

Performance Driven Automation

Jürgen Holtz IBM Deutschland Entwicklung GmbH Schönaicher Str. 220 71032 Böblingen holtz@de.ibm.com

Performance Driven Automation

09-Jan-2006

© 2005 IBM Corporation

Copyright and Trademarks

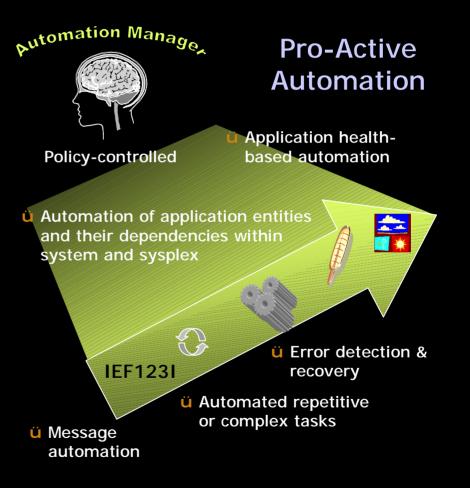
© Copyright IBM Corporation 2005

The following names are trademarks of the IBM Corp. in USA and/or other countries and may be used throughout this presentation:

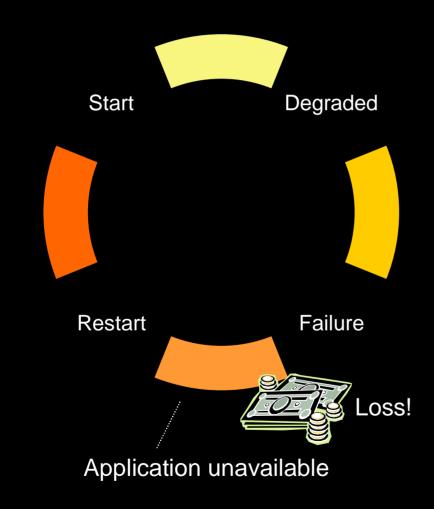
CICS, DB2, eLiza, IBM, IMS, MVS/ESA, MQSeries, NetView, OMEGAMON, RMF, RACF, S/390, Tivoli, VTAM, VSE/ESA, VM/ESA, WebSphere, z/OS, z/VM, zSeries

Other company, product and service names may be trademarks or service marks of others.

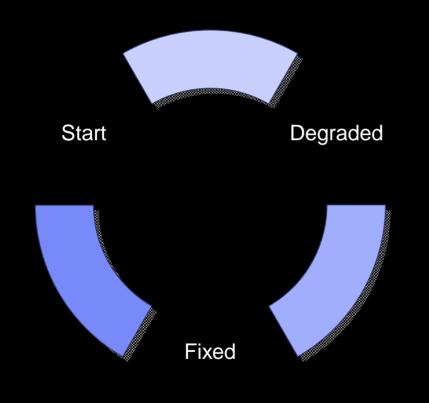
Agenda


§ Motivation

- **§** Resource / Exception Monitoring using OMEGAMON
- § Exception-based Automation
- **§** Monitor Resources
 - Concepts
 - Administration and Operation
- **§** Health-based Automation
- § Summary


Automation Evolution

- § Message filtering
- § Message automation
- **§** Error detection and recovery
- **§** Resource management
 - Start, stop, recycle
 - Dependencies between resources
- § High availability for business processes
- **§** Autonomic computing
 - Understanding health of system and applications
 - Pro-active automation


Application Life Cycle w/o Health Monitoring

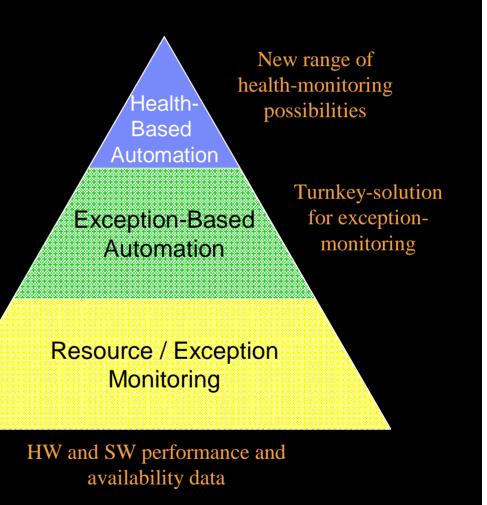
- § Application state is either up or down
- § Gradients between up and down are unknown
- § An outage may occur when a degraded application is detected too late
- Solution States Stat
- It is important to avoid or at least reduce application repair time to achieve higher availability

Application Life Cycle with Health Monitoring

- Solution States
 Solution States
- **§** Possible reactions
 - Elimination of bottlenecks
 - Provisioning of additional resources
 - Consider pro-active application move
 - Prepare for "planned" outage
- § Goal: fix the problem before a failure occurs

How does this Relate to Automation?

