsystem : TESTAPPL

 Message ID : OPCACMD

 Enter commands to be executed when resource issues the selected message.

 Pass/Selection Automated Function/’*’

 Command Text

 RECYCLE___ ________

 EVJESHUT TESTAPPL ALL___

 __________ ________

 __

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

This example shows a RECYCLE type of operation (bring the subsystem down and

restart it immediately) being defined. Note that the command to be issued is

EVJESHUT, which will issue the

INGREQ TESTAPPL REQ=STOP,RESTART=YES,SCOPE=ALL,SOURCE=EXTERNAL

command in linemode and verify that it is accepted or else post the operation in

error. For more information on EVJESHUT, see “EVJESHUT” on page 120; for the

corresponding OPCA definition, see “Example 3” on page 111.

OPCACMD

Chapter 13. MESSAGES/USER DATA Entries and USER E-T Pairs for OPC Automation 115

OPCAPARM

Purpose

The OPCAPARM entry supplies replacements for eventual request parameters and

the name of a user-written timer module. The OPCAPARM entry is defined in the

MESSAGES/USER DATA policy item of the subsystem which is to be put under

control of OPC.

OPCAPARM is optional except for requests that relate to a subsystem defined to

SA z/OS, but where the command specified in the OPCACMD entry is not an

SA z/OS command; in this case, you must specify a timer module.

Format

Format

OPCAPARM CODE=(request,parm1,parm2,'parm1value,parm2value,timermod')

 .

 .

 .

 [CODE=(request,parm1,parm2,'parm1value,parm2value,timermod')]

Parameters

request

Request specified in the OPC-operation definition.

parm1

Parameter 1 as specified in the OPC-operation text.

parm2

Parameter 2 as specified in the OPC-operation text.

parm1value

Substitution value used in the actual command.

parm2value

Substitution value used in the actual command.

timermod

Module called at the timer interval specified in the OPCA CODE entry for this

subsystem. You must specify a timer module when the command specified in

the OPCACMD entry relates to a subsystem defined to SA z/OS, but does not

trigger a status change; see “User Functions Related to an SA z/OS-Defined

Subsystem” on page 135.

Usage Notes

OPCAPARM is optional except for requests that relate to a subsystem defined to

SA z/OS, but where the command specified in the OPCACMD entry is a

user-supplied module that does not trigger a status change of the subsystem. In

this case, a you must specify a timer module. See “Implementing Completion of a

Request” on page 136 for more details.

OPCAPARM

116 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Example 1

 COMMANDS HELP

 --

 Code Processing Row 1 to 6 of 21

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : RMF Enterprise Name : TEST

 Subsystem : RMF

 Message ID : OPCAPARM

 Enter the value to be passed to the calling CLIST when this resource

 issues the selected message and the following codes are contained in

 the message.

 Code 1 Code 2 Code 3 Value Returned

 START__________ _______________ _______________ ,,___________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

In this example, no additional parameters are needed for the request. An entry of

this sort is entirely optional, and need not be coded at all.

Example 2

 COMMANDS HELP

 --

 Code Processing Row 1 to 6 of 21

 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : SCENARIO

 Entry Name : CICS1 Enterprise Name : TEST

 Subsystem : CICS1

 Message ID : OPCAPARM

 Enter the value to be passed to the calling CLIST when this resource

 issues the selected message and the following codes are contained in

 the message.

 Code 1 Code 2 Code 3 Value Returned

 START__________ AUTO___________ _______________ ,,___________________________

 START__________ COLD___________ _______________ ,,___________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

This example shows two entries, one for an automatic start, and one for a cold

start, of a subsystem called CICS1. The AUTO or COLD parameter is added to the

START request in OPC to indicate which one of several startup procedures is to be

used.

OPCAPARM

Chapter 13. MESSAGES/USER DATA Entries and USER E-T Pairs for OPC Automation 117

OPCAPARM

118 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 14. OPC Automation Common Routines and Data

Areas

This chapter contains the common routines that are supplied by OPC Automation.

Furthermore, it describes the data areas that are used to transfer requests from

OPC to SA z/OS.

OPC Automation Common Routines

This chapter describes OPC Automation common routines which request

information or perform tasks associated with OPC Automation. You can use these

common routines in automation procedures you create. Examples, sample routines,

and data area information are given to show how this might be done.

OPC Automation provides new routines to retrieve and update OPC

Automation-unique information. These routines can also be used in user-written

extensions of OPC Automation. The following routines are arranged alphabetically

for easy reference.

Note:

The common routines listed below will automatically locate the active

TWS/OPC Controller before executing PIF requests and will schedule all PIF

interface calls on the same autotask to serialize access to the EQQMLOG data

set.

The active TWS/OPC Controller can be located in user routines by issuing

the following sequence of commands:

INGLIST CATEGORY=OPC,SUBTYPE=CONTROLLER,OBSERVED=AVAILABLE,OUTMODE=LINE

Then for each subsystem returned from INGLIST issue:

INGVARS GET subsystems_returned_above TWSACT OUTMODE=LINE

The active TWS/OPC Controller will be in AVAILABLE status with the

manager variable ’TWSACT’ set to ’ACTIVE’.

© Copyright IBM Corp. 1990, 2005 119

|
|
|
|

|
|

|

|

|

|
|

EVJESHUT

Purpose

Use the EVJESHUT routine in a RECYCLE operation defined in the policy data

base. A RECYCLE operation is one in which a subsystem which is currently UP is

brought down and immediately restarted. EVJESHUT will issue the appropriate

INGREQ command and verify that it is accepted by the automation platform. If it

is not accepted, then EVJESHUT will post the operation in error to OPC. See

“Example 4” on page 115 to see how to include EVJESHUT in an OPCACMD

entry.

Format

Syntax

EVJESHUT subsys scope

Parameters

subsys

The name of a valid subsystem defined to SA z/OS.

scope

The scope of the INGREQ request. The valid values for scope are ALL,

CHILDREN, and ONLY. See System Automation for z/OS Operator’s Commands.

Usage Notes

The Status check on requests field in the ENVIRON OPCAO item of the OPC

SYSTEM DETAILS policy object determines for a system what OPC Automation is

to do when a subsystem of this system is already in the status requested by OPC.

This field affects EVJESHUT as follows: When the field is set to NO, and the

subsystem is already in AUTODOWN, CTLDOWN, DOWN, or ENDED status,

then a RECYCLE operation with EVJESHUT will be allowed to proceed and

EVJESHUT will issue an INGREQ command to stop the requested subsystem. If

the field is set to YES, then the subsystem must be in UP or RUNNING status for

EVJESHUT to be issued; all other statuses will result in the operation terminating

and an error posted to OPC.

EVJESHUT

120 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

OPCACAL

Purpose

The OPCACAL command retrieves OPC calendar status information. Use this

command for your automation CLISTs. OPCACAL uses the EQQYCOM (also

called the PIF) interface in OPC. For more information about this interface, see the

OPC/ESA Interfaces Guide.

To show the use of this command, OPC Automation provides a REXX sample

named EVJERCAL.

Format

Syntax

OPCACAL [SUBSYS=subsystem,CALENDAR=calname]

Parameters

SUBSYS=subsystem

OPC/ESA subsystem ID — 4 characters.

 OPCA is the default subsystem name.

CALENDAR=calname

Calendar ID — 16 characters.

 DEFAULT is the default calendar name, used if this parameter is not coded.

Usage Notes

OPCACAL returns data in the following format:

v EVJ440I date_format day_of_week Work, or

v EVJ440I date_format day_of week Free

The date format is set by the NetView DEFAULTS LONGDATE value. For

example:

EVJ440I 05/03/04 MONDAY Work

or

EVJ440I 20040502 SUNDAY Free

The EVJ440I message is PIPEd to the CONSOLE ONLY and does not appear in the

netlog. The message can be processed by calling OPCACAL in a PIPE.

OPCACAL

Chapter 14. OPC Automation Common Routines and Data Areas 121

OPCACMD

Purpose

The OPCACMD command is primarily used to retrieve OPC current plan data so

that it can be viewed or modified by operators. The operator simply types in

OPCACMD and fills in the panel (EVJKAC01) which is returned. But OPCACMD

will also accept optional parameters on input. It could thus be assigned to a PF

key, making it more user-friendly.

Format

Syntax

OPCACMD APPLID=application_id,OPNO=operation_number,

 WSNAME=ws_name,STATUS=status,ERRCODE=errorcode,

 PRIORITY=priority,OWNER=owner_name,GROUP=group_name,

 JOBNAME=job_name

Parameters

application_id

Application name — 1 to 16 characters. May be generic.

operation_number

Operation number — 2 digits. Must be numeric or left unspecified.

ws_name

Workstation name — 4 characters. May be generic.

status

Occurrence status — 1 character. Must be valid or left unspecified.

 Valid status:

A Arriving

C Completed

E Error

I Interrupted

R Ready

S Started

U Undecided

W Waiting

X Reset

errorcode

Error code — 4 characters. May be generic.

priority

Priority — 1 digit. Must be numeric or left unspecified. Acceptable values are

from 1 (low) to 9 (high).

owner_name

OPC application owner name — up to 16 characters. May be generic.

group_name

OPC application group name — up to 8 characters. May be generic.

job_name

Job name — up to 8 characters. May be generic.

Usage Notes

Only as many parameters are required as necessary to identify the application(s)

requested. Some parameters may be left unspecified (they will default). Some may

OPCACMD

122 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

be generic; that is, they may be only partial and end with an asterisk (*) to indicate

a partial match. You may also use a percent sign (%) to substitute for a single

character.

OPCACMD

Chapter 14. OPC Automation Common Routines and Data Areas 123

OPCACOMP

Purpose

The OPCACOMP command completes execution of a subsystem-related request by

updating the OPC Automation status file and calling OPCAPOST (see

“OPCAPOST” on page 130).

Format

Syntax

OPCACOMP subsys,sequence_number,status [,error_code]

Parameters

subsys

Subsystem or pseudo-subsystem to identify the request.

sequence_number

Sequence number assigned to this request by the EVJESPVY module.

status

Operation status reflected to OPC Valid statuses:

C Complete

E Error

error_code

Error code — 4-character value

 Takes the form annn, where a is alphabetic and nnn are numerics.

 Do not specify the values Uxxx and Sxxx; reserve them for OPC

Automation.

 If the status is error, the error code is returned to OPC.

Usage Notes

Call this routine in user-written functions that are related to a subsystem defined

to SA z/OS whenever the standard modules for completing a request (EVJESPSC

and EVJESPTE) cannot be used. See “Implementing Completion of a Request” on

page 136.

Example

OPCACOMP RMF,842,E,R028

This example shows setting the operation requested for RMF in an error status

with an error code of R028.

OPCACOMP

124 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

OPCALIST

Purpose

The OPCALIST command retrieves OPC data. Use this command in your own

automation CLISTS. The module creates a CPOPCOM call to OPC to retrieve the

data. OPCALIST uses the EQQYCOM (also called the PIF) interface in OPC. For

more information about this interface, see the OPC/ESA Interfaces Guide.

Format

Syntax

OPCALIST SUBSYS=subsystem,ADID=id,IA=yymmddhhmm,

 PRIORITY=nnnn,ERRCODE=cccc,STATUS=s,OPNO=nnnn,

 JOBNAME=name,WSNAME=name,

 GROUP=groupname,OWNER=name

Parameters

SUBSYS=subsystem

OPC subsystem ID — 4 characters.

ADID=id

Application description ID — up to 16 characters.

IA=yymmddhhmm

Input arrival date yymmdd and time hhmm.

PRIORITY=nnnn

Priority — 4 digits.

ERRCODE=cccc

Error code — 4 characters.

STATUS=s

Occurrence status. Valid statuses:

R Ready

S Started

C Completed

E Error

I Interrupted

Refer to the OPC documentation for more information.

OPNO=nnnn

Operation number — 4 digits.

JOBNAME=name

Job name — up to 8 characters.

WSNAME=name

Workstation name — 4 characters.

GROUP=groupname

OPC/ESA application group name — up to 8 characters.

OWNER=name

OPC/ESA application owner name — up to 16 characters.

Usage Notes

Only as many parameters are required as necessary to identify the application(s)

requested. Some parameters may be left unspecified (they will default). Some may

OPCALIST

Chapter 14. OPC Automation Common Routines and Data Areas 125

be generic; that is they may be only partial and end with an asterisk (*) to indicate

a partial match. You may also use a percent sign (%) to substitute for a single

character.

The response to the OPCALIST is made up of three messages. The following

example below shows a typical response where:

EVJ410I

This is the message header, showing row titles. This is always present.

EVJ411I

This is the detail message. If there are no entries matching the selection criteria

this message is not produced.

EVJ412I

This is the end of request message.

