

System Automation Development - 1 - March 2003
IBM Boeblingen

An Automation and High Availability Solution

for WebSphere Application Server for OS/390 and z/OS

Based on System Automation for OS/390

System Automation Development - 2 - March 2003
IBM Boeblingen

System Automation Development - 3 - March 2003
IBM Boeblingen

Contents
Chapter 1. Introduction...6

1.1 WebSphere Application Server: a High-level Overview..6
1.2 System Automation for OS/390: a High-level Overview...8
1.3 WebSphere Application Automation and High Availability..8

Chapter 2. The Environment for WebSphere Application Server for OS/390 and z/OS11
2.1 Software products ...11

2.1.1 Prerequisite Products ...11
Mandatory Requisites ...11
Functional Requisites..12

2.2 Basic Dependencies ..12
2.2.1 How WebSphere Application Server Uses z/OS Components................................13

z/OS Unix Systems Services (USS) ...13
Workload Manager (WLM)..13
RACF..14
LDAP..14
DB2...15
Resource Recovery Services (RRS) ...15
TCP/IP ..15
HTTP Server...17

2.2.2 The Structure of WebSphere Application Server for OS/390 and z/OS17
The Base Environment ...18
Application Server Environment ..19

2.3 WebSphere Application Server in a Sysplex Environment..23
2.4 Options for WebSphere Application Server for OS/390 and z/OS24

2.4.1 HTTP Sessions...24
Session Affinity ..24
Persistent Sessions ..24

2.4.2 Using the IBM HTTP Server for z/OS ..25
2.4.3 Using an HTTP Server for Distributed Platforms ...26

Chapter 3. High Availability for WebSphere Application Server for OS/390 and z/OS27
3.1 WebSphere Application Server for OS/390 and z/OS Administration27
3.2 WebSphere Application Server for OS/390 and z/OS Operations28
3.3 Changing Configurations for WebSphere Application Server for OS/390 and z/OS28

3.3.1 Starting, Stopping, Monitoring Address Spaces..29
Using Identifiers, not Jobname ...29
Using Jobname, no Identifiers ..30

3.3.2 Conversation Activation and System Automation ..30
Disable Automation and let Activation Restart Servers ...31
Stop and Restart Servers using System Automation for OS/39032

Chapter 4. System Setup...33
4.1 Sysplex..35
4.2 TCP/IP ..35
4.3 Base WebSphere Application Server for OS/390 and z/OS Setup.................................36

4.3.1 TCP Related Definitions..36

System Automation Development - 4 - March 2003
IBM Boeblingen

4.3.2 HTTP Session Related Definitions..37
4.4 HTTP server..37

Chapter 5. Setup for System Automation for OS/390 ..39
5.1 Sysplex Group ..41
5.2 KEYA, KEYB, KEYC ...42
5.3 Application Groups...43

5.3.1 BBO_PLEX ...43
5.3.2 BBO_DAEMON..44
5.3.3 BBO_J2EE...45
5.3.4 BBO_ASR2 ...46
5.3.5 BBO_BANK..47
5.3.6 BBO_LDAP...47
5.3.7 WWW_WEBSRV ...47

5.4 Applications..48
5.4.1 BBO_CLASS...48
5.4.2 BBODMN..49
5.4.3 BBOSMS ...51
5.4.4 BBONM and BBOIR...51
5.4.5 BBOWTR ..52
5.4.6 BBOASR2 ...53
5.4.7 BBOBANK..54
5.4.8 BBOLDAP and WEBSRV ..54

5.5 Relationships...54
5.5.1 LDAP...55
5.5.2 The IBM HTTP Server ..56
5.5.3 The WebSphere Base Environment...56
5.5.4 J2EE Servers ..57

5.6 Message Automation Table ..58
5.7 Clean-up Program...58
5.8 WebSphere Maintenance ..59

5.8.1 Activation using the SM Scripting API ...60
Tools Samples...60

System Automation Development - 5 - March 2003
IBM Boeblingen

Figures
Figure 1: The WebSphere software Platform ...7
Figure 2: The WebSphere Application Server for OS/390 and z/OS Environment13
Figure 3: WebSphere Application Server for OS/390 and z/OS Environment18
Figure 4: Components of a J2EE Server...20
Figure 5: WebSphere Application Server V4.0.1 for z/OS and OS/390 Plug-in Environment 21
Figure 6: HTTP Transport Handler ..22
Figure 7: WebSphere in a Sysplex..23
Figure 8: Persistent Sessions with IBM HTTP Server ...25
Figure 9: Session Affinity with a distributed HTTP Server ...26
Figure 10: WebSphere on a Sysplex: Sample Configuration ...34
Figure 11: Groups and Applications in a Sysplex Environment ..41
Figure 12: BBO_PLEX WebSphere Base Environment ..43
Figure 13: BBO_J2EE Group for J2EE Servers...45
Figure 14: Relationships ...55

System Automation Development - 6 - March 2003
IBM Boeblingen

Chapter 1. Introduction
Running WebSphere Application Server for OS/390 and z/OS on a z/OS single system or in a
sysplex environment increases the complexity of operating such a system. This is because
WebSphere has a number of prerequisite products that it interfaces with, and also uses a
number of z/OS address spaces itself to deliver high performance Web services.

When you run Internet applications on a system, its availability is exposed to the public. It is
therefore essential to provide a scalable and highly available setup for operations providing
Internet services.

This paper presents a system automation and high availability solution. This provides a
sample of how to set up a fully automated operational environment for all WebSphere
Application Server V4.0.1 for z/OS and OS/390 components and prerequisites and related
products running on a z/OS or OS/390 environment using System Automation for OS/390
V2.2 (SA OS/390). IBM supports this set-up by

• providing this white paper as a guideline

• supplying a sample Policy Database (PDB) over the Internet that contains the SA
OS/390 definitions used to set up the environment described in the white paper. You
can use this PDB as a sample to set up SA OS/390 for your own WebSphere
Application Server for OS/390 and z/OS installation.

• enhancing the message table by adding messages issued by WebSphere and related
products during the start up and termination processing through APAR OA02375

• shipping a common routine that can be used to clean up server address spaces that
WebSphere was unable to terminate during its end processing through the same APAR

1.1 WebSphere Application Server: a High-level Overview
WebSphere is Internet infrastructure software - known as middleware. It enables companies to
develop, deploy and integrate next-generation e-business applications.

System Automation Development - 7 - March 2003
IBM Boeblingen

Figure 1 shows the WebSphere software platform.

 Foundation and Tools

 WebSphere Application Server
 WebSphere Application Server -

Express
 WebSphere Studio

 Reach and User Experience
 WebSphere Commerce
 WebSphere Portal
 WebSphere Portal - Express
 WebSphere Everyplace
 WebSphere Personalization

 Business Integration
 WebSphere MQ
 WebSphere Business Integration
 IBM CrossWorlds
 Adapters and Connectors

Figure 1: The WebSphere software Platform

The foundation of the platform is the IBM WebSphere Application Server, that provides
specialized configurations designed to meet your most critical business needs.

WebSphere Application Server provides a rich, e-business application deployment
environment with a complete set of application services. These include capabilities for
transaction management, security, clustering, performance, availability, connectivity and
scalability.

WebSphere Application Server is a Java-based Web application server, built on open
standards, that helps you deploy and manage Web applications. It is J2EE-compliant and
provides a portable Web deployment platform for Java components, XML and Web services,
that can interact with databases and provide dynamic Web content.

It on workstation platforms, including Windows®, Linux, AIX®, UNIX and z/OS operating
systems.

IBM WebSphere® Application Server V4.0.1 for z/OS® and OS/390® extends the role of
S/390 and zSeries as premier servers for enterprise e-business -- offering superior qualities of
service, scalability, performance, security, and availability. It offers:

• An EJB production environment with Java™ 2 Enterprise Edition (J2EE™)
compliance

• Java Messaging Service (JMS), JavaMail, and Client Container
• Web services equivalent to those in the Version 4 distributed family of servers
• Web services with SOAP and UDDI open standards support

System Automation Development - 8 - March 2003
IBM Boeblingen

• Servlets, JavaServer Pages™ (JSPs), and Enterprise JavaBeans™ (EJBs) in
compliance with J2EE specifications

For more details on WebSphere please refer to
http://www7b.boulder.ibm.com/wsdd/zones/newcomers/

1.2 System Automation for OS/390: a High-level Overview
System Automation for OS/390 plays an important role in building the end-to-end automation
of the IBM autonomic computing initiative. The unique functions of SA OS/390 V2.2 can
help customers with single z/OS or OS/390 systems and Parallel Sysplex clusters to ease
management, may reduce costs, and increase availability. SA OS/390 is designed to automate
I/O, processor, and system operations and includes "canned" automation for IMS, CICS, IBM
Tivoli Workload Scheduler, and DB2.

Working examples are provided for:

• SAP R/3 High-Availability Automation
• High Availability Solution for WebSphere Application Server for z/OS and OS/390.

For Parallel Sysplex application automation SA OS/390 V2 introduced extremely powerful
new concepts, including sysplex-wide grouping of resources, relationships, and goals that
make Parallel Sysplex automation a reality. You can manage any number of stand-alone
systems and clusters from a single point-of-control, even from an easy-to-use Java-based GUI.
In addition, you can move applications and related timers inside a sysplex.

SA OS/390, a NetView application, integrates with Tivoli enterprise solutions such as Tivoli
Enterprise Console (TEC) and Tivoli Business Systems Manager (TBSM). TBSM can act as
status observer for SA-monitored resources.

SA OS/390 primarily deals with starting and stopping applications in accordance with their
inter-relationships. These include relationships of applications to other applications, or being a
component application of an application complex. SA OS/390 also supports the permanent
availability of an application by moving it to another system if there is an unrecoverable
failure.

All applications and systems that you may want to include in automation must be defined to
SA OS/390 in an automation Policy Database. This database contains the objects to be
managed by SA OS/390, and the rules according to that automation of these objects proceeds.

For more details on System Automation for OS/390 please refer to
http://www-1.ibm.com/servers/eserver/zseries/software/sa/

1.3 WebSphere Application Automation and High Availability
Running WebSphere Application Server for OS/390 and z/OS on a z/OS single system or in a
sysplex environment increases the complexity of operating such a system. This is because
WebSphere has a number of prerequisite products that it interfaces with, and also uses a
number of z/OS address spaces itself to deliver high performance Web services.

System Automation Development - 9 - March 2003
IBM Boeblingen

When you run Internet applications on a system, its availability is exposed to the public. It is
therefore essential to provide a highly available setup for operations of this type. The aspects
of high availability in general include:

• continuous operation: this covers the ability to avoid planned outages
o enable administrative work, and maintenance of hardware and software to be

done while the application remains available to end users
o normally accomplished by providing multiple servers, and switching end users

to an available server when one server is unavailable
• high availability: this is the ability to avoid unplanned outages by eliminating single

points of failure
• the ability to minimize the effect of an unplanned outage by masking the outage from

end users
• continuous availability: this combines the characteristics of high availability and

continuous operation to get as close as possible to 24x7x365.

In a monoplex environment your options to react to outages are limited because you do not
have spare images that you could use for back up in case of failures. But you can still use SA
OS/390 to automate an environment with WebSphere Application Server for OS/390 and
z/OS focusing on:

• ease of operations support:
o start all prerequisites and components of WebSphere in the right order
o stop all components of WebSphere in the right order
o show status of all prerequisites and components

• availability support reducing downtimes:
o monitor prerequisites and components
o automatically restart failing components.

In addition to the monoplex advantages, SA OS/390 can increase availability in a sysplex
environment by

• ensuring that WebSphere Application Servers run on a predefined number of images
in the sysplex

• moving all or parts of WebSphere Application Server for OS/390 and z/OS from a
failing image to another image when restart of vital component fails

• cleaning up failed system.

It is currently necessary to shut down and restart a J2EE server when you change its
configuration. WebSphere Application Server will automatically shut down and restart all
running J2EE servers with a changed configuration when the conversation containing these
changes is activated.

This prevents a set up that fully supports continuous operations even if you run in a sysplex
environment.

With SA OS/390 enabled for WebSphere Application Server you can minimize downtimes. It
offers facilities to allow that maintenance for WebSphere Application Server for OS/390 and

System Automation Development - 10 - March 2003
IBM Boeblingen

z/OS can safely be performed by terminating WebSphere Application servers and making
them available again as quickly as possible. This is discussed in more detail in 2.1
“Conversation Activation and System Automation” on page 30.

