
ITSO Poughkeepsie IBM ��z/OS & zSeries 2003 Technical Update

© 2003 IBM Corporation

Redbooks

J2EE and its support in WAS V5 on z/OS

Sabine Holl sabine_holl@at.ibm.com
Alex Louwe Kooijmans nl53347@nl.ibm.com
Kevin J. Senior kev_senior@it.ibm.com

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Trademarks

�����

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

This session includes an overview of the J2EE programming model and how it
fits in the WebSphere environment.

It starts with a very brief introduction of Java in general and we end with how
everything fits in WebSphere. We spend a good portion fo time with the workings
of Enterprise JavaBeans.

The duration of this setion, depending on the audience, varies between 75 and
90 minutes.

Abstract

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Agenda

Java basics
The Java 2 programming model
A further exploration of EJBs
An overview of Web services
What's new in WebSphere Application Server V5

�����

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

a language specification
the Java language specification is maintained by SUN
www.sun.com/java

a run time environment, called the "Java Virtual Machine"
implemented in Web browsers, (Web) Application Servers and
Operating Systems

a set of tools, for compiling, debugging, documenting etc.
which run from a command line

a continuously expanding set of APIs, written in 100% pure Java
a wide choice of application programming frameworks
a code distribution mechanism

Java archives (.jar files)
and above all, a philosophy......
and it all comes for FREE!

Java is...

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Some statements regarding Java

Java does NOT run natively, but ALWAYS requires a JVM
except for some native code compilers that have been developed for
Java

Java programs do NOT get compiled into native code, but into so-called
bytecode
the JVM can ONLY understand bytecode

...and bytecode is interpreted...

...which does not mean it is slow and inefficient...

...as every JVM has a so-called Just-In-Time (JIT) compiler
this bytecode can be run in any JVM on any platform

...well, as long as you do not drive platform-specific operations
directly from your own Java application code...
...so, using 100% Pure Java code

you can do a lot in 100% Pure Java on z/OS
...and what you cannot do, you should delegate to native (C, C++)
code

� �
	

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
The Java Virtual Machine (JVM)

Operating System
(UNIX, Linux, Windows,

z/OS etc.)
JVM

JDK
classes DLL's

Your class

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

suitable for object-oriented programming
some people program Java, but in a procedural manner

fairly simple, compared to some other languages
definetely easier to use than C and C++

highly portable
because of the JVM/bytecode concept

interpreted
no compilation into native code

dynamic
memory management

robust
JVM ensures a certain level of quality

heavily supported by state-of-the-art development tools
integrated with many other standards

XML, CORBA, TCP/IP, HTTP, Webservices protocols etc.

The Java language is...

� �
�

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Java applications are built from "classes"
some developed and others obtained

a "class" is a collection of data ("fields") and procedures ("methods") that
operate on that data
a class describes the behavior of an "object"

the words "class" and "object" are used many times for the same
thing

a class can have many "instances", each relating to an instance of the
corresponding object
a class can implement one or more "methods", each performing a set of
operations on the corresponding object
"fields" are used to pass values within classes, between instances of
classes and between methods of different classes

Some more Java terminology

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

a class can be "subclassed", which means that a more specific version
of that class is created, "inheriting" the variables and methods from the
generic class (= "superclass") and adding specific variables and
methods
each class has at least a "constructor" method, which is responsible for
the "instanciation" of a class
an "interface" is a collection of abstract methods and variables that can
be "implemented" by a class

to make access from other objects easier and more transparent
classes can be grouped together as "packages"
a "framework" is a collection of Java classes that provides ready-made
functionality to the developer

Some Java terminology (cont.)

������

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
/**
 * This class displays a message to the stdout device.
 * The class is run as an application. If an input
 * parameter is included, it is used in the output message
 */
public class HelloStudentName {

/**
 * main entrypoint - starts the application
 * @param args text used in the output message
 */
public static void main(java.lang.String[] args) {

// insert code to start the application here

HelloStudentName helloStudentName = new HelloStudentName();
helloStudentName.sayHello(args);

}
/**
 * This method determines if input parameters are present, creates a message,
 * and outputs to the stdout device.
 * @param args is the parameter passed at start time or null
 * @return void
 */
public void sayHello(String[] args) {

 // String object used to store the output text
String message = "Student";

if (args.length != 0) {
message = args[0];

} // end of if test

System.out.println("Hello " + message);

return;
}
}

The HelloStudentName class

Instanciation
of the class

Calling a
method

Class
definition

Main method

A method

Logic

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Java compared with other OO Languages

Smalltalk
similar object model

single-rooted inheritance hierarchy
access to objects by reference only

compiled to a bytecode (initially interpreted)
dynamic memory allocation and garbage collection

C++
same syntax for expressions, statements and control flow
similar OO structural syntax (classes, access protection,
constructors, method declaration etc.)

���������

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Agenda

Java basics
The Java 2 programming model
A further exploration of EJBs
An overview of Web services
What's new in WebSphere Application Server V5

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Java Technology
Enabled Desktop Workgroup

Server

Java Technology
Enabled Devices

High-End
Server

A Java environment to run Java

���������

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

clients web application server
middleware

services

Controller

control flow

Logic that
controls the

Model and View

View

user interface

Constructs
page/document
returned to user

Model

business
logic

Implements the
business model

"A model is an abstract view of reality ... dividing the problem into manageable
portions and subsequently applying appropriate technologies to the subsystems."

