

IBM Parallel System Support
Programs for AIX IBM

Performance Monitoring Guide
and Reference
Version 3 Release 1

 SA22-7353-00

IBM Parallel System Support
Programs for AIX IBM

Performance Monitoring Guide
and Reference
Version 3 Release 1

 SA22-7353-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

First Edition (October 1998)

This edition applies to Version 3 Release 1 of the IBM Parallel System Support Programs for AIX (PSSP) Licensed Program,
program number 5765-D51, and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+914+432-9405
FAX (Other Countries):

Your International Access Code +1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.rs6000.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book
� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Trademarks . ix
Publicly Available Software . x

About This Book . xi
Who Should Use This Book . xi
Typographic Conventions . xi
Abbreviated Names . xii
Command and Subroutine Format . xii

Performance Toolbox Parallel Extensions for AIX User's Guide 1

Chapter 1. Introducing Performance Toolbox Parallel Extensions for AIX . 3
How Does PTPE Work? . 3
PTPE Components . 4

Chapter 2. Planning for PTPE . 9
Understanding the Monitoring Hierarchy . 9
Performance Considerations . 9
SDR Considerations . 13
The perfmon User Group . 14
Statistic Limit . 14

Chapter 3. Installing PTPE . 15
Prerequisites . 15
PTPE Install Images . 15
PTPE Installation . 15

Chapter 4. Configuring PTPE . 19
Prerequisites . 19
Selecting a Standard Monitoring Hierarchy . 19

Chapter 5. Using PTPE . 23
Using the Run-Time Monitor . 23
Using the Performance Data Manager . 28
Using the ptpe.cf File . 40
Using SP Perspectives . 43

Chapter 6. Using the PTPE Application Programming Interface 47
Controlling Sessions . 48
Handling Data Types . 51
Controlling Performance Data . 68
Obtaining Performance Data . 77
Some General Cautions . 80
Compiling Source Code . 81

Performance Toolbox Parallel Extensions for AIX Command and Programming
Reference . 83

 Copyright IBM Corp. 1998 iii

Chapter 7. PTPE Commands . 85
ptpeconf . 86
ptpectrl . 88
ptpedump . 93
ptpegroup . 97
ptpehier . 99
ptpertm . 104
spdmdctrl . 106
spdm_dump . 109

Chapter 8. The PTPE API Subroutines . 113
PtpeAddHostToList . 114
PtpeAddStatToList . 116
PtpeArchDisableAllStats . 118
PtpeArchDisableStats . 123
PtpeArchEnableAllStats . 128
PtpeArchEnableStats . 133
PtpeArchGetStats . 138
PtpeArchQueryState . 144
PtpeArchQueryStats . 147
PtpeArchStartAllHosts . 152
PtpeArchStartHosts . 156
PtpeArchStopAllHosts . 161
PtpeArchStopHosts . 165
PtpeAssignStatsToHost . 170
PtpeChangeHostRates . 172
PtpeCloseSession . 176
PtpeColDisableAllStats . 178
PtpeColDisableStats . 183
PtpeColEnableAllStats . 188
PtpeColEnableStats . 193
PtpeColGetStats . 198
PtpeColQueryState . 203
PtpeColQueryStats . 206
PtpeColSetup . 211
PtpeColStart . 215
PtpeColStop . 220
PtpeDelHostFromList . 225
PtpeDelStatFromList . 227
PtpeEmptyHostList . 229
PtpeEmptyStatList . 231
PtpeFindHost . 233
PtpeFindStat . 235
PtpeFirstHost . 237
PtpeFirstStat . 239
PtpeFreeHostList . 241
PtpeFreeStatList . 243
PtpeGetHost . 245
PtpeGetHostResult . 247
PtpeGetHostStatList . 250
PtpeGetStatName . 252
PtpeGetStatResult . 254
PtpeGetStatTime . 256
PtpeGetStatType . 258

iv Monitoring Guide and Reference

PtpeGetStatValueFloat . 261
PtpeGetStatValueLong . 263
PtpeInitHostList . 265
PtpeInitStatList . 267
PtpeIsLastHost . 269
PtpeIsLastStat . 271
PtpeNextHost . 273
PtpeNextStat . 275
PtpeOpenSession . 277
PtpeQueryAllHostStatus . 280
PtpeQueryAvailHosts . 284
PtpeQueryAvailStats . 286
PtpeQueryHostRates . 291
PtpeQueryHostStatus . 293
PtpeRemoveStatsFromHost . 298
PtpeSetStatTime . 300
PtpeStatIsFloat . 303
PtpeStatIsLong . 305

Chapter 9. Diagnosing PTPE Problems and Messages 307
Diagnosing PTPE Problems . 307
PTPE Messages . 330
Error Messages . 331

Appendixes . 363

Appendix A. PTPE Files . 365
What PTPE Creates at Installation . 365
What PTPE Creates During Use . 367

Appendix B. PTPE Sample Application Program 369

Bibliography . 391
Finding Documentation on the World Wide Web 391
Accessing PSSP Documentation Online . 391
Manual Pages for Public Code . 391
RS/6000 SP Planning Publications . 392
RS/6000 SP Hardware Publications . 392
RS/6000 SP Switch Router Publications . 392
RS/6000 SP Software Publications . 392
AIX and Related Product Publications . 394
Red Books . 394
Non-IBM Publications . 395

Glossary of Terms and Abbreviations . 397

Index . 405

 Contents v

vi Monitoring Guide and Reference

 Figures

1. Monitoring Hierarchy by Frame . 6
2. PTPE Uses a Three-tiered Hierarchy . 9
3. Large vs. Small Reporting Groups . 11
4. Monitoring Hierarchy of Two Reporting Groups 30
5. Performance Toolbox Performance Statistic Display 34
6. The Performance Monitoring Perspective GUI 44
7. Data Type Relationships . 52
8. Statistical Lists Linked in Memory . 64

 Copyright IBM Corp. 1998 vii

viii Monitoring Guide and Reference

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

 Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States or other countries or both:

 AIX
 AIX/6000
 DATABASE 2
 DB2
 ES/9000
 ESCON
 HACMP/6000
 IBM
 IBMLink
 LoadLeveler
 NQS/MVS
 POWERparallel

 Copyright IBM Corp. 1998 ix

 POWERserver
 POWERstation
 RS/6000

RS/6000 Scalable POWERparallel Systems
Scalable POWERparallel Systems

 SP
 System/370
 System/390
 TURBOWAYS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

Other company, product, and service names, may be trademarks or service marks
of others.

Publicly Available Software
PSSP includes software that is publicly available:

expect Programmed dialogue with interactive programs

Kerberos Provides authentication of the execution of remote commands

NTP Network Time Protocol

Perl Practical Extraction and Report Language

SUP Software Update Protocol

Tcl Tool Command Language

TclX Tool Command Language Extended

Tk Tcl-based Tool Kit for X-windows

This book discusses the use of these products only as they apply specifically to the
RS/6000 SP system. The distribution for these products includes the source code
and associated documentation. (Kerberos does not ship source code.)
/usr/lpp/ssp/public contains the compressed tar files of the publicly available
software. (IBM has made minor modifications to the versions of Tcl and Tk used in
the SP system to improve their security characteristics. Therefore, the IBM-supplied
versions do not match exactly the versions you may build from the compressed tar
files.) All copyright notices in the documentation must be respected. You can find
version and distribution information for each of these products that are part of your
selected install options in the /usr/lpp/ssp/README/ssp.public.README file.

x Monitoring Guide and Reference

About This Book

This book describes how to install, use, administer, and maintain The Performance
Toolbox Parallel Extensions for AIX product. In addition, this book provides detailed
syntax and parameter information for all commands and subroutines included with
the PTPE programs. Problem determination information and a sample application
are also included.

For a list of related books and information about accessing online information, see
the bibliography in the back of the book.

This book applies to PSSP Version 3 Release 1. To find out what version of PSSP
is running on your control workstation (node 0), enter the following:

splst_versions -t -nð

In response, the system displays something similar to:

ð PSSP-3.1

If the response indicates PSSP-3.1, this book applies to the version of PSSP that is
running on your system.

To find out what version of PSSP is running on the nodes of your system, enter the
following from your control workstation:

splst_versions -t -G

In response, the system displays something similar to:

1 PSSP-3.1
2 PSSP-3.1
7 PSSP-2.4
8 PSSP-2.2

If the response indicates PSSP-3.1, this book applies to the version of PSSP that is
running on your system.

If you are running mixed levels of PSSP, be sure to maintain and refer to the
appropriate documentation for whatever versions of PSSP you are running.

Who Should Use This Book
This book is intended for system administrators and those responsible for RS/6000
Scalable POWERparallel (SP) Systems performance.

 Typographic Conventions
This book uses the following typographic conventions:

 Copyright IBM Corp. 1998 xi

Typographic Usage

Bold � Bold words or characters represent system elements that you must use literally, such as
commands, flags, and path names.

Italic � Italic words or characters represent variable values that you must supply.

� Italics are also used for book titles and for general emphasis in text.

Constant width Examples and information that the system displays appear in constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices. (In other words, it means “or.”)

< > Angle brackets (less-than and greater-than) enclose the name of a key on the keyboard. For
example, <Enter > refers to the key on your terminal or workstation that is labeled with the
word Enter.

... An ellipsis indicates that you can repeat the preceding item one or more times.

<Ctrl- x> The notation <Ctrl- x> indicates a control character sequence. For example, <Ctrl-c > means
that you hold down the control key while pressing <c>.

 Abbreviated Names

Use: On:

Short Name Full Name

PTPE API Performance Toolbox Parallel Extensions for AIX
Application Programming Interface: the shared C
language programming library where the PTPE
subroutines reside. These subroutines allow applications
to control how SP performance statistics are collected
and archived.

RSi Remote Statistics interface: These allow an application to
access statistics from remote nodes (or the local host)
through a network interface.

SPMi System Performance Measurement Interface: the shared
C language programming library where Performance
Toolbox subroutines reside. These allow an application to
make available custom performance statistics about its
own performance or that of some other system
component. These subroutines also permit applications to
access statistics on the local system without using the
network interface.

Command and Subroutine Format
Commands and subroutines appear in this book in the following format:

Purpose Provides the name of the command or subroutine and a brief
description of its purpose.

Syntax Includes a diagram that summarizes the use of the command or
subroutine.

Parameters Lists and describes the required or optional parameters, if any.

xii Monitoring Guide and Reference

Description Includes a complete description of the command or subroutine.

Return Values Describes the results of the command or subroutine and lists the
indications of success and failure.

Examples Provides examples of ways in which the command or subroutine is
typically used.

Related Information Lists SP commands, functions, file formats, and special files
that are employed by the command, that have a purpose which is
related to that of the command. Also listed are related SP
documents, other related documents, and miscellaneous
information related to the command.

 About This Book xiii

xiv Monitoring Guide and Reference

Performance Toolbox Parallel Extensions for AIX User's
Guide

 Copyright IBM Corp. 1998 1

2 Monitoring Guide and Reference

Chapter 1. Introducing Performance Toolbox Parallel
Extensions for AIX

Performance Toolbox Parallel Extensions for AIX (PTPE) is a performance monitor
for RS/6000 Scalable POWERparallel (SP) Systems. When installed on your SP, it
allows easy access to performance information about both SP hardware and
software (LPPs). This information is available as both run-time (current) and
archived (historical) data that you can analyze, manipulate, print, and import to a
database, should you so desire.

PTPE builds on the capabilities of Performance Toolbox for AIX, adding monitoring
functions specific to the SP system. You can use PTPE to examine the current
performance state of any node in your SP system. You decide what performance
information to display, and view or print it from any node in the system. Before
attempting to use PTPE, it is essential that you be familiar with Performance
Toolbox and its user interfaces.

PTPE collects and archives performance statistics for each SP node. It calculates
averages for common performance information for all SP nodes. All PTPE data is
available for display to help you evaluate performance of the SP at both the node
and system level. The Scalable POWERparallel Perspectives (SP Perspectives)
graphical user interface (GUI) provides convenient access to the most frequently
used PTPE setup and operational functions. A complete set of AIX commands is
also provided.

An application programming interface is included to allow you to program for data
extraction from PTPE archives through PTPE subroutines. Data compression and
reduction is performed automatically on all archived performance data.

How Does PTPE Work?
Before performance data can be displayed, it must be sampled and collected at the
individual nodes. These activities require access to statistics created at the
operating system and application subsystem levels.

Once performance data is collected by the nodes, it can be gathered for display or
archived locally on the nodes where it was generated.

If you want system-wide performance information at a glance, PTPE can use the
gathered statistics to calculate averages.

 Data Collection
After you install and start PTPE, a data sampler daemon runs on every node
configured as a reporter. The daemon extracts performance-related information
from the AIX operating system and application programs. This information is
available for both display and archiving purposes.

Some nodes in the SP configuration execute other daemons as well, which perform
data management duties for a group of reporter nodes. The data manager nodes'
duties include averaging performance data for the reporting group and responding

 Copyright IBM Corp. 1998 3

to performance data requests. Most SP nodes will run only one PTPE daemon, the
data sampler, at any given time.

 Data Archiving
It is often helpful to be able to track performance over an extended period of time.
PTPE helps you do this by archiving the performance statistics of your choice. You
can archive data on some nodes or all, and include as much or as little
performance data as you want. A filter allows you to specify which performance
information to enable for archival. When archiving many different statistics, you may
find it easier to use the opposite approach and disable specific information for
archival.

 Data Summarization
What if you want to gauge the performance of all your SP nodes? Displaying
individual performance statistics for more than 16 nodes can clutter your screen
and be confusing, but PTPE gives you a quick and easy way to assess overall SP
performance. It collects common performance data from as many nodes as you
want and calculates averages so you can display system-wide statistics in a single
window.

 PTPE Components
PTPE consists of two major components, a run-time monitor and a performance
data manager. The run-time monitor is your interface to the statistical information
provided by PTPE data sampler daemons. The performance data manager is
responsible for archiving and calculating historical data.

The Run-Time Monitor
Performance data for SP nodes is displayed through a run-time monitor, which
uses IBM Performance Toolbox for AIX programs. For comprehensive information
about these programs, refer to the IBM Performance Toolbox for AIX: Guide and
Reference, SC23-2625.

You need not execute the PTPE run-time monitor on the same node for which you
want performance data. The run-time monitor allows you to select and display any
available performance information for any SP node. It provides two formats of
instrumentation to view performance related information:

 1. Recording Instruments

These show performance data items over a period of time. These values can
be plotted in:

 � Line graphs

 � Area graphs

 � Skyline graphs

 � Bar graphs

 2. State Instruments

These show only the current value of a performance data item and can be
displayed as:

 � Bar graphs

4 Monitoring Guide and Reference

 � Pie charts

 � Speedometer

 � Indicator light

Any item of performance-related information can be displayed using any of these
formats.

Optimal use of PTPE permits simultaneous display of performance information from
a limited number of nodes. This optimal number varies, depending on your
configuration and the load on the system running the run-time monitor. If you
attempt to display performance data for too many nodes at once, you may find that
the system's performance is adversely affected.

You may also find that you cannot concentrate a large number of data displays
from many nodes.

You can reduce the overhead on your system, as well as the number of displays
that you need to view, by monitoring the performance summaries prepared by the
data managers instead of monitoring data from many nodes at once.

Use the run-time monitor to select the SP nodes, or groups of SP nodes, that you
wish to monitor. The run-time monitor directly contacts the nodes that you select,
requesting the specific performance data that you requested. The nodes respond
by sending the requested information to the run-time monitor program at regular
intervals. Each time the run-time monitor receives the information, the graphs
displayed by the monitor are updated. You can adjust the update frequency to suit
your needs.

Since data is transferred to the PTPE run-time monitor through a socket protocol,
the maximum number of nodes that can be simultaneously monitored is limited to
the number of available file descriptors. PTPE avoids the need to create socket
connections to all nodes by providing performance data summaries on the nodes
running performance data manager programs. Therefore, you need only monitor the
summary information on the data manager nodes to assess the performance of the
entire SP system.

The Performance Data Manager
PTPE must be capable of handling requests to manage all known performance
information for all reporter nodes without placing an unacceptable burden on any
single node. To accomplish this, information management is shared among the
data manager nodes that run the PTPE performance data manager programs. This
shared responsibility for information management is achieved through the use of a
monitoring hierarchy.

The monitoring hierarchy organizes the SP into groups of reporter nodes according
to your selection criteria. The criteria you select is important because it determines
which nodes' performance data is summarized by the data manager nodes. A data
manager node calculates summary statistics that include performance data only
from the group of nodes it manages. You can specify groups manually or have
them constructed automatically. The SP system can be logically divided into groups
identified by any common feature, but groups should be created in such a way as
to make their statistical averages meaningful. To name just three of the many
possibilities, reporter nodes may be grouped by frame number, as they appear in

 Chapter 1. Introducing Performance Toolbox Parallel Extensions for AIX 5

Figure 1 on page 6, by Ethernet subnet, or according to the kind of tasks they
perform, such as interactive nodes and batch nodes.

Switch Switch Switch Switch

Frame 1 Frame 2 Frame 3 Frame 4

R
R RRR
R RRR
R RRR
R RRR
R RRR
R RRR
R RRR

RR RR
R R
R R
R R
R R
R R
R R
R R

RM MM

M = Data Manager R = Reporter

M

Central
Coordinator

Figure 1. Monitoring Hierarchy by Frame

All nodes in a monitoring hierarchy must be from the same system partition. PTPE
cannot support a monitoring hierarchy that contains nodes from multiple partitions.
To monitor multiple system partitions, you must create a separate monitoring
hierarchy in each partition. One PTPE session and one monitoring hierarchy must
be established for each system partition you wish to monitor.

The Data Manager
In each reporting group in your monitoring hierarchy, one node is designated as the
data manager node. This node runs the PTPE performance data manager
programs. Like the sampler program, the performance data manager runs as
daemon processes. It provides the following functions for PTPE:

� Calculates statistical averages for common performance information provided
by the nodes that report to it in the monitoring hierarchy, and provides these
averages as new performance statistics that can be monitored from the
run-time monitor.

� Manages the performance data collection and archiving duties of the nodes in
its reporting group. The data manager node instructs the reporter nodes when
to start or stop collecting or archiving performance data.

� Routes requests for performance information to those nodes in its reporting
group that can provide the requested data, and routes the reply back to the
process making the request.

The PTPE performance data manager uses its own mechanism to identify the data
to be summarized and archived. This mechanism is different from that used by the
PTPE run-time monitor to select performance data for display, making it possible to
archive and summarize performance data different from that currently displayed by
the run-time monitor.

The number of data manager nodes in an SP configuration may vary, depending
upon the tasks of the system and the method used to construct the reporting
hierarchy. Although PTPE will allow every node to be designated as a data
manager node, this strategy defeats the purpose of the monitoring hierarchy and is

6 Monitoring Guide and Reference

not recommended. The PTPE performance data manager not only handles
application requests for performance data, it also prepares summary statistics for all
SP nodes reporting to it. Therefore, if each node serves as a data manager node,
the summary calculation capability of the performance data manager programs is
lost. Efficient use of PTPE requires a balanced monitoring hierarchy.

Data manager nodes also help remove the scaling limitation inherent in run-time
monitoring. By providing statistical averages of performance data for reporting
groups, PTPE eliminates the need to display individual statistics from a larger set of
nodes. The run-time monitor need only establish a connection with the data
manager nodes to monitor these summaries, greatly reducing the number of socket
connections required. Should a summary statistic appear abnormal, the run-time
monitor can still establish connections to the reporter nodes that contribute to the
summary, but this examination should only be done when investigating a
performance problem. For routine SP performance monitoring, the summary
information should be sufficient.

The Central Coordinator
Figure 1 on page 6 shows the data manager nodes communicating with a system
designated as the central coordinator node. This node coordinates and administers
the data manager nodes. Its responsibilities include:

� Calculate statistical averages of the performance summaries calculated by all
data manager nodes in the monitoring hierarchy, yielding a system-wide
performance summary that can be displayed with the run-time monitor.

� Manage the performance data collection and archiving duties of the data
manager nodes, thereby effectively managing this effort for all nodes in the
monitoring hierarchy. The central coordinator informs the data manager nodes
when to instruct the nodes in their reporting groups to start or stop collection
and archiving.

� Receive all requests from the PTPE application programming library, and route
the requests to best fulfil them.

The Performance Monitoring Perspective
The performance monitoring graphical user interface included in SP Perspectives
allows you to perform most PTPE functions through point-and-click operations. Use
the performance monitoring perspective to:

� Create and modify the PTPE monitoring hierarchy

� Start and stop performance data collection

� Start and stop performance data archiving

“Using SP Perspectives” on page 43 provides an overview.

 Chapter 1. Introducing Performance Toolbox Parallel Extensions for AIX 7

8 Monitoring Guide and Reference

Chapter 2. Planning for PTPE

In order to integrate Performance Toolbox Parallel Extensions for AIX into your SP
environment and use it to its fullest advantage, you should understand how it
operates and what effect it can have on system performance.

Understanding the Monitoring Hierarchy
PTPE extends the capabilities of IBM Performance Toolbox for AIX in two ways:

1. It recognizes and handles performance statistics unique to the SP system

2. It circumvents the limitation inherent in simultaneously monitoring the
performance of large numbers of nodes

PTPE distributes the management of performance information among a number of
data manager nodes rather than giving total responsibility to a single node.
Although one central coordinator node is designated when the monitoring hierarchy
is created, the data manager nodes act as intermediaries, absorbing most of the
administrative overhead and greatly reducing data transfer operations. The resulting
central coordinator node workload is far less than that required by a single point of
control for all nodes and all data management functions.

Distribution of management responsibility is the reason for PTPE's three-tiered
monitoring hierarchy. At the bottom is a group of reporter nodes sharing some
common characteristic. As Figure 2 shows, these nodes report to a data manager
node that operates on the next higher tier. The data manager nodes, in turn, report
to the central coordinator node at the top. The middle tier absorbs much of the data
management burden that might otherwise overwhelm the central coordinator node.

First Tier:
Reporter Nodes

Second Tier:
Data Manager Nodes

Third Tier:
Central Coordinator Node

Provide performance statistics,
archive data, and handle

statistics requests

Coordinate and
administer Performance

Data Manager nodes

Route statistics requests,
manage collection and archiving,

and calculate summaries

Figure 2. PTPE Uses a Three-tiered Hierarchy

 Performance Considerations
Several considerations should guide your planning for the monitoring hierarchy:

1. Which nodes in your system can accept an increase in network traffic?

The answer to this question will yield the initial candidates for the data manager
and central coordinator nodes.

 Copyright IBM Corp. 1998 9

2. Which reporter nodes can be logically grouped to yield the most
meaningful performance summaries?

The answer to this question gives you an initial strategy for laying out the first
tier in the monitoring hierarchy.

3. How many nodes will belong to each reporting group?

The higher the number, the greater the traffic handled by the data manager.
The lower the number, the more data manager nodes needed.

4. Should any nodes not be monitored?

Some nodes may be dedicated to tasks that require all of their resources, and
should be allowed to run without interference. Consider leaving nodes such as
these out of the monitoring hierarchy.

5. Which performance data should you monitor?

Choosing the correct set of data to monitor increases the effectiveness of the
monitoring effort.

Although efficiency is a vital component in its design, PTPE still generates a certain
amount of performance data traffic between reporter nodes and their data manager
node. When the PTPE run-time monitor is set to monitor all available performance
statistics, you might find performance degraded on the data manager node. When
selecting a data manager node, consider nodes that are capable of accepting an
increased network load or those where non-critical applications run.

 Monitor Thoughtfully
Keep in mind that performance monitoring also makes demands on the processing
resources of the very nodes being monitored, depriving other applications of those
resources. Some of these applications may be more critical to end users than
optimal performance of the system. Therefore, it is important to monitor
performance information for the sake of improving system performance for all users
rather than out of curiosity.

Remember too, that the efficiency of a monitoring effort depends on the relevance
of the data gathered by the tool. If the statistic monitored during a session is not a
true measure of the performance issue in question, then the session is wasted,
regardless of the efficiency of the tool.

In order to provide the most complete monitoring function, the default PTPE setup
collects and summarizes all available performance information on the nodes it
monitors. (See “Performance Data for SP Components” on page 24 for a list of the
SP-specific performance statistics PTPE collects.) The PTPE commands and API
provide you with the capability to enable and disable collection of specific
performance data. If you find that the default setup creates an unacceptable load
on the monitored nodes, use these features to disable collection of any data that
does not address the performance issue you want to examine. This will reduce the
overhead of your monitoring activity. See “Controlling Data Collection and
Summary” on page 34 for more information.

You should also decide which performance information to examine in a run-time
fashion, and which to archive for later analysis. Monitoring a large amount of data
from many nodes in the SP may not only be difficult, it may be impossible to
display legibly on your terminal. Only performance information critical to the current

10 Monitoring Guide and Reference

state of the SP should be monitored in a run-time fashion. Consider using the
PTPE commands and API to restrict collection to essential performance statistics
and record the other information to the archive. “Archiving Performance Data” on
page 35 tells you more.

Plan Your Hierarchy
The ideal monitoring hierarchy balances the number of reporting groups against the
size of the reporting groups. A hierarchy with too few reporting groups that are
large in size, such as SP System 1 in Figure 3, places a heavy load on the data
manager nodes. At the opposite extreme, a hierarchy of too many reporting groups
with too few reporters, like SP System 2 in the same figure, squanders data
manager node resources on a load that could easily be handled by fewer nodes,
and ties up the central coordinator node in unnecessary communication.

Data
Managers

Central Coordinators

SP System 1 SP System 2

2 Node Groups 16 Node Groups

Figure 3. Large vs. Small Reporting Groups

To optimize the reporting groups in your monitoring hierarchy, follow these
guidelines when configuring manually:

SP Systems with 16 reporter nodes or fewer:
A single reporting group should be sufficient. More than four reporting
groups is excessive. A group with fewer than four reporter nodes
wastes data manager node processing power.

SP Systems with more than 16 reporter nodes:
Create at least one reporting group. Use the defaults from ptpehier if
possible. When altering groups manually, keep groups from exceeding
24 reporters.

It is also important to remember that transmitting performance data from one
network to another can generate higher loads on nodes that are not directly
involved with the performance monitoring effort, but are affected by network
gateway activities. Sending performance information between networks also delays
the reception of the performance information at the data manager node. Monitoring
hierarchy groups should be confined within network boundaries.

 Chapter 2. Planning for PTPE 11

Build Meaningful Groups
The monitoring hierarchy does more than distribute the processing overhead
among data manager nodes. It also offers the opportunity to summarize
performance information by creating statistical averages for reporting groups. By
monitoring these performance data averages, you can determine the current
performance status of the SP System without monitoring each node's statistics
individually.

You may find that more meaningful averages can be calculated when the
monitoring hierarchy is based on logical rather than physical boundaries. For
example, you may have specific SP nodes designated for interactive processing,
batch processing, and parallel processing. These categories may not necessarily
coincide with network or frame boundaries. If your reporting groups are based upon
physical boundaries, you will not be able to determine the average performance of
your interactive, batch, and parallel nodes at a glance. However, if the interactive
nodes comprise one group, the batch nodes another, and the parallel processing
still another, each group would then produce meaningful performance summaries. If
any logical group threatens to grow too large, simply split it into two smaller groups,
preferably at a network or frame boundary.

Planning for System Growth
Whenever nodes are added to your SP System, they must be added to the
monitoring hierarchy before PTPE can monitor their performance. Use the SP
Perspectives (see page 43) or the ptpehier command (see “ptpehier” on page 99
for syntax) to update reporting groups.

If your hierarchy is based on one of the standard configurations (the SP frame or
Ethernet network), you can have new reporter nodes added dynamically with SP
Perspectives or the ptpehier command. If additional frames are added, these
methods can automatically create new groups as well.

If your monitoring hierarchy is based on logical boundaries, it might be better to
create new groups rather than add nodes to existing groups. For example, if you
anticipate growth in the number of nodes dedicated to parallel processing, the
creation of a new node group will help you avoid the performance problems that
might come with the continual growth of a single parallel processing node group.

Whenever you add or remove nodes in your SP, you must update the monitoring
hierarchy with SP Perspectives or ptpehier .

Specifying a Monitoring Hierarchy
Both SP Perspectives and the ptpehier command offer you the opportunity to
accept standard monitoring hierarchies grouped by SP frames or Ethernet
networks. If you've decided to group your nodes logically, or, if you do not wish to
include all available nodes in the hierarchy, two methods are available for creating
a customized monitoring hierarchy. You can use

1. The ptpehier command to configure groups through standard input

2. SP Perspectives to point and click on the GUI

You can also use either method to query the current hierarchy. See “Using SP
Perspectives” on page 43 or “ptpehier” on page 99 for details and command
syntax.

12 Monitoring Guide and Reference

 SDR Considerations
PTPE uses specialized data objects in the System Data Repository. These data
objects must be present before you can use the data management features of
PTPE, or its API. The ptpeconf command is provided to create these objects in the
SDR. ptpeconf is run automatically as part of PTPE installation, but you can also
run it manually (root authority is required) on the control workstation in the event
that the SDR is damaged or the PTPE objects are destroyed. See “ptpeconf” on
page 86 for more information and syntax.

The following SDR objects pertain to PTPE.

Class = SPDM
Contains general information about PTPE and its current activity. Also used by the
PTPE API for establishing a programming session with PTPE. No more than one
object of this class will exist in the SDR for each system partition.

Type S = string Type I = integer

Attribute Name

T
y
p
e Description Comments

partition S Name of the system partition

central_mgr S Name of central coordinator node

active I Indicates whether performance
data is currently being collected

0=no, otherwise indicates the
number of nodes collecting data

archive I Indicates whether performance
data is currently being archived

0=no, otherwise indicates the
number of nodes archiving data

organization I Indicates the method used to
construct monitoring hierarchy

sampling_rate I Indicates the number of seconds
between samplings of
performance data on each node

0=collection off, otherwise
specifies the interval in seconds

archiving_rate I Indicates the number of seconds
between updates of the
performance data archive on each
node

0=archiving off. This value is
always an even multiple of
sampling_rate

Note: This class is system partition dependant.

Class = SPDM_NODES
Used to store the structure of the monitoring hierarchy. For each node in the
monitoring hierarchy, one object of this class will exist.

 Chapter 2. Planning for PTPE 13

Attribute Name

T
y
p
e Description

hostID S Contains the system's reliable network host name

node_number I Contains the SP node number assigned to this system

node_group I Identifies the node group to which this system belongs

reports_to S Contains the reliable network host name of the data
manager node to which this node reports

num_reporters I Specifies the number of nodes that report to this node

Note: This class is system partition dependant

The perfmon User Group
Performance monitoring on the SP System demands certain processing resources.
This, in turn, deprives other applications of these resources. Because performance
monitoring inherently degrades the performance of the nodes being monitored, the
responsibility for dedicating resources to such an effort should be entrusted to
users who are capable of administering it effectively.

PTPE only permits users belonging to a special user group, called perfmon , to use
its data management functions and API. This group is created through use of the
ptpegroup command. ptpegroup runs automatically during installation, but you
can also run it manually (root authority is required) if the user group is accidentally
removed. See “ptpegroup” on page 97 for more information and command syntax.
The ptpegroup command should be executed on the SP Control Workstation.

ptpegroup updates the /etc/security/group and /etc/group files on the control
workstation. These files are part of a default file collection which is propagated to
the SP nodes on an hourly basis using supper . Remember that the perfmon user
group might not become valid on an SP node for up to an hour after it was created
on the control workstation. See IBM Parallel System Support Programs for AIX:
Administration Guide for information about using supper to propagate the change
faster.

Upon completion of PTPE installation, the perfmon group contains only the root
user. Any additional users assigned to the perfmon group must have authority to
read and write to the System Data Repository. For PSSP version 2.2 and earlier,
root is the only user with read/write access to the SDR. User's without SDR
read/write access will be unable to perform PTPE operations. Therefore, they
should not be made members of the perfmon user group.

 Statistic Limit
Performance Toolbox Parallel Extensions for AIX currently supports a maximum of
50,000 performance statistics.

14 Monitoring Guide and Reference

 Chapter 3. Installing PTPE

 Prerequisites
To install and run the Performance Toolbox Parallel Extensions for AIX, the
following IBM licensed program products must also be installed:

1. AIX Version 4 Release 3.2

2. RS/6000 Cluster Technology

3. Performance Aide for AIX Version 4.1 (5696-899)

This must be installed on all nodes where PTPE is to run (the nodes you intend
to monitor), as well as on the control workstation

4. Performance Toolbox-Network for AIX Version 4.1 (5696-900)

This must be installed on any nodes where you will display performance data
(the nodes from which you intend to monitor)

PTPE Install Images
The following filesets in the PSSP installation media pertain to PTPE:

ptpe.docs The reference material:

� PDF file for this manual
 � Manual pages
� HTML document files

For additional information on this fileset, see “Accessing PSSP
Documentation Online” on page 391.

ptpe.program The PTPE programs. This software will not run unless RS/6000
Cluster Technology has been installed.

ssp.ptpegui This image should be installed on any node on which you plan to
run SP Perspectives.

 PTPE Installation
Follow these steps to install the PTPE software. You must install this software on
all nodes to be monitored, both those intended as data manager nodes and those
intended as reporting group members, as well as on the control workstation.
Chapter 2, “Planning for PTPE” on page 9 contains information about how to
organize your monitoring hierarchy.

Installing PTPE on the Control Workstation
Install the Performance Toolbox Parallel Extensions for AIX software on the control
workstation for running PTPE commands. The control workstation does not become
part of the monitoring hierarchy.

 Copyright IBM Corp. 1998 15

Step 1. Select Install Images for Control Workstation
Decide whether to install all of the PTPE images or a subset of them:

 1. ptpe.program

 2. ptpe.docs

You must install the ptpe.program image on the control workstation.

Step 2. Install PTPE Software on Control Workstation
To install all of the PTPE images, use the following installp command:

installp -aXd install_device_name ptpe ssp.ptpegui

To install an individual PTPE image, use the following installp command:

installp -aXd install_device_name ptpe.image

where ptpe.image can be ptpe.program or ptpe.docs .

Note any messages that appear during installation. Some errors are easily fixed in
later steps.

Step 3. Verify Application of PTPE Software on Control
Workstation
Use the lslpp command to verify that the PTPE software has been applied. See
the lslpp reference page if you need more information.

Step 4. Complete Installation on Control Workstation
In most cases, PTPE installation requires no additional processing. However, there
may be situations in which the installation process can apply the software but
cannot perform the processing necessary to configure the PTPE subsystem on the
control workstation. This condition is indicated by display of the following message
during the installation:

spdmdctrl: 2516-471 Cannot determine the number for this node.

This condition occurs when the control workstation is being installed for the first
time, and the Parallel System Support Program (PSSP) command, install_cw , has
not been executed. In this situation, the installation process cannot determine
whether or not it is being executed on the control workstation, so it does not
attempt to perform the configuration duties required on the control workstation.

To complete the installation, ensure that the install_cw command has been
executed on the control workstation. After verifying that it has been executed (or
after executing it), issue the following command to complete the installation
process:

/usr/lpp/ptpe/bin/spdmdctrl -a

16 Monitoring Guide and Reference

Installing PTPE on SP Nodes
Before you install the PTPE software on the SP nodes, you must first install the
ptpe.program install image on the control workstation. Use lslpp to verify its
complete installation on the control workstation before attempting to install PTPE on
the SP nodes.

Step 1. Select Install Images for SP Nodes
As on the control workstation, you can install all the Performance Toolbox Parallel
Extensions software from the installation media, or select specific install images for
installation. Consideration of the software requirements and disk space should
guide your decision. If disk space on the SP nodes is limited, you may find these
suggestions helpful:

� The ptpe.program image must be installed on any SP node to be monitored

� The ssp.ptpegui image should be installed on those nodes where you plan to
run SP Perspectives.

� The ptpe.docs fileset may be installed only on a group of documentation
server nodes

Select the images that correspond to the functions you need, and ensure that the
required software has been installed (or is being installed along with it).

Step 2. Install PTPE Software on SP Nodes
To install all of the PTPE images, use the following installp command:

installp -aXd install_device_name ptpe ssp.ptpegui

To install an individual PTPE image, use the following installp command:

installp -aXd install_device_name ptpe.image

where ptpe.image can be ptpe.program or ptpe.docs .

Note any messages that appear during installation. Some errors are easily fixed in
later steps.

Step 3. Verify Application of Software on SP Nodes
Use the lslpp command to verify that the PTPE software has been applied. See
the lslpp reference page if you need more information.

Step 4. Complete Installation on SP Nodes
In most cases, PTPE installation requires no additional processing. However, there
may be situations in which the installation process can apply the software but
cannot perform the processing necessary to configure the PTPE subsystem on the
SP node. This condition is indicated by display of either of the following messages
during the installation:

spdmdctrl: 2516-471 Cannot determine the number for this node.
spdmdctrl: 2516-475 A port number for the spdmd inetd subserver has
not been reserved by the control workstation.

This condition occurs when PTPE is installed on an SP node before being installed
on the control workstation, or when the control workstation cannot perform the
necessary configuration steps. To correct this condition:

 Chapter 3. Installing PTPE 17

1. Install ptpe.program (or complete its installation) on the control workstation

2. After verifying PTPE installation in the control workstation, execute the following
command on the SP node:

/usr/lpp/ptpe/bin/spdmdctrl -a

18 Monitoring Guide and Reference

 Chapter 4. Configuring PTPE

 Prerequisites
Before you can use Performance Toolbox Parallel Extensions for AIX, you must
create a monitoring hierarchy using either SP Perspectives or the ptpehier
command. For an explanation of the monitoring hierarchy concept, see
“Understanding the Monitoring Hierarchy” on page 9. Before the reporting hierarchy
can be created, however, specific data object classes must exist in the System
Data Repository (see “ptpeconf” on page 86), and the perfmon user group must
exist on the system (see “ptpegroup” on page 97). These two tasks are
automatically performed during PTPE installation, but can be repeated at any time.

In order to perform any operations affecting the monitoring hierarchy, whether
through SP Perspectives or the command line, you must be a member of the
perfmon user group, and you must have perfmon set as the primary group.

Before you can begin collecting performance information or recording this
information to the archive, each node in the monitoring hierarchy must have enough
disk space to store a statistic translation table. This table is necessary for PTPE to
store and retrieve performance data in the archive. Because of the large number of
statistics that PTPE supports, this table consumes approximately 13 MB of disk
space. When collection begins, PTPE attempts to store this table in the
/var/adm/ptpe directory. Ensure that the filesystem containing this directory on
each node has at least 13 MB of space available. (Use the df command to display
filesystem space.)

Because the /var filesystem is used by various logging utilities, IBM recommends
that you set up a private filesystem for the /var/adm/ptpe directory on each node
so that PTPE is guaranteed this space, and so that the PTPE archive and
translation table do not consume space needed for other logging utilities. Making a
separate filesystem also simplifies the effort necessary to grow this filesystem
should the performance information archive files grow beyond the initial size.

Although you do not have to remove an existing hierarchy before replacing it,
removing it will effectively lock out other users and prevent them from starting
performance information collection and summarization on a hierarchy that is about
to be replaced. The only other time you should remove the monitoring hierarchy is
when you wish to disable PTPE for an extended period of time.

Selecting a Standard Monitoring Hierarchy
Follow these steps to configure PTPE using one of the standard monitoring
hierarchies. If you prefer to configure a customized hierarchy, Chapter 2, “Planning
for PTPE” on page 9 and “ptpehier” on page 99 can show you how.

 Copyright IBM Corp. 1998 19

Step 1. Configure the Monitoring Hierarchy
The structure of the reporting hierarchy impacts how summarized performance
information is calculated. It also determines which systems are assigned the tasks
of summarization and command delegation.

PTPE provides two options to construct the reporting hierarchy for efficient data
transmission and a moderate level of management overhead on the SP System.
Both options automatically appoint a PTPE central coordinator node.

Organization by Ethernet Local Area Subnetwork
By organizing the hierarchy according to Ethernet subLAN boundaries, the
Performance Toolbox Parallel Extensions reduces the amount of network traffic that
must be transmitted through network gateways, and avoid inflicting additional
overhead to the gateway systems.

Using SP Perspectives: Click on the central coordinator node in the Hierarchy
Pane, pull down the Actions menu, and select Create Using Ethernet.

If the central coordinator node has not yet been assigned, click on the node you
wish to nominate in the Nodes Pane. Then, either click on the Replace Central
Coordinator icon on the tool bar or pull down the Actions menu and select Nodes →
Assign Central Coordinator from the actions displayed. The node appears at the
top of the Hierarchy Pane.

Using the ptpehier Command: Enter the following command to configure a
monitoring hierarchy organized by Ethernet local area subnetwork:

ptpehier -e

If you have not planned a customized monitoring hierarchy as discussed in
Chapter 2, “Planning for PTPE” on page 9, organization by Ethernet local area
subnetwork is recommended.

Organization by SP Node Frame
By organizing the hierarchy according to frame boundary, a minimal amount of
cross-network traffic is generated, and summary performance information is
prepared according to system boundaries that are easily recognizable by SP
system users. The reporting group size is restricted to a maximum of 16 nodes to
minimize the overhead on data manager nodes.

Using SP Perspectives: Click on the central coordinator node in the Hierarchy
Pane, pull down the actions menu, and select Create Using Frames.

If the central coordinator node has not yet been assigned, click on the node you
wish to nominate in the Nodes pane. Then, either click on the Replace Central
Coordinator icon on the tool bar or pull down the Actions menu and select Nodes →
Assign Central Coordinator from the actions displayed. The node appears at the
top of the Hierarchy Pane.

Using the ptpehier Command: Enter the following command to configure a
monitoring hierarchy organized by frame boundary:

ptpehier -f

20 Monitoring Guide and Reference

Step 2. Initialize the Monitoring Hierarchy
Prepare the new monitoring hierarchy for performance data collection and
summarization. Enter the following on the command line:

ptpectrl -i

 Chapter 4. Configuring PTPE 21

22 Monitoring Guide and Reference

 Chapter 5. Using PTPE

PTPE comprises two major parts, a run-time monitor and a performance data
manager. The run-time monitor is your interface to the statistical information
provided by the PTPE data sampler daemons. The performance data manager is
responsible for archiving and calculating summary data.

Using the Run-Time Monitor
The run-time monitor collects SP performance data and feeds it to the Performance
Toolbox programming libraries and graphical user interfaces. For information on
how to use the Performance Toolbox interfaces and libraries, consult the IBM
Performance Toolbox for AIX: Guide and Reference.

Starting the SP Data Supplier
Whenever PTPE starts performance data collection, it automatically starts the
programs on each node that provide SP-specific performance statistics. These
same data programs are also available to Performance Toolbox for AIX, through
the ptpertm command.

If the /etc/perf/xmservd.res file was present when PTPE was installed on the
node, an entry was made in this file to start the ptpertm command whenever
Performance Toolbox's xmservd daemon becomes active. This will provide
Performance Toolbox with SP-specific performance information, which can be
viewed from xmperf and 3dmon .

If this file was not present when PTPE was installed, ptpertm will not be started
automatically by xmservd , and the SP-specific performance information will not
become available to Performance Toolbox. To make this information available, you
may do one of two things:

1. Make sure your user ID has sufficient privilege to create files in the /etc
directory, and create a xmservd.res file on the node you will monitor. Do this
by copying the xmservd.res file from the Performance Toolbox for AIX's
sample directory to the /etc/perf directory on that node:

cp /usr/samples/perfagent/server/xmservd.res /etc/perf

Once the file is created, edit the file and add the following line to the end of the
file:

supplier: /usr/lpp/ptpe/bin/ptpertm -p

Determine whether the xmservd daemon is currently running on the node by
using the ps command. If the daemon is running, refresh the daemon by
sending it a SIGHUP signal with the kill command:

kill -1 <xmservd_process_id>

Using this method will guarantee that the PTPE run-time monitor will start
whenever xmservd is started. Since Performance Toolbox starts xmservd
whenever an application uses its libraries, or one of its graphical user interfaces
(GUIs) is started, this ensures that the SP performance data collected by the
run-time monitor is always available.

 Copyright IBM Corp. 1998 23

2. Run the ptpertm command from the command line or shell script on the node
you wish to monitor, placing the process in the background:

ptpertm &

Make a note of the process ID of the ptpertm process. Later, when you have
completed your monitoring of the node, you can terminate the ptpertm
process:

kill <ptpertm_process_ID>

After starting the ptpertm command, refresh the xmservd daemon running on
the node:

kill -1 <xmservd_process_ID>

This method should be used only as a temporary measure. Using this method
will not guarantee that every Performance Toolbox application will have access
to the SP performance information.

Finding Out What Data is Available
You can use the xmpeek -l command to get a complete list of available
performance statistics for a specific node.

Performance Data for SP Components
The SP-specific performance information accessible by the PTPE run-time monitor
can be found under the context DDS/IBM/PSSP.harmld . This includes
LoadLeveler, IBM Virtual Shared Disk, and CSS statistics.

LoadLeveler Performance Statistics
LL.STARTD.current_jobs

The number of active nodes managed by the startd daemon.

