
IBM SDK for z/OS platforms, Java Technology Edition

SDK Guide

Version 6

���

IBM SDK for z/OS platforms, Java Technology Edition

SDK Guide

Version 6

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 97.

Copyright information

This December 2009 edition of the user guide applies to the IBM 31-bit SDK for z/OS, Java Technology Edition,
Version 6, product 5655-I98, and to the IBM 64-bit SDK for z/OS, Java Technology Edition, Version 6, product
5655-I99, and to all subsequent releases, modifications, and Service Refreshes, until otherwise indicated in new
editions.

© Copyright Sun Microsystems, Inc. 1997, 2007, 901 San Antonio Rd., Palo Alto, CA 94303 USA. All rights reserved.

© Copyright International Business Machines Corporation 2003, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v

Chapter 1. Overview 1
Version compatibility 1
Migrating from other IBM JVMs 1
Supported hardware 2
The z/OS batch toolkit 2

Chapter 2. Contents of the SDK and
Runtime Environment 5
Contents of the Runtime Environment 5
Contents of the SDK 6

Chapter 3. Installing and configuring the
SDK 9
Working with BPXPRM settings 9
Setting the region size 10
Setting MEMLIMIT 10
Setting LE runtime options 10

Setting LE 31-bit runtime options 11
Setting LE 64-bit runtime options 12

Marking failures 12
Setting the path 12
Setting the class path 13

Chapter 4. Running Java applications 15
The java and javaw commands 15

Obtaining version information 15
Specifying Java options and system properties. . 16
Standard options 16
Globalization of the java command 18

The Just-In-Time (JIT) compiler 18
Disabling the JIT 18
Enabling the JIT 19
Determining whether the JIT is enabled 19

Specifying garbage collection policy 19
Garbage collection options 20
More effective heap usage using compressed
references 20
Pause time 21
Pause time reduction 21
Environments with very full heaps 22

Euro symbol support 22
Using Indian and Thai input methods 22

Chapter 5. Developing Java
applications 25
Using XML 25

Migrating to the XL-TXE-J 27
XML reference information 29

Debugging Java applications. 34
Java Debugger (JDB) 34
Selective debugging 35

Determining whether your application is running on
a 31-bit or 64-bit JVM 36
How the JVM processes signals. 36

Signals used by the JVM 37
Linking a native code driver to the
signal-chaining library 38

Writing JNI applications 39
Supported compilers 40
Native formatting of Java types long, double,
float 40

Support for thread-level recovery of blocked
connectors 41
CORBA support 41

System properties for tracing the ORB 42
System properties for tuning the ORB 43
Java security permissions for the ORB 43
ORB implementation classes 44

RMI over IIOP 44
Implementing the Connection Handler Pool for RMI 45
Enhanced BigDecimal 45
Working in a multiple network stack environment 45
Using IBMJCECCA 46
Support for XToolkit 47
Support for the Java Attach API 47

Chapter 6. Applet Viewer 51
Distributing Java applications 51

Chapter 7. Class data sharing between
JVMs 53
Overview of class data sharing 53
Class data sharing command-line options 54
Creating, populating, monitoring, and deleting a
cache 58
Performance and memory consumption 58
Considerations and limitations of using class data
sharing 59

Cache size limits. 59
JVMTI RetransformClasses() is unsupported . . 59
Required APAR for Shared Classes 59
Working with BPXPRMxx settings 59
Runtime bytecode modification 60
Operating system limitations 61
Using SharedClassPermission 61

Adapting custom classloaders to share classes . . . 61

Chapter 8. Service and support for
independent software vendors 63

Chapter 9. Accessibility 65
Keyboard traversal of JComboBox components in
Swing 65

© Copyright IBM Corp. 2003, 2009 iii

Chapter 10. Any comments on this
user guide? 67

Appendix A. Command-line options . . 69
Specifying command-line options 69
General command-line options 70
System property command-line options 70
JVM command-line options 72

-XX command-line options 82
JIT and AOT command-line options 82
Garbage Collector command-line options 85

Appendix B. Known limitations 93

Notices 97
Trademarks 98

iv IBM SDK for Java: SDK Guide

Preface

This user guide provides general information about the IBM® 64-bit SDK for
z/OS®, Java™ Technology Edition, Version 6. The user guide gives specific
information about any differences in the IBM implementation compared with the
Sun implementation.

Read this user guide with the more extensive documentation on the Sun Web site:
http://java.sun.com.

The Diagnostics Guide provides more detailed information about the IBM Virtual
Machine for Java.

This user guide is part of a release and is applicable only to that particular release.
Make sure that you have the user guide appropriate to the release you are using.

The terms ″Runtime Environment″ and ″Java Virtual Machine″ are used
interchangeably throughout this user guide.

Technical changes made for this version of the user guide, other than minor or
obvious ones, are indicated by blue chevrons when viewing in an Information
Center, by blue chevrons and in red when viewing in HTML, or by vertical bars to
the left of the changes when viewing as a PDF file.

The Program Code is not designed or intended for use in real-time applications
such as (but not limited to) the online control of aircraft, air traffic, aircraft
navigation, or aircraft communications; or in the design, construction, operation, or
maintenance of any nuclear facility.

© Copyright IBM Corp. 2003, 2009 v

|
|
|
|

http://java.sun.com
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

vi IBM SDK for Java: SDK Guide

Chapter 1. Overview

The IBM SDK is a development environment for writing and running applets and
applications that conform to the Java 6 Core Application Program Interface (API).

Version compatibility
In general, any application that ran with a previous version of the SDK should run
correctly with the IBM 64-bit SDK for z/OS, v6. Classes compiled with this release
are not guaranteed to work on previous releases.

For information about compatibility issues between releases, see the Sun Web site
at:

http://java.sun.com/javase/6/webnotes/compatibility.html

http://java.sun.com/j2se/5.0/compatibility.html

http://java.sun.com/j2se/1.4/compatibility.html

http://java.sun.com/j2se/1.3/compatibility.html

If you are using the SDK as part of another product (for example, IBM WebSphere®

Application Server), and you upgrade from a previous level of the SDK, perhaps
v5.0, serialized classes might not be compatible. However, classes are compatible
between service refreshes.

Migrating from other IBM JVMs
From Version 5.0, the IBM Runtime Environment for z/OS contains new versions
of the IBM Virtual Machine for Java and the Just-In-Time (JIT) compiler.

If you are migrating from an older IBM Runtime Environment, note that:
v The JVM shared library libjvm.so is now stored in jre/lib/<arch>/j9vm and

jre/lib/<arch>/classic.
v From Version 5.0 onwards, the JVM Monitoring Interface (JVMMI) is no longer

available. You must rewrite JVMMI applications to use the JVM Tool Interface
(JVMTI) instead. The JVMTI is not functionally the equivalent of JVMMI. For
information about JVMTI, see http://java.sun.com/javase/6/docs/technotes/
guides/jvmti/ and the Diagnostics Guide.

v From Version 5.0 onwards, the implementation of JNI conforms to the JNI
specification, but differs from the Version 1.4.2 implementation. It returns copies
of objects rather than pinning the objects. This difference can expose errors in
JNI application code. For information about debugging JNI code, see -Xcheck:jni
in “JVM command-line options” on page 72.

v From Version 5.0 onwards, the format and content of garbage collector verbose
logs obtained using -verbose:gc have changed. The data is now formatted as
XML. The data content reflects the changes to the implementation of garbage
collection in the JVM, and most of the statistics that are output have changed.
You must change any programs that process the verbose GC output so that they
will work with the new format and data. See the Diagnostics Guide for an
example of the new verbose GC data.

© Copyright IBM Corp. 2003, 2009 1

http://java.sun.com/javase/6/webnotes/compatibility.html
http://java.sun.com/j2se/5.0/compatibility.html
http://java.sun.com/j2se/1.4/compatibility.html
http://java.sun.com/j2se/1.3/compatibility.html
http://java.sun.com/javase/6/docs/technotes/guides/jvmti/
http://java.sun.com/javase/6/docs/technotes/guides/jvmti/
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

v SDK 1.4 versions of the IBM JRE included JVM specific classes in a file called
core.jar. From Version 5.0 onwards, these are included in a file called vm.jar.

v From Version 6, JVM classes are held in multiple JAR files in the jre/lib
directory. This replaces the single rt.jar and core.jar from earlier releases.

v For additional industry compatibility information, see Sun’s Java 6 Compatibility
Documentation: http://java.sun.com/javase/6/webnotes/compatibility.html

v For additional deprecated API information, see Sun’s Java 6 Deprecated API List:
http://java.sun.com/javase/6/docs/api/deprecated-list.html

v All z/OS Java SDK program products can be installed and executed on the same
z/OS system. They are independent program products and can coexist in any
combination.

v The serial reusability feature of the IBM SDK for z/OS, version 1.4.2 (31-bit) and
earlier, started using -Xresettable, is not supported. If you specify -Xresettable
the JVM will issue an error message and will not start. The -Xinitacsh and
-Xinitth options, which allowed heap sizes to be specified for the resettable JVM,
are ignored. You can share data between JVMs in an address space (the old
-Xjvmset and -Xscmax options) using Chapter 7, “Class data sharing between
JVMs,” on page 53, a new facility for Version 5.0. If you specify -Xjvmset or
-Xscmax the JVM will issue an error message and will not start.

v The system property os.arch for IBM SDK for z/OS, version 1.4.2 (31-bit)
versions and earlier had a value of 390. From Java 5.0 onwards, the value of
os.arch is s390.

v Tracing class dependencies, started using -verbose:Xclassdep, is not supported.
If you specify -verbose:Xclassdep, the JVM will issue an error message and will
not start.

v The JVM detects the operating system locale and sets the language preferences
accordingly. For example, if the locale is set to fr_FR, JVM messages will be
printed in French. To avoid seeing JVM messages in the language of the detected
locale, remove the file $SDK/jre/bin/java_xx.properties where xx is the locale,
such as fr, and the JVM will print messages in English.

Supported hardware
The z/OS 31-bit and 64-bit SDKs run on System z9® and zSeries® hardware.

The SDKs run on the following servers or equivalents:
v z9-109
v z990
v z900
v z890
v z800

The z/OS batch toolkit
From Version 5, Service Refresh 3 onwards, the z/OS products have been enhanced
with the JZOS batch toolkit. This toolkit addresses many of the functional and
environmental shortcomings in the previous Java batch capabilities on z/OS. The
enhancements include a native launcher for running Java applications directly as
batch jobs or started tasks and a set of Java methods that make access to
traditional z/OS data and key system services directly available from Java
applications. Additional system services include console communication, multiline
WTO (write to operator), and return code passing capability. For more details, see

2 IBM SDK for Java: SDK Guide

http://java.sun.com/javase/6/webnotes/compatibility.html
http://java.sun.com/javase/6/docs/api/deprecated-list.html

http://www.ibm.com/servers/eserver/zseries/software/java/jzos/overview.html
and http://www.ibm.com/servers/eserver/zseries/software/java/.

Chapter 1. Overview 3

http://www.ibm.com/servers/eserver/zseries/software/java/jzos/overview.html
http://www.ibm.com/servers/eserver/zseries/software/java/

4 IBM SDK for Java: SDK Guide

Chapter 2. Contents of the SDK and Runtime Environment

The SDK contains several development tools and a Java Runtime Environment
(JRE). This section describes the contents of the SDK tools and the Runtime
Environment.

Applications written entirely in Java must have no dependencies on the IBM SDK’s
directory structure (or files in those directories). Any dependency on the SDK’s
directory structure (or the files in those directories) might result in application
portability problems.

The user guides, Javadoc files, and the accompanying copyright files are the only
documentation included in this SDK for z/OS. You can view Sun’s software
documentation by visiting the Sun Web site, or you can download Sun’s software
documentation package from the Sun Web site: http://java.sun.com. Additional
z/OS related information is available on the z/OS Java Web site at
http://www.ibm.com/servers/eserver/zseries/software/java/.

Contents of the Runtime Environment
A list of classes, tools, and other files that you can use with the standard Runtime
Environment.
v Core Classes - These classes are the compiled class files for the platform and

must remain compressed for the compiler and interpreter to access them. Do not
modify these classes; instead, create subclasses and override where you need to.

v Trusted root certificates from certificate signing authorities - These certificates are
used to validate the identity of signed material. The IBM Runtime Environment
for Java contains an expired GTE CyberTrust Certificate for compatibility
reasons. This certificate may be removed for later versions of the SDK. See
“Expired GTE Cybertrust Certificate” on page 95 for more information.

v JRE tools - The following tools are part of the Runtime Environment and are in
the /usr/lpp/java/J6.0[_64]/jre/bin directory unless otherwise specified.

ikeyman (iKeyman GUI utility)
Allows you to manage keys, certificates, and certificate requests. For more
information see the accompanying Security Guide and http://
public.dhe.ibm.com/software/dw/jdk/security/50/
GSK7c_SSL_IKM_Guide.pdf. The SDK also provides a command-line version
of this utility.

java (Java Interpreter)
Runs Java classes. The Java Interpreter runs programs that are written in the
Java programming language.

javaw (Java Interpreter)
Runs Java classes in the same way as the java command does, but does not
use a console window.

jextract (Dump extractor)
Converts a system-produced dump into a common format that can be used
by jdmpview. For more information, see jdmpview.

© Copyright IBM Corp. 2003, 2009 5

http://java.sun.com
http://www.ibm.com/servers/eserver/zseries/software/java/
http://www.ibm.com/developerworks/java/jdk/security/60/index.html
http://public.dhe.ibm.com/software/dw/jdk/security/50/GSK7c_SSL_IKM_Guide.pdf
http://public.dhe.ibm.com/software/dw/jdk/security/50/GSK7c_SSL_IKM_Guide.pdf
http://public.dhe.ibm.com/software/dw/jdk/security/50/GSK7c_SSL_IKM_Guide.pdf

keytool (Key and Certificate Management Tool)
Manages a keystore (database) of private keys and their associated X.509
certificate chains that authenticate the corresponding public keys.

kinit
Obtains and caches Kerberos ticket-granting tickets.

klist
Displays entries in the local credentials cache and key table.

ktab
Manages the principal names and service keys stored in a local key table.

pack200
Transforms a JAR file into a compressed pack200 file using the Java gzip
compressor.

policytool (Policy File Creation and Management Tool)
Creates and modifies the external policy configuration files that define your
installation’s Java security policy.

rmid (RMI activation system daemon)
Starts the activation system daemon so that objects can be registered and
activated in a Java virtual machine (JVM).

rmiregistry (Java remote object registry)
Creates and starts a remote object registry on the specified port of the
current host.

tnameserv (Common Object Request Broker Architecture (CORBA) transient
naming service)

Starts the CORBA transient naming service.

unpack200
Transforms a packed file produced by pack200 into a JAR file.

Contents of the SDK
A list of tools and reference information that is included with the standard SDK.

The following tools are part of the SDK and are located in the
/usr/lpp/java/J6.0[_64]/bin directory:

appletviewer (Java Applet Viewer)
Tests and runs applets outside a Web browser.

apt (Annotation Processing Tool)
Finds and executes annotation processors based on the annotations present
in the set of specified source files being examined.

extcheck (Extcheck utility)
Detects version conflicts between a target jar file and currently-installed
extension jar files.

hwkeytool
Manages a keystore of private keys and their associated X.509 certificate
chains authenticating the corresponding public keys.

idlj (IDL to Java Compiler)
Generates Java bindings from a given IDL file.

ikeycmd (iKeyman command-line utility)
Allows you to manage keys, certificates, and certificate requests from the

6 IBM SDK for Java: SDK Guide

command line. For more information see the accompanying Security Guide
and http://www.ibm.com/developerworks/java/jdk/security/.

jar (Java Archive Tool)
Combines multiple files into a single Java Archive (JAR) file.

jarsigner (JAR Signing and Verification Tool)
Generates signatures for JAR files and verifies the signatures of signed JAR
files.

java (Java Interpreter)
Runs Java classes. The Java Interpreter runs programs that are written in
the Java programming language.

java-rmi.cgi (HTTP-to-CGI request forward tool)
Accepts RMI-over-HTTP requests and forwards them to an RMI server
listening on any port.

javac (Java Compiler)
Compiles programs that are written in the Java programming language
into bytecodes (compiled Java code).

javadoc (Java Documentation Generator)
Generates HTML pages of API documentation from Java source files.

javah (C Header and Stub File Generator)
Enables you to associate native methods with code written in the Java
programming language.

javap (Class File Disassembler)
Disassembles compiled files and can print a representation of the
bytecodes.

javaw (Java Interpreter)
Runs Java classes in the same way as the java command does, but does
not use a console window.

jconsole (JConsole Monitoring and Management Tool)
Monitors local and remote JVMs using a GUI. JMX-compliant.

jdmpview (Cross-platform dump formatter)
Analyzes dumps. For more information, see the Diagnostics Guide.

keytool (Key and Certificate Management Tool)
Manages a keystore (database) of private keys and their associated X.509
certificate chains that authenticate the corresponding public keys.

native2ascii (Native-To-ASCII Converter)
Converts a native encoding file to an ASCII file that contains characters
encoded in either Latin-1 or Unicode, or both.

policytool (Policy File Creation and Management Tool)
Creates and modifies the external policy configuration files that define
your installation’s Java security policy.

rmic (Java Remote Method Invocation (RMI) Stub Converter)
Generates stubs, skeletons, and ties for remote objects. Includes RMI over
Internet Inter-ORB Protocol (RMI-IIOP) support.

rmid (RMI activation system daemon)
Starts the activation system daemon so that objects can be registered and
activated in a Java virtual machine (JVM).

Chapter 2. Contents of the SDK and Runtime Environment 7

http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

rmiregistry (Java remote object registry)
Creates and starts a remote object registry on the specified port of the
current host.

schemagen
Creates a schema file for each namespace referenced in your Java classes.

serialver (Serial Version Command)
Returns the serialVersionUID for one or more classes in a format that is
suitable for copying into an evolving class.

tnameserv (Common Object Request Broker Architecture (CORBA) transient
naming service)

Starts the CORBA transient naming service.

wsgen
Generates JAX-WS portable artifacts used in JAX-WS Web services.

wsimport
Generates JAX-WS portable artifacts from a Web Services Description
Language (WSDL) file.

xjc
Compiles XML Schema files.

Include Files
C headers for JNI programs.

Demos
The demo directory contains a number of subdirectories containing sample
source code, demos, applications, and applets that you can use. From Version
6, the RMI-IIOP demonstration is not included with the SDK.

copyright
The copyright notice for the SDK for z/OS software.

8 IBM SDK for Java: SDK Guide

Chapter 3. Installing and configuring the SDK

See the z/OS Web site for instructions about ordering, downloading, installing, and
verifying the SDK.

http://www.ibm.com/servers/eserver/zseries/software/java/

Working with BPXPRM settings
Some of the parameters in PARMLIB member BPXPRMxx might affect successful
Java operation by imposing limits on resources that are required.

The parameters described here do not cover those required for Class data sharing.
See “Considerations and limitations of using class data sharing” on page 59 for the
parameters required for Class data sharing.

Enter the z/OS operator command D OMVS,O to display the current BPXPRMxx
settings. Enter the command D OMVS,L to show the highwater usage for some of
the limits. If you configure the BPXPRMxx LIMMSG parameter to activate the
support, BPXInnnI messages are displayed when the usage approaches and
reaches the limits. You can use the SETOMVS command to change the settings
without requiring an IPL.

Other products might impose their own requirements, but for Java the important
parameters and their suggested minimum values are:

Table 1. BPXPRM settings

Parameter Value

MAXPROCSYS 900

MAXPROCUSER 512

MAXUIDS 500

MAXTHREADS 10 000

MAXTHREADTASKS 5 000

MAXASSIZE 2 147 483 647

MAXCPUTIME 2 147 483 647

MAXMMAPAREA 40 960

IPCSEMNIDS 500

IPCSEMNSEMS 1 000

SHRLIBRGNSIZE 67 108 864

SHRLIBMAXPAGES 4 096

The lower of MAXTHREADS and MAXTHREADTASKS limits the number of
threads that can be created by a Java process.

MAXMMAPAREA limits the number of 4K pages that are available for
memory-mapped jar files through the environment variable
JAVA_MMAP_MAXSIZE.

© Copyright IBM Corp. 2003, 2009 9

http://www.ibm.com/servers/eserver/zseries/software/java/

SHRLIBRGNSIZE controls how much storage is reserved in each address space
for mapping shared DLLs that have the +l extended attribute set. If this storage
space is exceeded, DLLs are loaded into the address space instead of using a single
copy of USS storage that is shared between the address spaces. Some of the Java
SDK DLLs have the +l extended attribute set. The z/OS command D OMVS,L
shows the SHRLIBRGNSIZE size and peak usage. If this size is set to a much
higher value than is needed, Java might have problems acquiring native (z/OS
31-bit) storage, which can cause a z/OS abend, such as 878-10, or a Java
OutOfMemoryError.

SHRLIBMAXPAGES is only available in z/OS 1.7 and earlier releases. This
parameter is similar to SHRLIBRGNSIZE except that it is a number of 4K pages
and only applies to DLLs that have the .so suffix, but without the +l extended
attribute. This feature requires Extended System Queue Area (ESQA), therefore you
should use it carefully.

For further information about the use of these parameters, refer to the z/OS MVS™

Initialization and Tuning Reference (SA22-7592) at http://publibz.boulder.ibm.com/
epubs/pdf/iea2e280.pdf and the z/OS Unix System Services Planning Guide
(GA22-7800) at http://publibz.boulder.ibm.com/epubs/pdf/bpxzb280.pdf.

Setting the region size
Java requires a suitable z/OS region size to operate successfully. It is suggested
that you do not restrict the region size, but allow Java to use what is necessary.
Restricting the region size might cause failures with storage-related error messages
or abends such as 878-10.

The region size might be affected by the following factors:
v JCL REGION parameter
v BPXPRMxx MAXASSIZE parameter
v RACF OMVS segment ASSIZEMAX parameter
v IEFUSI

You might want to exclude OMVS from using the IEFUSI exit by setting
SUBSYS(OMVS,NOEXITS) in PARMLIB member SMFPRMxx.

For further information, see the documentation about the host product under
which Java runs.

Setting MEMLIMIT
z/OS uses region sizes to determine the amount of storage available to running
programs. For the 64-bit product, set the MEMLIMIT parameter to include at least
1024 MB plus the largest expected JVM heap size value -Xmx.

See Limiting Storage use above the bar in z/Architecture for information about setting
the MEMLIMIT parameter: http://www.ibm.com/support/techdocs/atsmastr.nsf/
WebIndex/FLASH10165.

Setting LE runtime options
LE runtime options can affect both performance and storage usage. The optimum
settings will vary according to the host product and the Java application itself, but
it is important to have good general settings.

10 IBM SDK for Java: SDK Guide

http://publibz.boulder.ibm.com/epubs/pdf/iea2e280.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2e280.pdf
http://publibz.boulder.ibm.com/epubs/pdf/bpxzb280.pdf
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10165
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10165

The LE runtime options are documented in Language Environment Programming
Reference (SA22-7562) at http://publibz.boulder.ibm.com/epubs/pdf/ceea3180.pdf.