(The J2EE Application Programming Model, Version 1.0 (Beta), Sun Microsystems)

The MVC programming model - simplified

SJ E

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
The MVC model - the role of the components

Model components encapsulate:
units of work for the business process
logic to access any distributed object servers or back ends

View components encapsulate:
visible data for the application flow
logic to render the data into the client browser language

Controller components encapsulate:
user initiated event handlers for the application flow
logic to gather data from model components based on the request
logic to drive the appropriate view components based on the result

� � ����	

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
The MVC model in an Application Server context

Enterprise
Information

Systems

HTML

Java
applet

browser

Java
application

desktop

server

HTML
XML

Java
application

standalone

Connectors
JavaBeans

All containers are optional logical entities ... any container - or all of them - can be bypassed
There is no implicit bias favoring one scenario over another

There is no suggestion that the scenarios are necessarily exhaustive

JavaServer
Pages (JSP) Java servlets

Web container

Enterprise
JavaBeans (EJB)

EJB container

H
T

TP
 S

erver

HTTP

RMI/IIOP

RMI

TCP/IP

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
J2EE frameworks and APIs

Connectivity
Java Common Connector Architecture (JCA)
Java Message Service (JMS)
Java IDL
RMI-IIOP

Data Persistence
Java DataBase Connectivity (JDBC)

Reliability
Java Transaction Service (JTS)
Java Transaction API (JTA)
Enterprise JavaBeans (EJB)

Front-end
Java servlet API
JavaServer Pages (JSP)

XML
various APIs

JavaMail API
Naming

Java Naming Directory Interface (JNDI)

� � �����

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
A word about the J2EE levels

The overall J2EE spec. is following a numbering schema, which is not
necessarily the same as its subordinate specifications
It does not match necessarily with JVM, JDK or SDK version numbers
either!
Example:
The J2EE 1.3 spec. contains EJB 2.0 support and will be supported in
the IBM SDKs Version 1.4.
All middleware vendors have completed a transition phase from J2EE
1.2 to J2EE 1.3, including IBM WebSphere Application Server
The biggest differences between 1.2 and 1.3 are:

EJB Version 2.0 support
CMP persistence restructure
Relationships
Query language for expressing finders
Message-driven beans ...

Java Connector Architecture support
new levels of JSP and servlet

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
MVC and J2EE unified

EJBEJB

Web Components EJB Components

ServletServlet

JSPJSP

Server-Side
Presentation

Server-Side
Business Logic

EJB Java Archive (JAR)Web Archive (WAR)

C
lie

nt
-S

id
e

P
re

se
nt

at
io

n

����

����

����

J2SE (SDK)

JN
D

I

JTS
/JTA

R
M

I/IIO
P

JD
B

C
/JC

A

JavaM
ail/JA

F

JM
S

Enterprise Archive (EAR)

JID
L

SOAP
Envelopes

���������

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Types of Java

Java application
stand-alone application including a "main" method

Java applet
Browser plugin

Java servlet
Application Server plugin

JavaServer Page
Dynamic Web page

JavaBean
Java "component"
Different types exist, such as access beans and command beans

Enterprise Bean
Session Bean
Entity Bean

Java transactions to run in traditional environments
CICS TS 1.3 and up, IMS V7 and up, DB2 V6 and up

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Execute locally on a computer
Are started from a (UNIX, Linux, Windows, z/OS etc.) command line or a
batch process
Have platform-dependent capabilities

can access local files and resources directly
can call native C, C++ directly or other languages indirectly

Are suited for all types of logic including database access, business logic
and even GUIs
Consist of one or multiple class files
Require a JVM to be started or already active

Java applications...

���������

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Java applets...

Are always downloaded into the Web browser first
Can be tested using the JDK appletviewer
Are written with platform independence in mind

no updates to local files
no calls to non-Java code

Are not allowed to access local files and resources
unless special security features are used

Can only communicate with the server (TCP/IP address) from which it
was downloaded originally

unless special security features are used
Are especially meant for intelligent GUIs
Are not recommended for Internet applications

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Java servlets...

Execute in the JVM of a Web Application Server
Use a generic set of APIs which are part of the servlet framework
(javax.servlet.*)

the level of this framework is important!
Usually invoked directly from a browser through the HTTP protocol

http://myserver.com/myWebApp/Myservlet

���������	�
�������
����������

Provide the "controller" layer

use JavaServer Pages for the presentation logic
call Enterprise Beans for executing business logic

Are portable between Web Application Servers
provided the servlet framework levels are the same!

Can be built/generated using a variety of Java development tools

���������

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Servlet life cycle

init() destroy()

service()
doGet()
doPost()Requests

Loading Unloading

Responses

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
A typical servlet
import packages;

public class <name> extends HttpServlet {

Initialize variables for servlet

public void doGet(HttpServletRequest req, HttpServletResponse res) throws
javax.servlet.ServletException, java.io.IOException
{

PrintWriter out = res.getWriter();
res.setContentType("text/html");
Initialize more variables...;
build html...;
return;

}

public void doPost(HttpServletRequest req, HttpServletResponse res) throws
javax.servlet.ServletException, java.io.IOException
{

PrintWriter out = res.getWriter();
do post processing...;
build output html...;

}
}

���������

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
HTTP servlet runtime flow (1)

HTTP POST
OrderEntryServlet?
action=open&cust=1111

Web
Application

Server

[running]

Client
Web

Browser

[loc = OrderEntryServlet?
customer=1111]

Order
Entry

Servlet

[instance
does not

exist]

{determine that
servlet is unloaded}

load class

Order
Entry

Servlet

[class
exists]

OrderEntryServlet class

new()
[instance exists]

init(config)
[instance initialized]

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

HTTP POST
OrderEntryServlet?
action=open&
cust=1111

Web
Application

Server

[running]

Client
Web

Browser

[loc = OrderEntryServlet?
customer=1111]

Order
Entry

Servlet

[instance
initialized]

service(req, res)

"1111"

[res = "...<H1>..."]

[loc = OrderEntryServlet?
action=add&cust=1111]

"HTML for Order Details 1000" {repeat}

req.getParameter("action")

"open"
req.getParameter("customer")

{open order for
Customer 1111}res.getPrintWriter().println(

"...<H1>Order: <%=orderID%></H1>")

HTTP servlet runtime flow (2)

���
����

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
JavaServer Pages...

