

System Automation for OS/390 IBM

AOC/MVS OPC Automation
Programmer’s Reference
and Installation Guide
Version 1 Release 4

 SC23-3820-02

System Automation for OS/390 IBM

AOC/MVS OPC Automation
Programmer’s Reference
and Installation Guide
Version 1 Release 4

 SC23-3820-02

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

Third Edition (June 1999)

This edition applies to Version 1 Release 4 of the AOC/MVS OPC Automation Feature (5685-151), and to all subsequent releases
and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers’ comments appears at the back of this publication. If the form has been removed, address your comments to:

IBM Deutschland Entwicklung GmbH
 Department 3248

Schoenaicher Strasse 220
 D-71032 Boeblingen

Federal Republic of Germany

If you prefer to send comments electronically, use one of the following methods:

FAX (Germany): 07031 + 16-3456
FAX (Other Countries): (+49)+7031-16-3456
IBM Mail Exchange: DEIBMBM9 at IBMMAIL

 Internet: s390id@de.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1990, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xi
Trademarks . xi

About This Book . xiii
Who Should Use This Book . xiii

Programmers . xiii
OPC Automation Operators and OPC Schedulers xiii
Evaluators . xiii

Prerequisite Knowledge . xiii
What’s in This Book? . xiv
What’s New in This Book? . xv
Related Publications . xvi

The SA OS/390 Library . xvi
Related Product Information for the Base Program xvii
Related Product Information for Workstation Operations xviii

Part 1. Introduction to OPC Automation . 1

Chapter 1. OPC Automation Solution . 3
OPC Automation’s Approach to Automation . 3

Basic Concept . 3
Examples of Placing Calendar Control . 4

SA OS/390 . 4
SA OS/390 Control File . 5

OPCA CODE . 5
OPCACMD . 5
OPCA DOMAINID . 5
OPCAPARM . 5
OPCA PCS . 5
ENVIRON OPCAO . 6

System Initialization with OPC Automation . 6
NetView Automation Table . 6

NetView Interface to OPC Automation . 7
Status Display Facility . 11
Request and Confirmation Transaction Flow . 12
OPC Automation Log Entries . 14

Chapter 2. Hardware and Software Requirements 15

Part 2. Concepts . 17

Chapter 3. Flow Overview . 19
Initialization . 19
Request Flow . 20

EQQUX007 (DRKUX007) Exit . 21
Program-to-Program (PPI) Interface Dispatcher 22
Verify Module (EVJESPVY) . 22
Request Module (EVJESPRQ) . 24
Status Change Module (EVJESPSC) . 25

 Copyright IBM Corp. 1990, 1999 iii

Timer Module (EVJESPTE) . 26
OPCAPOST Command Processor . 27

Chapter 4. Automated Operator Tasks . 29
Defining OPC to SA OS/390 . 29

Chapter 5. Initialization . 31
Startup of OPC Components . 31
Startup of OPC-Controlled Subsystems . 32

Initialization Module (EVJESPIN) . 32

Chapter 6. Request Handling in the OPC-PCS/Controller System 33
Handling Time Dependencies . 35
Changes to the Status of the Operation . 36

Extending the Daily Plan . 36

Chapter 7. Request Handling in the OPC-EMS/Tracker System 37
Completion and Timer Flags . 38

Chapter 8. Operations Control . 39
EVJESPIN Module . 39
Obtaining Information from OPC . 40

Chapter 9. Automated Recovery . 41

Part 3. Coding Formats and Data Areas . 43

Chapter 10. Specifying OPC Automation Functions 47
Defining SA OS/390 to OPC . 47
Defining OPC to SA OS/390 . 47
Transferring Information from OPC to SA OS/390 47
Posting an Operation in OPC from SA OS/390 49

EVJESHUT . 51
OPCACAL . 52
OPCACMD . 53
OPCACOMP . 55
OPCALIST . 56
OPCAMOD . 59
OPCAPOST . 63
OPCSRST . 64

Chapter 11. Control File Entries Used by OPC Automation 65
OPCA CODE . 65
OPCACMD . 67
OPCA DOMAINID . 69
ENVIRON OPCAO . 71
OPCAPARM . 73
OPCA PCS . 75

Chapter 12. Data Areas . 77
Subsystem Status File OPC Automation Entry (EVJSTS) 77
Requestor ID Block (EHKVAR9) . 78
Request Buffer . 79

iv AOC/MVS V1R4 OPC Automation Programmer’s Reference

Chapter 13. Guidelines for User-Written Operations 81
Relating to the SA OS/390 Defined Subsystem 81

Flow of Control . 82
Parameters Passed to User-Supplied Module 83

Completing a User-Supplied Module (OPCACOMP) 83
Flow of Control . 83
Nonsubsystem Operations . 84
Flow of Control . 86
Parameters Passed to a User Exit . 86
Completing a User Exit (OPCAPOST) . 86

| Interaction with CICS Automation . 89
Interaction with IMS Automation . 94

Part 4. Planning and Installation . 99

Chapter 14. Installation . 101
Step 1: Load OPC Automation Libraries . 101
Step 2: Updating MPFLST . 101
Step 3: Updating IEAAPFxx in SYS1.PARMLIB 101
Step 4: Defining Subsystem Allocatable Consoles 102
Step 5: Check the Subsystem Name Table . 102
Step 6: Add Libraries to OPC and Recycle . 103

Chapter 15. Merge NetView Related Members 105
Step 1: Add OPC Automation Data Sets to NetView JCL 105

Add OPC/ESA Data Sets and Allocate EQQMLOG 106
Add OPC/A Data Sets and Allocate DRKMLOG 106

Step 2: Copy OPC Automation Sample Members to the Target Library . . . 107
Step 3: Merge Status Display Facility Members 107
Step 4: Merge EVJCFG into the Control File 107
Step 5: Merge EVJCMD into DSICMD . 107
Step 6: Merge and Update the Automation Table 108
Step 7: Merge EVJOPF into DSIOPF . 109
Step 8: Merge the NetView Profile Data Set 109
Step 9: Merge EVJDMN into DSIDMN and Update 109

Chapter 16. OPC Automation Initial Customization 111
Step 1: Basic OPC Automation Common Control File Definitions 111
Step 2: Customizing the Status Display Facility 112
Step 3: Integrate Existing Exit 7 with OPC Automation 113
Step 4: Initializing the OPC Automation Status File 113
OPC Automation Test Scenario . 114

Define Operations on the Workstation . 114
Test NetView Commands . 114

Problem Determination Suggestions . 114

Part 5. Appendixes . 115

Appendix A. Status Display Facility Enhancements 117
Coding Reference . 117

CLISTs Used to Implement the Supplied Extensions 117
DFUPDT . 119

 Contents v

DFCOPY . 120
DFCRIT . 121
EVJEAB11 . 122

Tree Structure for Panels . 123
EVJTREE . 123

Appendix B. OPC Automation Worksheets 125
Step 1: Define the Workstations . 125
Step 2: Define the Operations . 126
Step 3: Define the OPC Environment . 127

Appendix C. Sample OPC Automation Control File 129
EVJCFG01 . 129

Appendix D. Sample OPC Automation Message Table 135
OPCMSG00 . 135
OPCMSG01 . 136
EVJMCON1 . 137
EVJMOPCE . 142
EVJMOPCA . 144

Appendix E. Sample OPC Automation Command Synonyms 147
EVJCMD . 147

Appendix F. Sample OPC Automation Error Display Panel Source . . . 151
EVJOPCA . 151

Glossary of Terms . 153

Index . 161

vi AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Figures

1. AOC OPC: Display or Modify OPC Data Panel 8
2. Generic Search Function . 9
3. Display or Modify OPC Data Panel . 9
4. OPC Occurrence Data Panel . 10
5. NetView–OPC Interface Flow . 12
6. NetView Log Entry of an OPC Generated Request 14
7. NetView-OPC Interface Flow . 20
8. EQQUX007/DRKUX007 Exit . 21
9. PPI Dispatcher . 22

| 10. Verify Module . 22
11. Request Module . 24
12. Status Change Module . 25
13. Timer Module . 26
14. OPCAPOST Command Processor . 27
15. OPC/ESA Startup During IPL Process . 31
16. Request Handling in the OPC PCS/Controller Processor 33
17. Using Time as a Dependency . 35
18. Request Flow for a Base SA OS/390 Function 37
19. OPC/A Operation Panel . 48
20. OPC-Generated Request Buffer . 48
21. OPC-Generated Request Buffer with Optional Parameters 49
22. OPCAPOST Command Processor Request 50
23. OPCAPOST Command with Optional Error Code 50
24. Request Flow for a User Function . 82
25. User Exit UXxxxxxx Flow . 84
26. Condition Code Driven Application Flow 85
27. Typical Code Required for Nonsubsystem Requests 87
28. Defining Sample CICS Application in OPC Automation 89
29. CICSOPEN Exec . 90
30. Defining Sample IMS Application in OPC Automation 94
31. Exec to Open an IMS Database . 95

 Copyright IBM Corp. 1990, 1999 vii

viii AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Tables

1. SA OS/390 Library . xvi
2. Related Product Books . xvii
3. Related Product Books . xviii
4. Subsystem Status File OPC Automation Entry (EVJSTS) 77
5. Lengths and Values of Task Global Variable (EHKVAR9) 78
6. Request Buffer Layout for Standard Subsystem Operations 79
7. Request Buffer Layout for Nonsubsystem, User Extension (UXaaaaaaa)

Operations . 80
8. Installation Check List . 101
9. Merging the NetView Related Members Check List 105

 Copyright IBM Corp. 1990, 1999 ix

x AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of the intellectual
property rights of IBM may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Deutschland Entwicklung GmbH
 Department 3248

Schoenaicher Strasse 220
 D-71032 Boeblingen

Federal Republic of Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries:

CICS MVS/XA System/370
DB2 MVS/ESA System/390
IBM NetView VTAM
IMS RMF 3090

 Copyright IBM Corp. 1990, 1999 xi

xii AOC/MVS V1R4 OPC Automation Programmer’s Reference

About This Book

This book provides programming information for the IBM Automated Operations
Control/MVS Operations Planning and Control (AOC/MVS) OPC Automation
Feature, Version 1 Release 4. Hereafter, this book refers to AOC/MVS OPC
Automation as SA OS/390 OPC Automation. This is due to the fact that AOC/MVS
1.4 has been withdrawn and replaced by System Automation for OS/390
(SA OS/390).

OPC Automation is a feature of System Automation for OS/390 (SA OS/390) that
brings together batch and online console automation into a common focal point.
This automation feature automates, simplifies, and standardizes console operations
and the management of component, application, and production related tasks.

Who Should Use This Book

 Programmers
This manual was written primarily for programmers, the people who install and
configure OPC Automation.

Programmers should also have a copy of the AOC/MVS OPC Automation Operator
and Scheduler Reference.

OPC Automation Operators and OPC Schedulers
Although the AOC/MVS OPC Automation Operator and Scheduler Reference was
written for operators and schedulers, they can refer to this programmer’s reference
and installation guide if they require additional information.

 Evaluators
Although the AOC/MVS OPC Automation General Information was written
especially for evaluators, they can read this programmer’s reference and installation
guide to obtain a better understanding of OPC Automation.

 Prerequisite Knowledge
Familiarity with the functions and components of SA OS/390 as well as OPC would
prove beneficial to understanding the concepts discussed in this manual. These
IBM offerings work closely together to perform the automated console operations
that are described.

 Copyright IBM Corp. 1990, 1999 xiii

What’s in This Book?
This book contains the following parts, chapters, and appendixes:

Part 1, Introduction to OPC Automation
Provides an overview of the OPC Automation in the following chapters:

Chapter 1, OPC Automation Solution
Explains OPC Automation’s approach to automation and the components
of OPC Automation.

Chapter 2, Hardware and Software Requirements
Discusses OPC Automation’s hardward and software environment.

Part 2, Concepts
Discusses several functions in the following chapters:

Chapter 3, Flow Overview
Discusses the components that provide the facilities which make up the
interface between NetView and OPC and describes the interaction of the
components.

Chapter 4, Automated Operator Tasks
Discusses automated operator tasks for the OPC Controller and the
OPC Tracker.

Chapter 5, Initialization
Discusses the two phases of the automation platform.

Chapter 6, Request Handling in the OPC-PCS/Controller System
Discusses generating requests, handling time dependencies, and
changes to the status of the operation.

Chapter 7, Request Handling in the OPC-EMS/Tracker System
Discusses the flow of OPC Automation for a request invoking a base
function of the automation platform.

Chapter 8, Operations Control
Discusses the EVJESPIN module and obtaining information from OPC.

Chapter 9, Automated Recovery
Discusses the automated recovery function for requests that could not
reach their destinations due to connectivity problems.

Part 3, Coding Formats and Data Areas
Describes how to specify OPC Automation functions, the control file entries,
and data areas in the following chapters:

Chapter 10, Specifying OPC Automation Functions
Discusses defining the automation platform to OPC and defining OPC to
the automation platform.

Chapter 11, Control File Entries Used by OPC Automation
Discusses the OPCA CODE, OPCACMD, OPCA DOMAINID,
OPCAPARM, and OPCA PCS.

Chapter 12, Data Areas
Shows the subsystem status file OPC Automation entry (EVJSTS) and
discusses the requestor id block (EHKVAR9) and the request buffer.

xiv AOC/MVS V1R4 OPC Automation Programmer’s Reference

Chapter 13, Guidelines for User-Written Operations
Discusses two types of user-supplied extensions for implementation of
functions beyond those provided by OPC Automation.

Part 4, Planning and Installation
Discusses installation and implementation procedures for the programmer.
This section tells the programmer how to install and implement OPC
Automation.

Chapter 14, Installation
Discusses the steps involved in the installation process.

Chapter 15, Merge NetView Related Members
Describes how to build OPC Automation parameter data sets and
assemble the code that enables OPC Automation to operate in the
NetView environment.

Chapter 16, OPC Automation Initial Customization
Describes the definitions that take place in NetView.

The Appendixes
Provide the following information:

Appendix A, Status Display Facility Enhancements
Shows the CLISTs used to implement the supplied enhancements.

Appendix B, OPC Automation Worksheets
Provides worksheets to define the workstations, operations, and the
OPC environment.

Appendix C, Sample OPC Automation Control File
Lists the parameters used with OPC Automation.

A glossary of related terms and an index are also included.

What’s New in This Book?
This edition contains major changes concerning the following::

| � Introduction of SA OS/390 as a supported environment
| � Modifications to support TME 10 OPC Version 2 (APAR number 35607)

� Modifications supporting Release 4 of AOC/MVS OPC Automation
� Technical changes reflecting service updates

A vertical bar (|) in the left margin indicates changes to the text and illustrations.

 About This Book xv

 Related Publications

 The SA OS/390 Library
The following table shows the information units in the SA OS/390 library:

The System Automation for OS/390 books (except Licensed Program
Specifications) are also available on CD-ROM as part of the following collection
kits:

� IBM Online Library OS/390 Collection (SK2T-6700)

� IBM Online Library Networking Collection (SK2T-6012)

These softcopy collections include the IBM Library Reader, a program that enables
you to view online documentation.

 SA OS/390 Homepage

For the latest news on SA OS/390, visit the SA OS/390 homepage at
http://www.s390.ibm.com/products/sa/

Table 1. SA OS/390 Library

 Title
Order
Number

SA OS/390 General Information GC28-1541

SA OS/390 Licensed Program Specifications GC28-1540

SA OS/390 Planning and Installation GC28-1549

SA OS/390 Customization GC28-1566

SA OS/390 Operations GC28-1550

SA OS/390 Messages and Codes GC28-1569

SA OS/390 Technical Reference GC28-1593

AOC/MVS CICS Automation General Information GC23-3813

AOC/MVS CICS Automation Operator’s Guide SC23-3815

AOC/MVS CICS Automation Programmer’s Reference and Installation
Guide

SC23-3814

AOC/MVS IMS Automation General Information GC23-3816

AOC/MVS IMS Automation Operator’s Guide SC23-3818

AOC/MVS IMS Automation Programmer’s Reference and Installation
Guide

SC23-3817

AOC/MVS OPC Automation General Information GC23-3819

AOC/MVS OPC Automation Operator’s Guide and Scheduler’s
Reference

SC23-3821

AOC/MVS OPC Automation Programmer’s Reference and Installation
Guide

SC23-3820

xvi AOC/MVS V1R4 OPC Automation Programmer’s Reference

Related Product Information for the Base Program
The following table shows the books in the related product libraries that you may
find useful for support of the SA OS/390 base program.

Table 2 (Page 1 of 2). Related Product Books

 Title
Order
Number

MVS/ESA MVS Configuration Program Guide and Reference GC28-1817

MVS/ESA Planning: Dynamic I/O Configuration GC28-1674

MVS/ESA Support for the Enterprise Systems Connection GC28-1140

MVS/ESA Planning: APPC Management GC28-1110

MVS/ESA Application Development Macro Reference GC28-1822

MVS/ESA SP V5 System Commands GC28-1442

MVS/ESA SPL Application Development Macro Reference GC28-1857

NetView for MVS V3R1 Administration and Security Reference SC31-8045

NetView for MVS V3R1 Automation Implementation SC31-8050

NetView for MVS V3R1 Automation Planning SC31-8051

NetView for MVS V3R1 Command Reference SC31-8047

NetView for MVS V3R1 Customization Guide SC31-8052

NetView for MVS V3R1 Customization: Writing Command Lists SC31-8055

NetView for MVS V3R1 Installation and Administration Guide SC31-8043

NetView for MVS V3R1 RODM and GMFHS Programming Guide SC31-8049

NetView for MVS V3R1 User’s Guide SC31-8056

NetView for MVS V3R1 Tuning Guide SC31-8048

OS/390 Hardware Configuration Definition: User’s Guide SC28-1848

OS/390 Information Roadmap GC28-1727

OS/390 Information Transformation GC28-1985

OS/390 Introduction and Release Guide GC28-1725

OS/390 V1R2.0 JES Commands Summary GX22-0041

OS/390 Licensed Program Specifications GC28-1728

OS/390 Printing Softcopy Books S544-5354

OS/390 Starting Up a Sysplex GC28-1779

OS/390 Up and Running! GC28-1726

Planning for the 9032 Model 3 and 9033 Enterprise Systems
Connection Director

SA26-6100

Resource Access Control Facility (RACF) Command Language
Reference

SC28-0733

S/390 MVS Sysplex Overview – An Introduction to Data Sharing and
Parallelism

GC23-1208

S/390 MVS Sysplex Systems Management GC23-1209

S/390 Sysplex Hardware and Software Migration GC23-1210

S/390 MVS Sysplex Application Migration GC23-1211

 About This Book xvii

Table 2 (Page 2 of 2). Related Product Books

 Title
Order
Number

S/390 Managing Your Processors GC38-0452

TSO/E REXX/MVS Users Guide SC28-1882

TSO/E REXX/MVS Reference SC28-1883

VSE/SP Unattended Node Support SC33-6412

VSE/ESA 1.1.0 Unattended Node Support SC33-6512

VTAM Version 3 Release 3 Network Implementation Guide SC31-6404

VTAM Version 3 Release 4 Network Implementation Guide SC31-6434

Related Product Information for Workstation Operations
The following are the books in the related product libraries that you may find useful
for support of SA OS/390 workstation operations.

Table 3. Related Product Books

 Title
Order
Number

APPC System Definitions in MVS/ESA and OS/2 GG66-3224

APPC Programming Considerations GG24-3818

APPC Application Examples GG24-3819

Distributed Console Access Facility User’s Guide GE13-0061

IBM Communications Manager/2 Version 1.1 G221-3630

IBM Communications Manager/2 Version 1.1 Information and
Planning Guide

SC31-7007

IBM Communications Manager/2 Version 1.1 Workstation Installation
Guide

SC31-6169

IBM Communications Manager/2 Version 1.1 Configuration Guide SC31-6171

IBM Communications Manager/2 Version 1.1 User’s Guide SC31-6108

IBM Operating System/2 Version 2.1 Using the Operating System S61G-0905

IBM Operating System/2 Warp SR28-5668

NetView for MVS V3R1 Graphic Monitor Facility User’s Guide SC31-8095

Official Guide to Using OS/2 Warp SR28-5659

Personal Communications Programmer’s Guide SC31-8660

Personal Communications Reference SC31-8259

Personal Communications
 Tell Me About OS/2 Access Feature

SC31-8257

Personal Communications Up and Running SC31-8258

xviii AOC/MVS V1R4 OPC Automation Programmer’s Reference

Part 1. Introduction to OPC Automation

Chapter 1. OPC Automation Solution . 3
OPC Automation’s Approach to Automation . 3

Basic Concept . 3
Examples of Placing Calendar Control . 4

SA OS/390 . 4
SA OS/390 Control File . 5

OPCA CODE . 5
OPCACMD . 5
OPCA DOMAINID . 5
OPCAPARM . 5
OPCA PCS . 5
ENVIRON OPCAO . 6

System Initialization with OPC Automation . 6
NetView Automation Table . 6

NetView Interface to OPC Automation . 7
Status Display Facility . 11
Request and Confirmation Transaction Flow . 12
OPC Automation Log Entries . 14

Chapter 2. Hardware and Software Requirements 15

 Copyright IBM Corp. 1990, 1999 1

2 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Chapter 1. OPC Automation Solution

| TME 10 Operations Planning and Control (TME 10 OPC), Operations Planning and
| Control/Enterprise Systems Architecture (OPC/ESA), or Operations Planning and
| Control/Advanced (OPC/A) is a scheduling system that submits, tracks, and
| recovers the execution of batch work through a job entry system (JES) interface.
| NetView implements SA OS/390, and serves as the basis for automated console
| operations. OPC Automation is a program offering that capitalizes on the strengths
| of NetView, SA OS/390, and OPC by providing the ability to greatly expand job
| execution, scheduling, monitoring, and alert notification capabilities.

| Note: For consistency and clarity, this document uses the term OPC to refer to
| OPC/A, OPC/ESA and TME 10 OPC. Similarly the term OPC Controller
| refers to OPC/A PCS, OPC/ESA Controller or TME 10 OPC Controller.
| AOC OPC Automation supports all products.

OPC Automation’s Approach to Automation
With OPC Automation, NetView can use OPC calendar information to achieve a
single-calendar definition that handles multiple systems and sites. A change in the
OPC calendar can affect all the systems, ensuring consistency throughout the
systems complex.

System Automation for OS/390 (SA OS/390) automates MVS console operations
and provides the base for further automation when used with the NetView Solutions
family of program offerings. SA OS/390 is a powerful application, designed to
greatly reduce the time and effort required to meet automation objectives.

This approach to automation combines NetView and OPC with an SA OS/390 and
OPC Automation. It provides a function that does not exist in any of these
applications alone. Thus, the end result of combining these applications in an
automated environment far exceeds the capabilities of these products when used
individually. These applications complement the other so that the total of their
capabilities is greater than the sum of their parts.

 Basic Concept
Large, complex systems frequently require comprehensive schedules. There are
regular workdays, other workdays (weekends), and complicated business cycles
that take into consideration events such as:

 � Holidays
� Financial quarter-end processing

 � Sales promotions
 � Maintenance
� Product development phases

 � Testing

NetView does not easily lend itself to implementing these types of calendars.
However, OPC has excellent calendar-management capabilities.

OPC Automation’s basic concept consists of moving the management of functions
that require calendar control from NetView and SA OS/390 to OPC, even if no
batch component exist. This ensures a single point of control and eliminates

 Copyright IBM Corp. 1990, 1999 3

problems resulting from a loss of synchronization in calendars between OPC and
NetView.

Examples of Placing Calendar Control
You can control startup and shutdown with SA OS/390 or with the OPC calendar
functions. The following are examples of where to place this control:

� In the first situation, TSO is scheduled for availability at all times, regardless of
dates or time of day. Here TSO is defined using the SA OS/390 control file,
since calendar-specific control is not required.

� In the second case, TSO is required for specific hours on business days and
different hours on weekends and holidays. Since SA OS/390 alone does not
easily encompass calendar-specific events, you should define this in OPC and
tie into SA OS/390 with OPC Automation. This approach offers a single point
of control for all automated events.

 SA OS/390
SA OS/390 provides automated console operation functions that are implemented
through NetView CLISTs, command processors, message tables, and panels.
These automation capabilities address the majority of subsystem and component
automation requirements. They are an integral part of NetView and the MVS
operating system. The automation of local resources in the operating system
provides the primary focus of this approach.

When multiple MVS systems are interconnected and require consolidated
operations at one focal-point system, you can configure SA OS/390 to
communicate automation-related status and commands to and from that focal-point
system. This enables you to view status from multiple systems on a single system
which acts as a focal point.

SA OS/390 provides the capability to automatically start, monitor, and terminate
MVS subsystems, components, and applications, such as JES2 or JES3, VTAM,
TSO/E, IMS, CICS, DB2, RMF, NetView, and many others.

OPC defines a workstation as a unit or place that performs a specific data
processing function. Examples of workstations include JCL preparation, data entry,
CPUs, and printers. Activities that occur on workstations are referred to as
operations. OPC Automation extends the idea of workstations to include NetView.
Each NetView with AOC/MVS in your enterprise is represented by an OPC

| workstation. An OPC workstation may also represent all NetViews running
| SA OS/390 within the same sysplex where the OPC Controller (or OPC/A PCS) is
| running. These NetView workstations then schedule and perform operations on

behalf of batch applications.

4 AOC/MVS V1R4 OPC Automation Programmer’s Reference

SA OS/390 Control File
A control file defines the scope of the automation that is performed. The control file
supplied with SA OS/390 contains a basic sample set of subsystem and
component definitions. This control file is designed to be easily expanded for
specification of additional subsystems and components.

OPC Automation is an extension of SA OS/390. To implement OPC Automation,
the following control file entries were added:

 � OPCA CODE
 � OPCACMD
 � OPCA DOMAINID
 � OPCAPARM
 � OPCA PCS
 � ENVIRON OPCAO

 OPCA CODE
The OPCA CODE entry defines the parameters used for various requests. This
entry is coded for each subsystem. For example:

RMF OPCA,CODE=(START,,,'UP,3,RMFUTMER')

 OPCACMD
The OPCACMD entry specifies the actual automation command that is issued for a
request. This entry is coded for each subsystem. For example:

RMF OPCACMD,CMD=(START,,'SETSTATE RMF,RESTART,START=YES')

 OPCA DOMAINID
| The OPCA DOMAINID entry relates to an OPC/A automatic workstation to either a
| specific NetView domain ID or collectively to all NetView domains on the local
| sysplex. For example:

| OPCA DOMAINID,
| CODE=(NVð6,,,AOFð6),
| CODE=(NVðð,,,AOFð1),
| CODE=(NVð8,,,SYSPLEX)
| CODE=(NVð1,,,XBAOF)

 OPCAPARM
The OPCAPARM entry defines the parameters used for various requests. This
entry is coded for each subsystem. For example:

RMF OPCAPARM,CODE=(START,,,',,')

 OPCA PCS
| The OPCA PCS entry specifies either the NetView domain on which the OPC
| Controller resides or that the local sysplex is to be searched for the active controller
| when required. It must also specify the MVS subsystem name for the OPC
| controller.

| Example 1:

| OPCA PCS,
| DOMAIN=AOFð1,
| SUBSYS=OPCA

 Chapter 1. OPC Automation Solution 5

| Example 2:

| OPCA PCS,
| DOMAIN=SYSPLEX,
| SUBSYS=OPCC

 ENVIRON OPCAO
The ENVIRON OPCAO entry specifies certain system-wide defaults, for:

� Retention of critical messages (MSGKEEP)

� Determining if operations can be reset after NetView has been unavailable
(OPCRESET)

� Checking subsystem status before allowing requests to proceed (REQSTAT)

For example:

ENVIRON OPCAO,REQSTAT=YES,
 MSGKEEP=ð4:ðð,
 OPRESET=ðð:3ð

For a complete description of OPC Automation control file entries, see Chapter 11,
“Control File Entries Used by OPC Automation” on page 65

For a complete description of the base SA OS/390 control file entries, to the
System Automation for OS/390 Customization.

System Initialization with OPC Automation
JES starts OPC, which is usually operational at all times, as a task without
SA OS/390. OPC Automation then transfers the responsibility of starting OPC from
JES to SA OS/390, as described in the following scenario:

| � The OPC Tracker has JES as a parent.

� During the IPL process, as soon as JES is running, AOC issues a start
command for the Tracker subsystem.

| � Once the Tracker has started, SA OS/390 issues a start command for the OPC
| Controller on the control host(s) only.

� Automation continues to initialize the rest of the tasks that are defined to it.
OPC Automation restores the status of any OPC-controlled tasks to the last
status requested by OPC and waits for OPC to issue new requests.

NetView Automation Table
SA OS/390 monitors messages received and compares them with those in the
NetView automation table, formerly called the message table. When a message
occurs that ordinarily requires manual operator intervention, such as responding to
an outstanding WTOR, the control file directs a predefined response to the MVS
console without operator intervention.

6 AOC/MVS V1R4 OPC Automation Programmer’s Reference

NetView Interface to OPC Automation
The program-to-program interface (PPI), a high-performance interface, provides
synchronization and bidirectional command and message flow between NetView
and other applications. OPC provides additional application programming interfaces
(APIs), which allow it to be updated by other programs.

The implementation of these interfaces in OPC Automation provides the following
capabilities:

� Automation of OPC startup and termination

� Interception of OPC alerts for analysis by the alert operator

� Expansion of the Status Display Facility to provide information about TSO
users, batch jobs, critical messages, outstanding tape mounts, and OPC errors

� Implementation of a two-way interface between OPC and NetView with
SA OS/390:

– OPC defines and controls interactive applications. Support is provided to
start and stop subsystems that are defined to the SA OS/390 application.

– Database tasks can run in both interactive and batch systems with full
synchronization between the activities.

– SA OS/390 can access OPC calendars and other information.

– NetView operators can access and update OPC-defined applications
without the need to log on to OPC.

� Two user extensions:

– OPCACOMP allows the startup and shutdown of subsystems not controlled
by SA OS/390.

– UXxxxxxx allows automation of activities not associated with a specific
subsystem.

OPC Automation provides commands and panels that allow a NetView operator to
make inquiries and issue requests to OPC without actually logging on to OPC.

 Chapter 1. OPC Automation Solution 7

For example, if you wanted to display OPC detail information from a NetView
console, enter the following command from any NetView command line:

OPCACMD

After you press ENTER, OPC Automation displays the AOC OPC: Display or
Modify OPC Data panel (EVJKAC01), as shown in Figure 1.

à ð
 EVJKACð1 AOC OPC: Display or Modify OPC Data
 Date: ð5/17/95
 Time: 14:36:36

 Specify search criteria and press ENTER

 Subsystem : OPCC From ACF-file

Application : rmf____________ Can be generic
 Opno : ____ Numeric

Jobname : ________ Can be generic
Wsname : ____ Can be generic
Group : ________ Can be generic
Owner : ________ Can be generic
Priority : _ 1-9 (1=low, 9=high)
Errcode : ____ Can be generic

 Status : _ A/W/S/R/C/I/E/U

 Action===>
 F1= Help F2= End F3= Return F6=Roll

á ñ

Figure 1. AOC OPC: Display or Modify OPC Data Panel

Note: This presentation shows how OPC Automation panels interface with OPC.
For further details, refer to AOC/MVS OPC Automation Operator and
Scheduler Reference.

8 AOC/MVS V1R4 OPC Automation Programmer’s Reference

To list all of the applications defined to OPC on this system, type an asterisk (*) in
the application field, as shown in Figure 2.

à ð
Application : _______________ Can be generic

á ñ

Figure 2. Generic Search Function

Although this illustration shows the generic search function, refer to AOC/MVS OPC
Automation Operator and Scheduler Reference for more details in selecting your
list.

After you press ENTER, OPC Automation displays the Display or Modify OPC Data
panel (EVJKAC03), as shown in Figure 3.

à ð
 EVJKACð3 Display or Modify OPC Data Page: 1 of 1
 Date: ð5/17/95
 CMD: C change B browse Time: 14:36:42
 H hold R release N no-op U unno-op
 CMD Application Jobname Ws Opno St Inp. Arr Description H N
 --- ---------------- -------- ---- ---- - ---------- ----------- - -
_ RMFDLY RMF NV11 ððð1 C 95ð526223ð STOP N N
b RMFDLY RMFMAINT CPU1 ððð2 E 95ð526223ð N N
_ RMFDLY RMF NV11 ððð3 W 95ð526223ð START N N
_ RMFDLY RMF NV11 ððð1 A 95ð53ð22ðð STOP N N
_ RMFDLY RMFMAINT CPU1 ððð2 W 95ð53ð22ðð N N
_ RMFDLY RMF NV11 ððð3 W 95ð53ð22ðð START N N
_ RMFDLY RMF NV11 ððð1 A 95ð6ð622ðð STOP N N
_ RMFDLY RMFMAINT CPU1 ððð2 W 95ð6ð622ðð N N
_ RMFDLY RMF NV11 ððð3 W 95ð6ð622ðð START N N

 Action===>
 F1= Help F2= End F3= Return F5= Refresh F6= Roll

á ñ

Figure 3. Display or Modify OPC Data Panel

 Chapter 1. OPC Automation Solution 9

To display detail information about application MAINT, type B in the CMD field.
After you press ENTER, OPC Automation displays the OPC Occurrence Data panel
(EVJKAC02), as shown in Figure 4.