Java and other products that are written in C or C++ might have LE runtime
options embedded in the main programs by using #pragma runopts. These options
are chosen to provide suitable default values that assist the performance in a
typical environment. Any runtime overrides that you set might alter these values
in a way that degrades the performance of Java or the host product. The host
product’s documentation might provide details of the product’s default settings.
Changes to the product’s #pragma runopts might occur as a result of version or
release changes. For details of how LE chooses the order of precedence of its
runtime options, refer to the Language Environment Programming Guide (SA22-7561)
at http://publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf.

Use the LE runtime option RPTOPTS(ON) as an override to write the options that are
in effect, to stderr on termination. See the host product documentation and the
Language Environment Programming Guide (SA22-7561) at http://
publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf for details of how to supply LE
runtime overrides. Before creating runtime overrides, run the application without
overrides, to determine the existing options based on LE defaults and #pragma
settings.

To tune the options, use the LE runtime option RPTSTG(ON) as an override, but be
aware that performance could be reduced when you use this option. The output
for RPTSTG(ON) also goes to stderr on termination. The Language Environment
Debugging Guide (GA22-7560) at http://publibz.boulder.ibm.com/epubs/pdf/
ceea1180.pdf explains RPTSTG(ON) output.

Setting LE 31-bit runtime options
There are a number of LE 31-bit options that are important for successful Java
operation.

The following are the important options:
v ANYHEAP

v HEAP

v HEAPPOOLS

v STACK

v STORAGE

v THREADSTACK

You can change any, or all, of these options, however if you set the wrong values
this might affect performance. The following values are a suggested starting point
for these options:
ANYHEAP(2M,1M,ANY,FREE)
HEAP(80M,4M,ANY,KEEP)
HEAPPOOLS(ON,8,10,32,10,128,10,256,10,1024,10,2048,10,0,10,0, 10,0,10,0,10,0,10,0,10)
STACK(64K,16K,ANY,KEEP,128K,128K)
STORAGE(NONE,NONE,NONE,0K)
THREADSTACK(OFF,64K,16K,ANY,KEEP,128K,128K)

ANYHEAP and HEAP initial allocations (parameter 1) might be too large for
transaction-based systems such as CICS®. Java applications that use many
hundreds of threads might need to adjust the STACK initial and increment
allocations (parameters 1, 2, 5 and 6) based on the RPTSTG(ON) output, which
shows the maximum stack sizes that are used by a thread inside the application.

Chapter 3. Installing and configuring the SDK 11

http://publibz.boulder.ibm.com/epubs/pdf/ceea3180.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea1180.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea1180.pdf

HEAPPOOLS(ON) should improve performance, but the LE-supplied default
settings for the cell size and percentage pairs are not optimized for the best
performance or storage usage.

For additional information, including how to set the LE runtime options, see:
v the Diagnostics Guide
v the z/OS Language Environment Programming Reference (SA22-7562) at

http://publibz.boulder.ibm.com/epubs/pdf/ceea3180.pdf
v the z/OS Language Environment Programming Guide (SA22-7561) at

http://publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf
v the host product documentation

Setting LE 64-bit runtime options
There are 64-bit versions of some of the runtime options.

The following are the 64-bit options:
v HEAP64

v HEAPPOOLS64

v STACK64

v THREADSTACK64

A suggested start point for HEAP64 as an override is
HEAP64(512M,4M,KEEP,16M,4M,KEEP,0K,0K,FREE).

The following are LE defaults, and should be appropriate:
STACK64(1M,1M,128M)
THREADSTACK64(OFF,1M,1M,128M)
HEAPPOOLS64(OFF,8,4000,32,2000,128,700,256,350.1024,100,2048,50,3072,50,4096,50,8192,25,16384,10,32768,5,65536,5)

Before you set an override for HEAPPOOLS64, use RPTOPTS(ON) or
RPTSTG(ON) and check the result of #pragma runopts. Check this because the
host product might have already set cell sizes and numbers that are known to
produce good performance.

Also, these settings are dependant on a suitable MEMLIMIT setting. Based on
these suggested LE 64-bit runtime options, the JVM requirement is a minimum of
512 MB as set for HEAP64 (which should include HEAPPOOLS64), plus an initial
value for STACK64 of 1 MB times the expected maximum number of concurrent
threads, plus the largest expected JVM heap –Xmx value.

Marking failures
The Java launcher can mark the z/OS Task Control Block (TCB) with an abend
code when the launcher fails to load the VM or is terminated by an uncaught
exception. To start TCB marking, set the environment variable
IBM_JAVA_ABEND_ON_FAILURE=Y.

By default, the Java launcher will not mark the TCB.

Setting the path
If you alter the PATH environment variable, you will override any existing Java
launchers in your path.

12 IBM SDK for Java: SDK Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://publibz.boulder.ibm.com/epubs/pdf/ceea3180.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf

About this task

The PATH environment variable enables z/OS to find programs and utilities, such
as javac, java, and javadoc tool, from any current directory. To display the current
value of your PATH, type the following at a command prompt:
echo $PATH

To add the Java launchers to your path:
1. Edit the shell startup file in your home directory (typically .bashrc, depending

on your shell) and add the absolute paths to the PATH environment variable;
for example:
export PATH=/usr/lpp/java/J6.0[_64]/bin:/usr/lpp/java/J6.0[_64]/jre/bin:$PATH

2. Log on again or run the updated shell script to activate the new PATH
environment variable.

Results

After setting the path, you can run a tool by typing its name at a command
prompt from any directory. For example, to compile the file Myfile.Java, at a
command prompt, type:
javac Myfile.Java

Setting the class path
The class path tells the SDK tools, such as java, javac, and the javadoc tool, where
to find the Java class libraries.

About this task

You should set the class path explicitly only if:
v You require a different library or class file, such as one that you develop, and it

is not in the current directory.
v You change the location of the bin and lib directories and they no longer have

the same parent directory.
v You plan to develop or run applications using different runtime environments

on the same system.

To display the current value of your CLASSPATH environment variable, type the
following command at a shell prompt:

echo $CLASSPATH

If you develop and run applications that use different runtime environments,
including other versions that you have installed separately, you must set the
CLASSPATH and PATH explicitly for each application. If you run multiple
applications simultaneously and use different runtime environments, each
application must run in its own shell prompt.

Chapter 3. Installing and configuring the SDK 13

14 IBM SDK for Java: SDK Guide

Chapter 4. Running Java applications

Java applications can be started using the java launcher or through JNI. Settings
are passed to a Java application using command-line arguments, environment
variables, and properties files.

The java and javaw commands
An overview of the java and javaw commands.

Purpose

The java and javaw tools start a Java application by starting a Java Runtime
Environment and loading a specified class.

The javaw command is identical to java, and is supported on z/OS for
compatibility with other platforms.

Usage

The JVM searches for the initial class (and other classes that are used) in three sets
of locations: the bootstrap class path, the installed extensions, and the user class
path. The arguments that you specify after the class name or jar file name are
passed to the main function.

The java and javaw commands have the following syntax:
java [options] <class> [arguments ...]
java [options] -jar <file.jar> [arguments ...]
javaw [options] <class> [arguments ...]
javaw [options] -jar <file.jar> [arguments ...]

Parameters

[options]
Command-line options to be passed to the runtime environment.

<class>
Startup class. The class must contain a main() method.

<file.jar>
Name of the jar file to start. It is used only with the -jar option. The named jar
file must contain class and resource files for the application, with the startup
class indicated by the Main-Class manifest header.

[arguments ...]
Command-line arguments to be passed to the main() function of the startup
class.

Obtaining version information
You obtain The IBM build and version number for your Java installation using the
-version option. You can also obtain version information for all jar files on the
class path by using the -Xjarversion option.
1. Open a shell prompt.
2. Type the following command:

© Copyright IBM Corp. 2003, 2009 15

java -version

You will see information similar to:
java version "1.6.0-internal"
Java(TM) SE Runtime Environment (build 20070405_01)
IBM J9 VM (build 2.4, J2RE 1.6.0 IBM J9 2.4 z/OS s390x-64 jvmmz6460-20070326_12091 (JIT enabled)
J9VM - 20070326_12091_bHdSMr
JIT - dev_20070326_1800
GC - 20070319_AA)

Exact build dates and versions will change.

What to do next

You can also list the version information for all available jar files on the class path,
the boot class path, and in the extensions directory. Type the following command:
java -Xjarversion

You will see information similar to:
...
/usr/lpp/java/J6.0[_64]/jre/lib/ext/ibmpkcs11impl.jar VERSION: 1.0 build_20070125
/usr/lpp/java/J6.0[_64]/jre/lib/ext/dtfjview.jar
/usr/lpp/java/J6.0[_64]/jre/lib/ext/xmlencfw.jar VERSION: 1.00, 20061011 LEVEL: -20061011

...

The information available varies for each jar file and is taken from the
Implementation-Version and Build-Level properties in the manifest of the jar file.

Specifying Java options and system properties
You can specify Java options and system properties on the command line, by using
an options file, or by using an environment variable.

About this task

These methods of specifying Java options are listed in order of precedence.
Rightmost options on the command line have precedence over leftmost options; for
example, if you specify:
java -Xint -Xjit myClass

The -Xjit option takes precedence.
1. By specifying the option or property on the command line. For example:

java -Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump MyJavaClass

2. By creating a file that contains the options, and specifying it on the command
line using -Xoptionsfile=<file>.

3. By creating an environment variable called IBM_JAVA_OPTIONS containing
the options. For example:
export IBM_JAVA_OPTIONS="-Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump"

Standard options
The definitions for the standard options.

See “JVM command-line options” on page 72 for information about nonstandard
(-X) options.

16 IBM SDK for Java: SDK Guide

-agentlib:<libname>[=<options>]
Loads a native agent library <libname>; for example -agentlib:hprof. For more
information, specify -agentlib:jdwp=help and -agentlib:hprof=help on the
command line.

-agentpath:libname[=<options>]
Loads a native agent library by full path name.

-cp <directories and .zip or .jar files separated by :>
Sets the search path for application classes and resources. If -classpath and -cp
are not used and the CLASSPATH environment variable is not set, the user
class path is, by default, the current directory (.).

-classpath <directories and .zip or .jar files separated by :>
Sets the search path for application classes and resources. If -classpath and -cp
are not used and the CLASSPATH environment variable is not set, the user
class path is, by default, the current directory (.).

-D<property name>=<value>
Sets a system property.

-help or -?
Prints a usage message.

-javaagent:<jarpath>[=<options>]
Load a Java programming language agent. For more information, see the
java.lang.instrument API documentation.

-jre-restrict-search
Include user private JREs in the version search.

-no-jre-restrict-search
Exclude user private JREs in the version search.

-showversion
Prints product version and continues.

-verbose:<option>[,<option>...]
Enables verbose output. Separate multiple options using commas. The
available options are:

class
Writes an entry to stderr for each class that is loaded.

gc Writes verbose garbage collection information to stderr. Use
-Xverbosegclog (see “Garbage Collector command-line options” on page 85
for more information) to control the output. See the Diagnostics Guide for
more information.

jni
Writes information to stderr describing the JNI services called by the
application and JVM.

sizes
Writes information to stderr describing the active memory usage settings.

stack
Writes information to stderr describing the Java and C stack usage for each
thread.

-version
Prints product version.

Chapter 4. Running Java applications 17

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

-version:<value>
Requires the specified version to run, for example “1.5”.

-X Prints help on nonstandard options.

Globalization of the java command
The java and javaw launchers accept arguments and class names containing any
character that is in the character set of the current locale. You can also specify any
Unicode character in the class name and arguments by using Java escape
sequences.

To do this, use the -Xargencoding command-line option.

-Xargencoding
Use argument encoding. To specify a Unicode character, use escape sequences
in the form \u####, where # is a hexadecimal digit (0 to 9, A to F).

-Xargencoding:utf8
Use UTF8 encoding.

-Xargencoding:latin
Use ISO8859_1 encoding.

For example, to specify a class called HelloWorld using Unicode encoding for both
capital letters, use this command:
java -Xargencoding '\u0048ello\u0057orld'

The java and javaw commands provide translated messages. These messages differ
based on the locale in which Java is running. The detailed error descriptions and
other debug information that is returned by java is in English.

The Just-In-Time (JIT) compiler
The IBM Just-In-Time (JIT) compiler dynamically generates machine code for
frequently used bytecode sequences in Java applications and applets during their
execution. The JIT v6 compiler delivers new optimizations as a result of compiler
research, improves optimizations implemented in previous versions of the JIT, and
provides better hardware exploitation.

The JIT is included in both the IBM SDK and Runtime Environment, which is
enabled by default in user applications and SDK tools. Typically, you do not start
the JIT explicitly; the compilation of Java bytecode to machine code occurs
transparently. You can disable the JIT to help isolate a problem. If a problem occurs
when executing a Java application or an applet, you can disable the JIT to help
isolate the problem. Disabling the JIT is a temporary measure only; the JIT is
required to optimize performance.

For more information about the JIT, see the Diagnostics Guide.

Disabling the JIT
The JIT can be disabled in a number of different ways. Both command-line options
override the JAVA_COMPILER environment variable.

About this task

Turning off the JIT is a temporary measure that can help isolate problems when
debugging Java applications.

18 IBM SDK for Java: SDK Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

v Set the JAVA_COMPILER environment variable to NONE or the empty string
before running the java application. Type the following at a shell prompt:
export JAVA_COMPILER=NONE

v Use the -D option on the JVM command line to set the java.compiler property
to NONE or the empty string. Type the following at a shell prompt:
java -Djava.compiler=NONE <class>

v Use the -Xint option on the JVM command line. Type the following at a shell
prompt:
java -Xint <class>

Enabling the JIT
The JIT is enabled by default. You can explicitly enable the JIT in a number of
different ways. Both command-line options override the JAVA_COMPILER
environment variable.
v Set the JAVA_COMPILER environment variable to jitc before running the Java

application. At a shell prompt, enter:
export JAVA_COMPILER=jitc

If the JAVA_COMPILER environment variable is an empty string, the JIT
remains disabled. To disable the environment variable, at the prompt, enter:
unset JAVA_COMPILER

v Use the -D option on the JVM command line to set the java.compiler property
to jitc. At a prompt, enter:
java -Djava.compiler=jitc <class>

v Use the -Xjit option on the JVM command line. Do not specify the -Xint option
at the same time. At a prompt, enter:
java -Xjit <class>

Determining whether the JIT is enabled
You can determine the status of the JIT using the -version option.

Run the java launcher with the -version option. Enter the following at a shell
prompt:
java -version

If the JIT is not in use, a message is displayed that includes the following:
(JIT disabled)

If the JIT is in use, a message is displayed that includes the following:
(JIT enabled)

What to do next

For more information about the JIT, see the Diagnostics Guide.

Specifying garbage collection policy
The Garbage Collector manages the memory used by Java and by applications
running in the JVM.

Chapter 4. Running Java applications 19

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

When the Garbage Collector receives a request for storage, unused memory in the
heap is set aside in a process called ″allocation″. The Garbage Collector also checks
for areas of memory that are no longer referenced, and releases them for reuse.
This is known as ″collection″.

The collection phase can be triggered by a memory allocation fault, which occurs
when no space is left for a storage request, or by an explicit System.gc() call.

Garbage collection can significantly affect application performance, so the IBM
virtual machine provides various methods of optimizing the way garbage
collection is carried out, potentially reducing the effect on your application.

For more detailed information about garbage collection, see the Diagnostics Guide.

Garbage collection options
The -Xgcpolicy options control the behavior of the Garbage Collector. They make
trade-offs between throughput of the application and overall system, and the pause
times that are caused by garbage collection.

The format of the option and its values is:

-Xgcpolicy:optthruput
(Default and recommended value.) Delivers very high throughput to
applications, but at the cost of occasional pauses.

-Xgcpolicy:optavgpause
Reduces the time spent in garbage collection pauses and limits the effect of
increasing heap size on the length of the garbage collection pause. Use
optavgpause if your configuration has a very large heap.

-Xgcpolicy:gencon
Requests the combined use of concurrent and generational GC to help
minimize the time that is spent in any garbage collection pause.

-Xgcpolicy:subpool
Uses an improved object allocation algorithm to achieve better performance
when allocating objects on the heap. This option might improve performance
on large SMP systems.

More effective heap usage using compressed references
Many Java application workloads depend on the Java heap size. The IBM SDK for
Java can use compressed references on 64-bit platforms to decrease the size of Java
objects and make more effective use of the available space.

The IBM SDK for Java 64-bit stores object references as 64-bit values. The
-Xcompressedrefs command-line option causes object references to be stored as
32-bit representation, which reduces the 64-bit object size to be the same as a 32-bit
object.

As the 64-bit objects with compressed references are smaller than default 64-bit
objects, they occupy a smaller memory footprint in the Java heap and improves
data locality. This results in better memory utilization and improved performance.

Use -Xcompressedrefs in any of these situations:
v When your Java applications does not need more than a 25 GB Java heap (30

GB on z/OS).

20 IBM SDK for Java: SDK Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

v When your application uses a lot of native memory and needs the JVM to run in
a small footprint.

If you are using compressed references on z/OS, you must use APAR OA26294.

See the Diagnostics Guide for more detailed information and hardware/operating
system specific guidance on compressed references. More information is also
available on the Websphere white paper on compressed references.

Pause time
When an application’s attempt to create an object cannot be satisfied immediately
from the available space in the heap, the Garbage Collector is responsible for
identifying unreferenced objects (garbage), deleting them, and returning the heap
to a state in which the immediate and subsequent allocation requests can be
satisfied quickly.

Such garbage collection cycles introduce occasional unexpected pauses in the
execution of application code. Because applications grow in size and complexity,
and heaps become correspondingly larger, this garbage collection pause time tends
to grow in size and significance.

The default garbage collection value, -Xgcpolicy:optthruput, delivers very high
throughput to applications, but at the cost of these occasional pauses, which can
vary from a few milliseconds to many seconds, depending on the size of the heap
and the quantity of garbage.

Pause time reduction
The JVM uses two techniques to reduce pause times: concurrent garbage collection
and generational garbage collection.

The -Xgcpolicy:optavgpause command-line option requests the use of concurrent
garbage collection to reduce significantly the time that is spent in garbage
collection pauses. Concurrent GC reduces the pause time by performing some
garbage collection activities concurrently with normal program execution to
minimize the disruption caused by the collection of the heap. The
-Xgcpolicy:optavgpause option also limits the effect of increasing the heap size on
the length of the garbage collection pause. The -Xgcpolicy:optavgpause option is
most useful for configurations that have large heaps. With the reduced pause time,
you might experience some reduction of throughput to your applications.

During concurrent garbage collection, a significant amount of time is wasted
identifying relatively long-lasting objects that cannot then be collected. If garbage
collection concentrates on only the objects that are most likely to be recyclable, you
can further reduce pause times for some applications. Generational GC reduces
pause times by dividing the heap into two generations: the “new” and the
“tenure” areas. Objects are placed in one of these areas depending on their age.
The new area is the smaller of the two and contains new objects; the tenure is
larger and contains older objects. Objects are first allocated to the new area; if they
have active references for long enough, they are promoted to the tenure area.

Generational GC depends on most objects not lasting long. Generational GC
reduces pause times by concentrating the effort to reclaim storage on the new area
because it has the most recyclable space. Rather than occasional but lengthy pause
times to collect the entire heap, the new area is collected more frequently and, if
the new area is small enough, pause times are comparatively short. However,

Chapter 4. Running Java applications 21

http://www-01.ibm.com/support/docview.wss?rs=112&context=SWG90&context=SWGA0&context=SWGB0&context=SWG80&q1=OA26294&uid=isg1OA26294&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
ftp://public.dhe.ibm.com/software/webserver/appserv/was/WAS_V7_64-bit_performance.pdf

generational GC has the drawback that, over time, the tenure area might become
full. To minimize the pause time when this situation occurs, use a combination of
concurrent GC and generational GC. The -Xgcpolicy:gencon option requests the
combined use of concurrent and generational GC to help minimize the time that is
spent in any garbage collection pause.

Environments with very full heaps
If the Java heap becomes nearly full, and very little garbage can be reclaimed,
requests for new objects might not be satisfied quickly because no space is
immediately available.

If the heap is operated at near-full capacity, application performance might suffer
regardless of which garbage collection options are used; and, if requests for more
heap space continue to be made, the application might receive an
OutOfMemoryError, which results in JVM termination if the exception is not
caught and handled. At this point, the JVM produces a Javadump file for use
during diagnostics. In these conditions, you are recommended either to increase
the heap size by using the -Xmx option or to reduce the number of objects in use.

For more information, see the Diagnostics Guide.

Euro symbol support
The IBM SDK and Runtime Environment set the Euro as the default currency for
those countries in the European Monetary Union (EMU) for dates on or after 1
January, 2002. From 1 January 2008, Cyprus and Malta also have the Euro as the
default currency.

To use the old national currency, specify –Duser.variant=PREEURO on the Java
command line.

If you are running the UK, Danish, or Swedish locales and want to use the Euro,
specify –Duser.variant=EURO on the Java command line.

Using Indian and Thai input methods
From Version 6, the Indian and Thai input methods are not available by default.
You must manually include the input method jar files in your Java extensions
path to use the Indian and Thai input methods.

About this task

In Version 5.0, the input method jar files were included in the jre/lib/ext
directory and were automatically loaded by the JVM. In Version 6, the input
method jar files are included in the jre/lib/im directory and you must manually
add them to the Java extensions path to enable Indian and Thai input methods.
v Copy the indicim.jar and thaiim.jar files from the jre/lib/im directory to the

jre/lib/ext directory.
v Add the jre/lib/im directory to the extension directories system property. Use

the following command-line option:
java -Djava.ext.dirs=/usr/lpp/java/J6.0[_64]/jre/lib/ext:/usr/lpp/java/J6.0[_64]/jre/lib/im <class>

22 IBM SDK for Java: SDK Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

What to do next

If you installed the SDK or Runtime Environment in a different directory, replace
/usr/lpp/java/J6.0[_64]/ with the directory in which you installed the SDK or
Runtime Environment.

Chapter 4. Running Java applications 23

24 IBM SDK for Java: SDK Guide

Chapter 5. Developing Java applications

The SDK for z/OS contains many tools and libraries required for Java software
development.

See “Contents of the SDK” on page 6 for details of the tools available.

Using XML
The IBM SDK contains the XML4J and XL XP-J parsers, the XL TXE-J 1.0 XSLT
compiler, and the XSLT4J XSLT interpreter. These tools allow you to parse,
validate, transform, and serialize XML documents independently from any given
XML processing implementation.

Use factory finders to locate implementations of the abstract factory classes, as
described in “Selecting an XML processor” on page 26. By using factory finders,
you can select a different XML library without changing your Java code.

Available XML libraries

The IBM SDK for Java contains the following XML libraries:

XML4J 4.5

XML4J is a validating parser providing support for the following
standards:
v XML 1.0 (4th edition)
v Namespaces in XML 1.0 (2nd edition)
v XML 1.1 (2nd edition)
v Namespaces in XML 1.1 (2nd edition)
v W3C XML Schema 1.0 (2nd Edition)
v XInclude 1.0 (2nd Edition)
v OASIS XML Catalogs 1.0
v SAX 2.0.2
v DOM Level 3 Core, Load and Save
v DOM Level 2 Core, Events, Traversal and Range
v JAXP 1.4

XML4J 4.5 is based on Apache Xerces-J 2.9.0. See http://xerces.apache.org/
xerces2-j/ for more information.