§ System Automation for z/OS


- Monitor Resource concept
- Determination of application health
- Ability to act before failure occurs

§ SA z/OS and AF/OPERATOR

- OMEGAMON Classic interface
- Exception Monitoring
- Execution of OMEGAMON commands

§ OMEGAMON Classics

- CICS
- DB2
- IMS
- MVS

© 2005 IBM Corporation

Agenda

§ Motivation

- **§** Resource / Exception Monitoring using OMEGAMON
- § Exception-based Automation
- **§** Monitor Resources
 - Concepts
 - Administration and Operation
- **§** Health-based Automation
- § Summary

OMEGAMON Exception Monitoring

§ OMEGAMON LEXSY-command triggers exception analysis for

- System-wide exceptions, e.g. XCSA for common storage area utilization
- Address space exceptions, e.g. WAIT for address space wait times
- § Exceptional conditions are calculated based on internal OMEGAMON cycles
- **§** Example:

Q

LEXSY		OMEGAMON/MVS Exception Analysis				
+	XREP	Number of Outsta	anding Replies = 6			
+	FXFR	STC * MASTER*	Fixed Franes in use = 2937			
+	WSHI	* MASTER *	Working Set Size = 12592K (High)			
+	FXFR	STC PCAUTH	Fixed Franes in use = 88			
+	WAIT	PCAUTH	Wait: 8:04 DY			

OMEGAMON Exception Monitoring (cont.)

§ Exception thresholds can be set and displayed with the XACB command, e.g.

XACB LIST=XCSA

: XCSA

+	DISPLAY Paraneters:	THRESHOLD Paraneters:	XLF Parameters:
•	State=0N	Threshold=85	Auto=OFF
•	Group=0P	Di spl ay=CLR2	Log=OFF
•	Bell=OFF	Attribute=NONE	Limit=0 (0)
•	BOX Parameters:	CYCLE Paraneters:	Repeat=NO
•	Boxchar=' +'	ExNcyc=0	Persist=0
•	Boxclr=CLR2	Stop=0 (0)	SS=
•	Boxattr=NONE	Cumul at i ve=0	

§ In the example above, the setting for XCSA indicates that an exception is reported for CSA utilization > 85%

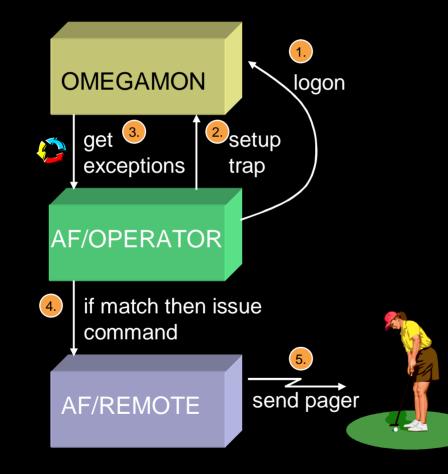
Agenda

§ Motivation

- **§** Resource / Exception Monitoring using OMEGAMON
- § Exception-based Automation
- **§** Monitor Resources
 - Concepts
 - Administration and Operation
- **§** Health-based Automation
- § Summary

Exception-Based Automation using AF/OPERATOR

- **§** Logon to particular OMEGAMON session(s)
 - LOGON OMMYS APPLID(ipspn2rc) NAME(onkey4) USERID(holtz) PASSWORD(mypw/cl3pw) INTERVAL(00:00:30)
- **§** Setup one or more traps for exceptions of interest, for example

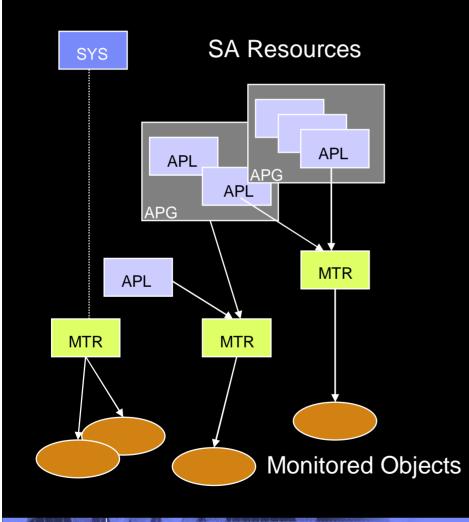

TRAP ADD(csatrap) XOM(' + XCSA *') ENABLE NOLOG ACTION('ex donotify')