LL.STARTD.jobs_running
The number of jobs managed by the startd daemon that are in
running state

LL.STARTD.jobs_pending
The number of jobs managed by startd that are in pending state

LL.STARTD.jobs_suspended
The number of jobs managed by startd that are in suspended state

LL.STARTD.total_jobs_rec
The total number of start job requests received from the startd

LL.STARTD.total_jobs_com
The total number of jobs started by startd that have been completed

LL.STARTD.total_jobs_rem
The total number of jobs that were canceled either by the user or
LoadLeveler

LL.STARTD.total_jobs_vac
The total number of jobs that were terminated and returned to the
queue to be rescheduled

LL.STARTD.total_jobs_rej
The total number of jobs that could not be run by startd

24 Monitoring Guide and Reference

LL.STARTD.total_jobs_sus
The total number of jobs suspended by startd

LL.STARTD.total_conn
The total number of connections attempted by the startd

LL.STARTD.failed_conn
The number of connection attempts that failed

LL.STARTD.total_out_trans
The total number of outbound transactions attempted by startd

LL.STARTD.failed_out_trans
The number of outbound transactions that failed

LL.STARTD.total_in_trans
The total number of inbound transactions attempted by startd

LL.STARTD.failed_in_trans
The number of inbound transactions that failed

LL.SCHEDD.current_jobs
The number of jobs currently active for the schedd daemon

LL.SCHEDD.jobs_idle
The number of jobs currently active for the schedd daemon

LL.SCHEDD.jobs_pending
The number of jobs managed by the schedd daemon that are in
pending state

LL.SCHEDD.jobs_starting
The number of jobs managed by the schedd daemon that are in
starting state

LL.SCHEDD.jobs_running
The number of jobs managed by the schedd daemon that are in
running stat

LL.SCHEDD.total_jobs_sub
The total number of jobs submitted to the schedd daemon

LL.SCHEDD.total_jobs_com
The total number of jobs submitted to the schedd daemon that
completed

LL.SCHEDD.total_jobs_rem
The total number of jobs submitted to the schedd daemon that were
canceled by the user or LoadLeveler

LL.SCHEDD.total_jobs_vac
The total number of jobs submitted to the schedd daemon that were
terminated and returned to the queue to be rescheduled

LL.SCHEDD.total_jobs_rej
The total number of jobs submitted to the schedd daemon that could
not be run

LL.SCHEDD.total_conn
The total number of connections attempted by the schedd daemon

LL.SCHEDD.failed_conn
The number of connection attempts that failed

 Chapter 5. Using PTPE 25

LL.SCHEDD.total_out_trans
The total number of outbound transactions attempted by the schedd
daemon

LL.SCHEDD.failed_out_trans
The number of outbound transactions that failed

LL.SCHEDD.total_in_trans
The total number of inbound transactions attempted by the schedd
daemon

LL.SCHEDD.failed_in_trans
The number of inbound transactions that failed

IBM Virtual Shared Disk Performance Statistics
VSD.req_block_shortage

Requests queued waiting for a request block

VSD.pbuf_shortage
Requests queued waiting for a pbuf

VSD.cache_shortage
Requests queued waiting for a cache block

VSD.buddy_buf_shortage
Requests queued waiting for a buddy buffer

VSD.rej_requests
Rejected Requests

VSD.rej_responds
Rejected responses

VSD.Rej_no_buddy_buf
Rejected no buddy buffer

VSD.request_rework
Requests rework

VSD.timeout_error
timeouts

VSD.1_retry_count
Retries 1

VSD.2_retry_count
Retries 2

VSD.3_retry_count
Retries 3

VSD.4_retry_count
Retries 4

VSD.5_retry_count
Retries 5

VSD.6_retry_count
Retries 6

VSD.7_retry_count
Retries 7

26 Monitoring Guide and Reference

VSD.8_retry_count
Retries 8

VSD.9_retry_count
Retries 9

VSD.avg_buddy_wait
Average buddy buffer wait_queue size

VSD.indirect_io
I/O is not performed directly from mbuf

VSD.comm_buf_shortage
Shortage on the Communication Buf pool

VSD.loc_req_rd
Local read

VSD.loc_req_wr
Local write

VSD.rem_req_rd
Remote read

VSD.rem_req_wr
Remote write

VSD.cli_req_rd
Physical read

VSD.cli_req_wr
Physical write

VSD.phy_req_rd
Physical read

VSD.phy_req_wr
Physical write

VSD.cache_hit
Cache Hits

VSD.bytes_rd
Total Byte Read

VSD.bytes_wr
Total Byte Write

CSS Performance Statistics
CSS.elapsed_time

Time in seconds since last reset

CSS.ipackets_msw
Packets received on interface(msw)

CSS.ipackets_lsw
Packets received on interface(lsw)

CSS.ibytes_msw
Total # of octets received(msw)

CSS.ibytes_lsw
Total # of octets received(lsw)

 Chapter 5. Using PTPE 27

CSS.recvintr_msw
Number of receive interrupts(msw)

CSS.recvintr_lsw
Number of receive interrupts(lsw)

CSS.ierrors
Input errors on interface

CSS.opackets_msw
Packets sent on interface(msw)

CSS.opackets_lsw
Packets sent on interface(lsw)

CSS.obytes_msw
Total number of octets sent(msw)

CSS.obytes_lsw
Total number of octets sent(lsw)

CSS.oerrors
Output errors on interface

CSS.ipackets_drop
Number of packets not passed up

CSS.ibadpackets
of bad packets received from adapter

CSS.stat_reserved
Reserved

CSS.windows_open
Active windows (IP, Service, MPCI)

Using the Performance Data Manager
The performance data manager adds two new capabilities to the Performance
Toolbox base function: performance information summary and data retention.

Monitoring all vital performance information on even a small number of nodes in a
run-time fashion can be a cumbersome task. For systems as large as the SP, this
can become impossible using traditional monitoring tools.

The PTPE performance data manager is capable of monitoring a large number of
nodes in a run-time fashion by providing summarized performance information to
Performance Toolbox. Instead of monitoring individual performance statistics on a
large number of nodes, you can monitor a small set of averaged statistics on a few
nodes. Should any of these averaged statistics appear abnormal, the individual
statistics used in their calculation can still be examined using Performance Toolbox
interfaces. Through its commands and application programming interface, PTPE
provides the capability to enable and disable specific performance statistics from
the calculation.

Performance monitoring is often a cumbersome process, producing results of
questionable value. Simplifying the task of monitoring performance information in a
run-time fashion accomplishes little if no one is free to observe the information.
Furthermore, data presented in a graphical format is often difficult to use as input to
an application.

28 Monitoring Guide and Reference

Using the PTPE performance data manager, you can archive performance statistics
for later analysis. By retaining this information in a machine-readable format, you
can make it available as input to calculations, complex analysis, reports, and even
post-processing with such tools as the Performance Toolbox azizo command.
Again, the PTPE commands and API allow you to enable and disable specific
performance statistics for recording to the archive. You can also use the API to
retrieve data from the archive. All archived data is retained after data collection has
been shut down.

All PTPE performance data manager operations, such as the removal of archives,
can be performed only by users who belong to the perfmon user group. This user
group is created when PTPE is installed. Users can be added to this group using
SMIT or the chgrpmem command. Before you can use performance data manager
functions, however, perfmon must be your primary group.

Summarizing Performance Information
Summarized performance information simplifies the run-time monitoring effort on a
large number of nodes. It is not intended as a replacement for the individual
performance statistics provided by Performance Toolbox, but as a means of
reducing the amount of data to be monitored in a run-time fashion when you want
to determine the performance state of the SP as a whole.

These summarized performance statistics are the calculated averages of the same
performance statistic gathered from each node in a group. For example, the PTPE
performance data manager collects an individual performance statistic, such as %
of time CPU in user state, for all members of a node group. Then it calculates the
average for these statistics and presents the average as a new statistic to IBM
Performance Toolbox for AIX.

The way in which these summarized statistics are calculated is determined by the
monitoring hierarchy. The monitoring hierarchy dictates which nodes are members
of the same reporting group, and which are designated as data manager nodes.
The data manager nodes calculate the average of the individual data statistics from
all members of their group, their own statistics included, and provide the summary
statistic to IBM Performance Toolbox for AIXs.

As an example, consider a monitoring hierarchy for a 16-node system, shown in
Figure 4 on page 30. Nodes 1 through 8 are members of one reporting group, and
nodes 9 through 16 are members of a second group. Nodes 2 and 10 have been
designated data manager nodes for their respective groups.

 Chapter 5. Using PTPE 29

Node
1

Node
2

Node
9

Node 2
Calculates
Average

% of CPU user
for Nodes 1-8

Node 10
Calculates
Average

% of CPU user
for Nodes 9-16

Node 4
Calculates

Overall
Average

% of CPU user

Node
10

Node Group
Reporters

Send
% of CPU user

to
Data Managers

Central
Coordinator

Node
3

Node
4

Node
11

Node
12

Node
5

Node
6

Node
13

Node
14

Node
7

Node
8

Node
15

Node
16

Figure 4. Monitoring Hierarchy of Two Reporting Groups

The summarized statistics for % of time in CPU user state would be available from
nodes 2 and 10. The % of time in CPU user state on node 2 would be the
calculated average of those values collected from nodes 1 through 8, while the
same statistic on node 10 would be the average of those values collected from
nodes 9 through 16.

The summarized statistic prepared by each data manager node is, in turn, sent to
the monitoring hierarchy's central coordinator node, which prepares an overall
system average of the statistic.

Locating Summary Information
Summarized performance statistics are available at the group level on the data
manager nodes, and at the SP level on the central coordinator node. You can
display them using the Performance Toolbox GUI, and capture them through its
Spmi and Rsi libraries.

Understanding the structure of the monitoring hierarchy is essential to making
effective use of summary statistics. Monitoring averages cannot help you to analyze
system performance if you are uncertain which nodes' statistics have been
calculated. Furthermore, you may have difficulty locating the summary statistics if
you do not know the identity of the data manager nodes.

Since the organization of the monitoring hierarchy is crucial to the preparation of
summary statistics, it should be created with care. PTPE can configure your SP
System as a standard monitoring hierarchy based on either frame boundaries or
Ethernet network, however, these hierarchies may yield average statistics that are
less useful than those from a customized monitoring hierarchy. The summary

30 Monitoring Guide and Reference

performance information may be more meaningful if the hierarchy is organized into
logical rather than physical groups. Refer to “Understanding the Monitoring
Hierarchy” on page 9 for further information.

By default, PTPE collects all available performance statistics on the nodes and
sends them to the performance data managers for summarization. This may
produce more performance information than you want or need, and it might place
too much overhead on your system. (See “Performance Considerations” on page 9
for a more detailed discussion.) The PTPE API (libptpe.a) contains subroutines you
can use in your application programs to control the collection of performance
statistics at the node level, as well as the transmission of statistics to performance
data manager nodes. “Controlling Data Collection and Summary” on page 34
explains how to do this.

Collecting and Displaying Summary Data
This procedure includes examples of how to use PTPE on a system with two
frames consisting of eight wide nodes each.

Step 1: Make Sure You're A Valid User
The Performance Data Manager can only be started by users in the perfmon user
group. Ensure that your userid is a member of the perfmon user group. Also, be
sure that you have executed newgrp perfmon to make perfmon your effective
group.

Step 2: Familiarize Yourself With The Reporting Hierarchy
Skip this step if you already know how the monitoring hierarchy is organized.

You can view the current monitoring hierarchy using the ptpehier command with
the -p flag. See “ptpehier” on page 99 for details.

Enter

ptpehier -p

A textual representation of your hierarchy is returned:

ptpehier: The current monitoring hierarchy structure is:
 spnodeð5.ibm.com
 spnodeð9.ibm.com
 spnodeð1.ibm.com
 spnodeð3.ibm.com
 spnodeð5.ibm.com
 spnodeð7.ibm.com
 spnodeð9.ibm.com
 spnode11.ibm.com
 spnode13.ibm.com
 spnode15.ibm.com
 spnode23.ibm.com
 spnode17.ibm.com
 spnode19.ibm.com
 spnode21.ibm.com
 spnode23.ibm.com
 spnode25.ibm.com
 spnode27.ibm.com
 spnode29.ibm.com
 spnode31.ibm.com

 Chapter 5. Using PTPE 31

This displays the name of the central coordinator node at the top with data
manager nodes indented below. Further indented below the data manager nodes
are the names of the members of the reporting groups. In this example, spnode05
is the central coordinator node, while spnode09 and spnode23 are the data
manager nodes.

All nodes in the monitoring hierarchy supply performance statistics when you initiate
performance data collection. If the monitoring hierarchy includes nodes that you do
not wish to monitor, you can create a customized hierarchy that includes only
specified nodes by using SP Perspectives or the ptpehier -i command.

If, instead of displaying the hierarchy, the ptpehier -p returns the following
message:

ptpehier: 2516-125 Cannot find the monitoring hierarchy.

This means that no monitoring hierarchy exists. You must create one, using either
ptpehier -e , ptpehier -f , ptpehier -i , or SP Perspectives.

Step 3: Initialize Performance Data Summary
This step is not required every time the PTPE performance data manager is used,
but it is required before the performance data manager is used for the first time
after installation, and whenever the monitoring hierarchy structure is changed.

Execute performance data manager setup using the ptpectrl command: (See
“ptpectrl” on page 88 for details.)

ptpectrl -i

The command returns the following messages:

ptpectrl: Beginning setup for performance information collection
ptpectrl: Reply from the Central Coordinator expected within 27ð seconds. OK.
ptpectrl: Setup for collecting performance information succeeded.

Once the setup is complete, performance information collection and summarization
can begin.

Step 4: Start Data Collection and Summary
Execute the ptpectrl command to start data collection and summarization at the
data manager nodes: (See “ptpectrl” on page 88 for details.)

ptpectrl -c

The command returns:

ptpectrl: Starting collection of performance information.
ptpectrl: Reply from the Central Coordinator expected within 27ð seconds.

This command may take several minutes to execute, especially on larger SP
configurations. The time remaining will be updated every five seconds. When the
central coordinator finally replies, the completed output (if everything was
successful) will look like:

ptpectrl: Starting collection of performance information.
ptpectrl: Reply from the Central Coordinator expected within 235 seconds. OK.
ptpectrl: Performance information collection successfully started.

The command will then proceed to enable all performance statistics within the
hierarchy. The progress of this effort will be reported back to the user. If all nodes
within the hierarchy are not prepared to take the enablement request, the command

32 Monitoring Guide and Reference

will make additional attempts (up to 4 attempts will be made). Example output for
this stage:

ptpectrl: Enabling statistics for performance information collection.
ptpectrl: Reply from the Central Coordinator expected within 27ð seconds. OK.
ptpectrl: Some systems reported that they were not ready to accept the request.

Pausing 15 seconds to retry command.
ptpectrl: Attempting the command again.
ptpectrl: Reply from the Central Coordinator expected within 27ð seconds. OK.
ptpectrl: Enabling and restriction of statistics complete.
ptpectrl: Command completed.

Note: Aborting this command may leave the SP System in an unpredictable state
from which recovery can be difficult.

Step 5: Monitor the Summarized Data
Once collection is started, the summarized performance information becomes
available to the Performance Toolbox GUI and its Spmi and Rsi libraries. To
examine these summarized statistics, log into a system where the Performance
Toolbox Performance Manager package has been installed. Performance Toolbox
allows access to this information. Refer to IBM Performance Toolbox for AIX: Guide
and Reference for additional information.

If, for example, Performance Toolbox is installed on spnode01, execute the
following command on that node:

xmperf

Use xmperf menu selections to create an instrument to monitor the summarized
statistic for % of time CPU in user state from spnode09, and another instrument to
monitor the same statistic from spnode23.

 Chapter 5. Using PTPE 33

Figure 5. Performance Toolbox Performance Statistic Display

From the xmperf display, you can bring up additional instruments to view the
individual node statistics that were calculated in the group's average. These may be
of interest if one of the summary statistics arouses your suspicion.

Step 6: Stop Data Collection and Summarization
Performance monitoring creates an additional load on the nodes being monitored.
When you have collected sufficient performance data, shut the monitoring process
down using the ptpectrl command:

ptpectrl -s

The following messages are returned:

ptpectrl: Reply from the Central Coordinator expected within 27ð seconds. OK.
ptpectrl: Performance information collection successfully stopped.
ptpectrl: Command completed.

Controlling Data Collection and Summary
By default, PTPE instructs all nodes in the monitoring hierarchy to make all
performance information available to the data manager nodes for summary. This
includes all performance information that can be detected by the xmpeek -l
command. At regular intervals, this information is sent by each node to its
managing node, which calculates averages for each statistic.

Normally, you will not need all of the performance information that can be provided
for the SP. Instead, you will wish to monitor a core set of performance statistics, or
you may have identified a list of specific information that is not to be monitored.
PTPE provides two mechanisms for restricting collection to the statistics you want.

34 Monitoring Guide and Reference

These can significantly reduce the load and network traffic generated by the
monitoring programs.

The ptpectrl Command
Whenever this command is used to start collection or archiving of performance
information, the command checks for a configuration file to determine what
performance information should be enabled or disabled. This file, ptpe.cf , is not
created by PTPE when the product is installed, but an example file is installed in
/usr/lpp/ptpe/samples/ptpe.cf . For instructions on modifying this file, examine the
sample files in “ptpe.cf Samples” on page 42, or refer to “Using the ptpe.cf File” on
page 40.

The ptpectrl command initially searches the user's home directory for this
configuration file. If the file is not located in that directory, the command next
searches the /etc/perf directory. If the file is not found in either search, the
command will enable all available performance information. Should the command
find a configuration file, it will use the instructions within this file to identify what
performance statistics should be collected, averaged, and recorded in the archive,

If collection or archiving is already active, the ptpectrl command provides the -m
option to revise the list of enabled statistics.

For more information on the ptpectrl command and its options, refer to “ptpectrl”
on page 88.

PTPE API Applications
The PTPE API provides interfaces to control statistic collection, averaging, and
recording to the archive. The following subroutines are included in the PTPE C
language programming library (libptpe.a) for this purpose:

The following subroutines are included in the PTPE C language programming
library (libptpe.a) for this purpose:

See Chapter 6, “Using the PTPE Application Programming Interface” on page 47

PtpeColEnableStats Identifies statistics to include in summary

PtpeColDisableStats Identifies statistics to exclude from summary

PtpeQueryAvailStats Lists statistics available for summary

PtpeColQueryStats Identifies statistics currently included in summary

Archiving Performance Data
Some methods of performance analysis require historical performance information
in order for trends to become apparent, and for hidden relationships between
specific performance statistics to emerge. Run-time monitoring interfaces display
only a limited history of performance statistics for the time period that the monitor
was active. Furthermore, the history that the run-time monitoring tool can display is
restricted to the performance information that was explicitly monitored at the time.
These histories may be insufficient when a need arises for a performance statistic
that was not monitored, or if the monitor was not active at a crucial time.

The PTPE performance data manager retains performance data in a
machine-readable format. This data can be accumulated in the archive even while

 Chapter 5. Using PTPE 35

such monitoring interfaces as the Performance Toolbox xmperf and 3dmon
utilities, are inactive. The PTPE performance data manager can also retain data
that is not being monitored by these applications, as well as data that is not
selected for collection and summary. This means that you don't have to be
monitoring a specific performance statistic in a run-time fashion in order to archive
it.

IBM Performance Toolbox for AIX includes two commands, a2ptx and azizo , that
can be useful in manipulating archived performance data. Refer to IBM
Performance Toolbox for AIX: Guide and Reference for details.

“Controlling Performance Data” on page 68 contains more detailed information.

 Archival Requirements
In order to archive performance data, performance summarization must be enabled
in the monitoring hierarchy because the performance data manager uses the same
daemon processes to archive performance data as it does to summarize it. It is not
necessary to summarize the information that you wish to archive. (Only members
of the perfmon user group may initiate performance data archival.)

 Archive Access
Each node maintains its own performance data archive in a binary file,
/var/adm/ptpe/perflog . The data manager nodes record their own performance
data as well as the summary data they calculate for their reporting group.

PTPE gives you remote access to archive files through its C library (libptpe.a). You
can also dump archive files in a text format using the ptpedump command. This
tool, used in conjunction with the Performance Toolbox a2ptx command, allows you
to create recording files that can be used by the xmperf and azizo applications.

While performance information summarization must be active in order to record
performance information to the archive, neither performance summary nor
performance archiving need be active to retrieve performance information from the
archive. The only requirement is that the archive file /var/adm/ptpe/perflog must
be present on the target node.

Note: The binary data in the archive is not directly accessible by the Performance
Toolbox monitoring applications (xmperf , 3dmon) or its programming
libraries (Spmi , Rsi). Therefore, the information stored in the performance
information archives cannot be displayed in a run-time fashion.

In order to display archived data through xmperf , or 3dmon , it must first be
converted to text format, then processed with the a2ptx tool, after which it can be
loaded as a recording file.

Behavior Of The Performance Information Archive
Once archival is started, data is recorded in the /var/adm/ptpe/perflog file until one
of the following events occurs:

1. All performance statistics are restricted from recording by an application using
the PTPE programming library (libptpe.a). When all information is restricted, no
information is written to the archive. However, the performance data manager
continually checks whether any statistics have been selected for recording until
archiving is shut off. This deprives the rest of the system of resources,
therefore it should only be used to pause the archiving process.

36 Monitoring Guide and Reference

2. The filesystem containing the /var directory has less than 5% of free space
available. In this event, the performance data manager does not write to the
archive. However, the performance data manager continually checks for the
availability of free space, and resumes data recording when more than 5% of
the total filesystem space becomes free. Information that would have been
written to the performance archive during the interim is lost.

3. Archiving is shut down by the user.

The /var/adm/perflog file is created when performance data archiving is first
started. Subsequent archiving sessions append more data to the file. In order to
erase the /var/adm/perflog file, you must execute the ptpectrl -e command.

 Archive Control
By default, the PTPE performance data manager records all available performance
statistics for each node in that node's archive. This may may result in the archival
of more information than you care to retain:

� The more information being retained, the greater the load on the system to
record the information

� The more information, the more disk space consumed

The ptpectrl command provides a statistics configuration file that you can use to
control the recording of specific performance statistics to the archive. The PTPE
API library provides a set of control interfaces that allow applications the same
function:

The PTPE API library contains interfaces that allow you to control the archival of
specific performance statistics. The PTPE API library does not provide an interface
to remove information from the performance archive once it has been recorded.
Once a statistic is recorded, it remains in the archive until the archive is cleared.

When a statistic is disabled from the recording process, that statistic is not included
in any subsequent update to the archive, however, previous recordings of that
statistic remain.

PtpeArchEnableStats Identifies statistics that are to be recorded to the
performance information archive

PtpeArchDisableStats Identifies statistics that are not to be recorded to the
performance information archive.

PtpeQueryAvailStats Lists statistics available to be archived.

PtpeArchQueryStats Identifies statistics currently being recorded to the
performance information archive.

Recording to the Archive
This procedure includes examples of how to use archiving on a system with two
frames consisting of eight wide nodes each, the same as in the procedure for
“Collecting and Displaying Summary Data” on page 31.

 Chapter 5. Using PTPE 37

Step 1: Make Sure You're A Valid User
The PTPE performance data manager can only be started by users in the perfmon
user group. Ensure that your userid is a member of the perfmon user group. Also,
be sure that you have executed the following command to make perfmon your
effective group.

newgrp perfmon

Step 2: Ensure that Data Collection and Summary is Active
You can determine the status of data collection from SP Perspectives, or using the
ptpectrl command: (See “ptpectrl” on page 88 for details.)

ptpectrl -q

The following messages are returned:

ptpectrl: Performance information collection is active
ptpectrl: Performance information archiving is not active.
ptpectrl: Current performance information reporting frequency is 15 seconds.
ptpectrl: Current performance information recording frequency is 6ð seconds
ptpectrl: Command completed.

If collection is not active, start it by using the procedure in “Step 4: Start Data
Collection and Summary” on page 32. If collection is active continue to Step 3.

Step 3: Start Recording to Archive
Instruct members of the monitoring hierarchy to begin archiving performance data,
using SP Perspectives or the ptpectrl command: (See “ptpectrl” on page 88 for
details.)

ptpectrl -r

Like collection startup, archiving starts in two phases: start and enablement. The
following messages are returned:

ptpectrl: Starting archiving of performance information.
ptpectrl: Reply from the Central Coordinator expected within 27ð seconds. OK.
ptpectrl: Performance information archiving successfully started.

The command then attempts to enable all statistics for archiving, or enables and
restricts variables for archiving (if the configuration file was found). The output from
a successful enablement/disablement is:

ptpectrl: Enabling statistics for performance information collection.
ptpectrl: Reply from the Central Coordinator expected within 27ð seconds. OK.
ptpectrl: Enabling and restriction of statistics complete.
ptpectrl: Command completed.

Step 4: Shut Down Archive Recording
Once you have all the performance information you wish to retain, stop the
archiving process to conserve system resources. You can stop archiving using SP
Perspectives, or the ptpectrl command: (See “ptpectrl” on page 88 for details.)

ptpectrl -t

The following messages are displayed:

ptpectrl: Reply from the Central Coordinator expected within 27ð seconds. OK.
ptpectrl: Reply from the Central Coordinator expected within 27ð seconds. OK.
ptpectrl: Performance information archiving successfully stopped.
ptpectrl: Command completed.

38 Monitoring Guide and Reference

If you no longer need performance data summaries calculated, you can stop both
the archiving and collection actions by issuing:

ptpectrl -s

Formatting a Text Version of the Archive
You can convert the data archive to a text format usable in reports, or as input to
other AIX commands. The performance data manager provides two methods for
obtaining a text version of the archive:

1. The ptpedump command instructs one or more nodes in the monitoring
hierarchy to generate a text file, containing the performance information found
in the performance data archive. The file is written in the /var/adm/ptpe
directory, to a file named perflog.txt <today>, where <today> is the date the
command was executed in month-day-year format, for example
perflog.txt100195 for October 1, 1995.

Since this command places the file in /var/adm/ptpe , there must be enough
room in the /var directory on the nodes to accept the output.

2. The spdm_dump command executes only on the local node, and writes a text
formatted version of the performance archive for the local node to standard
output.

Method 1 - ptpedump
These commands can be used to create a text file containing the archived data for
two nodes in a reporting hierarchy, spnode09.ibm.com and spnode13.ibm.com.
Before creating the text file, enter the following on the Control Workstation to
ensure that there is enough space to accept the text file in the /var filesystem.

dsh -w spnodeð9.ibm.com,spnode13.ibm.com df /var

A display similar to the following appears:

spnodeð9.ibm.com: Filesystem 512-blocks Free %Used Iused %Iused Mounted on
spnodeð9.ibm.com: /dev/hd9var 8192 4195 4ð% 442 44% /var
spnode13.ibm.com: Filesystem 512-blocks Free %Used Iused %Iused Mounted on
spnode13.ibm.com: /dev/hd9var 8192 5336 35% 443 44% /var

Now create the text file by entering:

ptpedump -n spnodeð9.ibm.com spnode13.ibm.com

The following message is displayed:

ptpedump: command has completed.

The /var/adm/ptpe/perflog.txt100195 file is created on both the spnode09.ibm.com
and spnode13.ibm.com nodes.

Method 2 - spdm_dump
The following uses pipes to generate a report from performance information archive
of the PagSp/%totalfree statistic for the spnode09.ibm.com node. This command
must be executed on spnode09.ibm.com.

spdm_dump | grep PagSp/%totalfree | awk '{printf("%s %s %s %s %s: %s\n", $1, $2, $3, $4, $5, $1ð)}'

 Chapter 5. Using PTPE 39

Selecting Performance Statistics to Archive
By default, PTPE instructs all nodes in the monitoring hierarchy to make all
performance information available for archival. Therefore, all performance
information that can be detected by the xmpeek -l command can be archived.

If you have no need to archive all performance statistics you can limit archiving to a
smaller set of statistics to reduce the processing load and the amount of disk space
required to store the archive using the ptpectrl command or the PTPE API.
“Controlling Performance Data Archival” on page 75 describes how.

Obtaining Specific Performance Data from the Archive
The preferred method for gaining access to data in the performance archive is
through the PTPE C programming library (libptpe.a). This method does not require
additional disk space for a text dump of the performance information archive, nor
does it require you to log into individual nodes to pipe the archive through other
commands. However, it does require that you write an application for access to
specific performance information in the archive.

Refer to “Obtaining Performance Data” on page 77 for more information.

Using the ptpe.cf File
This file indicates which performance statistics should be collected by the data
manager and central coordiantor nodes, and used to calculate summary statistics. It
also specifies which statistics should be written into a node's performance
information archive file when archiving is active. The format of the file permits four
possible instructions for the treatment of a statistic:

1. Collect but do not archive

2. Archive but do not collect

3. Collect and archive

 4. Ignore

For samples of the ptpe.cf file, refer to “ptpe.cf Samples” on page 42.

The ptpe.cf is read by the ptpectrl command whenever performance information
collection or performance information archiving is started (whenever the -a, -c, and
-r options are used). The file is also read by the ptpectrl command whenever the
-m option is issued.

This file is ignored by the ptpectrl command whenever the -n option is used. A
replacement for this file is read when the -l option of the ptpectrl command is
invoked. Refer to “ptpectrl” on page 88 for explanations of these flags and further
information.

The PTPE programming library does not make use of this file or its format.

40 Monitoring Guide and Reference

How PTPE Uses ptpe.cf
The ptpectrl command searches for a file named ptpe.cf whenever any of the
aforementioned conditions exist in the user's $HOME directory. If the file is not
located in that directory, the command searches for the file in the /etc/perf
directory. If the file cannot be located in either directory, all available performance
information is collected by the data manager and the central coordinator nodes, and
it is also written to the performance information archive files on each node.

If a ptpe.cf file (or replacement) is located, any statistics that are not listed in the
file are not collected by the data manager nodes and central coordinator nor are
they written to the performance information archive files.

If the statistics configuration file instructs the data manager node and the central
coordinator not to collect a statistic for averaging, the averaged statistics that are
located in the PTPE_sum/ contexts on those nodes are not updated. However, the
contexts for these statistics WILL STILL EXIST. The user must bear this fact in
mind. Tools such as xmperf permit you to bring up instruments to display these
statistics, but since the data manager nodes and central coordinator were instructed
to ignore this statistic, the instrument is not updated, and displays only a constant
value for that statistic.

Specifying Statistic Entries in ptpe.cf
The PTPE statistics configuration file follows a specific format. Entries that do not
conform to the format rules will be ignored.

Any statistics that are to be collected, archived, or both, must have entries in the
statistics configuration file. Statistic entries must begin in the first column of a line.
Leading white space is not permitted. Statistic entries use the following format:

statistic_name:collection_flag,archiving_flag

Where:

� statistic_name is the name of the statistic, using the IBM Performance Toolbox
for AIX Spmi naming format.

� collection_flag indicates if the statistic will be collected by the data manager
and central coordinator nodes. This field may have a value of 0 (zero = do not
collect) or 1 (one = collect).

� archiving_flag Indicates if the statistic will be written into a node's performance
information archive file. This field may have a value of 0 (zero = do not archive)
or 1 (one = archive).

Blank space is not permitted within a statistic entry, and comments are not
permitted at the end of the entry. The values of the collection_flag and the
archiving_flag can be set to different values.

Note that the specification of the collection_flag and the archiving_flag are optional.
If these flags are not provided, the statistic is collected by the data manager and
the central coordinator nodes, and is written to each node's archiving file.

 Chapter 5. Using PTPE 41

 Using Wildcards
A wildcard, denoted by the character * (asterisk), may be placed within the
statistic_name field of a statistic entry. This will permit the entry to match all known
statistics of a specific name pattern on a node.

Only one wildcard is permitted per statistic entry.

The collection_flag and archiving_flag fields cannot be wildcards.

 Writing Comments
Any line within the statistics configuration file beginning with the character # (pound
sign) is recognized as a comment.

Leading blank space is not permitted on comment lines. Comments are also not
permitted on statistic entry lines.

 Blank Lines
Blank lines are permitted within the statistic configuration file. However, blank
space is not permitted in statistic entries.

 ptpe.cf Samples
These lines illustrate how to use the ptpe.cf file. They can be found in
/usr/lpp/ptpe/samples/ptpe.cf .

Selecting Statistics to Archive
The following lines instruct all nodes to archive specific performance statistics, and
instruct the data manager and the central coordinator nodes to collect these
statistics for averaging. Although performance statistics not specified in the
configuration file are still listed, zero values are archived for them.

Mem/Virt/pagein
Mem/Virt/pageout
Mem/Kmem/mbuf/failures

The following lines use full notation to instruct all nodes to archive specific
performance statistics, and instruct the data manager and the central coordinator
nodes to collect these statistics for averaging.

LAN/tokð/bytesout:1,1
LAN/tokð/bytesin:1,1
LAN/tokð/framesout:1,1
LAN/tokð/framesin:1,1

Collecting without Archiving
These entries instruct the data manager and the central coordinator nodes to
collect statistics, but the nodes are not to write them to the performance information
archive files.

Proc/runque:1,ð
Proc/pswitch:1,ð

42 Monitoring Guide and Reference

Archiving without Collecting
These entries instruct all nodes to write these statistics to their performance
information archive files, but also instruct the data manager and central coordinator
nodes not to collect these statistics for averaging.

IP/NetIF/trð/ipacket:ð,1
IP/NetIF/trð/opacket:ð,1

 Excluding Statistics
This entry restricts a specific statistic from both collection and archiving. This might
be used when a statistic is being disabled for a specific run of PTPE, but will be
reactivated in a later run.

Disk/hdisk1/busy:ð,ð

 Using Wildcards
This example shows how a wildcard could be used to identify statistics for all
available paging devices.

PagSp/\/size:1,ð
PagSp/\/%free:1,1

The following line shows how a wildcard could be used to identify any statistic
ending with a specific field. Because this entry has not provided any collection or
archiving flags, any statistics matching this pattern will be collected by data
manager and central coordinator nodes, and is also written to the performance
information archive files on all nodes.

\/rcverrors

All CPU related statistics can be identified using this wildcard format.

CPU/\:ð,1

Using SP Perspectives
This section provides an overview of the Performance Monitoring Perspective. For
general information regarding all of SP Perspectives, see the IBM Parallel System
Support Programs for AIX Administration Guide.

You can use the Performance Monitoring Perspective to perform most of the PTPE
command set functions through point and click operations. Use the perspectives
command to bring up the SP Perspectives Launch Pad, then double-click on the
SP Performance Monitor icon. You can also start the Performance Monitoring
Perspective directly, without initializing the SP Perspectives Launch Pad, by
entering

spperfmon

When starting the Performance Monitoring Perspective, a window similar to the
following one appears:

 Chapter 5. Using PTPE 43

Figure 6. The Performance Monitoring Perspective GUI

The default Performance Monitoring Perspective window uses three panes to
display SP system information:

44 Monitoring Guide and Reference

1. Hierarchy pane: This shows the current monitoring hierarchy, displaying the
central coordinator at the top, with data manager nodes below and reporter
nodes at the bottom. By default, the monitoring hierarchy stored in the SDR is
displayed when this perspective is initialized.

This workspace is your monitoring hierarchy editor. The current pane, selected
by clicking in the mouse anywhere in a pane area, appears lighter in color than
the other panes.

2. Syspar pane: This shows how the SP is partitioned. The current system
partition (distinguished by a lightening bolt in the icon) is the one that displays
its objects in the Hierarchy and Nodes panes. If other partitions are defined for
the SP, you can use this pane to select them.

3. Nodes pane: This shows the nodes in the current SP system partition,
organized by frame in the default display, but you can sort and filter them to
suit your purposes.

Like other SP Perspectives, this one has a Menu Bar, a Tool Bar, and, below the
panes, an Information Area, where a line of text is displayed that describes Tool
Bar icon functions and Menu Bar actions, depending on where you point the
mouse.

For specific information regarding the icons appearing in the panes, the menu bar,
or the tool bar, refer to the online information for this Perspective.

 Chapter 5. Using PTPE 45

46 Monitoring Guide and Reference

Chapter 6. Using the PTPE Application Programming
Interface

The Performance Toolbox Parallel Extensions Application Programming Interface
library (PTPE API), located in libptpe.a , is the preferred means for access to
statistical information from the performance information archive. The library
provides subroutines that can retrieve specific performance information from the
archives maintained by one or more specified nodes without requiring the
application to make direct connections to these nodes. The PTPE API includes a
set of subroutines that permit your program to control data collection,
summarization, and archival on each node in the monitoring hierarchy. With these
subroutines, your application can process performance statistics relevant to current
and future monitoring efforts, and ignore irrelevant information. This can
significantly reduce the operational overhead of performance monitoring, as well as
reduce the amount of network traffic generated by PTPE and the amount of disk
space necessary to contain the performance data archives.

The PTPE API supports C language programs. To use the API, your program
should include the <spdm.h > header file, which provides all the necessary data
types and functional prototypes, as well as a definition of all the error codes used
by the API. The application must link with shared library libptpe.a during
compilation by using the -lptpe compiler directive.

When executing PTPE API control functions, libptpe.a establishes a socket
connection with the central coordinator node of the monitoring hierarchy. Once the
connection is established:

1. The library transmits the control command to the central coordinator node,
along with the list of nodes that are expected to carry out the command

2. The central coordinator node determines which nodes must be alerted by
examining the monitoring hierarchy and finding the data manager nodes
responsible for the nodes specified in the API command

3. The central coordinator node forwards the command to these data manager
nodes, which, in turn, forward it to the target nodes

4. The target nodes perform the operation and report their results to the data
manager nodes

5. The data manager nodes collect all results and pass them to the central
coordinator node

6. The central coordinator node assembles all responses, and gives the complete
results to the PTPE API library through the socket

With this strategy, the application need only establish a network connection to the
central coordinator node, instead of establishing connections to all nodes involved
in the API request.

 The PTPE API contains subroutines for:

Controlling API Sessions Establishes and ends API session

Handling Data Types Manipulates host and statistical data
structures

 Copyright IBM Corp. 1998 47

Controlling Performance Data Controls collection and archival of
performance data

Obtaining Performance Data Deliver performance data to application
program

An API session is required only when an application is requesting performance data
or indicating what data should be collected or archived through the API. From the
application's point of view, a session is the time between the PtpeOpenSession
and PtpeCloseSession calls.

API requests for performance data that are made by an application that does not
currently have an open session will fail.

The examples in this chapter do not contain sufficient code for execution, nor are
they intended as a tutorial. They are included only to illustrate how the PTPE
subroutines are called.

 Controlling Sessions
An PTPE API session is established by an application whenever the application
needs to use or control performance information. When establishing an API
session, the application locks critical information in the System Data Repository
(SDR). In this way it ensures that no other applications can alter the monitoring
hierarchy structure or change the current status of performance information
collection or archiving, which could cause the application to fail or obtain invalid
results. API sessions can only be established by applications with the appropriate
permissions. Refer to “The perfmon User Group” on page 14 for SDR information.

Because a session cannot be established without locking information in the System
Data Repository, only one session can be active in the entire system partition at
any time. Therefore, an application should only obtain a session when one is
required, and it should release the session when it is no longer needed.

The following subroutines are provided for API session control:

Subroutine Name Page Purpose

PtpeOpenSession 277 Establishes a session, permitting
the caller access to archived
performance information and
configure statistics for collection or
archiving.

PtpeCloseSession 176 Releases a session, relinquishing
the application's access to
archived performance information
and configuration of statistics.

48 Monitoring Guide and Reference

 Termination Signals
All PTPE API applications should set up a handler for termination signals. The
purpose of this handler is to close the PTPE API session if the process is
prematurely terminated by the user or the system. If such a handler is not set up,
the application can leave the PTPE status information in an incorrect state if it is
interrupted or killed, and possibly prevent other applications or PTPE commands
from executing properly.

At a minimum, a handler should be set for the SIGHUP, SIGINT, SIGQUIT, and
SIGTERM signals. These are the most common signals sent by users to terminate
a process. We recommend adding the SIGABRT, SIGBUS, SIGSEGV, SIGSYS,
SIGXCPU, and SIGXFSZ to the set of signals to be handled by the routine, to allow
for possible errors in the application that would cause termination of the application
by the operating system.

The following code segment demonstrates how and application could establish a
session with the PtpeOpenSession subroutine, and close it with the
PtpeCloseSession subroutine. This example also demonstrates how a signal
handler could be used to relinquish the PTPE API session when a termination
signal is received.

#include <stdio.h> /\ Basic I/O Capabilities \/
#include <spdm.h> /\ PTPE data types \/
#include <sys/signal.h> /\ Signals supported \/

session_ptr_t sblock;

/\
 \ Signal handling function - close the PTPE session before exiting.
 \/
void
sighdl(int sigval)
{
 char \signame;
 extern session_ptr_t sblock;

 psignal(sigval, signame);
printf("Terminating because signal %s was received\n", signame);

 free(signame);
if (sblock != (session_ptr_t) NULL) {

if (PtpeCloseSession(sblock) != PTPE_SUCCESS) {
printf("Cannot close session\n");

 }
 }
 exit(sigval);
}

/\
 \ Mainline code
 \/
main(int argc, char \\argv)
{
 int rc;
 extern session_ptr_t sblock;
 extern void sighdl();

 Chapter 6. Using the PTPE Application Programming Interface 49

sblock = (session_ptr_t) NULL;

/\ Set up signal handling function \/
 signal(SIGHUP, sighdl);
 signal(SIGINT, sighdl);
 signal(SIGQUIT, sighdl);
 signal(SIGTERM, sighdl);
 signal(SIGABRT, sighdl);
 signal(SIGBUS, sighdl);
 signal(SIGSEGV, sighdl);
 signal(SIGSYS, sighdl);
 signal(SIGXCPU, sighdl);
 signal(SIGXFSZ, sighdl);

/\ establish session to run the PTPE command \/
rc = PtpeOpenSession(&sblock);
switch (rc) {

 case PTPE_SUCCESS: break;
case PTPE_RONLY_SESS: printf("Read-only session. ");

printf("Cannot issue control APIs\n");
 break;
 case PTPE_AUTH: printf("Not authorized.\n");
 return(1);

case PTPE_LOCKED: printf("Another appl running.\n");
 return(1);

default: printf("Error getting session.\n");
 return(1);
}
 :
 :
/\ perform PTPE functions \/
 :
 :
/\ PTPE functions done - release session \/
rc = PtpeCloseSession(&sblock);
switch (rc) {
 case PTPE_SUCCESS: break;

case PTPE_NO_SESSION: printf("No session to close!\n");
 return(1);

default: printf("Error closing session.\n");
 return(1);
}
/\ session now dropped \/
 :
 :
return(ð);
}

Regular and Read-Only Sessions
When a regular session is established, libptpe.a gains locks on the PTPE data
objects in the System Data Repository. This implies that the shared library
establishes a session between itself and the SDR. While the session is held, the
locks on the data objects are also held, preventing other utilities from updating
them (such as the ptpehier and ptpectrl commands), and also preventing other
PTPE API applications from establishing a session.

50 Monitoring Guide and Reference

Regular sessions should be held as long as the application requires the monitoring
hierarchy structure to remain consistent, and also as long as the application needs
to exercise sole control over performance information collection and archiving.
However, when coding the application, remember that other PTPE API applications
on this or any other node in the monitoring hierarchy will not be able to obtain a
session until the session is released by this application.

Under certain conditions, the PtpeOpenSession routine will return a code of
PTPE_RONLY_SESS, indicating that a read-only session was established by the
routine. This condition is likely to occur when an application, running on a node in
one SP system partition, sets its environment to reference another SP system
partition and then attempts to open a PTPE session. When a read-only session is
established, the holder of the session does not lock the PTPE data objects in the
System Data Repository, but instead has read-only access to the information. With
such a session, PTPE cannot guarantee that the monitoring hierarchy will remain in
a consistent state, or that another application will not issue controls upon the
hierarchy. Therefore, the application holding a read-only session can only issue a
limited set of queries.

Sessions should always be explicitly terminated with the PtpeCloseSession
subroutine before the application exits.

Handling Data Types
The PTPE API provides four data types to contain system information and
performance statistic information:

 1. Hosts

 2. Statistics

 3. Host lists

 4. Statistics lists

The term host is used whenever the API is dealing with system information, and the
term statistic is used when the API is dealing with performance statistic information.
A host has the following properties:

Name The name by which the host is known to the network.

Result Code Indicates how successfully the host performed a previous API
request.

Statistics have a different set of properties:

Name The absolute path name by which the statistic is known to
Performance Toolbox.

Type Indicates whether the statistic is an integer, or floating point value.

Value The statistical value.

Timestamp Indicates when the value was observed.

Result Code Indicates how successfully a previous API subroutine handled the
statistic.

Hosts and statistics are organized into groups of host lists and statistics
lists . These lists also have unique properties:

 Chapter 6. Using the PTPE Application Programming Interface 51

Anchor Point Indicates where the list resides in memory.

Current Entry Pointer Indicates which member of the list will be processed by the
next data manipulation subroutine, and can be set to reference various
list members by other data manipulation routines.

Many PTPE subroutines perform operations on host lists containing one or more
hosts. Some of these hosts must also have statistics lists assigned to them
whenever they use a subroutine that enables, disables, or retrieves lists of
statistics.

These four data types have the following relationships:

� Statistics are added to statistic lists

� Hosts are added to host lists

� Statistic lists are assigned to hosts, once a host is assigned to a host list

� Information control or access functions are performed on host lists

Host List Statistic List 1

Statistic List 3
Statistic List 2

Host 1
Host 2
Host 3

Statistic A
Statistic B

Statistic B
Statistic C

Statistic A
Statistic B
Statistic C

Figure 7. Data Type Relationships

To ensure that all data types are used properly, the PTPE API provides a series of
data handling subroutines that are designed to manipulate the data structures that
contain statistic and host information. Your application should use these interfaces
when manipulating the data types. Do not manipulate the data types directly.

Subroutine Name Page Purpose

PtpeAddHostToList 114 Adds a new host to a host list.

PtpeAddStatToList 116 Adds a new statistic to the statistic
list.

PtpeAssignStatsToHost 170 Associates a statistic list with a
specific host in the host list.

PtpeDelHostFromList 225 Removes a host from a host list.

PtpeDelStatFromList 227 Removes a statistic from a statistic
list.

PtpeEmptyHostList Clears out a host list.

PtpeEmptyStatList 231 Clears out a statistic list.

52 Monitoring Guide and Reference

Subroutine Name Page Purpose

PtpeFindHost 233 Checks if a certain host is
specified in a host list, and
prepares the host list to accept
input for that host.

PtpeFindStat 235 Checks if a certain statistic is
specified in a statistic list, and
prepares the statistic list to accept
input for that statistic.

PtpeFirstHost 237 Prepares host list for operations on
the first host specified in the host
list.

PtpeFirstStat 239 Prepares the statistic list of the
currently referenced host for
operations on the first statistic
specified in the statistics list

PtpeFreeHostList 241 Deallocates a host list and its
anchor point.

PtpeFreeStatList 243 Deallocates a statistics list and its
anchor point.

PtpeGetHost 245 Retrieves the name of the currently
referenced host in the host list.

