
Advanced Technical Support

© 2006 IBM Corporation

CICS Transaction Server V3.1
Web Services

Steve Zemblowski
zem@us.ibm.com

Advanced Technical Support

© 2006 IBM Corporation2

Web Services - Notes

This presentation will describe the Web Services capabilities provided by CICS Transaction Server 3.1

Advanced Technical Support

© 2006 IBM Corporation3

Acknowledgements

The following are trademarks of International Business Machines
Corporation in the United States, other countries, or both: IBM,
CICS, CICS TS, CICS Transaction Server, DB2, MQ, OS/390,
S/390, WebSphere, z/OS, zSeries, Parallel Sysplex.

Java, and all Java-based trademarks and logos, are trademarks
of Sun Microsystems, Inc. in the United States, other countries,
or both.

Microsoft, Windows, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or
both.

Other company, product, and service names and logos may be
trademarks or service marks of others.

Advanced Technical Support

© 2006 IBM Corporation4

Web Services - Notes

This page intentionally left blank.

Advanced Technical Support

© 2006 IBM Corporation5

Session Agenda

Introduction to Web Services
– Architecture
– WSDL
– SOAP
Application development scenarios
– Enablement styles
– Available tools
CICS system configuration
– Resource definition
CICS runtime support
Documentation
Summary

Advanced Technical Support

© 2006 IBM Corporation6

Web Services - Notes

This page intentionally left blank.

Advanced Technical Support

© 2006 IBM Corporation7

Reasons to use Web Services in CICS

Transform Existing Applications

Extend existing applications to new audiences and
opportunities

Exploit existing resources and skills

Improve performance of existing workloads for faster
response times and reduced costs

Improve system management to enable management of
more with less

Simplify the development process to reduce application
development costs and time to deployment

Advanced Technical Support

© 2006 IBM Corporation8

Web Services - Notes

Customers are looking to redefine their applications quickly and effectively to meet their business demands. There is a need for rapid business
process adaptation and reshaping. Application maintenance
consuming 60-80% of IT budgets and staff turnover or retirement lessens individual programmer familiarity with existing systems, application
maintenance efficiency is key driver.

There is also a need to meet increasing development workloads. The growth in complexity of development platforms and integration needs will
force organizations to turn away from code-centric development practices in exchange for more
efficient development paradigms. They need better tooling to deliver more effective and efficient development processes.

Industry adoption and proliferation of Web Services capabilities into development platforms and tools are making it easier for companies to
adopt a service-based development approach. The need for richer than HTML experiences and
disconnected operations will lead most companies to adopt multiple user interfaces delivery architectures.

Finally, Because of recent pressures for cost reductions and market demand for better processes, we expect continued pressure from
business executives to switch to new, business-differentiating activities. There will be a continued strong drive from business for process
improvements.

Advanced Technical Support

© 2006 IBM Corporation9

Web Services Introduction

What is a Web Service?
– A Web Service is an interface that:

• Describes a collection of operations
• Is network accessible
• Uses standardized XML messaging

A Web Service is described:
– Using standard, formal XML notation (service description)
– Covers all the details necessary to interact with the service

• Message formats
• Transport protocols and location
• Independent of hardware or software platform
• Independent of programming language

Advanced Technical Support

© 2006 IBM Corporation10

Web Services - Notes

“A common program to program communication model built on existing and emerging standards,
such as, HTTP, XML, SOAP, WSDL and UDDI.”

A Web service is an interface that describes a collection of operations that are network accessible
through standardized XML messaging.

A Web service is described using a standard, formal XML notion, called its service description. It
covers all the details necessary to interact with the service, including message formats (that detail the
operations), transport protocols and location.

The interface hides the implementation details of the service, allowing it to be used independently of
the hardware or software platform on which it is implemented and also independently of the
programming language in which it is written. This allows and encourages Web Services-based
applications to be loosely coupled, component-oriented, cross-technology implementations.

Web Services fulfill a specific task or a set of tasks. They can be used alone or with other Web
Services to carry out a complex aggregation or a business transaction.

Advanced Technical Support

© 2006 IBM Corporation11

Web Services Introduction…

CICS Transaction Server V3.1 supports the following Web Services
standards
– HTTP 1.0 and 1.1: Transport layer *
– SOAP 1.1 and 1.2: Describes the Web Services message formats
– WSDL: Describes the interface to a Web Service
– WS-I Basic Profile 1.1: Interoperability between providers and requesters using

SOAP
– WS-Coordination: Extensible coordination framework
– WS-AtomicTransaction: For transactionality
– WS-Security: Authentication and encryption of all or part of a message

• Will be delivered through the service channel at a later date

* WebSphere MQ can also be used as the transport layer

Advanced Technical Support

© 2006 IBM Corporation12

Web Services - Notes

CICS TS V3.1 provides capabilities to enable CICS based applications to be integrated with a Service
Oriented Architecture (SOA), enabling them to be exposed as Web Services. CICS has the ability to
act as a Web Services service provider and service requestor which means it can be seen as a full
participant in this B2B world. The infrastructure provided as part of CICS TS V3.1 includes a
distributed transaction coordination capability compatible with the WS-AtomicTransaction
specification. It will also include a WS-Security compatible implementation for securing SOAP
messages. This will be delivered, via the service channel, at a later date