System Automation Development - 11 - March 2003
IBM Boeblingen

Chapter 2. The Environment for WebSphere Application Server
for OS/390 and z/OS

In this chapter we give the software prerequisites for WebSphere Application Server for
OS/390 and z/OS. We also give an overview of the dependencies between these z/OS
components and products, and the WebSphere Application Server. We tell you how the
WebSphere Application Server uses these components. The parts that make up the
WebSphere Application Server for OS/390 and z/OS itself are shown, and their functions are
explained.

2.1 Software products
Base products for WebSphere Application Server for OS/390 and z/OS automation are, of
course, WebSphere Application Server for OS/390 and z/OS V4.0.1 and System Automation
for OS/390 V2.2. In section 2.1.1 Mandatory Requisites, we list the products that are required
to run the base products. In 0 Functional Requisites on page 6 we list products that are not
strictly required but that we used in the set-up we describe in this paper.

2.1.1 Prerequisite Products
A mandatory requisite is defined as a product that is required without exception; the presented
solution will not install or will not function unless these requisites are met.
A functional requisite is defined as a product that is not required for the successful installation
of this solution, but is needed at run time for a specific function to work.
Note: Some PTFs have to be applied to different software components. For details please
check the Program Directories of WebSphere Application Server V4.0.1 for z/OS and OS/390
and Tivoli System Automation for OS/390 Version 2 Release 2.

Mandatory Requisites
The following products are required:

• WebSphere Application Server V4.0.1 for z/OS and OS/390
• Tivoli System Automation for OS/390 Version 2 Release 2 (with APAR OA02375 for

WebSphere Automation enhancements)
and their prerequisite operating system:

• OS/390 Version 2 Release 10
or

• z/OS Version 1 Release 1 or higher
In addition the following products or features are required:

• Tivoli NetView Release 4
• OS/390 R10 Security Server or z/OS R1 Secure Way Security Server
• DB2 Version 7
• IBM Developer Kit for OS/390 Java 2 Technology Edition

System Automation Development - 12 - March 2003
IBM Boeblingen

Functional Requisites
The list includes prerequisites for System Automation for OS/390 and for WebSphere
Application Server for OS/390 and z/OS.

• IBM HTTP Server V5.3
• OS/390 V2R8 (or higher) SecureWay Communications Server IP or a functionally

equivalent product for Java networking classes

2.2 Basic Dependencies
Figure 2: The WebSphere Application Server for OS/390 and z/OS Environment” on page 13
shows the main software components required to run a WebSphere Application Server for
OS/390 and z/OS environment.

It also shows the sequence in that these components parts should be started in a z/OS image.

The use of the following z/OS components by the WebSphere Application Server provides a
stable platform, with built-in recovery and security:

• TCP/IP as the communications vehicle
• Unix Systems Services (USS) platform support with HFS for file support
• LDAP and DB2 for directory services and database support
• WLM for work load management
• RACF for security
• RRS for recovery

Note that WebSphere Application Server for OS/390 and z/OS consists itself of a base
environment that provides the infrastructure for the J2EE and MOFW servers that control and
run J2EE web applications or CORBA applications.

System Automation Development - 13 - March 2003
IBM Boeblingen

VTAMVTAM

RRSRRS DB2DB2
LDAP
(others
possible

LDAP
(others
possible

TCP/IPTCP/IP

Required
Web
Sphere
Daemon

Web
Sphere
Daemon

System
Management
System
Management

NamingNaming

Interface
Repository
Interface
Repository

J2EE ServerJ2EE Server MOFW ServerMOFW Server

WAS for z/OS

HTTP
Server
HTTP
Server

JESJES

Optional

WLMWLMWLMWLM USSUSS RACFRACF

Figure 2: The WebSphere Application Server for OS/390 and z/OS Environment

2.2.1 How WebSphere Application Server Uses z/OS Components
This section provides some details of how the WebSphere Application Server for OS/390 and
z/OS uses functions offered by z/OS components.

z/OS Unix Systems Services (USS)
z/OS Unix Systems Services provides services needed to run the WebSphere Application
Server environment and the Java applications that run within it. It also provides the
Hierarchical File System used by the WebSphere Application Server.

Hierarchical File System (HFS)
HFS is used to store Java code, static files, and the configuration files needed to run the
application servers. In a sysplex configuration all the systems that run WebSphere need shared
access to the WebSphere configuration HFS. The recommendation is to use shared HFS.

Workload Manager (WLM)
The Workload Manager functionality is provided by the z/OS operating system. It gives
increased flexibility to WebSphere when running on the zSeries platform.

With workload management, you define performance goals and assign a business importance
to each goal. The system decides how much resource, such as CPU and storage, should be

System Automation Development - 14 - March 2003
IBM Boeblingen

allocated to meet the goal. Workload Manager will constantly monitor the system and adapt
processing to meet the goals that you set.

WebSphere requires that WLM is running in goal mode and that Application Environments
are defined for its servers. To balance work on the system WebSphere uses the following
services of the Workload Manager:

• Queuing and address space management: to dispatch work requests from the
WebSphere Application Server for z/OS Control Region to one or more WebSphere
Application Server for z/OS

• Prioritizing work to meet performance goals: WebSphere delegates the responsibility
for starting and stopping Server Regions to the WLM.

In addition we used WLM in connection with the Sysplex Distributor.

• Providing utilization information: to enable the Sysplex Distributor to route incoming
service requests to the most suitable system.

RACF
WebSphere security is based on RACF (or any other external security server implementing
the SAF interface).

All entities or principals, internally or externally, have to be authenticated implicitly or
explicitly. This includes Control and Server Regions running under WebSphere. Therefore a
number of IDs have to be defined in RACF and many authorizations in several RACF classes
have to be granted (such as association between started task procedures and user IDs via the
STARTED class, access to servers via the CBIND class, access to DB2 via the DSNR class
etc.).

For WebSphere running in a sysplex you should ensure that the RACF database is shared
between the systems in the sysplex, because these permissions must be consistent across the
sysplex.

LDAP
The z/OS Lightweight Directory Access Protocol (LDAP) server is part of the SecureWay
Security Server for z/OS.

LDAP directory services provide an easy way to store, update, and retrieve directory
information in a central location for the Java Naming and Directory Interface (JNDI) and
CORBA naming and interface repository services. The contents of the directory are stored in a
DB2 table.

LDAP is used by both the “system servers” -- Systems Management Server (SMS) and
Interface Repository (IR) -- and the J2EE servers, but in different ways. SMS and IR regions
include DLL code to directly access naming information in the LDAP database. J2EE servers
access the LDAP database through the LDAP server with the Java Naming Directory Interface
(JNDI).

System Automation Development - 15 - March 2003
IBM Boeblingen

DB2
WebSphere V4 requires the use of DB2 UDB for OS/390 and z/OS V7.1 or later for the
following purposes:

• WebSphere configuration and session control information is held in DB2 databases. The
WebSphere control information consists of about 60 tables in two databases:
BBOMDB01, BBOJDB01

• DB2 is the default database for the LDAP server
• DB2 is used to store persistent session data

In addition DB2 user data can be accessed by Java applications through JDBC.

For WebSphere running in a sysplex you should use a shared DB2 to make the data consistent
across the sysplex.

Resource Recovery Services (RRS)
Resource Recovery Services (RRS) consists of the protocols and program interfaces that
allow an application program to make consistent changes to multiple protected resources.

For CORBA applications the Object Transaction Service (OTS) manages transactions and
provides the interface to z/OS RRS, that coordinates resource recovery across several
Resource Managers. OTS requires RRS.

The IMS, CICS and DB2 Resource Managers have also implemented an interface to RRS so
that, in the case of a WebSphere client application, resource coordination between the various
Resource Managers can be driven by RRS.

TCP/IP
TCP/IP is part of the z/OS Communications Server.

The TCP/IP protocol is used as the basis for communication between the clients and the
HTTP server. It is also used to communicate between other portions of the WebSphere
Application Server environment, such the System Management Server and the System
Management User Interface.

We make use of the Virtual IP Addressing (VIPA) and Sysplex Distributor functionality
offered by TCP/IP to achieve high availability and to utilize z/OS workload balancing.

Virtual IP Addressing
With VIPA, you define a virtual IP address that does not correspond to any physical
attachment or interface. Communication Server for z/OS IP then takes care that the VIPA
address appears to the IP network as if it was a separate sub-network. A client selecting the
VIPA address to contact its server will have packets routed to the VIPA via any one of the
available real host interfaces.

System Automation Development - 16 - March 2003
IBM Boeblingen

Communication Server extends the VIPA concept to allow for the recovery of failed system
images or entire TCP/IP stacks:

• The automatic VIPA takeover function allows you to define the same VIPA address on
multiple TCP/IP stacks in a sysplex. One stack is defined as the primary or owning
stack and the others are defined as secondary or backup stacks for the VIPA. Only the
primary one is made known to the IP network. If the owning stack fails, then one of the
secondary stacks takes its place and assumes ownership of the VIPA In this case,
applications associated with these DVIPAs are active on the backup systems, thereby
providing a hot standby for the services.

• Dynamic VIPA (for an application instance) allows an application to register to the
TCP/IP stack with its own VIPA address. This lets the application server move around
the sysplex images without affecting the clients. In this way, the application can
dynamically activate the VIPA on the system image it wishes to host the application.
Because the application instance is only active on one image in the sysplex at a time, the
other images provide a cold standby of the service.

These VIPA enhancements are enabled by the use of XCF to communicate between the
TCP/IP stacks.

Sysplex Distributor
Sysplex Distributor is the strategic IBM solution for connection workload balancing in the
S/390 or zSeries sysplex.

The concept is that a cluster of server instances is represented by a single IP address. Because
Sysplex Distributor is built on Dynamic VIPAs, this is called a Distributed VIPA (DVIPA).
Basically, it is defined on a primary TCP/IP stack and on backup stacks as appropriate. In
addition, the primary stack contains a configuration statement that identifies the DVIPA as
Distributed, the ports that an application will use (between one and four ports per Distributed
DVIPA), and the target application hosting TCP/IP stacks in the sysplex.

“All present and future stacks” may be specified as the target application hosting stacks, or
targets may be limited to selected specific TCP/IP stacks. This information is distributed
automatically to all candidate target TCP/IP stacks, and, on all candidate target stacks, the
same IP address is activated as a “hidden” DVIPA. It is hidden in the sense that the target-
application hosting stacks do not advertise its presence via their dynamic routing daemons, so
its presence on those stacks is not known to the outside world.

The Sysplex Distributor routing stack advertises ownership of the DVIPA to the world, and
waits for connection requests to be sent to it.

The routing stack will not send a TCP connection to a target application host until there is an
actual application ready to receive work. Because the application-hosting target stacks are
aware of the port numbers associated with a Distributed DVIPA, the target stack notifies the
routing stack when an application is bound to one of these ports, and accepts connections to
the Distributed DVIPA. The routing stack will send future work (TCP connections) for that
application (port) to that target stack. If the server should close its listening socket, or end

System Automation Development - 17 - March 2003
IBM Boeblingen

abnormally, the hosting target stack is immediately aware of this, and notifies the routing
stack.

Should a target stack suffer an outage, connections to any server instances on that target stack
are of course lost, but other server instances are still available for the affected clients when
they attempt to reconnect to the server via the Distributed DVIPA. The routing stack will
immediately send a connection reset and the reconnection request will go to one of the
remaining functioning instances. New connection requests will not be routed to
a failed target stack or LPAR.

To cover the case of a failure of the routing stack itself the Distributed DVIPA should be
configured with backup routing stacks. If the routing stack should suffer an outage, the
backup routing stack will take over global responsibility for the Distributed DVIPA, and each
target stack will be aware of the takeover. This is all handled by the collaborating Sysplex
Distributor TCP/IP stacks, and client and server applications themselves are entirely unaware
of the failure of the former routing stack.

HTTP Server
The HTTP Server is primarily used to serve static pages. The HTTP Server allows you to
provide simple Web serving and an e-business presence on the Internet, but the technology is
limited.

The HTTP Server also provides an environment for the WebSphere Application Server Plugin.
This plugin environment expands your ability to do business on the Internet. For details see
the discussion of the WebSphere Plugin environment on page 21.

2.2.2 The Structure of WebSphere Application Server for OS/390 and z/OS
In this section, we look first at WebSphere Application Server for OS/390 and z/OS in a
monoplex environment. For sysplex considerations see section 2.3 “WebSphere Application
Server in a Sysplex Environment”on page 23.

The WebSphere Application Server for OS/390 and z/OS environment consists of a base
environment that provides support for application servers, and the application servers
themselves.