§ Characteristics

- Above trap will poll the OMEGAMON sessions every 30 seconds
- When an exception occurs, the specified REXX script *donotify* is invoked
- Other options
 - Selection of particular OMEGAMON through SESSION-keyword
 - Specification of an alternate command ALTACT that is issued at every n-th occurrence of an exception using MATCHLIM(n)

Exception Alarming via AF/REMOTE

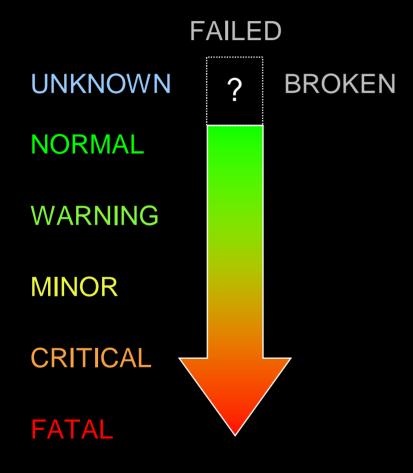
- Scenario: Monitoring and Alarming
- § Components
 - OMEGAMON exception thresholds are defined
 - AF/OPERATOR establishes session with OMEGAMON to trap interesting exceptions
 - AF/REMOTE script is defined to send a pager or an e-mail when triggered by automation


Agenda

§ Motivation

- **§** Resource / Exception Monitoring using OMEGAMON
- § Exception-based Automation
- **§** Monitor Resources
 - Concepts
 - Administration and Operation
- **§** Health-based Automation
- § Summary

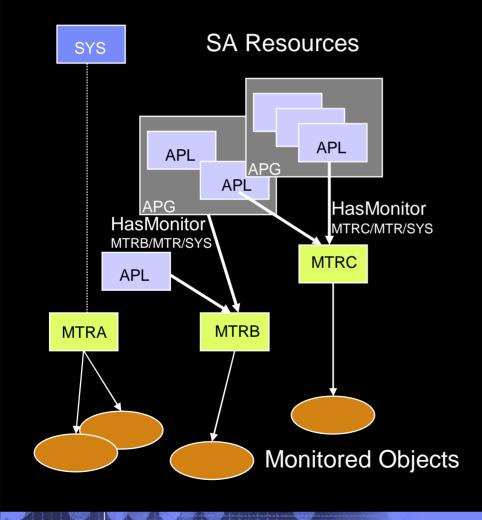
Monitor Resources – At a Glance


§ Resource in the automation policy

Name: *monitor*/**MR**/system

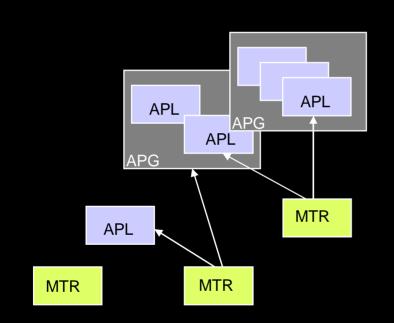
- § Obtains and holds health state of the object it monitors (job, device, file system, etc.)
- § Typically associated with an application (APL) or application group (APG)
- **§** Health state
 - Obtained either periodically or based on an event
 - Propagated to associated APL and APG

Health States



§ The MTR determines an health state based on its observations

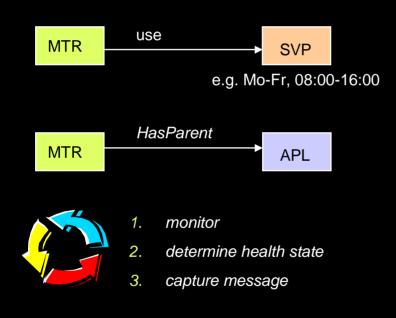
- 5 regular health states: NORMAL, WARNING, MINOR, CRITICAL, and FATAL
- UNKNOWN: health state has not yet been determined
- FAILED: MTR failed and will be rescheduled
- BROKEN: MTR failed and monitoring stopped
- S The health state is tracked by the automation manager
- **§** The automation manager
 - Propagates the health state to resources related to the MTR
 - Computes an accumulated health state
 - Triggers actions, if specified in the automation policy based on individual health state


HasMonitor Relationship

- § MTR is connected from APL or APG via HasMonitor relationship
- § One MTR can be connected to zero or more APLs/APGs
- § One APL/APG can have zero or more MTRs connected
- § MTRs cannot be members of APGs and cannot have other MTRs