Are developed as dynamic html pages...
...but upon implementation are converted into servlets
...and thus run as servlets as well

Provide the "view" layer, i.e. the presentation
Contain mostly html statements, but Java code can be imbedded to
make the page dynamic
Specific JSP tags are available too

for instance, to access JavaBeans
������������	�
������������
��callPage method) or directly from browser
(url or html page link)

http://myserver.com/myWebApp/Myjsp.jsp
Are portable between Web Application Servers

provided the JSP levels are the same!

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Can be used in a tool or application via the Bean (public) interface
properties
get and set methods
events

Are actually also a set of classes
Types of Beans

Command beans
specific business logic task
simple, uniform usage pattern
hide specific connector interfaces
cache information for single round-trip message

Access beans
Build or buy
The main difference between a Bean and an ordinary Java class is that
a Bean has one single interface which makes it easy and uniform to
access

JavaBeans

�����
���

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Enterprise Beans...

Are server-side Java "components"
Are implemented in "containers", which are built into an Application
Server
Exhibit enterprise-class type of service

persistence, transaction, naming, messaging, concurrency etc.
QOS is specified using "deployment descriptors"
the container interprets the QOS and propagates the requested
service(s) to the application server

Are built using an EJB-capable tool
Come in two main flavors:

entity Bean
manages business data persistence

session Bean
manages sessions

but other types start appearing, such as EMBs (Enterprise Media
Beans) and MDBs (Message Driven Beans)

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Java types of applications...

Presentation
logic

Business
logic

Data
access
logic

JSP

CICS/IMS Tran.

Applet

Controller
logic

Servlet+Bean

DB2 Stored Proc.

EJB

Notes:
1. An applet can contain intelligent presentation logic, so that network traffic can be reduced significantly. However, the downside of applets is

that they are not always compatible with all versions of browsers in the world.
2. Once a JSP is downloaded to browser, the user interface becomes static (html). Eventual intelligence (such as field cheking has to be

executed
on the server.

3. A servlet can theoretically also take care of the presentation (generated html) on one side and the complete business/data access logic
on the other side. However, in the latest model the role of the servlet stays limited to controller logic.

4. In EJBs, the goal is to execute the data access logic as much as possible in the container (CMP). However, a persistent EJB will always
contain some data access related logic.

�!���
���

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
DataSources

Factory for connections to a physical data source
Replacement to the DriverManager facility

required when running in a managed environment (WebSphere)
Typically registered with a naming service based on the Java Naming
and Directory (JNDI) API
DataSource objects have properties that can be modified when
necessary

code accessing the data source does not need to be changed

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
DataSources and JNDI

�����
���

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Agenda

Java basics
Java 2 programming model
A further exploration of EJBs
An overview of Web services
What's new in WebSphere Application Server V5

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
J2EE services require middleware and OS

J2EE API

Container

O/S functions

Used by application developer
Enforced by tooling

Implemented in middleware

Base operating system
Resource managers

�����
���

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Role of the container

Provides an execution environment for J2EE components
Web container: servlets and JavaServer Pages
EJB container: session and entity Beans

Provides a buffer between the Java components and the outside world
(intercepts all calls)
Concurrency

multiple invocations of Java components at the same time by
multiple users

Access to and pooling of resources
connections, threads etc.

For EJBs:
manages remote access to the Bean
manages enterprise Bean lifecycle
transaction management (includes support for distributed
transactions)
persistence (entity Beans)
security

It depends on the platform on how the container is implemented

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Container
EJB Server

Naming Transaction Persistence

Web
Client

EJBHome
(EmployeeHome)

EJBObject
(Employee)

Enterprise Bean
(EmployeeBean)

EJB
Context

Deployment
Descriptor

The EJB runtime model

The "Home" interface provides methods for creating, destroying and
locating EJBs
The "Remote" interface defines the business methods offered by an
EJB

���
�
��

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

The container:
manages EJB life cycle
mediates EJB access
manages transactions
imposes security

Multiple EJBs can exist in a 'container'

EJB

EJB container

Java
client

EJB container

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
EJB container is implemented in an EJB server

Java
client

EJB container

EJB server

The EJB specification does not define the relationship
between the container and the EJB server

EJB

"�#�$�%�&

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Enterprise JavaBeans - flow (1)

1. a deployment descriptor tells the
container how to run the enterprise
Bean (transactional, security, etc)

deployment
descriptors

Java
classes

deployed jar file

1

1

Java
client

EJB container

EJB

EJB server

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Enterprise JavaBeans - flow (2)

JNDI
server

2. enterprise Bean home is 'published' to JNDI server
3. client finds enterprise Bean with a JNDI lookup

Java Naming
and Directory
server

deployed
jar file

1

Java
client

EJB container

EJB

EJB server

12

3

%('�$�%
)

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Enterprise JavaBeans - flow (3)

EJB container

4. a create() is requested by the client based
on the object info from the JNDI server

EJBHome
create()Java

client

EJB server

4

JNDI
server

deployed
jar file

12

3

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Enterprise JavaBeans - flow (4)

5. the container creates the enterprise bean, drives ejbCreate() method on the bean, and

6. exposes its business methods via a 'remote interface' object reference returned to client

EJB container

EJBHome
create()Java

client

EJB server

4

JNDI
server

deployed
jar file

12

3

EJBObject

6

EJB
55

ejbCreate()

%�"�$�%�%

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Enterprise JavaBeans - flow (5)

7. the client can now drive business methods on the enterprise bean
8. the intermediate object is used so that the container can impose transactionality,

security, etc.

EJB container

EJBHome
create()Java

client

EJB server

4

JNDI
server

deployed
jar file

12

3

EJBObject

6

EJB

5

5

7
Business
methods

8

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Enterprise JavaBeans - flow (6)

when the client is done with the enterprise Bean, it can request a remove(),
the container drives ejbRemove() on the enterprise Bean

EJB container

EJBHome
remove()Java

client

EJB server

JNDI
server

deployed
jar file

EJBObject EJB

ejbRemove()

%
*�$�%�+

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

home interface

remote interface

enterprise
Bean

classes

deployment
descriptor

EJB-jar file

What do you need for an Enterprise Bean?