XL XP-J 1.1

XL XP-J 1.1 is a high-performance non-validating parser that provides
support for StAX 1.0 (JSR 173). StAX is a bidirectional API for pull-parsing
and streaming serialization of XML 1.0 and XML 1.1 documents. See the
“XL XP-J reference information” on page 29 section for more details about
what is supported by XL XP-J 1.1.

XL TXE-J 1.0.1 Beta

For Version 5.0, the IBM SDK for Java included the XSLT4J compiler and
interpreter. The XSLT4J interpreter was used by default.

© Copyright IBM Corp. 2003, 2009 25

http://xerces.apache.org/xerces2-j/
http://xerces.apache.org/xerces2-j/

For Version 6, the IBM SDK for Java includes XL TXE-J. XL TXE-J includes
the XSLT4J 2.7.8 interpreter and a new XSLT compiler. The new compiler is
used by default. The XSLT4J compiler is no longer included with the IBM
SDK for Java. See “Migrating to the XL-TXE-J” on page 27 for information
about migrating to XL TXE-J.

XL TXE-J provides support for the following standards:
v XSLT 1.0
v XPath 1.0
v JAXP 1.4

Selecting an XML processor

XML processor selection is performed using service providers. When using a
factory finder, Java looks in the following places, in this order, to see which service
provider to use:
1. The system property with the same name as the service provider.
2. The service provider specified in a properties file.
v For XMLEventFactory, XMLInputFactory, and XMLOutputFactory only. The

value of the service provider in the file /usr/lpp/java/J6.0[_64]/jre/lib/
stax.properties.

v For other factories. The value of the service provider in the file
/usr/lpp/java/J6.0[_64]/jre/lib/jaxp.properties.

3. The contents of the META-INF/services/<service.provider> file.
4. The default service provider.

The following service providers control the XML processing libraries used by Java:

javax.xml.parsers.SAXParserFactory
Selects the SAX parser. By default,
org.apache.xerces.jaxp.SAXParserFactoryImpl from the XML4J library is used.

javax.xml.parsers.DocumentBuilderFactory
Selects the document builder. By default,
org.apache.xerces.jaxp.DocumentBuilderFactoryImpl from the XML4J library is
used.

javax.xml.datatype.DatatypeFactory
Selects the datatype factory. By default,
org.apache.xerces.jaxp.datatype.DatatypeFactoryImpl from the XML4J library is
used.

javax.xml.stream.XMLEventFactory
Selects the StAX event factory. By default,
com.ibm.xml.xlxp.api.stax.XMLEventFactoryImpl from the XL XP-J library is
used.

javax.xml.stream.XMLInputFactory
Selects the StAX parser. By default,
com.ibm.xml.xlxp.api.stax.XMLInputFactoryImpl from the XL XP-J library is
used.

javax.xml.stream.XMLOutputFactory
Selects the StAX serializer. By default,
com.ibm.xml.xlxp.api.stax.XMLOutputFactoryImpl from the XL XP-J library is
used.

26 IBM SDK for Java: SDK Guide

javax.xml.transform.TransformerFactory
Selects the XSLT processor. Possible values are:

com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl
Use the XL TXE-J compiler. This value is the default.

org.apache.xalan.processor.TransformerFactoryImpl
Use the XSLT4J interpreter.

javax.xml.validation.SchemaFactory:http://www.w3.org/2001/XMLSchema
Selects the schema factory for the W3C XML Schema language. By default,
org.apache.xerces.jaxp.validation.XMLSchemaFactory from the XML4J library is
used.

javax.xml.xpath.XPathFactory
Selects the XPath processor. By default,
org.apache.xpath.jaxp.XPathFactoryImpl from the XSLT4J library is used.

Migrating to the XL-TXE-J
The XL TXE-J compiler has replaced the XSLT4J interpreter as the default XSLT
processor. Follow these steps to prepare your application for the new library.

About this task

The XL TXE-J compiler is faster than the XSLT4J interpreter when you are applying
the same transformation more than once. If you perform each individual
transformation only once, the XL TXE-J compiler is slower than the XSLT4J
interpreter because compilation and optimization reduce performance.

To continue using the XSLT4J interpreter as your XSLT processor, set the
javax.xml.transform.TransformerFactory service provider to
org.apache.xalan.processor.TransformerFactoryImpl.

To migrate to the XL-TXE-J compiler, follow the instructions in this task.
1. Use com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl when setting the

javax.xml.transform.TransformerFactory service provider.
2. Regenerate class files generated by the XSLT4J compiler. XL TXE-J cannot

execute class files generated by the XSLT4J compiler.
3. Some methods generated by the compiler might exceed the JVM method size

limit, in which case the compiler attempts to split these methods into smaller
methods.
v If the compiler splits the method successfully, you receive the following

warning:
Some generated functions exceeded the JVM method size limit and were
automatically split into smaller functions. You might get better
performance by manually splitting very large templates into smaller
templates, by using the ’splitlimit’ option to the Process or Compile
command, or by setting the ’http://www.ibm.com/xmlns/prod/xltxe-j/
split-limit’ transformer factory attribute.You can use the compiled
classes, but you might get better performance by controlling the split limit
manually.

v If the compiler does not split the method successfully, you receive one of the
following exceptions:
com.ibm.xtq.bcel.generic.ClassGenException: Branch target offset too
large for short or

Chapter 5. Developing Java applications 27

bytecode array size > 65535 at offset=#####Try setting the split limit
manually, or using a lower split limit.

To set the split limit, use the -SPLITLIMIT option when using the Process or
Compile commands, or the http://www.ibm.com/xmlns/prod/xltxe-j/split-limit
transformer factory attribute when using the transformer factory. The split limit
can be between 100 and 2000. When setting the split limit manually, use the
highest split limit possible for best performance.

4. XL TXE-J might need more memory than the XSLT4J compiler. If you are
running out of memory or performance seems slow, increase the size of the
heap using the -Xmx option.

5. Migrate your application to use the new attribute keys. The old transformer
factory attribute keys are deprecated. The old names are accepted with a
warning.

Table 2. Changes to attribute keys from the XSL4J compiler to the XL TXE-J compiler

XSL4J compiler attribute XL TXE-J compiler attribute

translet-name http://www.ibm.com/xmlns/prod/xltxe-j/translet-name

destination-directory http://www.ibm.com/xmlns/prod/xltxe-j/destination-
directory

package-name http://www.ibm.com/xmlns/prod/xltxe-j/package-name

jar-name http://www.ibm.com/xmlns/prod/xltxe-j/jar-name

generate-translet http://www.ibm.com/xmlns/prod/xltxe-j/generate-translet

auto-translet http://www.ibm.com/xmlns/prod/xltxe-j/auto-translet

use-classpath http://www.ibm.com/xmlns/prod/xltxe-j/use-classpath

debug http://www.ibm.com/xmlns/prod/xltxe-j/debug

indent-number http://www.ibm.com/xmlns/prod/xltxe-j/indent-number

enable-inlining Obsolete in new compiler

6. Optional: For best performance, ensure that you are not recompiling XSLT
transformations that can be reused. Use one of the following methods to reuse
compiled transformations:
v If your stylesheet does not change at runtime, compile the stylesheet as part

of your build process and put the compiled classes on your classpath. Use
the org.apache.xalan.xsltc.cmdline.Compile command to compile the
stylesheet and set the http://www.ibm.com/xmlns/prod/xltxe-j/use-classpath
transformer factory attribute to true to load the classes from the classpath.

v If your application will use the same stylesheet during multiple runs, set the
http://www.ibm.com/xmlns/prod/xltxe-j/auto-translet transformer factory
attribute to true to automatically save the compiled stylesheet to disk for
reuse. The compiler will use a compiled stylesheet if it is available, and
compile the stylesheet if it is not available or is out-of-date. Use the
http://www.ibm.com/xmlns/prod/xltxe-j/destination-directory transformer
factory attribute to set the directory used to store compiled stylesheets. By
default, compiled stylesheets are stored in the same directory as the
stylesheet.

v If your application is a long-running application that reuses the same
stylesheet, use the transformer factory to compile the stylesheet and create a
Templates object. You can use the Templates object to create Transformer
objects without recompiling the stylesheet. The Transformer objects can also
be reused but are not thread-safe.

28 IBM SDK for Java: SDK Guide

XML reference information
The XL XP-J and XL TXE-J XML libraries are new for Version 6 of the SDK. This
reference information describes the features supported by these libraries.

XL XP-J reference information
XL XP-J 1.1 is a high-performance non-validating parser that provides support for
StAX 1.0 (JSR 173). StAX is a bidirectional API for pull-parsing and streaming
serialization of XML 1.0 and XML 1.1 documents.

Unsupported features

The following optional StAX features are not supported by XL XP-J:
v DTD validation when using an XMLStreamReader or XMLEventReader. The XL

XP-J parser is non-validating.
v When using an XMLStreamReader to read from a character stream

(java.io.Reader), the Location.getCharaterOffset() method always returns -1. The
Location.getCharaterOffset() returns the byte offset of a Location when using an
XMLStreamReader to read from a byte stream (java.io.InputStream).

XMLInputFactory reference

The javax.xml.stream.XMLInputFactory implementation supports the following
properties, as described in the XMLInputFactory Javadoc information:
http://java.sun.com/javase/6/docs/api/javax/xml/stream/
XMLInputFactory.html.

Property name Supported?

javax.xml.stream.isValidating No. The XL XP-J scanner does not support
validation.

javax.xml.stream.isNamespaceAware Yes, supports true and false. For
XMLStreamReaders created from
DOMSources, namespace processing
depends on the methods that were used to
create the DOM tree, and this value has no
effect.

javax.xml.stream.isCoalescing Yes

javax.xml.stream.isReplacingEntityReferencesYes. For XMLStreamReaders created from
DOMSources, if entities have already been
replaced in the DOM tree, setting this
parameter has no effect.

javax.xml.stream.isSupportingExternalEntitiesYes

Chapter 5. Developing Java applications 29

http://java.sun.com/javase/6/docs/api/javax/xml/stream/XMLInputFactory.html
http://java.sun.com/javase/6/docs/api/javax/xml/stream/XMLInputFactory.html

Property name Supported?

javax.xml.stream.supportDTD True is always supported. Setting the value
to false works only if the
com.ibm.xml.xlxp.support.dtd.compat.mode
system property is also set to false.

When both properties are set to false,
parsers created by the factory throw an
XMLStreamException when they encounter
an entity reference that requires expansion.
This setting is useful for protecting against
Denial of Service (DoS) attacks involving
entities declared in the DTD.

Setting the value to false does not work
before Service Refresh 2.

javax.xml.stream.reporter Yes

javax.xml.stream.resolver Yes

XL XP-J also supports the optional method
createXMLStreamReader(javax.xml.transform.Source), which allows StAX readers to
be created from DOM and SAX sources.

XL XP-J also supports the javax.xml.stream.isSupportingLocationCoordinates
property. If you set this property to true, XMLStreamReaders created by the factory
return accurate line, column, and character information using Location objects. If
you set this property to false, line, column, and character information is not
available. By default, this property is set to false for performance reasons.

XMLStreamReader reference

The javax.xml.stream.XMLStreamReader implementation supports the following
properties, as described in the XMLStreamReader Javadoc: http://java.sun.com/
javase/6/docs/api/javax/xml/stream/XMLStreamReader.html.

Property name Supported?

javax.xml.stream.entities Yes

javax.xml.stream.notations Yes

XL XP-J also supports the javax.xml.stream.isInterning property. This property
returns a boolean value indicating whether or not XML names and namespace
URIs returned by the API calls have been interned by the parser. This property is
read-only.

XMLOutputFactory reference

The javax.xml.stream.XMLOutputFactory implementation supports the following
properties, as described in the XMLOutputFactory Javadoc: http://java.sun.com/
javase/6/docs/api/javax/xml/stream/XMLOutputFactory.html.

Property name Supported?

javax.xml.stream.isRepairingNamespaces Yes

30 IBM SDK for Java: SDK Guide

http://java.sun.com/javase/6/docs/api/javax/xml/stream/XMLStreamReader.html
http://java.sun.com/javase/6/docs/api/javax/xml/stream/XMLStreamReader.html
http://java.sun.com/javase/6/docs/api/javax/xml/stream/XMLOutputFactory.html
http://java.sun.com/javase/6/docs/api/javax/xml/stream/XMLOutputFactory.html

XL XP-J also supports the
javax.xml.stream.XMLOutputFactory.recycleWritersOnEndDocument property. If
you set this property to true, XMLStreamWriters created by this factory are
recycled when writeEndDocument() is called. After recycling, some
XMLStreamWriter methods, such as getNamespaceContext(), must not be called.
By default, XMLStreamWriters are recycled when close() is called. You must call
the XMLStreamWriter.close() method when you have finished with an
XMLStreamWriter, even if this property is set to true.

XMLStreamWriter reference

The javax.xml.stream.XMLStreamWriter implementation supports the following
properties, as described in the XMLStreamWriter Javadoc: http://java.sun.com/
javase/6/docs/api/javax/xml/stream/XMLStreamWriter.html.

Property name Supported?

javax.xml.stream.isRepairingNamespaces Yes

Properties on XMLStreamWriter objects are read-only.

XL XP-J also supports the
javax.xml.stream.XMLStreamWriter.isSetPrefixBeforeStartElement property. This
property returns a Boolean indicating whether calls to setPrefix() and
setDefaultNamespace() should occur before calls to writeStartElement() or
writeEmptyElement() to put a namespace prefix in scope for that element. XL XP-J
always returns false; calls to setPrefix() and setDefaultNamespace() should occur
after writeStartElement() or writeEmptyElement().

XL TXE-J reference information
XL TXE-J is an XSLT library containing the XSLT4J 2.7.8 interpreter and a XSLT
compiler.

Feature comparison table

Table 3. Comparison of the features in the XSLT4J interpreter, the XSLT4J compiler, and the
XL TXE-J compiler.

Feature

XSLT4J
interpreter
(included)

XSLT4J
compiler (not
included)

XL TXE-J
compiler
(included)

http://
javax.xml.transform.stream.StreamSource/feature
feature

Yes Yes Yes

http://
javax.xml.transform.stream.StreamResult/feature
feature

Yes Yes Yes

http://
javax.xml.transform.dom.DOMSource/
feature feature

Yes Yes Yes

http://
javax.xml.transform.dom.DOMResult/
feature feature

Yes Yes Yes

http://
javax.xml.transform.sax.SAXSource/
feature feature

Yes Yes Yes

Chapter 5. Developing Java applications 31

http://java.sun.com/javase/6/docs/api/javax/xml/stream/XMLStreamWriter.html
http://java.sun.com/javase/6/docs/api/javax/xml/stream/XMLStreamWriter.html

Table 3. Comparison of the features in the XSLT4J interpreter, the XSLT4J compiler, and the
XL TXE-J compiler. (continued)

Feature

XSLT4J
interpreter
(included)

XSLT4J
compiler (not
included)

XL TXE-J
compiler
(included)

http://
javax.xml.transform.sax.SAXResult/
feature feature

Yes Yes Yes

http://
javax.xml.transform.stax.StAXSource/
feature feature

Yes No Yes

http://
javax.xml.transform.stax.StAXResult/
feature feature

Yes No Yes

http://
javax.xml.transform.sax.SAXTransformerFactory/feature
feature

Yes Yes Yes

http://
javax.xml.transform.sax.SAXTransformerFactory/feature/xmlfilter
feature

Yes Yes Yes

http://javax.xml.XMLConstants/
feature/secure-processing feature

Yes Yes Yes

http://xml.apache.org/xalan/features/
incremental attribute

Yes No No

http://xml.apache.org/xalan/features/
optimize attribute

Yes No No

http://xml.apache.org/xalan/
properties/source-location attribute

Yes No No

translet-name attribute N/A Yes Yes (with new
name)

destination-directory attribute N/A Yes Yes (with new
name)

package-name attribute N/A Yes Yes (with new
name)

jar-name attribute N/A Yes Yes (with new
name)

generate-translet attribute N/A Yes Yes (with new
name)

auto-translet attribute N/A Yes Yes (with new
name)

use-classpath attribute N/A Yes Yes (with new
name)

enable-inlining attribute No Yes No (obsolete in
TL TXE-J)

indent-number attribute No Yes Yes (with new
name)

debug attribute No Yes Yes (with new
name)

Java extensions Yes Yes (abbreviated syntax only,
xalan:component/xalan:script
constructs not supported)

32 IBM SDK for Java: SDK Guide

Table 3. Comparison of the features in the XSLT4J interpreter, the XSLT4J compiler, and the
XL TXE-J compiler. (continued)

Feature

XSLT4J
interpreter
(included)

XSLT4J
compiler (not
included)

XL TXE-J
compiler
(included)

JavaScript extensions Yes No No

Extension elements Yes No No

EXSLT extension functions Yes Yes (excluding
dynamic)

Yes (excluding
dynamic)

redirect extension Yes Yes (excluding
redirect:open
and
redirect:close)

Yes

output extension No Yes Yes

nodeset extension Yes Yes Yes

NodeInfo extension functions Yes No No

SQL library extension Yes No No

pipeDocument extension Yes No No

evaluate extension Yes No No

tokenize extension Yes No No

XML 1.1 Yes Yes Yes

Notes
1. With the Process command, use -FLAVOR sr2sw to transform using StAX

stream processing, and -FLAVOR er2ew for StAX event processing.
2. The new compiler does not look for the

org.apache.xalan.xsltc.dom.XSLTCDTMManager service provider. Instead, if
StreamSource is used, the compiler switches to a high-performance XML parser.

3. Inlining is obsolete in XL TXE-J.
v The -XN option to the Process command is silently ignored.
v The -n option to the Compile command is silently ignored.
v The enable-inlining transformer factory attribute is silently ignored.

4. The org.apache.xalan.xsltc.trax.SmartTransformerFactoryImpl class is no longer
supported.

Using an older version of Xerces or Xalan
If you are using an older version of Xerces (before 2.0) or Xalan (before 2.3) in the
endorsed override, you might get a NullPointerException when you start your
application. This exception occurs because these older versions do not handle the
jaxp.properties file correctly.

About this task

To avoid this situation, use one of the following workarounds:
v Upgrade to a newer version of the application that implements the latest Java

API for XML Programming (JAXP) specification (https://jaxp.dev.java.net/).
v Remove the jaxp.properties file from /usr/lpp/java/J6.0[_64]/jre/lib.
v Uncomment the entries in the jaxp.properties file in /usr/lpp/java/J6.0[_64]/

jre/lib.

Chapter 5. Developing Java applications 33

v Set the system property for javax.xml.parsers.SAXParserFactory,
javax.xml.parsers.DocumentBuilderFactory, or
javax.xml.transform.TransformerFactory using the -D command-line option.

v Set the system property for javax.xml.parsers.SAXParserFactory,
javax.xml.parsers.DocumentBuilderFactory, or
javax.xml.transform.TransformerFactory in your application. For an example,
see the JAXP 1.4 specification.

v Explicitly set the SAX parser, Document builder, or Transformer factory using
the IBM_JAVA_OPTIONS environment variable.
export IBM_JAVA_OPTIONS=-Djavax.xml.parsers.SAXParserFactory=

org.apache.xerces.jaxp.SAXParserFactoryImpl

or
export IBM_JAVA_OPTIONS=-Djavax.xml.parsers.DocumentBuilderFactory=

org.apache.xerces.jaxp.DocumentBuilderFactoryImpl

or
export IBM_JAVA_OPTIONS=-Djavax.xml.transform.TransformerFactory=

org.apache.xalan.processor.TransformerFactoryImpl

Debugging Java applications
To debug Java programs, you can use the Java Debugger (JDB) application or other
debuggers that communicate by using the Java Platform Debugger Architecture
(JPDA) that is provided by the SDK for the operating system.

More information about problem diagnosis using Java can be found in the
Diagnostics Guide.

Java Debugger (JDB)
The Java Debugger (JDB) is included in the SDK for z/OS. The debugger is started
with the jdb command; it attaches to the JVM using JPDA.

To debug a Java application:
1. Start the JVM with the following options:

java -Xdebug -Xrunjdwp:transport=dt_socket,server=y,address=<port> <class>

The JVM starts up, but suspends execution before it starts the Java application.
2. In a separate session, you can attach the debugger to the JVM:

jdb -attach <port>

The debugger will attach to the JVM, and you can now issue a range of
commands to examine and control the Java application; for example, type run
to allow the Java application to start.

For more information about JDB options, type:
jdb -help

For more information about JDB commands:
1. Type jdb

2. At the jdb prompt, type help

34 IBM SDK for Java: SDK Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

You can also use JDB to debug Java applications running on remote workstations.
JPDA uses a TCP/IP socket to connect to the remote JVM.
1. Start the JVM with the following options:

java -Xdebug -Xrunjdwp:transport=dt_socket,server=y,address=<port> <class>

The JVM starts up, but suspends execution before it starts the Java application.
2. Attach the debugger to the remote JVM:

jdb -attach <host>:<port>

The Java Virtual Machine Debugging Interface (JVMDI) is not supported in this
release. It has been replaced by the Java Virtual Machine Tool Interface (JVMTI).

For more information about JDB and JPDA and their usage, see these Web sites:
v http://java.sun.com/products/jpda/
v http://java.sun.com/javase/6/docs/technotes/guides/jpda/
v http://java.sun.com/javase/6/docs/technotes/guides/jpda/jdb.html

Selective debugging
Use the com.ibm.jvm.Debuggable annotation to mark classes and methods that
should be available for debugging. Use the -XselectiveDebug parameter to enable
selective debugging at run time. The JVM optimizes methods that do not need
debugging to provide better performance in a debugging environment.

About this task

Selective debugging is useful when Java is being used as a framework for
development, for example, as an IDE. The Java code for the IDE is optimized for
performance while the user code is debugged.
1. Import the Debuggable annotation from the com.ibm.jvm package.

import com.ibm.jvm.Debuggable;

2. Decorate methods using the Debuggable annotation.
@Debuggable
public int method1() {

...
}

3. Optional: You can also decorate classes using the Debuggable annotation. All
methods in the class will remain debuggable.
@Debuggable
public class Class1 {

...
}

4. Enable selective debugging at run time using the -XselectiveDebug
command-line option.

Results

Applications will run faster while being debugged because the core Java API and
any IDE code can be optimized for performance.

Chapter 5. Developing Java applications 35

http://java.sun.com/products/jpda/
http://java.sun.com/javase/6/docs/technotes/guides/jpda/
http://java.sun.com/javase/6/docs/technotes/guides/jpda/jdb.html

Determining whether your application is running on a 31-bit or 64-bit
JVM

Some Java applications must be able to determine whether they are running on a
31-bit JVM or on a 64-bit JVM. For example, if your application has a native code
library, the library must be compiled separately in 31- and 64-bit forms for
platforms that support both 31- and 64-bit modes of operation. In this case, your
application must load the correct library at runtime, because it is not possible to
mix 31- and 64-bit code.