WSDL 1.1 specification is here http://www.w3.org/TR/wsdl
SOAP 1.1 specification is here http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
SOAP 1.2 specification is here http://www.w3.org/TR/soap12-part0/
XML 1.0 specification is here http://www.w3.org/TR/2004/REC-xml-20040204/

Advanced Technical Support

© 2006 IBM Corporation13

Web Services Introduction…

Architecture
– Service provider

• “Owns” the service
• Creates the WSDL
• Publishes the WSDL
• Processes requests

– Service requester
• “Finds” the service
• Binds to the service

– Invokes the service using the WSDL
– Service Registry

• Hosts the service description
• Optional for statically bound requesters

Service
Requester

Service
ProviderBind

Find
WSDL, UDDI

Publish
WSDL, UDDI

Service
Registry

SOAP

Advanced Technical Support

© 2006 IBM Corporation14

Web Services - Notes
The Web services architecture is based upon interactions between three components: a service provider, a service
requester, and an optional service registry.

The Service Provider: This is the platform that hosts access to the service.

The Service Requester: This is the application that is looking for and invoking or initiating an interaction with a service..

The Service Registry: The registry is a place where service providers publish their service descriptions, and where
service requesters find them. The registry is an optional component of the Web services architecture.For statically
bound service requesters a service provider can send the description directly to service requesters. Likewise, service
requesters can obtain a service description from other sources besides a service registry, such as a local file or an
FTP site.

The interactions between the components involve the following operations:

Publish: In order to be accessible, a service needs to “publish” its description such that the requester can subsequently
find it. Where it is published can vary depending upon the requirements of the application.

Find: The service requester uses a find operation to retrieve the service description from the registry. The find
operation may be involved in two different lifecycle phases for the service requester: at design time in order to
retrieve the services interface description for program development, and at runtime in order to retrieve the services
binding and location description for invocation.

Bind: The service requester uses the service description to connect to the service provider and interact with the web
service implementation.

Advanced Technical Support

© 2006 IBM Corporation15

Web Services Introduction…
Web Services Description Language (WSDL)
– XML based language to describe an interface of a service

– WSDL comprises of
• type
• portType
• message
• operation
• binding
• service
• port

type

binding

service
port

Input

Output

portType

message

definition

operation

abstract
service
interface
definition

how the
service is
implemented

location of
service

Advanced Technical Support

© 2006 IBM Corporation16

Web Services - Notes

Web service descriptions are expressed in the XML application known as Web Service Description
Language (WSDL). The structure of WSDL allows a service description to be partitioned into 2 parts.
An abstract service interface definition that describes the interfaces of the service, and makes it
possible to write programs that implement, and invoke, the service. A concrete service
implementation definition that describes the location on the network (or endpoint) of the provider’s
Web service, and other implementation specific details, and that makes it possible for a service
requester to connect to the service provider. A WSDL document uses the following major elements.

<types> A container for data type definitions using some type system (such as XML Schema).
Defines the data types used within the message. The <types> element is not required when all
messages consist of simple data types.
<message> Specifies which XML data types are used to define the input and output parameters of
an operation.
<portType> Defines the set of operations supported by one or more endpoints. Within a <portType>

element, each operation is described by an <operation> element.
<operation> Specifies which XML messages can appear in the input and output data flows. An
operation is comparable with a method signature in a programming language.
<binding> Describes the protocol, data format, security and other attributes for a particular
<portType> element.
<port> Specifies the network address of an endpoint, and associates it with a <binding> element.
<service> Defines the Web service as a collection of related endpoints. A <service> element
contains one or more <port> elements.

Advanced Technical Support

© 2006 IBM Corporation17

Web Services Introduction…

What does the “standardized
XML message” look like?
–SOAP 1.1 or 1.2 message

• Soap envelope <Envelope>
consisting of:

– Optional header element, <Header>
– Body element, <Body>
– Optional fault element <Fault>, may be

added by service provider

SOAP Envelope

SOAP Header

Header Block

Header Block

SOAP Body

Body sub-element

Body sub-element

Body sub-element

Advanced Technical Support

© 2006 IBM Corporation18

Web Services - Notes

SOAP is a protocol for the exchange of information in a distributed environment. SOAP messages are
encoded as XML documents, and can be exchanged using a variety of underlying protocols.

A SOAP message is encoded as an XML document, consisting of an <Envelope> element, which
contains an optional <Header> element, and a mandatory <Body> element. The <fault> element,
contained within the <Body> is used for reporting errors.

The SOAP <Envelope> is the outermost element in every SOAP message, and contains two child
elements, an optional <Header> and a mandatory <Body>.

The SOAP <Header> is an optional element within the SOAP message, and is used to pass
information in SOAP messages that is not application payload. The SOAP header allows features to
be added to a SOAP message in a decentralized manner without prior agreement between the
communicating parties. SOAP defines a few attributes that can be used to indicate who should deal
with a feature and whether it is optional or mandatory.

The SOAP <body>, a mandatory element, containing information intended for the ultimate recipient of
the message.

The SOAP <fault>, an element contained within the <body>, used for reporting errors.