PtpeGetHostResult 247 Determines the success or failure
of a host to the previously
executed API subroutine.

PtpeGetHostStatList 250 Retrieves the pointer to the
currently referenced host's statistic
list, so this list may be used in
subsequent PtpeAddStatToList ,
PtpeDelStatFromList ,
PtpeFindStat ,
PtpeAssignStatsToHost , and
PtpeFreeStatList calls.

PtpeGetStatName 252 Retrieves the name of the currently
referenced statistic in the currently
referenced host's statistic list.

PtpeGetStatResult 254 Determines if the previously
executed API subroutine was
successful in handling the
specified statistic.

PtpeGetStatTime 256 Retrieves the timestamp value for
the currently referenced statistic in
the host's statistic list. Timestamp
is returned in a struct tm format.

PtpeGetStatType 258 Retrieves the data type of the
currently referenced statistic in the
currently referenced host's statistic
list.

 Chapter 6. Using the PTPE Application Programming Interface 53

Subroutine Name Page Purpose

PtpeGetStatValueFloat 261 Retrieves the value of the currently
referenced statistic in the currently
referenced host's statistic list. This
subroutine can only be used on
floating point statistics.

PtpeGetStatValueLong 263 Retrieves the value of the currently
referenced statistic in the currently
referenced host's statistic list. This
subroutine can only be used on
long integer statistics.

PtpeInitHostList 265 Allocates an empty host list for the
caller. This list identifies the hosts
involved with subsequent API calls,
and associates a list of statistics to
each host in the list.

PtpeInitStatList 267 Allocates a statistic list for the
caller. This list identifies the
statistics that are to be used in
conjunction with one or more hosts
in the host list during subsequent
API calls.

PtpeIsLastHost 269 Checks if there are any more hosts
in the host list after the currently
indicated host.

PtpeLastStat 271 Checks if there are any more
statistics in the statistic list after
the currently referenced statistic

PtpeNextHost 273 Prepares host list for operations on
the subsequent host specified in
the host list.

PtpeNextStat 275 Prepares statistic list of the
currently referenced host for
operations on the next statistic in
the statistics list

PtpeRemoveStatsFromHost 298 Disassociates the specified host's
statistic list in the host list from that
host.

PtpeSetStatTime 300 Sets the timestamp value for the
currently referenced statistic in the
host's statistic list.

PtpeStatIsFloat 303 Determines if the currently
referenced statistic is of the data
type PTPE_FLOAT

PtpeStatIsLong 305 Determines if the currently
referenced statistic is of the data
type PTPE_LONG.

Many of the subroutines that set system or statistic values within these data types,
or retrieve system or statistic information from these data types, deal with the
current item in the respective list. Each list contains an anchor, which indicates the
location of the list in memory, as well as a pointer to the current item in the list.

54 Monitoring Guide and Reference

Assignment and retrieval operations use the current item pointer to locate the
member of the list that is the target of the operation. Whenever an item is inserted
into either a statistics list of a host list, the current item pointer is updated to
reference the newly added item. Whenever items are removed from either list, the
current pointer is reset to the beginning member of the list. If either list type
contains an empty list, the current item pointer references nothing.

To set or retrieve information from list items other than the latest added item or the
start of the list, the PTPE API provides navigation routines to change the current
pointer setting for each list type.

 � PtpeFirstHost

 � PtpeFirstStat

 � PtpeNextHost

 � PtpeNextStat

 � PtpeFindHost

 � PtpeFindStat

Two subroutines are also provided to determine whether the current item pointer is
referencing the last item in the list:

 � PtpeIsLastHost

 � PtpeIsLastStat

Your applications must ensure that the host lists and statistics lists it uses have
properly positioned their current item pointers before using subroutines that set or
retrieve information in these lists. If care is not taken to ensure this, erroneous
results can easily occur.

Manipulating Host Lists
Before nodes can be added to a host list, a host list must first be created with the
PtpeInitHostList subroutine. Once the host list is created, you may add nodes to it
using the PtpeAddHostToList subroutine, by specifying the name of the node. It is
important that the name you specify for the node be identical to the name
identifying it in the monitoring hierarchy. For example, if the monitoring hierarchy
recognizes a node by its fully qualified host name (such as spnode07.ibm.com), this
host name must be used when adding the node to the host list. If the host is also
known by another name (for example, a system is known both as spnode20 and
batch3), the name used must be the name by which the monitoring hierarchy
recognizes it. The names and formats must match exactly, or the API will conclude
that the requested node does not exist when an API command is executed on the
host list (the error will not be reported when the host is added to the list).

On those occasions when an operation is not to be performed on all the nodes
contained in a host list, the systems that are not to receive the command can be
removed from the host list with the PtpeDelHostFromList routine. The entire
contents of a host list can be cleared with the PtpeEmptyHostList routine, for
occasions when an entirely different set of nodes will be targeted for a PTPE API
command.

 Chapter 6. Using the PTPE Application Programming Interface 55

When all functions on nodes in the monitoring hierarchy are complete, the host list
should be freed using the PtpeFreeHostList routine. This returns the memory
reserved for the host list memory anchor back to the system.

Adding Nodes to a Host List
The following code segment demonstrates how three nodes can be added to a host
list, which will be used in later PTPE API operations. It also shows one of the
nodes being removed from the host list to prevent later PTPE API commands from
executing on that system.

#include <stdio.h> /\ basic I/O capability \/
#include <spdm.h> /\ PTPE data types \/

static char \sysnames[] = {
 "spnodeð4.ibm.com",
 "spnode12.ibm.com",
 "spnode23.ibm.com"
};
static int num_hosts = 3;

main(int argc, char \\argv)
{
session_ptr_t sblock; /\ PTPE session control info \/
host_list_t targets; /\ Where commands will run \/
int rc; /\ Ftn call return code \/
int i; /\ Loop counter \/

 :
 :
rc = PtpeOpenSession(&sblock);

 :
 :
 /\

\ Set up a host list for future PTPE API commands. Hosts
\ not in this list will not receive the API command, even
\ if they're in the hierarchy.

 \/
 targets=(host_list_t)NULL;
rc = PtpeInitHostList(&targets);
if (rc != PTPE_SUCCESS) {
printf("Cannot get a host list.\n");
rc = PtpeCloseSession(&sblock);

 return(1);
}
/\ add hosts to list \/
for (i = ð ; i < num_hosts ; i++) {
rc = PtpeAddHostToList(sysname[i], targets);
if (rc != PTPE_SUCCESS) {
printf("Cannot add %s to host list\n", sysname[i]);
rc = PtpeFreeHostList(&targets);
if (rc != PTPE_SUCCESS) {
printf("Error freeing host list\n");

 }
rc = PtpeCloseSession(&sblock);

 return(1);
 }
}

56 Monitoring Guide and Reference

 :
 :
/\ Perform PTPE API operations on all three systems \/
 :
 :
/\
 \ "spnode12.ibm.com" should not be included in any of
 \ following API subroutines. Remove it from the host list.
 \/
rc = PtpeDelHostFromList(sysnames[1], targets);
switch (rc) {
 case PTPE_SUCCESS: break;
case PTPE_HOST_NOT_FOUND: printf("%s not in host list\n",

 sysnames[1]);
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 return(1);
default: printf("Can't remove %s\n",

 sysnames[1]);
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 return(1);
}
 :
 :
/\ Perform remaining PTPE API operations \/
 :
 :
 rc = PtpeFreeHostList(&targets);
 if (rc != PTPE_SUCCESS) {

printf("Error freeing host list\n");
}
 rc = PtpeCloseSession(&sblock);
 :
 :
 return(ð);
}

Obtaining a List of Available Nodes
To eliminate the need for all PTPE API applications to know all the nodes in the
monitoring hierarchy, the PTPE API provides the PtpeQueryAvailHosts.
subroutine. This subroutine accepts an initialized host list as an argument, and
seeds this host list with all the nodes known in the monitoring hierarchy. The
PtpeDelHostFromList subroutine can then be used to remove nodes from the list
that will not be used in subsequent API commands. Unlike other data manipulation
subroutines, PtpeQueryAvailHosts requires a PTPE API session to be active, in
order to retrieve the current monitoring hierarchy structure.

 Chapter 6. Using the PTPE Application Programming Interface 57

#include <stdio.h> /\ basic I/O capability \/
#include <spdm.h> /\ PTPE data types \/

main(int argc, char \\argv)
{

session_ptr_t sblock; /\ PTPE session control info \/
host_list_t targets; /\ Where commands will run \/
int rc; /\ Ftn call return code \/
int i; /\ Loop counter \/

 :
 :

rc = PtpeOpenSession(&sblock);

 :
 :
 /\
\ Set up a host list for future PTPE API commands. Hosts
\ not in this list will not receive the API command, even
\ if they're in the hierarchy.

 \/
 targets=(host_list_t)NULL;
 rc = PtpeInitHostList(&targets);
 if (rc != PTPE_SUCCESS) {

printf("Cannot get a host list.\n");
rc = PtpeCloseSession(&sblock);

 return(1);
 }
 /\
\ Get list of all available systems. Remove "spnode13"
\ from the list, since it won't be involved in future API

 \ subroutines.
 \/
rc = PtpeQueryAvailHosts(sblock, &targets);
if (rc != PTPE_SUCCESS) {
printf("Cannot get list of systems.\n");
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 return(1);
 }
rc = PtpeDelHostFromList("spnode13.ibm.com", targets);

 :
 :
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 return(ð);
}

Once a host list is constructed and any necessary statistics lists are assigned to the
nodes in the host list (see “Navigating the Host List” on page 59), PTPE API
operations can be performed on these systems. When an API command has been
completed, each node will record its results, such as “completed,” “error,”
“couldn't find,” etc., in its entry in the host list. To determine how a node responded
to an API command, the host list must be scanned, and the results checked in
each host list entry.

58 Monitoring Guide and Reference

Navigating the Host List
The PTPE API provides subroutines for navigating the host list, and for checking
the results of the previously executed API command. The following code segment
demonstrates how an application would determine a node's response to an API
request. For the sake of brevity, the error handling code has been omitted.

 :
 :
 host_list_t targets; /\ Where commands will run \/
 char hostname[PTPE_NMLN]; /\ Name of system in host list \/
 int result; /\ How system did in API call \/
 :
 :

/\ check results of API command \/
rc = PtpeFirstHost(targets);

 for(;;) {
/\ get name of host and its result code \/
rc = PtpeGetHost(hostname, targets);
rc = PtpeGetHostResult(targets, &result);
printf("%s result was %d\n", hostname, result);

 :
 :

/\ perform some processing based on the results \/
 :
 :

/\ are we at the last host in the list? \/
rc = PtpeIsLastHost(targets);
if (rc == PTPE_TRUE) {

 break;
 }

/\ more hosts to go - move onto next one \/
rc = PtpeNextHost(targets);

 }
 :
 :

Manipulating Statistics Lists
Before statistics can be added to a statistics list, one must first be created with the
PtpeInitStatList subroutine. Statistics may then be added to the statistics list
through the PtpeAddStatToList routine, by specifying the name of the statistic.
The names used are full Performance Toolbox statistical context names, relative to
the Top context on a system (see the discussion on “System Performance
Measurement Interface Overview for Programming” in the IBM Performance
Toolbox for AIX: Guide and Reference for the format of statistic names). The full
context path does not include the hosts/hostname prefix. If the statistic name is not
specified in the proper format, the API will conclude that the statistic does not exist
on a system, but only after an API command is executed using this statistic. (The
error is not reported when the statistic is added to a statistics list.)

Removing statistics from a statistics list differs, depending on whether or not the
statistics list was assigned to a host in a host list. Statistics can be easily removed
from unassigned statistics lists with the PtpeDelStatFromList subroutine. However,
removing statistics from a list that has been assigned to a host is a bit more
involved.

 Chapter 6. Using the PTPE Application Programming Interface 59

When statistics lists are assigned to a host list through the
PtpeAssignStatsToHost subroutine, the PTPE API library prepares a copy of the
statistics list, and assigns the copy to the host. This allows the application to
maintain a master statistics list, and assign the same master list to a series of hosts
in a host list. Since the API copies a statistics list when it is assigned, any later
modifications to the master statistics list are not reflected in the assigned statistics
list. To make changes to a statistics list once it has been assigned to a host, the
statistics list must be removed from the host with the PtpeRemoveStatsFromHost
routine (which discards the statistics list), and a modified statistics list must be
assigned as the new statistics list to the host.

The entire contents of an unassigned statistics list can be cleared with the
PtpeEmptyStatList subroutine, for occasions when an entirely different set of
statistics is to be assigned to hosts for future API commands. When an unassigned
statistics list is no longer needed, it should be freed with the PtpeFreeStatList
subroutine. This returns the memory reserved for the host list memory anchor back
to the system. Statistics lists that are assigned to hosts in a host list are freed when
the host list is freed with the PtpeFreeHostList subroutine.

Adding to the Statistics List
The following code segment demonstrates how statistics can be added to a
statistics list, which will be assigned at a later point in the code to a host entry in an
existing host list. It also shows one of the statistics being removed from the
unassigned statistics list.

#include <stdio.h> /\ basic I/O capability \/
#include <spdm.h> /\ PTPE data types \/

static char \statnames[] = {
 "PagSp/%totalfree",
 "NetIF/trð/ipacket",
 "NetIF/trð/opacket",
 "CPU/cpuð/user"
};
static int num_stats = 4;

main(int argc, char \\argv)
{
session_ptr_t sblock; /\ PTPE session control info \/
host_list_t targets; /\ Where commands will run \/
stat_list_t slist; /\ Statistics used by API \/
int rc; /\ Ftn call return code \/
int i; /\ Loop counter \/

 :
 :
rc = PtpeOpenSession(&sblock);

rc = PtpeInitHostList(&targets);
 :
 :
/\ create statistics list \/

 slist=(stat_list_t)NULL;
rc = PtpeIniStatList(&slist);
if (rc != PTPE_SUCCESS) {

printf("Cannot set up statistics list.\n");
rc = PtpeFreeHostList(&targets);

60 Monitoring Guide and Reference

rc = PtpeCloseSession(&sblock);
 return(1);
 }
/\ add statistics to our own working list \/
for (i = ð ; i < num_stats ; i++) {
rc = PtpeAddStatToList(statnames[i], slist);
if (rc != PTPE_SUCCESS) {
printf("Cannot add %s to stat list\n", statnames[i]);
rc = PtpeFreeStatList(&slist);
if (rc != PTPE_SUCCESS) {

printf("Error freeing statistics list\n");
 }

rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 return(1);
 }
}
 :
 :
 /\

\ "PagSp/%totalfree" should not be assigned to any of
\ the hosts that would follow. Remove it from the stats

 \ list.
 \/

rc = PtpeDelStatFromList(statnames[ð], slist);
switch (rc) {

 case PTPE_SUCCESS: break;
case PTPE_STAT_NOT_FOUND: printf("%s not in stat list\n",

 statnames[ð]);
rc = PtpeFreeStatList(slist;);
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 return(1);
default: printf("Can't remove %s\n",

 statnames[ð]);
rc = PtpeFreeStatList(&slist);
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 return(1);
 }
 :
 :
 /\ Perform remaining PTPE API operations \/
 :
 :
rc = PtpeFreeStatList(&slist);
if (rc != PTPE_SUCCESS) {

printf("Error freeing statistics list\n");
 }
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 :
 :
 return(ð);
}

 Chapter 6. Using the PTPE Application Programming Interface 61

Assigning Statistics Lists to Hosts
Most API control subroutines perform operations on one or more statistics on one
or more nodes in the monitoring hierarchy. In order to carry out these operations,
the statistics list must be assigned to the node where the API control operation is to
be carried out. Statistics lists are assigned to a node using the
PtpeAssignStatsToHost subroutine. If a change to a statistics list that has been
assigned to a host must be made, the statistics list must be removed from the
node's entry in the host list by the PtpeRemoveStatsFromHost subroutine, and a
revised statistics list is then reassigned to the host.

The following code segment demonstrates how statistics lists can be assigned to
several nodes in an existing host list. For the sake of brevity, some of the error
handling code has been omitted.

#include <stdio.h> /\ basic I/O capability \/
#include <spdm.h> /\ PTPE data types \/

static char \sysnames[] = {
 "spnodeð4.ibm.com",
 "spnode12.ibm.com",
 "spnode23.ibm.com"
};
static char \statnames[] = {
 "PagSp/%totalfree",
 "NetIF/trð/ipacket",
 "NetIF/trð/opacket",
 "CPU/cpuð/user"
};
static int num_stats = 4;
static int num_hosts = 3;

main(int argc, char \\argv)
{
session_ptr_t sblock; /\ PTPE session control info \/
host_list_t targets; /\ Where commands will run \/
stat_list_t slist; /\ Statistics used by API \/
int rc; /\ Ftn call return code \/
int i; /\ Loop counter \/

 :
 :
 /\

\ Create statistics list for "spnodeð4" operation
 \/
rc = PtpeEmptyStatList(&slist);
if (rc != PTPE_SUCCESS) {
printf("Cannot empty statistics list.\n");
rc = PtpeFreeStatList(&slist);
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 return(1);
 }
rc = PtpeAddStatToList(statname[ð], slist);
if (rc != PTPE_SUCCESS) {
printf("Cannot add %s to statistics list\n", statname[ð]);
rc = PtpeFreeStatList(&slist);
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

62 Monitoring Guide and Reference

 return(1);
 }
 /\

\ Add statistics list to "spnodeð4". Need to set the
\ host list to "spnodeð4"'s position first.

 \/
rc = PtpeFindHost(sysnames[ð], targets);
if (rc == PTPE_SUCCESS) {

rc = PtpeAssignStatsToHost(slist, targets);
if (rc != PTPE_SUCCESS) {
printf("Cannot assign stats to %s\n", sysname[ð]);
rc = PtpeFreeStatList(&slist);
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 return(1);
 }
 }
 :
 :
 /\

\ Add remaining statistics to lists for "spnode12" and
\ "spnode23". Notice that these additions take place in
\ the unassigned list, not the list assigned to "spnodeð4"

 \/
for (i = 1 ; i < num_stats ; i++) {
rc = PtpeAddStatToList(statname[i], slist);

 }
for (i = 1 ; i < num_hosts ; i++) {
rc = PtpeFindHost(sysname[i], targets);
rc = PtpeAssignStatsToHost(slist, targets);

 }
 :
 :
 /\

\ For some reason, we need to change the statistics that
\ "spnode12" will use in the next API command. Need to
\ build a "correct" statistics list, remove the statistics
\ list currently assigned to "spnode12", and assign the
\ the correct list.

 \/
rc = PtpeEmptyStatList(&slist);
rc = PtpeAddStatToList(statname[ð], slist);
rc = PtpeFindHost(sysname[1], targets);
rc = PtpeRemoveStatsFromHost(targets);
if (rc == PTPE_SUCCESS) {
rc = PtpeAssignStatsToHost(slist, targets);

 }
 :
 :
}

When statistics lists have been assigned to nodes in a host list, the PTPE API
represents them internally as a linked list of linked lists. At the conclusion of the
previous code segment, the PTPE API would construct a list in memory that can be
conceptually represented as shown in Figure 8 on page 64.

 Chapter 6. Using the PTPE Application Programming Interface 63

Targets

spnode12.ibm.com

spnode04.ibm.com

spnode23.ibm.com

PagSp/%totalfree

PagSp/%totalfree

NetIF/tr0/ipacket NetIF/tr0/opacket CPU/cpu0/user

Figure 8. Statistical Lists Linked in Memory

When an API command is performed using the targets host list:

� The command is executed on the spnode04.ibm.com system, using only the
PagSp/%totalfree statistic. No other statistics that might be available on
spnode04.ibm.com would be involved in the command.

� The command is executed on the spnode12.ibm.com system, using only the
PagSp/%totalfree statistic. No other statistics that might be available on
spnode12.ibm.com would be involved in the command.

� The command is executed on the spnode23.ibm.com system, using the
NetIF/tr0/ipacket, NetIF/tr0/opacket, and the CPU/cpu0/user statistics. No other
statistics that might be available on spnode23.ibm.com would be involved in the
command.

� The command is not executed on any other systems that might exist in the
monitoring hierarchy.

Querying Statistics Lists
To avoid giving the PTPE API applications the responsibility of knowing all the
performance statistics that are available on any particular node, the PTPE API
provides the convenience subroutine PtpeQueryAvailStats. This subroutine
accepts a host list as an argument, and sends a command to the Central
Coordinator Node to find all the performance statistics that are available on the
systems specified in the host list. The statistics lists can then be copied into an
unassigned statistics list from a host list entry by using the PtpeGetHostStatList
subroutine. The PtpeDelStatFromList routine can then be used to remove
statistics from the list that will not be used in subsequent API commands. Unlike
other data manipulation subroutines, PtpeQueryAvailStats requires a PTPE API
session to be active, in order to retrieve the current monitoring hierarchy structure.

#include <stdio.h> /\ basic I/O capability \/
#include <spdm.h> /\ PTPE data types \/

main{int argc, char \\argv)
{
session_ptr_t sblock; /\ PTPE session control info \/
host_list_t targets; /\ Where commands will run \/
host_list_t reply; /\ Where answer is placed \/ |
stat_list_t slist; /\ Statistics used by API \/
int rc; /\ Ftn call return code \/
int i; /\ Loop counter \/

 :
 :
rc = PtpeOpenSession(&sblock);

64 Monitoring Guide and Reference

targets = (host_list_t)NULL;
rc = PtpeInitHostList(&targets);
rc = PtpeQueryAvailHosts(sblock, &targets);
reply = (host_list_t) NULL;

 :
 :
 /\

\ Get list of all available statistics from the nodes in
\ the host list. The statistics list will be found in the
\ "reply" host list, which should contain entries for all
\ systems listed in the "targets" list.

 \/
rc = PtpeQueryAvailStats(sblock, targets, &reply);
if (rc != PTPE_SUCCESS) {
printf("Cannot get statistics lists from hosts.\n");
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 return(1);
 }
 :
 :
 /\

\ Get the statistics list from "spnode12".
 \/
slist = (stat_list_t)NULL;
rc = PtpeFindHost("spnode12.ibm.com", reply);
rc = PtpeGetHostStatList(slist, reply);
if (rc != PTPE_SUCCESS) {
printf("Cannot get statistics list from spnode12\n");
rc = PtpeFreeStatList(&slist);
rc = PtpeFreeHostList(&reply);
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 return(1);
 }
 :
 :
rc = PtpeFreeStatList(&slist);
rc = PtpeFreeHostList(&reply);
rc = PtpeFreeHostList(&targets);
rc = PtpeCloseSession(&sblock);

 return(ð);
}

 Statistic Timestamps
For specific API commands that use statistics lists, such as requests to retrieve
statistics from the performance information archive, a timestamp must also be
specified for each statistic in a statistics list. This is necessary for the API
subroutines to locate the statistic in the system's archive. The timestamp indicates
time of the desired observance of the performance statistic.

The PTPE API permits an application to specify a timestamp for a performance
statistic in one of three ways:

1. By indicating a date and time. The PTPE API will attempt to find the recording
of the statistic that most closely matches the specified time of day without

 Chapter 6. Using the PTPE Application Programming Interface 65

exceeding it. To specify a timestamp in this manner, an application would use
the PtpeSetStatTime parameter PTPE_MATCH.

2. By requesting the earliest recording of the performance statistic. To specify this
option, the PTPE_EARLIEST parameter is passed to the PtpeSetStatTime
subroutine.

3. By requesting the last recording of a performance statistic. To specify this
option, the PTPE_LATEST parameter is passed to the PtpeSetStatTime
subroutine.

As with other statistics list manipulation routines, the PtpeSetStatTime function is
performed only on an unassigned statistics list. Timestamps cannot be set on
assigned statistics lists; if the timestamps on an assigned statistics list are incorrect
or require modification, the statistic list assigned to a host must be unassigned, and
a new statistics list with the proper timestamp information assigned to the host.

The following code segment demonstrates how timestamps can be set in an
unassigned statistics list.

 :
 :
stat_list_t slist; /\ Statistics list under const.\/
struct tm tstmp; /\ Timestamp to use \/
int rc; /\ Ftn call return code \/

 :
 :
 /\

\ Use latest observance of the following statistic in
\ the next API operation.

 \/
rc = PtpeFindStat("PagSp/%totalfree", slist);
rc = PtpeSetStatTime(PTPE_LATEST, NULL, slist);
if (rc != PTPE_SUCCESS) {

printf("Cannot set time stamp for PagSp/%%totalfree\n");
 }
 /\

\ Use observation for 2:3ðpm on the 1st of October, 1995
\ for the following statistic in the next API operation

 \/
rc = PtpeFindStat("CPU/cpuð/user", slist);
memset((void \) &tstmp, ð, sizeof(struct tm));
tstmp.tm_hour = 14; tstmp.tm_min = 3ð;

 tstmp.tm_mday = 1; tstmp.rm_mon = 9;
tstmp.tm_year = 95;
rc = PtpeSetStatTime(PTPE_MATCH, &tstmp, slist);
switch (rc) {

 case PTPE_SUCCESS: break;
case PTPE_TIME_APPROX: printf("PtpeSetStatTime had to ");

printf("calculate an approximate ");
 printf("timestamp\n");

default: printf("Cannot set time stamp for");
 printf(" CPU/cpuð/user\n");
 }
 /\

\ Use earliest observance of the following statistic in
\ the next API operation.

 \/

66 Monitoring Guide and Reference

rc = PtpeFindStat("NetIF/trð/ipacket", slist);
rc = PtpeSetStatTime(PTPE_EARLIEST, NULL, slist);
if (rc != PTPE_SUCCESS) {

printf("Cannot set time stamp for NetIF/trð/ipacket\n");
 }
 :
 :

Determining the Success of a Statistics List Operation
Once a host list is constructed, and any necessary statistics lists are assigned to
the hosts in the host list, PTPE API operations can be performed on these systems.
When an API command has been completed, the results of the operation on the
statistics -- such as “found,” “couldn't find,” etc. -- are placed in the statistics' list
entries. To determine how the operation on a statistic was completed on a host, the
statistics list must be retrieved from the system's host list entry, the list must be
scanned, and the results checked in each statistics list entry.

The following code segment demonstrates how an application would determine how
statistics were handled by an API request. For the sake of brevity, the error
handling code has been omitted.

 :
 :
host_list_t targets; /\ Where commands were run \/
stat_list_t slist; /\ Copy of stats list of host \/
struct tm tstmp; /\ Time statistics was observed\/

 char hostname[PTPE_NMLN]; /\ Name of system in host list \/
 char statname[PTPE_STNL]; /\ Name of statistic in list \/
int result; /\ How system/stat did in call \/

 long ldata; /\ When stat is a "long" \/
float fdata; /\ When stat is a "float" \/
int rc; /\ Ftn call return code \/

 :
 :
 /\
\ Check results of an API request to get statistics

 \/
rc = PtpeFirstHost(targets);

 for(;;) {
rc = PtpeGetHost(hostname, targets);
rc = PtpeGetHostResult(targets, &result);
printf("%s result was %d\n", hostname, result);

 /\
\ Get statistics, their results, and their values

 \/
rc = PtpeEmptyStatList(&slist);
rc = PtpeGetHostStatList(slist, targets);
rc = PtpeFirstStat(slist);
for (;;) {
rc = PtpeGetStatName(statname, slist);
rc = PtpeGetStatResult(slist, &result);
if (result == PTPE_STAT_NOT_FOUND) {

printf("\t%s not found on %s\n", statname, hostname);
 }
 else {

/\ get value and timestamp from the statistic \/

 Chapter 6. Using the PTPE Application Programming Interface 67

rc = PtpeGetStatTime(&tstmp, slist);
rc = PtpeStatIsLong(slist);
if (rc == PTPE_TRUE) {

rc = PtpeGetStatValueLong(&ldata, slist);
printf("\t%s value was %d", statname, ldata);
printf(" at %s\n", asctime(&tstmp));

 }

 else {

rc = PtpeGetStatValueFloat(&fdata, slist);
printf("\t%s value was %1ð.2f\n", statname, fdata);
printf(" at %s\n", asctime(&tstmp));

 }

 }
/\ Are we at last statistic in list? \/
rc = PtpeIsLastStat(slist);
if (rc == PTPE_TRUE) {

 break;
 }
rc = PtpeNextStat(slist);

}
/\ are we last host in the host list? \/
rc = PtpeIsLastHost(targets);
if (rc == PTPE_TRUE) {
 break;
}
/\ more hosts to go - move onto next one \/
rc = PtpeNextHost(targets);
}
 :
 :

Controlling Performance Data
Subroutines in this category allow an application to control which performance
information items are collected or archived, or whether any performance information
is collected or archived at all. All subroutines in this category require an established
session, for two reasons:

1. The session protects the monitoring hierarchy from alteration. The monitoring
hierarchy dictates how performance information is collected.

2. The session ensures the user has adequate permissions. Performance
information collection and archiving requires systems to dedicate resources to
the monitoring task, and only privileged users should be allowed to dedicate
such resources.

None of the subroutines in this category, with the exception of PtpeColQueryState
and PtpeArchQueryState , can be issued from a read-only PTPE API session.

The following subroutines are provided for performance information control:

68 Monitoring Guide and Reference

Subroutine Name Page Purpose

PtpeArchDisableAllStats 118 Instructs one or more nodes to
cease archiving any statistics that
it was archiving.

PtpeArchDisableStats 123 Instructs one or more specified
systems to cease archiving of
specified statistics, which are listed
by the caller.

PtpeArchEnableAllStats 128 Instructs one or more specified
systems to archive all available
statistics.

PtpeArchEnableStats 133 Instructs one or more specified
systems to archive additional
statistics, which are specified by
the caller.

PtpeArchQueryState 144 Reports on the overall state of
performance information archiving
in the system.

PtpeArchStartAllHosts 152 Starts the performance data
archiving. Same function as the
ptpectrl -r command.

PtpeArchStartHosts 156 Starts performance data archiving
on a subset of nodes. Similar in
function as the ptpectrl -r
command, with the exception that
the nodes must be specified by the
caller.

PtpeArchStopAllHosts 161 Stops the performance data
archiving. Same function as the
ptpectrl -t command.

PtpeArchStopHosts 165 Stops performance information
archiving on a subset of the nodes.
Similar in function to the ptpectrl
-t command, with the exception
that the nodes must be specified
by the caller.

PtpeChangeHostRates 172 Sets the current data collection
rate or the current data recording
rate used by the monitoring
hierarchy.

PtpeColDisableAllStats 178 Instructs one or more nodes to
cease collection of any statistics it
was collecting.

PtpeColDisableStats 183 Instructs one or more specified
systems to cease collection of
specific statistics, which are listed
by the caller.

PtpeColEnableAllStats 188 Instructs one or more specified
systems to collect all available
statistics.

 Chapter 6. Using the PTPE Application Programming Interface 69

Subroutine Name Page Purpose

PtpeColEnableStats 193 Instructs one or more specified
systems to collect additional
statistics, which are specified by
the caller.

PtpeColQueryAvailStats 206 Retrieves a list of all statistics that
one or more nodes can possibly
provide for collection or archiving.

PtpeColQueryState 203 Reports on the overall state of
performance information collection
in the system.

PtpeColSetup 211 Performs setup work to permit
performance data collection to
begin. Provides the same function
as the ptpectrl -i command.

PtpeColStart 215 Starts the performance data
collection. Same function as the
ptpectrl -c command.

PtpeColStop 220 Stops the performance data
collection. Same function as the
ptpectrl -s command.

PtpeQueryAllHostStatus 280 Obtains the current status of
performance information collection
and archiving from all systems in
the monitoring hierarchy. Differs
from PtpeColQueryState and
PtpeArchQueryState , which give
overall status.

PtpeQueryAvailHosts 284 Obtains a list of the hosts available
for performance data collection
and archiving functions.

PtpeQueryHostRates 291 Obtains the current data collection
rate and the current data recording
rate used by the monitoring
hierarchy.

PtpeQueryHostStatus 293 Obtains the current status of
performance information collection
and archiving from one or more
specified systems. Differs from
PtpeColQueryState and
PtpeArchQueryState , which give
overall status.

All subroutines that control how performance information is collected and archived,
as well as all those that retrieve performance information from nodes in the
monitoring hierarchy, accept a host list and a pointer to an uninitialized host list as
arguments. These parameters are used as follows:

� The first argument specifies the targets of the subroutine. These are the nodes
on which the application wishes to execute the subroutine. In many cases, this
list also contains assigned statistics lists that specify what statistics to use in
the command.

70 Monitoring Guide and Reference

� The second argument will contain a reply list for use after the API subroutine
has executed. The subroutine constructs this list to report the results of the
command. This is the list the application should scan to determine the success
or failure of the API request, and to retrieve any statistics values returned by
the subroutine. This host list pointer should be explicitly set to NULL before
issuing the subroutine.

The only exceptions to this format are the PtpeColSetup , PtpeColStart , and
PtpeColStop routines, which are treated as special cases.

Controlling Data Collection
The control subroutines are further divided into two categories: collection control
and archiving control. By making this distinction, the API allows you to construct
separate host lists so you can include and exclude different sets of statistics for
archival than those specified for collection and summary.

The three routines provided by the PTPE API for collection setup, startup, and
shutdown (PtpeColSetup , PtpeColStart , and PtpeColStop) differ in format from
the majority of the API control routines. These routines do not accept a host list
specifying the nodes where the command will execute. Instead, they execute on all
systems in the monitoring hierarchy by default. This makes it impossible for an
application to start or stop performance information collection and summarization on
a subset of the nodes in the monitoring hierarchy; all nodes perform the setup,
startup, or shutdown command. If you do not intend to start data collection on all
nodes in the monitoring hierarchy, you can remove those nodes from the hierarchy
using SP Perspectives or the ptpehier -i command.

These three routines are also the only ones that return two host lists as replies:

1. A list of data manager nodes that failed the command

2. A list of reporter nodes that failed the command

Either list can be scanned using the host list scanning subroutines mentioned in
“Manipulating Host Lists” on page 55.

For example, the following code segment illustrates how an application would use
these return lists to determine if the setup for performance information collection
succeeded.

#include <stdio.h> /\ basic I/O capability \/
#include <spdm.h> /\ PTPE data types \/

main(int argc, char \\argv)
 {
 session_ptr_t sblock; /\ PTPE session control info \/

host_list_t mgrs; /\ Mgr Nodes that failed cmd \/
host_list_t nodes; /\ Reg Nodes that failed cmd \/
int rc; /\ Ftn call return code \/
int result; /\ How host responded to cmd \/
char host[PTPE_NMLN]; /\ Name of failing sys \/

 :
 :
rc = PtpeOpenSession(&sblock);
mgrs = nodes = (host_list_t) NULL;

 :
 :

 Chapter 6. Using the PTPE Application Programming Interface 71

 /\
\ Setup for collection in the monitoring hierarchy

 \/
rc = PtpeColSetup(sblock, &mgrs,; &nodes);
switch (rc) {

 case PTPE_SUCCESS: break;
 case PTPE_SUCCESS_BADR:

printf("Success, but cannot read reply message\n");
 break;
 case PTPE_API_FAILED_BADR:

printf("Failure, but cannot read reply to determine ");
printf("what systems failed the command\n");
/\ clean up lists, drop session, and exit \/

 case PTPE_API_FAILED:
rc = PtpeFirstHost(mgrs);
if (rc == PTPE_SUCCESS) { /\ in case no mgrs failed \/
printf("These managers failed - command was not ");
printf("sent to their reporting nodes:\n");
for (;;) {

 bzero(host, PTPE_NLMN);
rc = PtpeGetHost(host, mgrs);
rc = PtpeGetHost(mgrs, &result);
printf("\t %s responded with code %d\n", host,

 result);
rc = PtpeIsLastHost(mgrs);
if (rc == PTPE_TRUE) {

 break;
 }

rc = PtpeNextHost(mgrs);
 }
 }

rc = PtpeFirstHost(nodes);
if (rc == PTPE_SUCCESS) { /\ in case no nodes failed \/
printf("These nodes failed to carry out the ");

 printf("setup command:\n");
for (;;) {

 bzero(host, PTPE_NLMN);
rc = PtpeGetHost(host, nodes);
rc = PtpeGetHost(nodes, &result);
printf("\t %s responded with code %d\n", host,

 result);
rc = PtpeIsLastHost(nodes);
if (rc == PTPE_TRUE) {

 break;
 }

rc = PtpeNextHost(nodes);
 }
 }

/\ clean up lists, drop session, and exit \/
 }
 rc = PtpeFreeHostList(&mgrs);
 rc = PtpeFreeHostList(&nodes);
 :
 :
}

The collection control subroutines are provided to start performance information
collection and summarization on all systems, stop collection and summarization on

72 Monitoring Guide and Reference

all systems, and to prepare (setup) the monitoring hierarchy for performance
information collection and summary. The setup function only needs to be performed
in the following conditions:

1. When the monitoring hierarchy structure has been changed

2. When new performance information has been made available on one or more
systems in the monitoring hierarchy.

An example of the first condition is when a system administrator updates the
monitoring hierarchy with the ptpehier command. An example of the second
condition is when a new LPP supported by the run-time monitor Monitor is installed
on several nodes in the monitoring hierarchy. Unless one of these conditions exists,
an application need not perform the setup function.

Enabling and Disabling Data for Summary
The remaining collection control subroutines permit an application to specify
performance information that should be either enabled or disabled for summary by
the data manager node. By indicating which performance information should and
should not be made available for summary, an application can save computational
and network resources that would otherwise be consumed to forward and
summarize unneeded information. If a managing system is the target of one of
these routines, the summary information that it would normally send forward to the
central coordinator node can also be selectively enabled or restricted. Convenience
routines are provided to enable or disable all information from specific systems.

The following code segment demonstrates how these interfaces might be used to
start performance information collection and summarization, and include only a
specific set of performance information on one of the systems in the monitoring
hierarchy. Note that all remaining systems still have all their available performance
information included for collection and summarization in this example.

#include <stdio.h> /\ basic I/O capability \/
#include <spdm.h> /\ PTPE data types \/

static char \sysnames[] = {
 "spnodeð4.ibm.com",
 "spnode12.ibm.com",
 "spnode23.ibm.com"
};
static char \statnames[] = {
 "PagSp/%totalfree",
 "NetIF/trð/ipacket",
 "NetIF/trð/opacket",
 "CPU/cpuð/user"
};
static int num_stats = 4;
static int num_hosts = 3;

main(int argc, char \\argv)
{
session_ptr_t sblock; /\ PTPE session control info \/
host_list_t targets; /\ Systems to restrict info \/
host_list_t mgrs; /\ Mgr Nodes that failed cmd \/
host_list_t nodes; /\ Reg Nodes that failed cmd \/
stat_list_t slist; /\ Statistics to enable \/
int rc; /\ Ftn call return code \/

 Chapter 6. Using the PTPE Application Programming Interface 73

int result; /\ How host responded to cmd \/
char host[PTPE_NMLN]; /\ Name of failing sys \/
char stat[PTPE_STNL]; /\ Stat from API call \/

 :
 :
rc = PtpeOpenSession(&sblock);
mgrs = nodes = (host_list_t) NULL;

 :
 :
/\
 \ Set up host list where statistics will be enabled, and
 \ the statistics list containing the statistics to be
 \ enabled. "spnode12.ibm.com" will be the system used in
 \ this test.
 \/
rc = PtpeInitHostList(&targets);
rc = PtpeAddHostToList(sysnames[1], targets);
rc = PtpeInitStatList(&slist);
rc = PtpeAddStatToList(statnames[1], slist);
rc = PtpeAddStatToList(statnames[3], slist);
/\
 \ Start collection. This example assumes success - for
 \ an example of how to test for success, see previous
 \ code segments in this document.
 \ NOTICE - this routine merely instructs all systems
 \ in the hierarchy to begin collecting data, but until
 \ another routine tells them what data is to be collected,
 \ nothing is being collected!
 \/
rc = PtpeColStart(sblock, &mgrs,; &nodes);
(void) PtpeFreeHostList(&nodes);
/\
 \ Disable all statistics currently enabled for collection
 \ on the targeted system. It is easier from a programming
 \ point of view to disable all and enable a few, instead
 \ of finding the list of all statistics to disable.
 \/
rc = PtpeColDisableAllStats(sblock, targets, &nodes);
/\ do appropriate error checking - see earlier examples \/
 :
 :
/\
 \ Assign the list of statistics to enable to the targeted
 \ host list, and enable only those statistics we want.
 \/
(void) PtpeFreeHostList(&nodes);
rc = PtpeFindHost(sysnames[1], targets);
rc = PtpeAssignStatsToHost(slist, targets);
rc = PtpeColEnableStats(sblock, targets, &reply);
switch (rc) {
 case PTPE_SUCCESS:
 break;
 case PTPE_SUCCESS_BADR:

printf("Statistics seem to be enabled, but cannot ");
printf("read confirmation from central coordinator node\n");

 break;
 case PTPE_API_FAILED:

printf("Statistics enablement failed on nodes:\n");

74 Monitoring Guide and Reference

/\ determine systems that failed the command \/
rc = PtpeFirstHost(reply);
for (;;) {

 bzero(host, PTPE_NMLN);
rc = PtpeGetHost(host, reply);
rc = PtpeGetHostResult(reply, &result);
printf("\t %s failed with code %d\n", host, result);
/\ check results of statistics for this system \/
rc = PtpeEmptyStatList(&slist);
rc = PtpeGetHostStatList(slist, reply);
rc = PtpeFirstStat(slist);
for (;;) {

 bzero(host, PTPE_STNL);
rc = PtpeGetStat(stat, slist);
rc = PtpeGetStatResult(slist, &result);
printf("\t\t Statistic %s result code was %d\n",

 stat, result);
rc = PtpeIsLastStat(slist);
if (rc == PTPE_TRUE) {

 break;
 }

rc = PtpeNextStat(slist);
 }

/\ go onto next host in list, if any \/
rc = PtpeIsLastHost(reply);
if (rc == PTPE_TRUE) {

 break;
 }

rc = PtpeNextHost(reply);
 }
 break;
 case PTPE_API_FAILED_BADR:
printf("Enablement failed, and cannot read the reply ");
printf("from the central coordinator node to debug the cause\n");

 break;
 }
 :
 :
}

Controlling Performance Data Archival
The following archiving control interfaces allow the application to start recording
performance information on one or more systems in the monitoring hierarchy.

Unlike the control routines for performance information collection and
summarization, these control routines permit the application to start or stop
recording of performance information on part or all of the monitoring hierarchy. This
permits an application to start collection for run-time monitoring on all nodes in the
monitoring hierarchy, while recording performance information only on those
systems that will require more detailed analysis at a later time. However, to start

PtpeArchEnableStats Identifies statistics available for archiving

PtpeArchDisableStats Identifies statistics restricted from archiving

PtpeColQueryAvailStats Lists the performance statistics available for archiving

PtpeArchQueryStats Identifies statistics currently included in archival

 Chapter 6. Using the PTPE Application Programming Interface 75

archiving on any system in the monitoring hierarchy, performance information
collection must be active on all systems in the hierarchy.

If any node in the monitoring hierarchy is currently recording performance
information to its archive, the general status of archiving in the hierarchy is said to
be active. In other words, the ptpectrl -q command will report that archiving is
active even if only one node out of all the systems in the monitoring hierarchy is
recording its performance information. When a global indication is insufficient, the
PtpeQueryAllHostStatus routine is provided as a means to determine exactly
which nodes are collecting and archiving in the monitoring hierarchy, and which are
not.

Additional subroutines are provided to enable for archival all statistics or only
specific statistics, as well as to disable from archival all statistics or only specific
statistics. A subroutine is also included for determining which statistics are currently
enabled for recording.

The archiving control commands accept host lists that specify different hosts or
different statistics (or both) from those provided to any collection control routines.
This gives an application the capability to record a different set of performance
information from that being passed to the managing node for summary. The API
also gives the application the capability to record a different set of performance
statistics on different systems in the hierarchy.

The following code segment extends the example portrayed in the previous code
segment. In this segment, performance information archiving is started on two
systems, one of which was used in the previous example. On that system, different
sets of statistics are enabled for archiving and for collection.

 :
 :
/\
 \ Set up host list where statistics will be enabled.
 \/
rc = PtpeEmptyHostList(&targets);
rc = PtpeAddHostToList(sysnames[1], targets);
rc = PtpeAddHostToList(sysnames[2], targets);
/\
 \ Start archiving on these systems alone. Because
 \ "spnodeð4" was not made a member of the target list,
 \ the archiving command will not reach it. For the sake
 \ of brevity, the complete error check will be bypassed
 \ in this example.
 \ NOTICE - this routine merely tells the systems to start
 \ archiving data, but until another routine tells them
 \ what data is to be archived, nothing is being recorded!
 \/
rc = PtpeArchStartHosts(sblock, targets, &reply);
if (rc != PTPE_SUCCESS) {
printf("Cannot start archiving!\n");
/\ free up lists, drop session, and exit \/

}
(void) PtpeFreeHostList(&reply);
/\
 \ In the previous example, NetIF/trð/ipacket and
 \ CPU/cpuð/user were enabled for collection on "spnode12".
 \ In this example, NetIF/trð/ipacket and NetIF/trð/opacket

76 Monitoring Guide and Reference

 \ will be enabled for archiving, even through "opacket" is
 \ not enabled for collection.
 \/
rc = PtpeEmptyStatList(&slist);
rc = PtpeAddStatToList(statnames[1], slist);
rc = PtpeAddStatToList(statnames[2], slist);
rc = PtpeFindHost(sysnames[1], targets);
rc = PtpeAssignStatsToHost(slist, targets);
/\
 \ On "spnode23", PagSp/%totalfree and CPU/cpuð/user will
 \ be enabled for archiving.
 \/
rc = PtpeEmptyStatList(&slist);
rc = PtpeAddStatToList(statnames[1], slist);
rc = PtpeAddStatToList(statnames[2], slist);
rc = PtpeFindHost(sysnames[1], targets);
rc = PtpeAssignStatsToHost(slist, targets);
/\
 \ Enable the statistics for archiving. After this call,
 \ the systems should begin recording this information (but
 \ ONLY this information). Again, the full error detection
 \ and handling has been omitted from the example for
 \ brevity.
 \/
rc = PtpeArchEnableStats(sblock, targets, &reply);
if (rc != PTPE_SUCCESS) {

printf("Cannot enable statistics for archiving!\n");
/\ free up lists, drop session, and exit \/

}
(void) PtpeFreeHostList(&reply);
/\
 \ The statistics are now being archived on "spnode12" and
 \ "spnode23".
 \/
 :
 :

Obtaining Performance Data
Routines of this category permit an application to use performance information
currently being collected by nodes in the monitoring hierarchy, as well as
information residing in a node's performance information archive.