Health Status Accumulation

- § Health states are accumulated by the automation manager
 - Over all MTRs
 - Over all group members
 - Over multiple group nesting levels, if required
- § General rule: most severe health state counts
- § Health status is 'N/A' for APLs or APGs without MTR


Compound State

- **§** The compound state is the result of the aggregation of the six resource states managed by the automation manager
- **§** A compound state PROBLEM propagated to an APG can trigger automation manager decisions for MOVE and SERVER groups

§ MTRs				
5 MIT (5	Desired Status	Observed Status	Health Status	Compound Status
	AVAILABLE	AVAILABLE	UNKNOWN,NORMAL	SATISFACTORY
	AVAILABLE	AVAILABLE	WARNING, MINOR, CRITICAL	DEGRADED
	AVAILABLE	AVAILABLE	FATAL	PROBLEM
	UNAVAILABLE	SOFTDOWN	N/A	SATISFACTORY
§ APLs/APGs	Desired Status	Observed Status	Health Status	Compound Status
	AVAILABLE	AVAILABLE	N/A (no MTRs)	SATISFACTORY
	AVAILABLE	AVAILABLE	UNKNOWN,NORMAL	SATISFACTORY
	AVAILABLE	AVAILABLE	WARNING, MINOR, CRITICAL	DEGRADED
	AVAILABLE	AVAILABLE	FATAL	PROBLEM
	UNAVAILABLE	SOFTDOWN	N/A (no MTRs)	SATISFACTORY
	UNAVAILABLE	SOFTDOWN	UNKNOWN,NORMAL	SATISFACTORY
	UNAVAILABLE	SOFTDOWN	WARNING,MINOR,CRITICAL	SATISFACTORY
	UNAVAILABLE	SOFTDOWN	FATAL	INHIBITED

Monitor Resource Life Cycle

- § Default: MTR is always active unless something else is specified
- § MTR can be connected to a service period defining the window of availability
- § An MTR can be activated or deactivated when the supporting resource is made available or unavailable, respectively
- § Upon activation, an optional activation command can be issued for setup
- **§** While the MTR is active
 - Monitor command Is issued
 - Health state is determined
 - Message explaining health state is captured
- § Upon deactivation, an optional deactivation command can be issued for cleanup

Active Monitor Resource

- § An active MTR runs periodically according to interval specified in customization dialog
- **§** Health state is determined based on polling the monitored object(s)
- **§** Simple example: Test of network connection to some TCP/IP host

Passive Monitor Resource

- **§** An MTR is passive if no interval is specified in the customization dialog
- § A passive MTR determines health state based on events coming from the monitored object(s) à messages
- **§** Health state must be updated in response to such messages using the generic command INGMON
- **§** Simple example: MTR JES2MON is monitoring \$HASP9202 issued by JES2
 - Meaning: Potential JES2 main task loop
 - NetView automation table snippets created automatically based on policy definition:
 New with SA z/OS V3.1

NetView AT condition.

M6GID = '**\$H4SP9202**'

NetView AT action 1

EXEC(CMD('INGMON JES2MON STATUS=CRITICAL') ROUTE(ONE %AOFOPJESOPER%))

Agenda

§ Motivation

- **§** Resource / Exception Monitoring using OMEGAMON
- § Exception-based Automation
- **§** Monitor Resources
 - Concepts
 - Administration and Operation
- **§** Health-based Automation
- § Summary

Defining a Monitor Resource

MTRB/MTR/SYS

MTR attributes: commands, interval, related documentation

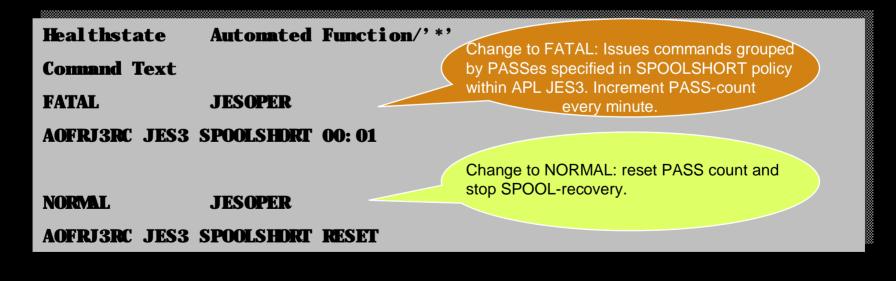
Relationships to applications or application groups

Recovery actions upon health state change

- § MTRs are defined in the customization dialog under policy entry MTR
- **§** A definition consists of
 - Attributes such as commands, a polling interval, size of historical message log
 - Relationships to other resources
 - Recovery actions driven by SA upon detected change of health state
- § MTR may be assigned an optional service period (SVP)
- § One or more systems must be selected where the MTR is to be instantiated