Advanced Technical Support

© 2006 IBM Corporation19

Production and usage of WSDL

Service
Requester

Service
Provider

Input message

Output message

WSDL

location
protocol
operation
message format

IDE tools IDE tools

Requests from Service Requesters will be generated
based on the information contained in WSDL

IDE tools help generation of WSDL or application

Advanced Technical Support

© 2006 IBM Corporation20

Web Services - Notes

A web service provider needs to produce a WSDL document to describe the service
which is being provided. This document is then published, using UDDI for example, or
otherwise communicated to potential requesters of the service. Various tools may be
used to assist with the generation of the WSDL.

A web service requester needs to obtain the WSDL description of the service which it
wants to use. Based on the WSDL, an application can be produced which will be able to
request the services described in the WSDL.

IDE – Integrated Development Environment

Advanced Technical Support

© 2006 IBM Corporation21

Web Services Enablement Styles

Bottom
up

Language
structure(s)

Top
down

WSDL

CICS as
provider

Web service
provider

Web service
requester

CICS as
requester

CICS

Advanced Technical Support

© 2006 IBM Corporation22

Web Services - Notes

Top down– means that we start with a WSDL document and convert it into a form
useable as a CICS Web Service.

Bottom up – means that we start with a language structure and convert it into a form
useable as a CICS Web Service.

Requester – means that CICS is the user of a Web Service provided elsewhere.

Provider – means that CICS is the host of the Web Service which is being invoked from
elsewhere.

Advanced Technical Support

© 2006 IBM Corporation23

Web Services Enablement Styles…

Generate

Existing
Business App

(e.g. COBOL, C, C++, PLI)

New service: WSDL

Bottom-up

Generate

Existing service
description WSDL

New
Business App (COBOL,

C, C++, PLI)

Top-down

Map and
Generate

Meet in the middle

Existing
Business App

(COBOL, C, C++, PLI)

Existing service
description WSDL

Advanced Technical Support

© 2006 IBM Corporation24

Web Services - Notes

There are three types of approaches in a Web service application development.

With the top down approach, the development will start with a WSDL. Users will define the interface
and created the WSDL, then create a Web service application based on that interface. The interface
will be well defined but will need to create the whole service provider application.

With the bottom up approach, an existing application will be used for the service provider application.
The WSDL will be created based on the interface which the application uses. It is the easiest way to
implement a Web service, but the interface to the service requester may not be very suitable.

The meet in the middle approach is where there is an existing application, but using a better interface
for the service requester. In this case, a wrapper program will be used to take the convert the existing
application interface to and from the interface to the requester. It will have both advantages of the
other approaches, with the suitable interface and low development cost.

Advanced Technical Support

© 2006 IBM Corporation25

Bottom up approach in CICS TS V3.1

An existing CICS application is to be exposed as a web service
– Language structure need to be extracted from the source code
– If the COMMAREA is very complex, it may be necessary to write a

‘wrapper program’ to map the COMMAREA into a form which can be
handled by the CICS tooling

– Use a CICS supplied batch procedure (DFHLS2WS) to convert
language structure to WSDL
• The language structure can be COBOL, PL/I, C or C++

– Use WebSphere Developer for z/OS to convert language structure to
WSDL
• The language structure can be COBOL

– Publish the generated WSDL, on UDDI for example
– A file called the WSBind file is also produced

Advanced Technical Support

© 2006 IBM Corporation26

Web Services - Notes

For an existing CICS application, the COMMAREA will already be mapped by a
language structure. The language structure is used as input to a CICS supplied utility
which runs as a batch procedure. The procedure is called DFHLS2WS. This converts the
supplied language structure into a WSDL document. WebSphere Developer for z/OS
can also be used to convert a COBOL language structure into a WSDL document.

A special file, the WSBind file, is also generated. This needs to be placed in an HFS
directory where CICS will subsequently find it and install it.

The WSDL so produced may then be published to the potential clients through the UDDI
for example.

Advanced Technical Support

© 2006 IBM Corporation27

Top down approach in CICS TS V3.1

A supplied WSDL definition of a web service is
to be implemented as a CICS application
–Use CICS supplied batch procedure (DFHWS2LS) to

convert the WSDL into a language structure.

–Use WebSphere Developer for z/OS to generate a
COBOL language structure from the WSDL
• Use the generated language structure in a CICS

application program.

A file called the WSBind file is also produced.

Advanced Technical Support

© 2006 IBM Corporation28

Web Services - Notes

The WSDL may be obtained from UDDI or by other means. The CICS tooling can handle
DOC literal, RPC literal or wrapped Doc literal forms of WSDL as input. The outputs from
the batch procedure are a WSBind file, as before, and a language structure which maps
the data definitions from the WSDL into a structure in the specified high level
programming language (COBOL, PL/I, C or C++).