à ð
 EVJKACð2 OPC Occurrence Data
 Date: ð5/17/95
 Time: 14:38:3ð

 Subsystem : OPCC Deadline : 95/ð5/26 23:3ð
 Application : RMFDLY OPIA date : / / OPIA time : :
 Opno : ððð2 Edur : ððð5 PS reqd : ððð1
 Inp arrival : 95/ð5/26 22:3ð Job Class : P R1 reqd : ðððð
 Jobname : RMFMAINT Auto Sub : Y R2 reqd : ðððð
 Wsname : CPU1 AJR : Y A E C : Y Y/N
 Clate : N Timedep : N
 Form no : ____ Hi RC : ðððð
 Priority : 5 Reroute : N Restart : Y
 Error Code : SB37 DeadWTO : N Cat mgt : N
 Status : E Manual hold : N NOP : N

Description : ________________________
 User data : ________________

 Action===>
 F1= Help F2= End F3= Return F6=Roll

á ñ

Figure 4. OPC Occurrence Data Panel

10 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Status Display Facility
SA OS/390 uses the Status Display Facility to provide a central focus of
information. The Status Display Facility describes the status of all automated
systems and applications of a NetView complex, such as:

� A consolidated, hierarchical view of an entire operating environment with
detailed information where required.

� Dynamically updated status panels that use color, representing system and
application status to enhance usability and to expedite comprehension of
priority information.

� A central repository for the status of automated resources and components.

� A facility for viewing the status of multiple target systems by a focal-point
system operator.

� Simplified techniques for presenting and maintaining resource status for
multiple systems, subsystems, and applications. For example:

– Multiple programs can asynchronously update the Status Display Facility
with subsystem status without concern for sequence or priorities posted by
other programs.

– The Status Display Facility resolves the priority of conflicting statuses and
displays the most severe status.

– When a problem is resolved, the program resolving the problem can update
or clear the condition previously set without regard for any other status
posted by other programs. The status of the application is automatically
updated to the current status or most serious problem as appropriate.

OPC Automation provides the following additional fields and detail panels for the
Status Display Facility:

CRITMSG Critical messages

TAPES Outstanding tape mounts

TSOUSERS TSO users logged on

BATCH Batch jobs being executed

OPCERR OPC-detected errors

To use the Status Display Facility, refer to AOC/MVS OPC Automation Operator
and Scheduler Reference.

 Chapter 1. OPC Automation Solution 11

Request and Confirmation Transaction Flow
Figure 5 shows the flow from an OPC application requested action through to
NetView and the return confirmation of the action. This example illustrates the
request to start the resource management facility (RMF), located in a remote host
with a NetView domain identifier of NVREG. OPC contains a representation of this
host with a workstation definition of NV04. The request to start RMF is part of an
OPC application known as MAINT. In Figure 5, the jobname is specified as RMF
and the operation text is START.

Operations

CPU_15

NV04_28

CPU 25

Request,
Verify,
Forward
to Target
System

2

3

1

5

4

Verify Status
of Action

OPCAPOST NetNiew
Command Processor

Post OPC with
C for Completed or
E for Error

Execute Request
via Automation

Validate and
Expand Request

OPC Focal Point System

Application
MAINT

OPC
Daily Plan NetView

Target
System
Table

...

NV04=NVREG

Target System

(ID=NVREG)

Via NEC

Status
Change

Timer _or_

Figure 5. NetView–OPC Interface Flow. Syntax and definition errors, target system
availability, recovery, and resynchronization via OPC API and NetView PPI are not shown in
this example.

The OPC application named MAINT is defined to OPC, using dependency control,
to ensure an orderly flow of operations. NV04 defines an OPC automatic general
workstation which is resolved by NetView into the target NetView domain ID
through SA OS/390 OPC Automation parameter definitions.

Figure 5 shows CPU_15 as the last batch step which needs processing prior to
starting RMF. Once this completes properly, OPC dependency control makes the
NV04_20 operation ready on the NV04 workstation. This causes the request to
start RMF which is then forwarded to NetView Domain NVREG.

12 AOC/MVS V1R4 OPC Automation Programmer’s Reference

OPC Automation uses the NetView PPI to transfer the request from OPC to
NetView. This transfer of the NetView request from OPC to NetView is through the
use of the status change exit (exit 7) in OPC.

.1/ The NetView PPI passes the request buffer to the PPI dispatcher task in
SA OS/390. This task dispatches the request to the OPC Automation verify routine,
which translates the workstation name into the NetView domain ID through
definitions in the SA OS/390 control file.

.2/ The request is forwarded to the appropriate NetView domain for execution.

.3/ The target NetView translates the request text into MVS console commands
using information stored in the automation control file. In Figure 5 on page 12, the
request function translates the request buffer to the SA OS/390 function, which
then starts RMF, but not an MVS START command. The automation control file
entry to start RMF is:

RMF OPCACMD,CMD=(START,,'SETSTATE,RESTART,START=YES')

Functions other than START and STOP of systems based on SA OS/390 may
require user programming.

The command is dynamically generated using definitions in the SA OS/390 control
file. A check determines whether the command is properly accepted. During this
process, WTOs and the OPCAPOST command report errors. OPCAPOST sends
an error indication back to OPC. If the command is issued correctly, a timer request
is made. The timer intercepts a condition, where the request does not execute in a
reasonable amount of time, which is user-selectable.

.4/ A change-of-status SA OS/390 function intercepts all changes-of-status. This
allows the completion of outstanding requests as soon as the request is executed.

.5/ When the request is completed, the OPCAPOST command processor is
invoked. OPCAPOST calls EQQUSINT/DRKUSINT which passes the completion
code to the OPC Tracker on this system. The OPC Tracker forwards the
completion code to the OPC Controller.

In a user-supported function, the timer and completion validation are a user
responsibility. Once the user code determines that the function is completed, the
OPCACOMP function is called. This function assures that actions are accomplished
in the correct sequence, performs some housekeeping, returns a good or bad
completion code, and calls the OPCAPOST command processor.

This terminates the processing for this specific OPC operation. If the request is
executed without problems, the operations status is set to C (completed) and
normal OPC dependency control allows the next operation to start. See the
CPU_25 batch job in Figure 5 on page 12.

If the operation completes in error, an E status and a 4-character return code is set,
and the application does not continue processing until a person or OPC intervenes.

 Chapter 1. OPC Automation Solution 13

Errors reset by OPC Automation are the result of regained availability of a target
NetView domain to which communications are lost. The error codes are set to:

� Uxxx when human intervention is required.

� Sxxx when OPC Automation attempts to recover. This occurs when an
operation that did not complete properly is resolved and completed.

OPC Automation Log Entries
Before processing takes place, the request buffers received by OPC Automation
from OPC are copied to the NetView log for tracking purposes, such as verification
of correct operations and error logging.

Figure 6 shows a request buffer log entry. In this example, OPC is processing the
| MAINT application. An OPC controller running on domain NVDOM has made a
| request to OPC Automation to perform START for the RMF subsystem. When this

action is completed, OPC Automation changes the status of the NV00_10 operation
in the MAINT application to C (completed).

EVJESPRQ MAINT NV00 10 RMF START PARM1 PARM2

Parameter 2

Request identifier

Application making request

Workstation name

Operation number

Target subsystem

Function requested
Parameter 1

(> CTLDOMAIN=NVDOM

OPC Controller domain

Figure 6. NetView Log Entry of an OPC Generated Request

14 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Chapter 2. Hardware and Software Requirements

| OPC Automation is supported on any hardware and software environment
| supported by SA OS/390.

| OPC Automation supports the following program products:

| � TME 10 Operations Planning and Control (TME 10 OPC) Version 2 Release 1
| or Version 2 Release 2, program number 5687-OPC.

| � Operations Planning and Control/Enterprise Systems Architecture (OPC/ESA)
| Version 1 Release 2 or higher, program number 5696-007

| � Operations Planning and Control/Advanced (OPC/A) Version 1 Release 2,
| program numbers 5665-371, 5665-372, and 5665-373

| For OPC Automation sysplex related functions (e.g., control of ARM enabled
| applications, support for a standby OPC controller) the following additional minimum
| requirements are imposed:

| � TME 10 OPC Version 2 Release 1 or higher

| � OPC Automation APAR number OW35607

| � SA OS/390 Version 1 Release 3

| � The OPC Controller must be running in a sysplex environment

| When running OPC Automation in conjunction with OPC/A, function is limited to the
| automation functions described in this book, and to the fields in the OPCACMD
| interface which are available in OPC/A. If the operator attempts to alter fields which
| OPC/A does not support, error messages will result. Also, the SRSTAT command
| will not function in an OPC/A environment, as OPC/A does not support this
| environment.

 Copyright IBM Corp. 1990, 1999 15

16 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Part 2. Concepts

Chapter 3. Flow Overview . 19
Initialization . 19
Request Flow . 20

EQQUX007 (DRKUX007) Exit . 21
Program-to-Program (PPI) Interface Dispatcher 22
Verify Module (EVJESPVY) . 22
Request Module (EVJESPRQ) . 24
Status Change Module (EVJESPSC) . 25
Timer Module (EVJESPTE) . 26
OPCAPOST Command Processor . 27

Chapter 4. Automated Operator Tasks . 29
Defining OPC to SA OS/390 . 29

Chapter 5. Initialization . 31
Startup of OPC Components . 31
Startup of OPC-Controlled Subsystems . 32

Initialization Module (EVJESPIN) . 32

Chapter 6. Request Handling in the OPC-PCS/Controller System 33
Handling Time Dependencies . 35
Changes to the Status of the Operation . 36

Extending the Daily Plan . 36

Chapter 7. Request Handling in the OPC-EMS/Tracker System 37
Completion and Timer Flags . 38

Chapter 8. Operations Control . 39
EVJESPIN Module . 39
Obtaining Information from OPC . 40

Chapter 9. Automated Recovery . 41

 Copyright IBM Corp. 1990, 1999 17

18 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Chapter 3. Flow Overview

| OPC Automation is an interface between NetView, OPC, and SA OS/390. These
| components provide the facilities which make up the interface. This chapter
| provides an introduction to these components and their interactions.

 Initialization
Initialization involves the following two sequences:

1. Initialization of the OPC components.

2. Initialization of OPC Automation functions in each NetView. “Startup of
OPC-Controlled Subsystems” on page 32 describes this. OPC Automation
initialization includes the automated recovery sequences described in
Chapter 9, “Automated Recovery” on page 41. Also refer to AOC/MVS OPC
Automation Operator and Scheduler Reference.

 Copyright IBM Corp. 1990, 1999 19

 Request Flow
This section contains a detailed description of the flow of a request from OPC to
NetView and the return confirmation. This flow provides an explanation of the
involved modules. “Request and Confirmation Transaction Flow” on page 12
summarizes this request.

Figure 7 uses a request to start RMF, located in a NetView domain NVREG with a
workstation definition of NV04. This request is an operation in an OPC-defined
application known as MAINT.

Operations

CPU_15

NV04_28

CPU 25

Request,
Verify,
Forward
to Target
System

2

3

1

5

4

Verify Status
of Action

OPCAPOST NetNiew
Command Processor

Post OPC with
C for Completed or
E for Error

Execute Request
via Automation

Validate and
Expand Request

OPC Focal Point System

Application
MAINT

OPC
Daily Plan NetView

Target
System
Table

...

NV04=NVREG

Target System

(ID=NVREG)

Via NEC

Status
Change

Timer _or_

Figure 7. NetView-OPC Interface Flow. Syntax and definition errors, target system
availability, recovery, and resynchronization via OPC API and NetView program-to-program
interface are not shown in this example.

Using dependency control to ensure an orderly flow of operations, OPC defines the
OPC-controlled application named MAINT. OPC defines the application on an
automatic general workstation, specifying the NetView to which the request is sent.
NVnn specifies a NetView automatic general workstation with a NetView domain
index of nn, which is resolved in the PCS-NetView into the target NetView domain
ID through the definitions in the automation control file. OPC can define the NVnn
workstation with all regular specifications, such as parallel servers and special
resources.

In the MAINT example in Figure 7, OPC defines the last batch application
processed before starting RMF with an operation number of 15. Once this

20 AOC/MVS V1R4 OPC Automation Programmer’s Reference

completes properly, the normal OPC dependency control readies the NV04_20
operation on the NV04 workstation. This signifies that the request contained within
the operation description field is sent to the NetView with a domain ID of NVREG.

OPC Automation uses the NetView PPI to transfer the request from OPC to
NetView. This transfer is through the DRKUX007 exit in OPC/A-PCS. In OPC/ESA
systems, the EQQUX007 exit in the OPC/ESA controller carries out this function.

EQQUX007 (DRKUX007) Exit
Each change of status on any workstation calls the EQQUX007 (DRKUX007 in
OPC/ESA) exit, which checks for a NVnn workstation proceeding to the R (ready)
status. The EQQUX007/DRKUX007 exit ignores all other conditions (operations
going to A or * are counted as ready). Figure 8 shows the flow of this process.

Figure 8. EQQUX007/DRKUX007 Exit

When an NVnn workstation moves to the R status, the workstation generates a
request buffer. Fields pointed to by registers in the EQQUX007/DRKUX007 exit
provide all of the data for the request buffer. For the layout of the fields in the
request buffer, see Table 6 on page 79 and Table 7 on page 80.

OPC Automation supplied EQQUX007/DRKUX007 exit logic verifies that all fields
exist except the optional parameter fields. If this exit logic determines if any field is
missing or the value is not valid, it issues an error WTO and changes the operation
to E status, with an error code indicating a user-definition error. Since the
DRKUX007 exit contains no capability to directly change the status of an OPC
operation when an error code is posted to OPC, the EQQUX007/DRKUX007 exit
uses the EQQUSINT/DRKUSINT module to respond.

If the information is correct, OPC builds the request buffer and calls the
CNMCNETV module, which is the NetView program-to-program interface module.
This module transfers the request to the PCS/Controller-NetView, where OPC
verifies the return codes from the call function to ensure that there are no errors. If
OPC detects errors, the EQQUSINT/DRKUSINT module changes the status to E
(ended-in-error), with the error code on the basis of the PPI module return code.
The module issues a WTO and completes processing the EQQUX007/DRKUX007
logic. OPC Automation then restores registers and returns control to OPC.

If the OPC Automation EQQUX007/DRKUX007 exit is unable to load the
CNMCNETV module or use it to send data, it directs OPC to mark the requested
operation in error, with an error code of UNTV. OPC Automation automation will

 Chapter 3. Flow Overview 21

attempt to reset operations which have ended in a UNTV error, subject to a
user-defined time limitation, whenever the OPC controller is restarted.

Program-to-Program (PPI) Interface Dispatcher
The NetView program-to-program interface passes the request buffer to the PPI
dispatcher task in the SA OS/390 application. The PPI dispatcher task
(EVJTOPPI), a NetView subtask, receives the SA OS/390 action requests from the
buffers from the EQQUX007/DRKUX007 exit. Figure 9 shows this flow.

Figure 9. PPI Dispatcher

On the basis of the sending task identifier, the PPI dispatcher determines the
function in SA OS/390 that is sent. For OPC Automation, the dispatcher selects the
verify function.

Verify Module (EVJESPVY)
The verify module, which runs on a NetView autotask, runs only in the
Controller/PCS-NetView. This module receives the action request buffer from the
PPI dispatcher task. Figure 10 shows this process.

Program
to

Program
Interface

dispatcher

PCS/Controller NetView

OPC Focal Point System

Verify
function,

determine
target

system

Forward to
target system

Target System Table
. . .

NV04=NVREG
NV00=SYSPLEX
. . .

| Figure 10. Verify Module

22 AOC/MVS V1R4 OPC Automation Programmer’s Reference

| The verify module uses the NVnn index to obtain the destination NetView domain
| ID from the automation control file. If the relevant NVnn index specifies SYSPLEX
| then all AOCs in the local sysplex are queried for the status of the job named in the
| request. The destination is determined to be the system which has the application
| in the most active state.

| If the destination NetView and the requesting NetView are the same, OPC
| Automation logs the request buffer and invokes the request module. If the
| destination NetView and the requesting NetView are different, OPC Automation
| sends the request to the proper NetView domain by message forwarding.

| If OPC Automation does not find the NVnn index then OPC Automation issues a
| message, posts the operation status to E (ended-in-error, U003), and logs the
| results. No communications can occur with this workstation until the definition is
| corrected. On the domain where the OPC controller is running, the automation
| control file needs to define this workstation using the OPCA DOMAINID entry. You
| must manually reset operations that are posted-in-error since OPC Automation
| carries out no automated recovery for definition errors.

| If NVnn=SYSPLEX has been specified and OPC Automation does not find the job
| defined to any online AOC in the local sysplex then OPC Automation issues a
| message, posts the operation status to E (ended-in-error, S998), and logs the
| results. To cater for the situation where all domains where the job runs are offline,
| the operation will be retried if a gateway connection to another AOC becomes
| active.

| If OPC Automation successfully forwards messages, it logs the request buffer and
| returns control to the module. If OPC Automation cannot send the request, it issues
| an error message and logs it to indicate communication loss with the requested
| NetView domain. OPC Automation then posts the operation status to E
| (ended-in-error, S999) due to loss of contact. When OPC Automation re-establishes
| communications with this NetView domain, it checks for all outstanding errors
| because of loss of communications on this workstation. If OPC Automation finds
| any of these errors, it resets the OPC-operation status to R (ready), which
| re-invokes the EQQUX007/DRKUX007 exit.

 Chapter 3. Flow Overview 23

Request Module (EVJESPRQ)
The arrival of a request from the verify module drives the request module in
Tracker/EMS-NetView. OPC Automation installs the request module on each
system running an OPC/ESA Tracker. Figure 11 shows the flow of this process.

The main functions of the request module are to:

� Translate the OPC-generated request to one which is understood by
SA OS/390

� Schedule a user-defined function

For more information on a user-defined alternative to the request module, see
“Relating to the SA OS/390 Defined Subsystem” on page 81.

Figure 11. Request Module

If required, the request module uses definitions in the control file to translate the
subsystem name to the job name and to create the SA OS/390 command that
initiates the function requested. The control file contains request and parameter
fields and uses these entries to obtain the command text and the parameter syntax
for the actual request. If any of these entries are not found, the processing cannot
continue. The OPCAPOST module posts an error to OPC, which logs the error and
issues a WTO. An error is posted to OPC by the OPCAPOST module, the error is
logged, and a WTO is issued. Since this is a user-definition error, OPC attempts no
automation recovery. The user must correct the definitions and reset the operations
in error.

In Figure 11, the request module translates the requested action in the buffer to the
SA OS/390 command required to start RMF. The SA OS/390 command then starts
RMF.

24 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Except for starting, stopping, or recycling SA OS/390-controlled subsystems, other
functions may require user programming. To support these functions, OPC
Automation provides a user exit capability. For a detailed description of user
responsibilities required to handle a user call, see “Relating to the SA OS/390
Defined Subsystem” on page 81.

For subsystem operations, the OPCAPOST command processor posts to OPC if
the values are found in the automation control file. OPC then changes the status
from R (ready) to S (started). OPC Automation then issues the SA OS/390
command, and checks the return code of the operation. If the command is properly
executed, OPC Automation issues a timer request, on the basis of the delay
specified in the control file, and the request module terminates.

A change of subsystem status calls the status-change exit module. If the status
change does not occur, the time-driven module executes when the timer interval
expires. This ensures that a request resulting in an unexpected status processes.
For example, if OPC requests a START operation, and the subsystem fails to start
due to a JCL error or other problem, then the OPCAPOST module posts OPC with
an error status.

OPC Automation dynamically generates the OPC request by using definitions in the
automation control file and dynamic substitution of command fragments on the
basis of the parameters.

Status Change Module (EVJESPSC)
SA OS/390 calls the status-change module for each change of status. This
module determines whether a status change is the result of a previous OPC
Automation request. If the status change is not the result of a previous request,
OPC Automation ignores the status change. Figure 12 shows the flow of this
process.

If an outstanding action for the changed subsystem exists, and the new results in
the expected status, OPC Automation cancels the timer. OPCAPOST updates the
OPC operation status to C (completed) status.

With the timer values properly set and the operation processing normally, the
change of status should always occur before the timer interval expires.

Figure 12. Status Change Module

 Chapter 3. Flow Overview 25

Timer Module (EVJESPTE)
Under normal conditions, a request passed to SA OS/390 results in the desired
status change before the timer expires, and OPC purges the timer. When this
sequence does not occur, and the timer remains at the end of the timer interval,
SA OS/390 drives the timer module.

Figure 13. Timer Module

For normal SA OS/390 functions, the status file provides the current status and
compares the results with the expected status. If a match is obtained, the
OPCAPOST command processor posts a C (completed) status to OPC. If
EVJESPTE determines a mismatch between the current and expected status,
OPCAPOST posts an error to OPC for review by the OPC administrator. Figure 13
shows the flow of this process.

26 AOC/MVS V1R4 OPC Automation Programmer’s Reference

OPCAPOST Command Processor
The OPCAPOST command processor calls EQQUSINT/DRKUSINT, which passes
the completion code to the OPC Tracker in this system. The OPC Tracker (or EMS)
forwards the completion code to the system running the Controller (or PCS) through
shared DASD or where OPC/A-PCS is running at a different location through
OPC/A-NEC. Figure 14 shows the flow of this process.

Figure 14. OPCAPOST Command Processor

Other functions use the OPCAPOST command. See “OPCAPOST” on page 63 for
documentation on the syntax.

This module completes the processing for this specific OPC operation. If the
request executes successfully, OPC Automation sets the OPC-operation status to C
(completed) and normal OPC-dependency control allows the next operation to start.
See the CPU_25 batch job in Figure 14. If the operation completes in error, OPC
Automation sets an E status and a 4-character return code. The application does
not continue processing until some intervention occurs. An operator or OPC
Automation’s recovery can sometimes provide this intervention.

 Chapter 3. Flow Overview 27

28 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Chapter 4. Automated Operator Tasks

Defining OPC to SA OS/390
OPC is an SA OS/390 controlled subsystem. Normal automation control file
definitions can describe OPC. In addition, SA OS/390 defines an automated
operator task for the OPC Controller in the system containing the Controller, as well
as one for the OPC Tracker in each system. These automated operator tasks
perform the OPC-requested functions in the SA OS/390 application.

OPC Automation requires actions in a specific order. Changes in this order can
result in unpredictable and undesirable results. To ensure that proper sequence of
processing is maintained, you must complete the actions in a single-thread fashion.
In OPC, this is the responsibility of the user and is achieved through dependency
control or critical resource specifications.

NetView maintains this control by ensuring that actions are executed sequentially
though the use of automated operator tasks. Specify only one automated operator
task for the OPC Controller functions and only one for the Tracker functions.
Stipulating any additional automated operator tasks for OPC Automation results in
loss of synchronization. This, in turn, can create an uncontrolled environment,
requiring a substantial amount of operator/system programmer effort to recover and
additional loss of synchronization until a single automated operator task for the
Tracker and Controller functions is reinstated. When OPC Automation detects any
violations, it checks for out of sequence requests and stops processing for a
specific application through an error code to OPC Automation.

However, separate automated operator tasks for Controller and Tracker are
required. Running OPC Automation on the Controller system with a single
automated operator task specified for both Controller and Tracker functions results
in a lockout condition. Consider this especially on backup systems, which do not
normally run Controller functions. If you specify only one automated operator task
for both systems, each task runs properly until they become an active backup
system and lock.

AUTOOPS OPCAOPR1,ID=AUTOPCP,MSG=(CSY\,DRK\,CSZ\,EQQ\,EVJ\)
AUTOOPS OPCAOPR2,ID=AUTOPCE,MSG=(CSY\,DRK\,CSZ\,EQQ\,EVJ\)

For the automated operator task OPCAOPR1, the operator ID must be AUTOPCP.
For the automated operator task OPCAOPR2, you may specify whatever operator
ID meets your installation standards. However, do not change the OPC automation
operator task names OPCAOPR1 and OPCAOPR2.

 Copyright IBM Corp. 1990, 1999 29

30 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Chapter 5. Initialization

SA OS/390 initialization involves two phases:

� The first starts OPC components so the scheduling process is active.

� The second restores the status of any OPC controlled tasks to the last status
requested by OPC and waits for OPC to issue new requests.

Startup of OPC Components
The first phase involves the initialization of the OPC components. In normal mode
of operations, OPC remains operational at all times. Without the SA OS/390
application, OPC starts as a JES task. With OPC Automation, the responsibility of
starting OPC transfers from JES to the SA OS/390 application. Figure 15 shows
an example of the startup of OPC/ESA during an IPL process. OPC/A startup is
similar.

Figure 15. OPC/ESA Startup During IPL Process

The following scenario describes this type of environment:

� The OPC/ESA Tracker has JES as a parent. A small portion of OPC/ESA starts
before JES. During system IPL, the master scheduler invokes this program
(EQQUNIT).

� During the IPL process, JES issues a start command for the OPC/ESA Tracker
task as soon as it is running as part of the normal SA OS/390 controlled flow.

� Once OPC/ESA Tracker starts, the SA OS/390 application issues a start
command for the OPC/ESA controller on the control host only.

� The SA OS/390 application continues to initialize the rest of the tasks that are
defined to it.

This completes the initialization phase.

 Copyright IBM Corp. 1990, 1999 31

Startup of OPC-Controlled Subsystems
After the SA OS/390 application completed initializing its defined tasks, the startup
of the OPC-controlled subsystem phase starts.

OPC Automation uses a status file record for each subsystem defined to it. This
record keeps information such as the last completed action, any request in
progress, or the last processed request if no request is processing. The status file
record provides a means of maintaining this information across NetView failures
and restarts.

| During the initialization of OPC Automation its initialization module runs. This
module carries out several functions that result in every OPC Automation
subsystem resynchronizing to a known status. The initialization module also sets
OPC Automation status-record-locking flags to a null value.

During OPC Automation startup, OPC Automation examines the automation control
file for OPC Automation entries. If new entries are found, OPC Automation creates
status file records and initializes them to a null value (never a used status). OPC
Automation attempts no action for these subsystems until it receives a request for
OPC. This allows coding entries into the control file before defining the subsystems
in the rest of SA OS/390 or OPC. For existing OPC Automation status file entries,
OPC Automation resets the timer and completion flags to a null value, which allows
handling of new requests.

| On the system where the OPC Controller runs OPC Automation initialization takes
an additional step. This step drives the automated recovery function and
determines whether OPC has any requests which ended-in-error (S999 or UNTV)
because of the unavailability of NetView. If any ended-in-error requests are found,
OPC Automation resets the operations.

Initialization Module (EVJESPIN)
The initialization module carries out two functions.

� OPC Automation uses the first function during initialization as previously
described.

� An operator command accesses the second. This function also builds and
resynchronizes OPC Automation status file records dynamically. For a
description of the uses of the initialization command, refer to AOC/MVS OPC
Automation Operator and Scheduler Reference.

32 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Chapter 6. Request Handling in the OPC-PCS/Controller
System

In an OPC-controlled application, defining specific parameters for an operation
generates a request. These parameters are defined for an operation on an NVnn
workstation, where NVnn represents a NetView domain. When the daily planned
execution of OPC makes this NVnn workstation ready, OPC Automation starts
through the EQQUX007 OPC/ESA (DRKUX007 in OPC/A) user exit. See Figure 16
for an illustration of this flow.

Figure 16. Request Handling in the OPC PCS/Controller Processor

 Copyright IBM Corp. 1990, 1999 33

Each OPC change of status drives the OPC/A-PCS DRKUX007 (OPC/ESA
EQQUX007) exit. OPC Automation logic in the exit intercepts a change of status to
R (ready) for an NVnn workstation. OPC Automation logic in the exit intercepts a
change of status and verifies the request for required fields, correct lengths, and
appropriate use of alphanumerics. However, OPC Automation does not validate
fields for specific content. From the information in the OPC control blocks, OPC
Automation logic builds a request buffer to identify the request, application, and
workstation in OPC.

Once OPC Automation builds this request buffer, the PPI calls NetView. The PPI
dispatcher in NetView receives the request buffer and sends it to the appropriate
module. In this case, it is the OPC Automation verify module, which runs under the
NetView-PCS/Controller automated-operator task.

If OPC Automation is unable to call the NetView interface module, it marks the
operation with a status of E and an error code of UNTV. OPC Automation will tell
OPC to reset operations which have ended with a UNTV error every time OPC or
SA OS/390 is restarted, provided these errors occurred less than a user-specified
time interval. (See “ENVIRON OPCAO” on page 71.)

The verify module translates the NVnn to a real NetView domain ID, and sends the
request buffer to the appropriate domain through forwarding functions of
SA OS/390. If the request is destined for the same system as the one that
OPC-PCS/Controller is on, OPC Automation transfers the request to the request
module running under the NetView-EMS/Tracker automated operator task.

The request is one of three types:

A base request for an SA OS/390 defined subsystem
The System Automation for OS/390 directly supports this request type.
Chapter 7, “Request Handling in the OPC-EMS/Tracker System” on page 37
discusses this topic.

Nonbase SA OS/390 request
Chapter 13, “Guidelines for User-Written Operations” on page 81 describes a
request for an SA OS/390 defined subsystem that is not a base SA OS/390
request. Now, once the action completes, the user is responsible for posting
to OPC Automation using OPCACOMP.

A request for a user-defined module
This may involve an SA OS/390 defined subsystem. For this type of function,
OPC Automation provides only the transport mechanism for the request buffer
to the user-defined module. The user is responsible for posting to OPC.
Chapter 13, “Guidelines for User-Written Operations” on page 81 further
describes this task.

34 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Handling Time Dependencies
If you require a time dependency, do not place the time consideration on the NVnn
defined operation because the status change drives the OPC user exit
EQQUX007/DRKUX007, regardless of the timer status. For a general workstation,
such as those defined for OPC Automation, this occurs when all dependencies are
fulfilled except the time consideration.

To avoid this problem, define a dummy, non-reporting workstation. Place the timer
dependency on this dummy workstation. Define any dependencies on the dummy
workstation, which is the predecessor to the NVnn workstation. Once you satisfy
all other dependencies and complete the time dependency, the dummy timer
workstation completes immediately and starts the operation on the NVnn
workstation.

Figure 17 is an example of using time as a dependency. In this illustration, the
previous example of the MAINT application is redefined with a timer dummy
workstation (TIMR) as the first operation of the application.

à ð
 --------------------------------- OPERATIONS --------------------- ROW 1 OF 2
 Command ===> Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following
 row commands:
 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete
 S - Select operation details
 Enter the TEXT command above to include operation text in this list, or,
 enter the GRAPH command to view the list graphically.

 Application : MAINT RMF maintenance

 Row Oper Duration Job name Internal predecessors More preds
 cmd ws no. HH.MM -Int-Ext-
 '''' TIMR ðð5 ð.ð1 ________ ___ ___ ___ ___ ___ ___ ___ ___ ð 1
 '''' NVðð ð1ð ð.ð1 RMF_____ ðð5 ___ ___ ___ ___ ___ ___ ___ ð ð
 '''' CPU1 ð15 ð.1ð RMFMAINT ð1ð ___ ___ ___ ___ ___ ___ ___ ð ð
 '''' NVðð ð2ð ð.ð1 RMF_____ ð15 ___ ___ ___ ___ ___ ___ ___ ð ð
 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ BOTTOM OF DATA \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

á ñ

Figure 17. Using Time as a Dependency

If the application needs scheduling-on-demand or restarted, you may schedule the
NVnn operation with this type of application. If necessary, this allows the manually
initiated procedure to run independent of the time consideration.

 Chapter 6. Request Handling in the OPC-PCS/Controller System 35

Changes to the Status of the Operation
The operation with the NVnn workstation proceeds through several status changes,
as the request defined in the operator text is processed. The initial trigger consist of
one of three status changes. The progression of the operation to the A, R, or *
status triggers the OPC Automation function in the EQQUX007/DRKUX007 exit.
The exit logic examines the request. If the request is valid, it transfers the request
to the PCS-NetView and through the NetView PPI. OPC Automation sends the
request to the appropriate target NetView, as determined by the NetView domain ID
represented by the NVnn workstation. If any definition problems exist, OPC
Automation updates the status to E with an error code of Uxxx and takes no further
action. The user is then responsible for correcting the error and restarting the
application at the appropriate operation.

If OPC Automation determines a connectivity problem with a remote NetView, it
marks the operation with a status of E and an error code of Sxxx. OPC Automation
now automatically restarts the operation once it resolves the connectivity issue.
However, manually changing the operation status causes the suppression of the
automatic restart.

If OPC Automation determines that neither definition nor connectivity problems
exist, it analyzes the request in the target NetView. After OPC Automation resolves
and verifies the request before submission, it updates the status to S (started).
Once the request is submitted and the requested action successfully completes,
OPC Automation updates the status to C (completed). If the requested result does
not occur within the time period specified, OPC Automation ends the operation with
an E status and Uxxx code, which indicates that the resolution requires user
intervention.

Extending the Daily Plan
OPC Automation does not call EQQUX007/DRKUX007 for time-delay operations
added at daily planning. To provide time-delay operations added at daily planning,
you need to define an operation on a dummy workstation as a predecessor to the
NVnn workstation. The operation on that workstation completes immediately after
the daily plan is extended, and the operation on the NetView workstation is READY
when all of its other dependencies are satisfied.

Defining an operation on a dummy workstation is required because the
operation-status-change exit is called whenever an operation in the current plan
changes status. That exit is also called when a new operation has been added to
the current plan by a function other than daily planning jobs, for example, by PIF or
by the MCP dialog. The exit is called when the operation is added either to an
existing occurrence or as a result of a new occurrence being added to the current
plan.

36 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Chapter 7. Request Handling in the OPC-EMS/Tracker
System

Figure 18 describes the flow of OPC Automation for a request invoking a base
function of the SA OS/390 defined subsystem.

Figure 18. Request Flow for a Base SA OS/390 Function

The request module (EVJESPRQ), a part of the EMS/Tracker portion of OPC
Automation, runs under the NetView-EMS/Tracker automated operator task. This
module issues the SA OS/390 base command sent in the request buffer. The
automation control file entry for each system defines the actual SA OS/390
command. This permits the coding of generic requests in the application
descriptions in OPC. This request flow also allows customizing requests for each
system and avoids changes in the target systems reflected in the focal-point
system.