System Automation Development - 18 - March 2003
IBM Boeblingen

Figure 3 shows the structure of a WebSphere Application Server for OS/390 and z/OS
environment:

Figure 3: WebSphere Application Server for OS/390 and z/OS Environment

Each of the subcomponents in the above figure is a separate address space.

The Base Environment
The base environment consists of the Daemon, Systems Management (SMS), Naming and
Interface Repository (IR) servers.

The Daemon Server
The Daemon brings up the WebSphere Application Server environment. It exists as a control
region only within a single z/OS address space. It is started via a procedure. It starts the other
control regions of the base environment (Systems Management, Naming and IR).

Systems Management Server
The purpose of the SMS is to allow users to add new applications and control the
configuration of the application server environment. This is accomplished by connecting a
Systems Management Extended User Interface (SMEUI) console to the SMS server via a
TCP/IP connection.

The SMS consists of a Control Region and multiple Server Regions, each in a separate
address space that can be started by WLM if needed.

System Automation Development - 19 - March 2003
IBM Boeblingen

Naming Server
The Naming server is used to locate Java objects, such as EJBs, and works in conjunction
with the IR server. This provides the operational support for both the J2EE and CORBA
(MOFW) servers. It allows applications, EJBs, and CORBA Business Objects to locate and
communicate with each other.

Like the SMS, the Naming Server consists of a control region and multiple server regions that
can be started by WLM if needed.

Interface Repository Server
The IR server manages the inventory of CORBA business object interfaces. The IR server
also consists of a control region and multiple server regions. It is required to run on the
bootstrap system in a sysplex (the first system where you install WebSphere).

Systems Management Extended User Interface (SMEUI)
During the installation of the WebSphere Application Server Environment you also install the
SMEUI application on a PC. This graphical user interface allows you to view and update the
current configuration of your application servers.

Application Server Environment
There are two types of application servers that run in this environment: the J2EE application
server and the MOFW (CORBA) server.

J2EE application servers are based on the Java language only and allow you to run J2EE
components, such as servlets or EJBs. The CORBA application server is used for serving
CORBA Business Objects that can be written in a number of different languages for use on
different platforms. Both of these technologies can talk to each other in a WebSphere
Application Server for OS/390 and z/OS environment.

J2EE Server
The J2EE server of the WebSphere Application Server for z/OS and OS/390 provides a highly
available, secure, reliable, and scalable run-time environment for Java 2 Enterprise Edition
(J2EE) applications.

A J2EE server consists of one Control Region and one or more Server Regions. Additional
Server Regions are started by WLM if required by the J2EE application workload.

The J2EE Server supports both Enterprise JavaBeans and Web components such as JSPs and
Servlets that conform to the J2EE specifications and packaging standards published by Sun
Microsystems.

System Automation Development - 20 - March 2003
IBM Boeblingen

These two types of J2EE application components run on a WebSphere for z/OS J2EE server,
and can use

• the application programming interfaces (APIs) and services that the Java 2 Standard
Edition (J2SE) Software Development Kit (SDK) V1.3 provides, and

• enterprise services such as Java Database Connectivity (JDBC), Java Naming and
Directory Interface (JNDI), and the Java Transaction Service (JTS) and API (JTA).

The J2EE specifications dictate that APIs and services each type of application component
may use, and the environment in that they must run. Although both Enterprise beans and Web
applications may run in a single WebSphere for z/OS J2EE server, each component actually
runs in a separate type of container within the J2EE server. Enterprise beans run in the EJB
container, and Web applications run in a Web container. These two containers in the
WebSphere for z/OS J2EE server conform to the J2EE specifications for run-time
environments. Figure 4 below shows the components of a J2EE Server.

Control Region

Server Regions (1-n)

Web Container

JSPs

Servlets

EJB Container

Enterprise
Java
Beans

Web Container

JSPs

Servlets

EJB Container

Enterprise
Java
Beans

Web Container

JSPs

Servlets

EJB Container

Enterprise
Java
Beans

Figure 4: Components of a J2EE Server

MOFW (CORBA) Server
WebSphere for z/OS also provides a Managed Object Framework (MOFW) Server that
provides a run-time environment for CORBA-compliant components.

System Automation Development - 21 - March 2003
IBM Boeblingen

We did not implement an MOFW Server in our installation and will therefore not discuss it
further.

WebSphere Plugin environment
The WebSphere Plugin is used primarily to route servlet and JSP requests to the WebSphere
Application Server. It is shipped WebSphere Application Server V4.0.1 for z/OS and OS/390,
but it is code that runs within the IBM HTTP Server.

Starting with WebSphere 4.0.1 you have the choice of whether you want to run your servlets
in the WebSphere Plugin (locally), or to run them remotely in a Web container residing in the
same address space as your EJBs.

The ability to run servlets locally provides you with a means to migrate to WebSphere 4.0.1
using your existing environment with minimum impact. The ability to run servlets remotely in
a Web container allows you to minimize the overhead when talking to EJBs. You can keep all
the pieces of your application within a single z/OS address space. This is the only option we
consider in the rest of this document.
Figure 5 shows the setup involved with this configuration.

Backend
System

(CICS Server,
IMS Server,

DB2 Server ...)

J2EE Server

Web
Container

EJB
Container

HTMLHTML

JSPJSP

ServletServlet

Entity Entity
BeanBean

Session Session
BeanBean

HTTP Server

WAS
Plugin

HTTP request

HTTP response

Client Browser

Figure 5: WebSphere Application Server V4.0.1 for z/OS and OS/390 Plug-in Environment

System Automation Development - 22 - March 2003
IBM Boeblingen

Based on the context root of an HTTP request coming from a browser the request is passed
from the IBM HTTP server to the WebSphere Application Server V4 Plugin. The plugin
routes the request to the J2EE server’s Web container where static or dynamic content can be
composed and passed back in HTML format to the HTTP server via the plugin. If the request
invokes a servlet that in turn invokes EJBs these are running in the J2EE Servers EJB
container.

HTTP Transport Handler
The HTTP Transport Handler runs as part of the J2EE Server’s Control region. This
component can handle HTTP(S) requests from clients.

Control
Region

Server Regions (1-n)
Web Container

JSPs

Servlets

EJB Container

Enterprise
Java
Beans

Web Container

JSPs

Servlets

EJB Container

Enterprise
Java
Beans

Web Container

JSPs

Servlets

EJB Container

Enterprise
Java
Beans

J2EE Server

Client Browser

HTTPS
Transport
Handler

HTTP
Transport
Handler

HTTP request

HTTP
response

Figure 6: HTTP Transport Handler

The protocol handler can speed up HTTP processing significantly, although, because it is not
designed to deal with browser clients, it cannot handle the differences between browsers. It
assumes that there is an HTTP server in front of it. In our case we included the IBM HTTP
Server for z/OS in our setup and therefore do not cover in the rest of this paper the case where
the Transport Handler is used to communicate with client browsers directly or through non-
z/OS HTTP servers.

System Automation Development - 23 - March 2003
IBM Boeblingen

2.3 WebSphere Application Server in a Sysplex Environment
In a sysplex environment some (but not necessarily all) z/OS images can contain WebSphere
Application Server for OS/390 and z/OS components. On each individual image we speak of a
server instance, a server is made up of all the server instances on the z/OS images. Thus we
have a WebSphere Application Server on the sysplex made up of several WebSphere
Application Server instances. The WebSphere Application Server consists of a Daemon
Server with Daemon Server instances, a Naming Server with Naming Server instances, an IR
server with IR Server instances. Similarly J2EE and MOFW servers are made up out of J2EE
and MOFW server instances.

Daemon

Server
RegionServer

RegionControl
Region
System

Management

Server
RegionServer

RegionControl
Region
Naming

Server
RegionServer

RegionControl
Region

IR

WAS
Server

Instance

Server
RegionServer

RegionControl
Region
J2EE

Server

J2EE Server
Instance

Server
RegionServer

RegionControl
Region
MOFW
Server

MOFW Server
Instancez/OS

image

Daemon

Server
RegionServer

RegionControl
Region
System

Management

Server
RegionServer

RegionControl
Region
Naming

Server
RegionServer
RegionControl

Region
IR

WAS
Server

Instance

Server
RegionServer

RegionControl
Region
J2EE

Server

J2EE Server
Instance

Server
RegionServer

RegionControl
Region
MOFW
Server

MOFW Server
Instancez/OS

image

Server
RegionServer

RegionControl
Region
J2EE

Server

J2EE Server
Instance

Server
RegionServer

RegionControl
Region
MOFW
Server

MOFW Server
Instancez/OS

image

Sysplex
WAS Server J2EE Server MOFW Server

Daemon

Server
RegionServer

RegionControl
Region
System

Management

Server
RegionServer

RegionControl
Region
Naming

Server
RegionServer

RegionControl
Region

IR

WAS
Server

Instance

Figure 7: WebSphere in a Sysplex

A sysplex cluster is configured into the WebSphere for z/OS namespace as a host and is
represented by a single Daemon IP Name. Because of this, systems and applications outside
the sysplex treat the sysplex as a single host. Functions in WebSphere for z/OS route work
through the sysplex according to the availability of server instances and to workload balancing
rules, in cooperation with subsystems in z/OS or OS/390, such as TCP/IP, the domain name
server (DNS), and workload management.

System Automation Development - 24 - March 2003
IBM Boeblingen

On each image on that a J2EE or MOFW server instance runs an instance of the Daemon and
of System Management is required. Naming instances and IR instances are not strictly
required on each image of a sysplex where you want to run J2EE or MOFW servers, but it is
recommended to have them running on all images.

Of course multiple J2EE Servers or MOFW servers can run under the control of one
WebSphere Application Server on a sysplex.

2.4 Options for WebSphere Application Server for OS/390 and z/OS
There are various options for setting up your environment for WebSphere Application Server
for OS/390 and z/OS. One of the first choices is whether you include an HTTP server in your
z/OS setup, or use an external HTTP server (on Linux, Unix or Windows platforms). Because
this choice impacts how you can implement HTTP sessions, we will discuss the options you
have for HTTP sessions first.
.

2.4.1 HTTP Sessions
When users dynamically collect data as they move through a Web application, the application
needs a mechanism to hold the user's state information over a period of time. However, HTTP
treats each user request as a discrete, independent interaction.

The Java servlet specification provides a mechanism, known as a session, for servlet
applications to maintain state information. This mechanism allows a Web application
developer to maintain all user state information at the host, while passing minimal information
back to the user via cookies or URL rewrite. The state information associated with a series of
client requests is represented as an HTTP session object and identified by a session ID. The
session manager module that is part of each servlet engine is responsible for managing HTTP
sessions, providing storage for session data, allocating session IDs, and tracking the session
ID associated with each client request, through the use of cookies or URL rewriting
techniques.

There are two ways that this can be implemented: session affinity or persistent sessions.

Session Affinity
With session affinity the session information is held just in the memory of the servlet engine
that started the session.

Session affinity means that when an application starts a session the session information is
stored in a session object that resides in the specific JVM where the session is started. All
further requests belonging to this session also need to run in this specific JVM. You must
ensure that all requests during this session reach this specific servlet engine.

Persistent Sessions
With persistent sessions, the session information is stored in a shared database, and each
servlet engine has access to it.

System Automation Development - 25 - March 2003
IBM Boeblingen

Besides storing session objects in memory when you enable persistent session management
WebSphere places session objects in a predefined database. All information stored in a
persistent session database must be serialized. As a result, all the objects held by a session
must implement java.io.Serializable in this case.

2.4.2 Using the IBM HTTP Server for z/OS
When you use the IBM HTTP server for z/OS, you also use the WebSphere Application
Server for z/OS plugin to route requests from the HTTP server to the application server.

This has the advantage that you have the entire infrastructure required to run your Web
applications on z/OS where you can control and automate it more easily. In addition the
workload can be distributed across all z/OS images using the information available to WLM
to choose the optimal system.

There is, however, one disadvantage: The WebSphere Application Server for z/OS plugin
does not currently support session affinity. You therefore have to implement persistent
sessions in this setup.

Figure 8 gives an overview of the flow of requests from browser to Web application in such a
setup.