About this task

The system property com.ibm.vm.bitmode allows applications to determine the
mode in which your JVM is running. It returns the following values:
v 32 - the JVM is running in 31-bit mode
v 64 - the JVM is running in 64-bit mode

You can inspect the com.ibm.vm.bitmode property from inside your application
code using the call:
System.getProperty("com.ibm.vm.bitmode");

How the JVM processes signals
When a signal is raised that is of interest to the JVM, a signal handler is called.
This signal handler determines whether it has been called for a Java or non-Java
thread.

If the signal is for a Java thread, the JVM takes control of the signal handling. If an
application handler for this signal is installed and you did not specify the
-Xnosigchain command-line option, the application handler for this signal is called
after the JVM has finished processing.

If the signal is for a non-Java thread, and the application that installed the JVM
had previously installed its own handler for the signal, control is given to that
handler. Otherwise, if the signal is requested by the JVM or Java application, the
signal is ignored or the default action is taken.

For exception and error signals, the JVM either:
v Handles the condition and recovers, or
v Enters a controlled shut down sequence where it:

1. Produces dumps, to describe the JVM state at the point of failure
2. Calls your application’s signal handler for that signal
3. Calls any application-installed unexpected shut down hook
4. Performs the necessary JVM cleanup

For information about writing a launcher that specifies the above hooks, see:
http://www.ibm.com/developerworks/java/library/i-signalhandling/. This item
was written for Java V1.3.1, but still applies to later versions.

For interrupt signals, the JVM also enters a controlled shut down sequence, but
this time it is treated as a normal termination that:
1. Calls your application’s signal handler for that signal
2. Calls all application shut down hooks

36 IBM SDK for Java: SDK Guide

http://www.ibm.com/developerworks/java/library/i-signalhandling/

3. Calls any application-installed exit hook
4. Performs the necessary JVM cleanup

The shut down is identical to the shut down initiated by a call to the Java method
System.exit().

Other signals that are used by the JVM are for internal control purposes and do
not cause it to stop. The only control signal of interest is SIGQUIT, which causes a
Javadump to be generated.

Signals used by the JVM
The types of signals are Exceptions, Errors, Interrupts, and Controls.

Table 4 shows the signals that are used by the JVM. The signals are grouped in the
table by type or use, as follows:
Exceptions

The operating system synchronously raises an appropriate exception signal
whenever an unrecoverable condition occurs.

Errors The JVM raises a SIGABRT if it detects a condition from which it cannot
recover.

Interrupts
Interrupt signals are raised asynchronously, from outside a JVM process, to
request shut down.

Controls
Other signals that are used by the JVM for control purposes.

Table 4. Signals used by the JVM

Signal Name Signal type Description Disabled by -Xrs

SIGBUS (7) Exception Incorrect access to
memory (data
misalignment)

Yes

SIGSEGV (11) Exception Incorrect access to
memory (write to
inaccessible memory)

Yes

SIGILL (4) Exception Illegal instruction
(attempt to call an
unknown machine
instruction)

Yes

SIGFPE (8) Exception Floating point
exception (divide by
zero)

Yes

SIGABRT (6) Error Abnormal
termination. The JVM
raises this signal
whenever it detects a
JVM fault.

Yes

SIGINT (2) Interrupt Interactive attention
(CTRL-C). JVM exits
normally.

Yes

SIGTERM (15) Interrupt Termination request.
JVM will exit
normally.

Yes

SIGHUP (1) Interrupt Hang up. JVM exits
normally.

Yes

Chapter 5. Developing Java applications 37

Table 4. Signals used by the JVM (continued)

Signal Name Signal type Description Disabled by -Xrs

SIGQUIT (3) Control By default, this
triggers a Javadump.

Yes

SIGRECONFIG (58) Control Reserved to detect
any change in the
number of CPUs,
processing capacity,
or physical memory.

Yes

SIGTRAP (5) Control Used by the JIT. Yes

SIGCHLD (17) Control Used by the SDK for
internal control.

No

SIGUSR1 Control Used by the SDK. No

Note: A number supplied after the signal name is the standard numeric value for
that signal.

Use the -Xrs (reduce signal usage) option to prevent the JVM from handling most
signals. For more information, see Sun’s Java application launcher page.

Signals 1 (SIGHUP), 2 (SIGINT), 4 (SIGILL), 7 (SIGBUS), 8 (SIGFPE), 11 (SIGSEGV),
and 15 (SIGTERM) on JVM threads cause the JVM to shut down; therefore, an
application signal handler should not attempt to recover from these unless it no
longer requires the JVM.

Linking a native code driver to the signal-chaining library
The Runtime Environment contains signal-chaining. Signal-chaining enables the
JVM to interoperate more efficiently with native code that installs its own signal
handlers.

About this task

Signal-chaining enables an application to link and load the shared library
libjsig.so before the system libraries. The libjsig.so library ensures that calls such
as signal(), sigset(), and sigaction() are intercepted so that their handlers do not
replace the JVM’s signal handlers. Instead, these calls save the new signal handlers,
or ″chain″ them behind the handlers that are installed by the JVM. Later, when any
of these signals are raised and found not to be targeted at the JVM, the preinstalled
handlers are invoked.

If you install signal handlers that use sigaction() , some sa_flags are not observed
when the JVM uses the signal. These are:
v SA_NOCLDSTOP - This is always unset.
v SA_NOCLDWAIT - This is always unset.
v SA_RESTART - This is always set.

The libjsig.so library also hides JVM signal handlers from the application.
Therefore, calls such as signal(), sigset(), and sigaction() that are made after the
JVM has started no longer return a reference to the JVM’s signal handler, but
instead return any handler that was installed before JVM startup.

38 IBM SDK for Java: SDK Guide

http://java.sun.com/javase/6/docs/technotes/tools/windows/java.html

The environment variable JAVA_HOME should be set to the location of the SDK,
for example,/usr/lpp/java/J6.0[_64]/.

To use libjsig.a:
v Link it with the application that creates or embeds a JVM:

cc_r -q64 <other compile/link parameter> -L/usr/lpp/java/J6.0[_64]/jre/bin -ljsig
-L/usr/lpp/java/J6.0[_64]/jre/bin/j9vm -ljvm java_application.c

Note: Use xlc_r or xlC_r in place of cc_r if that is how you usually call the
compiler or linker.

Writing JNI applications
Valid Java Native Interface (JNI) version numbers that programs can specify on the
JNI_CreateJavaVM() API call are: JNI_VERSION_1_2(0x00010002) and
JNI_VERSION_1_4(0x00010004).

Restriction: Version 1.1 of the JNI is not supported.

This version number determines only the level of the JNI to use. The actual level
of the JVM that is created is specified by the JSE libraries (that is, v6). The JNI level
does not affect the language specification that is implemented by the JVM, the class
library APIs, or any other area of JVM behavior. For more information, see
http://java.sun.com/javase/6/docs/technotes/guides/jni/.

If your application needs two JNI libraries, one built for 31- and the other for
64-bit, use the com.ibm.vm.bitmode system property to determine if you are
running with a 31- or 64-bit JVM and choose the appropriate library.

For more information about writing 64-bit applications, see the IBM Redpaper z/OS
64-bit C/C++ and Java Programming Environment at http://www.redbooks.ibm.com/
abstracts/redp9110.html.

ASCII and EBCDIC issues

On z/OS, the Java Virtual Machine is essentially an EBCDIC application. Enhanced
ASCII methods are C or C++ code that has been compiled with ASCII compiler
options. If you create JNI routines as enhanced ASCII C or C++ methods you will
be operating in a bimodal environment; your application will be crossing over
between ASCII and EBCDIC environments.

The inherent problem with bimodal programs is that, in the z/OS runtime, threads
are designated as either EBCDIC or enhanced ASCII and are not intended to be
switched between these modes in typical use. Enhanced ASCII is not designed to
handle bimodal issues. You might get unexpected results or experience failures
when the active mode does not match that of the compiled code. There are z/OS
runtime calls that applications might use to switch the active mode between
EBCDIC and enhanced ASCII (the __ae_thread_swapmode() and
__ae_thread_setmode() functions are documented in Language Environment®

Vendor Interfaces, see the SA22-7568-06 Red Book: http://publibz.boulder.ibm.com/
epubs/pdf/ceev1160.pdf). However, even if an application is carefully coded to
switch modes correctly, other bimodal issues might exist.

Chapter 5. Developing Java applications 39

http://java.sun.com/javase/6/docs/technotes/guides/jni/
http://www.redbooks.ibm.com/abstracts/redp9110.html
http://www.redbooks.ibm.com/abstracts/redp9110.html
http://publibz.boulder.ibm.com/epubs/pdf/ceev1160.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceev1160.pdf

Supported compilers

The c89 compiler packaged with z/OS v1.9, C/OS/390 C++ Optional Feature is
supported for:
v 31-bit z/OS on S/390®

v 64-bit z/OS on S/390

Native formatting of Java types long, double, float
The latest C/C++ compilers and runtimes can convert jlong, jdouble, and jfloat
data types to strings by using printf()-type functions.

Previous versions of the SDK for z/OS 31-bit had a set of native conversion
functions and macros for formatting large Java data types. These functions and
macros were:

ll2str() function
Converts a jlong to an ASCII string representation of the 64-bit value.

flt2dbl() function
Converts a jfloat to a jdouble.

dbl2nat() macro
Converts a jdouble to an ESA/390 native double.

dbl_sqrt() macro
Calculates the square root of a jdouble and returns it as a jdouble.

dbl2str() function
Converts a jdouble to an ASCII string representation.

flt2str() function
Converts a jfloat to an ASCII string representation.

These functions and macros are no longer supported by Version 6 of the SDK for
z/OS. To provide a migration path, the functions have been moved to the demos
area of the SDK and the appropriate demo code for these functions has been
updated to reflect the changes.

The functions ll2str(), dbl2str(), and flt2str() are provided in the following object
files:
v /usr/lpp/java/J6.0[_64]/demo/jni/JNINativeTypes/c/convert.o (For 31-bit)
v /usr/lpp/java/J6.0[_64]/demo/jni/JNINativeTypes/c/convert64.o (For 64-bit)

The function flt2dbl() and the macros dbl2nat() and dbl_sqrt() are not defined.
However, the following macros give their definitions:
#include <math.h>
#define flt2dbl(f) ((double)f)
#define dbl2nat(a) ((a))
#define dbl_sqrt(a) (sqrt(a))

A C/C++ application that returns a jfloat data type to a Java application must be
compiled with the FLOAT (IEEE) C/C++ compiler option. Applications compiled
without this option will return incorrect data types. Further information about
compiling C/C++ source code, which applies to this Java release, can be found in
the support document http://www-03.ibm.com/servers/eserver/zseries/software/
java/usingjni.html#building

40 IBM SDK for Java: SDK Guide

http://www.ibm.com/servers/eserver/zseries/software/java/usingjni.html#nativedoublefloat
http://www-03.ibm.com/servers/eserver/zseries/software/java/usingjni.html#building
http://www-03.ibm.com/servers/eserver/zseries/software/java/usingjni.html#building

Support for thread-level recovery of blocked connectors
Four new IBM-specific SDK classes have been added to the com.ibm.jvm package
to support the thread-level recovery of Blocked connectors. The new classes are
packaged in core.jar.

These classes allow you to unblock threads that have become blocked on
networking or synchronization calls. If an application does not use these classes, it
must end the whole process, rather than interrupting an individual blocked thread.

The classes are:

public interface InterruptibleContext
Defines two methods, isBlocked() and unblock(). The other three classes
implement InterruptibleContext.

public class InterruptibleLockContext
A utility class for interrupting synchronization calls.

public class InterruptibleIOContext
A utility class for interrupting network calls.

public class InterruptibleThread
A utility class that extends java.lang.Thread, to allow wrapping of interruptible
methods. It uses instances of InterruptibleLockContext and
InterruptibleIOContext to perform the required isBlocked() and unblock()
methods depending on whether a synchronization or networking operation is
blocking the thread.

Both InterruptibleLockContext and InterruptibleIOContext work by referencing the
current thread. Therefore if you do not use InterruptibleThread, you must provide
your own class that extends java.lang.Thread, to use these new classes.

The Javadoc information for these classes is provided with the SDK in the
docs/content/apidoc directory.

CORBA support
The Java Platform, Standard Edition (JSE) supports, at a minimum, the
specifications that are defined in the compliance document from Sun. In some
cases, the IBM JSE ORB supports more recent versions of the specifications.

The minimum specifications supported are defined in the Official Specifications for
CORBA support in Java SE 6: http://java.sun.com/javase/6/docs/api/org/omg/
CORBA/doc-files/compliance.html.

Support for GIOP 1.2

This SDK supports all versions of GIOP, as defined by chapters 13 and 15 of the
CORBA 2.3.1 specification, OMG document formal/99-10-07.

http://www.omg.org/cgi-bin/doc?formal/99-10-07

Bidirectional GIOP is not supported.

Chapter 5. Developing Java applications 41

http://java.sun.com/javase/6/docs/api/org/omg/CORBA/doc-files/compliance.html
http://java.sun.com/javase/6/docs/api/org/omg/CORBA/doc-files/compliance.html
http://www.omg.org/cgi-bin/doc?formal/99-10-07

Support for Portable Interceptors

This SDK supports Portable Interceptors, as defined by the OMG in the document
ptc/01–03–04, which you can obtain from:

http://www.omg.org/cgi-bin/doc?ptc/01–03-04

Portable Interceptors are hooks into the ORB that ORB services can use to intercept
the normal flow of execution of the ORB.

Support for Interoperable Naming Service

This SDK supports the Interoperable Naming Service, as defined by the OMG in
the document ptc/00-08-07, which you can obtain from:

http://www.omg.org/cgi-bin/doc?ptc/00-08-07

The default port that is used by the Transient Name Server (the tnameserv
command), when no ORBInitialPort parameter is given, has changed from 900 to
2809, which is the port number that is registered with the IANA (Internet Assigned
Number Authority) for a CORBA Naming Service. Programs that depend on this
default might have to be updated to work with this version.

The initial context that is returned from the Transient Name Server is now an
org.omg.CosNaming.NamingContextExt. Existing programs that narrow the
reference to a context org.omg.CosNaming.NamingContext still work, and do not
need to be recompiled.

The ORB supports the -ORBInitRef and -ORBDefaultInitRef parameters that are
defined by the Interoperable Naming Service specification, and the
ORB::string_to_object operation now supports the ObjectURL string formats
(corbaloc: and corbaname:) that are defined by the Interoperable Naming Service
specification.

The OMG specifies a method ORB::register_initial_reference to register a service
with the Interoperable Naming Service. However, this method is not available in
the Sun Java Core API at Version 6. Programs that have to register a service in the
current version must invoke this method on the IBM internal ORB implementation
class. For example, to register a service “MyService”:
((com.ibm.CORBA.iiop.ORB)orb).register_initial_reference("MyService",
serviceRef);

Where orb is an instance of org.omg.CORBA.ORB, which is returned from
ORB.init(), and serviceRef is a CORBA Object, which is connected to the ORB.
This mechanism is an interim one, and is not compatible with future versions or
portable to non-IBM ORBs.

System properties for tracing the ORB
A runtime debug feature provides improved serviceability. You might find it useful
for problem diagnosis or it might be requested by IBM service personnel.

Tracing Properties

com.ibm.CORBA.Debug=true
Turns on ORB tracing.

42 IBM SDK for Java: SDK Guide

http://www.omg.org/cgi-bin/doc?ptc/01-03-04
http://www.omg.org/cgi-bin/doc?ptc/00-08-07

com.ibm.CORBA.CommTrace=true
Adds GIOP messages (sent and received) to the trace.

com.ibm.CORBA.Debug.Output=<file>
Specify the trace output file. By default, this is of the form
orbtrc.DDMMYYYY.HHmm.SS.txt.

Example of ORB tracing

For example, to trace events and formatted GIOP messages from the command
line, type:
java -Dcom.ibm.CORBA.Debug=true

-Dcom.ibm.CORBA.CommTrace=true <myapp>

Limitations

Do not enable tracing for normal operation, because it might cause performance
degradation. Even if you have switched off tracing, FFDC (First Failure Data
Capture) is still working, so serious errors are reported. If a debug output file is
generated, examine it to check on the problem. For example, the server might have
stopped without performing an ORB.shutdown().

The content and format of the trace output might vary from version to version.

System properties for tuning the ORB
The ORB can be tuned to work well with your specific network. The properties
required to tune the ORB are described here.

com.ibm.CORBA.FragmentSize=<size in bytes>
Used to control GIOP 1.2 fragmentation. The default size is 1024 bytes.

To disable fragmentation, set the fragment size to 0 bytes:
java -Dcom.ibm.CORBA.FragmentSize=0 <myapp>

com.ibm.CORBA.RequestTimeout=<time in seconds>
Sets the maximum time to wait for a CORBA Request. By default the ORB
waits indefinitely. Do not set the timeout too low to avoid connections ending
unnecessarily.

com.ibm.CORBA.LocateRequestTimeout=<time in seconds>
Set the maximum time to wait for a CORBA LocateRequest. By default the
ORB waits indefinitely.

com.ibm.CORBA.ListenerPort=<port number>
Set the port for the ORB to read incoming requests on. If this property is set,
the ORB starts listening as soon as it is initialized. Otherwise, it starts listening
only when required.

Java security permissions for the ORB
When running with a Java SecurityManager, invocation of some methods in the
CORBA API classes might cause permission checks to be made, which might result
in a SecurityException. If your program uses any of these methods, ensure that it is
granted the necessary permissions.

Chapter 5. Developing Java applications 43

Table 5. Methods affected when running with Java SecurityManager

Class/Interface Method Required permission

org.omg.CORBA.ORB init java.net.SocketPermission
resolve

org.omg.CORBA.ORB connect java.net.SocketPermission
listen

org.omg.CORBA.ORB resolve_initial_references java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_is_a java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_non_existent java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

OutputStream _request
(String, boolean)

java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_get_interface_def java.net.SocketPermission
connect

org.omg.CORBA. Request invoke java.net.SocketPermission
connect

org.omg.CORBA. Request send_deferred java.net.SocketPermission
connect

org.omg.CORBA. Request send_oneway java.net.SocketPermission
connect

javax.rmi.
PortableRemoteObject

narrow java.net.SocketPermission
connect

ORB implementation classes
A list of the ORB implementation classes.

The ORB implementation classes in this release are:
v org.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB
v org.omg.CORBA.ORBSingletonClass=com.ibm.rmi.corba.ORBSingleton
v javax.rmi.CORBA.UtilClass=com.ibm.CORBA.iiop.UtilDelegateImpl
v javax.rmi.CORBA.StubClass=com.ibm.rmi.javax.rmi.CORBA.StubDelegateImpl
v

javax.rmi.CORBA.PortableRemoteObjectClass=com.ibm.rmi.javax.rmi.PortableRemoteObject

These are the default values, and you are advised not to set these properties or
refer to the implementation classes directly. For portability, make references only to
the CORBA API classes, and not to the implementation. These values might be
changed in future releases.

RMI over IIOP
Java Remote Method Invocation (RMI) provides a simple mechanism for
distributed Java programming. RMI over IIOP (RMI-IIOP) uses the Common
Object Request Broker Architecture (CORBA) standard Internet Inter-ORB Protocol
(IIOP) to extend the base Java RMI to perform communication. This allows direct
interaction with any other CORBA Object Request Brokers (ORBs), whether they
were implemented in Java or another programming language.

The following documentation is available:

44 IBM SDK for Java: SDK Guide

v The RMI-IIOP Programmer’s Guide is an introduction to writing RMI-IIOP
programs.

v The Java Language to IDL Mapping document is a detailed technical specification
of RMI-IIOP: http://www.omg.org/cgi-bin/doc?ptc/00-01-06.pdf.

Implementing the Connection Handler Pool for RMI
Thread pooling for RMI Connection Handlers is not enabled by default.

About this task

To enable the connection pooling implemented at the RMI TCPTransport level, set
the option
-Dsun.rmi.transport.tcp.connectionPool=true

This version of the Runtime Environment does not have a setting that you can use
to limit the number of threads in the connection pool.

Enhanced BigDecimal
From Java 5.0, the IBM BigDecimal class has been adopted by Sun as
java.math.BigDecimal. The com.ibm.math.BigDecimal class is reserved for possible
future use by IBM and is currently deprecated. Migrate existing Java code to use
java.math.BigDecimal.

The new java.math.BigDecimal uses the same methods as both the previous
java.math.BigDecimal and com.ibm.math.BigDecimal. Existing code using
java.math.BigDecimal continues to work correctly. The two classes do not serialize.

To migrate existing Java code to use the java.math.BigDecimal class, change the
import statement at the top of your .java file from: import com.ibm.math.*; to
import java.math.*;.

Working in a multiple network stack environment
In a multiple network stack environment (CINET), when one of the stacks fails, no
notification or Java exception occurs for a Java program that is listening on an
INADDR_ANY socket. Also, when new stacks become available, the Java
application does not become aware of them until it rebinds the INADDR socket.

To avoid this situation, when a TCP/IP stack comes online:
v If the ibm.socketserver.recover property is set to false (which is the default), an

exception (NetworkRecycledException) is thrown to the application to allow it
either to fail or to attempt to rebind.

v If the ibm.socketserver.recover property is set to true, Java attempts to redrive
the socket connection on the new stack if listening on all addresses (addrs). If
the socket bind cannot be replayed at that time, an exception
(NetworkRecycledException) is thrown to the application to allow it either to fail
or to attempt to rebind.

Both ServerSocket.accept() and ServerSocketChannel.accept() can throw
NetworkRecycledException.

Chapter 5. Developing Java applications 45

http://www.ibm.com/developerworks/java/jdk/additional/rmi-iiop6.html
http://www.omg.org/cgi-bin/doc?ptc/00-01-06.pdf

While a socket is listening for new connections, it maintains a queue of incoming
connections. When NetworkRecycledException is thrown and the system attempts
to rebind the socket, the connection queue is reset and connection requests in this
queue are dropped.

Using IBMJCECCA
IBMJCECCA uses ICSF services during processing. You must have the correct
CSFSERV access to use the ICSF services and IBMJCECCA.

