
64-bit Real and Virtual
Storage

64-bit on zSeries Processors

Available since V1 R1
Constraint relief
For workloads limited by 2 GB
real storage limit
Improved Performance
Expanded storage paging
overhead eliminated

All memory configured as real storage

Ease of migration
Application transparency

24- & 31-bit apps run unchanged

Minimal actions to take
Flexible migration paths

LPAR 1

2 GB Web
Sphere

 IMS,CICS

DB2

2 GB

2 GB

31-bit
Appl.

64-bit
addressing

z/OS

Real Storage

z800/z900/z990 zOSMG270

z/OS Real Storage Support

64-bit - 1-2

Expanded Storage Support
When in ESA/390 mode (31-bit):

Configure external storage as expanded
When in z/Architecture mode (64-bit):

Configure all storage as central (real)
Hiperspace services re-implemented to use central
storage instead of expanded storage

No change expected for applications and middleware
No incompatible API changes
No recompiles expected; 24- and 31-bit applications
run unchanged
Other system uses of expanded storage also
re-implemented
Even low level authorized services remain compatible

Migration to zArchitecture (64-bit)

Few products or applications are expected to be
affected

Products that issue their own I/O instructions (SSCH)

Database management products

Products that depend on real addresses (LRA)

Usually middleware

Not usually used by customer applications

Performance reporting tools or capacity planning tools

Tools that need to monitor and report on the additional
storage

64-bit Migration Considerations

64-bit - 3-4

Systems Programmers:

Configure all processor memory for the image as
Central Storage

Review LOADxx for correct initialization parameter

Re-IPL the image

Control access to storage (MEMLIMIT)

Migration to zArchitecture

Address Space Memory Map

User Private area

Area Reserved for
Memory Sharing

User Private area

Below 2GB0

The bar

(High Non-shared)

(Low Non-shared)

Addressability requires a
Region 1st table (R1T)

Addressability requires a
Region 2nd table (R2T)

Addressability requires a
Region 3rd table (R3T)

16M - Line

642

532
502

422
412

322
312

64-bit - 5-6

0 1 12 20 31

/ Segment
Index Byte IndexPage

Index

31-bit Virtual Address

| 11 bits | 8 bits | 12 bits |

64-bit Virtual Address

0 11 22 33 44 52 63

R1 Index R2 Index R3 Index Segment
Index

Page
Index Byte Index

| 11 bits | 11 bits | 11 bits | 11 bits | 8 bits | 12 bits |

Virtual Address Formats

 K (kilo) 1,024 2**10

 M (mega) 1,048,576 2**20

 G (giga) 1,073,741,824 2**30

 T (tera) 1,099,511,627,776 2**40

 P (peta) 1,125,899,906,842,624 2**50

 E (exa) 1,152,921,504,606,846,976 2**60

Size and Number Notation

Symbol Decimal value Power of 2

64-bit - 7-8

2,048 can be expressed as 2K.
4,096 can be expressed as 4K.
65,536 can be expressed as 64K.
2**24 can be expressed as 16M.
2**31 can be expressed as 2G.
2**43 can be expressed as 8T.
2**64 can be expressed as 16E.

Examples

Each address space is logically 16 exabytes

264 in size

The area below 2 GB is mapped as before

Totally compatible with previous releases

The area above 2 GB is for application data

No common areas, system areas, or programs

An area is reserved for memory sharing

Available in a future release

64-bit Address Space

64-bit - 9-10

Address Space Memory Map

User Private area

Area Reserved for
Memory Sharing

(z/OS V1R5)

User Private area

Below 2GB0

(High Non-shared)

(Low Non-shared)

Addressability requires a
Region 1st table (R1T)

Addressability requires a
Region 2nd table (R2T)

Addressability requires a
Region 3rd table (R3T)

The bar
16M - Line

642

532
502

422
412

322
312

512TB

2TB

R1T
R2T

R2T

R3T

R3T

SGT

SGT

PGT

PGT

PAGE

PAGE

Region, Segment, Page Tables

4K Kilobytes 2G Gigabytes8P Petabytes 1M Megabytes4T Terabytes16E Exabytes
532642 422 312 202 122

64-bit - 11-12

Using Virtual above 2 GB with V1R2

z/OS 1.2 sets a new bit in the CVT
 CVTV64 - when on, indicates 64-bit virtual support is

present

New z/OS High Level Assembler
New z/Architecture instructions for manipulating 64-bit

registers and addresses
New assembler macro instructions to allocate and
manipulate virtual storage above 2GB

To reference storage above 2G, a program must switch
into 64-bit addressing mode (AMODE 64)

New macro to obtain/free storage - IARV64

First Step z/OS V1R2
z/OS assembler with support for 64 bit addressing
z/OS system support for 64-bit data addressability within
a single address space
z/OS assembler system service to manage virtual
storage above the bar within a single address space