Client

z/OS
CR

SR

SR

SR

Sysplex
Distributor

DVIPA

z/OS
CR

SR

SR

SR

Sysplex
Distributor

DVIPA

SYSPLEX

WLM

session
data1st request

DVIPA driven

2nd request
DVIPA driven

all request
WLM driven HTTP Server

for z/OS with
WebSphere

Plugin

 HTTP Server
for z/OS with
WebSphere

Plugin

first Http request in session
alternative for first Http request in session
subsequent Http request in session
alternative for subsequent Http request in session

J2EE Server

all
requests

WLM
workload

driven

Figure 8: Persistent Sessions with IBM HTTP Server

As you can see, subsequent requests can end up being executed in any server region belonging
to the J2EE Server. Since session data is stored in a shared DB2 database, it is accessible
from any J2EE server region. You can also see that the workload is distributed at a HTTP
request and an Application Server instance level. In both cases we can make use of the
information available to WLM about sysplex load and distribute accordingly.

System Automation Development - 26 - March 2003
IBM Boeblingen

2.4.3 Using an HTTP Server for Distributed Platforms
If you use IBM HTTP Server (IHS) based on the Apache HTTP server on distributed
platforms, you can use the WebSphere Advanced Edition Web server plugin available for the
respective distributed platform. This plugin can connect directly to the HTTP Transport
Handler of an application server on WebSphere Application Server for z/OS.

The main value of using the WebSphere Advanced Edition Web server plugin is that it can
honor session affinity to a specific application server control region on z/OS. Within the
correct control region the WebSphere Application Server honors session affinity to route the
request to the right server region.

Figure 9 shows the request flow when you implement session affinity.

first Http
request in session

alternative for first Http
request in session

subsequent Http
request in session
alternative for subsequent Http
request in session

z/OS

SYSPLEX

z/OS

CR

SR

SR

SR

WLM

1st request
WLM

workload
driven

CR
SR

SR
SR

session
data

2nd
request
cookie

determines
wlm id

Sysplex
Distributor

DVIPA

Sysplex
Distributor

DVIPA

1st request
WLM driven

2nd request
cookie
driven

 Edge
Server

Network
Dispatcher
(Backup)

1st request
DVIPA driven

non z/OS HTTP
Server with
WebSphere

Plugin

non z/OS HTTP
Server with
WebSphere

Plugin

Client

 Edge
Server

Network
Dispatcher
(Primary)

round
robin

J2EE Server

Figure 9: Session Affinity with a distributed HTTP Server

Normally it is not sufficient to move just the HTTP Server to a non-z/OS platform. To
implement a high availability solution and enable scalability and workload distribution, you
will also need a product such as the Network Dispatcher on the distributed platforms.

Note that the Network Dispatcher does not directly have access to information about the
workload on your sysplex. It can only distribute to various HTTP Servers based only on
HTTP workload. You should also note that workload distribution with the sysplex can only be
done for the first request within an HTTP session. From then on the z/OS image with the
sysplex and the J2EE server region must remain bound to the session, and can not be changed
to better distribute system utilization.

System Automation Development - 27 - March 2003
IBM Boeblingen

Chapter 3. High Availability for WebSphere Application Server
for OS/390 and z/OS

In this chapter we briefly discuss the basic high availability considerations for WebSphere
Application Server for OS/390 and z/OS and the role System Automation for OS/390 can play
to support it.

3.1 WebSphere Application Server for OS/390 and z/OS
Administration

It is necessary to perform administration actions for a WebSphere Application Server for
OS/390 and z/OS when you want to:

• add new application servers or resources
• change parameters for the existing environment, that is manage environment variables
• install new applications into an application server after the applications were assembled

and deployed.

WebSphere Application Server for OS/390 and z/OS keeps the complete setup information of
its configuration in so called conversations.

After initial installation and customization, WebSphere for z/OS manages environment data
through the Administration application and writes the environmental data into the system
management database. When you activate a conversation, the data is also written to HFS files.

To install an application on WebSphere for z/OS, you must also use the WebSphere for z/OS
Administration application. During the application installation process, deployment
descriptors are customized for the WebSphere for z/OS environment, and application
components are loaded into the WebSphere for z/OS application server.

There are two interfaces to administer a WebSphere Application Server for OS/390 and z/OS:

1. The WebSphere for z/OS Administration application that runs on your Windows
workstation and communicates with the System Management server, that is the ‘System
Management Enhanced User Interface’ (SMEUI)

2. The SM Scripting API that provides the same functions as the SMEUI. REXX is
currently the only script language that is supported by the SM Scripting API.

WebSphere Application Server for OS/390 and z/OS shuts down and restarts all J2EE servers
with changed configuration when the conversation containing these changes is activated. The
impact this has on availability and how this needs to be reflected with respect to System
Automation for OS/390 is discussed in 3.3 “Changing Configurations for WebSphere
Application Server for OS/390 and z/OS” on page 28.

System Automation Development - 28 - March 2003
IBM Boeblingen

3.2 WebSphere Application Server for OS/390 and z/OS Operations
Through WebSphere for z/OS operations you can manage WebSphere for z/OS servers and
server instances. This includes actions to:

• display the status of all server instances
• stop application servers and server instances
• cancel application servers and server instances
• restart servers and server instances.

WebSphere for z/OS operations can be performed from:

• a z/OS or OS/390 MVS console
• the Systems Management Enhanced User Interface on Windows
• TSO or RRS panels (for some operations)

If you use SA OS/390 to automate WebSphere, it will perform these tasks for you. There is
normally no need , for example, for you to start, stop or restart servers. When, in exceptional
cases, you have to initiate any of these tasks manually, you should use SA OS/390 facilities to
do so. You may get confusing results if, for example, you use the SMEUI to stop or start
applications servers that are controlled by SA OS/390.

3.3 Changing Configurations for WebSphere Application Server for
OS/390 and z/OS

When you want to change parameters for a J2EE Server or install applications on a J2EE
server, you have to do this by defining the changes in a new conversation through the SMEUI
or the Administration API and, finally, activate the conversation. For your changes to be
reflected in the running servers, they need to be stopped and restarted. This is done
automatically during the activation step for a conversation. If a server cannot be stopped
during activation, activation fails.

When System Automation for OS/390 controls WebSphere operations, it is, as a rule,
responsible for monitoring servers and restarting them if they end normally or abnormally.
This may lead to conflicts with the activation process.

There are two options for avoiding a conflict:

1. To let activation restart servers, perform the following steps
a) Switch off automation for all J2EE servers
b) Activate the conversation; all running servers will be stopped and restarted through

activation

c) Switch on automation after all servers have restarted
2. To use SA OS/390 to restart servers perform the following steps:

a) Before you activate a conversation stop all J2EE Servers through SA /390
b) Activate the conversation; no server restart will be triggered through activation since

no servers are running

System Automation Development - 29 - March 2003
IBM Boeblingen

c) After activation is complete restart all J2EE servers through SA OS/390

The advantages and disadvantages of each approach are discussed below in 3.3.2
“Conversation Activation and System Automation” on page 30. First we outline the
operational alternatives and their consequences on the SA OS/390 definitions.

3.3.1 Starting, Stopping, Monitoring Address Spaces
Four items play a role when you start, stop and monitor WebSphere control and server regions
in sysplex:

1. the member name --
this is the name of the library member containing the catalogued procedure that is used
to start the server. This is a required parameter when you start a task.
2. the jobname --
this is the name that will be assigned to the job. This is an optional parameter when you
start a task. If the source JCL in the member is a procedure and you omit the
JOBNAME keyword, the member name will be assigned as the job name.
3. the identifier used in the start command --
this is optional; it is not used as a replacement for the jobname. You can not specify
both jobname and identifier. If the identifier is specified, it is used in the DISPLAY,
MODIFY, RESET, CANCEL, FORCE, and STOP commands for the started tasks
4. the server name --
this is a WebSphere Application Server for OS/390 and z/OS specific parameter that
tells the WebSphere which server instance is to be started.

Using Identifiers, not Jobname
In the WebSphere manuals it is recommended that you use the server name also as an
identifier, and start the control regions with commands in the form

S ControlRegionProcName.server-instance,SRVNAME=’ server-instance ’

For example to start the daemon on the first system, issue

S BBODMN.DAEMON01,SRVNAME=’DAEMON01’

To start it on the second system, issue

S BBODMN.DAEMON02,SRVNAME=’DAEMON02’

To start an application server, issue

S BBOASR2.BBOASR2A,SRVNAME=’BBOASR2A'

Stop commands that correspond to these start commands are
 P ControlRegionProcName.server-instance or simply P server-instance

Cancel commands are analogous. The jobname in this case is the ControlRegionProcName.

System Automation Development - 30 - March 2003
IBM Boeblingen

Since SA OS/390 requires unique jobnames for the resources that it manages, you cannot start
two servers on the same system using the same procedure but different server-instance names.
You could, for example, attempt to start two application servers (APPSRV1 and APPSRV2)
using the same procedure (J2EEPROC) within the same system by issuing

S J2EEPROC.APPSRV1,SRVNAME=’APPSRV1’ and
S J2EEPROC.APPSRV1,SRVNAME=’APPSRV1’

You would not, however, be able to automate these two servers with SA OS/390.

WebSphere Application Server for OS/390 and z/OS Administration uses this form of
commands when it starts and stops servers.

Using Jobname, no Identifiers
In the publication “MVS System Commands” IBM recommends that you use the JOBNAME
parameter rather than an identifier. If you use the JOBNAME parameter, SMF records,
messages, and automated programs can reflect or react to job status; identifiers can only be
viewed at a console.

With the JOBNAME parameter you start the control regions with commands in the form

S ControlRegionProcName,JOBNAME=server-instance,SRVNAME=’ server-instance ’

For example to start the daemon on the first system, issue

S BBODMN,JOBNAME=DAEMON01,SRVNAME=’DAEMON01’

To start it on the second system, issue

S BBODMN,JOBNAME=DAEMON02,SRVNAME=’DAEMON02’

To start an application server, issue

S BBOASR2,JOBNAME=BBOASR2A,SRVNAME=’BBOASR2A'

Stop commands that correspond to these start commands use the jobname (that we set to the
name of the server-instance):
 P server-instance

Cancel command are analogous.The jobname in this case is the name of the server-instance.

SA OS/390 can automatically create start, stop and cancel commands from the information it
has or gets when a server is started or ends normally or abnormally.

3.3.2 Conversation Activation and System Automation
As mentioned in 3.2 “WebSphere Application Server for OS/390 and z/OS Administration”
on page 27, WebSphere Application Server for OS/390 and z/OS Administration shuts down
and restarts all J2EE servers for which the configuration has been changed when the
conversation containing these changes is activated.

When you automate WebSphere operations one way of achieving continuous availability is to
automatically restart WebSphere components as fast as possible if they end normally or
abnormally. Stopping severs that are controlled by an automation product will usually cause
the automation product to immediately restart the servers.

System Automation Development - 31 - March 2003
IBM Boeblingen

If the automatic restart ends before the attempt by WebSphere Application Server
Administration to restart, then this may prevent WebSphere Administration from considering
activation to have successfully finished. (You may see the message: "Activate failed because
server cannot be stopped." and the conversation state will not have changed to activated.)

If, however, the restart issued by WebSphere Application Server Administration is successful
before the one initiated by the automation product the automatic restart will fail. This causes
automation to get confusing messages: The ones coming from Administration’s restart would
say that the servers are up; the ones coming from automatic restart would say that restart
failed. System automation would in such a case not set the actual state of the respective server
to AVAILABLE and thus indicate that manual intervention is required.

To avoid this you can either

• temporarily disable automation and let activation restart servers or
• use SA OS/390 to stop servers before activation and restart them after activation has

finished.

In both cases there is a maintenance interval period during that not all WebSphere Application
Server for OS/390 and z/OS services are available.

Operations during such a maintenance interval can be automated. System Automation for
OS/390 allows you to define a service period. Thus it provides the ability to make stop and
start requests at specified points in time independently of human intervention. An operator can
temporarily modify a service period if manual control is desired. The activities to be
performed during this interval can be initiated manually or you can use OPC Automation.

OPC is now called Tivoli Workload Scheduler (TWS). OPC Automation is an extension of
SA OS/390 that capitalizes on the strengths of NetView, SA OS/390, and TWSC by providing
the ability to greatly expand job execution, scheduling, monitoring, and alert notification
capabilities.

Using OPC Automation you could during a service period schedule a job to run that activates
WebSphere Application Server for OS/390 and z/OS conversations automatically. But you
still need to decide how you handle the process for stopping and restarting servers.

Disable Automation and let Activation Restart Servers
The steps to be performed with the maintenance interval are
1. Make your changes to the configuration. This can be done outside the service window.
2. Disable automation for all J2EE servers
3. Activate the conversation; all running servers will be stopped and restarted through

activation

4. Enable automation after all servers have restarted
This approach impacts application availability as little as possible: WebSphere Administration
shuts down servers as late in the activation process as possible and restarts the immediately
after shutdown. In addition, it leaves untouched servers for which nothing has changed.