Subroutine Name Page Purpose

PtpeArchGetStats 138 Retrieves the values for a list of specified statistics for
one or more hosts, which have been specified by the
caller.

PtpeArchQueryStats 147 Retrieves the list of statistics that one or more
specified hosts are currently archiving.

PtpeColGetStats 198 Retrieves the current non-archived values for a list of
statistics for one or more hosts, which have been
specified by the caller.

PtpeColQueryStats 206 Retrieves the list of statistics that one or more
specified hosts are currently collecting.

 Chapter 6. Using the PTPE Application Programming Interface 77

In order for the PTPE API to obtain performance information on any of the systems
in the monitoring hierarchy, the application must construct a host list that contains
all the systems where performance information access is desired. Each node entry
in the host list must also have a statistics list assigned to it. The statistics list
contains the list of performance information to be obtained from that specific
system.

The PTPE API provides subroutines to obtain the most recent performance
information from the systems in the monitoring hierarchy. Subroutines are also
provided to obtain recorded performance information from the archives maintained
by each system.

 Use the PtpeColGetStats subroutine to obtain the most recently available
performance information from systems in the monitoring hierarchy. This subroutine
is similar in concept to the data retrieval functions in the Performance Toolbox RSi
programming library, which retrieve the most recent value for performance statistics
from targeted systems. These two libraries use different means to achieve the
same end, and each has advantages and disadvantages.

The PtpeColGetStats routine requires less network resources from the system that
is executing the application: it establishes a single network connection to the central
coordinator node to obtain this information from any system in the monitoring
hierarchy. In contrast, an RSi application establishes a connection to each system it
retrieves data from through the RSi library.

The RSi library provides more recent information: its routines obtain performance
information from the Performance Toolbox shared memory and transmit it directly to
the RSi application. The PTPE API, on the other hand, must pass through the
system's managing node and the central coordinator node before it is relayed to the
PTPE API application.

Either interface can be used, and one interface does not preclude the use of the
other. When the priority obtaining the most recent performance information possible
from a system, use the RSi interfaces. When it is more important to obtain
performance information from a large number of systems with as little network
overhead as possible, use the PTPE API interface, specifically, the
PtpeColGetStats subroutine.

 PtpeArchStats is the PTPE API subroutine that obtains performance information
recorded in the performance information archives. Depending on the setting of the
timestamps for each statistic in a system's statistics list, the earliest observation in
the archive can be returned, the latest can be returned, or the observation closest
to a specified date and time can be returned (see “Statistic Timestamps” on
page 65).

Each statistic, whether returned by PtpeColGetStats or PtpeArchGetStats , has a
timestamp included as part of the return value. However, this timestamp should be
ignored when the statistic is retrieved using PtpeColGetStats . PtpeColGetStats
sets the timestamp field to a -1 value, which would translate to a time prior to the
standard UNIX timing epoch if it were to be accidentally used as a timestamp.

In the following code segment, statistics are retrieved from three nodes in the
monitoring hierarchy using the PTPE API. In this example, the most recently

78 Monitoring Guide and Reference

available performance information is obtained by using PtpeColGetStats . For the
sake of brevity, all possible error conditions are not addressed in this example.

#include <stdio.h> /\ basic I/O capability \/
#include <spdm.h> /\ PTPE data types \/

main(int argc, char \\argv)
{
session_ptr_t sblock; /\ PTPE session control info \/
host_list_t targets; /\ Where commands will run \/
host_list_t reply; /\ Where answer is placed \/ |
stat_list_t slist; /\ Statistics used by API \/
int rc; /\ Ftn call return code \/
int result; /\ How host/stat did in cmd \/

 char hostname[PTPE_NMLN];
 char statname[PTPE_STNL];
 :
 :
rc = PtpeOpenSession(&sblock);
rc = PtpeInitHostList(&targets);
rc = PtpeInitStatList(&slist);

 :
 :
 /\

\ Set up host lists and assign statistics lists to each
\ host. Since we'll be using PtpeColGetStats, we don't
\ need to set the timestamps in each statistic.

 \/
 :
 :
 /\

\ Get the most recent (as close to run-time as possible)
\ values for the requested statistics from these systems.

 \/
reply = (host_list_t) NULL;
rc = PtpeColGetStats(sblock, targets, &reply);
switch (rc) {

 case PTPE_SUCCESS:
 break;
 case PTPE_SUCCESS_BADR:

printf("Routine succeded, but couldn't get back the ");
printf("reply -- treating as an error.\n");
/\ deallocate lists and exit \/

 case PTPE_LIMITED:
printf("Not all of the systems carried out the cmd\n");
/\ will have to check result codes for each system \/

 case PTPE_LIMITED_BADR:
printf("Not all of the systems carried out the cmd\n");
printf("Couldn't read the reply - treating as error\n");
/\ deallocate lists and exit \/

 case PTPE_API_FAILED:
printf("All systems failed to execute command\n");
/\ deallocate lists and exit \/

 case PTPE_API_FAILED_BADR:
printf("All systems failed to execute command\n");
printf("Couldn't get reply to determine the reasons\n");
/\ deallocate lists and exit \/

 }

 Chapter 6. Using the PTPE Application Programming Interface 79

 /\
\ Show results and statistics from each host.

 \/
rc = PtpeFirstHost(reply);
for (;;) {
rc = PtpeGetHost(Hostname, reply);
rc = PtpeGetHostResult(reply, &result);
if (rc == PTPE_SUCCESS) {
rc = PtpeEmptyStatList(&slist);
rc = PtpeGetHostStatList(slist, reply);
rc = PtpeFirstStat(&slist);
for (;;) {
/\ get statistics names, results, and values \/

 :
 :
 }
 }
 else {

printf("System %s failed PtpeColGetStats with an ");
printf("error code of %d\n", result);

 }
rc = PtpeIsLastHost(reply);
if (rc == PTPE_TRUE) {

 break;
 }
rc = PtpeNextHost(reply);

 }
 /\
\ Free up the "reply" list so the same pointer can be used
\ by subsequent API commands.

 \/
 rc = PtpeFreeHostList(&reply);
 :
 :

The only changes required for this code section to retrieve performance information
from the archive are:

1. Set the timestamps on the statistics in the statistics list, and

2. Replace the PtpeColGetStats with the PtpeArchGetStats subroutine.

Some General Cautions
The PTPE API avoids writing to memory that has not been allocated by ensuring
that pointers it receives are either initialized or cleared out before use. If the
subroutine you are using expects this condition (see Chapter 8, “The PTPE API
Subroutines” on page 113) and finds that local variables have not been set to zero
values, the API subroutine may return a PTPE_INV_PTR code.

Chapter 8, “The PTPE API Subroutines” on page 113, states whether subroutines
expect parameters to contain NULL or non-NULL values. Please follow these
guidelines, and initialize your local variables accordingly.

Under no circumstances should applications attempt to use the pointers in the host
list and statistics list data structures directly. The API uses and sets these pointers
internally, and these pointers can appear to change unexpectedly if they are

80 Monitoring Guide and Reference

manipulated. Subroutines are provided to insulate the application from this behavior
in the pointers, so please use the subroutines instead of using the pointers directly.

Compiling Source Code
To utilize the PTPE API, the application should include the <spdm.h > header file in
the source code. The source code should also be linked with the PTPE API library
during compilation by specifying -lptpe on the compile command line:

$ cc -lptpe -o ptpeappl ptpeappl.c

The PTPE API is implemented as a shared library. Should the library change for
service reasons, an API application need not recompile to use the most recent
library.

Sample PTPE Application
A sample application program that uses the PTPE API subroutines is located in
usr/lpp/ptpe/samples . See Appendix B, “PTPE Sample Application Program” on
page 369.

 Chapter 6. Using the PTPE Application Programming Interface 81

82 Monitoring Guide and Reference

Performance Toolbox Parallel Extensions for AIX Command
and Programming Reference

 Copyright IBM Corp. 1998 83

84 Monitoring Guide and Reference

 Chapter 7. PTPE Commands

Use these commands to perform control functions for Performance Toolbox Parallel
Extensions for AIX.

 Copyright IBM Corp. 1998 85

 ptpeconf

 ptpeconf

 Purpose
 ptpeconf creates data classes in the System Data Repository for use by the
Performance Toolbox Parallel Extensions.

 Syntax
ptpeconf [–h] [–t]

 Parameters
–h Displays the syntax of this command.

–t Tests only for the presence of the data classes required by the Performance
Toolbox Parallel Extensions. The results of the test are reported to standard
output. The data classes are not created if they do not exist.

 Description
The ptptconf command tests for the presence of specific data classes in the
System Data Repository required by the Performance Toolbox Parallel Extensions.
If these data classes are not present, the command will create these classes unless
the -t option has been specified.

ptpeconf is executed as part of the Performance Toolbox Parallel Extensions
installation procedure. It is provided as a command in case the data classes need
to be recreated in the System Data Repository, or created in another system
partition.

 Restrictions
You must be logged in as root to execute this command.

 Results
The data classes created by ptptconf are specific to the system partition in which
the command was executed. To create these data classes in another system
partition, ptptconf must be executed in that partition. These data objects must exist
in the system partitions where the Performance Toolbox Parallel Extensions product
will execute.

 Examples
1. To check if the data classes required by the Performance Toolbox Parallel

Extensions exist for this system partition in the System Data Repository, enter:

/usr/lpp/ptpe/bin/ptpeconf -t

 The results of the test will be reported to standard output.

2. To create the necessary data classes in the System Data Repository for this
system partition, enter:

/usr/lpp/ptpe/bin/ptpeconf

86 Monitoring Guide and Reference

 ptpeconf

 Files
� /usr/lpp/ptpe/bin/ptpeconf Contains the ptptconf command

� /etc/groups Contains group identifiers

� /etc/security/groups Contains group identifiers

� /usr/lib/nls/msg/*/ptpe.cat Message catalog for the PTPE product

� /usr/lib/libptpe.a The Performance Toolbox Parallel Extensions shared library

 Prerequisite Information
This command is part of the Performance Toolbox Parallel Extensions for AIX
(PTPE) feature of the IBM Parallel System Support Programs for AIX licensed
program product.

 Related Information
“ptpectrl” on page 88
“ptpegroup” on page 97
“ptpehier” on page 99

 Chapter 7. PTPE Commands 87

 ptpectrl

 ptpectrl

 Purpose
ptpectrl controls the collection, summarization and archival of performance
information.

 Syntax
ptpectrl {–i | [–a | –c] [–f report,record] [–l filename | –n] [–r] | [–m [–l file] [–n]] |
–v [–l file] | [–s | –t | –e | –q | –h]}

 Parameters
–a Initialize and start collection.

Performs the actions of the ptpectrl -i and ptpectrl -c command sequences.

–c Begin Data Collection.

Begins collection of performance related statistics for the entire system. Also
begins preparation of summary performance statistics, if that feature is
installed.

–e Erase archive contents.

Erases the contents of any performance information archive files that may exist
on the systems within the monitoring hierarchy. This option will not execute
when performance information collection and summarization is active.

–f Frequency control.

Alters the frequency with which performance data is collected for averaging into
summary statistics (report) and the rate at which performance data is written to
the archive (record). (report) and (record) are specified in seconds. The values
are governed by the following rules:

� Either value may be zero, indicating that its corresponding interval will not
be changed by the command.

� If report is non-zero, it must be an integer value between 5 to 300,
inclusive. If the value does not meet this criteria, the command will alter the
value to meet it.

� If record is non-zero, it must be an integer value between 30 to 900,
inclusive. If the value does not meet this criteria, the command will alter the
value to meet it.

� When both values are non-zero, record must be evenly dividable by report.
If the value does not meet this criteria, the command will alter the value to
meet it.

Both values must be supplied, separated by a comma. No white space is
permitted between the values.

–h Command Usage Help.

Displays the syntax for the command, and a terse description of its usage.

88 Monitoring Guide and Reference

 ptpectrl

–i Initialize Data Collection.

Performs setup tasks to prepare the monitoring hierarchy for performance
information collection and summarization. This option should be used after
modifying the structure of a monitoring hierarchy, before starting collection and
summarization on the monitoring hierarchy for the first time.

–l filename Instructs the command to use filename in place of the ptpe.cf statistics
configuration file.

–m Enables and excludes statistics for collection and archiving while collection or
archiving is active. This option is not used with the –a, –c, or –r options.

The –m option searches the user's home directory for the ptpe.cf statistics
configuration file. If the file is not located in that directory, the command next
searches the /etc/perf directory for the file. Once the file is located, the
command uses its contents to determine which statistics should be made
available for data collection and recording to the performance data archive. An
alternate file can be specified with the –l option.

If the command cannot locate the statistics configuration file ptpe.cf and no
alternate file is specified with the –l option, or if the –n option is also specified,
all performance information is made available for collection and archiving.

–n Instructs the command to ignore the ptpe.cf statistics configuration file. All
performance statistics available in the reporting hierarchy will be enabled for
aggregation and recording to the performance information archive.

–q Report Status.

Reports the current status of performance information collection and archiving
within the monitoring hierarchy.

–r Begin Data Recording.

Instructs all nodes in the monitoring hierarchy to record their performance
related statistics to the Performance Data Archive. Performance information
collection and summarization must be active, or the -a or -c options must first
be specified, in order to issue this option.

–s Stop Data Collection.

Shuts down performance data collection throughout the system, as well as
summary statistic preparation and data archival if those options are active.

–t End Data Recording.

Instructs all nodes in the monitoring hierarchy to cease recording of
performance statistics in the Performance Data Archive. Collection and
summarization remain active.

–v Tests the contents of a statistics configuration file. If the -l option is not used,
the test is performed on the ptpe.cf file.

 Chapter 7. PTPE Commands 89

 ptpectrl

 Description
The ptpectrl command controls activity with the Performance Toolbox Parallel
Extensions monitoring hierarchy. Through this command, performance information
collection and archival can be started or ended on all systems making up the PTPE
monitoring hierarchy.

Before the ptpectrl command can be used, specific data object classes must exist
in the System Data Repository (see “ptpeconf” on page 86), and the perfmon user
group must exist on all systems within the monitoring hierarchy (see “ptpegroup” on
page 97). A monitoring hierarchy must also have been established (see the
ptpehier command). The user must have perfmon set as the user's effective group
to issue the ptpectrl command.

 Restrictions
This command is expected to be issued from a node in the system partition that will
be monitored. When issued from a node outside the partition to be monitored, the
command will be unable to issue control commands to the monitoring hierarchy. In
such cases, only the –q, –v, and –l options are available.

This command can only be executed by members of the perfmon group.

 Results
ptpectrl retrieves the current monitoring hierarchy configuration from the System
Data Repository, and establishes a socket connection with the system identified as
the central coordinator Node for the hierarchy. ptpectrl then encodes the specified
command, along with the structure of the monitoring hierarchy, into a message and
transmits the message to the central coordinator Node. The central coordinator
Node decodes the instructions and the monitoring hierarchy from the message,
identifies the systems identified as data manager nodes for the reporting groups
within the hierarchy, and establishes socket connections with these systems. The
central coordinator Node then forwards the message from ptpectrl to these data
manager nodes. The data manager nodes decode the instructions and the
monitoring hierarchy from the command message, determine which systems report
to it in the hierarchy, and establish socket connections with these systems. The
data manager nodes then send specific instructions to the systems within its
reporting group to carry out the request made by the ptpectrl command.

Each system reports its success or failure to its data manager node. The data
manager node, in turn, reports each system's results to the central coordinator
Node, which prepares a report containing all results of the command and passes it
along to the ptpectrl command. Once the results of the command have been
reported, the systems drop their sockets connections with their data manager
nodes.

ptpectrl parses the reply from the central coordinator and reports overall success
or failure of the command, based on the percentage of systems that failed to carry
out the command. If less than half of the systems in the monitoring hierarchy fail
the request, ptpectrl will report that the overall command succeeded; if half or
more failed, the command will report that the overall command failed. Unless all
systems failed to carry out the command requested, ptpectrl will report the names
of the systems that failed to carry out the command.

90 Monitoring Guide and Reference

 ptpectrl

A statistics configuration file is used by the ptpectrl command when performance
information collection and summarization is started, and when performance
information archiving is started. The configuration file tells the command which
performance statistics to make available for collection or archiving. The semantics
of the file permit a set of statistics to be enabled for collection only, for archiving
only, or for both. The syntax of the file permits the use of wildcards in the entries.
Further details can be found in the ptpe.cf file format documentation. Through the
use of a statistics configuration file, ptpectrl can restrict collection or archiving of
certain statistics, thereby conserving system resources and reducing network traffic.

When performance information collection and summarization is begun by ptpectrl ,
or when performance information archiving is begun by the command, the
command searches for a statistics configuration file named ptpe .cf in the user's
home directory. If the file cannot be found in the user's home directory, ptpectrl
searches the /etc/perf directory for the file. If the file cannot be found in either
directory, or if the –n flag was specified, all statistics available in the reporting
hierarchy are enabled for performance information collection or archiving. The user
may specify an alternate to the ptpe.cf file by using the –l option.

The statistics configuration file can be altered after collection or archiving has been
started in the monitoring hierarchy. To alert the hierarchy to these changes, issue
the –m option when the changes to the configuration file are complete. This option
resends the configuration file to the monitoring hierarchy, replacing the file used at
collection or archive setup.

In the event that all statistics are to be made available for collection or archiving
after a configuration file has been used, use the –m and –n options together. This
enables all available statistics in the monitoring hierarchy for collection and
recording to archive.

The performance information archive is stored in the /var filesystem on each
system. Should the amount of free space on this filesystem fall below 5 percent,
the system will not add performance information to the archive. If the amount of
free space should rise again above 5 percent, recording will resume; information
that would have been recorded in the interim is lost.

 Examples
1. To prepare a new or revised monitoring hierarchy for performance information

collection and summarization, enter:

ptpectrl -i

2. To prepare a new or revised monitoring hierarchy, and to begin performance
information collection in the same command, enter:

ptpectrl -a

3. To begin performance information collection, summarization, and archival,
enter:

ptpectrl -c -r

4. To change the list of statistics currently being collected and archived in the
monitoring hierarchy after collection or archiving has been started, enter:

ptpectrl -m -l revised_ptpe.cf

5. To shut down performance information collection and summarization, enter:

 Chapter 7. PTPE Commands 91

 ptpectrl

ptpectrl -s

This command will also shut down performance information recording of that
option was previously started with ptpectrl -r .

6. To determine the current status of performance information collection and
archiving, enter:

ptpectrl -q

Status is reported to standard output.

7. To verify the structure of the statistics configuration file ptpe.cf , located in the
user's home directory, enter:

ptpectrl -v

Any structural errors in the configuration file are reported in the output.

 Files
$HOME/ptpe.cf Statistics configuration file
/usr/sbin/ptpectrl Contains the ptpectrl command
/usr/lpp/ptpe/bin/ptpedelete Contains the instructions to delete performance
information archives on all systems in the monitoring hierarchy
/usr/group Contains group identifiers
/usr/security/group Contains group identifiers
/var/adm/ptpe/perflog Contains the archive of performance information for this
system
/var/adm/ptpe/perftab Performance statistics archive table
/etc/services Contains the port assignments for service daemons
/usr/lib/nls/msg/*/ptpe.cat Message catalog for the PTPE product
/usr/lib/libptpe.a The Performance Toolbox Parallel Extensions shared library

 Prerequisite Information
This command is part of the Performance Toolbox Parallel Extensions for AIX
(PTPE) feature of the IBM Parallel System Support Programs for AIX licensed
program product.

 Related Information
“Using the ptpe.cf File” on page 40
“ptpeconf” on page 86
“ptpegroup” on page 97
“ptpehier” on page 99
“ptpedump” on page 93
Appendix A, “PTPE Files” on page 365

92 Monitoring Guide and Reference

 ptpedump

 ptpedump

 Purpose
ptpedump prepares text formatted versions of the Performance Toolbox Parallel
Extensions information archive.

 Syntax
ptpedump [–h] | [[–c | –s] [–n node [node...]]]

 Parameters
–c Dumps the archive files in comma-separated format. The resulting dump can be

used as input to a database application.

–h Help. Displays the syntax of the command.

–nnode [...] Target nodes. Causes the performance information on only the named
node(s) to be dumped to a text file. Node names are separated by spaces.

–s Dumps the archive files in spreadsheet format. The dump is formatted in
132-column output, which may result in the creation of many files. These files
can be used as input to the IBM Performance Toolbox for AIX a2ptx command.

 Description
The ptpedump command causes one or more systems in the monitoring hierarchy
to dump the entire contents of that system's performance information archive to a
file in text format. This text formatted file can then be imported into a database, or
used as input to the IBM Performance Toolbox for AIX a2ptx command. a2ptx
generates a recording file that can be played back graphically by the xmperf
command. The archive dump can also be input to a spreadsheet application or or
be used to create a historical report of system performance. By default, ptpedump
instructs all systems to dump their performance information archives.

Before the ptpedump command can be used, specific data object classes must
exist in the System Data Repository (see “ptpeconf” on page 86) and the perfmon
user group must exist on all systems within the monitoring hierarchy (see
“ptpegroup” on page 97). A monitoring hierarchy must also have been established
(see “ptpehier” on page 99). The user must have perfmon set as the user's
effective group to issue the ptpedump command.

 Restrictions
This command can only be executed by members of the perfmon group.

 Results
ptpedump creates a text formatted version of the /var/adm/ptpe/perflog file on
one or more nodes in the monitoring hierarchy, which will also reside in the /var
filesystem. Before issuing the command, the user should make sure that there is
enough free space on the /var filesystem on the targeted systems to accept this
file. If not, the spdm_dump command can be run locally on each system to dump
a text version of the archive file to standard output which can be redirected to a
filesystem with enough space to accept the output.

 Chapter 7. PTPE Commands 93

 ptpedump

The formatted text file will be named /var/adm/ptpe/perflog.txt <date>, where
<date> is a numeric representation of the date when the file was created, in
MMDDYYYY format. For example, the filename perflog.txt100195 indicates that
the file was created on the first of October, 1995.

When the –c and –s options are not specified, the command dumps the archive
contents in the default format. A single heading line will appear at the top of the file,
followed by one or more text records in the following format:

Timestamp Length Data Type Statistic Value

where Timestamp is the time when the statistics was recorded in YY/MM/DD
HH:MM:SS format, Length is the length of the statistic name, Data Type is a single
character that represents the data type of the value, Statistic is the full context
name of the performance statistic as named by Performance Toolbox, and Value is
the value of the statistic at the time it was recorded. The maximum length of an
output record is 180 characters, depending on the length of the statistic name. The
data type identifier is one of the following values:

 Performance Toolbox
Code Data Type
i SiInt
i SiInt
I SiUInt or SiUnsign
l SiLong
L SiULong
s SiShort
S SiUShort
c SiChar
a SiAddr
f SiFloat
d SiDouble

When the –c option is specified, the command dumps the contents of the archive in
comma-separated format. The files uses the same naming convention as the
default format (/var/adm/ptpe/perflog.txt <date>). A single heading line, specifying
the name of the node, appears at the top of the file, followed by one or more text
records in the following format:

Time="Timestamp", Statistic=Value

where Timestamp is the time when the statistics was recorded in YY/MM/DD
HH:MM:SS format, Statistic is the full-context name of the performance statistic as
named by Performance Toolbox, and Value is the value of the statistic at the time it
was recorded.

When the –s option is specified, the command dumps the contents of the archive in
spreadsheet format. The output is formatted for use with 132-column output
devices, using the statistic names along the horizontal axis and the recording times
along the vertical axis. Because statistic names can be quite long, it is possible for
a single spreadsheet to contain only a few statistics. In such cases, the command
generates multiple files until all statistics in the archive on a node are dumped to a
file. The file name uses the same convention as the default and comma-separated
formats (/var/adm/ptpe/perflog.txt <date>) along with a part number suffix, should
the output be contained in multiple files. For example, the complete spreadsheet
output for October 1, 1995, consisting of three files, would be created as:

94 Monitoring Guide and Reference

 ptpedump

 /var/adm/ptpe/perflog.txt100195_1
 /var/adm/ptpe/perflog.txt100195_2
 /var/adm/ptpe/perflog.txt100195_3

Two headings lines appear at the top of each spreadsheet file. The first line
indicates the name of the node for which the report was created. The second line
lists a timestamp heading, along with the names of the statistics contained in the
report:

hostname: Node
Timestamp Statistic A Statistic B ...

where Node is the name of the node from which this report was generated, and the
Statistics are the names of the performance statistics included in the report. One or
more records follow the heading, containing a time value in YY/MM/DD HH:MM:SS
format, along with any values observed for the statistics. If no values were found for
a statistic at a given timestamp, a hyphen is placed in the column for that statistic
for that timestamp value. If ptpedump is not provided a list of systems, the
command retrieves the monitoring hierarchy from the System Data Repository. It
then invokes a distributed shell to execute the spdm_dump command on all
systems in the monitoring hierarchy (see “spdm_dump” on page 109).
spdm_dump is executed locally on each node, and the output from spdm_dump
is routed to /var/adm/ptpe/perflog.txt <date> file on that system.

Statistics names appearing as ???? indicate that the spdm_dump utility could not
determine the correct IBM Performance Toolbox for AIX statistic name for this data.
This should only occur when the performance statistic translation table file,
/var/adm/ptpe/pertab , is damaged or erased. In such cases it is not possible to
retrieve performance statistics names.

ptpedump only creates text formatted files on the same systems where the archive
files reside. To dump the archive to a remote file, the spdm_dump command
should be used locally, redirecting its output to a network file system file.

ptpedump does not check for sufficient space in the /var/adm/ptpe filesystem
before dumping archive files. No error is reported if all files on a node cannot be
created using the –s option.

 Examples
1. To dump the performance archives on all systems in the monitoring hierarchy

to a text formatted file, enter:

ptpedump

2. To dump the archive files on all nodes in comma-separated format for possible
use as database input, enter:

ptpedump -c

3. To dump the archive files on nodes spnodeð9.ibm.com and spnode18.ibm.com,
enter:

ptpedump -n spnodeð9.ibm.com spnode18.ibm.com

4. To dump the archive files on node spnode14.ibm.com in spreadsheet format for
use as input to the a2ptx command, enter:

ptpedump -s -n spnode14.ibm.com

 Chapter 7. PTPE Commands 95

 ptpedump

 Files
� /usr/lpp/ptpe/bin/ptpedump Contains the ptpedump command

� /usr/lpp/ptpe/bin/spdm_dump Contains the spdm_dump command

� /var/adm/ptpe/perflog Contains the archived performance

� /var/adm/ptpe/perftab Contains the performance statistics archive table
information for the local system

� /var/adm/ptpe/perflog.txt <date> The text formatted contents of the
performance information archive on the local system

� /etc/group Contains group information

� /etc/security/group Contains group information

� /usr/lib/nls/msg/*/ptpe.cat Message catalog for the PTPE product

� /usr/lib/libptpe.a The Performance Toolbox Parallel Extensions shared library

 Prerequisite Information
This command is part of the Performance Toolbox Parallel Extensions for AIX
(PTPE) feature of the IBM Parallel System Support Programs for AIX licensed
program product.

 Related Information
� “ptpeconf” on page 86

� “ptpegroup” on page 97

� “ptpehier” on page 99

� “spdm_dump” on page 109

� “The a2ptx Recording Generator” in the IBM Performance Toolbox for AIX:
Guide and Reference

96 Monitoring Guide and Reference

 ptpegroup

 ptpegroup

 Purpose
ptpegroup creates the user group required by PTPE.

 Syntax
ptpegroup [–h]

 Parameters
–h Help. Displays a usage message to standard output.

 Description
The ptpegroup command creates the perfmon user group on the system from
which it is executed. The root user is set as the initial member and administrator of
the user group. Only members of this group may utilize PTPE functions, and only
when these users have set the perfmon user group as their effective group.

ptpegroup executes as part of the Performance Toolbox Parallel Extensions
installation procedure. It is provided as a command in case the perfmon user
group should need to be recreated on one or more systems.

ptpegroup does not force the revised /etc/security/group and /etc/group files to
be propagated to the other nodes. Therefore, this command should be run from the
control workstation, which propagates these files to the nodes on an hourly basis.
ptpegroup can also be executed on another node which maintain the /etc/group
and /etc/security/group as part of a file collection.

If ptpeconf is executed on the control workstation, the remaining SP nodes may
not become aware of the perfmon group for up to an hour after the command was
executed. If faster response time is desired, use the supper command to force
update of the user.admin file collection.

 Restrictions
This command can only be executed by members of the perfmon group.

 Results
Once the perfmon group has been created, users may be assigned to the group,
and group administration can be reassigned if desired. It is recommended that new
users be created and assigned to the perfmon group, instead of adding existing
users to this group. Users added to this group should have sufficient privilege to
gain read-write access to the System Data Repository. Users may be added to the
group, and administration of the group can be altered, using the System
Management Interface Tool (SMIT) or the chgrpmem command.

 Chapter 7. PTPE Commands 97

 ptpegroup

 Examples
1. To create the perfmon user group on the control workstation, log onto the

control workstation and enter:

/usr/lpp/ptpe/bin/ptpegroup

 Files
� /usr/lpp/ptpe/bin/ptpegroup Contains the ptpegroup command

� /etc/group Contains group information

� /etc/security/group Contains group information

� /usr/lib/nls/msg/*/ptpe.cat Message catalog for the PTPE product

 Prerequisite Information
This command is part of the Performance Toolbox Parallel Extensions for AIX
(PTPE) feature of the IBM Parallel System Support Programs for AIX licensed
program product.

 Related Information
� “ptpeconf” on page 86

� “ptpectrl” on page 88

� “ptpehier” on page 99

� “spdm_dump” on page 109

� The chgrpmem command in IBM AIX for RISC System/6000 Commands
Reference

� The supper command in IBM Parallel System Support Programs for AIX:
Command and Technical Reference

� The System Management Interface Tool in IBM Parallel System Support
Programs for AIX: Administration Guide

� “Managing File Collections” in IBM Parallel System Support Programs for AIX:
Administration Guide

� “The System Data Repository” in IBM Parallel System Support Programs for
AIX: Administration Guide

98 Monitoring Guide and Reference

 ptpehier

 ptpehier

 Purpose
ptpehier creates or removes Performance Toolbox Parallel Extensions monitoring
hierarchy.

 Syntax
ptpehier {[–e[–c host] | –f[–c host] | –i –c host] [–p] | [–p] | [–d] | [–h]}

 Parameters
–c Central Coordinator.

Instructs the ptpehier command to assign the central coordinator Node
responsibilities to the system specified by "host". For the -e and -f options, the
system specified by host must exist in the Node class of the System Data
Repository, and must be a fully specified host name address. For the -i option,
the system specified by "host" must appear in the input stream.

The -c flag is optional when for the -e or -f are specified; these standard
hierarchies automatically appoint a central coordinator node if none is specified.

–d Delete Current Monitoring Hierarchy.

Only a limited set of PTPE functions will be available, and it will be impossible
to start performance information collection and summarization without the
monitoring hierarchy.

–e Create Monitoring Hierarchy Automatically by Ethernet.

Creates a monitoring hierarchy automatically, using Ethernet local area
subnetworks as the basis for constructing the hierarchy. All systems that are
members of a common Ethernet local area subnetwork will be assigned to the
same node group in the monitoring hierarchy. Data manager nodes will be
nominated from the node groups on an arbitrary basis. If the -c option is not
specified, the central coordinator Node will also be assigned arbitrarily.

–f Create Monitoring Hierarchy Automatically by Frame.

Creates a monitoring hierarchy automatically, using SP node frames as the
basis for constructing the hierarchy. All systems that are members of the same
SP node frame will be assigned to the same node group in the monitoring
hierarchy. Data manager nodes will be nominated from the node groups on an
arbitrary basis. If the -c option is not specified, the central coordinator Node will
also be assigned arbitrarily.

–h Help.

Displays a usage message to standard output.

–i Create Monitoring Hierarchy by Standard Input.

Creates a monitoring hierarchy according to the user's specification, which is
supplied via standard input. When this option is specified, -c must also be
specified to name the central coordinator Node.

The user provides a specification of the node groups in the monitoring
hierarchy through standard input. Standard input takes the following format:

 Chapter 7. PTPE Commands 99

 ptpehier

{
name of first host in the node group
name of second host in the node group
name of third host in the node group
 :
 :
name of last host in the node group
}
{
specification of the next group's contents
}
 :
additional group specifications
 :
Ctrl-D

The character '{' is used to signal the start of a node group, and '}' is used to
signal the end of a node group. Each node group must contain at least one
host. The first host named as a member of the node group is assigned as the
data manager node of the group. The user cannot specify a host as both a
managing node for a node group and as the central coordinator Node for the
monitoring hierarchy. Input is terminated by the Ctrl-D character.

–p Print monitoring hierarchy.

Displays a text representation of the monitoring hierarchy to standard output. If
this option is combined with the -e, -f, or -i options, the hierarchy is displayed
after it has been created.

 Description
The ptpehier command constructs, displays, and removes the monitoring hierarchy
used by PTPE. A monitoring hierarchy cannot be modified, replaced, or removed
while performance information collection and summarization is active. Before the
ptpehier command can be used, specific data object classes must exist in the
System Data Repository (see “ptpeconf” on page 86), and the perfmon user group
must exist on the system (see “ptpegroup” on page 97). The user must be a
member of the perfmon user group, and must have perfmon set as the user's
effective group to issue the ptpehier command.

Before using the Performance Toolbox Parallel Extensions product for the first time,
you must create a monitoring hierarchy. (For an explanation of the monitoring
hierarchy concept, see “Understanding the Monitoring Hierarchy” on page 9). For
initial use, using a hierarchy based on Ethernet local area subnetwork is
recommended. You can construct this hierarchy using the ptpehier -e command.
However, other options are provided to permit more experienced users to
restructure the hierarchy or to construct a customized hierarchy.

The structure of the monitoring hierarchy impacts how summarized performance
information is calculated. It also determines which systems are assigned the tasks
of summarization and command delegation. ptpehier provides two different
options that configure a standard monitoring hierarchy for efficient data
transmission and a moderate level of management overhead on the SP platform:

1. Organization by Ethernet local area subnetwork. By configuring the hierarchy
along Ethernet subLAN boundaries, the Performance Toolbox Parallel
Extensions reduces the amount of network traffic that must be transmitted

100 Monitoring Guide and Reference

 ptpehier

through network gateways, and avoid inflicting additional overhead to the
gateway systems.

2. Organization by SP node frame. By configuring the hierarchy along frame
boundaries, a minimal amount of cross-network traffic is generated, and
summary performance information is prepared according to system boundaries
that are easily recognizable by SP system users. Node groups are also limited
to a maximum of 16 systems, limiting the overhead on data manager nodes.

ptpehier also permits you to configure a customized monitoring hierarchy. Because
the structure of the monitoring hierarchy has a great impact on the function and
computational expense of the Performance Toolbox Parallel Extensions, users
should plan the optimal monitoring hierarchy structure before constructing a
customized hierarchy with this command. Consult the (planning section of our user
manual) for suggestions on planning a customized hierarchy.

A monitoring hierarchy does not need to be removed before a new hierarchy can
replace it. However, removing a hierarchy would prevent other users from starting
performance information collection and summarization on a hierarchy that is about
to be replaced. Removal of a monitoring hierarchy should only be done when the
hierarchy is about to be replaced to lock out other users, or when the Performance
Toolbox Parallel Extensions function is to be disabled for an extended period of
time.

 Restrictions
This command is expected to be issued from a node in the system partition for
which the monitoring hierarchy is, or will be, built. When issued from a node outside
the partition, the command will be unable to modify the structure of the monitoring
hierarchy. In such cases, only the –h and –p options are available.

This command can only be executed by members of the perfmon group.

 Results
If –p is specified, the output uses indentation to illustrate the levels of the hierarchy.
All systems at the next indentation level report to the system at the previous
indentation level. The output resembles the following format.

central coordinator Node Host Name
Data Manager Node Host Name

Node Group Member Host Name
Node Group Member Host Name
Node Group Member Host Name

 :
 :
Data Manager Node Host Name

Node Group Member Host Name
Node Group Member Host Name
Node Group Member Host Name

 :
 :

 Chapter 7. PTPE Commands 101

 ptpehier

 Examples
1. To display the current monitoring hierarchy, enter:

ptpehier -p

2. To create a monitoring hierarchy according to SP node frame, and display the
resulting hierarchy upon completion, enter:

ptpehier -f -p

3. To create a monitoring hierarchy according to Ethernet local area subnetwork,
and to assign the central coordinator Node responsibilities to the system known
as spnode09.ibm.com, enter:

ptpehier -e -c spnodeð9.ibm.com

spnode09.ibm.com must exist as a reliable_hostname in the Node Class for
one of the SP nodes in the System Data Repository.

4. To create a hierarchy that organizes systems into the following hierarchical
structure:

 spnodeð9.ibm.com
 |

 | |
 spnodeð3.ibm.com spnode21.ibm.com
 | |
 -------------------- --------------------
 | | | |

spnodeð1.ibm.com spnodeð3.ibm.com spnode17.ibm.com spnode19.ibm.com
spnodeð5.ibm.com spnodeð7.ibm.com spnode21.ibm.com spnode23.ibm.com
spnodeð9.ibm.com spnode1ð.ibm.com spnode25.ibm.com spnode27.ibm.com
spnode11.ibm.com spnode12.ibm.com spnode29.ibm.com spnode31.ibm.com
spnode13.ibm.com spnode14.ibm.com
spnode15.ibm.com spnode16.ibm.com

Create a file to contain the node group specifications. The file content would
appear as:

102 Monitoring Guide and Reference

 ptpehier

{
spnodeð3.ibm.com
spnodeð1.ibm.com
spnodeð5.ibm.com
spnodeð7.ibm.com
spnodeð9.ibm.com
spnode1ð.ibm.com
spnode11.ibm.com
spnode12.ibm.com
spnode13.ibm.com
spnode14.ibm.com
spnode15.ibm.com
spnode16.ibm.com
}
{
spnode21.ibm.com
spnode17.ibm.com
spnode19.ibm.com
spnode23.ibm.com
spnode25.ibm.com
spnode27.ibm.com
spnode29.ibm.com
spnode31.ibm.com
}

Use this file as input to the following ptpehier command:

ptpehier -i -c spnodeð9.ibm.com < node_group_spec_file

 Files
/usr/lpp/ptpe/bin/ptpehier Contains the ptpehier command
/etc/group Contains group information
/etc/security/group Contains group information
/usr/lib/nls/msg/*/ptpe.cat Message catalog for the PTPE product
/usr/lib/libptpe.a The Performance Toolbox Parallel Extensions shared library

 Prerequisite Information
This command is part of the Performance Toolbox Parallel Extensions for AIX
(PTPE) feature of the IBM Parallel System Support Programs for AIX licensed
program product.

 Related Information
“ptpeconf” on page 86
“ptpectrl” on page 88
“ptpedump” on page 93
“ptpegroup” on page 97
“Understanding the Monitoring Hierarchy” on page 9
“The System Data Repository” in IBM Parallel System Support Programs for
AIX: Administration Guide

 Chapter 7. PTPE Commands 103

 ptpertm

 ptpertm

 Purpose
ptpertm starts the SP performance data supplier daemon on a node, making the
performance data available to IBM Performance Toolbox for AIX.

 Syntax
ptpertm [–p]

 Parameters
-p Informs the command to direct its output to the error log instead of a standard

output device. This option is used when running the command from the IBM
Performance Toolbox for AIX xmservd daemon.

 Description
The ptpertm command starts the SP performance data supplier program on the
local node, and instructs the program to export all available performance data to
IBM Performance Toolbox for AIX. This performance information becomes available
as performance statistics from the Spmi programming library of Performance
Toolbox.

This command is provided so that standalone Performance Toolbox sessions can
obtain SP-specific performance information from a given node without starting
performance information collection throughout the entire SP system.

 Description
When ptpertm executes, the command invokes the SP Resource Monitor program,
harmld . This program determines what specific SP hardware and software
programs are available, and begins providing performance data for them to IBM
Performance Toolbox for AIX. The new information is accessible to Spmi and Rsi
applications, as well as the Performance Toolbox graphical interfaces.

ptpertm only starts providing performance data for the node on which the
command is executed. It is provided so that Performance Toolbox can access
performance statistics for a specific node without starting data collection throughout
the entire monitoring hierarchy. If SP-specific performance data is required for all
nodes, start performance data collection using the ptpectrl command.

The command can be configured to start whenever the xmservd daemon becomes
active for a node. To do so, the following entry should be added to the end of the
node's xmservd.res file:

supplier: /usr/lpp/ptpe/bin/ptpertm.p

The –p option causes ptpertm to direct any error output to the error log instead of
to the terminal. This is necessary, since xmservd will invoke the command as a
daemon, thereby removing any connection to a terminal. If the xmservd command
is active at the time the xmservd.res file is modified, refresh the daemon by
issuing a kill -1 against the xmservd daemon. For more information about the
xmservd daemon and its resolution file, refer to the IBM Performance Toolbox for
AIX: Guide and Reference.

104 Monitoring Guide and Reference

 ptpertm

Although ptpertm may be invoked from a command line or a shell script, it is not
the preferred method for issuing the command. Running ptpertm from the
command line should only be done temporarily.

 Examples
1. To obtain SP-specific performance information for a node without starting

performance data collection on the entire SP, modify the xmrservd.res file on
the node to include a data supplier entry for the ptpertm command:

supplier: /usr/lpp/ptpe/bin/ptpertm -p

 Test the xmservd to determine whether it is active using ps command. If the
daemon is active, note its process ID. Instruct the daemon to refresh itself by
sending a SIGINT with the kill command:

kill -1 xmservd_process_ID

 This refreshes the xmservd daemon, causing it to reexamine its resolution file.
The daemon will discover the new data supplier entry for ptpertm and start the
command as a daemon. Once it is started, ptpertm makes all SP-specific
performance data for this node available to Performance Toolbox as new
statistics. contains the spdm_dump command

 Files
/etc/perf/xmservd.res The customized xmservd resolution file
/usr/lpp/perfagent/xmservd.res The default xmservd resolution file

 Prerequisite Information
This command is part of the Performance Toolbox Parallel Extensions for AIX
(PTPE) feature of the IBM Parallel System Support Programs for AIX licensed
program product.

 Related Information
“Step 4: Start Data Collection and Summary” on page 32
“xmservd” in the IBM Performance Toolbox for AIX: Guide and Reference

 Chapter 7. PTPE Commands 105

 spdmdctrl

 spdmdctrl

 Purpose
spdmdctrl starts, stops, adds, and deletes the PTPE subsystem from a node.

 Syntax
spdmdctrl {–a | –c | –d | –h | –k | –s }

 Parameters
–a Add the PTPE subsystem to the node.

The PTPE spdmd daemon is registered as an inetd subserver with the System
Resource Controller on the node. The spdmd daemon is also registered as a
service in the /etc/services file, and registered with the inetd master daemon
in the /etc/inetd.conf file. The PTPE subsystem is then enabled through the
System Resource Controller.

–c Clean up after the subsystem.

All PTPE registrations with the node's System Resource Controller and the
inetd master daemon are removed. This flag is similar to the -d flag, and
provided to support the syspar_ctrl command. The PTPE subsystem must be
stopped with the the -k flag before this flag can be used.

–d Delete the subsystem from the node.

All PTPE registrations with the node's System Resource Controller and the
inetd master daemon are removed. This flag is similar to the -c flag.

–h Display usage information for this command.

–k Stop the PTPE subsystem.

The PTPE subsystem is disabled using the System Resource Controller, which
disables the PTPE inetd subserver daemon spdmd . Any subsequent attempts
to issue PTPE API instructions to the node will fail. The PTPE subsystem
remains registered as a service, and also remains registered with the inetd
master daemon on the node.

–s Start the PTPE subsystem.

The PTPE subsystem is enabled using the System Resource Controller, which
enables the PTPE inetd subserver daemon spdmd .

 Description
spdmdctrl performs partition-sensitive configuration and removal duties for PTPE.
This command is provided to support the syspar_ctrl command, which configures
and removes partition sensitive subsystems. It is also provided to configure and
remove PTPE during the normal installation and deinstallation process.

spdmdctrl configures or removes the PTPE subsystem on the node where it is
executed. If the command is executed on the control workstation, extra processing
is performed when the PTPE subsystem is added for the first time. From the control
workstation, the command will reserve a port for exclusive use by the PTPE
daemon spdmd . The command also creates the SPDM and SPDM_NODES

106 Monitoring Guide and Reference

 spdmdctrl

classes in the System Data Repository if they do not already exist, using the
ptpeconf command. Finally, the command issues the ptpegroup command to
create the perfmon user group.

If spdmdctrl cannot determine whether it is executing on the control workstation,
the command will report a failure and exit. This condition may occur during the
installation of PTPE if the install_cw command has not been executed. In such
cases, the PTPE software will be installed, but the subsystem will not be
configured. The subsystem can be configured at a later time, by using either the
syspar_ctrl command, or by issuing this command again on the control workstation
and on all nodes.

 Restrictions
You must be logged in as root to execute this command.

 Results
When adding the PTPE subsystem, all partition sensitive configuration will be
performed, and the PTPE inetd subserver daemon, spdmd , will be enabled for
operation.

When stopping the PTPE subsystem, all configuration information and registrations
remain, but the PTPE inetd subserver daemon, spdmd , is disabled.

When removing or cleaning the PTPE subsystem, all registrations for PTPE on the
node are removed. However, the information stored in the System Data Repository,
including the port reserved for use by PTPE, remains.

If the spdmdctrl command encounters an error, it exits with a non-zero value. In all
successful conditions, the command exits with a zero value.