Response details are:

ADID

Application Description Id — up to 16 characters

JOBNAME

Job Name — up to 8 characters

WS

Workstation Name — up to 4 characters

OPNO

Operation Number — up to 4 numbers

S Status (See “Parameters” on page 125 for valid statuses)

ERRC

Error Code (set to none for no error)

IA Input Arrival — date (yymmdd) and time (hhmm)

OPTEXT

Descriptive Text — up to 24 characters

Example

EVJ410I ADID JOBNAME WS OPNO S ERRC IA OPTEXT

EVJ411I MAINT2 RMF NV05 0010 C NONE 9707190615 STOP

EVJ411I MAINT2 RMF NV05 0015 C NONE 9707190615 START

EVJ411I MAINT2 RMF NV05 0010 C NONE 9707200615 STOP

EVJ411I MAINT2 RMF NV05 0015 C NONE 9707200615 START

EVJ412I END OF REQUEST

OPCALIST

126 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

OPCAMOD

Purpose

The OPCAMOD command modifies OPC data. This command is used in the

OPCACMD CLIST and could be used in your own automation CLISTS. The

module creates a CPOPCOM or CPOCCOM call to OPC to perform occurrence or

operation changes. OPCAMOD uses the EQQYCOM (also called the PIF) interface

in OPC. For more information about this interface, see the OPC/ESA Interfaces

Guide.

Format

Syntax

OPCAMOD SUBSYS=subsystem,ADID=id,IA=yymmddhhmm,

 IANEW=yymmddhhmm,DEADLINE=yymmddhhmm,PRIORITY=nnnn,

 ERRCODE=cccc,OPNO=nnnn,STATUS=s,

 JOBNAME=name,WSNAME=name,DESC=text,

 EDUR=hhmm,PSUSE=nnnn,R1USE=nnnn,R2USE= nnnn,

 JCLASS=c,AEC=Y|N,ASUB=Y|N,AJR=Y|N,TIMEDEP=Y|N,

 CLATE=Y|N,HRC=value,FORM=value,OPIA=yymmddhhmm,

 OPDL=yymmddhhmm,RERUT=Y|N,USERDATA=userdata,

 RESTA=Y|N,DEADWTO=Y|N

Parameters

SUBSYS=subsystem

OPC/A subsystem ID — 4 characters (default OPCA).

ADID=id

Application description ID — up to 16 characters (required).

IA=yymmddhhmm

Input arrival date yymmdd and time hhmm (required).

IANEW=yymmddhhmm

New input arrival date and time.

DEADLINE=yymmddhhmm

Deadline date and time.

PRIORITY=nnnn

Priority — 4 digits.

ERRCODE=cccc

Error code — 4 characters.

STATUS=s

Occurrence status. Valid statuses:

R Ready

S Started

C Complete

E Error

I Interrupted

Refer to the OPC documentation for more information.

JOBNAME=name

Job name — up to 8 characters.

WSNAME=name

Workstation name — 4 characters.

OPCAMOD

Chapter 14. OPC Automation Common Routines and Data Areas 127

DESC=text

Descriptive text — 24 characters.

EDUR=hhmm

Estimated duration (hours and minutes).

PSUSE=nnnn

Number of parallel servers required — 4 digits.

R1USE=nnnn

Amount of resource 1 required — 4 digits.

R2USE=nnnn

Amount of resource 2 required — 4 digits.

JCLASS=c

MVS job class — 1 character.

AEC=Y/N

Y — Perform automatic error completion. N — Do not perform automatic error

completion.

ASUB=Y/N

Y — Perform automatic job submission. N — Do not perform automatic job

submission.

AJR=Y/N

Y — Perform automatic job hold and release. N — Do not perform automatic

job hold and release.

TIMEDEP=Y/N

Y — Time dependent job. N — Not a time dependent job.

CLATE=Y/N

Y — Cancel if time job and late. N — Do not cancel if time job and late.

HRC

Highest successful return code.

FORM=value

Form number — 8 characters.

OPIA=yymmddhhmm

Operation input arrival date and time.

OPDL=yymmddhhmm

Operation deadline date and time.

RERUT=Y/N

Y — Reroutable operation. N — Not a reroutable operation.

USERDATA=userdata

User data — up to 16 characters.

RESTA=Y/N

Y — Restartable operation. N — Not a restartable operation.

DEADWTO=Y/N

Y — Issue WTO if deadline missed. N — Do not issue WTO if deadline

missed.

OPCAMOD

128 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Usage Notes

OPCAMOD may be used to set the status of operations occurring on general

workstations which are not automatically reporting (such as CPUs). OPCAPOST

will set the status of operations which occur on automatically reporting general

workstations (a NetView, for example).

Format

Syntax

OPCAMOD SUBSYS=subsystem,ADID=id,IA=yymmddhhmm,

 IANEW=yymmddhhmm,DEADLINE=yymmddhhmm,PRIORITY=nnnn,

 ERRCODE=cccc,STATUS=s

Parameters

SUBSYS=subsystem

OPC/ESA subsystem ID — 4 characters (default OPCA).

ADID=id

Application description ID — up to 16 characters (required).

IA=yymmddhhmm

Input arrival date yymmdd and time hhmm (required).

IANEW=yymmddhhmm

New input arrival date and time.

DEADLINE=yymmddhhmm

Deadline date and time.

PRIORITY=nnnn

Priority — 4 digits.

ERRCODE=cccc

Error code — 4 characters.

STATUS=s

Occurrence status. Valid statuses:

W Waiting

C Completed

Example

OPCAMOD SUBSYS=OPCA,ADID=TEST,IA=9403100900,OPNO=0010,

 STATUS=W

This example will set the status of operation number 0010 in application test, to

waiting.

Example

OPCAMOD SUBSYS=OPCA,ADID=TEST,IA=9403100900,STATUS=W

This example will set the occurrence status of application TEST to WAITING. All

operations in application TEST will be set to WAITING.

OPCAMOD

Chapter 14. OPC Automation Common Routines and Data Areas 129

OPCAPOST

Purpose

OPCAPOST posts the status of an OPC Automation operation back to OPC.

Because OPCAPOST uses the EQQUSINT interface, it can only change the status of

operations on automatic reporting workstations. For more information on this

interface, see OPC/ESA Installation and Customization.

Format

Syntax

OPCAPOST ADNAME=adname,WSNAME=wwww,OPNUM=nn,

 SUB=subsystem,JOBNAME=jobname,

 TYPE={S|C|I|E|X},ERRCODE=xxxx

Parameters

ADNAME=adname

Application name — 1 to 16 characters.

WSNAME=wwww

Workstation name — 1 to 4 characters.

OPNUM=nn

Operations number — 2 digits.

SUB=subsystem

TWS/OPC subsystem ID — 4 characters (optional).

JOBNAME=jobname

The jobname associated with the operation — 1 to 8 characters (optional).

TYPE={S|C|I|E|X}

Type of call — 1 character. Acceptable event types:

S Started

C Complete

I Interrupted

E Error

X Reset

ERRCODE=xxxx

Error code — 4 characters.

Note: This parameter is only valid with TYPE=E.

Usage Notes

OPCAPOST can be used to set the status of an operation which occurs on an

automatically reporting general workstation (a NetView, for example) only. Due to

restrictions in the OPC interface, OPCAPOST cannot set the status of operations on

general workstations which are not automatically reporting (such as CPUs).

OPCAMOD is available to set the status of such operations if this is required.

OPC Automation sets a return code on completion of the execution of the

OPCAPOST command processor, as follows:

0 Successful command

4 Parameter error

8 OPCAPOST failed.

OPCAPOST

130 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

|
|

|
|

|
|

OPCSRST

Purpose

The OPCSRST command lets you manipulate the availability of OPC special

resources. It is similar to the SRSTAT operator command, as presented in

Chapter 16, “OPC Automation Operator Commands,” on page 145.

Format

Syntax

OPCSRST SUBSYS=subsys,SRNAME=srname,AVAIL=Y|N

Parameters

subsys

Subsystem ID — 4 characters.

srname

Special resource name — up to 44 characters.

AVAIL=Y/N

Availability indicator.

Usage Notes

OPCSRST uses the following return codes:

0 Accepted by OPC — Special Resource-event issued

4 Request failed — Parameter error detected by this program

8 Request failed — Rejected by OPC — No Special Resource-event issued.

Internal failures:

1011 SRNAME keyword not supplied

1010 AVAIL keyword not supplied

1020 DSILOD failed — Unable to load EQQUSINS

1030 DSILCS failed — Unable to obtain SWB

1031 DSIPRS failed — Unable to determine size of PDB

1032 DSIGET failed — Unable to obtain storage

1033 DSIPRS failed — Unable to do parse

Example

OPCSRST SUBSYS=OPCT,SRNAME=’IMSCNTL.IMS01A.RUNNING’,AVAIL=Y

In this example, the OPCSRST command is run when the IMS control region

IMS01A becomes available. The special resource becoming available makes it

possible for work that depends on this control region’s execution to run. When

IMS01A becomes available, a number of applications are added to the current plan.

The variable used for subsys, OPCT, is the name of the tracker subsystem. Only in

this command is the tracker subsystem name required.

OPCSRST

Chapter 14. OPC Automation Common Routines and Data Areas 131

Data Areas

This section shows the following:

v Requestor ID block (&EHKVAR9)

v Request buffer

Requestor ID Block (&EHKVAR9)

OPC Automation sets the task global variable (&EHKVAR9) in the request module

and passes it to the user module, as follows:

Name of Subsystem, Sequence #, Module Name, Domain ID

Table 8 shows the lengths and values of the variables.

 Table 8. Lengths and Values of Task Global Variable (EHKVAR9)

Variable Name of

Subsystem

Sequence # Module

Name

Domain ID

Length

(characters)

8 4 8 5

Values SA z/OS

Subsystem

Name

(Standard)

OPC

Sequence

Number

(Numeric)

Check

Module

Name

NetView

Domain ID

(Standard)

The following example shows values substituted for each variable shown in

Table 8.

RMF,7842,OPCACOMP,NETVT

The values are defined as follows:

 RMF This request is for subsystem RMF.

7842 The OPC sequence number is 7842.

OPCACOMP When the requested function has been

completed, invoke the OPCACOMP module.

NETVT This function was executed in NetView

domain NETVT.

Note: Other options can also use this block. Although OPCACOMP is shipped

with the OPC Automation option, you can also use a user-supplied module.

132 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Request Buffer

Table 9 shows the request buffer layout for standard subsystem operations:

 Table 9. Request Buffer Layout for Standard Subsystem Operations. Length represents the

maximum length if format is variable.

Field Length Format

Fixed/Variable

Value Obtained

From

Request ID 8 F EVJESPRQ constant

delimiter 1 F blank constant

Application name 16 V variable ADNAME

delimiter 1 F blank constant

Workstation name 4 F NVnn WSNAME

delimiter 1 F blank constant

Operation no 3 V 1 – 255 OPNO

delimiter 1 F blank constant

Subsystem name 8 V variable JOBNAME

delimiter 1 F blank constant

Request 8 V variable first field

in TXTOP

delimiter 1 F blank constant

Parameter 1

(optional)

* V variable second field

in TXTOP

delimiter 1 F blank constant

Parameter 2

(optional)

* V variable third field

in TXTOP

Note: The length of Parameter 1 or 2 is from 1 to 8 characters.

Table 10 shows the request buffer layout for non-subsystem, user extension

(UXaaaaaa) operations:

 Table 10. Request Buffer Layout for Non-Subsystem, User Extension (UXaaaaaaa)

Operations. Length represents the maximum length if format is variable.

Field Length Format

Fixed/Variable

Value Obtained

From

Request ID 8 F EVJESPRQ constant

delimiter 1 F blank constant

Application name 16 V variable ADNAME

delimiter 1 F blank constant

Workstation name 4 F NVnn WSNAME

delimiter 1 F blank constant

Operation no 3 V 1 – 255 OPNO

delimiter 1 F blank constant

Subsystem name 8 V variable JOBNAME

delimiter 1 F blank constant

Request 24 V variable TXTOP

Chapter 14. OPC Automation Common Routines and Data Areas 133

Any parameter with a variable length is left-adjusted and all trailing blanks are

ignored.

134 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 15. Guidelines for User-Written Operations

OPC Automation allows two types of user-supplied extensions for implementation

of functions beyond those provided by OPC Automation. These facilities provide

support for the following types of user-supplied modules:

v A non-SA z/OS command or function that performs an action for a subsystem

known to SA z/OS.

v An independent user-supplied function which is scheduled for the user. This

type of function uses OPC Automation as a communications vehicle between

OPC and the user-supplied module. A relationship is not required with any

SA z/OS-defined subsystems.

The following sections describe an overview of each of these types of user-supplied

modules and provide examples of each module’s possible use.

User Functions Related to an SA z/OS-Defined Subsystem

OPC Automation provides support for stopping and starting SA z/OS-defined

subsystems. Certain environments require you to issue a command or to perform a

function outside the scope of SA z/OS. This may include a situation where a

system command needs issuing or where a user-written function needs to perform

a logical decision.

