
Tivoli® System Automation for z/OS

Customizing and Programming

Version 3 Release 1

SC33-8260-02

���

Tivoli® System Automation for z/OS

Customizing and Programming

Version 3 Release 1

SC33-8260-02

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

xi.

Third Edition (November 2005)

This edition applies to IBM Tivoli System Automation for z/OS (Program Number 5698-SA3) Version 3, Release 1,

an IBM licensed program, and to all subsequent releases and modifications until otherwise indicated in new

editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address given below.

IBM welcomes your comments. A form for readers’ comments appears at the back of this publication. If the form

has been removed, address your comments to:

 IBM Deutschland Entwicklung GmbH

 Department 3248

 Schoenaicher Strasse 220

 D-71032 Boeblingen

 Federal Republic of Germany

If you prefer to send comments electronically, use one of the following methods:

 FAX (Germany): 07031 + 16-3456

 FAX (Other Countries): (+49)+7031-16-3456

 Internet: s390id@de.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

Notices xi

Web Site Disclaimer xi

Programming Interface Information xi

Trademarks xii

Accessibility xiii

Using assistive technologies xiii

Keyboard navigation of the user interface xiii

z/OS information xiii

About This Book xv

Who Should Use This Book xv

Prerequisites xv

Where to Find More Information xv

The System Automation for z/OS Library . . . xv

Related Product Information xvi

Using LookAt to look up message explanations xvi

Chapter 1. How to Add a New

Application to Automation 1

Step 1: Define an Application Policy Object 1

Step 2: Define Outstanding Reply Processing . . . 1

Step 3: Build New System Operations Configuration

Files 3

Step 4: Code Entries for Application Messages in the

MPF List (Optional) 3

Step 5: Add SDF Entries for the Subsystem (Optional) 3

Step 6: Enable the Application for the SA z/OS

Graphical Interface 3

Step 7: Reload MPF List and Automation

Configuration Files 4

Chapter 2. How to Create Automation

Procedures 5

Programming Additional SA z/OS Automation

Procedures 5

How Automation Procedures Are Called 5

How CLIST or REXX Automation Procedures Are

Structured 6

Performing Initialization Processing 7

Determining whether Automation Is Allowed . . 8

Performing Automation Processing 8

How to Make Your Automation Procedures Generic 12

Processor Operations Commands 13

Developing Messages for Your Automation

Procedures 13

Example AOCMSG Call 14

Example Automation Procedure 14

Notes on the Automation Procedure Example . . 16

Installing Your Automation Procedures 16

Testing and Debugging Automation Procedures . . 17

The Assist Mode Facility 17

Using Assist Mode to Test Automation

Procedures 18

Using AOCTRACE to Trace Automation

Procedure Processing 20

NetView Testing and Debugging Facilities . . . 21

Where to Find More Testing Information . . . 22

Coding Your Own Information in the Automation

Status File 22

Programming Recommendations 22

Global Variable Names 23

Chapter 3. How to Add a Message to

Automation 25

Conceptual Overview 25

Defining Actions for Messages 26

Defining CMD or REP Actions 26

Defining AUTO Actions 27

Defining OVR Actions 28

Defining the NetView AT Scope 29

Build 29

NetView Automation Table Build Concept 30

When Is an AT Built? 30

Predefined Message Automation 31

AT Entry Sequence 32

Load 33

Enabling Message Automation for the

Automation Agent 33

Listing ATs 33

A Guide to SA z/OS Automation Tables 33

Automation Table Structure 33

Integrating Automation Tables 35

Generic Synonyms—AOFMSGSY 36

Generic Automation Table Statements 43

Chapter 4. How to Monitor Applications 45

How to Write Your Own Monitor Routines 45

Monitor Resources 46

Writing Monitor Resource Commands 47

Writing a Monitor Routine 47

Writing a Recovery Routine 48

Monitoring JES3 Components 49

AOFRJ3MN Routine 50

AOFRJ3RC Routine 52

Chapter 5. Exception-Based Monitoring

with OMEGAMON 53

Overview 53

Scenario 53

Topologies 54

OMEGAMON Interaction 55

Programming Interface INGOMX for

OMEGAMON 55

Monitor Command INGMTRAP 56

© Copyright IBM Corp. 1996, 2005 iii

||

|
||

 | |

 | |
 | |

 |
 | |
 | |
 | |
 | |
 | |
 |
 | |
 | |

Health Based Automation Using OMEGAMON . . 57

Recovery Techniques 57

Programming Techniques 58

Recommendations 59

Chapter 6. How to Automate Your

Resources 61

Using Automation Flags 61

Example 61

When SA z/OS Checks Automation Flags 62

The Automation Manager Global Automation

Flag 62

Chapter 7. How to Automate Processor

Operations-Controlled Resources . . . 65

Automating Processor Operations Resources of

z/OS Target Systems Using Proxy Definitions . . . 65

Concept 65

Customizing Automation for Proxy Resources . . 66

Preparing Message Automation 68

Automating Linux Console Messages 68

The Linux Console Connection to NetView . . . 68

Linux Console Automation with Mixed Case

Character Data 69

Security Considerations 69

Restrictions and Limitations 69

How to Add a Processor Operations Message to

Automation 69

Messages Issued by a Processor Operations

Target System 70

Building the New Automation Definitions . . . 74

Loading the Changed Automation Environment 74

VM Second Level Systems Support 74

Guest Target Systems 74

Customizing Target Systems 75

Chapter 8. How to Automate USS

Resources 79

Integration of z/OS UNIX System Services 79

Infrastructure Overview 79

Setting Up z/OS UNIX Automation 80

Customization of z/OS UNIX Resources 80

Example: inetd 84

Hints and Tips 87

Trapping UNIX syslogd Messages 87

Debugging 87

Chapter 9. How to Enable Sysplex

Automation 89

Sysplex Functions 89

Managing Couple Data Sets 89

Managing the System Logger 90

Managing Coupling Facilities 91

Recovery Actions 93

Hardware Validation 97

Enabling Hardware-Related Automation 99

Step 1: Defining the Processor 99

Step 2: Using the Policy Item PROCESSOR INFO 99

Step 3: Defining Logical Partitions 99

Step 4: Defining the System 100

Step 5: Connecting the System to the Processor 100

Step 6: Defining Logical Sysplexes 100

Step 7: Defining the Physical Sysplex 100

Enabling Continuous Availability of Couple Data

Sets 100

Enabling System Log Failure Recovery 101

Enabling WTO(R) Buffer Shortage Recovery . . . 102

Enabling System Removal 104

Step 1: Defining the Processor and System . . . 104

Step 2: Defining the Application with

Application Type IMAGE 104

Step 3: Automating Messages IXC102A and

IXC402D 105

Enabling Long Running Enqueues (ENQs) . . . 106

Step 1: Defining Resources 106

Step 2: Making Job/ASID Definitions 107

Step 3: Defining IEADMCxx Symbols 107

Step 4: Defining Commands 107

Step 5: Defining Snapshot Intervals 107

Enabling Auxiliary Storage Shortage Recovery . . 107

Step 1: Defining the Local Page Data Set . . . 107

Step 2: Defining the Handling of Jobs 107

Defining Common Automation Items 108

Important Processor Operations Considerations 108

Customizing the System to Use the Functions . . 108

Additional Automation Operator IDs 108

Switching Sysplex Functions On and Off . . . 109

Chapter 10. DB2 Automation for

System Automation for z/OS 111

Overview 111

Line Mode Functions 111

Planning Requirements 112

IMS 112

CICS 112

Installation 112

Automation Control File (ACF) 112

Defining Automation Policy 112

Tailoring Your DB2 ACF Entries 112

DB2 Automated Functions—Line Command

Functions 115

Command Handler 115

Command Requests 116

Maintenance Start 116

Terminate Threads 118

Start/Stop Tablespace 120

Event-Driven Functions 122

Connection Monitoring 122

Critical Event Monitoring 125

Chapter 11. SA z/OS User Exits . . . 129

Initialization Exits 130

Environmental Setup Exits 130

AOFEXDEF 131

AOFEXI01 131

AOFEXI02 131

AOFEXI03 132

AOFEXI04 132

AOFEXINT 132

iv System Automation for z/OS: Customizing and Programming

||
||
||
||

Static Exits 132

AOFEXSTA 132

AOFEXX01 133

AOFEXX02 134

AOFEXX03 134

AOFEXX15 134

Flag Exits 134

Parameters 136

Return Codes 137

Customization Dialog Exits 138

User Exits for BUILD Processing 138

User Exits for COPY Processing 139

User Exits for DELETE Processing 140

User Exits for CONVERT Processing 140

User Exits for MIGRATION, RENAME, and

IMPORT Functions 141

Invocation of Customization Dialog Exits . . . 141

Command Exits 142

AOFEXC00 142

AOFEXC01 142

AOFEXC02 144

AOFEXC03 145

AOFEXC04 145

AOFEXC05 145

AOFEXC06 146

AOFEXC07 146

AOFEXC08 146

AOFEXC09 146

AOFEXC10 146

AOFEXC11 146

AOFEXC12 146

AOFEXC13 146

AOFEXC14 147

Pseudo-Exits 147

Automation Control File Reload Permission Exit 147

Automation Control File Reload Action Exit . . 147

Subsystem Up at Initialization Commands . . 147

Testing Exits 147

Chapter 12. Automation Routines . . . 149

LOGREC Data Set Processing 150

AOFRSA01 150

AOFRSA02 151

SMF Data Set Processing 153

AOFRSA03 153

SYSLOG Processing 155

AOFRSA08 155

SVC Dump Processing 157

AOFRSA0C 157

Deletion of Processed WTORs from SDF 161

AOFRSA0E 161

AMRF Buffer Shortage Processing 162

AOFRSA0G 162

JES2 Spool Recovery Processing 164

AOFRSD01 164

AOFRSD09 165

AOFRSD0H 167

JES2 Shutdown Processing 169

HASP099 170

Drain Processing Prior to JES2 Shutdown 170

AOFRSD07 170

AOFRSD0F 171

AOFRSD0G 173

JES3 Dump Processing 173

AOFRSE0J 174

TWS Automation PPI and Gateway Failures . . . 175

EVJEAC01 175

EVJEAC02 175

TWS Automation Operation and Job Errors . . . 175

EVJEAC03 176

EVJEAC04 176

EVJRAC05 177

EVJRSJOB 177

TWS Status Observer Control 178

EVJEOBSV 178

TWS Controller Status 178

EVJRSACT 178

CICS-Related Processing and Recovery 178

CICS Region Abend Recovery 178

CICSPlex Processing 180

CICS Link Monitoring 181

CICS VSAM RLS Status 181

CICS Shutdown 182

CICS Short on Storage 182

CICS Startup 183

CICS Transaction Recovery 185

CICS Unit of Work Recovery 187

IMS-Related Processing and Recovery 188

IMS Region Abend Recovery 188

IMS Dependent Region Processing 188

IMS MSC Link Recovery 189

IMS OLDS Recovery 190

IMS RECON Recovery 190

IMS Startup 191

IMS Shutdown 193

IMS Sysplex Support 193

IMS TCO Automation 194

IMS Transaction Recovery 194

IMS XRF Processing 195

Appendix A. Global Variables 201

Read-Only Variables 201

Read/Write Variables 202

Parameter Defaults for Commands 211

Appendix B. Customizing the Status

Display Facility (SDF) 215

Overview of Status Display Facility 215

How SDF Works 215

Types of SDF Panels 215

Status Descriptors 216

SDF Tree Structures 217

How Status Descriptors Affect SDF 218

How SDF Helps Operations to Focus on Specific

Problems 222

How SDF Panels Are Defined 222

Dynamically Loading Tree Structure and Panel

Definition Members 223

Using SDF for Multiple Systems 223

SDF Components 224

How the SDF Task Is Started and Stopped . . 224

Contents v

||
||
||
||

||
||

||

 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |

SDF Definition 225

Summary of SDF Definition Process 225

Step 1: Defining SDF Hierarchy 226

Step 2: Defining SDF Panels 227

Step 3: Customizing SDF Initialization

Parameters 229

Step 4: Defining SDF in the Customization

Dialog 230

Appendix C. Message Automation . . 231

FORCED AT Entry Type 231

RECOMMENDED AT Entry Type 231

CONDITIONAL AT Entry Type 232

Known Messages 232

Unknown Messages 233

Other Forced AT Entries 234

Restricted Message IDs 234

Appendix D. TSO User Monitoring . . 237

Glossary 239

Index 259

vi System Automation for z/OS: Customizing and Programming

Figures

 1. Example of a WTORS Entry 2

 2. Automation Procedures for System Operations 6

 3. Automation Procedures for Processor

Operations 7

 4. Skeleton of an Automation Procedure 13

 5. SDF Detail Status Display Panel with Assist

Mode 19

 6. AT Structure 34

 7. Sample Monitor Command 48

 8. z/OS UNIX Control Specification Panel for

Type INSTANCE 80

 9. Startup Definition for a Process 83

10. Creating a Softlink 83

11. Stop Definitions for a Process 84

12. Delete a File 84

13. inetd Structure 85

14. Dependency Graphic 86

15. Example of a UNIX Message 87

16. Sample Panel for Command Processing 106

17. Sample Panel for Code Processing 106

18. SA z/OS Exit Sequence during SA z/OS

Initialization 130

19. Three Threshold Levels Are Defined in the

Automation Policy for MVS Component

LOGREC 152

20. Automation Policy Item MESSAGES/USER

DATA to Entry/Type-Pair MVSESA/LOGREC

Contains One Command without Selection

Value 152

21. Three Threshold Levels Are Defined in the

Automation Policy for MVS Component

SMFDUMP 154

22. Automation Policy Item MESSAGES/USER

DATA to Entry/Type-Pair

MVSESA/SMFDUMP Contains One

Command without Selection Value 154

23. Three Threshold Levels Are Defined in the

Automation Policy for MVS Component

SYSLOG 156

24. Automation Policy Item MESSAGES/USER

DATA to Entry/Type-Pair MVSESA/SYSLOG

Contains One Command without Selection

Value 157

25. MVSDUMP Thresholds 159

26. MVSESA/MVSDUMP Command Entries 160

27. MVSESA/MVSDUMPTAKEN Command

Entries 160

28. MVSESA/MVSDUMPRESET Command

Entries 160

29. MVSESA AMRF Command Definitions 163

30. JES2 SPOOLSHORT Recovery Definition 168

31. DISPACF Command Response Panel 169

32. JES2 DRAIN Specifications Panel 172

33. DISPACF Panel 172

34. DISPACF JES2 INITDRAIN Panel 173

35. Example SDF Panels 216

36. Example SDF Tree Structure 218

37. Status Descriptors Chained to Status

Components 220

38. Example Tree Structure Definition 226

39. Example SDF Panel 228

40. Example Panel Definition Entry 228

41. Sample FORCED AT Entry 231

42. Sample FORCED AT Entry with ISSUECMD

and ISSUEREP Action 231

43. Sample RECOMMENDED AT Entry Type 232

44. CONDITIONAL AT Entry for a Specific

Message 232

45. CONDITIONAL AT Entry for a Generic

Message 233

46. BEGIN–END Block Statements 234

© Copyright IBM Corp. 1996, 2005 vii

||

|
|
||

|
|
||

 |
 |
 | |

 | |

viii System Automation for z/OS: Customizing and Programming

Tables

 1. System Automation for z/OS Library xv

 2. Health State Return Codes 47

 3. Automation Flags: Typical Uses in SA z/OS 62

 4. WTOBUF Recovery Process 103

 5. Externalized Common Global Variables 201

 6. Global Variables to Enable Advanced

Automation (CGLOBALS) 203

 7. Global Variables That Define the Installation

Defaults for Specific Commands 211

 8. SDF Components 224

 9. Panel Definition Entry Description 228

10. AT Entries That Are Generated by AUTO

Actions 233

© Copyright IBM Corp. 1996, 2005 ix

||

x System Automation for z/OS: Customizing and Programming

Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only IBM product, program, or service may be used. Subject to IBM’s

valid intellectual property or other legally protectable rights, any functionally

equivalent product, program, or service may be used instead of the IBM product,

program, or service. The evaluation and verification of operation in conjunction

with other products, except those expressly designated by IBM, are the

responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

Web Site Disclaimer

Any pointers in this publication to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement. IBM accepts

no responsibility for the content or use of non-IBM Web sites specifically

mentioned in this publication or accessed through an IBM Web site that is

mentioned in this publication.

Programming Interface Information

This publication primarily documents information that is NOT intended to be used

as a Programming Interface of System Automation for z/OS.

This publication also documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of System Automation for z/OS.

© Copyright IBM Corp. 1996, 2005 xi

This information is identified where it occurs, either by an introductory statement

to a chapter or section or by the following marking:

Programming Interface information

 This section contains Programming Interface Information.

End of Programming Interface information

Trademarks

The following terms are trademarks or service marks of the IBM Corporation in

the United States or other countries, or both:

 CICS DB2

IBM IMS

MVS NetView

OS/390 Parallel Sysplex

PR/SM Processor Resource/Systems Manager

RACF RMF

S/390 Tivoli

Tivoli Enterprise Console VTAM

WebSphere z/OS

z/VM zSeries

The following terms are trademarks of other companies:

v Linux is a registered trademark of Linus Torvalds.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

xii System Automation for z/OS: Customizing and Programming

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS™ enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information

about accessing TSO/E and ISPF interfaces. These guides describe how to use

TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF

keys). Each guide includes the default settings for the PF keys and explains how to

modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1996, 2005 xiii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

xiv System Automation for z/OS: Customizing and Programming

About This Book

This book describes how to adapt your completed standard installation of IBM®

Tivoli® System Automation for z/OS (SA z/OS) as described in IBM Tivoli System

Automation for z/OS Planning and Installation to your environment. This book

contains information on how to add new applications to automation and how to

write your own automation procedures. It also contains information about how to

add new messages for automated applications.

Who Should Use This Book

This book is primarily intended for automation programmers responsible for:

v Customizing system automation and the operations environment

v Developing automation procedures and other operations capabilities

Prerequisites

Throughout this book, it is expected that readers will be familiar with System

Automation for z/OS and the following documentation:

v IBM Tivoli System Automation for z/OS Operator’s Commands

v IBM Tivoli System Automation for z/OS Programmer’s Reference

v IBM Tivoli System Automation for z/OS Defining Automation Policy

Where to Find More Information

The System Automation for z/OS Library

The following table shows the information units in the System Automation for

z/OS library:

 Table 1. System Automation for z/OS Library

Title Order Number

IBM Tivoli System Automation for z/OS Planning and Installation SC33-8261

IBM Tivoli System Automation for z/OS Customizing and Programming SC33-8260

IBM Tivoli System Automation for z/OS Defining Automation Policy SC33-8262

IBM Tivoli System Automation for z/OS User’s Guide SC33-8263

IBM Tivoli System Automation for z/OS Messages and Codes SC33-8264

IBM Tivoli System Automation for z/OS Operator’s Commands SC33-8265

IBM Tivoli System Automation for z/OS Programmer’s Reference SC33-8266

IBM Tivoli System Automation for z/OS CICS Automation Programmer’s

Reference and Operator’s Guide

SC33-8267

IBM Tivoli System Automation for z/OS IMS Automation Programmer’s

Reference and Operator’s Guide

SC33-8268

IBM Tivoli System Automation for z/OS TWS Automation Programmer’s

Reference and Operator’s Guide

SC23-8269

IBM Tivoli System Automation for z/OS End-to-End Automation Adapter SC33-8271

© Copyright IBM Corp. 1996, 2005 xv

|

|
|

|

|

|

The System Automation for z/OS books are also available on CD-ROM as part of

the following collection kit:

 IBM Online Library z/OS Software Products Collection (SK3T-4270)

SA z/OS Home Page

For the latest news on SA z/OS, visit the SA z/OS home page at

http://www.ibm.com/servers/eserver/zseries/software/sa

Related Product Information

You can find books in related product libraries that may be useful for support of

the SA z/OS base program by visiting the z/OS Internet Library at

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and

Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations using LookAt from a TSO/E

command line (for example: TSO/E prompt, ISPF, or z/OS UNIX® System

Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from

the z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

with a handheld device that has wireless access and an Internet browser (for

example: Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or

Opera for Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD-ROM in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in

the LOOKAT.ME files available during the download process.

xvi System Automation for z/OS: Customizing and Programming

|
|
|

http://www.ibm.com/servers/eserver/zseries/software/sa
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

Chapter 1. How to Add a New Application to Automation

This chapter describes the steps that are required to automate and monitor a new

application by SA z/OS.

The main tasks involved in extending automation include:

v Adding or changing values via the SA z/OS customization dialog

v Building a new automation control file

v Adding or changing entries in the message processing facility (MPF) message list

and the NetView automation table.

v Adding new resources to the status display facility (SDF)

v Reloading the changed files and tables, such as the MPF list, NetView

automation table, and automation control file, to enable the new or changed

automation

Note that messages that have been defined for the automation are automatically

added to the NetView Automation Table and MPFLSTSA member. For more details

see Chapter 3, “How to Add a Message to Automation,” on page 25.

Step 1: Define an Application Policy Object

To add a new application to SA z/OS, you must create and define a new

Application policy object using the SA z/OS customization dialog. With the

customization dialog, you also define how the new application should be

automated by SA z/OS, for example:

v Setting automation flags for the application

v Specifying startup or shutdown commands for the application

v Linking the application into an application group

How to do this is described in detail in IBM Tivoli System Automation for z/OS

Defining Automation Policy.

Step 2: Define Outstanding Reply Processing

SA z/OS keeps a record of all outstanding Write-to-Operator Replies (WTORs)

that it receives if it does not reply to them immediately through ISSUEREP.

Because some applications may have more than one WTOR at the same time, and

not all WTORs are equally important, they are classified accordingly.

If SA z/OS receives a WTOR through OUTREP, ACTIVMSG, HALTMSG,

TERMMSG, or ISSUEREP, and does not reply to it immediately, it first searches

through the automation control file for ’application WTORS’, and then ’MVSESA

WTORS’, using the message ID as the first value and the job name as the second.

This produces a value pair where the first word is the priority of the WTOR and

the second is the type of WTOR.

© Copyright IBM Corp. 1996, 2005 1

|

|

Performance:

You should define a WTORS entry in the Message Processing panel for

applications that frequently issue WTORs (see Figure 1). This will improve

performance by reducing searches within the automation control file as

mentioned above.

 The priority-type value pairs that are specified in the Value Returned field of the

Code Processing Panel can be interpreted as follows:

 Priority Meaning

NORMAL This is an ordinary message that does not indicate a problem.

Displayed in SDF in GREEN (NWTOR status).

UNUSUAL This might indicate a problem. It is not a WTOR that is normally

outstanding. Displayed in SDF in YELLOW (UWTOR status). This is

the default if a WTOR is not matched in either table.

IMPORTANT This indicates a problem. It must be replied to promptly and may

indicate more serious problems. Displayed in SDF in RED (IWTOR

status). It may be abbreviated to IMPORT.

IGNORE This tells SA z/OS to ignore the WTOR (RWTOR status). The WTOR is

not displayed on the SDF screen and is not recorded in the automation

status file. This priority can only have a type of SEC.

Notes:

1. These priorities are also represented on the WTORs icon on the NMC workstation.

2. The colors are default SA z/OS colors.

 Type Meaning

PRI This is the primary WTOR for the application. If SA z/OS needs to

issue a reply to the application but the reply number or message ID (or

both) is not specified (such as on a shutdown pass), SA z/OS responds

to the last primary WTOR that it received for the application. This is

the default type. PRI is not applicable if the priority is IGNORE.

SEC This is the secondary WTOR for the application. SA z/OS does not

reply to this WTOR if it has a primary or an older, secondary WTOR

recorded for the application. SEC is the default if the priority is

IGNORE.

1. Message Processing Panel:

 Action Message ID Cmd Rep Code User Auto Ovr

 Description

 CODE WTORS 3

 Classification of IMS WTORs

2. Code Processing Panel:

 Code 1 Code 2 Code 3 Value Returned

 DFS996I * NORMAL PRI

 DFS3139I * NORMAL PRI

 * * IMPORTANT SEC

Figure 1. Example of a WTORS Entry

How to Add a New Application to Automation

2 System Automation for z/OS: Customizing and Programming

SA z/OS uses a list to keep track of the WTORs for each application:

1. New primary WTORs are added to the front of the list

2. New secondary WTORs are added to the back of the list

When SA z/OS needs to get a reply number for an application, it takes the first

reply in the list. If a secondary WTOR has been received but a primary has not,

SA z/OS replies to the secondary WTOR. Generally it replies to the latest primary

WTOR that is still outstanding, or the earliest secondary WTOR that is still

outstanding if there are no primary WTORs.

Step 3: Build New System Operations Configuration Files

When you finish defining the application in the customization dialog, build the

new system operations configuration files (automation control file, automation

manager configuration file, NetView Automation Tables, and the MPFLSTSA

member) from the updated policy database. See IBM Tivoli System Automation for

z/OS Defining Automation Policy for more information.

After you have completed this step and “Step 7: Reload MPF List and Automation

Configuration Files” on page 4, the application is known to SA z/OS and can

therefore be automated according to the policy that was defined in “Step 1: Define

an Application Policy Object” on page 1.

For advanced application automation, you should consider completing some or all

of the following steps.

Step 4: Code Entries for Application Messages in the MPF List

(Optional)

If necessary, code your entries for the application startup, abend, and shutdown

messages in the MPF list, specifying the AUTO(YES) parameter. This step is

optional. If the default is already AUTO(YES) for the messages, bypass this step.

You can use the MPFLSTSA member, which contains all messages that are relevant

to SA z/OS, as a basis for your own messages.

If you are automating a message, you probably also want to suppress the message

from appearing on operator consoles. To mark a message for suppression, code

SUP(YES) in the MPF list entry for the message.

For more information on coding MPF list entries, see z/OS MVS Initialization and

Tuning Reference.

Step 5: Add SDF Entries for the Subsystem (Optional)

If you want the application to appear in SDF status displays, update the SDF tree

structure and SDF panels with information about the new application. Refer to

Appendix B, “Customizing the Status Display Facility (SDF),” on page 215 for

more details.

Step 6: Enable the Application for the SA z/OS Graphical Interface

If you want the new application to appear in any of the special views on the NMC

workstation, you need to update the member in the DSIPARM data set that holds

the BLDVIEWS cards for the sysplex that your application will run in.

How to Add a New Application to Automation

Chapter 1. How to Add a New Application to Automation 3

|

|
|

|
|
|
|

If you want the application to appear in an existing view, you need to add a

NONSNA statement:

NONSNA=plexname.subsysname/APL/sysname*,

QUERYFIELD=MYNAME

where plexname is the name of your sysplex, subsysname is the 11-character

subsystem name of your application, and sysname* is a wildcard for the system

names that you want to see the application in this view.

If you want to add a new view, you will need to add a view statement:

VIEW=ING.plexname,

ANNOTATION=’view description’

This needs to be followed by the NONSNA statement for the application as

described above.

Note: By default, the application will be included on NMC within the

automatically generated views representing the application groups that it is

a member of.

Step 7: Reload MPF List and Automation Configuration Files

Reload the MPF list and automation configuration files to enable automation of the

application.

To reload the MPF list, type the following command:

v From the z/OS console:

SET MPF=xx

v From a NetView console using the MVS™ prefix:

MVS SET MPF=xx

where xx is the suffix of the MPF member in the SYS1.PARMLIB data set to load.

To reload the automation manager configuration file, all updated automation

control files and the automation tables issue:

INGAMS REFRESH

and specify a data set name or an * which means reload the current one.

If SDF tree structures and panels have been loaded dynamically, you do not have

to recycle SDF to have the application reflected in SDF at this point.

When you have completed these steps, the application is added to your

automation policy and environment, and can be monitored using SDF.

How to Add a New Application to Automation

4 System Automation for z/OS: Customizing and Programming

|
|

|
|

|

|

Chapter 2. How to Create Automation Procedures

You can write additional automation procedures to supplement the basic

automation procedures that are supplied by SA z/OS. For example, you may want

to develop procedures to automate an application used exclusively on your system

or to perform specialized automated operations for a subsystem.

SA z/OS generic routines and common routines perform basic functions such as

logging messages and checking automation flags. You can use them in your own

automation procedures.

SA z/OS generic routines and common routines are convenience routines that

provide your automation procedures with a simple, standard way of interfacing

with the automation control file, automation status file, and NetView log file. It is

strongly recommended that you use these routines wherever possible in your own

code.

“How CLIST or REXX Automation Procedures Are Structured” on page 6 describes

how to structure your automation procedures. Refer to IBM Tivoli System

Automation for z/OS Programmer’s Reference for detailed descriptions and examples

of the generic routines, common routines and file manager commands you can use

in your automation procedures.

Programming Additional SA z/OS Automation Procedures

You can write additional automation procedures to supplement the basic

automation procedures that are supplied by SA z/OS. For example, you may want

to develop procedures to automate an application used exclusively on your system

or to perform specialized automated operations for a subsystem.

SA z/OS generic routines, common routines, and utility routines perform basic

functions such as logging messages and checking automation flags.

SA z/OS generic routines, common routines, and utility routines are convenience

routines that provide your automation procedures with a simple, standard way of

interfacing with the automation control file, automation status file, and NetView

log file. It is strongly recommended that you use these routines wherever possible

in your own code.

“How CLIST or REXX Automation Procedures Are Structured” on page 6 describes

how to structure your automation procedures. Refer to IBM Tivoli System

Automation for z/OS Programmer’s Reference for detailed descriptions and examples

of the generic routines, common routines and file manager commands you can use

in your automation procedures.

How Automation Procedures Are Called

There are several ways to call an automation procedure including:

v Calling the automation procedure from the NetView automation table using

SA z/OS generic routines

v Keying in the automation procedure name or its synonym into a NetView

command line

© Copyright IBM Corp. 1996, 2005 5

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

v Calling the automation procedure from another program

v Starting the automation procedure with a timer

v Starting the automation procedure with the NetView EXCMD command

v Starting the automation procedure on an automation operator with the SA z/OS

AOFEXCMD command routine

v In the customization dialog, entering your automation procedure name in the

Command text or Command field of the following entry types:

– Application

– MVS Component

– Timers

– Monitor Resources

Note: Not all routines can be called through all interfaces as some require

extensive environmental setup before they are invoked.

How CLIST or REXX Automation Procedures Are Structured

Automation procedures can be written in the NetView CLIST language or in

REXX. It s recommended that the structure of these automation procedures should

contain three main parts, as shown in the following figures. These parts are:

1. Perform initialization processing

2. Determine whether automation is allowed

3. Perform automation processing.

The following sections provide more details about each part of an automation

procedure.

Figure 2 illustrates the structure of automation procedures for system operations

and Figure 3 on page 7 for processor operations.

Figure 2. Automation Procedures for System Operations

How Automation Procedures Are Called

6 System Automation for z/OS: Customizing and Programming

|

|

Performing Initialization Processing

Initialization processing may not be required for simple automation procedures.

Initialization processing is responsible for:

v Setting up any error trap routines.

v Identifying the automation procedure by setting a local variable either explicitly

or at execution time. This step makes it simpler to code routines that log

messages and send notifications.

From REXX, the name of the CLIST is returned by the “parse source” statement.

v Declaring the global variables, such as CGLOBALs and TGLOBALs, that are

used for subsystem definition values in CLIST.

See Appendix A, “Global Variables,” on page 201 for descriptions of global

variables. In REXX, you must GET the first time you reference the globals, and

PUT when you update them.

v Checking to see if debugging (general or CLIST-specific) is on.

v Issuing debugging messages, if debugging is turned on.

v Validating the automation procedure call.

This step can help prevent an operator from calling the automation procedure

inappropriately. Automation procedures can also be validated using NetView

scope checking.

v Saving NetView message parameters. This step is necessary if your automation

procedure uses the NetView WAIT statement and you need to access the original

message text or control information.

For more information on coding automation procedure initialization sections, refer

to “Example Automation Procedure” on page 14, to Tivoli NetView for z/OS

Customization Guide and to Tivoli NetView® for z/OS Automation Guide.

Figure 3. Automation Procedures for Processor Operations

How CLIST or REXX Automation Procedures Are Structured

Chapter 2. How to Create Automation Procedures 7

Determining whether Automation Is Allowed

System Operations

Automation procedures for applications and MVS components, which are called

from the NetView automation table should always perform an automation check

by calling the AOCQRY common routine. AOCQRY checks that the automation

flags allow automation. These checks eliminate the risk of automating messages for

applications that should not be automated, or for which automation is turned off.

AOCQRY also initializes most of the CGLOBALs and TGLOBALs used in the

automation procedure with values specific to the application.

Refer to IBM Tivoli System Automation for z/OS Programmer’s Reference for more

information on coding the automation check routine.

Processor Operations

Most of the processor operations commands run only when processor operations

has been started. To determine whether processor operations is active, you can use

the ISQCHK command in your automation routines. If processor operations is not

running, ISQCHK returns return code 32 and issues the message:

ISQ0301 Cannot run cmd-name command until Processor Operations has started.

Your application can then issue the ISQSTART command to begin processor

operations.

Performing Automation Processing

Automation processing is performed by any combination of SA z/OS routines and

your own code. The following documentation gives more information on coding

automation procedures:

v “Automation Processing in System Operations”

v “Automation Processing in Processor Operations” on page 10

Automation Processing in System Operations

This section contains information on how to customize automation processing for

system operations.

Updating Status Information: You can update status information by calling the

AOCUPDT common routine. This routine is used when a message indicates a

status change. This would normally be done from the generic routines ACTIVMSG,

HALTMSG, and TERMMSG. Making your own status updates may cause

unpredictable results.

For more information, see IBM Tivoli System Automation for z/OS Programmer’s

Reference.

Logging Messages and Sending Notifications: You can log messages and send

notifications by calling the AOCMSG common routine.

AOCMSG will:

v format a message for display or logging

v issue messages as SA z/OS notification messages to notification operators.

For more information, see IBM Tivoli System Automation for z/OS Programmer’s

Reference.

How CLIST or REXX Automation Procedures Are Structured

8 System Automation for z/OS: Customizing and Programming

Issuing Commands and Replies: You can issue commands and replies by calling

the ACFCMD and ACFREP common routines. You can use these routines to:

v Issue one or more commands in response to a message.

v Issue a single reply in response to a message.

v Use the step-by-step (PASS) concept to react to or recover from an automation

event.

ACFCMD issues one or more commands. It supports both a single reaction and the

step-by-step (PASS) concept. For more information, see IBM Tivoli System

Automation for z/OS Programmer’s Reference.

ACFREP issues a single reply. It supports both a single reaction and the

step-by-step (PASS) concept. For more information see IBM Tivoli System

Automation for z/OS Programmer’s Reference.

In many cases you may be able to use the ISSUECMD and ISSUEREP generic

routines which also support single and pass processing.

Checking Thresholds: You can check and update thresholds by calling the

CHKTHRES common routine. Use CHKTHRES to track and maintain a threshold,

and to change the recovery action based on the threshold level exceeded. For more

information see IBM Tivoli System Automation for z/OS Programmer’s Reference.

Checking Error Codes: You can check error codes by calling the CDEMATCH

common routine. Use CDEMATCH to compare error codes in a message to a set of

automation-unique error codes to determine the action to take. For more

information, see IBM Tivoli System Automation for z/OS Programmer’s Reference.

In some cases you may be able to use the code matching capabilities of the

ISSUEREP and TERMMSG generic routines.

Using File Manager Commands: You can use file manager commands to access

SA z/OS control files such as the automation control file and automation status

file. Use ACF if you need to load or display the automation control file. Use

ACFFQRY to query the automation control file quickly. Use ASF to display the

automation status file. Use ASFUSER to modify the automation status file fields

reserved for your own information. For more information, see IBM Tivoli System

Automation for z/OS Programmer’s Reference.

Using External Code for Timers, Logic, and Other Functions: Your automation

procedures may require code to set timers, to perform logic unique to your

enterprise or to the automation procedure itself, and to perform other functions.

Some examples include:

v Issuing commands and trapping responses.

You can issue commands and trap responses using the NetView WAIT or PIPE

commands. You may need to use these commands in your code if it is necessary

to check the value or status of a system component or application before

continuing processing. For more information, see Tivoli NetView for z/OS

Customization Guide

v Setting Common Global and Task Global values to control processing.

You can set Common and Task Global values by using NetView commands. You

may need to set these values if it is necessary to set a flag indicating progress,

message counts, and other indicators that must be kept from one occurrence of a

message to the next. See IBM Tivoli System Automation for z/OS Defining

Automation Policy for a table of all externalized SA z/OS global variables.

How CLIST or REXX Automation Procedures Are Structured

Chapter 2. How to Create Automation Procedures 9

Also refer to the discussion of CGLOBALs and TGLOBALs in Tivoli NetView for

z/OS Customization Guide

v Setting timer delays to resume processing.

You can set timer delays by using the NetView AT, AFTER, EVERY and CHRON

commands. You can use these commands when an automation procedure must

either resume processing or initiate another automation procedure after a given

time to do additional processing. For example, you could use these commands

to perform active monitoring of subsystems. For more information, see the

discussion of AT, AFTER, EVERY and CHRON commands in Tivoli NetView for

z/OS Automated Operations Network User’s Guide

Automation Processing in Processor Operations

This section contains information on how to customize automation processing for

processor operations.

Initializing a Target System: If your routines need to start target systems

(hardware and/or operating system), issue the ISQCCMD ACTIVATE command.

Shutting Down a Target System: If your routines need to shut down a target

system, issue the ISQCCMD DEACTIVATE OCF command. Before issuing the

command to close the target system, shut down all of your functioning

subsystems. This avoids any unexpected situations at the target system.

Issuing Other OCF Commands: All OCF commands supported by processor

operations can be issued from automation routines. See IBM Tivoli System

Automation for z/OS Operator’s Commands for details about these commands.

Reserved SA z/OS Commands: The SA z/OS commands ISQISUP, ISQISTAT,

ISQCMMT, ISQSTRT, ISQXIPM, ISQGPOLL, and ISQGSMSG are not intended for

your use. Do not use these in your automation routines. Unexpected results may

occur.

The following commands can only be used from an operator console and should

not be used in your automation routines or with ISQEXEC: ISQXDST, ISQXOPT,

and ISQHELP.

The following commands are for automation and should not be used in your

automation routines: ISQI101, ISQI212, ISQMCLR, ISQI320, ISQIUNX, ISQI347,

ISQI470, ISQI886, ISQI888, ISQI889, ISQI128, ISQIVMT, ISQMVMI1, ISQMVMI2,

ISQMWAIT, ISQMDCCF, ISQM020, and ISQIPLC.

Serializing Command Processing: Serializing command processing ensures that

commands and automation routines are processed in the order in which they are

sent to a target system console. It can also prevent the command sequence from

being interrupted by other tasks.

Specific target control tasks are assigned to specific target systems during

initialization of the target system. More than one target system can share a target

control task, but a target system never has more than one target control task

allocated to it to perform work.

When a command or an automation routine is sent to a target system, it can be

processed partly in the issuing task (a logged-on operator or an autotask) and

partially in a target control task. When the command or automation routine is to

be processed by a target control task, it is either allocated to the target control task

and processed, or queued to be processed by the target control task. This serializes

How CLIST or REXX Automation Procedures Are Structured

10 System Automation for z/OS: Customizing and Programming

the processing of commands and automation routines. Serializing ensures that they

are processed in the order in which they were sent to the target system console.

The NetView program has priority defaults established during its initialization.

Usually, everything running under NetView has a low priority. You can use the

NetView DEFAULTS command to see what the settings are, but you should not

change them. For SA z/OS command processing to be serialized as designed, all

commands used in SA z/OS must have a priority setting of “low”. If you change

the priorities or have more than one priority for commands used in SA z/OS, the

difference in the priorities may defeat the serialization that results from the

architecture of the target control task.

Sending an Automation Routine to a Target Control Task: If you run the same

series of SA z/OS commands regularly, you can program the commands into a

NetView automation routine. Follow the guidelines you use for any NetView

automation routine.

A NetView autotask or a logged-on operator can then run this routine or send it to

a target control task. Use the following command to transfer an automation routine

to a target control task:

ISQEXEC target-system-name SC routine-name

When you issue the ISQEXEC command to process an automation procedure, all of

the commands are processed in the order in which they occur in the automation

procedure. This is because the ISQEXEC command sends work to a target control

task, which processes commands serially. Any other commands or automation

routines issued to the same console by the ISQEXEC command are queued for

processing by the target control task and do not start until the previous command

or automation procedure completes.

The ISQEXEC command also frees the original task from any long-running

command sequence. This lets you use the issuing task, such as an OST, for other

work.

The ISQEXEC command does not lock consoles to ensure command serialization;

the command serialization process is due to the target control task allocation

scheme. Commands and automation routines are processed in the order in which

they occur; however, it is possible for commands from other tasks to interrupt the

command sequence.

For more information about the ISQEXEC command, see IBM Tivoli System

Automation for z/OS Operator’s Commands.

Locking a Console: Several routines and operators may attempt to address the

same console at the same time. The ISQEXEC command does not prevent other

tasks from interrupting the sequence of commands being processed by the target

control task; it does not lock the console.

To prevent a sequence of commands from being interrupted, use the ISQXLOC and

ISQXUNL commands. The ISQXLOC command locks access to the console. If a

task attempts to issue a command to a locked console, the task is told that the

console is locked, and the command fails. When you are finished with the

sequence of commands that must be processed without interruption, issue the

ISQXUNL command to unlock access to the console.

How CLIST or REXX Automation Procedures Are Structured

Chapter 2. How to Create Automation Procedures 11

You can use the ISQXLOC and ISQXUNL commands within automation routines to

ensure that they complete without interference from other tasks. For automation

routines that issue a number of SA z/OS commands, put the following command

after the ISQEXEC command and near the beginning of the routine:

ISQXLOC target-system-name SC

This locks access to the target system console to the current task until the lock is

dropped by the command:

ISQXUNL target-system-name SC

Only the task that issued ISQXLOC can successfully issue ISQXUNL. If an

ISQXLOC command is issued from a locked sequence of commands, it is rejected

because the console is already locked.

When you lock a system console for a target system running on a logical partition,

you lock that system console for all other target systems using that processor. A

command sent to a system console for any other target system (logical partition)

on that target hardware definition will not run until the console is unlocked.

If your automation routine cannot wait for a console to be released, use the

ISQOVRD command to gain control of the console. Use the following command

only in critical automation routines:

ISQOVRD target-system-name SC

When the routine issuing the override command completes, the lock is removed

and the console is available.

How to Make Your Automation Procedures Generic

By using the SA z/OS common routines, you can make your own automation

procedures generic. A generic automation procedure comprises three parts. For

each part, there are special common routines that help you to fulfill your tasks:

Preparation

Check if automation is allowed and should be done. Use common routine

AOCQRY.

Evaluation

What should be done? Use common routine CDEMATCH.

Execution

Do what should be done. Use common routines ACFCMD or ACFREP.

How CLIST or REXX Automation Procedures Are Structured

12 System Automation for z/OS: Customizing and Programming

For more information on the mentioned common routines refer to IBM Tivoli

System Automation for z/OS Programmer’s Reference. For more information on

command processing or reply processing refer to IBM Tivoli System Automation for

z/OS Defining Automation Policy.

Processor Operations Commands

Whenever possible, your automation routines should make use of SA z/OS’s

processor operations OCF commands, also called common commands. These

commands are independent of the hardware type of the target system’s processor.

Therefore, the use of these commands minimizes the need for changes to your

automation routines if you need to add new processors to your configuration. See

IBM Tivoli System Automation for z/OS Operator’s Commands for a detailed

description of the processor operations commands.

Developing Messages for Your Automation Procedures

Depending on the scope of additional programming, creating new automation

procedures may also require developing additional messages.

Some SA z/OS facilities and commands you can use to develop messages include:

v The AOCMSG common routine (see IBM Tivoli System Automation for z/OS

Programmer’s Reference).

v The AOCUPDT common routine (see IBM Tivoli System Automation for z/OS

Programmer’s Reference).

The following steps summarize the message development process.

1. Choose a message ID. Make sure it is unique.

2. Use NetView message services to define the message to NetView.

Put an entry for the message in a DSIMSG data set. This data set must be

identified in a DSIMSG data definition (DD) name.

**

******* Preparation *******

**

AOCQRY

- check if the resource is controlled by SA z/OS

- check if automation is allowed

- prepare/set task global variables for CDEMATCH, ACFCMD and ACFREP

...

CDEMATCH

- code matching (table search in ACF)

- find out required action

...

ACFCMD/ACFREP

- do required action:

 issue command / respond reply

Figure 4. Skeleton of an Automation Procedure

How to Make Your Automation Procedures Generic

Chapter 2. How to Create Automation Procedures 13

3. Use the AOCMSG common routine to issue the message (see IBM Tivoli System

Automation for z/OS Programmer’s Reference).

4. Add an entry for the message to your production copy of the NetView

DSIMSG data set.

Example AOCMSG Call

This example shows how to code AOCMSG to issue message ABC123I.

Entries for messages in DSIMSG member DSIABC12 are as follows:

120I ...

121I ...

122I ...

123I 10 40 THE EAGLE HAS &1

124I ...

Your automation procedure contains the following AOCMSG call:

<other automation procedure code> ...
 AOCMSG LANDED,ABC123 ...
<other automation procedure code>

When AOCMSG is called as specified in the automation procedure, DSIMSG

member DSIABC12 is searched for message ABC123I. Substitution for variable &1

occurs, and the following message is generated:

ABC123I THE EAGLE HAS LANDED

Note that the message is defined with a 10 and a 40 between the message ID and

the first word of the message. These are the SA z/OS message classes to which the

message belongs. When the message is issued a copy is sent to every notification

operator who is assigned class 10 or class 40 messages.

Refer to Tivoli NetView for z/OS Customization Guide for further information on

developing new messages.

Example Automation Procedure

This section provides an example of an application program that handles an z/OS

message. The automation procedure uses a subset of the SA z/OS common

routines or generic routines.

/* Example SA z/OS Automation Procedure */

�1� Signal on Halt Name Aof_Error; Signal on Failure Name Aof_Error

 Signal on Novalue Name Aof_Error; Signal on Syntax Name Aof_Error

�2� Parse source .. ident .

�3� "GLOBALV GETC AOFDEBUG AOF."||ident||".0DEBUG AOF."||ident||".0TRACE"

 If AOFDEBUG = ’Y’ Then

 "AOCMSG "||ident||",700,LOG,"||time()||","||opid()||","||Arg(1)

 loc.0debug = AOF.ident.0DEBUG

 loc.0trace = AOF.ident.0TRACE

 loc.0me = ident

 If loc.0trace <> ’’ Then Do

 loc.0debug = ’’

 Trace Value loc.0trace

Developing Messages for Your Automation Procedures

14 System Automation for z/OS: Customizing and Programming

End

�4� save_msg = msgid()

 save_text = msgstr()

 lrc = 0

�5� /* This procedure can only be called for msg IEA099A */

 If save_msg <> ’IEA099A’ Then Do

 "AOCMSG "||loc.0me||",203,"||time()||","||opid()

 Exit

 End

�6� "GLOBALV GETC AOFSYSTEM"

 cmd = ’AOCQRY ’||save_msg||’ RECOVERY ’||AOFSYSTEM

 cmd

 svretcode = rc

 If loc.0debug = ’Y’ Then

 "PIPE LIT /Called AOCQRY; Return Code was "||svretcode||"/" ,

 "| LOGTO NETLOG"

 /* -- **

 ** Check return code from AOCQRY **

 ** 0 = ok 1 = global flag off **

 ** 2 = specific flag off 3 = resource not in ACF **

 ** 4 = bad parms 5 = errors/timeout **

 ** -- */

 Select

�7� When svretcode >= 3 Then Do

 "AOCMSG "loc.0me",206,,"time()",,,"cmd",RETCODE="svretcode

 lrc = 1

 End

�8� When svretcode > 0 Then Do

 "GLOBALV GETT AUTOTYPE SUBSAPPL SUBSTYPE SUBSJOB"

 "AOCMSG "loc.0me",580,,"time()","SUBSAPPL","SUBSTYPE"," ,

 SUBSJOB","AUTOTYPE","save_msg

 lrc = 1

 End

 Otherwise Do

�9� Parse Var save_text With . ’JOBNAME=’ save_job ’ASID=’ save_asid .

�10� ehkvar1 = save_job

 ehkvar2 = save_asid

 "GLOBALV PUTT EHKVAR1 EHKVAR2"

�11� cmd = ’ACFCMD ENTRY=’||AOFSYSTEM||’,MSGTYP=’||save_msg

 cmd

 svretcode = rc

 If loc.0debug = ’Y’ Then

 "PIPE LIT /Called ACFCMD; Return Code was "||svretcode||"/" ,

 "| LOGTO NETLOG"

 /* -- **

 ** Check return code from ACFCMD **

 ** 0 = ok 1 = no commands found in ACF **

 ** 4 = bad parms 5 = errors/timeout **

 ** -- */

�12� If svretcode > 1 Then Do

 "AOCMSG "loc.0me",206,,"time()",,,’"cmd"’,RETCODE="svretcode

 lrc = 1

 End

 End

 End /* End of Select svretcode */

�13� Exit lrc

�14� Aof_Error:

 Signal Off Halt; Signal Off Failure

 Signal Off Novalue; Signal Off Syntax

Example Automation Procedure

Chapter 2. How to Create Automation Procedures 15

errtype = condition(’C’)

 errdesc = condition(’D’)

 Select

 When errtype = ’NOVALUE’ Then rc = ’N/A’

 When errtype = ’SYNTAX’ Then errdesc = errortext(rc)

 Otherwise Nop

 End

 "AOCMSG "errtype",760,,"loc.0me","sigl","rc","errdesc

 Exit -5

Notes on the Automation Procedure Example

�1� This step sets error traps for negative return codes, operator halt

commands, and REXX programming errors.

�2� This step defines the identity of the automation procedure.

�3� This step handles the debug and trace settings (refer to “Using

AOCTRACE to Trace Automation Procedure Processing” on page 20.

�4� Save the NetView message variables the automation procedure uses.

�5� Perform authorization check. This procedure can only be called for a

particular message.

�6� This section performs the automation check:

1. Fetch the AOFSYSTEM CGlobal that contains the information under

which entry name the system messages are stored in the automation

control file (ACF).

2. The automation procedure calls the AOCQRY common routine. This

routine performs the automation flag check and presets some TGlobal

variables that are used by other common routines like ACFCMD.

�7� Issue message AOF206I if call to AOCQRY fails.

�8� Issue message AOF580I if automation flag is off.

�9� Get the job name and asid reported in the message.

�10� Set EHKVARn variables for ACFCMD.

�11� Call ACFCMD to issue the command specified in the ACF. The

Automation Control File entry for the message IEA099A could look like

this:

 MVSESA IEA099A,

 CMD=(,,’MVS C &EHKVAR1,A=&EHKVAR2’)

�12� Issue message AOF206I if call to ACFCMD fails.

�13� Exit with return code that indicates successful or unsuccessful processing.

�14� This code logs a message if an error is trapped at step �1�.

Installing Your Automation Procedures

The installation process for a new automation procedure depends on the language

in which the automation procedure is written.

v If the automation procedure uses a compiled language, such as PL/I, C, or

Assembler:

1. Compile or assemble your source into an object module.

2. Link-edit the object module into a NetView load library.

Example Automation Procedure

16 System Automation for z/OS: Customizing and Programming

3. Include an entry for the automation procedure in the DSICMD member of

the NetView DSIPARM data set.
v If the automation procedure uses an interpreted language such as NetView

command list or REXX:

1. Copy the automation procedure into a NetView command list library

2. Optionally include an entry for this automation procedure in the DSICMD

member of the NetView DSIPARM data set. Then it is more quickly found

and invoked.

For more information on preparing your code for use and installing it, refer to

Tivoli NetView for z/OS Customization Guide

Testing and Debugging Automation Procedures

This section describes SA z/OS and NetView facilities you can use for testing

automation procedures, including:

v SA z/OS assist mode

v SA z/OS AOCTRACE operator facility

v NetView testing and debugging facilities

The Assist Mode Facility

SA z/OS provides the assist mode facility, so that you can verify actions of

automation procedures and automation policy before letting them run in a

completely automated environment.

When assist mode is on, actions normally taken by SA z/OS automation

procedures, such as issuing a command or reply or calling a common routine, are

instead written to a log file or displayed through SDF. Operators using SDF can

view assist mode displays to validate the actions. The operator can choose to have

SA z/OS do the scheduled automated action, change it, or end it. For example,

SDF might indicate that the current automation procedure issues a command to

restart TSO. You can then continue the automation action as it is, change the

automation action, or cancel it.

Assist settings are associated with specific automation flags (Initstart, Start,

Recovery, Shutdown or Restart). The assist setting used for any action is

determined by the automation flag that is checked to see if the action is permitted.

You can activate assist mode using the automation flag panels of the customization

dialog. You can turn assist mode on and off for all automated resources, resource

groups, or individual resources. You can also use the SETASST command dialog to

change the assist mode settings for a resource.

Cases where you might want to use assist mode include:

v During early stages of developing and using your automation policy

v After changing your automation policy, such as after adding an application to

automation

v After adding a new automation procedure to the SA z/OS code

Note: Assist mode is unavailable for subsystems controlled by IMS™ Automation.

Installing Your Automation Procedures

Chapter 2. How to Create Automation Procedures 17

Using Assist Mode to Test Automation Procedures

Assist mode can help detect problems with your automation procedures before

they are added to your production code. Assist mode works by intercepting

commands and replies before they are issued through NetView. The intercepted

commands and replies, as coded in the automation control file, are reformatted

into message AOF317A, sent to the NetView log and, optionally, to the SDF.

Message AOF317A has the following format:

AOF317A time : ASSIST: KEY: {type|keyword} - COMMAND: text

Message AOF317A contains detailed information regarding:

v The time the message was generated

v The type field from the automation control file entry that defines the command

v The command selection field from the automation control file entry

v The actual command or reply

Assist mode can be enabled and disabled using the SETASST command. The

DISPASST command can be used to view the current assist settings. You can also

define permanent assist settings in your policy, but it is recommended that you use

SETASST.

The following levels of assist are available:

Value Description

D (Display)

Activates assist mode for a particular automation flag. When Display is

specified, message AOF317A is logged and added to the SDF detail status

information. When you start the SDF user interface you can use assist

mode to take further action. You may choose to:

v Issue the SA z/OS-generated command

v Change the command

v End the operation

Note: Do not stop the AOFTDDF task while you are using an application

in assist mode as this will stop automation for your application.

Using assist mode, you can perform a step-by-step validation of commands

and replies specified in the automation policy.

Attention: You should not use Assist mode before VTAM® is up as you

will find it impossible to respond to the assist display dialog through SDF.

This will cause your automation to stall until VTAM is up.

L (Log)

Sets assist mode in logging-only mode. When an event triggers an

automated action, SA z/OS logs the action in the NetView log. The log

can be reviewed to ensure that automation has run as expected.

Logging-only mode can be used to check your customized automation

policy before putting it into production.

N (None)

Deactivates assist mode.

Assist mode works for all commands or replies issued using the following

common routines:

v ACFCMD

Testing and Debugging Automation Procedures

18 System Automation for z/OS: Customizing and Programming

v ACFREP

Assist mode works for the following generic routines as they call the ACFCMD

and ACFREP common routines (if AOCQRY was called before).

v ACTIVMSG

v HALTMSG

v TERMMSG

v ISSUECMD

v ISSUEREP

When assist mode is on interactively (D), it uses SDF to display information on

automation. To access SDF, type SDF at any NetView command line and press the

ENTER key. For more information on how to use SDF see IBM Tivoli System

Automation for z/OS User’s Guide.

When assist mode is on for a resource automation flag and an event occurs that

triggers automation, the resource goes into ASSIST status and appears on the SDF

panels in the color associated with the ASSIST status. (The default color for ASSIST

is blinking white.)

When a resource appears in ASSIST status:

1. Move the cursor to the system or resource.

2. Press PF2.

You see the Detail Status Display with the message from assist mode at the

bottom of the panel. This message identifies the resource that is in assist mode

and the command or reply that automation issues.

In this example, the automation operator AUTWRK01 in system CNM01 issues

the MVS P RMF command for the RMF™ subsystem. (P is an abbreviation for

STOP. See the MVS/ESA Operations: System Commands for information on MVS

commands.) This action was specified using the Shutdown option for the RMF

subsystem in the customization dialog.

3. To indicate whether you want automation to continue with the command

indicated, press PF9.

You see the Operator Assist panel.

 ---- DETAIL STATUS DISPLAY ----

 1 OF 1

 COMPONENT : RMF SYSTEM : ATLMVS1

 COLOR : PINK PRIORITY : 255

 DATE : 07/14/05 TIME : 12:05:01

 REPORTER : GATCNM01 NODE : ATL01

 REFERENCE VALUE: RMF

 AOF317A 12:04 : ASSIST DISPLAY FROM CNM01/AUTWRK01 - FOR:

 SUBSYSTEM/RMF - KEY: RMF/SHUTDOWN/PASS1 - CMD: MVS P RMF

 ===>

1=HELP 3=RETURN 4=DELETE 6=ROLL 7=UP 8=DOWN 9=ASSIST 11=BOTTOM 12=TOP

Figure 5. SDF Detail Status Display Panel with Assist Mode

Testing and Debugging Automation Procedures

Chapter 2. How to Create Automation Procedures 19

4. You now have three options. You can:

v Route the command to the original operator with or without modifications.

To do this, type ROUTE, and if you want to modify the command, type in

your changes over the command text that is there. When you have finished

modifying the command press the Enter key.

v Delete the command from the SDF display so you are no longer in assist

mode. The command is not issued and the shutdown will hang until an

operator intervenes. This also changes the subsystem to the status it was in

before it entered assist mode (in this case, AUTOTERM).

Note: While the subsystem is in Assist mode, no further shutdown passes

will be issued for it. This means you must action (either ISSUE or

DELETE) all Assist panels from the first pass before any are generated

for the second.

v Return to the SDF without taking any action. This suspends the automation

until you do take an action. (Assist mode does not time out.)

To do this, press PF3.

In the example, if you choose to issue the command, you type a character

beside the first option. This issues the command to MVS and RMF shuts down.

Using AOCTRACE to Trace Automation Procedure Processing

The AOCTRACE command dialog maintains both global execution flow traces and

automation procedure (CLIST) specific debugging flags. Setting the global flag

causes all routines that support tracing and all message IDs to record a statement

in the NetView log whenever they are invoked. The AOFDEBUG global variable is

used to pass the global flag information to the CLIST. The global flag is set to null

if the global trace is off, or Y if the global trace is on.

Setting the CLIST-specific flags lets you obtain information about what the CLIST

is doing when it executes, or lets you activate a REXX trace. The debug flag is

either null or Y, and is stored in the AOF.clist.0DEBUG common variable (where

clist is the true CLIST name).

The trace flag is set to null or a valid REXX trace type, which are as follows:

v A (All)

v R (Results)

v I (Intermediate)

v C (Commands)

v E (Errors)

v F (Failures)

v L (Labels)

v O (Off)

v N (Normal)

The S (Scan) trace type cannot be used.

The trace flag is stored in the common global variable AOF. clist.0TRACE (where

clist is the true CLIST name).

Message tracing can only be set from the command line, using the command

AOCTRACE MSG/id,ON|OFF where id is the message to be traced.

AOCTRACE is documented in IBM Tivoli System Automation for z/OS Operator’s

Commands.

Testing and Debugging Automation Procedures

20 System Automation for z/OS: Customizing and Programming

|
|
|
|
|
|

|
|
|
|

|
|

|
|

REXX Coding Example

The following statements are sample code that can be placed at the beginning of

your REXX automation routines to handle trace and debug settings:

 /* REXX example of trace and debug processing */

 Parse Source . . ident .

 ’GLOBALV GETC AOFDEBUG AOF.’||ident||’.0DEBUG AOF.’||ident||’.0TRACE’

 If aofdebug = ’Y’ Then

 ’AOCMSG’ ident||’,700,LOG,’||time()||’,’||opid()||’,’||Arg(1)

 loc.0debug = aof.ident.0debug

 loc.0me = ident

 If aof.ident.0trace <>’’ Then Do

 loc.0debug = ’

 Trace Value aof.ident.0trace

 End

 If loc.0debug = ’Y’ Then

 ’PIPE LIT /’ ident ’ called with >’ Arg(1) ’</’ ,

 ’| LOGTO NETLOG’

In this example, CLIST-specific debugging is disabled when the REXX tracing is

activated. This is intended to reduce extraneous information that may otherwise be

generated by the trace. A message is logged that shows the CLIST name, the trace

setting, the operator ID and the parameters.

When writing code to support the debug feature you should expose loc. on all

your procedures and insert fragments of code to check the value of the loc.0debug

flag and output relevant information. The loc.0me assignment makes the CLIST

name available everywhere, so you can prefix all debug messages with it. You can

then tell where the messages are coming from. For example:

 Myproc:

 Procedure expose loc.

 If loc.0debug = ’Y’ Then

 ’PIPE LIT /’ loc.0debug ’ has called procedure MYPROC/’,

 ’| LOGTO NETLOG’

 Return

NetView Testing and Debugging Facilities

NetView provides several facilities to assist in testing and debugging automation

procedures.

To do detailed testing, you may want to trace every statement issued from

automation procedures. This type of testing is enabled through the &CONTROL

statement for NetView command lists and through the TRACE statement for REXX

procedures.

You can also specify less detailed tracing on the TRACE and &CONTROL

statements, so that only commands are traced. A comparable facility, the interactive

debugging aid, is available for programs coded in PL/I and C.

Perform specific tracing by issuing NetView MSG LOG, PIPE LOGTO NETLOG

commands at appropriate points throughout a NetView command list, REXX

procedure, or PL/I routine.

To test for proper parsing and reaction to a message, write a short automation

procedure to issue a NetView WTO command. This WTO is processed by the

NetView automation table and triggers the appropriate automation procedure. If

the automation procedure requires the job name, the job name must be temporarily

hard-coded to the appropriate name. In this case, because the WTO was issued

Testing and Debugging Automation Procedures

Chapter 2. How to Create Automation Procedures 21

|
|
|
|
|
|

from the NetView region, the job name associated with the message is the NetView

region. A sample automation procedure follows:

WRITEWTO CLIST

 WTO &PARMSTR

 &EXIT

The sample automation procedure can issue any single-line message by calling the

routine. For example, to issue message ABC123I, which indicates the start of a

program, the command is:

WRITEWTO ABC123I My testprogram PRGTEST has started.

Where to Find More Testing Information

More information on testing can be found in the following books:

v Tivoli NetView for z/OS Customization Guide

This book lists requirements for your programs, including preparing your code

for use, and detailed information on writing exit routines and command

processors.

v Tivoli NetView for z/OS Automation Guide

This book has guidelines for creating new automation procedures, including a

recommended development process.

Coding Your Own Information in the Automation Status File

You can code your own information in the automation status file with the

ASFUSER command.

The automation status file has 40 user data fields that are associated with each

resource that is defined within it. You may use these fields to store persistent

information about resources that your code needs to access later. The information

in the ASF is not lost when SA z/OS is shut down. It will last until either of the

following occurs:

v The ASF VSAM data set is deleted and redefined,

v You bring SA z/OS up with an automation control file that does not include the

application that the information has been defined for

Note that you should verify that the information you have stored in the

automation status file is accurate whenever SA z/OS initializes, as circumstances

may have changed while SA z/OS was down.

Each automation status file field reserved for your data can contain up to 20

characters. The ASFUSER command allows you to update and display data in

these fields. See IBM Tivoli System Automation for z/OS Programmer’s Reference for

the ASFUSER command description.

Programming Recommendations

This section contains tips and techniques that may help to reduce the coding effort

required when writing your own automation procedures, and to improve

performance of your automation procedures.

v Use variables, such as &IDENT, &SUBSAPPL, &SUBSTYPE, and &SUBSJOB in

place of parameter values.

Using &IDENT for automation procedure names allows for changes to

automation procedure names (only the &IDENT variable value needs changing).

Testing and Debugging Automation Procedures

22 System Automation for z/OS: Customizing and Programming

|
|

|

The &SUBSxxx variables allow for subsystem and job name changes (changes to

subsystem and job names need only be made in automation policy).

Using NetView command list language variable JOBNAME for the resource field

on an AOCQRY call, an automation procedure can be written to support a

known message for any job that can issue a message.

v Use defaults when possible to minimize coding.

v Use generic error codes (see CDEMATCH).

v Use available message parsing techniques:

– Use the NetView command PARSEL2R or REXX PARSE command to parse a

message without relying on a field position in a message.

– Parse a message in the NetView automation table and send only necessary

fields to an automation procedure.
v Consider not coding the ENTRY field in CDEMATCH calls (default is the

SUBSAPPL returned from the last AOCQRY call).

v Use appropriate automation flags.

v Review the coding requirements in Tivoli NetView for z/OS Customization Guide

including restrictions to consider when writing code, such as:

– Restrictions when TVBINXIT is on

– Variable names

– Macro use

– Register use

– Re-entering programs
v Use SA z/OS generic routines where possible, because they:

1. Reduce your maintenance overhead.

2. Often use internal interfaces that are more efficient than the common

routines. Similarly, it is better to use a common routine than to write your

own code to process the response from an ACF display request.
v Use SA z/OS’s processor operations common commands where possible,

because these:

1. Are independent of the hardware type of the target system’s processor

2. Minimize the need for changes to your automation routines as you add new

processors to your enterprise
v Consider using the NetView VIEW command to display online help text

associated with new code, and to develop a fullscreen interface for new

commands that are a part of the new code. Refer to Tivoli NetView for z/OS

Customization Guide for information on the VIEW command.

Global Variable Names

When creating your own automation procedures, you must ensure that the names

of any global variables you create do not clash with SA z/OS external or internal

global variable names. SA z/OS external global variables are documented in IBM

Tivoli System Automation for z/OS Defining Automation Policy. In addition, you

should not use names beginning with:

v CFG

v AOF

v ING

v ISQ

v EVI

v EVE

Programming Recommendations

Chapter 2. How to Create Automation Procedures 23

|

v EVJ

Global Variable Names

24 System Automation for z/OS: Customizing and Programming

Chapter 3. How to Add a Message to Automation

SA z/OS exploits the NetView automation table (AT) technique. The ATs contain

traps for messages that must be automated. If an action must be taken in response

to a message, this action needs to be defined in the customization dialog. A related

AT entry is required to call a routine to execute the action.

SA z/OS automatically generates the ATs.

Conceptual Overview

This section gives a brief overview of the main aspects of SA z/OS message

automation:

v A list of messages that are involved in SA z/OS automation is generated by

SA z/OS. This can then be used as an MPF member.

v Message automation is a NetView AT-based process.

v ATs are generated by SA z/OS.

v AT entries will be created for messages where actions are defined for.

v Messages can be defined to indicate a status change.

v Messages can be marked to be ignored or suppressed, thus not generating an AT

entry.

v Messages can be marked to be captured for further display

v Most AT entries trap messages independent of the issuing product instance,

component or module.

v Predefined AT entries can be changed.

v You can define the AT scope to determine precisely if and what kind of ATs are

built.

v The following action codes are available in message processing:

CMD (C)

Allows you to enter a command in response to a message.

REP (R)

Allows you to enter a reply in response to a message.

CODE (K)

Allows you to enter codes which can be checked within a message to

prompt a certain command.

USER (U)

Allows you to enter any user data in keyword-data pairs.

AUTO (A)

Allows you to enter a resource status indicated by a message.

OVR (O)

Allows you to override a default AT entry that is generated for a

message.

Note that AUTO cannot be defined in combination with OVR.

© Copyright IBM Corp. 1996, 2005 25

|

|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|

Defining Actions for Messages

AT entries are generated by SA z/OS for messages that are defined for APL, MTR

or MVC policy entries and that have actions (for example, CMD or REPLY)

defined.

Note: Throughout this chapter, whenever the term policy entry is used, it implies

either an APL, MTR or MVC policy entry, unless otherwise stated.

There are two kinds of messages that influence the build of AT entries:

v Known messages — These are messages where SA z/OS provides specific

automation that is unique for the given message (for example, IAT3011). Thus

this message is known to SA z/OS). A single AT entry is predefined just for this

known message.

v Unknown messages — These are messages where SA z/OS provides automation

that is generic for messages that are unknown to SA z/OS. SA z/OS maintains

wildcard message automation for those messages not having a specific

automation defined. (For example, message IAT9999 is unknown to SA z/OS.) A

wildcard niche within an AT is the place where unknown messages are placed.

The first step in defining actions is to select a policy entry from the Policy Selection

panel. From its policy selection list, select the MESSAGES/USER DATA policy

item. This leads to the Message Processing panel, where you can then define

actions for message IDs. If an AT entry is built according to the action, it will only

check for the message ID by default, independently of the product instance,

component or module issuing that message. If this is not intended, you can use the

OVR action (see “Defining OVR Actions” on page 28).

There are many messages that are known to SA z/OS. For these messages specific

AT entries are predefined by SA z/OS. Here, the action defined in the

customization dialog does not determine the AT entry. If you want to know what

kind of AT entry is built for automating a particular message, you can check the

generated AT fragment member after generating the AT.

Note: SA z/OS symbols (AOCCLONEs) and System Symbols should not be used

for or within message IDs. Otherwise the correct sequence of entries within

a generated AT cannot be guaranteed.

Defining CMD or REP Actions

Define a CMD or REP action for message XYZ222I in the CMD Processing or

Reply Processing panel, where XYZ222I is a message that is unknown to SA z/OS.

This definition leads to the creation of an AT entry for message XYZ222I using the

generic routine ISSUECMD or ISSUEREP after the next Configuration Build

process.

Note that for MVC entries, unknown messages will have the parameter

SYSTEMMSG=YES added to the SA z/OS generic routine (ISSUECMD or ISSUEREP).If

the same message ID is defined for MVC and APL, the APL entry will cause the

AT entry to be generated. No additional AT entry is built for the message ID that

is defined for MVC.

Defining Actions for Messages

26 System Automation for z/OS: Customizing and Programming

|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

Defining AUTO Actions

Defining Status Messages

Many messages that indicate a state change of APL, MTR, and MVC resources are

known to SA z/OS. The related AT entries are already predefined. For these

messages there is no need to define them in the policy database.

If necessary, you can define additional application messages that indicate a state

change. You must do this for non-IBM or user application messages that indicate a

state change. The AUTO action therefore leads to a selection panel that lists

resource states.

The Status Message Report shows all Status Messages. It lists all user-defined and

predefined Status Messages and their associated statuses.

Status messages can be defined for MVC policy entries as well as for APL and

MTR instances or classes. The following description is for an UP status message

based on an APL resource definition.

As an example, define an UP state indicated by message XYZ444I in the Message

Type Selection panel. Here, XYZ444I is a message that is unknown to SA z/OS.

This definition leads to the creation of an AT entry for message XYZ444I using the

generic routine ACTIVMSG after the next Configuration Build process.

Notes:

1. There are certain messages that can be used as Status Messages, but for some

messages, CODE definitions are required (for example, IEF450I, HASP095, etc.).

TERMMSG will set the status depending on these definitions. For more details

about TERMMSG, see IBM Tivoli System Automation for z/OS Programmer’s

Reference.

2. The status (AUTO) action is mutually exclusive with the OVR action.

Defining Captured Messages

If messages only need to be captured to be displayed but not automated, the

AUTO selection panel provides an additional CAPTURE function.

Messages that have a CMD or REPLY action defined for them or that are defined

as Status Message are implicitly captured. There is no need to explicitly define

these messages to be captured.

Define message XYZ555I to be captured in the Message Type Selection panel. Here

XYZ555I is a message that is unknown to SA z/OS.

This definition leads to the creation of an AT entry for message XYZ555I using the

generic routine AOFCPMSG after the next Configuration Build process.

Note: The status (AUTO) action is mutually exclusive with the OVR action.

Preventing the Building of AT Entries

Inhibiting AT and MPFLSTSA Entries: Using the AUTO action you can select

IGNORE or SUPPRESS for certain messages:

v Messages that are marked IGNORE will not cause an AT entry or an MPFLSTSA

entry to be generated.

Defining Actions for Messages

Chapter 3. How to Add a Message to Automation 27

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

v Messages that are marked SUPPRESS will not cause an AT entry to be

generated. An MPFLSTSA entry is generated with the options

SUP(YES),AUTO(NO).

IGNORE and SUPPRESS overrule other actions (except OVR) that are defined for

the same message, even though these actions are defined on other PDB entries.

The MPFLSTSA member is built for each PDB. Because IGNORE and SUPPRESS

affect the build of the MPFLSTSA member, these definitions also have a PDB-wide

scope.

For example, if the following definitions are made within the same PDB then no

MPFLSTSA entry is generated for ABC111I even though this entry is required for

SYSPLEX1 or SYS1:

v The AT scope is set to SYSPLEX or SYSTEM

v A CMD is defined for message ABC111I on APL1 that is linked to SYS1 within

SYSPLEX1

v IGNORE is defined for message ABC111I on APL2 that is linked to SYS2 within

SYSPLEX2

AT Entries That Are Never Built: There are many keywords that can be entered

as message IDs in the Customization Dialog (for example, message

MVSDUMPFULL). No AT entry is built for these keywords. A list of these

keywords is given in “Restricted Message IDs” on page 234.

Defining OVR Actions

You can apply an OVR action in the Message Processing panel to a message ID for

an APL instance, APL class or an MVC PDB entry.

The OVR action allows you to preview an AT entry as it would be built according

to the actions that are defined for a message of an APL or MVC policy entry.

If you are using the OVR action to preview an AT entry for a message that is

unknown to SA z/OS and where no other action (CMD, REPLY or AUTO) is

defined, then no AT entry is predefined. The condition and action fields of the

Automation Processing panel are empty.

The OVR action allows you to override an AT entry. The condition and action

statements of an AT entry can be changed. Action statements can be added or

deleted. Deleting the condition statement will remove the AT override.

AT entries cannot be changed by an OVR action if an AT entry is forced by

SA z/OS or if there is already an AUTO action defined for that message on the

same policy entry.

You can define ’&SUBSJOB’ as part of an AT condition statement that will be

replaced by the job name of the given policy entry when building the AT. This is

very valuable when defining an AT entry for an APL class. Then each APL instance

linked to that class will have its own AT entry with its job name in the AT

condition statement. Checking for the job name may also be required if different

instances of a product issue the same message but you want only certain jobs to be

affected by that message.

SA z/OS symbols (AOCCLONEs) and system symbols may be contained in an AT

override definition. They will be resolved at AT load time.

Defining Actions for Messages

28 System Automation for z/OS: Customizing and Programming

|
|
|

|
|
|

Defining an OVR action for message XYZ666I (that is unknown to SA z/OS) in the

Message Processing panel leads to the Automation Processing panel. Here you can

either change a predefined AT entry that then becomes a user-defined AT entry, or,

if no predefinitions are available, you can define a user specific AT entry. If

message XYZ666I should be trapped, enter MSGID = ’XYZ666I’ in the NetView AT

condition field. If routine MYREXX1 should be called in that case, enter for

example:

EXEC(CMD(’MYREXX1’)ROUTE(ONE %AOFOPWTORS%))

This definition leads to the creation of an AT entry for message XYZ666I using the

routine MYREXX1 after the next Configuration Build process.

Note: The status (AUTO) action is mutually exclusive with the OVR action.

Defining the NetView AT Scope

In the Edit Policy Data Base Entry panel in the customization dialog, the entry

field AT Scope allows you to define the scope of a NetView Automation Table.

Valid AT scope values are:

NONE

No AT or MPFLSTSA member will be built at configuration build time.

Use this value if you want to maintain ATs yourself.

ENTERPRISE

One AT will be built to be shared within the whole enterprise.