 Examples
1. To add the PTPE subsystem to the node, enter:

/usr/lpp/ptpe/bin/spdmdctrl -a

2. To start the PTPE subsystem on the node, enter:

/usr/lpp/ptpe/bin/spdmdctrl -s

3. To stop the PTPE subsystem on the node, enter:

/usr/lpp/ptpe/bin/spdmdctrl -k

4. To delete the PTPE subsystem from the node, enter:

/usr/lpp/ptpe/bin/spdmdctrl -d

 Files
/usr/lpp/ptpe/bin/spdmdctrl Contains the spdmdctrl command
/etc/services Contains group services
/etc/inetd.conf Contains the inetd configuration file

 Chapter 7. PTPE Commands 107

 spdmdctrl

 Prerequisite Information
This command is part of the Performance Toolbox Parallel Extensions for AIX
(PTPE) feature of the IBM Parallel System Support Programs for AIX licensed
program product.

 Related Information
“ptpeconf” on page 86
“ptpegroup” on page 97

108 Monitoring Guide and Reference

 spdm_dump

 spdm_dump

 Purpose
spdm_dump dumps the contents of the local performance information archive to
standard output.

 Syntax
spdm_dump [–c]

 Parameters
–c Formats the text dump of the archive files in comma-separated format. The

resulting dump can be used as input to a database application.

 Description
The spdm_dump command reads the contents of the local system's performance
information archive, /var/adm/ptpe/perflog , and dumps the contents of the archive
to either standard output in full content format (the default), or comma-separated
format (using the –c option). Comma-separated format has the statistic name,
timestamp, and value. Full content format adds name length and data type identifier
to those elements provide by comma-separated format. The output of this
command can be redirected to a file or piped to commands that accept text
formatted input for further processing.

 Restrictions
This command can only be executed by members of the perfmon group.

 Results
For each performance statistic entry in the /var/adm/ptpe/perflog file, a text record
is generated and written to standard output.

When the –c option is not specified, the command dumps the archive contents in
the full-content (default) format. A single heading line will appear at the head of the
output, followed by one or more text records in the following format:

Timestamp Length Data Type Statistic Value

where:

� Timestamp is the time when the statistic was recorded in MMDDYYYY
HH:MM:SS format

� Length is the length of the statistic name

� Data Type is a single character that represents the data type of the value

� Statistic is the full context name of the performance statistic as named by
Performance Toolbox

� Value is the value of the statistic at the time it was recorded

The maximum length of an output record is 180 characters, depending on the
length of the statistic name. The data type identifier is one of the following values:

 Performance Toolbox

 Chapter 7. PTPE Commands 109

 spdm_dump

Code Data Type
i SiInt
i SiInt
I SiUInt or SiUnsign
l SiLong
L SiULong
s SiShort
S SiUShort
c SiChar
a SiAddr
f SiFloat
d SiDouble

When the –c option is specified, the command dumps the contents of the archive in
comma-separated format. The file uses the same naming convention as the default
format (/var/adm/ptpe/perflog.txt <date>). A single heading line, specifying the
name of the node, appears at the top of the file, followed by one or more text
records in the following format:

Time="Timestamp", Statistic=Value

where:

� Timestamp is the time when the statistics was recorded in YY/MM/DD
HH:MM:SS format

� Statistic is the full-context name of the performance statistic as named by
Performance Toolbox

� Value is the value of the statistic at the time it was recorded.

Statistics names appearing as ???? indicate that the spdm_dump utility could not
determine the correct IBM Performance Toolbox for AIX statistic name for this data.
This should only occur when the performance statistic translation table file,
/var/adm/ptpe/pertab , is damaged or erased. In such cases it is not possible to
retrieve performance statistics names.

 Examples
1. To obtain a history of all observances of the performance statistic

PagSp/%totalfree for the local system in its performance information archive,
enter:

spdm_dump | grep PagSp/%totalfree | awk '{printf("%s %s %s %s %s: %s\n", $1, $2, $3, $4, $5, $1ð)}'

 The output of spdm _dump is filtered through grep to obtain only those
observances of the PagSp/%totalfree variable. The records that pass the grep
filter are then further stripped to only display the time the statistic was observed
in stime() format ($1 through $5 of the awk command), a colon (:), and the
value of the variable at that time.

2. To dump the entire contents of the node's archive file in comma-separated
format and input it to a database application, enter:

spdm_dump -c | dbin_prog

110 Monitoring Guide and Reference

 spdm_dump

 Files
/usr/lpp/ptpe/bin/spdm_dump contains the spdm_dump command
/var/adm/ptpe/perflog Contains the archived performance information for the
local system
/var/adm/ptpe/perftab Contains the performance statistics archive table

 Prerequisite Information
This command is part of the Performance Toolbox Parallel Extensions for AIX
(PTPE) feature of the IBM Parallel System Support Programs for AIX licensed
program product.

 Related Information
“ptpeconf” on page 86
“ptpectrl” on page 88
“ptpedump” on page 93
“ptpegroup” on page 97
“Archiving Performance Data” on page 35
“Monitoring Statistics with xmperf” in IBM Performance Toolbox for AIX: Guide
and Reference

 Chapter 7. PTPE Commands 111

 spdm_dump

112 Monitoring Guide and Reference

Chapter 8. The PTPE API Subroutines

Use these subroutines to write application programs that use Performance Toolbox
Parallel Extensions for AIX.

 Copyright IBM Corp. 1998 113

 PtpeAddHostToList

 PtpeAddHostToList

 Purpose
 Creates an entry for a specified system in an existing host list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeAddHostToList(hostname, hanchor)
char \hostname;
host_list_t hanchor;

 Parameters
hostname

Points to a NULL-terminated character string of up to PTPE_NMLN characters
in length, which contains the network name of the system to be added to the
host list.

hanchor
The anchor point of an existing host list.

 Description
PtpeAddHostToList allocates an entry to contain host information for the system
specified by hostname. This entry is inserted at the beginning of the host list, and
the internal pointers in the host list anchor are updated to point to the new entry as
the “current” entry in the host list.

hostname should be specified in the same manner as the system is known to the
Performance Toolbox for AIX monitoring hierarchy. If the system is defined in the
monitoring hierarchy by its fully qualified network name, such as
spnode05.ibm.com, the same format should be used when adding the system to
the host list. If a system is known by more than one name to the network, the name
that should be used by this subroutine is the name by which the system is known
to the monitoring hierarchy. If the name used by this subroutine is not the same
name, in the same format as used by the monitoring hierarchy, subsequent API
subroutines will not be able to locate the system in the monitoring hierarchy,
causing failures in later API subroutines. No verification is performed on the system
name format, nor is the system confirmed to exist, at the time the system is added
to the host list.

The host list indicated by hanchor may be an empty or non-empty list.

114 Monitoring Guide and Reference

 PtpeAddHostToList

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_HOSTLIST hanchor has a NULL value.

PTPE_INV_HOSTNAME hostname has a NULL value, or points to a NULL
character string.

PTPE_NO_MEMORY Could not allocate a new entry for the host list.

PTPE_BAD_LOC_PTR The memory pointers in hanchor have been corrupted.

 Examples
#include <spdm.h>

host_list_t hanchor;
char newhost[PTPE_NMLN];
int rc;

strcpy(newhost, "spnodeð5.ibm.com");
rc = PtpeAddHostToList(newhost, hanchor);
if (rc != PTPE_SUCCESS) {
/\ handle error \/
}

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeDelHostFromList” on page 225

� “PtpeFindHost” on page 233

 Chapter 8. The PTPE API Subroutines 115

 PtpeAddStatToList

 PtpeAddStatToList

 Purpose
Creates an entry for a specified statistic in an existing statistics list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeAddStatToList(statname, sanchor)
char \statname;
stat_list_t sanchor;

 Parameters
statname

Points to a NULL-terminated character string of up to PTPE_STNL characters
in length, which contains the full context path of the statistic to be added to the
statistics list. This name is specified in the same format as a fully specified
statistic name in the Performance Toolbox Spmi library, relative to the top
context.

sanchor
The anchor point of an existing statistics list.

 Description
PtpeAddStatToList allocates an entry to contain statistic information for the
statistic specified by statname. This entry is inserted at the beginning of the
statistics list, and the internal pointers in the statistics list anchor are updated to
point to the new entry as the “current” entry in the statistics list.

statname specifies the full context path of the statistic being entered into the list.
This name is provided in Spmi format, relative to the top context. The path name
does not include the /host/ <hostname> prefix used by the Performance Toolbox
Rsi programming library. No verification is performed on the format of the statistic
name, nor does the API confirm that such a statistic exists, at the time the statistic
is added to the statistics list.

The statistics list indicated by sanchor may be an empty or non-empty list. If the
statistics list was previously assigned to a system by the PtpeAssignStatsToHost
subroutine, the addition made by this subroutine occurs in the “unassigned”
statistics list sanchor only; the copy of the statistics list that was previously
assigned to a system remains unchanged by this subroutine.

116 Monitoring Guide and Reference

 PtpeAddStatToList

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_INV_STATNAME hostname has a NULL value, or points to a NULL
character string.

PTPE_NO_MEMORY Could not allocate a new entry for the statistics list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

 Examples
#include <spdm.h>

stat_list_t sanchor;
char newstat[PTPE_STNL];
int rc;

strcpy(newstat, "Mem/Virt/%free");
rc = PtpeAddStatToList(newstat, sanchor);
if (rc != PTPE_SUCCESS) {
/\ handle error \/
}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeDelStatFromList” on page 227

� “PtpeFindStat” on page 235

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

The discussion of statistical contexts in the Performance Toolbox 1.2 and 2.1
for AIX Guide and Reference.

 Chapter 8. The PTPE API Subroutines 117

 PtpeArchDisableAllStats

 PtpeArchDisableAllStats

 Purpose
Makes all statistics unavailable for archiving on one or more systems in the
Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeArchDisableAllStats(sblock, targets,
 reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should not have statistics lists assigned to them.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request.

 Description
PtpeArchDisableAllStats instructs one or more systems in the Performance
Toolbox Parallel Extensions to make all the statistics that the system can possibly
supply unavailable for recording to the performance information archive. The
subroutine is similar to the PtpeArchEnableStats subroutine, except the subroutine
deactivates all statistics instead of a set of statistics that the application selects.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The application must also construct a host list for
the command, containing an entry for each system that the application needs to
instruct. This list is then provided in the targets parameter.

When PtpeArchDisableAllStats is executed, the subroutine relays the command,
along with a list of the system involved, to the monitoring hierarchy's central
coordinator node. The central coordinator node determines which nodes are data
managers for the systems in the targets list, and forwards the command to only

118 Monitoring Guide and Reference

 PtpeArchDisableAllStats

those data manager nodes that manage systems in the host list. The data manager
nodes then relay the command to those systems in their reporting groups that have
been listed in the targets list.

Each system in the targets list makes all statistics known to that system unavailable
for recording to the performance information archive. The system then indicates its
success or failure in the effort to its data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The system's success or failure
reply is placed in the partial host list. This list is then relayed to the central
coordinator node, who constructs a complete host list. The complete host list is
transmitted back to the PtpeArchDisableAllStats subroutine, which provides it to
the application in the reply parameter.

PtpeArchEnableAllStats will provide an indication of the overall success or failure
of the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the command.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the command.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the command.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system.

Making statistics available or unavailable for archiving has no impact upon which
statistics are collected for summarization. This subroutine cannot be issued from a
PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the command, but an error occurred in reading the
reply list response from the central coordintor Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the command. reply contains the list of all
systems involved in the command; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the command, and an error occurred in
reading the reply list response from the central
coordinator node.

 Chapter 8. The PTPE API Subroutines 119

 PtpeArchDisableAllStats

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
command. reply contains all systems involved in the
command, along with the reasons for the failure on
these systems. The application can determine the
cause of the error by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the command, and an
error occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

120 Monitoring Guide and Reference

 PtpeArchDisableAllStats

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeArchDisableAllStats(sblock, targets,
 &reply);
if (rc != PTPE_SUCCESS) {
printf("Not all systems succeded.\n");

}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeArchStartHosts” on page 156

� “PtpeArchStartAllHosts” on page 152

� “PtpeArchEnableStats” on page 133

� “PtpeArchEnableAllStats” on page 128

� “PtpeArchDisableStats” on page 123

� “PtpeQueryAvailStats” on page 286

� “PtpeArchQueryStats” on page 147

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

 Chapter 8. The PTPE API Subroutines 121

 PtpeArchDisableAllStats

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

� “PtpeGetStatResult” on page 254

122 Monitoring Guide and Reference

 PtpeArchDisableStats

 PtpeArchDisableStats

 Purpose
Makes one or more statistics unavailable for archiving on one or more systems in
the Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeArchDisableStats(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should have statistics lists assigned to them (see “PtpeAssignStatsToHost” on
page 170).

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request. Each entry will also have a statistics list assigned to it, containing an
entry for each statistic passed to the system, with a result code to indicate if
the statistic was successfully activated.

 Description
PtpeArchDisableStats instructs one or more systems in the Performance Toolbox
Parallel Extensions to make a set of statistics unavailable for recording to the
performance information archive.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The application must also construct a host list for
the command, containing an entry for each system that the application needs to
query. This list is then provided in the targets parameter. Each entry in the targets
list should also have a statistics list assigned to it (see “PtpeAssignStatsToHost” on
page 170), containing the list of statistics to be made unavailable.

When PtpeArchDisableStats is executed, the subroutine relays the command,
along with the host list of systems involved, to the monitoring hierarchy's central

 Chapter 8. The PTPE API Subroutines 123

 PtpeArchDisableStats

coordinator node. The central coordinator node determines which nodes are data
managers for the systems in the targets list, and forwards the command to only
those data manager nodes that manage systems in the host list. The data manager
nodes then relay the command to those systems in their reporting groups that have
been listed in the targets list.

Each system in the targets list extracts the list of statistics for their respective entry
from the command message, and searches for these statistics. Any of the statistics
in this list that also exist on the system are made unavailable for recording to the
archive. The PTPE daemons on the system create a reply statistics list, containing
all statistics passed to this system in the command. The daemons will set the result
codes in each statistics list entry to one of the following values:

PTPE_SUCCESS The statistic was made unavailable for archiving.

PTPE_STAT_NOT_FOUND The statistic could not be found on the system.

The list of statistics is then relayed to the data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The statistics lists received
from each node are assigned to their respective host list entries in the data
manager node's partial host list. This list is then relayed to the central coordinator
node, who constructs a complete host list. The complete host list is transmitted
back to the PtpeArchDisableStats subroutine, which provides it to the application
in the reply parameter.

PtpeArchDisableStats will provide an indication of the overall success or failure of
the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the command.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the command.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the command.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system. To
check for failures caused by missing statistics, extract the statistics list for each
entry by using the PtpeGetHostStatList subroutine, and scan the list using the
statistics list scanning subroutines.

Making statistics available or unavailable for archiving has no impact upon which
statistics are collected for summarization. This subroutine cannot be issued from a
PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

124 Monitoring Guide and Reference

 PtpeArchDisableStats

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the command, but an error occurred in reading the
reply list response from the central coordinator Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the command. reply contains the list of all
systems involved in the command; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the command, and an error occurred in
reading the reply list response from the central
coordinator node.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
command. reply contains all systems involved in the
command, along with the reasons for the failure on
these systems. The application can determine the
cause of the error by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the command, and an
error occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

 Chapter 8. The PTPE API Subroutines 125

 PtpeArchDisableStats

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_INV_STATLIST One or more systems in the targets list does not have
a valid statistics list assigned to it.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeArchDisableStats(sblock, targets,
 &reply);
if (rc != PTPE_SUCCESS) {
printf("Not all systems succeeded.\n");

}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeArchStartHosts” on page 156

� “PtpeArchStartAllHosts” on page 152

� “PtpeArchEnableStats” on page 133

126 Monitoring Guide and Reference

 PtpeArchDisableStats

� “PtpeArchEnableAllStats” on page 128

� “PtpeArchDisableStats” on page 123

� “PtpeArchDisableAllStats” on page 118

� “PtpeQueryAvailStats” on page 286

� “PtpeArchQueryStats” on page 147

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

� “PtpeGetStatResult” on page 254

 Chapter 8. The PTPE API Subroutines 127

 PtpeArchEnableAllStats

 PtpeArchEnableAllStats

 Purpose
Makes all statistics available for archiving on one or more systems in the
Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeArchEnableAllStats(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should not have statistics lists assigned to them.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request.

 Description
PtpeArchEnableAllStats instructs one or more systems in the Performance
Toolbox Parallel Extensions to make all the statistics that the system can possibly
supply available for recording to the performance information archive. The
subroutine is similar to the PtpeArchEnableStats subroutine, except the subroutine
activates all statistics instead of a set of statistics that the application selects.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The application must also construct a host list for
the command, containing an entry for each system that the application needs to
instruct. This list is then provided in the targets parameter.

When PtpeArchEnableAllStats is executed, the subroutine relays the command,
along with the host list of systems involved, to the monitoring hierarchy's central
coordinator node. The central coordinator node determines which nodes are data
managers for the systems in the targets list, and forwards the command to only
those data manager nodes that manage systems in the host list. The data manager

128 Monitoring Guide and Reference

 PtpeArchEnableAllStats

nodes then relay the command to those systems in their reporting groups that have
been listed in the targets list.

Each system in the targets list makes all statistics known to that system available
for recording to the performance information archive. The system then indicates its
success or failure in the effort to its data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The system's success or failure
reply is placed in the partial host list. This list is then relayed to the central
coordinator node, who constructs a complete host list. The complete host list is
transmitted back to the PtpeArchEnableAllStats subroutine, which provides it to
the application in the reply parameter.

PtpeArchEnableAllStats will provide an indication of the overall success or failure
of the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the command.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the command.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the command.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system.

Making statistics available or unavailable for archiving has no impact upon which
statistics are collected for summarization. This subroutine cannot be issued from a
PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the command, but an error occurred in reading the
reply list response from the central coordinator Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the command. reply contains the list of all
systems involved in the command; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the command, and an error occurred in
reading the reply list response from the central
coordinator node.

 Chapter 8. The PTPE API Subroutines 129

 PtpeArchEnableAllStats

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
command. reply contains all systems involved in the
command, along with the reasons for the failure on
these systems. The application can determine the
cause of the error by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the command, and an
error occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277)

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99)

130 Monitoring Guide and Reference

 PtpeArchEnableAllStats

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeArchEnableAllStats(sblock, targets,
 &reply);
if (rc != PTPE_SUCCESS) {
printf("Not all systems succeded.\n");

}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeArchStartHosts” on page 156

� “PtpeArchStartAllHosts” on page 152

� “PtpeArchEnableStats” on page 133

� “PtpeArchEnableAllStats” on page 128

� “PtpeArchDisableStats” on page 123

� “PtpeArchDisableAllStats” on page 118

� “PtpeQueryAvailStats” on page 286

� “PtpeArchQueryStats” on page 147

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

 Chapter 8. The PTPE API Subroutines 131

 PtpeArchEnableAllStats

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

� “PtpeGetStatResult” on page 254

132 Monitoring Guide and Reference

 PtpeArchEnableStats

 PtpeArchEnableStats

 Purpose
Makes one or more statistics available for archiving on one or more systems in the
Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeArchEnableStats(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should have statistics lists assigned to them (see “PtpeAssignStatsToHost” on
page 170).

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request. Each entry will also have a statistics list assigned to it, containing an
entry for each statistic passed to the system, with a result code to indicate if
the statistic was successfully activated.

 Description
PtpeArchEnableStats instructs one or more systems in the Performance Toolbox
Parallel Extensions to make a set of statistics available for recording to the
performance information archive.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The application must also construct a host list for
the command, containing an entry for each system that the application needs to
query. This list is then provided in the targets parameter. Each entry in the targets
list should also have a statistics list assigned to it (see “PtpeAssignStatsToHost” on
page 170), containing the list of statistics to be made available.

When PtpeArchEnableStats is executed, the subroutine relays the command,
along with the host list of systems involved, to the monitoring hierarchy's central

 Chapter 8. The PTPE API Subroutines 133

 PtpeArchEnableStats

coordinator node. The central coordinator node determines which nodes are data
managers for the systems in the targets list, and forwards the command to only
those data manager nodes that manage systems in the host list. The data manager
nodes then relay the command to those systems in their reporting groups that have
been listed in the targets list.

Each system in the targets list extracts the list of statistics for their respective entry
from the command message, and searches for these statistics. Any of the statistics
in this list that also exist on the system are made available for recording to the
archive. The PTPE daemons on the system create a reply statistics list, containing
all statistics passed to this system in the command. The daemons will set the result
codes in each statistics list entry to one of the following values:

PTPE_SUCCESS The statistic was made available for archiving.

PTPE_STAT_NOT_FOUND The statistic could not be found on the system.

The list of statistics is then relayed to the data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The statistics lists received
from each node are assigned to their respective host list entries in the data
manager node's partial host list. This list is then relayed to the central coordinator
node, who constructs a complete host list. The complete host list is transmitted
back to the PtpeArchEnableStats subroutine, which provides it to the application
in the reply parameter.

PtpeArchEnableStats will provide an indication of the overall success or failure of
the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the command.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the command.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the command.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system. To
check for failures caused by missing statistics, extract the statistics list for each
entry by using the PtpeGetHostStatList subroutine, and scan the list using the
statistics list scanning subroutines.

Making statistics available or unavailable for archiving has no impact upon which
statistics are collected for summarization. This subroutine cannot be issued from a
PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

134 Monitoring Guide and Reference

 PtpeArchEnableStats

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the command, but an error occurred in reading the
reply list response from the central coordinator Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the command. reply contains the list of all
systems involved in the command; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the command, and an error occurred in
reading the reply list response from the central
coordinator node.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
command. reply contains all systems involved in the
command, along with the reasons for the failure on
these systems. The application can determine the
cause of the error by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the command, and an
error occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

 Chapter 8. The PTPE API Subroutines 135

 PtpeArchEnableStats

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_INV_STATLIST One or more systems in the targets list does not have
a valid statistics list assigned to it.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeArchEnableStats(sblock, targets,
 &reply);
if (rc != PTPE_SUCCESS) {
printf("Not all systems succeeded.\n");

}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeColStart” on page 215

� “PtpeArchStartHosts” on page 156

� “PtpeArchStartAllHosts” on page 152

136 Monitoring Guide and Reference

 PtpeArchEnableStats

� “PtpeArchEnableStats” on page 133

� “PtpeArchEnableAllStats” on page 128

� “PtpeArchDisableStats” on page 123

� “PtpeArchDisableAllStats” on page 118

� “PtpeQueryAvailStats” on page 286

� “PtpeArchQueryStats” on page 147

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

� “PtpeGetStatResult” on page 254

 Chapter 8. The PTPE API Subroutines 137

 PtpeArchGetStats

 PtpeArchGetStats

 Purpose
Retrieves recorded values for a set of statistics on one or more systems in the
Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeArchGetStats(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should have statistics lists assigned to them (see “PtpeAssignStatsToHost” on
page 170).

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request. Each entry will also have a statistics list assigned to it, containing an
entry for each statistic passed to the system, either containing the statistics
current value or a result code indicating why the statistic could not be retrieved.

 Description
PtpeArchGetStats retrieves a set of statistics from the performance information
archives on one or more systems in the Performance Toolbox Parallel Extension
monitoring hierarchy.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The application must also construct a host list for
the command, containing an entry for each system that the application needs to
query. This list is then provided in the targets parameter

Each entry in the targets list should also have a statistics list assigned to it (see
“PtpeAssignStatsToHost” on page 170), containing the list of statistics to be
retrieved. Each statistic entry should have its timestamp set with the

138 Monitoring Guide and Reference

 PtpeArchGetStats

PtpeSetStatTime subroutine, to indicate which observation for the statistic should
be obtained from the performance information archive.

This subroutine does not require performance information collection or archiving to
be currently active in the monitoring hierarchy. The only requirement is that a
performance information archive file exist on all systems in the targets list.

When PtpeArchGetStats is executed, the subroutine relays the command, along
with the host list of systems involved, to the monitoring hierarchy's central
coordinator node. The central coordinator node determines which nodes are
managers for the systems in the targets list, and forwards the command to only
those data manager nodes that manage systems in the host list. The data manager
nodes then relay the command to those systems in their reporting groups that have
been listed in the targets list.

Each system in the targets list extracts the list of statistics for their respective entry
from the command message, and searches for these statistics in the archive. The
method used to locate a statistic in the archive depends on the setting of the
statistic's timestamp:

PTPE_EARLIEST The first observance for the statistic is found, and the
value of the statistic in that observance is retrieved.

PTPE_LATEST The last observance of the statistic is found, and the
value of the statistic in that observance is retrieved.

PTPE_MATCH The date and time supplied by the application is used
to locate the observance in the archive. The
observance closest to the data and time specified by
the application (without exceeding the data and time
specified by the application) is found, and the value of
the statistic in that observance is retrieved The
daemons will set the value field for each statistic that
was located, and will also set the result codes in each
statistics list entry to one of the following values:

PTPE_SUCCESS The statistic was located in the archive.

PTPE_TIME_APPROX An exact match for the data and time could not be
found in the archive, so the closest entry was
substituted in its place.

PTPE_STAT_NOT_FOUND The statistic could not be found in the archive. The list
of statistics is then relayed to the data manager node.

Data manager nodes construct partial host lists, with
an entry for each system in its reporting group that
was targeted for the command. The statistics lists
received from each node are assigned to their
respective host list entries in the data manager node's
partial host list. This list is then relayed to the central
coordinator node, who constructs a complete host list.
The complete host list is transmitted back to the
PtpeArchGetStats subroutine, which provides it to the
application in the reply parameter.

 Chapter 8. The PTPE API Subroutines 139

 PtpeArchGetStats

PtpeArchGetStats will provide an indication of the
overall success or failure of the query in the return
code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the query.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the query.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the query.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system. To
check for failures caused by missing statistics, extract the statistics list for each
entry by using the PtpeGetHostStatList subroutine, and scan the list using the
statistics list scanning subroutines.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the query, but an error occurred in reading the reply
list response from the central coordinator Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the query. The list reply points to contains all
systems involved in the query; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the query, and an error occurred in reading
the reply list response from the central coordinator
node.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
query. reply contains all systems involved in the query,
along with the reasons for the failure on these
systems. The application can determine the cause of
the error by performing the PtpeGetHostResult
subroutine on all systems in the reply list.

140 Monitoring Guide and Reference

 PtpeArchGetStats

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the query, and an error
occurred in reading the reply list from the central
coordinator node.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_INV_STATLIST One or more systems in the targets list does not have
a valid statistics list assigned to it.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277)

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99)

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Chapter 8. The PTPE API Subroutines 141

 PtpeArchGetStats

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeArchGetStats(sblock, targets,
 &reply);
if (rc != PTPE_SUCCESS) {
printf("Not all system succeeded.\n");

}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeArchStartHosts” on page 156

� “PtpeArchStartAllHosts” on page 152

� “PtpeArchEnableStats” on page 133

� “PtpeArchDisableStats” on page 123

� “PtpeArchDisableAllStats” on page 118

� “PtpeQueryAvailStats” on page 286

� “PtpeArchQueryStats” on page 147

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

142 Monitoring Guide and Reference

 PtpeArchGetStats

� “PtpeGetStatResult” on page 254

 Chapter 8. The PTPE API Subroutines 143

 PtpeArchQueryState

 PtpeArchQueryState

 Purpose
Determines the current status of performance information archiving in the
Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeArchQueryState(sblock)
session_ptr_t sblock;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

 Description
PtpeArchQueryStates reports to the calling application whether or not
performance information archiving is active in the monitoring hierarchy.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The inquiry does not use a host list.

The status of collection and summarization is reflected in the return code, which will
be one of three status values:

PTPE_ARCH_ACTIVE Performance information collection and summarization
is currently active on at least one system in the
monitoring hierarchy.

PTPE_ARCH_OFF Performance information collection and summarization
is not active on any system in the monitoring
hierarchy.

On rare occasions, such as when the ptpectrl -r command or the
PtpeArchStartHosts subroutine are interrupted, some systems may not have been
able to fully abort the archive startup attempt. This status is indicated by the
following return code:

PTPE_COL_ERROR Cannot determine status of performance information
collection and summarization.

While this status persists, other PTPE commands and API subroutine may not
function properly. When this status is returned by this subroutine, the application
should execute the PtpeArchStopHosts or PtpeColStop subroutines in an attempt
to clear this error state.

144 Monitoring Guide and Reference

 PtpeArchQueryState

 Return Codes
Upon successful completion, a return code of PTPE_ARCH_ACTIVE or
PTPE_ARCH_OFF is returned to the caller. If an error occurred, one of the
following return codes is provided:

PTPE_INV_PTR sblock has a NULL value.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query.

PTPE_MEMORY An internal error occurred.

PTPE_NO_LOCK_OBJ The PTPE data classes do not exist in the System
Data Repository (see “ptpeconf” on page 86).

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t mgrs, nodes;
int rc;

/\ set up session \/
rc = PtpeArchQueryState(sblock);
switch (rc) {
case PTPE_ARCH_ACTIVE:

printf("Archiving is active\n");
 break;
case PTPE_ARCH_OFF:

printf("Archiving is inactive\n");
 break;
case PTPE_COL_ERROR:

printf("Cannot determine status -");
printf("attempting to reset status.\n");
mgrs = (host_list_t) NULL;
nodes = (host_list_t) NULL;
rc = PtpeColStop(sblock, &mgrs, &nodes);
/\ check results from PtpeColStop \/

 break;
default:
/\ handle other error \/
}

 Chapter 8. The PTPE API Subroutines 145

 PtpeArchQueryState

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeArchStartHosts” on page 156

� “PtpeArchStartAllHosts” on page 152

� “PtpeArchStopHosts” on page 165

� “PtpeArchStopAllHosts” on page 161

� “PtpeColStart” on page 215

� “PtpeColStop” on page 220

� “ptpectrl” on page 88

146 Monitoring Guide and Reference

 PtpeArchQueryStats

 PtpeArchQueryStats

 Purpose
Retrieves the list of statistics being recorded to the performance information archive
on one or more systems in the monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>
int PtpeArchQueryStats(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. This list should not
contain any systems that have statistics assigned to them.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. A statistics list will be assigned to
those systems that are recording performance information, and will contain an
entry for each statistic being archived on that system.

 Description
PtpeArchQueryStats asks the Performance Toolbox Parallel Extensions to provide
the list of statistics being recorded to the performance information archive by one or
more systems in the monitoring hierarchy.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The application must also construct a host list for
the query, containing an entry for each system that the application needs to query.
This list is then provided in the targets parameter.

When PtpeArchQueryStats is executed, the subroutine relays the query
command, along with the host list of systems to query, to the monitoring hierarchy's
central coordinator node. The central coordinator node determines which nodes are
data managers for the systems in the targets list, and forwards the query to only
those data manager nodes that manage systems in the query list. The data
manager nodes then relay the query to those systems in their reporting groups that
have been listed in the targets list.

 Chapter 8. The PTPE API Subroutines 147

 PtpeArchQueryStats

Each system in the targets list constructs a statistics list, containing one entry for
each statistics that system is currently making available to Performance Toolbox
Parallel Extensions for archiving. On systems that also double as data manager
nodes, this list will also include any summary statistics that the node prepares. This
list is then relayed back to the data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the query. The statistics lists received from
each node are assigned to their respective host list entries in the data manager
node's partial host list. This list is then relayed to the central coordinator node, who
constructs a complete host list. The complete host list is transmitted back to the
PtpeArchQueryStats subroutine, which provides it to the application in the reply
parameter.

PtpeArchQueryStats will provide an indication of the overall success or failure of
the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the query.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the query.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the query.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system. To
determine what statistics are being archived on those systems that successfully
responded to the query, extract the statistics list for each entry by using the
PtpeGetHostStatList subroutine, and scan the list using the statistics list scanning
subroutines.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the query, but an error occurred in reading the reply
list response from the central coordinator Node. The
application should treat this as an error, since the
contents of the reply list cannot be guaranteed to be
accurate.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the query. The list reply points to contains all
systems involved in the query; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the query, and an error occurred in reading
the reply list response from the central coordinator
node. The application should treat this as an error,

148 Monitoring Guide and Reference

 PtpeArchQueryStats

since the contents of the reply list cannot be
guaranteed to be accurate.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
query. reply contains all systems involved in the query,
along with the reasons for the failure on these
systems. The application can determine the cause of
the error by performing the PtpeGetHostResult
subroutine on all systems in the reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the query, and an error
occurred in reading the reply list from the central
coordinator node. the application should treat this as
an error, since the contents of the reply list cannot be
guaranteed.

PTPE_STATE Performance information collection and summarization
is not currently active, or archiving is not currently
active, in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the query to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the query from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_TIMEOUT A reply to the query was not received from the central
coordinator node in the time allowed. reply is not
modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277)

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99)

 Chapter 8. The PTPE API Subroutines 149

 PtpeArchQueryStats

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeArchQueryStats(sblock,targets,&reply);
if (rc != PTPE_SUCCESS) {

printf("Not all systems succeeded.\n");
}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeColStart” on page 215

� “PtpeArchStartHosts” on page 156

� “PtpeArchStartAllHosts” on page 152

� “PtpeArchEnableStats” on page 133

� “PtpeArchEnableAllStats” on page 128

� “PtpeArchDisableStats” on page 123

� “PtpeArchDisableAllStats” on page 118

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

150 Monitoring Guide and Reference

 PtpeArchQueryStats

� “PtpeAddStatToList” on page 116

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

� “PtpeGetStatResult” on page 254

 Chapter 8. The PTPE API Subroutines 151

 PtpeArchStartAllHosts

 PtpeArchStartAllHosts

 Purpose
Starts recording of performance information on all systems in the Performance
Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeArchStartAllHosts(sblock, reply)
session_ptr_t sblock;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request.

 Description
PtpeArchStartAllHosts instructs all systems in the Performance Toolbox Parallel
Extensions to start recording of performance information to the archive. Statistics
that have been previously selected for recoding by a PtpeArchEnableStats or
PtpeArchEnableAllStats subroutine will be recorded to the performance
information archive.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. Performance information collection and
summarization must also be active in the monitoring hierarchy (see
“PtpeColQueryStats” on page 206 or “ptpectrl” on page 88). The command is
similar to the PtpeArchStartHosts subroutine, except that the command is
automatically relayed to all systems in the monitoring hierarchy.

When PtpeArchStartAllHosts is executed, the subroutine relays the command to
the monitoring hierarchy's central coordinator node. The central coordinator Node
forwards the command to all data manager nodes in the monitoring hierarchy,
which in turn relay the command to all systems in their reporting groups.

The Performance Toolbox Parallel Extensions daemons on each system will begin
recording any performance information that has been marked for archiving. Initially,
no statistics are marked for recoding to the archive; the application must specify

152 Monitoring Guide and Reference

 PtpeArchStartAllHosts

which statistics are to be recorded by issuing a call to the PtpeArchEnableStats or
the PtpeArchEnableAllStats subroutine, either before or after the call to
PtpeArchStartHosts. If a daemon cannot begin recording information to its
archive, it will report an error back to the managing system.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group. The system's success or failure reply is placed in the partial host
list. This list is then relayed to the central coordinator node, who constructs a
complete host list. The complete host list is transmitted back to the
PtpeArchStartAllHosts subroutine, which provides it to the application in the reply
parameter.

PtpeArchStartAllHosts will provide an indication of the overall success or failure of
the command in the return code:

PTPE_SUCCESS All systems in the monitoring hierarchy successfully
responded to the command.

PTPE_LIMITED Some systems in the monitoring hierarchy were
unable to respond successfully to the command.

PTPE_API_FAILED All systems in the monitoring hierarchy were unable to
respond successfully to the command.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system.
This subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the monitoring hierarchy responded
successfully to the command, but an error occurred in
reading the reply list response from the central
coordinator node.

PTPE_LIMITED Some of the systems in the monitoring hierarchy were
unable to reply to the command. reply contains the list
of all systems involved in the command; the
application can determine which systems failed by
performing the PtpeGetHostResult subroutine on all
systems in the reply list.

PTPE_LIMITED_BADR Some systems in the monitoring hierarchy were
unable to respond to the command, and an error
occurred in reading the reply list response from the
central coordinator node.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the monitoring hierarchy failed to respond
to the command. reply contains all systems involved in
the command, along with the reasons for the failure on
these systems. The application can determine the
cause of the error by performing the

 Chapter 8. The PTPE API Subroutines 153

 PtpeArchStartAllHosts

PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the command, and an
error occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

154 Monitoring Guide and Reference

 PtpeArchStartAllHosts

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeArchStartAllHosts(sblock, &reply);
switch (rc) {
case PTPE_STATE:

printf("Have to start collection first\n");
 break;
case PTPE_SUCCESS:
 break;
default:

/\ loop through "reply" & check results \/
/\ on each system w/ PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeArchStartHosts” on page 156

� “PtpeArchStopHosts” on page 165

� “PtpeArchStopAllHosts” on page 161

� “PtpeArchEnableStats” on page 133

� “PtpeArchEnableAllStats” on page 128

� “PtpeArchDisableStats” on page 123

� “PtpeQueryAvailStats” on page 286

� “PtpeArchQueryStats” on page 147

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

 Chapter 8. The PTPE API Subroutines 155

 PtpeArchStartHosts

 PtpeArchStartHosts

 Purpose
Starts recording of performance information on one or more systems in the
Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeArchStartHosts(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should not have statistics lists assigned to them.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request.

 Description
PtpeArchStartHosts instructs one or more systems in the Performance Toolbox
Parallel Extensions to start recording of performance information to the archive.
Statistics that have been previously selected for recoding by a
PtpeArchEnableStats or PtpeArchEnableAllStats subroutine will be recorded to
the performance information archive.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. Performance information collection and
summarization must also be active in the monitoring hierarchy (see “PtpeColStart”
on page 215 or “ptpectrl” on page 88). The application must also construct a host
list for the command, containing an entry for each system that the application will
instruct to begin recording. This list is provided in the targets parameter.

When PtpeArchStartHosts is executed, the subroutine relays the command, along
with the host list of systems involved, to the monitoring hierarchy's central
coordinator node. The central coordinator node determines which nodes are data

156 Monitoring Guide and Reference

 PtpeArchStartHosts

managers for the systems in the targets list, and forwards the command to only
those data manager nodes that manage systems in the host list. The data manager
nodes then relay the command to those systems in their reporting groups that have
been listed in the targets list.

The Performance Toolbox Parallel Extensions daemons on the systems in the
targets list will begin recording any performance information that has been marked
for archiving. Initially, no statistics are marked for recoding to the archive; the
application must specify which statistics are to be recorded by issuing a call to the
PtpeArchEnableStats or the PtpeArchEnableAllStats subroutine, either before or
after the call to PtpeArchStartHosts. If a daemon cannot begin recording
information to its archive, it will report an error back to the managing system.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The system's success or failure
reply is placed in the partial host list. This list is then relayed to the central
coordinator node, who constructs a complete host list. The complete host list is
transmitted back to the PtpeArchStartHosts subroutine, which provides it to the
application in the reply parameter.

PtpeArchStartHosts will provide an indication of the overall success or failure of
the command in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the command.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the command.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the command.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system.
This subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the command, but an error occurred in reading the
reply list response from the central coordinator Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the command. reply contains the list of all
systems involved in the command; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the command, and an error occurred in
reading the reply list response from the central
coordinator node.

 Chapter 8. The PTPE API Subroutines 157

 PtpeArchStartHosts

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
command. reply contains all systems involved in the
command, along with the reasons for the failure on
these systems. The application can determine the
cause of the error by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the command, and an
error occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277)

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

158 Monitoring Guide and Reference

 PtpeArchStartHosts

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeArchStartHosts(sblock, targets,
 &reply);
switch (rc) {
case PTPE_STATE:

printf("Have to start collection first\n");
 break;
case PTPE_SUCCESS:
 break;
default:

/\ loop through "reply" & check results \/
/\ on each system w/ PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeArchStartAllHosts” on page 152

� “PtpeArchStopHosts” on page 165

� “PtpeArchStopAllHosts” on page 161

� “PtpeArchEnableStats” on page 133

� “PtpeArchEnableAllStats” on page 128

� “PtpeArchDisableStats” on page 123

� “PtpeQueryAvailStats” on page 286

� “PtpeArchQueryStats” on page 147

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

 Chapter 8. The PTPE API Subroutines 159

 PtpeArchStartHosts

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

160 Monitoring Guide and Reference

 PtpeArchStopAllHosts

 PtpeArchStopAllHosts

 Purpose
Ends recording of performance information on all systems in the Performance
Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeArchStopAllHosts(sblock, reply)
session_ptr_t sblock;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request.

 Description
PtpeArchStopAllHosts instructs all systems in the Performance Toolbox Parallel
Extensions to end recording of performance information to the archive. Recording
to the performance information archive is halted, but statistics previously selected
for recording by a PtpeArchEnableStats or PtpeArchEnableAllStats remain
selected.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. Performance information collection and
summarization must also be active in the monitoring hierarchy (see “PtpeColStart”
on page 215 or “ptpectrl” on page 88). This command is similar to the
PtpeArchStopHosts subroutine, except that the command is automatically relayed
to all systems in the monitoring hierarchy.

When PtpeArchStopAllHosts is executed, the subroutine relays the command to
the monitoring hierarchy's central coordinator node. The central coordinator node
forwards the command to all data manager nodes in the monitoring hierarchy,
which in turn relay the command to all systems in their reporting groups.

The Performance Toolbox Parallel Extensions daemons on each system will cease
recording any performance information that has been marked for archiving. While
this will stop any further updates to the performance information archive for this

 Chapter 8. The PTPE API Subroutines 161

 PtpeArchStopAllHosts

system, it will not clear any statistics selected by a previous PtpeArchEnableStats
or PtpeArchEnableAllStats subroutine. This permits an application to pause
recording of performance information, then resume later without requiring the
application to re-select the statistics to be recorded. The system reports its success
or failure in ending performance information recording to its managing system.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group. The system's success or failure reply is placed in the partial host
list. This list is then relayed to the central coordinator node, who constructs a
complete host list. The complete host list is transmitted back to the
PtpeArchStopAllHosts subroutine, which provides it to the application in the reply
parameter.

PtpeArchStopAllHosts will provide an indication of the overall success or failure of
the command in the return code:

PTPE_SUCCESS All systems in the monitoring hierarchy successfully
responded to the command.

PTPE_LIMITED Some systems in the monitoring hierarchy were
unable to respond successfully to the command.

PTPE_API_FAILED All systems in the monitoring hierarchy were unable to
respond successfully to the command.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system.
This subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the monitoring hierarchy responded
successfully to the command, but an error occurred in
reading the reply list response from the central
coordinator node.

PTPE_LIMITED Some of the systems in the monitoring hierarchy were
unable to reply to the command. reply contains the list
of all systems involved in the command; the
application can determine which systems failed by
performing the PtpeGetHostResult subroutine on all
systems in the reply list.

PTPE_LIMITED_BADR Some systems in the monitoring hierarchy were
unable to respond to the command, and an error
occurred in reading the reply list response from the
central coordinator node.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the monitoring hierarchy failed to respond
to the command. reply contains all systems involved in
the command, along with the reasons for the failure on
these systems. The application can determine the

162 Monitoring Guide and Reference

 PtpeArchStopAllHosts

cause of the error by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the command, and an
error occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99)

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Chapter 8. The PTPE API Subroutines 163

 PtpeArchStopAllHosts

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeArchStopAllHosts(sblock, &reply);
switch (rc) {
case PTPE_STATE:

printf("Collection or archiving not ");
 printf("currently active.\n");
 break;
case PTPE_SUCCESS:
 break;
default:

/\ loop through "reply" & check results \/
/\ on each system w/ PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeArchStartHosts” on page 156

� “PtpeArchStartAllHosts” on page 152

� “PtpeArchStopAllHosts” on page 161

� “PtpeArchEnableStats” on page 133

� “PtpeArchEnableAllStats” on page 128

� “PtpeArchDisableStats” on page 123

� “PtpeQueryAvailStats” on page 286

� “PtpeArchQueryStats” on page 147

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

164 Monitoring Guide and Reference

 PtpeArchStopHosts

 PtpeArchStopHosts

 Purpose
Ends recording of performance information on one or more systems in the
Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeArchStopHosts(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should not have statistics lists assigned to them.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request.

 Description
PtpeArchStopHosts instructs one or more systems in the Performance Toolbox
Parallel Extensions to end recording of performance information to the archive.
Recording to the performance information archive is halted, but statistics previously
selected for recording by a PtpeArchEnableStats or PtpeArchEnableAllStats
remain selected.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. Performance information collection and
summarization must also be active in the monitoring hierarchy (see “PtpeColStart”
on page 215 or “ptpectrl” on page 88). The application must also construct a host
list for the command, containing an entry for each system that the application will
instruct to cease recording. This list is provided in the targets parameter.

When PtpeArchStopHosts is executed, the subroutine relays the command, along
with the host list of systems involved, to the monitoring hierarchy's central
coordinator node. The central coordinator node determines which nodes are data

 Chapter 8. The PTPE API Subroutines 165

 PtpeArchStopHosts

managers for the systems in the targets list, and forwards the command to only
those data manager nodes that manage systems in the host list. The data manager
nodes then relay the command to those systems in their reporting groups that have
been listed in the targets list.

The Performance Toolbox Parallel Extensions daemons on the systems in the
targets list will cease recording any performance information that has been marked
for archiving. While this will stop any further updates to the performance information
archive for this system, it will not clear any statistics selected by a previous
PtpeArchEnableStats or PtpeArchEnableAllStats subroutine. This permits an
application to pause recording of performance information, then resume later
without requiring the application to re-select the statistics to be recorded. The
system reports its success or failure in ending performance information recording to
its data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The system's success or failure
reply is placed in the partial host list. This list is then relayed to the central
coordinator node, who constructs a complete host list. The complete host list is
transmitted back to the PtpeArchStopHosts subroutine, which provides it to the
application in the reply parameter.