For example, you may need to issue a system command before taking action on a

subsystem. If you always issue this command, specify it as part of the startup

sequence in the SA z/OS policy database. However, since you may not need to

use this command under certain conditions, OPC can initiate a user-supplied

module to perform the command. You can split the startup sequence with the

system commands, so OPC executes them separately from the subsystem startup

commands. If this is the case, define each command sequence to OPC as an

operation. Using scheduling parameters, such as specific types of days, you can

include or exclude certain operations.

For example, consider a subsystem which normally runs on a specific processor.

On weekends, you use this processor for testing purposes and move the

application to another, perhaps smaller, processor within the same complex. On the

days that the application needs moving, you need several VTAM VARY commands

to start the VTAM application statements.

In OPC, you can define an extra operation or application which runs on the first

free day of each period, and another which runs on the first working day of each

period. OPC calls the CLIST containing the VTAM commands. This allows the

issuing of the appropriate VARY commands when needed before you start the

application subsystem on the correct processor.

Triggering a user-written CLIST provides another example. This determines if all

users of a specific application are logged off before issuing the commands to take

down the subsystem.

Flow of Control

In a situation where a non-SA z/OS command needs issuing, specify the user

CLIST or command processor in the OPCACMD entry of the subsystem. In

© Copyright IBM Corp. 1990, 2005 135

response to the request, instead of issuing an SA z/OS command, OPC

Automation passes control to this user CLIST or command processor. All

information available is made accessible to the user-supplied module. If the

user-supplied module does not trigger a status change of the subsystem and

returns control to OPC Automation synchronously, you are responsible for

completing the operation. This should be done by calling OPCACOMP once the

results of these commands are analyzed. The OPCACOMP module ensures that

actions are accomplished in the correct sequence, does some housekeeping,

updates the SA z/OS status file, and calls the OPCAPOST command processor to

return the specified completion code to OPC; for more details see “Implementing

Completion of a Request.”

Figure 64 shows the flow including the user responsibilities.

To simplify implementation, you may plan to only use the timer function or only

the detection of the completion of the command. If you use only the event-driven

method, then consider what happens if the anticipated event fails to occur.

Implementing Completion of a Request

The general mechanism for executing requests for subsystems that have an OPCA

entry coded in their MESSAGES/USER DATA policy item is as follows:

1. The request (with one or two optional parameters) and the job name of the

OPC operation are passed to OPC Automation.

2. OPC Automation identifies the SA z/OS definition of the subsystem through

the job name of the OPC operation.

Figure 64. Request Flow for a Subsystem-Related User Function

136 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

3. OPC Automation retrieves the expected result, the timer interval, and possibly

a timer name, for the respective request/parameter combination from the

OPCA entry of the subsystem.

4. OPC Automation then checks if an OPCAPARM entry is present and if that

entry contains a timer module name.

5. If a timer module is specified, OPC Automation sets the timer with this timer

module. Otherwise, it uses a standard timer module (EVJESPTE).

6. OPC Automation issues the command that is specified in the OPCACMD entry.

After the command has been issued, two things remain to be done:

v If the command was executed successfully, the status file record for this

subsystem must be updated.

v The (positive or negative) result of the request must be posted back to OPC.

How this is done, depends on the type of command specified in the OPCACMD

entry.

Using OPC Automation Standard Modules

If the command specified in the OPCACMD entry triggers a status change of the

subsystem to RUNNING, UP or AUTODOWN (no matter whether it is a

user-written command or an SA z/OS standard command), you can leave it to

OPC Automation to perform these two tasks. The modules responsible for this are

the status change module (EVJESPSC) and the standard timer module (EVJESPTE),

already mentioned in step 5 above; two flags, a completion flag and a timer flag,

ensure that both modules are not active at the same time. The two standard

modules operate as follows:

1. The status change module is called whenever the status of the subsystem

changes. It first checks the timer flag. If that flag is set, EVJESPSC terminates at

once. If the flag is not set, EVJESPSC checks if the status change is the result of

an OPC request, and if the new status is identical to the expected result as

specified in the OPCA entry. When both conditions are satisfied, the status

change module assumes that the request was successfully executed and

a. purges the timer defined in the OPCA entry,

b. sets the completion flag in the status file record for this subsystem,

c. actualizes further fields of the status file record, and

d. posts the result of the request back to OPC.
2. The timer module (EVJESPTE) is called after the timer set in step 5 has expired

(except when you have specified your own timer module in the OPCAPARM

entry). It first checks the completion flag. If that flag is set, EVJESPTE will

terminate at once. If the completion flag is not set, EVJESPTE sets the timer flag

and compares the current state of the subsystem with the expected result of the

OPCA entry. If both are compliant, the timer module assumes that the request

was executed successfully; it updates the status file accordingly and posts a

positive result back to OPC. If they are not compliant, it only posts the failure

of the request back to OPC.

Programming your own Completion Routines

If you specify a command in the OPCACMD entry that does not change the status

of the subsystem to UP, RUNNING or AUTODOWN, then you cannot use the

standard modules for completing the request. In this case, you must perform the

update of the status file and the posting of the result to OPC. You can do that in

the command module (specified in the OPCACMD entry) or in a user-written

Chapter 15. Guidelines for User-Written Operations 137

timer module (specified in the OPCAPARM entry) or in both. The user-written

timer module is called by OPC Automation in the following format:

MODULE_NAME subsystem_name expected_result OPC_application_ID

 OPC_workstation_ID request_sequence_number

To simplify completion of a user-written module, OPC Automation provides the

following facilities.

The OPCACOMP Command: This command, which is described in more detail

in “OPCACOMP” on page 124, updates the status file and posts the result of the

request back to OPC.

In particular, OPCACOMP first checks if the timer flag is set. If so, it will terminate

at once. If not, it will

1. set the completion flag in the status file record of the subsystem for which it is

called,

2. actualize further fields of the status file record, and

3. post the result of the request back to OPC.

The main difference between OPCACOMP and the standard modules (EVJESPSC

and EVJESTPE) is that OPCACOMP does not check if the current status of the

subsystem is in agreement with the expected result. Rather, it requires the (positive

or negative) result of the request as one of its input parameters, and usually

simply forwards this result to OPC. Thus, a user-written module must itself decide

whether or not the request was executed successfully. It can then pass that

information to OPCACOMP in order that the request be completed in an orderly

manner.

One of the input parameters for OPCACOMP is the sequence number of the

current request (see “OPCACOMP” on page 124). OPC Automation provides this

and other information in some task global variables. Note, however, that it will do

this only when you have specified a timer module in the OPCAPARM entry. You can

specify a user-written timer module or the EVJESPTE standard module in the

OPCAPARM entry. The following section describes the information contained in

the global variables.

The &EHKVAR7, &EHKVAR8, and &EHKVAR9 Variables: When you supply a

timer check module in the OPCAPARM entry (third value of the Value Returned

field) OPC Automation sets some task global variables as follows:

&EHKVAR7 This variable contains the expected status, the timer interval, and

the timer id as specified in the OPCA entry. The values are

separated by commas.

&EHKVAR8 This variable contains the string ’OPC’.

&EHKVAR9 This value contains the subsystem name, the sequence number, the

name of the timer check module and the domain, separated by

commas. This is also known as the Requestor ID block; see

“Requestor ID Block (&EHKVAR9)” on page 132.

Do not modify the information in the task global variables. OPC uses information

in &EHKVAR7 if the timer is purged. The SA z/OS problem determination uses

information in &EHKVAR8. In order to call OPCACOMP, the sequence number of

the current request must be known; this number is stored in &EHKVAR9.

138 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Non-Subsystem Operations

Operations of this type, containing requests named UXxxxxxx, allow you to

perform commands that are independent of a specific subsystem. Figure 65 shows

the flow for these types of operations.

OPC Automation uses this type of exit for several purposes. At any point in the

production cycle, OPC Automation allows you to invoke a user CLIST or

procedure that can interact with system resources, such as the storage management

subsystem.

Let’s consider an example. Suppose, in a specific application flow within OPC,

return codes show action that is taken by operations. When a specific job in this

application completes, one of several user completion codes can result.

v A completion code of 0 indicates that application processing is to continue to the

next operation.

v A user completion code of 50 indicates that the next two operations are skipped.

v A user condition code of 70 indicates that the application is completed at this

operation.

Any other completion codes are treated as errors. Figure 66 on page 140 shows the

subject operations in this application, and the desired flow of control on the basis

of the condition codes of the job that runs as part of the CPU_20 operation.

Figure 65. User Exit UXxxxxxx Flow

Chapter 15. Guidelines for User-Written Operations 139

In the preceding example, OPC handles all condition code situations, except 50 and

70, which it intercepts. OPC accomplishes this interception in several fashions, such

as user code in a JJC error exit. This code could then drive OPC Automation with a

user exit (UXxxxxxx) request. This request would pass to the specified NetView to

a user-written task. This task could then use the OPCAMOD command to do a

modify current plan to OPC for the application in question on the basis of the

condition code received as part of the user exit request.

Flow of Control

When the name of a request starts with UX, OPC Automation assumes that the

request is not related to a subsystem known to SA z/OS. As before, it expects to

find an OPCACMD entry within a policy object that is identified through the Job

name field of the OPC operation. However, if no match is found for USER E-T pair

’OPCACMD jobname’, then OPC Automation will check for USER E-T pair

’OPCACMD OPCA’, and if again no match is found, OPC Automation will check

for USER E-T pair ’OPCACMD subsystem’. Although user exit processing is

designed to be non-subsystem related, this approach provides flexibility for users

who have jobnames that do not match subsystems names but still prefer

subsystem-related processing.But there are two differences as compared to

subsystem-related requests:

v The only keyword that is needed is OPCACMD. OPCA and OPCAPARM are

ignored.The CMD attributes of the OPCACMD entry should have the following

format:

CMD=(UXxxxxxx,,’userfunc &EHKVAR1’)

SAMPLE APPLICATION
OPERATIONS

CPU_20

CPU_25

CPU_30

CPU_35

APPLICATION COMPLETED

CC=0

CC=50 CC=70

Figure 66. Condition Code Driven Application Flow

140 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

For &EHKVAR1, see “Parameters Passed to a User Exit.”

v The policy object identified through the Job name field of the OPC operation

should be a USER E-T pair (see “OPCACMD” on page 112).

For non-subsystem requests, OPC Automation immediately tries to issue the

command specified in the OPCACMD entry. After issuing the command, the

request module of OPC Automation terminates. It is up to the user function to

determine whether or not the request was executed successfully. The user function

should then call OPCAPOST (see “OPCAPOST” on page 130) with the

corresponding completion code. This returns the control of the application

processing to OPC. The samples contain a code template for a non-subsystem

command (EVJERUX1).

Parameters Passed to a User Exit

When the request name begins with UX OPC Automation stores the complete

request buffer in the &EHKVAR1 task global variable. This variable must be

forwarded to the command as an input parameter, as indicated in the format

description above.

In contrast to a subsystem operation, the request buffer for a non-subsystem

operation contains the entire request in one field. For the request buffer in general,

see “Request Buffers and OPC Automation Log Entries” on page 81; the format of

the request buffer for ’UX’ requests is described in Table 10 on page 133.

Interaction with CICS Automation

The following example shows how to use the CEMTPPI command of CICS

Automation to open and close CICS files. The CEMTPPI command allows you to

perform CEMT commands on any CICS subsystem. If CICS Automation is not

installed, then you can perform a similar function using the MVS MODIFY

command from a NetView CLIST. First, you need these requests:

UXCICSOP Requests CICS to open a file.

UXCICSCL Requests CICS to close a file.

The example selects the CLIST names of CICSOPEN and CICSCLOS. Using these

names, the format of the CMD attributes of the OPCACMD entry (see

“OPCACMD” on page 112) is as follows:

Chapter 15. Guidelines for User-Written Operations 141

Figure 68 shows the definition of the operation text and other fields in OPC.

 The example uses the CICS subsystem name and the file name as parameters to

the request. These parameters are optional and flexible. Thus, the CICS name could

also be passed through the Job name field. The REXX code for CICSOPEN and

CICSCLOS is supplied in the samples as EVJERUX2 and EVJERUX3.

Interaction with IMS Automation

The following example shows how to use the IMSCMD of IMS Automation to start

and stop databases in IMS. The IMSCMD command allows you to perform IMS

MTO commands on any IMS in the system. Other IMS commands could be

imbedded into IMSCMD and incorporated in NetView CLISTs you write yourself,

using similar logic to that shown in the EVJERUX4 and EVJERUX5 CLISTs

supplied with the samples. If IMS Automation is not installed, then you can

perform similar function by replying to the outstanding reply ID of the IMS you

wish to communicate with from a NetView CLIST you write yourself. First, you

will need these requests:

UXIMSSDB Requests to start a database.