SYSPLEX

One AT will be built to be shared within a sysplex.

SYSTEM

One AT will be built for each system of the selected PDB. (This is the

default.)

 If the AT scope changes from NONE to SYSTEM, a build of type ALL is

required.

If the AT Scope is set to SYSPLEX, a standalone system must be linked to a sysplex

group otherwise no AT is built for that system.

The AT Scope for MPFLSTSA is always ENTERPRISE or NONE.

Build

Once you have made all the message definitions you need, you can start the

Configuration Build Process to build the configuration files containing the NetView

Automation Table. For more information about the build function, refer to IBM

Tivoli System Automation for z/OS Defining Automation Policy.

When building the NetView ATs for the first time, the Build Type field in the Build

Options section of the Build Parameters panel must be set to ALL, for example:

 Build options:

 Output Data Set ’OPER.OUTPUT.CONFIG’

 Mode ONLINE (ONLINE BATCH)

 Type ALL (MODIFIED ALL)

 Configuration NORMAL (NORMAL ALTERNATE)

The AT fragments and the MPFLSTSA member will be built into the configuration

data output data set.

Defining Actions for Messages

Chapter 3. How to Add a Message to Automation 29

|
|

|

This may require more space than you have allocated for the output data set. Thus

enlarging the output data set may be required.

This also applies to the DSILIST data set where the AT listings are stored.

It is recommended that you copy the build output to a Generation Data Group

(GDG) to avoid token mismatch conditions and AT load errors.

NetView Automation Table Build Concept

This section covers the following:

v When is an AT built? (See “When Is an AT Built?.”)

v Predefined message automation (see “Predefined Message Automation” on page

31)

v The AT entry sequence (see “AT Entry Sequence” on page 32)

When Is an AT Built?

An AT is built depending on the following conditions:

v If the AT Scope has not been set to NONE. (If it has been set to NONE then

neither an AT nor an MPF list is built.)

v Depending on the Build Type, ATs will either always be built or only be built in

the case of a policy modification:

ALL All ATs will be built.

MOD Only ATs are built where changes have been made in the PDB that affect

those ATs.
v For any Build Option:

1. Build a complete enterprise

2. Build sysplex group or standalone system

3. Build entry type or entry name (if changes have been made to the AT, a

complete enterprise build is made)

The following changes may affect the AT, thus causing an AT rebuild:

v Defining the first CMD, REPLY, CODE, USER, AUTO, or OVR action for a

message ID, or deleting the last action

v Changing or deleting a message ID that has at least one of the above actions

defined for it

v Changing AUTO or OVR definitions

v Changing the link between an APL, MVC, or MTR and a system

v Changing the link between an APL instance and a class

v Installing a new version of the internal AT build template (when applying

service)

v Changing the job name

v Changing the AT Scope to SYSTEM, SYSPLEX or ENTERPRISE

These changes only affect the AT build if the APL, MVC, or MTR entries are linked

to a system.

Note: If the MPF Header of Footer definitions have changed, an automatic AT

build is not performed.

Build

30 System Automation for z/OS: Customizing and Programming

|
|

|
|

|
|

|

|
|

|
|

Predefined Message Automation

SA z/OS provides predefined message automation for messages that are known to

SA z/OS.

The type of AT entry defines whether an AT entry is built for a particular message.

There are three AT entry types:

v Forced AT entries—Always builds an AT entry. Modifications are not allowed.

See “FORCED AT Entry Type” on page 231.

v Recommended AT entries—Always builds an AT entry. Modifications are allowed.

See “RECOMMENDED AT Entry Type” on page 231.

v Conditional AT entries—Only builds an AT entry if the message is defined in the

Customization Dialog.

CODE and USER actions generate AT entries only for those messages that are

known to SA z/OS. See “CONDITIONAL AT Entry Type” on page 232.

There are also other specialized AT entries (for example, for message IEF403I) that:

v Are always built because they are critical to the structure of the AT, see “AT

Entries Built for Messages Known to SA z/OS” and “AT Entries for SA z/OS

Internal Messages”

v Are never built because they contain SA z/OS keywords, see “AT Entries That

Are Never Built” on page 28

v Are related to specialized activities, see “AT Entry Specialties”

v Have multiple actions defined per policy database entry, see “AT Entries for

Messages That Have Multiple Actions Defined” on page 32

AT Entries Built for Messages Known to SA z/OS

A messages that is known to SA z/OS will always cause an AT entry to be

generated if it is defined as a forced entry. These entries are critical to SA z/OS for

proper functioning. In certain cases CMD and REPLY actions are allowed and will

cause an additional (optional) AT entry action statement to be built.

There are many forced and recommended AT entries that require a CMD, REPLY,

CODE, or USER action to be defined on the related message ID in the policy. Note

that no warning is issued if an action is defined for a message where a forced or

recommended AT entry does not honor the action. See also “Other Forced AT

Entries” on page 234.

AT Entries for SA z/OS Internal Messages

SA z/OS predefines automation for specific internal AOF, HSA, ING, EVE, EVI

and EVJ messages and builds the corresponding AT entries. For non-predefined

SA z/OS internal messages (for example, AOF*, HSA*, ING*, EVE*, EVI*, EVJ*),

AT entries will be created that will not honor a CMD, REPLY, CODE, or USER

action. These entries are created to avoid any interference with SA z/OS

automation.

AT Entry Specialties

Defining message IEF403I, IEF404I, or IEF450I as a status message for a resource

will generate an AT statement that contains a check for the job name in the AT

statement condition.

Note: It is not recommended that you define the IEF403I message as a generic UP

message under MVC, because this may cause the resource to be placed in an

UP state at a time that is not accurate. Dependent resources may start too

early and may fail.

NetView Automation Table Build Concept

Chapter 3. How to Add a Message to Automation 31

|
|

|

|
|
|
|

|

|

AT Entries for Messages That Have Multiple Actions Defined

For certain messages there may be multiple actions defined for a single PDB entry

or for several PDB entries. This influences the way ATs are built:

If an Override (OVR) action is defined for any policy entry, a corresponding AT

entry is created at build time.

If there is an OVR action in conflict with a Type/Status Selection (AUTO action)

for one message that is defined on several application instances, the AUTO action

will cause a conflict warning to be issued at build time.

For messages known to SA z/OS, an AT entry is created as predefined by SA z/OS

and not according to the AUTO, CMD, REPLY, CODE, or USER actions that may

be defined.

For messages unknown to SA z/OS, then the behavior is as follows:

v If an AUTO action has been defined together with a CMD, REPLY, CODE, or

USER action for the same message ID, then an AT entry is created honoring the

AUTO action.

Note: The generic routines (ACTIVMSG, HALTMSG, TERMMSG) check for

optional commands or replies that are to be issued.

v If there is a CMD action defined together with a REPLY action for the same

message ID, then an AT entry is created to issue a reply and then the command.

v If there is a CMD or REPLY action defined together with a CODE or USER

action for the same message ID, then an AT entry is created to issue a command

or reply.

v If there is a CODE action defined together with a USER action for the same

message ID, or if there are only CODE or only USER actions defined for the

same message ID, then no AT entry is built. If an AT entry is needed, then an

override is required.

AT Entry Sequence

The sequence of AT entries for messages that are known to SA z/OS cannot be

changed.

The location of wildcard niches (AT entries for unknown message IDs) cannot be

changed.

AT entries in the same wildcard niche are sorted in a particular sequence, first by

action and then by policy entry type. AT entries are created in order for the

following actions:

1. OVR actions, then

2. AUTO actions, then

3. CMD or REPLY actions

Then the next level of sequencing within each of the above actions depends on the

policy entry type:

1. APL instances, then

2. APL classes, then

3. MVS components (MVC)

NetView Automation Table Build Concept

32 System Automation for z/OS: Customizing and Programming

Load

After the NetView automation tables have been generated using the customization

dialog, they are ready to be loaded. INGAMS REFRESH can be used to refresh the

complete SA z/OS configuration, that is, the Automation Manager Configuration

(AMC), the agent’s Automation Control Files (ACFs) and the related NetView

Automation Tables (ATs) as they are defined in the SA z/OS Policy Database.

Alternatively, ATs can be loaded using ATLOAD.

Enabling Message Automation for the Automation Agent

READ authority must be given to AUTO1, AUTO2 and user tasks that will load the

AT.

You can define those ATs in the PDB that are to be loaded by SA z/OS at

initialization. Only those ATs defined in the PDB in entry type SYS, policy item

SYSTEM INFO are refreshed.

Listing ATs

The DSILIST data set is used to store the AT listings, so if you want to view the

listing of INGMSG01, issue the command:

br dsilist.ingmsg01

An AT listing is produced when SA z/OS loads an AT. You can use the advanced

automation option (AAO) AOFMATLISTING to suppress listing by setting it to

zero (see Appendix A, “Global Variables,” on page 201).

The AT can be reloaded at configuration refresh (INGAMS, ACF ATLOAD)

Because of this you should:

v Use a separate DSILIST data set for each NetView

v Allocate the DSILIST data set as a PDSE in order to prevent Sx37 errors

A Guide to SA z/OS Automation Tables

Automation Table Structure

SA z/OS provides a ready-to-use AT, INGMSG01. To activate the AT, perform the

following steps:

1. Define the AT member INGMSG01 in the SYSTEM INFO policy of the system

in the customization dialogs

2. Build the automation configuration files

3. Refresh the configuration using INGAMS REFRESH

4. Restart NetView with the new configuration

The SA z/OS AT contains:

v All entries for the SA z/OS basic automation

v Entries for subsystems and resources, such as MVS messages, JES2, JES3, OMVS,

VTAM, TSO, NetView SSI, NetView Application, Automation Manager, SysOps,

ProcOps, I/O Ops, SA z/OS Product Automation, OMEGAMON, RODM,

GMFHS, TCP/IP, OMPROUTE, RESOLVER, ZFS, RMF, RMF Monitor III, VLF,

Load

Chapter 3. How to Add a Message to Automation 33

|

|
|
|

|

|
|

|

|
|
|

|

|

|

|

|
|

|

DLF, LLA, APPC, ASCH, TWS, RACF®, DFHSM, DFRMM, MQ, DB2®, IMS,

FDR, CICS®, CMAS, IRLM, NFS Server, TPX (Terminal Productivity Executive),

WebSphere®, LDAP, etc.

v AT entries for messages that are defined in the PDB

v User include fragments

You do not have to customize this AT. All unused entries are disabled

automatically according to the configuration that you use. If you want to have

additional entries that are valid only for your environment, you can use either a

separate AT (specified in the customization dialog) or use one of the user includes.

Figure 6 shows the structure of the AT:

 For information about how to use the INCLUDE fragments that SA z/OS

provides, refer to “Using SA z/OS %INCLUDE Fragments” on page 35.

The following fragments are used by the AT:

Synonym Definitions

There is one fragment, AOFMSGSY, that is used to initialize the various

synonyms used throughout the rest of the table. SA z/OS requires the

synonyms to be suitably customized to reflect your environment.

SA z/OS Functional Definitions

These definitions (located in the fragment that is loaded as INGMSG02)

contain automation table statements for specific functions of SA z/OS. You

should not change these statements. Any modifications can be made in

INGMSGU1.

Master Automation Tables

This section discusses the three master automation tables that SA z/OS provides.

INGMSG00: The automation table INGMSG00 is used for SA z/OS initialization.

INGMSG00 should not have be modified by the user.

This table makes use of the synonyms defined in AOFMSGSY.

INGMSG01: INGMSG01 is suitable for use as a primary automation table.

INGMSG01 should not be included into any other table but should be activated as

a separate table.

AOFMSGST: This is a table suitable for a NetView with a SA z/OS Satellite

installed.

INGMSG01

 │

 │

 │──── %INCLUDE AOFMSGSY

 │

 │──── %INCLUDE INGMSGU1

 │

 └──── %INCLUDE INGMSGU2

Figure 6. AT Structure

Automation Table Structure

34 System Automation for z/OS: Customizing and Programming

Integrating Automation Tables

If you have any user-written automation table statements that you still want to

use, you must now combine your primary table with SA z/OS’s. There are several

approaches to achieve this.

Refer to the NetView documentation for more information on how to use NetView

automation tables.

Multiple Master Automation Tables

Besides INGMSG01, you can specify multiple additional NetView automation

tables for a system in the customization dialog. The tables are concatenated as

entered in this panel and processed in this concatenation order.

You need not modify the INGMSG01 automation table or any of the fragments,

except AOFMSGSY. It is easy to maintain SA z/OS automation table fragments.

However, you have to watch for new messages. It is easy to maintain your entries,

because they are independent from SA z/OS entries.

Using SA z/OS %INCLUDE Fragments

INGMSG01 is the master include member. It provides some message suppression

that is necessary to prevent mismatches and duplicate automation before the first

%INCLUDE.

The fragment INGMSGU1 can be used for user entries. These entries have

precedence over the SA z/OS entries. The default INGMSGU1 is an empty

member.

The fragment INGMSGU2 can be used for all entries that SA z/OS does not

provide any entries for. The default INGMSGU2 is an empty member. During ACF

COLD/WARM start the AT (or ATs) is (or are) loaded and write a listing to the

DSILIST data set. This enables the use of the NetView AUTOMAN command to

monitor and manage the AT (or ATs). Make sure that the size of your DSILIST data

set is sufficient to store these listings. Without these listings you can just

monitor/manage the ATs using AUTOTBL. It is recommended that you define

your DSILIST data set as a PDSE so that regular data set compression is not

required. Also you should make sure that the DSILIST DSN is unique to your

NetView procedure.

An example output of AUTOTBL STATUS:

BNH361I THE AUTOMATION TABLE CONSISTS OF THE FOLLOWING LIST OF MEMBERS:

AUTO2 COMPLETED INSERT FOR TABLE #1: INGMSG01 AT 04/16/02 19:34:59

AUTO2 COMPLETED INSERT FOR TABLE #2: HAIMSG01 AT 04/16/02 19:35:00

IPSNO

BNH363I THE AUTOMATION TABLE CONTAINS THE FOLLOWING DISABLED STATEMENTS:

TABLE: INGMSG01 INCLUDE: __n/a___ GROUP : INGCICS

TABLE: INGMSG01 INCLUDE: __n/a___ GROUP : INGIMAGE

TABLE: INGMSG01 INCLUDE: __n/a___ GROUP : INGIMS

TABLE: INGMSG01 INCLUDE: __n/a___ GROUP : INGJES3

TABLE: INGMSG01 INCLUDE: __n/a___ GROUP : INGOPC

An example of the AUTOMAN panel:

Integrating Automation Tables

Chapter 3. How to Add a Message to Automation 35

EZLKATGB AUTOMATION TABLE MANAGEMENT

MEMBER TYPE LABEL/BLOCK/GROUP NAME(S) STATUS NUMBER OF STATEMENTS

-------- ----- ------------------------- -------- --------------------

INGMSG02 GROUP INGCICS DISABLED 222

INGMSG02 GROUP INGDB2 ENABLED 120

INGMSG02 GROUP INGIMAGE DISABLED 1

INGMSG02 GROUP INGIMS DISABLED 107

INGMSG02 GROUP INGJES2 ENABLED 1

INGMSG02 GROUP INGJES3 DISABLED 1

INGMSG02 GROUP INGOPC DISABLED 10

INGMSG02 GROUP INGUSS ENABLED 1

In this example the configuration loaded does not use the IMS, CICS, OPC product

automation and the IXC102A automation. It uses JES2, DB2 and USS automation.

Generic Synonyms—AOFMSGSY

This automation table fragment contains a number of synonyms that must be

appropriately set. It is used in most master automation tables to set up the

environmental parameters for the other fragments. The AOFMSGSY member is

supplied by SA z/OS (in the SINGNPRM data set). You must customize it for each

of your systems. The customized copy should be placed in the domain-specific

data set for that system.

Note that many values in this table fragment are enclosed in triple single quotation

marks. This means that the value of the synonym is the value entered surrounded

by a single set of single quotation marks. This is necessary so that the value is

treated as a literal and not an automation table variable.

 Synonym Usage and Default

%AOFALWAYSACTION% This synonym contains the action statement used for all the

messages within a Begin-End block that SA z/OS does not

trigger any action for.

Default: NULL

The default is that no action will be taken and the message

does not continue to search for further matches within the

same AT.

%AOFDOM% This synonym should contain the domain ID of the SA z/OS

NetView on the system that it is automating. The synonym is

used to screen messages to prevent the SA z/OS on this

machine from reacting to a message that originated on

another machine. If not set correctly, your automation will

fail.

Default: &DOMAIN.

This is a default domain name used in a number of the

samples.

Integrating Automation Tables

36 System Automation for z/OS: Customizing and Programming

Synonym Usage and Default

%AOFSYS% This synonym should contain the system name used in the

last IPL of the system. It is used to screen messages to

prevent the SA z/OS on this machine from reacting to

events that have occurred on other machines. It is important

if you are running on a JES3 global or in a sysplex with

EMCS consoles. If not set correctly, your automation will fail.

Default: &SYSNAME.

This is a default system name used in a number of the

samples.

%AOFSIRTASK% NetView has a CNMCSSIR task that handles

communications between the main NetView task and its SSI

address space. This synonym should be set to the name of

the task. If the synonym is not set properly, SA z/OS fails to

initialize.

Default: &DOMAIN.SIR

%AOFARMPPI% This synonym should contain the name of the NetView

autotask that is running the PPI interface from SA z/OS to

z/OS. It is used to route commands from the NetView

automation table to the autotask.

Default: AOFARCAT

%AOFGMFHSWAIT% The time interval SA z/OS waits after GMFHS initialization

is complete before issuing the command to update the

RODM with the current application automation states.

Following the issuing of message DUI4003I GMFHS

NETWORK CONFIGURATION INITIALIZED

SUCCESSFULLY, GMFHS resets the color of all SA z/OS

icons to grey (unknown). To set the SA z/OS icons’ color to

the current automation states after the initialization of

GMFHS, SA z/OS must wait and issue the update

command AFTER GMFHS has reset the colors to grey.

Default: 00:02:00

SA z/OS Message Presentation—AOFMSGSY

The presentation of SA z/OS messages (prefixed with AOF, ING, HSA, EVJ, EVE

and EVI) under NetView is controlled by the automation table. This uses a number

of synonyms and task globals indicating your message display characteristics. The

following synonyms determine the display characteristics for each type of message.

There is one set for the normal presentation of the message (AOFNORMx) and a

second set for the held presentation (AOFHOLDx).

 Synonym Usage and Default

%AOFHOLDI% This synonym defines the actions taken for SA z/OS

information (type I) messages that are held on your NCCF

console.

Default: HOLD(Y) COLOR(GRE) XHILITE(REV)

This:

v Ensures that the message is held

v Causes the message to be displayed in reverse video green

Generic Synonyms—AOFMSGSY

Chapter 3. How to Add a Message to Automation 37

Synonym Usage and Default

%AOFHOLDA% This synonym defines the actions taken for SA z/OS

immediate action (type A) messages that are held on your

NCCF console. As a rule, you should specify HOLD(Y) in

the action.

Default: HOLD(Y) COLOR(RED) XHILITE(REV) BEEP(Y)

This:

v Ensures that the message is held

v Causes the message to be displayed in reverse video red

v Sounds the terminal alarm when the message is displayed

%AOFHOLDD% This synonym defines the actions taken for SA z/OS

decision (type D) messages that are held on your NCCF

console. As a rule, you should specify HOLD(Y) in the

action.

Default: HOLD(Y) COLOR(WHI) XHILITE(REV) BEEP(Y)

This:

v Ensures that the message is held

v Causes the message to be displayed in reverse video white

v Sounds the terminal alarm when the message is displayed

%AOFHOLDE% This synonym defines the actions taken for SA z/OS

eventual action (type E) messages that are held on your

NCCF console. As a rule, you should specify HOLD(Y) in

the action.

Default: HOLD(Y) COLOR(YEL) XHILITE(REV) BEEP(Y)

This:

v Ensures that the message is held

v Causes the message to be displayed in reverse video

yellow

v Sounds the terminal alarm when the message is displayed

%AOFHOLDW% This synonym defines the actions taken for SA z/OS wait

state (type W) messages that are held on your NCCF

console. As a rule, you should specify HOLD(Y) in the

action.

Default: HOLD(Y) COLOR(PIN) XHILITE(REV) BEEP(Y)

This:

v Ensures that the message is held

v Causes the message to be displayed in reverse video pink

v Sounds the terminal alarm when the message is displayed

%AOFNORMI% This synonym defines the actions taken for SA z/OS

information (type I) messages that are not held on your

NCCF console. As a rule, you should not specify HOLD(Y)

in the action.

Default: COLOR(GRE)

This:

v Ensures that the message is not held

v Causes the message to be displayed in green

SA z/OS Message Presentation—AOFMSGSY

38 System Automation for z/OS: Customizing and Programming

|

|

|

|

Synonym Usage and Default

%AOFNORMA% This synonym defines the actions taken for SA z/OS

Immediate Action (type A) messages that are held on your

NCCF console. As a rule, you should not specify HOLD(Y)

in the action.

Default: COLOR(YEL) XHILITE(REV) BEEP(Y)

This:

v Ensures that the message is held

v Causes the message to be displayed in yellow

v Sounds the terminal alarm when the message is displayed

%AOFNORMD% This synonym defines the actions taken for SA z/OS

Decision (type D) messages that are held on your NCCF

console. You may find it beneficial to force these messages to

be held.

Default: COLOR(WHI) XHILITE(BLI)

This:

v Ensures that the message is held

v Causes the message to be displayed in blinking white

%AOFNORME% This synonym defines the actions taken for SA z/OS

Eventual Action (type E) messages that are not held on your

NCCF console. As a rule, you should not specify HOLD(Y)

in the action.

Default: COLOR(YEL)

This:

v Ensures that the message is not held

v Causes the message to be displayed in yellow

%AOFNORMW% This synonym defines the actions taken for SA z/OS Wait

State (type W) messages that are held on your NCCF

console. You may find it beneficial to force these messages to

be held.

Default: HOLD(Y) COLOR(PIN) XHILITE(REV) BEEP(Y)

This:

v Ensures that the message is held

v Causes the message to be displayed in reverse video pink

v Sounds the terminal alarm when the message is displayeD

Operator Cascades—AOFMSGSY

The next set of synonyms defines a series of operator cascades. A cascade is basically

a list of automation operators used in many of the fragments to route commands.

If %CASCADE% is defined as a synonym for ’AUTMON AUTBASE AUTO1’ and you route a

command to it with ROUTE (ONE %CASCADE%) on an EXEC statement, the command is

run on the first autotask in the cascade that is logged on. This provides you with a

flexible, controllable means of providing backup processing tasks in case one of

your normal tasks is unavailable.

SA z/OS Message Presentation—AOFMSGSY

Chapter 3. How to Add a Message to Automation 39

|

|

|

|

|

|

|

|

Synonym Usage and Default

%AOFLOPAUTOx% This cascade defines the actions taken for SA z/OS

information (type I) messages that are being held on your

NCCF console. Given the number of informational messages

that SA z/OS produces you may find it beneficial HOLD(N)

to stop them from being held even if the user has asked for

them to be held.

Default: ’’AUTOx’’

%AOFOPAUTO1% This cascade is used to route commands to AUTO1. If you

have renamed AUTO1 you must change the synonym.

Default: AUTO1

There is no backup for AUTO1. If it fails when it is needed,

many other things will probably fail as well.

%AOFOPAUTO2 This cascade is used to route commands to AUTO2. If you

have renamed AUTO2 you must change this synonym.

Default: AUTO2 AUTO1

If AUTO2 is not active, AUTO1 does its work.

%AOFOPBASEOPER% This cascade is used to send commands to BASEOPER. If

you are not using the standard names for SA z/OS

autotasks you must change this synonym. BASEOPER is

mainly defined as a fallback operator and has very little

work directly routed to it.

Default: AUTBASE AUTO1

AUTBASE is the operator ID that SA z/OS uses for

BASEOPER in its other samples. If AUTBASE is not active,

AUTO1 is tried.

%AOFOPRPCOPER% This cascade is used for XCF communication management. If

you are not using the standard names for SA z/OS

autotasks you must change this synonym.

Default: AUTRPC AUTSYS AUTBASE AUTO1

%AOFOPSYSOPER% This cascade is used to send commands to SYSOPER. If you

are not using the standard names for SA z/OS autotasks

you must change this synonym. SYSOPER is mainly defined

as a fallback operator and has very little work directly

routed to it.

Default: AUTSYS AUTBASE AUTO1

AUTSYS is the operator ID that SA z/OS uses for SYSOPER

in its other samples.

%AOFOPMSGOPER% This cascade is used to send commands to MSGOPER. If you

are not using the standard names for SA z/OS autotasks

you must change this synonym. MSGOPER is mainly

defined to respond to miscellaneous messages.

Default: AUTMSG AUTSYS AUTBASE AUTO1

AUTMSG is the operator ID that SA z/OS uses for

MSGOPER in its other samples.

Operator Cascades—AOFMSGSY

40 System Automation for z/OS: Customizing and Programming

Synonym Usage and Default

%AOFOPNETOPER% This cascade is used to send commands to NETOPER. If you

are not using the standard names for SA z/OS autotasks

you must change this synonym. NETOPER is defined for

VTAM automation.

Default: AUTNET1 AUTNET2 AUTSYS AUTBASE AUTO1

AUTNET1 and AUTNET2 are the operator IDs that SA z/OS

uses for NETOPER in its other samples. NETOPER is the

only sample automation function to have a backup defined

in the samples.

%AOFOPJESOPER% This cascade is used to send commands to JESOPER. If you

are not using the standard names for SA z/OS autotasks

you must change this synonym. JESOPER is mainly defined

for JES automation.

Default: AUTJES AUTSYS AUTBASE AUTO1

AUTJES is the operator ID that SA z/OS uses for JESOPER

in its other samples.

%AOFOPMONOPER% This cascade is used to send commands to MONOPER. If

you are not using the standard names for SA z/OS

autotasks you must change this synonym. MONOPER is

used for regular monitoring and subsystem startups.

Default: AUTMON AUTSYS AUTBASE AUTO1

AUTMON is the operator ID that SA z/OS uses for

MONOPER in its other samples.

%AOFOPRECOPER% This cascade is used to send commands to RECOPER. If you

are not using the standard names for SA z/OS autotasks

you must change this synonym. RECOPER is used for

recovery processing.

Default: AUTREC AUTSYS AUTBASE AUTO1

AUTREC is the operator ID that SA z/OS uses for

RECOPER in its other samples.

%AOFOPSHUTOPER% This cascade is used to send commands to SHUTOPER. If

you are not using the standard names for SA z/OS

autotasks you must change this synonym. SHUTOPER

coordinates automated shutdowns.

Default: AUTSHUT AUTSYS AUTBASE AUTO1

AUTSHUT is the operator ID that SA z/OS uses for

SHUTOPER in its other samples.

Operator Cascades—AOFMSGSY

Chapter 3. How to Add a Message to Automation 41

Synonym Usage and Default

%AOFOPGSSOPER% This cascade is used to send commands to GSSOPER. If you

are not using the standard names for SA z/OS autotasks

you must change this synonym. GSSOPER is used for

generic subsystem automation.

Default: * AUTGSS AUTSYS AUTBASE AUTO1

AUTGSS is the operator ID that SA z/OS uses for GSSOPER

in its other samples.

If you want to turn off the ″ASSIGN BY JOBNAME″ feature,

that is, the advanced automation CGLOBAL variable

AOF_ASSIGN_JOBNAME (see Appendix A, “Global

Variables,” on page 201) has been set to 0, you must remove

the asterisk (*), because this may cause serialization

problems.

Note: NetView’s ASSIGN-BY-JOBNAME command that

occurs prior to the automation-table processing will only

affect messages that are associated with an MVS job name.

%AOFOPWTORS% This cascade is used to route commands concerning WTORS.

If you are not using the standard names for SA z/OS

autotasks you must change this synonym. Its use ensures

that all WTOR processing is done on the same task and this

is serialized.

Default: AUTSYS AUTBASE AUTO1

This specifies that AUTSYS is to do all the WTOR

processing.

%AOFOPGATOPER% This cascade is used to route commands to this domain’s

gateway autotask. As the autotask name contains the domain

ID you must modify this synonym.

Default: GATAOF01

AOF01 is the default domain used in the other samples.

There is no backup as the gateway CLISTs expect to be

running on GATOPER.

TEC Notification—AOFMSGSY

These synonyms are being used for notification of the Tivoli Enterprise Console®

(TEC).

 Synonym Usage and Default

%AOFTECTASKQ% This is the name of the autotask for sending SA z/OS events

to the Tivoli Enterprise Console (TEC) with quotes.

Default: ’’AUTOTEC’’

%AOFTECTASK% This is the name of the autotask for sending SA z/OS events

to the Tivoli Enterprise Console (TEC) without quotes.

AOFTECTASK and AOFTECTASKQ must contain the same

name (with and without quotes).

Default: AUTOTEC

Operator Cascades—AOFMSGSY

42 System Automation for z/OS: Customizing and Programming

Synonym Usage and Default

%AOFTECPPI% This is the NetView PPI Receiver ID of the NetView message

adapter (with quotes).

Default: ’’IHSATEC’’

%AOFTECMODE% Event generation mode (with quotes). Possible values are:

LOCAL

The NetView message adapter is running on this

system. LOCAL is valid for the local configuration

and for the focal point in the distributed

configuration.

REMOTE

The NetView message adapter is running on a

remote automation focal point. SA z/OS messages

will be generated on this target system and

forwarded to a remote automation focal point

system. There is no local NetView message adapter

that can process SA z/OS messages. REMOTE is

valid for the target system in a distributed

configuration.

Default: ’’LOCAL’’

SA z/OS Topology Manager for NMC—AOFMSGST

These synonyms are used and defined in the AOFMSGST fragment.

 Synonym Usage and Default

%AOFOPTOPOMGR% This is the name of the autotask that the SA z/OS topology

manager runs on this system.

Default: &DOMAIN.TPO

%AOFINITOPOCMD% This is the command issued to initialize the SA z/OS

topology manager.

Default: INGTOPO INIT &DOMAIN.TPO

%AOFOPHB% This is the name of the heart beat task needed on focal point.

Default: AUTHB

Generic Automation Table Statements

The basic automation table contains a number of generic automation table entries

that can reduce your automation table overhead considerably. These samples use

some of the advanced features of SA z/OS to make automating your applications

as simple and reliable as possible.

For some of these entries (IEF403I and IEF404I in particular) the message flow may

be quite high. To handle this, you can insert additional entries in INGMSGU1 to

suppress a block of messages. For example, if all your batch jobs started with the

characters BAT or JCL, then the following entry would suppress them:

IF MSGID = ’IEF40’. & DOMAINID = %AOFDOM% THEN BEGIN;

*

 IF (TOKEN(2) = ’BAT’. | TOKEN(2) = ’JCL’.)

 THEN DISPLAY(N) NETLOG(N);

*

END;

TEC Notification—AOFMSGSY

Chapter 3. How to Add a Message to Automation 43

Generic Automation Table Statements

44 System Automation for z/OS: Customizing and Programming

Chapter 4. How to Monitor Applications

This chapter provides information about the different ways that you can monitor

your applications:

v Using monitor routines, see “How to Write Your Own Monitor Routines”

v The monitor resource (MTR), see “Monitor Resources” on page 46

v JES3 monitoring, see “Monitoring JES3 Components” on page 49

How to Write Your Own Monitor Routines

SA z/OS determines the status of an application by running a routine identified

by the policy administrator in the customization dialog. The routine can be

specified for an individual application (refer to IBM Tivoli System Automation for

z/OS Defining Automation Policy), and a default monitor routine can be specified for

all applications on an entire system (see policy item AUTOMATION INFO in the

customization dialog).

The routines that can be specified as application monitors are:.

 AOFADMON This routine determines the status of an application by issuing the MVS

D A, jobname command. The job name used is the job name defined in

the customization dialog for the application. Possible values for the

application monitor status as determined by this routine are Active,

Starting, Inactive.

AOFATMON This routine is used to determine the status of a task operating within

the NetView environment. The task status is determined by issuing the

NetView LIST taskname command.

AOFAPMON This routine determines the status of a program-to-program interface

(PPI) receiver. It calls DISPPI and checks if a specific PPI receiver is

active.

AOFCPSM This routine is a dedicated routine used to monitor the status of the

SA z/OS processor operations applications using the ISQCHK service.

AOFUXMON This routine determines the status of a resource with application type

USS. This resource can either be a z/OS UNIX process, a file system in

the UNIX file system (HFS), or a TCP port. Depending on the nature of

the resource (process, file, or port) AOFUXMON decides which internal

monitoring method to use.

INGPJMON This routine determines the status of an application by running a

routine that searches the MVS address space control blocks (ASCBs) for

address spaces with a particular job name. The job name used is the job

name defined in the customization dialog for the application.

INGMTSYS With this routine, IMAGE applications for BCPII usage can be

monitored.

ISQMTSYS With this routine, a processor operations target system resource

represented by its proxy can be monitored. You can find examples of

how to use a proxy definition in IBM Tivoli System Automation for z/OS

Customizing and Programming. Active operator console connections are

mandatory and will be used for sending a z/OS command (for

example, d t) and receiving the related response.

© Copyright IBM Corp. 1996, 2005 45

|||
|
|
|
|

||
|
|

||
|
|

||
|

||
|
|
|
|

||
|
|
|

||
|

||
|
|
|
|
|
|

SA z/OS expects certain return codes from all monitor routines, either from

SA z/OS provided ones or from your own routines. These can be one of the

following:

RC Meaning

0 Active

4 Starting

8 Inactive

12 Error

Monitor Resources

Monitor resources are policy objects used to obtain the health state of other

resources, typically Applications or Application Groups. The health state is useful

when you need to know how well the resource is performing and not just that it is

active. The Health Status can be used to provide application specific performance

and health monitoring information. For example, an Application may be active but

it is failing to meet performance objectives defined by the system administrator.

The health status can be used for information or by the automation manager to

make decisions and, if necessary, trigger automation for the application.

With application-specific performance and health monitoring, a separate status

shows up to inform you about an application’s health. This health status can be

used for information or by the automation manager to make decisions and, if

necessary, trigger automation for the application.

The MTR policy object is an SA z/OS resource and, as such, is treated like all

other SA z/OS resources. MTRs are started and stopped using the INGREQ

command and can have a Service Period defined for them.

Monitor resources obtain the health state of an object in two different ways:

v Actively, by polling—that is executing a monitoring command periodically

v Passively, by processing events

Monitor resources (MTRs) are connected to application resources (APLs) or

application group resources (APGs). The health status of the monitored object is

propagated to the APLs and APGs and results in a combined health status there.

You can define and connect MTRs in the customization dialog (see IBM Tivoli

System Automation for z/OS Defining Automation Policy).

Monitors can be Active or Passive. Passive monitors do not have a monitor interval

defined but might have a monitor command assigned for initial health status

determination. They rely on other events to set the Health Status using the

INGMON command. Active monitors are scheduled periodically based on the

interval defined in the MTR policy. Instead of using a monitor routine to

proactively determine the MTR status, a Passive monitor waits for an event to

trigger a predefined action for example an INGMON STATUS= command.

Associated with each health status (NORMAL, WARNING, MINOR, CRITICAL

and FATAL) can be one or multiple commands (referred to as recovery routine)

that are invoked by SA z/OS when the monitor resource switches to the

corresponding health status.

46 System Automation for z/OS: Customizing and Programming

|
|
|

||

||

||

||

||

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

Monitor resources are displayed and controlled with the DISPMTR command.

Writing Monitor Resource Commands

When defining an MTR you can specify activate, deactivate and monitor

commands. Any command is suitable that can be executed in the NetView

environment. These commands are divided into two groups:

v NetView activate and deactivate commands that expect a certain return code

v Monitor commands

The main difference between these two groups is that the activate and deactivate

commands are executed only once, and SA z/OS expects a return code of zero.

The activate and deactivate commands are optional.

v The activate command establishes the environment the monitoring routine can

run in. The command is executed every time the monitor is started. The

command must exit with return code 0.

v The deactivate command can be used to cleanup the environment. The

command is executed every time the monitor is stopped. The command must

exit with return code 0.

v The monitor command is executed after the activate command and then

periodically if a monitoring interval is given. SA z/OS expects the monitor

command to return a valid health status code. Additionally the monitor

command can issue a message that is then attached to the health status.

The command can be a command procedure written in any language that is

supported by NetView: REXX, Assembler, PL/I, C, or the NetView Command List

(Clist) language. Writing a monitor routine can be simple or it can be complex. The

complexity depends upon the Application that you are attempting to monitor.

Writing a Monitor Routine

In general, the monitor routine will need to issue one or more commands to

generate data, process the data, and set a return code. The return code is then used

by SA z/OS to determine the health state for the resource. The possible return

codes and the corresponding Health Status are given in Table 2.

 Table 2. Health State Return Codes

Return code Health Status Description

1 BROKEN The monitor detected an unrecoverable error.

SA z/OS will stop monitoring.

2 FAILED The monitor is currently unable to obtain a health

state. SA z/OS will keep the monitor active because

the problem might disappear.

3 NORMAL The monitor detected normal operation of the

monitored object.

4 WARNING The monitor detected a certain degree of

degradation in the operation of the monitored object.

5 MINOR The same as WARNING, but more severe.

6 CRITICAL The same as MINOR, but more severe.

7 FATAL The same as CRITICAL, but more severe.

8 DEFER Used internally.

Chapter 4. How to Monitor Applications 47

|

|

|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

||

|||

|||
|

|||
|
|

|||
|

|||
|

|||

|||

|||

|||
|

The Health Status values (with the exception of unknown) will affect the

Compound Status in the Automation Manager.

Most monitor routines will use unknown, normal, and warning statuses. The

minor, critical, and fatal statuses can be used as gradients to indicate that a

problem is getting worse. BROKEN and FAILED are states that describe the status

of the monitor itself and may be seen if an error is encountered with the monitor

routine.

Optionally, the monitor routine can issue a message describing the condition that

will be trapped by the SA z/OS process which invoked the monitor. The message

will be seen on the DISPMTR panel.

Every monitor routine will need several basic steps:

1. Issue one or more commands to collect data and interrogate the results.

2. Based on the results from the command(s), set the return code to a value from

one (1) to eight (8) and, optionally, perform processing based on that value.

3. Optionally, supply more descriptive information about the Health Status in a

message that can be seen with the DISPMTR command.

4. Exit with the return code so SA z/OS can set the Health Status appropriately.

Figure 7 is an example using the NetView PING command within a PIPE to query

the status of a TCP/IP stack on a remote system. The IP address is passed on

input. The routine uses the average round trip time (RTT) for the request provided

in message BNH770I to determine the health.

Writing a Recovery Routine

The ″health″ recovery routine is invoked every time the monitor resource switches

to the health state that the recovery routine is defined for. The goal of the recovery

routine is to bring the monitored resources back to normal.

The following task globals can be accessed by the recovery routine:

/*REXX MYMON */

Arg parm

monrcs=’BROKEN FAILED NORMAL WARNING MINOR CRITICAL FATAL DEFER’

’PIPE (STAGESEP | NAME PING)’,

’| NETV PING’ parm,

’| LOCATE 1.8 /BNH770I /’,

’| STEM out.’

if out.0 = 0 then

 lrc = wordpos(’FATAL’,monrcs)

else

 do

 parse var out.1 . ’averaging’ ms ’ms’ .

 say ’PING lasted’ ms ’ms’

 select

 when ms < 10 then lrc = wordpos(’NORMAL’,monrcs)

 when ms < 20 then lrc = wordpos(’WARNING’,monrcs)

 when ms < 30 then lrc = wordpos(’MINOR’,monrcs)

 when ms < 40 then lrc = wordpos(’CRITICAL’,monrcs)

 otherwise lrc = wordpos(’FATAL’,monrcs)

 end

 end

Return lrc

Figure 7. Sample Monitor Command

48 System Automation for z/OS: Customizing and Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|

|

|
|

|
|

|

|
|
|
|
|

|

|
|
|

|

EHKVAR1

Contains the monitor name

EHKVAR2

Contains the current health status

EHKVAR3

Contains the old health status

EHKVAR4

Contains the message associated with the health status

Monitoring JES3 Components

The concept of a Monitor Resource is used to monitor the health of various JES3

components. SA z/OS provides two commands that support a strict separation of

the monitoring part and the resulting recovery processing:

v AOFRJ3MN—used to monitor components in the JES3 environment, for example

spool space.

v AOFRJ3RC—used to perform recovery actions against the monitored JES3 object.

The following example defines a spool space monitor:

1. Define a monitor resource with a “HasParent” relationship to the corresponding

JES3 since it only makes sense to monitor the spool space when JES3 is active.

2. Activate and deactivate commands are not necessary for the spool monitor.

3. Use the AOFRJ3MN command as the monitor command and setup the

monitoring interval as desired. In this example, spool usage of up to 60% is

NORMAL, 61-70% WARNING, 71-80% MINOR, 81-90% CRITICAL and greater

than 90% FATAL.

AOFRJ3MN JES3_subys SPOOLSHORT 60,70,80,90

4. Define the recovery action in the HEALTHSTATE policy, for example:

NORMAL : AOFR3RC JES3_subsys SPOOLSHORT RESET

CRITICAL: AOFRJ3RC JES3_subsys SPOOLSHORT 05

FATAL : AOFRJ3RC JES3_subsys SPOOLSHORT 01

Issue one recovery command every minute. The commands are read from the

SPOOLSHORT policy of the JES3 subsystem. When the spool usage goes down

to 60% or less, the health status will go to NORMAL. This causes to invoke the

AOFR3RC command but now with the RESET option - the RESET option stops

recovery. It is recommended that you use JESOPER as the auto-operator for the

recovery commands. Note, that the recovery commands for the SPOOLSHORT

condition must be defined for the JES3 subsystem.

5. For the JES3 subsystem, define the necessary actions that should be performed

for SPOOLSHORT in the Message/User data policy:

 Pass Automated Function Command

1 JESOPER MVS &SUBSCMDPFXF U,Q=HOLD,AGE=30D,N=ALL,C

2 JESOPER MVS &SUBSCMDPFXF U,Q=HOLD,AGE=10D,N=ALL,C

3 JESOPER MVS &SUBSCMDPFXF U,Q=HOLD,AGE=3D,N=ALL,C

10 JESOPER MVS &SUBSCMDPFXF U,Q=HOLD,AGE=1D,N=ALL,C

This will purge all jobs from the hold queue that are older than 30 days in the

Chapter 4. How to Monitor Applications 49

|
|

|
|

|
|

|
|

|
|
|

|
|

|

|

|
|

|

|
|
|
|

|
||

|

|
|
|
||

|
|
|
|
|
|
|

|
|

||||

|||

|||

|||

|||
|
|

first pass. On pass 2, all jobs older than 10 days are purged. On pass 3 all jobs

older than 3 days are purged. Finally, after 10 times the pass interval (in our

example 5 minutes), all jobs older than 1 day will be deleted if the recovery

action is not reset meanwhile.

AOFRJ3MN Routine

Use this routine to monitor various objects in a JES3 environment. The following

objects can be monitored:

v MDS queues (Fetch queue, Verify queue, Wait volume queue, Error queue,

Allocation queue, Breakdown queue, Unavailable queue, Restart queue, System

select queue, System verify queue)

v Current setup depth

v Spool space

For each of the 10 JES3 MDS queues, thresholds may be set for each of the 4 health

states (Warning, Minor, Critical and Fatal) indicating the number of jobs that

particular queue may contain causing to set the corresponding health status. If, for

example, the WARNING threshold for the Error queue is set to 5, if 5 or more jobs

are pending on the MDS Error queue, the health status is set to Warning.

For the spool space the thresholds define the amount of used space that when

exceeded causes to set the corresponding health status.

Whenever AOFRJ3MN is called, it issues the appropriate JES3 command (*I,Q,S for

SPOOLSHORT and *I,S for the MDS queues) and parses the response. The value

extracted from the message text is compared with the thresholds and then the

return code is set to the corresponding health status. This simply sets the health

status of the Monitor resource (MTR). No recovery action is taken by AOFRJ3MN

routine. Use the HEALTHSTATE policy of the Monitor resource to define a

recovery action for each health status, if necessary.

The syntax of the AOFRJ3MN routine is as follows:

�� AOFRJ3MN jes3apl object threshold-list ��

object:

 MDSCOUNTQ

MDSCOUNTF

MDSCOUNTV

MDSCOUNTW

MDSCOUNTE

MDSCOUNTA

MDSCOUNTB

MDSCOUNTU

MDSCOUNTR

MDSCOUNTSS

MDSCOUNTSV

SPOOLSHORT

threshold-list:

 warning , minor , critical , fatal

50 System Automation for z/OS: Customizing and Programming

|
|
|
|

|
|

|
|
|

|

|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

jes3apl Specifies the name of an APL of category JES3 for which this monitor

works.

monitor

Specifies the JES3 object to be monitored:

MDSCOUNTQ

Current setup depth

MDSCOUNTF

Fetch queue

MDSCOUNTV

Verify queue

MDSCOUNTW

Wait volume queue

MDSCOUNTE

Error queue

MDSCOUNTA

Allocation queue

MDSCOUNTB

Breakdown queue

MDSCOUNTU

Unavailable queue

MDSCOUNTR

restart queue

MDSCOUNTSS

System select queue

MDSCOUNTSV

System verify queue

SPOOLSHORT

Spool

threshold-list

Specifies a list of four threshold values separated by commas:

warning Set health status to WARNING if this value is exceeded

minor Set health status to MINOR if this value is exceeded

critical Set health status to CRITICAL if this value is exceeded

fatal Set health status to FATAL if this value is exceeded

If warning is not exceeded the health status is set to NORMAL.

 Note that for SPOOLSHORT the values are in percent but for the MDS

queues they are absolute numbers. No value checking is done by

AOFRJ3MN except for whole numbers.

 Note also that the thresholds are tested from FATAL to WARNING. So if

you want to go directly from NORMAL to FATAL, you could specify

50,50,50,50

Chapter 4. How to Monitor Applications 51

AOFRJ3RC Routine

This routine performs the recovery action against a monitored object in a JES3

environment.

When AOFRJ3RC is called, it checks whether the system that it is running that

holds the JES3 global processor. If not AOFRJ3RC terminates without any further

action.

The syntax of the AOFRJ3RC routine is as follows:

�� AOFRJ3RC jes3apl msg-type pass-interval

RESET
 ��

jes3apl Specifies the name of an APL of category JES3.

msg-type

Specifies the message type within the given JES3 APL that the recovery

commands are to be read from:

pass-interval

Specifies the time interval that AOFRJ3RC should wait before

executing the next pass. The format is in NetView notation (mm,

hh:mm, hh:mm:ss or :ss).

RESET

If RESET is specified AOFRJ3RC stops the recovery.

 AOFRJ3RC looks into the MESSAGE/USER DATA policy definition of the specified

JES3 APL. It issues the command that is defined for PASS1 of the given message

type. As long as there are commands in higher passes it sets up a NetView timer

that re-calls AOFRJ3RC after the given pass interval. Whenever AOFRJ3RC is

executed the command that is defined for the next pass is issued as long as one

exists.

If RESET is specified instead of a pass interval any pending timer is killed and

processing stops.

The return code is always zero.

Note: AOFRJ3RC issues the recovery commands in a fire-and-forget manner. It does

not check whether the recovery action has the desired result. This is done by

the monitor. After one or more monitor intervals the health status will

change to a less severe one if the recovery shows an effect. If you want to

stop recovery actions when the health status returns to NORMAL, for

example, you have to code a HEALTHSTATE command that calls

AOFRJ3RC with RESET.

52 System Automation for z/OS: Customizing and Programming

|
|
|

Chapter 5. Exception-Based Monitoring with OMEGAMON

SA z/OS has been enhanced to enable you to use Monitor Resources to connect to

classic OMEGAMON® monitors to send commands and receive responses.

Overview

The OMEGAMON interface lets you gather a wide range of performance data on a

system. You can gather data from the following performance monitoring products:

v OMEGAMON for MVS

v OMEGAMON for CICS

v OMEGAMON for IMS

v OMEGAMON for DB2

Exception analysis is an OMEGAMON feature that monitors predefined thresholds in

a system. Each time exception analysis is invoked, an exception is displayed on the

OMEGAMON console if a threshold is exceeded. Using SA z/OS, you can then act

on these exception alerts by running execs or issuing commands, including issuing

commands back to the host OMEGAMON.

You can set up Monitor Resources to:

v Monitor sets of exceptions that may be of interest

v Set an application’s health state based on the existence of such exceptions

v React to and resolve conditions that cause those exceptions

Scenario

To illustrate how SA z/OS and OMEGAMON operate together, consider the

following scenario.

Suppose there is a DB2 application that should be continuously monitored. Of

particular interest is the availability of primary active logs. The LOGN exception

indicates that fewer primary active logs exist than specified by the respective

threshold value. This is considered a critical health indicator because it can cause a

DB2 hang situation if the last primary active log becomes 100% full. Such a

situation can only be resolved by making one or more additional primary active

logs available again.

In order to monitor this situation and react accordingly, the automation policy has

to be changed. First, define the session attributes for the OMEGAMON for DB2

monitor, if they do not yet exist, to be able to establish a VTAM connection. The

OMEGAMON session is referred to by its session name. Then review the number of

session operators (automation operators) that will be started to handle the VTAM

session traffic and add an additional one if a higher degree of parallelism is

required. You need to ensure that the number of session operators and predefined

NetView tasks are identical.

Next, add a new monitor resource (MTR) that periodically requests exception

information from this OMEGAMON session. Add the MTR by means of a

HasParent relationship to the DB2 subsystem to be monitored. This ensures that the

MTR will be activated when the DB2 subsystem is started, and deactivated when

© Copyright IBM Corp. 1996, 2005 53

|

|

|
|

|
|

|
|

|

|

|

|

|
|
|
|
|

|

|

|

|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

the DB2 subsystem is stopped. Also define the MTR via a HasMonitor relationship

to the DB2 subsystem to ensure that the monitor’s health state can be propagated

to the application.

While the MTR is active, it uses the new monitor command, INGMTRAP, to gather

OMEGAMON exceptions that currently exist, based on the thresholds that are

defined in the OMEGAMON for DB2 installation profile. INGMTRAP analyses all

exceptions returned by OMEGAMON and filters out those exceptions that the

MTR is interested in, in this example, LOGN. SA z/OS subsequently issues

message ING080I to initiate exception processing.

Finally, also add a new rule to the automation table (via the SA z/OS policy) that

executes a REXX exec to add a new log data set to the pool of primary active data

sets whenever the LOGN exception is reported and the health state is CRITICAL

(6). The MTR’s health state is considered CRITICAL if the number of available

primary active logs is equal to 1. If the LOGN exception is reported again in the

next monitor interval, a second rule in the automation table sets the MTR’s health

state to FATAL (7), which triggers an application move since normal recovery

handling doesn’t seem to work anymore. In addition, an alert is sent to the

operator to inform him about this situation. If the LOGN exception is no longer

reported, the MTR’s health state will be set to NORMAL (3).

The health state assigned to the MTR by means of the automation table is

propagated to the DB2 application that owns this MTR. Thus, you can see at a

glance whether the DB2 subsystem is okay or not.

Topologies

Various topologies are possible for SA z/OS with OMEGAMON:

v There can be one or more systems

v There can be one or more OMEGAMON monitors per system

v Connectivity is through VTAM and the NetView Terminal Access Facility (TAF)

v SA z/OS can act as a focal point either:

– globally, monitoring data from OMEGAMON monitors running on different

systems

– locally, monitoring data from OMEGAMON monitors running on the local

system

The following assumptions are made about the topologies that can be adopted:

1. The OMEGAMON product is installed on each system where MVS and CICS,

DB2, or IMS is installed.

2. OMEGAMON monitors are installed and configured already to support

multiple VTAM-based connections to it. For interoperability with SA z/OS,

logical units of type 3270 model 2 (24x80) are required.

3. OMEGAMON monitors are setup to interact with an external security product

such as IBM SecureWay Security Server for z/OS (formerly RACF).

4. OMEGAMON exceptions are reported when the threshold that is defined in

OMEGAMON is exceeded. That threshold must be agreed within an

installation because it must cater for the least severe condition that there might

be an alert for.

Exception-Based Monitoring with OMEGAMON

54 System Automation for z/OS: Customizing and Programming

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

|

|

|

|

|
|

|
|

|

|
|

|
|
|

|
|

|
|
|
|

OMEGAMON Interaction

The following subsections assume that you have defined one or more

OMEGAMON sessions and automated functions that are designated to handle

network communication using the SA z/OS customization dialog. For details on

defining OMEGAMON sessions, refer to the OMEGAMON SESSIONS and

AUTHENTICATION policies within entry type Network (NTW) and to the

OPERATORS policy within entry type Auto Operators (AOP) described in IBM

Tivoli System Automation for z/OS Defining Automation Policy.

Programming Interface INGOMX for OMEGAMON

INGOMX acts as the interface between operators (or auto-operators) and any of

the classic OMEGAMON monitors for CICS, DB2, IMS, and MVS.

It can be used to issue OMEGAMON major, minor, and immediate commands, and

to filter one or more exceptions of interest from the list of exceptions reported by

OMEGAMON exception analysis. Each request is written to the console (but not

exposed to NetView) in the format as produced by the OMEGAMON monitor.

When exception filtering is requested, multiple exception lines for one exception

are combined into a single line and written to the console as a single message if

the filter criteria (XTYPE) matches. INGOMX is best used within a NetView PIPE.

The following examples illustrate the use of INGOMX. They are based on an

OMEGAMON for MVS session with the name OMSY4MVS. The same techniques

also apply to other OMEGAMON monitors. For more details, refer to IBM Tivoli

System Automation for z/OS Programmer’s Reference.

Example 1: Returning Information on Common Storage

Utilization Using the CSAA Command

INGOMX EXECUTE,NAME=OMSY4MVS,CMD=CSAA

| IPXNG CSAA SUMMARY

| IPXNG +

| IPXNG + System

| IPXNG + Maximum Pre-CSAA Orphan Usage

| IPXNG + ------- -------- ------- ---------------0___2___4___6___8___100

| IPXNG + CSA 3312K 1247K 0 1247K 37.6%|------> |

| IPXNG + ECSA 307740K 78797K 0 78797K 25.6%|----> |

| IPXNG + SQA 1620K 660K 0 660K 40.8%|-------> |

| IPXNG + ESQA 145696K 23930K 0 23930K 16.4%|--> |

Example 2: Using OMEGAMON command modifiers

INGOMX EXECUTE,NAME=OMSY4MVS,CMD=ALLJ,MOD=#

| IPXNG #ALLJ 166

INGOMX EXECUTE,NAME=OMSY4MVS,CMD=ALLJ,MOD=<

| IPXNG <ALLJ *MASTER* PCAUTH RASP TRACE DUMPSRV XCFAS GRS SMSPDSE+

| IPXNG + CONSOLE WLM ANTMAIN ANTAS000 OMVS IEFSCHAS JESXCF ALLOCAS+

| IPXNG ...

Example 3: Trapping outstanding operator replies

INGOMX TRAP,NAME=OMSY4MVS,XTYPE=(XREP)

| IPXNG + XREP Number of Outstanding Replies = 5

Exception-Based Monitoring with OMEGAMON

Chapter 5. Exception-Based Monitoring with OMEGAMON 55

|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
||

|

|
|
|
|
|
|
||

|

|
|
||

Example 4: Issuing OMEGAMON minor commands

/* REXX-Routine EXMINOR */

cmd.1 = "CMD=SYS" /* Major command, issued ahead of its minors */

cmd.2 = "CMD=FCSA" /* Minor: CSA frames below 16M */

cmd.3 = "CMD=FCOM" /* Minor: CSA, LPA, SQA, and nucleus below 16M */

cmd.0 = 3

’PIPE STEM cmd. COLLECT’,

’| NETV INGOMX EXECUTE,NAME=OMSY4MVS,CMD=*’,

’| CONSOLE ONLY’

* IPXNG EXMINOR

| IPXNG SYS >> WLM Goal mode OPT=00 SYSRES=(150526,8812) <<

| IPXNG fcsa 328 1312 K

| IPXNG fcom 849 3396 K

There is no need to explicitly establish a session between an operator and a

particular OMEGAMON monitor before using INGOMX; such sessions are

established automatically on their first use.

Selective protection of individual OMEGAMON sessions and commands, or both,

is possible based on the NetView Command Authorization Table. Details can be

found in the appendix ″Security and Authorization″ in IBM Tivoli System

Automation for z/OS Planning and Installation.

Monitor Command INGMTRAP

INGMTRAP is a customized interface to INGOMX that provides filtering

capabilities for exceptions of interest as reported by OMEGAMON exception

analysis and triggering of automation on behalf of such exceptions. For each

exception that matches the XTYPE filter that is provided by the caller, INGMTRAP

issues message ING080I, which is exposed to NetView. For example:

ING080I CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS XREP Number of Outstanding Replies = 4

If no exception matches the XTYPE filter that is provided by the caller,

INGMTRAP creates a ING081I message that is not exposed to NetView but written

to the Monitor Resource’s log to document that no exception has been found. For

example:

ING081I CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS NO EXCEPTION FOUND

INGMTRAP can only be used as a monitor command. This means that it has to be

specified directly as a monitor command in the definition of a Monitor Resource,

or it has to be called on behalf of such a monitor command. The following

example illustrates what you need to specify on the MONITOR INFO policy in

entry type Monitor Resource (MTR) in order to trap outstanding operator replies

that are reported by OMEGAMON for MVS session OMSY4MVS:

INGMTRAP NAME=OMSY4MVS,XTYPE=(XREP)

Be careful when specifying a list of exceptions: each exception may cause an

ING080I message to be issued. Because each occurrence of an ING080I message

will trigger health state processing of the Monitor Resource, make sure you

understand the impact that this may have on the Monitor Resource’s final health

state.

For more details about INGMTRAP refer to IBM Tivoli System Automation for z/OS

Programmer’s Reference. For more details about defining Monitor Resources, refer to

IBM Tivoli System Automation for z/OS Defining Automation Policy.

Exception-Based Monitoring with OMEGAMON

56 System Automation for z/OS: Customizing and Programming

|

|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|

|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

Health Based Automation Using OMEGAMON

By combining Monitor Resources and the OMEGAMON interaction methods

described in “OMEGAMON Interaction” on page 55, automation can be triggered

as a result of analyzing the output reported by OMEGAMON and by the setting of

an appropriate health state.

OMEGAMON exceptions can be periodically monitored using a Monitor Resource

and the monitor command INGMTRAP. There are a variety of ways to handle such

exceptions:

1. In the customization dialog, the MESSAGES/USER DATA policy of a given

Monitor Resource needs to state the health state of each exception that

INGMTRAP has been set up to monitor. Unlike messages, OMEGAMON

exceptions are denoted by a ’+’ sign, followed by a blank and then a

4-character OMEGAMON exception ID.

2. In addition to the health state, a series of one or more commands can be

specified to handle that particular exception. Commands are processed in the

same way as for any other resources that a MESSAGES/USER DATA policy is

provided for, such as applications (APL). This includes escalation processing

based on a PASS count, or processing based on a selection value that can be

defined using CODEs that are derived from a message.

3. The HEALTHSTATE policy can be used to issue recovery commands on behalf

of an OMEGAMON exception each time the health state changes.

No matter which method or combination of method are chosen, the process of

handling an exception is triggered by the occurrence of an ING080I message for a

particular Monitor Resource and exception. The automation table that is built from

the definitions in the MESSAGES/USER DATA policy contains statements that

invoke the generic routine INGMON to set the Monitor Resource’s health state and

to issue commands in response to exceptions. In most cases, the necessary entries

in the NetView Automation Table are created automatically by SA z/OS. In some

rare cases when, for example, command selection should be based on CODEs, it is

necessary to override the automation table definition of the exception, and to

specify up to 3 codes (CODE1, CODE2, and CODE3) on the invocation of

INGMON.

Alternatively, an installation-written monitor command can be used to issue

INGOMX for a series of exceptions to one or more OMEGAMON monitor. Such a

monitor command then returns with an appropriate health state that is based on

the analysis of the output produced by INGOMX. The recovery commands that are

issued when the health state changes are specified in the HEALTHSTATE policy of

that Monitor Resource.

Recovery Techniques

User data in the MESSAGES/USER DATA policy can be used to disable additional

recovery processing while other recovery is already in progress. In combination

with the predefined keyword DISABLETIME, the recovery disable time can be

specified in the formats hh:mm:ss, mm:ss, :ss, or mm. While recovery is disabled,

no commands are processed on behalf of this Monitor Resource for messages and

exceptions that are specified in the MESSAGES/USER DATA policy.

Recovery is automatically enabled after the recovery disable time has expired.

Recovery can also be enabled prematurely by calling the generic routine INGMON

with the option CLEARING=YES, for example:

INGMON CI2XREP MSGTYPE=XREP CLEARING=YES

Exception-Based Monitoring with OMEGAMON

Chapter 5. Exception-Based Monitoring with OMEGAMON 57

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|

|

In some cases, it is necessary to force increasingly strong recovery actions over a

period of time. This can be accomplished using a PASS count that starts at 1 and

runs to 99. SA z/OS maintains the PASS count individually per message or

exception, and increments the PASS count each time that message or exception is

processed. Upon successful recovery, it is the installation’s responsibility to reset

the PASS count. When specified with option CLEARING=YES, INGMON enables

command processing for messages and exceptions, and resets the PASS count.

Programming Techniques

Commands that are called by INGMON have access to the message that triggered

the invocation using the NetView SAFE, AOFMSAFE, for example:

/* REXX */

’PIPE SAFE AOFMSAFE | VAR triggerMsg’

If Symbol(’triggerMsg’) \= ’LIT’ Then Do

 Parse Var triggerMsg tok1, tok2, ...

End

INGMON fills the task global variables &EHKVAR0, &EHKVAR1-9, and

&EHKVART with certain tokens that are derived from the message or exception

that INGMON was invoked by. For messages, the assignment starts with the

message ID, and for exceptions, it starts with the exception ID. The following two

examples illustrate how message and exception tokens are assigned to these task

global variables.

Example 1:

 $HASP9211 JES MAIN TASK NOT RUNNING. DURATION- hh:mm:ss.xx

 Task Global Value

&EHKVAR0 $HASP9211

&EHKVAR1 JES

&EHKVAR2 MAIN

&EHKVAR3 TASK

&EHKVAR4 NOT

&EHKVAR5 RUNNING.

&EHKVAR6 DURATION-

&EHKVAR7 hh:mm:ss.xx

&EHKVAR8

&EHKVAR9

&EHKVART

NULL

Example 2:

ING080I CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS XREP Number of Outstanding Replies = 4

 Task Global Value

&EHKVAR0 XREP

&EHKVAR1 Number

&EHKVAR2 of

&EHKVAR3 Outstanding

&EHKVAR4 Replies

&EHKVAR5 =

Exception-Based Monitoring with OMEGAMON

58 System Automation for z/OS: Customizing and Programming

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|

|

|

|||

||

||

||

||

||

||

||

||

|
|
|

|

|

|

|

|||

||

||

||

||

||

||

Task Global Value

&EHKVAR6 4

&EHKVAR7

&EHKVAR8

&EHKVAR9

&EHKVART

NULL

Recommendations

You should consider the following recommendations when using OMEGAMON in

combination with Monitor Resources:

v Avoid monitoring multiple exceptions using INGMTRAP. Note that there can be

more than one exception that may trip and thus multiple ING080I messages may

be generated. The Monitor Resource’s health state, however, depends on the last

ING080I message.

v Avoid setting different health states for the same exception that is monitored by

different Monitor Resources using INGMTRAP. Note that only one automation

table entry will be generated by SA z/OS to process message ING080I for such

an exception.

In these cases, the use of INGOMX, invoked from an installation-written monitor

command, to determine a combined health state from multiple exceptions or to

determine an individual health state for each Monitor Resource, is preferred to

using INGMTRAP .

Exception-Based Monitoring with OMEGAMON

Chapter 5. Exception-Based Monitoring with OMEGAMON 59

||

||

|
|
|
|

|

|

|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

60 System Automation for z/OS: Customizing and Programming

Chapter 6. How to Automate Your Resources

This chapter contains information on how to customize your SA z/OS installation

by programming various routines and procedures. It describes various ways of

how to adapt your installation to your requirements.

Using Automation Flags

SA z/OS extended automation flags (automation flags for minor resources) give

you the ability to control the automation for individual messages and status

changes. You cannot use extended automation flags to stop a status change from

occurring, but you can use them to stop commands or replies being issued in

response to a change to a particular status.

You can define messages and status information as minor resources with a major

resource that is either:

v The application that issued the message or changed status

v MVSESA, if the message or status change is not associated with an application.

To define messages or status information as minor resources, use the customization

dialog to edit the Minor Resources policy item of the appropriate Application policy

object or the MVS Component policy object. See IBM Tivoli System Automation for

z/OS Defining Automation Policy for more information.

When an application is about to change to a new status, the status change routines

(ACTIVMSG, HALTMSG and TERMMSG) check whether the new status has been

defined as a minor resource for the application before they issue any commands

associated with the status change. See “Programming Additional SA z/OS

Automation Procedures” on page 5 and IBM Tivoli System Automation for z/OS

Programmer’s Reference for more information about SA z/OS routines.

The command and reply routines (ISSUECMD and ISSUEREP) check to see if the

message ID of the message that triggered them is defined as a minor resource

under the associated application (or under MVSESA for a system message).

Note: Calling either ISSUECMD or ISSUEREP with AUTOTYP=NOCHECK

disables this checking, but as it causes a number of incongruities, this is not

recommended.

By default a minor resource inherits the automation flag settings of its major

resource. You can use the customization dialog or INGAUTO to set specific flags

for minor resources. You can see the current automation flag settings for both

major and minor resources on the DISPFLGS panel.

Example

When TSO issues message IKT001D and this is trapped by an automation table

statement that runs ISSUEREP AUTOTYP=START, the following actions are taken:

1. The TSO Start flag will be checked

2. If either the TSO Start flag is turned on or minor resource checking is enabled,

the TSO.IKT001D Start flag is checked.

© Copyright IBM Corp. 1996, 2005 61

3. If the TSO.IKT001D Start flag is turned on, ISSUEREP issues any replies

appropriate to the message.

4. If the TSO.IKT001D Start flag is turned off (even though the TSO Start flag may

be turned on), SA z/OS does not attempt to reply to the message.

When SA z/OS Checks Automation Flags

This section describes how SA z/OS uses automation flags. It provides

background information to help you customize SA z/OS-provided automation and

to help you write your own automation procedures.

Table 3 summarizes how SA z/OS typically uses automation flags. SA z/OS

provides a common routine, AOCQRY, to perform automation flag checking. See

IBM Tivoli System Automation for z/OS Programmer’s Reference for a description of

AOCQRY.

 Table 3. Automation Flags: Typical Uses in SA z/OS

Automation Flag Typical Use In SA z/OS

Automation Checked before any other automation flag to determine if overall

automation for the resource is on or off. If it is off, none of the

following flags will be checked.

Initstart Checked after the SA z/OS initialization for the first start of an

application. If this is on, SA z/OS will start the resource - provided

its goal is to be available.

Recovery Checked to determine whether to proceed with performing recovery

actions other than restarting a resource.

Restart If this is on, SA z/OS checks whether or not the resource is eligible

for restart.

Shutdown Checked to determine whether to proceed with a shutdown for the

specified resource.

Start Checked after the initial application start command or commands are

issued and additional commands or replies are issued for the

subsystem, to determine if startup is to be automated. This flag can

be used to control how much of the complete resource startup

process is automated.

Note: SA z/OS will invoke an exit only if it needs to in order to evaluate a flag.

For example, if an exit is specified on a subsystem restart flag but the global

SUBSYSTEM Automation flag is off, SA z/OS does not invoke the exit

when it checks the restart flag because the setting for the subsystem

Automation flag (inherited from the SUBSYSTEM Automation flag) is off.

If the situation is reversed (exit for the subsystem Automation flag and the

SUBSYSTEM Restart flag is off) the exit would also not be invoked. See “Flag

Exits” on page 134 for more information on automation flag exits.

Do not rely on SA z/OS to invoke an exit every time a flag is checked. You can

only rely on SA z/OS to invoke an exit before it concludes that a flag is turned on.

The Automation Manager Global Automation Flag

Using the INGLIST or the INGSET command (see IBM Tivoli System Automation for

z/OS User’s Guide or IBM Tivoli System Automation for z/OS Operator’s Commands)

Using Automation Flags

62 System Automation for z/OS: Customizing and Programming

you can set an automation flag for the individual resources, which is checked by

the automation manager before it sends any order to the automation agent to start

or stop the specific resource.

The purpose of this flag is to prevent (if flag is set to NO) or enable (YES) the

starting or stopping of resources. This can be done for resources that reside on

systems that are currently inactive, for example, to prevent the startup of the

resource at IPL time of the system.

When SA z/OS Checks Automation Flags

Chapter 6. How to Automate Your Resources 63

When SA z/OS Checks Automation Flags

64 System Automation for z/OS: Customizing and Programming

Chapter 7. How to Automate Processor Operations-Controlled

Resources

This chapter contains information on how to customize your SA z/OS installation

to enable the automation of messages coming from target systems that are

controlled by processor operations. These target systems or resources are referred

to as processor operations resources in the following.

Notes:

1. VM guest systems are treated as any other target systems which is controlled

by ProcOps (see IBM Tivoli System Automation for z/OS Operator’s Commands for

details).

2. PSMs are ″virtual″ hardware and therefore not all Target hardware commands

apply (see IBM Tivoli System Automation for z/OS Operator’s Commands for

details).

With the method described in this chapter, you can use SA z/OS system

operations to react on these messages. This information is contained in

“Automating Processor Operations Resources of z/OS Target Systems Using Proxy

Definitions,” which introduces the general process how to achieve such message

automation.

Automating Processor Operations Resources of z/OS Target Systems

Using Proxy Definitions

SA z/OS processor operations can be used to automate messages which cannot be

automated on the target systems themselves. Typically these messages include

those appearing at IPL time.

In a sysplex environment there are additional messages (XCF WTORs) being

displayed at IPL time when joining the sysplex and at shutdown time when a

system is leaving a sysplex. These WTOR messages cannot be automated yet

because SA z/OS system operations is not active at that time.

With the XCF message automation framework described in this chapter, you have

a method of exploiting your own XCF message automation. SA z/OS will also

deliver samples in the sample policy database exploiting this framework.

Note: There are XCF WTOR messages which are automatable by Sysplex Failure

Management (SFM). In these cases, to avoid conflicting automation, it is not

recommended that you automate these messages by SA z/OS.

Concept

You can use the SA z/OS standard interface and routines to handle system

external messages in almost the same way as system internally generated

messages. This applies to the way of defining message automation in the

customization dialog as well as to the means available for controlling message

automation at automation time.

© Copyright IBM Corp. 1996, 2005 65

To exploit the system operations mechanism for message automation, a proxy

resource representing the processor operations resources must be generated in the

customization dialog as entry type Application (APL).

There is a one-to-one relation between a proxy and a processor operations resource

(target system). How to implement this relation in the customization dialog is

described in the following subsections.

Messages which are generated on external systems, where no SA z/OS is active or

not yet active, can also be automated. Therefore, these resources generating these

messages are called processor operations resources. They are defined in the

customization dialog as entry type System (SYS).

Customizing Automation for Proxy Resources

It is assumed that you have already used the customization dialog to define

processor operations target systems and made these systems accessible to the

processor operations focal point via the Processor Control file (see also IBM Tivoli

System Automation for z/OS Defining Automation Policy). So for every processor

operations target system defined on the processor operations focal point, you

should define a proxy resource. You do this by defining the proxy resource as

entry type Application (APL) in the customization dialog.

Note: If you want to define many proxy resource applications, you can use the

application class concept as described in IBM Tivoli System Automation for

z/OS Defining Automation Policy).

The rules that you need to obey when defining the proxy resource are described in

the subsequent list.

Defining the proxy resource as Application (APL) has another advantage: The

system is then visible in the INGLIST panel and it can be managed and monitored

like an application resource. SA z/OS users will be able to not only use message

automation for target system messages, they also can issue start and stop

commands to IPL and to shutdown systems. These commands can be defined like

any start and stop command for an application. But other than application

resources, target systems are managed by processor operations commands (e.g.

ISQCCMD target_system_name ACTIVATE FORCE(NO) or ISQSEND

target_system_name OC vary xcf,target_system_name,off,retain=yes). Processor

operations commands allow you to send MVS commands to target systems as well

as to send hardware commands to the processor (support element).

Here is the list of rules:

 1. As mentioned , you need to define (or have defined) the processor operations

target systems that you want to automate. For those systems, the following

rule applies:

MVS SYSNAME = ProcOps name

The MVS SYSNAME must be identical with the ProcOps name.

If this is not the case, you need to change it subsequently.

 2.

How to Automate Processor Operations Controlled Resources

66 System Automation for z/OS: Customizing and Programming

Job Name = ProcOps name

The Job Name of the application for the proxy resource must match the

processor operations target system’s name as defined when creating this

system in the customization dialog.

 3.

Job Type = NONMVS

The Job Type for the proxy application must be NONMVS.

 4. The Monitor Routine for the proxy application must be ISQMTSYS.

 5.

Sysname = MVS SYSNAME

The Sysname for the proxy application must match the MVS SYSNAME

defined for the processor operations target system. This definition is

used for resource monitoring.

 6.

Note:

If you want to inhibit operators from performing a startup or shutdown

for a target system resource using the INGREQ command, External

Startup and External Shutdown must be set to ’ALWAYS’.

 7. If you do not want the proxy resource to be started at an IPL or on NetView

recycle of the processor operations focal point, you should specify NO for

both fields Start on IPL and Start on RECYCLE.

 8. As you can only automate applications by linking them to systems via an

application group, you need to define an application group for the proxy

applications. Do not merge the proxy applications with other applications into

this application group because destructive requests applied to a merged

application group would also affect the proxy resources contained in that

group.

You may choose PASSIVE behavior to not forward requests against the

application group to each member. This will prevent you from unintentionally

sending requests to processor operations target systems represented by their

proxies.

 9. In the Message Processing panel for the proxy application define the messages

to be automated in column Message ID. Do not specify message ID ISQ900I,

as this message is used as a carrier for the original target system message.

Enter ’cmd’ in the Action column to specify the command to be processed if

the defined message occurs.

10. If the message to be automated is a WTOR, then the variable &EHKVAR1 will

contain the reply ID. This variable may then be used as a parameter to the

ISQSEND command:

ISQSEND &SUBSJOB OC R &EHKVAR1,COUPLE=00

How to Automate Processor Operations Controlled Resources

Chapter 7. How to Automate Processor Operations-Controlled Resources 67

Startup and Shutdown Considerations

Processor operations commands must be used to start or stop processor operations

resources, for example:

Start example:

ISQCCMD &SUBSJOB LOAD FORCE(NO)

Stop example:

Pass 1 ISQSEND &SUBSJOB OC Z EOD

__

Pass 2 ISQSEND &SUBSJOB OC VARY XCF,&SUBSAPPL,OFF,RETAIN=YES

Note:

If the delay time between sending the commands in pass 1 and pass 2 is not

appropriate, you may define a resource specific Shut Delay in the Application

Automation Definition panel.

 For more details about processor operations commands refer to IBM Tivoli System

Automation for z/OS Operator’s Commands.

Preparing Message Automation

The interaction with target systems is based on the SA z/OS processor operations

component. Therefore the installation and customization of this component must

be complete at this point.

Operating System messages from processor operations target systems receiving at

the focal point will be transferred to ISQ900I messages.

ISQ901I is not relevant. It is used to inform interested operators about target

system messages. It is not used for automation purposes.