PtpeArchStopHosts will provide an indication of the overall success or failure of
the command in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the command.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the command.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the command.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system.
This subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the command, but an error occurred in reading the
reply list response from the central coordinator Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the command. reply contains the list of all
systems involved in the command; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

166 Monitoring Guide and Reference

 PtpeArchStopHosts

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the command, and an error occurred in
reading the reply list response from the central
coordinator node.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
command. reply contains all systems involved in the
command, along with the reasons for the failure on
these systems. The application can determine the
cause of the error by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the command, and an
error occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active, or performance information
archiving is not currently active in the monitoring
heirarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

 Chapter 8. The PTPE API Subroutines 167

 PtpeArchStopHosts

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277)

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeArchStopHosts(sblock, targets,
 &reply);
switch (rc) {
case PTPE_STATE:

printf("Collection or archiving not ");
 printf("active\n");
 break;
case PTPE_SUCCESS:
 break;
default:

/\ loop through "reply" & check results \/
/\ on each system w/ PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeArchStartHosts” on page 156

� “PtpeArchStartAllHosts” on page 152

� “PtpeArchStopAllHosts” on page 161

� “PtpeArchEnableStats” on page 133

� “PtpeArchEnableAllStats” on page 128

� “PtpeArchDisableStats” on page 123

� “PtpeQueryAvailStats” on page 286

168 Monitoring Guide and Reference

 PtpeArchStopHosts

� “PtpeArchQueryStats” on page 147

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

 Chapter 8. The PTPE API Subroutines 169

 PtpeAssignStatsToHost

 PtpeAssignStatsToHost

 Purpose
Assigns an existing statistics list to the currently referenced host in a host list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeAssignStatsToHost(sanchor, hanchor)
stat_list_t sanchor;
host_list_t hanchor;

 Parameters
sanchor

The anchor point of an existing non-empty statistics list.

hanchor
The anchor point of a non-empty host list.

 Description
PtpeAssignStatsToHost associates the list of statistics contained in the sanchor
statistics list with the “current” entry in the host list anchored at hanchor. In
subsequent API subroutines, this list of statistics will be used during the operation
on the system whose information is contained in the “current” entry in hanchor. This
list of statistics will continue to be associated with the system until the statistics list
is removed with the PtpeRemoveStatsFromHost subroutine.

An application builds a statistics list that contains the list of statistics that the
program wishes to retrieve from one or more systems in the Performance Toolbox
Parallel Extensions monitoring hierarchy. In order to retrieve these statistics, a host
list must be constructed to contain the list of systems involved in the data retrieval
process. But to inform the PTPE API subroutines what specific performance
statistics need to be retrieved from which systems, the application needs to assign
the list of statistics to the systems in the monitoring hierarchy using the
PtpeAssignStatsToHost subroutine.

A copy of the sanchor statistics list is made by this subroutine, and the copy is
assigned to the “current” entry in the hanchor list. This permits the application to
assign the same set of statistics to multiple systems in the hanchor host list. Also,
since a copy is made and the copy is assigned only to the “current” hanchor entry,
an application can modify the statistics list and assign a different set of statistics to
other systems in the hanchor list. By assigning differing statistics lists to different
entries in hanchor, an API subroutine such as PtpeArchGetStats can retrieve
different statistics from multiple systems in the same call.

An error results if an uninitialized or empty host list is provided to this subroutine, or
if an uninitialized statistics list is used.

170 Monitoring Guide and Reference

 PtpeAssignStatsToHost

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_INV_HOSTLIST hanchor has a NULL value.

PTPE_EMPTY Either hanchor or sanchor references an empty list.

PTPE_NO_MEMORY The API subroutine could not allocate enough memory
to make a copy of the sanchor list.

PTPE_LIST_END An internal error occurred - the end of the statistics list
was prematurely encountered.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

PTPE_INV_STATNAME An entry in the sanchor statistics list has been
corrupted.

PTPE_MEMORY An internal memory usage error occurred.

 Examples
#include <spdm.h>

host_list_t hanchor;
stat_list_t sanchor;
int rc;

rc = PtpeFindHost("spnodeð5.ibm.com",
 hanchor);
rc = PtpeAssignStatsToHost(sanchor, hanchor);
if (rc != PTPE_SUCCESS) {

/\ handle error condition \/
}

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeInitStatList” on page 267

� “PtpeRemoveStatsFromHost” on page 298

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeAddHostToList” on page 114

� “PtpeDelHostFromList” on page 225

 Chapter 8. The PTPE API Subroutines 171

 PtpeChangeHostRates

 PtpeChangeHostRates

 Purpose
Sets the current time intervals used by the monitoring hierarchy for sampling and
recording of performance information.

 Library
libptpe.a

 Syntax
#include <spdm.h>
int PtpeChangeHostRates(sblock, srate, arate osrate, oarate)
session_ptr_t sblock;
int \srate;
int \arate;
int \osrate;
int \oarate;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

srate
Contains the new time interval between samplings of performance data for the
monitoring hierarchy. This value is expected to be in seconds. A value of 0
(zero) in this parameter instructs the subroutine to retain the current sampling
rate. arate and srate cannot both be 0.

arate
Contains the new time interval between recordings of performance data to the
archive. This value is expected to be in seconds, and should be an even
multiple of the srate parameter, if one is provided. A value of 0 (zero) in this
parameter instructs the subroutine to retain the current archiving rate. arate and
srate cannot both be 0.

osrate
A pointer to a memory location where the subroutine stores the previous
performance data sampling rate.

oarate
A pointer to a memory location where the subroutine stores the previous
performance data archiving rate.

 Description
PtpeChangeHostRates sets the current time intervals between performance
information samples and recordings in the monitoring hierarchy, after collection and
archiving have been started. Both intervals are expressed in units of seconds.

Use this routine to set either one or both of these intervals. When specifying both
intervals, the recording interval should always be an even multiple of the sampling
rate. If it is not, the subroutine will truncate the recording rate to the last whole

172 Monitoring Guide and Reference

 PtpeChangeHostRates

multiple of the sampling interval. When setting only one of the intervals, the other
should be specified as a value of 0 (zero).

The performance data sampling and recording intervals previously used by the
reporting hierarchy are returned at the locations indicated for the psrate and oarate
parameters.

All systems in the performance monitoring hierarchy use the same sampling and
recording rates.

This subroutine cannot be used in a PTPE read-only session.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_TIME_APPROX An exact match for the data and time could not be
found in the archive, so the closest entry was
substituted in its place.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277)

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99)

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_NO_LOCK_OBJ The PTPE data classes do not exist in the System
Data Repository (see “ptpeconf” on page 86).

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,

 Chapter 8. The PTPE API Subroutines 173

 PtpeChangeHostRates

or the System Data Repository might be experiencing
difficulties.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator. reply list not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the query from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the query. The list reply points to contains all
systems involved in the query; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the query, and an error occurred in reading
the reply list response from the central coordinator
node. The application should treat this as an error,
since the contents of the reply list cannot be
guaranteed to be accurate.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
query. reply contains all systems involved in the query,
along with the reasons for the failure on these
systems. The application can determine the cause of
the error by performing the PtpeGetHostResult
subroutine on all systems in the reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the query, and an error
occurred in reading the reply list from the central
coordinator node. the application should treat this as
an error, since the contents of the reply list cannot be
guaranteed.

 Examples

174 Monitoring Guide and Reference

 PtpeChangeHostRates

#include <spdm.h>

session_ptr_t sblock;
int srate, osrate;
int arate, oarate;
int rc;

/\ set up PTPE session and start collection earlier in the code \/

/\ set new data sampling and archiving rates \/
 srate=3ð; /\seconds\/
 arate=srate\4;
 rc PtpeChangeHostRates(sblock,srate,arate,&osrate,&oarate);

switch (rc) {
 case PTPE_SUCCESS:

printf("Sampling rate changed to %d seconds\n",srate);
printf("Archiving rate changed to %d seconds\n",arate);
printf("Could not obtain sampling and archiving rates\n");

 break;
 case PTPE_TIME_APPROX:

printf("Time values set, but archiving rate adjusted\n");
printf("Use PtpeQueryHostRates to get new rates\n");

 break;
 default:

printf("Could not set sampling and archiving rates\");
}

 Related Information
� “PtpeArchStartHosts” on page 156

� “PtpeArchStartAllHosts” on page 152

� “PtpeQueryHostRates” on page 291

� “PtpeColStart” on page 215

 Chapter 8. The PTPE API Subroutines 175

 PtpeCloseSession

 PtpeCloseSession

 Purpose
Relinquishes a session with the Performance Toolbox Parallel Extensions.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeCloseSession(sblock)
session_ptr_t \sblock;

 Parameters
sblock

A pointer to a session_ptr_t data type, which points to a session control
information block previously established by a PtpeOpenSession subroutine.
Upon successful completion of the subroutine, the session control block is
freed.

 Description
PtpeCloseSession relinquishes a session between the application and the
Performance Toolbox Parallel Extensions. By closing the session, the application
releases control over performance information collection, summarization, and
archiving in the PTPE monitoring hierarchy. The application also releases the ability
to obtain current or archived performance information from the systems in the
monitoring hierarchy.

When a session is established, PTPE grants sole control of the monitoring
hierarchy to the application for the duration of the session. This means that other
commands, such as ptpehier or ptpectrl , cannot modify the hierarchy structure, or
change the current status of performance information collection and archiving.
Other PTPE API applications are also restricted from controlling performance
information collection and archiving while the session is held. If multiple PTPE API
applications must execute in parallel, the applications should coordinate their use of
sessions, ensuring that one application releases the session for the other
application(s) to acquire. Applications must recognize that no other application will
be able to acquire a session while a session is held by another application, and
should be coded to handle this eventuality.

Releasing a session will not return the Performance Toolbox Parallel Extensions
monitoring hierarchy to the status it had prior to the PtpeOpenSession call. Any
actions taken by the application while the session was active remain in effect, until
reset or modified by another application. For example, if an application marked
specific statistics for archiving, these statistics remain marked after the session is
release with PtpeCloseSession.

A session cannot be established if another application holds a session, or if the
application attempts to acquire a session while either the ptpectrl or ptpehier
commands are executing. A session also cannot be established if the ptpeconf

176 Monitoring Guide and Reference

 PtpeCloseSession

command was never executed to create the necessary PTPE data classes in the
System Data Repository.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_NO_SESSION The application did not previously hold an active
session.

PTPE_INV_PTR sblock has a NULL value.

PTPE_MEMORY An internal error occurred.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
int rc;

rc = PtpeOpenSession(&sblock);
if (rc != PTPE_SUCCESS) {
/\ handle error condition \/
}

 Related Information
� “PtpeOpenSession” on page 277

� “ptpeconf” on page 86

� “ptpegroup” on page 97

� The AIX newgrp command

 Chapter 8. The PTPE API Subroutines 177

 PtpeColDisableAllStats

 PtpeColDisableAllStats

 Purpose
Makes all statistics unavailable for collection and summarization on one or more
systems in the Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeColEnableAllStats(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should not have statistics lists assigned to them.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request.

 Description
PtpeColEnableAllStats instructs one or more systems in the Performance Toolbox
Parallel Extensions to make all the statistics that the system can possibly supply
available for performance information collection and summarization. The subroutine
is similar to the PtpeColEnableStats subroutine, except the subroutine activates all
statistics instead of a set of statistics that the application selects. The application
must first establish a PTPE API session by using the PtpeOpenSession
subroutine. The application must also construct a host list for the command,
containing an entry for each system that the application needs to query. This list is
then provided in the targets parameter.

When PtpeColEnableAllStats is executed, the subroutine relays the command,
along with the host list of systems involved, to the monitoring hierarchy's central
coordinator node. The central coordinator node determines which nodes are data
managers for the systems in the targets list, and forwards the command to only
those data manager nodes that manage systems in the host list. The data manager

178 Monitoring Guide and Reference

 PtpeColDisableAllStats

nodes then relay the command to those systems in their reporting groups that have
been listed in the targets list.

Each system in the targets list makes all statistics known to that system available
for performance information collection and summarization. The system then
indicates its success or failure in the effort to its data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The system's success or failure
reply is placed in the partial host list. This list is then relayed to the central
coordinator node, who constructs a complete host list. The complete host list is
transmitted back to the PtpeColDisableAllStats subroutine, which provides it to the
application in the reply parameter.

PtpeColEnableAllStats will provide an indication of the overall success or failure of
the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the command.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the command.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the command.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system.

Making statistics available or unavailable for collection and summarization has no
impact upon which statistics are recorded to the performance information archive.
This subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the command, but an error occurred in reading the
reply list response from the central coordinator Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the command. reply contains the list of all
systems involved in the command; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the command, and an error occurred in
reading the reply list response from the central
coordinator node.

 Chapter 8. The PTPE API Subroutines 179

 PtpeColDisableAllStats

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
command. reply contains all systems involved in the
command, along with the reasons for the failure on
these systems. The application can determine the
cause of the error by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the command, and an
error occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

180 Monitoring Guide and Reference

 PtpeColDisableAllStats

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeColDisableAllStats(sblock, targets,
 &reply);
if (rc != PTPE_SUCCESS) {

printf("Not all systems succeeded.\n");
}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeColEnableStats” on page 193

� “PtpeColEnableAllStats” on page 188

� “PtpeColDisableStats” on page 183

� “PtpeColDisableAllStats” on page 178

� “PtpeQueryAvailStats” on page 286

� “PtpeColQueryStats” on page 206

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

 Chapter 8. The PTPE API Subroutines 181

 PtpeColDisableAllStats

� “PtpeAddStatToList” on page 116

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

� “PtpeGetStatResult” on page 254

182 Monitoring Guide and Reference

 PtpeColDisableStats

 PtpeColDisableStats

 Purpose
Makes one or more statistics unavailable for collection and summarization on one
or more systems in the Performance Toolbox Parallel Extensions monitoring
hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeColDisableStats(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should have statistics lists assigned to them (see “PtpeAssignStatsToHost” on
page 170).

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request. Each entry will also have a statistics list assigned to it, containing an
entry for each statistic passed to the system, with a result code to indicate if
the statistic was successfully deactivated.

 Description
PtpeColEnableStats instructs one or more systems in the Performance Toolbox
Parallel Extensions to make a set of statistics unavailable for performance
information collection and summarization. The application must first establish a
PTPE API session by using the PtpeOpenSession subroutine. The application
must also construct a host list for the command, containing an entry for each
system that the application needs to control. This list is then provided in the targets
parameter. Each entry in the targets list should also have a statistics list assigned
to it (see “PtpeAssignStatsToHost” on page 170), containing the list of statistics to
be made unavailable.

When PtpeColDisableStats is executed, the subroutine relays the command, along
with the host list of systems involved, to the monitoring hierarchy's central

 Chapter 8. The PTPE API Subroutines 183

 PtpeColDisableStats

coordinator node. The central coordinator node determines which nodes are data
managers for the systems in the targets list, and forwards the command to only
those data manager nodes that manage systems in the host list. The data manager
nodes then relay the command to those systems in their reporting groups that have
been listed in the targets list.

Each system in the targets list extracts the list of statistics for their respective entry
from the command message, and searches for these statistics. Any of the statistics
in this list that also exist on the system are made unavailable for collection. The
PTPE daemons on the system create a reply statistics list, containing all statistics
passed to this system in the command. The daemons will set the result codes in
each statistics list entry to one of the following values:

PTPE_SUCCESS The statistic was made unavailable for collection.

PTPE_STAT_NOT_FOUND The statistic could not be found on the system.

The list of statistics is then relayed to the data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The statistics lists received
from each node are assigned to their respective host list entries in the data
manager node's partial host list. This list is then relayed to the central coordinator
node, who constructs a complete host list. The complete host list is transmitted
back to the PtpeColDisableStats subroutine, which provides it to the application in
the reply parameter.

PtpeColDisableStats will provide an indication of the overall success or failure of
the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the command.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the command.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the command.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system. To
check for failures caused by missing statistics, extract the statistics list for each
entry by using the PtpeGetHostStatList subroutine, and scan the list using the
statistics list scanning subroutines.

Making statistics available or unavailable for collection and summarization has no
impact upon which statistics are recorded to the performance information archive.
This subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

184 Monitoring Guide and Reference

 PtpeColDisableStats

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the command, but an error occurred in reading the
reply list response from the central coordinator Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the command. reply contains the list of all
systems involved in the command; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the command, and an error occurred in
reading the reply list response from the central
coordinator node.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
command. reply contains all systems involved in the
command, along with the reasons for the failure on
these systems. The application can determine the
cause of the error by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the command, and an
error occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

 Chapter 8. The PTPE API Subroutines 185

 PtpeColDisableStats

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_INV_STATLIST One or more systems in the targets list does not have
a valid statistics list assigned to it.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99)

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeColDisableStats(sblock, targets,
 &reply);
if (rc != PTPE_SUCCESS) {

printf("Not all systems succeeded.\n");
}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeColDisableStats” on page 183

� “PtpeColEnableStats” on page 193

� “PtpeColEnableAllStats” on page 188

186 Monitoring Guide and Reference

 PtpeColDisableStats

� “PtpeColDisableAllStats” on page 178

� “PtpeQueryAvailStats” on page 286

� “PtpeColQueryStats” on page 206

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

� “PtpeGetStatResult” on page 254

 Chapter 8. The PTPE API Subroutines 187

 PtpeColEnableAllStats

 PtpeColEnableAllStats

 Purpose
Makes all statistics available for collection and summarization on one or more
systems in the Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeColEnableAllStats(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should not have statistics lists assigned to them.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request.

 Description
PtpeColEnableAllStats instructs one or more systems in the Performance Toolbox
Parallel Extensions to make all the statistics that the system can possibly supply
available for performance information collection and summarization. The subroutine
is similar to the PtpeColEnableStats subroutine, except the subroutine activates all
statistics instead of a set of statistics that the application selects.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The application must also construct a host list for
the command, containing an entry for each system that the application needs to
query. This list is then provided in the targets parameter.

When PtpeColEnableAllStats is executed, the subroutine relays the command,
along with the host list of systems involved, to the monitoring hierarchy's central
coordinator node. The central coordinator node determines which nodes are data
managers for the systems in the targets list, and forwards the command to only
those data manager nodes that manage systems in the host list. The data manager

188 Monitoring Guide and Reference

 PtpeColEnableAllStats

nodes then relay the command to those systems in their reporting groups that have
been listed in the targets list.

Each system in the targets list makes all statistics known to that system available
for performance information collection and summarization. The system then
indicates its success or failure in the effort to its data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The system's success or failure
reply is placed in the partial host list. This list is then relayed to the central
coordinator node, who constructs a complete host list. The complete host list is
transmitted back to the PtpeColEnableAllStats subroutine, which provides it to the
application in the reply parameter.

PtpeColEnableAllStats will provide an indication of the overall success or failure of
the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the command.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the command.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the command.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system.

Making statistics available or unavailable for collection and summarization has no
impact upon which statistics are recorded to the performance information archive.
This subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the command, but an error occurred in reading the
reply list response from the central coordinator Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the command. reply contains the list of all
systems involved in the command; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the command, and an error occurred in
reading the reply list response from the central
coordinator node.

 Chapter 8. The PTPE API Subroutines 189

 PtpeColEnableAllStats

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
command. reply contains all systems involved in the
command, along with the reasons for the failure on
these systems. The application can determine the
cause of the error by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the command, and an
error occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

190 Monitoring Guide and Reference

 PtpeColEnableAllStats

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeColEnableAllStats(sblock, targets,
 &reply);
if (rc != PTPE_SUCCESS) {

printf("Not all systems succeded.\n");
}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeColEnableStats” on page 193

� “PtpeColDisableStats” on page 183

� “PtpeColDisableAllStats” on page 178

� “PtpeQueryAvailStats” on page 286

� “PtpeColQueryStats” on page 206

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

 Chapter 8. The PTPE API Subroutines 191

 PtpeColEnableAllStats

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

� “PtpeGetStatResult” on page 254

192 Monitoring Guide and Reference

 PtpeColEnableStats

 PtpeColEnableStats

 Purpose
Makes one or more statistics available for collection and summarization on one or
more systems in the Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeColEnableStats(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should have statistics lists assigned to them (see “PtpeAssignStatsToHost” on
page 170).

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request. Each entry will also have a statistics list assigned to it, containing an
entry for each statistic passed to the system, with a result code to indicate if
the statistic was successfully activated.

 Description
PtpeColEnableStats instructs one or more systems in the Performance Toolbox
Parallel Extensions to make a set of statistics available for performance information
collection and summarization.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The application must also construct a host list for
the command, containing an entry for each system that the application needs to
query. This list is then provided in the targets parameter. Each entry in the targets
list should also have a statistics list assigned to it (see “PtpeAssignStatsToHost” on
page 170) containing the list of statistics to be made available.

When PtpeColEnableStats is executed, the subroutine relays the command, along
with the host list of systems involved, to the monitoring hierarchy's central

 Chapter 8. The PTPE API Subroutines 193

 PtpeColEnableStats

coordinator node. The central coordinator node determines which nodes are data
managers for the systems in the targets list, and forwards the command to only
those data manager nodes that manage systems in the host list. The data manager
nodes then relay the command to those systems in their reporting groups that have
been listed in the targets list.

Each system in the targets list extracts the list of statistics for their respective entry
from the command message, and searches for these statistics. Any of the statistics
in this list that also exist on the system are made available for collection. The PTPE
daemons on the system create a reply statistics list, containing all statistics passed
to this system in the command. The daemons will set the result codes in each
statistics list entry to one of the following values:

PTPE_SUCCESS The statistic was made available for collection.

PTPE_STAT_NOT_FOUND The statistic could not be found on the system.

The list of statistics is then relayed to the data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The statistics lists received
from each node are assigned to their respective host list entries in the data
manager node's partial host list. This list is then relayed to the central coordinator
node, who constructs a complete host list. The complete host list is transmitted
back to the PtpeColEnableStats subroutine, which provides it to the application in
the reply parameter.

PtpeColEnableStats will provide an indication of the overall success or failure of
the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the command.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the command.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the command.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system. To
check for failures caused by missing statistics, extract the statistics list for each
entry by using the PtpeGetHostStatList subroutine, and scan the list using the
statistics list scanning subroutines.

Making statistics available or unavailable for collection and summarization has no
impact upon which statistics are recorded to the performance information archive.
This subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

194 Monitoring Guide and Reference

 PtpeColEnableStats

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the command, but an error occurred in reading the
reply list response from the central coordinator Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the command. reply contains the list of all
systems involved in the command; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the command, and an error occurred in
reading the reply list response from the central
coordinator node.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
command. The reply contains all systems involved in
the command, along with the reasons for the failure on
these systems. The application can determine the
cause of the error by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the command, and an
error occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

 Chapter 8. The PTPE API Subroutines 195

 PtpeColEnableStats

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_INV_STATLIST One or more systems in the targets list does not have
a valid statistics list assigned to it.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeColEnableStats(sblock, targets,
 &reply);
if (rc != PTPE_SUCCESS) {

printf("Not all systems succeeded.\n");
}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeColStart” on page 215

� “PtpeColEnableStats” on page 193

� “PtpeColDisableStats” on page 183

196 Monitoring Guide and Reference

 PtpeColEnableStats

� “PtpeColDisableAllStats” on page 178

� “PtpeQueryAvailStats” on page 286

� “PtpeColQueryStats” on page 206

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

� “PtpeGetStatResult” on page 254

 Chapter 8. The PTPE API Subroutines 197

 PtpeColGetStats

 PtpeColGetStats

 Purpose
Retrieves the current (non-archived) value of a set of statistics on one or more
systems in the Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeColGetStats(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should have statistics lists assigned to them (see “PtpeAssignStatsToHost” on
page 170).

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request. Each entry will also have a statistics list assigned to it, containing an
entry for each statistic passed to the system, either containing the statistics
current value or a result code indicating why the statistic could not be retrieved.

 Description
PtpeColGetStats retrieves a set of statistics from one or more systems in the
Performance Toolbox Parallel Extension monitoring hierarchy. This function
duplicates the function available in the Performance Toolbox for AIX Spmi and Rsi
libraries.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The application must also construct a host list for
the command, containing an entry for each system that the application needs to
query. This list is then provided in the targets parameter. Each entry in the targets
list should also have a statistics list assigned to it (see “PtpeAssignStatsToHost” on
page 170), containing the list of statistics to be retrieved.

198 Monitoring Guide and Reference

 PtpeColGetStats

When PtpeColGetStats is executed, the subroutine relays the command, along
with the host list of systems involved, to the monitoring hierarchy's central
coordinator node. The central coordinator node determines which nodes are
managers for the systems in the targets list, and forwards the command to only
those data manager nodes that manage systems in the host list. The data manager
nodes then relay the command to those systems in their reporting groups that have
been listed in the targets list.

Each system in the targets list extracts the list of statistics for their respective entry
from the command message, and searches for these statistics. The current values
for any statistics in this list, that also exist n the system, are retrieved. The PTPE
daemons on the system create a reply statistics list, containing all statistics passed
to this system in the command. The daemons will set the value field for each
statistic that was located, and will also set the result codes in each statistics list
entry to one of the following values:

PTPE_SUCCESS The statistic was located on the system.

PTPE_STAT_NOT_FOUND The statistic could not be found on the system.

The list of statistics is then relayed to the data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The statistics lists received
from each node are assigned to their respective host list entries in the data
manager node's partial host list. This list is then relayed to the central coordinator
node, who constructs a complete host list. The complete host list is transmitted
back to the PtpeColGetStats subroutine, which provides it to the application in the
reply parameter.

PtpeColGetStats will provide an indication of the overall success or failure of the
query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the query.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the query.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the query. To determine which systems
were not successful, the reply list should be scanned,
and the results for each system in the list checked
using the PtpeGetHostResult subroutine. The result
code will provide an indication of the error for the
system. To check for failures caused by missing
statistics, extract the statistics list for each entry by
using the PtpeGetHostStatList subroutine, and scan
the list using the statistics list scanning subroutines.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

 Chapter 8. The PTPE API Subroutines 199

 PtpeColGetStats

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the query, but an error occurred in reading the reply
list response from the central coordinator Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the query. The list reply points to contains all
systems involved in the query; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the query, and an error occurred in reading
the reply list response from the central coordinator
node.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
query. reply contains all systems involved in the query,
along with the reasons for the failure on these
systems. The application can determine the cause of
the error by performing the PtpeGetHostResult
subroutine on all systems in the reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the query, and an error
occurred in reading the reply list from the central
coordinator node.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

200 Monitoring Guide and Reference

 PtpeColGetStats

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_INV_STATLIST One or more systems in the targets list does not have
a valid statistics list assigned to it.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277)

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99)

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeColGetStats(sblock, targets,
 &reply);
if (rc != PTPE_SUCCESS) {

printf("Not all systems succeeded.\n");
}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeColStart” on page 215

� “PtpeArchEnableStats” on page 133

� “PtpeArchEnableAllStats” on page 128

 Chapter 8. The PTPE API Subroutines 201

 PtpeColGetStats

� “PtpeColDisableStats” on page 183

� “PtpeColDisableAllStats” on page 178

� “PtpeQueryAvailStats” on page 286

� “PtpeColQueryStats” on page 206

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

� “PtpeGetStatResult” on page 254

202 Monitoring Guide and Reference

 PtpeColQueryState

 PtpeColQueryState

 Purpose
Determines the current status of performance information collection and
summarization in the Performance Toolbox Parallel Extensions monitoring
hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeColQueryState(sblock)
session_ptr_t sblock;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

 Description
PtpeColQueryStates reports to the calling application whether or not performance
information collection and summarization is active in the monitoring hierarchy.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The inquiry does not use a host list.

The status of collection and summarization is reflected in the return code, which will
be one of three status values:

PTPE_COL_ACTIVE Performance information collection and summarization
is currently active on all systems in the monitoring
hierarchy.

PTPE_COL_OFF Performance information collection and summarization
is not active on any system in the monitoring
hierarchy. On rare occasions, such as when the
ptpectrl -c command or the PtpeColStart subroutine
are interrupted, some systems may be attempting to
collect and summarize performance information while
most of the systems are not. This status is indicated
by the following return code:

PTPE_COL_ERROR Cannot determine status of performance information
collection and summarization.

While this status persists, other PTPE commands and API subroutine may not
function properly. When this status is returned by this subroutine, the application
should execute the PtpeColStop subroutine in an attempt to clear this error state.

 Chapter 8. The PTPE API Subroutines 203

 PtpeColQueryState

 Return Codes
Upon successful completion, a return code of PTPE_COL_ACTIVE or
PTPE_COL_OFF is returned to the caller. If an error occurred, one of the following
return codes is provided:

PTPE_INV_PTR sblock has a NULL value.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query.

PTPE_MEMORY An internal error occurred.

PTPE_NO_LOCK_OBJ The PTPE data classes do not exist in the System
Data Repository (see “ptpeconf” on page 86).

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t mgrs, nodes;
int rc;

/\ set up session \/
rc = PtpeColQueryState(sblock);
switch (rc) {
case PTPE_COL_ACTIVE:

printf("Collection is active\n");
 break;
case PTPE_COL_OFF:

printf("Collection is inactive\n");
 break;
case PTPE_COL_ERROR:

printf("Cannot determine status -");
printf("attempting to reset status.\n");
mgrs = (host_list_t) NULL;
nodes = (host_list_t) NULL;
rc = PtpeColStop(sblock, &mgrs, &nodes);
/\ check results from PtpeColStop \/

 break;
default:

/\handle other error \/
}

204 Monitoring Guide and Reference

 PtpeColQueryState

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeColStart” on page 215

� “PtpeColStop” on page 220

� “ptpectrl” on page 88

 Chapter 8. The PTPE API Subroutines 205

 PtpeColQueryStats

 PtpeColQueryStats

 Purpose
Retrieves the list of statistics being collected and summarized on one or more
systems in the monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeColQueryStats(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. This list should not
contain any systems that have statistics assigned to them.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. A statistics list will be assigned to
those systems that are collecting and aggregating performance information, and
will contain an entry for each statistic being collected on that system.

 Description
PtpeColQueryStats asks the Performance Toolbox Parallel Extensions to provide
the list of statistics being collected and summarized by one or more systems in the
monitoring hierarchy.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The application must also construct a host list for
the query, containing an entry for each system that the application needs to query.
This list is then provided in the targets parameter.

When PtpeColQueryStats is executed, the subroutine relays the query command,
along with the host list of systems to query, to the monitoring hierarchy's central
coordinator node. The central coordinator node determines which nodes are data
managers for the systems in the targets list, and forwards the query to only those
data manager nodes that manage systems in the query list. The data manager
nodes then relay the query to those systems in their reporting groups that have
been listed in the targets list.

206 Monitoring Guide and Reference

 PtpeColQueryStats

Each system in the targets list constructs a statistics list, containing one entry for
each statistics that system is currently making available to Performance Toolbox
Parallel Extensions for collection and summarization. On systems that also double
as managing systems, this list will also include any summary statistics that the
node prepares. This list is then relayed back to the data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the query. The statistics lists received from
each node are assigned to their respective host list entries in the data manager
node's partial host list. This list is then relayed to the central coordinator node, who
constructs a complete host list. The complete host list is transmitted back to the
PtpeColQueryStats subroutine, which provides it to the application in the reply
parameter.

PtpeColQueryStats will provide an indication of the overall success or failure of
the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the query.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the query.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the query. To determine which systems
were not successful, the reply list should be scanned,
and the results for each system in the list checked
using the PtpeGetHostResult subroutine. The result
code will provide an indication of the error for the
system. To determine what statistics are being
collected for those systems that successfully
responded to the query, extract the statistics list for
each entry by using the PtpeGetHostStatList
subroutine, and scan the list using the statistics list
scanning subroutines.

This subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the query, but an error occurred in reading the reply
list response from the central coordinator Node. The
application should treat this as an error, since the
contents of the reply list cannot be guaranteed to be
accurate.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the query. The list reply points to contains all
systems involved in the query; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

 Chapter 8. The PTPE API Subroutines 207

 PtpeColQueryStats

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the query, and an error occurred in reading
the reply list response from the central coordinator
node. The application should treat this as an error,
since the contents of the reply list cannot be
guaranteed to be accurate.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
query. reply contains all systems involved in the query,
along with the reasons for the failure on these
systems. The application can determine the cause of
the error by performing the PtpeGetHostResult
subroutine on all systems in the reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the query, and an error
occurred in reading the reply list from the central
coordinator node. the application should treat this as
an error, since the contents of the reply list cannot be
guaranteed.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the query to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the query from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the query was not received from the central
coordinator node in the time allowed. reply is not
modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

208 Monitoring Guide and Reference

 PtpeColQueryStats

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeColQueryStats(sblock, targets, &reply);
if (rc != PTPE_SUCCESS) {

printf("Not all systems succeded.\n");
}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeColStart” on page 215

� “PtpeColEnableStats” on page 193

� “PtpeArchEnableStats” on page 133

� “PtpeColDisableStats” on page 183

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

 Chapter 8. The PTPE API Subroutines 209

 PtpeColQueryStats

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

� “PtpeGetStatResult” on page 254

210 Monitoring Guide and Reference

 PtpeColSetup

 PtpeColSetup

 Purpose
Instructs all systems in the Performance Toolbox Parallel Extensions monitoring
hierarchy to set up for performance information collection and summarization.

 Library
libptpe.a

 Syntax
#include <spdm.h>
int PtpeColSetup(sblock, mgrs, nodes)
session_ptr_t sblock;
host_list_t \mgrs;
host_list_t \nodes;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

mgrs
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon completion of the subroutine, an anchor point for
a host list may be placed at this location, containing the list of any managing
nodes that failed to carry out the setup command.

nodes
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon completion of the subroutine, an anchor point for
a host list may be placed at this location, containing the list of any reporter
nodes that failed to carry out the setup command.

 Description
PtpeColSetup instructs all systems in the Performance Toolbox Parallel Extensions
monitoring hierarchy to set up for performance information collection and
summarization. This subroutine should be executed by an application when the
monitoring hierarchy structure has been modified, before using the hierarchy for the
first time. This subroutine should also be used whenever new performance
information becomes available on systems in the monitoring hierarchy (such as
when a new LPP has been installed).

During collection setup, all systems in the hierarchy report all performance
information available on these systems to the managing systems and the PTPE
central coordinator node. The central coordinator node prepares a complete list of
all statistics that can be provided by any system in the monitoring hierarchy, and
uses this list whenever performance information collection and summarization is
begun to set up collection structures in the data manager nodes.

Should the monitoring hierarchy structure change, either for adjustments in the
existing structure or because new systems were added, this subroutine should be

 Chapter 8. The PTPE API Subroutines 211

 PtpeColSetup

performed. This subroutine should also be used when new performance information
be made available in an existing monitoring hierarchy.

Should more than half of the systems in the Performance Toolbox Parallel
Extensions monitoring hierarchy successfully complete the setup duties, this
subroutine will report a successful completion of the setup. Should less than half of
the systems successfully complete the setup duty, this subroutine will report a
failure. Any systems that failed the setup are provided in the lists anchored at mgrs
and nodes. The mgrs list will indicate the data manager nodes that could not
complete the setup tasks, which may have prevented the systems that reported to
these nodes from also completing the task. nodes will contain the list of any other
systems that could not carry out the setup tasks. Entries in each list will have their
respective result codes set to indicate the reason for failure.

PtpeColSetup requires that a PTPE API session was previously established with
the PtpeOpenSession subroutine.

This subroutine performs the same function as the ptpectrl -i command. This
subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, this subroutine returns one of two values:

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_SUCCESS At least half of the systems in the monitoring hierarchy
successfully completed the setup duties. Any systems
that did not successfully carry out the setup duties are
provided in the mgrs and nodes. lists.

PTPE_SUCCESS_BADR At least half of the systems in the monitoring hierarchy
successfully completed the setup duties. An error
occurred while reading the list of any failing managing
and reporter nodes from the central coordinator node.

If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_API_FAILED The central coordinator node has indicated that the
setup function has failed (at least half of the systems
in the monitoring hierarchy could not successfully
complete the setup function). Any data manager nodes
systems that could not carry out the setup function are
listed in the mgrs list; any other systems that failed the
setup function are listed in the nodes list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that the
setup function has failed (at least half of the systems
in the monitoring hierarchy could not successfully
complete the setup function). The subroutine could not
obtain the list of the systems that failed the setup
function, so mgrs and nodes remains unchanged.

212 Monitoring Guide and Reference

 PtpeColSetup

PTPE_COL_ACTIVE Performance information collection and summarization
is currently active in the monitoring hierarchy. The
setup function cannot be performed while collection
and summarization are active. mgrs and nodes are not
modified.

PTPE_COL_ERROR Performance information collection and summarization
is current in an indeterminate state. The setup function
cannot be performed while this state persists. The
application should attempt to clear this condition by
issuing a PtpeColStop call. mgrs and nodes are not
modified.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. mgrs and nodes are not
modified.

PTPE_BAD_SEND Could not successfully transmit the setup command to
the central coordinator node. mgrs and nodes are not
modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the setup command from
the central coordinator node. It is impossible to
determine if the setup function succeeded or failed;
the subroutine treats it as a failure. mgrs and nodes
are not modified.

PTPE_TIMEOUT A reply to the setup command was not received from
the central coordinator node in the time allowed. mgrs
and nodes are not modified.

PTPE_CMGR_NOEXEC Could contact the central coordinator node, but could
not execute the collection daemon spdmcold on the
mgrs and nodes are not modified.

PTPE_CMGR_CONTACT The collection daemon spdmcold was successfully
started on the central coordinator node, but the
communication link with the daemon was lost. mgrs
and nodes are not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_PTR data manager nodes, nodes, or sblock has a NULL
value.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_LOCKED Another PTPE API application has exclusive use of
the monitoring hierarchy.

PTPE_NO_LOCK_OBJ The PTPE data classes do not exist in the System
Data Repository (see “ptpeconf” on page 86).

 Chapter 8. The PTPE API Subroutines 213

 PtpeColSetup

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

PTPE_NO_MEMORY Could not allocate enough memory to initiate the setup
function. mgrs and nodes are not modified.

PTPE_MEMORY An internal error occurred.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
of the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t mgrs, nodes;
int rc;

rc = PtpeOpenSession(&sblock);
if (rc != PTPE_SUCCESS) {

printf("Cannot open session\n");
 return(ð);
}
mgrs = (host_list_t) NULL;
nodes = (host_list_t) NULL;
rc = PtpeColSetup(sblock, &mgrs, &nodes);
if (rc != PTPE_SUCCESS) {

/\ scan mgrs and show which systems \/
 /\ failed \/
}

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeColStart” on page 215

� “PtpeColStop” on page 220

214 Monitoring Guide and Reference

 PtpeColStart

 PtpeColStart

 Purpose
PtpeColStart instructs all systems in the Performance Toolbox Parallel Extensions
monitoring hierarchy to start the daemon programs needed for performance data
collection and summarization.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeColStart(sblock, mgrs, nodes)
session_ptr_t sblock;
host_list_t \mgrs;
host_list_t \nodes;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

mgrs
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon completion of the subroutine, an anchor point for
a host list may be placed at this location, containing the list of any managing
nodes that failed to carry out the start command.

nodes
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon completion of the subroutine, an anchor point for
a host list may be placed at this location, containing the list of any reporter
nodes that failed to carry out the start command.

 Description
PtpeColStart instructs all systems in the Performance Toolbox Parallel Extensions
monitoring hierarchy to begin performance data collection and summarization. This
subroutine requires a monitoring hierarchy to be in place (see “ptpehier” on
page 99), and that the hierarchy have been previously set up since the last time
the hierarchy was modified (see “ptpectrl” on page 88 and “PtpeColSetup” on
page 211).

During performance collection startup, the central coordinator Node obtains the
complete list of performance information that was constructed during the previous
collection setup. This list is encoded into binary format, and passed to the data
manager nodes in the monitoring hierarchy, along with the monitoring hierarchy
structure itself. The managing systems decode the monitoring hierarchy and the list
of statistics from the central coordinator node's message, determines which
systems report to it, and forward the list of statistics to these systems.

 Chapter 8. The PTPE API Subroutines 215

 PtpeColStart

Each system in the monitoring hierarchy decodes the list of performance statistics
from its data manager node (or the central coordinator Node, in the case of data
manager nodes), and constructs a table in shared memory for these statistics. This
table contains entries for each statistic along with indicator flags for the following
information:

� whether this system is capable of providing the information at this time,

� whether this system is providing this information to its managing node, and

� whether this statistic is to be recorded in the performance information archive

Each node determines if the information exists at the present time of the system,
and sets the first field accordingly. The provision field is set to TRUE, and the
archive field is set to FALSE.

Each system then reports its success or failure in starting performance collection to
its data manager node. The data manager nodes collect all responses from their
reporters, combine them into a single message, and relay it to the central
coordinator node. The central coordinator Node then prepares an overall response,
and sends the results back to this caller of the PtpeColStart subroutine.

Should at least one of the systems in the Performance Toolbox Parallel Extensions
monitoring hierarchy successfully complete the startup duties, this subroutine will
report a successful completion of the startup. Should none of the systems
successfully complete the startup duty, this subroutine will report a failure. Any
systems that failed the startup are provided in the lists anchored at data manager
nodes and nodes. The data manager nodes list will indicate the data manager
nodes that could not complete the startup tasks, which may have prevented the
systems that reported to these nodes from also completing the task. nodes will
contain the list of any other systems that could not carry out the startup tasks.
Entries in each list will have their respective result codes set to indicate the reason
for failure.

Upon completion of the subroutine, the nodes that successfully responded to the
command will have started the PTPE daemons for collection and summarization of
performance data, however, no performance information is collected and
summarized at this time. Collection and summarization do not begin until the
application issues a PtpeColEnableStats or a PtpeColEnableAllStats call to make
a set of performance statistics available for collection.

PtpeColStart requires that a PTPE API session was previously established with the
PtpeOpenSession subroutine.

This subroutine performs the same function as the ptpectrl -c command. This
subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, this subroutine returns one of two values:

PTPE_SUCCESS All systems in the monitoring hierarchy successfully
completed collection start. Any systems that did not
successfully carry out the setup duties appear in the
mgrs and nodes. lists.

216 Monitoring Guide and Reference

 PtpeColStart

PTPE_SUCCESS_BADR All systems in the monitoring hierarchy successfully
completed collection start. An error occurred while
reading the complete response from the central
coordinator node.

If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_LIMITED At least one system in the monitoring hierarchy
successfully completed collection start. Any systems
that did not successfully carry out the setup duties
appear in the _mgrs_ and _nodes_ lists. PTPE will
consider that start successful in this case.

PTPE_LIMITED_BADR At least one system in the monitoring hierarchy
successfully completed collection start. An error
occurred while reading the complete response from
the central coordinator node. PTPE will consider the
start a failure in this case, but will not automatically
shut down the PTPE daemons on the nodes that
successfully started collection.

PTPE_API_FAILED The central coordinator node has indicated that the
start function failed (none of the systems in the
monitoring hierarchy could successfully complete the
function). Any data managers systems that could not
carry out the start function are listed in the mgrs list;
any other systems that failed the function are listed in
the nodes list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that the
start function failed (none of the systems in the
monitoring hierarchy could successfully complete the
function). The subroutine could not obtain the list of
the systems that failed the start function. mgrs and
nodes are not modified.

PTPE_COL_ACTIVE Performance information collection and summarization
is currently active in the monitoring hierarchy. The
start function cannot be performed while collection and
summarization are active. mgrs and nodes are not
modified.

PTPE_COL_ERROR Performance information collection and summarization
is current in an indeterminate state. The start function
cannot be performed while this state persists. The
application should attempt to clear this condition by
issuing a PtpeColStop call. mgrs and nodes are not
modified.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. mgrs and nodes are not
modified.

PTPE_BAD_SEND Could not successfully transmit the start command to
the central coordinator node. mgrs and nodes are not
modified.

 Chapter 8. The PTPE API Subroutines 217

 PtpeColStart

PTPE_BAD_RECEIVE Error in receiving the reply to the start command from
the central coordinator node. It is impossible to
determine if the start function succeeded or failed; the
subroutine treats it as a failure. mgrs and nodes are
not modified.

PTPE_FILE_ERROR An error occurred in creating an AIX file to contain
information retrieved from the System Data
Repository. A shortage of space or inodes in the /tmp
filesystem is the most likely source of this error.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the start command was not received from
the central coordinator node in the time allowed. mgrs
and nodes are not modified.

PTPE_CMGR_NOEXEC Could contact the central coordinator node, but could
not execute the collection daemon spdmcold on the
mgrs and nodes are not modified.

PTPE_CMGR_CONTACT The collection daemon spdmcold was successfully
started on the central coordinator node, but the
communication link with the daemon was lost. mgrs
and nodes are not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_PTR data manager nodes, nodes, or sblock has a NULL
value.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_LOCKED Another PTPE API application has exclusive use of
the monitoring hierarchy.

PTPE_NO_LOCK_OBJ The PTPE data classes do not exist in the System
Data Repository (see “ptpeconf” on page 86).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

PTPE_NO_MEMORY Could not allocate enough memory to initiate the start
function. mgrs and nodes are not modified.

PTPE_MEMORY An internal error occurred.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,

218 Monitoring Guide and Reference

 PtpeColStart

of the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t mgrs, nodes;
int rc;

rc = PtpeOpenSession(&sblock);
if (rc != PTPE_SUCCESS) {

printf("Cannot open session\n");
 return(ð);
}
mgrs = (host_list_t) NULL;
nodes = (host_list_t) NULL;
rc = PtpeColStart(sblock, &mgrs, &nodes);
if (rc != PTPE_SUCCESS) {

/\ scan mgrs and show which systems \/
 /\ failed \/
}

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeColSetup” on page 211

� “PtpeColStop” on page 220

 Chapter 8. The PTPE API Subroutines 219

 PtpeColStop

 PtpeColStop

 Purpose
Instructs all systems in the Performance Toolbox Parallel Extensions monitoring
hierarchy to cease collection, summarization, and recording of performance
information.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeColStop(sblock, mgrs, nodes)
session_ptr_t sblock;
host_list_t \mgrs;
host_list_t \nodes;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

mgrs
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon completion of the subroutine, an anchor point for
a host list may be placed at this location, containing the list of any data
manager nodes that failed to carry out the shutdown command.

nodes
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon completion of the subroutine, an anchor point for
a host list may be placed at this location, containing the list of any reporter
nodes that failed to carry out the shutdown command.