The user is responsible for controlling requests and not issuing multiple requests to
the same subsystem on a given target. Use dependency control or critical resource
definitions in OPC to control the sequencing of requests,

EVJESPRQ uses a timer and completion flag as a locking mechanism to ensure
that there is only one outstanding request for a subsystem at a given time. If OPC
Automation receives a request before completing a previous request, OPC
Automation posts the operation to OPC with a return code of U005, indicating a
user sequence error. You must then use a manual recovery function to synchronize
OPC and OPC Automation. The initialization command (EVJESPIN) contains the
following two parameters for this purpose:

 � RESET
 � SYNC

A request sets a timer for every command issued. This ensures that no lockout
condition occurs. The timer value specified in the automation control file should be
large enough to accommodate the longest interval of time that the requested
function may take under normal operating conditions.

 Copyright IBM Corp. 1990, 1999 37

The occurrence of the subsystem status change invokes the status change module
(EVJESPSC). If the module completes before the expiration of the timer, this avoids
delaying the process. With a properly set timer delay, the status change function
should always gain control before the expiration of the timer. When the status
change module gains control, the module cancels if it is still outstanding. If the
timer interval expires before the timer is cancelled, OPC Automation logs this event
and indicates performance or other problems.

The TIMEREND module (EVJESPTE) and the status change module update the
OPC Automation status file record and use the OPCAPOST command processor to
post the appropriate status and return code to OPC.

Completion and Timer Flags
Both the status change and TIMEREND modules check for each other’s
completion. If one function completes first, the second function exits to avoid false
double posting to OPC. Double posting is avoided by using timer and completion
flags, as the following text discusses.

NetView schedules work on automated operator tasks on a first-in/first-out basis.
Work elements resulting from the status change or TIMEREND modules become
ready as NetView schedules them on the queue. Since NetView automated
operator tasks process in a sequential manner, the queue can hold both the status
change and the TIMEREND work elements at the same time. When this occurs,
NetView must process only one work element, because handling both results in
double posting to OPC, leading to errors in the OPC-defined application.

To avoid these errors, OPC Automation uses two flags in the automation status file
entry. Each flag is related to the status change module or the TIMEREND module.
When the modules are executed, OPC Automation examines the flags. If neither
flag is on, OPC Automation turns on the flag associated with the active function and
continues processing. If a flag is found on, the function exits, because the
processing is completed by the other function while this work element was queued.
This process depends on defining a single automated operator task for each
NetView-EMS/Tracker.

38 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Chapter 8. Operations Control

This chapter discusses the EVJESPIN module and obtaining information from OPC.
AOC/MVS OPC Automation Operator and Scheduler Reference describes operator
commands and their actions.

 EVJESPIN Module
This EVJESPIN module, which is also used as a command, provides two separate
capabilities:

� Creates an OPC Automation status file record
� Resynchronizes or unlocks a given subsystem

In certain situations, usually because of user definition or sequence errors, the
timer and completion flags prevent OPC Automation from accepting any new
requests for a subsystem on a target NetView. This flow ensures that errors are
caught, actions of OPC Automation for the given subsystem are halted, and
creation of additional problems is avoided before the original error is corrected. For
example, if a subsystem startup request is in operation, then it is not prudent to
process a shutdown request in the same interval. By not accepting any requests
after an error is detected, the information in OPC Automation status file record then
reflects the request that caused the problem. This should simplify problem
determination.

Two correction methods are provided.

RESET This method resets the timer and completion flags to null. OPC
Automation takes no other action since the flags are reset. OPC
Automation then accepts new requests for this subsystem. Restarting the
application at an appropriate point can control recovery from OPC/A.

SYNC A second option is used when the OPC Automation status file record
contains the proper status of UP or CTLDOWN. OPC indicates this status
for a specific subsystem, when the actual subsystem is in a different
status. This option issues the SA OS/390 command to change the status
of the subsystem to match that in OPC Automation status file record. The
SYNC function does not post to OPC on completion of the SA OS/390
function. OPC’s requests for the subsystem synchronizes SA OS/390.

To add a new automation control file entry since last initializing NetView, you can
create a single OPC Automation status file record. This option (CREATE) creates
an OPC Automation status file record dynamically for the specified subsystem.
OPC Automation initializes the record to a null condition, so that the subsystem can
accept OPC Automation commands.

OPC Automation provides no automated function to remove an old OPC
Automation status file record. The EVJSTS REQ=DEL command accomplishes this
task.

 Copyright IBM Corp. 1990, 1999 39

Obtaining Information from OPC
OPC/A Release 2 provides an application program interface (API) that is the
standard in OPC/ESA. This allows OPC Automation to act directly on the OPC
current plan. Using this interface, OPC Automation directly requests and updates
OPC-based information.

Recovery operations provide one possible use of the OPC API by OPC Automation.
For example, if a communications link to a target NetView is not available, the
operator can use the OPCACMD to manually post events that have occurred.

You can also use this interface when manual intervention is required, for example,
as when a user sequence error is detected. Use the OPCACMD operator command
to manually access the information from OPC about operations in the current plan
through the OPC API. This allows the determination and resolution of the sequence
error to occur from a single NetView console.

The host with the OPC-PCS/Controller task provides the only availability to the
OPC API interface. Because of this, all recovery is done only in the NetView on the
processor running the OPC-PCS/Controller task. Sometimes, when a user-written
module utilizes this function, another NetView requires the information. OPC
Automation maintains a control file entry to allow OPC Automation to determine the
domain ID of the OPC/A-PCS NetView to which the request is sent. This entry has
the domain ID of the NetView on the processor running OPC-PCS/Controller. In this
manner, all the SA OS/390 applications can easily determine where to direct
OPC-PCS/Controller requests.

A user-written task or CLIST can also access the OPC-PCS/Controller. Your own
routines can list operations in the current plan with the OPCALIST command. You
can modify the data in current plan operations with OPCAMOD. You can query the
OPC calendar with OPCACAL. You can synchronize OPC with OPCACOMP, or
OPCAPOST when you write your own automation routines, and you can update the
status of special resources in OPC with OPCSRST or with the SRSTAT CLIST.
This way you can trigger operations to run which have a special resource
dependency in OPC. For more information, see

� “OPCALIST” on page 56,

� “OPCAMOD” on page 59,

� “OPCACAL” on page 52,

� “OPCACOMP” on page 55,

� “OPCAPOST” on page 63, and

� “OPCSRST” on page 64.

40 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Chapter 9. Automated Recovery

| OPC Automation provides an automated recovery function for requests that could
| not reach their destination because of connectivity problems, or because the
| NetView PPI was unavailable. Whenever a request fails because a connectivity
| problem exists, OPC Automation posts OPC with an error status and a return code
| of S999, S998 or UNTV.

| Whenever the OPC Automation initiates a request and NetView or its
| program-to-program interface (PPI) is down or unavailable, OPC Automation posts
| OPC with an error status and a return code of UNTV.

| When an OPC workstation (NVnn) is defined in the control file as SYSPLEX but a
| search of all online systems in the local sysplex cannot find a definition for the
| supplied job name then it is assumed that the job runs on a sysplex member which
| is not up. OPC Automation posts OPC with a status of E (error) and a return code
| of S998.

| When a required NNT connection is not available OPC Automation posts OPC with
| a status of E (error) and a return code of S999.

| If the operator resets these operations, OPC Automation does not attempt any
| recovery. If the error code is not changed, OPC Automation invokes the operation
| again when connectivity is re-established, or when the OPC Controller is restarted.

| OPC Automation calls the automated recovery function as part of the initialization of
| OPC Automation in a domain where the OPC Controller runs. OPC Automation
| also invokes this function for S999 or S998 errors whenever an NNT link
| (automation gateway) is re-established to a domain where the OPC Controller runs.

| When either of these two conditions occur, OPC Automation uses the OPC API
| function to obtain a list of all operations ended-in-error for the appropriate NVnn
| workstation or workstations. OPC Automation scans this list to find error codes
| starting with S. If any codes of this type are found, OPC Automation issues
| OPCAPOST for that operation with an X (reset) status. This resets the operation to
| the R (ready) status and reinvokes the EQQUX007/DRKUX007 exit. OPC
| Automation attempts no other recovery.

 Copyright IBM Corp. 1990, 1999 41

42 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Part 3. Coding Formats and Data Areas

Chapter 10. Specifying OPC Automation Functions 47
Defining SA OS/390 to OPC . 47
Defining OPC to SA OS/390 . 47
Transferring Information from OPC to SA OS/390 47
Posting an Operation in OPC from SA OS/390 49

EVJESHUT . 51
OPCACAL . 52
OPCACMD . 53
OPCACOMP . 55
OPCALIST . 56
OPCAMOD . 59
OPCAPOST . 63
OPCSRST . 64

Chapter 11. Control File Entries Used by OPC Automation 65
OPCA CODE . 65
OPCACMD . 67
OPCA DOMAINID . 69
ENVIRON OPCAO . 71
OPCAPARM . 73
OPCA PCS . 75

Chapter 12. Data Areas . 77
Subsystem Status File OPC Automation Entry (EVJSTS) 77
Requestor ID Block (EHKVAR9) . 78
Request Buffer . 79

Chapter 13. Guidelines for User-Written Operations 81
Relating to the SA OS/390 Defined Subsystem 81

Flow of Control . 82
Parameters Passed to User-Supplied Module 83

Completing a User-Supplied Module (OPCACOMP) 83
Flow of Control . 83
Nonsubsystem Operations . 84
Flow of Control . 86
Parameters Passed to a User Exit . 86
Completing a User Exit (OPCAPOST) . 86

| Interaction with CICS Automation . 89
Interaction with IMS Automation . 94

 Copyright IBM Corp. 1990, 1999 43

44 AOC/MVS V1R4 OPC Automation Programmer’s Reference

This part describes OPC Automation common routines which request information or
perform tasks associated with OPC/ESA automation. You can use these common
routines in automation procedures you create. Examples, sample routines, and data
area information is given to show how this might be done.

 Part 3. Coding Formats and Data Areas 45

46 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Chapter 10. Specifying OPC Automation Functions

This chapter discusses the following:

� Defining SA OS/390 to OPC
� Defining OPC to SA OS/390
� Transferring information from OPC to SA OS/390
� Posting an operation in OPC from SA OS/390

Defining SA OS/390 to OPC
OPC allows the definition of automatic reporting general workstations. This is a
class of workstation that OPC can manage, but is outside OPC’s direct control.
With the implementation of this workstation, NetView becomes a server to OPC.
The workstation definition used by OPC is NVxx. The characters xx are used by
OPC Automation to translate the workstation name to a NetView domain ID.

Using these definitions, OPC knows each NetView domain and can have work
scheduled on it. The OPC definition of NetView workstations can use normal OPC
specifications such as open hours, parallel servers, and special resources. OPC
uses this information in its planning and management of the NetView workstations.

Defining OPC to SA OS/390
Since OPC is an automation-controlled subsystem, you use normal control file
definitions to describe OPC to the SA OS/390 application. SA OS/390 informs
OPC of status changes through the OPCAPOST command processor, which OPC
calls from a NetView CLIST. This command processor includes the
EQQUSINT/DRKUSINT module supplied with the OPC program product.

The EQQUSINT/DRKUSINT module transfers a status change of an operation in an
OPC-defined application to the Tracker in the same system. The Tracker transfers
this status change to the Controller through shared DASD or NJE links, depending
on the location of the Controller.

Transferring Information from OPC to SA OS/390
To cause the request to be executed and for OPC to receive a status change once
the request is completed, enough information must transfer from OPC to OPC
Automation to allow routing of the request to the proper destination NetView
domain. The minimum information that needed to accomplish this is:

� OPC-controlled application making the request
� Operation within the application that is to be notified
� NetView domain to which this request is to be sent
� Subsystem for which this function is to executed

 � Function requested
 � Request parameters

 Copyright IBM Corp. 1990, 1999 47

Use standard TSO dialogue panels to define this request to OPC. The requested
function and any request parameters are not standard OPC fields. Enter these
fields into the operation text field, delimited by blanks. Figure 19 shows an example
of the OPC panel with the operator text field used as a request field.

à ð
 --------------------------------- OPERATIONS --------------------- ROW 1 OF 2
 Command ===> Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following
 row commands:
 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete
 S - Select operation details
 Enter the PRED command above to include predecessors in this list, or,
 enter the GRAPH command to view the list graphically.

 Application : MAINT Test for maint appl

 Row Oper Duration Job name Operation text
 cmd ws no. HH.MM
 '''' NVð4 ðð5 ð.ð1 RMF_____ STOP____________________
 '''' NVð4 ð1ð ð.ð1 RMF_____ START___________________

á ñ

Figure 19. OPC/A Operation Panel

The EQQUX007/DRKUX007 exit logic copies the information from the OPC panels
to a request buffer. The PPI then transfers this buffer to NetView. Chapter 11,
“Control File Entries Used by OPC Automation” on page 65 and Chapter 12, “Data
Areas” on page 77 provide additional information about this process.

Figure 20 shows an example of the request buffer. Table 6 on page 79 and
Table 7 on page 80 shows a detailed request buffer layout. In this example, OPC
is processing the MAINT application. OPC makes a request to SA OS/390 to
perform the function START for the RMF subsystem. When this action is
completed, the SA OS/390 application changes the status of the NV04_20
operation in the MAINT application to C (completed).

Figure 20. OPC-Generated Request Buffer

OPC Automation logic permits the inclusion of two optional parameters in the
request buffer. The target system uses these parameters to build the required
command, using dynamic substitution of command fragments stored in the control
file.

48 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Alternatively, these parameters pass control information to a user-supplied function.
The contents of the request buffer passes to OPC Automation in the variable
&EHKVAR1. User-supplied routines may use the contents of this variable to extract
whatever information is needed.

Figure 21 shows an OPC-generated request buffer with optional parameters.
Figure 27 on page 87 shows sample code for an operation using these optional
parameters.

Figure 21. OPC-Generated Request Buffer with Optional Parameters

Posting an Operation in OPC from SA OS/390
SA OS/390 must inform OPC of status changes. The OPCAPOST command
processor accomplishes this task. Although OPC Automation normally calls
OPCAPOST from a NetView CLIST, you can also issue OPCAPOST as an
operator command. However, an operator should use OPCACMD instead, since
this command provides a full-screen interface to OPC.

The OPCAPOST command processor includes the EQQUSINT/DRKUSINT module
supplied with the OPC program product. This module transfers a status change of
an operation in an OPC-defined application to the Tracker resident in the same
system as OPC Automation making the request. The Tracker transfers this status
change to the Controller through shared DASD or OPC/A-NEC, depending on the
location of the OPC-PCS/Controller.

The OPCAPOST command processor indicates to OPC to change a current
operation in the R (ready) status to an S (started) status when the request is
accepted. When the request is completed, the OPC status is changed to a C
(completed) or E (error) status. OPCAPOST uses the DRKUSINT module, shipped
as part of OPC, to post certain status changes to OPC-PCS/Controller from any
system containing a copy of OPC-EMS/Tracker.

The OPCAPOST command processor requires input fields to identify the specific
application, workstation, operation, and completion code, which are posted in the
OPC-PCS/Controller current plan. Although OPCAPOST is used by OPC
Automation modules, you can issue it as an operator command. For example, OPC
Automation issues OPCAPOST to provide resynchronization between SA OS/390
and OPC after a failure. Normally, you should use the OPCACOMP rather than the
OPCAPOST module when completing your own processing, so that the OPC
Automation status file is also updated with the completion information.

 Chapter 10. Specifying OPC Automation Functions 49

Figure 22. OPCAPOST Command Processor Request

For an E (ended-in-error) status, OPC Automation adds an additional field with an
error code. The example shown in Figure 22 would change to the example in
Figure 23.

Figure 23. OPCAPOST Command with Optional Error Code

See “OPCAPOST” on page 63 for a detailed description of the OPCAPOST
command processor, all acceptable input parameters, and return codes.

The OPCAPOST command processor must run as an authorized application. The
command processor sets up the user and input parameter values for the
EQQUSINT/DRKUSINT module and calls EQQUSINT/DRKUSINT to issue an OPC
event record.

| Note

| When using any of the OPC Automation commands that use the EQQYCOM
| (also called the PIF) interface, you should be careful to ensure serialization.
| This can be achieved by choosing the same auto operator for the command to
| run on. If you fail to do this then you may receive an EQQZ038E message
| indicating that the OPC message log is not available, because the log dataset
| (DD EQQMLOG refer chapter 15) is required by EQQYCOM exclusively for
| each invocation.

50 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 EVJESHUT

 EVJESHUT

 Purpose
Use the EVJESHUT routine in a RECYCLE operation defined in the control file. A
RECYCLE operation is one in which a subsystem which is currently UP is brought
down and immediately restarted. EVJESHUT will issue the appropriate SHUTSYS
command and verify that it is accepted by the automation platform. If it is not
accepted, then EVJESHUT will post the operation in error to OPC. See “Example
5” on page 68 to see how to include EVJESHUT in an OPCACMD control file
entry.

 Format

EVJESHUT subsys scope

 Parameters
subsys

The name of a valid subsystem defined to the automation

scope
The scope of the SHUTSYS request. The automation platform recognizes only
three valid values for SCOPE: ALL, CHILDREN, and ONLY. These values are
discussed in the SA OS/390 base documentation on the SHUTSYS command.

 Usage Notes
If the REQSTAT flag on the ENVIRON OPCAO statement is set to NO, and the
requested subsystem is already in AUTODOWN, CTLDOWN, DOWN, or ENDED
status, then a RECYCLE operation with EVJESHUT will be allowed to proceed and
EVJESHUT will issue a SETSTATE command to start the requested subsystem. If
the REQSTAT flag is set to YES, then the subsystem must be in UP or RUNNING
status for the EVJESHUT to be issued. With REQSTAT=YES, all other statuses will
result in the operation terminating and an error posted to OPC.

 Chapter 10. Specifying OPC Automation Functions 51

 OPCACAL

 OPCACAL

 Purpose
The OPCACAL command retrieves OPC calendar status information. Use this
command for your automation CLISTs. OPCACAL uses the EQQYCOM (also called
the PIF) interface in OPC. For more information about this interface, see the
OPC/ESA Interfaces Guide.

To show the use of this command, OPC Automation provides two sample CLISTs:
EVJECCAL (CLIST) and EVJERCAL (REXX).

With APAR OW23552 the OPCACAL command shows message EVJ440I with the
century in four-digit-format mm/dd/yyyy, for example, 05/22/1997.

 Format

OPCACAL [SUBSYS=subsystem,CALENDAR=calname]

 Parameters
SUBSYS=subsystem

OPC/ESA subsystem ID — 4 characters.

OPCA is the default subsystem name.

CALENDAR= calname
Calendar ID — 16 characters.

DEFAULT is the default calendar name, used if this parameter is not coded.

52 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 OPCACMD

 OPCACMD

 Purpose
The OPCACMD command is primarily used to retrieve OPC current plan data so
that it can be viewed or modified by operators. The operator simply types in
OPCACMD and fills in the panel (EVJKAC01) which is returned. But OPCACMD
will also accept optional parameters on input. It could thus be assigned to PF key,
making it more user-friendly.

 Format

OPCACMD APPLID=application_id,OPNO=operation_number,
 WSNAME=ws_name,STATUS=status,ERRCODE=errorcode,
 PRIORITY=priority,OWNER=owner_name,GROUP=group_name,
 JOBNAME=job_name

 Parameters
application_id

Application name — 1 to 16 characters. May be generic.

operation_number
Operation number — 2 digits. Must be numeric or left unspecified.

ws_name
Workstation name — 4 characters. May be generic.

status
Occurrence status — 1 character. Must be valid or left unspecified.

Valid status:

A Arriving

C Completed

E Error

I Interrupted

R Ready

S Started

U Undecided

W Waiting

X Reset

errorcode
Error code — 4 characters. May be generic.

priority
Priority — 1 digit. Must be numeric or left unspecified. Acceptable values are
from 1 (low) to 9 (high).

owner_name
OPC application owner name — up to 16 characters. May be generic.

 Chapter 10. Specifying OPC Automation Functions 53

 OPCACMD

group_name
OPC application group name — up to 8 characters. May be generic.

job_name
Job name — up to 8 characters. May be generic.

 Usage Notes
| Only as many parameters are required as necessary to identify the application(s)
| requested. Some parameters may be left unspecified (they will default). Some may
| be generic; that is they may be only partial and end with an asterisk (*) to indicate
| a partial match. You may also use a percent sign (%) to substitute for a single
| character.

54 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 OPCACOMP

 OPCACOMP

 Purpose
The OPCACOMP command completes the NetView operation. Call this routine to
perform the necessary cleanup and to post the status back to OPC. OPCACOMP
combines the OPCAPOST function with an update to the OPC Automation status
file for user-written subsystem operations.

 Format

OPCACOMP subsys,sequence_number,status [,error_code]

 Parameters
subsys

Subsystem or pseudo-subsystem to identify the request.

sequence_number
Sequence number assigned to this request by the EVJESPVY module.

status
Operation status reflected to OPC Valid statuses:

C Complete
E Error

error_code
Error code — 4-character value

Takes the form annn, where a is alphabetic and nnn are numerics.
Do not specify the values Uxxx and Sxxx; reserve them for OPC
Automation.
If the status is error, the error code is returned to OPC.

 Usage Notes
Use this command in your extensions to OPC Automation.

 Example
OPCACOMP RMF,842,E,Rð28

This example shows setting the operation requested for RMF in an error status with
an error code of R028.

 Chapter 10. Specifying OPC Automation Functions 55

 OPCALIST

 OPCALIST

 Purpose
The OPCALIST command retrieves OPC data. Use this command in your own
automation CLISTS. The module creates a CPOPCOM call to OPC to retrieve the
data. OPCALIST uses the EQQYCOM (also called the PIF) interface in OPC. For
more information about this interface, see the OPC/ESA Interfaces Guide.

 Format

OPCALIST SUBSYS=subsystem,ADID=id,IA=yymmddhhmm,
 PRIORITY=nnnn,ERRCODE=cccc,STATUS=s,OPNO=nnnn,
 JOBNAME=name,WSNAME=name,
 GROUP=groupname,OWNER=name

 Parameters
SUBSYS=subsystem

OPC subsystem ID — 4 characters.

ADID=id
Application description ID — up to 16 characters.

IA=yymmddhhmm
Input arrival date yymmdd and time hhmm.

PRIORITY=nnnn
Priority — 4 digits.

ERRCODE=cccc
Error code — 4 characters.

STATUS=s
Occurrence status. Valid statuses:

R Ready
S Started
C Completed
E Error
I Interrupted

Refer to the OPC documentation for more information.

OPNO=nnnn
Operation number — 4 digits.

JOBNAME= name
Job name — up to 8 characters.

56 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 OPCALIST

WSNAME=name
Workstation name — 4 characters.

GROUP=groupname
OPC/A application group name — up to 8 characters.

OWNER=name
OPC/A application owner name — up to 16 characters.

| Usage Notes
| Only as many parameters are required as necessary to identify the application(s)
| requested. Some parameters may be left unspecified (they will default). Some may
| be generic; that is they may be only partial and end with an asterisk (*) to indicate
| a partial match. You may also use a percent sign (%) to substitute for a single
| character.

| The response to the OPCALIST is made up of three messages. The following
| example below shows a typical response where:

| EVJ410I
| This is the message header, showing row titles. This is always present.

| EVJ411I
| This is the detail message. If there are no entries matching the selection criteria
| this message is not produced.

| EVJ412I
| This is the end of request message.

| Response details are:

| ADID
| Application Description Id - up to 16 characters

| JOBNAME
| Job Name - up to 8 characters

| WS
| Workstation Name - up to 4 characters

| OPNO
| Operation Number - up to 4 numbers

| S Status (See parameters for valid statuses)

| ERRC
| Error Code (set to none for no error)

| IA Input Arrival - date (yymmdd) and time (hhmm)

| OPTEXT
| Descriptive Text - up to 24 characters

 Chapter 10. Specifying OPC Automation Functions 57

 OPCALIST

| Example
| EVJ41ðI ADID JOBNAME WS OPNO S ERRC IA OPTEXT
| EVJ411I MAINT2 RMF NVð5 ðð1ð C NONE 97ð719ð615 STOP
| EVJ411I MAINT2 RMF NVð5 ðð15 C NONE 97ð719ð615 START
| EVJ411I MAINT2 RMF NVð5 ðð1ð C NONE 97ð72ðð615 STOP
| EVJ411I MAINT2 RMF NVð5 ðð15 C NONE 97ð72ðð615 START
| EVJ412I END OF REQUEST

58 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 OPCAMOD

 OPCAMOD

 Purpose
The OPCAMOD command modifies OPC data. This command is used in the
OPCACMD CLIST and could be used in your own automation CLISTS. The module
creates a CPOPCOM or CPOCCOM call to OPC to perform occurrence or
operation changes. OPCAMOD uses the EQQYCOM (also called the PIF) interface
in OPC. For more information about this interface, see the OPC/ESA Interfaces
Guide.

 Format

OPCAMOD SUBSYS=subsystem,ADID=id,IA=yymmddhhmm,
 IANEW=yymmddhhmm,DEADLINE=yymmddhhmm,PRIORITY=nnnn,
 ERRCODE=cccc,OPNO=nnnn,STATUS=s,
 JOBNAME=name,WSNAME=name,DESC=text,
 EDUR=hhmm,PSUSE=nnnn,R1USE=nnnn,R2USE= nnnn,
 JCLASS=c,AEC=Y|N,ASUB=Y|N,AJR=Y|N,TIMEDEP=Y|N,
 CLATE=Y|N,HRC=value,FORM=value,OPIA=yymmddhhmm,
 OPDL=yymmddhhmm,RERUT=Y|N,USERDATA=userdata,
 RESTA=Y|N,DEADWTO=Y|N

 Parameters
SUBSYS=subsystem

OPC/A subsystem ID — 4 characters (default OPCA).

ADID=id
Application description ID — up to 16 characters (required).

IA=yymmddhhmm
Input arrival date yymmdd and time hhmm (required).

IANEW=yymmddhhmm
New input arrival date and time.

DEADLINE=yymmddhhmm
Deadline date and time.

PRIORITY=nnnn
Priority — 4 digits.

ERRCODE=cccc
Error code — 4 characters.

OPNO=nnnn
Operation number — 4 digits (required).

STATUS=s
Occurrence status (required). Valid statuses:

R Ready
S Started
C Completed
E Error

 Chapter 10. Specifying OPC Automation Functions 59

 OPCAMOD

I Interrupted

Refer to the OPC documentation for more information.

JOBNAME= name
Job name — up to 8 characters.

WSNAME=name
Workstation name — 4 characters.

DESC=text
Descriptive text — 24 characters.

EDUR=hhmm
Estimated duration (hours and minutes).

PSUSE=nnnn
Number of parallel servers required — 4 digits.

R1USE=nnnn
Amount of resource 1 required — 4 digits.

R2USE=nnnn
Amount of resource 2 required — 4 digits.

JCLASS= c
MVS job class — 1 character.

AEC=Y/N
Y Perform automatic error completion N Do not perform automatic error
completion

ASUB=Y/N
Y Perform automatic job submission N Do not perform automatic job
submission

AJR=Y/N
Y Perform automatic job hold and release N Do not perform automatic job hold
and release

TIMEDEP=Y/N
Y Time dependent job N Not a time dependent job

CLATE=Y/N
Y Cancel if time job and late N Do not cancel if time job and late

HRC=value
Highest successful return code.

FORM=value
Form number — 8 characters.

OPIA=yymmddhhmm
Operation input arrival date and time.

OPDL=yymmddhhmm
Operation deadline date and time.

RERUT=Y/N
Y Reroutable operation N Not a reroutable operation

60 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 OPCAMOD

USERDATA=userdata
User data — up to 16 characters.

RESTA=Y/N
Y Restartable operation N Not a restartable operation

DEADWTO=Y/N
Y Issue WTO if deadline missed N Do not issue WTO if deadline missed

 Usage Notes
OPCAMOD may be used to set the status of operations occurring on general
workstations which are not automatically reporting (such as CPUs). OPCAPOST
will set the status of operations which occur on automatically reporting general
workstations (a NetView, for example).

Format for Occurrence Changes

OPCAMOD SUBSYS=subsystem,ADID=id,IA=yymmddhhmm,
 IANEW=yymmddhhmm,DEADLINE=yymmddhhmm,PRIORITY=nnnn,
 ERRCODE=cccc,STATUS=s

Parameters for Occurrence Changes
SUBSYS=subsystem

OPC/A subsystem ID — 4 characters (default OPCA).

ADID=id
Application description ID — up to 16 characters (required).

IA=yymmddhhmm
Input arrival date yymmdd and time hhmm (required).

IANEW=yymmddhhmm
New input arrival date and time.

DEADLINE=yymmddhhmm
Deadline date and time.

PRIORITY=nnnn
Priority — 4 digits.

ERRCODE=cccc
Error code — 4 characters.

STATUS=s
Occurrence status. Valid statuses:

W Waiting
C Completed

 Chapter 10. Specifying OPC Automation Functions 61

 OPCAMOD

 Example 1: Occurrence Change
OPCAMOD SUBSYS=OPCA,ADID=TEST,IA=94ð31ðð9ðð,OPNO=ðð1ð,
 STATUS=W

This example will set the status of operation number 0010 in application test, to
waiting.

 Example 2: Occurrence Change
OPCAMOD SUBSYS=OPCA,ADID=TEST,IA=94ð31ðð9ðð,STATUS=W

This example will set the occurrence status of application TEST to WAITING. All
operations in application TEST will be set to WAITING.

62 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 OPCAPOST

 OPCAPOST

 Purpose
OPCAPOST posts the status of an OPC Automation operation back to OPC.
Because OPCAPOST uses the DRK/EQQUSINT interface, it can only change the
status of operations on automatic reporting workstations. For more information on
this interface, see OPC/ESA Installation and Customization.

 Format

OPCAPOST ADNAME=adname,WSNAME=wwww,OPNUM=nn,
 TYPE={S|C|I|E|X},ERRCODE=xxxx

 Parameters
ADNAME=adname

Application name — 1 to 16 characters.

WSNAME=wwww
Workstation name — 1 to 4 characters.

OPNUM=nn
Operations number — 2 digits.

TYPE={S|C|I|E|X}
Type of call — 1 character. Acceptable event types:

S Started
C Complete
I Interrupted
E Error
X Reset

ERRCODE=xxxx
Error code — 4 characters.

Note: This parameter is only valid with TYPE=E.

 Usage Notes
OPCAPOST can be used to set the status of an operation which occurs on an
automatically reporting general workstation (a NetView, for example) only. Due to
restrictions in the OPC interface, OPCAPOST cannot set the status of operations
on general workstations which are not automatically reporting (such as CPUs).
OPCAMOD is available to set the status of such operations if this required.

OPC Automation sets a return code on completion of the execution of the
OPCAPOST command processor, as follows:

0 Successful command

4 Parameter error

8 OPCAPOST failed.

 Chapter 10. Specifying OPC Automation Functions 63

 OPCSRST

 OPCSRST

 Purpose
The OPCSRST command lets you to manipulate the availability of OPC special
resources. It is similar to the SRSTAT operator command, as presented in the
SA OS/390 OPC Automation Operator and Scheduler Reference.

 Format

OPCSRST SUBSYS=subsys,SRNAME=srname,AVAIL=Y|N

 Parameters
subsys

Subsystem ID — 4 characters.

srname
Special resource name — up to 44 chracters.

AVAIL=Y/N
Availability indicator.

 Usage Notes
OPCSRST uses the following return codes:

0 Accepted by OPC — Special Resource-event issued

4 Request failed — Parameter error detected by this program

8 Request failed — Rejected by OPC — No Special Resource-event issued.

Internal failures:

1011 Never got an SRNAME keyword
1010 Never got an AVAIL keyword
1020 DSILOD failed — Unable to load EQQUSINS
1030 DSILCS failed — Unable to obtain SWB
1031 DSIPRS failed — Unable to determine size of PDB
1032 DSIGET failed — Unable to obtain storage
1033 DSIPRS failed — Unable to do parse

 Example
OPCSRST SUBSYS=OPCT,SRNAME='IMSCNTL.IMSð1A.RUNNING',AVAIL=Y

In this example, the OPCSRST command is run when the IMS control region
IMS01A becomes available. The special resource becoming available makes it
possible for work that depends on this control region’s execution to run. When
IMS01A becomes available, a number of applications are added to the current plan.

The variable used for subsys, OPCT, is the name of the tracker subsystem. Only in
this command is the tracker subsystem name required.

64 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 OPCA CODE

Chapter 11. Control File Entries Used by OPC Automation

This section shows the following control file entries used by OPC Automation:

 � OPCA CODE
 � OPCACMD
 � OPCA DOMAINID
 � ENVIRON OPCAO
 � OPCAPARM
 � OPCA PCS

 OPCA CODE

 Purpose
The OPCA CODE entry defines the parameters used for various requests.

 Format

subsys OPCA CODE=(request,parm1, parm2,'expstatus,timerint,timerid')

 Parameters
request

Request specified in the OPC-operation definition.

parm1
Parameter 1 as specified in the OPC-operation text.

parm2
Parameter 2 as specified in the OPC-operation text.

expstatus
Expected status of the subsystem at the completion of the request. The
expstatus value must be one of the following values: UP, RUNNING or
CTLDOWN.

timerint
Timer interval in minutes. The maximum value permitted is 1439 (24 hours and
59 minutes).

Set a timer interval that is long enough for the operation to complete
reasonably. If the operation does not complete in the interval specified, then an
error is posted to OPC.

timerid
Timer ID — from 1 to 8 characters.

This must be a valid NetView timer ID with a value not equal to ALL or
beginning with SYS.

 Copyright IBM Corp. 1990, 1999 65

 OPCA CODE

 Usage Notes
This entry processes commands in more complex operations of OPC Automation.

 Example 1
RMF OPCA,CODE=(START,,,'UP,3,RMFUTMER')

 Example 2
RMF OPCA,CODE=(START,,,'UP,3,RMFUTMER'),
 CODE=(STOP,,,'CTLDOWN,2,RMFDTMER')

 Example 3
In this example, an additional parameter was added to the START command in
OPC to indicate that an alternate procedure is to be used to start the subsystem.
This OPCA code entry is used in conjunction with a user-written CLIST, specified in
the OPCACMD entry. An OPCAPARM entry is also required. See the OPCAPARM
example 3 on page “Example 3” on page 74 for details of that entry. See the
OPCACMD example 3 on page “Example 3” on page 67 for details of that entry
and the sample CLIST.