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

session
 Beans

entity
Beans

 Account
Manager #1

Account #1

Account #3

Account #2
Account
database

 Account
Manager #2

From client #1

From client #2

Bean-managed or
container-managed

persistence
stateful or
stateless

EJB types

%�,
$�%�-

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Entity Bean

Encapsulates ‘permanent’ data;
usually represents a row in a database (EJB 1.1 spec.)

Container Managed Persistence (CMP)
container drives the persistence on behalf of the Bean

Bean Managed Persistence (BMP)
the Bean drives its persistence itself

Identified by a primary key
Backed by a database or back-end application

RDBM via JDBC
transactional EIS via JCA Connector

Will not run in CICS TS 2.1 (although CICS session Beans can invoke
entity beans in other EJS)

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Session Bean

Tied to the lifetime of a given client session
Generally short-lived
Container or Bean managed transactions

Bean managed allows Beans (your code) to determine transaction
demarcation

Stateless
do not maintain conversational state
workload-balanced across replicated servers
can be pooled and reused by any client
example: calculator with no memory

Stateful
do maintain conversational state
can be passivated

in memory if possible, in DB2 if necessary
can move from one server instance to another if necessary
example: shopping cart

%�#�$�*�&

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Calling an Enterprise bean is quite complex...

Obtaining the context to the name server
Looking up the home of the enterprise bean using the name service
context
Creating an enterprise bean instance from the enterprise bean home,
which returns an enterprise bean proxy object
Accessing the remote methods of the enterprise bean instance through
an enterprise bean proxy object using a remote call

quite costly, as each get or set is a remote call

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Access beans make life a lot simpler!

Can be generated easily using wizards in WSAD
Are used on the client side of the application

mostly in servlets
JSPs
entity beans calling other entity beans

Four types:
Java bean wrappers

use an entity bean in a client program like an ordinary Java bean
Copy helpers

cache (remote) entity bean data, so improve performance
client component works with data (get/set) locally

EJB factories (WSAD only)
Data classes (WSAD only)

Improve performance, as they cache entity bean data on th client side

�'�$��)

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Servlets vs. session Beans

EJBs can encapsulate calls to other transaction managers within the same transaction
context
EJBs policies applied more granularly
EJB security

more methods to ACL check
RMI/IIOP local/remote transparency

backed by naming directory

Why would I use a session Bean and not just a servlet?

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

An Enterprise Java Server (EJS) is required to run EJBs and runs those
EJBs according to the J2EE framework

Transaction Monitor

ORB

HTTP server

J
V
M

Enterprise
JavaBeans

Directory Security Persistence

RMI
IIOP

IIOP

HTTP

Data sources

Any client

via
RMI/IIOP

via
gateway

EJB-enabled Application Server

Enterprise services

Enterprise Java
APIs

CICS
IMS
DB2
Oracle
SAP
....

Where to run EJBs?

.�/�0�.�1

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Agenda

Java basics
Java 2 programming model
A further exploration of EJBs
An overview of Web services
What's new in WebSphere Application Server V5

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Web Services - WSDL

Service

SOAP Binding
Provider

Service/Port_A

Making the same Service Available via Multiple Bindings

http Binding
Provider

Service/Port_B

JMS Binding
Provider

Service/Port_C

WSDL Document

definition
type

message
portType

operation
input
output

binding_JMS
binding_http
binding_SOAP

service
port_A
port_B
port_C

.�.�0�.�2

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Web Services in J2EE

WebSphere

Bean

Development

Public
UDDI

WSDL

Client Invoke

Discover Publish

Soap Endpoint

Deploy and
Install

Dispatch

Private
UDDI

Binding
Specific

Stub

URL

Register

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Web Services Gateway

Public
UDDI

Gateway

Client
Service
Provider

Receive
Request

Route
Request

Map
Publish

Protocol Conversion

JMS
Binding

WSDL

SOAP
Binding

WSDL'

SOAP JMS

.�3
0�.�4

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
Agenda

Java basics
Java 2 programming model
A further exploration of EJBs
An overview of Web services
What's new in WebSphere Application Server V5

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

J2EE 1.3 Highlights
EJB 2.0

Various improvements, will be addressed in a minute
Servlet 2.3, JSP 1.2, JMS 1.0, JAXP 1.1, JAAS 1.0
JCA 1.0 full compliance

Connection manager support for XA-based resource managers
Support for non-DB2 databases

Web Services
Standards compliant (J2EE 1.4)

SOAP 2.3, WSDL 1.1, JAX-RPC 1.0, JSR 109
AXIS (apache) - SOAP Engine and JAX-RPC reference
implementation

UDDI - discovery and publish WSDL, private UDDI directory
Web Services Gateway not supported yet

All WebSphere family APIs supported at WAS ND level

The WebSphere V5 Programming Model

.�5�0
2�6

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Agenda

EJB 2.0
Message-driven Beans
Local Interfaces
CMP and Container Managed Relationships
Many-to-many O/R Mappings
EJB Query Language
EJB Home methods
EJB inheritance

Servlet 2.3
JSP 1.2
J2EE application packaging

The new J2EE 1.3 specs...implemented in WAS V5

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Local home and local entity interfaces (in memory - no marshaling)
Message Driven Beans (MDB)
Container-managed association relationships
EJB Query Language with WAS extensions (MAX, order by)
Features for high performance persistence

Read Ahead
Pre-loads groups and working-sets of beans in a single datastore
operation by following selected bean relationships

Optimistic Concurreny Control
Minimizes the amount of time data is actually locked during
updates and thus increases overall throughput in heavily-used
applications
Improve application performance without changing semantic
behavior

CMP Data Cache
Holds the results of finders.