Advanced Technical Support

© 2006 IBM Corporation29

Meet in the middle approach in CICS TS V3.1

Pure ‘top down’ or ‘bottom up’ will not be suitable in all situations
In such situations, a wrapper program may provide a solution

– If the language structure uses data types not supported by the utility tools
• A wrapper program may be used to map COMMAREA to a supported data type

– When there are unnecessary fields in the language structure which you do not
want to expose externally
• A wrapper program can be used to hide unnecessary fields
• WebSphere Developer for z/OS could be used to hide the fields

– When the application is written in assembler
• A wrapper program could map the assembler DSECT into a COBOL copybook

– When an existing piece of WSDL is to be used with an existing program
• The WSDL and the program may not match exactly. A wrapper program could

perform some intermediate mappings

Advanced Technical Support

© 2006 IBM Corporation30

Web Services - Notes

Sometimes a pure ‘top down’ or ‘bottom up’ approach will not be satisfactory. The foil
lists some circumstances when is might be desirable to have a wrapper program
between the data mapping and the business logic.

Advanced Technical Support

© 2006 IBM Corporation31

Where a wrapper program fits in

Pipeline
Conversion
(SOAP ↔

COMMAREA)

Business
Logic

Wrapper
Program

Advanced Technical Support

© 2006 IBM Corporation32

Web Services - Notes

The foil shows where a wrapper program fits into the scheme of things. It sits between
the conversion operation and the business logic. It is then able to perform data
manipulation either on the way in, on the way out or both ways.

Advanced Technical Support

© 2006 IBM Corporation33

CICS Resource Definitions

Define the transport
– HTTP: TCPIPSERVICE for inbound requests

– WMQ: QLOCAL definition

Find the Web Service
– URIMAP definition

Define the qualities of service
– PIPELINE definition

Define the Web Service execution environment
– WEBSERVICE definition

Advanced Technical Support

© 2006 IBM Corporation34

Web Services - Notes

There are a number of interrelated resource definitions required to process a Web Service in CICS 31.

A resource definition is required to define the transport. Both http and WebSphere MQSeries can be used
as transports. For http, a CICS TCPIPSERVICE definition is required. For WMQ, a request queue must be
defined with a QLOCAL definition.

Next CICS must determine which Web Service is required. CICS 3.1 will use a URIMAP definition to map
the incoming Universal Resource Identified (URI) to a specific WEBSERVICE definition. The associate
PIPELINE definition is determined from the matching URIMAP definition.

The PIPELINE definition is used to specify which processing nodes or message handlers are to operate on
a Web Service request.

The WEBSERVICE definition is used to specify how CICS is to execute the application. The WSBIND file,
specified in the WEBSERVICE definition, is used to tell CICS which application program to execute, if a
COMMAREA or CHANNEL is used and how CICS is to transform the message between the SOAP XML
format and COMMAREA format.

Advanced Technical Support

© 2006 IBM Corporation35

CICS Resource Definitions…

TCPIPSERVICE definition
–Required when CICS is a service provider

–URIMAP matching will occur when
protocol (HTTP) is specified

Advanced Technical Support

© 2006 IBM Corporation36

Web Services - Notes

A TCPIPSERVICE definition is required when CICS is the service provider and the chosen
transport is HTTP. That is, the TCPIPSERVICE definition is only required for inbound
requests.

When a TCPIPSERVICE definition is used with protocol HTTP, the URIMAP definitions will
be matched against the URI. If a match is found (it better be for Web Services) then some
parameters will be taken from the URIMAP definition instead of the TCPIPSERVICE
definition

Advanced Technical Support

© 2006 IBM Corporation37

CICS Resource Definitions…
WMQ definition
–Required when

CICS is a service
provider

–Pick the target up
from the RFH2
header if present,
otherwise default
to trigger data

DEFINE

QLOCAL(‘queuename’)

DESCR(‘description’)

PROCESS(‘processname’)

INITQ(‘initqueue’)

TRIGGER

TRIGTYPE(FIRST)

TRIGDATA(‘path part of URI’)

BOTHRESH(nnn)

BOQNAME(‘requeuename’)

Advanced Technical Support

© 2006 IBM Corporation38

Web Services - Notes
A local WebSphere MQ queue definition is required when CICS is the service provider and the chosen transport is WMQ.

For CICS as a service provider:
Define
A QLOCAL object that defines the local queue used to store the messages until they are processed
A PROCESS object that specifies the CICS transaction CPIL that will process messages from the local queue

Define the input queue
DEFINE
QLOCAL ('queuename')
DESCR ('description')
PROCESS(processname)
INITQ('initqueue')
TRIGGER
TRIGTYPE(FIRST)
TRIGDATA('default target service')
BOTHRESH(nnn)
BOQNAME('requeuename')

queuename is the local queue name
processname is the name of the process instance that identifies the application started by the queue manager when a
trigger event occurs. The name should match that in the definition of the process object
initqueue is the name of the initiation queue to be used (e.g. as specified in IQ= in CSQCPARM in INITPARM in SIT)
default target service is the default target service to be used if not specified on the request, flows in RFH2 header. The
target service is of the form '/string' and is used to match the path of a URIMAP definition. For example, '/ SOAP/test/test1'.
Note that the first character must be '/', the next characters do not need to be SOAP. This is a difference from the SOAP
for CICS feature, where TRIGDATA('SOAP/target_program') was specified.