Next Step AMODE(64) - z/OS V1R3
Binder, loader and content supervisor
AMODE 64 program execution below 2GB

Next Step Shared Support - (z/OS V1R5)
z/OS system support for 64-bit data addressability
between multiple address spaces
z/OS assembler system service to manage virtual
storage above the bar between multiple address spaces

Virtual Storage Support Plan

64-bit - 13-14

Next Step AMODE(64) - z/OS V1R5

64 bit support added to the binder in z/OS V1R5

rmode 64 toleration

Loading WSA above the bar

Virtual Storage Support Plan

z/OS virtual memory above 2GB is organized as
Memory objects

Memory objects are a contiguous range of virtual
addresses created by a program

Allocated as a number of 1 MB chunks of storage
starting on a 1MB boundary
Some of the memory is usable virtual storage.
Remainder is not valid and is called the guard area
(can be zero)
The extent of the usable virtual can be changed, with a
compensitory change in the extent of the guard area

Shared Memory Object
No Guard Area support

Memory Objects

64-bit - 15-16

A memory object is allocated by a single request and
can only be freed in its entirety - Partial freeing is not
allowed
It has a single storage protection key and fetch
protection attribute - z/OS virtual memory above 2GB
is organized as memory objects which programs
create
Private Memory Object

It is owned by a task
Shared Memory Object

It is shared at the same address in every address
space
It is owned by the system

Basic Memory Object Properties

Usable Area

Guard Area

1
megabyte
boundary

one megabyte
multiple

one megabyte
multiple

1
megabyte
boundary

Memory Objects

64-bit - 17-18

Getstor - create a Memory Object (only for private
memory objects)
Changeguard - increase or decrease the amount of
usable memory in a memory object (only for private
memory objects)
Getshared - Create a Shared Memory Object (only for
shared memory objects)
Sharememobj - Allows an address space to access
Shared Memory Objects (only for shared memory
objects)
Changeaccess - Manages the type of access an
address space has to the Shared Virtual Storage (only
for shared memory objects)
Detach - delete Memory Objects

Managing Memory Objects - IARV64

IARV64 REQUEST=GETSTOR,
 SEGMENTS=THREE_SEG,
 USERTKN=USRTKNA,
 ORIGIN=VIRT64_ADDR,
 GUARDLOC=LOW,
 GUARDSIZE=ONE_SEG,
 SVCDUMPRGN=NO,
 COND=YES,
 TTOKEN=NO_TTOKEN,
 FPROT=NO

Usable Area

Private Memory Object

Guard Area

one
megabyte
multiple

one
megabyte
multiple

1Meg Bdry

1Meg Bdry

Guard Area Support

64-bit - 19-20

Usable Area

Guard Area

GUARDLOC=LOW
CONVERT(FROMGUARD)

Usable Area

Guard Area

GUARDLOC=LOW
CONVERT(TOGUARD)

Guard Area

GUARDLOC=HIGH
CONVERT(TOGUARD)

Guard Area

GUARDLOC=HIGH
CONVERT(FROMGUARD)

Usable Area

High

Low

High

Low

High

Low

High

Low

Memory object

GETSTOR defines Usable
and Guard area

size
location

 CHANGEGUARD modifies
size of usable/guard area

Changing the Amount of Usable Memory

IARV64 REQUEST=CHANGEGUARD,
 CONVERT=TOGUARD,
 CONVERTSTART=VIRT64_GUARDADDR,
 CONVERTSIZE=ONE_SEG

Usable Area

Guard Area

Memory Object

Guard Area 2

Usable Area

Virt64_GuardAddr

Multiple Guard Area Support

Create a Guard Area in Usable Area

64-bit - 21-22

IARV64 REQUEST=CHANGEGUARD,
 CONVERT=FROMGUARD,
 CONVERTSTART=VIRT64_GUARDADDR,
 CONVERTSIZE=ONE_SEG

Usable Area

Guard Area

Memory Object

Increase Size of Usable Area

Multiple Guard Area Support

An installation wants to limit the maximum physical
memory resources (real and auxilliary) that can be
committed by a job

For virtual below 2GB, a limit on virtual storage usage
provides (indirectly) a way to limit real and auxilliary
storage use by a job

The REGION= keyword on JCL and can be overridden
by the IEFUSI installation exit

Controlling Virtual usage

64-bit - 23-24

No practical limit to the amount of virtual address
range that an address space can request

Provide a limit on the amount of usable virtual storage

above 2GB that an address space can use at any
one time
The limit is 0 unless specified through either:

The new SMF MEMLIMIT parameter, or

The new MEMLIMIT keyword on JCL, and

Can be overridden by an IEFUSI exit

Virtual above the Bar

Why use Virtual Storage above the bar?