This example shows two entries, one for a warm start, and one for cold start, of a
subsystem called CICS1. The warm and cold parameters were added to the
operations text in OPC, to passed over to OPC Automation. Presumably the two
operations will take differing amounts of time, so the timer intervals are different.

CICS1 OPCA,CODE=(START,COLD,,'UP,1ð,CICS1TMR')
CICS1 OPCA,CODE=(START,WARM,,'UP,5,CICS1TMR')

 Example 4
RMF OPCA,CODE=(RECYCLE,,,'UP,5,RMFRTIMER')

This example shows a RECYCLE type of operation (bring the subsystem down and
restart it immediately) being defined. See also Example 5 on page “Example 5” on
page 68 for the corresponding OPCACMD definition.

66 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 OPCACMD

 OPCACMD

 Purpose
The OPCACMD entry specifies the actual automation command to be issued for a
request.

 Format

subsys OPCACMD,CMD=(request,parm1,command)

 Parameters
request

Request specified in the OPC-operation definition.

parm1
Parameter 1 to be used by the request.

command
Actual command to be built.

If the command contains imbedded blanks or commas, enclose it in single
quotes. If the command contains single quotes, enclose it in double quotes.

 Usage Notes
This entry is necessary for subsystems that OPC Automation manages. Use
SA OS/390 commands to shut down and start up subsystems. This avoids the
problem of having to determine the specific commands required for each
subsystem.

 Example 1
RMF OPCACMD,CMD=(START,,'SETSTATE RMF,RESTART,START=YES')

 Example 2
RMF OPCACMD,CMD=(START,,'SETSTATE RMF,RESTART,START=YES'),
 CMD=(STOP,,'SHUTSYS RMF,VERIFY=NO,RESTART=CTL,SCOPE=ONLY')

 Example 3
In this example, an additional parameter was added to the START command in
OPC to indicate that an alternate procedure is to be used to start the subsystem.
This OPCACMD entry is used in conjunction with a user-written CLIST, called
MYCLIST, which is given below as and example. An OPCAPARM entry is also
required, as is an OPCA CODE entry.

See the OPCAPARM example 3 on page “Example 3” on page 74 for details of
that entry. See also the OPCA code example 3 on page “Example 3” on page 66
for details of that entry.

 Chapter 11. Control File Entries Used by OPC Automation 67

 OPCACMD

In the example below, &EHKVAR1 contains the WARM or COLD parameter passed
from OPC:

CICS1 OPCACMD,CMD=(START,,'MYCLIST CICS1 &EHKVAR1')

In the MYCLIST sample below, WARM and COLD are passed as parameters,
though WARM is taken by default if COLD is not used. This example is a sample
only and could be expanded in your environment to include other parameters and
additional function:

/\ MYCLIST SAMPLE \/
PARSE UPPER ARG CICSNAME STARTTYPE
'SETSTATE 'CICSNAME',RESTART,START=NO,SCOPE=ONLY'
 IF STARTTYPE = 'COLD'

THEN 'MVS S 'CICSNAME',COLD'
 ELSE 'MVS S 'CICSNAME',WARM'
EXIT ð

 Example 4
JOBX OPCACMD,CMD=(UXCINITS,,'MVS $TI2ð-3ð,C=P')

This example shows a user extension (see “Nonsubsystem Operations” on
page 84) in which an operation for JOBX sends the request UXCINITS over from
OPC. The OPC Automation simply issues the MVS command, $TI20-30,C=P,
which tells JES to change initiators 20 to 30 so that they process jobs of class P.

 Example 5
RMF OPCACMD,CODE=(RECYCLE,,'EVJESHUT RMF ONLY')

This example shows a RECYCLE type of operation (bring the subsystem down and
restart it immediately) being defined. Note that the command to be issued is
EVJESHUT, which will issue a SHUTSYS command and verify that it is accepted or
else post the operation in error. See also Example 4 on page “Example 4” on
page 66 for the corresponding OPCA CODE definition.

68 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 OPCA DOMAINID

 OPCA DOMAINID

 Purpose
| The OPCA DOMAINID automation control file relates an OPC automatic
| workstation to a NetView domain ID.

 Format

OPCA DOMAINID
 [,CODE=(workstation,,,domainid)]
 [,CODE=(workstation,,,domainid)]

 Parameters
workstation

OPC definition — 4 characters.

Workstation names are of the form NVxx where xx is any 2 characters.

domainid
| Specify the parameter as either a NetView domain ID (up to five characters) or
| the keyword SYSPLEX.

| If a domain ID is specified, it indicates that all requests via the specified OPC
| workstation are to be handled by the specified domain.

| If SYSPLEX is specified, then each request initiates a search of all known
| System Automation domains in the local sysplex (the sysplex where the OPC
| Controller is running) for the job name in the request. The request is then
| forwarded to the domain which has the application defined and in the "most up"
| status.

| Usage Notes
| Make the workstations unique; however, they may map to the same NetView.

| The use of the SYSPLEX keyword requires the following on both controller and
| tracker systems:

| � OPC Automation APAR OW35607

| � System Automation OS/390 (SA OS/390) Version 1 Release 3 or later

| This entry is required at every domain where an OPC Controller may run.

| Example 1
| OPCA DOMAINID,
| CODE=(NVð6,,,AOFS6),
| CODE=(NVðð,,,AOFð1),
| CODE=(NVð1,,,XBAOC)

| This example shows three OPC workstations mapped to their respective NetView
| domains.

 Chapter 11. Control File Entries Used by OPC Automation 69

 OPCA DOMAINID

 Example 2
| OPCA DOMAINID,
| CODE=(NVð6,,,AOFS6),
| CODE=(NVðð,,,SYSPLEX),
| CODE=(NVð1,,,XBAOF),
| CODE=(NVð2,,,XBAOF)

| This example shows a NetView domain with more than one workstation defined for
| a domain and a SYSPLEX entry.

70 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 ENVIRON OPCAO

 ENVIRON OPCAO

 Purpose
The ENVIRON OPCAO entry checks status on START and STOP requests, and
specifies retention of critical messages.

 Format

ENVIRON OPCAO,REQSTAT=NO|YES
 MSGKEEP=hh:mm|PERM
 OPRESET=hh:mm|NEVER

 Parameters
REQSTAT

This entry controls checking of subsystem status on OPC Automation START,
STOP, and RECYCLE requests. If not coded, OPC Automation will enforce the
rule that START operations will be ended in error if the subsystem is already
UP, and likewise for STOP operations if the subsystem is down. Code
REQUEST=NO if you wish to have OPC Automation proceed as normal in this
case. However, even with REQSTAT=NO, status values that represent
conditions which require operator intervention, such as STOPPED, HALTED,
BROKEN, STUCK or ZOMBIE, will not be treated as normal. In such case, a
STOP or RECYCLE operation will be terminated and posted to error in OPC.

YES is the default.

MSGKEEP
This entry specifies retention of OPC Automation critical messages automated
with the DFCRIT command, and OPC error messages.

The defaut is PERM, which means that messages will not be deleted on a
timed basis.

PERM is the default.

OPRESET
OPRESET specifies how long the NetView interface to OPC may be
unavailable before OPC Automation will not reset operations which ended in
error while it was down. The NetView interface consists of both the
NetView+SA OS/390+OPC Automation address space and its associated
NetView SSI address space, over which requests flow from OPC to OPC
Automation. When the interface is down OPC Automation sets any operations
destined for a NetView workstation to error status with an error code of UNTV.
If no value is coded, or OPRESET=NEVER is coded, then no operations will be
reset when the interface becomes available again.

NEVER is the default.

 Chapter 11. Control File Entries Used by OPC Automation 71

 ENVIRON OPCAO

 Usage Notes
A time value is required for OPCRESET. Otherwise, OPC Automation will not
automatically reset operations which failed with a UNTV error code when it, or
OPC, is restarted.

 Example 1
ENVIRON OPCAO,REQSTAT=YES,
 MSGKEEP=ð4:ðð,
 OPRESET=ðð:3ð

In this example, subsystem operations will be checked for current status
(REQSTAT), and if the subsystem is already in the expected status coded on the
OPCA CODE statement, then the operation will be posted in error to OPC with a
return code of U001. In addition, the critical messages put into the display facility
(SDF) with DFCRIT, will be automatically purged from SDF (on the target and the
focal point) every 4 hours, without operator intervention. Finally, should any
operations fail with a UNTV error code because NetView or the PPI is unavailable
when they became READY in OPC, they will be automatically reset only if NetView
or the PPI is brought back within 30 minutes of their arrival in READY status.

72 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 OPCAPARM

 OPCAPARM

 Purpose
The OPCAPARM entry defines the additional parameters used for various requests.
This entry is entirely optional and need not be coded if the OPCA CODE entry is
sufficient to define all the necessary parameters.

 Format

subsys OPCAPARM,CODE=(request,parm1,parm2,'parm1value,parm2value,timermod')

 Parameters
request

Request specified in the OPC-operation definition.

parm1
Parameter 1 as specified in the OPC-operation text.

parm2
Parameter 2 as specified in the OPC-operation text.

parm1value
Substitution value used in the actual command.

parm2value
Substitution value used in the actual command.

timermod
Module called at the timer interval specified in the OPCA CODE entry for this
subsystem.

 Usage Notes
This entry processes commands in more complex operations of OPC Automation.

 Example 1
RMF OPCAPARM,CODE=(START,,,',,')

In this example, no additional parameters are needed for the requested operation
(START). An entry of this sort is entirely optional, and need not be coded at all.

 Example 2
OPCA OPCAPARM,CODE=(UXCICSRQ,TESTCICS,ALLFILES,'CX1ðAA,DFHGRP1,')

In this example, OPC schedules UXCICSRQ, a user extension, and passes
TESTCICS and ALLFILES as parameters in the operation text. The user-coded
module UXCICSRQ utilizes CIX10AA and DFHGRP1 when it builds its commands.
See “Nonsubsystem Operations” on page 84.

 Chapter 11. Control File Entries Used by OPC Automation 73

 OPCAPARM

 Example 3
In this example, an additional parameter was added to the START command in
OPC to indicate that an alternate procedure is to be used to start the subsystem.
This OPCAPARM entry is used in conjunction with a user-written CLIST, specified
in the OPCACMD entry. An OPCA code entry is also required. See the OPCA
code in “Example 3” on page 66 for details of that entry. See the OPCACMD
example in “Example 3” on page 67 for details of that entry and the sample CLIST.

CICS1 OPCAPARM,CODE=(START,COLD,,',,')
CICS1 OPCAPARM,CODE=(START,WARM,,',,')

74 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 OPCA PCS

 OPCA PCS

 Purpose
| The OPCA PCS automation control file entry locates the NetView domain on which
| the OPC Controller resides and specifies the MVS subsystem name for the OPC
| Controller system.

 Format

OPCA PCS,
 DOMAIN=domainid,SUBSYS=pcsname

 Parameters
domainid

| Specify the parameter as either a NetView domain ID (up to five characters) or
| the keyword SYSPLEX.

| If a domain ID is specified, it indicates that the OPC Controller always runs on
| the specified domain.

| The keyword SYSPLEX indicates that the OPC Controller may be running on
| any one of the systems in the local sysplex.

pcsname
| The MVS subsystem name of the OPC Controller as defined in the IEFSSNxx
| member.

| Note: When defining the OPC Controller to AOC this name must be used as
| the subsystem name and job name.

| Usage Notes
| The use of the SYSPLEX keyword requires the following on both controller and
| tracker systems:

| � OPC Automation APAR OW35607

| � System Automation OS/390 (SA OS/390) Version 1 Release 3 or later.

| Prior to OPC Automation APAR OW35607 this entry is required at both OPC
| Controller and OPC Tracker domains.

| After applying OPC Automation APAR OW35607 this entry is required:

| � At every domain where an OPC Controller may run

| � Within the same sysplex as the OPC Controller, at any other domain where it is
| desired to run OPC Automation operator commands (e.g., OPCACMD).

| This OPCA PCS statement is used by users of all variants of OPC (TME 10 OPC,
| OPC/ESA and OPC/A).

 Chapter 11. Control File Entries Used by OPC Automation 75

 OPCA PCS

| Example 1
| OPCA PCS,
| DOMAIN=AOFð1,
| SUBSYS=OPCA

| Example 2
| OPCA PCS,
| DOMAIN=SYSPLEX,
| SUBSYS=OPCC

76 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Chapter 12. Data Areas

This chapter shows the following:

� Subsystem status file OPC Automation entry (EVJSTS)
� Requestor ID block (EHKVAR9)

 � Request buffer

Subsystem Status File OPC Automation Entry (EVJSTS)

Table 4. Subsystem Status File OPC Automation Entry (EVJSTS)

Field Length Value Description

Last Completed 1 U|D Last successfully completed
status request is UP or
CTLDOWN

Sequence Number #1 4 Numeric
0000–9999

Sequence number of last
completed status resulting in an
UP or CTLDOWN status

Timer Flag 1 null|1|0 If 1, this subsystem operation was
ended by timer; if null,
TIMEREND task never used for
this subsystem.

Comp 1 null|1|0 If 1, this subsystem operation was
ended by status change; if null,
completion task never used for
this subsystem

Sequence Number #2 4 Numeric
0000–9999

Sequence number of present
request

Request Buffer 8 STOP/START/RECYCLE

PARM1 8 Optional for user written code

PARM2 8 Optional for user written code

Expected Result 24 UP/CTLDOWN

Timer ID 8 pointer|0 If it exits, pointer to outstanding
timer ID for this request; if none,
0

 Copyright IBM Corp. 1990, 1999 77

Requestor ID Block (EHKVAR9)
OPC Automation sets the task global variable (EHKVAR9) in the request module
and passes it to the user module, as follows:

Name of Subsystem, Sequence #, Module Name, Domain ID

Table 5 shows the lengths and values of the variables.

The following example shows values substituted for each variable shown in
Table 5.

RMF,7842,OPCACOMP,NETVT

The values are defined as follows:

Note: Other options can also use this block. Although OPCACOMP is shipped
with the OPC Automation option, you can also use a user-supplied module.

Table 5. Lengths and Values of Task Global Variable (EHKVAR9)

Variable Name of
Subsystem

Sequence # Module
Name

Domain ID

Length
(characters)

8 4 8 5

Values AOC
Subsystem
Name
(Standard)

OPC
Sequence
Number
(Numeric)

Check
Module
Name

NetView
Domain ID
(Standard)

RMF This request is for subsystem RMF.

7842 The OPC sequence number is 7842.

OPCACOMP When the requested function has been completed, invoke the
OPCACOMP module.

NETVT This function was executed in NetView domain NETVT.

78 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Request Buffer
Table 6 shows the request buffer layout for standard subsystem operations:

Note: The length of Parameter 1 or 2 is from 1 to 8 characters.

Table 6. Request Buffer Layout for Standard Subsystem Operations. Length
represents the maximum length if format is variable.

Field Length Format
Fixed/Variable

Value Obtained
From

Request ID 8 F| EVJESPRQ constant

delimiter 1 F blank constant

Application name 16 V variable ADNAME

delimiter 1 F blank constant

Workstation name 4 F NVnn WSNAME

delimiter 1 F blank constant

| Operation no| 3| V| 1 - 255| OPNO

delimiter 1 F blank constant

Subsystem name 8 V variable JOBNAME

delimiter 1 F blank constant

Request 8 V variable first field
in TXTOP

delimiter 1 F blank constant

Parameter 1
(optional)

* V variable second field
in TXTOP

delimiter 1 F blank constant

Parameter 2
(optional)

* V variable third field
in TXTOP

 Chapter 12. Data Areas 79

Table 7 shows the request buffer layout for nonsubsystem, user extension
(UXaaaaaa) operations:

Any parameter with a variable length is left-adjusted and all trailing blanks are
ignored. Figure 6 on page 14 shows an example of a resulting request buffer.

Table 7. Request Buffer Layout for Nonsubsystem, User Extension (UXaaaaaaa)
Operations. Length represents the maximum length if format is variable.

Field Length Format
Fixed/Variable

Value Obtained
From

Request ID 8 F| EVJESPRQ constant

delimiter 1 F blank constant

Application name 16 V variable ADNAME

delimiter 1 F blank constant

Workstation name 4 F NVnn WSNAME

delimiter 1 F blank constant

| Operation no| 3| V| 1 - 255| OPNO

delimiter 1 F blank constant

Subsystem name 8 V variable JOBNAME

delimiter 1 F blank constant

Request 24 V variable TXTOP

80 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Chapter 13. Guidelines for User-Written Operations

OPC Automation allows two types of user-supplied extensions for implementation of
functions beyond those provided by OPC Automation. These facilities provide
support for the following types of user-supplied modules:

� A non-SA OS/390 command or function that performs for an
automation-controlled subsystem.

� An independent user-supplied function which is scheduled for the user. This
type of function uses OPC Automation as a communications vehicle between
OPC and the user-supplied module. A relationship is not required with any
SA OS/390-defined subsystems.

The following sections describe an overview of each of these types of user-supplied
modules and provide examples of each module’s possible use.

Relating to the SA OS/390 Defined Subsystem
OPC Automation provides support for stopping and starting the SA OS/390-defined
subsystems. Certain environments require you to issue a command or to perform a
function outside the scope of SA OS/390. This may include a situation where a
system command needs issuing or where a user-written function needs to perform
a logical decision.

For example, you may need to issue a system command before taking action on a
subsystem. If you always issue this command, specify it as part of the startup
sequence in the automation control file. However, since you may not need to use
this command under certain conditions, OPC can initiate a user-supplied module to
perform the command. You can split the startup sequence with the system
commands, so OPC executes them separately from the subsystem startup
commands. If this is the case, define each command sequence to OPC as an
operation. Using scheduling parameters, such as specific types of days, you can
include or exclude certain operations.

For example, consider a subsystem which normally runs on a specific processor.
On weekends, you use this processor for testing purposes and move the
application to another, perhaps smaller, processor within the same complex. On the
days that the application needs moving, you need several VTAM VARY commands
to start the VTAM application statements.

In OPC, you can define an extra operation or application which runs on the first
free day of each period and another which runs on the first working day of each
period. OPC calls the CLIST containing the VTAM commands. This allows issuing
the appropriate VARY commands when needed before you start the application
subsystem on the correct processor.

Triggering a user-written CLIST provides another example. This determines if all
users of a specific application are logged off before issuing the commands to take
down the subsystem.

 Copyright IBM Corp. 1990, 1999 81

Flow of Control
In a situation where a non-SA OS/390 command needs issuing, use the normal
OPC Automation functions. In the request, instead of issuing the SA OS/390
command, OPC passes control to a user CLIST or command processor specified in
the automation control file. The request module passes all information available to
the user-supplied module. When the user-written module completes processing, it
calls the OPCACOMP command to indicate the completion of the operation.
Figure 24 shows the flow including the user responsibilities.

Figure 24. Request Flow for a User Function

If the user-supplied module does not issue any commands and returns control to
OPC Automation synchronously, the user is responsible for completing the
operation by calling OPCACOMP once the results of these commands are
analyzed. To simplify implementation, you may plan to only use the timer function
or the detection of the completion of the command. If you use only the event-driven
method, then consider what happens if the anticipated event fails to occur.

The timer and completion validation are a user responsibility. Once the user code
determines that the function is completed, OPC Automation calls the OPCACOMP
module with a good completion code, or a bad completion and associated return
code. The OPCACOMP module ensures that actions are accomplished in the
correct sequence, does some housekeeping, updates the SA OS/390 status file,
and calls the OPCAPOST command processor to return the specified completion
code to OPC.

82 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Parameters Passed to User-Supplied Module
When OPC Automation calls the user-supplied module from the request function,
several OPC Automation and user parameters are passed in NetView task global
variables. Following is summary of these variables:

&EHKVAR1 Parameter 1 value

&EHKVAR2 Parameter 2 value

&EHKVAR7 Expected status, timer interval, timer id

&EHKVAR8 OPC

&EHKVAR9 Requestor ID block; see “Requestor ID Block (EHKVAR9)” on
page 78

The automation control file parameter file entry stores the values of Parameter 1,
Parameter 2, and the name of the user-supplied module.

Do not modify the information in the task globals. OPC uses information in
&EHKVAR7 if the timer function check module is purged. The SA OS/390 problem
determination uses information in &EHKVAR8. The user-supplied module requires
information in &EHKVAR9 module to call OPCACOMP correctly when it completes.

Completing a User-Supplied Module (OPCACOMP)
After the user-supplied module completes its work, it should update the subsystem
status file buffer and set the COMP flag. OPC also needs posting with the results of
the user-supplied module. To avoid errors and to ensure synchronization, OPC
Automation carries out these tasks in the OPCACOMP function.

Flow of Control
Code these operations similar to START and STOP operations included with OPC
Automation. The automation control file contains the name of the command. These
entries are in the following form:

jobname OPCACMD,CMD=(xxxxxxxx,,'userfunc &EHKVAR1')

In the preceding example, the xxxxxxxx represents any character string meaningful
to the scheduler. The xxxxxxxx string consists of up to eight characters and should
not start with the characters ‘UX’. These 8 characters are arbitrary, but the
USERFUNC is not. USERFUNC here stands for the name of a user-written CLIST,
which will be passed the data in EHKVAR1.

Specify a timer function on the OPCAPARM and OPCA CODE entries, as shown in
the following example:

jobname OPCAPARM,CODE=(xxxxxxxx,,',,utimermod')
jobname OPCA,CODE=(xxxxxxxx,,'ustat,3,utimer')

You, the user, must supply the UTIMERMOD module to determine success or
failure of the operation. OPC Automation passes USTAT, a value to use as
necessary, with three minutes as the interval. UTIMER is the unique timer ID. Your
UTIMERMOD routine must use these values to construct its own timer to call
OPCACOMP to verify completion.

 Chapter 13. Guidelines for User-Written Operations 83

| When your timer module is called, it is passed the following parms in the order
shown:

 1. Jobname
 2. Expected status
 3. Application ID
 4. Workstation ID
 5. Operation number

Your timer routine calls OPCACOMP with the jobname, operation number, and
result of C or E. If the operation is not successful, include an error code containing
four characters of your choosing.

If you do not code the OPCA and OPCAPARM control file entries correctly,
complete with user-timer specifications, the variables EHKVAR7, EHKVAR8, and
EHKVAR9 are not set and your OPCACOMP request fails.

 Nonsubsystem Operations
Operations of this type, containing user extensions named UXxxxxxx, allow you to
perform commands that are independent of a specific subsystem. Figure 25 shows
the flow for these types of operations.

Figure 25. User Exit UXxxxxxx Flow

84 AOC/MVS V1R4 OPC Automation Programmer’s Reference

OPC Automation uses this type of exit for several purposes. At any point in the
production cycle, OPC Automation allows you to invoke a user CLIST or procedure
that can interact with system resources, such as the storage management
subsystem.

Let’s consider an example. Suppose, in a specific application flow within OPC,
return codes show action that is taken by operations. When a specific job in this
application completes, one of several user completion codes can result.

� A completion code of 0 indicates that application processing is to continue to
the next operation.

� A user completion code of 50 indicates that the next two operations are
skipped.

� A user condition code of 70 indicates that the application is completed at this
operation.

Any other completion codes are treated as errors. Figure 26 shows the subject
operations in this application and the desired flow of control on the basis of the
condition codes of the job that runs as part of the CPU_20 operation.

SAMPLE APPLICATION
OPERATIONS

CPU_20

CPU_25

CPU_30

CPU_35

APPLICATION COMPLETED

CC=0

CC=50 CC=70

Figure 26. Condition Code Driven Application Flow

 Chapter 13. Guidelines for User-Written Operations 85

In the preceding example, OPC handles all condition code situations, except 50
and 70, which it intercepts. OPC accomplishes this interception in several fashions,
such as user code in a JJC error exit. This code could then drive OPC Automation
with a user exit (UXxxxxxx) request. This request would pass to the specified
NetView to a user written task. This task could then use the OPCAMOD command
to do a modify current plan to OPC for the application in question on the basis of
the condition code received as part of the user exit request.

Flow of Control
OPC invokes the UXxxxxxx user exit by specifying UXxxxxxx as the request text in
OPC. The name of the command is found by an entry in the automation control file.
These entries are in the following form:

OPCA OPCACMD,CMD=(UXxxxxxx,,'userfunc &EHKVAR1')

Code different commands by jobname, as the following shows:

JOB1 OPCACMD,CMD=(UXxxxxxx,,'userfunc &EHKVAR1')
JOB2 OPCACMD,CMD=(UXxxxxxx,,'userfunc &EHKVAR1')

In the preceding examples, the xxxxxx represents any character string, meaningful
to the scheduler and containing up to six characters. OPC Automation calls the
USERFUNC, the name of the user command module.

The flow of control is a user responsibility for a user exit. When coding a user exit,
take care to ensure that the flow is maintained. Failure to do so halts the OPC
application until intervention occurs.

Parameters Passed to a User Exit
When OPC calls the UXxxxxxx command, OPC passes a NetView task global
(&EHKVAR1), containing the request buffer, to the command as input parameters.

Unlike a subsystem operation, the request buffer for a user extension contains the
entire operation description field (TXTOP) from OPC. See Table 6 on page 79 and
Table 7 on page 80 for details.

Completing a User Exit (OPCAPOST)
An OPC Automation user exit is terminated by issuing the OPCAPOST command
with a completion code. This returns the control of the application processing to
OPC. Figure 27 on page 87 shows more details.

86 AOC/MVS V1R4 OPC Automation Programmer’s Reference

/\\\ REXX \\/
/\---\/
/\ \/
/\ COPYRIGHT= 5685-151 \/
/\ CONTAINS RESTRICTED MATERIALS OF IBM \/
/\ (C) COPYRIGHT IBM CORP. 1995 \/
/\ LICENSED MATERIALS - PROPERTY OF IBM \/
/\ REFER TO COPYRIGHT INSTRUCTIONS \/
/\ FORM NUMBER G12ð-2ð83. \/
/\ \/
/\---\/
/\\ EVJERUX1 \/
/\\ \/
/\\ Sample clist to demonatrate using the OPCAO User Exit Calls \/
/\\ \/
/\\ This clist will check for adequate spool space before allowing \/
/\\ an OPC/A application to proceed. \/
/\\ \/
/\\ OPC/A Definitions: \/
/\\ \/
/\\ Create an operation on a NVxx workstation with operation \/
/\\ on a dummy job name (DUMMYJOB for example) with operation \/
/\\ text of UXCKSPL ("UX" is fixed, the remainder can vary). \/
/\\ \/
/\\ Control File entries required: \/
/\\ \/
/\\ DUMMYJOB OPCACMD,CMD=(UXCKSPL,,"EVJERUX1 &EHKVAR1") \/
/\\ \/
/\\ APAR# \/
/\\ -- \/
/\\ PN1ð372 11/19/91 PROVIDE SAMPLE CLISTS ILLUSTRATING THE \/
/\\ USER EXIT PROCESSING CAPABILITIES. \/
/\\ \/
/\\\/

 trace off
 parse source . Invoc Ident .
 parse upper arg parms /\ for audit or debugging \/
 "MSG LOG "Ident " : PARMS = "parms /\ purposes, a footprint \/

 /\\/
 /\ EHKVAR1 expands to the following: Calling module (EVJESPRQ) \/
 /\ Application Name \/
 /\ Workstation (NVxx) \/
 /\ Operation Number \/
 /\ Subsys (DUMMYJOB here) \/
 /\ Request (UXCKSPL here) \/
 /\\/

 parse upper arg module Adname Wsname Opnum Subsys Request

Figure 27 (Part 1 of 2). Typical Code Required for Nonsubsystem Requests

 Chapter 13. Guidelines for User-Written Operations 87

 /\\/
 /\ Get waittime from AOC or ACO \/
 /\\/
"GLOBALV GETC WAITTIME"
if Waittime = "" then
Waittime = 29

 /\\/
 /\ The body of the processing - issue an MVS $D SPL command \/
 /\ and wait for a response. \/
 /\\/

"TRAP AND SUPPRESS MESSAGES $HASP646"
 "MVS $DSPL"
"WAIT "Waittime" SECONDS FOR MESSAGES"

 /\\/
 /\ If the queue is more than 5ð percent full post in error, \/
 /\ otherwise post success. \/
 /\\/
 select

when event() = "M" then
 do

"TRAP NO MESSAGES"
 "MSGREAD"

"GETMLINE JES2MSG" 1
parse var Jes2msg msgnum percent morewords
if percent < 5ð then call PostOk

else call PostERR
 end

otherwise /\ Timeout, error, \/
call PostERR /\ post as failure \/

 end
 exit ð
 POSTOK:
 "OPCAPOST ADNAME="Adname "WSNAME="Wsname "OPNUM="Opnum "TYPE=C"
 return

 POSTERR:
 "OPCAPOST ADNAME="Adname "WSNAME="Wsname "OPNUM="Opnum "TYPE=E"||,
 " ERRCODE=USPL"
 return

Figure 27 (Part 2 of 2). Typical Code Required for Nonsubsystem Requests

88 AOC/MVS V1R4 OPC Automation Programmer’s Reference

| Interaction with CICS Automation
The following example shows how to use the CEMTPPI command of the AOC/MVS
CICS Automation Feature to open and close CICS files. The CEMTPPI command
allows you to perform CEMT commands on any CICS subsystem. If CICS
Automation is not installed, then you can perform a similar function using the MVS
MODIFY command from a NetView CLIST. First, you need these operations:

UXCICSOP Requests CICS to open a file.

UXCICSCL Requests CICS to close a file.

Although OPC Automation requires ’UX‘ in the operation text, you may vary the
remaining part of the name. The preceding example uses CICSOP and CICSCL for
this portion of the name.

The example selects the CLIST names of CICSOPEN and CICSCLOS. Using these
names, the control file entries are as follows:

OPCA OPCACMD,CMD=(UXCICSOP,,'CICSOPEN &EHKVAR1')
OPCA OPCACMD,CMD=(UXCICSCL,,'CICSCLOS &EHKVAR1')

The example uses the CICS subsystem name and the file name as parameters to
the request. These parameters are optional and flexible. Thus, the OPC jobname
field could serve as the CICS name. Figure 28 shows the definition of the operation
text and other fields.

à ð
 --------------------------------- OPERATIONS --------------------- ROW 1 OF 1
 Command ===> Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following
 row commands:
 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete
 S - Select operation details
 Enter the PRED command above to include predecessors in this list, or,
 enter the GRAPH command to view the list graphically.

 Application : PAYMAINT Payroll Master Update

 Row Oper Duration Job name Operation text
 cmd ws no. HH.MM
 '''' NVð4 ð15 ð.ð1 NOJOB___ UXCICSCL CICSð1 PAYROLL____

á ñ

Figure 28. Defining Sample CICS Application in OPC Automation

 Chapter 13. Guidelines for User-Written Operations 89

Figure 29 shows the REXX code for CICSOPEN and includes the source as
EVJERUX2.