MSCOPE() parameter in CONSOLxx member

MSCOPE allows you to specify those systems in the sysplex from which this

console is to receive messages not explicitly routed to this console. An

asterisk (*) indicates the system on which this CONSOLE statement is

defined. Since the default is *ALL, indicating that unsolicited messages from

all systems in the sysplex are to be received by this console, this parameter

must be set to ’*’ for correct automation by SA z/OS processor operations.

Automating Linux Console Messages

The Linux Console Connection to NetView

When a Linux target system IPLs, its boot messages are displayed on the Console

Integration facility (CI) of the zSeries® or 390-CMOS processor Support Element

(SE). For SA z/OS processor operations, CI is the only supported interface to

communicate with the Linux operating system. The communication between the

processor operations focal point and CI is based on the NetView RUNCMD and

the Support Element’s Operator Command Facility (OCF), an SNA application. In

SA z/OS processor operations, this connection path is referred to as a NetView

Connection (NVC).

How to Automate Processor Operations Controlled Resources

68 System Automation for z/OS: Customizing and Programming

Linux Console Automation with Mixed Case Character Data

Unlike operating systems which translate console command input into uppercase

characters, Linux is case sensitive. The NetView automation table syntax allows the

use of mixed case characters in compare arguments of an IF statement. When an

automation command is to be scheduled as a result of such a comparison, any

message token arguments passed, are not translated into uppercase by NetView.

Make sure that your automation routine does not do an uppercase translation of

parameters passed. For example, in REXX use the statement ’PARSE ARG P1 P2’

instead of ’ARG P1 P2’, which implicitly performs a translation into uppercase. If a

Linux message invokes your automation code and the message information is

retrieved using NetView’s GETMLINE function, no uppercase translation will

occur. In order to send mixed case command data to the Linux console consider

the following REXX statement:

 Address Netvasis ’ISQsend MYlinux Oc whoami’

The addressed REXX command environment ’Netvasis’ passes the command string

without doing an uppercase translation. The ISQSEND command internally

translates its destination parms into ’MYLINUX’ and ’OC’ but leaves command

’whoami’ as is.

Security Considerations

After Linux system initialization, usually a LOGIN prompt message is displayed

allowing users defined to the system to login. The ISQSEND command interface

does not suppress any password data from being displayed. You may use the

NetView LOG suppression character to avoid the password information to be

visible in the NetView log. In SNA/VTAM traces or Support Element log files,

such password data can be viewed in text form.

Restrictions and Limitations

The following Linux systems are supported:

v Linux systems running in an LPAR of a zSeries or 390-CMOS processor

hardware

v Linux systems running on a zSeries or 390-CMOS processor hardware,

configured in Basic mode

v Linux systems running as VM guest machines under z/VM Version 4.3 or higher

Linux systems running under a VM, which itself runs as a VM guest, are not

supported.

In the command shell environments of a Linux console it is possible to pass control

keys as character strings instead of pressing the keyboard control key combination

to perform functions like Control-C. The current Linux support of SA z/OS

processor operations has not been tested using this Linux capability. Any Linux

program or command script that requires a user interaction with control keys

should not be invoked using the SA z/OS processor operations ISQSEND

interface.

How to Add a Processor Operations Message to Automation

Use the NetView automation table (AT) and the SA z/OS command set to

implement console automation. You can automate the routine functions that an

operator performs when a particular message is generated. For more information

see IBM Tivoli System Automation for z/OS Defining Automation Policy, SC33–7039.

How to Automate Processor Operations Controlled Resources

Chapter 7. How to Automate Processor Operations-Controlled Resources 69

Messages Issued by a Processor Operations Target System

When a target system issues a message, the message is forwarded to the processor

operations focal point system. The focal point system repackages the message

within an SA z/OS ISQ900I message, an ISQ901I message, or both, and routes the

message to the appropriate task:

v ISQ900I messages are routed to SA z/OS processor operations autotasks. If you

want automation that you write to receive ISQ900I messages, use the ISQEXEC

command to run the automation in a target control task. For information about

using the ISQEXEC command, see section Sending an Automation Routine to a

Target Control Task in “Issuing Other OCF Commands” on page 10. Your

NetView automation table entries for SA z/OS should acknowledge the ISQ900I

identifier for all target system messages forwarded to the processor operations

focal point system. You can specify your ISQ900I automation table entries to be

target system specific, however, this is not recommended.

v ISQ901I messages are routed to all logged-on operators identified as interested

operators by the ISQXMON command or marked as such in the customization

dialog.

For information about the ISQEXEC and ISQXMON commands, see IBM Tivoli

System Automation for z/OS Operator’s Commands.

A message forwarded from a NetView connection or an SNMP connection consists

of the following:

v ISQ900I or ISQ901I message identifier

v Name of target system where the message originated

v Console designator form describing where the message originated

v Message identifier and text of the original message from the target system

For example, if a NetView connection forwards the message IEA101A SPECIFY

SYSTEM PARAMETERS from the operating system to the focal point system, SA z/OS

creates one or both of the following SA z/OS messages:

ISQ900I target-system-name OC IEA101A SPECIFY SYSTEM PARAMETERS

ISQ901I target-system-name OC IEA101A SPECIFY SYSTEM PARAMETERS

This message format applies to all processor operations target system messages. It

is independent of the target system resource that generated the original message.

The processor operations target system message is sent in the same format as it

would be displayed on the processor Support Element (SE) or Hardware

Management Console (HMC).

Specifics of VM second level systems:

Messages from guest machine operating system appear in the following

format:

ISQ900I psm-name.guest-name OC IEA101A SPECIFY SYSTEM PARAMETERS

Messages from CP on the virtual machine appear in the following format:

ISQ900I psm-name.guest.name OC HCPGSP2627I The virtual machine is

 placed in CP mode due to a SIGP initial CPU reset from CPU 00.

Messages from the PSM itself appear in the following format:

ISQ700I psm-name SC ISQCS0314E Message Handler has failed.

How to Automate Processor Operations Controlled Resources

70 System Automation for z/OS: Customizing and Programming

Note:

Make sure your consoles issue messages in the format that you expect and

write your NetView automation table entries accordingly.

Sample NetView Automation Table Statements

The following message response example presents a request for system parameters

when the message ID string contains ’IEA101A’:

 IF TEXT = . ’IEA101A SPECIFY SYSTEM PARAMETERS’

 & MSGID = ’ISQ900I’ .

 THEN EXEC(CMD(’ISQI101 ’) ROUTE (ONE *))

 DISPLAY(N) NETLOG(Y);

This NetView automation table statement initiates the ISQI101 routine when the

message condition is true.

Note: Text within messages may be in mixed case. Be sure your coding accounts

for mixed case text.

Message ISQ211I

Some SA z/OS commands attempt to lock and unlock ports. Where an operator

owns the lock for a port, the SA z/OS unlock command, ISQXUNL, returns RC=12

associated with message ISQ211I Unable to unlock target name console.

In such a case, you have the choice of either using the ISQOVRD command to

force an unlock or you may end your automation with a message. Thereafter, you

can view your NetView log to find out the reason for the lock of the port.

Your automation may encounter this message ISQ211I frequently. Attempting to

unlock a locked port is not an error condition; however, it may be a sign that the

calling command did not succeed. Schedule your automation from messages that

indicate positively that a command did not run, not from the ISQ211I message.

Processor Operations Command Messages

Some SA z/OS commands run on the target system. The message returned from

these commands indicates only that the support element was told to schedule the

operation. Consequently, the operation at the target system may not complete even

though the SA z/OS message indicates a successful completion.

SA z/OS acknowledges only that the command was successfully forwarded to the

support element. An unsuccessful operation at the target system generates an

unsolicited message that the support element forwards to the focal point system in

an ISQ900I message. Schedule your automation from the message that positively

indicates that a target system operation did or did not complete.

The SINGSAMP SA z/OS sample library contains the PL/I source code for several

automation routines that issue responses to selected messages. You can select the

response that is most appropriate for your enterprise. You can also use them as

models to create your own automation routines. The following list summarizes

these routines, the messages they respond to, and the responses they issue initially:

How to Automate Processor Operations Controlled Resources

Chapter 7. How to Automate Processor Operations-Controlled Resources 71

SINGSAMP

Member Routine Description

INGEI120 ISQI120 Responds to the following messages:

IEA120A Device ddd volid read, reply cont or wait.

IOS120A Device ddd shared (PR volid not read.)

 the recovery task, reply cont or wait.

Issues the following response to the target: CONT

INGEI357 ISQI357 Responds to the following message:

IEE357A Reply with SMF values or U.

Issues the following response to the target: U

INGEI426 ISQI426 Responds to the following message:

$HASP426 Specify options - subsystem_id.

Issues the following response to the target: WARM,NOREQ.

INGEI502 ISQI502 Responds to the following message:

ICH502A Specify name for primary/backup

 RACF data set sequence nnn or none.

Issues the following response to the target: NONE

INGEI877 ISQI877 Responds to the following message:

IEA877A Specify full DASD SYS1.DUMP data sets

 to be emptied, tape units to be used as

 SYS1.DUMP data sets or GO.

Issues the following response to the target: GO

INGEI956 ISQI956 Responds to the following message:

IEE956A Reply - ftime = hh.mm.ss,

 name = operator,reason = (ipl,reason)

 or u.

Issues the following response to the target: U

The SA z/OS automation table entries in the ISQMSG0 member of the

SINGNPRM data set include inactive entries that call these automation routines. To

incorporate these routines into your automation, do the following:

1. Remove the comments from the corresponding automation table entries for the

messages that initiate the automation routines you want to use. If you perform

these steps as part of the initial SA z/OS installation, make these changes

before you incorporate the SA z/OS entries. If you do this after the initial

SA z/OS installation, change the NetView automation table.

2. Code the routines you will be using to issue the responses you want.

3. Compile the PL/I source code for the routines you want to use, and link the

resulting object code to your PL/I library.

4. Recycle the NetView program to activate the new entries.

For automation processing to occur, each message in the NetView automation table

at the focal point system and at each target system must be made available to the

system’s NetView program. In z/OS, MPF controls message availability to the

NetView program. Examine the MPF list member in the SYS1.PARMLIB data set to

ensure that the necessary messages are marked for automation. For target systems

using other operating systems, check the message suppression facilities used on

those systems.

How to Automate Processor Operations Controlled Resources

72 System Automation for z/OS: Customizing and Programming

Testing Messages

SA z/OS provides a collection of NetView automation table entries for your

SA z/OS configuration. NetView automation table entries are in the AOFCMD

member of the SA z/OS SINGNPRM installation data set. When these entries are

moved to your NetView automation table, they may need additional editing.

For example, you may already test for a particular message in your production

NetView automation table. If you add an entry that tests for that same message,

your automation table will not run as you expect. After a match with the test

criteria is found, the search of the automation table is aborted. The second

NetView Automation Table statement is not found. Consequently, the message

does not drive all of your required actions.

To avoid this, combine entries into a single test condition. This ensures that all

required actions are scheduled for all messages. For the following message:

IEA320A RESPECIFY PARAMETERS OR CANCEL

your NetView automation table may already have the following entry: (�1�)

IF MSGID = ’IEA320A’

THEN EXEC (CMD(’USERJOB’) ROUTE(ONE *)) CONINUE(Y);

With SA z/OS installed, the following message appears when forwarded from a

PC

ISQ900I TSCF30 A IEA320A RESPECIFY PARAMETERS OR CANCEL

With SA z/OS installed, the following message appears when forwarded from

zSeries or 390-CMOS processor hardware:

ISQ900I TAR30 OC IEA320A RESPECIFY PARAMETERS OR CANCEL

After the SA z/OS entries are added, the NetView automation table includes the

following entry:

IF TEXT = . ’IEA320A RESPECIFY PARAMETERS’ .

 & MSGID = ’ISQ900I’ .

THEN

 EXEC (CMD(’ISQI320 ’) ROUTE(ONE *))

 DISPLAY(N) NETLOG(Y);

In this case, the first entry satisfies the IF test and the command USERJOB runs

(�1�). The second command, ISQI320, is not scheduled to run because once the

message matches a table entry, the autotask stops searching. Combine these two

entries into a single entry, such as:

IF TEXT = . ’IEA320A RESPECIFY PARAMETERS’ .

 & MSGID = ’ISQ900I’ .

THEN

 EXEC(CMD(’ISQI320 ’) ROUTE(ONE *))

 EXEC(CMD(’USERJOB ’) ROUTE(ONE *))

 DISPLAY(N) NETLOG(Y);

When you use the second example, both commands are scheduled.

If your NetView automation table tests the text of SA z/OS messages, the message

format must match the character case for which you test. This can be done by

requiring all sites to use the same format for their messages, or by duplicating AT

entries in uppercase and in mixed formats.

How to Automate Processor Operations Controlled Resources

Chapter 7. How to Automate Processor Operations-Controlled Resources 73

Building the New Automation Definitions

When you are finished using the customization dialog to add message response

and automation operator information to the automation policy, you need to build

the system operations control files. The complete description of how to build and

distribute these files is provided in IBM Tivoli System Automation for z/OS Defining

Automation Policy.

The SA z/OS build function will place the new automation definitions in the data

set defined in the Build Parameters panel.

Copy the new automation definitions into the SA z/OS NetView DSIPARM

concatenation in the NetView startup procedures, or concatenate it to the NetView

DSIPARM data set.

Loading the Changed Automation Environment

To reload the AMC file, automation control file and the AT perform the actions

described in “Step 7: Reload MPF List and Automation Configuration Files” on

page 4.

VM Second Level Systems Support

This feature provides ProcOps support to control and monitor guest machines

running under VM.

ProcOps allows an operating system to be IPLed into a processor, amongst other

facilities. Such an operating system is VM. Within VM other operating systems can

be IPLed as guest machines. Of particular interest are LINUX guest machines, but

MVS, VSE and even VM guest machines may be possible. (Lower levels of guest

machines are not considered). Previously there was no effective way to enter

commands to and receive messages from such a guest target system in order to

validate that it had IPLed correctly, or that it is behaving correctly.

With second level guest machine support you can:

v Capture messages issued by the guest machine itself and route these back to the

ProcOps process for display or automated processing, or both

v Send commands to the guest machine from ProcOps, either as operator requests

or automated actions

Guest Target Systems

The most likely guest machine that is used as a target system is a LINUX system.

When a LINUX machine has a secondary user, the secondary user can use CP

SEND commands to:

v Issue CP commands to the guest machine

v Log on as a user to LINUX

v Enter LINUX commands (after logging on)

(It is also possible to set up the LINUX system in such a way that LINUX

commands can be entered on the VM console without logging on to LINUX.)

The secondary user receives:

v All ″boot up messages″

v Responses to CP commands that are run on the guest machine

v Responses to logon and LINUX commands

Building the New Automation Definitions

74 System Automation for z/OS: Customizing and Programming

MVS machines are more complex. When an MVS machine is running, the original

VM user first becomes an NIP console and then an MCS console. In these console

modes MVS takes over all I/O to and from the console, and MVS messages to it

cannot be intercepted by any CP facilities. Hence the SCIF SEND command cannot

be used to send commands to MVS, nor can MVS messages to this console be

intercepted.

However a ″virtual SCLP console″ for the guest machine can be used. During the

NIP phase of initialization, use of this console can be forced by configuring the

guest virtual machine so that it has no usable 3270 consoles. NIP then directs its

messages to the guest machine as line mode commands. This is analogous to the

stream of messages sent to the Operating System Messages (OSM) window on an

HMC by an MVS system running in a logical partition.

Responses to any NIP messages are entered using the CP VINPUT command.

Internally this is done when an ISQSEND command is issued to the operator

console (OC) of the target system. To ensure that such VINPUT commands are

processed correctly, the guest machine must be operating in RUN ON state at this

time.

To ensure that RUN ON state is set, a CP SET RUN ON command is sent to all

MVS guest machines at the time when the guest machine is started by the PSM.

Once MCS operation is established, important messages requiring operator action

are directed to the guest machine. Again, these are analogous to the stream of

messages directed to the OSM window of the HMC. Initially, commands cannot be

entered to MVS. To do so, it is necessary to enter ″Problem Determination Mode″.

To enter this mode, a VARY CONSOLE(*),ACTIVATE command must be entered.

Once this is done:

v All MVS messages that are displayed are routed to the guest machine

v Commands may be entered using the CP VINPUT command.

Problem Determination is not generally recommended.

To enter LINUX commands it is normally necessary to log on to LINUX. This

requires a user ID and a password. So, to provide for LINUX commands would

require the specification of a user ID and a password to ProcOps, with all the

attendant difficulties in the area of security. At present the LINUX system is

considered IPL COMPLETE when specified messages have appeared. These do not

require a user logon.

VM machines may also be guest machines. Third level guest machines are not

supported.

VSE machines may also be guest machines.

Customizing Target Systems

LINUX

The LINUX target system should have in its VM Directory entry, a CONSOLE

statement that sets its PSM as its default secondary user. For example, if the virtual

machine LNXAO1 is controlled by a PSM running in virtual machine ISQPSM1,

then its CONSOLE statement might be:

CONSOLE 009 3215 T ISQPSM1

Loading the Changed Automation Environment

Chapter 7. How to Automate Processor Operations-Controlled Resources 75

When a LINUX target system is to be deactivated a FORCE command is used to

shut it. The default guest signal timeout interval values (set by the SET SIGNAL

command) and values defined for the guest machine determine the interval used

when allowing the LINUX system to shut in an orderly fashion. If this function is

required for a guest, you must ensure that this is set accordingly.

Such actions may include updating the etc/inittab entry on the LINUX system

itself, and setting up a SHUTTRAP module on the VM host.

MVS

This too should have a CONSOLE statement in its VM directory entry that defines

its PSM as its secondary user:

CONSOLE 01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is

IPLed it should run a PROFILE EXEC that includes the statements similar to the

following:

SET RUN ON

DETACH 01F

IPL 7700

The SET RUN ON is needed so that when a response is to be sent to a NIP console

the VINPUT command used is effective.

The DETACH is used so that when the MVS system IPLs it will find none of its

defined 3270 consoles available to it. (You should also ensure that no user issues a

VM DIAL to an address that is defined as a NIP or MCS console.)

The IPL command is used to IPL the MVS system.

The MVS system itself should have included in its active CONSOLxx definition a

CONSOLE statement for the SYSCONS so that commands can be entered to MVS

after it is IPLed, for example:

CONSOLE DEVNUM(SYSCONS)

 ROUTCODE(ALL)

 AUTH(MASTER)

 MSCOPE(*)

 CMDSYS(*)

 MONITOR(JOBNAMES-T)

 UD(Y)

VM

This too should have a CONSOLE statement in its VM directory entry that defines

its PSM as its secondary user:

CONSOLE 01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is

IPLed it should run a PROFILE EXEC that includes the statements similar to the

following:

SET RUN ON

DETACH 01F

IPL 7700

The SET RUN ON is needed so that when a response is to be sent to a console the

VINPUT command used is effective.

Loading the Changed Automation Environment

76 System Automation for z/OS: Customizing and Programming

The DETACH is used so that when the VM system IPLs it will find none of its

defined 3270 consoles available to it. (You should also ensure that no user issues a

VM DIAL to an address that is defined as a Operator Console)

The IPL command is used to IPL the VM system.

The VM system itself should include within its OPERATOR_CONSOLES statement

in the SYSTEM CONFIG file (which resides on the ″parm disk″) a specification for

the emulated system console, for example:

OPERATOR _CONSOLES 01F 020 System_Console

This ensures that when VM IPLs and finds no regular consoles available, it then

uses the emulated system console. This in turn directs the messages to the

secondary user as a stream of line-mode messages.

VSE

This too should have a CONSOLE statement in its VM directory entry that defines

its PSM as its secondary user:

CONSOLE 01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is

IPLed it should run a PROFILE EXEC that includes the statements similar to the

following:

TERM CONMODE 3215

IPL 7700

The TERM CONMODE 3215 command sets the console into line mode.

Loading the Changed Automation Environment

Chapter 7. How to Automate Processor Operations-Controlled Resources 77

78 System Automation for z/OS: Customizing and Programming

Chapter 8. How to Automate USS Resources

Note: USS tasks behave differently when started as STCs rather than directly in

the USS environment.

When started as an STC, the starting user ID may differ so that the

AOFUXMON monitor routine is in most cases not able to internally trigger

ACTIVMSG UP=YES.

Thus it is much simpler for automation to start these applications with

INGUSS. There is then no AT entry required for the UP message. SA z/OS

is able to internally simulate this so that you do not have to worry about UP

messages.

Job names (at least the last character of the jobname) are not predictable for

USS resources. However, AOFUXMON is able to handle this by monitoring

the path within USS and changing the defined job name in SA z/OS

accordingly. For the syslog daemon you would define the job name as

SYSLOGD. When the application is started and changes the jobname to, say,

SYSLOGD7, AOFUXMON adjusts the SA z/OS data model to reflect this.

This cannot be handled in the AT with a generic entry for SYSLOGD*

because the change in job name is caused by the USS process that creates a

new address space with the new name, whereby the ’old’ address space

with the ’old’ name terminates. This means that you get an ended message

for the old address space and an up message for the new address space.

Again the sequence of these messages is unpredictable.

Integration of z/OS UNIX System Services

The following functions are supported by SA z/OS for z/OS UNIX applications:

v Starting and stopping of applications

v Monitoring of:

– Processes (represented by the command or path and user ID)

– TCP Ports

– Files and file systems

– Generic User Monitoring (the user supplies a z/OS UNIX monitoring routine

or script)
v Using an API to execute z/OS UNIX commands (INGUSS command)

Infrastructure Overview

The z/OS UNIX resources that should be automated must run in the z/OS UNIX

of a z/OS system that is already automated by SA z/OS. From the automation

manager’s perspective the NetView agent of this system is responsible for the

z/OS UNIX resources.

For command execution through INGUSS or user-defined monitoring, a z/OS

UNIX program (provided by SA z/OS) is directly invoked by SA z/OS. This

program (ingccmd) executes UNIX commands and runs when started by SA z/OS

with the jobname INGCUNIX. ingccmd is the extension of the NetView-based

© Copyright IBM Corp. 1996, 2005 79

agent into z/OS UNIX. To monitor the standard z/OS UNIX resources (process,

port, or file) an SA z/OS internal routine is started.

Setting Up z/OS UNIX Automation

Customization of z/OS UNIX Resources

z/OS UNIX resources are introduced to SA z/OS by defining them in the

SA z/OS customization dialogs.

The customization dialogs support the application type USS. If USS is selected, you

can enter z/OS UNIX-specific data such as a UNIX user ID, command or path,

filename, or monitored port. Choose one of these fields to enter the data.

The start and stop definitions can be varied between MVS and z/OS UNIX

commands. For example, to stop an application you can issue a UNIX kill

command first and (if this was not successful) you can perform an MVS cancel

later.

Definitions for Automation Setup

The HFS path where the program shipped with SA z/OS is located must be

defined in the SA z/OS setup panel. This has to be the same path that was used

as the destination in the sample job INGUSCPY. When user-defined UNIX

monitoring is used and no absolute path is specified for the monitoring routine,

SA z/OS tries to start the user-defined monitoring routine in this directory.

Definitions for z/OS UNIX Resources

To define a new application entry (APL, class, or instance), specify the application

type USS on the Define New Entry panel. When choosing the application type

USS, the option USS Control is displayed on the Policy Selection panel.

When selecting USS Control on the Policy Selection panel, you can enter the data

for the new z/OS UNIX resource. For a class only the user ID and the z/OS UNIX

monitoring routine can be specified on this panel. All other definitions (for

example, from/to, dependencies, etc.) can be entered as usual.

USS applications must be defined with a HASPARENT relationship to JES.

For object type INSTANCE you can define whether this resource is one of a

process, a TCP port, or a file or file system, as shown in Figure 8.

Monitoring Command. . .

 Enter or update one of the following fields:

 Command/Path. . .

 /u/camp/usstest/usstest

 File Name

 Monitored Port. .

Figure 8. z/OS UNIX Control Specification Panel for Type INSTANCE

Setting Up z/OS UNIX Automation

80 System Automation for z/OS: Customizing and Programming

Note: There are two monitoring routines:

v AOFUXMON, which is called by SA z/OS for UNIX System Services

resources. (This must always be specified.)

v A program in the HFS that is entered in the Monitoring Command field of

the z/OS UNIX Control Specification panel, and is called by

AOFUXMON. This means that if you specify this monitoring command,

you also have to specify AOFUXMON.

If this program does not begin with a ″/″ it must reside in the same directory as

the SA z/OS-supplied z/OS UNIX routine ingccmd. Otherwise the name specified

is considered to be an absolute path identifier.

The UNIX monitoring routine must have an exit value. It can be one of the

following:

0 Resource is available

4 Resource is starting

8 Resource is unavailable

12 Error occurred

If the user-specified monitoring routine loops, it will receive a SIGKILL after the

AOFUSSWAIT time (defined in AOFEXDEF).

Hint:

It is possible to write a message from this UNIX monitoring routine to the

MVS system log, in order to trigger an action or perform a status change

through the NetView Automation Table (AT).

 The monitoring routine AOFUXMON must be specified, otherwise the default

monitoring routine (usually INGPJMON) will be called, which is not sufficient for

z/OS UNIX resources.

The Job Type field can be either MVS or NONMVS:

MVS Is only used for resources that represent a process with a unique jobname.

For these resources SA z/OS accepts the following messages for status

changes:

v IEF403I Job started

v IEF404I Job ended

v IEF450I Job abended

If no start command is specified, the default MVS start method

(s <JOBNAME>) is used.

NONMVS

SA z/OS ignores the messages listed above for status changes. This is

necessary if the jobname is not unique.

For z/OS UNIX resources the Start Timeout interval begins when SA z/OS issues

a start command for an application. After the start timeout the monitoring method

is triggered. When the monitor detects the resource as available, the agent status is

set to ’ACTIVE’. After another start timeout interval and successful monitoring, the

Setting Up z/OS UNIX Automation

Chapter 8. How to Automate USS Resources 81

|
|
|
|

|
|
|

ACTIVMSG generic routine is triggered which sets the agent status to ’UP’. The

default value for Start Timeout is 2 minutes.

Automated Resources

Process Monitoring: No UNIX process identifiers (PIDs) can be monitored. The

monitoring routine needs the start command and the user ID that the process

belongs to. This information can be obtained with the UNIX command ps. In the

following example all processes belonging to user CAMP are displayed:

CAMP:/u/camp/ingcmd>ps -e -o comm

COMMAND

/bin/sh

/usr/sbin/rlogind2

/bin/ps

/bin/sh

/usr/sbin/rlogind2

CAMP:/u/camp/ingcmd>

This means that automation could not distinguish between the two processes

started by /usr/sbin/rlogind2. Processes started by identical commands must

have different user IDs.

If it is necessary to automate processes running multiple instances, a user could

use softlinks to distinguish between the different processes. For example, the

process:

/u/camp/usstest/testme

should be started more than once. In this case, create some softlinks:

CAMP:/u/camp/usstest> ln -s testme test1

CAMP:/u/camp/usstest> ln -s testme test2

This results in:

CAMP:/u/camp/tt>ls -al

total 216

drwxrwxr-x 2 CAMP DE#03243 8192 Jan 24 16:24 .

drwxr-xr-x 19 CAMP DE#03243 8192 Jan 24 16:23 ..

lrwxrwxrwx 1 CAMP DE#03243 6 Jan 24 16:24 test1 -> testme

lrwxrwxrwx 1 CAMP DE#03243 6 Jan 24 16:24 test2 -> testme

-rwxrwxr-x 1 CAMP DE#03243 94208 Jan 24 16:23 testme

These three programs (being the same ″real″ program) can be automated with the

three different start commands test1, test2, and testme. These links may be created

as a prestart command and deleted as a shutfinal command.

Note: Only the command is used, not the parameters that were used to start the

program. This is because a program may be started by SA z/OS with

different startup parameters, depending on what the automation manager

told the automation agent to do. In this case, the only constant value is the

command, not the parameters.

TCP Port Monitoring: Exactly one TCP port number can be entered for one

resource. SA z/OS monitors the local host as returned by the function

gethostid(). When this port has a state of ’listening,’ this resource is considered to

be ’available’ in terms of SA z/OS. All other states of the port will map to

’unavailable.’

File or File-System Monitoring: The existence of a file (belonging to a certain

user) is verified. Many applications create files at startup and delete these files

Setting Up z/OS UNIX Automation

82 System Automation for z/OS: Customizing and Programming

when terminating normally. If more than one file should be monitored, this can be

modeled as an application group (APG) in the automation manager.

This monitoring can be used to determine if a certain file system is mounted. The

start command for this resource would be a UNIX ’mount’ command, the stop

command a UNIX ’umount’.

Start and Stop Definitions (INGUSS Command)

If the resource is to be controlled by traditional MVS commands, this could be

done in the same way as for all other MVS applications. Issuing commands in the

z/OS UNIX environment is done by specifying the INGUSS command at the start

or stop definitions.

To issue commands in the USS environment use the INGUSS command (for more

details see IBM Tivoli System Automation for z/OS Programmer’s Reference).

Note: INGUSS can only be used if the primary JES is available. Therefore, z/OS

UNIX resources using INGUSS need a HASPARENT dependency to JES.

Most z/OS UNIX applications have this dependency. If you want to issue

prestart commands, an additional PREPAVAILABLE dependency is

necessary.

z/OS UNIX and MVS commands can be mixed in different shutdown passes.

Command Examples:

Start Command for a Process: To start a process with the command and jobname

specified in the customization dialogs, enter INGUSS JOBNAME=&SUBSJOB &SUBSPATH

on the Startup Command Processing panel, as shown in Figure 9.

 Only the command that was used to start an application or a process can be

monitored. If the same program is to be started multiple times, a softlink as

prestart command could be used to distinguish the processes.

Use a Softlink to Distinguish Processes that Run the same Executable as Prestart

Command: Figure 10 shows an example to create a softlink for &SUBSPATH (the

path parameter of the resource issuing the command, for example, /u/user1/uss1)

and link to the file /u/user1/usstest.

 When looking at the HFS, this results in:

 Type Automated Function/’*’

 Command text

 INGUSS JOBNAME=&SUBSJOB &SUBSPATH

Figure 9. Startup Definition for a Process

Type Automated Function/’*’

 Command text

 *

 INGUSS /bin/ln -s /u/user1/usstest &SUBSPATH

Figure 10. Creating a Softlink

Setting Up z/OS UNIX Automation

Chapter 8. How to Automate USS Resources 83

USER1:/u/user1>ls -l

total 408

lrwxrwxrwx 1 USER1 DE#03243 7 Feb 13 12:44 uss1 -> usstest

-rwxrwxr-x 1 USER1 DE#03243 163840 Jan 29 14:55 usstest

Stop Commands for a Process: An z/OS UNIX process may be stopped in different

ways (escalation passes). For example, you can first use the z/OS UNIX kill

command, if that does not work use z/OS UNIX kill -9, and finally enter an MVS

cancel command.

Enter the definitions for this example as shown in Figure 11.
 %PID% is replaced at run time by the real PID of the process.

Stop Command for a File: A stop command for a file may be deleting the file. The

filename entered in the customization dialogs can be found in &SUBSFILE, as

shown in Figure 12.

Example: inetd

The inetd is the UNIX internet daemon. It allows you to invoke several others and

it should be started at IPL time (normally through /etc/rc). It then listens for

connections on certain internet sockets. Its configuration file is /etc/inetd.conf

The following is a sample inetd configuration file:

login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m

exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -d

otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -k -t

daytime stream tcp nowait OMVSKERN internal

time stream tcp nowait OMVSKERN internal

netbios-ssn stream tcp nowait OMVSKERN /local/samba/bin/smbd smbd

When a service request is detected at one of its sockets, it decides what service the

socket corresponds to and invokes a program to service the request. Then it

normally continues to listen on the socket the last request came in at (see Figure 13

on page 85).

 Pass Automated Function/’*’

 Command Text

 1

 INGUSS /bin/kill %PID%

 3

 INGUSS /bin/kill -9 %PID%

 4

 MVS C &SUBSUSSJOB,A=&SUBSASID

Figure 11. Stop Definitions for a Process

Pass Automated Function/’*’

 Command Text

 1

 INGUSS /bin/rm &SUBSFILE

Figure 12. Delete a File

Setting Up z/OS UNIX Automation

84 System Automation for z/OS: Customizing and Programming

The inetd started with the configuration file above will listen on the following

sockets:

CAMP:/etc>netstat -a | grep INET

INETD1 00006B80 0.0.0.0..13 0.0.0.0..0 Listen

INETD1 00006B7D 0.0.0.0..513 0.0.0.0..0 Listen

INETD1 00006B7E 0.0.0.0..512 0.0.0.0..0 Listen

INETD1 00006B7F 0.0.0.0..623 0.0.0.0..0 Listen

INETD1 00006B82 0.0.0.0..139 0.0.0.0..0 Listen

INETD1 00006B81 0.0.0.0..37 0.0.0.0..0 Listen

Whereas the services and the real port numbers correspond according to

/etc/services:

daytime 13/tcp #Daytime

time 37/tcp timserver #Time

netbios-ssn 139/tcp #NETBIOS Session Service

exec 512/tcp #remote process execution;

login 513/tcp #remote login a la telnet;

otelnet 623/tcp #OE telnet

The UNIX internet daemon (inetd) can be defined in the customization dialogs, for

example:

Application Name: INETD/APL Application Type: USS

Command/Path: /usr/sbin/inetd User ID: OMVSKERN

Port: - File:

Application Name: INETFILE/APL Application Type: USS

Command/Path: User ID: OMVSKERN

Port: - File: /tmp/inetd.pid

Application Name: INETPORT/APL Application Type: USS

Command/Path: User ID: OMVSKERN

Port: 513 File:

Define a basic group containing all resources with relationships which indicate

that:

v The file is created by the inetd process and can never be started or created

directly by SA z/OS.

Figure 13. inetd Structure

Setting Up z/OS UNIX Automation

Chapter 8. How to Automate USS Resources 85

v The inetd process listening on the port can never be started or created directly

by SA z/OS.

 The example above recognizes the inetd (modeled as a group) as up and running

when the process /usr/sbin/inetd started by user OMVSKERN shows up, the file

/tmp/inetd.pid exists and port 513 is in status ’listen’ (inetd will listen to this port

for incoming login requests).

You can only choose a port that is defined in inetd/conf.

Start definition for INETFILE/APL

None.

Start definition for INETPORT/APL

None.

Start definition for INETD/APL

CMD: INGUSS JOBNAME=&SUBSJOB &SUBSPATH /etc/inetd.conf

 (&SUBSPATH is substituted at run time by the parameter command/path.)

Stop definitions for INETFILE/APL

CMD: INGUSS /bin/rm &SUBSFILE

 (This will remove the file if not yet removed by the inetd process.)

Stop definition for INETPORT/APL

None.

Stop definitions for INETD/APL

CMD: INGUSS /bin/kill %PID%

CMD: INGUSS /bin/kill -9 %PID%

CMD: MVS C &SUBSUSSJOB,A=&SUBSASID

%PID% will be replaced by the z/OS UNIX command routine with the real

PID that matches the parameters command/path and user ID. In the

following example this is 33554821:

CAMP:/u/camp/ingcmd>ps -e -o pid,comm -u OMVSKERN

 PID COMMAND

 33554481 /bin/sh

 50331698 /usr/sbin/rlogind2

Figure 14. Dependency Graphic

Setting Up z/OS UNIX Automation

86 System Automation for z/OS: Customizing and Programming

33554486 /usr/lpp/netview/bin/cnmeunix

 67108927 /bin/sh

 83886176 /bin/ps

 33554821 /usr/sbin/inetd

 83886472 FTPD

 67109276 /bin/sh

 16777629 /usr/sbin/rlogind2

 33554924 HSAPYTCP

Hints and Tips

Trapping UNIX syslogd Messages

To trap UNIX syslogd messages, an entry must be added to the syslogd

configuration file /etc/syslog.conf in order to forward the messages to the MVS

system log. Thus, messages can be processed by the Automation Table (AT).

To forward all messages to the MVS log add the following entry:

. /dev/console

To send special messages to the MVS log only, follow the syslog message naming

guidelines (for example, for warning messages use *.warn). /dev/console can be

used as an ordinary file to write to.

The UNIX messages have the MVS message ID BPXF024I and are multiline

messages.

Figure 15 shows an example of a UNIX message:

Debugging

Debugging can be activated for z/OS UNIX monitoring and command execution

on the AOCTRACE panel. The clist for monitoring is AOFUXMON and for

command execution AOFRSUSS.

Turning on debugging for AOFRSUSS implicitly turns on debugging for ingccmd

(the SA z/OS command server).

The debugging messages will be written to the netlog and to the z/OS UNIX

system log (syslogd).

M 13:45:21.34 STC03602 00000090 BPXF024I (CAMP) Feb 13 13:45:21 BOEKEY1 syslogtest 67109100 : This is

S 498

D 498 00000090 a test message

Figure 15. Example of a UNIX Message

Setting Up z/OS UNIX Automation

Chapter 8. How to Automate USS Resources 87

Hints and Tips

88 System Automation for z/OS: Customizing and Programming

Chapter 9. How to Enable Sysplex Automation

This chapter describes the enhancements to Parallel Sysplex® automation, how to

use the SA z/OS customization dialogs to enable them, and how to customize

your system.

Note: If you use a host code page other than 037, the hexadecimal representation

of the at sign (@) can be different. Use the letter represented by the hex code

X'7C' for the at sign.

Sysplex Functions

Managing Couple Data Sets

Couple data sets (CDSs) contain control information about the sysplex and its

resources, and are of crucial importance for the functioning of a Parallel Sysplex.

Particularly important are the SYSPLEX couple data set, which contains

information about the systems and the communication structure (XCF groups) of

the sysplex, and the CFRM couple data set, which specifies its coupling facilities

(CFs) and structures (see “Managing Coupling Facilities” on page 91). Every MVS

system in a Parallel Sysplex must have access to these CDSs, and to those of all

other implemented sysplex functions, such as SFM and Application Response

Measurement (ARM).

If a member system cannot access a CDS, the corresponding sysplex function is

impacted, and in some cases the sysplex will go down. It is therefore

recommended that you define two CDSs to XCF for every CDS type required for

the implementation of the sysplex. One of these, the primary CDS, is the one that is

actually used. The other, which is called the alternate CDS, serves as a backup copy.

The two CDSs contain the same data. Whenever the primary CDS changes, XCF

updates the alternate CDS accordingly. If an alternate CDS is available for a certain

type, XCF automatically switches to this alternate CDS whenever a member can no

longer access the primary CDS.

All CDSs except the sysplex couple data set contain one or more user-defined

configurations, called policies. For each CDS type, only one policy can be active.

However, it is possible to switch the active policy at run time. Refer to IBM Tivoli

System Automation for z/OS Operator’s Commands for further information about the

INGPLEX command.

SA z/OS offers two functions for easier CDS management:

v Automated creation and recovery of alternate couple data sets for continuous

availability

v INGPLEX CDS, which simplifies management of couple data sets

Ensuring Continuous Availability of Couple Data Sets

When an alternate CDS exists for a given CDS type and the current primary CDS

fails, XCF makes this alternate the primary CDS. After this switch, however, an

alternate CDS no longer exists, and if the current primary CDS also fails, the

problems that were to be avoided by the creation of an alternate occur again. To

© Copyright IBM Corp. 1996, 2005 89

avoid this single-point-of-failure situation, SA z/OS provides a recovery

mechanism that tries to ensure that an alternate CDS is always available for every

CDS type used.

SA z/OS creates a new alternate CDS in the following two situations:

v During initialization, SA z/OS checks that an alternate CDS is specified for

every primary CDS. If there is a primary CDS for which no alternate CDS exists,

SA z/OS automatically creates it.

v At run time, SA z/OS ensures that a new alternate is created whenever the

current alternate has been removed or switched to the primary one.

Customization

Recovery of alternate CDSs is initiated either by the CDS function of INGPLEX or

in the background (for example, at initialization time). Background recovery can be

switched on and off by using the SA z/OS customization dialogs. Automatic

re-creation with INGPLEX CDS is always enabled.

You must specify the spare volumes that SA z/OS may use for creating missing

alternate CDSs (using the policy item SYSPLEX from the Policy Selection panel for

sysplex groups). This is also required for automatic creation with INGPLEX CDS.

Every CDS type has its own pool of spare volumes. Note that if you do not define

spare volumes for a CDS type, no recovery will be performed for this type. For

details on the use of the customization dialogs, see “Enabling Continuous

Availability of Couple Data Sets” on page 100.

You can control access to those functions of INGPLEX CDS that modify the sysplex

configuration. Refer to Appendix A of IBM Tivoli System Automation for z/OS

Planning and Installation for details.

Managing the System Logger

Terms and Concepts

The system logger provides a sysplex-wide logging facility. Applications that use the

system logger write their log data into log streams. Within a Parallel Sysplex, these

log streams are usually associated with a coupling facility structure. For further

information about coupling facility structures, refer to “Managing Coupling

Facilities” on page 91. By using a coupling facility log stream, members of a

multisystem application can merge their logs even when residing on different

systems.

When an application writes data to a log stream this data is stored at first

temporarily in the associated structure (coupling facility log stream) or a local

buffer (DASD-only log stream). From there, it is off-loaded into a log stream data

set which is automatically allocated by the system logger. When this log stream

data set is full, the system logger allocates a second one, and so on.

The control information for the system logger, which includes a directory for the

log stream data sets of every log stream, is contained in the LOGR couple data set.

The total number of log stream data sets that can be allocated by the system logger

is determined when the LOGR couple data set is formatted.

Two problems that can arise in connection with the log stream data sets are a

shortage of directory space in the LOGR CDS and incorrect share options for the

log stream data sets. SA z/OS provides the following recovery actions for these

problems:

Managing Couple Data Sets

90 System Automation for z/OS: Customizing and Programming

v The primary and alternate LOGR CDSs are automatically re-sized if there is a

directory shortage

v The operator is notified if the share options for log stream data sets are not

defined correctly

Re-sizing the LOGR Couple Data Sets in Case of Directory

Shortage

The LOGR CDS contains information about the log stream data sets used by the

system logger. This information is stored in directory extents. Every directory extent

record can hold information about up to 168 log stream data sets. The number of

directory extents available in a LOGR CDS is specified when the CDS is formatted

(DSEXTENT parameter). When all available directory extents are used up the system

logger can no longer allocate new log stream data sets. This can cause considerable

problems for applications that use the system logger.

With SA z/OS, you can avoid this situation. If you switch on logger recovery,

SA z/OS automatically reformats your primary and alternate LOGR CDS with an

increased DSEXTENT parameter whenever the system reports a directory shortage.

Customization

Automation of system logger recovery is enabled through the SA z/OS

customization dialogs. For more details, see “Enabling System Log Failure

Recovery” on page 101.

Managing Coupling Facilities

A coupling facility (CF) is a logical partition that provides storage for data exchange

between components of an application that is distributed across different systems

in a Parallel Sysplex. A Parallel Sysplex can contain more than one CF. The storage

of a coupling facility is divided into areas that are called structures. You can

imagine a structure as a special kind of data set. It is these structures, which are

identified by their name, that are accessed for reading and writing by the

application components.

The association between CFs and structures is dynamic. A structure that is used by

an application need not be allocated at all (for example, when the application is

not running), and can be allocated on different CFs at different points in time. For

every structure, there exists a preference list that defines the CFs on which it may be

allocated. The order of the CFs in that list determines which CF is selected when

more than one member of the list satisfies all allocation requirements (for example,

provides enough space).

The preference list, the space requirements, and other properties of the structures

are defined in the active CFRM policy. This policy is contained in the CFRM

couple data set. Refer to “Managing Couple Data Sets” on page 89 for further

information.

XES allocates a structure that does not yet reside on any CF when an application

component needs to be connected to it. Note that the application component only

specifies the name of the structure that it wants to access. It is XES that decides on

which CF the structure is allocated. This decision is influenced by the structure

definition in the active CFRM policy. After the structure has been allocated, the

requesting application component can access it, and further components of this

application can require to connect to it. An application component that has access

to an allocated structure is referred to as an active connector to this structure.

Managing the System Logger

Chapter 9. How to Enable Sysplex Automation 91

In the simplest case, XES deallocates a structure when all connected application

components have disconnected from the structure. However, an application

component can require that the structure or its own connection to the structure be

persistent. When the structure is persistent it remains allocated even when the

application component is no longer connected to it. When a connection is persistent

the structure remains allocated after a failure of that connection. The application

component in question remains a connector to the structure, although not an active

one. It is now a failed persistent connector. In both cases, you can force the

deallocation of the structure as soon as it no longer has active connectors.

Allocated structures can be rebuilt. Rebuilding is the process of reconstructing a

structure on the same or another CF. A rebuild consists of three main steps. First,

XES allocates the new structure instance. Then, the data of the old structure is

reconstructed in the new structure. Finally, XES deallocates the old structure

instance. Note that you cannot specify the target CF in your rebuild request. As

with structure allocation, XES selects it from the preference list.

There are two methods for rebuild: user-managed and (from OS/390® 2.8 onward)

system-managed. With user-managed rebuild, the active connectors are responsible

for reconstructing the data. With system-managed rebuild, XES transfers the data

to the new structure instance. System-managed rebuild is thus also available for

structures without active connectors. These structures can either themselves be

persistent or have failed persistent connections.

When an application component connects to a structure, it specifies whether it

allows the structure to be rebuilt through user-managed or system-managed

rebuild. For structures with active connectors, both rebuild methods require that all

active connectors allow the respective rebuild method.

You can also duplex structures. Duplexing means maintaining two instances of the

same structure on different CFs at the same time. Duplexing serves to increase

availability and usability of a structure.

Typical management tasks for CFs are removing a CF from the sysplex and

reintegrating it again. These tasks have several steps that must be performed in a

certain order and can be quite complex. To simplify these operations, SA z/OS

offers the INGCF command. INGCF has several functions, which serve to

manipulate structures and the CFs themselves. For more information, see IBM

Tivoli System Automation for z/OS Operator’s Commands and the online help.

Some functions deal with the sender paths of a coupling facility. They have the

following limitations. First, at least one system in the sysplex that is running the

automation must know the control unit id (CUID) of the coupling facility. If this is

not the case, no missing sender paths can be resolved.

A missing sender path occurs when a coupling facility is deactivated prior to a

system IPL (or reIPL) and then activated afterwards. The system that has been

IPLed (or reIPLed) does not recognize the coupling facility. To determine the

missing sender paths, the automation calls the HOM interface of HCD. Resolving

the missing path information is only possible when either the complete network

address is defined in HCD along with the processor id, or you provide the CPC

synonym used by the automation as the processor id. However, it is recommended

that you define both. If neither is defined, the system that misses the sender paths

must run the automation.

Managing Coupling Facilities

92 System Automation for z/OS: Customizing and Programming

Recovery Actions

Resolving a System Log Failure

SYSLOG message automation has been enhanced with a recovery function. Both

functions (recovery and automation of message IEE043I) exist in parallel. Recovery

takes place if the system log becomes inactive. It responds to message IEE037D

following one of the messages IEE043I, IEE533E, or IEE769E, and it responds to

message IEE041I. For details refer to “Enabling System Log Failure Recovery” on

page 101. Except for the decision message, you can define individual action

commands in the customization dialogs for the above messages.

Because the recovery and the former automation of message IEE043I affect the

same resource SYSLOG, only one threshold can be defined in the policy SYSLOG

THRESHOLDS. To allow the separate control of SYSLOG recovery from the former

SYSLOG message automation, use the minor resource flag LOG. For the run time

environment, two thresholds are generated from the single threshold definition.

The names of these thresholds correspond to the names of the minor resource

flags.

Note: Action commands that are executed for the old SYSLOG message

automation are defined in the customization dialog using the entry SYSLOG

in the messages policy for the entry type MVS Components. Action

commands that are executed for the new SYSLOG recovery of message

IEE043I are defined in the customization dialog in entry IEE043I in the same

policy. If SYSLOG message and recovery commands are defined, both action

commands will be issued, if message IEE043I followed by message IEE037D

is trapped.

Customization: Automation of system log recovery is enabled through the

SA z/OS customization dialogs. For more details, see “Enabling System Log

Failure Recovery” on page 101.

Resolving WTO(R) Buffer Shortages

When all WTO(R) buffers are in use, it is possible that commands can no longer be

processed. To resolve this, there are several options: you can extend the buffer,

change the properties of the affected consoles, or cancel jobs that issue WTO(R)s.

SA z/OS provides recovery of buffer shortage in two stages. It first tries to extend

the buffer and modify the console characteristics, if applicable. If this does not

help, it then cancels jobs that issue WTO(R)s. You must specify which jobs can be

canceled by SA z/OS if there is a buffer shortage.

Customization: Automation of buffer shortage recovery is enabled using the

SA z/OS customization dialogs. For more information, see “Enabling WTO(R)

Buffer Shortage Recovery” on page 102.

Handling Long-Running Enqueues (ENQs)

This type of recovery is divided into the following individual functions:

v Long-running enqueue recovery

v SYSIEFSD resource recovery

v ″Hung″ command recovery

v Command flooding recovery

All these recoveries can be enabled and disabled individually or globally.

The long-running enqueue recovery function lets you:

Recovery Actions

Chapter 9. How to Enable Sysplex Automation 93

v Check which resources are blocked

v Customize automation to cancel or keep the jobs that block the resource

v Customize automation to dump the jobs before they are canceled

You can determine which resources you want to monitor. You can define a value

for the maximum time a job can lock a resource while other jobs are waiting for it.

If this amount of time is exceeded, recovery takes place. Identification of and

elimination of these potential bottlenecks helps to reduce the risk of a Parallel

Sysplex outage.

While the time definition describes an inclusion list, you also have the possibility

to define an exclusion list of resources that are not monitored at all.

For more information about enabling the ENQ function, see “Enabling Long

Running Enqueues (ENQs)” on page 106.

This function has been extended by three supplementary functions:

v “SYSIEFSD Resource Recovery”

v “″Hung″ Command Recovery”

v “Command Flooding Recovery” on page 95

SYSIEFSD Resource Recovery: The purpose of this function is to detect critical

ENQ resources that, if held for extended periods of time, can cause commands to

hang. Hung commands often result in multisystem outages. The focus of this

function is on the SYSIEFSD family of resources that are involved in 98% of hung

command outages:

v SYSIEFSD Q10 – this resource is required for every command. It is used to

serialize changes to the CSCB chain. If any task gets this resource and then

hangs, all commands will be locked out of the system. This also means that all

consoles will be locked out of the system. This is because, as soon as a console

issues a command after Q10 has hung, it will be waiting behind Q10, and that

locks out the task that handles all MCS consoles. EMCS consoles will then also

get locked out one by one as they issue a command and also get hung behind

Q10. Actions taken to free up this hang cannot include issuing a command (for

example, D GRS)—the task has to be terminated via CALLRTM.

v SYSIEFSD Q4 – this resource is used to serialize changes to the UCB by

allocation and VARY command processing. Allocation obtains the resource as

SHARED, while the VARY command obtains it exclusively. If a VARY command

hangs while holding this resource, all allocations will also hang. The VARY

command that is hung can be displayed and abended with the CMDS command.

If any of these resources do not execute within 10 seconds, they are considered to

have hung.

″Hung″ Command Recovery: The purpose of this function is to detect hung

commands that often result in multisystem outages. We distinguish two situations:

1. Commands that inhibit other commands from completing execution

2. Jobs that inhibit commands from completing execution

In either case only locked resources are taken into consideration. The recovery

looks for blocked resources that have not been defined during customization. If the

long-running ENQ recovery is disabled all resources, even those that have been

defined during customization, are considered as not having been defined.

Recovery Actions

94 System Automation for z/OS: Customizing and Programming

Because commands are executed by the master and the console address space, the

recovery first looks for blockers and waiters of these address spaces. As with

resources you can make similar definitions for commands (see “Enabling Long

Running Enqueues (ENQs)” on page 106).

In the second case the recovery does not take place immediately. Only after the

threshold—the invocation after next—has been reached is the recovery action

performed.

In both cases the action is identical to the long-running ENQ recovery action.

Command Flooding Recovery: The purpose of this function is to detect jobs that

flood a command class. Command flooding can cause log buffer shortages and

inhibits other commands from executing. Both can lead to a multisystem outage.

When all (50) TCBs that are reserved for command processing are in use, new

commands are queued to the waiting queue. In this case the system issues message

IEE806A which triggers this function to evaluate what jobs are causing the

situation.

Jobs that just issue a set of commands, such as 200 (or more) ″VARY dev,ONLINE″

commands should not be considered during the evaluation. This is achieved by

comparing the current and the previous snapshot of the affected command class.

Snapshot processing is scheduled when message IEE806A is trapped. The interval

time between the snapshots is 3 seconds by default (see “Enabling Long Running

Enqueues (ENQs)” on page 106 for details about adjusting this value if necessary).

The interval should give these jobs enough time to finish issuing commands before

the first snapshot is taken. Only jobs that issue commands on two consecutive

snapshots become subject of the recovery action.

Before the recovery action takes place, the number of commands that are issued by

the job must exceed a threshold (see below) and at least one of the commands

must not be involved in a lock contention that is handled by the ″hung″

commands recovery.

The recovery action depends on the job definitions (see “Enabling Long Running

Enqueues (ENQs)” on page 106). If the job can be canceled, the recovery also

removes its waiting commands and terminates its executing commands. The

recovery action is completed either with message ING922E or with message

ING924E. The latter message is repeatedly issued approximately every minute until

the waiting queue becomes empty.

The threshold is calculated by subtracting the number of jobs that are issuing

commands in the command class from the total number of TCBs (50) that are

reserved for command processing. This prevents jobs that repeatedly issue few

commands from being evaluated .

The recovery ends when the message IEE061I is issued.

Note: The dump definitions are not in effect if a dump should be taken when the

job is canceled. This is because the recovery routine of the job that is being

canceled can suppress the dump.

Recovery Actions

Chapter 9. How to Enable Sysplex Automation 95

Customization: Automation of handling long-running enqueues is enabled

through the SA z/OS customization dialogs. For more details, see “Enabling Long

Running Enqueues (ENQs)” on page 106.

SYSIEFSD resource recovery needs no further customization; it is enabled and

disabled whenever you enable or disable the recovery of long-running enqueues.

System Removal

The purpose of this function is to isolate failed systems from a Parallel Sysplex by

removing them as quickly as possible. It also ensures fast mean time to recovery

(MTTR) for those system images that you wish to restart immediately if an

unavoidable outage occurs.

Note: This function is unavailable when running on a z/OS image which runs

under z/VM, even if the function is enabled.

In particular, the function automates the messages IXC102A and IXC402D.

The automation of the first message completes the Sysplex Failure Management

(SFM). Under certain circumstances SFM cannot complete the isolation of a failed

system. This is because SFM’s HW isolation, resetting the channel subsystem (CSS)

of the failed system, is driven through the CF. When connectivity between the

system image and the coupling facility is lost, SFM cannot perform the hardware

isolation (ISOLATE command) and defers resetting the system image until manual

operator intervention occurs. Message IXC102A tells the operator to manually reset

the HW and then reply ″DOWN″ to the message, after which SFM safely partitions

the system image out of the sysplex. The longer the delay lasts, the more the

components and applications that rely on XCF messaging are impacted. The delay

can eventually lead to a sysplex outage when the failed system has I/O operations

pending. Automation of this message minimizes the delay.

The second message has the same impact as the first one. However, this message

indicates a possible temporary inoperative status of the system due to a missing

status update. For this reason the automation gives the system the chance to

recover before the removal takes place by replying ″INTERVAL=sss″ to the first

occurrence of message IXC402D. The interval time, sss, is the failure detection

interval that is displayed by the command D XCF,CPL.

The automation does the removal of a system in two stages. The first stage clears

any pending I/O operations by sending a hardware command to the Support

Element. This requires information about the software running on the hardware.

Because the system issuing message IXC102A or IXC402D does not necessarily

have access to the hardware of the failed system, the automation needs predefined

mapping between software and hardware. Depending on this mapping, it then

routes the hardware command to the system that has access to the hardware of the

failed system. For information about how to do the mapping refer to “Enabling

System Removal” on page 104. For further information about the hardware

requirements refer to IBM Tivoli System Automation for z/OS Planning and

Installation.

The second stage replies to the outstanding WTOR with ″DOWN″ triggering the

removal of the system from the sysplex.

Customization: Automation of message IXC102A is enabled through the SA z/OS

customization dialogs. For more details, see “Step 3: Automating Messages

IXC102A and IXC402D” on page 105.

Recovery Actions

96 System Automation for z/OS: Customizing and Programming

Recovering Auxiliary Storage Shortage

With the automation of local page data sets, SA z/OS prevents auxiliary storage

shortage outages by dynamically allocating spare local page data sets when

needed. The function checks which jobs cause the shortage condition and whether

additional page data sets can be added. If this is not possible, the job that is

causing the shortage will be canceled if this has been defined.

To enable local page data set automation customize the PAGTOTL parameter

(defined in one of the IEASYSxx PARMLIB members used during IPL). Make sure

to set the PAGTOTL parameter to a value greater than the number of local page

data sets currently used.

Local page data sets must be defined in the master catalog and should not be

SMS-managed. It is recommended to use preallocated local data sets instead of

dynamically allocated ones. This makes the process faster because formatting

newly allocated page data sets is timeconsuming (10sec./35MB). Each predefined

local page data set should be allocated with 10% space of local page space

currently used by the system. If predefined page data sets can no longer be

allocated, new local page data sets will be created dynamically.

Customization: Automation of the recovery of auxiliary storage shortage is

enabled through the SA z/OS customization dialogs. For more details, see

“Enabling System Removal” on page 104.

Hardware Validation

This function performs cross-validation of the hardware configuration mapped out

in the customization dialogs against the actual hardware configuration that is

running. This information is critical to accurately control logical partitions (LPARs)

on any supported CPC within the HMC/SE LAN over the BCP Internal Interface.

Hardware validation uses the CPC name, Partition name and Partition number to

ensure that the LPARs defined in the customization dialogs are on the correct CPC

and located on the correct partition number. However, this helps only for coupling

facilities because their partition identifiers must be defined in the active CFRM

policy.

For MVS images, information from the HMC/SE (such as system name and

sysplex name that are stored during initialization) is used to verify the

corresponding customization dialog definitions. During initialization of the

automation’s Hardware Command Interface and just before a disruptive request is

sent to a partition, new checks are made to ensure that everything matches

correctly.

Note: Only active images can be verified. For inactive images we must still rely on

definitions made in the customization dialogs.

An active system in this context is a system belonging to the same sysplex

as the system that runs the hardware validation, that is SA z/OS checks

only systems and coupling facilities within its own sysplex.

Hardware validation runs on an SA z/OS system primarily during startup, and

subsequently when changes to the definition in the customization dialogs are

applied through the ACF command (ACF COLD, and ACF REFRESH when any

CPC or image data has changed). The validation checks the definitions of all

registered systems, that is whenever an SA z/OS system performs the hardware

validation, it validates all systems and coupling facilities that are active in the

Recovery Actions

Chapter 9. How to Enable Sysplex Automation 97

sysplex at this point in time. Registered systems are systems running msys for

Operations or SA z/OS that have joined the same XCF group.

The validation of active systems and coupling facilities requires that the CPCs that

host the active systems must all be defined in the customization dialogs.

The data for inactive systems cannot be verified. However, these definitions are

checked for consistency across all registered systems. As soon as one of these

inactive systems or coupling facilities joins the sysplex or is made available for use,

the validation is run for the particular image only.

Retrieving actual hardware information can take up to 5 minutes per CPC

depending on the model and its LPARs. During the time that the hardware

validation takes place all other hardware-related automation is either delayed or

cannot be performed, depending on the type of recovery. For this reason the

validation carries out ″delta″ processing. That is validating only the data that has

changed. This also includes the absence of data resulting in terminating CPC

connections when CPC definitions are missing that have been applied by a prior

validation. The actions resulting from the validation are performed on ALL

registered systems. This has two advantages:

v you don’t need to recycle NetView for changes in hardware definitions.

v you only need to make the changes available to one system.

The first part of the hardware validation triggered by the ACF command or the

automation startup determines what CPC connections must be terminated and

initiated, namely in this sequence. The resulting actions are performed on all

registered systems. When this step has been completed successfully the image

validation is performed.

The image validation collects actual hardware information, and verifies the current

hardware definitions against the actual data and the definitions found on all other

registered systems. It informs you if:

v A real system or coupling facility could not be validated because either actual

hardware information or user definitions are not available

v The image definitions could not be evaluated because the actual hardware

information is not available

v The real system or coupling facility is not active and the image definitions of

some of the registered systems are different

v Any definition value has been corrected that was improperly defined or not

defined at all

Changes in hardware definitions can be made available to all registered systems by

simply invoking the command INGAMS REFRESH on only one of the these

systems. There is one exception: the change of the authorization token value used

for the communication with a particular CPC. A change of this value requires 3

steps:

1. In the first step you must remove the particular CPC definition and then

invoke the ACF command as above.

2. When the command completes successfully the next step is to change the

authorization token value of the CPC at the Support Element.

3. The final step is to define the CPC again with the new token value and invoke

the ACF command again.

Hardware Validation

98 System Automation for z/OS: Customizing and Programming

|

Note: This behavior of the INGAMS command applies to the hardware definitions

only.

The second part of the validation is triggered by either the message IXC517I that is

issued when a coupling facility is made available for use, or by the automation

itself when notified that a system joined the sysplex. Both trigger the automation

to perform only the validation of the new system or coupling facility. Multiple

occurrences of messages for the same system or coupling facility are ignored while

this system or coupling facility is validated. In case of a new system, the advantage

here is that the real hardware is validated before the system starts NetView and

the automation. If this automation then detects no difference between its current

definitions and the definitions of the other registered systems—which is the normal

case—only a consistency check takes place. This check does not require any real

hardware information.

Prerequisites

Hardware validation has the following prerequisites:

v All coupling facilities that are used in the sysplex must reside on a

CMOS-S/390® G5 processor or higher. Only these processors return the partition

identifier that is required for validating coupling facilities.

v The BCP Internal Interface must have been initialized to accept requests. Or,

when unavailable, at least one other registered system must have access to the

hardware. Registered systems are systems running msys for Operations or

SA z/OS that have joined the same XCF group.

Note: Hardware validation is not supported on MVS systems running under

z/VM.

Enabling Hardware-Related Automation

To enable the sysplex automation that SA z/OS provides for recovery actions and

coupling facility management, the following definitions must be made in the

customization dialog.

Step 1: Defining the Processor

Use the customization dialog to define a new processor of Entry Type PRO. The

name should be the real physical name of the processor defined in HCD. For more

information, refer to the online help or the section ″Creating a New Processor″ in

IBM Tivoli System Automation for z/OS Defining Automation Policy.

Step 2: Using the Policy Item PROCESSOR INFO

Use the Processor Information panel, to define a processor using entry type PRO.

Note: The connection type protocol must be INTERNAL
For more information, refer to the online help or the section ″More about Policy

Item PROCESSOR INFO″ in IBM Tivoli System Automation for z/OS Defining

Automation Policy.

Step 3: Defining Logical Partitions

If the processor that you have defined runs in LPAR mode, define its logical

partitions using the LPAR Definitions panel. You should define all LPARs that are

physically available on your processor, together with the systems that run on them.

Hardware Validation

Chapter 9. How to Enable Sysplex Automation 99

|
|

For more information, refer to the online help or the section ″More about Policy

Item LPARS AND SYSTEMS″ in IBM Tivoli System Automation for z/OS Defining

Automation Policy.

Step 4: Defining the System

Define a system using entry type SYS, and the Define New Entry panel.

Note: To avoid receiving hardware validation messages during SA z/OS

initialization, you should define all your systems (including your coupling

facilities).
For more information, refer to the online help or the section ″Creating a New

System″ in IBM Tivoli System Automation for z/OS Defining Automation Policy.

Step 5: Connecting the System to the Processor

Connect this system to the processor that you defined in “Step 2: Using the Policy

Item PROCESSOR INFO” on page 99 and to its logical partition (if you set the

processor mode as LPAR).

Connect this system to the sysplex or standard group (see “Step 6: Defining

Logical Sysplexes” and “Step 7: Defining the Physical Sysplex”).

Note: MVS SYSNAME and the Image/ProcOps Name must be the same.

 Restriction:

 Usually, the MVS SYSNAME may begin with a number. However, in this case, it

must be the same as the Image/ProcOps Name, which cannot begin with a number.

Therefore, this naming restriction also applies to the MVS SYSNAME.

Step 6: Defining Logical Sysplexes

Define EACH logical sysplex (systems within the same XCF group ID) using entry

type GRP with group type SYSPLEX.

Use policy SYSPLEX to enter the real physical sysplex name. You can use the same

name in several SYSPLEX GRPs.

Use policy SYSTEMS to connect all systems within the same XCF group ID to the

SYSPLEX GRP. A system can only be connected to one SYSPLEX GRP.

Step 7: Defining the Physical Sysplex

Define your real physical sysplex using entry type GRP with group type

STANDARD.

Use policy SYSTEMS to connect all systems of your physical sysplex to the

STANDARD GRP.

Enabling Continuous Availability of Couple Data Sets

Couple data sets (CDSs) contain important information about how to manage

certain aspects of your sysplex. For example, the SFM CDS (sysplex failure

management couple data set) defines how the system manages system and

signalling connectivity failures and PR/SM™ (Processor Resource/Systems

Manager™) reconfiguration actions.

Enabling Hardware-Related Automation

100 System Automation for z/OS: Customizing and Programming

The following couple data sets are particularly important for the functioning of

your Parallel Sysplex:

v The SYSPLEX couple data set, which defines the systems and the XCF groups of

the sysplex

v The CFRM couple data set, which defines the coupling facilities and structures

of the sysplex

It is recommended that you define alternate couple data sets for all couple data

sets in your sysplex. These alternate couple data sets serve as backups when the

primary CDS fails.

With the customization dialog you can specify a series of spare volumes for every

CDS type, for example, SYSPLEX, ARM, CFRM. The first volume in the series is

used to create an alternative CDS if one of the primary alternate CDSs fails.

In the customization dialog you define the potential alternate couple data sets

using the Group entry type. Select a sysplex group, then select its policy item

SYSPLEX (define sysplex policy) from the panel Policy Selection.

The Sysplex Policy Definition panel is displayed if you select policy item SYSPLEX

from the Policy Selection panel for sysplex groups.

For a description of this panel refer to the online help or the section ″More About

Policy Item SYSPLEX″ in IBM Tivoli System Automation for z/OS Defining Automation

Policy.

Enabling System Log Failure Recovery

The SA z/OS customization dialog supports the automation of the system log

failure recovery by defining commands for the following messages:

v IEE041I

v IEE043I

v IEE533E

v IEE769E

Use the MVS Component entry type to specify the commands that will be issued in

case of a SYSLOG problem. Select the MESSAGES/USER DATA policy item of a

selected MVS Component policy object to display the Message Processing panel. Enter

CMD in the Action column and the message ID in the Message ID column.

Press Enter to display the CMD Processing panel. On this panel you specify in the

Command Text field the MVS command that will be executed in case of message

IEE041I. For example, enter MVS VARY SYSLOG,HARDCPY to have the SYSLOG receive

the hardcopy log. (This action is recommended by IBM.)

In case of message IEE043I, the IBM recommended action is to enter the MVS

command MVS WRITELOG START to restart the system log.

For the remaining messages repeat the steps as shown in the preceding panels.

You can use the customization dialog Minor Resource Selection to disable the

system log recovery by setting the automation flag of the minor resource LOG to

NO. For details refer to the section ″More About Policy Item MINOR RESOURCE

FLAGS″ in IBM Tivoli System Automation for z/OS Defining Automation Policy.

Enabling Continuous Availability of Couple Data Sets

Chapter 9. How to Enable Sysplex Automation 101

Enabling WTO(R) Buffer Shortage Recovery

The SA z/OS customization dialog supports the automation of WTO(R) buffer

shortage recovery.

When using the MVS Component entry type (MVC), you can specify jobs that will

be canceled or kept in case a WTO(R) buffer shortage is threatening. The jobs that

you select for cancellation will then no longer issue WTO(R)s.

Select the MESSAGES/USER DATA policy item of a selected MVS Component

policy object to display the Message Processing panel.

Enter CODE in the Action column and WTOBUF in the Message ID column

After pressing Enter, the Code Processing panel is displayed. For more information

about this panel, refer to the online help or to the section ″More About Policy Item

MESSAGES/USER DATA″ in IBM Tivoli System Automation for z/OS Defining

Automation Policy.

WTO Recovery is performed when different messages are received by SA z/OS.

The action taken when each of these messages is received is described inTable 4 on

page 103.

Enabling WTO(R) Buffer Shortage Recovery

102 System Automation for z/OS: Customizing and Programming

Table 4. WTOBUF Recovery Process

Recovery Message Actions in sequence Command

WTO IEA405E Set console attributes.

If the deletion mode is not roll or wrap, set the mode to roll. K S,DEL=R,L=x

If any out-of-line display area exists, delete the status display. K E,D,L=x

If the interval between message rolls is not ’*’ or less than or

equal to 1 second, set the interval to 0.25 seconds.

K S,RTME=1/4,L=x

If the console receives messages not only from the local system

and the WTO message buffer size has reached its maximum,

remove the buffering systems from the list and add the local

system to the list.

V CN(x),MSCOPE=(l)

IEA404A Suspend the console.

Requeue the messages to the hardcopy log. K Q,L=x

Vary the active console (COND=A) offline. For SMCS consoles,

issue the appropriate VTAM command (OA05706).

V {CN(x),OFFLINE

 |NET,TERM,LU1=x,

 TYPE=FORCE

 }

Cancel the job or TSO user that caused the shortage, but only when

defined as a candidate during the customization.

C {jobnm,A=asid

 |U=userid

 }

IEA406I Resume the console if it was suspended and if it is not a SMCS

console. (OA05706)

V CN(x),ONLINE

Restore console attributes.

Set the deletion mode to the value before the buffer shortage

occurred (OA05706).

K S,DEL=old,L=x

Set the interval between message rolls to the value before the

buffer shortage occurred.

K S,RTME=old,L=x

Set the list from which the console is to receive unsolicited

messages to the list before the buffer shortage occurred.

V CN(x),MSCOPE=(l)

Increase the WTO message buffer size to minimize future shortages

as follows:

new = min(9999

 ,max(1500

 ,1.2 * current MLIM

)

)

K M,MLIM=new

Issue message AOF929 for permanent changes (MLIM). (OA05706.)

Enabling WTO(R) Buffer Shortage Recovery

Chapter 9. How to Enable Sysplex Automation 103

Table 4. WTOBUF Recovery Process (continued)

Recovery Message Actions in sequence Command

WTOR IEA230E Increase the maximum number of reply IDs to the maximum

allowable value if the maximum number of systems in the sysplex is

greater than 8 or the system runs in local mode.

K M,RMAX=9999

Increase the WTOR message buffer size if the current RMAX value is

greater than the current RLIM value as follows:

new = min(9999

 ,max(10 + 2 * maxsys_in_sysplex

 ,1.2 * current RLIM

)

)

K M,RLIM=new

IEA231A Cancel all jobs and TSO users that have outstanding WTORs and

that are defined as candidates during the customization.

C {jobnm,A=asid

 |U=userid

 }

IEA232I Issue message AOF928 for irreversible changes (RMAX).

Issue message AOF929 for permanent changes (RLIM).

Enabling System Removal

The SA z/OS Parallel Sysplex enhancements help you to resolve pending I/Os for

systems being removed from the sysplex.

Because the automation must know where the system is located to send the

command to the appropriate Support Element, you must use the customization

dialog to define its hardware configuration.

Step 1: Defining the Processor and System

The processor and system must be defined as described in “Enabling

Hardware-Related Automation” on page 99.

Step 2: Defining the Application with Application Type IMAGE

Use entry type APL to define a new application with Application Type IMAGE and

subsystem name that is the same as the Image Name of the system that this

application represents (as defined in “Step 4: Defining the System” on page 100).

Use entry type APL and select policy item APPLICATION INFO for your system.

On the panel Application Informationyou can define a new application type IMAGE.

For more information, refer to the online help or the section ″Policy Items for

Applications″ in IBM Tivoli System Automation for z/OS Defining Automation Policy.

Because the application has been defined as type IMAGE, the job name is set by

default to the subsystem name and cannot be changed.

The Subtype, Scheduling Subsystem, JCL Procedure Name, ARM Element Name,

and WLM Resource Name are forced to be blank.

Some other definitions in the policy item AUTOMATION INFO are also defaulted:

v the Job Type is defaulted to NONMVS

v the Monitor Routine is defaulted to INGMTSYS if nothing is specified

v the External Startup is defaulted to ALWAYS if the Monitor Routine is

INGMTSYS

Enabling WTO(R) Buffer Shortage Recovery

104 System Automation for z/OS: Customizing and Programming

v the External Shutdown is defaulted to ALWAYS if the Monitor Routine is

INGMTSYS

For more information, refer to the online help or the section ″More About Policy

Item AUTOMATION INFO″ in IBM Tivoli System Automation for z/OS Defining

Automation Policy.

Step 3: Automating Messages IXC102A and IXC402D

You can automate messages IXC102A and IXC402D to avoid sysplex outages.

Note: The following shows examples for defining commands and codes for

message IXC102A.

You can specify one of the following four hardware commands for each system in

the sysplex that is automated.

v SYSRESET [CLEAR]

v DEACTIVATE

v ACTIVATE [P(image_profile_name)]

v LOAD [P(load_profile_name)] [CLEAR]

where

CLEAR indicates that the storage will be cleared

P specifies the profile to be used. The name can consist of up to 16

alphanumeric characters. If the parameter is omitted, the last

profile is used.

Note:

The following restriction applies to the hardware commands ACTIVATE and

LOAD:

Both commands invoke processor functions that can cause asynchronous

events such as operator messages at BCP (Basic Control Program) Internal

Interface initialization time or processor hardware wait states. Currently, the

BCP Internal Interface does not allow the monitoring and control of these

events.

 Use policy item MESSAGES/USER DATA of the SA z/OS customization dialog to

define commands and codes for message IXC102A and IXC402D. Enter CMD in the

Action column and IXC102A in the Message ID Description column (or IXC402D for

IXC402D message automation). For more information, refer to the online help or

the section ″More About Policy Item MESSAGES/USER DATA″ in IBM Tivoli

System Automation for z/OS Defining Automation Policy. The definitions here also

apply to message IXC402D.

Pressing Enter will bring up the CMD Processing panel, as shown in Figure 16 on

page 106. Use this panel to specify a valid command for the image and a

″Pass/Selection″ value that must match the ″Value Returned″ definition specified

on the Code Processing panel.

Enabling System Removal

Chapter 9. How to Enable Sysplex Automation 105

On the Code Processing panel, as shown in Figure 17, specify the following:

 If you want to automate messages IXC102A and IXC402D using the Parallel

Sysplex enhancements, you must enter IXC102A for Code 1 and BCPII for Code 2.

Refer to “Important Processor Operations Considerations” on page 108 for more

information.

Enabling Long Running Enqueues (ENQs)

If you automate long running ENQs, you must define the following:

v The resource(s) being checked

v The time frame when a long ENQ is detected

If you automate ″hung″ commands, you must define the following:

v The command (or commands) that are being monitored or excluded from

monitoring

v The time frame for each command that a command is granted for completion or,

if commands are to be excluded from monitoring, the exclusion keyword

In addition, the following definitions can be made:

v The names of jobs that should be canceled or kept when detecting a long ENQ,

a ″hung″ command, or command flooding

v The snapshot interval for a command class

v The title of the dump taken before the job is cancelled

v The default storage areas to be dumped

v Symbol definitions to be used when the dump specifications are provided by a

PARMLIB member

Use the dialog support via entry type GRP to define the following policies:

v Resource definition

v JOB/ASID definitions

v IEADMCxx symbols

v Command definition

v Snapshot interval definition

Step 1: Defining Resources

Use the Long Running ENQ Resource Definition panel to define your resources.