 COMMANDS ACTIONS HELP

 --

 UET Keyword-Data Specification Row 3 from 3

 Command ===> SCROLL===> PAGE

 Entry Type : User E-T Pairs PolicyDB Name : SCENARIO

 Entry Name : NONSUBS Enterprise Name : TEST

 UET Entry : DUMMY UET Type : OPCACMD

 Action Keyword/Data(partial)

 ________ CMD

 (UXCICSOP,,’CICSOPEN &EHKVAR1’)

 ________ CMD

 (UXCICSCL,,’CICSCLOS &EHKVAR1’)

 ******************************* Bottom of data ********************************

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 67. OPCACMD Entry for Interaction with CICS

 --------------------------------- OPERATIONS --------------------- ROW 1 OF 1

 Command ===> Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following

 row commands:

 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

 S - Select operation details

 Enter the PRED command above to include predecessors in this list, or,

 enter the GRAPH command to view the list graphically.

 Application : PAYMAINT Payroll Master Update

 Row Oper Duration Job name Operation text

 cmd ws no. HH.MM

 ’’’’ NV04 015 0.01 DUMMY___ UXCICSCL CICS01 PAYROLL____

Figure 68. Defining Sample CICS Application in OPC

142 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

|
|
|
|

UXIMSPDB Requests to stop a database.

The example selects the CLIST names EVJERUX4 and EVJERUX5. Using these

names, the format of the CMD attributes of the OPCACMD entry (see

“OPCACMD” on page 112) is as follows::

 Figure 70 shows the OPC definition of the operation text and other fields.

 The parameters of the request are the IMS subsystem name and the database

name. The REXX code of EVJRUX4 and EVJERUX5 is supplied in the samples.

 COMMANDS ACTIONS HELP

 --

 UET Keyword-Data Specification Row 3 from 3

 Command ===> SCROLL===> PAGE

 Entry Type : User E-T Pairs PolicyDB Name : SCENARIO

 Entry Name : NONSUBS Enterprise Name : TEST

 UET Entry : DUMMY UET Type : OPCACMD

 Action Keyword/Data(partial)

 ________ CMD

 (UXIMSSDB,,’EVJERUX4 &EHKVAR1’)

 ________ CMD

 (UXIMSPDB,,’EVJERUX5 &EHKVAR1’)

 ******************************* Bottom of data ********************************

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 69. OPCACMD Entry for Interaction with IMS

 --------------------------------- OPERATIONS --------------------- ROW 1 OF 1

 Command ===> Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following

 row commands:

 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

 S - Select operation details

 Enter the PRED command above to include predecessors in this lis

 enter the GRAPH command to view the list graphically.

 Application : CUSTMAINT Customer DB update

 Row Oper Duration Job name Operation text

 cmd ws no. HH.MM

 ’’’’ NV01 020 0.02 DUMMY___ UXIMSSDB IMS05Z_________

Figure 70. Defining Sample IMS Application in OPC

Chapter 15. Guidelines for User-Written Operations 143

144 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 16. OPC Automation Operator Commands

The following commands are used with OPC Automation:

 Table 11. OPC Automation Commands

Command Description

DFCRIT Sets a critical SDF message. See “DFCRIT” on page 147.

DFUPDT Sets or resets an SDF message alert based on message suffix. See

“DFUPDT” on page 148.

EVJESPIN Normally used only during initialization by SA z/OS. The operator

can use this command manually to create a new status file record or

resynchronize an existing one. The actions available with this

command are INIT, RESET, SYNC, and CREATE. See “EVJESPIN —

Initialization” on page 149.

OPCA Displays the OPC Automation Main Menu (EVJT0000) that lists the

most commonly used commands and provides access to the

tutorials. See “OPC Automation Main Menu and Tutorials” on page

146.

OPCACMD Displays the OPC Automation: Display or Modify OPC data

(EVJKAC01) panel that is used to interact dynamically with OPC.

See “OPCACMD — Interacting Dynamically with OPC” on page

149.

OPCAQRY Lists pending NetView operations. See “OPCAQRY — Display Status

of Operations” on page 151.

OPCAPOST Posts an operation in OPC from SA z/OS. See “OPCAPOST —

Posting an OPC Operation from SA z/OS” on page 154.

SRSTAT Determining status of OPC special resources. See “SRSTAT —

Determining OPC Special Resource Status” on page 155.

© Copyright IBM Corp. 1990, 2005 145

OPC Automation Main Menu and Tutorials

Type OPCA on the command line. After you press ENTER, OPC Automation

displays the SA/OPC – Main Menu, as shown in Figure 71.

To obtain information on using this panel, enter the tutorial number adjacent to the

command.

 EVJT0000 SA/OPC - MAIN MENU

 TYPE COMMAND DESCRIPTION TUTORIAL

 SA/OPC Automation 1

 P SDF Display facility additions 2

 P OPCAQRY Display status of operations 3

 L OPCAPOST Manually post status to OPC 4

 P OPCACMD Display and modify OPC data 5

 L SRSTAT Update special resource status 6

 Note: Commands of type L (linemode) do not have an input panel

 and must be invoked with all required parameters specified.

 Enter a Tutorial Number or Command ==>

 PF1= Help PF2= End PF3= Return

 PF6= Roll

Figure 71. SA/OPC – Main Menu

146 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

DFCRIT

Purpose

Use the DFCRIT command to add critical messages to the Status Display Facility.

These messages are normally selected through the automation table, although you

could invoke the CLIST from other places, such as user-written automation

CLISTS.

Format

Syntax

DFCRIT message text DFCRIT TYPE=t, message

text

Parameters

t A 1-character value corresponding to an SDF CRITMSG type entry in the

control file. A, E, I, and W are supplied with OPC Automation. Other values

may be specified, provided an SDF CRITMSGt corresponds to that message.

message text

Message text added to the Status Display Facility critical message display

panel.
 IF MSGID=’IOS001I’ & TEXT=MESSAGE

 THEN EXEC(CMD(’DFCRIT ’MESSAGE) ROUTE(ALL *));

Usage Notes

If the TYPE= parameter is not specified, t is set to the last character of the message

ID, and the search is made. If no CRITMSGt entry is found, the CRITMSG value

will be used.

Example

If you wish to see certain application messages in blue reverse video, add:

 SDF CRITMSGU,CO=B,PR=500,HL=R

to your control file and call DFCRIT from the message table as follows:

 IF MSGID=’NORMAL’ &. TEXT=MESSAGE

 THEN EXEC(CMD(’DFCRIT TYPE=U,’MESSAGE) ROUTE(ALL *));

Chapter 16. OPC Automation Operator Commands 147

DFUPDT

Purpose

Use the DFUPDT command to insert display data for extensions to the Status

Display Facility. The normal automation commands are issued to route this data to

a focal point host in a distributed environment.

Format

Syntax

DFUPDT type,resource,component,ref_value,info,text

Parameters

type

Type used to get Status Display Facility parameters from the control file.

resource

Status Display Facility resource name.

component

Status Display Facility component name.

ref_value

Reference value used for the Status Display Facility entry. Used as a way to

group related or duplicate entries. If not supplied, then use resource.

info

Information text that appears on the panel for this entry. If not supplied, then

use resource.

text

Message or user text that appears in the detail panel for this entry. If not

specified, then use resource.

148 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

EVJESPIN — Initialization

OPC Automation uses this command during initialization when SA z/OS is

started. An operator can also use it to create a new OPC Automation status file

record or to resynchronize an existing one.

Four command actions are available. The first, INIT, acts on all OPC Automation

controlled subsystems, while the other three are available for the specified

subsystem only.

EVJESPIN CMD=action,SUBSYSTEM=subsystem

CMD=action The command to execute where action is one of the following:

INIT Forces an equivalent action to that taken during normal

initialization. Do not specify a subsystem parameter for

this parameter. To properly understand the action of this

command parameter and for a complete overview of the

initialization process, refer to the initialization topic in

“Initialization Module (EVJESPIN)” on page 79.

RESET

Resets the timer and comp flags to a null value, and

unlocks a specific subsystem after a user error is detected

and corrected. By resetting the timer and comp flags, OPC

Automation again accepts requests from OPC.

SYNC Checks the last completed status field in OPC Automation

and ensures that the specified subsystem status agrees

whether the last completed status is UP or DOWN. OPC

Automation resets the timer and comp flags to null. This

marks the action as completed. Use SYNC when manual

action is necessary to stop or start a subsystem.

CREATE

Creates a new OPC Automation status file record from the

control file definition for a specified subsystem. Use this

function to refresh the control file dynamically with new

OPC Automation definitions, when NetView is not

recycled.

subsystem The subsystem initialized. Do not specify a subsystem with INIT.

OPCACMD — Interacting Dynamically with OPC

OPCACMD will invoke INGOPC. For details of the INGOPC command, see System

Automation for z/OS Operator’s Commands.

Chapter 16. OPC Automation Operator Commands 149

DFTSOU

Purpose

Use the DFTSOU command to update the status of TSO Users in SDF or NMC.

Format

�� DFTSOU UPDATE

SCAN
 ��

Parameters

UPDATE

A single TSO user status is updated according to the message that

triggered this command.

 This is the default option if none are supplied.

SCAN A Display TSO users command is issued and the results are used to set the

status of TSO users in SDF and NMC.

Usage Notes

This command can be used in two ways.

Firstly the UPDATE parameter can be used when the command is placed in an

Automation Table to track the status of TSO users.

Secondly the SCAN parameter can be used in either the UP Message command

policy item, or the ACORESTART message command policy for TSO. This would

cause a refresh of the status of TSO users should the SA z/OS NetView be

restarted.

Example

Used in an Automation Table:

IF MSGID = ’IEF125I’

 THEN EXEC(CMD(’DFTSOU ’) ROUTE(ONE *));

IF MSGID = ’IEF126I’

 THEN EXEC(CMD(’DFTSOU ’) ROUTE(ONE *));

IF MSGID = ’IEF450I’

 THEN EXEC(CMD(’DFTSOU ’) ROUTE(ONE *));

Used in the TSO ACORESTART command:

DFTSOU SCAN

150 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

OPCAQRY — Display Status of Operations

The OPCAQRY command displays the status of OPC Automation operations.

To use this command, type the following on any NetView command line:

OPCAQRY

After you press ENTER, OPC Automation displays the SA/OPC Automation

Operation Status Display panel, as shown in Figure 72.

The panel in Figure 72 shows the status of requests from OPC Automation in

NetView. It also provides a convenient place to delete unused records or to reset

an operation in the event of problems.

The fields shown on the panel in Figure 72 are defined as follows:

Act Action field, used for browsing, deleting, or resetting the status file

record. See “Selecting Actions” on page 152 for more discussion on

this topic.

Job Name Job name from OPC, typically used to represent a subsystem.

Application OPC application requesting the operation.

Last requested action

Action specified in the OPC operation description text.

Date Date the request was received.

Time Time the request was received.

Status Status of the request in NetView, either complete, incomplete,

timeout, or no request. A status of timeout indicates that the

operation is marked in error because it did not complete within the

time limit set by the system programmer in the OPCA code entry.

A status of incomplete indicates that the operation did not achieve

the expected status set by the system programmer in the same

entry. Complete and no request are considered normal statuses.

EVJKCGAA SA/OPC - Automation Operation Status Display

 Date: 08/17/00

Valid Actions: B Browse D Delete R Reset Time: 11:43:00

Act Job Application Request Date Time Status

 _ CX06AA 05/24/00 08:44 No request

 _ DBSYS1 TEST2 STOP 05/29/00 14:16 Complete

 _ RMF RMFMAINT START 05/30/00 19:27 Complete

 _ SUBSYS1 ******** ***** No request

Command ==>

F1= Help F2= End F3= Return F5= Refresh F6=Roll

Figure 72. SA/OPC - Operation Status Display Panel

Chapter 16. OPC Automation Operator Commands 151

Selecting Actions

Select one of the following valid actions for any operation listed on the OPC

Automation Operation Status Display panel, as shown in Figure 72 on page 151.

B Browse. Selecting the browse action allows the user to examine a record on

OPC Automation Operation Status panel as shown in Figure 73 on page 153.

D Delete. This action deletes the record from OPC Automation status file.

 A confirmation pop-up will appear, as follows:

 DELETE CONFIRMATION

 : :

 : :

 : RECORD ID... TESTSYS :

 : :

 : _ ENTER 1 TO DELETE RECORD, :

 : PRESS F3 OR F12 TO KEEP RECORD. :

 :...:

R Reset. This clears flags in the record for reuse by performing an EVJESPIN

CMD=RESET. This is useful for recovering operations that did not process

normally. See “EVJESPIN — Initialization” on page 149 for more details.

152 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

After you type B (browse) in the Act field of the OPC Automation Operation

Status Display panel shown in Figure 72 on page 151 and press ENTER, OPC

Automation displays the OPC Automation Operation Status Detail panel, as shown

in Figure 73.