/\\\ REXX \\/
/\---\/
/\ \/
/\ COPYRIGHT= 5685-151 \/
/\ CONTAINS RESTRICTED MATERIALS OF IBM \/
/\ (C) COPYRIGHT IBM CORP. 1995 \/
/\ LICENSED MATERIALS - PROPERTY OF IBM \/
/\ REFER TO COPYRIGHT INSTRUCTIONS \/
/\ FORM NUMBER G12ð-2ð83. \/
/\ \/
/\---\/
/\\ \/
/\\ EVJERUX2/CICSOPEN \/
/\\ \/
/\\ \/
/\\ Sample clist using AOC CICS to open a CICS file \/
/\\ APAR# \/
/\\ -- \/
/\\ \/
/\\\/

 parse source . Invoc Ident . /\ Finds name of clist \/
 parse upper arg Parms /\ for audit or debugging \/
 "MSG LOG "Ident " : PARMS = "Parms /\ purposes, a footprint \/

 /\\/
 /\ EVJERUX2 adds a new error code of 'UCIC' to be used with the \/
 /\ OPCAPOST command if the command to CICS is unsuccessful. \/
 /\ \/
 /\ EHKVAR1 expands to the following: Calling module (EVJESPRQ) \/
 /\ Application Name \/
 /\ Workstation (NVxx) \/
 /\ Operation Number \/
 /\ Subsys (OPC Job name) \/
 /\ Request (UXCICSOP) \/
 /\ parm1 (subsystem) \/
 /\ parm2 (file name) \/
 /\\/

 trace off
 parse upper arg Module Adname Wsname Opnum Subsys Request,
 Cics_subsys Cics_filename

 /\\\/
 /\ Build the CEMT command. See AOC CICS Programmer's Ref, \/
 /\ SC23-3814 for more information. \/
 /\\\/

 'GLOBALV GETC WAITTIME'
 'FLUSHQ MESSAGES'
 Messages = 'EVE79ð\ EVE1\ DSI594\'

Figure 29 (Part 1 of 4). CICSOPEN Exec

90 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 /\\\/
 /\ See AOC CICS Operator's Guide, SC23-3815, for more info. \/
 /\ DSI594I WAIT state entered warning \/
 /\ EVE79ðI response from PPI (data in EVE791, end in EVE792)\/
 /\ EVE12ðI command accepted for by PPI task \/
 /\ EVE129E NACK from PPI converse request to CICS \/
 /\ EVE136E error on PPI request (see return code) \/
 /\ EVE1xx treat all other EVE1xx messages as errors \/
 /\\\/
 'TRAP AND SUPPRESS MESSAGES 'Messages
 /\\\/
/\ Note: You may change the preceeding command to \/
/\ 'TRAP MESSAGES 'Messages \/
 /\ if you wish to see the messages returned in the log \/
 /\\\/
 Eveselnm = Cics_subsys
 "CEMTPPI "Cics_subsys" SET FILE("Cics_filename") OPEN"
 if Rc = ð then
 do
 call PROCESS_PPI_RESPONSE

Saverc = Rc
 exit Saverc
 end
 else

do /\ CEMPTPPI failed - tell user and quit \/
Saverc = Rc
Evemsghdrd = 'ON'
'GLOBALV PUTT EVEMSGHDRD'
Errormsg = eveemsg(551,'Y',Ident,'EVJERUX2',Saverc)

 exit Saverc
 end

 /\\\/
 /\ End mainline \/
 /\\\/

Figure 29 (Part 2 of 4). CICSOPEN Exec

 Chapter 13. Guidelines for User-Written Operations 91

PROCESS_PPI_RESPONSE:
 /\\\/
 /\ Determine response from CEMTPPI command \/
 /\\\/

 'WAIT 'Waittime' SECONDS FOR MESSAGES'
 Msgwait = Ok
 do while Msgwait = Ok
 select

when event() = 'T' then
do /\ CEMPTPPI timed out - tell user and quit \/
Evemsghdrd = 'ON'
'GLOBALV PUTT EVEMSGHDRD'
Errormsg = eveemsg(55ð,'Y',Ident,'CEMTPPI')
Msgwait = No

 return 4
 end

when event() = 'M' then
do /\ What message did we get? \/

 'MSGREAD'
 'GETMSIZE MCOUNT'

Lbuffer = ''
'GETMLINE LBUFFER 1'

 select
when POS('DSI594',Lbuffer) ¬= ð then

 'WAIT CONTINUE'
when POS('EVE12ð',Lbuffer) ¬= ð then

 'WAIT CONTINUE'
when (POS('EVE129',Lbuffer) ¬= ð | ,
POS('EVE136',Lbuffer) ¬= ð) then

 do
/\ PPI ERROR \/
Errormsg = evjemsg(ðð3,'Y','CEMTPPI',Eveselnm,'PPI_NOT_ACTIVE')

"OPCAPOST ADNAME="Adname "WSNAME="Wsname "OPNUM="Opnum "TYPE=E"||,
 " ERRCODE=UCIC"
 exit Rc

Msgwait = No
 return 4
 end

when POS('EVE1',Lbuffer) ¬= ð then
 do

Errormsg = Lbuffer
Msgwait = No

 return 8
 end

when POS('EVE79ð',Lbuffer) ¬= ð then
 do
 call PPI_OUTPUT

Msgwait = No
 end
 end
 end
 end

if Msgwait=Ok then
 'WAIT CONTINUE'
 end
return

Figure 29 (Part 3 of 4). CICSOPEN Exec

92 AOC/MVS V1R4 OPC Automation Programmer’s Reference

PPI_OUTPUT:
 do I = 1 to Mcount

'GETMLINE LBUFFER ' I+1
 /\\\/

/\ EVE79ðI output is in unformatted buffer \/
/\ scan to see what's in it \/

 /\\\/
 select

when POS('EVE79ð',Lbuffer) ¬= ð then
 do

nop /\ This is just the heading \/
 end

when POS('RETURN CODE ððð FROM CEMT COMMAND',Lbuffer) ¬= ð then
 do

nop /\ Normal response \/
 end

when POS('EVE792',Lbuffer) ¬= ð then
 do

'TRAP NO MESSAGES'
 'FLUSHQ'
 return ð
 end

when POS('EVE1',Lbuffer) ¬= ð then
 do

'TRAP NO MESSAGES'
parse var Lbuffer X Cicsmsg
Errormsg = evjemsg(ð3ð,'Y','CEMTPPI',Cicsmsg)

 return 16
 end

when POS(' NOT ',Lbuffer) ¬= ð then
 do

/\ File Not found \/
Errormsg = evjemsg(ðð3,'Y','CEMTPPI',Cics_filename,'NOT_FOUND')
"OPCAPOST ADNAME="Adname "WSNAME="Wsname "OPNUM="Opnum "TYPE=E"||,

 " ERRCODE=UCIC"
 exit Rc
 end

when POS(' OPE ',Lbuffer) ¬= ð then
 do

/\ File is open \/

Errormsg = evjemsg(ðð2,'Y','CEMTPPI',"'"Cics_filename" OPEN'")
"OPCAPOST ADNAME="Adname "WSNAME="Wsname "OPNUM="Opnum "TYPE=C"

 exit Rc
 end

when POS(' CLO',Lbuffer) ¬= ð then
 do

/\ File is closed \/
Errormsg = evjemsg(ðð3,'Y','CEMTPPI',Cics_filename,'CLOSED')
"OPCAPOST ADNAME="Adname "WSNAME="Wsname "OPNUM="Opnum ||,
" TYPE=E" " ERRCODE=UCIC"

 exit Rc
 end
 otherwise
 do

/\ Unexpected response in buffer \/
Errormsg = evjemsg(ð3ð,'Y','CEMTPPI',Lbuffer)

 end
 end
 end
return

Figure 29 (Part 4 of 4). CICSOPEN Exec

 Chapter 13. Guidelines for User-Written Operations 93

The CICSCLOS exec is identical except for the command text on the CEMTPPI
command.

Interaction with IMS Automation
The following example shows how to use the IMSCMD of the AOC/MVS IMS
Automation Feature to start and stop databases in IMS. The IMSCMD command
allows you to perform IMS MTO commands on any IMS in the system. Other IMS
commands could be imbedded into IMSCMD and incorporated in NetView CLISTs
you write yourself, using similar logic to that shown in EVJERUX4 and EVJERUX5.
If CICS Automation is not installed, then you can perform similar function by
replying to the outstanding reply ID of the IMS you wish to communicate with from
a NetView CLIST you write yourself. First, you will need these operations:

UXIMSSDB Requests to start a database.

UXIMSPDB Requests to stop a database.

Although OPC Automation requires “UX” in the operation text, you may vary the
remaining part of the name. This example uses IMSSDB and IMSPDB for this
portion of the name.

The example selects the CLIST names EVJERUX4 and EVJERUX5. Using these
names, the control file entries are as follows:

OPCA OPCACMD,CMD=(UXIMSSDB,,'EVJERUX4 &EHKVAR1')
OPCA OPCACMD,CMD=(UXIMSPDB,,'EVJERUX5 &EHKVAR1')

The example uses OPCA to identify the request to be issued, but you could also
use the OPC job name field instead. These parameters are the IMS subsystem
name and the database name as parameters to the request. Figure 30 shows the
OPC definition of the operation text and other fields.

à ð
 --------------------------------- OPERATIONS --------------------- ROW 1 OF 1
 Command ===> Scroll ===> PAGE

 Enter/Change data in the rows, and/or enter any of the following
 row commands:
 I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete
 S - Select operation details
 Enter the PRED command above to include predecessors in this lis
 enter the GRAPH command to view the list graphically.

 Application : CUSTMAINT Customer DB update

 Row Oper Duration Job name Operation text
 cmd ws no. HH.MM
 '''' NVð1 ð2ð ð.ð2 IMSSTART UXIMSSDB IMSð5Z_________

á ñ

Figure 30. Defining Sample IMS Application in OPC Automation

94 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Figure 31 shows the REXX code for EVJERUX4, which is used to open an IMS
database.

/\\\ REXX \\/
/\---\/
/\ \/
/\ COPYRIGHT= 5685-151 \/
/\ CONTAINS RESTRICTED MATERIALS OF IBM \/
/\ (C) COPYRIGHT IBM CORP. 1995 \/
/\ LICENSED MATERIALS - PROPERTY OF IBM \/
/\ REFER TO COPYRIGHT INSTRUCTIONS \/
/\ FORM NUMBER G12ð-2ð83. \/
/\ \/
/\---\/
/\\ \/
/\\ EVJERUX4 \/
/\\ \/
/\\ \/
/\\ Sample clist using AOC IMS to START a database in IMS \/
/\\ APAR# \/
/\\ -- \/
/\\ \/
/\\\/

 parse source . Invoc Ident . /\ Finds name of clist \/
 parse upper arg Parms /\ for audit or debugging \/
 "MSG LOG "Ident " : PARMS = "Parms /\ purposes, a footprint \/

 /\\/
 /\ EVJERUX4 adds a new error code of 'UIMS' to be used with the \/
 /\ OPCAPOST command if the command to IMS is unsuccessful. \/
 /\ \/
 /\ EHKVAR1 expands to the following: Calling module (EVJESPRQ) \/
 /\ Application Name \/
 /\ Workstation (NVxx) \/
 /\ Operation Number \/
 /\ Subsys (OPC Job name) \/
 /\ Request (UXIMSSDB) \/
 /\ parm1 (subsystem) \/
 /\ parm2 (database name) \/
 /\\/

 trace o
 parse upper arg Module Adname Wsname Opnum Subsys Request,
 Ims_subsys Ims_dbname

 'GLOBALV GETC WAITTIME'
 'FLUSHQ MESSAGES'
 Messages = 'EVI69ð\ EVI1\ DSI594\'

Figure 31 (Part 1 of 4). Exec to Open an IMS Database

 Chapter 13. Guidelines for User-Written Operations 95

 /\\\/
 /\ See AOC IMS Operator's Guide, SC23-3818, for more info. \/
 /\ DSI594I WAIT state entered warning \/
 /\ EVI69ðI response from PPI (data in EVI691, end in EVI692)\/
 /\ EVI12ðI command accepted for by PPI task \/
 /\ EVI15ðE command in progress by IMS (timeout) \/
 /\ EVI129E NACK from PPI converse request to CICS \/
 /\ EVI136E error on PPI request (see return code) \/
 /\ EVI1xx treat all other EVI1xx messages as errors \/
 /\\\/
 'TRAP AND SUPPRESS MESSAGES 'Messages
 /\\\/
/\ Note: You may change the preceeding command to \/
/\ 'TRAP MESSAGES 'Messages \/
 /\ if you wish to see the messages returned in the log \/
 /\\\/

 /\\\/
 /\ Build the IMSCMD /START command. See AOC IMS Programmer's \/
 /\ Reference SC23-3817 for more information. \/
 /\ Since the results of the /START are NOT returned across \/
 /\ the PPI, we must also do /DIS to verify that the command \/
 /\ succeeded. \/
 /\\\/
 Eviselnm = Ims_subsys
 "IMSCMD "Ims_subsys" /START DATABASE "Ims_dbname
 if Rc = ð then
 do
 call PROCESS_PPI_RESPONSE
 end
 else

do /\ IMSCMD failed - tell user and quit \/
Saverc = Rc
Evimsghdrd = 'ON'
'GLOBALV PUTT EVIMSGHDRD'
Errormsg = eviemsg(551,'Y',Ident,'EVJERUX4',Saverc)

 exit Saverc
 end

 /\\\/
 /\ Build the IMSCMD /DIS command. \/
 /\\\/

 "IMSCMD "Ims_subsys" /DIS DATABASE "Ims_dbname
 if Rc = ð then
 do
 call PROCESS_PPI_RESPONSE

Saverc = Rc
 exit Saverc
 end
 else

do /\ IMSCMD failed - tell user and quit \/
Saverc = Rc
Evimsghdrd = 'ON'
'GLOBALV PUTT EVIMSGHDRD'
Errormsg = eviemsg(551,'Y',Ident,'EVJERUX4',Saverc)

 exit Saverc
 end

 /\\\/
 /\ End mainline \/
 /\\\/

Figure 31 (Part 2 of 4). Exec to Open an IMS Database

96 AOC/MVS V1R4 OPC Automation Programmer’s Reference

PROCESS_PPI_RESPONSE:
 /\\\/
 /\ Determine response from IMSCMD command \/
 /\\\/

 'WAIT 'Waittime' SECONDS FOR MESSAGES'
 Msgwait = Ok
 do while Msgwait = Ok
 select

when event() = 'T' then
do /\ IMSCMD timed out - tell user and quit \/
Evimsghdrd = 'ON'
'GLOBALV PUTT EVIMSGHDRD'
Errormsg = eviemsg(55ð,'Y',Ident,'IMSCMD')
Msgwait = No

 return 4
 end

when event() = 'M' then
do /\ What message did we get? \/

 'MSGREAD'
 'GETMSIZE MCOUNT'

Lbuffer = ''
'GETMLINE LBUFFER 1'

 select
when POS('DSI594',Lbuffer) ¬= ð then

 'WAIT CONTINUE'
when POS('EVI12ð',Lbuffer) ¬= ð then

 'WAIT CONTINUE'
when (POS('EVI129',Lbuffer) ¬= ð | ,
POS('EVI136',Lbuffer) ¬= ð) then

 do
/\ PPI ERROR \/
Errormsg = evjemsg(ðð3,'Y','IMSCMD',Eviselnm,'PPI_NOT_ACTIVE')

"OPCAPOST ADNAME="Adname "WSNAME="Wsname "OPNUM="Opnum "TYPE=E"||,
 " ERRCODE=UIMS"
 exit Rc

Msgwait = No
 return 4
 end

when POS('EVI1',Lbuffer) ¬= ð then
 do

Errormsg = Lbuffer
Msgwait = No

 return 8
 end

when POS('EVI69ð',Lbuffer) ¬= ð then
 do
 call PPI_OUTPUT

Msgwait = No
 end
 end
 end
 end

if Msgwait=Ok then
 'WAIT CONTINUE'
 end
return

Figure 31 (Part 3 of 4). Exec to Open an IMS Database

 Chapter 13. Guidelines for User-Written Operations 97

PPI_OUTPUT:
 do I = 1 to Mcount

'GETMLINE LBUFFER ' I+1
 /\\\/

/\ EVI69ðI output is in unformatted buffer \/
/\ scan to see what's in it \/

 /\\\/
 select

when POS('EVI69ð',Lbuffer) ¬= ð then
 do

nop /\ This is just the heading \/
 end

when POS('EVI692',Lbuffer) ¬= ð then
 do

'TRAP NO MESSAGES'
 'FLUSHQ'
 return ð
 end

when POS('EVI15ðE',Lbuffer) ¬= ð then /\ command running \/
 do
 return ð
 end

when POS('EVI1',Lbuffer) ¬= ð then
 do

'TRAP NO MESSAGES'
parse var Lbuffer X Imsmsg
Errormsg = evjemsg(ð3ð,'Y','IMSCMD',Imsmsg)

 return 16
 end

when POS(' INVALID ',Lbuffer) ¬= ð then
 do

/\ Database Not found \/
Errormsg = evjemsg(ðð3,'Y','IMSCMD',Ims_dbname,'NOT_FOUND')
"OPCAPOST ADNAME="Adname "WSNAME="Wsname "OPNUM="Opnum "TYPE=E"||,

 " ERRCODE=UIMS"
 exit Rc
 end

when POS(' STOPPED',Lbuffer) ¬= ð then
 do

/\ Database is stopped \/
Errormsg = evjemsg(ðð3,'Y','IMSCMD',Ims_dbname,'STOPPED')
"OPCAPOST ADNAME="Adname "WSNAME="Wsname "OPNUM="Opnum ||,
" TYPE=E" " ERRCODE=UIMS"

 exit Rc
 end

when POS(' UP ',Lbuffer) ¬= ð then
 do

/\ Database is started by default \/

Errormsg = evjemsg(ðð2,'Y','IMSCMD',"'"Ims_dbname" STARTED'")
"OPCAPOST ADNAME="Adname "WSNAME="Wsname "OPNUM="Opnum "TYPE=C"

 exit Rc
 end

when POS('EVI691I',Lbuffer) ¬= ð then nop
 otherwise
 do

/\ Unexpected response in buffer \/
Errormsg = evjemsg(ð3ð,'Y','IMSCMD',Lbuffer)

 end
 end
 end
return

Figure 31 (Part 4 of 4). Exec to Open an IMS Database

98 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Part 4. Planning and Installation

Chapter 14. Installation . 101
Step 1: Load OPC Automation Libraries . 101
Step 2: Updating MPFLST . 101
Step 3: Updating IEAAPFxx in SYS1.PARMLIB 101
Step 4: Defining Subsystem Allocatable Consoles 102
Step 5: Check the Subsystem Name Table . 102
Step 6: Add Libraries to OPC and Recycle . 103

Chapter 15. Merge NetView Related Members 105
Step 1: Add OPC Automation Data Sets to NetView JCL 105

Add OPC/ESA Data Sets and Allocate EQQMLOG 106
Add OPC/A Data Sets and Allocate DRKMLOG 106

Step 2: Copy OPC Automation Sample Members to the Target Library . . . 107
Step 3: Merge Status Display Facility Members 107
Step 4: Merge EVJCFG into the Control File 107
Step 5: Merge EVJCMD into DSICMD . 107
Step 6: Merge and Update the Automation Table 108
Step 7: Merge EVJOPF into DSIOPF . 109
Step 8: Merge the NetView Profile Data Set 109
Step 9: Merge EVJDMN into DSIDMN and Update 109

Chapter 16. OPC Automation Initial Customization 111
Step 1: Basic OPC Automation Common Control File Definitions 111
Step 2: Customizing the Status Display Facility 112
Step 3: Integrate Existing Exit 7 with OPC Automation 113
Step 4: Initializing the OPC Automation Status File 113
OPC Automation Test Scenario . 114

Define Operations on the Workstation . 114
Test NetView Commands . 114

Problem Determination Suggestions . 114

 Copyright IBM Corp. 1990, 1999 99

100 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Chapter 14. Installation

Complete the steps listed below for installation. Use the following table to track your
completed work:

Table 8. Installation Check List

√ Step

 1. Load OPC Automation libraries from the distribution tape.

 2. Modify MPFLST.

 3. Update IEAAPFxx in SYS1.PARMLIB to provide APF authorization.

 4. Define subsystem allocatable consoles.

 5. Check the subsystem name table to ensure that the NetView SSI
is first.

 6. Add libraries to OPC and recycle.

Step 1: Load OPC Automation Libraries
Using the information in OPC Automation program directory, load OPC Automation
libraries from the distribution tape.

Step 2: Updating MPFLST
Add the following message entry in MPFLSTxx in SYS1.PARMLIB to trap all TME
10 OPC and OPC/ESA messages:

EQQ\,SUP(NO),AUTO(YES)

OPC/A users must add these entries instead of the one above:

DRK\,SUP(NO),AUTO(YES)
CSY\,SUP(NO),AUTO(YES)

All users must add an additional entry for OPC Automation messages:

EVJ\,SUP(NO),AUTO(YES)

This step is necessary to permit MVS console messages to flow to NetView where
they may be automated.

Step 3: Updating IEAAPF xx in SYS1.PARMLIB
You must APF authorize all the NetView libraries from the //STEPLIB concatenation
in the NetView start procedure. To accomplish this, a library’s name must appear in
the list of authorized libraries in IEAAPFxx, the APF member of SYS1.PARMLIB.
After you update IEAAPFxx, you must re-IPL MVS.

Ensure that the USERLINK library used when link-editing OPC Automation is
authorized. If you specify an unauthorized library on a STEPLIB or concatenate

 Copyright IBM Corp. 1990, 1999 101

unauthorized libraries with authorized libraries, all libraries are treated as if they are
unauthorized.

Note: For more information on APF authorization, refer to MVS/ESA Initialization
and Tuning, as appropriate for your system.

Step 4: Defining Subsystem Allocatable Consoles
The NetView program’s use of the MVS subsystem interface allows issuing MVS
system operator commands from the operator station task used by NetView
operators and from an automation task. For each active task that can issue MVS
system operator commands, a subsystem allocatable console is required for
NetView.

Each OPC Automation operator can use a subsystem allocatable console. Make
sure you increase the number of subsystem allocatable consoles by the number of
OPC automation operators.

Note: The MVS/ESA Installation: System Generation Reference contains
information on defining subsystem allocatable consoles for your system.
Also refer to the MVS/ESA Input Output Configuration Program User’s
Guide and Reference. Consult MVS/ESA Initialization and Tuning, as
appropriate for your system.

Step 5: Check the Subsystem Name Table
Use the first active NetView SSI for PPI communication. If an SSI for a NetView,
other than the one running OPC Automation, is higher in the table, then that SSI
will be used for the PPI, disrupting OPC Automation program-to-program
communications.

Check the subsystem name table in MVS SYS1.PARMLIB, member IEFSSNxx, to
verify that the NetView SSI that is used by OPC Automation is first in the list,
ahead of all other NetView subsystem names.

Note: Non-NetView subsystems, such as JES2, can precede this entry.

102 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Step 6: Add Libraries to OPC and Recycle
Add your SEVJMOD library and the NetView CNMLINK library containing
CNMNETV to the OPC steplib. Alternately, you may add these libraries to
LINKLST. You should have already APF authorized these libraries.

A recycle of OPC is required for installing the exit 7 modules. This is EQQUX007
for OPC/ESA, or DRKUX007 for OPC/A. If you are using an existing exit 7, you can
combine this exit with OPC Automation-supplied modules. See “Step 3: Integrate
Existing Exit 7 with OPC Automation” on page 113 for details.

For OPC/ESA, you must specify the CALL07(YES) parameter in the OPC/ESA
initialization parameters.

Other initialization parameters must be specified in the OPC initialization member
(EQQPARM for OPC/ESA or DRKPARM for OPC/A) so that OPC will issue some
of its messages to the MVS console. These messages will in turn be automated by
OPC Automation.

For OPC/ESA, you must specify the following in EQQPARM:

ALERTS WTO(ERROROPER,OPCERROR)

For OPC/A, you must specify the following in DRKPARM:

TYPE(ERROROPER,OPCERROR)

In addition, you must edit the OPC-supplied message members for certain
messages.

| The following messages are automated and may require changes to the TME 10
| OPC or OPC/ESA supplied message members in the SEQQMSG0 data set or to
| the OPCMLIB data set for OPC/A.

| TME 1ð OPC V2 OPC/ESA OPC/A
| Message Member Message Member Message Member
| --------- --------- --------- --------- --------- --------
| EQQWð65I EQQWð6 EQQWð65I EQQWð6 DRKWOO5I DRKWðð

| EQQWð11I EQQWð1 EQQWð11I EQQWð1 DRKWð11I DRKW11

| EQQNð13I EQQNð1 EQQNð13I EQQNð1 CSYNð13I CSYNð1

| EQQZð86I EQQZð8 EQQZð86I EQQZð8 DRKZðð6I DRKZðð6

| EQQEð26I EQQEð2 EQQEð26I EQQEð2 CSYEð26I CSYEð2

| EQQEð36I EQQEð3 EQQEð36I EQQEð3 CSYEð36I CSYEð3

| EQQZ128I EQQZ12

| EQQZ2ð1I EQQZ2ð

| Modify these message members to include WTO=YES for the indicated message
| IDs. Full details for customizing OPC can be found in TME 10 OPC Customiztion
| and Tuning, OPC/ESA Installation and Customization, or in OPC/A Installation and
| Customization.

 Chapter 14. Installation 103

104 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Chapter 15. Merge NetView Related Members

This chapter describes how to build OPC Automation parameter data sets and
assemble the code that allows OPC Automation to operate in the NetView
environment.

Use the following table to track your completed work:

Table 9. Merging the NetView Related Members Check List

√ Step

 1: Add OPC Automation data sets to NetView JCL.

 2: Copy OPC Automation sample members to the target library.

 3: Merge Status Display Facility members.

 4: Merge EVJCFG into the control file.

 5: Merge EVJCMD into DSICMD.

 6: Merge the NetView Message Table.

 7: Merge EVJOPF into DSIOPF.

 8: Merge the NetView profile data set.

 9: Merge EVJDMN into DSIDMN.

Step 1: Add OPC Automation Data Sets to NetView JCL
Add the following libraries to your NetView JCL procedure. Review the NetView
JCL procedure to verify that OPC Automation data set block size does not cause a
problem in the concatenation. Remember to specify a block size equal to or larger
than the largest data set in the concatenation chain in the DCB parameter on the
DD statement (DCB=BLKSIZE=...).

DD DSN Description

DSICLD AOCOPC.V1R4M0.SEVJNCL1 Command Lists

CNMPNL1 AOCOPC.V1R4M0.SEVJNPN1 Panels

DSIMSG AOCOPC.V1R4M0.SEVJMSG Communication Messages

STEPLIBñ AOCOPC.V1R4M0.SEVJMOD
 OPCESA.V1R2M1.SEQQLMD0

APF authorized link library containing
OPC Automation and OPC/ESA
modules

Note:

ñ See the description of STEPLIB in “Add OPC/ESA Data Sets and Allocate EQQMLOG” on
page 106.

Note: For performance reasons, these data sets should be high in the
concatenation chain.

 Copyright IBM Corp. 1990, 1999 105

Next, depending on your environment, select one of the following data sets to
install.

� Add OPC/ESA data sets
� Add OPC/A data sets

Add OPC/ESA Data Sets and Allocate EQQMLOG
If you are running OPC/ESA, add JCL for OPC/ESA data sets used by NetView as
shown:

//\
//\ OPC/ESA MISC DATA SETS
//\
//EQQMLOG DD DSN=AOCOPC.V1R4Mð.AOFð1.EQQMLOG,DISP=SHR
//EQQMLIB DD DSN=OPCESA.V1R2Mð.SEQQMSGð,DISP=SHR
//EQQDUMP DD DUMMY

EQQMLIB
OPC/ESA data set containing message text. Please review your OPC/ESA
procedures to find the correct dataset name for EQQMLIB.

EQQDUMP
OPC/ESA dump data set, used in the event of an abend. (In the example
above, a dummy is used.)

EQQMLOG
Run sample job EVJSJ011 to allocate an EQQMLOG data set. There are
comments in EVJSJ011 to guide you. A unique log data set must be allocated
for each NetView which runs OPC Automation, and these may not be shared.
One cylinder of space should be adequate, because this data set is used only
for OPC API error messages, and it is reopened each time NetView initializes
the interface.

STEPLIB
The OPC/ESA load library SEQQLMD0 must be accessible to the NetView
procedure. This can be accomplished by adding this library as STEPLIB to the
NetView procedure, or by adding the library to LINKLST. However, if OPC/A
and OPC/ESA are installed in the same system, then a STEPLIB for
SEQQLMD0 must be used, or else the NetView procedure will not pick up the
correct version of CSYYCOM (EQQYCOM) and various commands to
OPC/ESA will fail.

Add OPC/A Data Sets and Allocate DRKMLOG
If you are running OPC/A, add JCL for OPC/A data sets used by NetView as
shown:

//\
//\ OPC/A MISC DATA SETS
//\
//DRKMLOG DD DSN=AOCOPC.V1R4Mð.AOFð1.DRKMLOG,DISP=SHR
//DRKMLIB DD DSN=OPCA.OPCMLIB,DISP=SHR
//CSYDUMP DD DUMMY

DRKMLIB
OPC/A data set containing message text. Please review your OPC/A
procedure to find the correct dataset name for DRKMLIB.

106 AOC/MVS V1R4 OPC Automation Programmer’s Reference

CSYDUMP
OPC/A dump data set, used in the event of an abend. (In the example above,
a dummy is used.)

DRKMLOG
Run sample job EVJSJ011 to allocate an DRKMLOG data set. There are
comments in EVJSJ011 to guide you. A unique log data set must be allocated
for each NetView which runs OPC Automation, and these may not be shared.
One cylinder of space should be adequate, because this data set is used only
for OPC API error messages, and it is reopened each time NetView initializes
the interface.

Step 2: Copy OPC Automation Sample Members to the Target Library
__ Run sample job EVJSJ010 (in SEVJSAMP) to copy the sample members

that may require customization from the sample library to your DSIPARM
data set. Tailor the JCL to reflect your operational DSIPARM data set.

Step 3: Merge Status Display Facility Members
__ 1. Copy EVJTREE from your DSIPARM data set into your existing AOFTREE

member. EVJTREE contains the tree structure for OPC Automation
Status Display Facility panels. See “Tree Structure for Panels” on
page 123 for a copy of EVJTREE.

Note: If you are using the %INCLUDE facility for multiple tree structures,
you must copy EVJTREE into each structure, as appropriate.

__ 2. Copy EVJPNLS into your existing Status Display Facility panel definition
member (AOFPNLS). AOFPNLS contains a list of %INCLUDE statements
for all of the Status Display Facility panels used with OPC Automation.

Step 4: Merge EVJCFG into the Control File
__ Copy EVJCFG into your operational SA OS/390 control file. This member

contains an %INCLUDE statement that causes the processing of member
EVJCFG01 by SA OS/390.

Step 5: Merge EVJCMD into DSICMD
__ Merge EVJCMD into DSICMD before the END statement. EVJCMD

contains the command definitions required for OPC Automation. See
Appendix E, “Sample OPC Automation Command Synonyms” on
page 147 for a copy of EVJCMD. You can also just %INCLUDE it in
DSICMD.

 Chapter 15. Merge NetView Related Members 107

Step 6: Merge and Update the Automation Table
__ 1. Merge OPCMSG00 into your NetView/SA OS/390 message table.

OPCMSG00 must be merged with the SA OS/390 message table that is
loaded early during NetView initialization. The SA OS/390 sample is
AOFMSG00. To accomplish this task, insert the statement %INCLUDE
OPCMSG00, after the %INCLUDE for AOFMSGSY in member
AOFMSG00.

__ 2. Merge OPCMSG01 into your NetView/SA OS/390 message table.

OPCMSG01 must be merged with the SA OS/390 message table that is
used during steady-state NetView operation. The SA OS/390 sample is
AOFMSG01. To accomplish this task, insert the statement %INCLUDE
OPCMSG01, after the %INCLUDE for AOFMSGSY in member
AOFMSG01. Please note that OPCMSG01 contains %INCLUDE
statements for a number of other members that include:

EVJMCON1 Messages that may be in conflict with other entries in your
NetView message table.

EVJMOPCE OPC/ESA messages used by OPC Automation

EVJMOPCA OPC/A messages used by OPC Automation

__ 3. If you are currently using a customized NetView automation table and it
contains messages prefixed with EQQ, DRK, or CSY, make sure that
these are not in conflict with OPC Automation message table entries in
member EVJMOPCE or EVJMOPCA. Document and resolve any conflicts.

__ 4. Additional messages that may have conflicts are highlighted in the OPC
Automation message table entries in member EVJMCON1. Review those
messages to verify that there are no conflicts. Note that some message
IDs have “early out” logic in the automation table, such as MSGID=‘IEF’.
Document and resolve any conflicts.

Note: This step requires an understanding of the operation of the
NetView automation table. Refer to the NetView Administration
Reference manual for additional information.

108 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Step 7: Merge EVJOPF into DSIOPF
__ Merge member EVJOPF from your DSIPARM data set into DSIOPF, or

use %INCLUDE to add it to DSIOPF.
 Use EVJOPF to define OPC Automation autotasks.

Step 8: Merge the NetView Profile Data Set
__ This is the profile for the automated operators. To merge this data set,

copy EVJPRFAO into your NetView profile data set (DSIPRF).

Step 9: Merge EVJDMN into DSIDMN and Update
The purpose of EVJDMN is to add the EVJNTASK to DSIDMN. To merge this
member:

__ 1. Merge EVJDMN from your DSIPARM data set into DSIDMN, or use
%INCLUDE to add it to DSIDMN.

__ 2. Verify that there are enough VTAM APPL statements in your VTAM
definitions to allow all of the operators to log on.

 Chapter 15. Merge NetView Related Members 109

110 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Chapter 16. OPC Automation Initial Customization

This chapter describes the definitions that occur in NetView.

Step 1: Basic OPC Automation Common Control File Definitions
For each NetView domain, set up OPC Automation automation environment
according to the following checklist:

__ 1. Verify the defining of the system environment as described in the
SA OS/390 base documentation.

Note: Establish a working and tested SA OS/390 before beginning the
customization of OPC Automation.

__ 2. Add AUTOOPS entries to SA OS/390 using the SA OS/390 customization
dialogs for the OPC Automation operator tasks:

AUTOOPS OPCAOPR1,ID=AUTOPCP,MSG=(CSY\,DRK\,CSZ\,EQQ\,EVJ\)
AUTOOPS OPCAOPR2,ID=AUTOPCE,MSG=(CSY\,DRK\,CSZ\,EQQ\,EVJ\)

For the automated operator task OPCAOPR1, the operator ID must be
AUTOPCP. For the automated operator task OPCAOPR2, you may
specify whatever operator ID meets your installation standards.

__ 3. Add subsystem information to the OPC Automation customization dialogs
for the OPC/ESA Controller (or the OPC/A PCS), and for the OPC/ESA
Tracker (or the OPC/A EMS).

Alternately, you can uncomment the sample entries in EVJCFG01. (It is
unlikely, however, that the samples will be adequate to your system’s
needs without further customization.)

___ 4. Customize the following control file entries:

OPCA PCS Use the worksheet shown in “Step 3: Define the OPC
Environment” on page 127, and see “OPCA PCS” on
page 75 for information on these parameters.

OPCA DOMAINID Use the worksheet shown in “Step 1: Define the
Workstations” on page 125, and see “OPCA
DOMAINID” on page 69 for details on completing the
domain table.

__ 5. You must define OPCA CODE and OPCACMD entries for each subsystem
operation you wish to automate from OPC. (See Chapter 11, “Control File
Entries Used by OPC Automation” on page 65.) In addition, the
subsystems must be properly defined to OPC Automation before you can
automate them. (See “Define Operations on the Workstation” on
page 114.)

 Copyright IBM Corp. 1990, 1999 111

Step 2: Customizing the Status Display Facility
Notes:

1. Before using these steps, refer to the SA OS/390 base documentation for a
complete overview on customizing the Status Display Facility.

2. Instructions that explain how to merge the Status Display Facility members
were given in “Step 2: Copy OPC Automation Sample Members to the Target
Library” on page 107 and “Step 3: Merge Status Display Facility Members” on
page 107.

__ 1. Your completed tree should look similar to the following:

1 SY1
 2 JES
 2 RMF
 2 VTAM
 2 TSO
/\ OPC Automation ENTRIES FOLLOW \/

 2 OPCERR
 2 BATCH
 2 TSOUSERS
 2 SYSTEM
 3 MESSAGES
 3 IO
 4 TAPES
 4 ONLINE

__ 2. Add EVJPNLS to your existing AOFPNLS.

__ 3. If the system name, as defined with the ENVIRON SETUP,SYSNAME=
control file entry, is not SY1, edit the following members and change SY1
to your system name in the Status Display Facility status field component
name.