This panel is displayed if you select policy item RESOURCE DEFINITIONS from

the Long Running Enqueue Policy section of the Policy Selection panel for sysplex

groups. For more information, refer to the online help or the section ″More About

Policy Item RESOURCE DEFINITIONS″ in IBM Tivoli System Automation for z/OS

Defining Automation Policy.

 ACTCODE

 LOAD P(LOADPROF) CLEAR

Figure 16. Sample Panel for Command Processing

 Code 1 Code 2 Code 3 Value Returned

 IXC102A BCPII ACTCODE

Figure 17. Sample Panel for Code Processing

Enabling System Removal

106 System Automation for z/OS: Customizing and Programming

Step 2: Making Job/ASID Definitions

Use the Long Running ENQ Job/ASID Definitions panel that is displayed if you

select policy item JOB/ASID DEFINITIONS from the Long Running Enqueue

Policy section of the Policy Selection panel for sysplex groups. For more

information, refer to the online help or the section ″More About Policy Item

JOB/ASID DEFINITIONS″ in IBM Tivoli System Automation for z/OS Defining

Automation Policy.

Step 3: Defining IEADMCxx Symbols

Use the Long Running ENQ IEADMCxx Symbols panel that is displayed if you select

policy item IEADMCxx SYMBOLS from the Long Running Enqueue Policy section

of the Policy Selection panel for sysplex groups. For more information, refer to the

online help or the section ″More About Policy Item IEADMCxx SYMBOLS″ in IBM

Tivoli System Automation for z/OS Defining Automation Policy.

Step 4: Defining Commands

Use the Long Running Command Definition panel to define your commands. This

panel is displayed if you select policy item COMMAND DEFINITIONS from the

Long Running Enqueue Policy section of the Policy Selection panel for sysplex

groups. For more information, refer to the online help or the section ″More About

Policy Item COMMAND DEFINITIONS″ in IBM Tivoli System Automation for z/OS

Defining Automation Policy.

Step 5: Defining Snapshot Intervals

Use the Command Flooding Definition panel to define the individual snapshot

times. This panel is displayed if you select policy item COMMAND FLOODING

from the Long Running Enqueue Policy section of the Policy Selection panel for

sysplex groups. For more information, refer to the online help or the section ″More

About Policy Item COMMAND FLOODING″ in IBM Tivoli System Automation for

z/OS Defining Automation Policy.

Enabling Auxiliary Storage Shortage Recovery

To prevent auxiliary storage shortage outages you can predefine local page data

sets, using the SA z/OS customization dialog for entry type GRP to define the

following:

v local page data set

v job definitions

Step 1: Defining the Local Page Data Set

Use the Local Page Data Set Recovery panel that is displayed if you select policy

item LOCAL PAGE DATA SET from the Local Page Data Set Policy section of the

Policy Selection panel for sysplex groups. For more information, refer to the online

help or the section ″More About Policy Item LOCAL PAGE DATA SET″ in IBM

Tivoli System Automation for z/OS Defining Automation Policy.

Step 2: Defining the Handling of Jobs

Use the Local Page Data Set Recovery Job Definition panel that is displayed if you

select policy item JOB DEFINITIONS from the Local Page Data Set Policy section

of the Policy Selection panel for sysplex groups. For more information, refer to the

online help or the section ″More About Policy Item JOB DEFINITIONS″ in IBM

Tivoli System Automation for z/OS Defining Automation Policy.

Enabling Long Running Enqueues (ENQs)

Chapter 9. How to Enable Sysplex Automation 107

Defining Common Automation Items

There are definitions that relate to utilities running as a started task. The first one

(Temporary Data Set HLQ/TEMPHLQ) replaces the usage of the first qualifier of

the automation status file. The second definition (Started Task Job

Name/STCJOBNM) allows the unique assignment of started task job names

scheduled by the automation in case you have dedicated job name assignments

that conflict with the procedure names provided by the automation.

It is recommended that you define the Temporary Data Set HLQ/TEMPHLQ. If it

is not defined, the automation uses the first qualifier of the automation status file.

You can define both of these items using the Sysplex Policy Definition panel that is

displayed if you select the policy item SYSPLEX from the Policy Selection panel

for sysplexes. For more information, refer to the online help or the section ″More

About Policy Item SYSPLEX″ in IBM Tivoli System Automation for z/OS Defining

Automation Policy.

Important Processor Operations Considerations

Currently, the IXC102A automation and Coupling Facility activation or deactivation

is the product automation that uses the BCP (Basic Control Program) Internal

Interface to control the processor hardware.

If you use the automation capabilities of SA z/OS processor operations in your

environment, make sure they do not conflict with the automation supplied by the

Parallel Sysplex enhancements.

With the Parallel Sysplex enhancements, IXC102A and IXC402D automation uses

the BCP Internal Interface, which is currently not compatible with processor

operations.

If you want to use the IXC102A automation that is supplied as part of the Parallel

Sysplex enhancements, make sure there is no processor operations related IXC102A

automation defined in your automation policy.

Likewise, if you want to continue to use the processor operations based

automation of messages IXC102A and IXC402D, the IXC102A automation flag

provided by the Parallel Sysplex enhancements must be disabled.

Processor operations, which is a Focal Point type function, allows you to monitor

and control processor hardware, including Coupling Facility images, from a single

NetView, the processor operations Focal Point.

The BCP Internal Interface of the Parallel Sysplex enhancements allows you to

perform hardware operations from each NetView in your sysplex member, as long

as its processor hardware supports this. Refer to IBM Tivoli System Automation for

z/OS Planning and Installation for more information.

Customizing the System to Use the Functions

Additional Automation Operator IDs

To support the Parallel Sysplex enhancements, you must define the following

automation operators:

Defining Common Automation Items

108 System Automation for z/OS: Customizing and Programming

|
|
|

|
|

Automation Operator ID Automated Function Profile

AUTXCF XCFOPER AOFPRFAO

AUTXCF2 XCFOPER2 AOFPRFAO

AUTPLEX PLEXOPER AOFPRFAO

AUTPLEX2 PLEXOPR2 AOFPRFAO

AUTPLEX3 PLEXOPR3 AOFPRFAO

AUTHW001 HWOPER01 AOFPRFAO

AUTHW002 ... AUTHW033 HWOPER02 ... HWOPER33 AOFPRFHW

After you made the definitions, you have to build the new definition files via the

customization dialog build function. Recycle your automation NetViews to activate

the changes in the DSIPARM members.

Note: If you have different naming conventions in your setup and you change the

NetView autotask IDs in the parmlib member AOFOPFA, you have to

change the Primary Automation Operator fields of the AOP definitions

accordingly.

Switching Sysplex Functions On and Off

Use the SA z/OS customization dialog to specify the following minor resource

names:

CDS For the recovery of alternate CDSs.

ENQ Enables the handling of the next four individual recoveries.

ENQ.CMDFLOOD

Enables the handling of commands that flood a particular

command class.

ENQ.HUNGCMD

Enables the handling of jobs and commands that inhibit other

commands from completing execution.

ENQ.LONGENQ

Enables the handling of long-running ENQs.

ENQ.SYSIEFSD

Enables the handling of ENQs related to the major resource

SYSIEFSD and the minor resources Q4 and Q10.

HEALTHCHK For checking active sysplex settings and definitions.

LOG For the recovery of the system log.

LOGGER For the recovery of the system logger.

PAGE For the recovery of auxiliary storage shortage.

WTO For the recovery of WTO(R) buffer shortages.

XCF For automating messages IXC102A and IXC402D.

 By default, all recovery actions are enabled. If you want to disable them, use the

customization dialog Flag Automation Specification and set the recovery flag to NO.

Note: You can change the automation recovery flag during run time by using the

command INGAUTO.

Customizing the System to Use the Functions

Chapter 9. How to Enable Sysplex Automation 109

Customizing the System to Use the Functions

110 System Automation for z/OS: Customizing and Programming

Chapter 10. DB2 Automation for System Automation for z/OS

Automation has been produced to provide automated functions for the DB2

software product.

Unlike other SA z/OS automation products (CICS, IMS and OPC), DB2

Automation has been designed as part of base automation. Consequently DB2 is

treated as a normal SA z/OS application, relying heavily on base functionality.

Therefore the material provided here should be read in conjunction with base

documentation. Only DB2 Automation-specific information is provided in this

document.

Overview

Automated functions provided by DB2 Automation are implemented using two

distinct methods. The first being line mode invocation which allows for an

operator (or OPC) initiated task to be performed on an on-demand basis. The

second method is via event-driven functions such as timer expiration and NetView

automation table traps. Timed commands are mainly used to provide for

connection monitoring of links to IMS and CICS. Automation table commands

support the dynamic discovery of IMS and CICS connections as well as Critical

Event Monitoring.

Line Mode Functions

DB2 Automation offers the following operator line command functions:

v maintenance start

This provides the ability to start DB2 in a non-standard mode. This is a

command line function that will allow for an ACCESS(MAINT) type start

and/or a PARM(modname) start.

v terminate threads

This provides the ability to stop threads attached to DB2 in order to free DB2 to

perform special tasks (backup).

v start/stop tablespace

This provides the ability to stop or start a specific Tablespace.

v event-driven functions

DB2 Automation event driven functions are via Timer commands or NetView

automation table (AT) Traps.

v connection monitoring (timer and AT driven)

This function will facilitate the monitoring of IMS and CICS connections. This is

done at connection level via either an ACF entry definition or via dynamic self

discovery, or both. If required, a recovery command will be issued to re-establish

a lost connection.

v critical events (AT driven)

This function is handled at 2 levels, each of which can forward messages to SDF:

1. Specific event (for example, excessive logging).

2. General events using a NetView AT entry to drive a message

threshold/recovery process.

© Copyright IBM Corp. 1996, 2005 111

Planning Requirements

DB2 Automation requires SA OS/390 2.2 and its associated prerequisites. For more

information on this topic refer to IBM Tivoli System Automation for z/OS Planning

and Installation.

For dynamic discovery of connections, certain messages must be available:

IMS

For IMS, connection monitoring requires that messages DSNM001I, DSNM002I and

DSNM003I are available to automation in order to detect the current status of a

DB2 connection with IMS. This requires that IMS Automation is installed. For non

DBCTL regions the IMS Automation EVISPINM member must be updated with the

above mentioned messageIDs so as to expose them to automation via the IMS

Automation AOI user exit. For more information please refer to IBM Tivoli System

Automation for z/OS IMS Automation Programmer’s Reference and Operator’s Guide.

The IMS non-DBCTL regions should also be defined to SA z/OS in order for the

dynamically discovered connections to have recovery commands issued as a reply

to the correct subsystem.

CICS

For CICS V4, connection monitoring requires that messages DSN2023I, DSN2025I

and DSN2016I are available to automation. As this is not possible dynamic

discovery is not available to this level of CICS and the ACF CONN entry must be

used. For CICS TS, connection monitoring requires that messages DFHDB2023I,

DFHDB2025I and DFHDB2037 are available to automation. These are exposed to

automation automatically and therefore dynamic discovery is available.

Installation

Automation Control File (ACF)

Samples of DB2 Automation are contained in the policy database samples (all

except the *DEFAULT sample). The DB2 entries are contained in

CLASS/INSTANCE application (APL) relationships. Please refer to “Defining

Automation Policy” for detailed information on how to implement these and other

(SCR) entries into your automation policy.

Defining Automation Policy

Tailoring Your DB2 ACF Entries

After you have created your PDB you will need to edit it in order to add your

specific DB2 Automation requirements. To do this, follow the subsequent steps:

 1. Select option 4 Policies from the Customization Dialog Primary Menu.

 2. Select the required policy database that is to contain the DB2 subsystem from

the Policy Database Selection panel.

 3. Select entry type Application from the Entry Type Selection panel.

 4. From the Entry Name Selection panel for Applications, enter ″NEW entryname″

on the command line and press ENTER in order to create a new policy object

that will represent the DB2 MSTR subsystem.

 5. On the Define New Entry panel, you will need to enter the DB2 master

subsystem name, an application type of DB2, the subtype (one of: MSTR SPAS

DB2 Automation for System Automation for z/OS

112 System Automation for z/OS: Customizing and Programming

IRLM DBM1 DIST WLMS) and the MVS jobname, where the db2id represents

the prefix used when you defined your DB2 jobnames to z/OS:

 Subsystem Name. subsystem

 Application Type. DB2

 Subtype MSTR

 Job Name. db2idMSTR

 6. Press END to save this information. This will bring you to the Policy

Selection panel for Applications.

 7. From here select policy item LINK TO CLASS.

Note: One policy item that is inherited at this point is the SHUTDOWN

NORM command. This command looks like:

INGRDTTH &SUBSAPPL S

This has the effect of notifying of, and cancelling, any outstanding

threads prior to DB2 shutdown. If you would prefer that threads are

not cancelled then this command should be changed to read:

INGRDTTH &SUBSAPPL S N

 8. From the list presented, select CLASS_DB2_MASTER and press END,

returning to the Policy Selection panel.

 9. From here select policy item AUTOMATION INFO.

10. When presented with panel Application Automation Definition, enter the

command prefix character(s) for this DB2 subsystem in the entry:

Command Prefix . . cmdprfx Console command character(s)

11. Press END to save this information.

12. For connection monitoring you must enter CMD and CODE entries for a CONN

message to describe any connections that require a forced monitoring action at

each monitoring cycle (for example, CICS V4 connection). Refer to

“Connection Monitoring” on page 122 for further details on how to add these

entries to the MESSAGES/USER DATA policy item:

MESSAGES Define Application messages

If you wish to force connection status refresh at NetView restart, then add an

extra parameter ″Y″ to the end of the command to be issued for the

ACORESTART message entry, for example:

 AFTER 00:00:10,INGRDCNM &SUBSAPPL Y

This has the effect of ensuring that any lost connections during a NetView

outage are recovered. This option is not required if you can rely on

connections being automatically re-established (that is, CICS/TS).

13. Press END to save this information.

14. Select the extended DB2 subsystem information policy:

 DB2 CONTROL Define DB2 Control entries

15. On the DB2 control entries panel define DB2 specific subsystem information.

The DB2Id should be defined to indicate the subsystem ID and the Active log

data set name should be entered.

DB2 Automation for System Automation for z/OS

Chapter 10. DB2 Automation for System Automation for z/OS 113

DB2 subsystem id db2id

 Active log dataset name. . . . dsname

16. Press END to return to the Policy Selection panel.

17. Press END again to return to the Entry Name Selection panel for Applications.

18. Now enter ″NEW entryname″ on the command line and press ENTER in order

to create a new policy object that will represent the DB2 DBM1 subsystem. On

Define New Entry panel AOFGLN00 you will need to enter the subsystem

name and the MVS jobname:

 Subsystem Name. subsystem

 Job Name. db2idDBM1

19. Press END to save this information and the Policy Selection panel will

appear.

20. From here select policy item LINK TO CLASS.

21. From the list presented select CLASS_DB2_DATABASE and press END,

returning to the Policy Selection panel.

22. From here select policy item RELATIONSHIPS.

23. Enter ″New HASPARENT″ on the command line and press Enter. In the

Supporting Resource field of the upcoming Define Relationship panel, enter the

subsystem name that you gave for the db2idMSTR job and press Enter. For the

Condition field enter ″StartsMeAndStopsMe″. The relevant entries on the

Define Relationship panel should now look like:

 Relationship Type. HASPARENT

 Supporting Resource. subsystem/APL/=

 Condition StartsMeAndStopsMe

24. Press END until you reach the Entry Name Selection panel for Applications.

25. Now enter ″NEW entryname″ on the command line and press ENTER to create

a new policy object that will represent the DB2 DIST subsystem. Perform the

steps described for the DBM1 subsystem accordingly now for the DIST

subsystem.

26. Create a new policy object that will represent the DB2 IRLM subsystem.

Perform the steps described for the DBM1 subsystem accordingly now for the

IRLM subsystem.

27. Create a new policy object that will represent the DB2 SPAS subsystem.

Perform the steps described for the DBM1 subsystem accordingly now for the

SPAS subsystem.

28. After the MSTR, DBM1, DIST, IRLM, and SPAS subsystems have been created,

they must be linked to an application group (APG).

29. The application group should be linked to the required system(s) that this

DB2 subsystem is to be automated on.

30. To support the SDF requirements of DB2 Automation, the status details (SCR)

settings are required and should be linked to the same system(s). The policy

item is:

DB2_SDF_STATUSES DB2 Automation status settings

31. After all the relevant ACF definitions have been entered, the ACF can be

created using the BUILDF command.

DB2 Automation for System Automation for z/OS

114 System Automation for z/OS: Customizing and Programming

DB2 Automated Functions—Line Command Functions

Once a DB2 subsystem has been defined to automation, then there are a number of

functions that can be performed against it. These are either invoked by a line

command or are event-driven (timer or NetView AT).

Command Handler

Purpose

“INGDB2” is the only line command delivered by DB2 Automation. This is

referred to as the “Command Handler”.

Syntax

�� INGDB2 request subsystem

,parm

,TARGET=domid
 ��

Parameters

request

START-- DB2 startup (in non-standard mode)

TERM -- Terminate threads

TABLE -- Start/Stop Tablespace

For more information refer to “Command Requests” on page 116.

subsystem

The DB2 subsystem that the request is for

parm

A comma delimited positional parameter string.

 The number of parameters depends on the command request.

START

parm1 MAINT (for maintenance startup)

or an asterisk (*, for standard start)

parm2 An optional module name for a non-standard startup.

TERM

None

TABLE

parm1

START (to start a tablespace) or

STOP (to stop a tablespace)

parm2

a database name

parm3

a tablespace name

domid

A domain within the sysplex on which you wish this command to be invoked

(default is current domain). DB2 Automation must be installed on each of the

domains that would be required to act as a target.

DB2 Automation for System Automation for z/OS

Chapter 10. DB2 Automation for System Automation for z/OS 115

Messages

AOF010I WRONG NUMBER OF PARAMETERS ENTERED

AOF204I time : EXPECTED PARAMETERS MISSING OR INVALID FOR REQUEST clist_name

 -parameter_name

AOF332I SUBSYSTEM name COULD NOT BE LOCATED ON target

Command Requests

This is a detailed description of each of the requests that can be invoked via the

Command Handler.

Maintenance Start

Purpose

This function will start a DB2 subsystem in a non-standard startup mode.

Using this function, a DB2 subsystem may be started in the following non-standard

startup modes:

v Maintenance mode using the default module

v Maintenance mode using a custom module

v Normal startup mode using a custom module.

If a DB2 subsystem is started in maintenance mode then:

v The DDF will be stopped to inhibit any further connections

v Connection monitoring will be suppressed

To perform a standard startup (normal startup mode using default module) the

SA z/OS SETSTATE command should be used to take full advantage of base

automation features.

By using the INGREQ command it is possible to start DB2 with the necessary

maintenance parameters entered on the ″Appl Parms″ field. For instance an

applparm field value of:

 ACCESS(MAINT), PARM(DSNxxxxx)

for a normal start would be the equivalent of a command line maintenance start,

through substitution of the EHKVAR1 parameter. If the maintenance start

parameters are consistent, then they may be entered into the ACF via the flexible

startup policy. This provides for a variety of start types to be identified and

initiated from the INGREQ request panel. See the INGREQ command

documentation for further information.

The Maintenance Start function may also be invoked from TWS Automation as a

Non subsystem Operation. For further information regarding invocation from the

OPC product, refer to IBM Tivoli System Automation for z/OS TWS Automation

Programmer’s Reference and Operator’s Guide.

Syntax

 INGDB2 START subsystem,start_type,modname

Parameters

subsystem

Name of the DB2 subsystem to be started in a non-standard startup mode.

Command Handler

116 System Automation for z/OS: Customizing and Programming

start_type

Specify MAINT for a DB2 subsystem to be started in maintenance mode.

 Specify * for a DB2 subsystem to be started in maintenance mode (modname

must be specified for this option.)

modname

If modname is supplied then this module name will be used to start up DB2

subsystem, otherwise the default module name will be used to start up the

DB2 subsystem (this parameter must be specified if start_type is *.

Restrictions and Limitations

Maintenance Start can only be used when

v SA z/OS is initialized

v The DB2 subsystem is defined to SA z/OS

v When a standard start is not required

v The OPC interface can only be used if TWS Automation is installed.

Note: When DB2 is started in maintenance mode, the SPAS (stored procedures)

address space is not started by DB2. However, SA z/OS is not aware of this

and expects it to be an external startup. As a result the status of SPAS goes

into an ambiguous STARTING status. The status will return to normal,

when DB2 is next re-started in normal mode. For sites that frequently start

up DB2 in maintenance mode, a separate DB2 application group could be

defined and used in which the SPAS application is excluded.

Usage

This command may be used to start a DB2 subsystem in a non-standard startup

mode, it may be invoked by the INGDB2 command handler or via TWS

Automation.

Input parameters are validated for accuracy and any errors found are logged and

the process is terminated. The requested subsystem is then checked to determine if

automation is enabled. Once these preliminary checks have been successfully

completed the requested function is initiated.

Examples

The type of startup performed will depend on the invocation parameters.

To startup a DB2 subsystem called DB2P in a non-standard startup mode, enter

one of the following commands on the command line:

Example 1

 INGDB2 START DB2P MAINT

Start a DB2 subsystem DB2P in maintenance mode using the default module.

Example 2

 INGDB2 START DB2P MAINT,DSNMOD1

Start a DB2 subsystem DB2P in maintenance mode using custom module

DSNMOD1.

Example 3

 INGDB2 START DB2P *,DSNMOD1

Maintenance Start

Chapter 10. DB2 Automation for System Automation for z/OS 117

Start a DB2 subsystem DB2P in normal mode using custom module DSNMOD1.

Policy Entries

The following DB2 startup command can be found in the sample

CLASS_DB2_MASTER subsystem class STARTUP policy:

 MVS &SUBSCMDPFX START DB2 &EHKVAR1

The specified command is appended with the required invocation parameters

depending on the parameters provided.

To invoke the maintenance start function via the TWS Automation interface, the

following startup command is required to be coded against an ″Automation

Function″ of UXxxxxxx.

 INGRDMST &EHKVAR1

Where UXxxxxxx must match the first token of the operation text as specified in

the OPC plan.

The SHUTDLY ACF entry is used to delay maintenance start should the DB2

subsystem be ACTIVE when this function is invoked.

The STRTDLY ACF entry is used to decide how long to wait before checking to see

if the DB2 subsystem is UP once this function is invoked.

Messages

AOF014I SPECIFIED PARAMETER parameter INVALID

AOF146I PARAMETER MUST BE NUMERIC

AOF204I EXPECTED PARAMETERS MISSING OR INVALID FOR REQUEST INGRDMST - text

AOF289I SUBSYSTEM subsystem HAS EXCEEDED NORMAL STARTUP INTERVAL.

AOF313I START FOR SUBSYSTEM subsystem (JOB jobname) WAS NOT ATTEMPTED - text

AOF332I SUBSYSTEM subsystem COULD NOT BE LOCATED ON domain

AOF583I AUTOMATION FOR SUBSYSTEM subsystem (JOB jobname) IS SET OFF -

 AUTOMATION NOT ATTEMPTED

Return Codes

8 Process failure -- see accompanying message.

4 Automation not allowed.

0 Normal End.

-1 Command, instruction or nested command list encountered an error.

-5 Command list cancelled.

Error Codes Posted to TWS

UX21 Automation not allowed.

UX22 Automation control file error.

UX23 DB2 subsystem cannot be started, incorrect status.

UX24 DB2 subsystem is already started.

UX25 DB2 subsystem did not start.

UX26 Error response from AOCQRY.

Terminate Threads

Purpose

The terminate threads command will terminate all active threads for a DB2

subsystem. These include REMOTE, DB2CALL, BATCH, TSO, CICS/IMS

connections and all remaining (’Other’) threads.

TSO users will be issued with a message informing them that their thread is about

to be terminated prior to actual thread termination.

Maintenance Start

118 System Automation for z/OS: Customizing and Programming

The Terminate Threads function may also be invoked from the TWS Automation as

a Non-subsystem Operation. For further information regarding invocation from

TWS Automation, refer to IBM Tivoli System Automation for z/OS TWS Automation

Programmer’s Reference and Operator’s Guide.

Syntax

 INGDB2 TERM subsystem

Parameters

subsystem

Name of DB2 subsystem for which all active threads are to be terminated.

Restrictions and Limitations

Terminate threads can only be used when:

v SA z/OS is initialized

v The DB2 subsystem is defined to SA z/OS

v The status of the DB2 subsystem is ’UP’

v The OPC interface can only be used if TWS Automation is installed.

Usage

Use this command to terminate all active threads for a DB2 subsystem. It may be

invoked by the INGDB2 command issued from the command line or via TWS

Automation.

Input parameters are validated for accuracy and any errors found are logged and

the process is terminated. The requested subsystem is then checked to determine if

automation is enabled. Once these preliminary checks have been successfully

completed the requested function is initiated.

Example

To terminate threads for a DB2 subsystem called DB2P, enter the following from

the command line:

 INGDB2 TERM DB2P

Policy Entries

DB2 Control policy item entries can be used to control the length of time to

Terminate Threads.

″Terminate Threads Delay″ represents the delay between each iteration of the

terminate threads request.

″Cycles″ represents the maximum number of iterations of the terminate threads

request automation is to attempt.

To invoke the terminate threads function via the TWS Automation interface, the

following startup command is required to be coded against an ″Automation

Function″ of UXxxxxxx.

 INGRDTTH &EHKVAR1

Where UXxxxxxx must match the first token of the operation text as specified in

the OPC plan.

IMS BMP threads can be handled separately by requesting this via the Connection

Monitoring Policy Entries. Using the CONN Message Policy entry for the DB2

subsystem, create a coded entry as required by the CDEMATCH common routine.

Terminate Threads

Chapter 10. DB2 Automation for System Automation for z/OS 119

Code 1 Code 2 Code 3 Value Returned

IMSCONID IMSCTLJB STOPBMP YES/NO

where

Code 1

is the IMS connection ID

Code 2

is the IMS Control Region job name

Code 3

is a fixed request identifier

Value Returned

is Yes or No, to indicate if this IMS job’s BMPs should be stopped using

the IMS /STOP REG ABDUMP command or not.

Messages

AOF004I PROCESSING FAILED FOR db2cmd

AOF014I SPECIFIED PARAMETER cycle INVALID

AOF144I PARAMETER parameter_name INVALID

AOF146I PARAMETER MUST BE NUMERIC

AOF204I EXPECTED PARAMETERS MISSING OR INVALID FOR REQUEST INGRDTTH - text

AOF332I SUBSYSTEM subsystem COULD NOT BE LOCATED ON domain

AOF583I AUTOMATION FOR SUBSYSTEM subsystem (JOB jobname) IS SET OFF -

 AUTOMATION NOT ATTEMPTED

ING107E INDOUBT THREADS EXIST - SHUTDOWN OF subsystem WILL NOT PROCEED

ING108I NO THREADS LEFT IN subsystem

ING109E thread_number THREADS COULD NOT BE TERMINATED FROM subsystem.

ING112I YOUR TSO DB2 (subsystem) THREAD IS ABOUT TO BE TERMINATED BY AUTOMATION.

ING113I YOUR TSO DB2 (subsystem) THREAD HAS BEEN TERMINATED BY AUTOMATION.

ING114E jobname CANCELLED BY AUTOMATION DUE TO subsystem THREAD TERMINATION.

ING127A THREADS FOUND AFTER LAST CYCLE OF DB2 (subsystem), FORCE SHUTDOWN.

Return Codes

8 Process failure -- see accompanying message.

4 Automation not allowed.

0 Normal End.

-1 Command, instruction or nested command list encountered an error.

-5 Command list cancelled.

Error Codes Posted to TWS

UX41 Automation not allowed.

UX43 Termination of connections unsuccessful.

UX44 Error response from DB2 command.

Start/Stop Tablespace

Purpose

For DB2 Tablespace Start, the necessary Tablespace start command will be issued.

For DB2 Tablespace Stop, certain active threads that use the Tablespace will be

terminated. These include REMOTE, DB2CALL, BATCH and TSO. TSO users will

be issued with a message informing them that their thread is about to be

terminated prior to actual thread termination.

The Tablespace Start/Stop function may also be invoked from the TWS

Automation as a Non-subsystem Operation. For further information regarding

Terminate Threads

120 System Automation for z/OS: Customizing and Programming

invocation from TWS Automation, refer to IBM Tivoli System Automation for z/OS

TWS Automation Programmer’s Reference and Operator’s Guide.

Syntax

 INGDB2 TABLE subsystem,request_type,dbname,tsname

Parameters

subsystem

Name of DB2 subsystem

request type

’START’ (start Tablespace)
’STOP’ (stop Tablespace)

dbname

Database name

tsname Tablespace name to be started/stopped

Restrictions and Limitations

Tablespace Start/Stop can only be used when:

v SA z/OS is initialized

v The DB2 subsystem is defined to SA z/OS.

v The OPC interface can only be used if TWS Automation is installed.

Usage

Use this command to start/stop a Tablespace for a DB2 subsystem. It may be

invoked by the INGDB2 command handler or via TWS Automation.

Input parameters are validated for accuracy and any errors found are logged and

the process is terminated. The requested subsystem is then checked to determine if

automation is enabled. Once these preliminary checks have been successfully

completed the requested function is initiated.

Examples

Example 1

To start a Tablespace where the DB2 subsystem is DB2P, the database name is

DB2PDBN and the Tablespace name is DB2PTSN, then enter the following

command on the command line:

INGDB2 TABLE DB2P,START,DB2PDBN,DB2PTSN

Example 2

To stop a Tablespace where the DB2 subsystem is DB2P, the database name is

DB2PDBN and the Tablespace name is DB2PTSN, then enter the following

command on the command line:

INGDB2 TABLE DB2P,STOP,DB2PDBN,DB2PTSN

Policy Entries

DB2 Control policy item entries can be used to control the length of time to

Terminate Threads.

″STOP tablespace delay″ represents the delay between each iteration of stop

Tablespace attempt.

Start/Stop Tablespace

Chapter 10. DB2 Automation for System Automation for z/OS 121

TSO logoff delay represents the delay before issuing the TSO logoff message to

users of the Tablespace.

To invoke the start/stop Tablespace function via the TWS Automation interface, the

following startup command is required to be coded against an ″Automation

Function″ of UXxxxxxx.

 INGRDSTS &EHKVAR1[START|STOP]

Where UXxxxxxx must match the first token of the operation text as specified in

the OPC plan. The STOP or START request parameter is optional and can be used

if all of the required parameters cannot fit in the operation text field.

Messages

AOF004I PROCESSING FAILED FOR db2cmd

AOF144I PARAMETER parameter_name INVALID

AOF204I EXPECTED PARAMETERS MISSING OR INVALID FOR REQUEST INGRDSTS - text

AOF332I SUBSYSTEM subsystem COULD NOT BE LOCATED ON domain

AOF583I AUTOMATION FOR SUBSYSTEM subsystem (JOB jobname) IS SET OFF -

 AUTOMATION NOT ATTEMPTED

ING109E thread_no THREADS COULD NOT BE TERMINATED FROM subsystem

ING129E jobname CANCELLED. TABLESPACE dbname.tsname(subsystem)

 NEEDED TO BE STOPPED.

ING130I TABLESPACE dbname.tsname(subsystem) IS TO BE STOPPED. PLEASE STOP USING IT.

ING131I YOU WERE CANCELLED BECAUSE TABLESPACE dbname.tsname(subsystem)

 IS TO BE STOPPED.

ING132I thread_no THREADS CANCELLED DUE TO STOP OF TABLESPACE

 dbname.tsname(subsystem)

Return Codes

8 Process failure -- see accompanying message.

4 Automation not allowed.

0 Normal End.

-1 Command, instruction or nested command list encountered an error.

-5 Command list cancelled.

Error Codes Posted to TWS

UXA1 Automation not allowed.

UXA2 Error response from DB2 command.

UXA4 Tablespace is still allocated.

Event-Driven Functions

This is a detailed description of each of the commands that can be invoked as the

result of an event, either a NetView AT trap or a NetView Timer expiration.

Connection Monitoring

Purpose

Connection monitoring is designed to, where possible, dynamically discover CICS

and IMS connections to a DB2 subsystem. Once discovered the status of a

connection can be maintained by tracking the relevant messages generated as the

connection is affected by the operating environment.

When dynamic discovery is not feasible (due to the inability of automating the

relevant messages) then the connection information can be read from ACF CONN

entry-type entries, and the status checked by issuing the relevant MVS commands.

Start/Stop Tablespace

122 System Automation for z/OS: Customizing and Programming

In all cases, should the connection be found in the “DOWN” status then the

necessary restart command will be automatically issued.

Restrictions and Limitations

Connection Monitoring can only be used when:

v SA z/OS is initialized.

v The DB2 connection is defined to SA z/OS.

v The CICS and IMS application is defined to SA z/OS.

v The CICS or IMS attachment facility is installed for the relevant subsystems.

Usage

This function is driven by a NetView Timer expiration in order to check the

connections that are being monitored to be ″UP″ and, if necessary, issue a recovery

command. This function can also be driven from the NetView AT trap in order to

update the connection status.

Input parameters are validated for accuracy and any errors found are logged and

the process is terminated. The requested subsystem is then checked to determine if

automation is enabled. Once these preliminary checks have been successfully

completed the requested function is initiated.

For the NetView AT event driven process the automation flag for the connection

minor resource is not checked and, depending on the message that was trapped,

the relevant CGlobal information for the particular connection will be updated.

If the process is driven as a result of a NetView Timer expiration then all known

connections are checked for availability. The connections to check are identified

from the ACF CONN entry-type entries, as well as the Cglobals built from the

NetView AT driven process. The individual connection’s automation flags are

checked to see if recovery should be considered. For each connection, if automation

is ″ON″ and the connection status is “DOWN” (all ACF CONN connection entries

are assumed to be “DOWN” for this purpose) then the connection is checked for

its current status. If the connection is confirmed to be “DOWN” then a recovery

command will be issued. For ACF entry identified connections the recovery

command is issued from the ACF, otherwise a command is built from discovered

information and then issued.

Policy Entries

DB2 Control policy item entries can be used to control the length of time between

Connection Monitoring cycles.

″Connection monitor delay″ represents the delay between each NetView Timer

expiration which will trigger the connection status checking cycle.

Connection monitoring is initially invoked to run on a timer initiated by the DB2

UP or NetView restart messages.

You can control Connection Monitoring by using the CONN and CONN.connid

minor resource automation flags, where connid represents the name of a connection

that requires automation to be switched off.

The connection identification entries can be entered into your automation policy

using the Customization Dialog MESSAGES/USER DATA policy item for the DB2

subsystem. The Message ID should be CONN against which the CODE and CMD

entries should be made:

Connection Monitoring

Chapter 10. DB2 Automation for System Automation for z/OS 123

|
|
|
|

Code 1 Code 2 Code 3 Value Returned

CICONID CICS4A CICS CICS4A ENTRY

where

Code 1 is the connection ID (CICS applid)

Code 2 is the CICS jobname

Code 3 is the connection type (CICS or IMS)

Code 4 is the connection description.

and this could be the CMD entry required:

 Pass or Selection Automated Function Command Text

CICONID MVS F CICS4A,DSNC STRT Z

where

Pass or Selection

is the connection ID

Automated Function

is not used

Command Text

is the required recovery command to be issued.

AT Entries

Messages DSNM001I, DSNM002I, and DSNM003I will trigger connection

monitoring (INGRDCNM) to run from the NetView automation table.

These messages require IMS Automation to be installed, as they are required to be

added to the EVISPINM table and be available to IMS Automation AOI exit in the

case of non-DBCTL regions, or pre-message set to “YES” for DBCTL regions. Please

refer to the chapter “Optional Additions to the PPI”, in the IBM Tivoli System

Automation for z/OS IMS Automation Programmer’s Reference and Operator’s Guide.

Messages

AOF004I PROCESSING FAILED FOR db2cmd

AOF144I PARAMETER parameter_name INVALID

AOF204I EXPECTED PARAMETERS MISSING OR INVALID FOR REQUEST INGRDCNM - text

AOF205A time : command COMMAND FAILED FOR clist_name : interval -

 WAIT TIME EXPIRED

AOF332I SUBSYSTEM subsystem COULD NOT BE LOCATED ON domain

AOF583I AUTOMATION FOR SUBSYSTEM subsystem (JOB jobname) IS SET OFF -

 AUTOMATION NOT ATTEMPTED

ING101A subsystem CONNECTION TO conn_desc (conn_id) DOWN. RECOVERY

 COMMAND ISSUED

ING102I subsystem CONNECTION TO conn_desc (conn_id) IS UP.

Return Codes

8 Process failure -- see accompanying message.

4 Automation not allowed.

0 Normal End.

-1 Command, instruction or nested command list encountered an error.

-5 Command list cancelled.

Connection Monitoring

124 System Automation for z/OS: Customizing and Programming

Critical Event Monitoring

Purpose

Critical Event Monitoring handles specific critical events that may occur during

normal day-to-day running of DB2.

These include:

 Message Description

DSNB250E, DSNB311I,

DSNB312I, DSNB320,

DSNB321I, DSNB322I,

DSNB323I, DSNB350I,

DSNB351I

Recover failed dataspace (for data sharing only)

DSNB309I Recover failed group buffer pool

DSNV086E Unrecoverable/Recoverable DB2 abends

DSNJ002I Switch active log data sets

DSNR004I Restart process completed

DSNP007I Data set could not be extended

DSNJ110E Last active log data set is % full

DSNJ111E All active log data sets full

DSNJ115I Archive data set could not be allocated

DSNT500I/DSNT501I Resource unavailable

Required recovery commands are to be defined for the message in the automation

policy item MESSAGES/USER DATA for any DB2 subsystem that requires DB2

critical event message recovery.

If the DB2 subsystem is known to SA z/OS as an application of type DB2, event

message recovery can be controlled by parameters entered via the DB2 CONTROL

policy item for the subsystem.

AT statements that call the generic routine ISSUECMD or a DB2-specific routine

are only created during the build process for messages that have commands

defined in the automation control file. If a recovery action is only to be processed

when the triggering message is issued by a subsystem of type DB2, the created

automation table statement is labeled with the group name DB2. Otherwise the

automation table statement is created without a label.

Created automation table statements that call the generic routine ISSUECMD are

conditional and can be overwritten via automation policy item MESSAGES/USER

DATA.

Restrictions and Limitations

Critical event monitoring is only done if the DB2 subsystem is defined to SA z/OS

and if recovery is enabled for the invoking message ID minor resource.

Critical event monitoring with DB2-specific routines is only done if the DB2

subsystem is known to SA z/OS as an application of type DB2

For some recovery actions SYSOPR needs SYSCTRL authority.

Critical Event Monitoring

Chapter 10. DB2 Automation for System Automation for z/OS 125

|
|

||

|

|

|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|

Usage

For each of the Event Monitoring processes, the input parameters are validated for

accuracy and any errors that are found are logged and the process is terminated.

The requested subsystem is then checked to determine if automation is enabled for

the major resource, and also that recovery is enabled for the invoking message ID

minor resource. Once these preliminary checks have been successfully completed,

the requested recovery action is performed.

DSNB250E, DSNB311I, DSNB312I, DSNB320I, DSNB321I, DSNB322I, DSNB323I,

DSNB350I, DSNB351I - Recover Failed Dataspace:

Description: Affected dataspaces are identified by using the DIS DB() SPACE()

RESTRICT LIMIT() command. Using the returned DSNT397I message, the status of

each dataspace is checked for LPL or GRECP. If matched then the dataspace is

tagged for recovery. This is achieved by issuing the STA DB() SPACENAM() ACCESS()

command for each tagged database or dataspace. Priority is given to databases

DSNDB01 and DSNDB06 if necessary.

Policy Entries: Any database or tablespace that is to be excluded from recovery

should be entered using the MESSAGES/USER DATA policy item. The Message ID

should be ″DATABASE″ against which the ″CODE″ entry should be made. For

example:

 Code 1 Code 2 Code 3 Value Returned

Database Tablespace IGNORE

Refer to CDEMATCH in IBM Tivoli System Automation for z/OS Programmer’s

Reference for code matching rules.

DSNB309I - Recover Failed Group Buffer Pool:

Description: This function will stop DB2 on receipt of the DSNB309I for Group

Buffer Pool GBP0. This is triggered using an AT trap that will invoke INGRDTTH

to perform the INGREQ STOP command. SA z/OS will then attempt to start any

other DB2 that is defined within the sysplex, based on preference values.

DSNV086E - Unrecoverable/Recoverable DB2 Abends:

Description: This function will identify specific DB2 abends as non-recoverable.

This will cause the DB2 subsystem to break DB2. SA z/OS will then attempt to

start any other DB2 that is defined within the sysplex, based on preference values.

Other DB2 abends will be recoverable.

DSNJ002I - Switch Active Log Data Sets:

Description: If commands are defined in the automation policy item

MESSAGES/USER DATA for this message to an application of type DB2, these

commands are only issued when the triggering message is for the log data set that

is specified by the ″Active log data set name″ in the DB2 CONTROL policy item.

If the application is not of type DB2, the defined commands are issued

unconditionally.

DSNR004I - Restart Process Completed:

Critical Event Monitoring

126 System Automation for z/OS: Customizing and Programming

|
|
|
|

|
|

|

Description: If the message reports an INDOUBT counter greater than zero at the

end of a DB2 restart process, ISSUECMD is called to issue commands that are

defined in the automation policy item MESSAGES/USER DATA of the DB2

application for this message.

DSNP007I - Data Set Could Not Be Extended:

Description: The created automation table statement calls ISSUECMD with its code

specifications as the parameters. The code values are extracted from the message

text. The data set name is passed as the CODE1 value, the return code is passed as

the CODE2 value, and the connection ID is passed as the CODE3 value. If a code

match is found with the ID of the triggering message in policy item

MESSAGES/USER DATA, the value that is returned is used to select and issue the

related commands as defined in the automation policy.

DSNJ110E- Last Active Log Data Set Is % Full:

Description: If commands are defined in the automation policy item

MESSAGES/USER DATA for this message to an application of type DB2, these

commands are only issued when the message reports a percentage full figure that

is equal to or greater than the critical threshold that is defined in the ″Log full

threshold″ field of the DB2 CONTROL policy item.

If the application is not of type DB2, the defined commands are issued

unconditionally.

DSNJ111E - All Active Log Data Sets Full:

Description: If commands are defined in the automation policy item

MESSAGES/USER DATA for this message to an application of type DB2, these

commands are only issued when the number of received messages within a time

period exceeds a given threshold. The time period and the threshold can be

entered via the DB2 CONTROL policy item in the ″Active log alerts″ field and the

related ″Threshold″ field.

If the application is not of type DB2, the defined commands are issued

unconditionally.

DSNJ115I - Archive Data Set Could Not Be Allocated:

Description: If commands are defined in the automation policy item

MESSAGES/USER DATA for this message to an application of type DB2, these

commands are only issued when the elapsed time since having been triggered by

this message is greater than a given time interval, as specified in the ″Log offload

interval″ field in the DB2 CONTROL policy item.

If the application is not of type DB2, the defined commands are issued

unconditionally.

DSNT500I/501I - Generate DSNT500I/DSNT501I Alert:

Description: The created automation table statement calls ISSUECMD with its code

specifications as the parameters. The code values are extracted from the message

text. The name is passed as CODE1, the reason is passed as CODE2 and the type is

passed as CODE3. If a code match is found with the ID of the triggering message

in policy item MESSAGES/USER DATA, the value that is returned is used to select

and issue the related commands as defined in the automation policy.

Critical Event Monitoring

Chapter 10. DB2 Automation for System Automation for z/OS 127

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

128 System Automation for z/OS: Customizing and Programming

Chapter 11. SA z/OS User Exits

To allow customer-specific activities that are not covered by the customization

dialogs, SA z/OS provides support for the following classes of user exits:

v Initialization exits that are called at the start of SA z/OS initialization, before

message AOF603D is issued, see “Initialization Exits” on page 130

v Static exits that are called at fixed points during SA z/OS processing, see “Static

Exits” on page 132

v Flag exits that are called when SA z/OS needs to evaluate an automation flag,

see “Flag Exits” on page 134

v Customization Dialog exits that can be called during certain phases when

working with the customization dialog, see “Customization Dialog Exits” on

page 138

v Command exits that can be called during the processing of certain commands,

see “Command Exits” on page 142

Additionally, SA z/OS has a number of facilities that behave in an exit-like

manner.

Figure 18 on page 130 shows the sequence in which exits may be invoked during

SA z/OS initialization.

© Copyright IBM Corp. 1996, 2005 129

|
|

|
|

|
|

|
|
|

|
|

Initialization Exits

These exits are invoked at the start of SA z/OS initialization, before message

AOF603D is issued.

Environmental Setup Exits

The SA z/OS customization dialog allows you to define a string of exits which are

invoked during SA z/OS initialization processing. These exits are defined using

the AUTOMATION SETUP policy item of the System policy object. See IBM Tivoli

System Automation for z/OS Defining Automation Policy for more information.

Environmental setup exits are invoked after SA z/OS has started its various tasks,

but before the primary automation table has been loaded. You can use these exits

to initiate your own automation, but some SA z/OS services may be unavailable

as SA z/OS has not yet finished initializing when these exits are called. In

particular, status information may be inaccurate as SA z/OS may not have

finished resynchronization. Environmental setup exits runs on AUTO1.

Parameters

Parameters are passed in sequence, delimited by blanks.

Figure 18. SA z/OS Exit Sequence during SA z/OS Initialization

Initialization Exits

130 System Automation for z/OS: Customizing and Programming

INITIALIZATION

INITIALIZATION is a constant.

Either RELOAD or REFRESH or IPL or RECYCLE

RELOAD indicates that the automation control file has been reloaded.

REFRESH indicates that the automation control file has been refreshed.

IPL indicates that SA z/OS has just been restarted after a system IPL.

RECYCLE indicates that NetView has been restarted.

 Return Codes

0 is expected. If you return a non-zero return code you may prevent other exits

from being invoked or disrupt SA z/OS initialization.

Usage Notes

v These exits are not driven if you run RESYNC.

v Unlike the other static exits, you must specify the name of the routine or

routines to invoke in the automation control file.

AOFEXDEF

This exit is called at the start of SA z/OS initialization, before message AOF603D

is issued. This exit should be used to change your advanced automation options.

For example, using AOFEXDEF you can:

v Load a different MPF table

v Set advanced automation options

See Appendix A, “Global Variables,” on page 201 for information on advanced

automation options.

This exit is run on AUTO1.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI01

This exit is invoked before the AOF603D ENTER AUTOMATION OPTIONS reply

is issued. It is invoked in a NetView PIPE and gets the data that is displayed in the

AOF767I message as input in the default SAFE. With this exit you can add or

remove lines from the message and add additional options to the reply.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI02

This exit is invoked after the operator has replied to the AOF603D reply. It gets the

operator’s response to the reply as input in the default safe and it can remove,

add, or change the options that the operator has entered.

Parameters: None.

Return Codes: 0 is expected.

Initialization Exits

Chapter 11. SA z/OS User Exits 131

AOFEXI03

This exit is invoked before SA z/OS loads NetView automation table. It can be

used to create statistics of the currently loaded ATs. Together with the AT listings

that SA z/OS produces at load, these statistics can be used for any purpose.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI04

This exit is invoked after SA z/OS loads NetView automation tables. It can be

used to store the AT listings that SA z/OS produces at load.

Parameters: None.

Return Codes: 0 is expected.

AOFEXINT

This exit is called when SA z/OS initialization is complete, before message

AOF540I is issued. You can use AOFEXINT to call your own initialization

processing after SA z/OS has finished. Refer also to the description of the global

variable AOFSERXINT in “AOFSERXINT global variable” on page 208.

Parameters: The input parameter is the Starttype which is one of the following:

RESYNC, IPL, REFRESH, RELOAD, RECYCLE.

Return Codes: 0 is expected.

Static Exits

These exits are invoked at fixed points in SA z/OS processing. They are always

invoked if they are found in the DSICLD concatenation. Positive return codes from

these exits are generally ignored, though it is recommended that you always exit

with a return code of 0.

The main purpose of static exits is to allow you to take your own actions at

specific points during SA z/OS processing. The static exits available are described

below.

AOFEXSTA

This exit is called from AOCUPDT every time the automation status of an

application is updated.

Note: It is not necessary for AOCUPDT to change an application automation status

for this exit to be called. The exit is still invoked if the update does not

result in a change of status.
AOFEXSTA can be used to perform any special status transition processing that

cannot be triggered by other methods.

Note: This exit is invoked frequently, and will be invoked at times when SA z/OS

is not fully initialized. Your exit code should be as robust and efficient as

possible.
SA z/OS will attempt to load AOFEXSTA into storage at initialization. If this

Initialization Exits

132 System Automation for z/OS: Customizing and Programming

attempt fails, AOFEXSTA will not be invoked on any AOCUPDT calls. To activate

the exit it must be present in the DSICLD concatenation when the automation

control file is loaded or reloaded.

AOFEXSTA runs on the task that called AOCUPDT, after all other processing has

finished.

Attention: AOFEXSTA is scheduled with EXCMD opid(). If your operators are

issuing commands which change application statuses and you wish to use

AOFEXSTA, you may have to modify your scope definitions.

Parameters: Parameters are passed in sequence, delimited by commas.

Resource type

SA z/OS uses types of SUBSYSTEM, MVSESA, WTORS, and SPOOL. Other

users may use other resource types.

Resource Name

For an application, this is the name of the subsystem it is defined as.

Automation Status

For an application, this is one of the twenty six SA z/OS-supported

automation statuses.

SDF Root

This is the SDF Root, as specified in the customization dialog, for the system

that originated the status update. Generally the exit is driven only for status

changes on other systems on the automation focal point.

 Return Codes: 0 is expected.

Restrictions:

v Because the exit is scheduled with EXCMD, the status update and subsequent

processing in the caller will have completed before the exit is invoked.

v Check the resource type and the SDF root to ensure you are only trying to

process the right things.

v Plan carefully before you take any action to change the status of an application

from this exit. If you are not careful you may create a loop (AOCUPDT to

AOFEXSTA to AOCUPDT to AOFEXSTA).

Note:

Consider using ISSUEREP, ISSUECMD or status change commands as

alternatives to AOFEXSTA, since AOFEXSTA is invoked for every status

update which seriously degrades performance.

The generic routines ACTIVMSG and TERMMSG will, if the advanced

automation options are set up appropriately, issue commands whenever an

application changes to a particular status. It may be more appropriate to

place commands here, rather than in the status change exit, which gets driven

for every status update of every resource. It is recommended to use status

change commands for better performance.

AOFEXX01

This sample can be used as model for exit AOFEXINT.

Static Exits

Chapter 11. SA z/OS User Exits 133

|

|

The exit obtains a list of the resources that are in the CTLDOWN state by calling

the DISPSTAT command. Then the exit uses the ACFFQRY interface to determine

which of the resources have the StartOnIPL option set to NOSTART.

For all resources that are not supposed to be started at IPL, the exit issues a stop

request via the INGREQ command, and then sets the agent status to AUTODOWN

using the SETSTATE command.

AOFEXX02

The exit allows the installation to decide whether or not an SDF update should be

performed for the specified resource.

A non-zero return code from the exit causes the SDF update processing to be

skipped, both locally as well as for the focal point.

This exit is called prior to posting entries to SDF to provide the facility to filter out

specific events.

Refer to the sample exit for details of the parameters passed to the exit and the

return codes.

AOFEXX03

The exit allows the installation to decide whether or not status change notification

should be forwarded to the NMC focal point for the specified resource.

A non-zero return code from the exit causes status change forwarding to be

skipped.

This exit is called prior to posting entries to NMC to provide the facility to filter

out specific events.

Refer to the sample exit for details of the parameters passed to the exit and the

return codes.

AOFEXX15

This exit allows customers to write a log entry for each status change notification

arriving on the NMC focal point.

Refer to the sample exit for details of the parameters passed to the exit.

This exit is called prior to posting entries to NMC to provide the facility to filter

out specific events.

Refer to the sample exit for details of the parameters passed to the exit and the

return codes.

Flag Exits

Using automation flag exits you can cause your automated operations code to exit

normal SA z/OS processing to an external source, such as a scheduling function,

to determine whether automation should be on or off for a given resource at that

particular instant.

Flag exits can be defined for :

Static Exits

134 System Automation for z/OS: Customizing and Programming

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|

|
|

|

|
|

|
|

v Any flag (Automation, Initstart, Start, Recovery, Shutdown or Restart).

v Any resource.

v Any minor resource. See the description of the policy item MINOR RESOURCES

in IBM Tivoli System Automation for z/OS Defining Automation Policy for more

information on minor resources.

You can specify multiple exits for each flag. A flag exit is invoked only if SA z/OS

needs an “opinion” on the current flag setting. Flag exits and flags all work on a

“veto” basis. A flag is ON when all flags and flag exits agree that it is on.

Flags are set to YES, NO, or EXIT.

v When a flag is set to YES, exits are not called.

v When a flag is set to NO, exits are not called.

v When a flag is set to EXIT, the exits are checked.

Specifying FORCE=YES on your AOCQRY call will force the exits to be called

when the flag is set to ON or OFF. In this case a flag exit can turn an ON flag OFF,

but it cannot turn an OFF flag ON.

Flag settings are determined by:

v The automation control file

v NOAUTO periods (the flag is OFF during a NOAUTO period)

v User-entered INGAUTO command

For example, if the following flag settings are entered:

 Resource Flag Setting

 ------------ ------------ ---------------------------

 DEFAULTS AUTOMATION ON

 SUBSYSTEM RESTART OFF

 JES2 AUTOMATION Call Exit J2AUT

 JES2 START Call Exit J2STR

 JES2 SHUTDOWN Call Exits J2SD1 and J2SD2

 JES2 RECOVERY OFF

the effective flags for JES2 are:

 Flag Effective setting

 ------------ -------------------------------------

 AUTOMATION Call Exit J2AUT

 INITSTART ON

 START Call Exit J2STR

 RECOVERY OFF

 SHUTDOWN Call Exits J2SD1 and J2SD2

 RESTART OFF

When SA z/OS checks the current value of any flag for the JES2 application, the

process is as follows:

 AUTOMATION - Call Exit J2AUT

 If OFF,

 AUTOMATION flag is OFF

 If ON,

 AUTOMATION flag is ON

 INITSTART - Call Exit J2AUT

 If OFF,

 INITSTART flag is OFF

 If ON,

 INITSTART flag in ON

Flag Exits

Chapter 11. SA z/OS User Exits 135

|

|

|

START - Call Exit J2AUT

 If OFF,

 START flag is OFF

 If ON,

 Call Exit J2STR

 If OFF,

 START flag is OFF

 If ON,

 START flag is ON

 RECOVERY - The RECOVERY flag is OFF

 SHUTDOWN - Call Exit J2AUT

 If OFF,

 SHUTDOWN flag is OFF

 If ON,

 Call Exit J2SD1

 If OFF,

 SHUTDOWN flag is OFF

 If ON,

 Call Exit J2SD2

 If OFF,

 SHUTDOWN flag is OFF

 If ON,

 SHUTDOWN flag is ON

 RESTART - The RESTART flag is OFF

Notes:

1. No exit is called for the Recovery and Restart flags. This is because the specific

flags have been turned off. The Recovery flag is OFF at the application level.

The Restart flag is OFF at the application defaults (SUBSYSTEM) level. The

exits cannot change the state of these flags, so SA z/OS does not invoke them.

2. The J2STR and J2SD1 exits are called only if the J2AUT exits indicate that

automation is allowed.

3. The J2SD2 exit is called only if the J2SD1 exits indicate that automation is

allowed. The J2SD1 exit is called only if the J2AUT exit indicates that

automation is allowed.

As this example shows, you should not assume that an exit is called every time

SA z/OS needs to evaluate the flag that it is defined on. You can assume that an

exit is called before SA z/OS decides that a given flag is ON and takes action on

the basis of the flag setting. Additionally, you should think carefully about

initiating processes from within flag exits as a later exit may give a return code

which will indicate that the flag is turned OFF.

Parameters

Parameters are supplied in sequence, delimited by blanks.

Flag

This is the name of the flag that is being checked. Possible values are

Automation, Initstart, Start, Recovery, Terminate or Restart.

Note: The Terminate flag is referred to as the Shutdown flag elsewhere.

Time Setting

Time Setting is a constant. It can be either:

v AUTO - automation is currently turned on.

v NOAUTO - automation is currently turned off by a NOAUTO period.

A value of NOAUTO is possible only if AOCQRY is called with FORCE=YES

specified.

Flag Exits

136 System Automation for z/OS: Customizing and Programming

Note: This ensures that the exit is invoked, but it is not possible for an exit to

override a NOAUTO period.

Resource Name

This is the name of the resource that the flag is being checked for. For minor

resources it will contain the fully qualified minor resource name that the exit

has been defined for. Given no definition for TSO.USER.MAG1 and an exit

defined for TSO.USER, the resource name passed to the exit would be

TSO.USER if a check was made for TSO.USER.MAG1.

 This behavior is slightly different for exits that are defined for DEFAULTS or

SUBSYSTEM. In this case the resource name passed is the name of the

application that the flag is being evaluated for. Given no definition for TSO

AUTOMATION and an exit defined for SUBSYSTEM AUTOMATION, the exit

is invoked with a resource name of TSO.

Resource Type

This is always SUBSYSTEM, regardless of the actual type of the resource.

Target Prefix

This is the TGPFX value with which AOCQRY was invoked. If TGPFX is not

specified, the value SUB is passed.

Return Codes

0 Automation is allowed by the exit.

greater than 0

Automation is not allowed.

 Attention: You should not return a return code of -5 as this will cause multiple

CLIST abends (AOFRAEXI, AOFRSCHK, caller, and others) and may seriously

disrupt automation. Symptoms of this are AOF760 messages for the SA z/OS

CLIST that invoked the exit, for any CLIST that invoked the SA z/OS CLIST, to

the initiating CLIST.

Notes:

 1. Flag exits are always called through AOCQRY. This means that the

TGLOBALS for the application have been primed and are available for use.

Normally the set of globals are found in the SUB task globals, but if AOCQRY

is called with TGPFX then they will be in a different set. You should use the

TGPFX parameter that is passed to locate the globals.

 2. AOCQRY can be invoked in a manner that will determine a flag value but not

set up the globals. You should be careful if you write code which invokes

AOCQRY in this way and you have exits which rely on the task globals being

set up.

 3. Your exit should not assume that AOCQRY has been called without TGPFX

being specified. That is, do not assume that the SUB task globals refer to the

resource it has been invoked for.

 4. If an exit is invoked for a minor resource, the task globals are set for the major

resource associated with that minor resource.

 5. If an exit is invoked for a non-subsystem resource, most of the task globals

will be meaningless.

 6. If you call AOCQRY from inside your exit you must specify a TGPFX value.

You cannot use SUB. The TGPFX value you specify should be different from

the TGPFX parameter you were passed. You are responsible for ensuring the

uniqueness of all TGPFXs if you nest AOCQRY exits. Since this can become

quite complex, it is recommended you avoid nesting exits.

Flag Exits

Chapter 11. SA z/OS User Exits 137

7. Do not code calls to ACFCMD, ACFREP, or CDEMATCH as these use the SUB

task globals, which may not be set up for the application that you want to

process.

 8. Do not change any of the AOCQRY task globals.

 9. Flag exits may be called frequently, so performance is important.

10. If AOCQRY is specified with FORCE and multiple exits are defined for a flag,

the exits are called in order. If an exit indicates that the flag is OFF,

subsequent exits will not be called.

Customization Dialog Exits

SA z/OS provides a series of user exits that can be invoked during certain phases

while working with the customization dialog. They are:

v “User Exits for BUILD Processing”

v “User Exits for COPY Processing” on page 139

v “User Exits for DELETE Processing” on page 140

v “User Exits for CONVERT Processing” on page 140

v “User Exits for MIGRATION, RENAME, and IMPORT Functions” on page 141

“Invocation of Customization Dialog Exits” on page 141 provides information on

how to activate the user exits.

User Exits for BUILD Processing

The following user exits are provided for the process of building the automation

control file (BUILDF).

v INGEX10, which is called before the automation control file build function starts.

This exit is only available when the build process is initiated from the

customization dialogs.

v INGEX01, which is called before the automation control file build function starts.

starts. This exit is available when the build process is initiated from the

customization dialogs, from a batch job submitted via the customization dialogs,

or from a batch job submitted independently from the customization dialogs.

When a BUILD mode of BATCH is selected in the customization dialogs, the

JCL for the batch job is submitted and INGEX01 is called when the job begins

execution and before the automation control file build function starts in batch.

v INGEX02, which is called after the automation control file build function

(BUILDF) has ended. This exit is available when the BUILD process is initiated

from the customization dialogs, from a batch job submitted through the

customization dialogs, or from a batch job submitted independently from the

customization dialogs.

The following parameters are passed to both INGEX01 and INGEX02 exits,

separated by commas:

v Parm1 = PolicyDB name

v Parm2 = Enterprise name

v Parm3 = BUILD output data set

v Parm4 = entry type (or blank)

v Parm5 = entry name (or blank)

v Parm6 = BUILD type (MOD/ALL)

v Parm7 = BUILD mode (ONLINE/BATCH)

Flag Exits

138 System Automation for z/OS: Customizing and Programming

v Parm8 = Configuration (0=NORMAL/1=ALTERNATE)

v Parm9 = Sysplex name (or blank)

v Parm10 = Build option (1,2, or 3)

v Parm11 = return code (for INGEX02 only)

If user exit INGEX10 produces return code RC = 0, BUILDF processing continues.

If a return code RC > 0 is produced, an error message is returned and the BUILDF

processing terminates.

If user exit INGEX10 ends with return code RC > 0, user exits INGEX01 and

INGEX02 are not called. Processing terminates.

If user exit INGEX10 ends with return code RC > 0 and a BUILD mode of BATCH

was selected in the customization dialogs, no JCL is submitted to run the build in

batch (because BUILDF does not start). Processing terminates.

If user exit INGEX01 produces return code RC = 0, BUILD processing continues. If

a return code RC > 0 is produced, an error message is returned. BUILDF

processing terminates. If the build is run in batch mode, and a return code RC > 0

is produced, the job finishes with a return code RC 08.

If user exit INGEX01 ended with return code RC > 0, user exit INGEX02 are not

(because BUILDF does not start). Processing terminates.

User exit INGEX02 is always called when the BUILD process has started,

irrespective of whether it has completed or not.

If user exit INGEX02 produces a return code RC > 0, an error message is

displayed. If the build is run in batch mode, and a return code RC > 0 is produced,

the job completes with a return code RC 04. If a severe build error occurred, the

job completes with a return code RC 20.

The return codes and their meaning are as follows:

0 Successful

4 Build with minor errors

12 No build (data is inconsistent)

20 No build (severe errors)

User Exits for COPY Processing

Two user exits are implemented for the COPY processing.

1. INGEX03, which is called before the COPY function starts. The following

parameters are passed:

v Entry name of the entry to be copied to (target)

v Entry name of the entry to be copied from (source)

v Entry type (e.g. APL)
2. INGEX04, which is called after the COPY function has ended. The following

parameters are passed:

v Entry name of the entry to be copied to (target)

v Entry name of the entry to be copied from (source)

v Entry type (e.g. APL)

v Indicator whether the COPY process was successful or not (S=successful,

U=unsuccessful)

Customization Dialog Exits

Chapter 11. SA z/OS User Exits 139

|

|

|
|

|

||

||

||

||

If user exit INGEX03 produces return code RC = 0, the COPY processing continues.

If a return code RC > 0 is produced, an error message is displayed, the COPY

function will not start, and processing terminates.

If user exit INGEX03 ended with return code RC > 0, the user exit INGEX04 will

not be called as the COPY processing will terminate.

User exit INGEX04 is always called once the COPY function has started. The

information about the success or failure of the COPY function is passed as a

parameter.

If user exit INGEX04 produces a return code RC > 0, an error message is

displayed.

User Exits for DELETE Processing

Two user exits are implemented for the DELETE processing.

1. INGEX05, which is called before the DELETE process starts. The following

parameters are passed:

v Entry name of the entry to be deleted

v Entry type (e.g. APL)
2. INGEX06, which is called after the DELETE process has ended. The following

parameters are passed:

v Entry name of the entry to be deleted

v Entry type (e.g. APL)

v Indicator whether the DELETE process was successful or not (S=successful,

U=unsuccessful)

If user exit INGEX05 produces return code RC = 0, the DELETE processing

continues. If a return code RC > 0 is produced, an error message is displayed, the

DELETE function will not start and the processing terminates.

If user exit INGEX05 ended with a return code RC > 0, user exit INGEX06 will not

be called as the DELETE processing will terminate.

User exit INGEX06 will always be called once the DELETE function has started.

The information about the success or failure of the DELETE function will be

passed as a parameter.

If user exit INGEX06 produces a return code RC > 0, an error message will be

displayed.

User Exits for CONVERT Processing

Two user exits are implemented for the CONVERT processing.

1. INGEX07, which is called before the CONVERT process starts. No parameters

are passed.

2. INGEX08, which is called after the CONVERT process has ended. No

parameters are passed.

If user exit INGEX07 produces return code RC = 0, the CONVERT processing

continues. If a return code RC > 0 is produced, an error message is displayed, the

CONVERT function will not start and the processing terminates.

If user exit INGEX07 ended with a return code RC > 0, user exit INGEX08 will not

be called as the CONVERT processing will terminate.

Customization Dialog Exits

140 System Automation for z/OS: Customizing and Programming

User exit INGEX08 will always be called once the CONVERT function has started.

If user exit INGEX08 produces a return code RC > 0, an error message will be

displayed.

User Exits for MIGRATION, RENAME, and IMPORT Functions

The following user exits are provided for the migration, rename, and import

functions.

1. INGEX09—called when log data set is switched, usually because the current

data set is full. One parameter is passed:

v Name of current log data set, for example, the data set that went out of

space
2. INGEX12—called after the MIGRATION function has ended. The following

parameters are passed:

v MIGRATE mode (ONLINE / BATCH)

v Target system entry name

v Source data set name with member (enclosed in quotes)
3. INGEX14—called after an entry has been deleted while the MIGRATION

function is running. The following parameters are passed:

v Entry Name

v Entry Type
4. INGEX15—called before an entry is renamed. The following parameters are

passed:

v Entry Name

v Entry Type
5. INGEX16—called after an entry has been renamed. The following parameters

are passed:

v Entry Type

v Old Entry Name

v New Entry Name
6. INGEX17—called during the IMPORT function, when reading data from the

source policy database. One parameter is passed:

v Name of copy data work table, this table contains the entry types and entry

names of the data to be copied
7. INGEX18—called after the IMPORT function has ended. One parameter is

passed:

v Indicator whether the IMPORT process was successful or not

(S=successful/U=unsuccessful)
8. INGEX20—called after the links have been changed. No parameters are passed.

9. INGEX21—called before the PDB report is invoked. No parameters are passed.

Invocation of Customization Dialog Exits

The user exits are part of the SA z/OS product. Therefore they are supplied in the

same data set as all other ISPF REXX modules (part of SINGIREX). The supplied

samples for ACF BUILD, DELETE, and COPY processing just do a ’RETURN’ with

return code RC=0.

You have two possibilities to apply your user modifications:

Customization Dialog Exits

Chapter 11. SA z/OS User Exits 141

|
|

|

|

|

|

1. Edit the user exit(s) in the supplied library. Your changes will not have any

consequences on the code of the SA z/OS, product. These exits will not be

serviced (via PTF) by IBM as they do not include any code at the time of

product delivery.

2. Supply the modified user exit in a private data set. Then you have to

concatenate your private data set to your SYSEXEC library chain. As INGDLG

supports multiple data set names specified for ddname SYSEXEC, this can be

done in the following way:

 INGDLG SELECT(ADMIN) ALLOCATE(YES) HLQ(SYS1)

 SYSEXEC(usr.private.dsn SYS1.SINGIREX)

This example assumes that the high level qualifier of the data sets where the

IBM supplied parts exist is SYS1.

If you specify the SYSEXEC parameter in the INGDLG call, you need to specify

the IBM supplied library explicitly with its fully qualified data set name.

Command Exits

These exits can be called during the processing of certain commands.

AOFEXC00

The AOFEXC00 exit routine will be called if the selection L has been entered in the

AOFPOPER panel. No parameters are passed to the routine. The purpose of this

routine is to act as the starting point for installation provided local functions.

AOFEXC01

If this exit is defined, it will be invoked during INGREQ processing before

″Precheck″ and ″Verification″ processing.

The exit allows you to modify the passed parameters. The following INGREQ

parameters can be modified:

v APPLPARMS

v CMT

v EXPIRE

v INTERRUPT

v OVERRIDE

v PRECHECK

v PRI

v REMOVE

v RESTART

v SCOPE

v SOURCE

v TIMEOUT

v TYPE

v VERIFY

Modified parameters are specified by their keyword/value pair and returned to

the INGREQ command by sending a message (single or multiline message) to the

console. For example: PRI=HIGH REMOVE=SYSGONE

Parameters: The following parameters are passed from the INGREQ command and

are positional:

Customization Dialog Exits

142 System Automation for z/OS: Customizing and Programming

Request

The request type.

SCOPE

The scope of the command.

OVERRIDE

The override specification.

RESTART

The restart specification.

TYPE Contains the start/stop type.

PRIORITY

The priority given to the request.

SOURCE

Identifies the originator of the request.

REMOVE

Indicates the condition under which the request is automatically removed.

TO_INTERVAL

Specifies the timeout interval.

TO_OPTION

Specifies the timeout option.

EXPIRATION

Specifies the date and time when the request is removed.

APPL_PARMS

Specifies the application parameters. It is enclosed in quotation marks.

COMMENT

The comment — given by the operator — associated with the request.

INTERRUPT

Specifies the interrupt. It is enclosed in quotation marks.

PRECHECK

Specifies whether or not the startup or shutdown process should

pre-validate any actions before actually performing them.

VERIFY

Specifies whether the startup or shutdown process should be verified.

Note: The parameters are separated by a comma.

Return Codes:

0 OK - continue.

1 Error - reject command.

 The list of resources that are involved in the INGREQ command is passed to the

exit by using the default SAFE. Each resource is described by its location and

name. The format of the location is:

sysplex_name.domain_ID.system_name\sa_version\xcf_groupname

Specifying the xcf_groupname is optional.

The format of the resource name is:

Command Exits

Chapter 11. SA z/OS User Exits 143

|
|
|

|
|

name/type/system_name

For example:

AOCPLEX.IPUFA.SA1D\V2R1M0 RMFGAT/APL/SA1D

The user exit is called in a PIPE. If the user exit returns a bad RC and additional

data is written to the console, this data is shown in a message panel. If no

additional data is passed in the exit, then message AOF227I is issued.

A typical example for modifying the priority of an INGREQ REQ=STOP request is

for the sysname/SYG/sysname resource (SHUTSYS ALL). Here, the priority can be

forced to FORCE by returning the PRI=FORCE string and setting the return code

to zero.

AOFEXC02

If this exit routine is defined, it is invoked during INGSCHED processing before

the schedule override file is updated. The parameters are positional and separated

by a comma. The following parameters are passed to the exit:

Parameters:

user ID

is the user ID making the update or delete

resource

The resource is described by two words. The first word is the location of

the resource. The second word is the resource name. The format of the

location is:

sysplex_name.domain_ID.system_name\sa_version

The format of the resource name is:

name/type/system_name

For example:

AOCPLEX.IPUFA.AOC8\V2R1M0 TSO/APL/AOC8

action can be UPD or DEL

date specifies the date in the format YYYYMMDD

UP priority

specifies the priority. It can be L or H

UP time slots

specifies the time slots when the application is up. The format is

hhmm-hhmm... hhmm-hhmm

DOWN priority

specifies the priority.

DOWN

specifies the time slots when the application is down. The format is

hhmm-hhmm... hhmm-hhmm

 Return Codes:

0 OK - continue

1 error - reject command

Command Exits

144 System Automation for z/OS: Customizing and Programming

The user exit is called in a PIPE. If the user exit returns a bad return code and

additional data is written to the console, this data is shown in a message panel. If

no additional data is passed in the exit, then message AOF227 is issued.

The format of the location is:

sysplex_name.domain_ID.system_name\sa_version\xcf_groupname

Specifying the xcf_groupname is optional.

AOFEXC03

If this exit routine is defined, it is invoked by the DISPINFO command slave to

retrieve user-supplied information about the subsystem. The input for the routine

is the subsystem name. The data returned by the exit is shown as part of the

DISPINFO output.

Note: Certain special symbols are interpreted as panel attribute symbols. For more

information about attribute symbols, refer to the NetView Customization

Guide. The DISPINFO panel uses the default attribute set 1. This allows the

exit to color the data to be displayed. To display a particular symbol, place a

double quotation mark (“) in front of the character.

Parameters:

subsystem name

Is the name of the subsystem.

 Return Codes:

0 OK.

1 An error occurred.

AOFEXC04

If this exit routine is defined, the command code U is supported for the DISPSTAT

and INGLIST commands. The input for the AOFEXC04 exit is the resource name

(subsystem name for DISPSTAT) and the location of the resource. The location is

either the system name if the resource resides on a system member of the local

sysplex, or the domain ID if the resource resides on a system which is outside of

the local sysplex. The parameters are separated by a comma.

Parameters:

subsystem name

Is the location of the subsystem. It is either the system name if the

subsystem resides on a system member of the local sysplex, or the domain

ID if the subsystem resides on a system which is outside of the local

sysplex.

AOFEXC05

This exist is called on entry of the INGLIST command. The exit allows you to

modify the input parameters. The modified input parameters are returned to the

INGLIST command by sending a message (single or multiline) to the console.

Example: OBSERVED=* DESIRED=*

Command Exits

Chapter 11. SA z/OS User Exits 145

AOFEXC06

This exist is called on entry of the INGSET command. The exit allows you to

perform authorization checking of the resources for the INGSET command. Refer

to the sample exit for details of the parameters that are passed to the exit and the

return codes.

AOFEXC07

This exist is called on entry of the INGIMS command. The exit allows you to

perform authorization checking of the IMS subsystem that is the subject of the

INGIMS command. Refer to the sample exit for details of the parameters that are

passed to the exit and the return codes.

AOFEXC08

This exit is called on entry of the INGVOTE command. The exit allows you to

perform authorization checking of the resources for the INGVOTE command. Refer

to the sample exit for details of the parameters that are passed to the exit and the

return codes.

AOFEXC09

This exit is called on entry of the SETSTATE command. The exit allows you to

perform authorization checking of the resources for the SETSTATE command. Refer

to the sample exit for details of the parameters that are passed to the exit and the

return codes.

AOFEXC10

This exit is called on entry of the INGEVENT command. The exit allows you to

perform authorization checking of the resources for the INGEVENT command.

Refer to the sample exit for details of the parameters that are passed to the exit

and the return codes.

AOFEXC11

This exit is called on entry of the INGCICS command. The exit allows you to

perform authorization checking of the resources for the INGCICS command. Refer

to the sample exit for details of the parameters that are passed to the exit and the

return codes.

AOFEXC12

This exit is called on entry to the command slave (EVJRVCMD) for TWS/OPC

command server (EVJRVCM0). The exit allows you to perform authorization

checking of the commands scheduled via the TWS/OPC batch interface

(EVJRYCMD) against the user ID of the batch job requesting the command.

Refer to the sample exit for details of the parameters passed to the exit and the

return codes.

AOFEXC13

This exit is called on entry to the INGGROUP command. The exit allows you to

perform authorization checking of the user ID that issues the command.