Monitor and Activate / Deactivate Commands

- § All commands are executed in NetView PIPE with EXPOSE COMMAND stage
- **§** Command echo and any message produced are written to NETLOG
- **§** Return codes
 - Activate and deactivate commands: RC=0, otherwise MTR state is BROKEN
 - Monitor commands: (see table below)


Return Code	Health State	Monitor State	Meaning
1	UNKNOWN	BROKEN	Unrecoverable error. SA stops monitoring the object
2	UNKNOWN	FAILED	Temporary failure. SA continues monitoring the object
3	NORMAL	ACTIVE	Normal operation of the monitored object
4	WARNING	ACTIVE	Same as NORMAL but with some degradation
5	MINOR	ACTIVE	Same as WARNING but more severe
6	CRITICAL	ACTIVE	Same as MINOR but more severe
7	FATAL	ACTIVE	Same as CRITICAL but more severe
8	"DEFER"	ACTIVE	Deferred processing of health state within automation table

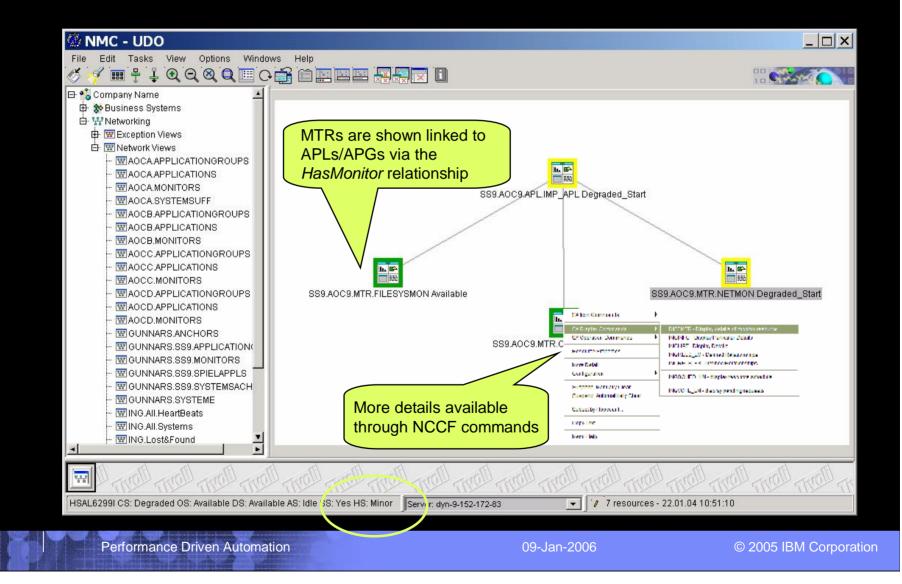
Recovery Activities

§ MTR definitions can hold commands that are executed once

- When the health state changes (no health state specified)
- When the health state changes to the specified value
- **§** If there are multiple commands for one health status, the commands are executed in the sequence specified
- **§** Example: JES3 SPOOL monitoring using MTRs

Operating MTRs from NCCF

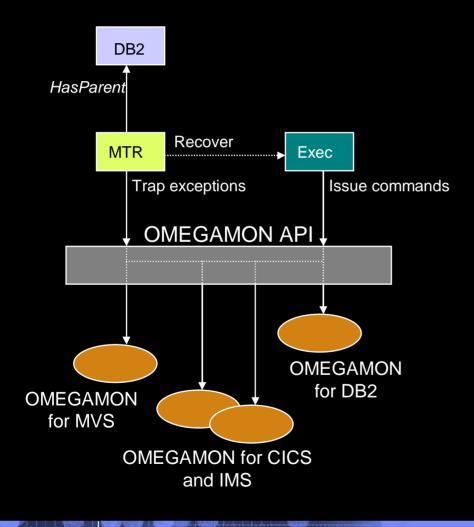
§ INGLIST lists all resources including health state (scroll right)


	Domain ID = IPUN9 INGLIST Date = 03/23/05 Operator ID = BHOL Sysplex = SYSPLEX1 Time = 08: 44: 09 CMD: A Update B Start C Stop D INGRELS E INGVOTE F INGINFO G Members H DISPTRG I INGSCHED J INGGROUP M DISPMTR / scroll CMD Name Type System Compound Desired Observed Nature APLGROUP APG AOC9 SATISFACTORY AVAILABLE AVAILABLE BASIC				/05
CMD: A Update	B Start H DISPTRG	C Stop D I I INGSCHED J I	NGRELS E IN NGGROUP M DI	GVOTE F IN SPMTR / sci	GINFO rol l
APLGROUP APLMDN1 APLMDN2	APG AOC9 MTR AOC9 MTR AOC9	SATISFACTORY SATISFACTORY SATISFACTORY	AVAILABLE	AVAI LABLE AVAI LABLE AVAI LABLE	BASIC