Advanced Technical Support

© 2006 IBM Corporation39

CICS Resource Definitions…
URIMAP definition
– Locates the Web Service and the

Pipeline resources required to
process the request

– USAGE (PIPELINE)
• Specifies a Web Service request

– Matching the request URI
• HOST (www.mycics.co.uk)
• PATH (web_service_identifier)

– TCPIPSERVICE
• Restricts matching to a single port

– PIPELINE
• Names the Pipeline to process this

request
– WEBSERVICE

• Names the associated Web Service for
this request

– TRANSACTION
• Alias transaction for the Web Service

Urimap ==>
Group ==>
DEscription ==>
STatus ==> Enabled Enabled | Disabled
USAge ==> Server Server | Client | Pipeline

UNIVERSAL RESOURCE IDENTIFIER
SCheme ==> HTTP HTTP | HTTPS
HOST ==>
(Mixed Case) ==>
PAth ==>
(Mixed Case) ==>

==>
==>
==>

ASSOCIATED CICS RESOURCES
TCpipservice ==>
Analyzer ==> No No | Yes
COnverter ==>
TRansaction ==>
PRogram ==>
PIpeline ==>
Webservice ==> (Mixed Case)

Advanced Technical Support

© 2006 IBM Corporation40

Web Services - Notes
The URIMAP definition is used to match a URI to a WEBSERVICE definition and a PIPELINE
definition. You should have a unique URI for each Web Service that you want to use in CICS.

The parameters that apply to a Web Service form of the URIMAP are:

USAGE (PIPELINE): This indicates that the URIMAP definition is applicable to a web service and
that the PIPELINE and WEBSERVICE parameters must be specified.

The SCHEME, HOST and PATH values must be specified to allow matching of the URI. A URI,
such as,http://www.mycics.co.uk/webservice would be decomposed to SCHEME (http),
HOST (www.mycics.co.uk) and PATH (webservice)

TCPIPSERVICE is optional on the URIMAP definition for USAGE (PIPELINE). If a named
TCPIPSERVICE is specified then only requests from that specific port will be matched against this
URIMAP definition.

The PIPELINE parameter names an installed PIPELINE resource which will be used to determine
the processing nodes or message handlers that will be invoked for this Web Service request.

The WEBSERVICE parameter names an installed WEBSERVICE requests that defines the execution
environment that lets a CICS application program operate as a Web service provider or requester.

The TRANSACTION parameter specifies the 1-4 character name of an alias transaction that is to be
used to run the user application that composes a response to the web service request.

Advanced Technical Support

© 2006 IBM Corporation41

CICS Resource Definitions…
PIPELINE definition
– Defines the processing nodes

for a web service request
• Different pipelines for:

– Requester and provider

– CONFIGFILE
• HFS file that contains

information about the message
handlers that will act on a
service request and on the
response

– SHELF
• HFS directory for CICS use

– WSDIR
• Pickup directory for WS Bind

files

PIPELINE ==>
Group ==>
Description ==>
Status ==> Enabled

Enabled | Disabled
Configfile ==>
(Mixed Case) ==>

==>
==>
==>

Shelf ==>
(Mixed Case) ==>

==>
==>
==>

Wsdir ==>
(Mixed Case) ==>

==>
==>
==>

Advanced Technical Support

© 2006 IBM Corporation42

Web Services - Notes
A PIPELINE resource definition is used when a CICS application is in the role of a Web service provider or requester. It
provides information about the processing nodes which will act on a service request and on the response. Typically, a single
PIPELINE definition defines an infrastructure that can be used by many applications. There will be separate configuration
files for CICS applications acting as a service provider and service requester.

The information about the processing nodes is supplied indirectly: the PIPELINE specifies the name of an HFS configuration
file (CONFIGFILE) which contains an XML description of the nodes and their configuration.

The SHELF is an HFS directory where CICS will copy information about installed Web Services. CICS regions into which the
PIPELINE definition is installed must have full permissions to the shelf directory--read, write, and the ability to create
subdirectories. A single shelf directory may be shared by multiple CICS regions and by multiple PIPELINE definitions. Within
a shelf directory, each CICS region uses a separate subdirectory to keep its files separate from those of other CICS regions.
Within each region's directory, each PIPELINE uses a separate subdirectory. After a CICS region performs a cold or initial
start, it deletes its subdirectories from the shelf before trying to use the shelf. You should not attempt to modify the contents
of a shelf that is referred to by an installed PIPELINE definition. If you do, the effects are unpredictable

The Web service binding directory (WSDIR) contains Web service binding files that are associated with a PIPELINE, and
that are to be installed automatically by the CICS scanning mechanism. When the PIPELINE definition is installed, CICS
scans the directory and automatically installs any Web service binding files it finds there. Note that this happens regardless
of whether the PIPELINE is installed in enabled or disabled state. A CEMT PERFORM PIPELINE SCAN command can be
used to force CICS to scan the Web Service binding directory.

An inbound Web service request (that is, a request by which a client invokes a Web service in CICS) is associated with a
PIPELINE resource by the URIMAP resource. The URIMAP identifies the PIPELINE resource that applies to the URI
associated with the request; the PIPELINE specifies the processing that is to be performed on the message.

Advanced Technical Support

© 2006 IBM Corporation43

CICS Resource Definitions…

Pipeline configuration file
– XML file that describes:

• The mandatory <service> and optional <transport>
elements

• The sequence of message handlers to be invoked
– Different applications will require different

configuration files
• Service provider
• Service requester
• SOAP 1.1
• SOAP 1.2
• User message handlers

– e.g. Extract USERID from the message

Advanced Technical Support

© 2006 IBM Corporation44

Web Services - Notes

The Pipeline configuration file, named in a PIPELINE resource definition, is used to describe
the series of message handlers (i.e. the pipeline) to process the request. The configuration

file is an XML document, stored in HFS and can be edited with any XML editor.