Refer to the sample exit for details of the parameters passed to the exit and the

return codes.

Command Exits

146 System Automation for z/OS: Customizing and Programming

|

|
|

|
|

AOFEXC14

This exit is called by the SA GDPS termination routine (INGRGDPS) after stopping

the PAM or selecting a SAM to become the PAM.

Refer to the sample exit for details of the return codes.

Pseudo-Exits

This section discusses a number of places where SA z/OS either makes special use

of a flag exit or has a function with certain, exit-like, qualities.

Automation Control File Reload Permission Exit

When an operator asks SA z/OS to reload the automation control file, SA z/OS

checks the automation flag of minor resource MVSESA.RELOAD.CONFIRM. If the

flag is set to NO, the automation control file reload is not allowed. If the flag is set

to YES, the task global AOFCONFIRM is checked. If AOFCONFIRM has been set

to a non-null value, the user is prompted to confirm that they want the automation

control file to be reloaded.

Notes:

1. Note that an exit can be associated with the automation flag for this resource.

2. An automation control file cannot be loaded if the automation flag for major

resource MVSESA is set to ’N’. If the automation flag for minor resource

MVSESA.RELOAD.CONFIRM is set to ’Y’, reload of the ACF is permitted.

Automation Control File Reload Action Exit

After the automation control file reload permission exit is checked, when SA z/OS

is committed to reloading the automation control file, it will check the automation

flag for minor resource MVSESA.RELOAD.ACTION. The actual setting of this flag

(ON or OFF) is ignored, but any exits defined for it are invoked. All exits should

return a return code of 0.

Subsystem Up at Initialization Commands

Using the customization dialog you can specify commands that are run if

SA z/OS finishes resynchronizing statuses and an application is found to be up.

These commands can be useful for synchronizing local automation that has been

built on top of SA z/OS.

Testing Exits

Exits should be well tested with a variety of different input parameters before they

are put into production. For exits that need AOCQRY task globals, you can call

AOCQRY to set up the globals without evaluating the flag exits, and then invoke

the exit on its own for testing purposes. This method saves the overhead of calling

AOCQRY every time you run the exit.

Attention!

If you have a syntax error or a no-value-condition in your exit it can cause

parts of SA z/OS to abend, resulting in severe disruption of your

automation.

Command Exits

Chapter 11. SA z/OS User Exits 147

|

|
|

|

Testing Exits

148 System Automation for z/OS: Customizing and Programming

Chapter 12. Automation Routines

System Automation for z/OS provides automation routines that enable automatic

processing of z/OS components, data sets and job scheduling systems as well as

automation procedures that are useful tools in the automation processing context.

By using these prefabricated automation procedures you can save the time to

develop your own procedures to handle the processing in corresponding situations.

In particular these automation routines provide solutions for:

v LOGREC data set processing

v SMF data set processing

v SYSLOG processing

v SVC dump processing

v AMRF buffer shortage automation

v JES2 spool recovery

v JES2 shutdown

v JES3 dump processing

v JES3 start option automation

v JES3 monitoring

v Deletion of processed WTORs from SDF

v TWS Automation PPI and gateway failures

v TWS Automation operation and job errors

v CICS-related processing and recovery

v IMS-related processing and recovery

The solutions for automatic processing of these situations include definitions in the

automation configuration files and automation procedures.

It is common to all these provided solutions that the automation procedures first

determine whether automation is allowed by checking the corresponding

automation flags with common routine AOCQRY. See IBM Tivoli System Automation

for z/OS Defining Automation Policy for further information concerning types and

settings of automation flags. Use the DISPFLGS command to display or

temporarily change the actual settings of the automation flags.

Some of the automation routines respond to messages by issuing commands from

the ACF. Most of these automation routines keep track of the reception of these

messages and compare the frequency of the incoming messages with predefined

thresholds of infrequent, frequent and critical level. If such a defined threshold is

exceeded, it is taken as option for selecting the appropriate commands according to

the first field in the command entry of policy item MESSAGES/USER DATA of the

ACF. If no threshold is exceeded the commands to selection option ALWAYS are

issued. Refer to the section ″How SA z/OS Uses Error Thresholds″ in IBM Tivoli

System Automation for z/OS Defining Automation Policy for further information on

setting up thresholds.

This chapter describes the details of the automation functions that are provided

with SA z/OS.

© Copyright IBM Corp. 1996, 2005 149

|

|

|

|

|
|

LOGREC Data Set Processing

The logrec recovery function responds to system messages saying that the logrec

data set is full or nearly full by issuing predefined commands to dump and clear

the logrec data sets. While the recovery function is in progress, it prevents the

automation processing being started a second time.

The logrec recovery function includes the following items:

v Automation routines AOFRSA01 and AOFRSA02

v Automation table entries for system messages IFB040I, IFB060E, IFB080E,

IFB081I, and IFC001I

v Error threshold definitions for MVS component LOGREC

v Command specification in automation policy item MESSAGES/USER DATA of

the entry/type-pair MVSESA/LOGREC in the ACF

AOFRSA01

Purpose

You can use the AOFRSA01 automation routine to respond to logrec data set

nearly full or full messages from your system by issuing commands from the ACF

to dump and clear the contents of the logrec data set.

AOFRSA01 keeps track of the incoming logrec data set messages and compares

their occurrence with predefined thresholds of infrequent, frequent and critical

level. An exceeded threshold is taken as the option to select the appropriate

commands according to the first field in the command entry of the entry/type-pair

MVSESA/LOGREC in the ACF. If no threshold is exceeded the commands to

selection option ALWAYS are issued.

AOFRSA01 is expected to be called from the NetView automation table.

Format

�� AOFRSA01 ��

Restrictions

v Actions are only taken in AOFRSA01 if the recovery automation flag for

LOGREC is on.

v Processing in AOFRSA01 is only done if it is called from NetView automation

table by one of the expected messages IFB040I, IFB060E, IFB080E or IFB081I.

v The commands from automation policy to dump and clear the LOGREC data set

are only issued if a LOGREC recovery function is not already in progress.

Usage

Automation routine AOFRSA01 is intended to respond to the following messages:

IFB040I SYS1.LOGREC AREA IS FULL, hh.mm.ss

IFB060E SYS1.LOGREC NEAR FULL

IFB080E LOGREC DATA SET NEAR FULL, DSN=dsname

IFB081I LOGREC DATA SET IS FULL,hh.mm.ss, DSN=dsn

The commands to issue are selected from the command entry of the

entry/type-pair MVSESA/LOGREC in the ACF.

LOGREC Data Set Processing

150 System Automation for z/OS: Customizing and Programming

If no threshold is reached when one of the expected messages arrive, all

commands to entries with no selection option and to selection option ALWAYS are

selected. If the threshold at level infrequent is exceeded, all commands to entries

with no selection specification option and to selection option INFR are selected. In

the same way a level of frequent corresponds to selection option FREQ and a level

of critical corresponds to selection option CRIT.

Make sure that the automation routine AOFRSA02 is issued by message IFC001I

from the NetView automation table, to indicate the completion of the LOGREC

recovery function.

Flags

&EHKVAR1

When defining the commands in the ACF to dump and clear the contents

of the LOGREC data set, the variable &EHKVAR1 can be used for the

name of the LOGREC data set. This variable will be substituted with the

complete data set name of the LOGREC data set name.

AOFRSA02

Purpose

You can use the AOFRSA02 automation routine to respond to the initialization

message of the LOGREC data set to reset the flag, which indicates that the

LOGREC recovery function is in progress

AOFRSA02 is expected to be called from the NetView automation table.

Format

�� AOFRSA02 ��

Restrictions

v Actions are only taken in AOFRSA02 if the recovery automation flag for

LOGREC is on.

v Processing in AOFRSA02 is only done if it is called from NetView automation

table.

Usage

Automation routine AOFRSA02 is intended to respond to the message:

IFC001I D=devtyp N=x F=track1* L=track2* S=recd** DIP COMPLETE

which is produced during the initialization of the LOGREC data set and describes

the limits of the data set.

The flag, indicating that the LOGREC recovery function is in progress, is used by

automation routine AOFRSA01.

Flags

This example shows a sample scenario to the LOGREC data set processing:

The following entries in the NetView automation table are created by Easy

Message Management to issue the appropriate automation routine when one of the

expected messages arrives:

LOGREC Data Set Processing

Chapter 12. Automation Routines 151

IF MSGID = ’IFB040I’ | MSGID = ’IFB060E’ |

 MSGID = ’IFB080I’ | MSGID = ’IFB081I’

THEN

EXEC(CMD(’AOFRSA01’)ROUTE(ONE %AOFOPRECOPER%));

IF MSGID = ’IFC001I’

THEN

EXEC(CMD(’AOFRSA02’)ROUTE(ONE %AOFOPRECOPER%));

 Assume that the following message arrives the first time for one day:

IFB080E LOGREC DATA SET NEAR FULL, DSN=SYS1.AOC1.MAN3

Since none of the defined thresholds is exceeded, the automation routine

AOFRSA01 searches for defined commands without selection option and to

selection option ALWAYS to be issued. With the control file shown above the

command MVS S CLRLOG,DSN=&EHKVAR1 is selected. Before issuing this command,

the variable &EHKVAR1 is substituted by the data set name of the received

message resulting in MVS S CLRLOG,DSN=SYS1.AOC1.MAN3.

If message IFB080E continues to arrive and the occurrence of the expected

messages thus exceeds the infrequent, frequent or critical threshold, the automation

routine AOFRSA01 searches for defined commands without selection option and to

selection option INFR, FREQ or CRIT to be issued.

Because no command is defined with any selection option, only the defined

command with no selection option is selected and issued, as in the previous case.

Message AOF589I, AOF588I or AOF587I is issued in cases, where an infrequent,

frequent or critical threshold has been exceeded. These messages indicate that an

infrequent, frequent or critical threshold action has been processed.

 COMMANDS HELP

 --

 Thresholds Definition

 Command ===>

 Entry Type : MVS Component PolicyDB Name : DATABASE_NAME

 Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE

 Resource : LOGREC

 Specify the number of times an event must occur to define a particular level.

 ------------------------- Threshold Levels ------------------------

 Critical Frequent Infrequent

 Number Interval Number Interval Number Interval

 (hh:mm) (hh:mm) (hh:mm)

 3 00:05 3 00:30 3 24:00

Figure 19. Three Threshold Levels Are Defined in the Automation Policy for MVS Component

LOGREC

Pass/Selection Automated Function/’*’

Command Text

__________ ________

MVS S CLRLOG,DSN=&EHKVAR1__

Figure 20. Automation Policy Item MESSAGES/USER DATA to Entry/Type-Pair

MVSESA/LOGREC Contains One Command without Selection Value

LOGREC Data Set Processing

152 System Automation for z/OS: Customizing and Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

If the recovery processing for a LOGREC data set is still in progress when an

expected error message arrives, the following message is issued:

AOF585I 15:45 : RECOVERY OF LOGREC IS ALREADY IN PROGRESS -

The recovery process is considered to be finished, when message IFC001I arrives

telling that the LOGREC data set has been initialized.

SMF Data Set Processing

The provided SMF recovery function responds to system messages telling that the

SMF data set is full or has been switched. Predefined commands from the ACF are

selected to dump and clear the contents of the SMF data set. The commands to be

selected can be defined depending on the occurrence of the incoming messages.

The SMF recovery function includes the following items:

v Automation routine AOFRSA03

v Automation table entries for system messages IEE362A, IEE362I, IEE391A and

IEE392I

v Error threshold definitions for MVS component SMFDUMP

v Command specification in automation policy item MESSAGES/USER DATA to

entry/type-pair MVSESA/SMFDUMP of the ACF

AOFRSA03

Purpose

You can use the AOFRSA03 automation routine to respond to SMF data set full or

switch messages from your system. AOFRSA03 issues commands from the ACF to

dump and clear the contents of the SMF data set.

AOFRSA03 keeps track of the incoming SMF data set messages and compares their

occurrence with predefined thresholds at level infrequent, frequent and critical. An

exceeded threshold is taken as option for selecting the appropriate commands

according to the first field in the command entry of the entry/type-pair

MVSESA/SMFDUMP in the ACF. If no threshold is exceeded the commands to

selection option ALWAYS are issued.

AOFRSA03 is expected to be called from the NetView automation table.

Format

�� AOFRSA03 ��

Restrictions

v Actions in AOFRSA03 are only taken if the recovery automation flag for

SMFDUMP is on.

v Processing in AOFRSA03 is only done if it is called from NetView automation

table by one of the expected messages IEE362A, IEE262I, IEE391A or IEE392I.

Usage

Automation routine AOFRSA03 is intended to respond to the following messages:

IEE362A SMF ENTER DUMP FOR SYS1.MANn ON ser

IEE362I SMF ENTER DUMP FOR SYS1.MANn ON ser

IEE391A SMF ENTER DUMP FOR DATA SET ON VOLSER ser, DSN=dsname

IEE392I SMF ENTER DUMP FOR DATA SET ON VOLSER ser, DSN=dsname

LOGREC Data Set Processing

Chapter 12. Automation Routines 153

which indicates that the SMF data set is ready to be dumped.

Flags

&EHKVAR1

When defining the commands in the ACF to dump and clear the contents

of the SMF data set, the variable &EHKVAR1 can be used for the name of

the SMF data set. This variable will be substituted with the complete data

set name by AOFRSA03 when message IEE391A or IEE392I is received. In

case of message IEE362A or IEE362I this variable will be substituted with

MANn, the second part of the SMF data set name.

&EHKVAR2

When defining the commands in the ACF to dump and clear the contents

of the SMF data set, the variable &EHKVAR2 can be used for the name of

the SMF data set. This variable will be substituted with the complete data

set name by AOFRSA03 when message IEE391A, IEE392I, IEE362A, or

IEE362I is received.

Flags

This example shows a sample scenario to the SMF data set processing:

The following entries in the NetView automation table are created by Easy

Message Management to issue the appropriate automation routine when one of the

expected messages arrives:

IF (MSGID = ’IEE362I’ | MSGID = ’IEE362A’ |

 MSGID = ’IEE391A’ | MSGID = ’IEE392I’)

THEN

EXEC(CMD(’AOFRSA03’)ROUTE(ONE %AOFOPRECOPER%));

 Assume that the following message arrives the first time for one day:

 COMMANDS HELP

 --

 Thresholds Definition

 Command ===>

 Entry Type : MVS Component PolicyDB Name : DATABASE_NAME

 Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE

 Resource : SMFDUMP

 Specify the number of times an event must occur to define a particular level.

 ------------------------- Threshold Levels ------------------------

 Critical Frequent Infrequent

 Number Interval Number Interval Number Interval

 (hh:mm) (hh:mm) (hh:mm)

 3 00:05 3 00:30 3 24:00

Figure 21. Three Threshold Levels Are Defined in the Automation Policy for MVS Component

SMFDUMP

Pass/Selection Automated Function/’*’

Command Text

__________ ________

MVS S SMFDUMP1,DA=’’&EHKVAR1’’’___

__

Figure 22. Automation Policy Item MESSAGES/USER DATA to Entry/Type-Pair

MVSESA/SMFDUMP Contains One Command without Selection Value

SMF Data Set Processing

154 System Automation for z/OS: Customizing and Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

IEE391A SMF ENTER DUMP FOR DATASET ON VOLSER 123, DSN=SYS1.AOC1.MAN3

Since none of the defined thresholds is exceeded, the automation routine

AOFRSA01 searches for defined commands without selection option and to

selection option ALWAYS to be issued. With the control file shown above the

command MVS S SMFDUMP1,DA=’&EHKVAR1’ is selected. Before issuing this command,

the variable &EHKVAR1 is substituted by the data set name of the received

message resulting in MVS S SMFDUMP1,DA=’SYS1.AOC1.MAN3’.

If message IEE391A continues to arrive and the occurrence of the expected

messages thus exceeds the infrequent, frequent or critical threshold, the automation

routine AOFRSA03 searches for defined commands without selection option and to

selection option INFR, FREQ or CRIT to be issued.

Because no command is defined with any selection option, only the defined

command with no selection option is selected and issued, as in the previous case.

Message AOF589I, AOF588I or AOF587I is issued in cases, where an infrequent,

frequent or critical threshold has been exceeded. These messages indicate that an

infrequent, frequent or critical threshold action has been processed.

SYSLOG Processing

The provided syslog function responds to syslog being queued messages by

starting an external writer to save the syslog that was queued. The commands to

be selected can be defined depending on the occurrence of the incoming messages.

The provided syslog function includes the following items:

v Automation routine AOFRSA08

v Automation table entry for system message IEE043I

v Error threshold definitions for MVS component SYSLOG

v Command specification in automation policy item MESSAGES/USER DATA to

entry/type-pair MVSESA/SYSLOG of the ACF

AOFRSA08

Purpose

You can use the AOFRSA08 automation routine to respond to syslog being queued

messages by starting an external writer to save the syslog that was queued.

AOFRSA08 keeps track of the incoming syslog queued messages and compares

there occurrence with predefined thresholds at level infrequent, frequent and

critical. An exceeded threshold is taken as option for selecting the appropriate

commands according to the first field in the command entry of the entry/type-pair

MVSESA/SYSLOG in the ACF. If no threshold is exceeded the commands to

selection option ALWAYS are issued.

AOFRSA08 is expected to be called from the NetView automation table.

Format

�� AOFRSA08 ��

SMF Data Set Processing

Chapter 12. Automation Routines 155

Restrictions

v Processing in AOFRSA08 is only done if it is called from NetView automation

table by the expected message IEE043I.

v Actions are only taken in AOFRSA08 if the recovery automation flag for

SYSLOG is on and if the status of JES is UP or HALTED.

Usage

Automation routine AOFRSA08 is intended to respond to the message:

 IEE043I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS class

which indicates that the system closed the system log (SYSLOG) data set and

queued the data set to a SYSOUT class.

The commands to issue are selected from the command entry of the

entry/type-pair MVSESA/SYSLOG in the ACF.

If no threshold is reached when one of the expected messages arrive, all

commands to entries with no selection option and to selection option ALWAYS are

selected. If the threshold at level infrequent is exceeded, all commands to entries

with no selection specification option and to selection option INFR are selected. In

the same way a level of frequent corresponds to selection option FREQ and a level

of critical corresponds to selection option CRIT.

Flags

This example shows a sample scenario to the SYSLOG processing:

The following entry in the NetView automation table is created by Easy Message

Management to issue AOFRSA08 as response to incoming message IEE043I:

IF MSGID = ’IEE043I’

THEN

EXEC(CMD(’AOFRSA08’)ROUTE(ONE %AOFOPRECOPER%));

 COMMANDS HELP

 --

 Thresholds Definition

 Command ===>

 Entry Type : MVS Component PolicyDB Name : DATABASE_NAME

 Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE

 Resource : SYSLOG

 Specify the number of times an event must occur to define a particular level.

 ------------------------- Threshold Levels ------------------------

 Critical Frequent Infrequent

 Number Interval Number Interval Number Interval

 (hh:mm) (hh:mm) (hh:mm)

 3 00:05 3 00:30 3 24:00

Figure 23. Three Threshold Levels Are Defined in the Automation Policy for MVS Component

SYSLOG

SYSLOG Processing

156 System Automation for z/OS: Customizing and Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

Assume that the following message arrives the first time for one day:

EE043I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS A

Since none of the defined thresholds is exceeded, the automation routine

AOFRSA08 searches for defined commands without selection option and to

selection option ALWAYS to be issued. With the control file shown above the

command MVS S SAVELOG is selected.

If message IEE043I continues to arrive and the occurrence of the expected

messages thus exceeds the infrequent, frequent or critical threshold, the automation

routine AOFRSA08 searches for defined commands without selection option and to

selection option INFR, FREQ or CRIT to be issued.

Because no command is defined with any selection option, only the defined

command with no selection option is selected and issued, as in the previous case.

Message AOF589I, AOF588I or AOF587I is issued in cases, where an infrequent,

frequent or critical threshold has been exceeded. These messages indicate that an

infrequent, frequent or critical threshold action has been processed.

SVC Dump Processing

The provided SVC dump processing function responds to an SVC dump taken

message by issuing predefined commands from the ACF to handle the dump. The

commands to be selected can be defined depending on the occurrence of the

incoming messages.

The provided SVC dump processing function includes the following items:

v Automation routine AOFRSA0C

v Automation table entries for system messages IEA611I and IEA911E

v Error threshold definitions for MVS component MVSDUMP

v Command specification in automation policy item MESSAGES/USER DATA to

entry/type-pair MVSESA/MVSDUMP, MVSESA/MVSDUMPTAKEN and

MVSESA/MVSDUMPRESET of the ACF

AOFRSA0C

Purpose

You can use the AOFRSA0C automation routine to respond to a SVC dump taken

to a dump data set message by issuing commands from the ACF to format the

dump, to clear the dump data sets or to prevent further dumping. The commands

to issue are taken from the entry/type-pair MVSESA/MVSDUMP and

MVSESA/MVSDUMPTAKEN and selected according to the frequency of the

incoming messages and the thresholds defined in the automation policies. The first

field in the command entry gives detailed criteria to select the appropriate

commands from the ACF.

Pass/Selection Automated Function/’*’

Command Text

__________ ________

MVS S SAVELOG___

__

Figure 24. Automation Policy Item MESSAGES/USER DATA to Entry/Type-Pair

MVSESA/SYSLOG Contains One Command without Selection Value

SYSLOG Processing

Chapter 12. Automation Routines 157

AOFRSA0C is expected to be called from the NetView automation table.

Format

�� AOFRSA0C ��

Restrictions

v Actions in AOFRSA0C are only taken if the recovery automation flag for

MVSDUMP is on.

v Processing in AOFRSA0C is only done if it is called from NetView automation

table by one of the expected messages IEA611I or IEA911E.

Usage

Automation routine AOFRSA0C is intended to respond to the messages:

IEA611I {COMPLETE|PARTIAL} DUMP ON dsname

DUMPID=dumpid REQUESTED BY JOB (jobname)

FOR ASIDS(id,id,...)

...

IEA911E {COMPLETE|PARTIAL} DUMP ON SYS1.DUMPnn

DUMPid=dumpid REQUESTED BY JOB (jobname)

FOR ASIDS(id,id,...)

...

which indicates that the system wrote a complete or partial SVC dump to an

automatically allocated or pre-allocated dump data set on a direct access storage

device or a tape volume.

AOFRSA0C keeps track on the reception of these messages and compares the

frequency of the incoming messages with predefined thresholds of infrequent,

frequent and critical level, where the thresholds to MVS component MVSDUMP

are considered. The commands to issue are selected according to the frequency of

the incoming messages.

If no threshold is reached, all commands to entries with no selection option and to

selection option ALWAYS are selected. If the threshold at level infrequent is

exceeded, all commands to entries with no selection option and to selection option

INFR are selected. In the same way a level of frequent corresponds to selection

option FREQ and a level of critical corresponds to selection option CRIT.

The commands to issue are taken from entry/type-pair MVSESA/MVSDUMP of

the ACF with respect to the frequency of the incoming of these messages.

If AOFRSA0C has been triggered on receipt of message IEA911E, additionally all

commands from entry/type-pair MVSESA/MVSDUMPTAKEN of the ACF are

selected and issued, as long as the critical threshold is not exceeded.

After dump processing has been done, AOFRSA0C further monitors the frequency

of messages IEF611I and IEF911E in intervals of 15 minutes. As soon as the

frequency falls below the infrequent threshold, all commands of entry/type-pair

MVSESA/MVSDUMPRESET are issued.

Flags

When defining the commands in the ACF to handle the SVC dump data set, the

variables &EHKVAR1 to &EHKVAR6 can be used to be substituted by variable

SVC Dump Processing

158 System Automation for z/OS: Customizing and Programming

contents of message IEA611I or IEA911E. The variables &EHKVAR1 to &EHKVAR6

are not available in command entries of type MVSDUMPRESET. These variables

will be substituted as follows:

&EHKVAR1

dsname of IEA611I or suffix of SYS1.DUMPnn in IEA911E

&EHKVAR2

data set name

&EHKVAR3

dumpid

&EHKVAR4

jobname

&EHKVAR5

id of address space

&EHKVAR6

dump type (PARTIAL or COMPLETE)

Flags

This example shows the use of automation routine AOFRSA0C in a sample

context:

An entry in the NetView automation table is used to issue AOFRSA0C when one

of the expected messages arrives:

IF MSGID = ’IEA611I’ | MSGID = ’IEA911E’

THEN

EXEC(CMD(’AOFRSA0C ’)ROUTE(ONE %AOFOPRECOPER%));

Three threshold levels are defined in the automation policy for MVS component

MVSDUMP:

AOFKAASR SA z/OS - Command Dialogs

 Domain ID = IPSNO ---------- INGTHRES ---------- Date = 08/28/03

 Operator ID = SAUSER Time = 09:38:02

 Specify thresholds and resource changes:

 Resource => MVSDUMP Group or specific resource

 System => KEY3 System name, domain ID, sysplex name or *all

 Critical => 6 errors in 00:30 Time (HH:MM)

 Frequent => 4 errors in 00:20 Time (HH:MM)

 Infrequent => 2 errors in 00:20 Time (HH:MM)

 Pressing ENTER will set the THRESHOLD values

 Command ===>

 PF1=Help PF2=End PF3=Return PF6=Roll

 PF12=Retrieve

Figure 25. MVSDUMP Thresholds

SVC Dump Processing

Chapter 12. Automation Routines 159

Automation policy item MESSAGES/USER DATA of entry/type-pair

MVSESA/MVSDUMP contains the following command entries with selection

options at different levels:

 Automation policy item MESSAGES/USER DATA to entry/type-pair

MVSESA/MVSDUMPTAKEN contains the following command entries with no

selection options:

 Automation policy item MESSAGES/USER DATA to entry/type-pair

MVSESA/MVSDUMPRESET contains the following command entries with no

selection options:

 As long as no threshold is exceeded at receipt of one of the IEA611I and IEA911E

messages, no action is taken.

If dumps have been taken more often than defined with the infrequent threshold,

command MVS DD ALLOC=ACTIVATE, specified in entry type MVSDUMP is issued,

which makes sure that automatic dump data set allocation is enabled. In case

when the dump has been written to a pre-allocated SYS1.DUMP data set,

additionally the data set will be cleared by command MVS DD CLEAR,DSN=&EHKVAR1,

specified in entry type MVSDUMPTAKEN. Variable &EHKVAR1 will be

substituted by the numeric suffix of the SYS1.DUMP data set.

The same processing will be done in case, when the incoming dump data set

messages exceeds the frequent level.

As soon as the critical threshold is exceeded, the automation routine stops clearing

pre-allocated SYS1.DUMP data sets.

 Command = ACF ENTRY=MVSESA,TYPE=MVSDUMP,REQ=DISP

 SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA

 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA

 TYPE IS MVSDUMP

 CMD = (FREQ,,’MVS DD ALLOC=INACTIVE’)

 CMD = (INFR,,’MVS DD ALLOC=ACTIVE’)

 CMD = (CRIT,,’MVS DD ALLOC=INACTIVE’)

 END OF MULTI-LINE MESSAGE GROUP

Figure 26. MVSESA/MVSDUMP Command Entries

 Command = ACF ENTRY=MVSESA,TYPE=MVSDUMPTAKEN,REQ=DISP

 SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA

 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA

 TYPE IS MVSDUMPTAKEN

 CMD = (,,’MVS DD CLEAR,DSN=&EHKVAR1’)

 END OF MULTI-LINE MESSAGE GROUP

Figure 27. MVSESA/MVSDUMPTAKEN Command Entries

 Command = ACF ENTRY=MVSESA,TYPE=MVSDUMPRESET,REQ=DISP

 SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA

 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA

 TYPE IS MVSDUMPRESET

 CMD = (,,’MVS DD ALLOC=ACTIVE’)

 END OF MULTI-LINE MESSAGE GROUP

Figure 28. MVSESA/MVSDUMPRESET Command Entries

SVC Dump Processing

160 System Automation for z/OS: Customizing and Programming

After commands having been issued by the automatic processing of dump data

sets, automation routine AOFRSA0C checks every 15 minutes whether the

infrequent threshold is satisfied again. As soon as this situation is reached,

automatic dump data set allocation will be enabled again by command MVS DD

ALLOC=ACTIVE, as defined in entry type MVSDUMPRESET.

Deletion of Processed WTORs from SDF

The provided WTOR processing function deletes WTORs from SDF when replied

to or cancelled.

The provided WTOR processing function includes the following items:

v Automation routine AOFRSA0E

v Automation table entries for system messages IEE400I and IEE600I

AOFRSA0E

Purpose

Automation routine AOFRSA0E deletes WTORs from SDF when replied to or

cancelled.

Format

��

AOFRSA0E

�

 ,

id

��

Parameters

id The reply identifiers for cancelled messages.

Restrictions

Processing in AOFRSA0E is only done if it is called from NetView automation

table by message IEE400I or IEE600I or if one of these messages are passed by

parameter.

Usage

Automation routine AOFRSA0E is intended to respond to the following messages:

IEE400I THESE MESSAGES CANCELED- id,id,id

IEE600I REPLY TO id IS; text

Message IEE400I says that the system cancelled messages because the issuing task

ended or specifically requested that the messages be cancelled. Message IEE600I

notifies all consoles that received a message that the system accepted a reply to the

message.

As well AOFRSA0E can extract the identifiers of the messages to delete from

passed parameters.

Flags

The following example shows how to issue AOFRSA0E from the NetView

automation table:

IF MSGID = ’IEE400I’ | MSGID = ’IEE600I’

THEN

EXEC(CMD(’AOFRSA0E ’)ROUTE(ONE %AOFOPWTORS%));

SVC Dump Processing

Chapter 12. Automation Routines 161

AMRF Buffer Shortage Processing

The provided AMRF buffer shortage processing function responds to messages,

reporting buffer shortage of the action message retention facility (AMRF) by

issuing commands from the ACF to process buffer shortage automation.

The provided AMRF buffer shortage processing function includes the following

items:

v Automation routine AOFRSA0G

v Automation table entries for system messages IEA359E, IEA360A and IEA361I

v Command specification in automation policy item MESSAGES/USER DATA to

entry/type-pair MVSESA/AMRFSHORT, MVSESA/AMRFFULL and

MVSESA/AMRFCLEAR of the ACF

AOFRSA0G

Purpose

You can use the AOFRSA0G automation routine to respond to messages, reporting

buffer shortage of the action message retention facility (AMRF) by issuing

commands from the ACF to process buffer shortage automation. In case of an

incoming buffer shortage message the commands to issue are taken from the

entry/type-pair MVSESA/AMRFSHORT with selection option PASS1 and reissued

in 1 minute intervals with incremented pass count. In case of buffer full message

the commands to issue are taken from entry/type-pair MVSESA/AMRFFULL. If

buffer shortage relieved is reported, the commands to entry/type-pair

MVSESA/AMRFCLEAR are selected.

AOFRSA0G is expected to be called from the NetView automation table.

Format

�� AOFRSA0G ��

Restrictions

v Actions are only taken in AOFRSA0G if the recovery automation flag for AMRF

is on.

v Processing of system messages in AOFRSA0G is only done if it is called from

NetView automation table by message IEA359I, IEA360A or IEA361I.

Usage

Automation routine AOFRSA0G is intended to respond to the messages:

IEA359E BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 80% FULL

IEA360A SEVERE BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 100% FULL

IEA361I BUFFER SHORTAGE RELIEVED FOR RETAINED ACTION MESSAGES

IEA359E and IEA360A reports buffer shortage of the buffer area for immediate

action messages, non-critical and critical eventual action messages and WTOR

messages. IEA361I indicates the reduction of the number of retained action

messages so that the buffer is now less than 75% full.

If AOFRSA0G has been triggered on receipt of message IEA359I the commands to

issue are taken from entry/type-pair MVSESA/AMRFSHORT, starting at selection

option PASS1 and continuing with incremented selection options in 1 minute

AMRF Buffer Shortage Processing

162 System Automation for z/OS: Customizing and Programming

intervals until message IEA361 reports that buffer shortage has relieved. After

arriving the maximal used selection option for a defined command processing

restarts at selection option PASS1.

If AOFRSA0G has been triggered on receipt of message IEA360A all commands

from entry/type-pair MVSESA/AMRFFULL are issued.

If AOFRSA0G has been triggered on receipt of message IEA361I all commands

from entry/type-pair MVSESA/AMRFCLEAR are issued.

Flags

The following example shows a sample scenario to the AMRF shortage processing:

Entries in the NetView automation table are used to issue AOFRSA0G when

message IEA359E, IEA360E or IEA361I arrives:

IF MSGID = ’IEA359I’

THEN

EXEC(CMD(’AOFRSA0G’)ROUTE(ONE %AOFOPRECOPER%));

IF MSGID = ’IEA360A’

THEN

EXEC(CMD(’AOFRSA0G’)ROUTE(ONE %AOFOPRECOPER%));

IF MSGID = ’IEA361I’

THEN

EXEC(CMD(’AOFRSA0G’)ROUTE(ONE %AOFOPRECOPER%));

To specify how to respond to message IEA359E and IEA361I, the following

command definitions are made in the automation policy under the entry/type-pair

MVSESA/AMRFFULL and MVSESA/AMRFCLEAR:

 If for example message

IEA360A SEVERE BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 100% FULL

arrives, AOFRSA0G is issued by the shown statement in the NetView automation

table, which causes the command CONTROL M,AMRF=N to be issued to clear the

AMRF buffers.

After AMRF buffer shortage is relieved, the incoming message

IEA361I BUFFER SHORTAGE RELIEVED FOR RETAINED ACTION MESSAGES

causes command CONTROL M,AMRF=Y to be issued to reactivate AMRF.

 Command = ACF ENTRY=MVSESA,TYPE=AMRF*,REQ=DISP

 SYSTEM = AOC1 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA

 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA

 TYPE IS AMRFCLEAR

 CMD = (,,’MVS CONTROL M,AMRF=Y’)

 TYPE IS AMRFULL

 CMD = (,,’MVS CONTROL M,AMRF=N’)

 END OF MULTI-LINE MESSAGE GROUP

Figure 29. MVSESA AMRF Command Definitions

AMRF Buffer Shortage Processing

Chapter 12. Automation Routines 163

JES2 Spool Recovery Processing

The provided JES2 spool recovery processing function responds to JES2 spool

shortage and spool full messages by JES2 spool recovery processing to downgrade

the problem of excessive spool usage.

The provided JES2 spool recovery processing function includes the following items:

v Automation routines AOFRSD01, AOFRSD09, AOFRSD0H

v Automation table entries for system messages HASP050 and HASP355

v Configuration parameters for the JES2 spool recovery process in policy item JES2

SPOOLSHORT and JES2 SPOOLFULL of the ACF

v Recovery commands defined in policy item JES2 SPOOLSHORT and JES2

SPOOLFULL of the ACF

Spool Usage Predictions: The automation routines of JES2 spool recovery

processing makes predictions about spool usage which

are presented through the SDF status update. There are

three different predictions made: See appropriate section

of SA for z/OS: Defining Automation Policy, page 166

AOFRSD01

Purpose

You can use the AOFRSD01 automation routine for JES2 spool recovery processing.

It responds to JES2 spool shortage messages by initiating the recovery process for

JES2 spool shortage. It responds to JES2 spool full messages by initiating the

recovery process for JES2 spool full to downgrade the problem of excessive spool

usage.

For this purpose AOFRSD01:

v Makes linear and first order predictions of spool usage, based on actual and

historical values

v Posts the spool status to SDF

v Determines the target of recovery process as difference between the actual

warning threshold for TG and the buffer value from the ACF. Achieving this

target by the recovery process the spool shortage condition will be considered as

relieved

v Initiates pass processing to execute the recovery commands of the ACF, defined

via policy item JES2 SPOOLSHORT or JES2 SPOOLFULL. The pass processing

itself is done by automation routine AOFRSD09 which is issued every retry

interval. The retry interval is taken from the ACF.

Recovery commands and configuration parameters like buffer value and retry

interval for the JES2 recovery processing can be defined via automation policy item

JES2 SPOOLSHORT for spool shortage recovery processing and JES2 SPOOLFULL

for spool full recovery processing.

For further information on the automation policy items JES2 SPOOLSHORT and

JES2 SPOOLFULL refer to section Defining JES Subsystem in System Automation

for z/OS Automation Policy.

AOFRSD01 is expected to be called from the NetView automation table.

JES2 Spool Recovery Processing

164 System Automation for z/OS: Customizing and Programming

Format

�� AOFRSD01 ��

Restrictions

v Processing in AOFRSD01 is only done if it is called from NetView automation

table by JES2 messages HASP050 or HASP355.

v Message HASP355 is only processed if it reports a shortage of track groups (TG).

Usage

Automation routine AOFRSD01 is intended to respond to the following messages:

HASP050 JES2 RESOURCE SHORTAGE OF TGs - nnn% UTILIZATION REACHED

HASP355 SPOOL VOLUMES ARE FULL

HASP050 indicates that JES2 has a shortage of track groups and the current spool

utilization exceeds the current TGWARN value on this JES. TGNWARN is defined

in the SPOOLDEF statement in the JES initialization member and can be changed

dynamically. HASP355 indicates that a request for JES2 direct access spool space

cannot be processed, because all available space has been allocated to JES2

functions or no spool volumes are available. Therefore the recovery targets in this

case are based on a figure of 100% spool utilization.

You should code TGWARN in the SPOOLDEF statement in the JES initialization

member so that a SPOOLSHORT recovery will be initiated before a SPOOLFULL

condition is reached. If this is not done, the recovery process may become

unpredictable. When resetting after a SPOOLFULL condition, the problem is

downgraded to a SPOOLSHORT. SA z/OS expects the previously running

SPOOLSHORT recovery to activate and try to downgrade the problem to an OK.

Without the prior SPOOLSHORT recovery, the spool status will remain in

SPOOLSHORT after a successful SPOOLFULL recovery.

The NetView automation table entries for JES2 messages have to respect the one

character prefix in front of the message identifier of JES2 messages, identifying the

issuing JES.

The spool status is posted to SDF under the SPOOL generic, with the name of the

subsystem as its specific name. To get these displayed on an SDF panel, you need

status fields for xxxx.SPOOL, elements 1 through n, where n is the number of

different subsystems that use the spool.

see section Spool Recovery Limitations of SA Defining Automation Policy, page 166

AOFRSD09

Purpose

Automation routine AOFRSD09 is used for JES2 spool recovery. It is called by

AOFRSD01 via a timer every retry interval to monitor spool utilization of JES2 and

to successive issue the recovery commands of policy item JES2 SPOOLSHORT or

JES2 SPOOLFULL.

For this purpose AOFRSD09 processes the following steps:

v AOFRSD09 issues the JES2 command D SPOOL to obtain the current spool

usage.

JES2 Spool Recovery Processing

Chapter 12. Automation Routines 165

v AOFRSD09 re-evaluates the target of recovery process based on the actual

warning threshold for TG and the buffer value from the ACF.

v If the recovery target has not yet been achieved and the own JES2 subsystem is

responsible for the spool recovery, AOFRSD09 increments the pass count and

issues the appropriate commands from the ACF. To determine the responsible

JES2 subsystem for spool recovery in a shared JES2 environment, where all JES2

subsystems receive a copy of the spool shortage message, AOFRD09 compares

the list of cpuids, defined in ACF, with the response to JES2 command D

MEMBER,STATUS=ACTIVE. The first active cpuid of the list is considered to be

the responsible JES2 subsystem for spool recovery.

v In case the spool shortage problem has already relieved, AOFRSD09 stops the

recovery process and sets a timer to reset the pass count for the recovery

commands after the reset interval.

Recovery commands and configuration parameters like buffer value, reset interval

and cpuid list for the JES2 recovery processing can be defined via automation

policy item JES2 SPOOLSHORT for spool shortage recovery processing and JES2

SPOOLFULL for spool full recovery processing.

For further information on the automation policy items JES2 SPOOLSHORT and

JES2 SPOOLFULL refer to section Defining JES Subsystem in System Automation

for z/OS Automation Policy.

Format

�� AOFRSD09subsystemrecovery type ��

Parameters

subsystem

The subsystem name of JES2. This parameter is required.

recovery type

This parameter is used to distinguish between a JES2 spool shortage and a

JES2 spool full condition. This parameter is required.

SHORT

The automatic recovery from a JES2 spool shortage condition is to be

processed.

FULL The automatic recovery from a JES2 spool full condition is to be

processed.

Restrictions

v Processing of recovery commands in AOFRSD09 is only done if the recovery

automation flag for JES2 is on. Otherwise the recovery process is suspended and

the pass count for selection recovery commands from the ACF is not

incremented.

v Automation routine AOFRSD09 is expected to be processed by JESOPER. If it is

called on another task it is routed back to JESOPER.

v Processing in AOFRSD09 is only done if the specified type of spool recovery

process has been initiated by automation routine AOFRSD01.

v During a SPOOLFULL recovery condition, the processing for SPOOLSHORT

recovery is suspended.

JES2 Spool Recovery Processing

166 System Automation for z/OS: Customizing and Programming

Usage

The recovery commands to issue are selected from the command entry of policy

item JES2 SPOOLSHORT or JES2 SPOOLFULL. A pass count is used as selection

option and incremented at each successive processing of automation routine

AOFRSD09. At initialization of the recovery process, the pass count is set to value

PASS1 by automation routine AOFRSD01.

If pass processing runs out of defined recovery commands before the spool

shortage condition is resolved, AOFRSD09 re-executes the recovery sequence from

PASS1. You can change this behaviour by setting the appropriate advanced

automation option at start up of System Automation. You can use the

AOFSPOOLSHORTCMD variable (for SPOOLSHORT conditions) and the

AOFSPOOLFULLCMD variable (for SPOOLFULL conditions) to tell automation

routine AOFRSD09 to stop recovery attempts when all commands have been

executed and to issue message AOF294I to inform the operator that manual

intervention is required in order to resolve the spool condition. For more

information on advanced automation options refer to ’Global Variables to Enable

Advanced Automation’ in System Automation for z/OS: Customization and

Programming.

Flags

 When defining the commands in the SPOOLFULL or SPOOLSHORT

processing panel of the ACF to handle the recovery, the variables

&EHKVAR1 and &EHKVAR2 can be used to be substituted by variable

contents. Variable &EHKVAR1 will be substituted by the current spool

utilization and &EHKVAR2 contains the recovery target.

AOFRSD0H

Purpose

Automation routine AOFRSD0H is used for JES2 spool recovery. It is called by

AOFRSD09 via a timer command after the reset interval and cleans up the pass

counter for the pass processing of the recovery commands of the ACF.

Format

�� AOFRSD0Hsubsystemrecovery type ��

Parameters

subsystem

The subsystem name of JES2. This parameter is required.

recovery type

This parameter is used to distinguish between a JES2 spool shortage and a

JES2 spool full condition. This parameter is required.

SHORT

The pass counter for spool shortage recovery processing is to be reset.

FULL The pass counter for spool full recovery processing is to be reset.

Restrictions

v Automation routine AOFRSD0H is expected to be processed by JESOPER. If it is

called on another task it is routed back to JESOPER.

v Each recovery action during the reset interval

JES2 Spool Recovery Processing

Chapter 12. Automation Routines 167

v AOFRSD0H is only scheduled after the reset interval if no new recovery action

of the corresponding type SHORT or FULL has been taken during this time.

v The pass counter for spool full recovery processing is reset by AOFRSD0H after

the reset interval, even if spool short recovery is still in progress.

Flags

The following example shows a sample scenario to JES2 spool recovery processing:

The following entries in the NetView automation table are used to issue

automation routine AOFRSD01 from the NetView automation table, when one of

the expected messages arrives:

IF MSGID(2) = ’HASP050’ & TEXT = .’TGS’.

THEN

EXEC(CMD(’AOFRSD01’)ROUTE(ONE %AOFOPJESOPER%));

IF MSGID(2) = ’HASP355’

THEN

EXEC(CMD(’AOFRSD01’)ROUTE(ONE %AOFOPJESOPER%));

The SPOOLSHORT recovery is configured via automation policy item JES2

SPOOLSHORT as shown in Figure 30.

 Because no cpuids are defined, the own JES2 subsystem is responsible for JES2

spool recovery processing. Entering YES in field Edit Spoolshort Pass Commands

allows you to edit the pass recovery commands that are defined as shown by the

following response panel to command DISPACF JES2:

 COMMANDS HELP

 --

 SPOOLSHORT Processing

 Command ===>

 Entry Type : Application PolicyDB Name : DATABASE_NAME

 Entry Name : JES2 Enterprise Name : YOUR_ENTERPRISE

 Enter SPOOLSHORT settings.

 Retry Time 00:05:00 Spool recovery attempt interval (hh:mm:ss)

 Buffer 5 Recovery target below TGWARN (0->50)

 Reset Time 00:15:00 Recovery reset interval (hh:mm:ss)

 Priority of systems for spool recovery:

 CPUID 1 2 3 4 5 6 7 8

 9 10 11 12 13 14 15 16

 17 18 19 20 21 22 23 24

 25 26 27 28 29 30 31 32

 Edit Spoolshort Pass Commands . . YES YES NO

Figure 30. JES2 SPOOLSHORT Recovery Definition

JES2 Spool Recovery Processing

168 System Automation for z/OS: Customizing and Programming

Assume, a JES2 spool shortage problem is reported by message

$HASP050 JES RESOURCE SHORTAGE OF TGS - 80% UTILIZATION REACHED

issuing automation routine AOFRSD01 by the appropriate NetView automation

table entry, which initiates the JES2 SPOOLSHORT recovery process and sets an

every timer, to call the pass processing routine by issuing AOFRSD09 JES2 SHORT

every 5 minutes, as defined in the customization dialog for SPOOLSHORT

processing shown above.

AOFRSD09 redetermines the actual spool usage, compares it with the defined

TGWARN of 80% and calculates the target of recovery as difference of TGWARN

and the buffer value resulting in a value of 75.

If this value is exceeded by the actual spool usage, all recovery commands with

selection option PASS1 of the ACF to recovery type SPOOLSHORT are issued.

After the retry interval of 5 minutes, AOFRSD09 is re-issued again by the timer.

If AOFRSD09 now determines that the JES2 spool shortage problem has been

relieved, it stops recovery processing and sets a timer to issue AOFRSD0H JES2 SHORT

after the reset interval of 15 minutes.

If none of the expected JES2 messages arrives by the end of the reset interval,

automation routine AOFRSD0H resets the pass count to 1, so that the next

SPOOLSHORT recovery process issues recovery commands beginning again at

selection option PASS1.

JES2 Shutdown Processing

The JES2 shutdown processing function that is provided responds to an all

function complete message at JES2 shutdown by issuing the corresponding ACF

commands that are defined in automation policy item MESSAGES/USER DATA

for JES2 message HASP099.

The shutdown type is used as option to select the commands.

This JES2 shutdown processing function is included in the generic routine

ISSUECMD, which is expected to be called from the NetView automation table.

 Command = ACF ENTRY=JES2,TYPE=*,REQ=DISP

 SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

 TYPE IS SPOOLSHORT

 CMD = (PASS1,,’MVS $PQ,Q=N,A=3’)

 CMD = (PASS1,,’MVS $OQ,Q=N,A=3,CANCEL’)

 CMD = (PASS1,,’MVS $PQ,Q=V,A=3’)

 CMD = (PASS1,,’MVS $OQ,Q=V,A=3,CANCEL’)

 CMD = (PASS2,,’MVS $PQ,ALL,A=4’)

 CMD = (PASS2,,’MVS $OQ,ALL,A=4,CANCEL’)

 CMD = (PASS3,,’MVS $PQ,ALL,A=3’)

 CMD = (PASS3,,’MVS $OQ,ALL,A=3,CANCEL’)

 CMD = (PASS4,,’AORRSPLS RANGE=JOB1-5000,NAME=T*’)

 CMD = (PASS4,,’AORRSPLS RANGE=JOB5000-10000,NAME=T*’)

 CMD = (PASS4,,’AORRSPLS RANGE=JOB10000-15000,NAME=T*’)

 CMD = (PASS4,,’AORRSPLS RANGE=JOB15000-20000,NAME=T*’)

Figure 31. DISPACF Command Response Panel

JES2 Spool Recovery Processing

Chapter 12. Automation Routines 169

|
|
|
|

|

|
|

HASP099

Restrictions

Shutdown processing of the JES2 message HASP099 is only done if:

v Shutdown automation for JES2 is on

v JES2 is in the process of being shut down

Usage

The generic routine ISSUECMD responds to message:

HASP099 ALL AVAILABLE FUNCTIONS COMPLETE

This indicates that all JES2 job processors have become dormant, and no JES2 RJE

lines are active.

Drain Processing Prior to JES2 Shutdown

SA z/OS provides functions for drain processing of JES2 resources prior to JES2

shutdown.

The provided JES2 drain processing function includes the following items:

v Automation routines AOFRSD07, AOFRSD0F, AOFRSD0G

v Automation table entries for system message HASP607

v Specifications in automation policy item JES2 DRAIN to which JES2 resources

are to be drained and how they are to be drained prior to JES2 shutdown.

AOFRSD07

Purpose

You can use the AOFRSD07 automation routine to respond to a JES2 not dormant

message during JES2 shutdown by issuing commands for resources that are not

drained.

The commands to issue are taken from the automation policy item JES2 DRAIN of

application JES2.

Additionally AOFRSD07 calls AOFRSD0F which outputs a list of all active jobs and

started tasks and a list of all resources not yet drained.

AOFRSD07 is expected to be called from the NetView automation table.

Format

�� AOFRSD07 ��

Restrictions

Processing in AOFRSD07 is only done if:

v It is called from NetView automation table by JES2 message HASP607

v The terminate automation flag for JES2 is on

v JES2 is in shutdown progress

AOFRSA07 performs no processing under z/OS 1.7 and above because Console

IDs are not valid in that environment.

JES2 Shutdown Processing

170 System Automation for z/OS: Customizing and Programming

|

|
|

|

|

|
|

|

|
|

|
|

Usage

Automation routine AOFRSD07 is intended to respond to message

HASP607 JES2 NOT DORMANT -- MEMBER DRAINING, RC=rc text

which indicates in case the P JES2 command was entered to withdraw JES2 from

the system that not all of JES2’s functions have completed.

To find out all resources not drained, the response to JES2 command DU,STA is

processed. For each resource in status DRAINING the corresponding command

from the automation policy item JES2 DRAIN for this resource type to force drain

is issued. Resources in status ACTIVE are first stopped with JES2 command P

resource, before the command from the automation policy item to force drain is

issued. Resources in status INACTIVE are only stopped with JES2 command P

resource.

In cases, where the automation is unable to issue actions on not yet drained

resources, JES2 is set to status STUCK and a message is issued which tells that an

operator action is required. Those situations occur if no command is specified in

automation policy item JES2 DRAINED of JES2 to drain a resource or if a not yet

drained resource is in an unknown status

AOFRSD0F

Purpose

Automation routine AOFRSD0F is used by AOFRSD07 for drain processing prior

to JES2 shutdown. Every shutdown delay interval, AOFRSD0F displays all JES2

resources not yet drained. For this purpose it scans the response to JES2 command

DA,S for executing tasks, the response to JES2 command DA,J for executing jobs

and the response to JES2 command DU,STA for started devices or lines not yet

drained and displays the result in a message.

Format

�� AOFRSD0F subsystem ��

Parameters

subsystem

The subsystem name of JES2.

Restrictions

Processing in AOFRSD0F is only done

v The subsystem is of type JES2

v JES2 is in shutdown progress

v The terminate automation flag is on

Usage

This automation routine is performed as part of the SHUTDOWN processing.

Flags

This example shows a sample scenario to JES2 drain processing prior to JES2

shutdown.

The following statement shows how AOFRSD07 is issued from the NetView

automation table by JES2 message

Drain Processing Prior to JES2 Shutdown

Chapter 12. Automation Routines 171

$HASP607: IF MSGID(2) = ’HASP607’

THEN

EXEC(CMD(’AOFRSD07’)ROUTE(ONE %AOFOPJESOPER%));

Assume the following drain processing specifications in automation policy item

JES2 DRAIN:

 The list of commands to force drain of JES2 resources are passed to

entry/type-pair JES2/FORCEDRAIN in the ACF and can be displayed with the

DISPACF command:

 Assume that during a shutdown of JES2 message $HASP607 arrives, indicating

that not all of JES2’s functions have completed and that JES2’s response to

command $DU,STATUS is:

$HASP636 13.53.22 $DU,STA

LINE1 UNIT=0FF3,STATUS=ACTIVE/BOEVM9,DISCON=NO

Automation routine AOFRSD07 first issues JES2 command $PLINE1 to stop the line

and then issues JES2 command $E, according to the policy specifications FOR

entry/type-pair JES2/FORCEDRAIN.

Then automation routine AOFRSD0F is executed every shutdown delay interval, to

list all JES2 resources not drained.

 COMMANDS HELP

 --

 JES2 DRAIN Specifications

 Command ===>

 Entry Type : Application PolicyDB Name : DATABASE_NAME

 Entry Name : JES2 Enterprise Name : YOUR_ENTERPRISE

 Subsystem: JES2

 Enter information (Yes or No) for initial drain to bring down JES2 facilities.

 LIN YES Drain lines

 LOG YES Drain JES2-VTAM interface

 OFF NO Drain spool offloaders

 PRT YES Drain printers

 RDR YES Drain readers

 PUN YES Drain punches

 Enter information (Command or No) for force drain if normal drain fails.

 LIN $E Force drain lines

 LOG $E Force drain JES2-VTAM interface

 OFF NO Force drain spool offloaders

 PRT $I Force drain printers

 RDR $C Force drain readers

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 32. JES2 DRAIN Specifications Panel

 Command = ACF ENTRY=JES2,TYPE=FORCEDRAIN,REQ=DISP

 SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

 TYPE IS FORCEDRAIN

 LIN = ""$E""

 LOG = ""$E""

 OFF = ""NO""

 PRT = ""$I""

 RDR = ""$C""

 PUN = ""$E""

 END OF MULTI-LINE MESSAGE GROUP

Figure 33. DISPACF Panel

Drain Processing Prior to JES2 Shutdown

172 System Automation for z/OS: Customizing and Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

AOFRSD0G

Purpose

You can use the AOFRSD0G automation routine to drain JES2 resources prior to

JES2 shutdown. AOFRSD0G issues commands to drain the initiators, offloader

tasks, lines, printers, punches and readers, depending on which resources are listed

and enabled in the automation policy item JES2 DRAIN of application JES2.

AOFRSD0G is used by the DRAINJES command.

Format

�� AOFRSD0G subsystem ��

Parameters

subsystem

The subsystem name of JES2.

Restrictions

v Processing in AOFRSD0G is only done if the subsystem is of type JES2.

Usage

For all resources enabled to initial drain in automation policy item JES2 DRAIN of

application JES2 the JES2 command P is issued.

Flags

Call AOFRSD0G JES2 to stop all resources enabled in JES2 DRAIN for init drain.

These resources can be listed with command DISPACF JES2 INITDRAIN.

JES3 Dump Processing

The provided JES3 dump processing function initiates recovery automation

processing as response to a specify dump option message. It includes the following

items:

v Automation routine AOFRSE0J.

v Automation table entry for JES3 message IAT3714.

v Error threshold definitions for JES3, defined in automation policy item JES3

ABEND.

v Recovery command and reply specifications in automation policy item

MESSAGES/USER DATA to entry/type-pair JES3/JESABEND of the ACF.

 Command = ACF ENTRY=JES2,TYPE=INITDRAIN,REQ=DISP

 SYSTEM = AOC1 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2

 TYPE IS INITDRAIN

 LIN = ""YES""

 LOG = ""YES""

 OFF = ""NO""

 PRT = ""YES""

 RDR = ""YES""

 PUN = ""YES""

 END OF MULTI-LINE MESSAGE GROUP

Figure 34. DISPACF JES2 INITDRAIN Panel

Drain Processing Prior to JES2 Shutdown

Chapter 12. Automation Routines 173

AOFRSE0J

Purpose

You can use the AOFRSE0J automation routine for JES3 dump processing to

respond to a specify dump option message at JES3 abend by replying a dump

option and by initiating recovery automation processing.

AOFRSE0J keeps track of the incoming expected JES3 messages and compares their

occurrence with predefined thresholds at level infrequent, frequent and critical. An

exceeded threshold is taken as option for selecting corresponding recovery

commands and replies from the entry/type-pair JES3/JESABEND in the ACF. If no

threshold is exceeded the commands or replies to selection option ALWAYS are

issued together with the commands without selection option.

AOFRSE0J is expected to be called from the NetView automation table.

Format

�� AOFRSE0J ��

Restrictions

v Actions are only taken in AOFRSE0J, if the recovery automation flag for JES3 is

on.

v Processing in AOFRSE0J is only done, if it is called from NetView automation

table by message IAT3714 from JES3.

Usage

Automation routine AOFRSE0J is intended to respond to message:

id IAT3714 SPECIFY DUMP OPTION FOR__ JES3 GLOBAL,main_______><

 |_JES3 LOCAL,main_______|

 |_FSS fssname,ASID=asid_|

which requests the operator to specify the type of dump. The thresholds for

comparing purpose are to be defined in the automation policy item JES3 ABENDS

of entry JES3.

If the incoming messages do not reach a predefined threshold, all replies and

commands to entries of entry/type-pair JES3/JESABEND with selection option

ALWAYS and to entries with no selection option are selected to be issued.

If the threshold at level infrequent is exceeded, all replies and commands to entries

with no selection option and to selection option INFR are selected.

In the same way a level of frequent corresponds to selection option FREQ and a

level of critical corresponds to selection option CRIT.

Flags

The following example shows how to issue AOFRSE0J from the NetView

automation table:

IF MSGID = ’IAT3714’

THEN

EXEC(CMD(’AOFRSE0J’)ROUTE(ONE %AOFOPJESOPER%));

JES3 Dump Processing

174 System Automation for z/OS: Customizing and Programming

TWS Automation PPI and Gateway Failures

There are two routines that are provided by SA z/OS to deal with PPI and

gateway timeouts or failures.

EVJEAC01

Purpose

This routine is called to determine the TWS operations that have previously ended

in error because the NetView PPI was not available (the error code is UNTV) and

reset them using OPCAPOST.

Usage

The routine should be called in the following cases:

v From UP processing for the TWS Controller, coded in the control file as:

 UP,CMD=(OPCAOPR2,,"EVJEAC01")

v from ACORESTART for the TWS/OPC Controller, coded in the control file as:

 ACORESTART,CMD=(OPCAOPR2,,"EVJEAC01")

The routine uses the Operation reset delay (defined in the OPC SYSTEM DETAILS

policy) that specifies how long the NetView interface to TWS may be unavailable

before TWS Automation resets operations that ended in error while it was down.

If either no value or OPRESET=NEVER is coded, then no operations are reset

when the interface becomes available again. The default value is NEVER.

It is expected that the routine will be used in the policy database.

EVJEAC02

Format

This routine is called to reset TWS operations that are in error due to Gateway

timeouts or failures.

Usage

This routine is called when:

v The TWS controller comes UP, coded in the control file as:

 UP,CMD=(,,’EVJEAC02’)

v A gateway is connected, or reconnected

If the routine runs on a TWS Controller node, it determines the operations that

have previously ended in error due to gateway failures (with an error code of

S999). If this is the case, the routine will issue an OPCAPOST to RESET them.

It is expected that the routine will be used in the policy database.

TWS Automation Operation and Job Errors

SA z/OS provides functions to respond to errors with TWS operations and jobs.

The functions that are provided include the following routines and AT entries for

associated messages:

v EVJEAC03 and EQQE036I

v EVJEAC04 and EVJ120I

TWS Automation PPI and Gateway Failures

Chapter 12. Automation Routines 175

|

|
|

|

|
|
|
|

|
|

|

|

|

|

|
|
|

|
|

|

|

|
|
|

|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

v EVJRAC05 and EQQE026I

v EVJRSJOB and EQQE107I, EQQE107I, and EQQW079W

EVJEAC03

Purpose

This routine is called when message EQQE036I is trapped. This message is issued

by TWS when a TWS operation has detected a job error. This causes an entry to be

added to SDF and the error situation to be posted to NMC.

The EVJEAC03 routine is expected to be called from the NetView automation table.

Format

�� EVJEAC03 ��

Usage

The automation routine EVJEAC03 is intended to respond to message:

 EQQE036I JOB JOBNAME(JNUM), OPERATION (OPERNUM) ENDED IN ERROR EC.

 PRTY=PRI, APPL = APPL, WORK STATION = WSID, IA = IA

This requests the operator to perform error recovery actions for the current job.

EVJEAC04

Purpose

This routine is called when message EVJ120I is trapped. The message is issued by

SA z/OS when a TWS operation has been put into or reset from TWS error status.

The EVJEAC04 routine is expected to be called from the NetView automation table.

Format

�� EVJEAC04 ��

Usage

The automation routine EVJEAC04 is intended to respond to message:

 EVJ120I applid iatime opnum job status wsname errcode

 abcode usrcode

This causes a Status Display Facility update and an NMC update to occur.

For an operation changing to error status the update will add an entry to SDF and

NMC while an operation changing from error status will remove an entry from

SDF and NMC.

SDF entries are added to the OPC Automation Application in Error panel

(OPCERR).

TWS Automation Operation and Job Errors

176 System Automation for z/OS: Customizing and Programming

|

|

|

|
|
|
|

|

|

|||||||
|

|
|

|
|

|

|

|
|
|

|

|

|||||||
|

|
|

|
|

|

|
|
|

|
|

EVJRAC05

Purpose

This routine is called when message EQQE026I is trapped. This message is issued

by TWS when a TWS operation has detected a job error. This causes an entry to be

added to SDF and the error situation to be posted to NMC.

The EVJRAC05 routine is expected to be called from the NetView automation table.

Format

�� EVJRAC05 ��

Usage

The automation routine EVJRAC05 is intended to respond to message:

 EQQE026I APPLICATION APPL ENDED IN ERROR EC. OPER = OPERNUM,

 PRTY = PRI, IA = IA

This requests the operator to perform error recovery actions for the current job.

EVJRSJOB

Purpose

This routine is called when trapping the following messages:

v EQQE107I

v EQQW079W

v EQQE037I

These messages are issued by TWS when the state of a batch job has changed. This

causes an entry to be added to SDF and the error situation to be posted to NMC.

The EVJRSJOB routine is expected to be called from the NetView automation table.

Format

�� EVJRSJOB ��

Usage

The automation routine EVJRSJOB is intended to respond to messages:

 EQQE107I OPC-WLM SUCCESSFULLY PROMOTED JBNAM: JBNUM IN

 HI PERFORMANCE CLASS

 EQQW079W JBNAM WILL NOT BE SUBMITTED TO WLM FOR

 PROMOTION. WLM REQUEST IS TOO OLD

 EQQE037I JOB JOBNAME(JNUM), OPERATION (OPERNUM) IN

 APPLICATION APPL, IS LATE, WORK STATION = WSID,

 IA = ARRTIME

This requests the operator to investigate what is keeping the job from starting and

take appropriate actions to enable it to start.

TWS Automation Operation and Job Errors

Chapter 12. Automation Routines 177

|

|
|
|
|

|

|

|||||||
|

|
|

|
|

|

|

|
|

|

|

|

|
|

|

|

|||||||
|

|
|

|
|
|
|
|
|
|
|
|

|
|

TWS Status Observer Control

EVJEOBSV

Purpose

This routine is used to start and stop the TWS status observer.

The EVJEOBSV routine called from within the Policy definitions when starting or

stopping the status observer. It is also called internally at SA z/OS initialization

time and when an automation manager takeover has been completed as indicated

by message HSAM1309I.

Format

�� EVJEOBSV START

STOP
 ��

Parameters

START

Establishes the subscription for the list of special resources defined in the

policy.

STOP Removes the subscription.

TWS Controller Status

EVJRSACT

Purpose

This routine keeps track of whether or not the TWS controller is active or in

standby. The information is stored in the automation manager.

The routine is called when trapping the following messages:

v EQQN013I

v EQQZ128I

v EQQZ201I

Format

�� EVJRSACT ��

CICS-Related Processing and Recovery

CICS Region Abend Recovery

EVEET003

Purpose: This routine is a part of the Abend Recovery for CICS Regions. It is

intended to be invoked from the Automation Table.

Format:

TWS Status Observer Control

178 System Automation for z/OS: Customizing and Programming

|

|

|
|

|
|
|
|

|

|||||||||||||||

|

|

|
|
|

||

|

|

|
|
|

|

|

|

|

|

|||||||
|

|
|

|

|

|
|

|

�� EVEET003

system-abcode

user-abcode
 ��

Parameters:

system-abcode

Optional System abend code.

user-abcode

Optional User abend code.

Usage: The automation routine EVEET003 is intended to respond to messages:

DFHCC0001 applid An abend (code aaa/bbbb) has occurred at offset X"offset" in

 the {local | global} catalog, module modname

DFHPC0401 applid Abend abcode issued by yyy task.

DFHPC0405 applid Abend abcode2 has been issued while processing abend abcode1

 for the same task, transaction tranid.

DFHPC0408 applid Abend abcode has been issued during post commit processing,

 transaction tranid.

DFHPC0409 applid Abends abcode2 and abcode3 have been issued while processing

 abend abcode1 for the same task, transaction tranid.

DFHSR0601 applid Program interrupt occurred with system task taskid in control

DFHSR0602 applid Program interrupt routine has been entered while processing

 program interrupt for same task

DFHSR0603 applid Program interrupt has occurred

DFHSR0605 applid Error from KE Domain - DFHSRP initialization

DFHSR0606 applid Abend (code aaa/bbbb) has been detected.

DFHSR0612 applid Abend recovery has been entered by same task

DFHSR0613 applid Abend has occurred with system task taskid in control

DFHSR0615 applid Program interrupt has occurred in recovery task

DFHTC1001 applid Terminal control initialization failed (modname).

DFHTM1797 applid System termination program has abended.

DFHDM0106 applid The Domain Manager records on the CICS Catalog may have been

 corrupted.

DFHKE1800 applid ABNORMAL TERMINATION OF CICS IS COMPLETE.

DFHLG0736 applid A failure has occurred while reading from the system log

 (journalname). The requested data could not be found. CICS will be

 quiesced allowing some tasks to complete. Further work requires an

 initial start.

DFHLG0738 applid A failure has occurred while reading the system log (journalname).

 The requested data could not be found. CICS will be terminated. Further

 work requires an initial start.

DFHLG0740 applid While writing data to the system log (journalname), a lost data

 warning was received. CICS will be quiesced without logging, allowing

 tasks to complete. Further work requires an initial start.

DFHSI1542 applid Takeover by the CICS alternate system has failed. Emergency

 restart could not be performed.

This informs an operator that a CICS region has abended.

This routine will stop health check monitors and write an SMF record (optionally)

to log the abend.

In addition the routine does a CDEMATCH for message id ABCODESYSTEM with

code1 set to the messageid that invoked the routine, code2 set to the system-abcode

and code3 set to the user-abcode. The result of the match is used as the determine

the parameters to TERMMSG. If NORESTART is returned then the BREAK=YES

parameter is used on TERMMSG. If RESTART is returned then the ABEND=YES

parameter is used on TERMMSG. If neither of these values are returned, NO

TERMMSG command is invoked.

CICS-Related Processing and Recovery

Chapter 12. Automation Routines 179

||||||||||||||||||

|

|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

CICSPlex Processing

EVERCMRC

Purpose: This routine is a part of the CICSPlex Event notification. This routine

will capture CICSPlex SM events that have actions of WTO and will display them

in SDF or NMC, or both.

This routine is intended to be invoked from the Automation Table. The format of

the NMC and SDF resource names are detailed in IBM Tivoli System Automation for

z/OS CICS Automation Programmer’s Reference and Operator’s Guide.

Format:

�� EVERCMRC ��

Usage: The automation routine EVERCMRC is intended to respond to messages:

EYUPN0005W Notify created for SAM, Context=plexname, Target=targetsys, Sev=level,

 Event=evntname, Text=usertxt.

EYUPN0006W Notify created for RTADEF defname by APM, Context=plexname,

 Target=targetsys, Sev=level, Resource=restype Key=resname, Text=usertxt.

EYUPN0007W Notify created for deftype defname by MRM, Context=plexname,

 Target=targetsys, Sev=level, Resource=restype Key=resname, Text=usertxt.

EYUPN0008W Notify updated for SAM, Context=plexname, Target=targetsys, Sev=level,

 Event=evntname, Text=usertxt.

EYUPN0009W Notify updated for RTADEF defname by APM, Context=plexname,

 Target=targetsys, Sev=level, Resource=restype Key=resname, Text=usertxt.

EYUPN0010W Notify updated for deftype defname by MRM, Context=plexname,

 Target=targetsys, Sev=level, Resource=restype Key=resname, Text=usertxt.

EYUPN0011W Notify action for SAM, Context=plexname, Target=targetsys, Sev=level,

 Event=evntname, Text=usertxt.

EYUPN0012W Notify action for RTADEF defname by APM, Context=plexname,

 Target=targetsys, Sev=level, Resource=restype, Key=resname, Text=usertxt.

EYUPN0013W Notify action for deftype defname by MRM, Context=plexname,

 Target=targetsys, Sev=level, Resource=restype, Key=resname, Text=usertxt.

This informs SA z/OS that a CICSPlex SM event has occurred or been resolved.

EVERSCMI

Purpose: This routine is a part of the CICSPlex SM topology management. This

routine maintains a map of CICSPlex SM MAS names against the System

Automation resource names.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVERSCMI

subsystem
 ��

Parameters:

subsystem

Optional Subsystem name. If not supplied the SUBSAPPL task global will

be used.

Usage: The automation routine EVERSCMI is intended to respond to messages:

CICS-Related Processing and Recovery

180 System Automation for z/OS: Customizing and Programming

|

|

|
|
|

|
|
|

|

|||||||
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|

|

|||||||||||||

|

|

|
|
|

|

EYUTS0003I Topology event for sysname Complete - APPLID (applid) CICSplex (plexname)

EYUXL0010I CMAS initialization complete

In addition the EVERSCMI routine should be invoked from the ACORESTART

MESSAGES/USER DATA policy for the CICSPlex CMASs defined to SA z/OS.

CICS Link Monitoring

EVEED004

Purpose: This routine will post or remove Link Monitoring events for links that

are defined to be monitored to SDF or NMC, or both. The resource name formats

are defined in IBM Tivoli System Automation for z/OS CICS Automation Programmer’s

Reference and Operator’s Guide.

This routine is intended to be invoked from the Automation Table..

Format:

�� EVEED004

message
 ��

Parameters:

message

The full message text from the Automation Table trap.

Usage: The automation routine EVEED004 is intended to respond to the following

messages for Link recovery:

EVE811I procname : connid - Critical connection to applid in trouble.

EVE812I procname : connid - Connection to applid in trouble.

EVE813I procname : connid - Critical conn. to applid repaired, actions = count1

EVE814I procname : connid - Connection to applid repaired, actions = count1.

EVE815I procname : connid - Critical connection to applid is up.

EVE816I procname : connid - Connection to applid is up.

EVE817I procname : connid - Critical connection to applid, AV=count1 MX=count2 AC=count3.

EVE818I procname : connid - Connection to applid, AV=count1 MX=count2 AC=count3.

EVE819I procname : connid - Critical connection to applid is down.

EVE820I procname : connid - Connection to applid is down.

CICS VSAM RLS Status

EVEERLSI

Purpose: This routine is a routine to track the CICS VSAM RLS status.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVEERLSI RLSACTIVE

RLSINACTIVE
 ��

Parameters:

RLSACTIVE

Specifies that CICS is using RLS.

CICS-Related Processing and Recovery

Chapter 12. Automation Routines 181

|
|

|
|

|

|

|
|
|
|

|

|

|||||||||||||

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|||||||||||||||

|

|

|
|

RLSINACTIVE

Specifies that CICS is not using RLS.

Usage: The automation routine EVEECO05 is intended to respond to the

following messages for VSAM RLS status processing:

DFHFC0153 applid The previous instance of the SMSVSAM server has failed. File

 control RLS access is being closed down.

DFHFC0501 applid RLS OPEN of file filename failed. VSAM has returned code 16 in

 R15. RLS access has been disabled.

DFHFC0504 applid RLS OPEN of file filename failed. The VSAM SHOWCB macro has

 detected a RLS VSAM server failure. RLS access has been disabled.

DFHFC0508 applid RLS OPEN of file filename failed. VSAM has returned code X’AA’

 in register 15. RLS access has been disabled.

DFHFC0563 applid The RLS control ACB has been successfully unregistered by CICS.

DFHFC0562 applid The RLS control ACB has been successfully registered by CICS.

DFHFC0564 applid The register of the RLS control ACB has failed. VSAM macro

 IDAREGP return code X’rrrr’, reason code X’cccc’, error data X’dddd’.

DFHFC0565 applid The unregister of the RLS control ACB has failed. VSAM macro

 IDAUNRP return code X’rrrr’, reason code X’cccc’, error data X’dddd’.

DFHFC0566 applid The register of the RLS control ACB has failed. VSAM macro

 IDAREGP return code X’rrrr’, reason code X’cccc’.

DFHFC0567 applid The unregister of the RLS control ACB has failed. VSAM macro

 IDAUNRP return code X’rrrr’, reason code X’cccc’.

DFHFC0571 applid RLS access cannot be restarted.

DFHFC0570 applid File control RLS access has been enabled.

DFHFC0577 applid RLS offsite recovery is now complete. RLS access is allowed.

CICS Shutdown

EVERSPPI

Purpose: This routine is sets the shutdown status for the PPI running in a CICS

address space.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVERSPPI ��

Usage: The automation routine EVERSPPI is intended to respond to the following

messages for PPI shutdown processing:

EVE173I applid : PPI inactive.

CICS Short on Storage

EVEEY00S

Purpose: This routine is a generic routine that invokes state table processing

based on the message id it is invoked with. In this case the message id’s cause the

routine to handle the CICS Short on Storage events.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVEEY00S ��

CICS-Related Processing and Recovery

182 System Automation for z/OS: Customizing and Programming

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|||||||
|

|
|

|

|

|

|
|
|

|

|

|||||||
|

Usage: The automation routine EVEEY00S is intended to respond to the following

messages for CICS Short on Storage events:

DFHSM0131 applid CICS is under stress (short on storage below 16MB).

DFHSM0132 applid CICS is no longer short on storage below 16MB.

DFHSM0133 applid CICS is under stress (short on storage above 16MB).

DFHSM0134 applid CICS is no longer short on storage above 16MB.

CICS Startup

EVEEARMW

Purpose: This routine will reply to the DFHKE0408D message. This message is

issued when CICS is started with TYPE=COLD or INITIAL and attempts to

register with ARM and fails to do so. The appropriate reply is ASIS or AUTO.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVEEARMW ��

Usage: The automation routine EVEEARMW is intended to respond to the

following message.

DFHKE0408D applid PLEASE SPECIFY START TYPE, ’ASIS’ OR ’AUTO’.

The automation routine will reply with the data specified in the MESSAGES/USER

DATA reply policy for the message. The Selection field is set to ARMSTART if

CICS was started by ARM or NOARMSTART if CICS was started manually.

EVEEI115

Purpose: This routine will reply to the DFHPA1104 message. This message is

issued to get system start up parameters.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVEEI115 ��

Usage: The automation routine EVEEI115 is intended to respond to the following

messages.

DFHPA1104 applid SPECIFY ALTERNATIVE SIT PARAMETERS, IF ANY, AND THEN TYPE ’.END’.

DFHPA1105 applid CONTINUE SPECIFYING SIT PARAMETERS AND THEN TYPE ’.END’.