Long lifetime caching, for beans that change only infrequently and
remain read-only across many transactions or are configured for
optimistic transactional control

EJB 2.0: Features at a glance

2!7�0
2�8

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Persistence manager

Symbol Price Change

Symbol Price Change

Symbol Price Change

Quote Data Cache
Symbol Price Change

Symbol Price Change

Symbol Price Change

Quote Data Cache
Database

Symbol

Price

Change

Quote
Entity Bean

Symbol

Price

Change

Symbol

Price

Change

Quote
Entity Bean

EJB Container
Cache miss

Cache hit

Persistence manager

Symbol Price Change

Symbol Price Change

Symbol Price Change

Quote Data Cache
Symbol Price Change

Symbol Price Change

Symbol Price Change

Quote Data Cache
Database

Symbol

Price

Change

Quote
Entity Bean

Symbol

Price

Change

Symbol

Price

Change

Quote
Entity Bean

EJB Container
Cache miss

Cache hit

EJB 2.0: CMP Data Cache

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Why is messaging beneficial?
Loose Coupling
Enables asynchronous communications among applications

Application data sent as a message
Message consumers may not always be active

Messages stored and forwarded to consumers at a later time
Various QoS

Guaranteed delivery
Transactional
Security

Messaging
Middleware

PUT GET

Messaging

9�:�;
9�<

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Message Driven Beans (MDBs)
special Enterprise Beans oriented to processing messages
listen on JMS destinations
modeled after a stateless session bean
developer writes onMessage(java.jms.Message message) method
container creates instances as required
server gets connections to queue or topic, receives the message and
delivers it to the MDB

Client Program

Message PUT Message GET

Message GET
Message PUT

Inbound

Outbound

WebSphere

EJBEJB

EJB Container

ServletServlet

JSPJSP

Servlet Container

JN
D

I

JTA

R
M

I/IIO
P

JD
B

C

Java
Mail

JAF
J2EE Server Core

Message-Driven Beans (MDB)

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Automatic consumption of messages
No polling needed in the application code

Reduce application code
Synchronous communication between Queue and Listener
Leave resource management to the container
WebSphere can now receive 3 styles of requests directly : JMS, IIOP
and HTTP

RMI/IIOP

Business
Bean

EJB Container

J2EE Server Core

JN
D

I

JTA

R
M

I/IIO
P

JD
B

C

Java
Mail

JAF

Queue
Message
Driven B

Benefits of Message-Driven Beans

=�>�?
=�=

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Basics
Stateless enterprise beans, server side components
Transactional
Point-to-point and Pub/Sub supported
No remote interface, no remote home

Container activates MDBs as needed

Bean Provider responsibilities
Implement javax.jms.MessageListener interface

onMessage() method performs necessary message processing
actions

Application Deployer responsibilities
Associate bean with JMS destinations at deployment

Deployment descriptor holds association information

Message-driven Beans Programming Model

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

J2EE 1.3 requires the messaging engine to be part of the base product
We have chosen to ship a subset of MQSeries and MQ System
Integrator (MQSI) to fulfill this requirement
QoS fenced in several areas, one of which is accessibility to Shared
Queues
Installation of Integral Provider is optional
Current MQ customers already have a serviceable code base and
procedures
Upgrade to full function MQ product is a very small FMID that
removes fences
The Integral Provider has very limited configuration capability

Full JMS QoS will require an MQ license
Support for message sizes greater than 63K is a current MQ issue

WebSphere V5 - Integral JMS Message Provider

=�@
?
=�A

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
J2EE Version 1.3 messaging requirements

J2EE Version 1.2 required APIs only
JMS Interface only, no implementation

J2EE Version 1.3 requires:
JMS Interfaces and Provider (Implementation)
Point to Point & Publish Subscribe
Message Driven Bean (MDB) Support

New part of EJB 2.0 spec
Application Server can consume JMS messages directly

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
EJB 2.0: Local interfaces

Used by clients in the same JVM
May be more efficient
Not restricted to serializable types
Can be cast rather than narrowed
Arguments passed by reference

must not be stored as part of called bean's state
Does not involve method permission checks

=�B�?�@�C

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

JVM-1 JVM-2

Session
or Entity

BeansEJB 1.1

Session
or Entity

Beans

REMOTE
Interface

EJB
Client

REMOTE
Interface

JVM-1 JVM-2

Session
or Entity

Beans

Session
or Entity

Beans

REMOTE
Interface

EJB
Client

REMOTE
Interface

Session
or Entity

Beans

LOCAL
Interface

Local interface: Target EJB and client
located in same JVM
Most of the EJB clients in a typical
application reside in the same JVM

EJB 2.0

New

EJB 2.0: Local Interfaces

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Transfer
Session

Bean

Account
Entity
Bean

Transfer Funds
Servlet

Create Account
Servlet

Local and
Remote

Interfaces

Local
Interfaces

Remote

Local

Local

Local

Java Client

Web Browser

Database Tables:
Account

EJB 2.0: Local Interface Example

@(D�?�@
E

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

TransferFunds
Servlet

Transfer
Session Bean

Context ic = new InitialContext();
Object tHomeObject = ic.lookup("java:comp/env/ejb/Transfer")

EJB Local Ref
ejb/Transfer

Bindings

Local Call

Remote Java
Client

Context ic = new InitialContext();
ObjectHomeObject = ic.lookup("java:comp/env/ejb/Transfer")

JNDI name
ejb/MyBank/Transfer

EJB Ref
ejb/Transfer

Bindings

Remote Call

EJB 2.0: Local Interface - Client Calls

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Local Interface added to EJB Deployment Descritor (ejb-jar.xml)

Sample content of ejb-jar.xml
...
<enterprise-beans>
 <entity id="Transfer">
 <display-name>Transfer</display-name>
 <ejb-name>Transfer</ejb-name>
 <home>com.ibm.examples.mybank.ejb.TransferHome</home>
 <remote>com.ibm.examples.mybank.ejb.Transfer</remote>