EVJKCGAA SA/OPC - Operation Status Display

 Date: 08/17/00

 Status file record display for CX06AA Time: 14:44:00

 EHK170I OPCA RECORD DISPLAY FOR: CX06AA

 EHK171I ID= CX06AA , TYPE= OPCA, OPID= RICK

 EHK172I LAST COMPLETED STATUS= , LAST SEQUENCE NUMBER= 0000

 EHK173I TIMER FLAG= , COMPLETION FLAG=

 EHK174I CURRENT SEQUENCE NUMBER= 0000, CHECK MODULE=

 EHK175I EXPECTED STATUS= , TIMER INTERVAL= ,TIMER ID=

 EHK176I ADNAME= , WSNAME=

 EHK177I OPNUM= , JOBNAME= , DATE= 08/17/00 ,TIME= 14:33

 EHK178I REQUEST= , PARM1= , PARM2=

 EHK002I END

Command ==>

F1= Help F2= End F3= Return F5= Refresh F6=Roll

Figure 73. OPC Automation: Operation Status Detail Panel

Chapter 16. OPC Automation Operator Commands 153

OPCAPOST — Posting an OPC Operation from SA z/OS

This command is used by SA z/OS to inform OPC of status changes. This is

accomplished by the OPCAPOST command processor, which is normally used

internally in OPC Automation. Although you can issue OPCAPOST as an operator

command, operators should use OPCACMD, if possible. OPCACMD provides a

full-screen interface to OPC and dynamically acknowledges the action, rather than

OPCAPOST.

If you determine that you must use the OPCAPOST command, refer to

“OPCAPOST” on page 130.

154 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

SRSTAT — Determining OPC Special Resource Status

This command lets you manipulate the status of OPC special resources. Status is

returned via messages. The format of this command is:

SRSTAT srname,SUBSYS=subsys,AVAIL=Y|N

srname

Special resource name — up to 44 characters.

Note: The special resource name must be enclosed in single quotes if it

contains any spaces or commas.

subsys

Subsystem ID — 4 characters.

AVAIL=Y/N

Availability indicator.

 Example:

 SRSTAT EOD.CICSPRD1.TRANS,SUBSYS=OPCT,AVAIL=Y

In the above example, end-of-day transactions are required to complete before

production work can begin. SRSTAT is executed when the transactions are

complete. The special resource name EOD.CICSPRD1.TRANS is used to trigger

OPC/ESA applications that are able to run when the transactions are finished. A

number of applications are added to the current plan.

The variable used for subsys, OPCT, is the name of the tracker subsystem. Only in

this command is the tracker subsystem name required.

Chapter 16. OPC Automation Operator Commands 155

156 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Chapter 17. Resynchronization and Recovery Considerations

OPC Automation combines the capabilities of two different subsystems, OPC and

SA z/OS, which may reside over several systems. As a result, a failure or a

scheduled interruption of services with one of the subsystems, processors, or

telecommunications facilities may occur and prevent OPC Automation from

processing operations. Further complications arise by shifting work load across

multiple system images, either for scheduled workload balancing or as part of a

recovery situation.

In such a case, a loss of synchronization can occur between the OPC schedule and

the OPC Automation components in NetView. When this happens, you may need a

manual process to examine the OPC schedule, to ensure that OPC Automation in

NetView is performing actions as required and, in some cases, to resynchronize

OPC and OPC Automation.

During a loss of contact or a failure with either OPC or NetView, OPC

Automation’s facilities invoke and restore the environment as it was before the

failure so that event scheduling can pick up where it left off. This results in a

satisfactory resolution and manual resynchronization is not required. See

“Automated Recovery Functions” on page 161 for additional information.

Generally, the longer the outage, the more likely that resynchronization is required.

This depends on the number of scheduled events that are not processed. A long

outage during the day may have a smaller synchronization impact than a shorter

outage during a period when many online facilities are started or shut down.

Examples and Scenarios

This section describes possible scenarios for resynchronization and recovery.

Loss of Contact Between OPC and OPC Automation

Under most situations, once OPC Automation re-establishes connectivity, its

automatic recovery schedules requests for execution that it could not execute prior

to connectivity. In some situations you may need to intervene manually, such as

when the request is no longer valid. The following sections discuss several reasons

for manual intervention.

Taking Action Manually on the Target System

The scheduler acts on the ended-in-error notification, requesting that an operator

with access to the target system perform the required operation manually. The

operation requested by OPC completes, and the scheduler manually updates it to a

completed status, enabling OPC to continue processing.

You should issue EVJESPIN CMD=SYNC.

Taking Action Too Late

The remaining processing window is too small to allow an operation to occur. For

example, an online system may require a certain amount of time to initialize. If this

amount of time is close to the scheduled shutdown time, you probably should

override the request and complete the operation manually.

© Copyright IBM Corp. 1990, 2005 157

You should issue EVJESPIN CMD=RESET.

Queuing Several Actions for a Specific Target Subsystem

Rather than not having enough time for a system initialization as in the previous

example, the outage may have lasted long enough for a specific subsystem to

receive several queued operations that frequently conflict. For example, an online

task may have a start request with an ended-in-error status because of connectivity

problems. This same task may also have a stop request already due for scheduling.

If you allow automatic recovery for this application, the subsystem would start,

but an immediate shutdown would follow.

Complete these operations manually. You should issue EVJESPIN CMD=RESET.

Backup on a Different Processor

If you perform a backup using a different processor, pay special attention to ensure

that you properly restore the work load on the new system. Depending on the

backup structure, you need to follow one of several different procedures discussed

in the next sections.

Full Takeover onto a Standby System at the Same Site

This is the simplest type of backup. It becomes the same as a single-system

recovery if the data is also available. OPC Automation uses the information in the

status file to restore the various subsystems to the pre-backup status.

Full Takeover onto a Standby System at a Different Site

If the status file is not available, restructure the environment manually. Examine

pertinent applications that control this specific NVnn workstation. The last

completed NVnn operation requires manual triggering. You can achieve this with

the OPCACMD function, allowing the NetView operator direct access to the

relevant applications. Although, at times, you may find it necessary to perform

specific operations manually, in most cases, resetting an operation with EVJESPIN

or restarting an application produces the desired effect.

Takeover onto a Working System

In most situations, the takeover is onto a working system and is restricted to

certain critical applications. The previously discussed considerations as to whether

the system is at the same site or at another site apply to this situation. Since not all

applications are restarted on the backup system, several new considerations

become important. Certain applications need cancelling before you can achieve a

restoration of services. Some situations can result in duplications, such as with

subsystems like TSO, which are frequently found on every MVS system. Although

normally this is controlled by SA z/OS, OPC Automation can control this. Here,

duplicate applications need cancelling for the backup period.

During the backup period, use one of these two methods to run OPC Automation:

v Add the new work load to the resident NetView by changing the NVnn

workstation entry in the platform control file to point to the same NetView

domain ID.

v Start another copy of NetView with the NetView domain ID used in the failing

system.

The consideration of which method to use becomes important once you restore the

original configuration.

158 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

With the single NetView solution method, you need to resolve the subsystems

manually since their original identity is lost. With the extra NetView solution

method, you can stop the subsystems controlled by the extra NetView by shutting

it down. This simplifies the restoration process, requiring almost no manual

intervention.

In both cases, restoring the environment follows similar procedures used to backup

a host onto a standby backup system.

Long Term Outage

You must manually intervene when the outage duration is more than a single

scheduling cycle. This type of recovery is confusing since many applications are

shown as late in the OPC plan. Carefully review these applications since some of

the them still need scheduling, while others need to be cancelled. For applications

that need scheduling, certain operations involving the online portion need

cancelling or holding. To ensure success, this type of recovery needs precise

planning and monitoring. Otherwise, you can use the scenarios previously

outlined.

Chapter 17. Resynchronization and Recovery Considerations 159

Example Using Doubly-Defined NetView Domain IDs

The example in Figure 74 shows the WORKSTATION DOMAINS entry for a

4-processor environment:

 Here, NV00 maps to the NVTOR NetView domain ID, and the NV01 workstation

maps to the XBAOF NetView domain.

Under normal circumstances, each NetView domain ID represents a processor with

its MVS operating system and a unique NVxx general automatic reporting

workstation. For situations such as testing, backup, or work load management, this

relationship needs no maintenance.

In the previous example, both NV00 and NV06 OPC-defined workstations

represent their own specific NetView domain, NVTOR and AOFS6, respectively.

Assume that the system represented by NVTOR has failed, and you make the

decision to shift the work load to the AOFS6 system. You can accomplish this by

changing the domain ID in the first CODE statement from NVTOR to AOFS6. This

would imply that the AOFS6 domain is associated with two OPC workstations,

namely NV00 and NV06.

If you accomplish this change without altering the OPC definitions, you must

reload the SA z/OS control file. The scheduler or operator needs to ensure that the

OPC-defined applications that are running in the failed system are restarted on the

backup system. Because the SA z/OS status records are on the failed system, the

scheduler manually recovers the failed environment. Once resynchronization

completes, any new scheduled event originally intended for the NetView domain

ID NVTOR automatically is scheduled for AOFS6. After you resolve the problem

on the NVTOR system, perform the previous scenario in reverse order to restore

the system to its original configuration.

 COMMANDS HELP

 --

 Code Processing Row 1 to 6 of 21

 Command ===> SCROLL===> PAGE

 Entry Type : Workstation domainID PolicyDB Name : SCENARIO

 Entry Name : SAMPLE_01 Enterprise Name : TEST

 Subsystem : OPCA_DOMAINID

 Message ID : DOMAINID

 Enter the value to be passed to the calling CLIST when this resource

 issues the selected message and the following codes are contained in

 the message.

 Code 1 Code 2 Code 3 Value Returned

 NV00___________ _______________ _______________ NVTOR________________________

 NV01___________ _______________ _______________ XBAOF________________________

 NV02___________ _______________ _______________ AOFT5________________________

 NV06___________ _______________ _______________ AOFS6________________________

 _______________ _______________ _______________ _____________________________

 _______________ _______________ _______________ _____________________________

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 74. Mapping of NVxx Workstations to Domain IDs

160 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

When double definitions of this type are used, exercise caution to avoid creating

conflicting requests for specific subsystems. For example, if RMF exists in the

AOFS6 domain, OPC can then schedule a shutdown request on NV00 and a start

request on NV06.

Automated Recovery Functions

Only a small portion of OPC Automation resides in the OPC address space in OPC

user exits. These exits communicate to the rest of OPC Automation which resides

in the NetView address space. A loss of contact results if a NetView address space

becomes unavailable or if OPC Automation code in NetView is unavailable. Also, a

communication failure can prevent a request from reaching its ultimate destination.

OPC Automation automated recovery determines which operations are affected by

a specific loss of communications. It also determines when the connectivity and

availability of a given target NetView is corrected and the NVnn operation is reset

to the ready state. This redrives the EQQUX007 exit, allowing it to re-create the

original request.

OPC Actions in a Loss of Contact Situation

The EQQUX007 exit or an intermediary NetView with an ended-in-error status and

a return code of Sxxx reports a connectivity loss to OPC. OPC does not schedule

any dependent operations and shows an error on the operations ended-in-error

Status Display Facility panel. OPC takes no further action until the connectivity is

restored and OPC Automation automatic recovery is invoked.

The operator or scheduler can manually override the ended-in-error status, thus

allowing the application to continue or cancelling it.

OPC Automation Actions in a Loss of Contact Situation

If loss of connectivity to NetView is detected in the OPC Automation portion of

the EQQUX007 exit (using the EQQUSINT function directly), then OPC

Automation posts an ended-in-error status with a UNTV return code. OPC

Automation uses this mechanism because the EQQUX007 exit cannot directly

modify operation status.

If the request is received in NetView, but OPC Automation cannot propagate the

request to the appropriate target system, OPC Automation uses the OPCAPOST

function to post the operation as ended-in-error with an S999 return code.

Chapter 17. Resynchronization and Recovery Considerations 161

162 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Glossary of Terms

The intent of this glossary is to define terms as

TME 10 OPC uses them. However, where

applicable, terms are taken from the IBM

Dictionary of Computing, New York; McGraw-Hill,

1994. These terms are marked by an asterisk (*).

Unless otherwise noted, the definitions below

apply equally well to OPC/ESA and TME 10

OPC.

A

actual duration. At a workstation, the actual time in

hours and minutes it takes to process an operation

from start to finish.

APAR. Authorized program analysis report. A report

of a problem caused by a suspected defect in a current

unaltered release of a program.

all workstations closed. A user defined interval

during which all OPC’s workstations are not available

for running applications under OPC’s control.

Note: All the workstations could be either shut down

or simply not available to OPC.

application. (1) A group of related operations

performed together to satisfy a specific end user task.

(2) A measurable and controllable unit of work that

completes a specific user task such as the running of

payroll or financial statements. The smallest entity that

an application can be broken down into is an operation.