Table 6. CSFSERV access permissions required to use ICSF services

ICSF APIs used by IBMJCECCA CSF access required

CSNBSYE and CSNESYE (64-bit)
Symmetric key encipher

CSFENC
Encipher callable service
CSFCVE
Cryptographic variable encipher callable service

CSNBSYD and CSNESYD (64-bit)
Symmetric key decipher

CSFDEC
Decipher callable service

CSNBOWH and CSNEOWH (64-bit)
One-way hash generate

CSFOWH
One-way hash generate callable service

CSNBRNG and CSNERNG (64-bit)
Random number generate

CSFRNG
Random number generate callable service

CSNDKRC and CSNFKRC (64-bit)
PKDS record create

CSFPKRC
PKDS record create callable service
CSFKRC
Key record create callable service

CSNDKRD and CSNFKRD (64-bit)
PKDS record delete

CSFPKRD
PKDS record delete callable service
CSFKRD
Key record delete callable service

CSNDRKD and CSNFRKD (64-bit)
Retained key delete

CSFRKD
Retained key delete callable service

CSNDPKG and CSNFPKG (64-bit)
PKA key generate

CSFPKG
PKA key generate callable service

CSNDDSG and CSNFDSG (64-bit)
Digital signature generate

CSFDSG
Digital signature generate service

CSNDDSV and CSNFDSV (64-bit)
Digital signature verify

CSFDSV
Digital signature verify callable service

CSNDPKB and CSNFPKB (64-bit)
PKA key token build

CSFPKG
PKA key generate callable service
CSFPKTC
PKA key token change callable service

CSNDRKL and CSNFRKL (64-bit)
Retained key list

CSFRKL
Retained key list callable service

CSNDPKX and CSNFPKX (64-bit)
PKA public key extract

CSFPKX
PKA Public Key Extract callable service

CSNBENC and CSNEENC (64-bit)
Encipher

CSFENC
Encipher callable service

CSNBDEC and CSNEDEC (64-bit)
Decipher

CSFDEC
Decipher callable service

CSNDPKE and CSNFPKE (64-bit)
PKA encrypt

CSFPKE
PKA encrypt callable service

46 IBM SDK for Java: SDK Guide

Table 6. CSFSERV access permissions required to use ICSF services (continued)

ICSF APIs used by IBMJCECCA CSF access required

CSNDPKD and CSNFPKD (64-bit)
PKA decrypt

CSFPKD
PKA decrypt callable service

CSNDPKI and CSNFPKI (64-bit)
PKA key import

CSFPKI
PKA key import callable service

CSNBCKM and CSNECKM (64-bit)
Multiple clear key import

CSFCKM
Multiple clear key import callable service

CSNBKGN and CSNEKGN (64-bit)
Key generate

CSFKGN
Key generate callable service

CSNDSYI
Symmetric key import

CSFSYI
Symmetric key import callable service

CSNDSYX
Symmetric key export

CSFSYX
Symmetric key export callable service

Support for XToolkit
The IBM 64-bit SDK for z/OS, v6 includes XToolkit by default. You need XToolkit
when using the Eclipse’s SWT_AWT bridge to build an application that uses both
SWT and Swing.

Restriction: Motif is no longer supported and will be removed in a later release.

Related links:
v An example, Integrating Swing into Eclipse RCPs: http://eclipsezone.com/

eclipse/forums/t45697.html
v Reference Information in the Eclipse information center: http://help.eclipse.org/

help32/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/
swt/awt/SWT_AWT.html

v Set up information on the Sun Web site: http://java.sun.com/javase/6/docs/
technotes/guides/awt/1.5/xawt.html

Support for the Java Attach API
The Java Attach API allows your application to connect to another virtual machine
(the “target”). Your application can then load an agent application into the target
virtual machine, for example to perform tasks such as monitoring status.

Code for agent applications, such as JMX agents or JVMTI agents, is normally
loaded during virtual machine startup by specifying special startup parameters.
Requiring startup parameters might not be convenient for using agents on
applications that are already running, such as WebSphere Application Servers.
Using the Java Attach API, lets you load an agent at any time by specifying the
process ID of the target virtual machine. The Attach API capability is sometimes
called “late attach”.

The Attach API is disabled by default for Java 6 SR 6 and later.

Security considerations

Security for the Java Attach API is handled by UNIX® user and group file
permissions. On z/OS, you must use UNIX user and group permissions to protect

Chapter 5. Developing Java applications 47

http://eclipsezone.com/eclipse/forums/t45697.html
http://eclipsezone.com/eclipse/forums/t45697.html
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/awt/SWT_AWT.html
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/awt/SWT_AWT.html
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/awt/SWT_AWT.html
http://java.sun.com/javase/6/docs/technotes/guides/awt/1.5/xawt.html
http://java.sun.com/javase/6/docs/technotes/guides/awt/1.5/xawt.html

your applications. It is not sufficient to rely on RACF® or system level security to
protect your applications, because these mechanisms do not have the necessary
UNIX user and group permissions set up and configured for the Java Attach API
to remain secure.

The Java Attach API creates files and directories in a common directory. The
common directory, subdirectories, and files in it, have UNIX file permissions. It is
recommended that you change the ownership of the common directory to ROOT
or another privileged user ID, to prevent ’spoofing’ attacks.

The key security features of the Java Attach API are:
v A process using the Java Attach API must be owned by the same UNIX userid

as the target process. This ensures that only the target process owner can attach
other applications to the target process.

v For Java 6 after SR 6, access to the files or directories owned by a process is
controlled by user permissions only; group access is disabled.

v The common directory uses the sticky bit to prevent a user from deleting or
replacing another user’s subdirectory. To preserve the security of this
mechanism, set the ownership of the common directory to ROOT.

v The subdirectory for a process is accessible only by members of the same UNIX
group as the owner of a process. For Java 6 after SR 6, access is restricted to the
owner only.

v Information about the target process can be written only by the owner and read
only by the owner or a member of the owner’s group. For Java 6 after SR 6,
access is restricted to the owner only.

You must secure access to the Java Attach API capability to ensure that only
authorized users or processes can connect to another virtual machine. If you do not
intend to use the Java Attach API capability, disable this feature using the Java
system property. Do this by setting the com.ibm.tools.attach.enable system
property to the value no; for example:
-Dcom.ibm.tools.attach.enable=no

Using the Java Attach API

By default, the target virtual machine is identified by its process ID. To use a
different target, change the system property com.ibm.tools.attach.id; for example:
-Dcom.ibm.tools.attach.id=<process_ID>

The target process also has a human-readable “display name”. By default, the
display name is the command line used to launch Java. To change the default
display name, use the com.ibm.tools.attach.displayName system property. The ID
and display name cannot be changed after the application has started.

The Attach API creates working files in a common directory called
.com_ibm_tools_attach, which is created in the system temporary directory. The
system property java.io.tmpdir holds the value of the system temporary directory.
On non-Windows® systems, the system temporary directory is typically /tmp. To
modify the working directory, use the Java system property
com.ibm.tools.attach.directory; for example:
-Dcom.ibm.tools.attach.directory=/working

48 IBM SDK for Java: SDK Guide

If your Java application ends abnormally, for example, following a crash or a
SIGKILL signal, the process subdirectory is not deleted. The Java VM detects and
removes obsolete subdirectories where possible. The subdirectory can also be
deleted by the owning userid.

On heavily loaded system, applications might experience timeouts when
attempting to connect to target applications. The default timeout is 120 seconds.
Use the com.ibm.tools.attach.timeout system property to specify a different
timeout value in seconds; for example, to timeout after 60 seconds:
-Dcom.ibm.tools.attach.timeout=60

A timeout value of zero indicates an indefinite wait.

For JMX applications, you might need to disable authentication by editing the
<JAVA_HOME>/jre/lib/management/management.properties file. Set the following
properties to disable authentication in JMX:
com.sun.management.jmxremote.authenticate=false
com.sun.management.jmxremote.ssl=false

An unsuccessful attempt to invoke the Attach API results in one of the following
exceptions:
v com.sun.tools.attach.AgentLoadException

v com.sun.tools.attach.AgentInitializationException

v java.io.IOException

Related links:
v The Attach API: http://java.sun.com/javase/6/docs/technotes/guides/attach/

index.html.

Chapter 5. Developing Java applications 49

http://java.sun.com/javase/6/docs/technotes/guides/attach/index.html
http://java.sun.com/javase/6/docs/technotes/guides/attach/index.html

50 IBM SDK for Java: SDK Guide

Chapter 6. Applet Viewer

The Java plug-in is used to run Java applications in the browser. The appletviewer
is used to test applications designed to be run in a browser.

Distributing Java applications
Java applications typically consist of class, resource, and data files.

When you distribute a Java application, your software package probably consists of
the following parts:
v Your own class, resource, and data files
v An installation procedure or program

Your SDK for z/OS software license does not allow you to redistribute any of the
SDK’s files with your application. You must ensure that a licensed version of the
SDK for z/OS is installed on the target workstation.

When distributing your application for use on a z/OS platform, make the z/OS
SDK a prerequisite, because z/OS does not have a separate JRE.

© Copyright IBM Corp. 2003, 2009 51

52 IBM SDK for Java: SDK Guide

Chapter 7. Class data sharing between JVMs

Class data sharing allows multiple JVMs to share a single space in memory.

The Java Virtual Machine (JVM) allows you to share class data between JVMs by
storing it in a cache in shared memory. Sharing reduces the overall virtual storage
consumption when more than one JVM shares a cache. Sharing also reduces the
startup time for a JVM after the cache has been created. The shared class cache is
independent of any running JVM and persists until it is destroyed or the system is
IPL’d.

A shared cache can contain:
v Bootstrap classes
v Application classes
v Metadata that describes the classes
v Ahead-of-time (AOT) compiled code

Overview of class data sharing
Class data sharing provides a transparent method of reducing memory footprint
and improving JVM start-up time. Java 6 provides new and improved features in
cache management, isolation, and performance.

Enabling class data sharing

Enable class data sharing by using the -Xshareclasses option when starting a JVM.
The JVM connects to an existing cache or creates a new cache if one does not exist.

All bootstrap and application classes loaded by the JVM are shared by default.
Custom classloaders share classes automatically if they extend the application
classloader; otherwise, they must use the Java Helper API provided with the JVM
to access the cache. See “Adapting custom classloaders to share classes” on page
61.

The JVM can also store ahead-of-time (AOT) compiled code in the cache for certain
methods to improve the startup time of subsequent JVMs. The AOT compiled code
is not shared between JVMs, but is cached to reduce compilation time when the
JVM starts up. The amount of AOT code stored in the cache is determined
heuristically. You cannot control which methods get stored in the cache, but you
can set upper and lower limits on the amount of cache space used for AOT code,
or you can choose to disable AOT caching completely. See “Class data sharing
command-line options” on page 54 for more information.

Cache access

A JVM can access a cache with either read-write or read-only access. Any JVM
connected to a cache with read-write access can update the cache. Any number of
JVMs can concurrently read from the cache, even while another JVM is writing to
it.

You must take care if runtime bytecode modification is being used. See “Runtime
bytecode modification” on page 60 for more information.

© Copyright IBM Corp. 2003, 2009 53

Dynamic updating of the cache

Because the shared class cache persists beyond the lifetime of any JVM, the cache
is updated dynamically to reflect any modifications that might have been made to
JARs or classes on the file system. The dynamic updating makes the cache
transparent to the application using it.

Cache security

Access to the shared class cache is limited by operating system permissions and
Java security permissions. The shared class cache is created with user access by
default unless the groupAccess command-line suboption is used. Only a
classloader that has registered to share class data can update the shared class
cache.

(31-bit only) The cache memory is protected against accidental or deliberate
corruption using memory page protection. This protection is not an absolute
guarantee against corruption because the JVM must unprotect pages to write to
them. The only way to guarantee that a cache cannot be modified is to open it
read-only.

(64-bit only) Memory page protection (via PGSER PROTECT) is not available on
z/OS 64-bit mode.

If a Java SecurityManager is installed, classloaders, excluding the default bootstrap,
application, and extension classloaders, must be granted permission to share
classes by adding SharedClassPermission lines to the java.policy file. See “Using
SharedClassPermission” on page 61. The RuntimePermission createClassLoader
restricts the creation of new classloaders and therefore also restricts access to the
cache.

Cache lifespan

Multiple caches can exist on a system and you specify them by name as a
suboption to the -Xshareclasses command. A JVM can connect to only one cache at
any one time.

You can override the default cache size on startup using -Xscmx<n><size>. This
size is then fixed for the lifetime of the cache. Caches exist until they are explicitly
destroyed using a suboption to the -Xshareclasses command or until the system is
IPL’d.

Cache utilities

All cache utilities are suboptions to the -Xshareclasses command. See “Class data
sharing command-line options” or use -Xshareclasses:help to see a list of available
suboptions.

Class data sharing command-line options
Class data sharing and the cache management utilities are controlled using
command-line options to the Java launcher.

For options that take a <size> parameter, suffix the number with ″k″ or ″K″ to
indicate kilobytes, ″m″ or ″M″ to indicate megabytes, or ″g″ or ″G″ to indicate
gigabytes.

54 IBM SDK for Java: SDK Guide

-Xscmaxaot<size>
Sets the maximum number of bytes in the cache that can be used for AOT
data. Use this option to ensure a certain amount of cache space is available for
non-AOT data. By default, the maximum limit for AOT data is the amount of
free space in the cache. The value of this option should not be smaller than the
value of -Xscminaot and must not be larger than the value of -Xscmx.

-Xscminaot<size>
Sets the minimum number of bytes in the cache to reserve for AOT data. By
default, no space is reserved for AOT data, although AOT data is written to
the cache until the cache is full or the -Xscmaxaot limit is reached. The value of
this option must not exceed the value of -Xscmx or -Xscmaxaot. The value of
-Xscminaot must always be considerably less than the total cache size because
AOT data can be created only for cached classes. If the value of -Xscminaot is
equal to the value of -Xscmx, no class data or AOT data is stored because AOT
data must be associated with a class in the cache.

-Xscmx<size>
Specifies cache size. This option applies only if a cache is being created and no
cache of the same name exists. The default cache size is platform-dependent.
You can find out the size value being used by adding -verbose:sizes as a
command-line argument. The minimum cache size is 4 KB. The maximum
cache size is also platform-dependent. (See “Cache size limits” on page 59.)

-Xshareclasses:<suboption>[,<suboption>...]
Enables class data sharing. Can take a number of suboptions, some of which
are cache utilities. Cache utilities perform the required operation on the
specified cache, without starting the VM. You can combine multiple
suboptions, separated by commas, but the cache utilities are mutually
exclusive. When running cache utilities, the message Could not create the
Java virtual machine is expected. Cache utilities do not create the virtual
machine.

Some cache utilities can work with caches from previous Java versions or
caches created by JVMs with different bit-widths. These caches are referred to
as “incompatible” caches.

You can use the following suboptions with the -Xshareclasses option:

help
Lists all the command-line suboptions.

name=<name>
Connects to a cache of a given name, creating the cache if it does not
already exist. Also used to indicate the cache that is to be modified by
cache utilities; for example, destroy. Use the listAllCaches utility to show
which named caches are currently available. If you do not specify a name,
the default name “sharedcc_%u” is used. %u in the cache name inserts the
current user name. You can specify “%g” in the cache name to insert the
current group name.

cacheDir=<directory>
Sets the directory in which cache data is read and written. By default,
<directory> is /tmp/javasharedresources. The user must have sufficient
permissions in <directory>. Caches are stored in shared memory and have
control files that describe the location of the memory. Control files are
stored in a javasharedresources subdirectory of the cacheDir specified. Do
not move or delete control files in this directory. The listAllCaches utility,
the destroyAll utility, and the expire suboption work only in the scope of a
given cacheDir.

Chapter 7. Class data sharing between JVMs 55

readonly
Opens an existing cache with read-only permissions. The JVM does not
create a new cache with this suboption. Opening a cache read-only
prevents the JVM from making any updates to the cache. It also allows the
JVM to connect to caches created by other users or groups without
requiring write access. By default, this suboption is not specified.

groupAccess
Sets operating system permissions on a new cache to allow group access to
the cache. The default is user access only.

verbose
Enables verbose output, which provides overall status on the shared class
cache and more detailed error messages.

verboseAOT
Enables verbose output when compiled AOT code is being found or stored
in the cache. AOT code is generated heuristically. You might not see any
AOT code generated at all for a small application. You can disable AOT
caching using the noaot suboption.

verboseIO
Gives detailed output on the cache I/O activity, listing information on
classes being stored and found. Each classloader is given a unique ID (the
bootstrap loader is always 0) and the output shows the classloader
hierarchy at work, where classloaders must ask their parents for a class
before they can load it themselves. It is usual to see many failed requests;
this behavior is expected for the classloader hierarchy.

verboseHelper
Enables verbose output for the Java Helper API. This output shows you
how the Helper API is used by your ClassLoader.

silent
Turns off all shared classes messages, including error messages.
Unrecoverable error messages, which prevent the JVM from initializing, are
displayed.

nonfatal
Allows the JVM to start even if class data sharing fails. Normal behavior
for the JVM is to refuse to start if class data sharing fails. If you select
nonfatal and the shared classes cache fails to initialize, the JVM attempts
to connect to the cache in read-only mode. If this attempt fails, the JVM
starts without class data sharing.

none
Can be added to the end of a command line to disable class data sharing.
This suboption overrides class sharing arguments found earlier on the
command line.

modified=<modified context>
Used when a JVMTI agent is installed that might modify bytecode at
runtime. If you do not specify this suboption and a bytecode modification
agent is installed, classes are safely shared with an extra performance cost.
The <modified context> is a descriptor chosen by the user; for example,
“myModification1”. This option partitions the cache, so that only JVMs
using context myModification1 can share the same classes. For instance, if
you run HelloWorld with a modification context and then run it again with
a different modification context, all classes are stored twice in the cache.
See “Runtime bytecode modification” on page 60 for more information.

56 IBM SDK for Java: SDK Guide

reset
Causes a cache to be destroyed and then recreated when the JVM starts up.
Can be added to the end of a command line as -Xshareclasses:reset.

destroy (Utility option)
Destroys a cache specified by the name, cacheDir, and nonpersistent
suboptions. A cache can be destroyed only if all JVMs using it have shut
down, and the user has sufficient permissions.

destroyAll (Utility option)
Tries to destroy all caches available using the specified cacheDir and
nonpersistent suboptions. A cache can be destroyed only if all JVMs using
it have shut down, and the user has sufficient permissions.

expire=<time in minutes>
Destroys all caches that have been unused for the time specified before
loading shared classes. This option is not a utility option because it does
not cause the JVM to exit.

listAllCaches (Utility option)
Lists all the compatible and incompatible caches that exist in the specified
cache directory. If you do not specify cacheDir, the default directory is
used. Summary information, such as Java version and current usage is
displayed for each cache.

printStats (Utility option)
Displays summary information for the cache specified by the name,
cacheDir, and nonpersistent suboptions. The most useful information
displayed is how full the cache is and how many classes it contains. Stale
classes are classes that have been updated on the file system and which the
cache has therefore marked ″stale″. Stale classes are not purged from the
cache and can be reused. See the Diagnostics Guide for more information.

printAllStats (Utility option)
Displays detailed information for the cache specified by the name,
cacheDir, and nonpersistent suboptions. Every class is listed in
chronological order, with a reference to the location from which it was
loaded. AOT code for class methods is also listed.

See the Diagnostics Guide for more information.

(31-bit only) mprotect=[all | default | none]
By default, the memory pages containing the cache are protected at all
times, unless a specific page is being updated. This protection helps
prevent accidental or deliberate corruption to the cache. The cache header
is not protected by default because this protection has a small performance
cost. Specifying all ensures that all the cache pages are protected,
including the header. Specifying none disables the page protection.

noBootclasspath
Prevents storage of classes loaded by the bootstrap classloader in the
shared classes cache. Can be used with the SharedClassURLFilter API to
control exactly which classes get cached. See the Diagnostics Guide for
more information about shared class filtering.

cacheRetransformed
Enables caching of classes that have been transformed using the JVMTI
RetransformClasses function.

Chapter 7. Class data sharing between JVMs 57

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

noaot
Disables caching of AOT code. AOT code already in the shared data cache
can be loaded.

Creating, populating, monitoring, and deleting a cache
An overview of the life-cycle of a shared class data cache including examples of
the cache management utilities.

To enable class data sharing, add -Xshareclasses[:name=<name>] to your
application command line.

The JVM either connects to an existing cache of the given name or creates a new
cache of that name. If a new cache is created, it is populated with all bootstrap and
application classes being loaded until the cache becomes full. If two or more JVMs
are started concurrently, they populate the cache concurrently.

To check that the cache has been created, run java -Xshareclasses:listAllCaches.
To see how many classes and how much class data is being shared, run java
-Xshareclasses:[name=<name>],printStats. You can run these utilities after the
application JVM has terminated or in another command window.

For more feedback on cache usage while the JVM is running, use the verbose
suboption. For example, java -Xshareclasses:[name=<name>],verbose.

To see classes being loaded from the cache or stored in the cache, add
-Xshareclasses:[name=<name>],verboseIO to your application command line.

To delete the cache, run java -Xshareclasses:[name=<name>],destroy. You usually
delete caches only if they contain many stale classes or if the cache is full and you
want to create a bigger cache.

You should tune the cache size for your specific application, because the default is
unlikely to be the optimum size. To determine the optimum cache size, specify a
large cache, using -Xscmx, run the application, and then use printStats to
determine how much class data has been stored. Add a small amount to the value
shown in printStats for contingency. Because classes can be loaded at any time
during the lifetime of the JVM, it is best to do this analysis after the application
has terminated. However, a full cache does not have a negative affect on the
performance or capability of any JVMs connected to it, so it is acceptable to decide
on a cache size that is smaller than required.

If a cache becomes full, a message is displayed on the command line of any JVMs
using the verbose suboption. All JVMs sharing the full cache then loads any
further classes into their own process memory. Classes in a full cache can still be
shared, but a full cache is read-only and cannot be updated with new classes.

Performance and memory consumption
Class data sharing is particularly useful on systems that use more than one JVM
running similar code; the system benefits from reduced virtual storage
consumption. It is also useful on systems that frequently start up and shut down
JVMs, which benefit from the improvement in startup time.

The processor and memory usage required to create and populate a new cache is
minimal. The JVM startup cost in time for a single JVM is typically between 0 and

58 IBM SDK for Java: SDK Guide

5% slower compared with a system not using class data sharing, depending on
how many classes are loaded. JVM startup time improvement with a populated
cache is typically between 10% and 40% faster compared with a system not using
class data sharing, depending on the operating system and the number of classes
loaded. Multiple JVMs running concurrently show greater overall startup time
benefits.

Duplicate classes are consolidated in the shared class cache. For example, class A
loaded from myClasses.jar and class A loaded from myOtherClasses.jar (with
identical content) is stored only once in the cache. The printAllStats utility shows
multiple entries for duplicated classes, with each entry pointing to the same class.

When you run your application with class data sharing, you can use the operating
system tools to see the reduction in virtual storage consumption.

Considerations and limitations of using class data sharing
Consider these factors when deploying class data sharing in a product and using
class data sharing in a development environment.

Cache size limits
The maximum theoretical cache size is 2 GB. The size of cache you can specify is
limited by the amount of physical memory and swap space available to the
system.

Because the virtual address space of a process is shared between the shared classes
cache and the Java heap, if you increase the maximum size of the Java heap you
might reduce the size of the shared classes cache you can create.

JVMTI RetransformClasses() is unsupported
You cannot run RetransformClasses() on classes loaded from the shared class
cache.

The JVM might throw the exception UnmodifiableClassException if you attempt to
run RetransformClasses(). It does not work because class file bytes are not
available for classes loaded from the shared class cache. If you must use
RetransformClasses(), ensure that the classes to be transformed are not loaded from
the shared class cache, or disable the shared class cache feature.

Required APAR for Shared Classes
You must apply z/OS APAR OA11519, available for z/OS R1.6 and onwards, to
any z/OS system where shared classes are used. This APAR ensures that multiple
shmat requests for the same shared segment will map to the same virtual address
for multiple JVMs.