<local-home>com.ibm.examples.mybank.ejb.TransferLocalHome</local-home>
 <local>com.ibm.examples.mybank.ejb.TransferLocal</local>
 <ejb-class>com.ibm.examples.mybank.ejb.TransferBean</ejb-class>
 ...
 </entity>
 ...
 </enterprise-beans>

EJB 2.0: Local Interface - Deployment Descriptor

F�G�H�F�I

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Traditional Remote (RMI)

Interface extends
EJBObject

Local Interfaces

Interface extends
EJBLocalObject

Home extends EJBHome Home extends
EJBLocalHome

Remote method calls More efficient local calls

Location Independent Client and EJB need to reside
in the same JVM

Parms passed by value Parms passed by
reference

Remote excpt thrown on
methods Regular Java Exceptions

Use narrow() to cast Use regular Java class
cast

EJB 2.0: Local and Remote Interface Comparison

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

EJB 1.1
Persistent data defined by Bean's instance variables

EJB 2.0
Container supplied Persistent Manager

Define more complex relationship
Persistence Manager generates the mapping of CMP entities to
RDB

EJB 2.0 CMP bean class
Bean declared as abstract class
No fields in bean class - fields and relationships defined in descriptor
Persistent fields and relationship are accessed using accessor
methods (getters and setters)
CMP fields must be Java primitives or serializable
Persistent Manager generates concrete implementation of the
abstract bean class

Based on the XML deployment descriptor and the bean class

EJB 2.0: Container Managed Persistence

F
J�H�F�K

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

CMP added to EJB Deployment Descriptor (ejb-jar.xml)

CMP fields

<enterprise-beans>
 <entity id="Customer">
 <ejb-name>Customer</ejb-name>
 ...

<abstract-schema-name>Customer</abstract-schema-name>
 <cmp-field id="Customer_number">
 <field-name>customerNumber</field-name>
 </cmp-field>
 <cmp-field id="Customer_name">
 <field-name>name</field-name>
 </cmp-field>
 <cmp-field id="Customer_state">
 <field-name>state</field-name>
 </cmp-field>
 ...
 </entity>
 ...
</enterprise-beans>

EJB 2.0 CMP: Deployment Descriptor

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Container Managed Relation (CMR)
Allows multiple entity beans to have relationships among themselves
Container manages the relationship (= referential integrity)
One-to-One, One-to-Many and Many-to-Many relationships
Described in Deployment Descriptor
Relationships accessed through setter and getter methods
Members of a CMR must have a local interface

Benefits:
Allows the developer to create complex relationship and let the
container manage those relationships
Container can create more efficient code to interact with the back
end systems

EJB 2.0: Container Managed Relationships

F�F
H�F�L

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Transfer
Session

Bean

Account
Entity
Bean

Transfer Funds
Servlet

Create Account
Servlet

Customer
Entity
Bean

Unidirectional
1-M

Relationship

Java Client

Web Browser

Database Tables:
Account & Customer

EJB 2.0: CMP and CMR Example

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

 <relationships id="Relationships_1">
 <ejb-relation id="EJBRelation_1">
 <ejb-relation-name>CustomerToAccounts</ejb-relation-name>
 <ejb-relationship-role id="EJBRelationshipRole_1">
 <ejb-relationship-role-name>OwnerOfAccounts</ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source id="RoleSource_1">
 <ejb-name>Customer</ejb-name>
 </relationship-role-source>
 <cmr-field id="CMRField_1">
 <cmr-field-name>accounts</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role id="EJBRelationshipRole_2">
 <ejb-relationship-role-name>OwnedAccounts</ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source id="RoleSource_2">
 <ejb-name>Account</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>
 </relationships> One-Many Relationship between "Customer" and "Account"

One Customer can have Many Accounts

One side of the
Relation -

"Customer"

Other side of
the Relation -

"Account"

EJB 2.0: CMR - Deployment Descriptor

F�M�H
L�N

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

javax.ejb.EntityBean
(Interface)

Abstract CustomerBean
Class - provided by the Bean

Developer

Concrete Bean Class
(Generated by Persistent

Manager)

Extends

Implements

Instance Hierarchy public abstract class CustomerBean implements EntityBean
{
 ...
 //**** CMP fields
 public abstract String getName();
 public abstract void setName(String newName);

public abstract String getTaxID();
public abstract void setTaxID(String newTaxID);

public abstract void setCustomerNumber(long s);
public abstract long getCustomerNumber();

 //**** CMR fields 1-many relationship to Account
 public abstract Collection getAccounts();
 public abstract void setAccounts(Collection accounts);

 ...
}

CMP Entity Bean class is ABSTRACT
No explicit CMP and CMR fields - only abstract Getter/Setter

Sample CustomerBean code

EJB 2.0: CMP/CMR Entity Bean Example

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

EJB QL is a query specification language for the finder and select
methods of CMP Entity beans
Defined in Deployment descriptor
Based on SQL

Search on the persistent attributes of an EJB and associated bean
attributes

EJB QL is used in Finder methods
Defined in the home interfaces (local or remote)
Returns entity objects (local or remote)

There is no need to provide EJB QL for findByPrimaryKey()
method

Compiled into SQL at deployment time based on the schema
mapping for the bean

Benefits of EJB QL
EJB QL is independent of the bean's mapping to a RDB
EJB QL is portable

EJB Query Language (EJB QL)

L!O�H
L�P

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

EJB QL specification added to EJB Deployment Descriptor (ejb-jar.xml)

<query id="Query_1">
 <description>Query to obtain the accounts exceeding a certain balance.</description>
 <query-method id="QueryMethod_1">
 <method-name>ejbSelectAccountsByBalance</method-name>
 <method-params>
 <method-param>float</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT a.accountNumber FROM Customer c, IN(c.accounts) a WHERE a.balance > ?1
 </ejb-ql>
</query>