The configuration file will contain mandatory <service> and optional <transport> elements
along with application handler <apphandler> and a service parameter list
<service_parameter_list>.

Different applications will require different configuration files. There are different pipeline
configurations necessary for a service provider and service requester as well as different
configurations for processing SOAP 1.1 and 1.2 messages. CICS provides the configuration
files necessary for CICS to function as both a service requester and a service provider
handling both SOAP 1.1 and 1.2 messages.

The configuration file can also be used to add your own user message handlers. An
example would be a user message handler to extract user identification from the message
to determine which USERID and transaction id should be used to process the message.

Advanced Technical Support

© 2006 IBM Corporation45

CICS Resource Definitions…

Pipeline XML configuration for a service
provider

<?xml version="1.0" encoding="UTF-8"?>

<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"

.....xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

.....xsi:schemaLocation=“http://www.ibm.com/software/htp/cics/pipeline
provider.xsd”>

<service>

<terminal_handler>

<cics_soap_1.1_handler/>

</terminal_handler>

</service>

<apphandler>DFHPITP</apphandler>

</provider_pipeline>

Advanced Technical Support

© 2006 IBM Corporation46

Web Services - Notes

The simplest provider pipeline configuration:

A single CICS supplied SOAP 1.1 handler as the terminal handler to parse the soap
envelope.

AppHandler is specified as DFHPITP. This is the CICS module to be invoked by the
pipeline.

The CICS Infocenter gives several examples of configuration files which are more
complex than the one shown in the foil.

Advanced Technical Support

© 2006 IBM Corporation47

CICS Resource Definitions…
WEBSERVICE definition
– Defines the application specific

details for a web service request
• Defines the execution environment

for Web Service application
– PIPELINE

• Name of the pipeline where this
WEBSERVICE is to be installed

– WSBIND
• HFS name of the WS Binding file

– WSDLFILE
• HFS name of the WSDL file

– VALIDATION
• Run time SOAP message

validation against WSDL schema

WEBSERVICE ==>
Group ==>
Description ==>
Pipeline ==>
(Mixed Case) ==>

==>
==>
==>

WSBIND ==>
(Mixed Case) ==>

==>
==>
==>

WSDLFILE ==>
(Mixed Case) ==>

==>
==>

VALIDATION ==> NO NO|YES

Advanced Technical Support

© 2006 IBM Corporation48

Web Services - Notes
A WEBSERVICE resource defines the execution environment that lets a CICS application program
operate as a Web service provider or requester. The Web service interaction in which the CICS
application participates uses SOAP messaging, and is formally described with Web service
description language (WSDL).

The execution environment contains three components that are specified in the WEBSERVICE
attributes:

A pipeline
A Web service binding file
A Web service description

Although CICS provides the usual resource definition mechanisms for creating WEBSERVICE
resources, and installing them in your CICS region, there is an alternative strategy which you can
use. You can use the scanning mechanism to install WEBSERVICE resources in your running CICS
region.

Validation: Specifies whether full validation of SOAP messages against the corresponding schema
in the Web service description should be performed at run-time. Validating a SOAP message against
its schema incurs considerable processing overhead, and you should normally specify VALIDATION(NO).
Full validation ensures that all SOAP messages which are sent and received are valid XML with
respect to the XML schema. If VALIDATION(NO) is specified, sufficient validation is performed to
ensure that the message contains well-formed XML.

Advanced Technical Support

© 2006 IBM Corporation49

CICS Web Service Resource Interrelationships

HFS

WSBind

WSDL

WSDL2CICS

WEBSERVICE
PIPELINE
WSBIND
WSDLFILE

PIPELINE
CONFIGFILE
SHELF
WSDIR

config

URIMAP
USAGE(PIPELINE)
HOST
PATH
PIPELINE
WEBSERVICE

COMMAREA
structure

dynamic
install

pick-up directory

BINDING=
URI=
PGMNAME=
PGMINT=

CICS

Advanced Technical Support

© 2006 IBM Corporation50

Web Services - Notes

This chart shows the interrelationships between the CICS resource definitions necessary to support Web Services.

The CICS WSDL utility will produce a WSDL file from a language structure (copybook) or a language structure from
WSDL. As part of the generation process a Web Services Binding file (WSBIND) will be produced. The WSBIND file
contains information about the CICS program to be invoked, the name of the WSDL file, the local URI and information
necessary to populate a COMMAREA from XML and vice versa. Both the WSBIND and the WSDL file will be used by
the executing CICS region.

The URIMAP definition will name both the PIPELINE definition and the WEBSERVICE definition. Optionally, the
URIMAP can specify an installed TCPIPSERVICE name to restrict the matching to information for the specific port
named in that resource definition.

The PIPELINE resource definition will copy installed WEBSERVICE definitions to its SHELF. The WEBSERVICE
definitions can be dynamically created through the use of the pick-up directory (WSDIR).