System Automation Development - 32 - March 2003
IBM Boeblingen

WebSphere Administration always uses the start command with the identifier notation (and
thus without the JOBNAME keyword). Therefore SA OS/390 has to monitor on procedure
name as job name after the restart by WebSphere Administration. To be consistent SA OS/390
must use the same form of the start command itself for restarts and moves. It must also use the
identifier rather than the job name in its stop and cancel commands for WebSphere. Because
these are not the commands SA OS/390 generates by default, they need to be individually
defined for each server. In cases were there are many servers and systems involved this makes
SA OS/390 definitions much more complex.

During the maintenance interval automation for all servers is switched off. Should any
recovery action be required during this time for servers that would otherwise be unaffected by
activation this action will not be triggered by SA OS/390.

Stop and Restart Servers using System Automation for OS/390
The steps to be performed with the maintenance interval are
1. Make your changes to the configuration. This can be done outside the service window.
2. Before you activate a conversation stop all J2EE Servers through SA OS/390
3. Activate the conversation; no server restart will be triggered through activation since no

servers are running

4. After activation is complete restart all J2EE servers through SA OS/390

All J2EE servers are shut down before activation and can only be restarted when activation is
complete. Therefore users cannot use any of the Web applications offered through these
servers during this time.

WebSphere Administration does not restart servers in this case; SA OS/390 performs the
restart. It can therefore use the start command with the JOBNAME parameter and the
matching stop and cancel commands that are generated according to SA OS/390 standards.
This makes setting up SA OS/390 for WebSphere much easier.

System Automation Development - 33 - March 2003
IBM Boeblingen

Chapter 4. System Setup
Our test environment consisted of a sysplex with three systems: KEYA, KEYB and KEYC.
The infrastructure on each system was a shared HFS, a shared DB2, and TCP/IP and this was
included in the automation setup.

The Sysplex Distributor was used for load balancing and port-availability monitoring.

The HTTP server was running under z/OS and was included in the automation set up.

We used two J2EE Servers: BBOASR2 and BBOBANK.

The defined availability target was:

• LDAP on two of the three systems
• IBM HTTP server on two of the three systems
• Two of three systems for BBOASR2
• Two of three systems for BBOBANK

We were using dynamic VIPA. The IP addresses on each of the three systems were defined
for dynamic VIPA backup.

All relevant ports were defined to the Sysplex Distributor and distributed across all system
images. This included the LDAP port, the HTTP Server port, the WebSphere Application
Server’s base environment (Daemon, Naming) ports and the J2EE server ports for the HTTP
Transport Handler. Thus it was irrelevant on which two systems LDAP or HTTP Servers or
J2EE Servers ran.

We run the base environment for WebSphere Application Server (Daemon, Naming) on each
system, considering it as part or the WebSphere infrastructure. In case of a failover of a J2EE
server this setup makes moving it to a different system much faster.
Alternatively you could start the base environment only on those systems where a J2EE server
was started. So if for example BBOASR2 ran on KEYA and KEYB and BBOBANK ran on
KEYB and KEYC all three systems had a Daemon and Naming running. But if both
BBOASR2 and BBOBANK were running on KEYA and KEYB only, daemon and Naming
server would not be required on KEYC.

Both HTTP servers had identical service definitions for the WebSphere plug-in. This was
necessary because the HTTP port is distributed using the Sysplex Distributor.

Both LDAP servers could be used by any of the WebSphere instances because they used
shared DB2 data and because their VIPA address was used in the WebSphere definitions.

As a consequence of using the IBM HTTP Server for z/OS we could not use session affinity.
We therefore used persistent sessions, storing session information in shared DB2 tables.

System Automation Development - 34 - March 2003
IBM Boeblingen

Figure 10 shows how the components could be distributed over our three systems.

WTR

WebSphere
Base

WTR

WebSphere
Base

KEYA

TCP/IP DVIPASysplex
Distributor

VTAM

JES

USS

RRS

HTTP Server

Daemon

SMS

Naming

IR

BBOBANK
J2EE Server

BBOASR2
J2EE Server

RACF RACF RACF

WLM WLM WLM

HFS HFS HFS

DB2 DB2 DB2

KEYB

TCP/IP DVIPASysplex
Distributor

VTAM

JES

USS

RRS

LDAP

Daemon

SMS

Naming

IR

BBOBANK
J2EE Server

KEYC

TCP/IP DVIPASysplex
Distributor

VTAM

JES

USS

RRS

LDAPHTTP Server

BBOASR2
J2EE Server

shared definitions shared definitions shared definitions

shared environments shared environments shared environments

shared file system shared file system shared file system

shared database shared database shared database

WTR

WebSphere
Base

Daemon

SMS

Naming

IR

Figure 10: WebSphere on a Sysplex: Sample Configuration

Note that

• there are two instances of the HTTP Server (KEYA and KEYC)
• there are two instances of the LDAP Server (KEYB and KEYC)
• there are two instances of each J2EE Server

−−−− BBOASR2 runs on KEYA and KEYB
−−−− BBOBANK runs on KEYB and KEYC

• the WebSphere Base, as part of the infrastructure runs on all systems

Also note that HTTP server, LDAP server and J2EE servers were able to run on any of the
three systems and that System Automation for OS/390 would move them to any other system
in case of a failure that prevent restarts on the failing system. In this sense Figure 10 shows
only one possible run-time environment for our sysplex.

The system set up is still fully functional (possibly with degraded performance) as long as at
least one LDAP, one HTTP server, and one of each of the J2EE servers is running on any one
of the three sysplex images. With backup IP stacks provided by dynamic VIPA the IP stack
was not a single point of failure either. The only exception to completely continuous operation
comes through the fact that WebSphere Application Servers needs to restart servers to activate
configuration changes (see the discussion in the section 3.3 “Changing Configurations for
WebSphere Application Server for OS/390 and z/OS” on page 28).

System Automation Development - 35 - March 2003
IBM Boeblingen

The following sections give details of our configured sample setup for WebSphere system
automation. Only the major components that required setup decisions are listed and, even for
these, only the most relevant parameters are mentioned.

4.1 Sysplex
Our sysplex consisted of three images: KEYA, KEYB and KEYC.

The set up covered a heterogeneous MVS environment:

• z/OS 01.04.0 on KEYA
• OS/390 02.10 on KEYB
• z/OS 01.02.0 on KEYC

Apart from this the systems were mostly symmetrical: all prerequisite products and all
components of WebSphere Application Server for OS/390 and z/OS were installed and were
able to run on any of the three systems.

Cross-system sharing was implemented where applicable: RACF definitions, DB2 and HFS
were shared.

4.2 TCP/IP
The TCP addresses and the corresponding DNS names were:

• KEYA: DNS-Name boekeya.boeblingen.de.ibm.com on 9.152.64.73
• KEYB: DNS-Name boekeyb.boeblingen.de.ibm.com on 9.152.64.74
• KEYC: DNS-Name boekeyc.boeblingen.de.ibm.com on 9.152.64.77

Three VIPAs were defined:

• boekpla.boeblingen.de.ibm.com on 9.152.84.225 providing ports 9000, 5555, 1389, and
2389. These were the ports used for WebSphere base services and LDAP

• boekplb.boeblingen.de.ibm.com on 9.152.84.226 providing ports 80, 8081, 8082, and
8083. These were the ports used by the IBM HTTP server and the HTTP Transport
Handlers of the J2EE Servers (8083 is spare)

• boekplc.boeblingen.de.ibm.com on 9.152.84.227 providing ports 20, 21, 23, and 623
for FTP, TELNET, and OTELNET

Dynamic XCF addresses were defined for KEYA, KEYB and KEYC: 9.152.84.249,
9.152.84.250 and 9.152.84.251.

The VIPAs were distributed over the dynamic XCF addresses. The tcp.profile for each system
contained the following statements:

VIPADISTRIBUTE DEFINE 9.152.84.225 PORT 9000 5555 1389 2389
 DESTIP 9.152.84.249 9.152.84.250 9.152.84.251
VIPADISTRIBUTE DEFINE 9.152.84.226 PORT 80 8081 8082 8083

System Automation Development - 36 - March 2003
IBM Boeblingen

 DESTIP 9.152.84.249 9.152.84.250 9.152.84.251
VIPADISTRIBUTE DEFINE 9.152.84.227 PORT 20 21 23 623
 DESTIP 9.152.84.249 9.152.84.250 9.152.84.251

Each VIPA served as backup address, the tcp.profile BACKUP contained the following
statements:

VIPADYNAMIC
VIPAbackup 100 9.152.84.225
VIPAbackup 100 9.152.84.226
VIPAbackup 100 9.152.84.227
ENDVIPADYNAMIC

This setup ensured high availability of the IP applications running on the sysplex cluster even
if one physical network interface should fail or an entire IP stack or z/OS LPAR should be lost.

4.3 Base WebSphere Application Server for OS/390 and z/OS Setup
We used the defaults for WebSphere Application Server whenever possible. Here we only
indicate the parameters that relate to the setup for automation and high availability.

4.3.1 TCP Related Definitions
Our bootstrap system was KEYA and we used its DNS name boekeya.boeblingen.de.ibm.com
for the DAEMON_IPNAME parameter. Later we introduced VIPA. However, you cannot
easily change the DAEMON_IPNAME at a later stage. Therefore we could not use the DNS
name that is used for the dynamic IP address as DAEMON_IPNAME. This has the
disadvantage that we had a single point of failure for WebSphere Administration: you can
connect with the SMEUI to any system with a running daemon but connection will only be
established if the daemon on KEYA is running. Had we used the VIPA DNS name
boekpla.boeblingen.de.ibm.com that distributes the ports we used for System Management
(9000) and for the DAEMON (5555), then we would have avoided this problem.

Other TCP related parameters were set as follows:

DAEMON_PORT=5555
RESOLVE_IPNAME= boekpla.boeblingen.de.ibm.com
RESOLVE_PORT=9000

We defined the port for the HTTP Transport Handlers for the J2EE Servers as:

for BBOASR2: BBOC_HTTP_PORT=8081
for BBOBANK: BBOC_HTTP_PORT=8082.

These ports were distributed through boekplb.boeblingen.de.ibm.com.

In the webcontainer.conf files we had virtual host definitions as follows:
for BBOASR2A on KEYA:

host.default_host.alias=
boekeya.boeblingen.de.ibm.com:8081,boekeya.boeblingen.de.ibm.com,
boekplb.boeblingen.de.ibm.com:8081,boekplb.boeblingen.de.ibm.com

for BBOASR2B on KEYB:
host.default_host.alias=

boekeyb.boeblingen.de.ibm.com:8081,boekeyc.boeblingen.de.ibm.com,
boekplb.boeblingen.de.ibm.com:8081,boekplb.boeblingen.de.ibm.com

for BBOASR2C on KEYC:
host.default_host.alias=

boekeyc.boeblingen.de.ibm.com:8081,boekeyc.boeblingen.de.ibm.com,
boekplb.boeblingen.de.ibm.com:8081,boekplb.boeblingen.de.ibm.com

System Automation Development - 37 - March 2003
IBM Boeblingen

for BBOBANKA on KEYA:
host.default_host.alias=

boekeya.boeblingen.de.ibm.com:8082,boekeya.boeblingen.de.ibm.com,
boekplb.boeblingen.de.ibm.com:8082,boekplb.boeblingen.de.ibm.com

for BBOBANKB on KEYB:
host.default_host.alias=

boekeyb.boeblingen.de.ibm.com:8082,boekeyc.boeblingen.de.ibm.com,
boekplb.boeblingen.de.ibm.com:8082,boekplb.boeblingen.de.ibm.com

for BBOBANKC on KEYC:
host.default_host.alias=

boekeyc.boeblingen.de.ibm.com:8082,boekeyc.boeblingen.de.ibm.com,
boekplb.boeblingen.de.ibm.com:8082,boekplb.boeblingen.de.ibm.com

This allowed us to contact a specific instance on a specific system by using the DNS names
mapped to the real IP address of that system. If, on the other hand, we used
boekplb.boeblingen.de.ibm.com we reached the system chosen by the Sysplex Distributor.

On the Naming server, we defined the LDAP URL as follows:
com.ibm.ws.naming.ldap.masterurl=ldap://boekpla.boeblingen.de.ibm.com:1389

Port 1389 is distributed through boekplba.boeblingen.de.ibm.com. Therefore an LDAP server
can run on any of our systems and still be reached by WebSphere Naming.