64-bit virtual storage provides applications/middleware
with:

Enhanced data caching capacity

Simplified memory management

Support for private storage above the bar was
delivered in z/OS 1.2

Z/OS 1.5 has the following enhancements for 64-Bit:

64-Bit Shared Memory support

Multiple guard area support for private virtual storage
above the bar

Support for Virtual Above the Bar

64-bit - 25-26

New options on the IARV64 macro allow address
spaces to share storage above the bar

Shared Area size can be specified via the HVSHARE
keyword in IEASYSxx, or system parms

HVSHARE=xxxxxxxxxxxG, or xxxxxxxxxT, or xxxxxP

Default shared area starts at 2TB and ends at 512TB

Minimum size is zero, max size is 1 Exabyte

Note: A shared memory object has no guard area

Using Shared Virtual Storage

DISPLAY VIRTSTOR,HVSHARE or D VS,HVSHARE
command

Displays the shared area range and how much 64-bit
shared virtual storage has been allocated in the
system

 In z/Architecture mode

 IAR019I hh.mm.ss DISPLAY VIRTSTOR
 SOURCE = XX | (OP) | DEFAULT
 TOTAL SHARED = nnnnnnnnnnG
 SHARED RANGE = nnnnG-nnnnnnnnnnG
 SHARED ALLOCATED = nnnnnnnnnnnnnM

Display Use of Shared Storage

64-bit - 27-28

* CHANGE TO AMODE 64
 SAM64
* GET VIRTUAL STORAGE ABOVE THE BAR
 IARV64 REQUEST=GETSTOR, C
 SEGMENTS=MO_SIZE, C
 USERTKN=U_TOKEN, C
 ORIGIN=V64_ADDR
 LTGR 15,15 GOT MEMORY OBJECT ?
 BC 8,WG - YES, OK
 DC H'0' - NO, INVESTIGATE
* START WORK WITH DATA IN STORAGE ABOVE THE BAR
WG WTO 'GOT V64',ROUTCDE=11
 LG 4,V64_ADDR GET ADDRESS OF MEMORY OBJECT
 LHI 2,256*4 LOOP COUNTER, TOUCH ALL PAGES
TOUCH MVC 0(L'DATA,4),DATA MOVE IN SOME DATA
 AHI 4,4096 TO NEXT PAGE
 BRCT 2,TOUCH LOOP BACK AND TOUCH NEXT PAGE
* DETACH VIRTUAL STORAGE ABOVE THE BAR
 IARV64 REQUEST=DETACH, C
 MATCH=USERTOKEN, C
 USERTKN=U_TOKEN, C
 COND=YES
 LTGR 15,15 FREED MEMORY OBJECT ?
 BC 8,WD - YES, OK
 DC H'0' - NO, INVESTIGATE
WD WTO 'DETACHED V64',ROUTCDE=11

Using Virtual above 2GB

* END EXIT LINKAGE
@DATA DS 0D
MO_SIZE DC FD'4' MEMORY OBJECT IS 4 MB
U_TOKEN DC FD'1'
DATA DC C'DATA ABOVE THE BAR'

Data Area for Obtaining Storage

64-bit - 29-30

There are 3 new instructions which change
addressing mode without branching:

Set Addressing Mode to 24-bit (SAM24)

Set Addressing Mode to 31-bit (SAM31)

Set Addressing Mode to 64-bit (SAM64)

There are 2 instructions which change addressing
mode and branch:

Branch and Save and Set Mode (BASSM)

Branch and Set Mode (BSM)

Addressing Mode Switching

Support execution of programs above 'the bar' - the
two gigabyte line

Providing amode 64 support now and (perhaps)
rmode 64 support later would force a double migration

The binder will accept object modules with rmode 64
contents

This allows all 64-bit source and object code changes
to be made in one step

Provide binder support for loading data portions (WSA)
of an application above the bar

Binder Support z/OS V1R5

64-bit - 31-32

WSA Above the Bar

rmode 64 for deferred load classes are visible to loader

Compilers can generate a new class called C_WSA64
marked as rmode 64

If program object is executed on a system with the
appropriate loader support C_WSA64 is loaded above
the bar

A single program object may not contain both classes
C_WSA and C_WSA64

Provides virtual storage constraint relief

WSA is often very large

Program Object During Execution

There is no way to mark an entry point as accepting
all amodes, including amode 64

Binder allows modules with mixed amode 64 and
non-amode 64 code, however:

Reference and definition must match. Mismatch: error
message IEW2469E

The 'ANY' in AMODE(ANY) does NOT include amode
64

64-bit - 33-34

Controlling Storage - MEMLIMIT

Through JCL on the specific job with the new
 MEMLIMIT JCL keyword

MEMLIMIT specified on a JOB statement
//TC1 JOB MEMLIMIT=50G,REGION=0M
//TC2 JOB MEMLIMIT=125M,TIME=NOLIMIT
//TC3 JOB MEMLIMIT= 9T,MSGLEVEL=1
//TC4 JOB REGION=3M,MEMLIMIT=16384P
//TC5 JOB REGION=125M,MSGLEVEL=(1,1),
 MEMLIMIT=NOLIMIT,MSGCLASS=A

MEMLIMIT specified on an EXEC statement
//STEP1 EXEC PGM=TST6,MEMLIMIT=6400M
//STEP1 EXEC PGM=TST7,MEMLIMIT=3P...
//STEP1 EXEC MYPROC,MEMLIMIT=NOLIMIT...