 Description
PtpeColStop instructs all systems in the Performance Toolbox Parallel Extensions
monitoring hierarchy to stop any performance information collection, summarization,
and recording that may be active. This subroutine requires that a monitoring
hierarchy be in place (see “ptpehier” on page 99), and that performance
information collection and summarization was previously begun (see “ptpectrl” on
page 88) and the PtpeColStart subroutine).

A shutdown command is encoded, along with a binary representation of the
monitoring hierarchy, and the complete message is transmitted to the monitoring
hierarchy's central coordinator node. The central coordinator node decodes the
instructions and the monitoring hierarchy from the message, determines which
systems in the hierarchy are the managing systems, and relays the shutdown
command to these systems. The managing systems, in turn, relay the shutdown
command to all nodes in their monitoring group. All nodes report their success or
failure in shutting down performance collection and archiving to their managing

220 Monitoring Guide and Reference

 PtpeColStop

systems, which reports the list of successes or failures back to the central
coordinator Node. The central coordinator node determines overall success or
failure of the request, constructs a complete list of all successes and failures, and
sends this result and list back to this subroutine.

If all nodes that were actively collecting and summarizing performance information
report a successful shut down of the PTPE daemons, this subroutine will report a
successful completion of the shutdown. Should any of the nodes be unable to shut
down collection and summarization, this subroutine will report a failure. Any
systems that failed the shutdown are provided in the lists anchored at data
manager nodes and nodes. The data manager nodes list will indicate the data
manager nodes that could not completely shut down collection and summarization,
which may have prevented the systems that reported to these nodes from also
completing the task. nodes will contain the list of any other systems that could not
shut down collection and summarization. Entries in each list will have their
respective result codes set to indicate the reason for failure.

In cases where the shutdown was considered successful, any systems that
succeeded in the shutdown attempt will cease to forward all available performance
information to their data manager nodes for collection and summarization. These
systems also cease to record their performance information to the archive, if
archiving was active before PtpeColStop was called.

If the ptpectrl -c command or the PtpeColStart subroutine was interrupted before
completion, collection and summarization may be in an indeterminate state. While
collection is in this indeterminate state, API subroutines -- such as PtpeColSetup
and PtpeColStart -- will fail with an error code of PTPE_COL_ERROR. This
indeterminate state exists until it is explicitly cleared. An application can issue the
PtpeColStop subroutine to clear this indeterminate state.

PtpeColStop requires that a PTPE API session was previously established with the
PtpeOpenSession subroutine.

This subroutine performs the same function as the ptpectrl -s command. This
subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, this subroutine returns one of two values:

PTPE_SUCCESS All systems in the monitoring hierarchy that were
collecting and summarizing performance information
have reported a successful shutdown.

PTPE_SUCCESS_BADR All systems in the monitoring hierarchy that were
collecting and summarizing performance information
have reported a successful shutdown. An error
occurred while reading the full response from the
central coordinator node.

If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_LIMITED Some systems in the monitoring hierarchy successfully
shut down collection. Any systems that did not
successfully carry out the shutdown duties appear in

 Chapter 8. The PTPE API Subroutines 221

 PtpeColStop

the _mgrs_ and _nodes_ lists. PTPE will consider the
shutdown a failure in this case.

PTPE_LIMITED_BADR Some of the systems in the monitoring hierarchy
successfully shut down collection. An error occurred
while reading the list of any failing data manager and
reporter nodes from the central coordinator node.
PTPE will consider the shutdown a failure in this case.

PTPE_API_FAILED The central coordinator node has indicated that the
collection shutdown has failed (at least half of the
systems in the monitoring hierarchy could not
successfully shut down collection). Any data manager
nodes that could not shut down collection are listed in
the mgrs host list; any other systems that failed to shut
down collection are listed in the nodes list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that the
shutdown function has failed (at least half of the
systems in the monitoring hierarchy could not
successfully shut down collection). The subroutine
could not obtain the list of the systems that failed to
shut down collection. mgrs and nodes are not
modified.

PTPE_COL_OFF Performance information collection and summarization
is not currently active in the monitoring hierarchy.
Collection cannot be shut down while collection is
inactive. mgrs and nodes are not modified.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. mgrs and nodes are not
modified.

PTPE_BAD_SEND Could not successfully transmit the shutdown
command to the central coordinator node. mgrs and
nodes are not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the shutdown command
from the central coordinator node. It is impossible to
determine if the shutdown request succeeded or failed;
the subroutine treats it as a failure. mgrs and nodes
are not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the shutdown command was not received
from the central coordinator node in the time allowed.
mgrs and nodes are not modified.

PTPE_CMGR_NOEXEC Could contact the central coordinator node, but could
not execute the collection daemon spdmcold on the
central coordinator node. The data manager nodes
and nodes are not modified.

222 Monitoring Guide and Reference

 PtpeColStop

PTPE_CMGR_CONTACT The collection daemon spdmcold was successfully
started on the central coordinator node, but the
communication link with the daemon was lost. mgrs
and nodes are not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_PTR mgrs, nodes, or sblock has a NULL value.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_LOCKED Another PTPE API application has exclusive use of
the monitoring hierarchy.

PTPE_NO_LOCK_OBJ The PTPE data classes do not exist in the System
Data Repository (see “ptpeconf” on page 86).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99

PTPE_NO_MEMORY Could not allocate enough memory to initiate the setup
function. mgrs and nodes are not modified.

PTPE_MEMORY An internal error occurred.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t mgrs, nodes;
int rc;

rc = PtpeOpenSession(&sblock);
if (rc != PTPE_SUCCESS) {

printf("Cannot open session\n");
 return(ð);
}
mgrs = (host_list_t) NULL;
nodes = (host_list_t) NULL;
rc = PtpeColSttop(sblock, &mgrs, &nodes);
if (rc != PTPE_SUCCESS) {

/\ scan mgrs and show which systems \/
 /\ failed \/
}

 Chapter 8. The PTPE API Subroutines 223

 PtpeColStop

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeColSetup” on page 211

� “PtpeColStart” on page 215

224 Monitoring Guide and Reference

 PtpeDelHostFromList

 PtpeDelHostFromList

 Purpose
Removes a system's entry from an existing host list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeDelHostFromList(hostname, hanchor)
char \hostname;
host_list_t hanchor;

 Parameters
hostname

Points to a NULL-terminated character string of up to PTPE_NMLN characters
in length, which contains the network name of the system to be removed from
the host list.

hanchor
The anchor point of an existing host list that contains an entry for hostname.

 Description
PtpeDelHostFromList removes the entry for the system specified by hostname
from the host list anchored by hanchor. The memory used to store the system's
information, and any statistics that may have been associated with that system, is
freed. The “current” entry pointers in the host list anchor are reset to the beginning
of the host list, or to indicate an empty host list if the last entry is removed from the
list by this subroutine.

This subroutine should be used when a system will no longer be part of API
commands that are sent to other systems that are members of the host list.

hostname should be specified in the same manner as the system is known to the
Performance Toolbox for AIX monitoring hierarchy, and in exactly the same format
as it was added to the host list by the PtpeAddHostToList subroutine. If the
system is defined in the monitoring hierarchy by its fully qualified network name,
such as spnode05.ibm.com, the same format should be used when deleting the
system from the host list. If a system is known by more than one name to the
network, the name that should be used by this subroutine is the name by which the
system is known to the monitoring hierarchy. If the name used by this subroutine is
not the same name, in the same format, as used by the monitoring hierarchy,
PtpeDelHostFromList will not be able to locate the system in the host list.

An error is returned if hanchor references an empty host list, or if hostname cannot
be found in the hanchor host list.

 Chapter 8. The PTPE API Subroutines 225

 PtpeDelHostFromList

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_HOSTLIST hanchor has a NULL value.

PTPE_INV_HOSTNAME hostname has a NULL value, or points to a NULL
character string.

PTPE_HOST_NOT_FOUND The system specified by hostname could not be found
in the hanchor host list.

PTPE_EMPTY hanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in hanchor have been corrupted.

 Examples
#include <spdm.h>

host_list_t hanchor;
char delhost[PTPE_NMLN];
int rc;

strcpy(delhost, "spnodeð5.ibm.com");
rc = PtpeDelHostFromList(delhost, hanchor);
switch (rc) {
 case PTPE_SUCCESS:
 break;
 case PTPE_HOST_NOT_FOUND:

/\ handle missing host error \/
 case PTPE_EMPTY:

/\ handle empty list error \/
 default:

/\ handle general error \/
}

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFindHost” on page 233

226 Monitoring Guide and Reference

 PtpeDelStatFromList

 PtpeDelStatFromList

 Purpose
Removes a statistics entry from an existing statistic list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeDelStatFromList(statname, sanchor)
char \statname;
stat_list_t sanchor;

 Parameters
statname

Points to a NULL-terminated character string of up to PTPE_NMLN characters
in length, which contains the full context path of the statistic to be removed
from the statistics list.

sanchor
The anchor point of an existing statistics list that contains an entry for
statname.

 Description
PtpeDelStatFromList removes the entry for the statistic specified by statname from
the statistics list anchored by sanchor. The memory used to store the statistics
information is freed. The “current” entry pointers in the statistics list anchor are
reset to the beginning of the statistics list, or to indicate an empty statistics list if the
last entry is removed from the list by this subroutine.

This subroutine should be used when a statistic will no longer be part of API
commands that involve other statistics that are members of the statistics list.

statname specifies the full context path of the statistic being removed from the list.
This name is provided in Spmi format, relative to the top context, and must match
exactly to the format used when the statistics was added to the statistics list with
the PtpeAddStatToList subroutine. The statistic path name does not include the
/host/ <hostname> prefix used by the Performance Toolbox Rsi programming
library. No verification is performed on the format of the statistic name, nor does the
API confirm that such a statistic exists, at the time the statistic is accepted for
processing by this subroutine.

If the statistics list was previously assigned to a system by the
PtpeAssignStatsToHost subroutine, the deletion performed by this subroutine
occurs in the “unassigned” statistics list sanchor only; the copy of the statistics list
that was previously assigned to a system remains unchanged by this subroutine.

An error is returned if sanchor references an empty host list, or if hostname cannot
be found in the sanchor host list.

 Chapter 8. The PTPE API Subroutines 227

 PtpeDelStatFromList

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_INV_STATNAME statname has a NULL value, or points to a NULL
character string.

PTPE_STAT_NOT_FOUND The statistic specified by statname could not be found
in the sanchor host list.

PTPE_EMPTY sanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

 Examples
#include <spdm.h>

stat_list_t sanchor;
char delstat[PTPE_STNL];
int rc;

strcpy(delstat, "Mem/Virt/%free");
rc = PtpeDelStatFromList(delstat, sanchor);
switch (rc) {
 case PTPE_SUCCESS:
 break;
 case PTPE_STAT_NOT_FOUND:

/\ handle missing host error \/
 case PTPE_EMPTY:

/\ handle empty list error \/
 default:

/\ handle general error \/
}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeFindStat” on page 235

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

228 Monitoring Guide and Reference

 PtpeEmptyHostList

 PtpeEmptyHostList

 Purpose
Clears the contents of a host list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeEmptyHostList(hanchor)
host_list_t \hanchor;

 Parameters
hanchor

The anchor point of an existing non-empty host.

 Description
PtpeEmptyHostList clears out all entries in the host list anchored at hanchor. The
memory used by the host list for these entries is freed, including the memory used
to contain any statistics lists that may have been assigned to system entries in the
host list.

An error results if this subroutine is performed upon a non-existent host list.

 Return Codes
If an invalid host list was referenced by the hanchor parameter, or the hanchor
parameter is NULL, this subroutine returns a value of PTPE_INV_HOSTLIST. In all
other cases, this subroutine returns a value of PTPE_SUCCESS.

 Examples
#include <spdm.h>

host_list_t hanchor;
int rc;

rc = PtpeInitHostList(&hanchor);
rc = PtpeAddHostToList("spnodeð5.ibm.com",
 hanchor);
rc = PtpeEmptyHostList(&hanchor);
if (rc != PTPE_SUCCESS) {
/\ handle error condition \/
}

 Chapter 8. The PTPE API Subroutines 229

 PtpeEmptyHostList

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeFreeHostList” on page 241

� “PtpeAddHostToList” on page 114

� “PtpeDelHostFromList” on page 225

230 Monitoring Guide and Reference

 PtpeEmptyStatList

 PtpeEmptyStatList

 Purpose
Clears the contents of a statistics list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeEmptyStatList(sanchor)
stat_list_t \sanchor;

 Parameters
sanchor

The anchor point of an existing non-empty statistics list.

 Description
PtpeEmptyStatList clears out all entries in t statistics list anchored at sanchor. The
memory used by the statistics list for these entries is freed.

If the statistics list was previously assigned to a system by the
PtpeAssignStatsToHost subroutine, or if this statistic was retrieved from a
system's host list entry by the PtpeGetHostStatList subroutine, the test performed
by this subroutine occurs in the “unassigned” statistics list sanchor only. The copy
of the statistics list assigned to a system remains unchanged by this subroutine.

Statistics lists assigned to systems cannot be cleared using this subroutine; instead,
these lists must be removed from the system's host list entry by using the
PtpeRemoveStatsFromHost subroutine.

An error results if this subroutine is performed upon a non-existent statistics list.

 Return Codes
If an invalid statistics list was referenced by the sanchor parameter, or the sanchor
parameter is NULL, this subroutine returns a value of PTPE_INV_STATLIST. In all
other cases, this subroutine returns a value of PTPE_SUCCESS.

 Examples

 Chapter 8. The PTPE API Subroutines 231

 PtpeEmptyStatList

#include <spdm.h>

stat_list_t sanchor;
int rc;

rc = PtpeInitStatList(&sanchor);
rc = PtpeAddStatToList("Mem/Virt/%free",
 sanchor);
rc = PtpeEmptyStatList(&sanchor);
if (rc != PTPE_SUCCESS) {
/\ handle error condition \/
}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeAssignStatsToHost” on page 170

� “PtpeFreeStatList” on page 243

� “PtpeGetHostStatList” on page 250

� “PtpeFindStat” on page 235

� “PtpeFirstStat” on page 239

� “PtpeGetHostStatList” on page 250

� “PtpeRemoveStatsFromHost” on page 298

232 Monitoring Guide and Reference

 PtpeFindHost

 PtpeFindHost

 Purpose
Locates a specific system in an existing host list, and positions the host list anchor
pointers for further operations on that system's host list entry.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeFindHost(hostname, hanchor)
char \hostname;
host_list_t hanchor;

 Parameters
hostname

Points to a NULL-terminated character string of up to PTPE_NMLN characters
in length, which contains the network name of the system to be located in the
host list.

hanchor
The anchor point of an existing host list that contains an entry for hostname.

 Description
PtpeFindHost scans the host list anchored at hanchor from beginning to end for an
entry that contains information for the system specified by hostname. If an entry is
found in the host list, the pointers in the host list anchor are updated to point to the
system's entry as the “current” entry for the list.

After this subroutine has located an entry for a system, any subsequent API
subroutines that perform operations on the “current” entry in a host list will be
performed upon this system's entry in the host list. This behavior will continue until
another subroutine that modifies the setting for the “current” host list entry is
executed.

hostname should be specified in the same manner as the system is known to the
Performance Toolbox for AIX monitoring hierarchy, and in exactly the same format
as it was added to the host list by the PtpeAddHostToList subroutine. If the
system is defined in the monitoring hierarchy by its fully qualified network name,
such as spnode05.ibm.com, the same format should be used when locating the
system to the host list. If a system is known by more than one name to the
network, the name that should be used by this subroutine is the name by which the
system is known to the monitoring hierarchy. If the name used by this subroutine is
not the same name, in the same format, as used by the monitoring hierarchy,
PtpeFindHost will not be able to locate the system in the host list.

 Chapter 8. The PTPE API Subroutines 233

 PtpeFindHost

If the host list is empty, or the system does not have an entry in the host list, an
error is returned, and the “current” pointer in the anchor is reset to the beginning of
the host list.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_HOSTLIST hanchor has a NULL value.

PTPE_INV_HOSTNAME hostname has a NULL value, or points to a NULL
character string.

PTPE_HOST_NOT_FOUND The system specified by hostname could not be found
in the hanchor host list.

PTPE_EMPTY hanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in hanchor have been corrupted.

 Examples
#include <spdm.h>

host_list_t hanchor;
char findme[PTPE_NMLN];
int rc;

strcpy(findme, "spnodeð5,ibm.com");
rc = PtpeFindHost(findme, hanchor);
switch (rc) {
 case PTPE_SUCCESS:
 break;
 case PTPE_HOST_NOT_FOUND:

/\ handle missing host error \/
 case PTPE_EMPTY:

/\ handle empty list error \/
 default:

/\ handle general error \/
}

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeDelHostFromList” on page 225

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

234 Monitoring Guide and Reference

 PtpeFindStat

 PtpeFindStat

 Purpose
Locates a specific statistic in an existing statistics list, and positions the statistics
list anchor pointers for further operations on that statistic's list entry.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeFindStat(statname, sanchor)
char \statname;
stat_list_t sanchor;

 Parameters
hostname

Points to a NULL-terminated character string of up to PTPE_STLN characters
in length, which contains the full context path of the statistic to be located in the
statistics list.

sanchor
The anchor point of an existing statistics list that contains an entry for
statname.

 Description
PtpeFindStat scans the statistics list anchored at sanchor from beginning to end
for an entry that contains information for the statistic specified by statname. If an
entry is found in the statistics list, the pointers in the statistics list anchor are
updated to point to the statistic's entry as the “current” entry for the list.

After this subroutine has located an entry for a statistic, any subsequent API
subroutines that perform operations on the “current” entry in a statistics list will be
performed upon this statistic's entry in the statistics list. This behavior will continue
until another subroutine that modifies the setting for the “current” statistics list entry
is executed.

statname specifies the full context path of the statistic being located into the list.
This name is provided in Spmi format, relative to the top context, and must match
exactly to the format used when the statistics was added to the statistics list with
the PtpeAddStatToList subroutine. The statistic path name does not include the
/host/ <hostname> prefix used by the Performance Toolbox Rsi programming
library. No verification is performed on the format of the statistic name, nor does the
API confirm that such a statistic exists, at the time the statistic is accepted for
processing by this subroutine.

If the statistics list was previously assigned to a system by the
PtpeAssignStatsToHost subroutine, the search perform subroutine occurs in the
“unassigned” statistics list sanchor only; the copy of the statistics list that was
previously assigned to a system remains unchanged by this subroutine.

 Chapter 8. The PTPE API Subroutines 235

 PtpeFindStat

If the statistics list is empty, or the statistic does not have an entry in the statistics
list, an error is returned, and the “current” pointer in the anchor is reset to the
beginning of the statistics list.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_INV_STATNAME statname has a NULL value, or points to a NULL
character string.

PTPE_STAT_NOT_FOUND The system specified by statname could not be found
in the sanchor host list.

PTPE_EMPTY sanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

 Examples
#include <spdm.h>

stat_list_t sanchor;
char findme[PTPE_STNL];
int rc;

strcpy(findme, "Mem/Virt/%free");
rc = PtpeFindStat(findme, sanchor);
switch (rc) {
 case PTPE_SUCCESS:
 break;
 case PTPE_STAT_NOT_FOUND:

/\ handle missing host error \/
 case PTPE_EMPTY:

/\ handle empty list error \/
 default:

/\ handle general error \/
}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

236 Monitoring Guide and Reference

 PtpeFirstHost

 PtpeFirstHost

 Purpose
Positions the host list anchor pointers for operations upon the first entry in the host
list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeFirstHost(hanchor)
host_list_t hanchor;

 Parameters
hanchor

The anchor point of an existing, non-empty host list.

 Description
PtpeFirstHost updates the pointers in the host list anchor hanchor to point to the
first entry in the host list as the “current” host list entry. Any subsequent API
subroutines that perform operation upon the “current” host list entry will be
performed upon the first entry in the host list. This behavior continues until the
“current” entry pointers are reset using by another API subroutine.

An error occurs if this subroutine is executed upon an empty host list.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_HOSTLIST hanchor has a NULL value.

PTPE_EMPTY hanchor is an empty host list.

 Examples
#include <spdm.h>

host_list_t hanchor;

rc = PtpeFirstHost(hanchor);
if (rc != PTPE_SUCCESS) {
/\ handle error \/
}

 Chapter 8. The PTPE API Subroutines 237

 PtpeFirstHost

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeDelHostFromList” on page 225

� “PtpeFindHost” on page 233

� “PtpeNextHost” on page 273

� “PtpeIsLastHost” on page 269

238 Monitoring Guide and Reference

 PtpeFirstStat

 PtpeFirstStat

 Purpose
Positions the statistics list anchor pointers for operations upon the first entry in the
statistics list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeFirstStat(sanchor)
stat_list_t sanchor;

 Parameters
sanchor

The anchor point of an existing, non-empty statistics list.

 Description
PtpeFirstStat updates the pointers in the statistics list anchor sanchor to point to the
first entry in the host list as the “current” statistics list entry. Any subsequent API
subroutines that perform operation upon the “current” statistics list entry will be
performed upon the first entry in the statistics list. This behavior continues until the
“current” entry pointers are reset using by another API subroutine.

If the statistics list was previously assigned to a system by the
PtpeAssignStatsToHost subroutine, the positioning performed by this subroutine
occurs in the “unassigned” statistics list sanchor only; the copy of the statistics list
that was previously assigned to a system remains unchanged by this subroutine.

An error occurs if this subroutine is executed upon an empty statistics list.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_EMPTY sanchor is an empty statistics list.

 Examples
#include <spdm.h>

stat_list_t sanchor;

rc = PtpeFirstStat(sanchor);
if (rc != PTPE_SUCCESS) {
/\ handle error \/
}

 Chapter 8. The PTPE API Subroutines 239

 PtpeFirstStat

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeIsLastStat” on page 271

� “PtpeGetHostStatList” on page 250

� “PtpeFindStat” on page 235

240 Monitoring Guide and Reference

 PtpeFreeHostList

 PtpeFreeHostList

 Purpose
Frees the memory used to store a host list and its anchor point.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeFreeHostList(hanchor)
host_list_t \hanchor;

 Parameters
hanchor

The address of an existing host list anchor point.

 Description
PtpeFreeHostList frees all memory used to store any contents of the host list
pointed to by hanchor, including an statistics lists that may have been assigned to
system entries in the host list. The host list anchor point is also freed, making the
anchor point unusable until a new anchor point is allocated with the
PtpeInitHostList subroutine.

An error occurs if this subroutine is performed on a non-existent host list.

 Return Codes
If an invalid host list was referenced by the hanchor parameter, or the hanchor
parameter is NULL, this subroutine returns a value of PTPE_INV_HOSTLIST. In all
other cases, this subroutine returns a value of PTPE_SUCCESS.

 Examples
#include <spdm.h>

host_list_t hanchor;
int rc;

rc = PtpeInitHostList(&hanchor);
rc = PtpeAddHostToList("spnodeð5.ibm.com",
 hanchor);
rc = PtpeFreeHostList(&hanchor);
if (rc != PTPE_SUCCESS) {
/\ handle error condition \/
}

 Chapter 8. The PTPE API Subroutines 241

 PtpeFreeHostList

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeDelHostFromList” on page 225

� “PtpeEmptyHostList” on page 229

242 Monitoring Guide and Reference

 PtpeFreeStatList

 PtpeFreeStatList

 Purpose
Frees the memory used to store a statistics list and its anchor point.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeFreeHostList(sanchor)
stat_list_t \sanchor;

 Parameters
sanchor

The address of an existing statistics list anchor point.

 Description
PtpeFreeHostList frees all memory used to store any of the host list pointed to by
sanchor, including an statistics lists that may have been assigned to system entries
in the host list. The host list anchor point is also freed, making the anchor point
unusable until a new anchor point is allocated with the PtpeInitStatList subroutine.

Statistics lists assigned to systems cannot be freed using this subroutine; instead,
these lists must be removed from the system's host list entry by using the
PtpeRemoveStatsFromHost subroutine.

An error occurs if this subroutine is performed on a non-existent host list.

 Return Codes
If an invalid statistics list was referenced by the sanchor parameter, or the sanchor
parameter is NULL, this subroutine returns a value of PTPE_INV_STATLIST. In all
other cases, this subroutine returns a value of PTPE_SUCCESS.

 Examples
#include <spdm.h>

stat_list_t sanchor;
int rc;

rc = PtpeInitStatList(&sanchor);
rc = PtpeAddStatToList("Mem/Virt/%free",
 sanchor);
rc = PtpeFreeStatList(&sanchor);
if (rc != PTPE_SUCCESS) {
/\ handle error condition \/
}

 Chapter 8. The PTPE API Subroutines 243

 PtpeFreeStatList

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeAssignStatsToHost” on page 170

� “PtpeEmptyStatList” on page 231

� “PtpeGetHostStatList” on page 250

� “PtpeRemoveStatsFromHost” on page 298

244 Monitoring Guide and Reference

 PtpeGetHost

 PtpeGetHost

 Purpose
Returns the network name of the system whose information is contained in the
“current” entry in a host list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeGetHost(hostname, hanchor)
char \hostname;
host_list_t hanchor;

 Parameters
hostname

Points to a NULL-terminated character string of up to PTPE_NMLN characters
in length, which will contain the network name of the system of the system from
the “current” entry in the host list.

hanchor
The anchor point of an existing non-empty host.

 Description
PtpeGetHost returns the network name that was stored in the “current” entry of the
host list hanchor. The calling subroutine must provide sufficient memory to store the
network name, and provide a pointer to this memory area in the hostname
parameter. An error results if this subroutine is performed on an empty host list.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS,
and the memory area referenced by hostname is modified to contain the network
name of the system in the “current” entry of the host list. If an error has occurred,
the return code is set to one of the following values to indicate the cause of the
error:

PTPE_INV_HOSTLIST hanchor has a NULL value.

PTPE_EMPTY hanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in hanchor have been corrupted.

PTPE_MEMORY The subroutine could not write the system name to the
memory location provided in hostname.

 Chapter 8. The PTPE API Subroutines 245

 PtpeGetHost

 Examples
#include <spdm.h>

host_list_t hanchor;
char this_host[PTPE_NMLN];
int rc;

rc = PtpeNextHost(hostlist);
if (rc == PTPE_SUCCESS) {

rc = PtpeGetHost(this_host, hanchor);
printf("Host is %s\n", this_host);

}

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeDelHostFromList” on page 225

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeGetHostResult” on page 247

� “PtpeGetHostStatList” on page 250

246 Monitoring Guide and Reference

 PtpeGetHostResult

 PtpeGetHostResult

 Purpose
Determines the result of a previous Performance Toolbox Parallel Extensions API
subroutine upon the currently referenced entry in a host list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeGetHostResult(hanchor, result)
host_list_t hanchor;
int \result;

 Parameters
hanchor

The anchor point of an existing non-empty host.

result
The address of an integer, where the result code for the “current” entry in the
host list will be placed.

 Description
PtpeGetHostResult should be used upon a "reply" host list from a previous API
subroutine that issued commands to control performance information or retrieve
performance information from the Performance Toolbox Parallel Extensions
monitoring hierarchy. PtpeGetHostResult obtains the result code of the operation,
which is placed by these API subroutines in a system's host list entry, and copies
the result code to the memory location referenced by result.

The result code returned indicates whether or not the system in the “current” host
list entry for hanchor successfully carried out the previous API request. If the
system failed to carry out the request, the result code will indicate the nature of the
failure on that system.

An error results if this subroutine is performed on an empty host list. If this
subroutine is used on any host list other than a host list returned as a reply from a
previous API subroutine, the result code will be PTPE_SUCCESS for all entries in
the host list.

Upon completion of PtpeGetHostResult the result parameter takes one of the
following values:

PTPE_SUCCESS The operation was successful.

PTPE_DAEMON_ERROR The PTPE daemons on this node received an
unrecognized or corrupted instruction, or received an
enhanced instruction from a later release of PTPE,
which it could not carry out.

 Chapter 8. The PTPE API Subroutines 247

 PtpeGetHostResult

PTPE_FILE_ERROR The node could not create a file it needed to obtain
information from the System Data Repository.

PTPE_AGAIN The node was not in a state from which it could accept
API requests. This condition can occur when the node
has not fully completed initializing the PTPE daemons.
Retry the request on this node at a later time.

PTPE_API_FAILED The operation failed on this node.

PTPE_ARCH_ACTIVE Recording was already active, and another request to
begin recording performance information to the archive
was received

PTPE_ARCH_OFF Recording was inactive, and another request to stop
recording performance information to the archive was
received

PTPE_STAT_NOT_FOUND At least one statistic in the host's statistic list could not
be found on the node

PTPE_INV_STATLIST None of the statistics in the host's statistic list could
not be found on the node

PTPE_NO_CONTACT Could not establish a network connection with this
host to perform the operation

PTPE_NO_EXEC A host connection was established, but the PTPE API
handler could not be started on the system to fulfil the
request.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS,
signaling that the operation was successful and the memory area referenced by
result is modified to contain the result code from the “current” entry in the host list.
If an error has occurred, return code is set to one of the following values to indicate
the cause of the error:

PTPE_INV_HOSTLIST hanchor has a NULL value.

PTPE_INV_PTR result is a NULL value.

PTPE_EMPTY hanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in hanchor have been corrupted.

In all error cases, the memory area referenced by result is set to the value of
PTPE_INV_HOSTLIST.

 Examples

248 Monitoring Guide and Reference

 PtpeGetHostResult

#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
char this_host[PTPE_NMLN];
int rc, result;

rc = PtpeArchStartHosts(sblock, targets,
 &reply);
rc = PtpeFirstHost(reply);
for (;;) {

rc = PtpeGetHost(this_host, reply);
rc = PtpeGetHostResult(reply,&result);
if (rc == PTPE_SUCCESS) {

printf("%s: code %d\n",this_host,
 result);
 }

rc = PtpeIsLastHost(reply);
if (rc == PTPE_TRUE) {

 break;
 }
rc = PtpeNextHost(reply);
}

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeGetHost” on page 245

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeColSetup” on page 211

� “PtpeColStart” on page 215

� “PtpeColStop” on page 220

� “PtpeArchStartHosts” on page 156

� “PtpeArchStopHosts” on page 165

� “PtpeColGetStats” on page 198

� “PtpeArchGetStats” on page 138

� “PtpeColQueryStats” on page 206

� “PtpeArchQueryStats” on page 147

 Chapter 8. The PTPE API Subroutines 249

 PtpeGetHostStatList

 PtpeGetHostStatList

 Purpose
Makes a copy of a statistics list that has been assigned to the currently referenced
system in a host list.

 Library
libptpe.a

 Syntax
#include <spdm.h>
int PtpeGetHostStatList(sanchor, hanchor)
stat_list_t sanchor;
host_list_t hanchor;

 Parameters
sanchor

Points to the statistic list anchor point. This parameter must reference an
initialized statistics list before the subroutine is called.

hanchor
The anchor point of a non-empty host list.

 Description
PtpeGetHostStatList obtains a copy of the statistics list that has been assigned to
the “current” entry in the host list hanchor. The anchor of the copy list is returned
to the caller in the sanchor parameter.

The application should ensure that the hanchor host list references the appropriate
entry by using the PtpeFirstHost, PtpeNextHostList, and PtpeFindStat
subroutines. If care is not taken, the application may retrieve the wrong statistics list
from the hanchor list.

PTPE API subroutines such as PtpeColGetStats and PtpeArchGetStats provide a
host list to the calling application. Potentially, each entry in this reply host list
contains a list of statistics and their values assigned to them. However, the API
only provides subroutines to scan through, and obtain information from, a statistics
list that has not been assigned to a host list entry.

In order to scan statistics lists returned from API subroutines, and retrieve statistical
values from these lists, the application should get a copy of the statistics list using
the PtpeGetHostStatList subroutine.

When the application has completed its use of the statistic list copy, the copy
should be freed using the PtpeFreeStatList subroutine.

An error occurs when this subroutine is performed on an empty or uninitialized host
list.

250 Monitoring Guide and Reference

 PtpeGetHostStatList

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS,
and the sanchor parameter is modified to point to a copy of the “current” host list
entry's statistic list. If an error has occurred, the return code is set to one of the
following values to indicate the cause of the error:

PTPE_INV_HOSTLIST hanchor has a NULL value.

PTPE_INV_PTR sanchor has a NULL value.

PTPE_INV_STATLIST The currently referenced entry in hanchor does not
have a statistics list assigned to it.

PTPE_EMPTY hanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in hanchor have been corrupted.

 Examples
#include <spdm.h>

host_list_t hanchor;
stat_list_t sanchor;

rc = PtpeFindHost("spnodeð5.ibm.com",
 hanchor);
sanchor = (stat_list_t) NULL;
rc = PtpeInitStatList(&sanchor);
rc = PtpeGetHostStatList(sanchor, hanchor);
if (rc != PTPE_SUCCESS) {

/\ handle error condition \/
}

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeFreeHostList” on page 241

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeGetStatName” on page 252

� “PtpeGetStatType” on page 258

� “PtpeGetStatValueLong” on page 263

� “PtpeGetStatValueFloat” on page 261

 Chapter 8. The PTPE API Subroutines 251

 PtpeGetStatName

 PtpeGetStatName

 Purpose
Returns the full context path of the statistic whose information is contained in the
“current” entry in a statistics list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeGetStatName(statname, sanchor)
char \statname;
stat_list_t sanchor;

 Parameters
statname

Points to a character string of up to PTPE_STNL characters in length, which
will contain the full context path of the system of the statistic from the “current”
entry in the statistics list.

sanchor
The anchor point of an existing non-empty statistics list.

 Description
PtpeGetStatName returns the full context path that stored in the “current” entry of
the statistics list sanchor. The calling subroutine must provide sufficient memory to
store the statistic context, and provide a pointer to this memory area in the
statname parameter.

An error results if this subroutine is performed on an empty statistics list.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS,
and the memory area referenced by statname is modified to contain the full context
of the statistic in the “current” entry of the statistics list. If an error has occurred, the
return code is set to one of the following values to indicate the cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_EMPTY sanchor is an empty statistics list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

PTPE_MEMORY The subroutine could not write the statistic name to
the memory location provided in statname.

252 Monitoring Guide and Reference

 PtpeGetStatName

 Examples
#include <spdm.h>

stat_list_t sanchor;
char this_stat[PTPE_STNL];
int rc;

rc = PtpeNextStat(sanchor);
if (rc == PTPE_SUCCESS) {

rc = PtpeGetStatName(this_stat,
 sanchor);

printf("Statistics is %s\n",
 this_stat);
}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeAssignStatsToHost” on page 170

� “PtpeNextStat” on page 275

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatResult” on page 254

� “PtpeFindStat” on page 235

� “PtpeFirstStat” on page 239

 Chapter 8. The PTPE API Subroutines 253

 PtpeGetStatResult

 PtpeGetStatResult

 Purpose
Determines the result of a previous Performance Toolbox Parallel Extensions API
subroutine upon the currently referenced entry in a statistics list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeGetStatResult(sanchor, result)
stat_list_t sanchor;
int \result;

 Parameters
sanchor

The anchor point of an existing non-empty statistics list.

result
The address of an integer, where the result of the “current” entry in the
statistics list will be placed.

 Description
PtpeGetStatResult should be used upon a statistics retrieved from a reply host list
from a previous API subroutine that issued commands to control performance
information or retrieve performance information from the Performance Toolbox
Parallel Extensions monitoring hierarchy.The PtpeGetHostStatList subroutine can
be used to obtain a the statistics list from a system's entry in a reply host list.
PtpeGetStatResult obtains the result code of the operation which is placed by
these API subroutines in a statistics's statistics list entry, and copies the result code
to the memory location referenced by result.

The result code returned indicates whether or not the statistic in the “current” host
list entry for sanchor was successfully located the previous API request. If the
system failed to locate the statistic, the result code will reflect this.

An error results if this subroutine is performed on an empty statistics list. Results
are unpredictable if this subroutine is used upon a statistics list that was not
retrieved from a "reply" host list.

Upon completion of PtpeGetStatResult the result parameter takes one of the
following values:

PTPE_SUCCESS Statistic operation was successful.

PTPE_TIME_APPROX Statistic operation was successful, but PTPE could not
find an entry for the statistic with the exact timestamp
specified, so the entry with the closest matching
timestamp was used.

254 Monitoring Guide and Reference

 PtpeGetStatResult

PTPE_STAT_NOT_FOUND The statistic could not be located on the node or in
that node's archive

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS,
signaling that the statistic operation was successful. The memory area referenced
by result is modified to contain the result code from the “current” entry in the
statistics list. Otherwise, the return code is set to one of the following values:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_INV_PTR result is a NULL value.

PTPE_EMPTY sanchor is an empty statistics list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

In all error cases except PTPE_INV_PTR, the memory area referenced by result is
set to the value of PTPE_INV_STATLIST.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
stat_list_t sanchor;
char this_host[PTPE_NMLN];
char this_stat[PTPE_STNL];
int rc, result;

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeAssignStatsToHost” on page 170

� “PtpeNextStat” on page 275

� “PtpeGetHostStatList” on page 250

� “PtpeFindStat” on page 235

� “PtpeFirstStat” on page 239

� “PtpeColGetStats” on page 198

� “PtpeArchGetStats” on page 138

� “PtpeColQueryStats” on page 206

� “PtpeArchQueryState” on page 144

 Chapter 8. The PTPE API Subroutines 255

 PtpeGetStatTime

 PtpeGetStatTime

 Purpose
Retrieves the timestamp from the currently referenced statistic entry in a statistics
list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeGetStatTime(tstamp, sanchor)
stat_list_t sanchor;
struct tm \tstmp;

 Parameters
sanchor

The address of an existing statistics list anchor point.

tstmp
The address of a struct tm structure, contain the value of the timestamp if this
subroutine successfully completes. The format of the tm structure is defined in
the <time.h> header file.

 Description
PtpeGetStatTime retrieves the timestamp recorded in “current” entry of the statistic
list anchored at sanchor. This timestamp is recorded in an integer format in the
entry, and is converted to struct tm format before being provided to the caller.

When an entry is created in a statistics list by the PtpeAddStatToList subroutine,
the entry's timestamp field is initialized to a value of -1. If the timestamp has not
been set by the PtpeSetStatTime subroutine, or updated by other subroutines that
obtain statistic information from the Performance Toolbox Parallel Extensions
monitoring hierarchy (such as PtpeArchGetStats), this subroutine will return a
struct value that indicates a date of 31 December, 1969. Otherwise, the data and
time returned is the value set in the currently referenced entry in sanchor.

This subroutine returns an error if it is performed on an invalid or empty statistics
list.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS,
and the timestamp from the “current” entry in the statistics list is placed in the
memory location pointed to by tstmp. If an error has occurred, the memory area
indicated by tstmp is not modified, and the return code is set to one of the following
values to indicate the cause of the error:

PTPE_INV_PTR tstmp contains a NULL value.

PTPE_INV_STATLIST sanchor has a NULL value.

256 Monitoring Guide and Reference

 PtpeGetStatTime

PTPE_EMPTY sanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

PTPE_MEMORY An error occurred when copying the timestamp value
to the memory location indicated by the tstmp
parameter.

 Examples
#include <spdm.h>

stat_list_t sanchor;
struct tm tstmp;
char statname[PTPE_STNL];

rc = PtpeFirstStat(sanchor);
for(;;) {

rc = PtpeGetStatName(statname, sanchor);
rc = PtpeGetStatTime(&tstmp, sanchor);
if (rc != PTPE_SUCCESS) {

/\ handle error \/
 }
 else{

printf("Time on %s is %n",
 statname, ctime(tstmp));
 }

rc = PtpeIsLastStat(sanchor);
if (rc == PTPE_TRUE) {

 break;
 }

rc = PtpeNextStat(sanchor);
}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeGetStatName” on page 252

� “PtpeGetHostStatList” on page 250

� “PtpeRemoveStatsFromHost” on page 298

� “PtpeGetStatType” on page 258

� “PtpeGetStatValueLong” on page 263

� “PtpeGetStatValueFloat” on page 261

� “PtpeGetStatResult” on page 254

 Chapter 8. The PTPE API Subroutines 257

 PtpeGetStatType

 PtpeGetStatType

 Purpose
Indicates the data type used to store the currently reference statistic in a statistics
list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeGetStatType(stype, sanchor)
ptpe_data_id \stype;
stat_list_t sanchor;

 Parameters
sanchor

The address of an existing statistics list anchor point.

stype
The address of a ptpe_data_id, which will contain a data type identifier upon
successful completion of this subroutine.

 Description
PtpeGetStatType returns an identifier that indicate data type used by a statistic.
The statistic used in this subroutine is the “current” statistic entry in the statistics list
anchored at sanchor. Statistics are one of the following types:

PTPE_LONG Indicates data of integer or long integer format.

PTPE_FLOAT Indicates data of float or double format.

PTPE_NONE Indicates that the data type has not been set yet for
the statistic.

PtpeGetStatType allows an application to test the t data used to store the
performance statistic in the statistics list, so that the proper API subroutine can be
used to obtain the actual value of the statistic from the list (see
“PtpeGetStatValueLong” on page 263 and “PtpeGetStatValueFloat” on page 261).
Using a subroutine that retrieves the wrong data type from the list may yield
incorrect data values to the application.

When an entry is created for a statistic by the PtpeAddStatToList subroutine, the
data type is set by default to PTPE_NONE. If the statistic type has not been set to
a specific type by the PtpeSetStatType subroutine, or by any other API subroutine
that retrieves statistic information from the Performance Toolbox Parallel Extension
monitoring hierarchy (such as PtpeArchGetStats), this subroutine will return this de
initialization value.

258 Monitoring Guide and Reference

 PtpeGetStatType

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS,
and places the data type of the statistic at the location referenced by the stype
parameter. If an error has occurred, the memory referenced by stype is not
modified, and the return code is set to one of the following values to indicate the
cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_INV_PTR stype has a NULL value.

PTPE_EMPTY sanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

PTPE_MEMORY An error occurred when the subroutine attempted to
place the data type information in the memory location
referenced by stype.

 Examples
#include <spdm.h>

stat_list_t sanchor;
ptpe_data_id stype;
char sname[PTPE_STNL];
long ldata;
float fdata;
int rc;

rc = PtpeFirstStat(sanchor);
for (;;) {

rc = PtpeGetStatName(sname, sanchor);
rc = PtpeGetStatType(&stype, sanchor);
if (rc != PTPE_SUCCESS) {

/\ handle error \/
 }
 else {

if (rc == PTPE_LONG) {
rc = PtpeGetStatValueLong(

 &ldata, sanchor);
 }

if (rc == PTPE_FLOAT) {
rc = PtpeGetStatValueFloat(

 &fdata, sanchor);
 }
 }

rc = PtpeIsLastStat(sanchor);
if (rc == PTPE_TRUE) {

 break;
 }

rc = PtpeNextStat(sanchor);
}

 Chapter 8. The PTPE API Subroutines 259

 PtpeGetStatType

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeRemoveStatsFromHost” on page 298

� “PtpeGetStatType” on page 258

� “PtpeGetStatName” on page 252

� “PtpeGetStatValueLong” on page 263

� “PtpeGetStatValueFloat” on page 261

� “PtpeGetStatResult” on page 254

� “PtpeStatIsLong” on page 305

� “PtpeStatIsFloat” on page 303

� “PtpeSetStatTime” on page 300

260 Monitoring Guide and Reference

 PtpeGetStatValueFloat

 PtpeGetStatValueFloat

 Purpose
Retrieves the value stored in the currently referenced entry in a statistics list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeGetStatValueFloat(sval, sanchor)
stat_list_t sanchor;
float \sval;

 Parameters
sanchor

The anchor point for a non-empty statistics list.

sval
The address of a float. Upon successful completion of this subroutine, the value
stored for the currently referenced entry in sanchor will be stored at this
location.

 Description
PtpeGetStatValueFloat is used by an application to obtain the value stored for the
“current” entry in the statistics list anchored by sanchor. When this subroutine is
performed upon a valid, non-empty statistics list, the value stored in the “current”
entry is copied to the memory location referenced by the sval parameter.

This subroutine returns a value in floating point data format, and should be used
only when the “current” entry is of the data type PTPE_FLOAT. The API
subroutines PtpeGetStatType and PtpeStatIsFloat should be used to verify that
the statistic is of the proper type before issuing this subroutine. This subroutine will
not report an error if it is issued upon a statistic of another type, but will cast the
value found in the “current” entry to a float data type.

When a statistic entry is created by the PtpeAddStatToList subroutine, the value
for the statistic is initialized to zero. If the statistic value has not been set by the
PtpeSetStatValue (MISSING THIS ROUTINE) subroutine, or the statistic value was
not obtained by an API subroutine (like the PtpeArchGetStats subroutine), a value
of zero will be obtained. It will be impossible to determine whether this value
contains the initialization value, or whether the value of the statistic is truly zero, so
caution must be used when issuing this subroutine and analyzing its results.

An error results if this subroutine is performed on an empty or an uninitialized
statistics list.

 Chapter 8. The PTPE API Subroutines 261

 PtpeGetStatValueFloat

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS,
and the value of the “current” statistic list entry is placed in the memory location
referenced by sval. If an error has occurred, the return code is set to one of the
following values to indicate the cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_INV_PTR sval has a NULL value.

PTPE_EMPTY sanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

PTPE_MEMORY An error occurred while writing the value of the
statistic to the memory location referenced by sval.

 Examples
#include <spdm.h>

stat_list_t sanchor;
float fdata;
int rc;

rc = PtpeStatIsFloat(sanchor);
if (rc == PTPE_TRUE) {

rc = PtpeGetStatValueFloat(&fdata,
 sanchor);

if (rc != PTPE_SUCCESS) {
/\ handle error \/

 }
 else {

printf("Value is %1ð.2f\n", fdata);
 }
}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeStatIsLong” on page 305

� “PtpeStatIsFloat” on page 303

� “PtpeGetStatType” on page 258

� “PtpeGetStatName” on page 252

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatValueLong” on page 263

262 Monitoring Guide and Reference

 PtpeGetStatValueLong

 PtpeGetStatValueLong

 Purpose
Retrieves the value stored in the currently referenced entry in a statistics list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeGetStatValueLong(sval, sanchor)
stat_list_t sanchor;
long \sval;

 Parameters
sanchor

The anchor point for a non-empty statistics list.

sval
The address of a long integer. Upon successful completion of this subroutine,
the value stored for the currently referenced entry in sanchor will be stored at
this location.