The automation routine will reply with the data specified in the INGREQ

command, INGSET command or the CICSOVRD command. The START=

parameter is always specified and is the start type as coded in the INGREQ

command. Data from the INGREQ applparms field is appended. Alternatively, data

from the CICSOVRD command or INGSET command is appended. Please note,

there is only one field for this override, order of processing is INGREQ applparms

take precedence over INGSET or CICSOVRD which both update the same field.

CICS-Related Processing and Recovery

Chapter 12. Automation Routines 183

|
|

|
|
|
|

|

|

|
|
|

|

|

|||||||
|

|
|

|

|
|
|

|

|
|

|

|

|||||||
|

|
|

|
|

|
|
|
|
|
|
|

EVEEI004

Purpose: This routine will determine the version number of the CICS subsystem

being started.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVEEI004 version ��

Parameters:

version CICS version in version.release.modlevel format.

Usage: The automation routine EVEEI004 is intended to process the following

message.

DFHSI1500 applid element startup is in progress for CICS Transaction Server Version version

The automation routine will get the version number and store it for later use. In

addition the routine will optionally write an SMF record to record the start of the

CICS subsystem.

EVEEI006

Purpose: This routine will determine the start type of the CICS subsystem being

started.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVEEI006 ��

Usage: The automation routine EVEEI006 is intended to process the following

message.

DFHSI1502I applid CICS startup is {Cold | Warm | Emergency | Initial}.

EVEEI009

Purpose: This routine will set the CICS, CICSPlex CMAS or the PPI associated

with the CICS subsystem to UP.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVEEI009

PPI
 ��

Parameters:

PPI Specifies that the PPI not the CICS Subsystem is in UP state.

CICS-Related Processing and Recovery

184 System Automation for z/OS: Customizing and Programming

|

|
|

|

|

|||||||||
|

|

||

|
|
|

|
|
|

|

|
|

|

|

|||||||
|

|
|

|

|

|
|

|

|

|||||||||||||

|

|

||

Usage: The automation routine EVEEI009 is intended to process the following

messages.

DFHSI1517 applid Control is being given to CICS.

EYUXL0010I CMAS initialization complete

EVE172I applid : PPI active.

EVEEI010

Purpose: This routine will start active monitoring for Link Monitoring and Health

Checking.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVEEI010 ��

Usage: The automation routine EVEEI010 is intended to process the following

message.

EVE172I applid : PPI active.

EVEECMSI

Purpose: This routine will detect that the CICS subsystem being started is actually

a CICSPlex CMAS instead of a normal CICS subsystem.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVEECMSI ��

Usage: The automation routine EVEECMSI is intended to process the following

message.

EYUXS1002I Interval Timing initialization complete

CICS Transaction Recovery

EVEERTRN

Purpose: This routine will handle transaction recovery.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVEERTRN

tranid

abend_code

program
 ��

Parameters:

tranid Optional transaction id that has abended.

abend_code

Optional abend code.

CICS-Related Processing and Recovery

Chapter 12. Automation Routines 185

|
|

|
|
|

|

|
|

|

|

|||||||
|

|
|

|

|

|
|

|

|

|||||||
|

|
|

|

|

|

|

|

|

|||||||||||||||||||||||

|

|

||

|
|

program

Optional program name of abending program.

 If no parameters are specified, these values are derived from the message that

invoked this routine.

Usage: The automation routine EVEERTRN is intended to respond to the

following messages.

DFHAC2231 date time applid Transaction tranid running program program name term

 termid has lost contact with its coordinator system during syncpoint and

 has abended with code ASP1. The unit of work is shunted until contact is

 restored{. EXCI job = }exci_id. condmsg

DFHAC2232 date time applid Transaction tranid running program program name term

 termid has lost contact with its coordinator system during syncpoint and

 has abended with code ASPO. All updates will be unilaterally

 committed{. EXCI job = }exci_id. condmsg

DFHAC2233 date time applid Transaction tranid running program program name term

 termid has lost contact with its coordinator system during syncpoint and

 has abended with code ASPP. All updates will be unilaterally backed

 out{. EXCI job = }exci_id. condmsg

DFHAC2236 date time applid Transaction tranid abend secondary abcode in program

 program name term termid. Updates to local recoverable resources will be

 backed out{. EXCI job = }exci_id. condmsg

DFHAC2245 date time applid A CICS-generated syncpoint request could not be completed

 normally because a connected system has requested that the unit of work be

 rolled back. Transaction tranid running program program name term termid

 has been abnormally terminated with code ASPF{. EXCI job = }exci_id. condmsg

DFHAC2246 date time applid Transaction termination processing could not be completed

 normally because a connected system has requested that the unit of work be

 rolled back. Transaction tranid, terminal termid has been abnormally

 terminated with code ASPN{. EXCI job = }exci_id. condmsg

DFHAC2247 date time applid Transaction tranid running program program name term

 termid has requested rollback, but was using a type of processing for which

 rollback is not supported. The transaction has been abnormally terminated

 with code ASP8 {. EXCI job = }exci_id. condmsg

DFHAC2248 date time applid Transaction tranid running program program name term

 termid has failed with abend ASP7 following the failure of a local

 resource owner in the prepare phase of syncpoint. Updates will be backed

 out{. EXCI job = }exci_id. condmsg

DFHAC2249 date time applid Transaction tranid running program program name term

 termid has failed with abend ASP7 following the failure of a remote system

 in the prepare phase of syncpoint. Updates will be backed

 out{. EXCI job = }exci_id. condmsg

DFHAC2251 date time applid Transaction tranid running program program name term

 termid has failed with abend ASPQ. Syncpoint commit processing has failed

 while communicating with a remote system{. EXCI job = }exci_id. condmsg

DFHAC2252 date time applid Transaction tranid in program program name term termid

 has lost contact with its coordinator system during syncpoint processing.

 No updates have been performed by this system; it has abended with code

 ASPR{. EXCI job = }exci_id. condmsg

DFHAC2253 date time applid Transaction tranid running program program name term

 termid has failed with abend ASP2 due to the links to the remote systems

 being in an invalid state. Updates will be backed out{. EXCI job = }exci_id.

 condmsg

Note, these messages are not normally issued to the system console, so if

transaction recovery is required the messages should be included in the

MESSAGES/USER DATA policy so that the CICS message exit will force CICS to

WTO them.

CICS-Related Processing and Recovery

186 System Automation for z/OS: Customizing and Programming

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

CICS Unit of Work Recovery

EVEETUOW

Purpose: This routine will process messages to handle the status of the UOW

processing. It provides two services:

1. Detecting if units of work are outstanding at CICS shutdown and optionally

forcing an AUTO start for the next start up of the CICS subsystem.

2. Detecting if an INITIAL start is required and optionally forcing an INITIAL

start at the next start up of the CICS subsystem.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVEETUOW

INITIAL
 ��

Parameters:

INITIAL

Optional, specified when INITIAL restart is to be forced.

Usage: The automation routine EVEETUOW is intended to respond to the

following messages.

DFHDM0106 applid The Domain Manager records on the CICS Catalog may have been

 corrupted.

DFHLG0736 applid A failure has occurred while reading from the system log

 (journalname). The requested data could not be found. CICS will be

 quiesced allowing some tasks to complete. Further work requires an

 initial start.

DFHLG0738 applid A failure has occurred while reading the system log (journalname).

 The requested data could not be found. CICS will be terminated. Further

 work requires an initial start.

DFHLG0740 applid While writing data to the system log (journalname), a lost data

 warning was received. CICS will be quiesced without logging, allowing

 tasks to complete. Further work requires an initial start.

DFHRM0130 applid Recovery manager has successfully quiesced.

DFHRM0134 applid Recovery manager domain failed reading the global catalog, or

 did not find its control record.

DFHRM0136 applid The applid has changed from old_applid to new_applid. Recovery

 cannot continue.

DFHRM0144 applid Recovery manager catalog record indicates that no recovery is

 possible. An initial start is required.

DFHRM0203 applid There are indoubt_uows indoubt, cfail_uows commit-failed and

 bfail_uows backout-failed UOWs.

DFHRM0204 applid There are no indoubt, commit-failed or backout-failed UOWs.

DFHRM0400 applid A unit of work was incompletely reconstructed from the system log.

DFHRM0401 applid There is no system log or an empty system log has been detected.

EVEET002

Purpose: This routine will process messages to handle the status of the UOW

processing.

This routine is intended to be invoked from the Automation Table.

Format:

CICS-Related Processing and Recovery

Chapter 12. Automation Routines 187

|

|

|
|

|
|

|
|

|

|

|||||||||||||

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

�� EVEET002 ��

Usage: The automation routine EVEET002 is intended to respond to the following

message.

DFHRM0130 applid Recovery manager has successfully quiesced.

IMS-Related Processing and Recovery

IMS Region Abend Recovery

EVIER000

Purpose: This routine is a part of the Abend Recovery for IMS Regions.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIER000 ��

Usage: The automation routine EVIER000 is intended to respond to message:

DFS629I IMS CTL TCB ABEND IMS | SYS user | sys

This informs an operator that a TCB in an IMS region has abended.

EVIER001

Purpose: This routine is a part of the Abend Recovery for IMS Regions.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIER001 ��

Usage: The automation routine EVIER001 is intended to respond to the following

message.

DFS627I IMS RTM CLEANUP (type) status FOR task jobname.stepname.procstepname RC=xx|x

This informs an operator that z/OS Recovery Termination Manager has finished

cleanup for the specified task. It signifies that the task has ended.

IMS Dependent Region Processing

EVIES002

Purpose: This routine is a part of the IMS Dependent Region processing. This

routine handles dependent regions starting up and notifies SA z/OS that the

subsystem is up.

This routine is intended to be invoked from the Automation Table.

CICS-Related Processing and Recovery

188 System Automation for z/OS: Customizing and Programming

|||||||
|

|
|

|

|
|

|

|

|

|

|

|||||||
|

|

|

|

|

|

|

|

|||||||
|

|
|

|

|
|

|

|

|
|
|

|

Format:

�� EVIES002 ��

Usage: The automation routine EVIES002 is intended to respond to message:

DFS551I {IFP | MESSAGE | BATCH | JMP | JBP} REGION xxxxxxxx STARTED. ID=yyyyy

 TIME=zzzz CLASSES=xxx,xxx,xxx,xxx

This informs SA z/OS that a Dependent Region is UP.

EVIES003

Purpose: This routine is a part of the IMS Dependent Region processing. This

routine handles dependent regions shutting down and notifies SA z/OS that the

subsystem is down.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIES003 ��

Usage: The automation routine EVIES003 is intended to respond to the following

message.

DFS552I {IFP | MESSAGE | BATCH | JMP|JBP} REGION xxxxxxxx STOPPED. ID=yyyyy TIME=zzzz

This informs SA z/OS that a Dependent Region is DOWN.

IMS MSC Link Recovery

EVIEY00S

Purpose: This routine is a generic routine that invokes state table processing

based on the message ID it is invoked with. In this case the message IDs cause the

routine to handle the MSC link events and to recover the MSC link if required.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEY00S ��

Usage: The automation routine EVIEY00S is intended to respond to the following

messages for MSC Link recovery:

DFS2140 DESTINATION name STOPPED, REASON CODE xxx.

DFS2142 MSNAME xxxxxxxx STOPPED LINK yyy.

DFS2160I LINK nnn STARTED BY PARTNER XX NODE nodename.

DFS2161I LINK xxx STOPPED BY PARTNER.

DFS2162 TERMINAL IN RESPONSE MODE\u2014ENTER PA1 or PA2 THEN AWAIT REPLY.

DFS2168I CONNECTION ESTABLISHED ON LINK xxx [CONT].

DFS2169I DISCONNECTION COMPLETED ON LINK xxx.

DFS2236I MSVERIFY COMMAND IN PROGRESS FOR REMOTE SYSID(S) P1, P2, P3...Pn. yyddd/hhmmss

IMS-Related Processing and Recovery

Chapter 12. Automation Routines 189

|

|||||||
|

|

|
|

|

|

|
|
|

|

|

|||||||
|

|
|
|

|

|

|

|
|
|

|

|

|||||||
|

|
|
|
|
|
|
|
|
|
|

IMS OLDS Recovery

EVIECO05

Purpose: This routine is a generic routine to manage IMS OLDS.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIECO05 ��

Usage: The automation routine EVIECO05 is intended to respond to the following

messages for OLDS processing:

DFS994I rtype START COMPLETED

DFS2500I DATABASE|DATASET xxxxxxxx SUCCESSFULLY ALLOCATED|DEALLOCATED| CREATED| DELETED

DFS3256I OPEN/ALLOCATION FAILED ON ddname

DFS3256I OPEN FAILED ON ddname - DD CARD SPECIFICATION ERROR

DFS3256I OPEN FAILED ON ddname - DURING ONLINE LOG READ (xx)

DFS3257I ONLINE LOG NOW OPENED ON ddname

DFS3257I ONLINE LOG NOW SWITCHED - FROM ddname1 TO ddname2

DFS3257I ONLINE LOG CLOSED ON ddname

DFS3257I OLDS|WADS DEALLOCATED ON ddname

EVIEY00S

Purpose: This routine is a generic routine that invokes state table processing

based on the message ID it is invoked with. In this case the message IDs cause the

routine to handle the OLDS events and to recover the OLDS if required.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEY00S ��

Usage: The automation routine EVIEY00S is intended to respond to the following

messages for OLDS recovery:

DFS3258A LAST ONLINE LOG DATA SET IS BEING USED - NEED ARCHIVE

DFS3258A SYSTEM WAITING FOR AN ONLINE LOG DATA SET - NEED ARCHIVE

DFS3260I ONLINE LOG DATA SET SHORTAGE - NEED ANOTHER DATA SET

IMS RECON Recovery

EVIECR04

Purpose: This routine is a generic routine to manage IMS RECON.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIECR04 ��

Usage: The automation routine EVIECR04 is intended to respond to the following

messages for RECON processing:

IMS-Related Processing and Recovery

190 System Automation for z/OS: Customizing and Programming

|

|

|

|

|

|||||||
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|

|||||||
|

|
|

|
|
|

|

|

|

|

|

|||||||
|

|
|

DFS994I rtype START COMPLETED

DSP0381I COPY COMPLETE, RC = nnn

IMS Startup

EVIDISCQ

Purpose: This routine will determine if the IMS Control region is running with a

Fast Dump Restore environment or also running in a Shared Queue environment.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIDISCQ ��

Usage: The automation routine EVIDISCQ is intended to respond to message:

DFS4190I IMS SYSTEM IS FDR CAPABLE

EVIEI00A

Purpose: This routine gets the check point information and optionally the HSBID

information from the messages that invoke it.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEI00A ��

Usage: The automation routine EVIEI00A is intended to respond to the following

messages:

DFS3804I LATEST RESTART CHKPT: yyddd/hhmmss, LATEST BUILDQ CHKPT: yyddd/hhmmss

DFS3804I [LATEST] [RESTART] CHKPT: yyddd/hhmmss, HSBID=xx \u2013 [LATEST] BUILDQ

 CHKPT: yyddd/hhmmss, HSBID=xx

DFS3804I LOG READ CHKPT: yyddd/hhmmss \u2013 RESTART CHKPT: yyddd/hhmmss,

 HSBID=xx \u2013 BUILDQ CHKPT: yyddd/hhmmss, HSBID=xx

EVIEI00C

Purpose: This routine handles the IMS control region start up complete message.

It will set the status of the control region to UP, gather IMS resource information

and invoke user post start up commands.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEI00C ��

Usage: The automation routine EVIEI00C is intended to respond to the following

message:

DFS994I rtype START COMPLETED

IMS-Related Processing and Recovery

Chapter 12. Automation Routines 191

|
|

|

|

|
|

|

|

|||||||
|

|

|

|

|
|

|

|

|||||||
|

|
|

|
|
|
|
|

|

|
|
|

|

|

|||||||
|

|
|

|

EVIEI00Q

Purpose: This routine handles the IMS control region start up initializing. It resets

IMS information held by System Automation and gathers the version number of

the IMS control region.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEI00Q ��

Usage: The automation routine EVIEI00Q is intended to respond to the following

messages:

DFS3410I DATA SETS USED ARE DDNAME ’acblib-name’ ’format-name’ ’MODBLKS-name’

 (time/date stamps if they exist)

INGI1010I Automated Operator Exit Initialized for IMS Level vrm .

EVIEI006

Purpose: This routine handles the IMS control region restart errors.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEI006 ��

Usage: The automation routine EVIEI006 is intended to respond to the following

messages:

DFS166 CHECKPOINT ID NOT ON LOG RE-ENTER RESTART COMMAND

DFS033I DUPLICATE ENTRY ON SIGNON REQUEST, RESTART ABORTED

DFS0618A A RESTART OF A NON-ABNORMALLY TERMINATED SYSTEM MUST SPECIFY EMERGENCY

 BACKUP OR OVERRIDE.

DFS3131I A COLD START OR EMERGENCY RESTART REQUIRED

DFS3626I RESTART HAS BEEN ABORTED

EVIEI20B

Purpose: This routine handles the IMS DB control region start options. It will

issue commands to respond to the DFS989I message from an IMS DB control

region.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEI20B ��

Usage: The automation routine EVIEI20B is intended to respond to the following

message:

DFS989I IMS (DBCTL) READY (CRC=x)

IMS-Related Processing and Recovery

192 System Automation for z/OS: Customizing and Programming

|

|
|
|

|

|

|||||||
|

|
|

|
|
|

|

|

|

|

|||||||
|

|
|

|
|
|
|
|
|

|

|
|
|

|

|

|||||||
|

|
|

|

EVIEI200

Purpose: This routine gets the Command Recognition Character for the IMS DB

control region.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEI200 ��

Usage: The automation routine EVIEI200 is intended to respond to the following

message:

DFS989I IMS (DBCTL) READY (CRC=x)

IMS Shutdown

EVIET006

Purpose: This routine will set the IMS Control Region to AUTODOWN state.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIET006 ��

Usage: The automation routine EVIET006 is intended to respond to the following

messages:

DFS994I IMS SHUTDOWN COMPLETED

DFS994I IMS SHUTDOWN (DBCTL) COMPLETED

DFS994I IMS SHUTDOWN (DCCTL) COMPLETED

IMS Sysplex Support

EVISTRCT

Purpose: This routine will Post the IMS sysplex event to both SDF and NMC.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVISTRCT ��

Usage: The automation routine EVISTRCT is intended to respond to the following

message:

CQS0205E STRUCTURE structurename IS FULL

EVISTRNM

Purpose: This routine will reset the posted IMS sysplex event to both SDF and

NMC.

IMS-Related Processing and Recovery

Chapter 12. Automation Routines 193

|

|
|

|

|

|||||||
|

|
|

|

|

|

|

|

|

|||||||
|

|
|

|
|
|

|

|

|

|

|

|||||||
|

|
|

|

|

|
|

This routine is intended to be invoked from the Automation Table.

Format:

�� EVISTRNM ��

Usage: The automation routine EVISTRNM is intended to respond to the

following message:

CQS0206I CQS structurename percentage BELOW THRESHOLD LEVEL

IMS TCO Automation

EVIEET00

Purpose: This routine is a generic routine to process IMS TCO Automation.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEET00 ��

Usage: The automation routine EVIEET00 is intended to respond to the following

messages:

DFS3343E CANNOT PROCESS DFSTCF LOAD COMMAND, REASON=xx

DFS3350E TCO ABNORMALLY TERMINATED, SEE DUMP

DFS3351E TCO ABNORMALLY TERMINATED, SYSTEM ABEND, SEE DUMP

DFS3613I xxx TCB INITIALIZATION COMPLETE.

IMS Transaction Recovery

EVIEY00S

Purpose: This routine is a generic routine that invokes state table processing

based on the message ID it is invoked with. In this case the message IDs cause the

routine to handle the Transaction Recovery events and to recover the failing

transaction if required.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEY00S ��

Usage: The automation routine EVIEY00S is intended to respond to the following

messages for Transaction recovery:

DFS552I {IFP | MESSAGE | BATCH | JMP|JBP} REGION xxxxxxxx STOPPED. ID=yyyyy TIME=zzzz

DFS554A jobname.region.stepname. prog /PSBname(x) transaction-code

 sys-completion-code user-completion-code SMB PSB

 LTERM=|LUNAME:|RTKN=token originating terminal

IMS-Related Processing and Recovery

194 System Automation for z/OS: Customizing and Programming

|

|

|||||||
|

|
|

|

|

|

|

|

|

|||||||
|

|
|

|
|
|
|

|

|

|
|
|
|

|

|

|||||||
|

|
|
|
|
|
|

IMS XRF Processing

EVIAVM06

Purpose: This routine replies to the AVM005 UNLOCK message.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIAVM06 ��

Usage: The automation routine EVIAVM06 is intended to respond to the

following message:

AVM006E TELL OPERATOR AT BACKUP TO REPLY ’UNLOCK’ TO MESSAGE AVM005A. I/O PREVENTION

 IS COMPLETE FOR SUBSYSTEM ssid, FAILING ACTIVE ELEMENT OF RSE rsename.

EVIEI00D

Purpose: This routine forces a SNAPQ on the ACTIVE element of an IMS XRF

system.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEI00D ��

Usage: The automation routine EVIEI00D is intended to respond to the following

message:

DFS3801 CHKPT SNAPQ REQUIRED ON ACTIVE SYSTEM

EVIEI00F

Purpose: This routine forces an Alternate IMS control region to stop if it is not a

member of an XRF.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEI00F ��

Usage: The automation routine EVIEI00F is intended to respond to the following

messages:

DFS3806 BACKUP KEYWORD INVALID - NO XRF CAPABILITY

DFS3866 BACKUP KEYWORD INVALID - NO MODSTAT2

EVIEI00G

Purpose: This routine sets an Alternate IMS Control region to UP.

This routine is intended to be invoked from the Automation Table.

IMS-Related Processing and Recovery

Chapter 12. Automation Routines 195

|

|

|

|

|

|||||||
|

|
|

|
|

|

|
|

|

|

|||||||
|

|
|

|

|

|
|

|

|

|||||||
|

|
|

|
|

|

|

|

Format:

�� EVIEI00G ��

Usage: The automation routine EVIEI00G is intended to respond to the following

messages:

DFS3838I XRF INITIAL DB PRE-OPEN COMPLETE

DFS3839I XRF INITIAL DC PRE-OPEN COMPLETE

EVIEI005

Purpose: This routine sets XRF automation off for a control region that is

generated with XRF but not started in XRF mode.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEI005 ��

Usage: The automation routine EVIEI005 is intended to respond to the following

messages:

DFS3802W XRF NOT POSSIBLE - ONLY ONE RDS ALLOCATED.

DFS3898W NO HSB PROCLIB MEMBER - NO XRF CAPABILITY

DFS3899W HSBID NOT SPECIFIED IN EXEC PARM - NO XRF CAPABILITY

EVIEI008

Purpose: This routine sets the XRF status for the subsystem based on the value in

the message that triggered it.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEI008 ��

Usage: The automation routine EVIEI008 is intended to respond to the following

message:

DFS3873I JOINRSE MODE=ACTIVE|BACKUP WAS SUCCESSFUL

EVIEI009

Purpose: This routine sets the AVM status for the XRF partner to OFF.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEI009 ��

Usage: The automation routine EVIEI009 is intended to respond to the following

messages:

IMS-Related Processing and Recovery

196 System Automation for z/OS: Customizing and Programming

|

|||||||
|

|
|

|
|

|

|
|

|

|

|||||||
|

|
|

|
|
|

|

|
|

|

|

|||||||
|

|
|

|

|

|

|

|

|||||||
|

|
|

DFS3872I AVM CONNECTION FAILED

DFS3877I JOINRSE FAILED

EVIEO000

Purpose: This routine starts the XRF takeover Automation sequence.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEO000 ��

Usage: The automation routine EVIEO000 is intended to respond to the following

message:

DFS3890I TAKEOVER REQUESTED REASON CODE=

EVIEO001

Purpose: This routine is part of the XRF takeover automation.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEO001 ��

Usage: The automation routine EVIEO001 is intended to respond to the following

message:

DFS3891I TAKEOVER IN PROGRESS

EVIEO002

Purpose: This routine is part of the XRF takeover automation.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEO002 ��

Usage: The automation routine EVIEO002 is intended to respond to the following

message:

DFS3891I TAKEOVER IN PROGRESS

EVIEO006

Purpose: This routine is part of the XRF takeover automation.

This routine is intended to be invoked from the Automation Table.

Format:

IMS-Related Processing and Recovery

Chapter 12. Automation Routines 197

|
|

|

|

|

|

|||||||
|

|
|

|

|

|

|

|

|||||||
|

|
|

|

|

|

|

|

|||||||
|

|
|

|

|

|

|

|

|

�� EVIEO006 ��

Usage: The automation routine EVIEO006 is intended to respond to the following

message:

DFS994I XRF TAKEOVER COMPLETED

EVIEO007

Purpose: This routine is part of the XRF takeover automation.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEO007 ��

Usage: The automation routine EVIEO007 is intended to respond to the following

message:

AVM005A REPLY UNLOCK WHEN I/O PREVENTION COMPLETES FOR RSE rsename

EVIEO008

Purpose: This routine is part of the XRF takeover automation.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEO008 ��

Usage: The automation routine EVIEO008 is intended to respond to the following

messages:

IOS071I dev,chp,jobname, START PENDING

IOS071E dev,chp,jobname, text

EVIEO010

Purpose: This routine is part of the XRF takeover automation.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIEO010 ��

Usage: The automation routine EVIEO010 is intended to respond to the following

messages:

DFS616I SYSTEM LOG DATASET NOT CLOSED\u2014 LOG WRITE ERROR

DFS616I SYSTEM LOG DATASET NOT CLOSED\u2014 LOG WRITE ERROR. LAST LOG SEQ

 NUMBER=xxxxxxxx

IMS-Related Processing and Recovery

198 System Automation for z/OS: Customizing and Programming

|||||||
|

|
|

|

|

|

|

|

|||||||
|

|
|

|

|

|

|

|

|||||||
|

|
|

|
|

|

|

|

|

|||||||
|

|
|

|
|
|

EVIET00E

Purpose: This routine is part of the XRF takeover automation.

This routine is intended to be invoked from the Automation Table.

Format:

�� EVIET00E ��

Usage: The automation routine EVIET00E is intended to respond to the following

message:

AVM010E AVM ENDED ABNORMALLY (ABEND=Scde REASON=reason-code)

IMS-Related Processing and Recovery

Chapter 12. Automation Routines 199

|

|

|

|

|||||||
|

|
|

|

|

IMS-Related Processing and Recovery

200 System Automation for z/OS: Customizing and Programming

Appendix A. Global Variables

You must ensure that the names of any global variables you create do not clash

with SA z/OS external or internal global variable names. You should check the

following tables before creating any global variables of your own.

Read-Only Variables

There are two different classes of variables, based on the level of access available to

the programmer:

Class 1:

Read-only variables. These variables are set by SA z/OS and require at

minimum an automation control file reload to be changed.

Class 2:

Read-only variables. These variables are set by SA z/OS CLISTs. They

should not be changed except by calling the appropriate CLISTs.

 Table 5. Externalized Common Global Variables

Variable Name Description Class Reference

AOF.clist.0DEBUG Contains either a Y or blank. If it contains

Y then an intermediate level of debug

supported by SA z/OS CLISTs is turned

on.

2

AOF.clist.0TRACE Contains a REXX trace setting to be used

by the CLIST clist.

2

AOFAOCCLONEx Where n either does not exist

(AOFAOCCLONE) or is a value from 1

through 9 or A through Z. The

AOFAOCCLONE global variables contain

the values specified for the

&AOCCLONE. IDs for this system.

1 See the description of the

System policy object in IBM

Tivoli System Automation for

z/OS Defining Automation

Policy.

AOFCOMPL Contains YES if initialization is complete. 2

AOFDEBUG Contains a REXX trace setting to be used

globally.

2 See IBM Tivoli System

Automation for z/OS Planning

and Installation.

AOFINITIALSTARTTYP Contains the value ’IPL’ or ’RECYCLE’

depending on whether SA z/OS has

been started the first time after an IPL or

after a NetView recycle.

1

AOF_NETWORK_ DOMAIN _ID Contains the domain name for the

NetView that runs network automation as

defined in the customization dialog. If

not defined, the value of this variable is

null.

1 See the description of the

System policy object in IBM

Tivoli System Automation for

z/OS Defining Automation

Policy.

AOF_PRODLVL Contains the release level of AOC/MVS

or SA z/OS.

v For SA OS/390 2.2, the value is

V2R2M0.

v For SA z/OS 2.3, the value is V2R3M0.

v For SA z/OS 3.1, the value is V3R1M0.

1

© Copyright IBM Corp. 1996, 2005 201

||
|
|
|
|
|

||
|
|
|
|

||
|
|
|
|
|

||

Table 5. Externalized Common Global Variables (continued)

Variable Name Description Class Reference

AOFJESPREFX The command prefix for the primary

scheduling subsystem.

1

AOFSUBSYS The subsystem name of the primary

scheduling subsystem.

1

AOFSYSNAME Contains the name of the system. 1 See AOCUPDT in IBM Tivoli

System Automation for z/OS

Programmer’s Reference.

AOFSYSTEM Contains the system type (MVSESA) as

defined in the customization dialog.

1 The SYSTEM INFO panel of

the customization dialog.

Read/Write Variables

Table 6 on page 203 lists the common global variables that can be user-defined. You

can set them in your startup exit to change the way that SA z/OS behaves. These

variables should be set only once for an SA z/OS system. You can enable or

disable advanced automation options (AAOs) by changing the settings of the

global variables in your initialization defaults exit (AOFEXDEF).

The following is an example on how to use the AOFEXDEF exit to assign a value

to the CGLOBAL AOFRPCWAIT:

 aofrpcwait = ’30’

’GLOBALV PUTC AOFRPCWAIT’

Alternatively you can use the CNM stylesheet:

**

* System Automation AAO CGlobals

**

COMMON.AOFCNMASK = 290C0D0E0F101518

COMMON.INGREQ_ORIGINATOR = 1

COMMON.AOFRESTARTALWAYS = 0

COMMON.AOFUPDRODM = NO

COMMON.AOFUPDAM = NO

COMMON.AOFSMARTMAT = 0

After modifying the exit, an SA z/OS COLD START is required for these changes

to take effect.

Global Variables

202 System Automation for z/OS: Customizing and Programming

||
|
||
|

Ta
bl

e
6.

G

lo
ba

l V
ar

ia
bl

es

to

E

na
bl

e
A

dv
an

ce
d

A
ut

om
at

io
n

(C
G

LO
B

A
LS

)

V
ar

ia
b

le

V
al

u
e

E
ff

ec
t

A
O

F_
A

A
O

_M
SG

_E
H

K
V

A
R

Y

E
S

T

hi
s

in
d

ic
at

es

th

at

w

he
n

ca
lli

ng

ge

ne
ri

c
ro

ut
in

es
, t

he

to

ke
ns

of

th

e
tr

ig
ge

ri
ng

m

es
sa

ge

ar

e
to

be

st

or
ed

in

va

ri
ab

le
s

E
H

K
V

A
R

0
th

ro
ug

h
E

H
K

V
A

R
9

an
d

E

H
K

V
A

R
T,

if

no

t
sp

ec
if

ie
d

in

pa
ra

m
et

er

E

H
K

V
A

R
.

Y
E

S
is

th

e
d

ef
au

lt
.

N
O

T

hi
s

in
d

ic
at

es

th

at

th

e
to

ke
ns

of

th

e
tr

ig
ge

ri
ng

m

es
sa

ge

ar

e
no

t
to

be

st

or
ed

in

E

H
K

V
A

R

va
ri

ab
le

s,

if

no

t
sp

ec
if

ie
d

in

pa

ra
m

et
er

E

H
K

V
A

R
.

A
O

F_
A

SS
IG

N
_J

O
B

N
A

M
E

1

T
hi

s
in

d
ic

at
es

th

at

SA

z/

O
S

w
ill

ex

pl
oi

t
Ti

vo
li

N
et

V
ie

w

″A

SS
IG

N

B

Y

JO

B
N

A
M

E
″

fe
at

ur
e.

T
hi

s
is

th

e
d

ef
au

lt

se

tt
in

g.

0
SA

z/

O
S

w
ill

no

t
ex

pl
oi

t
Ti

vo
li

N
et

V
ie

w

″A

SS
IG

N

B

Y

JO

B
N

A
M

E
″

fe
at

ur
e.

A
O

F_
A

A
O

_M
V

ST
A

PE
M

O
N

>

0

Se
t

th
is

va

lu
e

to

re

pr
es

en
t

th
e

nu
m

be
r

of

it

er
at

io
ns

fo

r
IN

G
R

TA
PE

to

co

nt
in

ue

m

on
it

or
in

g
us

in
g

M
V

S
co

m
m

an
d

s
af

te
r

af
te

r
th

e
L

A
T

E

al

er
t

ha
s

be
en

re

ac
he

d
. A

no

n-
ze

ro

en

tr
y

w
ill

al

so

in
d

ic
at

e
to

us

e
M

V
S

co
m

m
an

d
s

fo
r

al
l

ta
pe

m

ou
nt

m

on
it

or
in

g
pr

io
r

to

th

e
L

A
T

E

al

er
t.

0
IN

G
R

TA
PE

w

ill

re

ly

on

re

ce
ip

t
of

th

e
D

O
M

M
E

D

m

es
sa

ge

to

sa

ti
sf

y
an

y
ou

ts
ta

nd
in

g
al

er
ts

.

A
O

F_
E

2E
_E

A
S_

PP
I

U
se

r-
d

ef
in

ed

PP
I

re
ce

iv
er

ID

of

th

e
ev

en
t/

au
to

m
at

io
n

se
rv

ic
e

to

be

us

ed

to

fo

rw
ar

d

ev

en
ts

to

th

e
en

d
-t

o-
en

d

au

to
m

at
io

n
ad

ap
te

r.

A
O

F_
E

2E
_E

V
T

_R
E

T
R

Y

1
to

n

Sp
ec

if
ie

s
th

e
nu

m
be

r
of

re

tr
ie

s,

at

in

te
rv

al
s

of

on

e
se

co
nd

, t
ha

t
ar

e
us

ed

to

tr

an
sf

er

ev

en
ts

vi

a
PP

I
T

E
C

R
O

U
T

E

to

th

e
m

es
sa

ge

ad

ap
te

r
of

th

e
ev

en
t

au
to

m
at

io
n

se
rv

ic
e.

T

he

ev

en
ts

ar

e
d

es
ti

ne
d

to

be

fo

rw
ar

d
ed

to

th

e
en

d
-t

o-
en

d

au

to
m

at
io

n
ad

ap
te

r.

A
O

F_
E

2E
_T

K
O

V
R

_T
IM

E
O

U
T

hh

:m
m

:s
s

If

a

ho
t

re
st

ar
t

of

th

e
au

to
m

at
io

n
m

an
ag

er

ta

ke
s

lo
ng

er

th

an

th

e
va

lu
e

sp
ec

if
ie

d

in

th

is

va
ri

ab
le

, t
he

en

d
-t

o-
en

d

au

to
m

at
io

n
m

an
ag

er

is

in

fo
rm

ed

ab

ou
t

th
e

ou
ta

ge

an

d

ha

s
to

re
sy

nc
hr

on
iz

e
w

it
h

th
e

fi
rs

t-
le

ve
l

au
to

m
at

io
n.

A
O

F_
E

M
C

S_
A

U
TO

TA
SK

_
A

SS
IG

N
M

E
N

T

1
SA

z/

O
S

w
ill

as

si
gn

an

au

to
ta

sk

to

ex

te
nd

ed

M

C
S

co
ns

ol
es

w

it
h

a
co

ns
ol

e
st

at
us

of

M
A

ST
E

R

or

A

C
T

IV
E

0
SA

z/

O
S

w
ill

no

t
as

si
gn

an

au

to
ta

sk

to

ex

te
nd

ed

M

C
S

co
ns

ol
es

w

it
h

a
co

ns
ol

e
st

at
us

of

M
A

ST
E

R

or

A

C
T

IV
E

0
is

th

e
d

ef
au

lt
.

A
O

F_
E

M
C

S_
C

N
_A

SS
IG

N
M

E
N

T

1
SA

z/

O
S

w
ill

ob

ta
in

an

ex

te
nd

ed

M

C
S

co
ns

ol
e

w
it

h
a

un
iq

ue

na

m
e

fo
r

op
er

at
or

st

at
io

n
ta

sk
s

(O
ST

s)
. I

f
an

M

V
S

co
ns

ol
e

w
as

ob

ta
in

ed

fo

r
th

e
O

ST

pr

ev
io

us
ly

, i
t

w
ill

be

re

le
as

ed
.

1
is

th

e
d

ef
au

lt

se

tt
in

g.

0
SA

z/

O
S

w
ill

no

t
ob

ta
in

an

ex

te
nd

ed

M

C
S

co
ns

ol
e

w
it

h
a

un
iq

ue

na

m
e

fo
r

O
ST

s
an

d

th

e
co

m
m

an
d

A

O
C

G
E

T
C

N

w

ill

be

d

is
ab

le
d

.

Global Variables

Appendix A. Global Variables 203

Ta
bl

e
6.

G

lo
ba

l V
ar

ia
bl

es

to

E

na
bl

e
A

dv
an

ce
d

A
ut

om
at

io
n

(C
G

LO
B

A
LS

)
(c

on
tin

ue
d)

V
ar

ia
b

le

V
al

u
e

E
ff

ec
t

A
O

FA
C

FI
N

IT

1
T

hi
s

in
d

ic
at

es

th

at

SA

z/

O
S

w
ill

at

te
m

pt

to

pr

oc
ee

d

w

it
h

in
it

ia
liz

at
io

n
d

es
pi

te

er

ro
r

m
es

sa
ge

s
su

ch

as

A

O
F7

22
I

d
ur

in
g

th
e

pr
oc

es
si

ng

of

th

e
au

to
m

at
io

n
co

nt
ro

l
fi

le
.

1
is

th

e
d

ef
au

lt

se

tt
in

g.

0
SA

z/

O
S

w
ill

st

op

th

e
in

it
ia

liz
at

io
n

pr
oc

es
s

up
on

su

ch

er

ro
rs

.

A
O

FA
R

M
Q

U
E

R
Y

R
E

T
R

Y
S

U
se

r-
d

ef
in

ed

nu
m

er
ic

va

lu
e.

T
he

nu

m
be

r
of

ti

m
es

A

O
FP

A
R

M
Q

w

ill

be

ca

lle
d

to

qu

er
y

th
e

A
R

M

st

at
us

of

an

el

em
en

t
af

te
r

a
st

at
us

of

U

N
K

N
O

W
N

is

re

tu
rn

ed
. I

f
th

e
A

R
M

st

at
us

d

oe
s

no
t

ch
an

ge

to

an

ot
he

r
st

at
us

be
fo

re

th

e
nu

m
be

r
of

re

tr
ie

s
is

ex

ha
us

te
d

, S
A

z/

O
S

w
ill

co

nt
in

ue

pr

oc
es

si
ng

an

d

as

su
m

e
th

e
el

em
en

t
is

no

t
A

R
M

-e
na

bl
ed

.

T
he

d

ef
au

lt

is

10

.

A
O

FA
R

M
Q

U
E

R
Y

W
A

IT

U
se

r-
d

ef
in

ed

nu
m

er
ic

va

lu
e.

T
he

nu

m
be

r
of

se

co
nd

s
to

w

ai
t

be
tw

ee
n

re
tr

ie
s

as

sp

ec
if

ie
d

in

th

e
A

O
FA

R
M

Q
U

E
R

Y
R

E
T

R
Y

S
va

lu
e

ab
ov

e.

T
he

d

ef
au

lt

is

15

.

Global Variables

204 System Automation for z/OS: Customizing and Programming

Ta
bl

e
6.

G

lo
ba

l V
ar

ia
bl

es

to

E

na
bl

e
A

dv
an

ce
d

A
ut

om
at

io
n

(C
G

LO
B

A
LS

)
(c

on
tin

ue
d)

V
ar

ia
b

le

V
al

u
e

E
ff

ec
t

A
O

FC
N

M
A

SK

T
he

ch

ar
ac

te
rs

th

at

ar

e
us

ed

in

d

et
er

m
in

in
g

un
iq

ue

co

ns
ol

e
na

m
es

ca

n
be

ta

ilo
re

d

by

up
d

at
in

g
th

e
co

m
m

on

gl

ob
al

va

ri
ab

le

A

O
FC

N
M

A
SK

. T
hi

s
gl

ob
al

is

us

ed

as

a

he
x

m
as

k
to

ex
tr

ac
t

ch
ar

ac
te

rs

fr

om

th

e
fo

llo
w

in
g

st
ri

ng

w

he
n

ge
ne

ra
ti

ng

un

iq
ue

co

ns
ol

e
na

m
es

w

it
h

co
m

m
an

d

A

O
C

G
E

T
C

N
.

le

ft
(o

pi
d(

),
8)

||
ri

gh
t(

op
id

()
,8

),

||
le

ft
(a

of
sy

sn
am

e,
4)

||
ri

gh
t(

ao
fs

ys
na

me
,4

),

||
le

ft
(a

pp
li

d(
),

8)
||

ri
gh

t(
ap

pl
id

()
,8

),

||
’A

BC
DE

FG
HI

JK
LM

NO
PQ

RS
TU

VW
XY

Z0
12

34
56

78
9$

&#
15

5;
#@

_!
?’

 Wh
er

e:

op
id

()

is

a

fu
nc

ti
on

wh

ic
h

re
tu

rn
s

th
e

OS
T

ta
sk

na
me

ao
fs

ys
na

me

is

a

co
mm

on

gl

ob
al

wh

ic
h

st
or

es

th
e

sy
st

em

na

me

ap
pl

id
()

is

a

fu
nc

ti
on

wh

ic
h

re
tu

rn
s

VT
AM

LU

na

me

T
he

d

ef
au

lt

fo

r
A

O
FC

N
M

A
SK

is

29

0C
0D

0E
0F

10
17

18
. 2

9x

se

le
ct

s
ch

ar
ac

te
r

A

in

po

si
ti

on

41

,
0C

x
-

10
x

se
le

ct
s

th
e

la
st

fi

ve

ch

ar
ac

te
rs

of

th

e
op

id

in

po

si
ti

on
s

12

to

16

, 1
7x

an

d

18

x
se

le
ct

th
e

la
st

tw

o
ch

ar
ac

te
rs

of

th

e
sy

sn
am

e
in

po

si
ti

on
s

23

an

d

24

. I
f

A
O

FC
N

M
A

SK

is

nu

ll,

A
O

C
G

E
T

C
N

w

ill

at

te
m

pt

to

ob

ta
in

a

un
iq

ue

ex

te
nd

ed

M

C
S

co
ns

ol
e

af
te

r
a

1
m

in
ut

e
in

te
rv

al
,

fo
llo

w
ed

by

a

tw
o

m
in

ut
e

in
te

rv
al

an

d

so

fo

rt
h

fo
r

a
m

ax
im

um

of

5

pa
ss

es

(1

5
m

in
ut

es

el
ap

se
d

fr

om

th

e
in

it
ia

l
in

vo
ca

ti
on

of

th

e
co

m
m

an
d

).

Fo
r

ex
am

pl
e:

A
O

FC
N

M
A

SK
: 2

A
01

02
03

04
05

17
18

2A
x

se
le

ct
s

ch
ar

ac
te

r
B

in

po

si
ti

on

42

, 0
1x

-

05
x

se
le

ct
s

th
e

fi
rs

t
fi

ve

ch

ar
ac

te
rs

of

th

e
op

id

in

po
si

ti
on

s
1

to

5,

17

x
an

d

18

x
se

le
ct

th

e
la

st

tw

o
ch

ar
ac

te
rs

of

th

e
sy

sn
am

e
in

po

si
ti

on
s

23

an

d

24
.

A
O

FC
T

L
O

PT

Y
E

S
T

hi
s

in
d

ic
at

es

th

at

SA

z/

O
S

w
ill

ig

no
re

an

y
IP

L

or

R

E
C

Y
C

L
E

op

ti
on

s
d

ef
in

ed

fo

r
a

su
bs

ys
te

m

th

at

ha

s
a

st
at

us

of

C

T
L

D
O

W
N

at

SA

z/

O
S

in
it

ia
liz

at
io

n.

N
O

SA

z/

O
S

w
ill

ho

no
r

al
l

IP
L

an

d

R

E
C

Y
C

L
E

op

ti
on

d

ef
in

it
io

ns

at

SA

z/

O
S

in
it

ia
liz

at
io

n.

N
O

is

th

e
d

ef
au

lt

se

tt
in

g.

A
O

FD
E

FA
U

LT
_T

A
R

G
E

T

U
se

r-
d

ef
in

ed

Se
ts

a

d
ef

au
lt

fo

r
th

e
TA

R
G

E
T

pa

ra
m

et
er

fo

r
al

l
co

m
m

an
d

s
w

he
re

th

is

pa

ra
m

et
er

is

us

ed
.

A
O

FD
E

SC
A

01

00
00

10
00

00
10

00

D
es

cr
ip

to
r

co
d

e
fo

r
ac

ti
on

m

es
sa

ge
s

A
O

FD
E

SC
D

01

00
00

10
00

00
10

00

D
es

cr
ip

to
r

co
d

e
fo

r
d

ec
is

io
n

m
es

sa
ge

s

A
O

FD
E

SC
E

00

10
00

10
00

00
10

00

D
es

cr
ip

to
r

co
d

e
fo

r
ev

en
tu

al

ac

ti
on

m

es
sa

ge
s

Global Variables

Appendix A. Global Variables 205

Ta
bl

e
6.

G

lo
ba

l V
ar

ia
bl

es

to

E

na
bl

e
A

dv
an

ce
d

A
ut

om
at

io
n

(C
G

LO
B

A
LS

)
(c

on
tin

ue
d)

V
ar

ia
b

le

V
al

u
e

E
ff

ec
t

A
O

FD
E

SC
I

00
00

01
10

00
00

10
00

D

es
cr

ip
to

r
co

d
e

fo
r

in
fo

rm
at

io
na

l
m

es
sa

ge
s

A
O

FD
E

SC
W

10

00
00

10
00

00
10

00

D
es

cr
ip

to
r

co
d

e
fo

r
w

ai
t

m
es

sa
ge

s

A
O

FE
X

PL
A

IN
_U

SE
R

U

se
r-

d
ef

in
ed

T

he

E

X
PL

A
IN

co

m
m

an
d

ac

ce
pt

s
th

is

va

ri
ab

le

to

in

cl
ud

e
he

lp

su

pp
or

t
fo

r
cu

st
om

er

in
st

al
la

ti
on

su

pp
lie

d

te

rm
s.

It

ca

n
ho

ld

on

e
or

m

or
e

pa
ir

s
of

te

rm
/h

el
p

pa
ne

l
sp

ec
if

ic
at

io
ns

se
pa

ra
te

d

by

a

bl
an

k.

If

th

e
sp

ec
if

ie
d

sa

tu
s

in

th

e
E

X
PL

A
IN

co

m
m

an
d

is

no

t
a

va
lid

SA

z/
O

S
st

at
us

, t
he

co

m
m

an
d

ro

ut
in

e
w

ill

ch

ec
k

w
he

th
er

it

is

an

in

st
al

la
ti

on

d

ef
in

ed

te

rm
.

If

so

, t
he

as

so
ci

at
ed

he

lp

pa

ne
l

is

d

is
pl

ay
ed

.

A
O

FI
M

SC
M

D
M

SG

0
IM

SC
M

D

w

ill

on

ly

pr

od
uc

e
m

es
sa

ge
s

ge
ne

ra
te

d

by

IN

G
IM

S.

0
is

th

e
d

ef
au

lt

se

tt
in

g.

1
IM

SC
M

D

w

ill

pr

od
uc

e
th

e
E

V
I2

0I
, E

V
I6

90
I,

E
V

I6
91

I
an

d

E

V
I6

92
I

m
es

sa
ge

s.

A
O

FI
N

IT
R

E
PL

Y

h
h

:m
m

:s
s

T
he

in

it
ia

l
re

pl
y

A
O

F6
03

D

is

is

su
ed

an

d

au

to
m

at
ic

al
ly

re

sp
on

d
ed

af

te
r

hh
:m

m
.

00
:0

2:
00

(2

m

in
ut

es
)

is

th

e
d

ef
au

lt

se

tt
in

g.

0
T

he

in

it
ia

l
re

pl
y

A
O

F6
03

D

w

ill

no

t
be

is

su
ed

an

d

au

to
m

at
io

n
co

nt
in

ue
s

w
it

h
th

e
d

ef
au

lt

st

ar
t

w
it

ho
ut

as

ki
ng

th

e
op

er
at

or
.

A
O

F_
IN

IT
_M

C
SF

L
A

G

U
se

r-
d

ef
in

ed

va

lid

va
lu

e
T

hi
s

va
ri

ab
le

co

nt
ai

ns

th

e
M

C
SF

L
A

G

th

at

is

us

ed

fo

r
W

TO
s

an
d

W

TO
R

s
th

at

ar

e
is

su
ed

by

SA

z/
O

S
d

ur
in

g
in

it
ia

liz
at

io
n.

T
he

d

ef
au

lt

is

’0

00
01

00
0’

.

A
O

F_
IN

IT
_R

O
U

T
C

D
E

U

se
r-

d
ef

in
ed

va

lid

va
lu

e
T

hi
s

va
ri

ab
le

co

nt
ai

ns

th

e
R

O
U

T
C

D
E

(r

ou
ti

ng

co

d
e)

th

at

is

us

ed

fo

r
W

TO
s

an
d

W

TO
R

s
th

at

ar
e

is
su

ed

by

SA

z/

O
S

d
ur

in
g

in
it

ia
liz

at
io

n.

T
he

d

ef
au

lt

is

’1

00
00

00
0’

.

A
O

F_
IN

IT
_S

Y
SC

O
N

ID

U
se

r-
d

ef
in

ed

va

lid

va
lu

e
T

hi
s

va
ri

ab
le

co

nt
ai

ns

th

e
SY

SC
O

N
ID

th

at

is

us

ed

fo

r
W

TO
s

an
d

W

TO
R

s
th

at

ar

e
is

su
ed

by

SA

z/
O

S
d

ur
in

g
in

it
ia

liz
at

io
n.

T
he

d

ef
au

lt

is

’0

1’
.

A
O

FL
O

C
A

L
H

O
L

D

0
IN

G
N

T
FY

an

d

SA

z/

O
S

in
it

ia
liz

at
io

n
w

ill

ex

ec
ut

e
th

e
SE

T
H

O
L

D

A

U
TO

co

m
m

an
d

on

th

e
no

ti
fy

op

er
at

or
.

0
is

th

e
d

ef
au

lt

se

tt
in

g.

1
SE

T
H

O
L

D

m

us
t

be

m

an
ua

lly

in

vo
ke

d
.

A
O

FM
A

T
L

IS
T

IN
G

0

Se
tt

in
g

th
is

va

ri
ab

le

m

ea
ns

th

at

th

e
A

ut
om

at
io

n
Ta

bl
e

lis
ti

ng

is

no

t
pl

ac
ed

in

th

e
D

SI
L

IS
T

d
at

a
se

t
at

A

ut
om

at
io

n
Ta

bl
e

lo
ad

ti

m
e.

Global Variables

206 System Automation for z/OS: Customizing and Programming

Ta
bl

e
6.

G

lo
ba

l V
ar

ia
bl

es

to

E

na
bl

e
A

dv
an

ce
d

A
ut

om
at

io
n

(C
G

LO
B

A
LS

)
(c

on
tin

ue
d)

V
ar

ia
b

le

V
al

u
e

E
ff

ec
t

A
O

FM
O

V
O

PT

Y
E

S
T

hi
s

in
d

ic
at

es

th

at

SA

z/

O
S

w
ill

ig

no
re

an

y
IP

L

or

R

E
C

Y
C

L
E

op

ti
on

s
d

ef
in

ed

fo

r
a

su
bs

ys
te

m

th

at

ha

s
a

st
at

us

of

M

O
V

E
D

at

in

it
ia

liz
at

io
n.

T

hi
s

d
oe

s
no

t
ap

pl
y

to

an

y
su

bs
ys

te
m

th

at

is

d

ef
in

ed

to

A

ut
om

at
ic

R

es
ta

rt

M

an
ag

er

th

at

SA

z/

O
S

is

aw

ar
e

of
.

N
O

SA

z/

O
S

w
ill

ho

no
r

al
l

IP
L

an

d

R

E
C

Y
C

L
E

op

ti
on

d

ef
in

it
io

ns

at

SA

z/

O
S

in
it

ia
liz

at
io

n.

N
O

is

th

e
d

ef
au

lt

se

tt
in

g.

A
O

FO
PC

C
M

D
M

SG

0
O

PC
A

M
O

D

w

ill

on

ly

pr

od
uc

e
m

es
sa

ge
s

ge
ne

ra
te

d

by

IN

G
O

PC
.

0
is

th

e
d

ef
au

lt

se

tt
in

g.

1
O

PC
A

M
O

D

w

ill

pr

od
uc

e
E

V
J0

11
I,

E
V

J4
12

I,
E

V
J4

20
I,

an
d

E

V
J4

23
I

m
es

sa
ge

s.

A
O

FP
A

U
SE

0

to

5

T
hi

s
is

th

e
nu

m
be

r
of

se

co
nd

s
th

at

SA

z/

O
S

w
ill

al

lo
w

fo

r
ap

pl
ic

at
io

ns

th

at

ha

ve

sh

ut

d

ow
n

to

be

cl

ea
re

d

by

M

V
S,

in

ad

d
it

io
n

to

th

ei
r

te
rm

in
at

io
n

d
el

ay
. A

s
th

e
A

O
FP

A
U

SE

va

lu
e

is

ap
pl

ie
d

to

al

l
ap

pl
ic

at
io

ns

it

sh

ou
ld

be

ke

pt

sm

al
l.

A
O

FP
A

U
SE

m

ay

be

us

ef
ul

on

a

sl
ow

m
ac

hi
ne

, w
he

re

al

lo
w

in
g

an

ex

tr
a

se
co

nd

or

tw

o
be

fo
re

SA

z/

O
S

ch
ec

ks

if

th

e
ap

pl
ic

at
io

n
ha

s
be

en

cl

ea
re

d

co

ul
d

av

oi
d

th

e
ne

ed

to

us

e
a

te
rm

in
at

io
n

d
el

ay

ti

m
er

.

N
o

m
at

te
r

ho
w

A

O
FP

A
U

SE

is

se

t,
th

e
ap

pl
ic

at
io

n
st

at
us

w

ill

no

t
be

up

d
at

ed

to

A
U

TO
D

O
W

N

or

C

T
L

D
O

W
N

un

ti
l

SA

z/
O

S
is

su

re

th

at

th

e
ap

pl
ic

at
io

n
ha

s
be

en

cl

ea
re

d

fr
om

th

e
sy

st
em

by

M

V
S.

0
is

th

e
d

ef
au

lt

se

tt
in

g.

A
O

FQ
U

IC
K

W
TO

R

0
B

ef
or

e
a

W
TO

R

re

pl
y

is

re

sp
on

d
ed

to

, a
n

M
V

S
d

is
pl

ay

co

m
m

an
d

is

is

su
ed

to

ch

ec
k

if

it

is

ou
ts

ta
nd

in
g.

1
Tr

us
t

th
e

C
G

L
O

B
A

L
S

fo
r

W
TO

R

re

pl
y

pr
oc

es
si

ng
.

1
is

th

e
d

ef
au

lt

se

tt
in

g.

A
O

FR
E

L
O

A
D

O
PT

N

o
W

ill

ig

no
re

th

e
St

ar
t

on

R

E
C

Y
C

L
E

op

ti
on

d

ur
in

g
an

A

C
F

re
lo

ad
.

T
hi

s
is

th

e
d

ef
au

lt
.

Ye
s

W
ill

ho

no
ur

th

e
St

ar
t

on

R

E
C

Y
C

L
E

op

ti
on

d

ur
in

g
an

A

C
F

re
lo

ad
. I

f
St

ar
t

on

R

E
C

Y
C

L
E

is

N
O

th

en

an

in

ac
ti

ve

su

bs
ys

te
m

w

ill

be

se

t
to

C

T
L

D
O

W
N

.

Global Variables

Appendix A. Global Variables 207

Ta
bl

e
6.

G

lo
ba

l V
ar

ia
bl

es

to

E

na
bl

e
A

dv
an

ce
d

A
ut

om
at

io
n

(C
G

LO
B

A
LS

)
(c

on
tin

ue
d)

V
ar

ia
b

le

V
al

u
e

E
ff

ec
t

A
O

FR
E

ST
A

R
TA

LW
A

Y
S

1
A

n
ap

pl
ic

at
io

n
th

at

ha

s
be

en

sh

ut

d

ow
n

no
rm

al
ly

, o
ut

si
d

e
th

e
co

nt
ro

l
of

SA

z/

O
S,

w

it
h

R
E

ST
A

R
TO

PT
=

A
LW

A
Y

S,

w

ill

be

re

st
ar

te
d

re

ga
rd

le
ss

of

w

he
th

er

or

no

t
it

ha

s
re

ac
he

d

it

s
cr

it
ic

al

er

ro
r

th
re

sh
ol

d
.

0
A

n
ap

pl
ic

at
io

n
th

at

ha

s
be

en

sh

ut

d

ow
n

no
rm

al
ly

, o
ut

si
d

e
th

e
co

nt
ro

l
of

SA

z/

O
S,

w

it
h

R
E

ST
A

R
TO

PT
=

A
LW

A
Y

S,

w

ill

no

t
be

re

st
ar

te
d

if

it

ha

s
re

ac
he

d

it

s
cr

it
ic

al

er

ro
r

th
re

sh
ol

d
.

0
is

th

e
d

ef
au

lt

se

tt
in

g.

A
O

FR
M

T
C

M
D

W
A

IT

Se
e

N
et

V
ie

w

R
M

T
C

M
D

C
on

ta
in

s
th

e
in

st
al

la
ti

on

w

ai
t

ti
m

e
w

he
n

R
M

T
C

M
D

is

us

ed

fo

r
co

m
m

un
ic

at
io

n.

60

se

co
n

d
s

is

th

e
d

ef
au

lt

se

tt
in

g
fo

r
R

M
T

C
M

D
.

A
O

FR
PC

W
A

IT

0
to

n

T
hi

s
is

th

e
nu

m
be

r
of

se

co
nd

s
th

at

SA

z/

O
S

w
ill

w

ai
t

fo
r

co
m

m
an

d

re

sp
on

se
s

fr
om

ot

he
r

sy
st

em
s

in

th

e
sy

sp
le

x.

10

is

th

e
d

ef
au

lt

se

tt
in

g.

A
O

FS
E

N
D

A
L

E
R

T

Ye
s

or

N

o
T

hi
s

d
ef

in
es

w

he
th

er

N

et
V

ie
w

al

er
t

fo
rw

ar
d

in
g

(Y
E

S)

or

th

e
co

m
m

an
d

ha

nd
le

r
(N

O
)

is

us

ed

to

fo

rw
ar

d

d

at
a

to

th

e
fo

ca
l

po
in

t.

Ye
s

is

th

e
d

ef
au

lt

se

tt
in

g.

A
O

FS
E

R
X

IN
T

1

T
he

ex

it

A

O
FE

X
IN

T

is

pr

oc
es

se
d

un

d
er

th

e
B

A
SE

O
PE

R

au

to
m

at
io

n
op

er
at

or

un

d
er

th

e
in

it
ia

liz
at

io
n

pr
oc

es
s.

T

hi
s

is

th

e
d

ef
au

lt
.

0
T

he

ex

it

A

O
FE

X
IN

T

ex

ec
ut

io
n

is

se

ri
al

iz
ed

w

it
hi

n
th

e
in

it
ia

liz
at

io
n

pr
oc

es
s.

A
O

F_
SE

T
_A

V
M

_R
E

ST
A

R
T

_E
X

IT

1
SA

z/

O
S

w
ill

se

t
th

e
A

V
M

re

st
ar

t
ex

it

d

ur
in

g
th

e
in

it
ia

liz
at

io
n

of

th

e
au

to
m

at
io

n
en

vi
ro

nm
en

t.

1
is

th

e
d

ef
au

lt
.

0
T

he

A

V
M

re

st
ar

t
ex

it

ne

ed
s

to

be

se

t
in

th

e
SY

S1
.P

A
R

M
L

IB

PR

O
G

xx

m

em
be

r.
Pl

ea
se

re

fe
r

to

IB
M

Ti

vo
li

Sy
st

em

A

ut
om

at
io

n
fo

r
z/

O
S

P
la

nn
in

g
an

d
In

st
al

la
ti

on

fo

r
m

or
e

in
fo

rm
at

io
n.

A
O

FS
H

U
T

D
E

L
A

Y

0
to

59

T

hi
s

is

th

e
nu

m
be

r
of

m

in
ut

es

th

at

SA

z/

O
S

w
ill

w

ai
t

fo
r

a
te

rm
in

at
io

n
m

es
sa

ge

be

fo
re

co
nt

in
ui

ng

th

e
sh

ut
d

ow
n

pr
oc

es
s.

A

ny

va

lu
es

ou

ts
id

e
th

is

ra

ng
e

ar
e

tr
ea

te
d

as

0.

W

it
h

a
se

tt
in

g
of

0,

m

es
sa

ge

A

O
F7

45
E

w

ill

no

t
be

is

su
ed

.

0
is

th

e
d

ef
au

lt

se

tt
in

g.

Global Variables

208 System Automation for z/OS: Customizing and Programming

|||
|
|

Ta
bl

e
6.

G

lo
ba

l V
ar

ia
bl

es

to

E

na
bl

e
A

dv
an

ce
d

A
ut

om
at

io
n

(C
G

LO
B

A
LS

)
(c

on
tin

ue
d)

V
ar

ia
b

le

V
al

u
e

E
ff

ec
t

A
O

FS
M

A
R

T
M

A
T

0

T
he

SA

z/

O
S

A
ge

nt

is

d

is
ab

le
d

fr

om

re

fr
es

hi
ng

A

Ts
. T

he

A

T

fr

ag
m

en
t

IN
G

M
SG

02

(a

s
d

el
iv

er
ed

w

it
h

SA

z/
O

S)

is

in

cl
ud

ed

w

he
n

SA

z/

O
S

in
it

ia
lly

lo

ad
s

IN
G

M
SG

01
.

1
T

he

SA

z/

O
S

A
ge

nt

is

en

ab
le

d

to

re

fr
es

h
A

Ts

w

he
n

an

IN

G
A

M
S

R
E

FR
E

SH

is

is

su
ed

. T
he

A

T

fr
ag

m
en

t
bu

ilt

by

th

e
cu

st
om

iz
at

io
n

d
ia

lo
g

is

no

t
lo

ad
ed

; I
N

G
M

SG
02

, t
ha

t
is

d

el
iv

er
ed

w

it
h

SA

z/
O

S,

is

us

ed

in

st
ea

d
.

T
he

A

Ts

w

ill

be

lo

ad
ed

af

te
r

a
su

cc
es

sf
ul

te

st

lo

ad
. T

hi
s

w
ill

al

lo
w

th

e
ag

en
t

to

in

fo
rm

th

e
A

M

ab

ou
t

a
lo

ad

pr

ob
le

m

of

th

e
A

T.

T

he

ag

en
t

m
ay

in

fo
rm

th

e
A

M

of

an

A

T

lo

ad

fa

ilu
re

,
th

us

st

op
pi

ng

th

e
co

nf
ig

ur
at

io
n

re
fr

es
h.

2
T

he

SA

z/

O
S

A
ge

nt

is

en

ab
le

d

to

lo

ad

th

e
A

T

th

at

is

ge

ne
ra

te
d

by

th

e
cu

st
om

iz
at

io
n

d
ia

lo
g

an
d

to

re

fr
es

h
A

Ts

w

he
n

an

IN

G
A

M
S

R
E

FR
E

SH

is

is

su
ed

. T
he

A

T

th

at

is

bu

ilt

by

th

e
cu

st
om

iz
at

io
n

d
ia

lo
g

is

d

yn
am

ic
al

ly

lo

ad
ed

in

to

st

or
ag

e
as

th

e
IN

G
M

SG
02

fr

ag
m

en
t.

T
he

A

Ts

w

ill

be

lo

ad
ed

af

te
r

a
su

cc
es

sf
ul

te

st

lo

ad
. T

hi
s

w
ill

al

lo
w

th

e
ag

en
t

to

in

fo
rm

th

e
A

M

ab

ou
t

a
lo

ad

pr

ob
le

m

of

th

e
A

T.

T

he

ag

en
t

m
ay

in

fo
rm

th

e
A

M

of

an

A

T

lo

ad

fa

ilu
re

,
th

us

st

op
pi

ng

th

e
co

nf
ig

ur
at

io
n

re
fr

es
h.

T

hi
s

is

th

e
d

ef
au

lt

va

lu
e.

A
O

FS
PO

O
L

FU
L

L
C

M
D

1

SA

z/
O

S
w

ill

no

t
ex

ec
ut

e
th

e
Sp

oo
l

re
co

ve
ry

pa

ss
es

m

or
e

th
an

on

ce
. M

es
sa

ge

A

O
F2

94
1I

w

ill

be

is

su
ed

if

th

e
SP

O
O

L
FU

L
L

co

nd
it

io
n

pe
rs

is
ts

.

0
SA

z/

O
S

w
ill

re

-e
xe

cu
te

th

e
Sp

oo
l

re
co

ve
ry

co

m
m

an
d

s.

0
is

th

e
d

ef
au

lt

se

tt
in

g.

A
O

FS
PO

O
L

SH
O

R
T

C
M

D

1
SA

z/

O
S

w
ill

no

t
ex

ec
ut

e
th

e
Sp

oo
l

re
co

ve
ry

pa

ss
es

m

or
e

th
an

on

ce
. M

es
sa

ge

A

O
F2

94
1I

w

ill

be

is

su
ed

if

th

e
SP

O
O

L
SH

O
R

T

co

nd
it

io
n

pe
rs

is
ts

.

0
SA

z/

O
S

w
ill

re

-e
xe

cu
te

th

e
Sp

oo
l

re
co

ve
ry

co

m
m

an
d

s.

0
is

th

e
d

ef
au

lt

se

tt
in

g.

A
O

FS
TA

T
U

SC
M

D
SE

L

0
Is

su
e

al
l

st
at

us

co

m
m

an
d

s
as

so
ci

at
ed

w

it
h

th
e

ne
w

st

at
us

. I
f

A
O

FS
TA

T
U

SC
M

D
SE

L

is

no

t
se

t,
or

se

t
to

a

va
lu

e
ot

he
r

th
an

0,

th

en

on

ly

co

m
m

an
d

s
as

so
ci

at
ed

w

it
h

th
e

st
ar

tt
yp

e
or

st

op
ty

pe

ar
e

is
su

ed
.

A
O

FU
PD

A
M

Ye

s
or

N

o
T

hi
s

co
nt

ro
ls

w

he
th

er

up

d
at

es

ar

e
m

ad
e

in

th

e
au

to
m

at
io

n
m

an
ag

er
.

N
o

is

th

e
d

ef
au

lt

se

tt
in

g.

A
O

FU
PD

R
O

D
M

Ye

s
or

N

o
T

hi
s

co
nt

ro
ls

w

he
th

er

up

d
at

es

ar

e
m

ad
e

in

R

O
D

M

an

d

m

us
t

be

se

t
to

th

e
sa

m
e

va
lu

e
fo

r
ea

ch

sy

st
em

w

it
hi

n
a

sy
sp

le
x.

N
o

is

th

e
d

ef
au

lt

se

tt
in

g.

Global Variables

Appendix A. Global Variables 209

Ta
bl

e
6.

G

lo
ba

l V
ar

ia
bl

es

to

E

na
bl

e
A

dv
an

ce
d

A
ut

om
at

io
n

(C
G

LO
B

A
LS

)
(c

on
tin

ue
d)

V
ar

ia
b

le

V
al

u
e

E
ff

ec
t

A
O

FU
SS

W
A

IT

1
to

n

T
hi

s
is

th

e
nu

m
be

r
of

se

co
nd

s
SA

z/

O
S

w
ai

ts

fo

r
th

e
co

m
pl

et
io

n
of

a

us
er

-d
ef

in
ed

z/

O
S

U
N

IX

m

on
it

or
in

g
ro

ut
in

e
(s

pe
ci

fi
ed

in

th

e
z/

O
S

U
N

IX

C

on
tr

ol

Sp

ec
if

ic
at

io
n

pa
ne

l)

un

ti
l

it

ge
ts

a

ti
m

eo
ut

. W
he

n
th

e
ti

m
eo

ut

oc

cu
rs

, S
A

z/

O
S

d
oe

s
no

lo

ng
er

w

ai
t

fo
r

a
re

sp
on

se

fr

om

th
e

m
on

it
or

in
g

ro
ut

in
e

an
d

se

nd
s

a
SI

G
K

IL
L

to

th

e
m

on
it

or
in

g
ro

ut
in

e.

10

is

th

e
d

ef
au

lt

se

tt
in

g.

A
O

F3
W

T
IM

E

1
to

n

T
hi

s
is

th

e
nu

m
be

r
of

se

co
nd

s
th

at

th

e
SH

O
W

M
E

co

m
m

an
d

w

ill

w

ai
t

fo
r

co
m

m
an

d

re
sp

on
se

s.

10

is

th

e
d

ef
au

lt

se

tt
in

g.

IN
G

O
PC

_M
U

LT
IP

L
IE

R

1
to

n

T
hi

s
is

us

ed

in

co

nj
un

ct
io

n
w

it
h

A
O

FR
M

T
C

M
D

W
A

IT

an

d

A

O
FR

PC
W

A
IT

to

d

et
er

m
in

e
ho

w

lo
ng

to

w

ai
t

be
fo

re

gi

vi
ng

up

.

IN
G

R
E

Q
_O

R
IG

IN
A

TO
R

1

In
d

ic
at

es

th

at

SA

z/

O
S

as
si

gn
s

in
d

iv
id

ua
l

or
ig

in
at

or

ID

s
fo

r
ea

ch

op

er
at

or

is

su
in

g
an

IN
G

R
E

Q

co

m
m

an
d

.

0
A

ll
op

er
at

or
s

ar
e

gr
ou

pe
d

un

d
er

or

ig
in

at
or

ID

O

PE
R

A
TO

R
.

0
is

th

e
d

ef
au

lt

se

tt
in

g.

Global Variables

210 System Automation for z/OS: Customizing and Programming

Parameter Defaults for Commands

 Table 7. Global Variables That Define the Installation Defaults for Specific Commands

Variable Name Description Reference

1

AOFSETSTATEOVERRIDE Sets the default OVERRIDE value for the SETSTATE command. SETSTATE

AOFSETSTATESCOPE Allows you to override the predefined default for the SCOPE

parameter of the SETSTATE command.

SETSTATE

AOFSETSTATESTART Allows you to override the predefined default for the START

parameter of the SETSTATE command.

SETSTATE

AOFSHUTCHK Sets the default PRECHECK parameter for the SHUTSYS command. SHUTSYS

AOFSHUTOVERRIDE Will set the default OVERRIDE value for the INGREQ command. INGREQ

AOFSHUTSCOPE Sets the default SCOPE parameter for the SHUTSYS command. SHUTSYS

DISPEVT_WAIT Sets the WAIT parameter of the DISPEVT command to the specified

value.

DISPEVT

DISPEVTS_WAIT Sets the WAIT parameter of the DISPEVTS command to the specified

value.

DISPEVTS

DISPTRG_WAIT Sets the WAIT parameter of the DISPTRG command to the specified

value.

DISPTRG

INGAUTO_INTERVAL Sets the default for the INTERVAL parameter of the INGAUTO

command.

INGAUTO

INGEVENT_WAIT Sets the WAIT parameter of the INGEVENT command to the specified

value. The parameter specifies whether or not to wait until the request

is complete.

INGEVENT

INGGROUP_WAIT Sets the WAIT parameter of the INGGROUP command to the specified

value. The parameter specifies whether or not to wait until the request

is complete.

INGGROUP

INGHIST_MAX Sets the MAX parameter of the INGHIST command to the specified

value.

INGHIST

INGRELS_SHOW Sets the SHOW parameter of the INGHIST command to the specified

value.

INGHIST

INGINFO_WAIT Sets the WAIT parameter of the INGINFO command to the specified

value.

INGINFO

INGLIST_WAIT Sets the WAIT parameter of the INGLIST command to the specified

value.

INGLIST

INGRELS_WAIT Sets the WAIT parameter of the INGRELS command to the specified

value.

INGRELS

INGREQ_EXPIRE Sets the default EXPIRE parameter of the INGREQ command to the

specified value.

INGREQ

INGREQ_INTERRUPT Sets the default INTERRUPT parameter of the INGREQ command to

the specified value. The parameter specifies whether or not the

automation manager should wait until the resource has reached its UP

state, but the resource is still in the startup phase when the higher

priority stop request is given.

INGREQ

INGREQ_OVERRIDE Sets the default OVERRIDE parameter of the INGREQ command to

the specified value.

INGREQ

INGREQ_PRECHECK Sets the default PRECHECK parameter of the INGREQ command to

the specified value.

INGREQ

INGREQ_PRI Sets the default priority (PRI parameter) of the INGREQ command to

the specified value.

INGREQ

Global Variables

Appendix A. Global Variables 211

Table 7. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name Description Reference

1

INGREQ_PRI.E2EMGR Specifies the priority that incoming requests from the end-to-end

automation manager are executed at. Default: LOW

INGREQ

INGREQ_REMOVE Sets the default value for the REMOVE parameter of the INGREQ

command to the specified value. It the resource reaches the specified

status (condition), the request is automatically removed.

INGREQ

INGREQ_REMOVE.START Sets the default value for the REMOVE parameter of the INGREQ

START command. If not specified the value set by INGREQ_REMOVE

will be used.

INGREQ

INGREQ_REMOVE.STOP Sets the default value for the REMOVE parameter of the INGREQ

STOP command. If not specified the value set by INGREQ_REMOVE

will be used.

INGREQ

INGREQ_RESTART Sets the default for the RESTART parameter of the INGREQ command

when shutting down the resource.

INGREQ

INGREQ_SCOPE Sets the SCOPE parameter of the INGREQ command to the specified

value.

INGREQ

INGREQ_SOURCE Sets the default SOURCE parameter of the INGREQ command to the

specified value. The parameter specifies the originator of the request.

INGREQ

INGREQ_TIMEOUT Sets the interval in minutes used to check for the INGREQ command

used to check whether the request has been successfully completed,

and whether to send a message or cancel the request if it has not been

satisfied after that time.

INGREQ

INGREQ_TYPE Sets the default startup/shutdown type (TYPE parameter) of the

INGREQ command to the specified value.

INGREQ

INGREQ_VERIFY Sets the default VERIFY parameter of the INGREQ command to the

specified value.

INGREQ

INGREQ_WAIT Sets the WAIT parameter of the INGREQ command to the specified

value.

INGREQ

INGSCHED_WAIT Sets the WAIT parameter of the INGSCHED command to the specified

value. The parameter specifies whether or not to wait until the request

is complete.

INGSCHED

INGSET_VERIFY Sets the default VERIFY parameter of the INGSET command to the

specified value.

INGSET

INGSET_WAIT Sets the WAIT parameter of the INGSET command to the specified

value. The parameter specifies whether or not to wait until the request

is complete.

INGSET

INGTRIG_WAIT Sets the WAIT parameter of the INGTRIG command to the specified

value.

INGTRIG

INGVOTE_EXCLUDE Sets the EXCLUDE parameter of the INGVOTE command to the

specified value. The parameter specifies the resource types (for

example SVP or GRP) to be excluded when showing all requests.

Resources of that type are filtered out.

INGVOTE

INGVOTE_STATUS Sets the STATUS parameter of the INGVOTE command to the

specified value. The parameter specifies which requests should be

displayed - winning, losing or all.