 SY1BATCH SY1SYS2
 SY1CMSGB SY1SYS2B
 SY1CMSGS SY1SYS2C
 SY1MSGS SY1SYS2X
 SY1MSGSB SY1SYS2Y
 SY1MSGSC SY1SYS22
 SY1MSGS2 SY1TAPE
 SY1OPCA SY1TSOA
 SY1SYS SY1TSOU
 EVJDððð1

If you have an automated change tool, you may change the string SY1. to
your system name followed by a period.

__ 4. Customize the Status Display Facility main panel to add individual status
fields to display the new descriptor types added by OPC Automation
(those are listed above: OPCERR, BATCH, TSOUSERS, MESSAGES,
TAPES, and ONLINE) or else to add EVJD0001 as a down panel. Chapter
3, “Problems in an OPC-defined application” of the AOC/MVS OPC
Automation Operator's Guide and Scheduler Reference has examples of
what this customization might look like.

For example, to add a ‘O’ to the Status Display Facility SYSTEM panel, so
that when you position the cursor underneath it and press PF8 (the SDF

112 AOC/MVS V1R4 OPC Automation Programmer’s Reference

“DOWN” PF Key), panel EVJD0001 is shown; edit SYSTEM and add lines
similar to the following:

SF(SY1.OPC,ð7,75,76,N,,EVJEDððð1)
ST(O)

This would position the ‘O’ in row 7 of the panel in column 75. Change
the row, position, and root name (SY1) to fit into your system.

Step 3: Integrate Existing Exit 7 with OPC Automation
OPC Automation supplies EQQUX007/DRKUX007 to detect workstations used for
NetView communication. The following modules are used as part of that process:

 � DRKUX007
 � EQQUX007
 � UX007001
 � UX007002

EQQUX007/DRKUX007 is the exit driver program. It calls other modules in turn, as
if OPC is calling each module directly. The driver searchs for UX007001 through
UX007010. UX007001 and UX007002 are supplied with OPC Automation. If you
have an existing exit 7, rename your module from EQQUX007 or DRKUX007 to
UX007003. The called routines are passed to the same parameters that calls
EQQUX007. Note that the parameter CALL07(YES) is necessary for OPC/ESA.

If you wish to add additional exit 7 modules, then use the next available name,
such as UX007004. This makes it easier to integrate exits supplied by various
products. Also, since modules are loaded dynamically by the exit driver on each
invocation, you may add, delete, or modify an exit module without recycling OPC.

Step 4: Initializing the OPC Automation Status File
To create a status file from NetView, enter the command:

EVJESPIN CMD=INIT

Do not use this command until you have created the OPCA CODE entries that you
intend to use for testing. You can enter it manually, or it will be issued automatically
every time OPC Automation is reinitialized.

 Chapter 16. OPC Automation Initial Customization 113

OPC Automation Test Scenario

Define Operations on the Workstation
For a test scenario, assume that you have a subsystem that can shut down and
restart at will. The example uses RMF. If you use another subsystem, then edit the
control file entries as necessary.

Additional details and typical OPC definitions are shown in Chapter 2 of AOC/MVS
OPC Automation Operator's Guide and Scheduler Reference.

For details of OPC use, refer to the OPC/ESA User’s Guide.

In OPC, define a test application that has an operation step on the NVxx
workstation and operation text of START or STOP. This text matches the
OPCACMD entries in the control file. For example, the text START RMF, defined
as an operation on NV06, sends the request to SA OS/390 for processing as the
SETSTATE command coded in the RMF OPCACMD entry:

RMF OPCACMD,CMD=(START,,'SETSTATE RMF,DOWN,START=YES')
RMF OPCACMD,CMD=(STOP,,'SHUTSYS RMF,RESTART=CTL,VERIFY=NO,SCOPE=ONLY')

When the NV06 operation with text STOP RMF becomes ready, then AOFS6 will
execute the SHUTSYS command as specified in the control file entry. The RMF
OPCA CODE entries for START and STOP are used to specify timer names and
times in minutes. In EVJCFG01, the timer allows three minutes for RMF to get to
the UP status and one minute for the CTLDOWN status. If the subsystem is not in
the expected status when the timer CLIST is executed, the timer module will post
an error status for the operation.

Test NetView Commands
On the automation NetView, try the following commands:

OPCA You should see the main tutorial panel for OPC
Automation.

EVJESPIN CMD=INIT You should receive a message indicating successful
completion.

OPCAQRY You should see statuses of requests between OPC and
NetView. Use the browse option to see detail.

OPCACMD Fill in the screen with an OPC application, you should see
data for that application.

Problem Determination Suggestions
The following suggestions are offered for problem determination and resolution.
Review NetView and OPC documentation for specific problem determination and
resolution assistance.

� Is the EVJTOPPI task active?
� Are there error messages in the NetView log?
� Determine status using OPCQRY.
� EVJTRACE ON may help with resolving problems.

114 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Part 5. Appendixes

 Copyright IBM Corp. 1990, 1999 115

116 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Appendix A. Status Display Facility Enhancements

 Coding Reference

CLISTs Used to Implement the Supplied Extensions

DFUPDT Status Display Facility update CLIST.

Use this routine to build your own displays. See the syntax and
discussion that follows “DFUPDT” on page 119.

DFTAPK Tape check. Determines if tape mounts are resolved.

DFTAPM Tape message processor. Intercepts the following messages:

IEF233A Volume mount message

IEF234E Volume dismount message

IEF251I Job cancelled message

IEC501A Volume mount message

IEC502E Volume dismount message

IEC701D Volume to be labelled request

IEC705I Tape mounted message

TMS001 Volume mount message (OEM product)

TMS002 Volume dismount message (OEM product)

DFTAPO Tape online. Finds all online tape units for panel display.

DFDELT Status Display Facility delete used by the various CLISTs.

DFCRIT Critical message processor.

Call DFCRIT for each message that you wish to appear in the critical
message facility. The parameters are the text of the message that are
added to the Status Display Facility. See the syntax and discussion
that follows “DFCRIT” on page 121.

CLIST Alias Function

EVJEAB00 DFTAPO Finds online tape drives

EVJEAB01 DFBTCH Process batch job start/end

EVJEAB02 DFTAPM Finds online tape drives

EVJEAB03 DFTSOU Processes TSO logon/logoff

EVJEAB04 DFTSOR Displays TSO users for restart purposes

EVJEAB05 DFTAPK Tape check; sees if tape was mounted

EVJEAB06 DFCRIT Critical message processor

EVJEAB07 DFUPDT Status Display Facility update

EVJEAB10 DFDELT Status Display Facility delete

 Copyright IBM Corp. 1990, 1999 117

DFTSOU Captures TSO logons and logoffs. The following messages are
processed:

IEF125I TSO user logged on

IEF126I TSO user logged off

IEF450I TSO user abend

DFTSOR TSO Refresh. See all TSO users logged on the system to build display
at NetView initialization or Status Display Facility recycle.

DFBTCH Captures batch job start and stop. The following messages are
processed:

$HASP373 Job started

IEF404I Job ended

IEF450I Abend

IEF453I Job failed

118 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 DFUPDT

 DFUPDT

 Purpose
Use the DFUPDT command to insert display data for extensions to the Status
Display Facility. The normal automation commands are issued to route this data to
a focal point host in a distributed environment.

 Format

DFUPDT type,resource,component,ref_value,info,text

 Parameters
type

Type used to get Status Display Facility parameters from the control file.

resource
Status Display Facility resource name.

component
Status Display Facility component name.

ref_value
Reference value used for the Status Display Facility entry. Used as a way to
group related or duplicate entries. If not supplied, then use resource.

info
Information text that appears on the panel for this entry. If not supplied, then
use resource.

text
Message or user text that appears in the detail panel for this entry. If not
specified, then use resource.

 Appendix A. Status Display Facility Enhancements 119

 DFCOPY

 DFCOPY

 Purpose
DFCOPY synchronizes SDF components between the target and focal point
systems.

 Format

DFCOPY component,domain

 Parameters
component

The SDF component to be copied. It can be of the form sysname.component,
but if sysname is not specified, then it will be set to the running system.

domain
The destination domain. Entries from the running system will be sent to the
SDF on that system.

 Usage Notes
Both parameters are required.

 Examples
If you are on target system CNM0T (sysname = TGT) and wish to send all the
OPCERR entries to CNM0F, your focal point:

 DFCOPY OPCERR,CNMðF

Also, the command:

 DFCOPY TGT.OPCERR,CNMðF

is equivalent. When this is executed, any OPCERR entries will be copied. If there
were no entries on CNM0T, and CNM0F had residual data, then CNM0F’s entries
will be deleted.

120 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 DFCRIT

 DFCRIT

 Purpose
Use the DFCRIT command to add critical messages to the Status Display Facility.
These messages are normally selected through the automation table, although you
could invoke the CLIST from other places, such as user-written automation
CLISTS.

 Format

DFCRIT message text DFCRIT TYPE=t, message
text

 Parameters
t A 1-character value corresponding to an SDF CRITMSG type entry in the

control file. A, E, I, and W are supplied with OPC Automation. Other values
may be specified, provided a SDF CRITMSGt corresponds to that message.

message text
Message text added to the Status Display Facility critical message display
panel.

IF MSGID='IOSðð1I' & TEXT=MESSAGE
THEN EXEC(CMD('DFCRIT 'MESSAGE) ROUTE(ALL \));

 Usage Notes
If the TYPE= parameter is not specified, t is set to the last character of the
message ID, and the search is made. If no CRITMSGt entry is found, the
CRITMSG value will be used.

 Examples
If you wish to see certain application messages in blue reverse video, add:

 SDF CRITMSGU,CO=B,PR=5ðð,HL=R

to your control file and call DFCRIT from the message table as follows:

IF MSGID='NORMAL' & TEXT=MESSAGE
THEN EXEC(CMD('DFCRIT TYPE=U,'MESSAGE) ROUTE(ALL \));

 Appendix A. Status Display Facility Enhancements 121

 EVJEAB11

 EVJEAB11

 Purpose
EVJEAB11 is a command used in certain Status Display Facility panels to
synchronize data in a distributed environment. It can replace the standard SDFDEL
command to delete items by positioning the cursor under the item, with the added
function of deleting them from other systems as well. It is typically defined in a
panel definition as:

 PFK9('EVJEAB11 &SNODE,&ROOT.&COMPAPPL,&RV,&DATA')

 Format

EVJEAB11 sendernode,component,ref_value,data

 Parameters
The input parameters for EVJEAB11 are those for AOC/MVS Status Display Facility
programming of PF keys for use with the detail screen. For more information,
consult “Customizing the Status Display Facility” section of the System Automation
for OS/390 Customization manual. The following parameters are all required for
EVJEAB11 to function correctly and must be coded as shown above.

&SNODE
Sender node — the NetView from which this message originated

&ROOT
Root — the SDF root ot system name of the originating NetView

&COMPAPPL
Component — the SDF descriptor under which this message is saved

&RV
Reference Value — the SDF reference value of this entry

&DATA
Data — the actual messsage text

 Usage Notes
EVJEAB11 deletes the item under the cursor, and then attempts to delete from the
originating system: If the entry came from this system, and this system is a target
system in a distribute environment, then the entry at the focal point will be deleted.
If the entry came from a target system, then it will be deleted at the target system.

122 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Tree Structure for Panels

 EVJTREE
EVJTREE, a sample file that contains the tree structure for OPC Automation Status
Display Facility panels, is copied from your DSIPARM data set. It is shipped with
OPC Automation.

/\\\/
/\ COPYRIGHT= 5685-151 \/
/\ CONTAINS RESTRICTED MATERIALS OF IBM \/
/\ (C) COPYRIGHT IBM CORP. 199ð, 1995 \/
/\ LICENSED MATERIALS - PROPERTY OF IBM \/
/\ REFER TO COPYRIGHT INSTRUCTIONS \/
/\ FORM NUMBER G12ð-2ð83. \/
/\ \/
/\\\/
/\ APAR# \/
/\ --- \/
/\ $ð1=OWð797ð ð9/3ð/94 JS EVJTREE MEMBER DOES NOT CONTAIN AN ENTRY \/
/\ TO ALLOW EVJDððð1 TO BE CALLED AS DOWN \/
/\ PANEL FROM AOC SYSTEM PANEL IN SDF \/
/\ \/
/\ \/
/\\\/
/\ SAMPLE EHKTREE ADDITIONS FOR OPC FEATURE \/
/\ MERGE THIS WITH YOUR EXISTING EHKTREE ENTRY \/
 2 OPC
 3 OPCERR
 3 BATCH
 3 TSOUSERS
 3 MESSAGES
 3 IO
 4 TAPES
 4 ONLINE

 Appendix A. Status Display Facility Enhancements 123

124 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Appendix B. OPC Automation Worksheets

This appendix contains worksheets that help you define:

 � Workstations
 � Operations
 � OPC environment

Step 1: Define the Workstations
Use this worksheet to define the workstations. A workstation name is needed to
correspond with each automation NetView domain ID in use. You must name the
workstations NVnn, where nn is two digits. The suggested standard is the last two
digits of the domain ID. These entries are used to build the control file OPCA
DOMAINID entry.

Domain ID ______________ Workstation Name ___________

Domain ID ______________ Workstation Name ___________

Domain ID ______________ Workstation Name ___________

Domain ID ______________ Workstation Name ___________

Domain ID ______________ Workstation Name ___________

Domain ID ______________ Workstation Name ___________

Domain ID ______________ Workstation Name ___________

Domain ID ______________ Workstation Name ___________

 Copyright IBM Corp. 1990, 1999 125

Step 2: Define the Operations
Use these worksheets to define the operations. The operations define what OPC
Automation does with each subsystem. Example operations of STOP and START
are included in EVJCFG01.

Subsystem ______________ Operation name ___________

Command to be used: __

Expected Status of subsystem: _______________________________________

Maximum Time to allow for operation to complete: _______________________

Unique Timer Name to be used for this operation: _______________________

Subsystem ______________ Operation name ___________

Command to be used: __

Expected Status of subsystem: _______________________________________

Maximum Time to allow for operation to complete: _______________________

Unique Timer Name to be used for this operation: _______________________

Subsystem ______________ Operation name ___________

Command to be used: __

Expected Status of subsystem: _______________________________________

Maximum Time to allow for operation to complete: _______________________

Unique Timer Name to be used for this operation: _______________________

Subsystem ______________ Operation name ___________

Command to be used: __

Expected Status of subsystem: _______________________________________

Maximum Time to allow for operation to complete: _______________________

Unique Timer Name to be used for this operation: _______________________

126 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Step 3: Define the OPC Environment
Use this worksheet to define the OPC environment. The operations define what
OPC Automation does with each subsystem. Example operations of STOP and
START are included in EVJCFG01.

OPC Subsystem name: ________

OPC started task for PCS/Controller: ________

OPC started task for EMS/Tracker: ________

NetView automation domain ID for system running PCS/Controller: ________

 Appendix B. OPC Automation Worksheets 127

128 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Appendix C. Sample OPC Automation Control File

EVJCFG01, a sample control file, is shipped with OPC Automation. “EVJCFG01”
shows this file.

The OPC Automation control file has the following entries:

� AUTOOPS entries that support OPC Automation
� OPC workstation definitions
� OPC operation definitions
� Status Display Facility entries for OPC Automation

 EVJCFG01
| \\\
| \ \
| \ COPYRIGHT= 5685-151 \
| \ CONTAINS RESTRICTED MATERIALS OF IBM \
| \ (C) COPYRIGHT IBM CORP. 199ð, 1998 @ð2C\
| \ LICENSED MATERIALS - PROPERTY OF IBM \
| \ REFER TO COPYRIGHT INSTRUCTIONS \
| \ FORM NUMBER G12ð-2ð83. \
| \ \
| \ \
| \ PROGRAM NUMBER: 5685-151 \
| \ DESCRIPTION: SAMPLE DSIPARM - CONTROL FILE FOR AOC OPC \
| \ \
| \ APAR# \
| \ --- \
| \ $ð2=OW356ð7,V1R4,ð8DEC98,APC(IG): OPC V2 Exploitation. \
| \ LIð6 OPC Controller on the move \
| \ $ð1=OW1169ð ð3/ð3/95 JS AOC OPC INITIALIZATION PROBLEMS AFTER AOC \
| \ OWð3453 AND OWð9496 \
| \ \
| \ Initial version for AOC OPC \
| \\\
| \ It is recommended that the AUTOOPS entries below be added via \
| \ the AOC dialogs. If desired, the ones below may be uncommented \
| \ instead. All messages should be assigned to only one autotask @ð1C\
| \\\
| \AUTOOPS OPCAOPR1,
| \ ID=AUTOPCP,
| \ MSG=(CSY\,DRK\,CSZ\,EQQ\,EVJ\)
| \AUTOOPS OPCAOPR2,
| \ ID=AUTOPCE
| \\
| \ \
| \ OPCA PCS, Required on all NetViews with an \
| \ OPC Controller or OPC Stand-by \
| \ Controller. \
| \ \
| \ DOMAIN = domainid | SYSPLEX, Specify the NetView domain where \
| \ the OPC Controller runs or SYSPLEX \
| \ to indicate that the OPC \
| \ Controller may be on any of the \
| \ systems defined in the LOCAL \
| \ sysplex. \
| \ \
| \ SUBSYS = xxxx Specify the four character MVS \
| \ task name for the OPC Controller. \

 Copyright IBM Corp. 1990, 1999 129

| \ This name must also be used for \
| \ the AOC Subsystem name of the \
| \ application \
| \ \
| \\
| OPCA PCS,
| DOMAIN=AOFð1,
| SUBSYS=OPCC
| \
| \\
| \ \
| \ ENVIRON OPCAO, \
| \ REQSTAT = NO | YES, Check subsys status \
| \ --- on OPC START/STOP/RECYCLE \
| \ MSGKEEP = hh:mm | PERM, Length of time to keep \
| \ ---- Critical Messages in SDF. \
| \ OPRESET = hh:mm | NEVER Length of time NetView \
| \ ----- can be down and UNTV reset\
| \ \
| \\
| \
| ENVIRON OPCAO,
| REQSTAT=YES,
| MSGKEEP=PERM,
| OPRESET=ðð:3ð
| \
| \\
| \ DOMAINID TABLE - RELATE OPC WORKSTATION TO NETVIEW DOMAIN. \
| \\
| OPCA DOMAINID,
| CODE=(NVð5,,,AOFð5),
| CODE=(NVðð,,,AOF1ð),
| CODE=(NV11,,,AOFð1),
| CODE=(NVSP,,,SYSPLEX)
| \\
| \ \
| \ ENTRIES REQUIRED FOR INTERFACE OPERATIONS: \
| \ \
| \ OPCA \
| \ OPCACMD \
| \ OPCAPARM \
| \ \
| \ NOTE: With AOC V1R3 all OPCA, OPCAPARM, and OPCACMD entries for \
| \ the same subsystem (for example RMF below) MUST be grouped \
| \ into a single entry. If multiple entries are used, only \
| \ the last one will be found and the other operations will fail.\
| \ \
| \\
| \ \
| \ ENTRY OPCA,CODE=(REQUEST,PARM1,PARM2,'EXPSTATUS,TIMRINT,TIMERID') \
| \ \
| \\
| \ \
| \ \
| RMF OPCA,
| CODE=(START,,,'UP,3,RMFUTMER'),
| CODE=(STOP,,,'CTLDOWN,2,RMFDTMER'),
| CODE=(RECYCLE,,,'UP,5,RMFRTMER')
| \
| \\
| \ENTRY OPCAPARM,CODE=(REQUEST,PARM1,PARM2,'PARM1VALUE,PARM2VALUE,TIMER')
| \
| \These entries are now optional. There is no need to code an OPCAPARM
| \statement unless you need add an additional parameter beyond the

130 AOC/MVS V1R4 OPC Automation Programmer’s Reference

| \operation type. \
| \\
| \
| \RMF OPCAPARM,
| \ CODE=(START,,,',,'),
| \ CODE=(STOP,,,',,')
| \
| \\
| \ENTRY OPCACMD,CODE=(REQUEST,PARM1,COMMAND')
| \
| \\
| \ \
| RMF OPCACMD,
| CMD=(START,,'SETSTATE RMF,RESTART,START=YES'),
| CMD=(RECYCLE,,'EVJESHUT RMF ONLY'),
| CMD=(STOP,,'SHUTSYS RMF,VERIFY=NO,RESTART=CTL,SCOPE=ONLY')
| \ \
| JOBX OPCACMD,
| CMD=(UXCINITS,,'MVS $TI2ð-3ð,C=P')
| \ \
| \\
| \ KEY INTERFACE CLISTS \
| \ It is recommended that the RESIDENT entries below be added via \
| \ the AOC dialogs. If desired, the ones below may be uncommented \
| \ instead. @ð1C\
| \\
| \ RESIDENT EVJESPIN
| \ RESIDENT EVJESPVY
| \ RESIDENT EVJESPRQ
| \ RESIDENT EVJESPSC
| \ RESIDENT EVJESPTE
| \ RESIDENT EVJESPCP
| \ RESIDENT EVJESHUT
| \\
| \ UTILITY CLISTS \
| \\
| \ RESIDENT EVJTRACE
| \ RESIDENT EVJEMSG
| \ RESIDENT EVJESUSF
| \\
| \ OPERATOR CLISTS \
| \\
| \ RESIDENT EVJEACðð
| \ RESIDENT EVJEACð3
| \ RESIDENT EVJECGAA
| \ RESIDENT EVJECGA1
| \\
| \ MESSAGE PROCESSING CLISTS \
| \\
| \ RESIDENT EVJEABðð
| \ RESIDENT EVJEABð1
| \ RESIDENT EVJEABð2
| \ RESIDENT EVJEABð3
| \ RESIDENT EVJEABð4
| \ RESIDENT EVJEABð5
| \ RESIDENT EVJEABð6
| \ RESIDENT EVJEABð7
| \ RESIDENT EVJEAB1ð
| \
| \\
| \ DISPLAY FACILITY ENTRIES \
| \ After OW1ð863 / UW15395 is applied, these entries may be specified \
| \ in the AOC dialogs and the ones below removed. @ð1A\
| \\

 Appendix C. Sample OPC Automation Control File 131

| \
| \ TAPES
| \
| SDF RMOUNT,
| PR=43ð,
| CLEAR=Y,
| CO=P,
| HL=R
| SDF BMOUNT,
| PR=429,
| CLEAR=Y,
| CO=R,
| HL=R
| SDF SMOUNT,
| CLEAR=(Y,RV),
| REQ=NOADD
| \
| \ TAPE UNITS
| \
| SDF ONLINE,
| PR=55ð,
| CLEAR=Y
| SDF OFFLINE,
| CLEAR=(Y,RV),
| REQ=NOADD
| \
| \ TSOUSERS
| \
| SDF TSOLOGON,
| PR=55ð,
| CLEAR=Y
| SDF TSOLOGFF,
| CLEAR=(Y,RV),
| REQ=NOADD
| \
| \ BATCH
| \
| SDF BTCHBGN,
| PR=55ð,
| CLEAR=Y
| SDF BTCHEND,
| CLEAR=(Y,RV),
| REQ=NOADD
| \
| \ OUTSTANDING OPC/A ERRORS
| \
| SDF OPCERR,
| PR=33ð,
| CLEAR=Y,
| CO=Y,
| HL=N
| SDF OPCERRR,
| CLEAR=Y,
| REQ=NOADD,
| PR=33ð
| \
| \ FOR CTLDOWN STATUS -- PROVIDED BY AOC BASE \ @ð1D\
| \
| \SDF CTLDOWN,
| \ PR=25ð,
| \ HL=R,
| \ CLEAR=(Y,RV)
| \\
| \ \

132 AOC/MVS V1R4 OPC Automation Programmer’s Reference

| \ SAMPLE CONTROL FILE ENTRIES FOR CRITICAL MESSAGES \
| \ \
| \\
| SYSTEM CRITMSGS,
| CODE=(\,,,SAVE)
| SDF CRITMSG,
| PR=5ðð,
| CO=G
| SDF CRITMSGA,
| PR=5ðð,
| CO=R
| SDF CRITMSGE,
| PR=5ð1,
| CO=Y
| SDF CRITMSGW,
| PR=5ð2,
| CO=T
| SDF CRITMSGI,
| PR=5ð3,
| CO=G
| \\
| \ \
| \ OPC SUBSYSTEM INFORMATION \
| \ \
| \ It is recommended that all subsystem entries below be added via \
| \ the AOC dialogs. If desired, the ones below may be uncommented \
| \ instead, but not all operands are coded. \
| \\
| \ OPC/ESA CONTROLLER and STANDBY CONTROLLER \
| \ The OPC Controller subsystem name and job name must be the same. \
| \ All Stand-by controllers on a SYSPLEX must have the same subsystem \
| \ name and job name as the primary OPC controller. \
| \\
| \SUBSYSTEM OPCC,
| \ JOB=OPCC,
| \ DESC='PRODUCTION CONTROL SYSTEM ',
| \ RESTARTOPT=ALWAYS,
| \ PARENT=OPCT,
| \ SHUTDLY=ðð:ð1
| \\\ SUBSYSTEM THRESHOLDS \\\
| \THRESHOLDS OPCC,
| \ CRIT=(ð3,ðð:1ð),
| \ FREQ=(ð2,ðð:1ð),
| \ INFR=(ð1,ðð:1ð)
| \\\ SUBSYSTEM AUTOMATION FLAGS \\\
| \AUTOMATION FLAG ENTRIES GO HERE
| \\\ SUBSYSTEM SHUTDOWN PROCESSING \\\
| \OPCC SHUTINIT,
| \ CMD=(,,'MVS $DMRð,''OPC CONTROLLER SHUTTING DOWN''')
| \OPCC SHUTNORM,
| \ CMD=(PASS1,,'MVS P OPCC')
| \\\ @ð2A
| \ On a restart of SA OS/39ð where an OPC controller might run we @ð2C
| \ should: @ð2A
| \ 1) Ensure that it's not in STANDBY mode (F OPCC,STATUS) @ð2A
| \ 2) Get all UNTV errs and retry them if not out of time (EVJEACð1) @ð2C
| \\\ @ð2A
| \ @ð2A
| \OPCC ACORESTART,
| \ CMD=(,,'MVS F &SUBSJOB,STATUS'),
| \ CMD=(OPCAOPR2,,'EVJEACð1')
| \
| \\\ @ð2A
| \ When an OPC Controller becomes active we should: @ð2C

 Appendix C. Sample OPC Automation Control File 133

| \ 1) Get all UNTV errs and retry them if not out of time (EVJEACð1) @ð2A
| \ 2) Retry for operations in error S998 or S999 (EVJEACð2) @ð2A
| \\\ @ð2A
| \
| \OPCC UP,
| \ CMD='EVJEACð1',
| \ CMD='EVJEACð2'
| \\
| \\\ OPC/ESA TRACKER \\\
| \\\ SUBSYSTEM NAME \\\
| \SUBSYSTEM OPCT,
| \ JOB=OPCT,
| \ DESC='EVENT MANAGER SYSTEM ',
| \ RESTARTOPT=ALWAYS,
| \ PARENT=JES,
| \ SHUTDLY=ðð:ð1
| \\\ SUBSYSTEM THRESHOLDS \\\
| \THRESHOLDS OPCT,
| \ CRIT=(ð3,ðð:1ð),
| \ FREQ=(ð2,ðð:1ð),
| \ INFR=(ð1,ðð:1ð)
| \\
| \ SUBSYSTEM SHUTDOWN PROCESSING \
| \\
| \OPCT SHUTINIT,
| \ CMD=(,,'MVS $DMRð,''OPC TRACKER SHUTTING DOWN''')
| \OPCT SHUTNORM,
| \ CMD=(PASS1,,'MVS P OPCT')
| \\
| \ \
| \ END OF EVJCFGð1 MEMBER \
| \ \
| \\

134 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Appendix D. Sample OPC Automation Message Table

This appendix shows the following tables:

OPCMSG00 Initial table to be merged with the SA OS/390 table AOFMSG00.

OPCMSG01 Production table to be merged with the SA OS/390 table
AOFMSG01. This table includes:

� EVJMCON1 — Entries in conflict with other entries from
SA OS/390.

� EVJMOPCE — OPC/ESA messages used by OPC Automation.

� EVJMOPCA — OPC/A messages used by OPC Automation.

 OPCMSG00
\\\ ððððð1ð2
\ \ ððððð2ð2
\ COPYRIGHT= 5685-151 \ ððððð3ð2
\ CONTAINS RESTRICTED MATERIALS OF IBM \ ððððð4ð2
\ (C) COPYRIGHT IBM CORP. 1995 \ ððððð5ð2
\ LICENSED MATERIALS - PROPERTY OF IBM \ ððððð6ð2
\ REFER TO COPYRIGHT INSTRUCTIONS \ ððððð7ð2
\ FORM NUMBER G12ð-2ð83. \ ððððð8ð2
\ \ ððððð9ð2
\ DESCRIPTION: SAMPLE DSIPARM - MSG AUTOMATION TABLE FOR AOC OPC \ ðððð1ðð2
\ EVJTBLðð CHANGE ACTIVITY: \ ðððð11ð2
\ APAR# \ ðððð12ð2
\ --- \ ðððð13ð2
\ ðððð14ð2
\\\ ðððð15ð2
\ FOCAL POINT HAS SWITCHED, FORWARD THE DATA \ ðððð16ð2
\\\ ðððð17ð2
 IF MSGID='AOF66ðI' & TEXT=MESSAGE ðððð18ð2

THEN EXEC(CMD('EVJEAB14 'MESSAGE) ROUTE(ONE \)) ðððð19ð2
 CONTINUE(Y); ðððð2ðð2
\ ðððð3ðð2
\\\ ðððð4ðð2
\ SYSTEM HAS RECONNECTED, SEE IF THERE ARE PENDING OPERATIONS. \ ðððð5ðð2
\\\ ðððð6ðð2
\ ðððð7ðð2
 IF MSGID='AOF661I' & TOKEN(7) = SVDOM & DOMAINID = %AOFDOM% ðððð8ðð2

THEN EXEC(CMD('EVJEACð2 'SVDOM) ROUTE(ALL \)) ðððð9ðð2
 CONTINUE(Y); ðððð91ð2
\ ðððð92ð2

 Copyright IBM Corp. 1990, 1999 135

 OPCMSG01
\\\ ððð1ððð4
\ \ ððð2ððð4
\ COPYRIGHT= 5685-151 \ ððð3ððð4
\ CONTAINS RESTRICTED MATERIALS OF IBM \ ððð4ððð4
\ (C) COPYRIGHT IBM CORP. 1995 \ ððð5ððð4
\ LICENSED MATERIALS - PROPERTY OF IBM \ ððð6ððð4
\ REFER TO COPYRIGHT INSTRUCTIONS \ ððð7ððð4
\ FORM NUMBER G12ð-2ð83. \ ððð8ððð4
\ \ ððð9ððð4
\ DESCRIPTION: SAMPLE DSIPARM - MSG AUTOMATION TABLE FOR AOC OPC \ ðð1ðððð4
\ EVJTBLð1 CHANGE ACTIVITY: \ ðð11ððð4
\ APAR# \ ðð12ððð4
\ --- \ ðð13ððð4
\ ðð14ððð4
\\\ ðð15ððð4
\ INCLUDE FOR CONFLICT MESSAGES \ ðð16ððð4
\\\ ðð17ððð4
\ ðð18ððð4
 %INCLUDE EVJMCON1 ðð19ððð4
\ ðð2ðððð4
\\\ ðð21ððð4
\ INCLUDE FOR OPC/ESA MESSAGES \ ðð22ððð4
\\\ ðð23ððð4
\ ðð24ððð4
 %INCLUDE EVJMOPCE ðð25ððð4
\ ðð26ððð4
\ ðð27ððð4
\\\ ðð28ððð4
\ OPC/A USERS MAY COMMENT OUT THE ABOVE INCLUDE FOR OPC/ESA MESSAGES \ ðð29ððð4
\ AND REPLACE IT WITH THE ONE BELOW FOR OPC/A MESSAGES \ ðð3ðððð4
\\\ ðð31ððð4
\ ðð32ððð4
\ %INCLUDE EVJMOPCA ðð33ððð4
\ ðð34ððð4

136 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 EVJMCON1
\\\ ððððð1ðð
\\\ ððððð1ðð
\ \ ððððð2ðð
\ COPYRIGHT= 5685-151 \ ððððð3ðð
\ CONTAINS RESTRICTED MATERIALS OF IBM \ ððððð4ðð
\ (C) COPYRIGHT IBM CORP. 1995 \ ððððð5ðð
\ LICENSED MATERIALS - PROPERTY OF IBM \ ððððð6ðð
\ REFER TO COPYRIGHT INSTRUCTIONS \ ððððð7ðð
\ FORM NUMBER G12ð-2ð83. \ ððððð8ðð
\ \ ððððð9ðð
\ DESCRIPTION: SAMPLE DSIPARM - MSG AUTOMATION TABLE FOR AOC OPC \ ðððð1ððð
\ EVJMCON1 CHANGE ACTIVITY: \ ðððð11ðð
\ APAR# \ ðððð12ðð
\ --- \ ðððð13ðð
\ $ð1=OW1169ð ð3/ð6/95 JS AOC OPC INITIALIZATION PROBLEMS AFTER AOC \
\ OWð3453 AND OWð9496 \
\ \
\\\ ðððð75ðð
\\\ ðððð72ðð
\ \ ðððð73ðð
\ NOTICE TO OPC AUTOMATION USERS: \ ðððð74ðð
\ \ ðððð75ðð
\ YOU SHOULD EXAMINE YOUR EXISTING MESSAGE TABLE AND MAKE CHANGES \ ðððð76ðð
\ TO IT BASED UPON THIS SAMPLE, ADDING THESE SPECIFIC ENTRIES \ ðððð77ðð
\ WHERE THEY BEST FIT. IT IS NOT ENOUGH TO MERELY ADD THIS TABLE \ ðððð78ðð
\ VIA THE %INCLUDE FUNCTION. \ ðððð79ðð
\ \ ðððð8ððð
\\\ ðððð84ðð
\ ðððð85ðð
\\\ ðððð91ðð
\ FOCAL POINT HAS SWITCHED, FORWARD THE DATA @ð1C \ ðððð92ðð
\\\ ðððð93ðð
 IF MSGID='AOF66ðI' & TEXT=MESSAGE & HDRMTYPE = 'U' ðððð94ðð