Generally, several related operations make up an

application.

application description. A database description of an

application.

application ID. The name of an application. Examples:

Y1976, Payroll.

arrival (A). Status of an operation that indicates it is

waiting for the input to arrive before processing.

authority. The ability to access a protected resource.

authority group. A name used to generate a RACF

resource name for authority checking.

automatic events. Events recognized by or triggered

by an executing program. Automatic events are usually

generated by OPC job tracking programs but may also

be created by a user-defined program.

automatic reporting workstation. A workstation that

reports events (the starting and stopping of operations)

in real time to OPC, such as a processor or printer.

automatic job recovery. An OPC function which

allows you to specify, in advance, alternative recovery

strategies for applications or operations ended in error.

availability. * The degree to which a system (and in

OPC, an application) or resource is ready when needed

to process data.

B

batch loader. An OPC batch program you can use to

create and update information in the application

description and operator instruction databases.

bracketed DBCS. A MIXED format field consisting of

a DBCS part only, that is, DBCS characters enclosed by

a shift-out/shift-in control character pair.

browse. An ISPF/PDF dialog function that manages

data for display only. This function lets the user view

but not change data.

C

CP. Current plan.

calendar. The data that defines the operation

department’s processing schedule in days and periods.

capacity. The actual number of parallel servers and

workstation resources available during a specified open

time interval.

capacity ceiling. The maximum number of operations

a workstation can handle simultaneously.

case code. A code in the automatic job recovery

function that represents a group of abend codes or

return codes. Any code in the JOBCODE and

STEPCODE parameters is considered a potential case

code if defined as such in the case code macro.

closed workstation. A workstation that is unavailable

to process work for a specific time, day, or period.

command. * A request from a terminal for the

performance of an operation or the execution of a

particular program. A character string from a source

external to a system that represents a request for

system action.

complete. Status of an operation indicating that it has

finished processing.

© Copyright IBM Corp. 1990, 2005 163

completion code. An OPC system code indicating

how the processing of an operation ended at a

workstation.

complex of processors. A JES2 multi-access spool

system or a JES3 system with more than one processor.

computer workstation. A workstation that performs

MVS processing and usually reports status to OPC

automatically. A processor when used as a workstation.

It can refer to single processors or multiprocessor

complexes serving a single job queue (for example JES2

or JES3 systems).

controller. The portion of TME 10 OPC or OPC/ESA

that runs on the controlling processor and contains the

tasks that manage OPC databases and plans.

critical path. The route within a network with the

least amount of slack time.

current plan. A minute by minute schedule of each

operation of an application. It reflects the current state

of the operating environment showing the status of

work completed and work still to be done.

current schedule. The database that contains the

current plan information.

cyclic interval. The number of days in a cyclic period.

cyclic period. A period with a specific origin date and

set frequency. A cyclic period can be broken down into

two types:

v Those that include work and free days

v Those that include only work days.

Cyclic periods must always represent a fixed time

period in days. For example, week (7 days).

D

daily plan. A set of plans that shows work that the

operations department does on a particular day or

shift. A list by day and application of all operations to

be performed within the operations department.

default calendar. (1) A calendar that you have defined

for OPC to use when you do not specify a calendar in

an application description. (2) A calendar that OPC

uses if you have neither specified a calendar in an

application description, nor defined your own default

calendar.

deadline. See deadline date and deadline time.

deadline date. The latest date by which an occurrence

must be complete.

deadline time. The latest time by which an occurrence

must be complete.

defined. An open day status which indicates that

specific open time intervals exist for a workstation on a

particular day.

dependency. A relationship between two operations

where the first operation must successfully finish before

the second operation can begin.

dialog. The user’s online interface with OPC.

displacement. A number specifying ‘Number of Days

from Period Start’ or ‘Number of Days from Period

End’. Sometimes called offset. See offset.

duration. The time an operation is active at a

workstation.

E

edit. An ISPF/PDF dialog function that is used for

editing text, collecting data, and modifying data.

end user. A person who uses the services of the data

processing center.

ended in error (E). The OPC reporting status for an

operation that has ended in error at a workstation.

error code. The system completion code or program

return code for automatic reporting workstations. The

code entered by the workstation operator for manually

reporting workstations.

exclusive. The state of a special resource indicating

that it is fully used by one operation and cannot be

used simultaneously by other operations.

exclusive resource. A workstation resource that is

solely used by one operation and cannot be shared

with other operations.

expected arrival time. The time when an operation is

expected to arrive at a workstation. It may be

calculated by daily planning or specified in the

long-term plan.

extend current period. An OPC function that allows

the user to extend the current plan up to a maximum

of 504 hours (21 days) from the current end date.

external dependency. A relationship between two

occurrences where an operation in the first occurrence

must successfully finish before an operation in the

second occurrence can begin processing. See

dependency.

external predecessor. The name given to the operation

in the first occurrence of an external dependency that

must finish before its external successor can begin

processing.

164 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

external successor. The name given to the operation,

in the second occurrence of an external dependency,

that cannot begin until its external predecessor

completes.

F

free day. A nonworking day.

free day rule. A rule that determines how OPC will

treat free days when the application run day falls on a

free day. The rule is as follows:

 Excluded: Free days excluded; only work days are

taken into account.

 Included: Free days included; all days are taken

into account, as follows:

(1) Run before the free day.

(2) Run after the free day.

(3) Run on the free day.

(4) Do not run on the free day.

G

general workstation. A workstation where activities,

usually manual, and other than printing and

processing, are carried out. Manual activities might be

data entry or job setup. A general workstation reporting

to OPC is usually manual, but can be automatic.

generic search argument. A portion of a key

containing a generic search character which in OPC is

an asterisk (*) or percent sign (%). The asterisk

represents any string of characters and the percent sign

any single character. Use with any portion of a key to

search the database for items to be displayed as part of

a listing. Examples: %ABC, A*C, A*.

H

host processor. * A processor that controls all or part

of a user application network. * In a network, the

processing unit in which the access method for the

network resides.

highest return code. A numeric value from 0 to 4095.

If this return code is exceeded during a job’s

processing, the job will be reported as ended in error.

I

incident log. An optional function available under the

job completion checker.

input arrival. The user-defined date and time an

operation or an application becomes ready for

processing.

internal dependency. A relationship between two

operations within an occurrence where the first

operation must successfully finish before the second

operation can begin.

internal predecessor. The name given to the operation

of an internal dependency that must finish before its

internal successor can begin processing.

internal successor. The name given to the operation of

an internal dependency that cannot begin until its

internal predecessor completes processing.

ISPF. Interactive System Productivity Facility.

interrupted (I). An OPC reporting status for an

operation indicating that the operation has been

interrupted while processing.

J

job. * A set of data that completely defines a unit of

work for a computer. A job usually includes all

necessary computer programs, linkages, files, and

instructions to the operating system. In OPC, an

operation performed at a CPU workstation.

job completion checker (JCC). An optional function

of OPC that provides an extended checking capability

of the results from CPU operations.

job control language (JCL). * A problem-oriented

language designed to express statements in a job that

are used to identify the job or describe its requirements

to an operating system.

JES. Job Entry Subsystem.

job entry subsystem (JES). * A system facility for

spooling, job queuing, and managing I/O.

job setup. The preparation of a set of JCL statements

for a job at an OPC workstation you defined for this

purpose.

job submission. An OPC process that presents jobs to

MVS for running on an OPC defined workstation at a

time specified in the daily plan.

JS. The JCL repository data set.

K

keyword. * A symbol that identifies a parameter. * A

part of a command operand that consists of a specific

character string (such as DSNAME=).

keyword parameter. * A parameter that consists of a

keyword, followed by one or more values.

Glossary of Terms 165

L

LTP. Long-term plan.

last operation. (1) An operation in an occurrence that

has no internal successor. (2) The terminating node in a

network.

latest start. The latest start day and time (calculated

by OPC) for an operation that will allow all

occurrences to meet their deadline.

layout ID. A unique name that identifies a specific

ready list layout.

limit for feedback. See feedback limit.

local. * Synonym for channel-attached.

local processor. * In a complex of processors under

JES3, a processor that executes users’ jobs and that can

assume global functions in the event of failure of the

global processor. In OPC, a processor in the same

installation that communicates with the controlling

OPC processor through shared DASD communication.

long-term plan. A high-level schedule of processing

activities for the forthcoming weeks and months. The

scope of a long-term plan can be from one day to four

years.

 The long-term planning function produces a list of

application occurrences identified by name, date, and

run time for a specified planning period.

M

manual reporting workstation. A type of workstation

reporting where events, once they have taken place, are

manually reported to OPC. This type of reporting

requires that some action be taken by a workstation

operator. Manual reporting is usually performed from a

list of ready operations.

mass updating. A function of the application

description dialog where a large update to the

application database can be requested.

modify current plan. An OPC dialog function used to

dynamically change the contents of the current

schedule to respond to changes in the operation

environment. Examples of special events that would

cause alteration of the current schedule are: a rerun, a

deadline change, or the arrival of an unplanned

application.

most critical application occurrences. Those

unfinished applications that have a latest start time that

is less than or equal to the current time.

N

node. * In a network, a point where one or more

functional units interconnect transmission lines.

noncyclic period. A period that has a varying

frequency for which you must define each origin date.

Examples: month, payroll period, and quarterly.

nonreporting. A reporting attribute of a workstation

which indicates that information is not fed back to

OPC.

O

OPC/ESA. Operations Planning and

Control/Enterprise Systems Architecture

occurrence. Each instance of an application in the

long-term plan and current plan is called an

occurrence.

 An application occurrence is one attempt to process

that application. Occurrences are distinguished from

one another by run date, input arrival time, and

application ID. For example, one application that runs

four times a day is said to have four occurrences a day.

offset. A maximum of 12 positive and 12 negative

values in the ranges 1 to 999 and -1 to -999 that

indicate on which days of a calendar period an

application shall run. See displacement.

OPC host. The processor where OPC updates the

current plan database.

OPC local processor. A processor that connects to the

OPC host or remote processor through shared event

data sets.

open time interval. The time interval during which a

workstation is active and can process work.

operation. An operation is a unit of work that is part

of an occurrence and is processed at a workstation.

operation waiting for arrival. The status of an

operation that indicates that the necessary input has

not arrived at a workstation so that the operation can

begin processing. This status is applicable only for

operations without predecessors.

operation status. The status of an operation at a

workstation.

 An operation’s status can be one of the following:

A Waiting for input to arrive.

R Ready for processing. All predecessors are

complete.

* Ready for processing. There is a nonreporting

predecessor. All predecessors are complete but

166 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

one or more predecessors were executed at a

nonreporting workstation.

S Started.

I Interrupted operation.

C Complete.

E Operation ended in error.

W Waiting for predecessor to complete.

U Undecided. The status is not known.

operator. * (ISO) A symbol that represents the action

to be performed in a mathematical operation. * In the

description of a process, that which indicates the action

to be performed on operands. * A person who operates

a machine.

option. A selection item on a menu panel in the OPC

dialog.

origin date. The date on which a period (cyclic or

noncyclic) starts.

P

panel. * A particular arrangement of presentation

windows used to show information to the user. OPC

uses only fixed-format panels.

parallel operations. Operations at workstations that

are not dependent on one another and therefore can be

performed simultaneously.

parallel server. The function that processes operations

at a workstation, especially when there is more than

one such function. See server.

parameter. * (ISO) A variable that is given a constant

value for a specified application and that may denote

the application. * A name in a procedure that is used to

refer to an argument passed to that procedure.

pending application description. An application

description which is incomplete and not ready for use

in planning or scheduling.

period. A business processing cycle. A time period

defined in the OPC calendar. They are used to describe

when, and how often, applications are to run.

period name. A name of a period. Examples are week,

month, quarter and fiscal period end.

period type. Periods are of two types: cyclic or

noncyclic.

PDF. program development facility.

predecessor. An operation of an internal or external

dependency that must finish successfully before its

successor operation can begin.

printout routing. The ddname of the daily planning

printout data set.

print workstation. A workstation that prints output

and usually reports status to OPC automatically.

priority. A digit from 1 to 9 (where 1 = low, 8 = high,

and 9 = urgent) that determines how OPC schedules

applications to run. A number from 1 (low priority) to

9 (high priority) which establishes the importance of an

application relative to other applications.

processor. * (ISO) In a computer, a functional unit that

interprets and executes instructions. * A functional unit

or part of another unit (such as a terminal or a

processing unit) that interprets and executes

instructions.

program interface. An OPC interface that allows a

user-written program to issue various types of requests

to the OPC subsystem.

Q

QCP. Query current plan.

R

RACF. Resource Access Control Facility.

read authority. A type of access authority that allows

a user to read the contents of a data set, file, or storage

area, but not to change it.

ready (R). The status of an operation indicating that

predecessor operations are complete and that the

operation is ready for processing.

ready list. A display list of all the operations ready to

be processed at a workstation. Ready lists are the

means by which workstation operators manually report

on the progress of work.

recovery. See automatic job recovery.

remote processor. A processor connected to the OPC

host processor by a VTAM network.

remote job tracking. The function of tracking jobs on

remote processors connected by VTAM links to an OPC

controlling processor. This function enables a central

site to control the submitting, scheduling, and tracking

of jobs at remote sites.

replan current period. An OPC function that

recalculates planned start times for all occurrences to

reflect the actual situation.

reporting attribute. A code that specifies how a

workstation will report events to OPC.