INGVOTE

INGVOTE_VERIFY Sets the default VERIFY parameter of the INGVOTE command to the

specified value.

INGVOTE

INGVOTE_WAIT Sets the WAIT parameter of the INGVOTE command to the specified

value.

INGVOTE

1. See the specified command in IBM Tivoli System Automation for z/OS Operator’s Commands.

Global Variables

212 System Automation for z/OS: Customizing and Programming

||
|
|

||
|
|

|

||
|
|

|

Global Variables

Appendix A. Global Variables 213

Global Variables

214 System Automation for z/OS: Customizing and Programming

Appendix B. Customizing the Status Display Facility (SDF)

Overview of Status Display Facility

This appendix explains how to customize SDF panels, descriptors, and operations.

How SDF Works

The SA z/OS Status Display Facility (SDF) uses colors and highlighting to

represent subsystem resource states. Typically, a subsystem shown in green on the

SDF status panel indicates it is up, while red indicates a subsystem in a stopped or

problem state. SDF can be tailored to present the status of system components in a

hierarchical manner.

Note: SDF works only with MVS systems and resources.

Types of SDF Panels

Figure 35 on page 216 shows several SDF screens for system CHI01. This figure

shows the main types of panels used in SDF.

v The root component

v The status component

v The detail status display

In addition to these panel types, you can create other types of panels according to

your system requirements and the applications you are monitoring.

Note: All SDF panels must contain 24 rows and 80 columns. Because SDF uses

only the display’s default screen size, the default size must be defined as 24

x 80.

© Copyright IBM Corp. 1996, 2005 215

Root Component

The root component is typically an element appearing on the first screen displayed

when SDF is started. In Figure 35, the CHI01 system is the root component.

Status Component

Resources monitored by SDF are called status components. In Figure 35, system

CHI01 has JES2, RMF, VTAM, TSO, and NetView status components, as shown on

the CHI01 System Status panel. The status component panel displays all monitored

resources in a system. Each monitored resource is shown in the color of its current

status. For example, JES2 is shown in green if it is up.

Detail Status Display

A detail status display is built from information in a status descriptor (see “Status

Descriptors”). This panel is displayed by tabbing to the appropriate resource on

the status component panel and pressing the detail PF key. Each status component

can have one or more status descriptors, or detail records, associated with it.

Figure 35 shows an example detail status display for a JES2 status descriptor. The 1

of 3 on the panel indicates that JES2 currently has three status descriptors, and

therefore three detail status displays, associated with it.

Status Descriptors

A status descriptor is a detailed record of information about a resource status. In its

raw form, a status descriptor is a multiline SA z/OS message containing

information such as:

v Root component and status component to which the status descriptor applies

Figure 35. Example SDF Panels

Overview of Status Display Facility

216 System Automation for z/OS: Customizing and Programming

v Priority, color, and highlighting associated with the status descriptor (see “How

Status Descriptors Affect SDF” on page 218 for more information)

v Date and time the status descriptor was generated

v Actual resource status information; for example, an SA z/OS message indicating

the resource is up

SDF uses information in a status descriptor to generate a detail status display (see

“Detail Status Display” on page 216). You do not usually look directly at a status

descriptor; rather, you look at portions of it through a detail status display. For

example, in Figure 35 on page 216, the detail status display presents information

from a status descriptor for status component JES2. The 1 of 3 on the panel

indicates that JES2 currently has three status descriptors associated with it.

SDF generates, displays, and deletes status descriptors.

SDF Tree Structures

SDF uses tree structures to set up the hierarchy of monitored resources displayed on

SDF status panels. An SDF tree structure always starts with the system name as

the root node and has a level number of one. Tree structure levels subordinate to

the root node are the monitored resources. The level numbers of these resources

reflect their dependency on each other.

You define SDF tree structures in NetView DSIPARM data set member AOFTREE.

Figure 36 on page 218 shows an example SDF tree structure. Following the tree

structure definition statements is a diagram showing how these statements result

in a tree structure.

Overview of Status Display Facility

Appendix B. Customizing the Status Display Facility (SDF) 217

SA z/OS supplies a sample SDF tree structure in the SA z/OS sample library. This

tree structure is referenced by a %INCLUDE statement in member AOFTREE in the

NetView DSIPARM data set. You can customize this sample tree structure to meet

your requirements. This order of dependency does not have to be the same as that

used for system startup or shutdown using SA z/OS.

For example, using the tree structure in Figure 36, if there is a problem with TSO,

it is not desirable to also change the VTAM status color, because VTAM is not

having any problems. In contrast, in the SA z/OS startup and shutdown

procedures, TSO is dependent on VTAM.

More details on SDF tree structure definitions are in “Step 1: Defining SDF

Hierarchy” on page 226.

How Status Descriptors Affect SDF

Status descriptors are the main units of information SDF uses. The information in

status descriptors determines how your SDF status displays look at any point in

time. This section explains how SDF uses status descriptors.

 1 SY1

 2 SYSTEM

 3 WTOR

 3 APPLIC

 4 AOFAPPL

 5 AOFSSI

 4 JES

 4 VTAM

 3 TSO

 3 RMF

 2 GATEWAY

Figure 36. Example SDF Tree Structure

Overview of Status Display Facility

218 System Automation for z/OS: Customizing and Programming

Priority and Color Assignments

Status descriptors are assigned both a priority number and a color. These color and

priority assignments determine the colors in which status components are

displayed. In SDF, a lower number indicates a higher priority. Status descriptors

are connected to the status component in ascending order of priority.

Color and priority assignments for status descriptors are defined in two places:

v In the PRIORITY parameter in the AOFINIT member of the NetView DSIPARM

data set. This parameter defines initial priority and color assignments used for

status descriptors. The values defined in AOFINIT are used if no further

customization is done to priority and color assignments. The default priority

ranges and colors used in AOFINIT are:

 Priority Range Color

001 to 199 Red

200 to 299 Pink

300 to 399 Yellow

400 to 499 Turquoise

500 to 599 Green

600 to 699 Blue

White is used as the default status descriptor color (the DCOLOR parameter in

member AOFINIT, described in IBM Tivoli System Automation for z/OS

Programmer’s Reference) and as the default color for a status component without a

tree structure entry (the ERRCOLOR parameter in member AOFINIT, described

in IBM Tivoli System Automation for z/OS Programmer’s Reference). For more

information on the PRIORITY parameter, see IBM Tivoli System Automation for

z/OS Programmer’s Reference.

v In the SDF definitions in the Status Details policy object. These entries define

colors, highlighting, and priorities used for particular resource statuses. Color

and priority assignments defined in the customization dialog can be used to

override assignments in the AOFINIT member.

Note: Some of the resource statuses that appear in SDF displays do not directly

correspond to resource statuses used in the automation status file.

IBM Tivoli System Automation for z/OS User’s Guide shows the default resource

status types, colors, highlighting, and priorities provided with SA z/OS. These

settings define to SA z/OS the parameters used when adding status descriptors

to SDF.

For more information on the SDF Status Details definition, see “Step 4: Defining

SDF in the Customization Dialog” on page 230.

Chaining of Status Descriptors to Status Components

A resource status change causes a status descriptor to be generated. SDF adds this

status descriptor to a chain of status descriptors. Chained status descriptors

determine the status and color of status components. The highest-priority status

descriptor in a chain determines the initial color in which the status component is

displayed. The underlying chained priority numbers determine the color in which

successive detail status displays will be shown.

Status descriptors are chained off each level of status component in a tree

structure. Status descriptors chained to lower-level status components are also

chained to a higher-level status component, again in order of priority. Status

Overview of Status Display Facility

Appendix B. Customizing the Status Display Facility (SDF) 219

descriptors are also chained off the root component. These status descriptors are all

the status descriptors that currently exist at all levels of the tree structure.

For example, Figure 37 shows status descriptors currently generated for system

SY1. The priority for each status descriptor is shown by a number.

 The status components at the lowest level in this tree structure, JES2, RMF, and

VTAM, have status descriptors chained off them. Status component JES2 has three

status descriptors chained, with priorities 1, 10, and 50. Because 1 is the highest

priority, the status descriptor with priority 1 is organized first in the chain. This

highest-priority status descriptor determines the color in which JES2 is displayed

on the status panel. If an operator uses the detail PF key to view detail status

displays for JES2, the information contained in the status descriptor with priority 1

will be displayed first, then the detail status display for the status descriptor with

priority 10, and so on.

At the SYSTEM status component level in the tree structure, all status descriptors

from the lower-level status components are also chained. Because the status

descriptors chained to RMF and VTAM have higher priorities than the priority 10

and 50 status descriptors for JES2, they are organized after the priority 1 status

descriptor in the chain. An operator using the detail PF key at the SYSTEM level

could view five detail status displays, ranging from priority 1 to priority 50.

Similarly, at the SY1 level in the tree structure, all status descriptors chained to all

status components in the tree structure are chained in order of priority. An

operator using the detail PF key at the SY1 level could view six detail status

displays, ranging from priority 1 to priority 100.

If a status component has multiple status descriptors with equal priorities, the

status descriptors are chained off the status component in order of arrival time.

When a status descriptor no longer accurately reflects the actual status of a

resource, SDF automatically deletes it from status descriptor chains. As an example

of how priority determines order of status descriptors, suppose two status

descriptors currently exist for status component JES2. If there are two status

Figure 37. Status Descriptors Chained to Status Components

Overview of Status Display Facility

220 System Automation for z/OS: Customizing and Programming

descriptors for JES2 with priorities of 120 and 140, the status descriptor with

priority 120 is displayed first. In both cases, JES displays in red on the SDF status

panel.

In SA z/OS, all status types are defined in the automation control file. When an

automation event occurs, the SA z/OS AOCUPDT common routine scans the

automation control file for the SDF entry for that status. SA z/OS issues a request

to add the status using the information from the automation control file.

For example, suppose subsystem RMF, shown on the example SDF panels in

Figure 35 on page 216, is set to a STOPPING state. The SA z/OS AOCUPDT

common routine scans the automation control file for the STOPPING state entry

for SDF and generates a status descriptor, specifying a priority of 330. SDF adds

the status descriptor to the RMF status component. RMF appears as yellow and

blinking on the status panel. Once RMF is in a stopped state, the AOCUPDT

common routine scans the automation control file for the STOPPED state SDF

entry and generates a status descriptor with priority 130. SDF adds this new status

descriptor to the RMF status component. Now, RMF appears in red on the SDF

status panel.

Propagating Status Descriptors Upward and Downward in a Tree

Structure

Based on the order of dependencies defined in a tree structure, status descriptors

can be propagated upward or downward to status components in a tree structure.

This propagation of status descriptors affects the color in which status components

are displayed, as well as the detail status displays operators can view by using the

detail PF key on a particular status component.

Propagation of status upward and downward in a tree structure is defined by the

PROPUP and PROPDOWN parameter in the AOFINIT member (see IBM Tivoli

System Automation for z/OS Programmer’s Reference for descriptions).

The SA z/OS-provided defaults for status propagation in the AOFINIT member

are to propagate status upward (PROPUP=YES) but not downward

(PROPDOWN=NO).

When status is propagated upward in a tree structure, if a status descriptor is

added or deleted at a lower level in the tree structure, it is also added or deleted

from the cumulative chain of status descriptors at a higher-level node in the tree

structure.

Propagation of status upward in a tree structure consolidates the status of all

monitored resources in the system at the root node. In this way, the color of the

root node reflects the most important or critical status in a computer operations

center. For example, in Figure 36 on page 218, any color changes for AOFSSI are

reflected in AOFAPPL, APPLIC, SYSTEM, and SY1, if SDF propagates status

changes upward in the tree structure. In Figure 35 on page 216, if all monitored

resources are green, the root node CHI01 on the Data Center Systems panel is also

shown in green.

When status is propagated downward in a tree structure, if a status change occurs

at a higher level in a tree structure, the changes are sent downward in the tree

structure. This propagating downward could cause status descriptors at lower

levels in the tree structure to be added or deleted.

Overview of Status Display Facility

Appendix B. Customizing the Status Display Facility (SDF) 221

Propagating status downward can be useful when an entire system is down. In

such a case, you want SDF status panels to accurately reflect the system status. You

do not want status components lower in the tree structure to retain previously

generated status descriptors indicating that the components are up and running,

because these status descriptors do not accurately reflect the status of the

components. You can configure your SDF implementation to propagate status

downward, and remove all status descriptors from all status components in a tree

structure. If an operator tries displaying detailed status about any of the status

components lower in the tree structure, they receive ″NO DETAIL INFO

AVAILABLE″ messages. The empty chain color, defined by the EMPTYCOLOR

parameter in member AOFINIT with a default color of blue, is also used to

indicate that no detail information is available. See IBM Tivoli System Automation for

z/OS Programmer’s Reference for the EMPTYCOLOR description.

How SDF Helps Operations to Focus on Specific Problems

SDF structure and processing allows the program identifying a problem to be

concerned only with the specific problem.

For example, suppose an application program detects a warning message for status

component JES on CHI01. The following processing steps occur:

1. The application program issues a request to SDF to add a status descriptor for

JES.

2. The status entry for JES on system CHI01 now indicates there is a problem

with JES. If the SDF is configured to propagate status up the hierarchical tree

structure, the status for system CHI01 also reflects the problem state. See IBM

Tivoli System Automation for z/OS Programmer’s Reference for details on the

PROPUP SDF initialization parameter.

3. Now, suppose another more serious problem occurs. The application program

which detects this new problem issues another request to SDF to add a status

descriptor having a lower priority number than the status descriptor for the

first problem.

4. Because status descriptors are chained in order of priority, the JES status now

reflects the status descriptor color of the more serious problem.

5. When the more serious problem is resolved, the application program detecting

the problem resolution issues a request to SDF to remove the status descriptor

for this problem from the chain of JES status descriptors.

6. The status panel is updated to reflect the first problem.

How SDF Panels Are Defined

All SDF status panels, apart from detail status display panels, are defined in the

AOFPNLS member of the NetView DSIPARM data set.

Member AOFPNLS can contain either one or both of the following:

v %INCLUDE statements referencing other NetView DSIPARM members

containing definitions of panels. The %INCLUDE statement causes the named

panel definition member to be loaded. This is the recommended method, and

the method used in the SA z/OS-provided version of AOFPNLS.

v Panel structure definitions for all SDF panels.

Panel members defined or referenced in AOFPNLS are loaded into system

memory, and may be deleted, replaced, or temporarily made resident using the

SDFPANEL command (see IBM Tivoli System Automation for z/OS Programmer’s

Reference for command description).

Overview of Status Display Facility

222 System Automation for z/OS: Customizing and Programming

Panels that are to be dynamically loaded as needed (see “Dynamically Loading

Tree Structure and Panel Definition Members”) must be defined in a NetView

DSIPARM member having the same member name as the panel itself.

It is recommended that you include only frequently used panels in AOFPNLS, to

conserve system memory. Other panels can be dynamically loaded when needed,

either by pressing a SDF function key or by using the SCREEN command.

Note: Dynamic refresh will only work with panels defined in AOFPNLS.

SDF internally formats and builds detail status display panels from the information

in a status descriptor. You do not have to define and format detail status display

panels. Status components defined in the panel definitions must also be defined in

the corresponding tree structure. However, not all status components defined in

the tree structure require a corresponding entry on the SDF status panel. For

example, in Figure 36 on page 218, the APPLIC status component is only a

pseudo-entry and may not actually be displayed on any SDF status display panel.

SDF status panels can be customized to reflect any environment. For example, you

can define a panel to show the status of all JES subsystems on all processors in a

computer operations center. The JES operator can view the panel to determine the

status of any JES subsystem in the complex.

For detailed information on defining SDF panels, see “Step 2: Defining SDF

Panels” on page 227.

Dynamically Loading Tree Structure and Panel Definition

Members

Using %INCLUDE statements in the main SDF tree structure and panel definition

members allows you to dynamically load tree structure and panel definition

members without restarting SDF (see IBM Tivoli System Automation for z/OS

Programmer’s Reference). The SDFTREE command loads a tree structure definition

member. The SDFPANEL command loads a panel definition member. You can

dynamically reload members AOFTREE and AOFPNLS themselves.

Using SDF for Multiple Systems

You can configure SDF so that multiple systems in an automation network can

forward their resource status information to the SDF on the focal point system. In a

multiple-system environment, the following must be defined:

v The tree structure for each system must be defined in the AOFTREE member of

NetView DSIPARM on the focal point system SDF. The root name must be

unique for each system tree structure.

v The focal point root name must match the SYSNAME value defined in the

automation policy. This value is specified in the customization dialog.

Note: The SYSNAME for each system under SA z/OS control must be the same

as the system name under which the system was IPLed

v For target system SDF status update to occur on a focal point SDF, SA z/OS

focal point services must already be implemented.

Because each root name must be unique in a multiple-system environment, any

status component on any system defined to the focal point SDF can be uniquely

addressed by prefixing the status component with the root component name:

ROOT_COMPONENT.STATUS_COMPONENT

Overview of Status Display Facility

Appendix B. Customizing the Status Display Facility (SDF) 223

For example:

SY1.JES2

Similarly, any SDF status descriptors forwarded from the target system to the focal

point SDF are prefixed with the root name of the target system by SA z/OS

routines.

SDF Components

SDF consists of the following components:

 Table 8. SDF Components

Name Type Purpose

AOFTDDF Task Initializes SDF and maintains the status database. This

initialization is an automated function.

SDF Command Starts an SDF operator session.

SDFTREE Command Dynamically loads or deletes an SDF tree structure

definition member from the NetView DSIPARM data set.

SDFPANEL Command Dynamically loads or deletes an SDF panel definition

member from the NetView DSIPARM data set.

AOFINIT Input file Contains SDF initialization parameters defined with the

statements described in IBM Tivoli System Automation for

z/OS Programmer’s Reference. AOFINIT is in the NetView

DSIPARM data set.

AOFTREE Input file Contains tree structures described in IBM Tivoli System

Automation for z/OS Programmer’s Reference. This member

usually consists of a list of %INCLUDE statements

referencing other members containing tree structures.

AOFTREE is in the NetView DSIPARM data set.

AOFPNLS Input file Contains SDF panel parameters defined by the statements

described in “Step 2: Defining SDF Panels” on page 227.

This member usually consists of a list of %INCLUDE

statements referencing other members containing panel

definitions. AOFPNLS is in the NetView DSIPARM data

set.

panel_name Input file A DSIPARM member containing the definition of one or

more SDF panels or %INCLUDE statements identifying

other DSIPARM panel definition members. It is highly

recommended that panel definition members contain the

definition of a single panel having the same name as the

member.

tree_name Input file A DSIPARM member containing the definition of one or

more tree structures. It is highly recommended that tree

definition members contain the definition of a single tree

having the same root component name as the member

name.

How the SDF Task Is Started and Stopped

During SA z/OS initialization, the AOFTDDF task loads members defining panel

format, panel flow, and tree structures. Member AOFINIT defines parameters

common to all SDF panels and basic initialization specifications, such as screen

size, default PF keys, and the initial screen displayed when a SDF session is

started. These AOFINIT parameters are described in IBM Tivoli System Automation

for z/OS Programmer’s Reference.

Overview of Status Display Facility

224 System Automation for z/OS: Customizing and Programming

Starting the SDF Task

In SA z/OS code, the AOFTDDF task is started by the following command:

START TASK=AOFTDDF

Stopping the SDF Task

In SA z/OS code, the AOFTDDF task is stopped by the following command:

STOP TASK=AOFTDDF

Note: When SDF is restarted, all existing SDF status descriptors are lost, as they

are kept only in memory.

SDF Definition

The following section describes the SDF definition process.

Summary of SDF Definition Process

This section summarizes the steps for defining the SDF. Use this procedure to

define the panels displayed in an SDF session. Details on each step are provided

later in this chapter and in IBM Tivoli System Automation for z/OS Programmer’s

Reference.

1. Define the hierarchy of monitored resources used for your SDF panels, using

tree structure statements in NetView DSIPARM data set members. These tree

structure definition members should be referenced by %INCLUDE statements

in the main SDF tree structure definition member, AOFTREE, in the NetView

DSIPARM data set. See IBM Tivoli System Automation for z/OS Programmer’s

Reference for details.

2. Define SDF status panels using panel definition statements in NetView

DSIPARM data set members. Panels can either be automatically loaded when

SDF starts, or dynamically loaded using the SDFPANEL command. For panels

to be automatically loaded, add a %INCLUDE statement specifying the panel

definition member to the main panel definition member, AOFPNLS, in the

NetView DSIPARM data set. See “Step 2: Defining SDF Panels” on page 227 for

details.

Define and customize SDF status panels in the following general order:

a. Root panel

b. Status component panel for each entry on the root panel

c. Any other customized status panels.
3. Customize the SDF initialization parameters in NetView DSIPARM member

AOFINIT, if necessary (optional), or use defaults. See IBM Tivoli System

Automation for z/OS Programmer’s Reference for detailed descriptions of SDF

initialization parameters. Using defaults is recommended.

4. Define SDF resource status, color, highlight and priority values using the

customization dialog to edit the SDF Status Details policy object, or use

defaults. This step is optional. See IBM Tivoli System Automation for z/OS

Defining Automation Policy for the description of the Status Details policy object.

Using defaults is recommended.

Notes:

1. Resources that SA z/OS is not currently automating are not displayed on SDF

panels.

2. To display the status of multiple systems and forward status from target

systems to SDF on a focal point system, SA z/OS focal point services must

already be implemented. See IBM Tivoli System Automation for z/OS Defining

Automation Policy for details on configuring focal point services.

Overview of Status Display Facility

Appendix B. Customizing the Status Display Facility (SDF) 225

Step 1: Defining SDF Hierarchy

Member AOFTREE in the NetView DSIPARM data set contains a set of definitions

that define the propagation hierarchy for status color changes. When the status

changes for a component, the corresponding color change is propagated up or

down the tree to the next higher or lower level component. The level is determined

by the level number assigned to each component. The type of propagation is

determined either by the entry in the AOFINIT member or by individual requests

to add a status descriptor to a status component.

Note: SA z/OS does not use this SDF hierarchy for subsystem shutdown or

startup procedures. Instead, SA z/OS uses subsystem entries defined in the

automation policy to determine startup and shutdown relationships and

hierarchies.

Tree Structure Definitions

AOFTREE contains tree structure definitions. To define tree structures, you can:

v Use %INCLUDE statements referencing other members containing definitions for

specific tree structures. This is the recommended method, and the method used

in the SA z/OS-provided version of AOFTREE.

On the %INCLUDE statement, the name of the referenced member must be

enclosed in parentheses.

v Place all tree structure definitions in AOFTREE.

v Use a combination of both.

Figure 38 shows a typical tree structure definition:

 In this tree structure, SY1 is the root component. This definition is in a separate

member, named SY1. It is referenced by the following statement in the AOFTREE

member:

%INCLUDE(SY1TREE)

Loading Tree Structures: All tree structures need not be loaded during

initialization. Some can be loaded dynamically after SDF is started. To do this, use

AOFTREE to define those tree structure entries that will be loaded during

initialization, then, use the SDFTREE command to load additional tree structures as

needed. For more information, see IBM Tivoli System Automation for z/OS

Programmer’s Reference.

Tree structures loaded after SDF is started must be contained in separate members.

Each member must be named after the root component for which the tree structure

is defined.

 1 SY1

 2 APPLIC

 3 AOFAPPL

 4 AOFSSI

 3 JES

 3 VTAM

 3 TSO

 3 RMF

 2 GATEWAY

Figure 38. Example Tree Structure Definition

SDF Definition

226 System Automation for z/OS: Customizing and Programming

Step 2: Defining SDF Panels

SDF status panels are defined in NetView DSIPARM member AOFPNLS. SA z/OS

loads the panel definitions in AOFPNLS when SDF is initialized.

Panel Definition Methods

To define panels in AOFPNLS, you can:

v Use %INCLUDE statements referencing separate NetView DSIPARM members

containing panel definitions. This is the recommended method, and the method

used in the SA z/OS-provided version of AOFPNLS. See “%INCLUDE

Statement for SDF Panels” on page 229 for details on using the %INCLUDE

statement for SDF panel definition members.

v Include actual definitions for all panels.

v Use a combination of both %INCLUDE statements and panel definitions.

v Include a subset of panel entries to load during initialization, so that additional

panel definitions can be loaded only when needed (see IBM Tivoli System

Automation for z/OS Programmer’s Reference).

Panel Definition Structure

The structure of each panel definition is as follows:

v Begin panel definition statement (PANEL)

v Status component definition statements, consisting of pairs of the following

statements:

– STATUSFIELD: defines location of a status component on a panel

– STATUSTEXT: defines the text displayed in the STATUSFIELD
v Text fields and data definition statements, consisting of pairs of the following

statements:

– TEXTFIELD: defines locations and attributes for constant fields on panels

– TEXTTEXT: defines text displayed in the TEXTFIELD
v Status panel PF key definitions (PFKnn)

v End panel statement (ENDPANEL)

Descriptions of these panel definition statements are in IBM Tivoli System

Automation for z/OS Programmer’s Reference.

Recommended Order for Defining Panels

When defining panels, it is recommended that you define them in the following

order:

1. The root panel

2. The status components for each item listed on the root panel

3. Any other customized status panels

Note: This order of defining panels is a recommendation only. You can define your

SDF panels in any order desired.

Example Panel Definition

Figure 39 on page 228 shows how an SDF panel looks when displayed:

Appendix B. Customizing the Status Display Facility (SDF) 227

Figure 40 shows the panel definition statements required to define the panel in

Figure 39.

 In Figure 40, the panel name is SYSTEM. This panel definition can either be in a

separate member referenced by a %INCLUDE statement in AOFPNLS or be

directly coded in AOFPNLS. The recommended method is to use a separate

member and a %INCLUDE statement. If it is in a separate member, the member

name is SYSTEM. You do not have to explicitly define every PF key for the panel.

PF key definitions not specified are picked up from definitions in NetView

DSIPARM member AOFINIT.

Table 9 describes each statement in Figure 40:

 Table 9. Panel Definition Entry Description

Statement Description and Example Value

PANEL(SYSTEM,24,80) The panel definition statement. The panel name is SYSTEM, the

panel length is 24, and the panel width is 80.

TEXTFIELD(01,02,10,WHITE,NORMAL) The text location statement defining constant panel fields. This field

starts on line 01 in position 02 and ends in position 10. The color of

the field is white and highlighting is normal.

TEXTTEXT(SYSTEM) The text data statement specifying the actual data that goes in the

text field just defined. This field contains the word SYSTEM.

TEXTFIELD and TEXTTEXT are always grouped in pairs.

 SYSTEM DATA CENTER SYSTEMS

 SY1 GATEWAY

===>

1=HELP 2=DETAIL 3=RET 6=ROLL 7=UP 8=DN 10=LF 11=RT 12=TOP

Figure 39. Example SDF Panel

PANEL(SYSTEM,24,80)

TEXTFIELD(01,02,10,WHITE,NORMAL)

TEXTTEXT(SYSTEM)

TF(01,25,57,WHITE,NORMAL)

TT(DATA CENTER SYSTEMS)

STATUSFIELD(SY1,04,04,11,N,,SY1SYS)

STATUSTEXT(SY1)

SF(SY1.GATEWAY,02,40,47,N,,GATEWAY)

ST(GATEWAY)

TF(24,01,79,T,NORMAL)

TT(1=HELP 2=DETAIL 3=RET 6=ROLL 7=UP 8=DN ,

10=LF 11=RT 12=TOP)

PFK1(AOCHELP SDF)

PFK2(DETAIL)

PFK3(RETURN)

PFK6(ROLL)

PFK7(UP)

PFK8(DOWN)

PFK10(LEFT)

PFK11(RIGHT)

PFK12(TOP)

ENDPANEL

Figure 40. Example Panel Definition Entry

228 System Automation for z/OS: Customizing and Programming

Table 9. Panel Definition Entry Description (continued)

Statement Description and Example Value

TF(01,25,57,WHITE,NORMAL) Another TEXTFIELD statement for another constant field.

TT(DATA CENTER SYSTEMS) Another TEXTTEXT statement for the text field just defined.

STATUSFIELD(SY1,04,04,11,N,,SY1SYS) The location of the status component field. The status component is

SY1. This field starts on line 04 in position 04 and ends in position

11. The highlighting level is normal. The next panel displayed when

the Up PF key is pressed is SY1SYS.

STATUSTEXT(SY1) The text data used for the name of the field just defined with the

STATUSFIELD statement. In this case, the field name is SY1.

STATUSFIELD and STATUSTEXT statements are grouped in pairs.

SF(SY1.GATEWAY,02,40,47,N,,GATEWAY) Another STATUSFIELD definition.

ST(GATEWAY) Another STATUSTEXT definition.

TF(24,01,79,T,NORMAL)

TT(1=HELP 2=DETAIL 3=RET 6=ROLL 7=UP,

8=DN 10=LF 11=RT 12=TOP)

Here, TEXTFIELD and TEXTTEXT are used to display PF key

definitions. For this panel, these are the default definitions defined

in AOFINIT. If you need values differing from the defaults, there is

a statement for defining PF keys unique to this panel, DPFKnn. See

IBM Tivoli System Automation for z/OS Programmer’s Reference for a

description of this statement.

PFK1(AOCHELP SDF)

PFK2(DETAIL)

PFK3(RETURN)

PFK6(ROLL)

PFK7(UP)

PFK8(DOWN)

PFK10(LEFT)

PFK11(RIGHT)

PFK12(TOP)

PF key definition statements.

ENDPANEL The end panel statement, indicating that this is the end of definitions

for this panel.

%INCLUDE Statement for SDF Panels

The %INCLUDE statement for SDF has the following features:

v The SDF %INCLUDE statement allows specifying a list of members rather than

a single member only. Each member name in the list represents a DSIPARM

member be loaded. Member names in the list are delimited by a comma.

v The SDF %INCLUDE statement requires parentheses around the specified

member or members.

v The target DSIPARM members may contain only complete panel definitions or

additional %INCLUDE statements. Panel definitions must be contained within a

single member, and therefore cannot be built using commonly defined segments.

Step 3: Customizing SDF Initialization Parameters

Member AOFINIT allows you to define parameters common to all SDF panels and

SDF initialization specifications, such as:

v Initial screen shown when SDF is started

v Maximum operator logon limit

v Default PF key definitions

v Detail status display panel PF key definitions

v Detail status display panel PF key descriptions

Appendix B. Customizing the Status Display Facility (SDF) 229

v Default priorities and colors

These parameters define values for SDF when it is started.

This step of SDF customization is optional. Using SA z/OS-provided default

values for these parameters is recommended.

Note: User-defined statuses are not saved across a recycle or a monitor cycle. This

means the status of a subsystem will change from the user-defined status to

an appropriate SA z/OS status.

Step 4: Defining SDF in the Customization Dialog

The SDF entries in the Status Details policy object allow you to define statuses and

the priorities assigned to those statuses. These entries are used by SA z/OS

common routines to gather data for requests to add status descriptors to status

components. The format and values used in SDF Status Detail definitions are

described in IBM Tivoli System Automation for z/OS Programmer’s Reference.

This step of SDF customization is optional. Using SA z/OS-provided definitions

for SDF is recommended.

230 System Automation for z/OS: Customizing and Programming

Appendix C. Message Automation

FORCED AT Entry Type

This AT entry must be generated in the predefined way. An AT entry is generated

as shown in INGMSG02 (see Figure 41) even though the message may not appear

in the Customization Dialog. The AT entry cannot be overridden. No AUTO action

is valid.

 Because you may need to issue a command or a reply in response to a forced

message, you can define a CMD or REPLY for several (but not all) forced

messages. This will append an ISSUECMD or ISSUEREP action to the AT entry, as

shown in Figure 42.

 It is recommended that you refer to INGMSG02 to obtain those AT entries where

optional actions are or are not supported.

RECOMMENDED AT Entry Type

You are recommended to use this AT entry in the predefined way. An AT entry is

generated as shown in INGMSG02 (see Figure 43 on page 232) even though the

message may not have been defined in the Customization Dialog. The AT entry can

be overridden (using the OVR action) in the Customization Dialog.

INGMSG02

* - FORCED AT ENTRY

IF

MSGID = ’EVE172I’

THEN

EXEC(CMD(’AOCFILT * EVEEI010 ’)ROUTE(ONE %AOFOPGSSOPER%))

EXEC(CMD(’AOCFILT * EVEEI009 PPI’)ROUTE(ONE %AOFOPGSSOPER%))

EXEC(CMD(’AOCFILT * EVEEY00S MSGID=PPIOPN’)ROUTE(ONE %AOFOPGSSOPER%));

*

Figure 41. Sample FORCED AT Entry

INGMSG02

*

* Tape mount monitoring

* - FORCED AT ENTRY

IF (GROUP:INGTAPE)

MSGID = ’IEF233A’

THEN

EXEC(CMD(’INGRTAPE ’)ROUTE(ONE %AOFOPSYSOPER%))

DOMACTION(AUTOMATE)

* - CONDITIONAL AT ACTION ENTRY

EXEC(CMD(’ISSUEREP ’)ROUTE(ONE %AOFOPWTORS%))

* - CONDITIONAL AT ACTION ENTRY

EXEC(CMD(’ISSUECMD ’)ROUTE(ONE %AOFOPGSSOPER%));

*

Figure 42. Sample FORCED AT Entry with ISSUECMD and ISSUEREP Action

© Copyright IBM Corp. 1996, 2005 231

Defining a CMD, REPLY, CODE or USER action does not change the recommended

AT entry. AUTO(IGNORE) and AUTO(SUPPRESS) prevent an AT entry being

created. For other AUTO actions the recommended AT entry is built.

CONDITIONAL AT Entry Type

A CONDITIONAL AT entry can be defined for either known or unknown

messages.

Known Messages

This AT entry is optional. It is only generated if the message has been defined in

the Customization Dialog together with a CMD, REPLY, CODE, USER, AUTO, or

OVR action (see Figure 44).

 The AT entry is generated as predefined in INGMSG02 for the known message but

can be overridden with an OVR action. Defining a CMD, REPLY, CODE, USER, or

AUTO action does not overrule the predefined behavior (that is, a stop message

will still be a stop message, for example).

INGMSG02

*

* AMRF Buffer recovery

* - RECOMMENDED AT ENTRY

IF

MSGID = ’IEA359E’

THEN

EXEC(CMD(’AOFRSA0G ’)ROUTE(ONE %AOFOPRECOPER%));

*

* AMRF Buffer recovery

* - RECOMMENDED AT ENTRY

IF

MSGID = ’IEA360A’

THEN

EXEC(CMD(’AOFRSA0G ’)ROUTE(ONE %AOFOPRECOPER%));

*

* AMRF Buffer recovery

* - RECOMMENDED AT ENTRY

IF

MSGID = ’IEA361I’

THEN

EXEC(CMD(’AOFRSA0G ’)ROUTE(ONE %AOFOPRECOPER%));

*

Figure 43. Sample RECOMMENDED AT Entry Type

INGMSG02

*

* JES2 shutdown

* - CONDITIONAL AT ENTRY

IF

MSGID(2) = ’HASP099’

THEN

EXEC(CMD(’AOFRSD0D ’)ROUTE(ONE %AOFOPGSSOPER%));

*

Figure 44. CONDITIONAL AT Entry for a Specific Message

232 System Automation for z/OS: Customizing and Programming

Unknown Messages

This AT entry is optional. It is only generated if the message has been defined in

the Customization Dialog together with a CMD, REPLY, AUTO, or OVR action (see

Figure 45).

 You can refer to the INGMSG02 to see where entries for unknown messages (for

example, IEA*) would be placed in the generated AT.

The action statement of the AT entry depends on the action as defined in the

Customization Dialog, that is:

 Action Statement Defined Action

ISSUECMD CMD

ISSUEREP REPLY

ACTIVMSG AUTO(UP, ACTIVE)

TERMMSG AUTO(ABENDED, BROKEN, TERMINATED, etc.)

HALTMSG AUTO(HALTED

This will produce a different AT entry to the standard, specific entry.

Table 10 shows which default AT entry is generated for a particular AUTO action.

 Table 10. AT Entries That Are Generated by AUTO Actions

Status Automation Table Action Statement

ACTIVE

EXEC(CMD(’ACTIVMSG UP=NO’)ROUTE(ONE %AOFOPGSSOPER%))

ABENDED

EXEC(CMD(’TERMMSG FINAL=YES,ABEND=YES’)ROUTE(ONE %AOFOPGSSOPER%))

ABENDING

EXEC(CMD(’TERMMSG FINAL=NO,ABEND=YES’)ROUTE(ONE %AOFOPGSSOPER%))

BREAKING

EXEC(CMD(’TERMMSG FINAL=NO,BREAK=YES’)ROUTE(ONE %AOFOPGSSOPER%))

BROKEN

EXEC(CMD(’TERMMSG FINAL=YES,BREAK=YES’)ROUTE(ONE %AOFOPGSSOPER%))

CAPTURE

EXEC(CMD(’AOFCPMSG ’)ROUTE(ONE %AOFOPGSSOPER%)) DOMACTION(AUTOMATE)

HALTED

EXEC(CMD(’HALTMSG ’)ROUTE(ONE %AOFOPGSSOPER%))

TERMINATED

EXEC(CMD(’TERMMSG FINAL=YES’)ROUTE(ONE %AOFOPGSSOPER%))

TERMINATING

EXEC(CMD(’TERMMSG FINAL=YES’)ROUTE(ONE %AOFOPGSSOPER%))

UP

EXEC(CMD(’ACTIVMSG UP=YES’)ROUTE(ONE %AOFOPGSSOPER%))

The AT entry can also be defined using the OVR action with the following

conditions for its generation:

v If OVR is supported for a predefined AT entry, it will be replaced by the

override.

v If OVR is defined multiple times for the same message ID but for different APL

instances in the PDB, then multiple AT entries are generated.

v If OVR is defined for a message that other actions have also been defined for,

only the OVR AT entry will be generated.

INGMSG02

*

* - IEA* MESSAGES ARE PLACED HERE

*

Figure 45. CONDITIONAL AT Entry for a Generic Message

Appendix C. Message Automation 233

v If OVR is defined for a message at APL CLASS level where no check is done for

the Jobname (&SUBSJOB), only one OVR AT entry will be generated. (The

prerequisite is that at least one instance is linked to that class.)

v If OVR is defined for a message at APL CLASS level where a check for the

Jobname (&SUBSJOB) is done, one OVR AT entry will be generated for each

instance linked to that class.

.

Other Forced AT Entries

The following AT entries are always built:

v BEGIN–END block statements (for performance and design reasons)

v ALWAYS statements

v Capture WTORs

See Figure 46 for examples.

Restricted Message IDs

The following restricted message IDs will not create an AT entry:

 ABCODEPROG ABCODES ABCODESYSTM ABCODETRAN

ABENDED ABENDING ACORESTART ACTCODES

ACTIVE ALTCODES AMRFSHORT AMRFFULL

AMRFCLEAR AUTODOWN AUTOTERM BMPABEND

BREAKING BRO BROKEN CAPMSGS

CHE CICSINFO CITIME CONN

CQSET CTLDOWN DATABASE DOMAINID

DOWN ENDED ENDING EXTSTART

FALLBACK FORCE FPABEND HALFDOWN

HALTED HEALTHCHK HOLDQ IMSINFO

INACTIVE JESABEND LISTSHUT LOGREC

LOGGER MDSCOUNTA MDSCOUNTB MDSCOUNTE

INGMSG02

* ------------------------------------

* Supervisor Messages

IF

MSGID = ’IEA’ . & DOMAINID = %AOFDOM%

THEN BEGIN;

* ...
* - FORCED AT ENTRY

IF

IFRAUWF1(6) = ’1’

THEN

EXEC(CMD(’OUTREP ’)ROUTE(ONE %AOFOPWTORS%));

*

ALWAYS

%AOFALWAYSACTION%;

*

END;

* ---

Figure 46. BEGIN–END Block Statements

234 System Automation for z/OS: Customizing and Programming

|

MDSCOUNTF MDSCOUNTQ MDSCOUNTR MDSCOUNTSS

MDSCOUNTSV MDSCOUNTU MDSCOUNTV MDSCOUNTW

MOVED MVSDUMP MVSDUMPTAKEN MVSDUMPRESET

NOJSM OLDS OPCA OPCACMD

OPCAPARM POSTCHKP PPIACTIVE PRECHKP

RCVRAUTO RCVRSOS RCVRTRAN RCVRVIOL

RECONS RELEASEQ RESTART RESTARTABORT

RUNNING SHUTFORCEDDF SHUTTYPES SMFDUMP

SNAPQ SPOOLFULL SPOOLSHORT STADC

START STARTED STARTED2 STOPBMPREGION

STOPFPREGION STOPPED STOPPING STOPREGION

STUCK SYSLOG TAPES TCO

TERMINATING TERMINATED TPABEND UNLKAVM

UNLOCK UP USERSTART VTAMTERMS

VTAMUP WORKSTATION WTORS ZOMBIE

VTAMDOWN

Appendix C. Message Automation 235

||

|

236 System Automation for z/OS: Customizing and Programming

Appendix D. TSO User Monitoring

Active TSO users can be monitored in NMC and SDF using the SA z/OS

command DFTSOU (EVJETSOU). To enable TSO user monitoring add the

following entry to user AT member INGMSGU1 (or to your own user message

table):

IF (MSGID=’IEF125I’ | MSGID=’IEF126I’ | MSGID=’IEF450I’) & TEXT=MESSAGE

 THEN EXEC(CMD(’DFTSOU UPDATE’) ROUTE(ALL *))

 DISPLAY(N) NETLOG(N) CONTINUE(Y);

Also, put ’DFTSOU SCAN’ in the ACORESTART message for the TSO subsystem.

When DFTSOU is called with the UPDATE parameter then:

v For IEF125I, an ADD request is sent to SDF and NMC for the TSO user that

produces the message.

v For IEF126I, a DELETE request is sent to SDF and NMC for the TSO user that

produces the message.

v For IEF450I, a DELETE request is sent to SDF and NMC for the failing TSO user.

When IEF450I is specified, and the trap is coded in INGMSGU1, then

CONTINUE(Y) must also be coded.

When DFTSOU is called with the SCAN parameter, an MVS D TS,L command is

issued to identify all currently active TSO users. This data is then passed to SDF

and NMC.

NMC updates are associated with NMC object TSO. SDF updates are associated

with SDF tree entry TSOUSERS.

© Copyright IBM Corp. 1996, 2005 237

238 System Automation for z/OS: Customizing and Programming

Glossary

This glossary includes terms and definitions from:

v The IBM Dictionary of Computing New York:

McGraw-Hill, 1994.

v The American National Standard Dictionary for

Information Systems , ANSI X3.172-1990,

copyright 1990 by the American National

Standards Institute (ANSI). Copies can be

purchased from the American National

Standards Institute, 1430 Broadway, New York,

New York 10018. Definitions are identified by

the symbol (A) after the definition.

v The Information Technology Vocabulary developed

by Subcommittee 1, Joint Technical Committee

1, of the International Organization for

Standardization and the International

Electrotechnical Commission (ISO/IEC

JTC1/SC1). Definitions of published parts of

this vocabulary are identified by the symbol (I)

after the definition; definitions taken from draft

international standards, committee drafts, and

working papers being developed by ISO/IEC

JTC1/SC1 are identified by the symbol (T) after

the definition, indicating that final agreement

has not yet been reached among the

participating National Bodies of SC1.

The following cross-references are used in this

glossary:

 Contrast with. This refers to a term that has

an opposed or substantively different

meaning.

 Deprecated term for. This indicates that the

term should not be used. It refers to a

preferred term, which is defined in its proper

place in the glossary.

 See. This refers the reader to multiple-word

terms in which this term appears.

 See also. This refers the reader to terms that

have a related, but not synonymous, meaning.

 Synonym for. This indicates that the term has

the same meaning as a preferred term, which

is defined in the glossary.

 Synonymous with. This is a backward

reference from a defined term to all other

terms that have the same meaning.

A

ACF. Automation control file.

ACF/NCP. Advanced Communications Function for

the Network Control Program. See Advanced

Communications Function and Network Control Program.

ACF/VTAM. Advanced Communications Function for

the Virtual Telecommunications Access Method.

Synonym for VTAM. See Advanced Communications

Function and Virtual Telecommunications Access Method.

active monitoring. In SA z/OS, the acquiring of

resource status information by soliciting such

information at regular, user-defined intervals. See also

passive monitoring.

adapter. Hardware card that enables a device, such as

a workstation, to communicate with another device,

such as a monitor, a printer, or some other I/O device.

Address Space Workflow. In RMF, a measure of how

a job uses system resources and the speed at which the

job moves through the system. A low workflow

indicates that a job has few of the resources it needs

and is contending with other jobs for system resources.

A high workflow indicates that a job has all the

resources it needs to execute.

adjacent hosts. Systems connected in a peer

relationship using adjacent NetView sessions for

purposes of monitoring and control.

adjacent NetView. In SA z/OS, the system defined as

the communication path between two SA z/OS

systems that do not have a direct link. An adjacent

NetView is used for message forwarding and as a

communication link between two SA z/OS systems.

For example, the adjacent NetView is used when

sending responses from a focal point to a remote

system.

Advanced Communications Function (ACF). A group

of IBM licensed programs (principally VTAM, TCAM,

NCP, and SSP) that use the concepts of Systems

Network Architecture (SNA), including distribution of

function and resource sharing.

advanced program-to-program communication

(APPC). A set of inter-program communication

services that support cooperative transaction processing

in a Systems Network Architecture (SNA) network.

APPC is the implementation, on a given system, of

SNA’s logical unit type 6.2.

alert. (1) In SNA, a record sent to a system problem

management focal point or to a collection point to

communicate the existence of an alert condition. (2) In

NetView, a high-priority event that warrants immediate

© Copyright IBM Corp. 1996, 2005 239

attention. A database record is generated for certain

event types that are defined by user-constructed filters.

alert condition. A problem or impending problem for

which some or all of the process of problem

determination, diagnosis, and resolution is expected to

require action at a control point.

alert focal-point system. See entry for NPDA

focal-point system under focal—point system.

alert threshold. An application or volume service

value that determines the level at which SA z/OS

changes the associated icon in the graphical interface to

the alert color. SA z/OS may also issue an alert. See

warning threshold.

AMC. (1) Automation Manager Configuration (2) The

Auto Msg Classes entry type

APF. Authorized program facility.

API. Application programming interface.

APPC. Advanced program-to-program

communications.

application. An z/OS subsystem or job monitored by

SA z/OS.

Application entry. A construct, created with the

customization dialogs, used to represent and contain

policy for an application.

application group. A named set of applications. An

application group is part of an SA z/OS enterprise

definition and is used for monitoring purposes.

ApplicationGroup entry. A construct, created with the

customization dialogs, used to represent and contain

policy for an application group.

application program. (1) A program written for or by

a user that applies to the user’s work, such as a

program that does inventory or payroll. (2) A program

used to connect and communicate with stations in a

network, enabling users to perform application-oriented

activities.

ARM. Automatic restart management.

ASCB. Address space control block.

ASCB status. An application status derived by

SA z/OS running a routine (the ASCB checker) that

searches the z/OS address space control blocks

(ASCBs) for address spaces with a particular job name.

The job name used by the ASCB checker is the job

name defined in the customization dialog for the

application.

ASCII (American National Standard Code for

Information Interchange). The standard code, using a

coded character set consisting of 7-bit coded characters

(8-bit including parity check), for information

interchange among data processing systems, data

communication systems, and associated equipment. The

ASCII set consists of control characters and graphic

characters. (A)

ASF. Automation status file.

assist mode facility. An SA z/OS facility that uses

SDF and enables interaction with automation before

SA z/OS takes an automation action. SDF prompts the

operator with a suggested action, then provides options

for using that action, modifying and using the action,

or canceling the action. Also called assist mode, it is

enabled using the customization dialogs, or

dynamically.

authorized program facility (APF). A facility that

permits identification of programs that are authorized

to use restricted functions.

automated function. SA z/OS automated functions

are automation operators, NetView autotasks that are

assigned to perform specific automation functions.

However, SA z/OS defines its own synonyms, or

automated function names, for the NetView autotasks,

and these function names are referred to in the sample

policy databases provided by SA z/OS. For example,

the automation operator AUTBASE corresponds to the

SA z/OS automated function BASEOPER.

automated console operations (ACO). The concept

(versus a product) of using computers to perform a

large subset of tasks ordinarily performed by operators,

or assisting operators in performing these tasks.

automatic restart management. A z/OS recovery

function that improves the availability of specified

subsystems and applications by automatically restarting

them under certain circumstances. Automatic restart

management is a function of the Cross-System

Coupling Facility (XCF) component of z/OS.

automatic restart management element name. In MVS

5.2 or later, z/OS automatic restart management

requires the specification of a unique sixteen character

name for each address space that registers with it. All

automatic restart management policy is defined in

terms of the element name, including SA z/OS’s

interface with it.

automation. The automatic initiation of actions in

response to detected conditions or events. SA z/OS

provides automation for z/OS applications, z/OS

components, and remote systems that run z/OS.

SA z/OS also provides tools that can be used to

develop additional automation.

automation agent. In SA z/OS, the automation

function is split up between the automation manager

and the automation agents. The observing, reacting and

doing parts are located within the NetView address

240 System Automation for z/OS: Customizing and Programming

space, and are known as the automation agents. The

automation agents are responsible for:

v recovery processing

v message processing

v active monitoring: they propagate status changes to

the automation manager

automation configuration file. The data set that

consists of:

v the automation control file (ACF)

v the automation manager configuration file (AMC)

v the NetView automation table (AT)

v the MPFLSTSA member

automation control file (ACF). In SA z/OS, a file that

contains system-level automation policy information.

There is one master automation control file for each

NetView system on which SA z/OS is installed.

Additional policy information and all resource status

information is contained in the policy database (PDB).

The SA z/OS customization dialogs must be used to

build the automation control files. They must not be

edited manually.

automation flags. In SA z/OS, the automation policy

settings that determine the operator functions that are

automated for a resource and the times during which

automation is active. When SA z/OS is running,

automation is controlled by automation flag policy

settings and override settings (if any) entered by the

operator. Automation flags are set using the

customization dialogs.

automation manager. In SA z/OS, the automation

function is split up between the automation manager

and the automation agents. The coordination, decision

making and controlling functions are processed by each

sysplex’s automation manager.

 The automation manager contains a model of all of the

automated resources within the sysplex. The

automation agents feed the automation manager with

status information and perform the actions that the

automation manager tells them to.

 The automation manager provides sysplex-wide

automation.

Automation Manager Configuration. The Automation

Manager Configuration file (AMC) contains an image

of the automated systems in a sysplex or of a

standalone system.

Automation NetView. In SA z/OS the NetView that

performs routine operator tasks with command

procedures or uses other ways of automating system

and network management, issuing automatic responses

to messages and management services units.

automation operator. NetView automation operators

are NetView autotasks that are assigned to perform

specific automation functions. See also automated

function. NetView automation operators may receive

messages and process automation procedures. There are

no logged-on users associated with automation

operators. Each automation operator is an operating

system task and runs concurrently with other NetView

tasks. An automation operator could be set up to

handle JES2 messages that schedule automation

procedures, and an automation statement could route

such messages to the automation operator. Similar to

operator station task. SA z/OS message monitor tasks

and target control tasks are automation operators.

automation policy. The policy information governing

automation for individual systems. This includes

automation for applications, z/OS subsystems, z/OS

data sets, and z/OS components.

automation policy settings. The automation policy

information contained in the automation control file.

This information is entered using the customization

dialogs. You can display or modify these settings using

the customization dialogs.

automation procedure. A sequence of commands,

packaged as a NetView command list or a command

processor written in a high-level language. An

automation procedure performs automation functions

and runs under NetView.

automation status file. In SA z/OS, a file containing

status information for each automated subsystem,

component or data set. This information is used by

SA z/OS automation when taking action or when

determining what action to take. In Release 2 and

above of AOC/MVS, status information is also

maintained in the operational information base.

automation table (AT). See NetView automation table.

autotask. A NetView automation task that receives

messages and processes automation procedures. There

are no logged-on users associated with autotasks. Each

autotask is an operating system task and runs

concurrently with other NetView tasks. An autotask

could be set up to handle JES2 messages that schedule

automation procedures, and an automation statement

could route such messages to the autotasks. Similar to

operator station task. SA z/OS message monitor tasks

and target control tasks are autotasks. Also called

automation operator.

available. In VTAM programs, pertaining to a logical

unit that is active, connected, enabled, and not at its

session limit.

B

basic mode. A central processor mode that does not

use logical partitioning. Contrast with logically

partitioned (LPAR) mode.

Glossary 241

BCP Internal Interface. Processor function of

CMOS-390, zSeries processor families. It allows the

communication between basic control programs such as

z/OS and the processor support element in order to

exchange information or to perform processor control

functions. Programs using this function can perform

hardware operations such as ACTIVATE or SYSTEM

RESET.

beaconing. The repeated transmission of a frame or

messages (beacon) by a console or workstation upon

detection of a line break or outage.

BookManager. An IBM product that lets users view

softcopy documents on their workstations.

C

central processor (CP). The part of the computer that

contains the sequencing and processing facilities for

instruction execution, initial program load (IPL), and

other machine operations.

central processor complex (CPC). A physical

collection of hardware that consists of central storage,

one or more central processors, timers, and channels.

central site. In a distributed data processing network,

the central site is usually defined as the focal point for

alerts, application design, and remote system

management tasks such as problem management.

CFR/CFS and ISC/ISR. I/O operations can display

and return data about integrated system channels (ISC)

connected to a coupling facility and coupling facility

receiver (CFR) channels and coupling facility sender

(CFS) channels.

channel. A path along which signals can be sent; for

example, data channel, output channel. See also link.

channel path identifier. A system-unique value

assigned to each channel path.

CHPID. In SA z/OS, channel path ID; the address of

a channel.

CHPID port. A label that describes the system name,

logical partitions, and channel paths.

channel-attached. (1) Attached directly by I/O

channels to a host processor (for example, a

channel-attached device). (2) Attached to a controlling

unit by cables, rather than by telecommunication lines.

Contrast with link-attached. Synonymous with local.

CI. Console integration.

CICS/VS. Customer Information Control System for

Virtual Storage.

CLIST. Command list.

clone. A set of definitions for application instances

that are derived from a basic application definition by

substituting a number of different system-specific

values into the basic definition.

clone ID. A generic means of handling system-specific

values such as the MVS SYSCLONE or the VTAM

subarea number. Clone IDs can be substituted into

application definitions and commands to customize a

basic application definition for the system that it is to

be instantiated on.

CNC. A channel path that transfers data between a

host system image and an ESCON control unit. It can

be point-to-point or switchable.

command. A request for the performance of an

operation or the execution of a particular program.

command facility. The component of NetView that is

a base for command processors that can monitor,

control, automate, and improve the operation of a

network. The successor to NCCF.

command list (CLIST). (1) A list of commands and

statements, written in the NetView command list

language or the REXX language, designed to perform a

specific function for the user. In its simplest form, a

command list is a list of commands. More complex

command lists incorporate variable substitution and

conditional logic, making the command list more like a

conventional program. Command lists are typically

interpreted rather than being compiled. (2) In

SA z/OS, REXX command lists that can be used for

automation procedures.

command procedure. In NetView, either a command

list or a command processor.

command processor. A module designed to perform a

specific function. Command processors, which can be

written in assembler or a high-level language (HLL),

are issued as commands.

Command Tree/2. An OS/2-based program that helps

you build commands on an OS/2 window, then routes

the commands to the destination you specify (such as a

3270 session, a file, a command line, or an application

program). It provides the capability for operators to

build commands and route them to a specified

destination.

common commands. The SA z/OS subset of the CPC

operations management commands.

common routine. One of several SA z/OS programs

that perform frequently used automation functions.

Common routines can be used to create new

automation procedures.

Common User Access (CUA) architecture. Guidelines

for the dialog between a human and a workstation or

terminal.

242 System Automation for z/OS: Customizing and Programming

communication controller. A type of communication

control unit whose operations are controlled by one or

more programs stored and executed in the unit or by a

program executed in a processor to which the controller

is connected. It manages the details of line control and

the routing of data through a network.

communication line. Deprecated term for

telecommunication line.

connectivity view. In SA z/OS, a display that uses

graphic images for I/O devices and lines to show how

they are connected.

console automation. The process of having NetView

facilities provide the console input usually handled by

the operator.

console connection. In SA z/OS, the 3270 or ASCII

(serial) connection between a PS/2 computer and a

target system. Through this connection, the workstation

appears (to the target system) to be a console.

console integration (CI). A hardware facility that if

supported by an operating system, allows operating

system messages to be transferred through an internal

hardware interface for display on a system console.

Conversely, it allows operating system commands

entered at a system console to be transferred through

an internal hardware interface to the operating system

for processing.

consoles. Workstations and 3270-type devices that

manage your enterprise.

Control units. Hardware units that control I/O

operations for one or more devices. You can view

information about control units through I/O

operations, and can start or stop data going to them by

blocking and unblocking ports.

controller. A unit that controls I/O operations for one

or more devices.

couple data set. A data set that is created through the

XCF couple data set format utility and, depending on

its designated type, is shared by some or all of the

z/OS systems in a sysplex. See also sysplex couple data

set and XCF couple data set.

coupling facility. The hardware element that provides

high-speed caching, list processing, and locking

functions in a sysplex.

CP. Central processor.

CPC. Central processor complex.

CPC operations management commands. A set of

commands and responses for controlling the operation

of System/390 CPCs.

CPC subset. All or part of a CPC. It contains the

minimum resource to support a single control program.

CPCB. Command processor control block; an I/O

operations internal control block that contains

information about the command being processed.

CPU. Central processing unit. Deprecated term for

processor.

cross-system coupling facility (XCF). XCF is a

component of z/OS that provides functions to support

cooperation between authorized programs running

within a sysplex.

CTC. The channel-to-channel (CTC) channel can

communicate with a CTC on another host for

intersystem communication.

Customer Information Control System (CICS). A

general-purpose transactional program that controls

online communication between terminal users and a

database for a large number of end users on a real-time

basis.

customization dialogs. The customization dialogs are

an ISPF application. They are used to customize the

enterprise policy, like, for example, the enterprise

resources and the relationships between resources, or

the automation policy for systems in the enterprise.

How to use these dialogs is described in IBM Tivoli

System Automation for z/OS Customizing and

Programming.

CVC. A channel operating in converted (CVC) mode

transfers data in blocks and a CBY channel path

transfers data in bytes. Converted CVC or CBY channel

paths can communicate with a parallel control unit.

This resembles a point-to-point parallel path and

dedicated connection, regardless whether it passes

through a switch.

D

DASD. Direct access storage device.

data services task (DST). The NetView subtask that

gathers, records, and manages data in a VSAM file or a

network device that contains network management

information.

data set. The major unit of data storage and retrieval,

consisting of a collection of data in one of several

prescribed arrangements and described by control

information to which the system has access.

data set members. Members of partitioned data sets

that are individually named elements of a larger file

that can be retrieved by name.

DBCS. Double-byte character set.

DCCF. Disabled console communication facility.

DCF. Document composition facility.

Glossary 243

DELAY Report. An RMF report that shows the

activity of each job in the system and the hardware and

software resources that are delaying each job.

Devices. You can see information about all devices

(such as printers, tape or disk drives, displays, or

communications controllers) attached to a particular

switch, and control paths and jobs to devices.

DEVR Report. An RMF report that presents

information about the activity of I/O devices that are

delaying jobs.

dialog. Interactive 3270 panels.

direct access storage device (DASD). A device in

which the access time is effectively independent of the

location of the data; for example, a disk.

disabled console communication facility (DCCF). A

z/OS component that provides limited-function console

communication during system recovery situations.

display. (1) To present information for viewing,

usually on the screen of a workstation or on a

hardcopy device. (2) Deprecated term for panel.

disk operating system (DOS). (1) An operating

system for computer systems that use disks and

diskettes for auxiliary storage of programs and data. (2)

Software for a personal computer that controls the

processing of programs. For the IBM Personal

Computer, the full name is Personal Computer Disk

Operating System (PCDOS).

distribution manager. The component of the NetView

program that enables the host system to use, send, and

delete files and programs in a network of computers.

domain. (1) An access method and its application

programs, communication controllers, connecting lines,

modems, and attached workstations. (2) In SNA, a

system services control point (SSCP) and the physical

units (PUs), logical units (LUs), links, link stations, and

associated resources that the SSCP can control by

means of activation requests and deactivation requests.

double-byte character set (DBCS). A character set,

such as Kanji, in which each character is represented by

a 2-byte code.

DP enterprise. Data processing enterprise.

DSIPARM. This file is a collection of members of

NetView’s customization.

DST. Data Services Task.

E

EBCDIC. Extended binary-coded decimal interchange

code. A coded character set consisting of 8-bit coded

characters.

ECB. Event control block. A control block used to

represent the status of an event.

EMCS. Extended multiple console support.

enterprise. An organization, such as a business or a

school, that uses data processing.

enterprise monitoring. Enterprise monitoring is used

by SA z/OS to update the NetView Management Console

(NMC) resource status information that is stored in the

Resource Object Data Manager (RODM). Resource status

information is acquired by enterprise monitoring of the

Resource Measurement Facility (RMF) Monitor III service

information at user-defined intervals. SA z/OS stores

this information in its operational information base,

where it is used to update the information presented to

the operator in graphic displays.

entries. Resources, such as processors, entered on

panels.

entry type. Resources, such as processors or

applications, used for automation and monitoring.

environment. Data processing enterprise.

error threshold. An automation policy setting that

specifies when SA z/OS should stop trying to restart

or recover an application, subsystem or component, or

offload a data set.

ESA. Enterprise Systems Architecture.

eServer. Processor family group designator used by

the SA z/OS customization dialogs to define a target

hardware as member of the zSeries or 390-CMOS

processor families.

event. (1) In NetView, a record indicating irregularities

of operation in physical elements of a network. (2) An

occurrence of significance to a task; for example, the

completion of an asynchronous operation, such as an

input/output operation. (3) Events are part of a trigger

condition, in a way that if all events of a trigger

condition have occurred, a STARTUP or SHUTDOWN

of an application is performed.

exception condition. An occurrence on a system that

is a deviation from normal operation. SA z/OS

monitoring highlights exception conditions and allows

an SA z/OS enterprise to be managed by exception.

extended recovery facility (XRF). A facility that

minimizes the effect of failures in z/OS, VTAM, the

host processor, or high availability applications during

sessions between high availability applications and

designated terminals. This facility provides an alternate

subsystem to take over sessions from the failing

subsystem.

244 System Automation for z/OS: Customizing and Programming

F

fallback system. See secondary system.

field. A collection of bytes within a record that are

logically related and are processed as a unit.

file manager commands. A set of SA z/OS

commands that read data from or write data to the

automation control file or the operational information

base. These commands are useful in the development

of automation that uses SA z/OS facilities.

focal point. In NetView, the focal-point domain is the

central host domain. It is the central control point for

any management services element containing control of

the network management data.

focus host. A processor with the role in the context of

a unified system image

focal point system. (1) A system that can administer,

manage, or control one or more target systems. There

are a number of different focal point system associated

with IBM automation products. (2) NMC focal point

system. The NMC focal point system is a NetView

system with an attached workstation server and LAN

that gathers information about the state of the network.

This focal point system uses RODM to store the data it

collects in the data model. The information stored in

RODM can be accessed from any LAN-connected

workstation with NetView Management Console

installed. (3) NPDA focal point system. This is a

NetView system that collects all the NPDA alerts that

are generated within your enterprise. It is supported by

NetView. If you have SA z/OS installed the NPDA

focal point system must be the same as your NMC

focal point system. The NPDA focal point system is

also known as the alert focal point system. (4) SA z/OS

Processor Operations focal point system. This is a

NetView system that has SA z/OS host code installed.

The SA z/OS Processor Operations focal point system

receives messages from the systems and operator

consoles of the machines that it controls. It provides

full systems and operations console function for its

target systems. It can be used to IPL these systems.

Note that some restrictions apply to the Hardware

Management Console for an S/390 microprocessor

cluster. (5) SA z/OS SDF focal point system. The

SA z/OS SDF focal point system is an SA z/OS

NetView system that collects status information from

other SA z/OS NetViews within your enterprise. (6)

Status focal point system. In NetView, the system to

which STATMON, VTAM and NLDM send status

information on network resources. If you have a NMC

focal point, it must be on the same system as the Status

focal point. (7) Hardware Management Console.

Although not listed as a focal point, the Hardware

Management Console acts as a focal point for the

console functions of an S/390 microprocessor cluster.

Unlike all the other focal points in this definition, the

Hardware Management Console runs on a

LAN-connected workstation,

frame. For a System/390 microprocessor cluster, a

frame contains one or two central processor complexes

(CPCs), support elements, and AC power distribution.

full-screen mode. In NetView, a form of panel

presentation that makes it possible to display the

contents of an entire workstation screen at once.

Full-screen mode can be used for fill-in-the-blanks

prompting. Contrast with line mode.

G

gateway session. An NetView-NetView Task session

with another system in which the SA z/OS outbound

gateway operator logs onto the other NetView session

without human operator intervention. Each end of a

gateway session has both an inbound and outbound

gateway operator.

generic alert. Encoded alert information that uses

code points (defined by IBM and possibly customized

by users or application programs) stored at an alert

receiver, such as NetView.

generic routines. In SA z/OS, a set of self-contained

automation routines that can be called from the

NetView automation table, or from user-written

automation procedures.

group. A collection of target systems defined through

configuration dialogs. An installation might set up a

group to refer to a physical site or an organizational or

application entity.

group entry. A construct, created with the

customization dialogs, used to represent and contain

policy for a group.

group entry type. A collection of target systems

defined through the customization dialog. An

installation might set up a group to refer to a physical

site or an organizational entity. Groups can, for

example, be of type STANDARD or SYSPLEX.

H

Hardware Management Console. A console used by

the operator to monitor and control a System/390

microprocessor cluster.

Hardware Management Console Application

(HWMCA). A direct-manipulation object-oriented

graphical user interface that provides single point of

control and single system image for hardware elements.

HWMCA provides customer grouping support,

aggregated and real-time system status using colors,

consolidated hardware messages support, consolidated

operating system messages support, consolidated

Glossary 245

service support, and hardware commands targeted at a

single system, multiple systems, or a customer group of

systems.

heartbeat. In SA z/OS, a function that monitors the

validity of the status forwarding path between remote

systems and the NMC focal point, and monitors the

availability of remote z/OS systems, to ensure that

status information displayed on the SA z/OS

workstation is current.

help panel. An online panel that tells you how to use

a command or another aspect of a product.

hierarchy. In the NetView program, the resource

types, display types, and data types that make up the

organization, or levels, in a network.

high-level language (HLL). A programming language

that does not reflect the structure of any particular

computer or operating system. For the NetView

program, the high-level languages are PL/I and C.

HLL. High-level language.

host system. In a coupled system or distributed

system environment, the system on which the facilities

for centralized automation run. SA z/OS publications

refer to target systems or focal-point systems instead of

hosts.

host (primary processor). The processor at which you

enter a command (also known as the issuing processor).

HWMCA. Hardware Management Console

Application. Application for the graphic hardware

management console that monitors and controls a

central processor complex. It is attached to a target

processor (a system 390 microprocessor cluster) as a

dedicated system console. This microprocessor uses

OCF to process commands.

I

images. A grouping of processors and I/O devices

that you define. You can define a single-image mode

that allows a multiprocessor system to function as one

central processor image.

IMS/VS. Information Management System/Virtual

Storage.

inbound. In SA z/OS, messages sent to the

focal-point system from the PC or target system.

inbound gateway operator. The automation operator

that receives incoming messages, commands, and

responses from the outbound gateway operator at the

sending system. The inbound gateway operator handles

communications with other systems using a gateway

session.

Information Management System/Virtual Storage

(IMS/VS). A database/data communication (DB/DC)

system that can manage complex databases and

networks. Synonymous with IMS.

INGEIO PROC. The I/O operations default procedure

name; part of the SYS1.PROCLIB.

initial program load (IPL). (1) The initialization

procedure that causes an operating system to

commence operation. (2) The process by which a

configuration image is loaded into storage at the

beginning of a workday or after a system malfunction.

(3) The process of loading system programs and

preparing a system to run jobs.

initialize automation. SA z/OS-provided automation

that issues the correct z/OS start command for each

subsystem when SA z/OS is initialized. The

automation ensures that subsystems are started in the

order specified in the automation control file and that

prerequisite applications are functional.

input/output support processor (IOSP). The hardware

unit that provides I/O support functions for the

primary support processor and maintenance support

functions for the processor controller.

Interactive System Productivity Facility (ISPF). An

IBM licensed program that serves as a full-screen editor

and dialog manager. Used for writing application

programs, it provides a means of generating standard

screen panels and interactive dialogs between the

application programmer and the terminal user.

interested operator list. The list of operators who are

to receive messages from a specific target system.

internal token. A logical token (LTOK); name by which

the I/O resource or object is known; stored in IODF.

IOCDS. I/O configuration data set. The data set that

describes the I/O configuration.

I/O Ops. I/O operations.

IOSP. Input/Output Support Processor.

I/O operations. The part of SA z/OS that provides

you with a single point of logical control for managing

connectivity in your active I/O configurations. I/O

operations takes an active role in detecting unusual

conditions and lets you view and change paths

between a processor and an I/O device, using dynamic

switching (the ESCON director). Also known as I/O

Ops.

I/O resource number. Combination of channel path

identifier (CHPID), device number, etc. See internal

token.

IPL. Initial program load.

ISA. Industry Standard Architecture.

246 System Automation for z/OS: Customizing and Programming

ISPF. Interactive System Productivity Facility.

ISPF console. From this 3270-type console you are

logged onto ISPF to use the runtime panels for I/O

operations and SA z/OS customization panels.

issuing host. See primary host; the base program at

which you enter a command for processing.

J

JCL. Job control language.

JES. Job entry subsystem.

job. (1) A set of data that completely defines a unit of

work for a computer. A job usually includes all

necessary computer programs, linkages, files, and

instructions to the operating system. (2) An address

space.

job control language (JCL). A problem-oriented

language designed to express statements in a job that

are used to identify the job or describe its requirements

to an operating system.

job entry subsystem (JES). A facility for spooling, job

queuing, and managing I/O. In SA z/OS publications,

JES refers to JES2 or JES3, unless distinguished as being

either one or the other.

K

Kanji. An ideographic character set used in Japanese.

See also double-byte character set.

L

LAN. Local area network.

line mode. A form of screen presentation in which the

information is presented a line at a time in the message

area of the terminal screen. Contrast with full-screen

mode.

link. (1) In SNA, the combination of the link

connection and the link stations joining network nodes;

for example, a System/370 channel and its associated

protocols, a serial-by-bit connection under the control

of synchronous data link control (SDLC). (2) In

SA z/OS, link connection is the physical medium of

transmission.

link-attached. Describes devices that are physically

connected by a telecommunication line. Contrast with

channel-attached.

Linux for zSeries and S/390. UNIX-like open source

operating system conceived by Linus Torvalds and

developed across the internet.

local. Pertaining to a device accessed directly without

use of a telecommunication line. Synonymous with

channel-attached.

local area network (LAN). (1) A network in which a

set of devices is connected for communication. They

can be connected to a larger network. See also token

ring. (2) A network in which communications are

limited to a moderately-sized geographic area such as a

single office building, warehouse, or campus, and that

do not generally extend across public rights-of-way.

logical partition (LP). A subset of the processor

hardware that is defined to support an operating

system. See also logically partitioned (LPAR) mode.

logical switch number (LSN). Assigned with the

switch parameter of the CHPID macro of the IOCP.

logical token (LTOK). Resource number of an object

in the IODF.

logical unit (LU). In SNA, a port through which an

end user accesses the SNA network and the functions

provided by system services control points (SSCPs). An

LU can support at least two sessions — one with an

SSCP and one with another LU — and may be capable

of supporting many sessions with other LUs. See also

physical unit (PU) and system services control point

(SSCP).

logical unit (LU) 6.2. A type of logical unit that

supports general communications between programs in

a distributed processing environment. LU 6.2 is

characterized by (a) a peer relationship between session

partners, (b) efficient use of a session for multiple

transactions, (c) comprehensive end-to-end error

processing, and (d) a generic application program

interface (API) consisting of structured verbs that are

mapped into a product implementation. Synonym for

advanced program-to-program communications

(APPC).

logically partitioned (LPAR) mode. A central

processor mode that enables an operator to allocate

system processor hardware resources among several

logical partitions. Contrast with basic mode.

LOGR. The sysplex logger.

LP. Logical partition.

LPAR. Logically partitioned (mode).

LU. Logical unit.

LU-LU session. In SNA, a session between two logical

units (LUs) in an SNA network. It provides

communication between two end users, or between an

end user and an LU services component.

LU 6.2. Logical unit 6.2.

Glossary 247

LU 6.2 session. A session initiated by VTAM on behalf

of an LU 6.2 application program, or a session initiated

by a remote LU in which the application program

specifies that VTAM is to control the session by using

the APPCCMD macro.

M

MAT. Deprecated term for NetView Automation Table.

MCA. Micro Channel* architecture.

MCS. Multiple console support.

member. A specific function (one or more

modules/routines) of a multisystem application that is

defined to XCF and assigned to a group by the

multisystem application. A member resides on one

system in the sysplex and can use XCF services to

communicate (send and receive data) with other

members of the same group.

message automation table (MAT). Deprecated term

for NetView Automation Table.

message class. A number that SA z/OS associates

with a message to control routing of the message.

During automated operations, the classes associated

with each message issued by SA z/OS are compared to

the classes assigned to each notification operator. Any

operator with a class matching one of the message’s

classes receives the message.

message forwarding. The SA z/OS process of sending

messages generated at an SA z/OS target system to the

SA z/OS focal-point system.

message group. Several messages that are displayed

together as a unit.

message monitor task. A task that starts and is

associated with a number of communications tasks.

Message monitor tasks receive inbound messages from

a communications task, determine the originating target

system, and route the messages to the appropriate

target control tasks.

message processing facility (MPF). A z/OS table that

screens all messages sent to the z/OS console. The MPF

compares these messages with a customer-defined list

of messages on which to automate, suppress from the

z/OS console display, or both, and marks messages to

automate or suppress. Messages are then broadcast on

the subsystem interface (SSI).

message suppression. The ability to restrict the

amount of message traffic displayed on the z/OS

console.

Micro Channel architecture. The rules that define

how subsystems and adapters use the Micro Channel

bus in a computer. The architecture defines the services

that each subsystem can or must provide.

microprocessor. A processor implemented on one or a

small number of chips.

migration. Installation of a new version or release of a

program to replace an earlier version or release.

MP. Multiprocessor.

MPF. Message processing facility.

MPFLSTSA. The MPFLST member that is built by

SA z/OS.

Multiple Virtual Storage (MVS). An IBM licensed

program. MVS, which is the predecessor of OS/390, is

an operating system that controls the running of

programs on a System/390 or System/370 processor.

MVS includes an appropriate level of the Data Facility

Product (DFP) and Multiple Virtual Storage/Enterprise

Systems Architecture System Product Version 5

(MVS/ESA SP5).

multiprocessor (MP). A CPC that can be physically

partitioned to form two operating processor complexes.

multisystem application. An application program that

has various functions distributed across z/OS images in

a multisystem environment.

multisystem environment. An environment in which

two or more z/OS images reside in one or more

processors, and programs on one image can

communication with programs on the other images.

MVS. Multiple Virtual Storage, predecessor of z/OS.

MVS image. A single occurrence of the MVS/ESA

operating system that has the ability to process work.

MVS/JES2. Multiple Virtual Storage/Job Entry System

2. A z/OS subsystem that receives jobs into the system,

converts them to internal format, selects them for

execution, processes their output, and purges them

from the system. In an installation with more than one

processor, each JES2 processor independently controls

its job input, scheduling, and output processing.