THEN EXEC(CMD('EVJEAB14 'MESSAGE) ROUTE(ONE \)) ðððð95ðð
 CONTINUE(Y);
\ ðððð96ðð
\\\ ðððð99ðð
\ SYSTEM HAS RECONNECTED, SEE IF THERE ARE PENDING OPERATIONS. @ð1C \ ððð1ðððð
\\\ ððð1ð1ðð
\ ððð1ð4ðð
 IF MSGID='AOF661I' & TOKEN(7) = SVDOM & DOMAINID = %AOFDOM% ððð1ð5ðð

& HDRMTYPE = 'U' ððð1ð5ðð
THEN EXEC(CMD('EVJEACð2 'SVDOM) ROUTE(ALL \)) ððð1ð6ðð

 CONTINUE(Y);
\ ððð1ð7ðð
\\\ ððð1ð8ðð
\ AOF54ðI AUTOMATION INIT COMPLETED - NOW ADD OPC FEATURES TO SDF \ ððð1ð9ðð
\ CHANGE FROM AOF532I TO AOF54ðI @ð1C \ ððð1ð9ðð
\\\ ððð11ððð
 IF MSGID='AOF54ðI' & DOMAINID = %AOFDOM% & HDRMTYPE = 'U' ððð111ðð

THEN EXEC(CMD('DFTAPO ') ROUTE(ALL \)) ððð112ðð
EXEC(CMD('EVJEABð8') ROUTE(ALL \)) ððð113ðð
EXEC(CMD('DFTSOR ') ROUTE(ALL \)) ððð114ðð

 Appendix D. Sample OPC Automation Message Table 137

 CONTINUE(Y);
\ ððð115ðð
\\\ ððð116ðð
\ AOFð43I DDF TASK ACTIVE - RESYNCH - ADD TO EXISITING ENTRY @ð1C \ ððð117ðð
\\\ ððð12ððð
\ ððð144ðð
 IF MSGID='AOFð43I' & TOKEN(2)='AOFTDDF' & HDRMTYPE = 'U' ððð145ðð

THEN EXEC(CMD('DFTAPO ') ROUTE(ALL \)) ððð147ðð
EXEC(CMD('DFTSOR ') ROUTE(ALL \)) ððð148ðð
EXEC(CMD('EVJEABð8') ROUTE(ALL \)) ððð149ðð
NETLOG(Y 2 +ACOOPER); ððð15ððð

\ ððð151ðð
\\\ ððð152ðð
\ \ ððð153ðð
\ SAMPLE MESSAGE TABLE ENTRIES FOR TAPE MOUNT SDF DISPLAY \ ððð154ðð
\ \ ððð155ðð
\ \ ððð156ðð
\ REMOVE THESE ENTRIES IF YOU DO NOT WISH TO HAVE TAPE MOUNTS SHOWN \ ððð157ðð
\ IN YOUR SDF DISPLAY. \ ððð158ðð
\ \ ððð159ðð
\ NOTE: IF YOU WISH TO USE THE TAPES ATTENDED FEATURE OF \ ððð16ððð
\ AOC/MVS, THEN YOU MUST HAVE EACH OF THE FOLLOWING MESSAGES CALL \ ððð161ðð
\ AOFRSAðA BEFORE DFTAPM AS THE FOLLOWING EXAMPLE SHOWS: \ ððð162ðð
\ \ ððð164ðð
\IF MSGID='IEF233A' & TEXT=MESSAGE \ ððð171ðð
\ THEN EXEC(CMD('AOFRSAðA 'MESSAGE) ROUTE(ALL \)) \ ððð172ðð
\ EXEC(CMD('DFTAPM 'MESSAGE) ROUTE(ALL \)); \ ððð173ðð
\ \ ððð174ðð
\ PLEASE TAILOR THE FOLLOWING ENTRIES APPROPRIATELY \ ððð175ðð
\ \ ððð176ðð
\\\ ððð177ðð
 IF MSGID='IEF233A' & TEXT=MESSAGE ððð178ðð

THEN EXEC(CMD('DFTAPM 'MESSAGE) ROUTE(ALL \)); ððð179ðð
\ ððð18ððð
 IF MSGID='IEF233D' & TEXT=MESSAGE ððð181ðð

THEN EXEC(CMD('DFTAPM 'MESSAGE) ROUTE(ALL \)); ððð182ðð
\ ððð183ðð
 IF MSGID='IAT521ð' & TEXT=MESSAGE ððð184ðð

THEN EXEC(CMD('DFTAPM 'MESSAGE) ROUTE(ALL \)); ððð185ðð
\ ððð186ðð
 IF MSGID='TMSðð1' & TEXT=MESSAGE ððð187ðð

THEN EXEC(CMD('DFTAPM 'MESSAGE) ROUTE(ALL \)); ððð188ðð
\ ððð189ðð
 IF MSGID='TMSðð2' & TEXT=MESSAGE ððð19ððð

THEN EXEC(CMD('DFTAPM 'MESSAGE) ROUTE(ALL \)); ððð191ðð
\ ððð193ðð
 IF (MSGID='IEC7ð5I' | MSGID='IEC5ð1A' | MSGID = 'IEC1ð1A' ððð194ðð

| MSGID='IEC5ð2E' | MSGID='IEF234E') & TEXT=MESSAGE ððð195ðð
THEN EXEC(CMD('DFTAPM 'MESSAGE) ROUTE(ALL \)); ððð196ðð

\\\ ððð152ðð
\ \ ððð153ðð
\ SAMPLE MESSAGE TABLE ENTRIES FOR TAPE MOUNT SDF DISPLAY \ ððð154ðð
\ \ ððð156ðð
\ REMOVE THESE ENTRIES IF YOU DO NOT WISH TO HAVE TAPE MOUNTS SHOWN \ ððð157ðð
\ IN YOUR SDF DISPLAY. \ ððð158ðð
\ \ ððð159ðð
\ NOTE: IF YOU WISH TO USE THE TAPES ATTENDED FEATURE OF \ ððð16ððð
\ AOC/MVS, THEN YOU MUST HAVE EACH OF THE FOLLOWING MESSAGES CALL \ ððð161ðð

138 AOC/MVS V1R4 OPC Automation Programmer’s Reference

\ AOFRSORP BEFORE DFTAPM AS THE FOLLOWING EXAMPLE SHOWS: \ ððð162ðð
\ \ ððð164ðð
\IF MSGID='IEC7ð1D' & TEXT=MESSAGE \ ððð171ðð
\ THEN EXEC(CMD('AOFRSORP 'MESSAGE) ROUTE(ALL \)) \ ððð2ð6ðð
\ EXEC(CMD('DFTAPM 'MESSAGE) ROUTE(ALL \)); \ ððð173ðð
\ \ ððð174ðð
\ PLEASE TAILOR THE FOLLOWING ENTRIES APPROPRIATELY \ ððð175ðð
\ \ ððð176ðð
\\\ ððð177ðð
\ ððð197ðð
\ IEC7ð1D TAPE VOLUME TO BE LABELED \ ððð2ð3ðð
\ ððð2ð4ðð
 IF MSGID='IEC7ð1D' & TEXT=MESSAGE ððð2ð5ðð

THEN EXEC(CMD('AOFRSORP 'MESSAGE) ROUTE(ALL \)) ððð2ð6ðð
EXEC(CMD('DFTAPM 'MESSAGE) ROUTE(ALL \)); ððð2ð7ðð

\ ððð2ð8ðð
\ DEVICE VARIED OFFLINE/ONLINE, SO REFRESH TAPE ONLINE ððð198ðð
\ THIS ENTRY SHOULD NOT CALL ANY BASE PRODUCT ROUTINES ððð198ðð
\ ððð199ðð
 IF (MSGID='IEF281I' | MSGID='IEE3ð2I') & TEXT=MESSAGE ððð2ðððð

THEN EXEC(CMD('DFTAPO 'MESSAGE) ROUTE(ALL \)); ððð2ð1ðð
\ ððð2ð2ðð
\\\ ððð2ð9ðð
\ \ ððð21ððð
\ SAMPLE MESSAGE TABLE ENTRIES FOR BATCH JOB SDF DISPLAY \ ððð211ðð
\ \ ððð212ðð
\ \ ððð213ðð
\ REMOVE THESE ENTRIES IF YOU DO NOT WISH TO HAVE BATCH JOBS SHOWN \ ððð214ðð
\ IN YOUR SDF DISPLAY. JES3 USERS SHOULD REMOVE THE IEF ENTRIES \ ððð215ðð
\ AND UNCOMMENT THE HASP ENTRIES. ALL USERS SHOULD REVIEW THE \ ððð216ðð
\ SAMPLE FILTERING ENTRIES GIVEN LATER IN THE TABLE. \ ððð217ðð
\\\ ððð218ðð
\ ððð219ðð
\ BATCH JOB STARTED ððð22ððð
\ ððð221ðð
\\\ ððð248ðð
\ SAMPLE ENTRIES SHOWING JOB NAME FILTERING IN MESSAGE TABLE \ ððð249ðð
\ TOKEN(2) OF IEF4ð3I/IEF4ð4I CONTAINS JOBNAME, SO YOU MAY SELECT \ ððð25ððð
\ ONLY SPECIFIC JOBS IF DESIRED BY CHANGING JOBNAME BELOW \ ððð251ðð
\\\ ððð252ðð
\ ððð253ðð
\IF MSGID='IEF4ð3I' & TOKEN(2)='jobname' & TEXT=MESSAGE ððð254ðð
\ & DOMAINID = %AOFDOM% ððð255ðð
\ THEN EXEC(CMD('DFBTCH 'MESSAGE) ROUTE(ALL \)) ððð256ðð
\ CONTINUE(Y); ððð257ðð
\ ððð257ðð
\IF MSGID='IEF4ð4I' & TOKEN(2)='jobname' & TEXT=MESSAGE ððð258ðð
\ & DOMAINID = %AOFDOM% ððð259ðð
\ THEN EXEC(CMD('DFBTCH 'MESSAGE) ROUTE(ALL \)) ððð26ððð
\ CONTINUE(Y); ððð257ðð
\\\ ððð261ðð
\ IF MESSAGES ARE ALREADY BEING AUTOMATED, YOU MAY ADD JOBS TO THE \ ððð262ðð
\ SDF DISPLAY FACILITY BY CALLING DFBTCH AFTER OTHER PROCESSING \ ððð263ðð
\ AS SHOWN BELOW OR USE THE GENERIC ENTIRES \ ððð264ðð
\\\ ððð265ðð
\ ððð266ðð
\IF MSGID='IEF4ð3I' & TOKEN(2)='jobname' & TOKEN(2)=SVJOB & TEXT=MESSAGEððð267ðð
\ THEN EXEC(CMD('ACTIVMSG JOBNAME=' SVJOB 'UP=YES') ROUTE(ALL \)) ððð94ððð

 Appendix D. Sample OPC Automation Message Table 139

\ EXEC(CMD('DFBTCH 'MESSAGE) ROUTE(ALL \)); ððð269ðð
\ ððð27ððð
\IF MSGID='IEF4ð4I' & TOKEN(2)='jobname' & TOKEN(2)=SVJOB & TEXT=MESSAGEððð271ðð
\ THEN EXEC(CMD('TERMMSG JOBNAME=' SVJOB 'FINAL=YES') ROUTE(ALL \)) ððð94ððð
\ EXEC(CMD('DFBTCH 'MESSAGE) ROUTE(ALL \)); ððð273ðð
\ ððð274ðð
\\\ ððð275ðð
\
\ GENERIC ENTRY FOR MESSAGE ID IEF4ð3I
\
 IF MSGID='IEF4ð3I' & TOKEN(2)=SVJOB & DOMAINID=%AOFDOM% & TEXT=MESSAGE ððð91ððð

THEN EXEC(CMD('DFBTCH 'MESSAGE) ROUTE(ONE %AOFOPRECOPER%)) ððð92ððð
 CONTINUE(Y); ððð96ððð
\ ððð226ðð
\ IF MSGID='$HASP373' & TEXT= .'STARTED - INIT'. & TEXT=MESSAGE ððð227ðð
\ THEN EXEC(CMD('DFBTCH 'MESSAGE) ROUTE(ALL \)); ððð228ðð
\ CONTINUE(Y); ððð96ððð
\ ððð229ðð
\ BATCH JOB ENDED ððð23ððð
\ SEE ALSO THE ENTRY FOR IEF45ðI BELOW ððð23ð1ð
\ ððð231ðð
\
\ GENERIC ENTRY FOR MESSAGE ID IEF453I
\
 IF MSGID='IEF453I' & TOKEN(2)=SVJOB & DOMAINID=%AOFDOM% & TEXT=MESSAGE ðð186ððð

THEN EXEC(CMD('DFBTCH 'MESSAGE) ROUTE(ONE %AOFOPRECOPER%)) ðð187ððð
 CONTINUE(Y); ðð192ððð
\ ððð235ðð
 IF MSGID='IEF251I' & TEXT=MESSAGE ððð236ðð

& DOMAINID = %AOFDOM% ððð237ðð
THEN EXEC(CMD('DFBTCH 'MESSAGE) ROUTE(ALL \)) ððð238ðð

 CONTINUE(Y); ððð239ðð
\ ððð239ðð
\ GENERIC ENTRY FOR MESSAGE ID IEF4ð4I
\
 IF MSGID='IEF4ð4I' & TOKEN(2)=SVJOB & DOMAINID=%AOFDOM% & TEXT=MESSAGE ðð1ð3ððð

THEN EXEC(CMD('DFBTCH 'MESSAGE) ROUTE(ONE %AOFOPRECOPER%)) ðð1ð4ððð
 CONTINUE(Y); ðð1ð8ððð
\ ððð243ðð
\ IF MSGID='$HASP395' & TEXT=MESSAGE ððð244ðð
\ THEN EXEC(CMD('DFBTCH 'MESSAGE) ROUTE(ALL \)) ððð245ðð
\ CONTINUE(Y); ððð246ðð
\ ððð247ðð
\ \ ððð275ð1
\\\ ððð2751ð
\ \ ððð2752ð
\ SAMPLE MESSAGE TABLE ENTRIES FOR TSO USERS SDF DISPLAY \ ððð2753ð
\ \ ððð2754ð
\ \ ððð2755ð
\ REMOVE THESE ENTRIES IF YOU DO NOT WISH TO HAVE TSO USERS SHOWN \ ððð2756ð
\ IN YOUR SDF DISPLAY. \ ððð2757ð
\\\ ððð2758ð
\ ððð2759ð
\ TSO USER HAS LOGGED ON OR OFF ððð276ðð
\ ððð277ðð
 IF (MSGID='IEF125I' | MSGID='IEF126I') & TEXT=MESSAGE ððð278ðð

THEN EXEC(CMD('DFTSOU ' MESSAGE) ROUTE(ALL \)); ððð279ðð
\ ððð28ððð

140 AOC/MVS V1R4 OPC Automation Programmer’s Reference

\
\ GENERIC ENTRY FOR MESSAGE ID IEF45ðI
\
\ SOMETHING--USER OR JOB--HAS ABENDED, SO CHECK BATCH AND TSO USERS ððð281ðð
 ðð129ððð
 IF MSGID='IEF45ðI' & TOKEN(2)=SVJOB & DOMAINID=%AOFDOM% & TEXT=MESSAGE ðð13ðððð

& TEXT='IEF45ðI' . 'ABEND=' SCODE UCODE . ðð131ððð
 THEN ðð132ððð

NETLOG(Y) SYSLOG(Y) HOLD(N) BEEP(N) DISPLAY(N) ðð133ððð
EXEC(CMD('AOCFILT ' SVJOB ' TERMMSG JOBNAME=' SVJOB ðð134ððð

',CODE1=' SVJOB ',CODE2=' SCODE ',CODE3=' UCODE) ðð135ððð
ROUTE(ONE %AOFOPRECOPER%)) ðð136ððð

 EXEC(CMD('DFBTCH 'MESSAGE) ððð284ðð
ROUTE(ONE %AOFOPRECOPER%)) ðð136ððð

 EXEC(CMD('DFTSOU 'MESSAGE) ððð285ðð
ROUTE(ONE %AOFOPRECOPER%)); ðð136ððð

 ðð137ððð
\ ððð286ðð
\\\ ððð2861ð
\ \ ððð288ðð
\ SAMPLE MESSAGE TABLE ENTRY FOR CRITICAL MESSAGES \ ððð289ðð
\ \ ððð29ððð
\ YOU MAY ADD YOUR SELECTIONS TO THE CRITICAL MESSAGE DISPLAY BY \ ððð29ðð1
\ INCLUDING ENTRIES FOR THEM LIKE THE ONE BELOW. THE COLOR OF \ ððð29ðð2
\ MESSAGE WILL DEPEND UPON ITS "A", "E","I", OR "O" SUFFIX. \ ððð29ðð3
\ OR YOU MAY OVERRIDE THIS USING THE "TYPE=" PARAMETER AS SHOWN \ ððð29ðð4
\ BELOW: \ ððð29ðð5
\ \ ððð29ðð6
\ IF MSGID='IECð31I' & TEXT=MESSAGE \ ððð29ðð7
\ THEN EXEC(CMD('DFCRIT TYPE=E 'MESSAGE) ROUTE(ALL \)); \ ððð29ðð8
\ \ ððð29ðð9
\\\ ððð29ð1ð
 IF MSGID='IECð31I' & TEXT=MESSAGE ððð292ðð

THEN EXEC(CMD('DFCRIT 'MESSAGE) ROUTE(ALL \)); ððð293ðð
\

 Appendix D. Sample OPC Automation Message Table 141

 EVJMOPCE
| \\\ ððð1ðððð
| \ \ ððð2ðððð
| \ COPYRIGHT= 5685-151 \ ððð3ðððð
| \ CONTAINS RESTRICTED MATERIALS OF IBM \ ððð4ðððð
| \ (C) COPYRIGHT IBM CORP. 1994,1998 @ð1C\ ððð5ðððð
| \ LICENSED MATERIALS - PROPERTY OF IBM \ ððð6ðððð
| \ REFER TO COPYRIGHT INSTRUCTIONS \ ððð7ðððð
| \ FORM NUMBER G12ð-2ð83. \ ððð8ðððð
| \ \ ððð9ðððð
| \ DESCRIPTION: SAMPLE DSIPARM - MSG AUTOMATION TABLE FOR AOC OPC \ ðð1ððððð
| \ EVJMOPCE CHANGE ACTIVITY: \ ðð11ðððð
| \ APAR# \ ðð12ðððð
| \ --- \ ðð13ðððð
| \ $ð1=OW356ð7,V1R4,ð6NOV98,APC(IG): OPC V2 Exploitation. Add EQQZ128I ðð14ðððð
| \ EQQZ128I (standby mode) ðð14ðððð
| \ EQQZ2ð1I (Standby mode) ðð14ðððð
| \\\ ðð15ðððð
| \ ðð16ðððð
| \\\ ðð17ðððð
| \ EVENT WRITER MESSAGE TABLE ENTRIES \ ðð18ðððð
| \\\ ðð19ðððð
| \ ðð2ððððð
| \ EQQWð65I EVENT WRITER STARTED ðð21ðððð
| \ ðð22ðððð
| IF MSGID='EQQWð65I' & TOKEN(3) = 'WRITER' ðð23ðððð
| THEN EXEC(CMD('EHKESGUP ') ROUTE(ALL \)); ðð24ðððð
| \ ðð25ðððð
| \ EQQWð11I THE EVENT WRITER ENDED NORMALLY ðð26ðððð
| \ ðð27ðððð
| IF MSGID='EQQWð11I' & TOKEN(4) = 'WRITER' & JOBNAME = SVJOB ðð28ðððð
| THEN EXEC(CMD('EHKESRST ' SVJOB) ROUTE(ALL \)); ðð29ðððð
| \ ðð3ððððð
| \\\ ðð31ðððð
| \ OPC CONTROLLER MESSAGE TABLE ENTRIES \ ðð32ðððð
| \\\ ðð33ðððð
| \ \ ðð34ðððð
| \ OPC controller is up in controller mode (not standby mode) @ð1C ðð34ðððð
| \ EQQNð13I OPC/ESA JOB TRACKING IS NOW ACTIVE AND CURRENT PLAN @ð1A ðð35ðððð
| \ DD-NAME IS ddname @ð1A ðð35ðððð
| \ @ð1A ðð34ðððð
| IF MSGID='EQQNð13I' ðð36ðððð
| THEN EXEC(CMD('EHKESGUP ') ROUTE(ALL \)); ðð37ðððð
| \ ðð38ðððð
| \ EQQZðð6I NO ACTIVE SUBTASKS. OPC IS ENDING ðð39ðððð
| \ ðð4ððððð
| IF MSGID='EQQZð86I' & JOBNAME = SVJOB ðð41ðððð
| THEN EXEC(CMD('EHKESRST ' SVJOB) ROUTE(ALL \)); ðð42ðððð
| \ ðð43ðððð
| IF MSGID='EQQZðð6I' & JOBNAME = SVJOB ðð44ðððð
| THEN EXEC(CMD('EHKESRST ' SVJOB) ROUTE(ALL \)); ðð45ðððð
| \ ðð46ðððð
| \ OPC APPLICATION IN ERROR ðð47ðððð
| \ ALERT APPLICATION HAS ENDED IN ERROR - ðð48ðððð

142 AOC/MVS V1R4 OPC Automation Programmer’s Reference

| \ REQUIRES ALERTS TYPE(ERROROPER) IN OPC/ESA PARMS ðð49ðððð
| \ ðð5ððððð
| IF MSGID='EQQEð26I' & TEXT=MESSAGE ðð51ðððð
| THEN EXEC(CMD('EVJEACð5 'MESSAGE) ROUTE(ONE \)); ðð52ðððð
| \ ðð53ðððð
| \ ALERT A JOB HAS ENDED IN ERROR ðð54ðððð
| \ REQUIRES ALERTS TYPE(ERROROPER) IN OPC/ESA PARMS ðð55ðððð
| \ ðð56ðððð
| IF MSGID='EQQEð36I' & TEXT=MESSAGE ðð57ðððð
| THEN EXEC(CMD('EVJEACð3 'MESSAGE) ROUTE(ONE \)); ðð58ðððð
| \ ðð59ðððð
| \ OPC/ESA JOB CHANGED FROM ERROR STATUS ðð6ððððð
| \ EQQUXðð7/UXðð7ðð2 GENERATED MESSAGE ðð61ðððð
| \ ðð62ðððð
| IF MSGID='EVJ12ðI' & TEXT=MESSAGE ðð63ðððð
| THEN EXEC(CMD('EVJEACð4 'MESSAGE) ROUTE(ONE \)); ðð64ðððð
| \ ðð65ðððð
| \\ @ð1A ðð31ðððð
| \ OPC Controller has come up in standby mode. @ð1A ðð32ðððð
| \\ @ð1A ðð33ðððð
| \ @ð1A ðð34ðððð
| \ Initial message when OPC controller starts up in standby mode @ð1A ðð65ðððð
| \ EQQZ128I OPC/ESA ACTIVE IN STANDBY MODE @ð1A ðð65ð1ðð
| \ @ð1A ðð65ð2ðð
| IF MSGID='EQQZ128I' & JOBNAME = SVJOB ðð65ð3ðð
| THEN EXEC(CMD('AOCUPDT ' SVJOB',STATUS=HALTED') ROUTE(ONE \)); ðð65ð4ðð
| \ @ð1A ðð65ð5ðð
| \ Response to MVS F OPCC,STATUS command @ð1A ðð65ðððð
| \ EQQZ2ð1I OPC/ESA STAND-BY mvs_task_name : FULLY_OPERATIONAL @ð1A ðð65ð6ðð
| \ @ð1A ðð65ð7ðð
| IF MSGID='EQQZ2ð1I' & TOKEN(3) = 'STAND-BY' & JOBNAME = SVJOB ðð65ð8ðð
| THEN EXEC(CMD('AOCUPDT ' SVJOB',STATUS=HALTED') ROUTE(ONE \)); ðð65ð9ðð
| \ @ð1A ðð651ððð

 Appendix D. Sample OPC Automation Message Table 143

 EVJMOPCA
\\\ ððð295ðð
\ \ ððð296ðð
\ COPYRIGHT= 5685-151 \ ððð297ðð
\ CONTAINS RESTRICTED MATERIALS OF IBM \ ððð298ðð
\ (C) COPYRIGHT IBM CORP. 1995 \ ððð299ðð
\ LICENSED MATERIALS - PROPERTY OF IBM \ ððð3ðððð
\ REFER TO COPYRIGHT INSTRUCTIONS \ ððð3ð1ðð
\ FORM NUMBER G12ð-2ð83. \ ððð3ð2ðð
\ \ ððð3ð3ðð
\ DESCRIPTION: SAMPLE DSIPARM - MSG AUTOMATION TABLE FOR AOC OPC \ ððð3ð4ðð
\ EVJMOPCA CHANGE ACTIVITY: \ ððð3ð5ðð
\ APAR# \ ððð3ð6ðð
\ --- \ ððð3ð7ðð
\ ððð3ð8ðð
\\\ ððð311ðð
\ OPC/A-EWTR(EMS1) MESSAGE TABLE ENTRIES \ ððð312ðð
\\\ ððð313ðð
\ ððð314ðð
\ DRKWðð5I EVENT WRITER STARTED ððð315ðð
\ ððð316ðð
 IF MSGID='DRKWðð5I' & TOKEN(3) = 'WRITER' ððð317ðð

THEN EXEC(CMD('EHKESGUP ') ROUTE(ALL \)); ððð318ðð
\ ððð319ðð
\ DRKWð11I THE EVENT WRITER ENDED NORMALLY ððð32ððð
\ ððð321ðð
 IF MSGID='DRKWð11I' & TOKEN(4) = 'WRITER' & JOBNAME = SVJOB ððð322ðð

THEN EXEC(CMD('EHKESRST ' SVJOB) ROUTE(ALL \)); ððð323ðð
\ ððð324ðð
\\\ ððð325ðð
\ OPC/A-PCS(PCS1) MESSAGE TABLE ENTRIES \ ððð326ðð
\\\ ððð327ðð
\ \ ððð328ðð
\ CSYNð12I OPCD JOB TRACKING EVENTS ARE NOW BEING LOGGED ððð329ðð
\ ððð33ððð
 IF MSGID='CSYNð13I' ððð331ðð

THEN EXEC(CMD('EHKESGUP ') ROUTE(ALL \)); ððð332ðð
\ ððð333ðð
\ DRKZðð6I NO ACTIVE OPC/A SUBTASKS. OPC/A IS ENDING ððð334ðð
\ ððð335ðð
 IF MSGID='DRKZðð6I' & JOBNAME = SVJOB ððð336ðð

THEN EXEC(CMD('EHKESRST ' SVJOB) ROUTE(ALL \)); ððð337ðð
\ ððð338ðð
\ OPC/A JOB IN ERROR ððð339ðð
\ ALERT APPLICATION HAS ENDED IN ERROR - ððð34ððð
\ REQUIRES ALERTS TYPE(ERROROPER) IN OPCA PARMS ððð341ðð
\ ððð342ðð
 IF MSGID='CSYEð26I' & TEXT=MESSAGE ððð343ðð

THEN EXEC(CMD('EVJEACð5 'MESSAGE) ROUTE(ONE \)); ððð344ðð
\ ððð347ðð
\ ALERT A JOB HAS ENDED IN ERROR ððð348ðð
\ REQUIRES ALERTS TYPE(ERROROPER) IN OPCA PARMS ððð349ðð
\ ððð35ððð
 IF MSGID='CSYEð36I' & TEXT=MESSAGE ððð351ðð

144 AOC/MVS V1R4 OPC Automation Programmer’s Reference

THEN EXEC(CMD('EVJEACð3 'MESSAGE) ROUTE(ONE \)); ððð352ðð
\ ððð356ðð
\ OPC/A JOB CHANGED FROM ERROR STATUS ððð357ðð
\ DRKUXðð7/UXðð7ðð2 GENERATED MESSAGE ððð358ðð
\ ððð359ðð
 IF MSGID='UXðð7ð21' & TEXT=MESSAGE ððð36ððð

THEN EXEC(CMD('EVJEACð4 'MESSAGE) ROUTE(ONE \)); ððð361ðð
\ ððð362ðð
 IF MSGID='EVJ12ðI' & TEXT=MESSAGE ððð364ðð

THEN EXEC(CMD('EVJEACð4 'MESSAGE) ROUTE(ONE \)); ððð365ðð
\ ððð366ðð

 Appendix D. Sample OPC Automation Message Table 145

146 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Appendix E. Sample OPC Automation Command Synonyms

EVJCMD, a sample file that defines command synomyns, is shipped with OPC
Automation.

 EVJCMD
| \\\
| \ (C) COPYRIGHT IBM CORP. 199ð, 1998 @ð2C\
| \ PROGRAM NUMBER: 5685-151 \
| \ DESCRIPTION: SAMPLE DSIPARM - DSICMD ENTRIES FOR AOC OPC \
| \ EVJCMD - CHANGE ACTIVITY: \
| \ APAR# \
| \ --- \
| \ $ð2=OW356ð7 12/ð1/98 APC(MP): OPC V2 EXPLOITATION. \
| \ Add EVJECMD, EVJESLAV, EVJEFCTL, \
| \ EVJEALST \
| \ $ð1=OW2423ð 12/13/96 RFM MSGEVJð29I EVJSTS COMMAND ENCOUNTERED \
| \ UNEXPECTED EVENT TIMEOUT FROM OPCAQRY \
| \ (EVJECGAA) -- PERFORMANCE PROBLEM \
| \ \
| \ AOCOPC ð4/25/94 INITIAL VERSION FOR AOC OPC \
| \\\
| \ ADDED FOR NEW STATUS FILE ORGANIZATION \
| \\\
| EVJSCPST CMDMDL MOD=EVJSCPST,TYPE=R,RES=Y,ECHO=Y /\ @ð1C\/
| CMDSYN EHKPCST
| CMDSYN EVJSTS
| EVJSMPST CMDMDL MOD=EVJSMPST,TYPE=D,RES=Y,PARSE=N /\ @ð1C\/
| CMDSYN EHKPMST
| \\\
| \ MAIN PROCESSING ROUTINES \
| \\\
| EVJESPCP CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN OPCACOMP
| EVJESPIN CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| EVJESPRQ CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| EVJESPSC CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| EVJESPTE CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| EVJESPVY CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| EVJESUSF CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| EVJEMSG CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| EVJEMSG1 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| EVJSASND CMDMDL MOD=EVJSASND,RES=Y,TYPE=R,ECHO=Y
| \\\
| \ OPERATOR COMMANDS \
| \\\
| EVJE$UUP CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN UP
| EVJE$UDN CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN DOWN
| EVJE$URS CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN BOUNCE

 Copyright IBM Corp. 1990, 1999 147

| CMDSYN $RESTART
| \ CMDSYN RESTART /\ @ð1C\/
| EVJECGAA CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN OPCAQRY
| \
| EVJEAAðð CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN OPC
| CMDSYN OPCA
| CMDSYN OPCAO
| \
| EVJEABðð CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN DFTAPO
| \
| EVJEABð1 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN DFBTCH
| \
| EVJEABð2 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN DFTAPM
| \
| EVJEABð3 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN DFTSOU
| \
| EVJEABð4 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN DFTSOR
| \
| EVJEABð5 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN DFTAPK
| \
| EVJEABð6 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN DFCRIT
| \
| EVJEABð7 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN DFUPDT
| \
| EVJEAB1ð CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN DFDELT
| \
| EVJEAB11 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| \
| EVJEAB12 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN DFCOPY
| \
| EVJEAB13 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| \
| EVJEAB14 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| \
| EVJEACðð CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| CMDSYN OPCACMD
| \ /\ @ð2A\/
| EVJECMD CMDMDL MOD=DSICCP,ECHO=N,TYPE=R /\ @ð2A\/
| EVJESLAV CMDMDL MOD=DSICCP,ECHO=N,TYPE=R /\ @ð2A\/
| \ /\ @ð2A\/
| EVJEFCTL CMDMDL MOD=DSICCP,ECHO=N,TYPE=R /\ @ð2A\/
| CMDSYN EVJRFCTL /\ @ð2A\/
| \ /\ @ð2A\/
| EVJEACð1 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| EVJEACð2 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| EVJEACð3 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R

148 AOC/MVS V1R4 OPC Automation Programmer’s Reference

| EVJEACð4 CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| \
| EVJMPMðð CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| EVJMPM1ð CMDMDL MOD=DSICCP,ECHO=N,TYPE=R
| \
| EVJESRST CMDMDL MOD=DSICCP,ECHO=Y,TYPE=R
| CMDSYN SRSTAT
| \
| \ POST ROUTINE
| EVJSAOPS CMDMDL MOD=EVJSAOPS,RES=N
| CMDSYN OPCAPOST
| CMDSYN OPCPOST
| \ AOC/MVS STATUS CHANGE EXIT
| EVJEXSTA CMDMDL MOD=DSICCP,TYPE=R
| CMDSYN AOFEXSTA
| \ USER INTERFACE CMDS
| EVJSACAL CMDMDL MOD=EVJSACAL,RES=N
| CMDSYN OPCACAL
| CMDSYN OPCCAL
| EVJSADTL CMDMDL MOD=EVJSADTL,RES=N
| CMDSYN OPCADTL
| CMDSYN OPCDTL
| EVJSALST CMDMDL MOD=EVJSALST,RES=N
| EVJEALST CMDMDL MOD=DSICCP,ECHO=N,TYPE=R /\ @ð2A\/
| CMDSYN OPCALIST
| CMDSYN OPCLIST
| EVJSAMOD CMDMDL MOD=EVJSAMOD,RES=N
| CMDSYN OPCAMOD
| CMDSYN OPCMOD
| EVJSAINS CMDMDL MOD=EVJSAINS,RES=N
| CMDSYN OPCSRST
| \\
| \ END OF AOC OPC ENTRIES \
| \\

 Appendix E. Sample OPC Automation Command Synonyms 149

150 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Appendix F. Sample OPC Automation Error Display Panel
Source

 EVJOPCA
EVJOPCA, a sample file that describes the OPC Automation error display panel
source, is shipped with OPC Automation.