4.3.2 HTTP Session Related Definitions
We installed an application on BBOBANK that required HTTP session support. As discussed
in 2.4.1 “HTTP Sessions” on page 24 we had to use persistent sessions. To enable persistent
session support for BBOBANK we defined in the WebSphere Application Server
conversation a J2EE resource named IBMHttpSession. Its resource type was DB2datasource,
and the location name was KEYDNSA that defines the same shared DB2 we used for all
WebSphere definitions and for all application data.

In the webcontainer.conf file for all BBOBANK instances we enabled persistent sessions as
follows:

session.enable=true
session.urlrewriting.enable=false
session.cookies.enable=true
session.protocolswitchrewriting.enable=false
session.cookie.name=JSESSIONID
session.dbenable=true
session.dbtablename=CU05.SESSTAB

4.4 HTTP server
The HTTP server listened on port 80. We enabled the WebSphere Application Server V4.0.1
for z/OS and OS/390 plug-in for all our applications. The definitions in the httpd.con file were:

Port 80
===========================
WebSphere Directives V 4.0.1
===========================
ServerInit /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:init_exit

/usr/lpp/WebSphere,/local/websrv/was.conf
ServerTerm /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:term_exit
Service /PolicyIVP/*

/usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit
Service /PolicyTwo/*

/usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit

System Automation Development - 38 - March 2003
IBM Boeblingen

Service /webapp/examples/*
/usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit

Service /webapp/examplesTwo/*
/usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit

Service /TheBankWeb/*
/usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugn.so:service_exit

The SERVER INIT statement pointed to /local/websrv/was.conf. This file contained no
application definitions, since we did not run servlets in the plug-in directly.

In the httpd.envars files for all systems we added the following statement:

HTTRESOLVE_IPNAME=boekpla.boeblingen.de.ibm.com
RESOLVE_PORT=9000

System Automation Development - 39 - March 2003
IBM Boeblingen

Chapter 5. Setup for System Automation for OS/390
In this chapter we describe the System Automation for OS/390 setup hat we implemented to
automate WebSphere Application Server for OS/390 and z/OS. As outlined in 1.3 WebSphere
Application Automation and High Availability on page 8, the main objective was to provide

• ease of operations support:
−−−− start all prerequisites and components of WebSphere in the right order
−−−− stop all components of WebSphere in the right order
−−−− show the status of all prerequisites and components

• availability support reducing downtimes:
−−−− monitor prerequisites and components
−−−− automatically restart failing components.

These objectives apply to a monoplex environment. In a sysplex environment System
Automation for OS/390 can additionally increase availability by

• ensuring that WebSphere Application Servers run on a predefined number of images in
the sysplex

• moving all or parts of WebSphere Application Server for OS/390 and z/OS from a
failing image to another image when restart of vital component fails

• cleaning up failed system.

For WebSphere Application Server for OS/390 and z/OS administration a separate service
period can be defined.

All applications and systems that you want to include in automation must be defined to
System Automation for OS/390 in an automation policy database. This database contains the
objects to be managed by System Automation for OS/390, and the rules according to that
automation of these objects proceeds.

The objects that are defined in the policy database are called policy objects or entries.
Applications and systems, for example, are policy objects. Every policy object belongs to an
entry type that is identified by a three letter code. The most common entry types are APL
(application), APG (application group), GRP (groups of systems, i.e. sysplexes) and SYS
(system).

Using the System Automation for OS/390 customization dialog you provide information to
System Automation for OS/390 such as:

• which resources you want to automate, monitor and control.
• how resources are to be associated (grouped) with each other for automation
• the relationships between resources and groups of resources.
• which automation, such as automatic startup or shutdown, is to be applied to these

resources and how

System Automation Development - 40 - March 2003
IBM Boeblingen

• under which conditions automated actions should occur, and what actions should be
performed

• when automation should be active, and how automation handles certain tasks and events
during system operation.

As a starting point, the following table contains a list of the main applications defined for
WebSphere Application Server automation. Included are the names used in the policy
database, a short description and the number of systems the application should run on. Please
note that all the applications that are listed were able to run on any of our systems.

 Name Description Active Instances
JES2 JES2 Job Entry Subsystem 2 On all systems
VTAM VTAM Virtual Telecommunication Access Method On all systems
TCP/IP TCPIP TCP/IP On all systems
WTR BBOWTR WebSphere trace writer On all systems where the Daemon runs
RRS RRS Resource Recovery Services On all systems
DB2 Server DB2_DBM1

DB2_DIST
DB2_IRLM
DB2_MSTR
DB2_SPAS

DB2 Subsystem On all systems

LDAP Server BBOLDAP Websphere LDAP On 2 of 3 systems
WebSphere Base BBODMN WebSphere Daemon On all systems
 BBOSMS WebSphere SMS control region On all systems
 BBONM WebSphere Naming-Server control region On all systems
 BBOIR WebSphere I/F-repository control region On all systems
J2EE Server BBOASR2 WebSphere J2EE-server control region On 2 of 3 systems
 BBOBANK WebSphere J2EE-server control region On 2 of 3 systems
HTTP Server WEBSRV IBM HTTP Server On 2 of 3 systems

Additionally, for WebSphere MQSeries, we automated the MQSeries Queue Manager and the
Channel Initiator, although this is not required for WebSphere.

System Automation Development - 41 - March 2003
IBM Boeblingen

Figure 11 gives an overview of the defined groups.

BBO_LDAP/APG

BBOLDAP

KEYA

BBOLDAP

KEYC

BBOLDAP

KEYB
BBOWTR

BBO_BANK/APG

BBOBANK/
KEYA

BBOBANK/
KEYB

BBOBANK/
KEYC

BBO_ASR2/APG

BBOASR2/
KEYA

BBOASR2/
KEYB

BBOASR2/
KEYC

BBO_J2EE/APG

WWW_WEBSRV/APG

WEBSRV/

KEYA

WEBSRV/

KEYC

WEBSRV/

KEYB

Server sysplex APG, 2 of 3

Single Resource APL

Basic system APG

Basic sysplex APG

Server sysplex APG, 3 of 3

BBO_DAEMON/APG/KEYx

BBODMN

BBOIR BBONM BBOSMS

BBO_PLEX/APG

Figure 11: Groups and Applications in a Sysplex Environment

5.1 Sysplex Group
The main purpose of the sysplex group named KEYAPLEX group is to select the systems
included in the sysplex and the application groups of the sysplex. It contains the following:

Short description sysplex with systems KEYA, KEYB, KEYC
Group type SYSPLEX

Linked Systems
Entry Name Short Description
KEYA System KEYA
KEYB System KEYB
KEYC System KEYC

System Automation Development - 42 - March 2003
IBM Boeblingen

Linked ApplicationGroups
Entry Name Short Description
BBO_ASR2 WebSphere J2EE sysplex server group
BBO_BANK WebSphere J2EE sysplex server group
BBO_J2EE WebSphere sysplex basic group
BBO_LDAP WebSphere LDAP sysplex server group
BBO_MQPLEX WebSphere MQ Series sysplex basic group
BBO_PLEX WebSphere sysplex server group
SGA_PLEX DB2 - SGAn sysplex basic group
WWW_WEBSRV IBM HTTP Server sysplex server group

If you have more systems in your sysplex include them in Linked Systems. If you have
additional J2EE or CORBA servers include them as Linked ApplicationGroups.

5.2 KEYA, KEYB, KEYC
These system groups define the clone values to be used for AOCCLONE and AOCCLONE1
and all application groups for each system.

Short description System KEYA
Clone value 0 1
Clone value 1 A

Linked ApplicationGroups
Entry Name Short Description
BBO_DAEMON WebSphere system basic group
BBO_MQ WebSphere MQ Series system group
SGA_SYS DB2 - SGAn basic system group

KEYB and KEYC are similar (except for the clone values):
Short description System KEYB
Clone value 0 2
Clone value 1 B
and
Short description System KEYC
Clone value 0 3
Clone value 1 C

System Automation Development - 43 - March 2003
IBM Boeblingen

5.3 Application Groups
The AM_KEY application group defines all Automation Managers, SYSVIEW SA OS/390
Agent Resources. The BASE_SYS group defines basic system components such as
JES2,VLF,LLA. The groups BBO_MQPLEX and BBO_MQ are included for WebSphere MQ
Series and are not used here. NETWORK defines networking resources. SGA_PLEX and
SGA_SYS defines DB2. These groups are considered extensions of the base system. No
details are given here.
The following application groups are directly related to our WebSphere set-up:

• BBO_PLEX
• BBO_DAEMON
• BBO_ASR2
• BBO_BANK
• BBO_LDAP
• WWW_WEBSRV

Some details are given below. For a full description please refer to our sample PDB.

The relationships between groups or applications are discussed in 5.5 Relationships on page
54.

5.3.1 BBO_PLEX
This group defines the WebSphere base environment.

BBO_DAEMON/APG/KEYx

BBODMN

BBOIR BBONM BBOSMS

BBO_PLEX/APG

BBO_DAEMON/APG/KEYx

BBODMN

BBOIR BBONM BBOSMS

BBO_DAEMON/APG/KEYA

BBODMN

BBOIR BBONM BBOSMS

Figure 12: BBO_PLEX WebSphere Base Environment

System Automation Development - 44 - March 2003
IBM Boeblingen

Here are the definitions:
Short description WebSphere sysplex server group
Long description group with BBO_DAEMON groups included
Application Group Type SYSPLEX
Nature Server
Automation Name BBO_PLEX
Behaviour ACTIVE
Default Preference *DEF
Auto-link APL Resources to APG YES
Availability Target *ALL

Linked Resources
Resource Name Entry Type System Entry Name Preference Value
BBO_DAEMON/APG/KEYA APG KEYA BBO_DAEMON 700
BBO_DAEMON/APG/KEYB APG KEYB BBO_DAEMON 700
BBO_DAEMON/APG/KEYC APG KEYC BBO_DAEMON 700

Since BBO_PLEX is included in the Linked ApplicationGroups of our sysplex group
KEYAPLEX all systems defined there are by default included as Linked Resources.
If you have systems where you never want the WebSphere infrastructure to run you must
exclude then from this list.

Note that we consider the WebSphere base as part of the infrastructure and therefore specified
an Availability Target of 3. This means that it will automatically be started on all of our
systems. The advantage is that System Automation for OS/390 can move a J2EE server from
a failed system to a different system without first having to start the base WebSphere
environment. You can change the availability target to a lower value. In that case it can
happen that System Automation for OS/390 will first have to start the base environment
before it can move a J2EE server that, of course takes additional time.

A J2EE server can only run on a system where the base WebSphere Application Server
environment is running. You should therefore set the Availability Target at least as high as
the maximum of the targets for all the J2EE Servers APGs.

5.3.2 BBO_DAEMON
This basic system group defines that the WebSphere infrastructure consists of the Daemon,
System Management, Naming and Interface Repository.
Short description WebSphere system basic group
Long description Group with Daemon, SMS, Naming and IR included
Application Group Type SYSTEM
Nature Basic
Automation Name BBO_DAEMON

System Automation Development - 45 - March 2003
IBM Boeblingen

Behaviour ACTIVE
Default Preference *DEF

Auto-link APL Resources to APG YES

Linked Applications
Entry Name Short Description
BBODMN WebSphere Daemon
BBOIR WebSphere I/F-repository control region
BBONM WebSphere Naming-Server control region
BBOSMS WebSphere SMS control region

5.3.3 BBO_J2EE
This basic sysplex group joins together the server groups for the two J2EE servers we use. It
can be used to stop and restart all J2EE servers during WebSphere maintenance (see the
discussion in 3.3 Changing Configurations for WebSphere Application Server for OS/390 and
z/OS on page 28).

BBO_BANK/APG

BBOBANK/
KEYA

BBOBANK/
KEYB

BBOBANK/
KEYC

BBO_ASR2/APG

BBOASR2/
KEYA

BBOASR2/
KEYB

BBOASR2/
KEYC

BBO_J2EE/APG

Figure 13: BBO_J2EE Group for J2EE Servers

Here is its description:

Short description WebSphere sysplex basic group
Application Group Type SYSPLEX
Nature Basic
Automation Name BBO_J2EE
Behaviour ACTIVE
Default Preference *DEF
Auto-link APL Resources to APG YES

Linked Resources
Resource Name Entry Type Entry Name Preference Value

System Automation Development - 46 - March 2003
IBM Boeblingen

BBO_ASR2/APG APG BBO_ASR2 SELECTED
BBO_BANK/APG APG BBO_BANK SELECTED

If you have more J2EE servers you should include them here as Linked Resources.