Example: EJB QL as shown in EJB Deployment Descriptor

EJB QL - Deployment Descriptor

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

EJB QL query is a string with a SQL-like syntax. It contains:
SELECT clause that specifies the EJB object or cmp field to return
a FROM clause that names the bean collections
an optional WHERE clause that contains search predicates over the
collections
Can also contains input parameters that correspond to the
arguments of the finder method

SELECT <object or ejb field>

FROM <ejb abstract schema, navigational expression>

WHERE <conditions for selection>

Designates an EJB or a cmp or
cmr field
Supports DISTINCT selections

Designates an EJB abstract
schema
In addition, supports
navigation to any reacheable
EJB

Contains conditional expressions involving cmp/cmr fields
Supports navigation
Predicates similar to SQL (including LIKE, IN, BETWEEN, etc.)
Allows inclusion of substitution parameters

EJB QL - Syntax

L�G�H
L�I

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

YesYesNoSubqueries, aggregations, group by, and
having clauses

= > <> <= > <> <= and <> onlyString comparisons

YesYesNoSQL Date/time expressions

YesOptionalRequiredSelect clause

YesYesYesScalar functions

YesYesNoOrder by

YesNoNoMultiple element select clauses

YesYesNoInheritance

YesYesNoEXISTS predicate

YesNoNoDynamic Query APIs

YesNoNoDependent Value methods

YesYesNoDependent Value attributes

YesYesNoDelimited identifiers

YesYesYesCalendar comparisons

YesNoNoBean methods

WS Enterprise
Dynamic Query

WebSphere
Query

EBJ 2.0 SpecEJB 2.0 Spec .vs. WebSphere EJB QL

YesYesNoSubqueries, aggregations, group by, and
having clauses

= > <> <= > <> <= and <> onlyString comparisons

YesYesNoSQL Date/time expressions

YesOptionalRequiredSelect clause

YesYesYesScalar functions

YesYesNoOrder by

YesNoNoMultiple element select clauses

YesYesNoInheritance

YesYesNoEXISTS predicate

YesNoNoDynamic Query APIs

YesNoNoDependent Value methods

YesYesNoDependent Value attributes

YesYesNoDelimited identifiers

YesYesYesCalendar comparisons

YesNoNoBean methods

WS Enterprise
Dynamic Query

WebSphere
Query

EBJ 2.0 SpecEJB 2.0 Spec .vs. WebSphere EJB QL

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Not just limited to create and finder methods
Conceptually similar to ‘class’ methods

Business logic that is dedicated to the bean class but independent
from a particular instance

Access to the beans attributes is not allowed within the business logic of
the home method

EJB 2.0: Home methods

L�J�H
L�K

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
EJB 2.0: inheritance

The ability for entity beans to inherit from other entity beans
IBM Extension provided by WSAD V5
Two different approaches for mapping to data model:

Single Table
All beans in inheritance hierarchy map to same table
Table not normalized, contains columns for all beans

Root Leaf - Table for each bean in hierarchy
Parent table contains columns specific to parent fields an
discriminator column
Child tables has same key as parent and specific columns

Home interfaces do not inherit from each other.
Finder methods on home return instances of correct child beans.

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Servlet Filtering
Application Lifecycle Listeners and Events
Enhanced Internationalization Support
Some API changes

Servlet 2.3 Changes/Additions

L�F
H
L�L

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Allows developer to:
Intercept a request before it reaches a servlet
Modify the response after the servlet has processed the request and
before the client receives the response
Send the response directly without sending to the next filter or the
Servlet

Request

Response

...

Request

Response

Process
Request

Process
Response

Block
Request

Filter-1

Process
Request

Process
Response

Block
Request

Filter-2

Process
Request

Process
Response

Block
Request

Filter-N

Web Container

Web Browser Servlet

Servlet 2.3: Filters

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Benefits:
 Authentication, Logging and auditing, Encryption
Image conversion, Data compression, Tokenizing filters
Filters that trigger resource access events
XSL/T filters that transform XML content
MIME-type chain filters
Caching filters

Downside
If any filters fail, the request is not completed

Servlet 2.3: Filters

Q�R�S
R�T

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Filter specification added to Web Deployment Descriptor (web.xml)
Specify filter name, filter class and optional initialization parameters

For each filter, define the filter mapping
This specifies on which resource(s) to associate the filter
Can be associated with a single Web resource (Servlet, JSP, Static
resource), or a group of Web resources (via URI)

Filters are invoked in the same sequence as defined in the DD

<filter-mapping>
 <filter-name>Image Filter</filter-name>
 <servlet-name>ImageServlet</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>Logging Filter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Example: Filter Definition Example: Corresponding Filter Mappings

<filter>
 <filter-name>Image Filter</filter-name>
 <filter-class>com.acme.ImageFilter</filter-class>
 </filter>
 <filter>
 <filter-name>Logging Filter</filter-name>
 <filter-class>com.sample.LoggingFilter</filter-class>
</filter>

Servlet 2.3 Filters - Deployment Descriptor

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Application and Event Listener
Listener objects listen for state changes (lifecycle changes and
attribute changes) in the ServletContext and HttpSession objects
Developer provides a list of these listeners (class files) in the Web
module (WAR)
Listeners apply to the entire Web module

Benefits
Allows greater control over interactions with the ServletContext and
HttpSession objects
Web developer can monitor the state of the Web application and
perform functions

Open a database connection for the entire Web application when
the ServletContext is created
Close the database connection on the shutdown of the
ServletContext

Servlet 2.3: Application and Event Listener

R!U�S
R�V

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

XML Views of JSP Pages
New Classes for Tag Library Validation

New Tag Support for Iteration
Tag Library Support for Application Lifecycle Events
Tag Library Lifecycle Improvements

JSP 1.2: Changes/Additions

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

JSP can be an XML document
Called JSP document
Cannot mix standard syntax and XML syntax in the same jsp file