The WEBSERVICE definition will name the PIPELINE definition that contains the configuration information
(CONFIGFILE) on which message handlers are invoked when processing this Web Service.

Advanced Technical Support

© 2006 IBM Corporation51

Defining the CICS Web Services Resources

Define a TCPIPSERVICE (or WMQ) and a
PIPELINE
Then install the PIPELINE definition and issue
CEMT PERFORM PIPELINE SCAN

CICS uses the PIPELINE definition to
– Locate the WSBind file
– From the WSBind file, CICS will dynamically create

a WEBSERVICE resource
– CICS will also dynamically create a URIMAP

definition
Can define everything individually if preferred

Advanced Technical Support

© 2006 IBM Corporation52

Web Services - Notes

Setting up the CICS resources is not as difficult as it might seem. It is only necessary to
define the TCPIPSERVICE (or WMQ) and the PIPELINE. Place the WSBind file generated
from the batch tooling into the HFS directory specified in the PIPELINE definition. Then
either install the PIPELINE definition or issue a CEMT PERFORM PIPELINE SCAN
command.

The PIPELINE definition contains the directory name where the WSBind file can be found.
From the WSBind file, CICS will dynamically create the Web Service resource definition.
This provides CICS with enough information to be able dynamically to create a URIMAP
definition as well. So, as long as you create a valid PIPELINE definition and put the WSBind
file in the correct location, CICS will do the rest.

The necessary definitions can all be input and installed manually if preferred. The definitions
can be put into a group and the group installed as for any CICS resource.

Advanced Technical Support

© 2006 IBM Corporation53

CICS as a service provider

HFS

WSDL

WSBind

CICS provided
utility

WEBSERVICE

pipeline
config

URIMAP

CICS TS V3.1TCPIPSERVICE

CPIHCWXNService
Requester

URIMAP
matching

CSOL

Pipeline

handlers

handlers

handlers

SOAP message

data mapping

Business
Logic

Language
structure

dynamic
install

dynamic
install

PIPELINE

Advanced Technical Support

© 2006 IBM Corporation54

Web Services - Notes

This diagram illustrates the flow and the CICS resources necessary to allow CICS to function as a service
provider.

Advanced Technical Support

© 2006 IBM Corporation55

CICS as a service requester

CICS TS V3.1
User Transaction

data mapping

Business
Logic

Pipeline

handlers

handlers

handlers
PIPELINE

WEBSERVICE

dynamic
install

HFS

WSBind

WSDL

pipeline
config

CICS provided
utility

Service
Provider

SOAP message

Language
structure

Advanced Technical Support

© 2006 IBM Corporation56

Web Services - Notes

This diagram illustrates the flow and the CICS resources necessary to allow CICS to function as a service
requester.

Advanced Technical Support

© 2006 IBM Corporation57

CICS as a service provider

CICS as a service requester

CICS usage of the WSBind file

business
logic

pipelineService
Requester

CICS

Data mapping

WSDL

CICS Web services

business
logic pipeline Service

Provider

CICS

Data mapping

WSDL

CICS Web services

HLL data structureSOAP body

SOAP bodyHLL data structure

WSBind
file

WEBSERVICE
resource

WEBSERVICE
resource

WSBind
file

Advanced Technical Support

© 2006 IBM Corporation58

Web Services - Notes

This diagram shows the usage of the WSBind file and WEBSERVICE resource in the runtime.

When the SOAP message arrives, the data mapping component in the pipeline will use the
information from the WSBind file and convert the SOAP message into a language structure. When the
message is converted it will use the information in the WEBSERVICE resource and call the target
application. When the target application returns with a response language structure, it will convert it
back into a SOAP message.

It is mostly the same when CICS is a service requester. The service requester will invoke the Web
service processing. The data mapping component will convert the language structure into a SOAP
message an run the outbound pipeline. The pipeline will use the information in the WEBSERVICE
resource and send the SOAP message outbound. When the response is received, the data mapping
component will convert the response SOAP message back into a language structure and pass it back
to the service requester program.

The WSDL file is optional. It is only needed if a validation of the SOAP message is required.

Advanced Technical Support

© 2006 IBM Corporation59

Application Programming Interfaces

Invoking a Web Service from a CICS application
program

–CICS as a service requester
• EXEC CICS INVOKE WEBSERVICE ()

CHANNEL () URI () OPERATION ()
– WEBSERVICE: name of the Web Service to be invoked
– CHANNEL: name of the channel containing data to be

passed to the Web Service (DFHWS-DATA container)
– URI: Universal Resource Identifier of the Web Service

(optional)
– OPERATION: name of the operation to be invoked

Advanced Technical Support

© 2006 IBM Corporation60

Web Services - Notes

The purpose of the command is to invoke the web service named and pass the channel into which the
relevant containers have been put.

The container DFHWS-DATA must be created by the requesting application before the INVOKE
WEBSERVICE command is issued.

The same container, DFHWS-DATA, will hold the response, if any, from the Web Service.