MVS/ESA. Multiple Virtual Storage/Enterprise

Systems Architecture.

N

NAU. (1) Network accessible unit. (2) Network

addressable unit.

NCCF. Network Communications Control Facility.

NCP. (1) Network Control Program (IBM licensed

program). Its full name is Advanced Communications

Function for the Network Control Program.

Synonymous with ACF/NCP. (2) Network control

program (general term).

248 System Automation for z/OS: Customizing and Programming

NetView. An IBM licensed program used to monitor a

network, manage it, and diagnose network problems.

NetView consists of a command facility that includes a

presentation service, command processors, automation

based on command lists, and a transaction processing

structure on which the session monitor, hardware

monitor, and terminal access facility (TAF) network

management applications are built.

network accessible unit (NAU). A logical unit (LU),

physical unit (PU), control point (CP), or system

services control point (SSCP). It is the origin or the

destination of information transmitted by the path

control network. Synonymous with network addressable

unit.

network addressable unit (NAU). Synonym for

network accessible unit.

NetView automation procedures. A sequence of

commands, packaged as a NetView command list or a

command processor written in a high-level language.

An automation procedure performs automation

functions and runs under the NetView program.

NetView automation table (AT). A table against

which the NetView program compares incoming

messages. A match with an entry triggers the specified

response. SA z/OS entries in the NetView automation

table trigger an SA z/OS response to target system

conditions. Formerly known as the message automation

table (MAT).

NetView Command list language. An interpretive

language unique to NetView that is used to write

command lists.

NetView (NCCF) console. A 3270-type console for

NetView commands and runtime panels for system

operations and processor operations.

NetView Graphic Monitor Facility (NGMF).

Deprecated term for NetView Management Console.

NetView hardware monitor. The component of

NetView that helps identify network problems, such as

hardware, software, and microcode, from a central

control point using interactive display techniques.

Formerly called network problem determination application.

NetView log. The log in which NetView records

events pertaining to NetView and SA z/OS activities.

NetView message table. See NetView automation table.

NetView Management Console (NMC). A function of

the NetView program that provides a graphic,

topological presentation of a network that is controlled

by the NetView program. It provides the operator

different views of a network, multiple levels of

graphical detail, and dynamic resource status of the

network. This function consists of a series of graphic

windows that allows you to manage the network

interactively. Formerly known as the NetView Graphic

Monitor Facility (NGMF).

NetView-NetView task (NNT). The task under which

a cross-domain NetView operator session runs. Each

NetView program must have a NetView-NetView task

to establish one NNT session. See also operator station

task.

NetView-NetView Task session. A session between

two NetView programs that runs under a

NetView-NetView Task. In SA z/OS, NetView-NetView

Task sessions are used for communication between

focal point and remote systems.

NetView paths via logical unit (LU 6.2). A type of

network-accessible port (VTAM connection) that

enables end users to gain access to SNA network

resources and communicate with each other. LU 6.2

permits communication between processor operations

and the workstation.

network. (1) An interconnected group of nodes. (2) In

data processing, a user application network. See SNA

network.

Network Communications Control Facility (NCCF).

The operations control facility for the network. NCCF

consists of a presentation service, command processors,

automation based on command lists, and a transaction

processing structure on which the network

management applications NLDM and NPDA are built.

NCCF is a precursor to the NetView command facility.

Network Control Program (NCP). An IBM licensed

program that provides communication controller

support for single-domain, multiple-domain, and

interconnected network capability. Its full name is

Advanced Communications Function for the Network

Control Program.

Networking NetView. In SA z/OS the NetView that

performs network management functions, such as

managing the configuration of a network. In SA z/OS

it is common to also route alerts to the Networking

NetView.

Network Problem Determination Application

(NPDA). An NCCF application that helps you identify

network problems, such as hardware, software, and

microcode, from a central control point using

interactive display methods. The alert manager for the

network. The precursor of the NetView hardware

monitor.

NGMF. Deprecated term for NetView Management

Console.

NGMF focal-point system. Deprecated term for NMC

focal point system.

NIP. Nucleus initialization program.

Glossary 249

NMC focal point system. See focal point system

NMC workstation. The NMC workstation is the

primary way to dynamically monitor SA z/OS

systems. From the windows, you see messages, monitor

status, view trends, and react to changes before they

cause problems for end users. You can use multiple

windows to monitor multiple views of the system.

NNT. NetView-NetView task.

notification message. An SA z/OS message sent to a

human notification operator to provide information

about significant automation actions. Notification

messages are defined using the customization dialogs.

notification operator. A NetView console operator

who is authorized to receive SA z/OS notification

messages. Authorization is made through the

customization dialogs.

NPDA. Network Problem Determination Application.

NPDA focal-point system. See focal-point system.

NTRI. NCP/token-ring interconnection.

nucleus initialization program (NIP). The program

that initializes the resident control program; it allows

the operator to request last-minute changes to certain

options specified during system generation.

O

objective value. An average Workflow or Using value

that SA z/OS can calculate for applications from past

service data. SA z/OS uses the objective value to

calculate warning and alert thresholds when none are

explicitly defined.

OCA. In SA z/OS, operator console A, the active

operator console for a target system. Contrast with

OCB.

OCB. In SA z/OS, operator console B, the backup

operator console for a target system. Contrast with

OCA.

OCF. Operations command facility.

OCF-based processor. A central processor complex

that uses an operations command facility for interacting

with human operators or external programs to perform

operations management functions on the CPC.

OPC/A. Operations Planning and Control/Advanced.

OPC/ESA. Operations Planning and

Control/Enterprise Systems Architecture.

operating system (OS). Software that controls the

execution of programs and that may provide services

such as resource allocation, scheduling, input/output

control, and data management. Although operating

systems are predominantly software, partial hardware

implementations are possible. (T)

operations. The real-time control of a hardware device

or software function.

operations command facility (OCF). A facility of the

central processor complex that accepts and processes

operations management commands.

Operations Planning and Control/Advanced

(OPC/A). A set of IBM licensed programs that

automate, plan, and control batch workload. OPC/A

analyzes system and workload status and submits jobs

accordingly.

Operations Planning and Control/ESA (OPC/ESA). A

set of IBM licensed programs that automate, plan, and

control batch workload. OPC/ESA analyzes system and

workload status and submits jobs accordingly. The

successor to OPC/A.

operator. (1) A person who keeps a system running.

(2) A person or program responsible for managing

activities controlled by a given piece of software such

as z/OS, the NetView program, or IMS. (3) A person

who operates a device. (4) In a language statement, the

lexical entity that indicates the action to be performed

on operands.

operator console. (1) A functional unit containing

devices that are used for communications between a

computer operator and a computer. (T) (2) A display

console used for communication between the operator

and the system, used primarily to specify information

concerning application programs and I/O operations

and to monitor system operation. (3) In SA z/OS, a

console that displays output from and sends input to

the operating system (z/OS, LINUX, VM, VSE). Also

called operating system console. In the SA z/OS operator

commands and configuration dialogs, OC is used to

designate a target system operator console.

operator station task (OST). The NetView task that

establishes and maintains the online session with the

network operator. There is one operator station task for

each network operator who logs on to the NetView

program.

operator view. A set of group, system, and resource

definitions that are associated together for monitoring

purposes. An operator view appears as a graphic

display in the graphical interface showing the status of

the defined groups, systems, and resources.

OperatorView entry. A construct, created with the

customization dialogs, used to represent and contain

policy for an operator view.

OS. Operating system.

250 System Automation for z/OS: Customizing and Programming

z/OS component. A part of z/OS that performs a

specific z/OS function. In SA z/OS, component refers

to entities that are managed by SA z/OS automation.

z/OS subsystem. Software products that augment the

z/OS operating system. JES and TSO/E are examples

of z/OS subsystems. SA z/OS includes automation for

some z/OS subsystems.

z/OS system. A z/OS image together with its

associated hardware, which collectively are often

referred to simply as a system, or z/OS system.

OSA. I/O operations can display the open system

adapter (OSA) channel logical definition, physical

attachment, and status. You can configure an OSA

channel on or off.

OST. Operator station task.

outbound. In SA z/OS, messages or commands from

the focal-point system to the target system.

outbound gateway operator. The automation operator

that establishes connections to other systems. The

outbound gateway operator handles communications

with other systems through a gateway session. The

automation operator sends messages, commands, and

responses to the inbound gateway operator at the

receiving system.

P

page. (1) The portion of a panel that is shown on a

display surface at one time. (2) To transfer instructions,

data, or both between real storage and external page or

auxiliary storage.

panel. (1) A formatted display of information that

appears on a terminal screen. Panels are full-screen

3270-type displays with a monospaced font, limited

color and graphics. (2) By using SA z/OS panels you

can see status, type commands on a command line

using a keyboard, configure your system, and passthru

to other consoles. See also help panel. (3) In computer

graphics, a display image that defines the locations and

characteristics of display fields on a display surface.

Contrast with screen.

parallel channels. Parallel channels operate in either

byte (BY) or block (BL) mode. You can change

connectivity to a parallel channel operating in block

mode.

parameter. (1) A variable that is given a constant value

for a specified application and that may denote the

application. (2) An item in a menu for which the user

specifies a value or for which the system provides a

value when the menu is interpreted. (3) Data passed to

a program or procedure by a user or another program,

namely as an operand in a language statement, as an

item in a menu, or as a shared data structure.

partition. (1) A fixed-size division of storage. (2) In

VSE, a division of the virtual address area that is

available for program processing. (3) On an IBM

Personal Computer fixed disk, one of four possible

storage areas of variable size; one can be accessed by

DOS, and each of the others may be assigned to

another operating system.

partitionable CPC. A CPC that can be divided into 2

independent CPCs. See also physical partition,

single-image mode, MP, side.

partitioned data set (PDS). A data set in direct access

storage that is divided into partitions, called members,

each of which can contain a program, part of a

program, or data.

passive monitoring. In SA z/OS, the receiving of

unsolicited messages from z/OS systems and their

resources. These messages can prompt updates to

resource status displays. See also active monitoring.

PCE. Processor controller. Also known as the “support

processor” or “service processor” in some processor

families.

PDB. Policy Database

PDS. Partitioned data set.

physical partition. Part of a CPC that operates as a

CPC in its own right, with its own copy of the

operating system.

physical unit (PU). In SNA, the component that

manages and monitors the resources (such as attached

links and adjacent link stations) of a node, as requested

by a system services control point (SSCP) through an

SSCP-PU session. An SSCP activates a session with the

physical unit to indirectly manage, through the PU,

resources of the node such as attached links.

physically partitioned (PP) configuration. A mode of

operation that allows a multiprocessor (MP) system to

function as two or more independent CPCs having

separate power, water, and maintenance boundaries.

Contrast with single-image (SI) configuration.

POI. Program operator interface.

policy. The automation and monitoring specifications

for an SA z/OS enterprise. See IBM Tivoli System

Automation for z/OS Defining Automation Policy.

policy database. The database where the automation

policy is recorded. Also known as the PDB.

POR. Power-on reset.

port. (1) System hardware to which the I/O devices

are attached. (2) On an ESCON switch, a port is an

addressable connection. The switch routes data through

the ports to the channel or control unit. Each port has a

name that can be entered into a switch matrix, and you

Glossary 251

can use commands to change the switch configuration.

(3) An access point (for example, a logical unit) for data

entry or exit. (4) A functional unit of a node through

which data can enter or leave a data network. (5) In

data communication, that part of a data processor that

is dedicated to a single data channel for the purpose of

receiving data from or transmitting data to one or more

external, remote devices. (6) power-on reset (POR) (7) A

function that re-initializes all the hardware in a CPC

and loads the internal code that enables the CPC to

load and run an operating system.

PP. Physically partitioned (configuration).

PPT. Primary POI task.

primary host. The base program at which you enter a

command for processing.

primary POI task (PPT). The NetView subtask that

processes all unsolicited messages received from the

VTAM program operator interface (POI) and delivers

them to the controlling operator or to the command

processor. The PPT also processes the initial command

specified to execute when NetView is initialized and

timer request commands scheduled to execute under

the PPT.

primary system. A system is a primary system for an

application if the application is normally meant to be

running there. SA z/OS starts the application on all the

primary systems defined for it.

problem determination. The process of determining

the source of a problem; for example, a program

component, machine failure, telecommunication

facilities, user or contractor-installed programs or

equipment, environment failure such as a power loss,

or user error.

processor controller. Hardware that provides support

and diagnostic functions for the central processors.

processor operations. The part of SA z/OS that

monitors and controls processor (hardware) operations.

Processor operations provides a connection from a

focal-point system to a target system. Through NetView

on the focal-point system, processor operations

automates operator and system consoles for monitoring

and recovering target systems. Also known as ProcOps.

processor operations control file. Named by your

system programmer, this file contains configuration and

customization information. The programmer records

the name of this control file in the processor operations

file generation panel ISQDPG01.

Processor Resource/Systems Manager (PR/SM). The

feature that allows the processor to use several

operating system images simultaneously and provides

logical partitioning capability. See also LPAR.

ProcOps. Processor operations.

ProcOps Service Machine (PSM). The PSM is a CMS

user on a VM host system. It runs a CMS multitasking

application that serves as ″virtual hardware″ for

ProcOps. ProOps communicates via the PSM with the

VM guest systems that are defined as target systems

within ProcOps.

product automation. Automation integrated into the

base of SA z/OS for the products DB2, CICS, IMS,

OPC (formerly called features).

program to program interface (PPI). A NetView

function that allows user programs to send or receive

data buffers from other user programs and to send

alerts to the NetView hardware monitor from system

and application programs.

protocol. In SNA, the meanings of, and the

sequencing rules for, requests and responses used for

managing the network, transferring data, and

synchronizing the states of network components.

proxy resource. A resource defined like an entry type

APL representing a processor operations target system.

PR/SM. Processor Resource/Systems Manager.

PSM. ProcOps Service Machine.

PU. Physical unit.

R

remote system. A system that receives resource status

information from an SA z/OS focal-point system. An

SA z/OS remote system is defined as part of the same

SA z/OS enterprise as the SA z/OS focal-point system

to which it is related.

requester. A requester is a workstation software,

which enables users to log on to a domain, that is, to

the server(s) belonging to this domain, and use the

resources in this domain. After the log on to a domain,

users can access the shared resources and use the

processing capability of the server(s). Because the

bigger part of shared resources is on the server(s), users

can reduce hardware investment.

resource. (1) Any facility of the computing system or

operating system required by a job or task, and

including main storage, input/output devices, the

processing unit, data sets, and control or processing

programs. (2) In NetView, any hardware or software

that provides function to the network. (3) In SA z/OS,

any z/OS application, z/OS component, job, device, or

target system capable of being monitored or automated

through SA z/OS.

Resource Access Control Facility (RACF). A program

that can provide data security for all your resources.

RACF protects data from accidental or deliberate

unauthorized disclosure, modification, or destruction.

252 System Automation for z/OS: Customizing and Programming

resource group. A physically partitionable portion of a

processor. Also known as a side.

Resource Monitoring Facility (RMF) Monitor III. A

program that measures and reports on the availability

and activity of system hardware and software

resources, such as processors, devices, storage, and

address spaces. RMF can issue online reports about

system performance problems as they occur.

Resource Object Data Manager (RODM). A data

cache manager designed to support process control and

automation applications. RODM provides an

in-memory data cache for maintaining real-time data in

an address space that is accessible by multiple

applications. RODM also allows an application to query

an object and receive a rapid response and act on it.

resource token. A unique internal identifier of an

ESCON resource or resource number of the object in

the IODF.

restart automation. SA z/OS-provided automation

that monitors subsystems to ensure that they are

running. If a subsystem fails, SA z/OS attempts to

restart it according to the policy in the automation

control file.

Restructured Extended Executor (REXX). An

interpretive language used to write command lists.

return code. A code returned from a program used to

influence the issuing of subsequent instructions.

REXX. Restructured Extended Executor.

REXX procedure. A command list written with the

Restructured Extended Executor (REXX), which is an

interpretive language.

RMF. Resource Measurement Facility.

RODM. Resource Object Data Manager.

S

SAF. Security Authorization Facility.

SA z/OS. System Automation for z/OS

SA z/OS customization dialogs. An ISPF application

through which the SA z/OS policy administrator

defines policy for individual z/OS systems and builds

automation control data and RODM load function files.

SA z/OS customization focal point system. See focal

point system.

SA z/OS data model. The set of objects, classes and

entity relationships necessary to support the function of

SA z/OS and the NetView automation platform.

SA z/OS enterprise. The group of systems and

resources defined in the customization dialogs under

one enterprise name. An SA z/OS enterprise consists

of connected z/OS systems running SA z/OS.

SA z/OS focal point system. See focal point system.

SA z/OS policy. The description of the systems and

resources that make up an SA z/OS enterprise,

together with their monitoring and automation

definitions.

SA z/OS policy administrator. The member of the

operations staff who is responsible for defining

SA z/OS policy.

SA z/OS satellite. If you are running two NetViews

on an z/OS system to split the automation and

networking functions of NetView, it is common to route

alerts to the Networking NetView. For SA z/OS to

process alerts properly on the Networking NetView,

you must install a subset of SA z/OS code, called an

SA z/OS satellite on the Networking NetView.

SA z/OS SDF focal point system. See focal point

system.

SCA. In SA z/OS, system console A, the active

system console for a target hardware. Contrast with

SCB.

SCB. In SA z/OS, system console B, the backup

system console for a target hardware. Contrast with

SCA.

screen. Deprecated term for display panel.

screen handler. In SA z/OS, software that interprets

all data to and from a full-screen image of a target

system. The interpretation depends on the format of the

data on the full-screen image. Every processor and

operating system has its own format for the full-screen

image. A screen handler controls one PS/2 connection

to a target system.

SDF. Status Display Facility.

SDLC. Synchronous data link control.

SDSF. System Display and Search Facility.

secondary system. A system is a secondary system for

an application if it is defined to automation on that

system, but the application is not normally meant to be

running there. Secondary systems are systems to which

an application can be moved in the event that one or

more of its primary systems are unavailable. SA z/OS

does not start the application on its secondary systems.

server. A server is a workstation that shares resources,

which include directories, printers, serial devices, and

computing powers.

Glossary 253

service language command (SLC). The line-oriented

command language of processor controllers or service

processors.

service processor (SVP). The name given to a

processor controller on smaller System/370 processors.

service period. Service periods allow the users to

schedule the availability of applications. A service

period is a set of time intervals (service windows),

during which an application should be active.

service threshold. An SA z/OS policy setting that

determines when to notify the operator of deteriorating

service for a resource. See also alert threshold and

warning threshold.

session. In SNA, a logical connection between two

network addressable units (NAUs) that can be

activated, tailored to provide various protocols, and

deactivated, as requested. Each session is uniquely

identified in a transmission header by a pair of

network addresses identifying the origin and

destination NAUs of any transmissions exchanged

during the session.

session monitor. The component of the NetView

program that collects and correlates session-related data

and provides online access to this information. The

successor to NLDM.

shutdown automation. SA z/OS-provided automation

that manages the shutdown process for subsystems by

issuing shutdown commands and responding to

prompts for additional information.

side. A part of a partitionable CPC that can run as a

physical partition and is typically referred to as the

A-side or the B-side.

Simple Network Management Protocol (SNMP). An

IP based industry standard protocol to monitor and

control resources in an IP network.

single image. A processor system capable of being

physically partitioned that has not been physically

partitioned. Single-image systems can be target

hardware processors.

single-image (SI) mode. A mode of operation for a

multiprocessor (MP) system that allows it to function as

one CPC. By definition, a uniprocessor (UP) operates in

single-image mode. Contrast with physically partitioned

(PP) configuration.

SLC. Service language command.

SMP/E. System Modification Program Extended.

SNA. Systems Network Architecture.

SNA network. In SNA, the part of a user-application

network that conforms to the formats and protocols of

systems network architecture. It enables reliable

transfer of data among end users and provides

protocols for controlling the resources of various

network configurations. The SNA network consists of

network addressable units (NAUs), boundary function

components, and the path control network.

SNMP. Simple Network Management Protocol (a

TCP/IP protocol). A protocol that allows network

management by elements, such as gateways, routers,

and hosts. This protocol provides a means of

communication between network elements regarding

network resources.

solicited message. An SA z/OS message that directly

responds to a command. Contrast with unsolicited

message.

SSCP. System services control point.

SSI. Subsystem interface.

start automation. SA z/OS-provided automation that

manages and completes the startup process for

subsystems. During this process, SA z/OS replies to

prompts for additional information, ensures that the

startup process completes within specified time limits,

notifies the operator of problems, if necessary, and

brings subsystems to an UP (or ready) state.

startup. The point in time at which a subsystem or

application is started.

status. The measure of the condition or availability of

the resource.

status focal-point system. See focal—point system.

status display facility (SDF). The system operations

part of SA z/OS that displays status of resources such

as applications, gateways, and write-to-operator

messages (WTORs) on dynamic color-coded panels.

SDF shows spool usage problems and resource data

from multiple systems.

steady state automation. The routine monitoring, both

for presence and performance, of subsystems,

applications, volumes and systems. Steady state

automation may respond to messages, performance

exceptions and discrepancies between its model of the

system and reality.

structure. A construct used by z/OS to map and

manage storage on a coupling facility. See cache

structure, list structure, and lock structure.

subgroup. A named set of systems. A subgroup is part

of an SA z/OS enterprise definition and is used for

monitoring purposes.

SubGroup entry. A construct, created with the

customization dialogs, used to represent and contain

policy for a subgroup.

254 System Automation for z/OS: Customizing and Programming

subplex. Situations where the physical sysplex has

been divided into subentities, for example, a test

sysplex and a production sysplex. This may be done to

isolate the test environment from the production

environment.

subsystem. (1) A secondary or subordinate system,

usually capable of operating independent of, or

asynchronously with, a controlling system. (2) In

SA z/OS, an z/OS application or subsystem defined to

SA z/OS.

subsystem interface. The z/OS interface over which

all messages sent to the z/OS console are broadcast.

support element. A hardware unit that provides

communications, monitoring, and diagnostic functions

to a central processor complex (CPC).

support processor. Another name given to a processor

controller on smaller System/370 processors; see service

processor.

SVP. Service processor.

switches. ESCON directors are electronic units with

ports that dynamically switch to route data to I/O

devices. The switches are controlled by I/O operations

commands that you enter on a workstation.

switch identifier. The switch device number

(swchdevn), the logical switch number (LSN) and the

switch name

symbolic destination name (SDN). Used locally at the

workstation to relate to the VTAM application name.

synchronous data link control (SDLC). A discipline

for managing synchronous, code-transparent,

serial-by-bit information transfer over a link connection.

Transmission exchanges may be duplex or half-duplex

over switched or nonswitched links. The configuration

of the link connection may be point-to-point,

multipoint, or loop. SDLC conforms to subsets of the

Advanced Data Communication Control Procedures

(ADCCP) of the American National Standards Institute

and High-Level Data Link Control (HDLC) of the

International Standards Organization.

SYSINFO Report. An RMF report that presents an

overview of the system, its workload, and the total

number of jobs using resources or delayed for

resources.

SysOps. System operations.

sysplex. A set of z/OS systems communicating and

cooperating with each other through certain

multisystem hardware components (coupling devices

and timers) and software services (couple data sets).

 In a sysplex, z/OS provides the coupling services that

handle the messages, data, and status for the parts of a

multisystem application that has its workload spread

across two or more of the connected processors, sysplex

timers, coupling facilities, and couple data sets (which

contains policy and states for automation).

 A Parallel Sysplex is a sysplex that includes a coupling

facility.

sysplex application group. A sysplex application

group is a grouping of applications that can run on any

system in a sysplex.

sysplex couple data set. A couple data set that

contains sysplex-wide data about systems, groups, and

members that use XCF services. All z/OS systems in a

sysplex must have connectivity to the sysplex couple

data set. See also couple data set.

Sysplex Timer. An IBM unit that synchronizes the

time-of-day (TOD) clocks in multiple processors or

processor sides. External Time Reference (ETR) is the

z/OS generic name for the IBM Sysplex Timer (9037).

system. In SA z/OS, system means a focal point

system (z/OS) or a target system (MVS, VM, VSE,

LINUX, or CF).

System Automation for z/OS. The full name for

SA z/OS.

System Automation for OS/390. The full name for

SA OS/390, the predecessor to System Automation for

z/OS.

system console. (1) A console, usually having a

keyboard and a display screen, that is used by an

operator to control and communicate with a system. (2)

A logical device used for the operation and control of

hardware functions (for example, IPL, alter/display,

and reconfiguration). The system console can be

assigned to any of the physical displays attached to a

processor controller or support processor. (3) In

SA z/OS, the hardware system console for processor

controllers or service processors of processors

connected using SA z/OS. In the SA z/OS operator

commands and configuration dialogs, SC is used to

designate the system console for a target hardware

processor.

System Display and Search Facility (SDSF). An IBM

licensed program that provides information about jobs,

queues, and printers running under JES2 on a series of

panels. Under SA z/OS you can select SDSF from a

pull-down menu to see the resources’ status, view the

z/OS system log, see WTOR messages, and see active

jobs on the system.

System entry. A construct, created with the

customization dialogs, used to represent and contain

policy for a system.

System Modification Program/Extended (SMP/E). An

IBM licensed program that facilitates the process of

installing and servicing an z/OS system.

Glossary 255

|
|
|
|
|

system operations. The part of SA z/OS that

monitors and controls system operations applications

and subsystems such as NetView, SDSF, JES, RMF, TSO,

RODM, ACF/VTAM, CICS, IMS, and OPC. Also known

as SysOps.

system services control point (SSCP). In SNA, the

focal point within an SNA network for managing the

configuration, coordinating network operator and

problem determination requests, and providing

directory support and other session services for end

users of the network. Multiple SSCPs, cooperating as

peers, can divide the network into domains of control,

with each SSCP having a hierarchical control

relationship to the physical units and logical units

within its domain.

Systems Network Architecture (SNA). The

description of the logical structure, formats, protocols,

and operational sequences for transmitting information

units through, and controlling the configuration and

operation of, networks.

System/390 microprocessor cluster. A configuration

that consists of central processor complexes (CPCs) and

may have one or more integrated coupling facilities.

T

TAF. Terminal access facility.

target. A processor or system monitored and

controlled by a focal-point system.

target control task. In SA z/OS, target control tasks

process commands and send data to target systems and

workstations through communications tasks. A target

control task (a NetView autotask) is assigned to a target

system when the target system is initialized.

target hardware. In SA z/OS, the physical hardware

on which a target system runs. It can be a single-image

or physically partitioned processor. Contrast with target

system.

target system. (1) In a distributed system

environment, a system that is monitored and controlled

by the focal-point system. Multiple target systems can

be controlled by a single focal-point system. (2) In

SA z/OS, a computer system attached to the

focal-point system for monitoring and control. The

definition of a target system includes how remote

sessions are established, what hardware is used, and

what operating system is used.

task. (1) A basic unit of work to be accomplished by a

computer. (2) In the NetView environment, an operator

station task (logged-on operator), automation operator

(autotask), application task, or user task. A NetView

task performs work in the NetView environment. All

SA z/OS tasks are NetView tasks. See also

communications task, message monitor task, and target

control task.

telecommunication line. Any physical medium, such

as a wire or microwave beam, that is used to transmit

data.

terminal access facility (TAF). (1) A NetView function

that allows you to log onto multiple applications either

on your system or other systems. You can define TAF

sessions in the SA z/OS customization panels so you

don’t have to set them up each time you want to use

them. (2) In NetView, a facility that allows a network

operator to control a number of subsystems. In a

full-screen or operator control session, operators can

control any combination of subsystems simultaneously.

terminal emulation. The capability of a

microcomputer or personal computer to operate as if it

were a particular type of terminal linked to a

processing unit to access data.

threshold. A value that determines the point at which

SA z/OS automation performs a predefined action. See

alert threshold, warning threshold, and error threshold.

time of day (TOD). Typically refers to the time-of-day

clock.

Time Sharing Option (TSO). An optional

configuration of the operating system that provides

conversational time sharing from remote stations. It is

an interactive service on z/OS, MVS/ESA, and

MVS/XA.

Time-Sharing Option/Extended (TSO/E). An option

of z/OS that provides conversational timesharing from

remote terminals. TSO/E allows a wide variety of users

to perform many different kinds of tasks. It can handle

short-running applications that use fewer sources as

well as long-running applications that require large

amounts of resources.

timers. A NetView command that issues a command

or command processor (list of commands) at a specified

time or time interval.

TOD. Time of day.

token ring. A network with a ring topology that

passes tokens from one attaching device to another; for

example, the IBM Token-Ring Network product.

TP. Transaction program.

transaction program. In the VTAM program, a

program that performs services related to the

processing of a transaction. One or more transaction

programs may operate within a VTAM application

program that is using the VTAM application program

interface (API). In that situation, the transaction

program would request services from the applications

256 System Automation for z/OS: Customizing and Programming

program using protocols defined by that application

program. The application program, in turn, could

request services from the VTAM program by issuing

the APPCCMD macro instruction.

transitional automation. The actions involved in

starting and stopping subsystems and applications that

have been defined to SA z/OS. This can include

issuing commands and responding to messages.

translating host. Role played by a host that turns a

resource number into a token during a unification

process.

trigger. Triggers, in combination with events and

service periods, are used to control the starting and

stopping of applications in a single system or a parallel

sysplex.

TSO. Time Sharing Option.

TSO console. From this 3270-type console you are

logged onto TSO or ISPF to use the runtime panels for

I/O operations and SA z/OS customization panels.

TSO/E. TSO Extensions.

U

UCB. The unit control block; an MVS/ESA data area

that represents a device and that is used for allocating

devices and controlling I/O operations.

unsolicited message. An SA z/OS message that is not

a direct response to a command. Contrast with solicited

message.

user task. An application of the NetView program

defined in a NetView TASK definition statement.

Using. An RMF Monitor III definition. Jobs getting

service from hardware resources (processors or devices)

are using these resources. The use of a resource by an

address space can vary from 0% to 100% where 0%

indicates no use during a Range period, and 100%

indicates that the address space was found using the

resource in every sample during that period. See also

Workflow.

V

view. In the NetView Graphic Monitor Facility, a

graphical picture of a network or part of a network. A

view consists of nodes connected by links and may also

include text and background lines. A view can be

displayed, edited, and monitored for status information

about network resources.

Virtual Storage Extended (VSE). An IBM licensed

program whose full name is Virtual Storage

Extended/Advanced Function. It is an operating

system that controls the execution of programs.

Virtual Telecommunications Access Method (VTAM).

An IBM licensed program that controls communication

and the flow of data in an SNA network. It provides

single-domain, multiple-domain, and interconnected

network capability. Its full name is Advanced

Communications Function for the Virtual

Telecommunications Access Method. Synonymous with

ACF/VTAM.

VM/ESA. Virtual Machine/Enterprise Systems

Architecture.

VM Second Level Systems Support. With this

function, Processor Operations is able to control VM

second level systems (VM guest systems) in the same

way that it controls systems running on real hardware.

volume. A direct access storage device (DASD)

volume or a tape volume that serves a system in an

SA z/OS enterprise.

volume entry. A construct, created with the

customization dialogs, used to represent and contain

policy for a volume.

volume group. A named set of volumes. A volume

group is part of a system definition and is used for

monitoring purposes.

volume group entry. An construct, created with the

customization dialogs, used to represent and contain

policy for a volume group.

Volume Workflow. The SA z/OS Volume Workflow

variable is derived from the RMF Resource Workflow

definition, and is used to measure the performance of

volumes. SA z/OS calculates Volume Workflow using:

 accumulated

 Using

Volume = ------------------------- * 100

Workflow % accumulated + accumulated

 Using Delay

The definition of Using is the percentage of time when

a job has had a request accepted by a channel for the

volume, but the request is not yet complete.

 The definition of Delay is the delay that waiting jobs

experience because of contention for the volume. See

also Address Space Workflow.

VSE. Virtual Storage Extended.

VTAM. Virtual Telecommunications Access Method.

W

warning threshold. An application or volume service

value that determines the level at which SA z/OS

changes the associated icon in the graphical interface to

the warning color. See alert threshold.

Glossary 257

workflow. See Address Space Workflow and Volume

Workflow.

workstation. In SA z/OS workstation means the

graphic workstation that an operator uses for day-to-day

operations.

write-to-operator (WTO). A request to send a message

to an operator at the z/OS operator console. This

request is made by an application and is handled by

the WTO processor, which is part of the z/OS

supervisor program.

write-to-operator-with-reply (WTOR). A request to

send a message to an operator at the z/OS operator

console that requires a response from the operator. This

request is made by an application and is handled by

the WTO processor, which is part of the z/OS

supervisor program.

WTO. Write-to-Operator.

WTOR. Write-to-Operator-with-Reply.

WWV. The US National Institute of Standards and

Technology (NIST) radio station that provides standard

time information. A second station, known as WWVB,

provides standard time information at a different

frequency.

X

XCF. Cross-system coupling facility.

XCF couple data set. The name for the sysplex couple

data set prior to MVS/ESA System Product Version 5

Release 1. See also sysplex couple data set.

XCF group. A set of related members that a

multisystem application defines to XCF. A member is a

specific function, or instance, of the application. A

member resides on one system and can communicate

with other members of the same group across the

sysplex.

XRF. Extended recovery facility.

Numerics

390-CMOS. Processor family group designator used in

the SA z/OS processor operations documentation and

in the online help to identify any of the following

S/390 CMOS processor machine types: 9672, 9674, 2003,

3000, or 7060. SA z/OS processor operations uses the

OCF facility of these processors to perform operations

management functions. See OCF-based processor.

258 System Automation for z/OS: Customizing and Programming

Index

Special characters
″hung″ command recovery 94

A
abend recovery

CICS region 178

IMS region 188

accessibility xiii

ACF entries, for DB2 automation 112

active connector 91

adding
application to automation 1

processor operations message to

automation 69

additional automation operator IDs 108

additional SA z/OS automation

procedures, programming 5

advanced automation options
exits 131

external global variables 201, 202

alternate CDS 89

turning into primary CDS 89

alternate CDS recovery
customizing 90

alternate couple data set
specifying 100

AMRF buffer shortage processing 162

AOCMSG call 14

AOCMSG generic routine 8

AOCQRY common routine
automation availability 8

message automation 22

AOCTRACE
use in testing 17

use in traces 20

AOCUPDT common routine
and the AOFEXSTA exit 132

to update status information 8

AOF_AAO_MSG_EHKVAR 203

AOF_AAO_MVSTAPEMON 203

AOF_ASSIGN_JOBNAME 203

AOF_E2E_EAS_PPI 203

AOF_E2E_EVT_RETRY 203

AOF_E2E_TKOVR_TIMEOUT 203

AOF_EMCS_AUTOTASK_... 203

AOF_EMCS_CN_ASSIGNMENT 203

AOF_INIT_MCSFLAG 206

AOF_INIT_ROUTCDE 206

AOF_INIT_SYSCONID 206

AOF_NETWORK_DOMAIN_ID 201

AOF_PRODLVL 201

AOF_SET_AVM_RESTART_EXIT 208

AOF.0DEBUG 201

AOF.0TRACE 201

AOF3WTIME 210

AOFACFINIT 204

AOFAOCCLONE 201

AOFARMQUERYRETRYS 204

AOFARMQUERYWAIT 204

AOFCNMASK 205

AOFCOMPL 201

AOFCONFIRM global variable 147

AOFCTLOPT 205

AOFDEBUG 201

AOFDEBUG global variable 20

AOFDEFAULT_TARGET 205

AOFDOM 36, 38

AOFEXC00 exit 142

AOFEXC01 exit 142

AOFEXC03 exit 145

AOFEXC04 exit 145

AOFEXC05 exit 145

AOFEXC06 exit 146

AOFEXC07 exit 146

AOFEXC08 exit 146

AOFEXC09 exit 146

AOFEXC11 exit 146

AOFEXC12 exit 146

AOFEXC13 exit 146

AOFEXC14 exit 147

AOFEXC2 exit 144

AOFEXDEF exit 131, 202

AOFEXI01 exit 131

AOFEXI02 exit 131

AOFEXI03 exit 132

AOFEXI04 exit 132

AOFEXINT exit 132, 149, 208

AOFEXPLAIN_USER 206

AOFEXSTA exit 132

AOFEXX01 exit 133

AOFEXX02 exit 134

AOFEXX03 exit 134

AOFEXX15 exit 134

AOFIMSCMDMSG 206

AOFINITIALSTARTTYP 201

AOFINITREPLY 206

AOFJESPREFX 202

AOFLOCALHOLD 206

AOFMATLISTING 206

AOFMOVOPT 207

AOFMSGST 34

AOFMSGSY 36

AOFOPCCMDMSG 207

AOFPAUSE 207

AOFQUICKWTOR 207

AOFRELOADOPT 207

AOFRESTARTALWAYS 208

AOFRJ3MN monitoring routine 50

AOFRJ3RC monitoring routine 52

AOFRMTCMDWAIT 208

AOFRPCWAIT 208

AOFSENDALERT 208

AOFSERXINT 208

AOFSETSTATEOVERRIDE 211

AOFSETSTATESCOPE 211

AOFSETSTATESTART 211

AOFSHUTCHK 211

AOFSHUTDELAY 208

AOFSHUTOVERRIDE 211

AOFSHUTSCOPE 211

AOFSMARTMAT 209

AOFSPOOLFULLCMD 209

AOFSPOOLSHORTCMD 209

AOFSUBSYS 202

AOFSYS 37, 38

AOFSYSNAME 202

AOFSYSTEM 202

AOFTDDF task 18

AOFUPDAM 209

AOFUPDRODM 209

AOFUSSWAIT 210

application
adding to automation 1

enable for graphical user interface 3

health status 45

application messages, entries in MPF

list 3

application monitor status 45

application monitoring 45

application type IMAGE, defining 104

applications, z/OS UNIX 79

ASCB chaining
and global variables 204

ASFUSER command 22

assist mode
for testing automation procedures 18

monitoring automation interactively

with 19

overview 17

AT build
concept for message automation 30

determining for message

automation 30

message automation 29

AT entries
always built 31

preventing the building of 27

sequence 32

types 31

with multiple actions 32

AT load, message automation 33

AT scope, defining for message

automation 29

AUTO actions, defining for message

automation 27

automated resources, z/OS UNIX

Automation 82

automating
auxiliary storage shortage

recovery 107

enqueues, long running 106

IXC102A message 96

IXC402D message 96

Linux console messages 68

Linux console messages, case

sensitive 69

Linux console messages, restrictions

and limitations 69

Linux console messages, security

considerations 69

long running enqueues 106

© Copyright IBM Corp. 1996, 2005 259

automating (continued)
message IXC102A 105

message IXC402D 105

USS resources 79

automating processor operations

controlled resources 65

automation
adding an application to 1

advanced functions 202

extending 5

messages 25

SYSLOG message 93

sysplex, enabling 89

automation agent
enabling message automation for 33

automation configuration 3

automation control file 3

defining SDF 230

reload action exit 147

reload permission exit 147

automation flag exits
sample 138

automation flags 61

checking 62

example for using 61

extended 61

for minor resources 61

global 62

with individual messages 61

with status changes 61

automation manager configuration file 3

automation manager global automation

flag 62

automation operator IDs
additional 108

automation policy, defining for DB2

automation 112

automation procedures
calling 5

creating 5

debugging 17

description 5

developing messages 13

example 14

external code 9

global variable names 23

initializing 7

installing 16

making generic 12

programming recommendations 22

REXX coding example 21

structure of 6

testing 17

use of common routines in 5

use of generic routines in 5

using AOCTRACE 20

writing your own 5

automation processing
performing 8

automation routines 149

automation setup, definitions for 80

automation status file
coding your own information 22

using commands 9

automation table
See NetView automation table

auxiliary storage shortage recovery 97

auxiliary storage shortage recovery

(continued)
automating 107

customizing 97

defining local page data set 107

defining the handling of jobs 107

B
BASEOPER 208

BLDVIEWS 3

building
new automation definitions 74

C
calling

automation procedures 5

captured messages
defining for message automation 27

cascades 39

case sensitive, Linux console

messages 69

CDEMATCH common routine 22

CDS
See couple data set

CF
See coupling facility

CFRM couple data set 91, 101

CFRM policy 91

CHKTHRES common routine 9

CICS link monitoring 181

CICS region abend recovery 178

CICS short on storage 182

CICS shutdown 182

CICS startup 183

CICS transaction recovery 185

CICS unit of work recovery 187

CICS VSAM RLS status 181

CICSPlex processing 180

clone ID, Automatic Restart

Manager 211

CMD actions, defining for message

automation 26

coding information in automation status

file 22

command flooding recovery 95

command handler, DB2 automation 115

command requests
DB2 automation 116

maintenance start 116

start/stop tablespace 120

terminate threads 118

commands
processor operations 13

commands, defining for long running

enqueues 107

commands, writing for monitor

resources 47

common automation items, defining 108

common global variables 9, 201

common routines 5

use in automation procedures 5

connecting
system to processor 100

connection monitoring
CICS 112

IMS 112

connection monitoring, DB2

automation 111, 122

connector
active 91

failed persistent 92

continuous availability, couple data set
enabling 100

ensuring 89

controller status, TWS 178

couple data set 89

alternate CDS 89

alternate CDS, recovery of 89

alternate, specifying 100

CFRM 101

enabling continuous availability

of 100

ensuring continuous availability

of 89

managing 89

policy 89

primary CDS 89

SYSPLEX 101

coupling facility 91

coupling facility, managing 91

creating automation procedures 5

critical event monitoring 111

critical event monitoring, DB2

automation 125

critical events, DB2 automation 111

customization dialog exits 138

invocation 141

customization of z/OS UNIX

resources 80

customize automation
for processor operations 10

for system operations 8

customizing
alternate CDS recovery 90

auxiliary storage shortage 97

hung command recovery 96

IXC102A message automation 96

IXC402D message automation 96

LINUX target systems 75

MVS target systems 76

of system log recovery 93

proxy resource automation 66

SDF 215

SYSIEFSD resource recovery 96

system logger recovery 91

system to use Parallel Sysplex

enhancements 108

target systems 75

VM target systems 76

VSE target systems 77

WTO(R) buffer shortage recovery 93

D
DB2 automation

ACF entries 112

command requests 116

command requests, maintenance

start 116

260 System Automation for z/OS: Customizing and Programming

DB2 automation (continued)
command requests, start/stop

tablespace 120

command requests, terminate

threads 118

connection monitoring 111, 122

critical event monitoring 125

critical events 111

defining automation policy 112

event-driven functions 111, 122

installation 112

line command functions 115

line command functions, command

handler 115

line mode functions 111

line mode invocation 111

maintenance start 111

overview 111

planning requirements 112

start/stop tablespace 111

terminate threads 111

debugging
automation procedures 17

NetView facilities 21

z/OS UNIX Automation 87

defining
actions for message automation 26

application type IMAGE 104

AT scope for message automation 29

AUTO actions for message

automation 27

captured messages for message

automation 27

CMD actions for message

automation 26

commands for long running

enqueues 107

common automation items 108

handling of jobs for auxiliary storage

shortage recovery 107

IEADMCxx symbols for long running

enqueues 107

IMAGE application type 104

local page data set for auxiliary

storage shortage recovery 107

logical partitions 99

logical sysplex 100

message and status as minor

resources 61

OVR actions for message

automation 28

physical sysplex 100

processor 99, 104

REPLY actions for message

automation 26

resources for long running

enqueues 106

SDF in automation control file 230

snapshot intervals for long running

enqueues 107

started task job name 108

status messages for message

automation 27

SYSPLEX policy item 101

system 100

temporary data set HLQ 108

definitions for automation setup 80

definitions for z/OS UNIX resources 80

deletion of processed WTO(R)s from

SDF 161

developing messages for automation

procedures 13

directory extent 91

disability xiii

DISPASST 18

DISPEVT_WAIT 211

DISPEVTS_WAIT 211

DISPTRG_WAIT 211

drain processing prior to JES2

shutdown 170

DSICMD member 16

DSIPARM data set 16

dump processing, JES3 173

E
element names in Automatic Restart

Manager 211

enabling
continuous availability of Couple Data

Sets 100

message automation for the

automation agent 33

sysplex automation 89

system log failure recovery 101

system removal 104

WTOR(R) buffer shortage

recovery 102

ENQs
See enqueues

enqueues 93

long running, automating 106

long running, customizing recovery

of 96

long running, handling 93

environmental setup exits 130

error codes 9

EVEEARMW 183

EVEECMSI 185

EVEED004 181

EVEEI004 184

EVEEI006 184

EVEEI009 184

EVEEI010 185

EVEEI115 183

EVEERLSI 181

EVEERTRN 185

EVEET002 187

EVEET003 178

EVEETUOW 187

EVEEY00S 182

event-driven functions
connection monitoring 122

critical event monitoring 125

DB2 automation 122

event-driven functions, DB2

automation 111

EVERCMRC 180

EVERSCMI 180

EVERSPPI 182

EVIAVM06 195

EVIDISCQ 191

EVIECO05 190

EVIECR04 190

EVIEET00 194

EVIEI005 196

EVIEI006 192

EVIEI008 196

EVIEI009 196

EVIEI00A 191

EVIEI00C 191

EVIEI00D 195

EVIEI00F 195

EVIEI00G 195

EVIEI00Q 192

EVIEI200 193

EVIEI20B 192

EVIEO000 197

EVIEO001 197

EVIEO002 197

EVIEO006 197

EVIEO007 198

EVIEO008 198

EVIEO010 198

EVIER000 188

EVIER001 188

EVIES002 188

EVIES003 189

EVIET006 193

EVIET00E 199

EVIEY00S 189, 190, 194

EVISTRCT 193

EVISTRNM 193

EVJEAC01 175

EVJEAC02 175

EVJEAC03 176

EVJEAC04 176

EVJEOBSV 178

EVJRAC05 177

EVJRSACT 178

EVJRSJOB 177

example automation procedure 14

examples of INGUSS command 83

exits 147

AOFEXC00 142

AOFEXC01 142

AOFEXC02 144

AOFEXC03 145

AOFEXC04 145

AOFEXC05 145

AOFEXC06 146

AOFEXC07 146

AOFEXC08 146

AOFEXC09 146

AOFEXC11 146

AOFEXC12 146

AOFEXC13 146

AOFEXC14 147

AOFEXDEF 131

AOFEXI01 131

AOFEXI02 131

AOFEXI03 132

AOFEXI04 132

AOFEXINT 132, 149

AOFEXSTA 132

AOFEXX01 133

AOFEXX02 134

AOFEXX03 134

AOFEXX15 134

BUILDF processing 138

CONVERT processing 140

Index 261

exits (continued)
COPY processing 139

customization dialog exits 138

DELETE processing 140

environmental setup exits 130

flag exits 134

IMPORT functions 141

INGEAXIT 135

INGEX01 138

INGEX02 138

INGEX03 139

INGEX04 139

INGEX05 140

INGEX06 140

INGEX07 140

INGEX08 140

INGEX09 141

INGEX12 141

INGEX14 141

INGEX16 141

INGEX17 141

INGEX18 141

MIGRATION functions 141

pseudo-exits 147

RENAME functions 141

sample automation flag exits 138

static exits 132

status change commands 133

subsystem up at initialization

commands 147

testing 147

EXPLAIN 206

extended automation flags 61

extending automation 5

external code, automation procedures 9

external common global variables 201

EXTSTART status 211

F
failed persistent connector 92

failed system, isolation of 96

file manager commands 9

file monitoring, z/OS UNIX

Automation 82

flag exits 134

G
generic

automation 43, 202

generic automation procedures 12

generic routines 5

use in automation procedures 5

global automation flag 62

global variable names, for automation

procedures 23

graphical user interface, SA z/OS
enable an application for 3

guest machines, processor operations

support 74

guest target systems
LINUX 74

LINUX, user logon 75

MVS 75

MVS, NIP console 75

guest target systems (continued)
MVS, NIP messages 75

MVS, problem determination

mode 75

ProcOps Service Machine 74

VSE 75

H
health state return codes 47

how to automate USS resources 79

hung command recovery,

customizing 96

I
IDENT 22

IEADMCxx symbols, defining
for long running enqueues 107

IGNORE WTOR priority 2

IMAGE application type, defining 104

important considerations, processor

operations 108

IMPORTANT WTOR priority 2

IMS dependent region processing 188

IMS MSC link recovery 189

IMS OLDS recovery 190

IMS RECON recovery 190

IMS region abend recovery 188

IMS sShutdown 193

IMS startup 191

IMS sysplex support 193

IMS TCO automation 194

IMS transaction recovery 194

IMS XRF processing 195

INCLUDE statement 229

INGAUTO_INTERVAL 211

INGCF command 92

INGDLG 142

INGEAXIT exit 135

INGEVENT_WAIT 211

INGEX01 138

INGEX02 138

INGEX03 139

INGEX04 139

INGEX05 140

INGEX06 140

INGEX07 140

INGEX08 140

INGGROUP_WAIT 211

INGHIST_MAX 211

INGINFO_WAIT 211

INGLIST_WAIT 211

INGMSG00 34

INGMSG01 34

INGMTRAP monitor command 56

INGOMX API 55

INGOPC_MULTIPLIER 210

INGRELS_SHOW 211

INGRELS_WAIT 211

INGREQ_EXPIRE 211

INGREQ_INTERRUPT 211

INGREQ_ORIGINATOR 210

INGREQ_OVERRIDE 211

INGREQ_PRECHECK 211

INGREQ_PRI 211

INGREQ_PRI.E2EMGR 212

INGREQ_REMOVE 212

INGREQ_REMOVE.START 212

INGREQ_REMOVE.STOP 212

INGREQ_RESTART 212

INGREQ_SCOPE 212

INGREQ_SOURCE 212

INGREQ_TIMEOUT 212

INGREQ_TYPE 212

INGREQ_VERIFY 212

INGREQ_WAIT 212

INGSCHED_WAIT 212

INGSET_VERIFY 212

INGSET_WAIT 212

INGTRIG_WAIT 212

INGUSS command 83

examples 83

INGVOTE_EXCLUDE 212

INGVOTE_STATUS 212

INGVOTE_VERIFY 212

initialization processing,

AOFSERXINT 208

initializing automation procedures 7

installing
DB2 automation 112

installing automation procedures 16

integration of z/OS UNIX System

Services 79

ISQEXEC command 11, 70

ISQOVRD 71

ISQOVRD command 12

ISQXLOC command 11

ISQXMON command 70

ISQXUNL command 11

ISSUECMD 61

ISSUEREP 61

IWTOR 2

IXC102A message
automating 105

automation of 96

customizing automation of 96

IXC402D message
automating 105

automation of 96

customizing automation of 96

J
JES2 shutdown processing 169

JES2 spool recovery processing 164

JES3
dump processing 173

monitoring 49

job handling, defining for auxiliary

storage shortage recovery 107

job/ASID definitions, making
for long running enqueues 107

K
keyboard xiii

known messages, message

automation 26

262 System Automation for z/OS: Customizing and Programming

L
line command functions, for DB2

automation 115

line mode functions, DB2

automation 111

link monitoring, CICS 181

Linux console connection to NetView 68

Linux console messages
automating 68

case sensitive 69

restrictions and limitations 69

security considerations 69

LINUX guest target systems, user

logon 75

LINUX target systems, customizing 75

local page data set, defining
for auxiliary storage shortage

recovery 107

log stream 90

log stream data set 90

logical partition
defining 99

logical sysplex, defining 100

LOGR couple data set 90, 91

LOGREC data set processing 150

long running enqueues
automating 106

defining commands 107

defining IEADMCxx symbols 107

defining resources 106

defining snapshot intervals 107

handling 93

making job/ASID definitions 107

LookAt message retrieval tool xvi

M
maintenance start, DB2 automation 111

major resources 61, 137

making generic automation

procedures 12

making job/ASID definitions
for long running enqueues 107

managing
couple data set 89

coupling facilities 91

system logger 90

master automation tables 34

multiple 35

message
forwarding 70

ISQ900I 70

ISQ901I 70

IXC102A, automation of 96

IXC402D, automation of 96

testing 70, 73

message automation 25

AT build 29

AT build concept 30

AT load 33

defining actions 26

defining AT scope 29

defining AUTO actions 27

defining captured messages 27

defining CMD actions 26

defining OVR actions 28

message automation (continued)
defining REPLY actions 26

defining status messages 27

determining AT build 30

enabling for the automation agent 33

known messages 26

Linux console messages 68

Linux console messages, case

sensitive 69

Linux console messages, restrictions

and limitations 69

Linux console messages, security

considerations 69

overview 25

predefined 31

preparing for processor operations

resources 68

preventing the building of AT

entries 27

unknown messages 26

use of symbols 26

message automation for processor

operations resources 65

message presentation 37

message processing facility list
adding application messages 3

message retrieval tool, LookAt xvi

message testing 73

messages
automation 25

classifications 33

defining as minor resources 61

developing for automation

procedures 13

trapping UNIX syslogd 87

messages, entries in MPF list 3

minor resources
and INGAUTO 61

and task globals 137

defining message and status as 61

resource name 137

monitor command, INGMTRAP 56

monitor resource (MTR) 45

monitor resources 46

writing commands 47

monitor routine 45

writing 45

writing your own 46

monitoring
automation with interactive assist

mode 19

JES3 49

with OMEGAMON 53

monitoring applications 45

monitoring routines
AOFRJ3MN 50

AOFRJ3RC 52

monitoring routines for z/OS UNIX

resources 81

MPF list 4

adding application messages 3

MTR
See also monitor resource

See monitor resources

MVS Automatic Restart Manager
clone ID 211

element names 211

MVS Automatic Restart Manager

(continued)
global variables 211

MVS guest target systems
NIP console 75

NIP messages 75

problem determination mode 75

MVS target systems, customizing 76

MVSESA.RELOAD.ACTION minor

resource 147

MVSESA.RELOAD.CONFIRM flag 147

MVSESA.RELOAD.CONFIRM minor

resource 147

N
NetView

generic automation table entries 43

Linux console connection to 68

testing and debugging facilities 21

NetView automation table
adding processor operations messages

to 69

adding SDF entries 3

AOFMSGSY 36

fragments 36

generic entries 43

integrating 35

ISQEXEC 11, 70

ISQOVRD 12

ISQXLOC 11

ISQXMON 70

ISQXUNL 11

master automation tables 34

merging entries 73

multiple master automation tables 35

production 73

reloading tables 4

sample entry 71

samples 33

structure 33

user-written statements 35

new automation definitions
building 74

NMC workstation 3

NONSNA statement 4

NORMAL WTOR priority 2

notifications 8

NWTOR 2

O
OMEGAMON

exception analysis 53

monitoring with 53

monitoring, overview 53

session management, INGMTRAP 56

session management, INGOMX 55

topologies 54

usage scenario 53

operation and job errors, TWS

Automation 175

operator cascades 39

outstanding reply processing 1

overview
message automation 25

Index 263

overview (continued)
monitoring with OMEGAMON 53

OVR actions
defining for message automation 28

P
panels

DISPACF 160, 163, 172, 173

INGTHRES 159

JES2 168, 169, 172

LOGREC 152

SMF 154

SYSLOG 156, 157

persistent connection 92

persistent structure 92

physical sysplex, defining 100

planning requirements, DB2

automation 112

policy
CFRM 91

couple data set 89

PPI and gateway failures, TWS

Automation 175

predefined message automation 31

preference list 91

preventing
the building of AT entries 27

PRI WTOR type 2

primary CDS 89

problem determination mode
MVS guest target systems 75

process monitoring, z/OS UNIX

Automation 82

processing
CICSPlex 180

IMS dependent region 188

processor
defining 99, 104

PROCESSOR INFO policy item
using 99

processor operations
guest machines support 74

important considerations 108

processor operations command

messages 71

processor operations commands 13

processor operations controlled resources,

automating 65

processor operations resource 65

processor operations resource message

automation 65

ProcOps Service Machine 74

guest target systems 74

programming
additional SA z/OS automation

procedures 5

recommendations for automation

procedures 22

programming recommendations
automation procedures 22

proxy resource 66

proxy resources
customizing automation for 66

shutdown considerations 68

startup considerations 68

pseudo-exits 147

PSM
See ProcOps Service Machine

R
rebuild 92

system-managed 92

user-managed 92

recommendations
programming, for automation

procedures 22

recovery
″hung″ command 94

alternate CDS 89

alternate CDS, customizing 90

auxiliary storage shortage 97

auxiliary storage shortage,

automating 107

command flooding 95

handling long-running enqueues 93

IMS MSC link 189

IMS OLDS 190

IMS RECON 190

long running enqueues,

customizing 96

SYSIEFSD resource 94

system log 93

system log failure, enabling 101

system log, customizing 93

system logger, customizing 91

system logger, directory shortage 91

WTO(R) buffer shortage 93

WTO(R) buffer shortage,

customizing 93

WTOR(R) buffer shortage,

enabling 102

reload action exit 147

reload permission exit 147

RELOAD.ACTION flag 147

RELOAD.CONFIRM flag 147

reloading NetView automation table 4

REPLY actions
defining for message automation 26

reply processing
outstanding 1

resolving
system log failure 93

WTO(R) buffer shortages 93

resources, defining for long running

enqueues 106

restrictions and limitations, Linux console

messages 69

return codes, health state 47

REXX coding example 21

REXX PARSE 22

REXX trace type 20

RWTOR 2

S
SA z/OS

commands ISQXIPM and

ISQCMMT 10

SA z/OS graphical user interface
enable an application for 3

sample
automation tables 33

scenario
OMEGAMON 53

SDF
and specific problems 222

components 224

customizing 215

customizing initialization

parameters 229

defining hierarchy 226

defining in automation control

file 230

defining in customization dialog 230

defining panels 227

definition process 225

for multiple systems 223

how it works 215

panels
definition 222, 226

types 215

starting and stopping 224

status descriptors 216

tree structures 217

SDF entries 3

SEC WTOR type 2

second level systems, VM support 74

security considerations, Linux console

messages 69

sequence
AT entries 32

serialize command processing 10

session management
OMEGAMON, INGMTRAP 56

OMEGAMON, INGOMX 55

SETASST 18

setting up z/OS UNIX automation 80

example 84

SFM
See Sysplex Failure Management

short on storage, CICS 182

shortcut keys xiii

shutdown
CICS 182

IMS 193

shutdown considerations, proxy resource

automation 68

SMF data set processing 153

snapshot intervals, defining for long

running enqueues 107

start definitions for z/OS UNIX

resources 83

start/stop tablespace, DB2

automation 111

started task job name
defining 108

startup
CICS 183

IMS 191

startup considerations, proxy resource

automation 68

status
defining as minor resources 61

status change commands 133

status descriptors 218

chaining to status components 219

propagating 221

264 System Automation for z/OS: Customizing and Programming

status information 8

status messages
defining for message automation 27

status observer control, TWS 178

status, CICS VSAM RLS 181

stop definitions for z/OS UNIX

resources 83

structure 91

allocation 91

automation procedures, of 6

deallocation 92

duplexing 92

persistent 92

preference list 91

rebuild 92

system-managed rebuild 92

user-managed rebuild 92

SUBSAPPL 22

SUBSJOB 22

SUBSTYPE 22

subsystem
adding to automation 1

up at initialization commands 147

SVC dump processing 157

symbols
use with message automation 26

SYSIEFSD resource recovery 94

customizing 96

SYSLOG message automation 93

SYSLOG processing 155

syslogd messages, trapping 87

sysplex automation
enabling 89

SYSPLEX couple data set 101

Sysplex Failure Management 96

sysplex functions 89

switching on and off 109

SYSPLEX policy item
defining 101

sysplex support, IMS 193

system
connecting to processor 100

defining 100

system log 93

system log failure
recovery, enabling 101

system log recovery, customizing 93

system logger
directory extent 91

log stream 90

log stream data set 90

LOGR couple data set 91

managing 90

recovery, customizing 91

recovery, directory shortage 91

system operations control files 74

automation control file 3

automation manager configuration

file 3

system removal 96

enabling 104

system-managed rebuild 92

T
target systems, customizing 75

task global variables 9

TCO automation, IMS 194

TCP port monitoring, z/OS UNIX

Automation 82

TEC Notification 42

temporary data set HLQ
defining 108

terminate threads, DB2 automation 111

testing
automation procedures 17

messages 73

more information 22

NetView facilities 21

testing exits 147

topologies
OMEGAMON 54

Topology Manager 43

transaction recovery
CICS 185

IMS 194

trapping UNIX syslogd messages 87

TWS Automation
operation and job errors 175

PPI and gateway failures 175

TWS controller status 178

TWS status observer control 178

U
unit of work recovery, CICS 187

UNIX Automation
automated resources 82

debugging 87

file monitoring 82

hints and tips 87

process monitoring 82

setting up 80

setup example 84

TCP port monitoring 82

UNIX resources
customization of 80

definitions for 80

monitoring routines for 81

start and stop definitions 83

UNIX syslogd messages, trapping 87

UNIX System Services, integration 79

unknown messages, message

automation 26

UNUSUAL WTOR priority 2

user exits 129

static exits 132

user logon, LINUX guest target

systems 75

user-managed rebuild 92

using
PROCESSOR INFO policy item 99

USS resources, automating 79

UWTOR 2

V
VM second level systems support 74

VM target systems, customizing 76

VSAM RLS status, CICS 181

VSE guest target systems 75

VSE target systems, customizing 77

VTAM
and assist mode 18

W
writing

monitor resource commands 47

monitor routine 45

WTO(R)
processed, deletion from SDF 161

WTO(R) buffer 93

WTO(R) buffer shortage recovery
customizing 93

WTOR
priority 1

type 1

WTOR(R) buffer shortage
recovery, enabling 102

X
XRF processing, IMS 195

Z
z/OS UNIX applications 79

infrastructure overview 79

z/OS UNIX Automation
automated resources 82

debugging 87

file monitoring 82

hints and tips 87

process monitoring 82

setting up 80

setup example 84

TCP port monitoring 82

z/OS UNIX resources
customization of 80

definitions for 80

monitoring routines for 81

start and stop definitions 83

z/OS UNIX System Services, integration

of 79

Index 265

266 System Automation for z/OS: Customizing and Programming

Readers’ Comments — We’d Like to Hear from You

System Automation for z/OS

Customizing and Programming

Version 3 Release 1

 Publication No. SC33-8260-02

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC33-8260-02

SC33-8260-02

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5698-SA3

Printed in USA

SC33-8260-02

Sp
in
e
in
fo
rm
at
io
n:

 Sy
st

em

Au

to
m

at
io

n
fo

r z
/O

S
Ve

rs
io

n
3

Re
le

as
e

1
Cu

st
om

iz
in

g
an

d
Pr

og
ra

m
m

in
g

�
�

�

	Contents
	Figures
	Tables
	Notices
	Web Site Disclaimer
	Programming Interface Information
	Trademarks

	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	About This Book
	Who Should Use This Book
	Prerequisites
	Where to Find More Information
	The System Automation for z/OS Library
	Related Product Information
	Using LookAt to look up message explanations

	Chapter 1. How to Add a New Application to Automation
	Step 1: Define an Application Policy Object
	Step 2: Define Outstanding Reply Processing
	Step 3: Build New System Operations Configuration Files
	Step 4: Code Entries for Application Messages in the MPF List (Optional)
	Step 5: Add SDF Entries for the Subsystem (Optional)
	Step 6: Enable the Application for the SA z/OS Graphical Interface
	Step 7: Reload MPF List and Automation Configuration Files

	Chapter 2. How to Create Automation Procedures
	Programming Additional SA z/OS Automation Procedures
	How Automation Procedures Are Called
	How CLIST or REXX Automation Procedures Are Structured
	Performing Initialization Processing
	Determining whether Automation Is Allowed
	System Operations
	Processor Operations

	Performing Automation Processing
	Automation Processing in System Operations
	Automation Processing in Processor Operations

	How to Make Your Automation Procedures Generic
	Processor Operations Commands

	Developing Messages for Your Automation Procedures
	Example AOCMSG Call

	Example Automation Procedure
	Notes on the Automation Procedure Example

	Installing Your Automation Procedures
	Testing and Debugging Automation Procedures
	The Assist Mode Facility
	Using Assist Mode to Test Automation Procedures
	Using AOCTRACE to Trace Automation Procedure Processing
	REXX Coding Example

	NetView Testing and Debugging Facilities
	Where to Find More Testing Information

	Coding Your Own Information in the Automation Status File
	Programming Recommendations
	Global Variable Names

	Chapter 3. How to Add a Message to Automation
	Conceptual Overview
	Defining Actions for Messages
	Defining CMD or REP Actions
	Defining AUTO Actions
	Defining Status Messages
	Defining Captured Messages
	Preventing the Building of AT Entries

	Defining OVR Actions

	Defining the NetView AT Scope
	Build
	NetView Automation Table Build Concept
	When Is an AT Built?
	Predefined Message Automation
	AT Entries Built for Messages Known to SA z/OS
	AT Entries for SA z/OS Internal Messages
	AT Entry Specialties
	AT Entries for Messages That Have Multiple Actions Defined

	AT Entry Sequence

	Load
	Enabling Message Automation for the Automation Agent
	Listing ATs

	A Guide to SA z/OS Automation Tables
	Automation Table Structure
	Master Automation Tables

	Integrating Automation Tables
	Multiple Master Automation Tables
	Using SA z/OS %INCLUDE Fragments

	Generic Synonyms—AOFMSGSY
	SA z/OS Message Presentation—AOFMSGSY
	Operator Cascades—AOFMSGSY
	TEC Notification—AOFMSGSY
	SA z/OS Topology Manager for NMC—AOFMSGST

	Generic Automation Table Statements

	Chapter 4. How to Monitor Applications
	How to Write Your Own Monitor Routines
	Monitor Resources
	Writing Monitor Resource Commands
	Writing a Monitor Routine
	Writing a Recovery Routine

	Monitoring JES3 Components
	AOFRJ3MN Routine
	AOFRJ3RC Routine

	Chapter 5. Exception-Based Monitoring with OMEGAMON
	Overview
	Scenario
	Topologies
	OMEGAMON Interaction
	Programming Interface INGOMX for OMEGAMON
	Example 1: Returning Information on Common Storage Utilization Using the CSAA Command
	Example 2: Using OMEGAMON command modifiers
	Example 3: Trapping outstanding operator replies
	Example 4: Issuing OMEGAMON minor commands

	Monitor Command INGMTRAP

	Health Based Automation Using OMEGAMON
	Recovery Techniques
	Programming Techniques
	Recommendations

	Chapter 6. How to Automate Your Resources
	Using Automation Flags
	Example

	When SA z/OS Checks Automation Flags
	The Automation Manager Global Automation Flag

	Chapter 7. How to Automate Processor Operations-Controlled Resources
	Automating Processor Operations Resources of z/OS Target Systems Using Proxy Definitions
	Concept
	Customizing Automation for Proxy Resources
	Startup and Shutdown Considerations

	Preparing Message Automation

	Automating Linux Console Messages
	The Linux Console Connection to NetView
	Linux Console Automation with Mixed Case Character Data
	Security Considerations
	Restrictions and Limitations

	How to Add a Processor Operations Message to Automation
	Messages Issued by a Processor Operations Target System
	Sample NetView Automation Table Statements
	Message ISQ211I
	Processor Operations Command Messages
	Testing Messages

	Building the New Automation Definitions
	Loading the Changed Automation Environment

	VM Second Level Systems Support
	Guest Target Systems
	Customizing Target Systems
	LINUX
	MVS
	VM
	VSE

	Chapter 8. How to Automate USS Resources
	Integration of z/OS UNIX System Services
	Infrastructure Overview

	Setting Up z/OS UNIX Automation
	Customization of z/OS UNIX Resources
	Definitions for Automation Setup
	Definitions for z/OS UNIX Resources
	Automated Resources
	Start and Stop Definitions (INGUSS Command)

	Example: inetd

	Hints and Tips
	Trapping UNIX syslogd Messages
	Debugging

	Chapter 9. How to Enable Sysplex Automation
	Sysplex Functions
	Managing Couple Data Sets
	Ensuring Continuous Availability of Couple Data Sets
	Customization

	Managing the System Logger
	Terms and Concepts
	Re-sizing the LOGR Couple Data Sets in Case of Directory Shortage
	Customization

	Managing Coupling Facilities
	Recovery Actions
	Resolving a System Log Failure
	Resolving WTO(R) Buffer Shortages
	Handling Long-Running Enqueues (ENQs)
	System Removal
	Recovering Auxiliary Storage Shortage

	Hardware Validation
	Prerequisites

	Enabling Hardware-Related Automation
	Step 1: Defining the Processor
	Step 2: Using the Policy Item PROCESSOR INFO
	Step 3: Defining Logical Partitions
	Step 4: Defining the System
	Step 5: Connecting the System to the Processor
	Step 6: Defining Logical Sysplexes
	Step 7: Defining the Physical Sysplex

	Enabling Continuous Availability of Couple Data Sets
	Enabling System Log Failure Recovery
	Enabling WTO(R) Buffer Shortage Recovery
	Enabling System Removal
	Step 1: Defining the Processor and System
	Step 2: Defining the Application with Application Type IMAGE
	Step 3: Automating Messages IXC102A and IXC402D

	Enabling Long Running Enqueues (ENQs)
	Step 1: Defining Resources
	Step 2: Making Job/ASID Definitions
	Step 3: Defining IEADMCxx Symbols
	Step 4: Defining Commands
	Step 5: Defining Snapshot Intervals

	Enabling Auxiliary Storage Shortage Recovery
	Step 1: Defining the Local Page Data Set
	Step 2: Defining the Handling of Jobs

	Defining Common Automation Items
	Important Processor Operations Considerations
	Customizing the System to Use the Functions
	Additional Automation Operator IDs
	Switching Sysplex Functions On and Off

	Chapter 10. DB2 Automation for System Automation for z/OS
	Overview
	Line Mode Functions

	Planning Requirements
	IMS
	CICS

	Installation
	Automation Control File (ACF)

	Defining Automation Policy
	Tailoring Your DB2 ACF Entries

	DB2 Automated Functions—Line Command Functions
	Command Handler

	Command Requests
	Maintenance Start
	Terminate Threads
	Start/Stop Tablespace

	Event-Driven Functions
	Connection Monitoring
	Critical Event Monitoring

	Chapter 11. SA z/OS User Exits
	Initialization Exits
	Environmental Setup Exits
	AOFEXDEF
	AOFEXI01
	AOFEXI02
	AOFEXI03
	AOFEXI04
	AOFEXINT

	Static Exits
	AOFEXSTA
	AOFEXX01
	AOFEXX02
	AOFEXX03
	AOFEXX15

	Flag Exits
	Parameters
	Return Codes

	Customization Dialog Exits
	User Exits for BUILD Processing
	User Exits for COPY Processing
	User Exits for DELETE Processing
	User Exits for CONVERT Processing
	User Exits for MIGRATION, RENAME, and IMPORT Functions
	Invocation of Customization Dialog Exits

	Command Exits
	AOFEXC00
	AOFEXC01
	AOFEXC02
	AOFEXC03
	AOFEXC04
	AOFEXC05
	AOFEXC06
	AOFEXC07
	AOFEXC08
	AOFEXC09
	AOFEXC10
	AOFEXC11
	AOFEXC12
	AOFEXC13
	AOFEXC14

	Pseudo-Exits
	Automation Control File Reload Permission Exit
	Automation Control File Reload Action Exit
	Subsystem Up at Initialization Commands

	Testing Exits

	Chapter 12. Automation Routines
	LOGREC Data Set Processing
	AOFRSA01
	AOFRSA02

	SMF Data Set Processing
	AOFRSA03

	SYSLOG Processing
	AOFRSA08

	SVC Dump Processing
	AOFRSA0C

	Deletion of Processed WTORs from SDF
	AOFRSA0E

	AMRF Buffer Shortage Processing
	AOFRSA0G

	JES2 Spool Recovery Processing
	AOFRSD01
	AOFRSD09
	AOFRSD0H

	JES2 Shutdown Processing
	HASP099

	Drain Processing Prior to JES2 Shutdown
	AOFRSD07
	AOFRSD0F
	AOFRSD0G

	JES3 Dump Processing
	AOFRSE0J

	TWS Automation PPI and Gateway Failures
	EVJEAC01
	EVJEAC02

	TWS Automation Operation and Job Errors
	EVJEAC03
	EVJEAC04
	EVJRAC05
	EVJRSJOB

	TWS Status Observer Control
	EVJEOBSV

	TWS Controller Status
	EVJRSACT

	CICS-Related Processing and Recovery
	CICS Region Abend Recovery
	EVEET003

	CICSPlex Processing
	EVERCMRC
	EVERSCMI

	CICS Link Monitoring
	EVEED004

	CICS VSAM RLS Status
	EVEERLSI

	CICS Shutdown
	EVERSPPI

	CICS Short on Storage
	EVEEY00S

	CICS Startup
	EVEEARMW
	EVEEI115
	EVEEI004
	EVEEI006
	EVEEI009
	EVEEI010
	EVEECMSI

	CICS Transaction Recovery
	EVEERTRN

	CICS Unit of Work Recovery
	EVEETUOW
	EVEET002

	IMS-Related Processing and Recovery
	IMS Region Abend Recovery
	EVIER000
	EVIER001

	IMS Dependent Region Processing
	EVIES002
	EVIES003

	IMS MSC Link Recovery
	EVIEY00S

	IMS OLDS Recovery
	EVIECO05
	EVIEY00S

	IMS RECON Recovery
	EVIECR04

	IMS Startup
	EVIDISCQ
	EVIEI00A
	EVIEI00C
	EVIEI00Q
	EVIEI006
	EVIEI20B
	EVIEI200

	IMS Shutdown
	EVIET006

	IMS Sysplex Support
	EVISTRCT
	EVISTRNM

	IMS TCO Automation
	EVIEET00

	IMS Transaction Recovery
	EVIEY00S

	IMS XRF Processing
	EVIAVM06
	EVIEI00D
	EVIEI00F
	EVIEI00G
	EVIEI005
	EVIEI008
	EVIEI009
	EVIEO000
	EVIEO001
	EVIEO002
	EVIEO006
	EVIEO007
	EVIEO008
	EVIEO010
	EVIET00E

	Appendix A. Global Variables
	Read-Only Variables
	Read/Write Variables
	Parameter Defaults for Commands

	Appendix B. Customizing the Status Display Facility (SDF)
	Overview of Status Display Facility
	How SDF Works
	Types of SDF Panels
	Root Component
	Status Component
	Detail Status Display

	Status Descriptors
	SDF Tree Structures
	How Status Descriptors Affect SDF
	Priority and Color Assignments
	Chaining of Status Descriptors to Status Components
	Propagating Status Descriptors Upward and Downward in a Tree Structure

	How SDF Helps Operations to Focus on Specific Problems
	How SDF Panels Are Defined
	Dynamically Loading Tree Structure and Panel Definition Members
	Using SDF for Multiple Systems
	SDF Components
	How the SDF Task Is Started and Stopped
	Starting the SDF Task
	Stopping the SDF Task

	SDF Definition
	Summary of SDF Definition Process
	Step 1: Defining SDF Hierarchy
	Tree Structure Definitions

	Step 2: Defining SDF Panels
	Panel Definition Methods
	Panel Definition Structure
	Recommended Order for Defining Panels
	Example Panel Definition
	%INCLUDE Statement for SDF Panels

	Step 3: Customizing SDF Initialization Parameters
	Step 4: Defining SDF in the Customization Dialog

	Appendix C. Message Automation
	FORCED AT Entry Type
	RECOMMENDED AT Entry Type
	CONDITIONAL AT Entry Type
	Known Messages
	Unknown Messages

	Other Forced AT Entries
	Restricted Message IDs

	Appendix D. TSO User Monitoring
	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