Uses the same file extension (.jsp) as a JSP page
JSP document must have jsp:root as top element

jsp:root cannot appear in a regular JSP page
Benefits:

Validate JSP document against DTD, XSD
XML tools can manipulate JSP documents
JSP document can be generated from textual representation by
applying an XML transformation, such as XSLT
Will become more important as more and more content is authored
as XML

JSP 1.2: XML Views of JSP Pages

R�W�S
R�X

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

<html>
<title>positiveTagLib</title>
<body>
<%@ taglib uri="http://java.apache.org/tomcat/examples-taglib" prefix="eg" %>
<%@ taglib uri="/tomcat/taglib" prefix="test" %>
<%@ taglib uri="WEB-INF/tlds/my.tld" prefix="temp" %>
<eg:test toBrowser="true" att1="Working">
Positive Test taglib directive </eg:test>
</body>
</html>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:eg="http://java.apache.org/tomcat/examples-taglib"
 xmlns:test="urn:jsptld:/tomcat/taglib"
 xmlns:temp="urn:jsptld:/WEB-INF/tlds/my.tld"
 version="1.2">
<jsp:text><![CDATA[<html>
<title>positiveTagLig</title>
<body>

]]</jsp:text>
<eg:test toBrowser="true" att1="Working>
<jsp:text>Positive test taglib directive</jsp:text>
</eg:test>
<jsp:text><![CDATA[
</body>
</html>
]]</jsp:text>
</jsp:root>

Example:
Equivalent JSP

document

Example:
Standard JSP page

JSP 1.2: XML Sytax Example

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

New Classes for Tag Library Validation
Added in the tag libraries to support validation phase introduced with
the support of XML syntax

Support for Application Lifecycle Events
To support application events support in Servlet 2.3
When processing the web application deployment descriptor at
application start time, take specific note of each included directive

Tag Library Lifecycle Improvements
Add a resetCustomAttributes() method to the Tag interface

This will allow the reuse of tag instances in cases where the
invocations of the tag do not set the same attributes

New Tag Support for Iteration
supports iteration without BodyContent

New TryCatchFinally Interface

JSP 1.2: New Tag Support

R�Y�S
R�Z

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

The development and deployment of J2EE applications requires all
kinds of disciplines hardly unified in one person
We can distinguish between the following roles:

Web developer
Integrator
Business logic developer
Framework developer
Application assembler
Deployer
System administrator

In smaller projects, one person performs several roles, but in larger
projects each person specializes in just one role

J2EE roles

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Web Developer ("View")
Creates user interface
HTML, input for JSPs,
Javascript etc.

Business logic Developer ("Model")
Builds enterprise beans
Also deals with the usage of
connectors, JMS and such
Needs good database access skills

Application Assembler
Creates Enterprise application (.ear file)
Packages it as portable .ear file
Resolves references

Deployer
Creates physical resources on server
(i.e. Datasources, etc..)
Imports .ear file into the server

J2EE Server/Container

Integrator ("Controller")
Builds the integration between
enterprise beans and Web
components (controller)
Most probably uses an MVC
framework, such as struts

Framework Developer
Selects/builds frameworks to
increase productivity
Most framework functionality is
used in the controller layer

Who is doing what?

R�[
S
R�Q

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

EJB
DD

Web
DD

Client
DD

HTML,
GIF, etc.

Application
DD

Enterprise
Bean

Client
ClassServlet JSP

EJB
Module
.JAR file

Web
Module

.WAR file

Client
Module
.JAR file

DD = Deployment Descriptor

J2EE
Application

.EAR fileInstalled
RAR

New in
J2EE1.3

J2EE 1.3 Enterprise Application Packaging

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

Enterprise
Bean

Client
Class

Web
DD Client

DDServlet

EJB
Module
.JAR file

Web
Module

.WAR file

Client
Module
.JAR file

J2EE
Application

.EAR file

IBM IBM
BindingsBindings

IBM IBM
ExtensionsExtensions

IBM IBM
BindingsBindings

IBM IBM
BindingsBindings

IBMIBM
ExtensionsExtensions

Schema Schema
MapMap

Schema Schema
AttributesAttributes

Application
DD

JSP HTML,
GIF, etc.

Table Table
CreationCreation

DD = Deployment Descriptor

IBM IBM
BindingsBindings

IBMIBM
ExtensionsExtensions

EJB
DD

Installed
RAR

WebSphere J2EE 1.3 Application Packaging

R�R�S�U�T�T

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks

"Applications" are contained in an Enterprise Archive file (.ear file)
An .ear file is just a .jar file with a specific directory structure and format

can be created using jar command
An application contains one or more "modules". module types are:

EJBs --> .jar file
EJB modules actually contain "components"

Web components --> .war file
An .ear file contains metadata (i.e.application.xml file) which describes
the application content
J2EE servers receive applications in the form of an .ear file

J2EE servers have containers within them that understand a
particular module type

At this moment, .ear files are not fully binary compatible yet between
different environments

reprocessing via the AAT is still necessary
The content of .ear files can be browsed like a .zip file

Some notes on the files

ITSO Poughkeepsie IBM � z/OS & zSeries 2003 Technical Update

© 2003 IBM CorporationeBusiness on zSeries

Redbooks
<?xml version="1.0"
encoding="ISO-8859-1"?>

<application>

<display-name>MyApp</display-name>

<module>
<web>
<web-uri>webappABC.war</web-uri>
<context-root> /Payroll </context-root>
</web>
</module>

<module>
<web>
<web-uri>myStuff.war </web-uri>
<context-root> /MyJunk </context-root>
</web>
</module>

<module>
<ejb>EJB123.jar</ejb>
</module>

</application>

/usr/MyEar

 EJB123.jar
 webappABC.war
 myStuff.war

 /meta-inf

application.xml
 manifest.mf

.ear file example

U�T�U�S�U�T�V