Advanced Technical Support

© 2006 IBM Corporation61

Application Programming Interfaces…

If an application needs to issue a SOAP fault
message

– EXEC CICS SOAPFAULT CREATE

– EXEC CICS SOAPFAULT ADD

– EXEC CICS SOAPFAULT DELETE

Using the API takes care of whether the SOAP
message is SOAP 1.1 or SOAP 1.2 automatically

Advanced Technical Support

© 2006 IBM Corporation

Advanced Technical Support

© 2006 IBM Corporation63

Web Services Statistics

Pipeline statistics
– Name
– Configuration file
– Shelf directory
– WSBIND directory
– Use count

Web Service statistics
– Name
– Program interface
– Message validation
– PIPELINE name
– URIMAP name
– WSBIND file
– WSDL file
– Porttype
– Endpoint
– Program name
– Use count

Advanced Technical Support

© 2006 IBM Corporation64

Web Services - Notes
The foil summarizes the new statistics information which is available for pipelines and web
services.

Advanced Technical Support

© 2006 IBM Corporation65

Migration of the CICS TS Version 2 SOAP Feature

Coexistence supported for migration
– Version 2 feature may be installed on CICS TS 31
– Provides the same level of function as on Version 2

Migration to CICS TS 31 Web Services requires
– Modifying your message adapters to use the new interfaces
– Review your use of containers. The SOAP for CICS feature uses BTS

containers; the Web services support in CICS TS V3;1 does not use BTS.
The containers names used in the Web services support, are different from
the names used in the SOAP feature

– Replacing the user-written handlers with SOAP header handlers defined in
the PIPELINE configuration file

Advanced Technical Support

© 2006 IBM Corporation66

Notes
The SOAP for CICS feature, orderable with CICS TS V2.2 and V2.3, is not orderable with CICS TS V3.1. However, to assist migration for
customers who already have this feature, the feature may be used and is supported with CICS TS V3.1, and applications will continue to run.
Customers are recommended to migrate to the Web services support capabilities of CICS TS V3.1.

The SOAP for CICS feature relies to a considerable extent upon user-written code, and therefore it is not possible to set out a step-by-step
migration task. However, here are some of the things you will need to think about
.
Consider using the Web services assistant to construct and parse SOAP messages.

If you use SOAP messages, but decide not to use the Web services assistant, you may be able to reuse your existing code for constructing and
parsing the messages. However, you should consider whether to use the CICS-provided SOAP message handlers, because they are designed to
work with SOAP 1.1 and SOAP 1.2 messages.

Review your use of containers. The SOAP for CICS feature uses BTS containers, whereas CICS Transaction Server uses channel containers.

Consider how to migrate the function that was provided by your pipeline programs. The pipeline in the SOAP for CICS feature has a fixed number of
user-written programs, each with a designated purpose. The function provided by some of these programs is provided in CICS Transaction Server
by the CICS-provided SOAP message handlers, so you may be able to dispense with these programs altogether. The way that pipeline programs
communicate with CICS, and with one another, has changed, so you will need to review these programs to see if they can be reused in the new
environment.

In the SOAP for CICS feature, you could have just one pipeline for all your service provider applications, and one for all your service requesters. In
CICS Transaction Server, you can configure many different pipelines.

Advanced Technical Support

© 2006 IBM Corporation67

Additional Documentation

CICS TS 3.1 Release Guide, SC34-6421
CICS TS 3.1 Migration Guide(s)

CICS TS 3.1 URLs

–“Home Page”
• http://www.ibm.com/software/htp/cics/tserver/v31/

–Library
• http://www.ibm.com/software/htp/cics/library/cicstsforzos31.

html

Web Services Guide
– A new book in the CICS Infocenter for CICS TS V3.1

Advanced Technical Support

© 2006 IBM Corporation68

Web Services - Notes

This slide contains pointers to additional documentation.

Advanced Technical Support

© 2006 IBM Corporation69

Summary
CICS Support of Web Services
– Allows for re-use of existing business assets

• No change to application code
– Allows for development of new CICS applications using web

services
CICS infrastructure support
– CICS utilities

• WSDL to language structure generation (batch tool)
• Language structure to WSDL generation (batch tool)
• Runtime support for XML to COMMAREA and vice versa mapping

– Resource definitions on-line
• URIMAP
• PIPELINE
• WEBSERVICE

– EXEC support for outbound calls
Monitoring, statistics and problem determination support

Advanced Technical Support

© 2006 IBM Corporation70

Web Services - Notes

CICS Support of Web Services allows for the reuse of existing business assets in a Web Services
environment. Existing COMMAREA application programs can function as a service provider without
change.

The CICS Web Services support allows the development of new CICS applications that function as a
service requester invoking an existing web service.

CICS provides utilities that will generate a language structure (copybook) from existing Web
Service Definition Language (WSDL) or can generate WSDL from an existing language copybook. The
utility also generates information about the XML to COMMAREA transformation that allows CICS to
provide the message adapter function. In this role, CICS will be able to map the XML structure into an
existing COMMAREA and after the service provider application has finished, map the COMMAREA back
to an XML structure for subsequent transmission to the requester. CICS has the capability of not only
using a COMMAREA to pass information to the service program but can also use the new
CHANNEL/CONTAINER constructs, eliminating the 32k restriction that a COMMAREA imposes.

CICS provides RDO support for the definition of the URI mapping to a web service, definition and
configuration of the pipeline process and definition of the actual web service.

CICS provides the standard qualities of services for web support including monitoring, statistics and
problem determination support.