Glossary of Terms 167

rerun. An OPC function where an application or part

of an application that ended in error can be run again.

rescale factor. A value from 0 to 100 used to reduce

the new duration value by a given percentage amount.

return code. An error code issued by OPC for

automatic reporting workstations.

row command. A dialog command used to

manipulate data in a table.

run cycle period. A time frame defining the effective

period and run days of a calendar period.

run day. The date on which an application is to run. It

is expressed as a number relative to the start or the end

of a run cycle period.

S

SAF. System Authorization Facility.

search argument. A value that is used to search the

database for an item that is to be part of a displayed

listing.

selection criteria. Search arguments entered on a list

criteria panel in the dialog that limit the contents of a

listing.

server. A program or device set up for a workstation

to perform a service for that particular type of

workstation. For example, an initiator is a server for a

computer workstation. A printer is a server for a print

workstation.

service functions. Functions of OPC that let the user

deal with exceptional conditions such as investigating

problems, preparing APAR tapes, and testing OPC

during implementation.

shared DASD. Direct access storage device that can be

accessed from more than one processor.

shared resource. A special or workstation resource

that can be used simultaneously by more than one

operation while the operation is processed at a work

station.

slack. Used to refer to ‘spare’ time. Can be calculated

for the critical path by taking ‘Deadline less the Input

Arrival less the Sum of Operation Durations’.

smoothing factor. A value between 0 and 100 that

controls the extent to which actual durations are fed

back into the application description database.

SMP. System Modification Program.

special resource. Resources that are not associated

with a particular workstation but are needed to process

work there.

splittable. Refers to an operation that can be

interrupted while processing at a workstation.

standard. User specified open time intervals for a

typical day at a work station.

status. The current state of an operation or an

occurrence.

started (S). An OPC reporting status of an operation

or an application indicating that an operation or an

occurrence is started.

submit/release data set. A data set shared between the

OPC host and a local OPC processor that is used to

send job stream data and job release commands from

the host to the local processor.

subresources. A set of resource names and rules for

the construction of resource names. OPC uses these

names when checking a user’s authority to access

individual OPC records.

subsystem. * A secondary or subordinate system,

usually capable of operating independently of, or

asynchronously with, a controlling system.

successor. An operation in an internal or external

dependency that cannot begin until its predecessor

completes processing.

sysout class. * An indicator used in data definition

statements to signify that a data set is to be written on

a system output unit. It applies only to print

workstations.

T

temporary operator instructions. Operator instructions

that have a specific time limit during which they are

valid. They will be displayed to the workstation

operator only during that time period.

TME 10 OPC. TME 10 Operations Planning and

Control

tracker. The portion of TME 10 OPC or OPC/ESA that

runs on every system in your complex. It acts as the

communication link between the MVS system that it

runs on and the controller.

tracking event log. A log of job tracking events and

updates to the current schedule.

transport time. The time allotted for transporting

materials from the workstation where the preceding

operation took place, to the workstation where the

current operation is to occur.

TSO. Time Sharing Option.

time zone support. A feature of OPC that allows

applications to be planned and run with respect to the

168 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

local time of the processor that runs the application.

Some networks may have processors in different time

zones. The controlling processor will make allowance

for differences in time during planning activities, for

example the input arrival time of predecessor

applications, to make sure that interacting activities are

correctly coordinated.

turnover. A subfunction of job tracking that is

activated when job tracking creates an updated version

of the current schedule.

U

undecided (U). An OPC reporting status for an

operation or an application indicating that the status is

not known.

update authority. Access authority given to a user by

RACF to use the ISPF/PDF edit functions of the OPC

dialog. Access authority to modify a master file or data

set with the current information.

V

validity period. The time interval defined by an origin

date and an end date within which a run cycle or an

application description is valid.

versions. Applications with the same ID but different

validity dates.

VSAM. Virtual Sequential Access Method.

VTAM. Virtual Telecommunication Access Method.

W

waiting (W). An OPC reporting status (for an

application) indicating that it is waiting for a

predecessor operation to complete.

waiting list. A list of submitted jobs that are waiting

to be processed.

work day end time. The time at which OPC will

consider a work day to have ended when that work

day immediately precedes a free day. For example, if

you specify Saturday to be a free day, you could

specify 08.00 hours. Saturday morning as the end of

Friday’s work day. OPC can then plan work to be done

from 00.00 to 08.00 Saturday morning, as if that time

was actually part of Friday.

workstation. A unit, place, or group that performs a

specific data processing function. A logical place where

work occurs in an operations department.

 OPC requires that you define the following

characteristics for each workstation: the type of work it

does, the quantity of work it can handle at any

particular time, and the times it is active. The activity

that occurs at each workstation is called an operation.

workstation description database. An OPC database

containing descriptions of the workstations in the

operations department.

workstation resources. Limited resources defined for

each workstation that an operation requires a certain

amount of to process work.

workstation type. Each workstation can be one of

three types: computer, print, or general.

work day. A day on which applications can normally

be scheduled to start.