§ DISPMTR displays detailed information about a monitor and the reason for the current health state

INGKYMDO Donain ID = IPUN9 Operator ID = BHDL	SA z/OS - Connand Dialo DISPMTR Sysplex = AOC9PLEX	0
CMD: A Reset B Start	C Stop D Details E IN	GVOTE F INGINFO I INGSCHED
CMD Monitor Syste	em Status Health	Last nonitored
_ APLMDN1 AOC9	ACTIVE NORMAL	2005-03-23 08:40:10

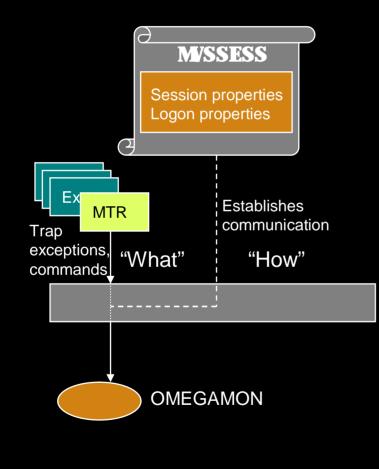
Operating MTRs from NMC


Agenda

§ Motivation

- **§** Resource / Exception Monitoring using OMEGAMON
- § Exception-based Automation
- **§** Monitor Resources
 - Concepts
 - Administration and Operation
- **§** Health-based Automation
- § Summary

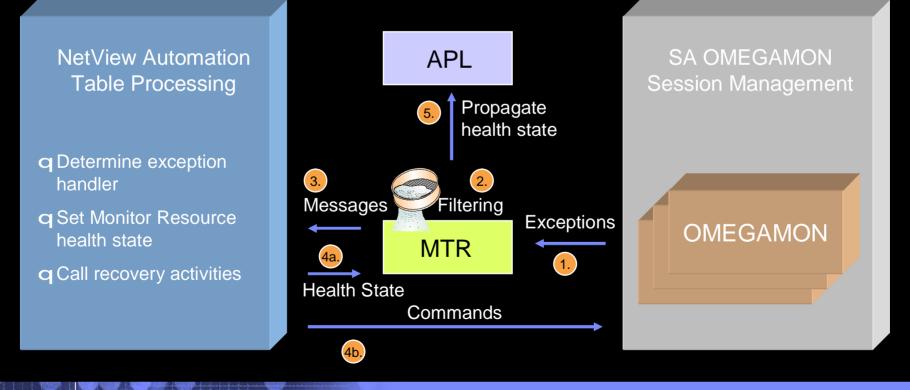
SA OMEGAMON Interoperation – Value



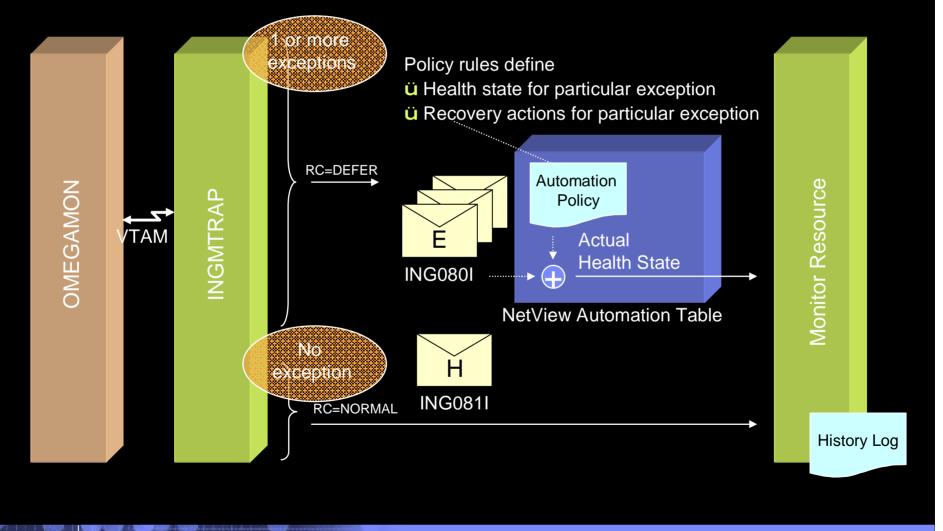
§ Use of performance and availability information for application automation