Without this APAR, there is a problem with using shared memory when multiple
JVMs are stored in a single address space. Each shmat call consumes a separate
virtual address range. This is not acceptable because shared classes will run out of
shared memory pages prematurely.

Working with BPXPRMxx settings
Some of the BPXPRMxx parmlib settings affect shared classes performance. Using
the wrong settings can stop shared classes from working. These settings might also
have performance implications.

Chapter 7. Class data sharing between JVMs 59

For further information about performance implications and use of these
parameters, see the z/OS MVS Initialization and Tuning Reference (SA22-7592) at
http://publibz.boulder.ibm.com/epubs/pdf/iea2e280.pdf and the z/OS Unix
System Services Planning Guide (GA22-7800) at http://publibz.boulder.ibm.com/
epubs/pdf/bpxzb280.pdf. The most significant BPXPRMxx parameters that affect
the operation of shared classes are:
v MAXSHAREPAGES, IPCSHMSPAGES, IPCSHMMPAGES, and

IPCSHMMSEGS. These settings affect the amount of shared memory pages
available to the JVM. The JVM uses these memory pages for the shared classes
cache. If you request large cache sizes, you might have to increase the amount of
shared memory pages available.
The shared page size for a z/OS Unix System Service is fixed at 4 KB for 31-bit
and 1 MB for 64-bit. Shared classes try to create a 16 MB cache by default on
both 31- and 64-bit platforms. Therefore set IPCSHMMPAGES greater than 4096
on a 31-bit system.
If you set a cache size using -Xscmx, the VM will round up the value to the
nearest megabyte. You must take this into account when setting
IPCSHMMPAGES on your system.

v IPCSEMNIDS, and IPCSEMNSEMS. These settings affect the amount of
SystemV IPC semaphore available to Unix processes. IBM shared classes use
System V IPC semaphores to communicate between the JVMs.

Runtime bytecode modification
Any JVM using a JVM Tool Interface (JVMTI) agent that can modify bytecode data
must use the modified=<modified_context> suboption if it wants to share the
modified classes with another JVM.

The modified context is a user-specified descriptor that describes the type of
modification being performed. The modified context partitions the cache so that all
JVMs running under the same context share a partition.

This partitioning allows JVMs that are not using modified bytecode to safely share
a cache with those that are using modified bytecode. All JVMs using a given
modified context must modify bytecode in a predictable, repeatable manner for
each class, so that the modified classes stored in the cache have the expected
modifications when they are loaded by another JVM. Any modification must be
predictable because classes loaded from the shared class cache cannot be modified
again by the agent.

If a JVMTI agent is used without a modification context, classes are still safely
shared by the JVM, but with a small affect on performance. Using a modification
context with a JVMTI agent avoids the need for extra checks and therefore has no
affect on performance. A custom ClassLoader that extends
java.net.URLClassLoader and modifies bytecode at load time without using JVMTI
automatically stores that modified bytecode in the cache, but the cache does not
treat the bytecode as modified. Any other VM sharing that cache loads the
modified classes. You can use the modified=<modification_context> suboption in the
same way as with JVMTI agents to partition modified bytecode in the cache. If a
custom ClassLoader needs to make unpredictable load-time modifications to
classes, that ClassLoader must not attempt to use class data sharing.

See the Diagnostics Guide for more detail on this topic.

60 IBM SDK for Java: SDK Guide

http://publibz.boulder.ibm.com/epubs/pdf/iea2e280.pdf
http://publibz.boulder.ibm.com/epubs/pdf/bpxzb280.pdf
http://publibz.boulder.ibm.com/epubs/pdf/bpxzb280.pdf
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

Operating system limitations
Temporary disk space must be available to hold cache information. The operating
system enforces cache permissions.

The shared class cache requires disk space to store identification information about
the caches that exist on the system. This information is stored in
/tmp/javasharedresources. If the identification information directory is deleted, the
JVM cannot identify the shared classes on the system and must re-create the cache.
Use the ipcs command to view the memory segments used by a JVM or
application.

Users running a JVM must be in the same group to use a shared class cache. The
operating system enforces the permissions for accessing a shared class cache. If you
do not specify a cache name, the user name is appended to the default name so
that multiple users on the same system create their own caches by default.

Using SharedClassPermission
If a SecurityManager is being used with class data sharing and the running
application uses its own class loaders, you must grant these class loaders shared
class permissions before they can share classes.

You add shared class permissions to the java.policy file using the ClassLoader
class name (wildcards are permitted) and either “read”, “write”, or “read,write” to
determine the access granted. For example:
permission com.ibm.oti.shared.SharedClassPermission

"com.abc.customclassloaders.*", "read,write";

If a ClassLoader does not have the correct permissions, it is prevented from
sharing classes. You cannot change the permissions of the default bootstrap,
application, or extension class loaders.

Adapting custom classloaders to share classes
Any classloader that extends java.net.URLClassLoader can share classes without
modification. You must adopt classloaders that do not extend
java.net.URLClassLoader to share class data.

You must grant all custom classloaders shared class permissions if a
SecurityManager is being used; see “Using SharedClassPermission.” IBM provides
several Java interfaces for various types of custom classloaders, which allow the
classloaders to find and store classes in the shared class cache. These classes are in
the com.ibm.oti.shared package.

The Javadoc document for this package is provided with the SDK in the
docs/content/apidoc directory.

See the Diagnostics Guide for more information about how to use these interfaces.

Chapter 7. Class data sharing between JVMs 61

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

62 IBM SDK for Java: SDK Guide

Chapter 8. Service and support for independent software
vendors

Contact points for service:

If you are entitled to services for the Program code pursuant to the IBM Solutions
Developer Program, contact the IBM Solutions Developer Program through your
usual method of access or on the Web at: http://www.ibm.com/partnerworld/.

If you have purchased a service contract (that is, the IBM Personal Systems
Support Line or equivalent service by country), the terms and conditions of that
service contract determine what services, if any, you are entitled to receive with
respect to the Program.

© Copyright IBM Corp. 2003, 2009 63

http://www.ibm.com/partnerworld/

64 IBM SDK for Java: SDK Guide

Chapter 9. Accessibility

The user guides that are supplied with this SDK and the Runtime Environment
have been tested using screen readers.

To change the font sizes in the user guides, use the function that is supplied with
your browser, typically found under the View menu option.

For users who require keyboard navigation, a description of useful keystrokes for
Swing applications is in Swing Key Bindings at http://www.ibm.com/
developerworks/java/jdk/additional/.

Keyboard traversal of JComboBox components in Swing
If you traverse the drop-down list of a JComboBox component with the cursor
keys, the button or editable field of the JComboBox does not change value until an
item is selected. This is the correct behavior for this release and improves
accessibility and usability by ensuring that the keyboard traversal behavior is
consistent with mouse traversal behavior.

© Copyright IBM Corp. 2003, 2009 65

http://www.ibm.com/developerworks/java/jdk/additional/
http://www.ibm.com/developerworks/java/jdk/additional/

66 IBM SDK for Java: SDK Guide

Chapter 10. Any comments on this user guide?

If you have any comments about this user guide, contact us through one of the
following channels. Note that these channels are not set up to answer technical
queries, but are for comments about the documentation only.

Send your comments:
v By e-mail to idrcf@hursley.ibm.com.
v By fax:

– From the UK: 01962 842327
– From elsewhere: +44 1962 842327

v By mail to:

IBM United Kingdom Ltd
User Technologies,
Mail Point 095
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

The fine print. By choosing to send a message to IBM, you acknowledge that all
information contained in your message, including feedback data, such as questions,
comments, suggestions, or the like, shall be deemed to be non-confidential and
IBM shall have no obligation of any kind with respect to such information and
shall be free to reproduce, use, disclose, and distribute the information to others
without limitation. Further, IBM shall be free to use any ideas, concepts, know-how
or techniques contained in such information for any purpose whatsoever,
including, but not limited to, developing, manufacturing and marketing products
incorporating such information.

© Copyright IBM Corp. 2003, 2009 67

68 IBM SDK for Java: SDK Guide

Appendix A. Command-line options

You can specify the options on the command line while you are starting Java. They
override any relevant environment variables. For example, using -cp <dir1> with
the Java command completely overrides setting the environment variable
CLASSPATH=<dir2>.

This chapter provides the following information:
v “Specifying command-line options”
v “General command-line options” on page 70
v “System property command-line options” on page 70
v “JVM command-line options” on page 72
v “-XX command-line options” on page 82
v “JIT and AOT command-line options” on page 82
v “Garbage Collector command-line options” on page 85

Specifying command-line options
Although the command line is the traditional way to specify command-line
options, you can pass options to the JVM in other ways.

Use only single or double quotation marks for command-line options when
explicitly directed to do so for the option in question. Single and double quotation
marks have different meanings on different platforms, operating systems, and
shells. Do not use ’-X<option>’ or ″-X<option>″. Instead, you must use
-X<option>. For example, do not use '-Xmx500m' and "-Xmx500m". Write this option
as -Xmx500m.

These precedence rules (in descending order) apply to specifying options:
1. Command line.

For example, java -X<option> MyClass

2. A file containing a list of options, specified using the –Xoptionsfile option on
the command line. For example, java -Xoptionsfile=myoptionfile.txt
MyClass

In the options file, specify each option on a new line; you can use the ’\’
character as a continuation character if you want a single option to span
multiple lines. Use the ’#’ character to define comment lines. You cannot specify
-classpath in an options file. Here is an example of an options file:
#My options file
-X<option1>
-X<option2>=\
<value1>,\
<value2>
-D<sysprop1>=<value1>

3. IBM_JAVA_OPTIONS environment variable. You can set command-line
options using this environment variable. The options that you specify with this
environment variable are added to the command line when a JVM starts in that
environment.
For example, set IBM_JAVA_OPTIONS=-X<option1> -X<option2>=<value1>

© Copyright IBM Corp. 2003, 2009 69

General command-line options
Use these options to print help on assert-related options, set the search path for
application classes and resources, print a usage method, identify memory leaks
inside the JVM, print the product version and continue, enable verbose output, and
print the product version.

-cp, -classpath <directories and compressed or jar files separated by : (; on
Windows)>

Sets the search path for application classes and resources. If -classpath and -cp
are not used, and the CLASSPATH environment variable is not set, the user
classpath is, by default, the current directory (.).

-help, -?
Prints a usage message.

-showversion
Prints product version and continues.

-verbose:<option>[,<option>...]
Enables verbose output. Separate multiple options using commas. These
options are available:

class
Writes an entry to stderr for each class that is loaded.

dynload
Provides detailed information as each bootstrap class is loaded by the JVM:
v The class name and package
v For class files that were in a .jar file, the name and directory path of the

.jar
v Details of the size of the class and the time taken to load the class

The data is written out to stderr. An example of the output on a Windows
platform follows:
<Loaded java/lang/String from C:\sdk\jre\lib\vm.jar>
<Class size 17258; ROM size 21080; debug size 0>
<Read time 27368 usec; Load time 782 usec; Translate time 927 usec>

gc Provide verbose garbage collection information.

init
Writes information to stderr describing JVM initialisation and termination.

jni
Writes information to stderr describing the JNI services called by the
application and JVM.

sizes
Writes information to stderr describing the active memory usage settings.

stack
Writes information to stderr describing the Java and C stack usage for each
thread.

-version
Prints product version.

System property command-line options
Use the system property command-line options to set up your system.

70 IBM SDK for Java: SDK Guide

-D<name>=<value>
Sets a system property.

-Dcom.ibm.jsse2.renegotiate=[ALL | NONE | ABBREVIATED]
If your Java application uses JSSE for secure communication, you can disable
TLS renegotiation by installing APAR IZ65239.

ALL Allow both abbreviated and unabbreviated (full) renegotiation
handshakes.

NONE
Allow no renegotiation handshakes. This is the default setting.

ABBREVIATED
Allow only abbreviated renegotiation handshakes.

-Dcom.ibm.lang.management.verbose
Enables verbose information from java.lang.management operations to be
written to the console during VM operation.

-Dcom.ibm.tools.attach.enable=yes
Enable the Attach API for this application. The Attach API allows your
application to connect to a virtual machine. Your application can then load an
agent application into the virtual machine. The agent can be used to perform
tasks such as monitoring the virtual machine status.

-Dibm.jvm.bootclasspath
The value of this property is used as an additional search path, which is
inserted between any value that is defined by -Xbootclasspath/p: and the
bootclass path. The bootclass path is either the default or the one that you
defined by using the -Xbootclasspath: option.

-Dibm.stream.nio=[true | false]
From v1.4.1 onwards, by default the IO converters are used. This option
addresses the ordering of IO and NIO converters. When this option is set to
true, the NIO converters are used instead of the IO converters.

-Djava.compiler=[NONE | j9jit24]
Disables the Java compiler by setting to NONE. Enable JIT compilation by
setting to j9jit24 (Equivalent to –Xjit).

-Djava.net.connectiontimeout=[n]
’n’ is the number of seconds to wait for the connection to be established with
the server. If this option is not specified in the command line, the default value
of 0 (infinity) is used. The value can be used as a timeout limit when an
asynchronous java-net application is trying to establish a connection with its
server. If this value is not set, a java-net application waits until the default
connection timeout value is met. For instance, java
-Djava.net.connectiontimeout=2 TestConnect causes the java-net client
application to wait only 2 seconds to establish a connection with its server.

-Dsun.net.client.defaultConnectTimeout=<value in milliseconds>
Specifies the default value for the connect timeout for the protocol handlers
used by the java.net.URLConnection class. The default value set by the
protocol handlers is -1, which means that no timeout is set.

When a connection is made by an applet to a server and the server does not
respond properly, the applet might seem to hang and might also cause the
browser to hang. This apparent hang occurs because there is no network
connection timeout. To avoid this problem, the Java Plug-in has added a
default value to the network timeout of 2 minutes for all HTTP connections.
You can override the default by setting this property.

Appendix A. Command-line options 71

|
|
|

||
|

|
|

|
|

-Dsun.net.client.defaultReadTimeout=<value in milliseconds>
Specifies the default value for the read timeout for the protocol handlers used
by the java.net.URLConnection class when reading from an input stream when
a connection is established to a resource. The default value set by the protocol
handlers is -1, which means that no timeout is set.

-Dsun.nio.MaxDirectMemorySize=<value in bytes>
Limits the native memory size for nio Direct Byte Buffer objects to the value
specified.

-Dsun.rmi.transport.tcp.connectionPool=[true | any non-null value]
Enables thread pooling for the RMI ConnectionHandlers in the TCP transport
layer implementation.

-Dswing.useSystemFontSettings=[false]
From v1.4.1 onwards, by default, Swing programs running with the Windows
Look and Feel render with the system font set by the user instead of a
Java-defined font. As a result, fonts for v1.4.1 differ from those in earlier
releases. This option addresses compatibility problems like these for programs
that depend on the old behavior. By setting this option, v1.4.1 fonts and those
of earlier releases are the same for Swing programs running with the Windows
Look and Feel.

JVM command-line options
Use these options to configure your JVM. The options prefixed with -X are
nonstandard.

For options that take a <size> parameter, suffix the number with ″k″ or ″K″ to
indicate kilobytes, ″m″ or ″M″ to indicate megabytes, or ″g″ or ″G″ to indicate
gigabytes.

For options that take a <percentage> parameter, use a number from 0 to 1. For
example, 50% is 0.5.

Options that relate to the JIT are listed under “JIT and AOT command-line
options” on page 82. Options that relate to the Garbage Collector are listed under
“Garbage Collector command-line options” on page 85.

-X Displays help on nonstandard options.

-Xargencoding
You can put Unicode escape sequences in the argument list. This option is set
to off by default.

-Xbootclasspath:<directories and compressed or Java archive files separated by : (; on
Windows)>

Sets the search path for bootstrap classes and resources. The default is to
search for bootstrap classes and resources in the internal VM directories and
.jar files.

-Xbootclasspath/a:<directories and compressed or Java archive files separated by : (; on
Windows)>

Appends the specified directories, compressed files, or jar files to the end of
the bootstrap class path. The default is to search for bootstrap classes and
resources in the internal VM directories and .jar files.

-Xbootclasspath/p:<directories and compressed or Java archive files separated by : (; on
Windows)>

Adds a prefix of the specified directories, compressed files, or Java archive files

72 IBM SDK for Java: SDK Guide

to the front of the bootstrap class path. Do not deploy applications that use the
-Xbootclasspath: or the -Xbootclasspath/p: option to override a class in the
standard API. This is because such a deployment contravenes the Java 2
Runtime Environment binary code license. The default is to search for
bootstrap classes and resources in the internal VM directories and .jar files.

-Xcheck:classpath
Displays a warning message if an error is discovered in the class path; for
example, a missing directory or JAR file.

-Xcheck:gc[:<scan options>][:<verify options>][:<misc options>]
Performs additional checks on garbage collection. By default, no checking is
performed. See the output of -Xcheck:gc:help for more information.

-Xcheck:jni[:help][:<option>=<value>]
Performs additional checks for JNI functions. This option is equivalent to
-Xrunjnichk. By default, no checking is performed.

-Xcheck:memory[:<option>]
Identifies memory leaks inside the JVM using strict checks that cause the JVM
to exit on failure. If no option is specified, all is used by default. The available
options are as follows:

all Enables checking of all allocated and freed blocks on every free and
allocate call. This check of the heap is the most thorough. It typically
causes the JVM to exit on nearly all memory-related problems soon after
they are caused. This option has the greatest affect on performance.

callsite=<number of allocations>

Displays callsite information every <number of allocations>. Deallocations
are not counted. Callsite information is presented in a table with separate
information for each callsite. Statistics include the number and size of
allocation and free requests since the last report, and the number of the
allocation request responsible for the largest allocation from each site.
Callsites are presented as sourcefile:linenumber for C code and assembly
function name for assembler code.

Callsites that do not provide callsite information are accumulated into an
″unknown″ entry.

failat=<number of allocations>
Causes memory allocation to fail (return NULL) after <number of
allocations>. Setting <number of allocations> to 13 causes the 14th allocation
to return NULL. Deallocations are not counted. Use this option to ensure
that JVM code reliably handles allocation failures. This option is useful for
checking allocation site behavior rather than setting a specific allocation
limit.

ignoreUnknownBlocks
Ignores attempts to free memory that was not allocated using the
-Xcheck:memory tool. Instead, the -Xcheck:memory statistics printed out at
the end of a run indicates the number of “unknown” blocks that were
freed.

mprotect=<top|bottom>
Locks pages of memory on supported platforms, causing the program to
stop if padding before or after the allocated block is accessed for reads or
writes. An extra page is locked on each side of the block returned to the
user.

Appendix A. Command-line options 73

If you do not request an exact multiple of one page of memory, a region on
one side of your memory is not locked. The top and bottom options
control which side of the memory area is locked. top aligns your memory
blocks to the top of the page, so buffer underruns result in an application
failure. bottom aligns your memory blocks to the bottom of the page so
buffer overruns result in an application failure.

Standard padding scans detect buffer underruns when using top and
buffer overruns when using bottom.

nofree
Keeps a list of blocks already used instead of freeing memory. This list is
checked, as well as currently allocated blocks, for memory corruption on
every allocation and deallocation. Use this option to detect a dangling
pointer (a pointer that is ″dereferenced″ after its target memory is freed).
This option cannot be reliably used with long-running applications (such
as WebSphere Application Server), because “freed” memory is never
reused or released by the JVM.

noscan
Checks for blocks that are not freed. This option has little effect on
performance, but memory corruption is not detected. This option is
compatible only with subAllocator, callsite, and callsitesmall.

quick
Enables block padding only and is used to detect basic heap corruption.
Every allocated block is padded with sentinel bytes, which are verified on
every allocate and free. Block padding is faster than the default of checking
every block, but is not as effective.

skipto=<number of allocations>
Causes the program to check only on allocations that occur after <number
of allocations>. Deallocations are not counted. Use this option to speed up
JVM startup when early allocations are not causing the memory problem.
The JVM performs approximately 250+ allocations during startup.

subAllocator[=<size in MB>]
Allocates a dedicated and contiguous region of memory for all JVM
allocations. This option helps to determine if user JNI code or the JVM is
responsible for memory corruption. Corruption in the JVM subAllocator
heap suggests that the JVM is causing the problem; corruption in the
user-allocated memory suggests that user code is corrupting memory.
Typically, user and JVM allocated memory are interleaved.

zero
Newly allocated blocks are set to 0 instead of being filled with the
0xE7E7xxxxxxxxE7E7 pattern. Setting these blocks to 0 helps you to
determine whether a callsite is expecting zeroed memory, in which case the
allocation request is followed by memset(pointer, 0, size).

-Xclassgc
Enables dynamic unloading of classes by the JVM. This is the default behavior.
To disable dynamic class unloading, use the -Xnoclassgc option.

-Xcompressedrefs
(64-bit only) Uses 32-bit values for references. See the Diagnostics Guide
(http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html) section
on “Compressed references” for more information. By default, references are
64-bit.

74 IBM SDK for Java: SDK Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

-Xdbg:<options>
Loads debugging libraries to support the remote debugging of applications.
This option is equivalent to -Xrunjdwp. By default, the debugging libraries are
not loaded, and the VM instance is not enabled for debug.

-Xdebug
This option is deprecated. Use -Xdbg for debugging.

-Xdiagnosticscollector[:settings=<filename>]
Enables the Diagnostics Collector. See the Diagnostics Guide
(http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html) section
on “The Diagnostics Collector” for more information. The settings option
allows you to specify a different Diagnostics Collector settings file to use
instead of the default dc.properties file in the JRE.

-Xdisablejavadump
Turns off Javadump generation on errors and signals. By default, Javadump
generation is enabled.

-Xdump
See the Diagnostics Guide (http://www.ibm.com/developerworks/java/jdk/
diagnosis/60.html) section on “Using dump agents” for more information.

-Xenableexplicitgc
Signals to the VM that calls to System.gc() trigger a garbage collection. This
option is enabled by default.

-Xfuture
Turns on strict class-file format checks. Use this flag when you are developing
new code because stricter checks will become the default in future releases. By
default, strict format checks are disabled.

-Xifa:<on | off | force> (z/OS only)
z/OS R6 can run Java applications on a new type of special-purpose assist
processor called the eServer™ zSeries Application Assist Processor (zAAP). The
zSeries Application Assist Processor is also known as an IFA (Integrated
Facility for Applications).

The -Xifa option enables Java applications to run on IFAs if they are available.
Only Java code and system native methods can be on IFA processors.

-Xiss<size>
Sets the initial stack size for Java threads. By default, the stack size is set to 2
KB. Use the -verbose:sizes option to output the value that the VM is using.

-Xjarversion
Produces output information about the version of each jar file in the class path,
the boot class path, and the extensions directory. Version information is taken
from the Implementation-Version and Build-Level properties in the manifest of
the jar.

-Xjni:<suboptions>
Sets JNI options. You can use the following suboption with the -Xjni option:

-Xjni:arrayCacheMax=[<size in bytes>|unlimited]
Sets the maximum size of the array cache. The default size is 8096 bytes.

-Xlinenumbers
Displays line numbers in stack traces for debugging. See also
-Xnolinenumbers. By default, line numbers are on.

Appendix A. Command-line options 75

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

-Xlog
Enables message logging. To prevent message logging, use the -Xlog:none
option. By default, logging is enabled. This option is available from Java 6 SR5.
See Messages.