Controlling storage - SMFPRMxx

ACTIVE /*ACTIVE SMF RECORDING*/
DSNAME (SYS1.MANA,SYS1.MANB,SYS1.MANC) /* NEW D.S. ADDED 11/88 */
PROMPT(LIST) /*PROMPT THE OPERATOR FOR OPTIONS*/
REC(PERM) /*TYPE 17 PERM RECORDS ONLY*/
BUFNUM(4,9) /* 4 - 4096 BUFFERS ALWAYS AND
 ALLOW UP TO 9 BEFORE SUSPENDING
 A USER FOR BUFFER SHORTAGE*/
MAXDORM(3000) /* WRITE AN IDLE BUFFER AFTER 30 MIN*/
MEMLIMIT(24G)
STATUS(010000) /* WRITE SMF STATS AFTER 1 HOUR*/
JWT(1439) /* NO 522 ABENDS*/
SID(168A) /* SYSTEM ID IS 168 A*/
LISTDSN /* LIST DATA SET STATUS AT IPL*/
SYS(TYPE(0:255),EXITS(IEFACTRT,IEFUJV,IEFUSI,IEFU83,
 IEFUJI,IEFUTL,IEFU29),NOINTERVAL,NODETAIL)

MEMLIMIT(16384P) /* This is the same as NOLIMIT */
MEMLIMIT(125T)

MEMLIMIT(4000P)

MEMLIMIT(0M) /* Disallow storage >2G */

MEMLIMIT(00000M) /* DEFAULT */

Other examples of MEMLIMIT

64-bit - 35-36

 SYS(TYPE(0:255)) -- DEFAULT
 LISTDSN -- DEFAULT
 SID(4381) -- DEFAULT
 STATUS(010000) -- DEFAULT
 MAXDORM(3000) -- DEFAULT
 DDCONS(YES) -- DEFAULT
 LASTDS(MSG) -- DEFAULT
 NOBUFFS(MSG) -- DEFAULT
 SYNCVAL(00) -- DEFAULT
 INTVAL(30) -- DEFAULT
 DUMPABND(RETRY) -- DEFAULT
 REC(PERM) -- DEFAULT
 DSNAME(SYS1.MANY) -- DEFAULT
 DSNAME(SYS1.MANX) -- DEFAULT
 MEMLIMIT(NOLIMIT) -- PARMLIB
 JWT(1439) -- PARMLIB
 PROMPT(ALL) -- PARMLIB
 NOACTIVE -- PARMLIB
 *01 IEE357A REPLY WITH SMF VALUES OR U
00- r 1,MEMLIMIT(2G)
 IEE600I REPLY TO 01 IS;MEMLIMIT(2G)
 *02 IEE357A REPLY WITH SMF VALUES OR U

MEMLIMIT During the IPL

Reset the SMF Parameters

SET SMF=M4
IEE252I MEMBER SMFPRMM4 FOUND IN
RSMID.PARMLIB
IEE536I SMF VALUE M4 NOW IN EFFECT
D SMF,O
IEE967I 00.56.34 SMF PARAMETERS 379
 MEMBER = SMFPRMM4
 DSNAME(SYS1.MANY) -- DEFAULT
 DSNAME(SYS1.MANX) -- DEFAULT
 ACTIVE -- DEFAULT
 MEMLIMIT(00003G) -- PARMLIB
 JWT(2400) -- PARMLIB
 PROMPT(ALL) -- PARMLIB

64-bit - 37-38

 setsmf memlimit(120t)
 IEE712I SETSMF PROCESSING COMPLETE
 d smf,o
 IEE967I 01.29.56 SMF PARAMETERS
 MEMBER = SMFPRMBR
 MEMLIMIT(00120T) -- REPLY
 PROMPT(ALL) -- PARMLIB
 DDCONS(YES) -- DEFAULT
 LASTDS(MSG) -- DEFAULT
 NOBUFFS(MSG) -- DEFAULT
 SYNCVAL(00) -- DEFAULT
 INTVAL(30) -- DEFAULT
 DUMPABND(RETRY) -- DEFAULT

Change MEMLIMIT Value

64-bit - 39-40