- More facts, more accurate decisions
- Sources: MVS, DB2, CICS, IMS
- § Provides API to communicate with OMEGAMON monitors to
 - Obtains and filters installation-defined exceptional conditions
 - Sends commands to OMEGAMON, for example to respond to such conditions
- § Provides exception monitor based on the Monitor Resource concept
 - Monitors "interesting" set of exceptions
 - Sets application health state based on existence of such exceptions
 - Provides means to react and resolve exceptional conditions

SA OMEGAMON Sessions



- § OMEGAMON sessions are defined as policy items in the network policy (NTW)
- **§** A definition consists of
 - Session attributes to identify and control VTAM session
 - User attributes to enable logon
- § A session can be used by multiple operators
 - Automation operators, for example running Monitor Resource commands
 - Human operators
- Separate automation operators are reserved to control one or more sessions


Exception Monitoring Architecture

- **§** Active MTR is used to periodically retrieve OMEGAMON exceptions
- § Health state processing and recovery will be driven via the NetView automation table created out of the SA policy

From an Exception to a Health State

System Automation OMEGAMON API

- **§** Command INGOMX serves as interface between operators and a particular OMEGAMON session
- **§** Possible interactions
 - Call OMEGAMON exception analysis and find interesting exceptions
 - Enter one or more OMEGAMON commands, for example to collect additional performance information or to remove a bottleneck
- § Monitor command INGMTRAP serves as a customized interface to INGOMX primarily intended to
 - Find interesting exceptions in the context of a monitor command
 - Drive NetView automation table processing to set application health state and for recovery

Exception-Monitoring using System Automation for z/OS

§ Define a Monitor Resource that periodically issues INGMTRAP, e.g.

INGMTRAP TRAP, NAME=onsy4mvs, XTYPE=XCSA

- **§** Define an exception entry within the MESSAGES/USER DATA policy for the Monitor Resource, e.g.
 - + **XCSA** à issue command *donotify* <parms>
- **§** When exception trips, a message like below is generated

```
INGO80I MYMON/MTR/KEY4 OMSY4MVS OMLIMVS + XCSA
Warning: Allocated CSA = 44% (1428K out of 3264K)
```

§ Characteristics

- Each time monitor command is executed, exception analysis is done
- Within the automation policy you can also set a health state and define a series of commands for escalation or define different sets of commands depending on exception text
- Exception handling can be disabled while recovery is in progress

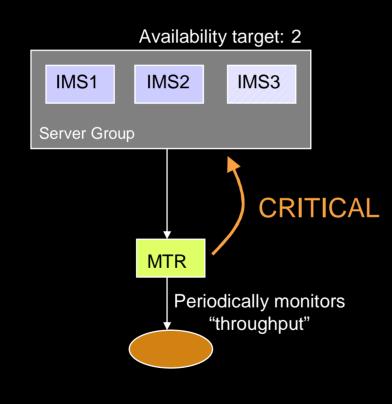
Issue OMEGAMON Commands from NetView Console

§ OMEGAMON commands can be issued from the NetView console using INGOMX, e.g.

INGOMK EX, NAME=onsy4mvs, CMD=csaa

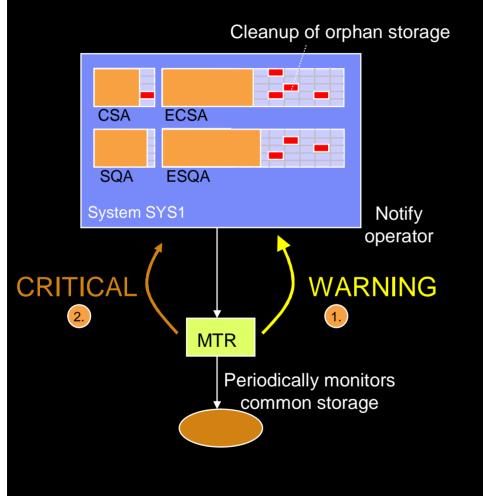
CS	SAA	SUMMARY					
+							
+		System					
+		Maxi mum	Pre- CSAA	Orphan	Usa	ge	
+						0 <u>24</u> 6	8100
+	CS	A 3264K	1287K	0	1287K	39. 4% >	
+	ECS	A 307336K	76925K	0	76925K	25. 0% >	
+	SQ	A 1672K	604K	0	604K	36. 1% >	
+	ESQ	A 144892K	22 8 34K	0	22 834K	15. 8% >	