-Xlp<size>
z/OS: Large page support requires z/OS V1.9 or later with APAR OA25485
and a System z10™ processor or later. A system programmer must configure
z/OS for large pages. Users who require large pages must be authorized to the
IARRSM.LRGPAGES resource in the RACF (or an equivalent security product)
FACILITY class with read authority.

-Xmso<size>
Sets the initial stack size for operating system threads. By default, this option is
set to 256 KB, except for Windows 32-bit, which is set to 32 KB.

-Xnoagent
Disables support for the old JDB debugger.

-Xnoclassgc
Disables dynamic class unloading. This option disables the release of native
and Java heap storage associated with Java class loaders and classes that are
no longer being used by the JVM. The default behavior is as defined by
-Xclassgc. Enabling this option is not recommended except under the direction
of the IBM Java support team. This is because the option can cause unlimited
native memory growth, leading to out-of-memory errors.

-Xnolinenumbers
Disables the line numbers for debugging. See also -Xlinenumbers. By default,
line number are on.

-Xnosigcatch
Disables JVM signal handling code. See also -Xsigcatch. By default, signal
handling is enabled.

-Xnosigchain
Disables signal handler chaining. See also -Xsigchain. By default, the signal
handler chaining is enabled, except for z/OS.

-Xoptionsfile=<file>

Specifies a file that contains JVM options and definitions. By default, no option
file is used.

The options file does not support these options:
v -version

v -showversion

v -fullversion

v -Xjarversion

v -memorycheck

v -assert

v -help

<file> contains options that are processed as if they had been entered directly
as command-line options. For example, the options file might contain:
-DuserString=ABC123
-Xmx256MB

76 IBM SDK for Java: SDK Guide

Some options use quoted strings as parameters. Do not split quoted strings
over multiple lines using the line continuation character ’\’. The ’¥’ character is
not supported as a line continuation character. For example, the following
example is not valid in an options file:
-Xevents=vmstop,exec="cmd /c \
echo %pid has finished."

The following example is valid in an options file:
-Xevents=vmstop, \
exec="cmd /c echo %pid has finished."

-Xoss<size>
Recognized but deprecated. Use -Xss and -Xmso. Sets the maximum Java stack
size for any thread. The default for AIX® is 400 KB.

-Xrdbginfo:<host>:<port>
Loads the remote debug information server with the specified host and port.
By default, the remote debug information server is disabled.

-Xrs
Disables signal handling in the JVM. Setting -Xrs prevents the Java runtime
from handling any internally or externally generated signals such as SIGSEGV
and SIGABRT. Any signals raised are handled by the default operating system
handlers.

-Xrun<library name>[:<options>]
Loads helper libraries. To load multiple libraries, specify it more than once on
the command line. Examples of these libraries are:

-Xrunhprof[:help] | [:<option>=<value>, ...]
Performs heap, CPU, or monitor profiling.

-Xrunjdwp[:help] | [:<option>=<value>, ...]
Loads debugging libraries to support the remote debugging of
applications. This option is the same as -Xdbg.

-Xrunjnichk[:help] | [:<option>=<value>, ...]
Deprecated. Use -Xcheck:jni instead.

-Xscmx<size>
Specifies cache size. This option applies only if a cache is being created and no
cache of the same name exists. The default cache size is platform-dependent.
You can find out the size value being used by adding -verbose:sizes as a
command-line argument. Minimum cache size is 4 KB. Maximum cache size is
platform-dependent. The size of cache that you can specify is limited by the
amount of physical memory and paging space available to the system. The
virtual address space of a process is shared between the shared classes cache
and the Java heap. Increasing the maximum size of the Java heap reduces the
size of the shared classes cache that you can create.

-XselectiveDebug
Enables selective debugging. Use the com.ibm.jvm.Debuggable annotation to
mark classes and methods that must be available for debugging. The JVM
optimizes methods that do not need debugging to provide better performance
in a debugging environment. See the User Guide for your platform for more
information.

-Xshareclasses:<suboptions>

Enables class sharing. This option can take a number of suboptions, some of
which are cache utilities. Cache utilities perform the required operation on the

Appendix A. Command-line options 77

specified cache, without starting the VM. You can combine multiple
suboptions, separated by commas, but the cache utilities are mutually
exclusive.

You can use the following suboptions with the -Xshareclasses option:

cacheDir=<directory>
Sets the directory in which cache data is read and written. By default,
<directory> is /tmp/javasharedresources on Linux®, AIX, z/OS, and IBM i.
You must have sufficient permissions in <directory>. Nonpersistent caches
are stored in shared memory and have control files that describe the
location of the memory. Control files are stored in a javasharedresources
subdirectory of the cacheDir specified. Do not move or delete control files
in this directory. The listAllCaches utility, the destroyAll utility, and the
expire suboption work only in the scope of a given cacheDir.

cacheRetransformed
Enables caching of classes that have been transformed using the JVMTI
RetransformClasses function. See the Diagnostics Guide
(http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html)
section on the “JVMTI redefinition and retransformation of classes” for
more information.

destroy (Utility option)
Destroys a cache specified by the name, cacheDir, and nonpersistent
suboptions. A cache can be destroyed only if all JVMs using it have shut
down and the user has sufficient permissions.

destroyAll (Utility option)
Tries to destroy all caches available using the specified cacheDir and
nonpersistent suboptions. A cache can be destroyed only if all JVMs using
it have shut down and the user has sufficient permissions.

expire=<time in minutes> (Utility option)
Destroys all caches that have been unused for the time specified before
loading shared classes. This option is not a utility option because it does
not cause the JVM to exit.

groupAccess
Sets operating system permissions on a new cache to allow group access to
the cache. The default is user access only.

help
Lists all the command-line options.

listAllCaches (Utility option)
Lists all the compatible and incompatible caches that exist in the specified
cache directory. If you do not specify cacheDir, the default directory is
used. Summary information, such as Java version and current usage, is
displayed for each cache.

mprotect=[all | default | none]
By default, the memory pages containing the cache are protected at all
times, unless a specific page is being updated. This protection helps
prevent accidental or deliberate corruption to the cache. The cache header
is not protected by default because this protection has a small performance
cost. Specifying all ensures that all the cache pages are protected,
including the header. Specifying none disables the page protection.

modified=<modified context>
Used when a JVMTI agent is installed that might modify bytecode at run

78 IBM SDK for Java: SDK Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

time. If you do not specify this suboption and a bytecode modification
agent is installed, classes are safely shared with an extra performance cost.
The <modified context> is a descriptor chosen by the user; for example,
myModification1. This option partitions the cache, so that only JVMs using
context myModification1 can share the same classes. For instance, if you run
an application with a modification context and then run it again with a
different modification context, all classes are stored twice in the cache. See
the Diagnostics Guide (http://www.ibm.com/developerworks/java/jdk/
diagnosis/60.html) section “Dealing with runtime bytecode modification”
for more information.

name=<name>
Connects to a cache of a given name, creating the cache if it does not exist.
This option is also used to indicate the cache that is to be modified by
cache utilities; for example, destroy. Use the listAllCaches utility to show
which named caches are currently available. If you do not specify a name,
the default name “sharedcc_%u” is used. ″%u″ in the cache name inserts
the current user name. You can specify “%g” in the cache name to insert
the current group name.

noaot
Disables caching and loading of AOT code.

noBootclasspath
Disables the storage of classes loaded by the bootstrap class loader in the
shared classes cache. Often used with the SharedClassURLFilter API to
control exactly which classes are cached. See the Diagnostics Guide
(http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html)
section on the “SharedClassHelper API” for more information about shared
class filtering.

none
Added to the end of a command line, disables class data sharing. This
suboption overrides class sharing arguments found earlier on the
command line.

nonfatal
Allows the JVM to start even if class data sharing fails. Normal behavior
for the JVM is to refuse to start if class data sharing fails. If you select
nonfatal and the shared classes cache fails to initialize, the JVM attempts
to connect to the cache in read-only mode. If this attempt fails, the JVM
starts without class data sharing.

printAllStats (Utility option)
Displays detailed information about the contents of the cache specified in
the name=<name> suboption. If the name is not specified, statistics are
displayed about the default cache. Every class is listed in chronological
order with a reference to the location from which it was loaded. See the
Diagnostics Guide (http://www.ibm.com/developerworks/java/jdk/
diagnosis/60.html) section on the “printAllStats utility” for more
information.

printStats (Utility option)
Displays summary information for the cache specified by the name,
cacheDir, and nonpersistent suboptions. The most useful information
displayed is how full the cache is and how many classes it contains. Stale
classes are classes that have been updated on the file system and which the
cache has therefore marked ″stale″. Stale classes are not purged from the
cache and can be reused. See the Diagnostics Guide (http://

Appendix A. Command-line options 79

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

www.ibm.com/developerworks/java/jdk/diagnosis/60.html) section on
the “printStats utility” for more information.

readonly
Opens an existing cache with read-only permissions. The JVM does not
create a new cache with this suboption. Opening a cache read-only
prevents the JVM from making any updates to the cache. It also allows the
JVM to connect to caches created by other users or groups without
requiring write access. By default, this suboption is not specified.

reset
Causes a cache to be destroyed and then re-created when the JVM starts
up. This option can be added to the end of a command line as
-Xshareclasses:reset.

safemode
Forces the JVM to load all classes from disk and apply the modifications to
those classes (if applicable). See the Diagnostics Guide
(http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html)
section on “Using the safemode option” for more information.

silent
Disables all shared class messages, including error messages.
Unrecoverable error messages, which prevent the JVM from initializing, are
displayed.

verbose
Gives detailed output on the cache I/O activity, listing information about
classes being stored and found. Each class loader is given a unique ID (the
bootstrap loader is always 0) and the output shows the class loader
hierarchy at work, where class loaders must ask their parents for a class
before they can load it themselves. It is typical to see many failed requests;
this behavior is expected for the class loader hierarchy. The standard
option -verbose:class also enables class sharing verbose output if class
sharing is enabled.

verboseAOT
Enables verbose output when compiled AOT code is being found or stored
in the cache. AOT code is generated heuristically. You might not see any
AOT code generated at all for a small application. You can disable AOT
caching using the noaot suboption. See the Diagnostics Guide
(http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html)
section on “JITM messages” for a list of the messages produced.

verboseHelper
Enables verbose output for the Java Helper API. This output shows you
how the Helper API is used by your ClassLoader.

verboseIO
Gives detailed output on the cache I/O activity, listing information about
classes being stored and found. Each class loader is given a unique ID (the
bootstrap loader is always 0) and the output shows the class loader
hierarchy at work, where class loaders must ask their parents for a class
before they can load it themselves. It is typical to see many failed requests;
this behavior is expected for the class loader hierarchy.

-Xsigcatch
Enables VM signal handling code. See also -Xnosigcatch. By default, signal
handling is enabled.

80 IBM SDK for Java: SDK Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

-Xsigchain
Enables signal handler chaining. See also -Xnosigchain. By default, signal
handler chaining is enabled.

-Xss<size>
Sets the maximum stack size for Java threads. The default is 256 KB for 32-bit
JVMs and 512 KB for 64-bit JVMs.

-Xssi<size>
Sets the stack size increment for Java threads. When the stack for a Java thread
becomes full it is increased in size by this value until the maximum size (-Xss)
is reached. The default is 16 KB.

-Xthr:minimizeUserCPU
Minimizes user-mode CPU usage in thread synchronization where possible.
The reduction in CPU usage might be a trade-off in exchange for lower
performance.

-Xtrace[:help] | [:<option>=<value>, ...]
See the Diagnostics Guide (http://www.ibm.com/developerworks/java/jdk/
diagnosis/60.html) section on the “Controlling the trace” for more information.

-Xverify[:<option>]
With no parameters, enables the verifier, which is the default. Therefore, if
used on its own with no parameters, for example, -Xverify, this option does
nothing. Optional parameters are as follows:
v all - enable maximum verification
v none - disable the verifier
v remote - enables strict class-loading checks on remotely loaded classes

The verifier is on by default and must be enabled for all production servers.
Running with the verifier off is not a supported configuration. If you
encounter problems and the verifier was turned off using -Xverify:none,
remove this option and try to reproduce the problem.

-Xzero[:<option>]

Enables reduction of the memory footprint of Java when concurrently running
multiple Java invocations. -Xzero might not be appropriate for all types of
applications because it changes the implementation of java.util.ZipFile,
which might cause extra memory usage. -Xzero includes the optional
parameters:
v j9zip - enables the j9zip suboption
v noj9zip - disables the j9zip suboption
v sharezip - enables the sharezip suboption
v nosharezip - disables the sharezip suboption
v none - disables all suboptions
v describe - prints the suboptions in effect

Because future versions might include more default options, -Xzero options are
used to specify the suboptions that you want to disable. By default, -Xzero
enables j9zip and sharezip. A combination of j9zip and sharezip enables all jar
files to have shared caches:
v j9zip - uses a new java.util.ZipFile implementation. This suboption is not

a requirement for sharezip; however, if j9zip is not enabled, only the
bootstrap jars have shared caches.

v sharezip - puts the j9zip cache into shared memory. The j9zip cache is a map
of names to file positions used by the compression implementation to

Appendix A. Command-line options 81

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

quickly find compressed entries. You must enable -Xshareclasses to avoid a
warning message. When using the sharezip suboption, note that this
suboption allows every opened .zip file and .jar file to store the j9zip cache
in shared memory, so you might fill the shared memory when opening
multiple new .zip files and .jar files. The affected API is
java.util.zip.ZipFile (superclass of java.util.jar.JarFile). The .zip and
.jar files do not have to be on a class path.

-Xzero is available only in Java 6 SR1 and beyond. When enabled, the system
property com.ibm.zero.version is defined, and has a current value of 1. For
Java 6 SR1 and Java 6 SR2, the -Xzero option is accepted only on Windows
x86-32 and Linux x86-32 platforms. From Java 6 SR3, -Xzero is accepted on all
platforms; however, it is enabled only on Windows x86-32 and Linux x86-32
platforms.

-XX command-line options
JVM command-line options that are specified with -XX are not stable and are not
recommended for casual use.

These options are subject to change without notice.

-XXallowvmshutdown:[false|true]
This option is provided as a workaround for customer applications that cannot
shut down cleanly, as described in APAR IZ59734. Customers who need this
workaround should use -XXallowvmshutdown:false. The default option is
-XXallowvmshutdown:true forJava 6 SR5 onwards.

-XX:MaxDirectMemorySize=<size>
Sets the maximum size for an nio direct buffer. By default, the maximum size
is 64 MB.

-XX:-StackTraceInThrowable
This option removes stack traces from exceptions. By default, stack traces are
available in exceptions. Including a stack trace in exceptions requires walking
the stack and that can affect performance. Removing stack traces from
exceptions can improve performance but can also make problems harder to
debug.

When this option is enabled, Throwable.getStackTrace() returns an empty array
and the stack trace is displayed when an uncaught exception occurs.
Thread.getStackTrace() and Thread.getAllStackTraces() are not affected by this
option.

-XX:+UseCompressedOops
(64-bit only) This option enables compressed references in 64-bit JVMs and is
provided to help when porting applications from the Sun JVM to the IBM
JVM. This option might not be supported in subsequent releases. The
-XX:+UseCompressedOops option is similar to specifying -Xcompressedrefs,
which is detailed in the topic “JVM command-line options” on page 72.

-XX:-UseCompressedOops
(64-bit only) This option prevents the use of compressed references in 64-bit
JVMs. The option is provided to help when porting applications from the Sun
JVM to the IBM JVM, and might not be supported in subsequent releases.

JIT and AOT command-line options
Use these JIT and AOT compiler command-line options to control code
compilation.

82 IBM SDK for Java: SDK Guide

You might need to read the section on JIT and AOT problems in the Diagnostics
Guide (http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html) to
understand some of the references that are given here.

-Xaot[:<parameter>=<value>, ...]
With no parameters, enables the AOT compiler. The AOT compiler is enabled
by default but is not active unless shared classes are enabled. Using this option
on its own has no effect. Use this option to control the behavior of the AOT
compiler. These parameters are useful:

count=<n>
Where <n> is the number of times a method is called before it is compiled.
For example, setting count=0 forces the AOT compiler to compile
everything on first execution.

limitFile=(<filename>,<m>,<n>)
Compile only the methods listed on lines <m> to <n> in the specified limit
file. Methods not listed in the limit file and methods listed on lines outside
the range are not compiled.

loadExclude=<methods>
Do not load methods beginning with <methods>.

loadLimit=<methods>
Load methods beginning with <methods> only.

loadLimitFile=(<filename>,<m>,<n>)
Compile only the methods listed on lines <m> to <n> in the specified limit
file. Methods not listed in the limit file and methods listed on lines outside
the range are not compiled.

verbose
Displays information about the AOT and JIT compiler configuration and
method compilation.

-Xcodecache<size>
Sets the size of each block of memory that is allocated to store native code of
compiled Java methods. By default, this size is selected internally according to
the CPU architecture and the capability of your system. If profiling tools show
significant costs in trampolines (JVMTI identifies trampolines in a
methodLoad2 event), that is a good prompt to change the size until the costs
are reduced. Changing the size does not mean always increasing the size. The
option provides the mechanism to tune for the right size until hot interblock
calls are eliminated. A reasonable starting point to tune for the optimal size is
(totalNumberByteOfCompiledMethods * 1.1). This option is used to tune
performance.

-Xcomp (z/OS only)
Forces methods to be compiled by the JIT compiler on their first use. The use
of this option is deprecated; use -Xjit:count=0 instead.

-Xint
Makes the JVM use the Interpreter only, disabling the Just-In-Time (JIT) and
Ahead-Of-Time (AOT) compilers. By default, the JIT compiler is enabled. By
default, the AOT compiler is enabled, but is not used by the JVM unless
shared classes are also enabled.

-Xjit[:<parameter>=<value>, ...]
With no parameters, enables the JIT compiler. The JIT compiler is enabled by
default, so using this option on its own has no effect. Use this option to control
the behavior of the JIT compiler. Useful parameters are:

Appendix A. Command-line options 83

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

count=<n>
Where <n> is the number of times a method is called before it is compiled.
For example, setting count=0 forces the JIT compiler to compile everything
on first execution.

limitFile=(<filename>, <m>, <n>)
Compile only the methods listed on lines <m> to <n> in the specified limit
file. Methods not listed in the limit file and methods listed on lines outside
the range are not compiled.

optlevel=[noOpt | cold | warm | hot | veryHot | scorching]
Forces the JIT compiler to compile all methods at a specific optimization
level. Specifying optlevel might have an unexpected effect on performance,
including lower overall performance.

verbose
Displays information about the JIT and AOT compiler configuration and
method compilation.

-Xnoaot
Turns off the AOT compiler and disables the use of AOT-compiled code. By
default, the AOT compiler is enabled but is active only when shared classes are
also enabled. Using this option does not affect the JIT compiler.

-Xnojit
Turns off the JIT compiler. By default, the JIT compiler is enabled. This option
does not affect the AOT compiler. java -Xnojit -version displays JIT enabled
if the AOT compiler is enabled.

-Xquickstart
Causes the JIT compiler to run with a subset of optimizations. This quicker
compilation allows for improved startup time. When the AOT compiler is
active (both shared classes and AOT compilation enabled), -Xquickstart causes
all methods to be AOT compiled, which improves the startup time of
subsequent runs. -Xquickstart can degrade performance if it is used with
long-running applications that contain hot methods. The implementation of
-Xquickstart is subject to change in future releases. By default, quickstart is
disabled and JIT compilation is not delayed.

–XsamplingExpirationTime<time>
Disables the JIT sampling thread after <time> seconds. When the JIT sampling
thread is disabled, no CPU cycles are consumed by an idle JVM.

-Xscmaxaot<size>
Optionally applies a maximum number of bytes in the class cache that can be
used for AOT data. This option is useful if you want a certain amount of cache
space guaranteed for non-AOT data. If this option is not specified, the
maximum limit for AOT data is the amount of free space in the cache. The
value of this option must not be smaller than the value of -Xscminaot and
must not be larger than the value of -Xscmx.

-Xscminaot<size>
Optionally applies a minimum number of bytes in the class cache to reserve
for AOT data. If this option is not specified, no space is specifically reserved
for AOT data, although AOT data is still written to the cache until the cache is
full or the -Xscmaxaot limit is reached. The value of this option must not
exceed the value of -Xscmx or -Xscmaxaot. The value of -Xscminaot must
always be considerably less than the total cache size, because AOT data can be
created only for cached classes. If the value of -Xscminaot equals the value of
-Xscmx, no class data or AOT data can be stored.

84 IBM SDK for Java: SDK Guide

Garbage Collector command-line options
Use these Garbage Collector command-line options to control garbage collection.

You might need to read the section on “Memory management” in the Diagnostics
Guide (http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html) to
understand some of the references that are given here.

The -verbose:gc option detailed in the section on “-verbose:gc logging” in the
Diagnostics Guide (http://www.ibm.com/developerworks/java/jdk/diagnosis/
60.html) is the main diagnostic aid that is available for runtime analysis of the
Garbage Collector. However, additional command-line options are available that
affect the behavior of the Garbage Collector and might aid diagnostics.

For options that take a <size> parameter, suffix the number with ″k″ or ″K″ to
indicate kilobytes, ″m″ or ″M″ to indicate megabytes, or ″g″ or ″G″ to indicate
gigabytes.

For options that take a <percentage> parameter, you should use a number from 0 to
1, for example, 50% is 0.5.

-Xalwaysclassgc
Always perform dynamic class unloading checks during global collection. The
default behavior is as defined by -Xclassgc.

-Xclassgc
Enables the collection of class objects only on class loader changes. This
behavior is the default.

-Xcompactexplicitgc
Enables full compaction each time System.gc() is called.

-Xcompactgc
Compacts on all garbage collections (system and global).

The default (no compaction option specified) makes the GC compact based on
a series of triggers that attempt to compact only when it is beneficial to the
future performance of the JVM.

-Xconcurrentbackground<number>
Specifies the number of low-priority background threads attached to assist the
mutator threads in concurrent mark. The default is 0 on Linux zSeries and 1 on
all other platforms.

-Xconcurrentlevel<number>
Specifies the allocation ″tax″ rate. It indicates the ratio between the amount of
heap allocated and the amount of heap marked. The default is 8.

-Xconcurrentslack<size>
Attempts to keep the specified amount of the heap space free in concurrent
collectors by starting the concurrent operations earlier. This behavior can
sometimes alleviate pause time problems in concurrent collectors at the cost of
longer concurrent cycles, affecting total throughput. The default is 0, which is
optimal for most applications.

-Xconmeter:<soa | loa | dynamic>
This option determines the usage of which area, LOA (Large Object Area) or
SOA (Small Object Area), is metered and hence which allocations are taxed
during concurrent mark. Using -Xconmeter:soa (the default) applies the
allocation tax to allocations from the small object area (SOA). Using

Appendix A. Command-line options 85

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

-Xconmeter:loa applies the allocation tax to allocations from the large object
area (LOA). If -Xconmeter:dynamic is specified , the collector dynamically
determines which area to meter based on which area is exhausted first,
whether it is the SOA or the LOA.