Glossary of Terms 169

170 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Index

Special characters
&EHKVAR1 98, 102, 141

&EHKVAR2 98

&EHKVAR7 138

&EHKVAR8 138

&EHKVAR9 132, 138

A
ACF 4

actual state 4

application groups 8

BASIC 9

MOVE 9

nesting of 9

SERVER 9

applications 3

OPC-defined 90, 92

policy items
MESSAGES/USER DATA 10, 103

recovery 18

AT 9

automation
control file 4

goal-driven 4

operators 77

Automation Operators
defining 52

B
backup 158

batch command interface 61

JCL 61

sample JCL 62

batch job
command continuation 60

command output re-direction 60

command statement syntax 59

sample JCL 59

submitting NetView commands

from 59

valid command types 60

C
canceling

start or stop request 101

CNMCNETV 71

Command receiver, managing 24

commands
DFTSOU 150

EVJESHUT 120

EVJESPIN 149

INGOPC 38, 149

OPCACAL 121

OPCACMD 122, 149

OPCACOMP 81, 124, 138

OPCALIST 125

commands (continued)
OPCAMOD 127

OPCAPOST 81, 130, 154

OPCAQRY 151

OPCSRST 131

SRSTAT 155

commands, NetView (see NetView

commands) 59

completion flag 85, 86, 137

connectivity loss 161

controller details
defining 54

current plan
displaying 26

modifying 38

modifying in line mode 38

customization dialogs 3

cycling individual online databases 16

D
daily plan

extension 95

data areas 132

data distribution
across multiple systems 17

defining
Automation Operators 52

controller details 54

non-MVS subsystem for OPC

Command Server 54

non-MVS subsystem for OPC Request

Server 53

OPC Controller subsystems 13

OPC Data Server subsystems 13

OPC Server subsystems 13

OPC special resources 65

OPC Tracker subsystems 13

OPC workstation user message

policy 53

optional OPC workstations 52

SA z/OS Batch Job Command

Receiver subsystems 13

SA z/OS Status Observer 55

SA z/OS to Tivoli Workload

Scheduler 12

SDF statuses 55

special resources policy 54

subsystem messages/user data 54

system automation policy 51

system details 54

Tivoli Workload Scheduler to

SA z/OS 12

workstation domain entries 54

definitions
OPC status observer 56

dependencies
start 4

stop 4

desired state 4

DFCRIT 147

DFTSOU (command) 150

DFUPDT 148

disabling OPC Automation 51

displaying
current plan 26

OPC applications 26

OPC calendars 37

OPC operations 30

OPC special resources 34

OPC workstation 34

documents, licensed xvii

E
enabling

OPC special resources 65

enabling OPC Automation 51

entry 3

entry type 3

EQQUX007 exit 70

error codes 77, 124

Sxxx 81, 95

S998 73, 87

S999 73, 79, 87

Uxxx 81, 95

U003 73

UNTV 71, 79, 84, 87

events 7

EVJECCAL 121

EVJERCAL 121

EVJESHUT 120

EVJESPIN 149

EVJESPIN (initialization module) 79, 85,

149

EVJESPRQ (request module) 73, 84

EVJESPSC (status change module) 75,

85, 137

EVJESPTE (timer module) 75, 85, 137

EVJESPVY (verify module) 72, 80

EVJRYCMD 63

EVJTOPPI 71

F
field descriptions

OPC Applications Interface panel 27,

28, 29

OPC Calendar Interface panel 37

OPC Operations Interface panel 30,

31, 32, 33

OPC Special Resources Interface

panel 34

OPC Workstations Interface panel 35,

36

flags
completion 85, 86, 137

timer 85, 86, 137

functions
OPC Automation 11

OPC to SA z/OS 11

© Copyright IBM Corp. 1990, 2005 171

functions (continued)
SA z/OS to OPC 11

G
generic routines

ISSUECMD 10

goal 4

goal-driven automation 4

I
INGOPC 38

INGOPC (command) 149

initialization
EVJESPIN 79, 149

OPC 69

OPC Automation 69

OPC components 77

OPC-controlled subsystems 78

SA z/OS 77

initialization module (EVJESPIN) 85

initialization, system, with OPC

Automation 13

installing
OPC Automation 51

interception, OPC alerts 14

ISSUECMD 10

L
licensed documents xvii

log entries 82

long term outage 159

LookAt message retrieval tool xvii

loss of contract 157

LPAR (logically partitioned mode)
preparing 17

M
managing

OPC Current Plan 25

message retrieval tool, LookAt xvii

MESSAGES/USER DATA keywords
format descriptions 103

notational conventions 105

translation rule 104

OPCA 98, 99, 109

OPCACMD 81, 97, 112, 140

OPCAPARM 116, 138

MESSAGES/USER DATA policy

item 97, 103

attributes 103

CMD 104

CODE 106

modifying
current plan 38

current plan, in line mode 38

OPC applications using panels 39

OPC operations using panels 39

OPC special resources using

panels 41

OPC workstations using panels 41

subsystem messages/user data 54

N
naming convention

OPC 47

TSO 47

NetView automation table 9

NetView commands
executing on a different NetView 60

submitting from a batch job 59

NetView domain
represented by OPC workstation 89

NetView PPI receivers 23

NMC display support 47

NMC resource definitions 47

NNT link 87

notational conventions
for CMD, REP, CODE attributes 105

for USER E-T PAIRS 108

O
online databases, cycling individually 16

online services
hours of availability 15

OPC
alerts, interception 14

API (application program

interface) 86

application 92

Monitor Panel 44

naming convention 47

operation 93

recovery 157

resynchronization 157

OPC alerts, interception 14

OPC applications
displaying 26

modifying using panels 39

OPC Applications Interface panel
field descriptions 27, 28, 29

OPC Automation
backup 158

connectivity loss 161

disabling 51

enabling 51

functions 11

installing 51

long term outage 159

loss of contact 157

OPCAPOST 76

outage 159, 161

possible uses of 15

recovery 157

request module (EVJESPRQ) 73

resynchronization 157

status change module (EVJESPSC) 75

system initialization with 13

timer module (EVJESPTE) 75

verify module (EVJESPVY) 72, 80

OPC Automation status file
subsystem records 78, 86, 137

OPC Calendar Interface panel
field descriptions 37

OPC calendars
displaying 37

OPC Command Server
defining non-MVS subsystem for 54

OPC controller
selecting

using application groups 25

using multiple resource

definitions 25

using wildcards 25

selecting, idirectly 26

selecting, to access 25

OPC Controller subsystems
defining to SA z/OS 13

OPC Current Plan
managing 25

OPC Data Server subsystems
defining to SA z/OS 13

OPC Monitor Panel 44

OPC operation 93

Job name field 97

Operation text field 97

states 95

OPC operations
displaying 30

modifying using panels 39

OPC Operations Interface panel
field descriptions 30, 31, 32, 33

OPC request 80, 91, 94

buffer 82, 133

default START/STOP 100

displaying 92

naming conventions 100, 101, 139

non-subsystem 101, 139

parameters 98

subsystem-related 136

requiring user programming 101,

137

using standard functions 101, 137

types 100

OPC request automation
structure of 69

OPC Request Server
defining non-MVS subsystem for 53

OPC resource data
specifying 38

OPC Server subsystems
defining to SA z/OS 13

OPC special resources
defining 65

displaying 34

enabling 65

modifying using panels 41

using 65

using in an application 66

OPC Special Resources Interface panel
field descriptions 34

OPC status observer
definitions 56

OPC SYSTEM DETAILS 120

OPC Tracker subsystems
defining to SA z/OS 13

OPC workstation 70

defining 52

defining user message policy 53

displaying 34

modifying using panels 41

representing NetView domain 89

naming conventions 89

time dependency 94

172 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

OPC Workstations Interface panel
field descriptions 35, 36

OPC-defined applications 90

OPCA 109

OPCACAL 121

OPCACMD (command) 86, 122, 149

OPCACMD (MESSAGES/USER DATA

keyword) 97, 112

OPCACOMP 81, 124, 132, 138

OPCALIST 125

OPCAMOD 127

OPCAPARM 116, 138

OPCAPOST 73, 75, 76, 81, 85, 130, 154

OPCAQRY 151

OPCSRST 131

outage 159, 161

P
panels

OPC Application Modification 39

OPC Applications Interface 27, 28, 29

field descriptions 27, 28, 29

OPC Calendar Interface 37

field descriptions 37

OPC Monitor Panel 44

OPC Operations Interface 30, 31, 32,

33

field descriptions 30, 31, 32, 33

OPC Operations Modification 40, 41

OPC Special Resources Interface 34

field descriptions 34

OPC Special Resources

Modification 41

OPC Workstations Interface 35, 36

field descriptions 35, 36

OPC Workstations Modification 42

SA/OPC – Automation Operation

Status Display 151

SA/OPC – Main Menu 146

SA/OPC – Operation Status

Display 153

Status Display Facility 43

Status Display Facility Main Panel 44

using to modify OPC applications 39

using to modify OPC operations 39

using to modify OPC special

resources 41

using to modify OPC

workstations 41

persistency of requests 6

PIPE labels 61

policy database 3

policy item 3

policy object 3

policy objects
CONTROLLER DETAILS 54

OPC SPECIAL RESOURCES 54

OPC SYSTEM DETAILS 54, 120

USER E-T PAIRS 107, 112, 114

WORKSTATION DOMAINS 54, 90

PPI (see program-to-program

interface) 14

priority of requests 4

program-to-program interface 14, 71, 80

Command receiver 24

dispatcher 71

program-to-program interface (continued)
EVJTOPPI 71

receivers, managing 23

Request receiver 23

R
receiver

Command 24

Request 23

recovery
application 18

automated 87

of OPC and OPC Automation 157

REQCOMP 132

request module (EVJESPRQ) 84

Request receiver, managing 23

requestor ID block 132

requests (SA z/OS) 4

conflicting 6

persistency 6

priority 4, 6, 8

propagation 4

resources 3

names, format of 3

resynchronization
of OPC and OPC Automation 157

RMTCMD, security considerations 52

S
SA z/OS

defining Tivoli Workload Scheduler

to 12

SA z/OS Batch Job Command Receiver

subsystems
defining 13

SA z/OS resource
starting 67

stopping 67

SA z/OS Status Observer
defining 55

SDF statuses
defining 55

security considerations, RMTCMD 52

selecting
OPC controller

using application groups 25

using multiple resource

definitions 25

using wildcards 25

OPC controller to access 25

OPC controller, indirectly 26

service periods 8

service windows 8

service windows 8

special resources 14

special resources policy
defining 54

specifying
OPC resource data 38

SRSTAT 155

start dependencies 4

start request
canceling 101

starting
SA z/OS resource 67

state
actual 4

desired 4

status
of OPC operation 70, 95

of SA z/OS subsystem 101

status change module (EVJESPSC) 85,

137

Status Display Facility
Main Panel 44

monitoring resources with 43

status panels 43

Status Display Facility enhancements
DFCRIT 147

DFUPDT 148

insert display data 148

process critical messages 147

status file (see OPC Automation status

file) 78

status of TSO users
updating 150

stop dependencies 4

stop request
canceling 101

stopping
SA z/OS resource 67

structure
of OPC request automation 69

subsystem messages/user data
defining 54

modifying 54

subsystems 3

syntax, batch job command statement 59

system automation policy
defining 51

system details
defining 54

system initialization with OPC

Automation 13

systems
policy items

CONTROLLER DETAILS 54

OPC SYSTEM DETAILS 54

WORKSTATION DOMAINS 54

T
time dependencies 94

timer flag 85, 86, 137

timer module
standard module (EVJESPTE) 75, 137

user-defined 101

format of call 138

timer module (EVJESPTE) 85

Tivoli Workload Scheduler
defining SA z/OS to 12

triggers 7

events 7

shutdown conditions 7

startup conditions 7

TSO
naming convention 47

TSO users
updating the status of 150

Index 173

U
updating

status of TSO users 150

USER E-T PAIRS 107, 112, 114

format descriptions
notational conventions 108

using
OPC special resources 65

OPC special resources, in an

application 66

V
variables

&EHKVAR1 98, 102, 141

&EHKVAR2 98

&EHKVAR7 138

&EHKVAR8 138

&EHKVAR9 138

verify module (EVJESPVY) 72, 80

votes 5

W
workstation domain entries

defining 54

WORKSTATION DOMAINS 90

174 System Automation for z/OS: OPC Automation Programmer’s Reference and Operator’s Guide

Readers’ Comments — We’d Like to Hear from You

System Automation for z/OS

OPC Automation

Programmer’s Reference

and Operator’s Guide

Version 2 Release 3

 Publication No. SC33-7046-08

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC33-7046-08

SC33-7046-08

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH

Department 3248

Schönaicher Strasse 220

D-71032 Böblingen

Federal Republic of Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5645-006

Printed in USA

SC33-7046-08

	Contents
	Figures
	Tables
	Notices
	Trademarks

	About This Book
	Who Should Use This Book
	What’s in This Book?
	Notation for Format Descriptions
	Related Publications
	The System Automation for z/OS Library
	Related Product Information
	Using LookAt to look up message explanations
	Accessing z/OS licensed documents on the Internet

	Part 1. Introducing OPC Automation
	Chapter 1. Principal Concepts of SA z/OS
	Automation Policies
	Goal-Driven Automation
	Dependencies, Request Propagation, and Desired State
	Persistency of Requests and Conflicting Requests
	Triggers
	Service Periods
	Application Groups
	SA z/OS and the NetView Automation Table

	Chapter 2. Functions of OPC Automation
	Basic Concepts
	OPC to SA z/OS functions
	SA z/OS to OPC functions
	Defining System Automation for z/OS to Tivoli Workload Scheduler
	Defining Tivoli Workload Scheduler to System Automation for z/OS
	The OPC Controller Subsystems
	The OPC Tracker Subsystems
	The OPC Server Subsystems
	The OPC Data Server Subsystems
	The SA z/OS Batch Job Command Receiver Subsystems
	The SA z/OS Request Receiver Subsystems

	System Initialization with OPC Automation
	NetView Interface to OPC Automation
	OPC Automation Special Resources
	Possible Uses of OPC Automation
	Changing Online Hours of Availability
	Cycling Individual Online Databases
	Scheduling Time for Testing
	Distributing and Updating Data Across Multiple Systems
	Complex Application Recovery

	Part 2. Operator's Guide
	Chapter 3. Managing the PPI Receivers
	Starting and Stopping the Request Receiver
	Starting and Stopping the Command Receivers

	Chapter 4. Managing the OPC Current Plan
	Selecting the OPC Controller to Access
	Using Multiple Resource Definitions
	Using Wildcards
	Using Application Groups
	Indirectly Selecting a Controller

	Displaying the Current Plan
	Displaying OPC Applications
	Displaying OPC Operations
	Displaying OPC Special Resources
	Displaying OPC Workstations
	Displaying OPC Calendars

	Modifying the Current Plan
	Line Mode Modifications
	Modifying OPC Applications via Panel Interaction
	Modifying OPC Operations via Panel Interaction
	Modifying OPC Special Resources via Panel Interaction
	Modifying OPC Workstations via Panel Interaction

	Chapter 5. Monitoring using SDF
	Chapter 6. NMC Display Support
	NMC Resource Definitions
	OPC Naming Convention
	TSO Naming Convention

	NMC BuildViews for OPC objects

	Part 3. Programmer's Reference
	Chapter 7. Installing OPC Automation
	Enabling and Disabling OPC Automation
	Defining System Automation Policy
	Define SA z/OS Automation Operators
	RMTCMD Security Considerations
	Define Optional Workstations
	Non-MVS Subsystem Definition for the OPC Request Server
	Non-MVS subsystem definition for the OPC Command Server
	Define Workstation Domain Entries
	Define Controller Details
	Define System Details
	Define Special Resources Policy
	Define or Modify Subsystem Messages/User Data
	Define SDF Statuses

	Defining the SA z/OS Status Observer
	Status Observer Definitions

	Chapter 8. Submitting NetView Commands from a Batch Job
	Sample Batch Job JCL
	Command Statement Syntax
	Valid Command Types
	Command Continuation
	Command Output Re-Direction

	Executing a Command on a Different NetView

	Chapter 9. The Batch Command Interface
	JCL for the Batch Command Interface
	EVJRYCMD Description
	Purpose
	Parameters
	Usage

	Chapter 10. Using OPC Special Resources
	OPC Special Resource Definition
	Enabling SA z/OS OPC Special Resources
	Using SA z/OS OPC Special Resources in an Application
	Holding an Operation until an SA z/OS Resource Reaches a Desired State
	Starting or Stopping an SA z/OS Resource

	Chapter 11. The Structure of OPC Request Automation
	Flow Overview
	Initialization
	Request Flow
	EQQUX007 Exit
	Program-to-Program (PPI) Interface Dispatcher
	Verify Module (EVJESPVY)
	Request Module (EVJESPRQ)
	Status Change Module (EVJESPSC)
	Timer Module (EVJESPTE)
	OPCAPOST Command Processor

	Automated Operator Tasks
	Initialization
	Startup of OPC Components
	Startup of OPC-Controlled Subsystems
	Initialization Module (EVJESPIN)

	Request and Confirmation Transaction Flow
	Request Buffers and OPC Automation Log Entries
	Request Handling in the OPC Controller System
	Request Handling in the OPC Tracker System
	Completion and Timer Flags

	Operations Control
	EVJESPIN Module
	Obtaining Information from OPC

	Automated Recovery

	Chapter 12. Automating Applications with OPC Automation
	Defining Automated OPC Applications
	Defining Information for OPC Automation in OPC
	Defining the Target NetView Domains
	Defining Applications for OPC Automation in OPC
	Displaying OPC Automation Requests in OPC

	Example of an Application Making a Request
	Handling Time Dependencies
	Changes to the Status of the Operation
	Extending the Daily Plan
	Sending a Request to Optional Installation-Provided Functions

	Executing OPC Requests with OPC Automation
	OPC Requests and MESSAGES/USER DATA Keywords
	OPCACMD Keyword
	OPCA Keyword
	Flow of Control

	Request Parameters and the &EHKVARi Variables
	Request Types
	Starting and Stopping Subsystems without OPC-Related Keywords
	Canceling a Start or Stop Request
	Requests Using SA z/OS Automation Functions
	Subsystem Related Requests not Using SA z/OS Automation Functions
	Non-Subsystem Requests

	Chapter 13. MESSAGES/USER DATA Entries and USER E-T Pairs for OPC Automation
	Translating Format Descriptions
	OPC-Specific MESSAGES/USER DATA Keywords
	OPCA
	OPCACMD
	OPCAPARM

	Chapter 14. OPC Automation Common Routines and Data Areas
	OPC Automation Common Routines
	EVJESHUT
	OPCACAL
	OPCACMD
	OPCACOMP
	OPCALIST
	OPCAMOD
	OPCAPOST
	OPCSRST

	Data Areas
	Requestor ID Block (&EHKVAR9)
	Request Buffer

	Chapter 15. Guidelines for User-Written Operations
	User Functions Related to an SA z/OS-Defined Subsystem
	Flow of Control
	Implementing Completion of a Request
	Using OPC Automation Standard Modules
	Programming your own Completion Routines

	Non-Subsystem Operations
	Flow of Control
	Parameters Passed to a User Exit
	Interaction with CICS Automation
	Interaction with IMS Automation

	Chapter 16. OPC Automation Operator Commands
	OPC Automation Main Menu and Tutorials
	DFCRIT
	DFUPDT
	EVJESPIN — Initialization
	OPCACMD — Interacting Dynamically with OPC
	DFTSOU

	OPCAQRY — Display Status of Operations
	Selecting Actions

	OPCAPOST — Posting an OPC Operation from SA z/OS
	SRSTAT — Determining OPC Special Resource Status

	Chapter 17. Resynchronization and Recovery Considerations
	Examples and Scenarios
	Loss of Contact Between OPC and OPC Automation
	Taking Action Manually on the Target System
	Taking Action Too Late
	Queuing Several Actions for a Specific Target Subsystem

	Backup on a Different Processor
	Full Takeover onto a Standby System at the Same Site
	Full Takeover onto a Standby System at a Different Site
	Takeover onto a Working System

	Long Term Outage
	Example Using Doubly-Defined NetView Domain IDs

	Automated Recovery Functions
	OPC Actions in a Loss of Contact Situation
	OPC Automation Actions in a Loss of Contact Situation

	Glossary of Terms
	Index
	Readers’ Comments — We'd Like to Hear from You