OMEGAMON Session Management


§ INGSESS is the operator command to manage OMEGAMON sessions

- Start sessions manually to test connection and authorization
- Stop sessions to do maintenance
- Show additional session attributes, e.g. logon data, timeout, statistics

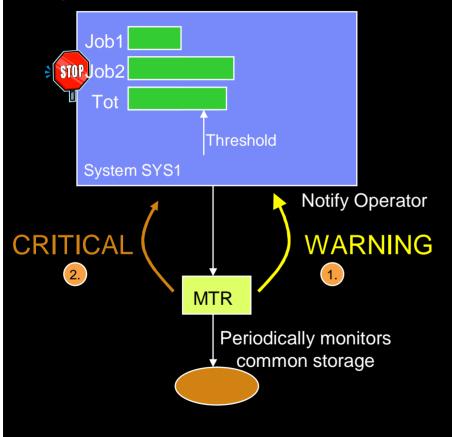
Dons		I PUN9 BHDL)S - Command - INGSESS /stem = AOC9		Date	1 of 8 = 03/23/05 = 08:08:56
CMD:	B Start	session	C Stop s	session DD	etails		
CMD	Session	System	Туре	Status	Appl - i d	User id	Sess0per
	CICSKY41	OMICICS	A0C9	ACTIVE	IPSPOCO	SAOM	AOFSES01
_	DB2SGG4	OMIDB2	AOC9	INACTIVE	IPSPD2C	SAOM	AOFSES02
_	DB2SG14	OMIDB2	AOC9	MINT	IPSPD2C	SAOM	AOFSES03
_	IM6742CR	OMIIMS	AOC9	INACTIVE	IPSPOIO	SAOM	AOFSES01
-	OMSY4MVS	OMINVS	AOC9	AUTHFAIL	IPSPMPRC	SAOM	AOFSES02
Com	and ===>						
PF1	l=Help	PF2=End	PF3=Re PF9=Re				PF6=Roll PF12=Retrieve


Sample Scenario: Application Provisioning

- § Uses server group concept in SA with
 - Predefined instances
 - Variable availability target based on business demand
 - MTR monitoring transaction throughput and deriving health state
- § Intention: provide new application instance when throughput becomes CRITICAL
- **§** Results:
 - Increase of availability target based on health state CRITICAL causes SA to start a new server instance
 - Optionally other resources are terminated, if active

Other Scenarios: Common Storage Health

§ Common storage health


- Use of OMEGAMON common storage analyzer
- Determine overall usage of common storage areas
 - SQA below and above
 - CSA below and above
- Set health state and notify operator
- Optionally, determine orphan storage and release it

Other Scenarios: Looping Job Detection

Stop/Cancel Job

40

§ Processor health

- Use of OMEGAMON CPUrelated commands and exceptions
- Determine exceptional utilization of overall system
- Determine exceptional utilization of single address spaces
- Set health state and notify operator
- Optionally, stop/cancel address space assumed to be looping

Other Scenarios (cont.)

§ Monitoring CICS connections to other CICS, DB2 and/or IMS

- Automatic start of missing connection

§ Monitoring transient CICS queues

- Increase priority of the update transaction for faster unload of queue

§ DB2, MQ archive log management

- Assistance to increase archive logs

§ Enqueue monitoring

- Automatic cancel of job holding enqueue resource for too long
- Automatic detection of transactions holding CICS-enqueue

§ ...

Agenda

§ Motivation

- **§** Resource / Exception Monitoring using OMEGAMON
- § Exception-based Automation
- **§** Monitor Resources
 - Concepts
 - Administration and Operation
- **§** Health-based Automation
- § Summary

Summary

§ IBM automation products are tightly integrated with OMEGAMON

- System Automation and AF/OPERATOR utilize OMEGAMON monitors
- System Automation provides Monitor Resources to determine health state and for health-based automation based on OMEGAMON data

§ Understanding the application health can lead to

- Higher availability
- Higher efficiency
- Improved IT service management

Bibliography

§ Related Documentation

- SA z/OS V3.1 Defining Automation Policy (SC33-8262)
- SA z/OS V3.1 User's Guide (SC33-8263)
- SA z/OS V3.1 Programmer's Reference (SC33-8266)
- SA z/OS V3.1 Customizing and Programming (SC33-8260)
- Command Reference Manual AF/OPERATOR Version 340
- User's Guide AF/OPERATOR Version 340
- **§** White Paper
 - IBM Tivoli System Automation for z/OS V2.3: A Primer to Monitor Resources, Paul Quigley
 - Checkout SA-homepage: http://www-1.ibm.com/servers/eserver/zseries/software/sa/