-Xdisableexcessivegc
Disables the throwing of an OutOfMemory exception if excessive time is spent
in the GC.

-Xdisableexplicitgc

Disables System.gc() calls.

Many applications still make an excessive number of explicit calls to
System.gc() to request garbage collection. In many cases, these calls degrade
performance through premature garbage collection and compactions. However,
you cannot always remove the calls from the application.

The -Xdisableexplicitgc parameter allows the JVM to ignore these garbage
collection suggestions. Typically, system administrators use this parameter in
applications that show some benefit from its use.

By default, calls to System.gc() trigger a garbage collection.

-Xdisablestringconstantgc
Prevents strings in the string intern table from being collected.

-Xenableexcessivegc
If excessive time is spent in the GC, this option returns null for an allocate
request and thus causes an OutOfMemory exception to be thrown. This action
occurs only when the heap has been fully expanded and the time spent is
making up at least 95%. This behavior is the default.

-Xenablestringconstantgc
Enables strings from the string intern table to be collected. This behavior is the
default.

-Xgc:<options>
Passes options such as verbose, compact, and nocompact to the Garbage
Collector.

-Xgc:splitheap
Allocates the new and old areas of the generational Java heap in separate areas
of memory. Using a split heap forces the Garbage Collector to use the gencon
policy and disables resizing of the new and old memory areas. See the section
on the “Split heap” in the Diagnostics Guide (http://www.ibm.com/
developerworks/java/jdk/diagnosis/60.html) for more information. By
default, the Java heap is allocated in a single contiguous area of memory.

-Xgcpolicy:<optthruput | optavgpause | gencon | subpool (AIX, Linux and IBM
i on IBM POWER® architecture, Linux and z/OS on zSeries) >

Controls the behavior of the Garbage Collector.

The optthruput option is the default and delivers very high throughput to
applications, but at the cost of occasional pauses. Disables concurrent mark.

The optavgpause option reduces the time that is spent in these garbage
collection pauses and limits the effect of increasing heap size on the length of
the garbage collection pause. Use optavgpause if your configuration has a very
large heap. Enables concurrent mark.

The gencon option requests the combined use of concurrent and generational
GC to help minimize the time that is spent in any garbage collection pause.

86 IBM SDK for Java: SDK Guide

|
|

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

The subpool option (AIX, Linux and IBM i on IBM POWER architecture, and
z/OS) uses an improved object allocation algorithm to achieve better
performance when allocating objects on the heap. This option might improve
performance on large SMP systems.

-Xgcthreads<number>
Sets the number of threads that the Garbage Collector uses for parallel
operations. This total number of GC threads is composed of one application
thread with the remainder being dedicated GC threads. By default, the number
is set to the number of physical CPUs present. To set it to a different number
(for example 4), use -Xgcthreads4. The minimum valid value is 1, which
disables parallel operations, at the cost of performance. No advantage is gained
if you increase the number of threads above the default setting; you are
recommended not to do so.

On systems running multiple JVMs or in LPAR environments where multiple
JVMs can share the same physical CPUs, you might want to restrict the
number of GC threads used by each JVM so that, if multiple JVMs perform
garbage collection at the same time, the total number of parallel operation GC
threads for all JVMs does not exceed the number of physical CPUs present.

-Xgcworkpackets<number>
Specifies the total number of work packets available in the global collector. If
not specified, the collector allocates a number of packets based on the
maximum heap size.

-Xloa
Allocates a large object area (LOA). Objects will be allocated in this LOA rather
than the SOA. By default, the LOA is enabled for all GC policies except for
subpool, where the LOA is not available.

-Xloainitial<percentage>
Specifies the initial percentage (between 0 and 0.95) of the current tenure space
allocated to the large object area (LOA). The default is 0.05 or 5%.

-Xloamaximum<percentage>
Specifies the maximum percentage (between 0 and 0.95) of the current tenure
space allocated to the large object area (LOA). The default is 0.5 or 50%.

-Xloaminimum<percentage>
Specifies the minimum percentage (between 0 and 0.95) of the current tenure
space allocated to the large object area (LOA). The LOA will not shrink below
this value. The default is 0 or 0%.

-Xmaxe<size>
Sets the maximum amount by which the garbage collector expands the heap.
Typically, the garbage collector expands the heap when the amount of free
space falls below 30% (or by the amount specified using -Xminf), by the
amount required to restore the free space to 30%. The -Xmaxe option limits the
expansion to the specified value; for example -Xmaxe10M limits the expansion to
10MB. By default, there is no maximum expansion size.

-Xmaxf<percentage>
Specifies the maximum percentage of heap that must be free after a garbage
collection. If the free space exceeds this amount, the JVM tries to shrink the
heap. The default value is 0.6 (60%).

-Xmaxt<percentage>
Specifies the maximum percentage of time to be spent in Garbage Collection. If
the percentage of time rises above this value, the JVM tries to expand the heap.
The default value is 13%.

Appendix A. Command-line options 87

-Xmca<size>
Sets the expansion step for the memory allocated to store the RAM portion of
loaded classes. Each time more memory is required to store classes in RAM,
the allocated memory is increased by this amount. By default, the expansion
step is 32 KB. Use the -verbose:sizes option to produce the value that the VM
is using.

-Xmco<size>
Sets the expansion step for the memory allocated to store the ROM portion of
loaded classes. Each time more memory is required to store classes in ROM,
the allocated memory is increased by this amount. By default, the expansion
step is 128 KB. Use the -verbose:sizes option to produce the value that the VM
is using.

-Xmine<size>
Sets the minimum amount by which the Garbage Collector expands the heap.
Typically, the garbage collector expands the heap by the amount required to
restore the free space to 30% (or the amount specified using -Xminf). The
-Xmine option sets the expansion to be at least the specified value; for
example, -Xmine50M sets the expansion size to a minimum of 50 MB. By
default, the minimum expansion size is 1 MB.

-Xminf<percentage>
Specifies the minimum percentage of heap that should be free after a garbage
collection. If the free space falls below this amount, the JVM attempts to
expand the heap. The default value is 30%.

-Xmint<percentage>
Specifies the minimum percentage of time which should be spent in Garbage
Collection. If the percentage of time drops below this value, the JVM tries to
shrink the heap. The default value is 5%.

-Xmn<size>
Sets the initial and maximum size of the new area to the specified value when
using -Xgcpolicy:gencon. Equivalent to setting both -Xmns and -Xmnx. If you
set either -Xmns or -Xmnx, you cannot set -Xmn. If you try to set -Xmn with
either -Xmns or -Xmnx, the VM does not start, returning an error. By default,
-Xmn is not set. If the scavenger is disabled, this option is ignored.

-Xmns<size>
Sets the initial size of the new area to the specified value when using
-Xgcpolicy:gencon. By default, this option is set to 25% of the value of the
-Xms option. This option returns an error if you try to use it with -Xmn. You
can use the -verbose:sizes option to find out the values that the VM is
currently using. If the scavenger is disabled, this option is ignored.

-Xmnx<size>
Sets the maximum size of the new area to the specified value when using
-Xgcpolicy:gencon. By default, this option is set to 25% of the value of the
-Xmx option. This option returns an error if you try to use it with -Xmn. You
can use the -verbose:sizes option to find out the values that the VM is
currently using. If the scavenger is disabled, this option is ignored.

-Xmo<size>
Sets the initial and maximum size of the old (tenured) heap to the specified
value when using -Xgcpolicy:gencon. Equivalent to setting both -Xmos and
-Xmox. If you set either -Xmos or -Xmox, you cannot set -Xmo. If you try to
set -Xmo with either -Xmos or -Xmox, the VM does not start, returning an
error. By default, -Xmo is not set.

88 IBM SDK for Java: SDK Guide

-Xmoi<size>
Sets the amount the Java heap is incremented when using -Xgcpolicy:gencon.
If set to zero, no expansion is allowed. By default, the increment size is
calculated on the expansion size, set by -Xmine and -Xminf.

-Xmos<size>
Sets the initial size of the old (tenure) heap to the specified value when using
-Xgcpolicy:gencon. By default, this option is set to 75% of the value of the
-Xms option. This option returns an error if you try to use it with -Xmo. You
can use the -verbose:sizes option to find out the values that the VM is
currently using.

-Xmox<size>
Sets the maximum size of the old (tenure) heap to the specified value when
using -Xgcpolicy:gencon. By default, this option is set to the same value as the
-Xmx option. This option returns an error if you try to use it with -Xmo. You
can use the -verbose:sizes option to find out the values that the VM is
currently using.

-Xmr<size>
Sets the size of the Garbage Collection ″remembered set″. This set is a list of
objects in the old (tenured) heap that have references to objects in the new
area. By default, this option is set to 16K.

-Xmrx<size>
Sets the remembered maximum size setting.

-Xms<size>
Sets the initial Java heap size. You can also use the -Xmo option detailed
above. The minimum size is 1 MB.

If scavenger is enabled, -Xms >= -Xmn + -Xmo.

If scavenger is disabled, -Xms >= -Xmo.

-Xmx<size>
Sets the maximum memory size (-Xmx >= -Xms)

Examples of the use of -Xms and -Xmx:

-Xms2m -Xmx64m
Heap starts at 2 MB and grows to a maximum of 64 MB.

-Xms100m -Xmx100m
Heap starts at 100 MB and never grows.

-Xms20m -Xmx1024m
Heap starts at 20 MB and grows to a maximum of 1 GB.

-Xms50m
Heap starts at 50 MB and grows to the default maximum.

-Xmx256m
Heap starts at default initial value and grows to a maximum of 256 MB.

-Xnoclassgc
Disables class garbage collection. This option switches off garbage collection of
storage associated with Java classes that are no longer being used by the JVM.
The default behavior is as defined by -Xclassgc. By default, class garbage
collection is performed.

-Xnocompactexplicitgc
Disables compaction on System.gc() calls. Compaction takes place on global

Appendix A. Command-line options 89

garbage collections if you specify -Xcompactgc or if compaction triggers are
met. By default, compaction is enabled on calls to System.gc().

-Xnocompactgc
Disables compaction on all garbage collections (system or global). By default,
compaction is enabled.

-Xnoloa
Prevents allocation of a large object area; all objects will be allocated in the
SOA. See also -Xloa.

-Xnopartialcompactgc
Disables incremental compaction. See also -Xpartialcompactgc.

-Xpartialcompactgc
Enables incremental compaction. See also -Xnopartialcompactgc. By default,
this option is not set, so all compactions are full.

-Xsoftmx<size> (AIX only)
This option sets the initial maximum size of the Java heap. Use the -Xmx
option to set the maximum heap size. Use the AIX DLPAR API in your
application to alter the heap size limit between -Xms and -Xmx at run time. By
default, this option is set to the same value as -Xmx.

-Xsoftrefthreshold<number>
Sets the value used by the GC to determine the number of GCs after which a
soft reference is cleared if its referent has not been marked. The default is 32,
meaning that the soft reference is cleared after 32 * (percentage of free heap
space) GC cycles where its referent was not marked.

-Xtgc:<arguments>
Provides GC tracing options, where <arguments> is a comma-separated list
containing one or more of the following arguments:

backtrace
Before a garbage collection, a single line is printed containing the name of
the master thread for garbage collection, as well as the value of the
osThread slot in its J9VMThread structure.

compaction
Prints extra information showing the relative time spent by threads in the
“move” and “fixup” phases of compaction

concurrent
Prints extra information showing the activity of the concurrent mark
background thread

dump
Prints a line of output for every free chunk of memory in the system,
including ″dark matter″ (free chunks that are not on the free list for some
reason, typically because they are too small). Each line contains the base
address and the size in bytes of the chunk. If the chunk is followed in the
heap by an object, the size and class name of the object is also printed.
Similar to terse.

freeList
Before a garbage collection, prints information about the free list and
allocation statistics since the last GC. Prints the number of items on the
free list, including ″deferred″ entries (with the scavenger, the unused space
is a deferred free list entry). For TLH and non-TLH allocations, prints the
total number of allocations, the average allocation size, and the total

90 IBM SDK for Java: SDK Guide

number of bytes discarded during allocation. For non-TLH allocations, also
included is the average number of entries that were searched before a
sufficiently large entry was found.

parallel
Produces statistics on the activity of the parallel threads during the mark
and sweep phases of a global GC.

references
Prints extra information every time that a reference object is enqueued for
finalization, showing the reference type, reference address, and referent
address.

scavenger
Prints extra information after each scavenger collection. A histogram is
produced showing the number of instances of each class, and their relative
ages, present in the survivor space. The space is linearly walked to achieve
this.

terse
Dumps the contents of the entire heap before and after a garbage
collection. For each object or free chunk in the heap, a line of trace output
is produced. Each line contains the base address, ″a″ if it is an allocated
object, and ″f″ if it is a free chunk, the size of the chunk in bytes, and, if it
is an object, its class name.

-Xverbosegclog[:<file>[,<X>,<Y>]]

Causes -verbose:gc output to be written to the specified file. If the file cannot
be found, -verbose:gc tries to create the file, and then continues as normal if it
is successful. If it cannot create the file (for example, if an invalid filename is
passed into the command), it redirects the output to stderr.

If you specify <X> and <Y> the -verbose:gc output is redirected to X files, each
containing Y GC cycles.

The dump agent tokens can be used in the filename. See the Diagnostics Guide
(http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html) section
on the “Dump agent tokens” for more information. If you do not specify <file>,
verbosegc.%Y%m%d.%H%M%S.%pid.txt is used.

By default, no verbose GC logging occurs.

Appendix A. Command-line options 91

http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

92 IBM SDK for Java: SDK Guide

Appendix B. Known limitations

Known limitations on the SDK and Runtime Environment for z/OS.

If you find a problem, see the “Hints and Tips” pages, at http://www.ibm.com/
servers/eserver/zseries/software/java/javafaq.html.

If you find a problem that you have been unable to solve after looking through the
“Hints and Tips” pages, see http://www.ibm.com/servers/eserver/zseries/
software/java/services.html for advice and information about how to raise
problems.

You can find more help with problem diagnosis in the Diagnostics Guide at
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html.

Limitation on class path length

If there are more than 2031 characters in your class path, the shell truncates your
class path to 2031 characters. If you need a class path longer than 2031 characters,
use the extension class loader option to refer to directories containing your .jar
files, for example:
-Djava.ext.dirs=<directory>

Where <directory> is the directory containing your .jar files.

JConsole monitoring tool Local tab

In the IBM JConsole tool, the Local tab, which allows you to connect to other
Virtual Machines on the same system, is not available. Also, the corresponding
command line pid option is not supported. Instead, use the Remote tab in
JConsole to connect to the Virtual Machine that you want to monitor. Alternatively,
use the connection command-line option, specifying a host of localhost and a
port number. When you start the application that you want to monitor, set these
command-line options:

-Dcom.sun.management.jmxremote.port=<value>
Specifies the port the management agent listens on.

-Dcom.sun.management.jmxremote.authenticate=false
Disables authentication unless you have created a user name file.

-Dcom.sun.management.jmxremote.ssl=false
Disables SSL encryption.

Incorrect stack traces when loading new classes after an
Exception is caught

If new classes are loaded after an Exception has been caught, the stack trace
contained in the Exception might become incorrect. The stack trace becomes
incorrect if classes in the stack trace are unloaded, and new classes are loaded into
their memory segments.

© Copyright IBM Corp. 2003, 2009 93

http://www.ibm.com/servers/eserver/zseries/software/java/javafaq.html
http://www.ibm.com/servers/eserver/zseries/software/java/javafaq.html
http://www.ibm.com/servers/eserver/zseries/software/java/services.html
http://www.ibm.com/servers/eserver/zseries/software/java/services.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/60.html

ThreadMXBean Thread User CPU Time limitation

There is no way to distinguish between user mode CPU time and system mode
CPU time on this platform. ThreadMXBean.getThreadUserTime(),
ThreadMXBean.getThreadCpuTime(), ThreadMXBean.getCurrentThreadUserTime(),
and ThreadMXBean.getCurrentThreadCpuTime() all return the total CPU time for
the required thread.

You can get the CPU time only for the current thread by calling
ThreadMXBean.isCurrentThreadCpuTimeSupported(). Calling
ThreadMXBean.isThreadCpuTimeSupported() returns a value of false because
getting the CPU time for a thread other than the current thread is not supported.

NullPointerException with the GTK Look and Feel

DBCS environments only

If your application fails with a NullPointerException using the GTK Look and Feel,
unset the GNOME_DESKTOP_SESSION_ID environment variable.

ASCII to EBCDIC

Because z/OS uses the EBCDIC character encoding instead of the more common
ASCII encoding, sometimes there are portability problems with Java code written
on z/OS. Inside the scope of the JVM, all character and string data is stored and
manipulated in Unicode. I/O data outside of the virtual machine, such as on a
disk or on a network, is converted to the native platform encoding. However, Java
applications that implicitly assume ASCII in specific situations might require some
alterations to run as expected under z/OS. For example, a platform-neutral
application might have hard-coded dependencies, such as literals in ASCII.

The Java language contains the abstractions necessary to handle the switch
between character encoding. The various Reader and Writer classes in the java.io
package provide alternate constructors with a specified code page. This mechanism
is used for globalization support, and it can also be used to force ASCII (or other)
I/O where required. Not all I/O needs to be overridden; for example, character
output to the display remains in the native encoding.

In addition to the Reader and Writer classes, there are a few specific situations that
might require additional care. For example, the String class has an overloaded
getBytes() method that takes an encoding as an additional parameter. The
overloaded method is useful for direct string manipulation when you are
implementing custom data streams or network protocols directly in Java.

In general, straightforward workarounds are available for character encoding
problems. Some encoding problems are not visible to the application because they
are handled in programs running on z/OS. An example is when using Java
Database Connectivity (JDBC).

IPv6 multicast support

z/OS V1R6 currently does not support IPv4-mapped Multicast addresses. If you
are using an IPv4 Multicast address, you cannot join a Multicast group unless you
disable IPv6 support by setting the java.net.preferIPv4Stack property to true.

Use the following instruction to set the property on the command line:

94 IBM SDK for Java: SDK Guide

|
|
|
|

java -Djava.net.preferIPv4Stack=true <classname>

Unicode Shift_JIS code page alias

Japanese users only

The Unicode code page alias “\u30b7\u30d5\u30c8\u7b26\u53f7\u5316\u8868\
u73fe” for Shift_JIS has been removed. If you use this code page in your
applications, replace it with Shift_JIS.

-Xshareclasses:<options>

Shared classes cache and control files are not compatible between Java 6 SR4 and
previous releases.

Java Kernel installation

The Java kernel aims to reduce the startup time imposed by an application when it
finds that the installed JRE needs an update. When this situation occurs, the Java
kernel automatically downloads only the Java components that are needed directly
from the Sun Web site. This automated download is currently not possible with the
IBM implementation of this Sun Java update.

Java Deployment Toolkit

The toolkit implements the JavaScript™ DeployJava.js, which can be used to
automatically generate any HTML needed to deploy applets and Java Web Start
applications. However, the automatic generation is not possible with the IBM
release of Java, because the process involves downloading and running the specific
JRE from a public site, using public functions.

Expired GTE Cybertrust Certificate

The IBM Runtime Environment for Java contains an expired GTE CyberTrust
Certificate in the CACERTS file for compatibility reasons. The CACERTS file is
provided as a default truststore. Some common public certificates are provided as a
convenience.

If no applications require the certificate, it can be left in the CACERTS file.
Alternatively, the certificate can be deleted. If applications do require the certificate,
modify them to use the newer GTE CyberTrust Global root certificate that expires
in 2018.

This certificate might be removed for later versions of the SDK.

Using -Xshareclasses:destroy during JVM startup

When running the command java -Xshareclasses:destroy on a shared cache that is
being used by a second JVM during startup, you might have the following issues:
v The second JVM fails.
v The shared cache is deleted.

Appendix B. Known limitations 95

96 IBM SDK for Java: SDK Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area.

Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user’s
responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, Armonk
NY 10504-1758 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2009 97

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

JIMMAIL@uk.ibm.com
[Hursley Java Technology Center (JTC) contact]

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at ″Copyright and trademark information″ at http://www.ibm.com/legal/
copytrade.shtml.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

98 IBM SDK for Java: SDK Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of
others.

Notices 99

100 IBM SDK for Java: SDK Guide

����

Printed in USA

	Contents
	Preface
	Chapter 1. Overview
	Version compatibility
	Migrating from other IBM JVMs
	Supported hardware
	The z/OS batch toolkit

	Chapter 2. Contents of the SDK and Runtime Environment
	Contents of the Runtime Environment
	Contents of the SDK

	Chapter 3. Installing and configuring the SDK
	Working with BPXPRM settings
	Setting the region size
	Setting MEMLIMIT
	Setting LE runtime options
	Setting LE 31-bit runtime options
	Setting LE 64-bit runtime options

	Marking failures
	Setting the path
	Setting the class path

	Chapter 4. Running Java applications
	The java and javaw commands
	Obtaining version information
	Specifying Java options and system properties
	Standard options
	Globalization of the java command

	The Just-In-Time (JIT) compiler
	Disabling the JIT
	Enabling the JIT
	Determining whether the JIT is enabled

	Specifying garbage collection policy
	Garbage collection options
	More effective heap usage using compressed references
	Pause time
	Pause time reduction
	Environments with very full heaps

	Euro symbol support
	Using Indian and Thai input methods

	Chapter 5. Developing Java applications
	Using XML
	Migrating to the XL-TXE-J
	XML reference information
	XL XP-J reference information
	XL TXE-J reference information
	Using an older version of Xerces or Xalan

	Debugging Java applications
	Java Debugger (JDB)
	Selective debugging

	Determining whether your application is running on a 31-bit or 64-bit JVM
	How the JVM processes signals
	Signals used by the JVM
	Linking a native code driver to the signal-chaining library

	Writing JNI applications
	Supported compilers
	Native formatting of Java types long, double, float

	Support for thread-level recovery of blocked connectors
	CORBA support
	System properties for tracing the ORB
	System properties for tuning the ORB
	Java security permissions for the ORB
	ORB implementation classes

	RMI over IIOP
	Implementing the Connection Handler Pool for RMI
	Enhanced BigDecimal
	Working in a multiple network stack environment
	Using IBMJCECCA
	Support for XToolkit
	Support for the Java Attach API

	Chapter 6. Applet Viewer
	Distributing Java applications

	Chapter 7. Class data sharing between JVMs
	Overview of class data sharing
	Class data sharing command-line options
	Creating, populating, monitoring, and deleting a cache
	Performance and memory consumption
	Considerations and limitations of using class data sharing
	Cache size limits
	JVMTI RetransformClasses() is unsupported
	Required APAR for Shared Classes
	Working with BPXPRMxx settings
	Runtime bytecode modification
	Operating system limitations
	Using SharedClassPermission

	Adapting custom classloaders to share classes

	Chapter 8. Service and support for independent software vendors
	Chapter 9. Accessibility
	Keyboard traversal of JComboBox components in Swing

	Chapter 10. Any comments on this user guide?
	Appendix A. Command-line options
	Specifying command-line options
	General command-line options
	System property command-line options
	JVM command-line options
	-XX command-line options

	JIT and AOT command-line options
	Garbage Collector command-line options

	Appendix B. Known limitations
	Notices
	Trademarks