5.3.4 BBO_ASR2
This sysplex server group covers one of our two J2EE servers.

Short description WebSphere J2EE sysplex server group
Application Group Type SYSPLEX
Nature Server
Automation Name BBO_ASR2
Behaviour ACTIVE
Default Preference *DEF
Auto-link APL Resources to APG YES
Availability Target 2

Linked Resources
Resource Name Entry Type System Entry Name Preference Value
BBOASR2/APL/KEYA APL KEYA BBOASR2 700
BBOASR2/APL/KEYB APL KEYB BBOASR2 700
BBOASR2/APL/KEYC APL KEYC BBOASR2 700

The main purpose of this group is to define that an instance of this J2EE server can run on any
of our three systems (with no specific priority as to on that it should be started) and that two
instances should be started under normal circumstances.

If you have more systems in your sysplex, all of that are included in the sysplex group, then
all are listed in Linked Resources. You may exclude some systems explicitly to prevent them
from being a candidate for running the J2EE server.
If you have preferred systems for this specific J2EE server, change the Preference Value of
the systems.

Adapt the Availability Target for each J2EE server to your needs according to the expected
load for the server.

Note: you have a single point of failure if you use a target of 1. The applications installed on
this J2EE server are then not available while System Automation for OS/390 restarts the J2EE
server on another system in case of a failover of the current system.

System Automation Development - 47 - March 2003
IBM Boeblingen

5.3.5 BBO_BANK
This group does exactly the same for our second J2EE server what BBO_ASR2 does for the
first one.

5.3.6 BBO_LDAP
This sysplex server group defines that LDAP servers can run on any of our three systems and
that two LDAP servers should normally be started.

Short description WebSphere LDAP sysplex server group
Application Group Type SYSPLEX
Nature Server
Automation Name BBO_LDAP
Behaviour ACTIVE
Default Preference *DEF
Auto-link APL Resources to APG YES
Availability Target 2

Linked Resources
Resource Name Entry Type System Entry Name Preference Value
BBOLDAP/APL/KEYA APL KEYA BBOLDAP 700
BBOLDAP/APL/KEYB APL KEYB BBOLDAP 700
BBOLDAP/APL/KEYC APL KEYC BBOLDAP 700

If you use a set-up similar to the one we use you can have LDAP servers on as many systems
as you need for covering the load (increase Availability Target if necessary). If you have
preferred systems for your LDAP servers change the settings for Preference Value.

5.3.7 WWW_WEBSRV
This sysplex server group defines that HTTP servers can run on any of our three systems and
that two HTTP servers should normally be started.

Short description IBM HTTP Server sysplex server group
Application Group Type SYSPLEX
Nature Server
Automation Name WWW_WEBSRV
Behaviour ACTIVE
Default Preference *DEF
Auto-link APL Resources to APG YES

System Automation Development - 48 - March 2003
IBM Boeblingen

Availability Target 2

Linked Resources
Resource Name Entry Type System Entry Name Preference Value
WEBSRV/APL/KEYA APL KEYA WEBSRV 700
WEBSRV/APL/KEYB APL KEYB WEBSRV 700
WEBSRV/APL/KEYC APL KEYC WEBSRV 700
If you use a set-up similar to the one we use you can have HTTP servers on as many systems
as you need for covering the load (increase Availability Target if necessary). If you have
preferred systems for your HTTP servers change the settings for Preference Value.

5.4 Applications
The following applications are specific to our WebSphere set-up and will be briefly discussed
here:

• BBO_CLASS
• BBODMN
• BBOSMS
• BBONM
• BBOIR
• BBOWTR
• BBOASR2
• BBOBANK
• BBOLDAP
• WEBSRV

The relationships between groups or applications are discussed in 5.5 Relationships on page
54.

Also included in the PDB are the definitions for WebSphere MQSeries. Since MQSeries is
not required for WebSphere Application Server the definitions are not discussed here.

5.4.1 BBO_CLASS
BBO_CLASS represents a common policy to be inherited the WebSphere daemon, the J2EE
and the LDAP servers.
It decreases the effort for defining the entries for each server individually and keeps the
common definitions consistent.
Short description WebSphere class with general definitions
Object Type CLASS
Application Type STANDARD
Subsystem Name BBO_CLASS

Application Messages and User Data

System Automation Development - 49 - March 2003
IBM Boeblingen

Message id Description
SHUTFORCE Executed when force shutdown is invoked

Pass Command Text
1 MVS C &SUBSJOB

Application Messages and User Data
Message id Description
SHUTIMMED Executed when immediate shutdown is invoked

Pass Command Text
1 MVS P &SUBSJOB
2 MVS C &SUBSJOB

Application Messages and User Data
Message id Description
SHUTNORM Executed when normal shutdown is invoked

Pass Command Text
1 MVS P &SUBSJOB
3 MVS C &SUBSJOB

Linked Instances
Instance Name Description
BBOASR2 WebSphere J2EE-control region
BBOBANK WebSphere J2EE-control region
BBODMN WebSphere Daemon
BBOLDAP WebSphere LDAP

The common definitions for all servers cover the actions to be taken during shutdown. If you
have additional J2EE servers you should link them to this class.

5.4.2 BBODMN
This is the definition for the WebSphere daemon.

Short description WebSphere Daemon
Linked to Class BBO_CLASS
Application Type STANDARD
Subsystem Name BBODMN
MVS job name DAEMON0&AOCCLONE.

System Automation Development - 50 - March 2003
IBM Boeblingen

JCL Procedure Name BBODMN

Subsystem Startup Parameters ,SRVNAME=DAEMON0&AOCCLONE.

Application Messages and User Data
Message id Description
PRESTART Executed before startup is initiated

Command Text
MVS V WLM,APPLENV=CBNAMING,RESUME
MVS V WLM,APPLENV=CBINTFRP,RESUME
MVS V WLM,APPLENV=CBSYSMGT,RESUME
INGRCLUP BBOSMSS
INGRCLUP BBONMS
INGRCLUP BBOIRS
MVS C BBOSMSS
MVS C BBONMS
MVS C BBOIRS

Application Messages and User Data
Message id Description
SHUTFINAL Executed after final termination message

Command Text
INGRCLUP BBOSMSS
INGRCLUP BBONMS
INGRCLUP BBOIRS
MVS C BBOSMSS
MVS C BBONMS
MVS C BBOIRS

The WLM environments for System Management, Naming and Interface Repository may
have been stopped by too many failing attempts to restart the component. Because the scope
of WLM is sysplex-wide this may have happened on a different system from the one where
the Daemon is to be started now. Therefore the WLM environments are activated again
(RESUMEd) before the Daemon is started.

Normally, when the WebSphere daemon terminates SMS, Naming and IR end as well and the
respective control region and server region address spaces are no longer available. If
termination of the daemon fails to end all the dependent servers, inactive address spaces may
be left in the system. To avoid problems System Automation issues cancel commands for the
dependent control regions in the final termination phase of the daemon. The same cancel
commands are issued before the daemon is started to protect against the case that the

System Automation Development - 51 - March 2003
IBM Boeblingen

SHUTFINAL phase was not executed because no final termination message was received by
System Automation.

Note that only control regions are known to System Automation. To terminate server regions
you can use INGRCLUP. INGRCLUP calls a clean up routine that checks for and, if
necessary, terminates address spaces. INGRCLUP is called after termination of the
WebSphere daemon to terminate SMS, Naming and IR server regions if the daemon ends in
such a way, that if cannot clean up on its own accord. INGCLUP is also executed before the
daemon is started. This may be necessary if the WebSphere daemons abends in such a way
that it even fails to notify System Automation of the abend.

For more details on the cleanup routine refer to 5.7 Clean-up Program on page 58.

5.4.3 BBOSMS
The WebSphere System Management Server is supervised by, but not started or stopped by
System Automation.

Short description WebSphere SMS control region
Application Type STANDARD
Subsystem Name BBOSMS
MVS job name BBOSMS

External Startup ALWAYS
External Shutdown ALWAYS

Application Messages and User Data
Message id Description
BBOU0199E WLM environment stopped

Pass Command Text
1 MVS V WLM,APPLENV=CBSYSMGT,RESUME
2 HALTMSG JOBNAME=&SUBSJOB

The WebSphere System Management Server is started and stopped by the WebSphere
Daemon (External as far as System Automation is concerned, see 5.5.3 The WebSphere Base
Environment on page 56).
Note: Only the SMS Control Region is known to System Automation. Server regions are not
under System Automation control. However, the WLM environment that starts server regions
is resumed if it has previously been stopped by WLM. This happens while the SMS control
region is running and is triggered by the BBOU0199E message.

5.4.4 BBONM and BBOIR
BBONM and BBOIR are treated analogously to BBOSMS.

System Automation Development - 52 - March 2003
IBM Boeblingen

5.4.5 BBOWTR
System Automation starts and stops the WebSphere trace writer as part of the Base system.
Short description WebSphere trace writer
Application Type STANDARD
Subsystem Name BBOWTR
MVS job name BBOWTR

Application Messages and User Data
Message id Description
SHUTFORCE Executed when force shutdown is invoked

Pass Command Text
1 MVS TRACE CT,WTRSTOP=&SUBSJOB
2 MVS C &SUBSJOB
2 MVS FORCE &SUBSJOB,ARM

Application Messages and User Data
Message id Description
SHUTIMMED Executed when immediate shutdown is invoked

Pass Command Text
1 MVS TRACE CT,WTRSTOP=&SUBSJOB
2 MVS C &SUBSJOB
2 MVS FORCE &SUBSJOB,ARM

Application Messages and User Data
Message id Description
SHUTINIT Executed when shutdown is initiated

Command Text
MVS TRACE CT,OFF,COMP=SYSBBOSS

Application Messages and User Data
Message id Description
SHUTNORM Executed when normal shutdown is invoked

Pass Command Text
1 MVS TRACE CT,WTRSTOP=&SUBSJOB
3 MVS C &SUBSJOB
3 MVS FORCE &SUBSJOB,ARM
Application Messages and User Data

Message id Description

System Automation Development - 53 - March 2003
IBM Boeblingen

STARTUP Executed to initiate the startup

Command Text
MVS TRACE CT,WTRSTART=&SUBSJOB

If you want to start trace writers for other components you can model System Automation
definitions for those after the definitions for the WebSphere trace writer shown here.

5.4.6 BBOASR2
This is the first J2EE server definition:
Short description WebSphere J2EE-control region
Linked to Class BBO_CLASS
Application Type STANDARD
Subsystem Name BBOASR2
MVS job name BBOASR2&AOCCLONE1.
JCL Procedure Name BBOASR2

Subsystem Startup Parameters ,SRVNAME=BBOASR2&AOCCLONE1.

Application Messages and User Data
Message id Description
BBOU0199E WLM environment stopped

Pass Command Text
1 MVS V WLM,APPLENV=BBOASR2,RESUME
2 HALTMSG JOBNAME=&SUBSJOB

Application Messages and User Data
Message id Description
PRESTART Executed before startup is initiated

Command Text
MVS V WLM,APPLENV=BBOASR2,RESUME
INGRCLUP BBOASR2S

Application Messages and User Data
Message id Description
SHUTFINAL Executed after final termination message

Command Text
INGRCLUP BBOASR2

System Automation Development - 54 - March 2003
IBM Boeblingen

Note: Only the Control Region is known to System Automation. Server Regions are not under
System Automation control.

However, the WLM environment that starts server regions is resumed if it has previously been
stopped by WLM. This happens once while the J2EE control region is running triggered by
the BBOU0199E message. It also happens before the J2EE server is started.

Normally, when the J2EE control region terminates all its server regions end as well and their
address spaces are no longer available. If this process fails inactive address spaces may be left
in the system. INGRCLUP is therefore called after termination of the J2EE server control
ends to terminate server regions if the control region ends in such a way, that if cannot clean
up on its own accord. INGRCLUP is also executed before the control region is started. This
may be necessary if the J2EE control region abends in such a way that it even fails to notify
System Automation of the abend.

For more details on the cleanup routine refer to 5.7 Clean-up Program on page 58.

5.4.7 BBOBANK
The definitions for the second J2EE server are analogous to the definitions for the first J2EE
server.

5.4.8 BBOLDAP and WEBSRV
No special considerations apply to the LDAP server and the HTTP server.

5.5 Relationships
Figure 14 completes Figure 11 “Groups and Applications in a Sysplex Environment” on page
41 by including the relationships defined between groups and applications.

