

- This presentation describes various JES2 trace records and how to use them to improve overall JES2 performance. It is assumed that you are familiar with JES2 and have a knowledge of the JES2 \$TRACE facility.
- This presentation was created using examples from the OS/390 release 10 level of JES2. Some differences may exist in older levels of JES2.

Overview

This presentation will cover the following:
Quick overview of the JES2 \$TRACE facility
Relevant trace record information

ID 17 - Checkpoint
ID 20 - SYSOUT work selection
ID 30 - Posting for new work
ID 31 - JOB work selection
Others

Putting it all together

\$TRACE overview

- Formatted trace data written to SYSOUT data set
- TRACEDEF sets up environment
 - PAGES= and TABLES= set up ECSA buffers - PAGES= is init deck only
 - ACTIVE= turns tracing on and off (YES/NO)
 - LOG= controls SYSOUT data set
 - -START=YES/NO controls writing to DS
 - -CLASS= sets SYSOUT class
 - -SIZE= Controls records before SPIN

\$TRACE overview *(continued)*

- TRACE(n) controls individual IDs
 START=YES/NO turns an ID on or off
 PCEs/Devices can have selective tracing
 TR or TRACE=YES/NO controls device
- Trace data sets can be spun at any time
 \$TTRACEDEF,SPIN

Turning on a trace and create SYSOUT

\$TRACE output SPIN SYSOUT data set created ► JOBNAME is \$TRCLOG ► This is an STC SYSOUT class is as specified on TRACEDEF OUTGRP=1.1.1, BURST=NO, FCB=****, \$HASP686 OUTPUT (\$TRCLOG) \$HASP686 FLASH=****, FORMS=STD, HOLD=(NONE), OUTDISP=WRITE, PRIORITY=144, \$HASP686 \$HASP686 PRMODE=LINE, QUEUE=A, RECORDS=(91 OF 91), ROUTECDE=LOCAL, \$HASP686 \$HASP686 SECLABEL=, TSOAVAIL=NO, UCS=****, \$HASP686 USERID=IBMUSER, WRITER=

How can \$TRACE help me?

- Watch for unusual trace results
- Look for trends over time
- See how load affects trace data
- This implies looking at your system when there is no problem and setting up a baseline
- See how changes to the system affect trace output
- Look for problems before the effect is noticed

- This traces all CKPT I/O and reports various data
- Reduction program JES2T17A in SHASSAMP
- Most useful in an MAS
- Tuning knobs that this can help with
 MASDEF HOLD= and DORMANCY=

Trace 17 - Checkpoint *(continued)*

- Goal in tuning
 - Reduce MAS performance penalty
 - Functions in MAS are delayed waiting for checkpoint
 - Impact of delay can be reduced by parallel processing
 - Parallel processing example use multiple internal readers to submit jobs instead of a single internal reader
 - CKPT tuning can also reduce delays

Trace 17 - Checkpoint *(continued)*

- Goals in tuning (continued)
 - Balancing act between
 - Reduce time to reacquire checkpoint
 - Hold long enough to not create additional delays
 - Keep non-useful time in CKPT cycle short
 - Trace 17 and its reduction program helps adjust the balance

16.15.00.25 ID =	17 CKPTPER	F	CKPT	0645	5C1B0			
	READ1	0000006E	0000003	0000001E	00000064	000001F4	00000004	CKPT2
16.15.00.26	17 CKPTPER	F	CKPT	0645	5С1ВО			
	► READ2	00000000	00000004	00000087	000000BC	00000006	000027AD	000023E
	00002F9C	00002886	0000000C					
Record 🔪	0053B510							
	00000000	A0000000	00000000	00000000	00000000	00000006	00000000	0000001
1,700	00000000	00000014	00000000	00000007	00000000	0000000E	00000000	0000000
	00000000	0000032	00000000	00000000	00000000	00000000	00000000	0000000
16.15.00.34 ID	17 CKPTPERF CKF			0645C1B0				
	PRIMARY	00000342	00000000	00000000	000000BC	00000001	0000030E	0000030
	00000000		00000000	0000000C	00004265	CKPT1		
	00000000	00000000	00000000					
	00000001	00000000	00000000	00000000	00000001	00000000	00000002	0000000
	00000002	00000000	00000001	00000000	00000001	00000000	00000001	0000000
	0000003	00000000	00000000	00000000	00000000	00000000	00000000	0000000
16.15.00.38 ID =	17 CKPTPERF CKPT		0645C1B0					
	INTERMED	000001B7	00000002	0000002C	000000BC	00000001	000000C8	0000000
	000011AB		00000001	0000000C	00004266	CKPT1		
	0000009D	00013605	00000ED6					
	00000000	00000002	00000000	00000000	00000000	00000002	00000000	0000000
	00000000	00000006	00000000	00000002	00000000	00000005	00000000	0000000
	00000000	00000011	00000000	00000000	00000000	00000000	00000000	0000000
16.15.00.62 ID =	17 CKPTPERF CKPT		0645C1B0					
	FINAL	00000AD	00000002	00000010	000000BC	00000000	00000000	0000000
	00002406	00000DCB		00000001	00000007	00004268	CKPT1	
	0000012B	00044BFB	0000274D					
	00000000	0000004	00000000	00000000	00000000	0000004	00000000	0000001
	00000000	000000E	00000000	0000004	00000000	0000000B	00000000	0000000
	00000000	00000021	00000000	00000000	00000000	00000000	00000000	0000000

Trace 17 Reduction Program

- Summarizes trace 17 data
 - ► JES2T17A in SHASSAMP
 - Normal way to look at trace data
 - Full copy at end of presentation
 - Useful for trend analysis
 - See prolog for how to run

Trace 17 Reduction Program

Trace 20 - SYSOUT work selection

- Traces most calls to select SYSOUT for processing
 - ► Printer/Punch, SAPI, NJE, RJE, Offload
 - ► NOT PSO, External Writer
- Displays selection criteria
- Reports overhead of selection
- Used to determine efficiency of setup
- Tuning knobs that this can help with
 - ► WS= on devices
 - SYSOUT processing philosophy

TRACE 30 - \$#POST

- Work selection is a 2 part process
 - Devices selecting work to process
 - New and changed output finding devices to wake up
- Overhead on the posting side can be as high as the selection side
- When looking at device setup, look at both trace records to see the effect
- Tuning knobs that this can help with
 - ► Same as Trace 20
 - Command overhead

- Each phase of JES2 processing (other than input) must select work to process
- Offload devices select work to process
- Tuning knobs that this can help with
 JES2 initiator class list
 - EXIT 14/49 performance impact

Anything else?

- No specific data, but indicates frequency of use, who is making requests, and time to competes (delta in trace time stamps)
- Can detect run away PSO applications

- ► Similar to trace 27 but for the SAPI interface
- Detects excessive SAPI requests

PERFDATA? CTRACE?

Questions?