/\\\/
/\ COPYRIGHT= 5685-151 \/
/\ CONTAINS RESTRICTED MATERIALS OF IBM \/
/\ (C) COPYRIGHT IBM CORP. 199ð, 1995 \/
/\ LICENSED MATERIALS - PROPERTY OF IBM \/
/\ REFER TO COPYRIGHT INSTRUCTIONS \/
/\ FORM NUMBER G12ð-2ð83. \/
/\ \/
/\\\/
/\ OPC ERROR DISPLAY PANEL PN4ð381 PNð2975 \/
P(SY1OPCA,24,8ð,SYSTEM,SYSTEM, , ,)
TF(ð1,ð2,ð9,B,NORMAL)
TT(SY1OPCA)
TF(ð2,2ð,6ð,T,NORMAL)
TT(---- OPC: Applications in Error ----)
SF(SY1.OPCERR,ð4,ð2,27,N, , ,ð1)
ST()
SF(SY1.OPCERR,ð4,28,53,N, , ,1ð)
ST()
SF(SY1.OPCERR,ð4,55,8ð,N, , ,19)
ST()
SF(SY1.OPCERR,ð6,ð2,27,N, , ,ð2)
ST()
SF(SY1.OPCERR,ð6,28,53,N, , ,11)
ST()
SF(SY1.OPCERR,ð6,55,8ð,N, , ,2ð)
ST()
SF(SY1.OPCERR,ð8,ð2,27,N, , ,ð3)
ST()
SF(SY1.OPCERR,ð8,28,53,N, , ,12)
ST()
SF(SY1.OPCERR,ð8,55,8ð,N, , ,21)
ST()
SF(SY1.OPCERR,1ð,ð2,27,N, , ,ð4)
ST()
SF(SY1.OPCERR,1ð,28,53,N, , ,13)
ST()
SF(SY1.OPCERR,1ð,55,8ð,N, , ,22)
ST()
SF(SY1.OPCERR,12,ð2,27,N, , ,ð5)
ST()
SF(SY1.OPCERR,12,28,53,N, , ,14)
ST()
SF(SY1.OPCERR,12,55,8ð,N, , ,23)
ST()
SF(SY1.OPCERR,14,ð2,27,N, , ,ð6)

 Copyright IBM Corp. 1990, 1999 151

ST()
SF(SY1.OPCERR,14,28,53,N, , ,15)
ST()
SF(SY1.OPCERR,14,55,8ð,N, , ,24)
ST()
SF(SY1.OPCERR,16,ð2,27,N, , ,ð7)
ST()
SF(SY1.OPCERR,16,28,53,N, , ,16)
ST()
SF(SY1.OPCERR,16,55,8ð,N, , ,25)
ST()
SF(SY1.OPCERR,18,ð2,27,N, , ,ð8)
ST()
SF(SY1.OPCERR,18,28,53,N, , ,17)

ST()
SF(SY1.OPCERR,18,55,8ð,N, , ,26)
ST()
SF(SY1.OPCERR,2ð,ð2,27,N, , ,ð9)
ST()
SF(SY1.OPCERR,2ð,28,53,N, , ,18)
ST()
SF(SY1.OPCERR,2ð,55,8ð,N, , ,27)
ST()
TF(24,ð1,48,T,NORMAL)
TT(PF1=HELP 2=DETAIL 3=END 6=ROLL 7=UP 8=DN)
TF(24,51,79,T,NORMAL)
TT(1ð=LF 11=RT 12=TOP)
EP

152 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Glossary of Terms

| The intent of this glossary is to define terms as TME 10
| OPC uses them. However, where applicable, terms are
| taken from the IBM Dictionary of Computing, New York;
| McGraw-Hill, 1994. These terms are marked by an
| asterisk (*). Unless otherwise noted, the definitions
| below apply equally well to OPC/A, OPC/ESA and TME
| 10 OPC.

A
actual duration . At a workstation, the actual time in
hours and minutes it takes to process an operation from
start to finish.

APAR . Authorized program analysis report. A report of
a problem caused by a suspected defect in a current
unaltered release of a program.

all workstations closed . A user defined interval
during which all OPC’s workstations are not available
for running applications under OPC’s control.

Note: All the workstations could be either shut down or
simply not available to OPC.

application . (1) A group of related operations
performed together to satisfy a specific end user task.
(2) A measurable and controllable unit of work that
completes a specific user task such as the running of
payroll or financial statements. The smallest entity that
an application can be broken down into is an operation.
Generally, several related operations make up an
application.

application description . A database description of an
application.

application ID . The name of an application. Examples:
Y1976, Payroll.

arrival (A) . Status of an operation that indicates it is
waiting for the input to arrive before processing.

authority . The ability to access a protected resource.

authority group . A name used to generate a RACF
resource name for authority checking.

automatic events . Events recognized by or triggered
by an executing program. Automatic events are usually
generated by OPC job tracking programs but may also
be created by a user-defined program.

automatic reporting workstation . A workstation that
reports events (the starting and stopping of operations)
in real time to OPC, such as a processor or printer.

automatic job recovery . An OPC function which
allows you to specify, in advance, alternative recovery
strategies for applications or operations ended in error.

availability . * The degree to which a system (and in
OPC, an application) or resource is ready when needed
to process data.

B
batch loader . An OPC batch program you can use to
create and update information in the application
description and operator instruction databases.

bracketed DBCS . A MIXED format field consisting of
a DBCS part only, that is, DBCS characters enclosed
by a shift-out/shift-in control character pair.

browse . An ISPF/PDF dialog function that manages
data for display only. This function lets the user view
but not change data.

C
CP. Current plan.

calendar . The data that defines the operation
department’s processing schedule in days and periods.

capacity . The actual number of parallel servers and
workstation resources available during a specified open
time interval.

capacity ceiling . The maximum number of operations
a workstation can handle simultaneously.

case code . A code in the automatic job recovery
function that represents a group of abend codes or
return codes. Any code in the JOBCODE and
STEPCODE parameters is considered a potential case
code if defined as such in the case code macro.

closed workstation . A workstation that is unavailable
to process work for a specific time, day, or period.

command . * A request from a terminal for the
performance of an operation or the execution of a
particular program. A character string from a source
external to a system that represents a request for
system action.

complete . Status of an operation indicating that it has
finished processing.

 Copyright IBM Corp. 1990, 1999 153

completion code . An OPC system code indicating
how the processing of an operation ended at a
workstation.

complex of processors . A JES2 multi-access spool
system or a JES3 system with more than one
processor.

computer workstation . A workstation that performs
MVS processing and usually reports status to OPC/A
automatically. A processor when used as a workstation.
It can refer to single processors or multiprocessor
complexes serving a single job queue (for example
JES2 or JES3 systems).

controller . The portion of TME 10 OPC or OPC/ESA
that runs on the controlling processor and contains the
tasks that manage OPC databases and plans.
Comparable to the OPC/A PCS.

controlling processor . The processor on which the
Production Control System (PCS) executes. See host
processor.

critical path . The route within a network with the least
amount of slack time.

critical resource . The term used in OPC 3.1 for
‘workstation resource’. See workstation resource.

current plan . A minute by minute schedule of each
operation of an application. It reflects the current state
of the operating environment showing the status of work
completed and work still to be done.

current schedule . The database that contains the
current plan information.

cyclic interval . The number of days in a cyclic period.

cyclic period . A period with a specific origin date and
set frequency. A cyclic period can be broken down into
two types:

� Those that include work and free days

� Those that include only work days.

Cyclic periods must always represent a fixed time
period in days. For example, week (7 days).

D
daily plan . A set of plans that shows work that the
operations department does on a particular day or shift.
A list by day and application of all operations to be
performed within the operations department.

default calendar . (1) A calendar that you have defined
for OPC/A to use when you do not specify a calendar in
an application description. (2) A calendar that OPC/A

uses if you have neither specified a calendar in an
application description, nor defined your own default
calendar. (3) The name (DEFAULT) given to your
OPC/A Release 1 calendar by the migration program if
you migrate to OPC/A Release 2. (OPC/A Release 1
allows you only one calendar, Release 2 allows you
multiple calendars.)

deadline . See deadline date and deadline time.

deadline date . The latest date by which an occurrence
must be complete.

deadline time . The latest time by which an occurrence
must be complete.

defined . An open day status which indicates that
specific open time intervals exist for a workstation on a
particular day.

dependency . A relationship between two operations
where the first operation must successfully finish before
the second operation can begin.

dialog . The user’s online interface with OPC.

displacement . A number specifying ‘Number of Days
from Period Start’ or ‘Number of Days from Period End’.
Sometimes called offset. See offset.

duration . The time an operation is active at a
workstation.

E
edit . An ISPF/PDF dialog function that is used for
editing text, collecting data, and modifying data.

end user . A person who uses the services of the data
processing center.

ended in error (E) . The OPC reporting status for an
operation that has ended in error at a workstation.

error code . The system completion code or program
return code for automatic reporting workstations. The
code entered by the workstation operator for manually
reporting workstations.

event . An action in the operations department that
results in an operation’s change of status and a change
in the current schedule.

event handler . A separate load module that changes
the status of operations.

event manager . The OPC/A function that processes
all job tracking events and determines which of these
are OPC/A related.

154 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Event Management Subsystem (EMS) . The Event
Management Subsystem runs as an MVS subsystem,
tracking and logging event records on DASD. It is
required on every processor in an OPC/A configuration.
Equivalent to the OPC/ESA Tracker.

event reader . An OPC/A task that reads event records
from an event data set.

event tracking . See job tracking.

Event Triggered Tracking (ETT) . A component of
OPC/A that waits for specific events to occur; and when
they occur, it adds a predefined application to the
current plan. ETT recognizes two types of events: the
reader event, which occurs when a job enters the JES
reader, and the resource event, which occurs when the
availability status of a special resource is set to ‘yes’.

event writer . An OPC/A task that writes event records
in an event data set.

exclusive . The state of a special resource indicating
that it is fully used by one operation and cannot be
used simultaneously by other operations.

exclusive resource . A workstation resource that is
solely used by one operation and cannot be shared with
other operations.

expected arrival time . The time when an operation is
expected to arrive at a workstation. It may be calculated
by daily planning or specified in the long-term plan.

extend current period . An OPC function that allows
the user to extend the current plan up to a maximum of
504 hours (21 days) from the current end date.

external dependency . A relationship between two
occurrences where an operation in the first occurrence
must successfully finish before an operation in the
second occurrence can begin processing. See
dependency.

external predecessor . The name given to the
operation in the first occurrence of an external
dependency that must finish before its external
successor can begin processing.

external successor . The name given to the operation,
in the second occurrence of an external dependency,
that cannot begin until its external predecessor
completes.

F
feedback limit . A numeric value from 100 to 999
which defines the limits within which actual data
collected in job tracking is fed back and used by
OPC/A.

free day . A nonworking day.

free day rule . A rule that determines how OPC will
treat free days when the application run day falls on a
free day. The rule is as follows:

Excluded : Free days excluded; only work days are
taken into account.

Included : Free days included; all days are taken
into account, as follows:

(1) Run before the free day.
(2) Run after the free day.
(3) Run on the free day.
(4) Do not run on the free day.

G
general workstation . A workstation where activities,
usually manual, and other than printing and processing,
are carried out. Manual activities might be data entry or
job setup. A general workstation reporting to OPC/A is
usually manual, but can be automatic.

generic search argument . A portion of a key
containing a generic search character which in OPC is
an asterisk (*) or percent sign (%). The asterisk
represents any string of characters and the percent sign
any single character. Use with any portion of a key to
search the database for items to be displayed as part of
a listing. Examples: %ABC, A*C, A*.

H
host processor . * A processor that controls all or part
of a user application network. * In a network, the
processing unit in which the access method for the
network resides.

highest return code . A numeric value from 0 to 4095.
If this return code is exceeded during a job’s
processing, the job will be reported as ended in error.

I
incident log . An optional function available under the
job completion checker.

input arrival . The user-defined date and time an
operation or an application becomes ready for
processing.

 Glossary of Terms 155

internal dependency . A relationship between two
operations within an occurrence where the first
operation must successfully finish before the second
operation can begin.

internal predecessor . The name given to the
operation of an internal dependency that must finish
before its internal successor can begin processing.

internal successor . The name given to the operation
of an internal dependency that cannot begin until its
internal predecessor completes processing.

ISPF. Interactive System Productivity Facility.

interrupted (I) . An OPC reporting status for an
operation indicating that the operation has been
interrupted while processing.

J
job . * A set of data that completely defines a unit of
work for a computer. A job usually includes all
necessary computer programs, linkages, files, and
instructions to the operating system. In OPC, an
operation performed at a CPU workstation.

job completion checker (JCC) . An optional function
of OPC that provides an extended checking capability of
the results from CPU operations.

job control language (JCL) . * A problem-oriented
language designed to express statements in a job that
are used to identify the job or describe its requirements
to an operating system.

JES. Job Entry Subsystem.

job entry subsystem (JES) . * A system facility for
spooling, job queuing, and managing I/O.

job tracking . A function of OPC/A PCS that follows
events in the operations department in real time and
records status changes in the current schedule.

job setup . The preparation of a set of JCL statements
for a job at an OPC/A workstation you defined for this
purpose.

job submission . An OPC/A process that presents
jobs to MVS for running on an OPC/A defined
workstation at a time specified in the daily plan.

JS. The JCL repository data set.

K
keyword . * A symbol that identifies a parameter. * A
part of a command operand that consists of a specific
character string (such as DSNAME=).

keyword parameter . * A parameter that consists of a
keyword, followed by one or more values.

L
LTP. Long-term plan.

last operation . (1) An operation in an occurrence that
has no internal successor. (2) The terminating node in a
network.

latest start . The latest start day and time (calculated
by OPC/A) for an operation that will allow all
occurrences to meet their deadline.

layout ID . A unique name that identifies a specific
ready list layout.

limit for feedback . See feedback limit.

local . * Synonym for channel-attached.

local processor . * In a complex of processors under
JES3, a processor that executes users’ jobs and that
can assume global functions in the event of failure of
the global processor. In OPC, a processor in the same
installation that communicates with the controlling OPC
processor through shared DASD communication.

long-term plan . A high-level schedule of processing
activities for the forthcoming weeks and months. The
scope of a long-term plan can be from one day to four
years.

The long-term planning function produces a list of
application occurrences identified by name, date, and
run time for a specified planning period.

M
manual reporting workstation . A type of workstation
reporting where events, once they have taken place,
are manually reported to OPC. This type of reporting
requires that some action be taken by a workstation
operator. Manual reporting is usually performed from a
list of ready operations.

mass updating . A function of the application
description dialog where a large update to the
application database can be requested.

modify current plan . An OPC dialog function used to
dynamically change the contents of the current

156 AOC/MVS V1R4 OPC Automation Programmer’s Reference

schedule to respond to changes in the operation
environment. Examples of special events that would
cause alteration of the current schedule are: a rerun, a
deadline change, or the arrival of an unplanned
application.

most critical application occurrences . Those
unfinished applications that have a latest start time that
is less than or equal to the current time.

N
Network Event Communicator (NEC) . The Network
Event Communicator collects event information from
event data sets and transmits it to the NEC executing
on the OPC/A controlling processor. It is required on
the controlling processor and on each remote processor
where remote job tracking is used.

node . * In a network, a point where one or more
functional units interconnect transmission lines.

noncyclic period . A period that has a varying
frequency for which you must define each origin date.
Examples: month, payroll period, and quarterly.

nonreporting . A reporting attribute of a workstation
which indicates that information is not fed back to OPC.

O
OPC/A. Operation Planning and Control/Advanced

OPC/ESA. Operations Planning and Control/Enterprise
Systems Architecture

occurrence . Each instance of an application in the
long-term plan and current plan is called an occurrence.

An application occurrence is one attempt to process
that application. Occurrences are distinguished from
one another by run date, input arrival time, and
application ID. For example, one application that runs
four times a day is said to have four occurrences a day.

offset . A maximum of 12 positive and 12 negative
values in the ranges 1 to 999 and -1 to -999 that
indicate on which days of a calendar period an
application shall run. See displacement.

OPC host . The processor where OPC updates the
current plan database.

OPC local processor . A processor that connects to
the OPC host or remote processor through shared
event data sets.

OPC/A remote processor . A processor connected to
the OPC/A host processor by a VTAM network. An

OPC/A event writer (EMS) and an event transmitter
(NEC) are installed on the remote processor and
transmit events to the OPC/A host processor by VTAM.
With OPC/ESA, the Tracker combines these functions.

open time interval . The time interval during which a
workstation is active and can process work.

operation . An operation is a unit of work that is part of
an occurrence and is processed at a workstation.

operation waiting for arrival . The status of an
operation that indicates that the necessary input has not
arrived at a workstation so that the operation can begin
processing. This status is applicable only for operations
without predecessors.

operation status . The status of an operation at a
workstation.

An operation’s status can be one of the following:

A Waiting for input to arrive.

R Ready for processing. All predecessors are
complete.

* Ready for processing. There is a nonreporting
predecessor. All predecessors are complete but one
or more predecessors were executed at a
nonreporting workstation.

S Started.

I Interrupted operation.

C Complete.

E Operation ended in error.

W Waiting for predecessor to complete.

U Undecided. The status is not known.

operator . * (ISO) A symbol that represents the action
to be performed in a mathematical operation. * In the
description of a process, that which indicates the action
to be performed on operands. * A person who operates
a machine.

option . A selection item on a menu panel in the OPC
dialog.

origin date . The date on which a period (cyclic or
noncyclic) starts.

P
panel . * A particular arrangement of presentation
windows used to show information to the user. OPC
uses only fixed-format panels.

parallel operations . Operations at workstations that
are not dependent on one another and therefore can be
performed simultaneously.

 Glossary of Terms 157

parallel server . The function that processes
operations at a workstation, especially when there is
more than one such function. See server.

parameter . * (ISO) A variable that is given a constant
value for a specified application and that may denote
the application. * A name in a procedure that is used to
refer to an argument passed to that procedure.

pending application description . An application
description which is incomplete and not ready for use in
planning or scheduling.

period . A business processing cycle. A time period
defined in the OPC/A calendar. They are used to
describe when, and how often, applications are to run.

period name . A name of a period. Examples are
week, month, quarter and fiscal period end.

period type . Periods are of two types: cyclic or
noncyclic.

PDF. program development facility.

predecessor . An operation of an internal or external
dependency that must finish successfully before its
successor operation can begin.

printout routing . The ddname of the daily planning
printout data set.

print workstation . A workstation that prints output and
usually reports status to OPC automatically.

priority . A digit from 1 to 9 (where 1 = low, 8 = high,
and 9 = urgent) that determines how OPC schedules
applications to run. A number from 1 (low priority) to 9
(high priority) which establishes the importance of an
application relative to other applications.

processor . * (ISO) In a computer, a functional unit
that interprets and executes instructions. * A functional
unit or part of another unit (such as a terminal or a
processing unit) that interprets and executes
instructions.

Production Control System (PCS) . The Production
Control System contains the controlling functions, all
dialogs, and OPC/A’s own batch programs. The
program controls the entire OPC/A installation, including
remote sites. Equivalent to the OPC/ESA Controller.

program interface . An OPC/A interface that allows a
user-written program to issue various types of requests
to the OPC/A subsystem.

Q
QCP. Query current plan.

R
RACF. Resource Access Control Facility.

read authority . A type of access authority that allows
a user to read the contents of a data set, file, or storage
area, but not to change it.

ready (R) . The status of an operation indicating that
predecessor operations are complete and that the
operation is ready for processing.

ready list . A display list of all the operations ready to
be processed at a workstation. Ready lists are the
means by which workstation operators manually report
on the progress of work.

recovery . See automatic job recovery.

remote processor . A processor connected to the
OPC host processor by a VTAM network.

remote job tracking . The function of tracking jobs on
remote processors connected by VTAM links to an OPC
controlling processor. This function enables a central
site to control the submitting, scheduling, and tracking
of jobs at remote sites.

replan current period . An OPC function that
recalculates planned start times for all occurrences to
reflect the actual situation.

reporting attribute . A code that specifies how a
workstation will report events to OPC.

rerun . An OPC function where an application or part of
an application that ended in error can be run again.

rescale factor . A value from 0 to 100 used to reduce
the new duration value by a given percentage amount.

return code . An error code issued by OPC for
automatic reporting workstations.

row command . A dialog command used to manipulate
data in a table.

run cycle period . A time frame defining the effective
period and run days of a calendar period.

run day . The date on which an application is to run. It
is expressed as a number relative to the start or the
end of a run cycle period.

158 AOC/MVS V1R4 OPC Automation Programmer’s Reference

S
SAF. System Authorization Facility.

search argument . A value that is used to search the
database for an item that is to be part of a displayed
listing.

selection criteria . Search arguments entered on a list
criteria panel in the dialog that limit the contents of a
listing.

server . A program or device set up for a workstation
to perform a service for that particular type of
workstation. For example, an initiator is a server for a
computer workstation. A printer is a server for a print
workstation.

service functions . Functions of OPC that let the user
deal with exceptional conditions such as investigating
problems, preparing APAR tapes, and testing OPC
during implementation.

shared DASD . Direct access storage device that can
be accessed from more than one processor.

shared resource . A special or workstation resource
that can be used simultaneously by more than one
operation while the operation is processed at a work
station.

slack . Used to refer to ‘spare’ time. Can be calculated
for the critical path by taking ‘Deadline less the Input
Arrival less the Sum of Operation Durations’.

smoothing factor . A value between 0 and 100 that
controls the extent to which actual durations are fed
back into the application description database.

SMP. System Modification Program.

special resource . Resources that are not associated
with a particular workstation but are needed to process
work there.

splittable . Refers to an operation that can be
interrupted while processing at a workstation.

standard . User specified open time intervals for a
typical day at a work station.

status . The current state of an operation or an
occurrence.

started (S) . An OPC reporting status of an operation
or an application indicating that an operation or an
occurrence is started.

submit/release data set . A data set shared between
the OPC host and a local OPC processor that is used

to send job stream data and job release commands
from the host to the local processor.

subresources . A set of resource names and rules for
the construction of resource names. OPC uses these
names when checking a user’s authority to access
individual OPC records.

subsystem . * A secondary or subordinate system,
usually capable of operating independently of, or
asynchronously with, a controlling system.

successor . An operation in an internal or external
dependency that cannot begin until its predecessor
completes processing.

sysout class . * An indicator used in data definition
statements to signify that a data set is to be written on
a system output unit. It applies only to print
workstations.

T
temporary operator instructions . Operator
instructions that have a specific time limit during which
they are valid. They will be displayed to the workstation
operator only during that time period.

| TME 10 OPC. TME 10 Operations Planning and
| Control

tracker . The portion of TME 10 OPC or OPC/ESA that
runs on every system in your complex. It acts as the
communication link between the MVS system that it
runs on and the controller. Comparable to the OPC/A
EMS and NEC components.

tracking event log . A log of job tracking events and
updates to the current schedule.

transport time . The time allotted for transporting
materials from the workstation where the preceding
operation took place, to the workstation where the
current operation is to occur.

TSO. Time Sharing Option.

time zone support . A feature of OPC that allows
applications to be planned and run with respect to the
local time of the processor that runs the application.
Some networks may have processors in different time
zones. The controlling processor will make allowance
for differences in time during planning activities, for
example the input arrival time of predecessor
applications, to make sure that interacting activities are
correctly coordinated.

turnover . A subfunction of job tracking that is
activated when job tracking creates an updated version
of the current schedule.

 Glossary of Terms 159

U
undecided (U) . An OPC reporting status for an
operation or an application indicating that the status is
not known.

update authority . Access authority given to a user by
RACF to use the ISPF/PDF edit functions of the OPC
dialog. Access authority to modify a master file or data
set with the current information.

V
validity period . The time interval defined by an origin
date and an end date within which a run cycle or an
application description is valid.

versions . Applications with the same ID but different
validity dates.

VSAM. Virtual Sequential Access Method.

VTAM. Virtual Telecommunication Access Method.

W
waiting (W) . An OPC reporting status (for an
application) indicating that it is waiting for a predecessor
operation to complete.

waiting list . A list of submitted jobs that are waiting to
be processed.

work day end time . The time at which OPC will
consider a work day to have ended when that work day
immediately precedes a free day. For example, if you
specify Saturday to be a free day, you could specify
08.00 hours. Saturday morning as the end of Friday’s
work day. OPC can then plan work to be done from
00.00 to 08.00 Saturday morning, as if that time was
actually part of Friday.

workstation . A unit, place, or group that performs a
specific data processing function. A logical place where
work occurs in an operations department.

OPC requires that you define the following
characteristics for each workstation: the type of work it
does, the quantity of work it can handle at any particular
time, and the times it is active. The activity that occurs
at each workstation is called an operation.

workstation description database . An OPC database
containing descriptions of the workstations in the
operations department.

workstation resources . Limited resources defined for
each workstation that an operation requires a certain
amount of to process work.

workstation type . Each workstation can be one of
three types: computer, print, or general.

work day . A day on which applications can normally
be scheduled to start.

160 AOC/MVS V1R4 OPC Automation Programmer’s Reference

 Index

Special Characters
$HASP373 118

A
alerts 7
allocatable consoles, defining 102
AOC/MVS

OPC 29
to OPC 47

APF authorization 102
API (application program interface) 40
application status 11
automated

operator
profile 109
tasks 29

recovery 41
automated, system status 11
automation table 108

B
basic OPC automation common control file

definitions 111

C
CNMCNETV 21
command model statements (building member) 107
commands

EVJSTS 39
OPCACMD 67

completion flag 38
control file 107

definitions 111
entries

ENVIRON OPCAO 6, 71
EVJESHUT 51
OPCA CODE 5, 65
OPCA DOMAINID 5, 69
OPCA PCS 5, 75
OPCACMD 5, 67
OPCACOMP 55
OPCAPARM 5, 73
OPCSRST 64

create 39
CSYDUMP 107
customizing the Status Display Facility 112

D
data areas 77
defining

APF authorization 102
NetView SSI 102
OPC 29
OPC to SA OS/390 47
SSI, NetView 102
subsystem 102

allocatable consoles 102
name table 102

determining work or free day in NetView 52
DFBTCH 118
DFCOPY 120
DFCRIT 117, 121
DFDELT 117
DFTAPK 117
DFTAPM 117
DFTAPO 117
DFTSOR 118
DFTSOU 118
DFUPDT 117, 119
DOMAINID 69, 75
DRKINIT 31
DRKMLIB 106
DRKMLOG 107
DRKUSINT 21, 27, 47, 49
DRKUX007 21, 22, 33, 35, 36, 41, 113
DSIDMN 105, 109, 111
DSIMSG01 108
DSIOPF 109
DSIPARM 105, 107, 111
DSIPRF 109

E
EHKVAR9 78
ENVIRON OPCAO 71
ENVIRON OPCAO control file entry 6
EQQDUMP 106
EQQMLIB 106
EQQMLOG 106
EQQUX007 113
EVJCFG 107
EVJCFG01 129
EVJCMD 147
EVJEAB11 122
EVJECCAL 52
EVJERCAL 52
EVJESHUT 51

 Copyright IBM Corp. 1990, 1999 161

EVJESPIN 32, 37, 39
EVJESPRQ 24, 37
EVJESPSC 25, 37
EVJESPTE 26, 37, 38
EVJESPVY 22
EVJEZ000 109
EVJFOPF 109
EVJMCON1 137
EVJMOPCA 144
EVJMOPCE 142
EVJOPCA 151
EVJOPF 109
EVJPNLS 107
EVJPRFAO 109
EVJSTS 39, 77
EVJTOPPI 22
EVJTREE 107, 123
exits, DRKUX007 21
extending the daily plan 36

F
flags

completion 38
timer 38

flow
CNMCNETV 21
DRKUSINT 21, 27
DRKUX007 22
DRKUX007 exit 21
EVJTOPPI 22
initialization 19
OPC/A-EMS 24, 27
OPC/A-NEC 27
OPC/A-PCS 24, 27
OPCAPOST 24, 25, 26
OPCAPOST command processor 27
overview 19
program-to-program interface dispatcher 22
request 20
request module (EVJESPRQ) 24
status change module (EVJESPSC) 25
timer module (EVJESPTE) 26
verify module (EVJESPVY) 22

functional overview 7

I
IEAAPFxx in SYS1.PARMLIB, updating 101
IEC501A 117
IEC502E 117
IEC701D 117
IEC705I 117
IEF125I 118
IEF126I 118

IEF233A 117
IEF234E 117
IEF251I 117
IEF404I 118
IEF450I 118
IEF453I 118
initialization

EVJESPIN 32
flow 19
request 20
SA OS/390 31
startup 31
with OPC Automation 6

installation 101
basic OPC automation common control file

definitions 111
control file definitions 111
customizing the Status Display Facility 112
Status Display Facility 112

L
log entries 14

M
merging the control file 107
MSGKEEP 71

N
Netview

profile data set 109
Solutions 3

NNT link 41

O
OPC

Controller 29, 47
Exit 7 113
Tracker 29, 47

OPC Automation
posting an operation from SA OS/390 49
specifying functions 47
transferring information to automation 47

OPC/A-EMS 24, 27, 31, 37, 38, 49
OPC/A-NEC 27, 49
OPC/A-PCS 21, 24, 27, 31, 33, 40, 49
OPCA CODE 65
OPCA CODE control file entry 5
OPCA DOMAINID control file entry 5
OPCA PCS control file entry 5
OPCACAL 52
OPCACMD 40, 49, 53, 67
OPCACMD control file entry 5

162 AOC/MVS V1R4 OPC Automation Programmer’s Reference

OPCACOMP 55, 78, 81
OPCALIST 56
OPCAMOD 59
OPCAPARM 73
OPCAPARM control file entry 5
OPCAPOST 24, 25, 26, 27, 37, 47, 49, 63
OPCMSG00 108, 135
OPCMSG01 108, 136
OPCSRST 64
operations control 39
operator definition member 109
OPRESET 71
overview

flow 19
Status Display Facility 11

P
parameter data sets 105, 111
PCS 75
PPI 7

dispatcher 22
EVJTOPPI 22

profile
automated operators 109
data set(s) 105, 109, 111

program-to-program interface 7, 22
dispatcher 22
EVJTOPPI 22
NetView SSI 102
SSI, NetView 102
subsystem name table 102

R
recovery, automated 41
REQCOMP 78
REQSTAT 71
request

buffer 79
handling 33
time dependencies 35

Requestor ID block 78
RESET 39

S
SA OS/390 OPC Automation

posting an operation from SA OS/390 49
specifying functions 47
transferring information to automation 47

SDF
See Status Display Facility

SSI, NetView 102
startup 7, 31

status changes 36
Status Display Facility 112

introduction 7
overview 11

Status Display Facility enhancements
$HASP373 118
abend 118
capture

batch job start and stop 118
TSO logons and logoffs 118

coding reference 117
critical message processor 117
DFBTCH 118
DFCOPY 120
DFCRIT 117, 121
DFDELT 117
DFTAPK 117
DFTAPM 117
DFTAPO 117
DFTSOR 118
DFTSOU 118
DFUPDT 117, 119
EVJEAB11 122
IEC501A 117
IEC502E 117
IEC701D 117
IEC705I 117
IEF125I 118
IEF126I 118
IEF233A 117
IEF234E 117
IEF251I 117
IEF404I 118
IEF450I 118
IEF453I 118
insert display data 119
job

ended 118
failed 118
started 118

process critical messages 121
Status Display Facility delete 117
synchronize data in a distributed environment 122
synchronize SDF components 120
tape

check 117
message processor 117
online 117

TMS001 117
TMS002 117
TSO refresh 118
TSO user

abend 118
logged off 118
logged on 118

update CLIST 117

 Index 163

Status Display Facility installation 107
subsystem

allocatable consoles, defining 102
name table 102

SYNC 39
system

initialization with OPC Automation 6
status 11

T
termination 7
time

extending the daily plan 36
timer flag 38
TMS001 117
TMS002 117

U
UX007001 113
UX007002 113
UX007003 113
UX007004 113

W
workstation 20, 69

164 AOC/MVS V1R4 OPC Automation Programmer’s Reference

Communicating Your Comments to IBM

System Automation for OS/390
AOC/MVS OPC Automation
Programmer’s Reference
and Installation Guide
Version 1 Release 4

Publication No. SC23-3820-02

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of the book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF form and either send it
postage-paid in the United States, or directly to:

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

� If you prefer to send comments by FAX, use this number:

 – (Germany): 07031-16-3456
– (Other countries): (+49)+7031-16-3456

� If you prefer to send comments electronically, use this network ID:

IBM Mail Exchange: DEIBMBM9 at IBMMAIL

Internet: s390id@de.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

System Automation for OS/390
AOC/MVS OPC Automation
Programmer’s Reference
and Installation Guide
Version 1 Release 4

Publication No. SC23-3820-02

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC23-3820-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Attn: Dept EHJ - BP/003D
6300 Diagonal Highway
Boulder, CO 80301-9151

Fold and Tape Please do not staple Fold and Tape

SC23-3820-02

IBM

Program Number: 5685-151

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC23-382ð-ð2