System Automation Development - 55 - March 2003
IBM Boeblingen

BBO_DAEMON/APG/KEYx

BBODMN

BBOIR BBONM BBOSMS
HP HPHP

BBO_DAEMON/APG/KEYx

BBODMN

BBOIR BBONM BBOSMS
HP HPHP

SGA_PLEX/APG
SGA_SYS/KEYA

DB2_MSTR

SGA_SYS/KEYB

DB2_MSTR

SGA_SYS/KEYC

DB2_MSTR

JES RRS

BBO_LDAP/APG

BBOLDAP

KEYA
BBOLDAP

KEYC
BBOLDAP

KEYB

VTAMTCPIPBBOWTR

BBO_BANK/APG

BBOBANK/
KEYA

BBOBANK/
KEYB

BBOBANK/
KEYC

BBO_ASR2/APG

BBOASR2/
KEYA

BBOASR2/
KEYB

BBOASR2/
KEYC

BBO_J2EE/APG

WWW_WEBSRV/APG

WEBSRV/

KEYA
WEBSRV/

KEYC
WEBSRV/

KEYB

BBO_DAEMON/APG/KEYx

BBODMN

BBOIR BBONM BBOSMS
HP HPHP

HP
FD/WoD

HP
FD/WoD HP

FD/WoD

MA/WR

HP HP

HPHPHPHP
HP

HP

HP
FD/WoD

HP
FD/WoD

HP
FD/WoD

HP
FD/WoD

HP
FD/WoD HP

FD/WoD

HP
FD/WoD HP

FD/WoD

HP
FD/WoD

HP
FD/WoD

HP HP
HP

HP
HP

HP

MA/WR FD/WoHD

Server sysplex APG, 2 of 3

Single Resource APL

Basic system APG

Basic sysplex APG

Server sysplex APG, 3 of 3BBO_PLEX/APG

Figure 14: Relationships

Some details follow.

5.5.1 LDAP
Each LDAP server needs TCP/IP and DB2.

Relationships
Relationship
Type

Supporting
Resource Description Satisfy condition

FORCEDOWN SGA_SYS/APG/= stop LDAP if DB2 fails WhenObservedDown
FORCEDOWN TCPIP/APL/= stop LDAP if TCPIP fails WhenObservedDown
HASPARENT SGA_SYS/APG/= LDAP is dependent on DB2

HASPARENT TCPIP/APL/= LDAP is dependent on
TCPIP

System Automation Development - 56 - March 2003
IBM Boeblingen

5.5.2 The IBM HTTP Server
The HTTP Server needs TCP/IP.

Relationships
Relationship
Type

Supporting
Resource Description Satisfy condition

FORCEDOWN TCPIP/APL/= stop HTTP server if TCPIP
fails WhenObservedDown

HASPARENT TCPIP/APL/= HTTP server is dependent on
TCPIP

No webserver should be started if not needed, i.e. if no J2EE server runs. Therefore the
WWW_WEBSRV group depends on the J2EE server group.

Relationships

Relationship Type Supporting
Resource Description Automation Chaining Satisfy

condition

MAKEAVAILABLE BBO_J2EE/APG
start if at
least 1 J2EE
server active

ACTIVE WEAK WhenRunning

5.5.3 The WebSphere Base Environment
The applications BBOIR, BBONM and BBOSMS have a HASPARENT relationship to the
application BBODMN.

Relationships
Relationship
Type

Supporting
Resource Description Satisfy condition

HASPARENT BBODMN/APL/= IR is started by WAS
daemon StartsMeAndStopsMe

BBOIR, BBONM and BBOSMS cannot be started until the BBODMN is available. They
cannot be stopped before the daemon is unavailable.

Actually the Satisfy condition StartsMeAndStopsMe takes care of the fact that BBOIR,
BBONM and BBOSMS are started by the daemon.

The daemon, BBOIR, BBONM and BBOSMS are the applications in the BBO_DAEMON
group that represent the WebSphere base environment on each system. This group has the
following relationships:

Relationships

System Automation Development - 57 - March 2003
IBM Boeblingen

Relationship Type Supporting
Resource Description Automation Chaining Satisfy condition

FORCEDOWN BBO_LDAP/APG
stop WAS
if LDAP
fails

 WhenObservedHardDown

FORCEDOWN SGA_SYS/APG/= stop WAS
if DB2 fails WhenObservedDown

FORCEDOWN TCPIP/APL/=
stop WAS
if TCPIP
fails

 WhenObservedDown

HASPARENT SGA_SYS/APG/=

start/stop
WAS
dependent
on DB2

HASPARENT TCPIP/APL/=

start/stop
WAS
dependent
on TCPIP

MAKEAVAILABLE BBO_LDAP/APG

start WAS
if at least 1
LDAP
available

ACTIVE WEAK WhenRunning

This means that the WebSphere base environment can only be started when the local DB2 is
running and has to be stopped if the local DB2 fails.

The WebSphere base environment can only be started if the local TCP is running and has to
be stopped if the local TCP fails.

It should be started when the LDAP group is running, that means that at least one of the
LDAP servers runs and has to be stopped when the group is hard down, that means that no
LDAP server is running.

5.5.4 J2EE Servers
BBOASR2 and BBOBANK have a relationship of HASPARENT to the application group
BBO_DAEMON.

Relationships
Relationship Type Supporting Resource Description
HASPARENT BBO_DAEMON/APG/= J2EE server dependent on daemon
A J2EE server cannot be started until the local daemon group is available. The daemon group
cannot be stopped before the J2EE Server resource is unavailable. The J2EE server is not

System Automation Development - 58 - March 2003
IBM Boeblingen

started by the daemon. We assume that the daemon is part of the infrastructure and should
therefore always be running. So the request to start the J2EE Server will not result in the
issuing of a start request against the daemon. A start request must have been issued against the
daemon before the start request for the J2EE server resource is processed.

If you have additional J2EE servers in your installation you should define an equivalent
relationship for each of them.

You should also check if you have additional dependencies between the applications you run
on your J2EE servers and other resources such as MQSeries or CICS or IMS and so on. If you
identified any other dependencies you should add additional relationships here.

5.6 Message Automation Table
SA OS/390 provides an enhanced message table including messages needed to automate
WebSphere Application Server for OS/390 and z/OS through APAR OA02375.

Messages issued during start and termination processing as well as messages that indicate
error conditions on that System Automation can react are included for the following
components:

• WebSphere
−−−− the base environment with daemon, System Management Services, Naming and

Interface Repository
−−−− J2EE Server control region

• Related components
−−−− Trace writer
−−−− LDAP Server
−−−− IBM HTTP Server
−−−− TCP/IP subcomponents

Also included in the enhanced message table are WebSphere MQ Series messages.

5.7 Clean-up Program
The clean-up program is a safeguard against the case that address spaces are left over in the
system after termination of a component that would normally also terminate dependent
address spaces.

For WebSphere Application Server for OS/390 and z/OS could happen for

• System Management Services, Naming and Interface Repository control regions that are
started by the daemon

• Server regions started by those control regions or by J2EE control regions when needed
to satisfy the WLM defined service goals.

System Automation Development - 59 - March 2003
IBM Boeblingen

Since the control regions will normally have unique jobnames simple MVS cancel or stop
commands can be issued by System Automation during shut-down or pre-start processing as
shown in 5.4.2 BBODMN on page 49.

The server regions for a control region will however all have the same jobname. To cancel
those you have to issue individual cancel commands including jobname and address space ID.
This is done by the cleanup program. You call the cleanup program with the command

INGRCLUP jobname

To reduce the risk of inadvertently destroying address spaces, we allow only fully qualified
jobnames and only jobnames that do not address a resource defined in the automation policy.

5.8 WebSphere Maintenance
This section addresses what you can do to automate the activation of WebSphere
configuration changes and minimize the impact this has on availability due to the fact that
WebSphere Application Server for OS/390 and z/OS Administration shuts down and restarts
all running J2EE servers with changed configuration when the conversation containing these
changes is activated.

You can either use basic System Automation for OS/390 or extend it by OPC Automation.

• System Automation for OS/390 allows you to define service period. In this way it
provides the possibility to make stop and start requests at specified points in time
independently of human intervention. An operator can temporarily modify a service
period if manual control is desired. The activities to be performed during this interval
could be initiated manually or started by System Automation.

• OPC itself refers to the Tivoli Workload Scheduler. OPC Automation is an extension of
SA OS/390 to collaborate with Tivoli Workload Scheduler. This expands your job
execution, scheduling, monitoring, and alert notification capabilities. Using OPC
Automation you could, during a service period, use Tivoli Workload Scheduler to stop
through System Automation, the WebSphere J2EE servers, then run a job that activates
WebSphere Application Server for OS/390 and z/OS conversations and finally restart
the WebSphere J2EE servers through System Automation.

The steps to be performed with the maintenance interval are

1. Make your changes to the configuration. This can be done at any time outside the
maintenance window. You should use the WebSphere Application Server for OS/390
and z/OS SMEUI and go through all the steps except the last one that is conversation
activation.

2. Before you activate a conversation stop all J2EE Servers through SA OS/390 or OPC
Automation.

3. Activate the conversation; no server restart will be triggered through activation since no
servers are running. You can either do this manually through the SMEUI or write little
REXX execs to perform the conversation activation using the WebSphere Application
Server for OS/390 and z/OS SM Scripting API. For this moment the only language that

System Automation Development - 60 - March 2003
IBM Boeblingen

is supported by the SM Scripting API is REXX. When you use this interface you can
invoke the execs through a job that you can automate through OPC. Details are
described below. Samples can be found in the download zone.

4. After activation is complete restart all J2EE servers through SA OS/390 or OPC
Automation.

5.8.1 Activation using the SM Scripting API
To use the SM Scripting API you have to write a REXX script that you should run under
OMVS.

A typical SM Scripting API script consists of three parts:

• One part to generate the input file
• One part to call the function
• One part to process the result

The following functions, supplied by the API, were used in the sample EXECs:

• CB390CFG(...) for calling an administrations function
• XMLGEN(...) for generating the input file

To use one of the administration functions, the default input XML files must be accessible.
Each default XML file lists all valid attributes for the corresponding administrative function.

To use the API additions to the LIBPATH, CLASSPATH and PATH plus one new
environment variable are needed.

You must run under an OMVS userid registered as a WebSphere for z/OS Systems
Management Administrator such as CBADMIN.

Note: The scripts cannot be run from another userid that has done a switch user to become
CBADMIN.

Tools Samples
As a sample we provide two jobs, scripts and REXX EXECs.

• Each job sets the userid to CBADMIN and calls a script to be executed under OMVS.
• Each OMVS script set up the required environment variables and calls the respective

REXX EXEC.
• The REXX EXECs call the administration function and set the return code.

−−−− WASMNTR1 scans all conversations to find if there are any conversations ready to be
deployed.
o If it finds no conversation it set the return code to 4.
o If it finds exactly one conversation, it generates an XML file that can be used as

input by WASMNTR2 to activate the conversation. The return code is set to 0.
o If it finds more than one conversation it still generates the XML file, but set the

return code to 8.

System Automation Development - 61 - March 2003
IBM Boeblingen

−−−− WASMNTR2 commits (activates) the conversation named in the XML input file. If
more than one conversation is contained in the input file, it activates the most recent
one.

Note that WebSphere Application Server for OS/390 and z/OS allows you to have more than
one conversation that is in a state where it could be activated. But normally this should be
avoided: After one of them has been activated WebSphere will not allow you to active the
others. This is the reason for setting a return code of 8 by WASMNTR1 in this case.

For more details, look at the source of the samples.

Using these or similar jobs you could perform the following steps:
Run the first job

1. if return code is 4: no further action is needed, there is nothing to be activated.
2. if return code is 0: there is exactly one conversation to be activated. You should
• stop all J2EE servers either through System Automation commands or through OPC

Automation,
• run the second job to activate the conversation,

−−−− if return code is 0, the new conversation has successfully been actived. Restart all
stopped J2EE servers either through System Automation commands or through OPC
Automation.

−−−− else restart all stopped J2EE servers, offline check what the problem was, schedule a
new maintenance period when the problem is resolved.

3. if return code is 8
• offline check the input file for the second step. Through SMEUI delete all conversations

you do not want to activate and schedule a new maintenance period.
4. if return code is greater than 8

−−−− offline check the output and error files and fix the problem,
−−−− when the problem is fixed, schedule a new maintenance period.

Possible error causes could be:

• set-up problems, e.g.: wrong CLASSPATH, PATH, LIBPATH environment variables
• system problems, e.g.: WebSphere SMS on bootstrap system not running
• authorization problems, e.g.: no access to USS files, no WebSphere Administrator

userid
• conversation problems, e.g.: conversation found ready for activation is not based on

currently active conversation.