 Description
PtpeGetStatValueLong is used by an application to obtain the value stored for the
“current” entry in the statistics list anchored by sanchor. When this subroutine is
performed upon a valid, non-empty statistics list, the value stored in the “current”
entry is copied to the memory location referenced by the sval parameter.

This subroutine returns a value in long integer format, and should be used only
when the “current” entry is of the data type PTPE_LONG. The API subroutines
PtpeGetStatType and PtpeStatIsLong should be used to verify that the statistic is
of the proper type before issuing this subroutine. This subroutine will not report an
error if it is issued upon a statistic of another type, but will cast the value found in
the “current” entry to a long data type.

When a statistic entry is created by the PtpeAddStatToList subroutine, the value
for the statistic is initialized to zero. If the statistic value has not been set by the
PtpeSetStatValue (MISSING THIS ROUTINE) subroutine, or the statistic value was
not obtained by an API subroutine (like the PtpeArchGetStats subroutine), a value
of zero will be obtained. It will be impossible to determine whether this value
contains the initialization value, or whether the value of the statistic is truly zero, so
caution must be used when issuing this subroutine and analyzing its results.

An error results if this subroutine is performed on an empty or an uninitialized
statistics list.

 Chapter 8. The PTPE API Subroutines 263

 PtpeGetStatValueLong

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS,
and the value of the “current” statistic list entry is placed in the memory location
referenced by sval. If an error has occurred, the return code is set to one of the
following values to indicate the cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_INV_PTR sval has a NULL value.

PTPE_EMPTY sanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

PTPE_MEMORY An error occurred while writing the value of the
statistic to the memory location referenced by sval.

 Examples
#include <spdm.h>

stat_list_t sanchor;
long ldata;
int rc;

rc = PtpeStatIsLong(sanchor);
if (rc == PTPE_TRUE) {

rc = PtpeGetStatValueLong(&ldata,
 sanchor);

if (rc != PTPE_SUCCESS) {
/\ handle error \/

 }
 else {

printf("Value is %ld\n", ldata);
 }
}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeStatIsLong” on page 305

� “PtpeStatIsFloat” on page 303

� “PtpeGetStatType” on page 258

� “PtpeGetStatName” on page 252

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatValueLong” on page 263

� “PtpeGetStatValueFloat” on page 261

264 Monitoring Guide and Reference

 PtpeInitHostList

 PtpeInitHostList

 Purpose
Allocates an anchor point for a host list, and sets the anchor point initial values to
indicate an empty list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeInitHostList(hanchor)
host_list_t \hanchor;

 Parameters
sanchor

Points to the host list anchor point at the completion of the subroutine. This
parameter must point to a NULL anchor point before this subroutine is called.

 Description
PtpeInitHostList allocates a host list anchor point, and sets the anchor to indicate
that the list is empty. This subroutine must be called before a host list can be used
by other PTPE library subroutines that manipulate host lists.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_NO_MEMORY An anchor point could not be allocated

PTPE_INV_PTR The hanchor parameter is NULL, or the memory at the
location indicated by sanchor is not NULL

 Examples
#include <spdm.h>
host_list_t myhosts;
int rc;

myhosts = (host_list_t) NULL;
rc = PtpeInitHostList(&myhosts);
if (rc != PTPE_SUCCESS) {
/\ handle error \/
}

 Chapter 8. The PTPE API Subroutines 265

 PtpeInitHostList

 Related Information
� “PtpeEmptyHostList” on page 229

� “PtpeFreeHostList” on page 241

� “PtpeAddHostToList” on page 114

� “PtpeQueryAvailHosts” on page 284

266 Monitoring Guide and Reference

 PtpeInitStatList

 PtpeInitStatList

 Purpose
Allocates an anchor point for a statistics list, and sets the anchor point initial values
to indicate an empty list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeInitStatList(sanchor)
stat_list_t \sanchor;

 Parameters
sanchor

Points to the statistic list anchor point at the completion of the subroutine. This
parameter must point to a NULL anchor point before this subroutine is called.

 Description
PtpeInitStatList allocates a statistics list anchor point, and sets the anchor to
indicate that the list is empty. This subroutine must be called before a statistics list
can be used by other PTPE library subroutines that manipulate statistics lists.

A statistics list allocated by this subroutine is said to be “unassigned.” In other
words, the list has not been attached or "assigned" to a system at this time.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_NO_MEMORY An anchor point could not be allocated

PTPE_INV_PTR The sanchor parameter is NULL, or the memory at the
location indicated by hanchor is not NULL

 Examples
#include <spdm.h>
stat_list_t mystats;
int rc;

mystats = (host_list_t) NULL;
rc = PtpeInitStatList(&mystats);
if (rc != PTPE_SUCCESS) {
/\ handle error \/
}

 Chapter 8. The PTPE API Subroutines 267

 PtpeInitStatList

 Related Information
� “PtpeEmptyStatList” on page 231

� “PtpeFreeStatList” on page 243

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeAssignStatsToHost” on page 170

268 Monitoring Guide and Reference

 PtpeIsLastHost

 PtpeIsLastHost

 Purpose
Determines if the host list is currently positioned at the last entry of the list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeIsLastHost(hanchor)
host_list_t hanchor;

 Parameters
hanchor

The anchor point of an existing, non-empty host list.

 Description
PtpeIsLastHost determines if the “current” element in the host list hanchor is the
last entry in the host list. In cases where this subroutine is performed on a valid,
non-empty host list, the subroutine provides a true or false answer.

An error results if this subroutine is performed on an empty host list.

 Return Codes
Upon successful completion, this subroutine returns one of the following values:

PTPE_TRUE The “current” entry is the last entry in the host list.

PTPE_FALSE The “current” entry is not the last entry in the host list.

If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_HOSTLIST hanchor has a NULL value.

PTPE_EMPTY hanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in hanchor have been corrupted.

 Examples

 Chapter 8. The PTPE API Subroutines 269

 PtpeIsLastHost

#include <spdm.h>

host_list_t hanchor;
int rc;

cp 14
for (;;) {

rc = PtpeIsLastHost(hanchor);
if (rc!=PTPE_TRUE || rc!=PTPE_FALSE){

/\ handle error \/
 }
 else {

if (rc == PTPE_TRUE) {
 break;
 }

/\ do normal processing \/
rc = PtpeNextHost(hanchor);

 }
}

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeDelHostFromList” on page 225

� “PtpeFirstHost” on page 237

� “PtpeFindHost” on page 233

� “PtpeNextHost” on page 273

270 Monitoring Guide and Reference

 PtpeIsLastStat

 PtpeIsLastStat

 Purpose
Determines if the statistics list is currently positioned at the last entry of the list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeIsLastStat(sanchor)
stat_list_t sanchor;

 Parameters
sanchor

The anchor point of an existing, non-empty statistics list.

 Description
PtpeIsLastStat determines if the “current” element in the statistics list sanchor is
the last entry in the statistics list. In cases where this subroutine is performed on a
valid, non-empty statistics list, the subroutine provides a true or false answer.

An error results if this subroutine is performed on an empty statistics list.

If the statistics list was previously assigned to a system by the
PtpeAssignStatsToHost subroutine, the test performed b subroutine occurs in the
“unassigned” statistics list sanchor only; the copy of the statistics list that was
previously assigned to a system remains unchanged by this subroutine.

 Return Codes
Upon successful completion, this subroutine returns one of the following values:

PTPE_TRUE The “current” entry is the last entry in the statistics list.

PTPE_FALSE The “current” entry is not the last entry in the statistics
list.

If an error has occurred, the return code is set to one o the following values to
indicate the cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_EMPTY sanchor is an empty statistics list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

 Chapter 8. The PTPE API Subroutines 271

 PtpeIsLastStat

 Examples
#include <spdm.h>

stat_list_t sanchor;
int rc;

for (;;) {
rc = PtpeIsLastStat(sanchor);
if (rc!=PTPE_TRUE || rc!=PTPE_FALSE){

/\ handle error \/
 }
 else {

if (rc == PTPE_TRUE) {
 break;
 }

/\ do normal processing \/
rc = PtpeNextStat(sanchor);

 }
}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeAssignStatsToHost” on page 170

� “PtpeNextStat” on page 275

� “PtpeGetHostStatList” on page 250

� “PtpeFindStat” on page 235

� “PtpeFirstStat” on page 239

272 Monitoring Guide and Reference

 PtpeNextHost

 PtpeNextHost

 Purpose
Positions the host list anchor pointers for operations upon the entry following the
current entry in the host list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeNextHost(hanchor)
host_list_t hanchor;

 Parameters
hanchor

The anchor point of an existing, non-empty host list.

 Description
PtpeNextHost updates the pointers in the host list anchor hanchor to point to the
entry in the host list immediately following the entry marked as “current.” This
makes the next entry in the list the new “current” entry. Any subsequent API
subroutines that perform operation upon the “current” host list entry will be
performed upon the this entry in the host list. This behavior continues until the
“current” entry pointers are reset using by another API subroutine.

If the “current” pointers in the host list anchor point to the last entry in the host list
prior to the call to this subroutine, the pointers are not modified. An error results if
this subroutine is used on an empty host list.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_HOSTLIST hanchor has a NULL value.

PTPE_LIST_END The internal pointers are already positioned at the last
entry in the host list.

PTPE_EMPTY hanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in hanchor have been corrupted.

 Chapter 8. The PTPE API Subroutines 273

 PtpeNextHost

 Examples
#include <spdm.h>

host_list_t hanchor;
int rc;

for(;;) {
rc = PtpeNextHost(hanchor);
if (rc == PTPE_LIST_END) {

 break;
 }

if (rc != PTPE_SUCCESS) {
/\ handle error \/

 }
/\ do normal operation on list entry \/

}

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeDelHostFromList” on page 225

� “PtpeFirstHost” on page 237

� “PtpeFindHost” on page 233

� “PtpeIsLastHost” on page 269

274 Monitoring Guide and Reference

 PtpeNextStat

 PtpeNextStat

 Purpose
Positions the statistics list anchor pointers for operations upon the entry following
the current entry in the statistics list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeNextStat(sanchor)
stat_list_t sanchor;

 Parameters
sanchor

The anchor point of an existing, non-empty statistics list.

 Description
PtpeNextStat updates the pointers in the statistics list anchor sanchor to point to
the entry in the statistics list immediately following the entry marked as “current.”
This makes the next entry in the list the new “current” entry. Any subsequent API
subroutines that perform operation upon the “current” statistics list entry will be
performed upon the this entry in the statistics list. This behavior continues until the
“current” entry pointers are reset using by another API subroutine.

If the “current” pointers in the statistics list anchor point to the last entry in the
statistics list prior to the call to this subroutine, the pointers are not modified. An
error results if this subroutine is used on an empty statistics list.

If the statistics list was previously assigned to a system by the
PtpeAssignStatsToHost subroutine, the positioning performed by this subroutine
occurs in the “unassigned” statistics list sanchor only; the copy of the statistics list
that was previously assigned to a system remains unchanged by this subroutine.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_LIST_END The internal pointers are already positioned at the last
entry in the statistics list.

PTPE_EMPTY sanchor is an empty statistics list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

 Chapter 8. The PTPE API Subroutines 275

 PtpeNextStat

 Examples
#include <spdm.h>

stat_list_t sanchor;
int rc;

for(;;) {
rc = PtpeNextStat(sanchor);
if (rc == PTPE_LIST_END) {

 break;
 }

if (rc != PTPE_SUCCESS) {
/\ handle error \/

 }
/\ do normal operation on list entry \/

}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeAssignStatsToHost” on page 170

� “PtpeGetHostStatList” on page 250

� “PtpeIsLastStat” on page 271

� “PtpeFindStat” on page 235

� “PtpeFirstStat” on page 239

276 Monitoring Guide and Reference

 PtpeOpenSession

 PtpeOpenSession

 Purpose
Establishes a session with the Performance Toolbox Parallel Extensions.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeOpenSession(sblock)
session_ptr_t \sblock;

 Parameters
sblock

A pointer to a session_ptr_t data type, which should be set to a NULL value
before invoking this subroutine. Upon successful completion of the subroutine,
a session control information block will be placed at this location.

 Description
PtpeOpenSession establishes a session between the application and the
Performance Toolbox Parallel Extensions. The session permits the application to
control performance information collection, summarization, and archiving in the
PTPE monitoring hierarchy. The session also permits an application to obtain
current or archived performance information from the systems in the monitoring
hierarchy.

When a session is established, PTPE grants sole control of the monitoring
hierarchy to the application for the duration of the session. This means that other
commands, such as ptpehier or ptpectrl , cannot modify the hierarchy structure, or
change the current status of performance information collection and archiving.
Other PTPE API applications are also restricted from controlling performance
information collection and archiving while the session is held. If multiple PTPE API
applications must execute in parallel, the applications should coordinate their use of
sessions, ensuring that one application releases the session for the other
application(s) to acquire. Applications must recognize that no other application will
be able to acquire a session while a session is held by another application, and
should be coded to handle this eventuality.

Only users that are members of the perfmon user group can establish a session
with PTPE. The user of the application must be a member of the perfmon user
group, and have set that group to be their effective user group for this subroutine to
establish a session.

A session cannot be established if another application holds a session, or if the
application attempts to acquire a session while either the ptpectrl or ptpehier
commands are executing. A session also cannot be established if the ptpeconf
command was never executed to create the necessary PTPE data classes in the
System Data Repository.

 Chapter 8. The PTPE API Subroutines 277

 PtpeOpenSession

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_LOCKED Another application currently holds a PTPE API
session. This application must wait for the other
application to release the session.

PTPE_OVERWRITE The application already has an active session.

PTPE_AUTH User is not a member of the perfmon user group, or
has not made the perfmon group the effective group
for this application.

PTPE_INV_PTR sblock is not a NULL value.

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
session.

PTPE_MEMORY An internal error occurred.

PTPE_NO_LOCK_OBJ The PTPE data classes do not exist in the System
Data Repository. The classes may not have been
created, or the application may be running in an
incorrect system partition.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
int rc;

sblock = (session_ptr_t) NULL;
rc = PtpeOpenSession(&sblock);
switch(rc) {
case PTPE_SUCCESS:
 break;
case PTPE_OVERWRITE:

/\ already had a session \/
 break;
case PTPE_LOCKED:

/\ wait for session to become free \/
/\ then retry the session \/

default:
/\ handle error condition \.

}

278 Monitoring Guide and Reference

 PtpeOpenSession

 Related Information
� “PtpeCloseSession” on page 176

� “ptpectrl” on page 88

� “ptpehier” on page 99

� “ptpeconf” on page 86

� “ptpegroup” on page 97

� The AIX newgrp command

 Chapter 8. The PTPE API Subroutines 279

 PtpeQueryAllHostStatus

 PtpeQueryAllHostStatus

 Purpose
Reports the status of performance information collection and archiving on all
systems in the Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeQueryAllHostStatus(sblock, reply)
session_ptr_t sblock;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the monitoring hierarchy. Each entry will contain a
result code to indicate whether or not the system was successful in carrying out
the request.

 Description
PtpeQueryAllHostStatus returns the current status of performance information
collection and archiving on all systems in the Performance Toolbox Parallel
Extensions monitoring hierarchy. This call is similar to the PtpeQueryHostStatus
subroutine, except that this subroutine automatically queries all systems in the
monitoring hierarchy.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine.

When PtpeQueryAllHostStatus is executed, the subroutine relays the query to the
monitoring hierarchy's central coordinator node. The central coordinator node
forwards the query to all data manager nodes in the hierarchy, which then relay the
query to those systems in their reporting groups.

Each system in the monitoring hierarchy replies with a code that indicates its
current collection and archiving status. This code is constructed by ORing together
the following values:

PTPE_SAMPLE The system is currently supplying performance
information (set by all systems whenever performance
information collection is active)

280 Monitoring Guide and Reference

 PtpeQueryAllHostStatus

PTPE_COLLECT The system is currently supplying summary
performance information (set by managing systems
when performance information collection is active)

PTPE_ARCHIVE The system is currently recording performance
information to the archive

If collection or archiving is not active on the system, the system replies with the
following code:

PTPE_INACTIVE The system is not currently supplying performance
information or archiving information.

The system then indicates its success or failure in the effort to its data manager
node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The system's status or failure
reply is placed in the partial host list. This list is then relayed to the central
coordinator node, who constructs a complete host list. The complete host list is
transmitted back to the PtpeQueryHostStatus subroutine, which provides it to the
application in the reply parameter.

PtpeQueryHostStatus will provide an indication of the overall success or failure of
the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the query.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the query.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the query.

To determine the status of a system, and to determine which systems were not
successful, the reply list should be scanned, and the results for each system in the
list checked using the PtpeGetHostResult subroutine. A negative value for a result
indicates an error. A value of zero or greater reflects the current status of the
system. In non-error cases, the result should be ANDed with PTPE_SAMPLE,
PTPE_COLLECT, or PTPE_ARCHIVE to determine the system's current status.
This subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the query, but an error occurred in reading the reply
list response from the central coordinator Node.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the query. The list reply points to contains all
systems involved in the command; the application can
determine which systems failed by performing the

 Chapter 8. The PTPE API Subroutines 281

 PtpeQueryAllHostStatus

PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the query, and an error occurred in reading
the reply list response from the central coordinator
node.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
query. reply contains all systems involved in the query,
along with the reasons for the failure on these
systems. The application can determine the cause of
the error by performing the PtpeGetHostResult
subroutine on all systems in the reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the query, and an error
occurred in reading the reply list from the central
coordinator node.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277)

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99)

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

282 Monitoring Guide and Reference

 PtpeQueryAllHostStatus

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeQueryAllHostStatus(sblock, &reply);
if (rc != PTPE_SUCCESS) {

printf("Not all systems succeded.\n");
}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeColQueryState” on page 203

� “PtpeArchQueryState” on page 144

� “PtpeQueryHostStatus” on page 293

� “PtpeColStart” on page 215

� “PtpeColStop” on page 220

� “PtpeArchStartHosts” on page 156

� “PtpeArchStartAllHosts” on page 152

� “PtpeArchStopHosts” on page 165

� “PtpeArchStopAllHosts” on page 161

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “ptpectrl” on page 88

 Chapter 8. The PTPE API Subroutines 283

 PtpeQueryAvailHosts

 PtpeQueryAvailHosts

 Purpose
Retrieves the list of systems in the Performance Toolbox Parallel Extensions
monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeQueryAvailHosts(sblock, hanchor)
session_ptr_t sblock;
host_list_t hanchor;

 Parameters
sblock

Points to a PTPE API session control information block. This block is created
and initialized using the PtpeOpenSession subroutine.

hanchor
An anchor point for an empty host list. The host list is created by the
PtpeInitHostList subroutine.

 Description
PtpeQueryAvailHosts retrieves the monitoring hierarchy currently in use by the
Performance Toolbox Parallel Extensions. A host list is constructed, containing one
entry for each host list in the monitoring hierarchy. The host list is then attached to
the anchor point provided by the caller. This host list can be used in later PTPE
API subroutines to send instructions to the systems in the monitoring hierarchy.

The host list anchor must reference an empty host list, or this subroutine returns
with an error. This subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS,
and hanchor will anchor a host list containing entries for all systems in the
monitoring hierarchy. If an error has occurred, the return code is set to one of the
following values to indicate the cause of the error:

PTPE_NO_SESSION A session was not previously established using the
PtpeOpenSession subroutine.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_HOSTLIST hanchor does not reference an empty host list.

284 Monitoring Guide and Reference

 PtpeQueryAvailHosts

PTPE_INV_PTR sblock or hanchor is a NULL value.

PTPE_SDR An unexpected error occurred while the subroutine
had access to the System Data Repository.

PTPE_MEMORY An internal memory usage error occurred.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t hanchor;
int rc;

rc = PtpeQueryAvailHosts(sblock, hanchor);
if (rc != PTPE_SUCCESS) {
/\ handle error \/
}

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeInitHostList” on page 265

� “PtpeEmptyHostList” on page 229

 Chapter 8. The PTPE API Subroutines 285

 PtpeQueryAvailStats

 PtpeQueryAvailStats

 Purpose
Retrieves the list of the statistics available for collection, summarization, or archival
on one or more systems in the monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeQueryAvailStats(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. This list should not
contain any systems that have statistics assigned to them.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. A statistics list will be assigned to all
systems that respond successfully to the query, and will contain the list of
statistics available on those systems for collection, summarization, and archival.

 Description
PtpeQueryAvailStats asks the Performance Toolbox Parallel Extensions to provide
the list of statistics available for collection, summarization, and archival by one or
more systems in the monitoring hierarchy.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The application must also construct a host list for
the query, containing an entry for each system that the application needs to query.
This list is then provided in the targets parameter.

When PtpeQueryAvailStats is executed, the subroutine relays the query
command, along with the host list of systems to query, to the monitoring hierarchy's
central coordinator node. The central coordinator node determines which nodes are
data managers for the systems in the targets list, and forwards the query to only
those data manager nodes that manage systems in the query list. The data
manager nodes then relay the query to those systems in their reporting groups that
have been listed in the targets list.

286 Monitoring Guide and Reference

 PtpeQueryAvailStats

Each system in the targets list constructs a statistics list, containing one entry for
each statistics that system can provide to Performance Toolbox Parallel Extensions
for collection, summarization, or archival. On systems that also double as data
manager nodes, this list will also include any summary statistics that the node
prepares. This list is then relayed back to the data manager node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the query. The statistics lists received from
each node are assigned to their respective host list entries in the data manager
node's partial host list. This list is then relayed to the central coordinator node, who
constructs a complete host list. The complete host list is transmitted back to the
PtpeQueryAvailStats subroutine, which provides it to the application in the reply
parameter.

PtpeQueryAvailStats will provide an indication of the overall success or failure of
the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the query.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the query.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the query.

To determine which systems were not successful, the reply list should be scanned,
and the results for each system in the list checked using the PtpeGetHostResult
subroutine. The result code will provide an indication of the error for the system. To
determine what statistics are available on those systems that successfully
responded to the query, extract the statistics list for each entry by using the
PtpeGetHostStatList subroutine, and scan the list using the statistics list scanning
subroutines.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the query, but an error occurred in reading the reply
list response from the central coordinator Node. The
application should treat this as an error, since the
contents of the reply list cannot be guaranteed to be
accurate.

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the query. The list reply points to contains all
systems involved in the query; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the query, and an error occurred in reading
the reply list response from the central coordinator
node. The application should treat this as an error,

 Chapter 8. The PTPE API Subroutines 287

 PtpeQueryAvailStats

since the contents of the reply list cannot be
guaranteed to be accurate.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
query. reply contains all systems involved in the query,
along with the reasons for the failure on these
systems. The application can determine the cause of
the error by performing the PtpeGetHostResult
subroutine on all systems in the reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the query, and an error
occurred in reading the reply list from the central
coordinator node. The application should treat this as
an error, since the contents of the reply list cannot be
guaranteed.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the query to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the query from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_TIMEOUT A reply to the query was not received from the central
coordinator node in the time allowed. reply is not
modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99).

288 Monitoring Guide and Reference

 PtpeQueryAvailStats

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeQueryAvailStats(sblock, targets,
 &reply);
if (rc != PTPE_SUCCESS) {

printf("Not all systems succeded.\n");
}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “PtpeInitStatList” on page 267

� “PtpeAddStatToList” on page 116

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeFreeStatList” on page 243

� “PtpeAssignStatsToHost” on page 170

 Chapter 8. The PTPE API Subroutines 289

 PtpeQueryAvailStats

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatName” on page 252

� “PtpeGetStatResult” on page 254

290 Monitoring Guide and Reference

 PtpeQueryHostRates

 PtpeQueryHostRates

 Purpose
Reports the current time intervals used by the monitoring hierarchy for sampling
and recording of performance information.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeQueryHostRates(sblock, srate, arate)
session_ptr_t sblock;
int \srate;
int \arate;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

srate
A pointer to an integer. Upon successful completion of this routine, the current
time between samples of performance information used by the monitoring
hierarchy will be stored at this location. The time is expressed in units of
seconds.

arate
A pointer to an integer. Upon successful completion of this routine, the current
time between recording of performance information to the archive used by the
monitoring hierarchy will be stored at this location. The time is expressed in
units of seconds.

 Description
PtpeQueryHostRates obtains the current time intervals between performance
information samples and recordings in the monitoring hierarchy, after collection and
archiving have been started. Both intervals are expressed in units of seconds. The
recording interval should always be an even multiple of the data sampling rate.

All systems in the performance monitoring hierarchy use the same sampling and
recording rates.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_PTR Any values for sblock, srate, or arate are NULL.

 Chapter 8. The PTPE API Subroutines 291

 PtpeQueryHostRates

PTPE_NO_SESSION A PTPE API session was not established by this
application (see “PtpeOpenSession” on page 277)

PTPE_NO_LOCK_OBJ The PTPE data classes do not exist in the System
Data Repository (see “ptpeconf” on page 86).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99)

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

PTPE_STATE Performance information collection and summarization
is not currently active in the monitoring hierarchy.

 Examples
#include <spdm.h>

session_ptr_t sblock;
int srate;
int arate;
int rc;

/\ set up PTPE session and start collection earlier in the code \/
if (rc != PTPE_SUCCESS) {

printf("Could not obtain sampling and archiving rates\n");
}
else{

printf("Current sampling rate is %d seconds\n",srate);
printf("Current recording rate is %d seconds\n",arate);

}

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeArchStartHosts” on page 156

� “PtpeArchStartAllHosts” on page 152

� “PtpeChangeHostRates” on page 172

� “PtpeColStart” on page 215

292 Monitoring Guide and Reference

 PtpeQueryHostStatus

 PtpeQueryHostStatus

 Purpose
Reports the status of performance information collection and archiving on specific
systems in the Performance Toolbox Parallel Extensions monitoring hierarchy.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeQueryHostStatus(sblock, targets, reply)
session_ptr_t sblock;
host_list_t targets;
host_list_t \reply;

 Parameters
sblock

The address of a session control block. This information block is created and
initialized by the PtpeOpenSession subroutine.

targets
The anchor of a host list that contains at least one entry. All systems in this list
should not have statistics lists assigned to them.

reply
A pointer to a host_list_t data type, which should be set to a NULL value before
invoking this subroutine. Upon successful completion of the subroutine, an
anchor point for a host list will be placed at this location. This list will contain
entries for each system in the targets list. Each entry will contain a result code
to indicate whether or not the system was successful in carrying out the
request.

 Description
PtpeQueryHostStatus returns the current status of performance information
collection and archiving on the systems provided in the targets parameter.

The application must first establish a PTPE API session by using the
PtpeOpenSession subroutine. The application must also construct a host list for
the command, containing an entry for each system that the application needs to
query. This list is then provided in the targets parameter.

When PtpeQueryHostStatus is executed, the subroutine relays the query, along
with the host list of systems involved, to the monitoring hierarchy's central
coordinator node. The central coordinator node determines which nodes are data
managers for the systems in the targets list, and forwards the query to only those
data manager nodes that manage systems in the host list. The data manager
nodes then relay the query to those systems in their reporting groups that have
been listed in the targets list.

 Chapter 8. The PTPE API Subroutines 293

 PtpeQueryHostStatus

Each system in the targets list replies with a code that indicates its current
collection and archiving status. This code is constructed by ORing together the
following values:

PTPE_SAMPLE The system is currently supplying performance
information (set by all systems whenever performance
information collection is active)

PTPE_COLLECT The system is currently supplying summary
performance information (set by managing systems
when performance information collection is active)

PTPE_ARCHIVE The system is currently recording performance
information to the archive If collection or archiving is
not active on the system, the system replies with the
following code:

PTPE_INACTIVE The system is not currently supplying performance
information or archiving information.

The system then indicates its success or failure in the effort to its data manager
node.

Data manager nodes construct partial host lists, with an entry for each system in its
reporting group that was targeted for the command. The system's status or failure
reply is placed in the partial host list. This list is then relayed to the central
coordinator node, who constructs a complete host list. The complete host list is
transmitted back to the PtpeQueryHostStatus subroutine, which provides it to the
application in the reply parameter.

PtpeQueryHostStatus will provide an indication of the overall success or failure of
the query in the return code:

PTPE_SUCCESS All systems in the targets list successfully responded
to the query.

PTPE_LIMITED Some systems in the targets list were unable to
respond successfully to the query.

PTPE_API_FAILED All systems in the targets list were unable to respond
successfully to the query.

To determine the status of a system, and to determine which systems were not
successful, the reply list should be scanned, and the results for each system in the
list checked using the PtpeGetHostResult subroutine. A negative value for a result
indicates an error. A value of zero or greater reflects the current status of the
system. In non-error cases, the result should be ANDed with PTPE_SAMPLE,
PTPE_COLLECT, or PTPE_ARCHIVE to determine the system's current status.
This subroutine cannot be issued from a PTPE read-only session.

 Return Codes
Upon successful completion, a return code of PTPE_SUCCESS is returned to the
caller. If an error occurred, one of the following return codes is provided:

PTPE_SUCCESS_BADR The central coordinator node has indicated that all
systems in the targets list responded successfully to
the query, but an error occurred in reading the reply
list response from the central coordinator Node.

294 Monitoring Guide and Reference

 PtpeQueryHostStatus

PTPE_LIMITED Some of the systems in the targets list were unable to
reply to the query. The list reply points to contains all
systems involved in the command; the application can
determine which systems failed by performing the
PtpeGetHostResult subroutine on all systems in the
reply list.

PTPE_LIMITED_BADR Some systems in the targets list were unable to
respond to the query, and an error occurred in reading
the reply list response from the central coordinator
node.

PTPE_API_FAILED The central coordinator node has indicated that all
systems in the targets list failed to respond to the
query. reply contains all systems involved in the query,
along with the reasons for the failure on these
systems. The application can determine the cause of
the error by performing the PtpeGetHostResult
subroutine on all systems in the reply list.

PTPE_API_FAILED_BADR The central coordinator node has indicated that all
systems failed to respond to the query, and an error
occurred in reading the reply list from the central
coordinator node.

PTPE_NO_CONNECT Could not establish a network connection to the
central coordinator node. reply list not modified.

PTPE_BAD_SEND Could not successfully transmit the command to the
central coordinator node. reply is not modified.

PTPE_BAD_RECEIVE Error in receiving the reply to the command from the
central coordinator node. It is impossible to determine
if the query was successful. reply is not modified.

PTPE_RONLY_SESS The application attempted to issue this subroutine from
a PTPE read-only session. A regular session must be
established to issue this instruction. Ensure that the
application is executing in the proper SP system
partition.

PTPE_TIMEOUT A reply to the command was not received from the
central coordinator node in the time allowed. reply is
not modified.

PTPE_INV_HIERARCHY The monitoring hierarchy contains a node that is not a
member of the currently active system partition. The
hierarchy must be repaired by removing any nodes
that are not members of the active system partition
before this subroutine can be used.

PTPE_INV_HOSTLIST targets either contains a NULL value, or does not
anchor a valid host list.

PTPE_INV_PTR sblock has a NULL value, or reply is not NULL.

PTPE_EMPTY targets is an empty host list.

PTPE_HOST_NOT_FOUND One or more systems listed in targets could not be
found in the monitoring hierarchy. reply contains the
list of systems that could not be found in the hierarchy.

 Chapter 8. The PTPE API Subroutines 295

 PtpeQueryHostStatus

PTPE_NO_SESSION A PTPE API session was not previously established
by this application (see “PtpeOpenSession” on
page 277).

PTPE_NO_HIERARCHY A monitoring hierarchy does not exist. This subroutine
cannot function without a monitoring hierarchy (see
“ptpehier” on page 99)

PTPE_NO_MEMORY Could not allocate enough memory to initiate the
query. reply is not modified.

PTPE_MEMORY An internal error occurred.

PTPE_BAD_LOC_PTR The internal pointers in the targets anchor have been
corrupted.

PTPE_SDR An unexpected error occurred while obtaining
information from the PTPE data classes in the System
Data Repository. These data classes might not exist,
or the System Data Repository might be experiencing
difficulties.

 Examples
#include <spdm.h>

session_ptr_t sblock;
host_list_t targets, reply;
int rc;

/\ set up session and "targets" earlier \/
reply = (host_list_t) NULL;
rc = PtpeQueryHostStatus(sblock, targets,
 &reply);
if (rc != PTPE_SUCCESS) {

printf("Not all systems succeeded.\n");
}
/\ loop through "reply" and check results \/
/\ on each system with PtpeGetHostResult \/

 Related Information
� “PtpeOpenSession” on page 277

� “PtpeArchQueryStats” on page 147

� “PtpeArchStartHosts” on page 156

� “PtpeQueryAllHostStatus” on page 280

� “PtpeColStart” on page 215

� “PtpeColStop” on page 220

� “PtpeArchStartAllHosts” on page 152

� “PtpeArchStopHosts” on page 165

� “PtpeArchStopAllHosts” on page 161

� “PtpeInitHostList” on page 265

� “PtpeAddHostToList” on page 114

296 Monitoring Guide and Reference

 PtpeQueryHostStatus

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeFreeHostList” on page 241

� “PtpeGetHost” on page 245

� “PtpeGetHostResult” on page 247

� “ptpectrl” on page 88

 Chapter 8. The PTPE API Subroutines 297

 PtpeRemoveStatsFromHost

 PtpeRemoveStatsFromHost

 Purpose
Removes any assigned statistics from the currently referenced system in a host list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeRemoveStatsFromList(hanchor)
host_list_t hanchor;

 Parameters
hanchor

The anchor of a non-empty host list.

 Description
PtpeRemoveStatsFromHost removes any statistics that may have been assigned
to the “current” entry in the hanchor host list. A statistics list may have been
assigned explicitly by the application to a system by use of the
PtpeAssignStatsToHost subroutine, or may have been provided by an API
subroutine that retrieves performance information from the Performance Toolbox
Parallel Extension monitoring hierarchy (such as PtpeArchGetStats and
PtpeColGetStats). Once a statistics list has been assigned to a system, that list is
used by all subsequent API subroutines until the list is removed with this
subroutine. In order to modify the statistics associated with a system's entry in a
host list, the statistics list must be removed by this subroutine, and a modified list
assigned using the PtpeAssignStatsToHost subroutine. An error results if this
subroutine is performed upon an empty or uninitialized host list.

 Return Codes
Upon successful completion, this subroutine returns the value of PTPE_SUCCESS.
If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_HOSTLIST hanchor is a NULL value.

PTPE_INV_STATLIST The “current” entry in the hanchor host list does not
have a statistics list assigned to it.

PTPE_EMPTY hanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

298 Monitoring Guide and Reference

 PtpeRemoveStatsFromHost

 Examples
#include <spdm.h>

host_list_t hanchor;
int rc;

rc = PtpeFindHost("spnodeð5.ibm.com",
 hanchor);
rc = PtpeRemoveStatsFromHost(hanchor);
switch(rc) {
case PTPE_SUCCESS:
 break;
case PTPE_INV_STATLIST:

printf("No statistics to remove\n");
 break;
default:

/\ handle error condition \/
}

 Related Information
� “PtpeInitHostList” on page 265

� “PtpeInitStatList” on page 267

� “PtpeAssignStatsToHost” on page 170

� “PtpeFirstHost” on page 237

� “PtpeNextHost” on page 273

� “PtpeFindHost” on page 233

� “PtpeAddHostToList” on page 114

� “PtpeDelHostFromList” on page 225

 Chapter 8. The PTPE API Subroutines 299

 PtpeSetStatTime

 PtpeSetStatTime

 Purpose
Sets the timestamp in the currently referenced entry of a statistics list.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeSetStatTime(whence, tstmp, sanchor)
int whence;
struct tm tstmp;
stat_list_t sanchor;

 Parameters
whence

Determines how the timestamp is set in the currently referenced entry of
sanchor. Can contain one of three values:

PTPE_EARLIEST The tstmp parameter is ignored, and the statistic
timestamp is set to retrieve the earliest recorded
value for this statistic when API operations are
performed using this statistics list.

PTPE_LATEST The tstmp parameter is ignored, and the statistic
timestamp is set to retrieve the last recorded value
for this statistic when API operations are
performed using this statistics list.

PTPE_MATCH The statistic timestamp is set to the value
indicated by the tstmp parameter.

tstmp
The address of a struct tm structure, which contains the timestamp to set in the
currently referenced entry of sanchor. The format of the tm structure is defined
in the <time.h > header file.

sanchor
The address of an existing statistics list anchor point.

 Description
PtpeSetStatTime sets the timestamp in the “current” entry of the statistics list
anchored at sanchor. How the timestamp is set depends upon the setting of the
whence parameter (see the description in the Parameters section).

The setting of the timestamp dictates which of the values recorded in performance
information archives will be obtained by API subroutines such as
PtpeArchGetStats. If the whence parameter is set to PTPE_EARLIEST, the
timestamp provided by the caller is ignored, and the statistic entry is set to retrieve
the earliest recorded observance of this statistic in a performance information

300 Monitoring Guide and Reference

 PtpeSetStatTime

archive. Setting whence to PTPE_LATEST also ignores the timestamp provided by
the caller, and sets the statistic entry to retrieve the last recorded observance for
the statistic in a performance information archive. When the whence parameter is
set to PTPE_MATCH, the statistic's timestamp is set to the value provided by the
caller, and will instruct subsequent API subroutines to attempt to locate the entry
recorded for this time in a performance information archive.

PTPE API subroutines will attempt to match the timestamps provided by the caller
exactly when the whence parameter is set to PTPE_MATCH; in most cases, this
will not be possible. When an exact match for the time cannot be located, the API
will find the closest match that does not exceed the specified time. When examining
the statistics list returned by API subroutines, the application should examine the
statistic's result code with the PtpeGetStatResult subroutine. A result code of
PTPE_TIME_APPROX will indicate that an exact match for the timestamp could not
be located, and an approximate time was returned in its place.

 Return Codes
Upon successful completion, this subroutine returns one of the following values:

PTPE_SUCCESS The timestamp provided in tstmp was successfully
converted to a statistical timestamp value and stored
in the “current” statistic list entry.

PTPE_TIME_APPROX The timestamp provided in tstmp could not be
accurately converted to a statistical timestamp before
being stored in the “current” statistics list entry, so the
subroutine needed to substitute an approximated
timestamp in its place.

If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_PTR tstmp has a NULL value, or whence does not contain
a valid value.

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_EMPTY sanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

PTPE_MEMORY An internal memory usage error occurred.

 Examples

 Chapter 8. The PTPE API Subroutines 301

 PtpeSetStatTime

#include <spdm.h>

stat_list_t sanchor;
struct tm tstmp;
int whence;
int rc;

/\ Get statistic value for 2:3ðpm on October 1, 1995 \/
tstmp.tm_sec = ð;
tstmp.tm_min = 3ð;
tstmp.tm_hour = 14;
tstmp.tm_mday = 1;
tstmp.tm_mon = 9;
tstmp.tm_year = 95;

rc = PtpeFindStat("Mem/Virt/%free", sanchor);
rc = PtpeSetStatTime(PTPE_MATCH, tstmp,
 sanchor);
switch(rc) {
case PTPE_SUCCESS:
 break;
case PTPE_TIME_APPROX:

printf("Had to use an approximate ");
 printf("timestamp\n");
 break;
default:

/\ handle error condition \/
}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeAddStatToList” on page 116

� “PtpeGetStatType” on page 258

� “PtpeStatIsLong” on page 305

� “PtpeStatIsFloat” on page 303

� “PtpeArchGetStats” on page 138

302 Monitoring Guide and Reference

 PtpeStatIsFloat

 PtpeStatIsFloat

 Purpose
Tests if the currently referenced statistic in a statistics list is of a float or double
data type.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeStatIsFloat(sanchor)
stat_list_t sanchor;

 Parameters
sanchor

The address of an existing statistics list anchor point.

 Description
PtpeStatIsLong examines the data type used to store the statistic at the “current”
location in the statistics list anchored at sanchor. When this subroutine is performed
on a valid, non-empty statistics list, the subroutine will indicate whether or not the
data type used by the “current” entry is PTPE_FLOAT.

When an entry is created for a statistic by the PtpeAddStatToList subroutine, the
data type is set by default to PTPE_NONE. If the statistic type has not been set to
a specific type by the PtpeSetStatType subroutine, or by any other API subroutine
that retrieves statistic information from the Performance Toolbox Parallel Extension
monitoring hierarchy (such as PtpeArchGetStats), this subroutine will return the
value of PTPE_FALSE.

This subroutine returns an error when performed on an uninitialized or empty
statistics list.

 Return Codes
Upon successful completion, this subroutine returns one of the following values:

PTPE_TRUE The data type used to store the currently referenced
statistic is PTPE_FLOAT.

PTPE_FALSE The data type is either PTPE_LONG, or has not been
set by another API subroutine,

If an error has occurred, the return code is set to one of the following values to
indicate the cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_EMPTY sanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

 Chapter 8. The PTPE API Subroutines 303

 PtpeStatIsFloat

PTPE_MEMORY An internal memory usage error occurred.

 Examples
#include <spdm.h>

stat_list_t sanchor;
long ldata;
float fdata;
int rc;

rc = PtpeStatIsFloat(sanchor);
if (rc != PTPE_TRUE || rc != PTPE_FALSE) {

/\ handle error \/
}
else {

if (rc == PTPE_TRUE) {
rc = PtpeGetStatValueFloat(&fdata,

 sanchor);
 }
}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeStatIsLong” on page 305

� “PtpeGetStatType” on page 258

� “PtpeGetStatName” on page 252

� “PtpeGetHostStatList” on page 250

� “PtpeGetStatValueLong” on page 263

� “PtpeGetStatValueFloat” on page 261

304 Monitoring Guide and Reference

 PtpeStatIsLong

 PtpeStatIsLong

 Purpose
Tests if the currently referenced statistic in a statistics list is of an integer or long
integer data type.

 Library
libptpe.a

 Syntax
#include <spdm.h>

int PtpeStatIsLong(sanchor)
stat_list_t sanchor;

 Parameters
sanchor

The address of an existing statistics list anchor point.

 Description
PtpeStatIsLong examines the data type used to store statistic at the “current”
location in the statistics list anchored at sanchor. When this subroutine is performed
on a valid, non-empty statistics list, the subroutine will indicate whether or not the
data type used by the “current” entry is PTPE_LONG.

When an entry is created for a statistic by the PtpeAddStatToList subroutine, the
data type is set by default to PTPE_NONE. If the statistic type has not been set to
a specific type by the PtpeSetStatType subroutine, or by any other API subroutine
that retrieves statistic information from the Performance Toolbox Parallel Extension
monitoring hierarchy (such as PtpeArchGetStats), this subroutine will return the
value PTPE_FALSE.

This subroutine returns an error when performed on an uninitialized or empty
statistics list.

 Return Codes
Upon successful completion, this subroutine returns one of the following values:

PTPE_TRUE The data type used to store the currently referenced
statistic is PTPE_LONG.

PTPE_FALSE The data type is either PTPE_FLOAT, or has not been
set by another API subroutine, If an error has
occurred, the return code is set to one of the following
values to indicate the cause of the error:

PTPE_INV_STATLIST sanchor has a NULL value.

PTPE_EMPTY sanchor is an empty host list.

PTPE_BAD_LOC_PTR The memory pointers in sanchor have been corrupted.

PTPE_MEMORY An internal memory usage error occurred.

 Chapter 8. The PTPE API Subroutines 305

 PtpeStatIsLong

 Examples
#include <spdm.h>

stat_list_t sanchor;
long ldata;
float fdata;
int rc;

rc = PtpeStatIsLong(sanchor);
if (rc != PTPE_TRUE || rc != PTPE_FALSE) {

/\ handle error \/
}
else {

if (rc == PTPE_TRUE) {
rc = PtpeGetStatValueLong(&ldata,
 sanchor);
 }
}

 Related Information
� “PtpeInitStatList” on page 267

� “PtpeFirstStat” on page 239

� “PtpeNextStat” on page 275

� “PtpeFindStat” on page 235

� “PtpeAddStatToList” on page 116

� “PtpeDelStatFromList” on page 227

� “PtpeRemoveStatsFromHost” on page 298

� “PtpeGetStatType” on page 258

� “PtpeStatIsFloat” on page 303

306 Monitoring Guide and Reference

Chapter 9. Diagnosing PTPE Problems and Messages

This chapter contains suggestions for diagnosing problems encountered while using
various PTPE functions. It also includes a list of all error messages, their meanings,
and steps you can follow to correct the conditions that generate these messages.

Diagnosing PTPE Problems
This section contains information to help you diagnose problems you may
encounter while installing or running PTPE. It helps you to identify the cause of the
problem and includes a procedure to follow if you should require assistance from
IBM Support.

Identifying PTPE Problems
PTPE problems are indicated by an error message returned when you enter a
command. These messages are entered in the logs. You can look messages up in
“PTPE Messages” on page 330, where explanations and recovery suggestions are
provided.

Getting Help From IBM
 If you require help from IBM in resolving a PTPE problem, you can get assistance
by calling IBM Support at the numbers listed below.

Before you call, be sure you have the following information:

1. Your access code (customer number).

2. The PTPE product number: 5765-D51.

This is important information that will speed the correct routing of your call.

3. The name and version of the operating system you are using.

4. A telephone number where you can be reached.

The person with whom you speak will ask for the above information and then give
you a time period during which an IBM SP representative will call you back.

In the United States:

The number for IBM software support is 1-800-237-5511.
The number for IBM hardware support is 1-800-IBM-SERV.

Outside the United States, contact your local IBM Service Center.

Sending Problem Data to IBM
You may be asked to produce a system dump and send it to the IBM support
office. Refer to IBM Parallel System Support Programs for AIX: Diagnosis and
Messages Guide for instructions on how to produce this information.

 Copyright IBM Corp. 1998 307

To send the data to IBM, label the tape or diskette with the problem number and
mail it to:

IBM RS/6000 Scalable POWERparallel Systems Dept. 39KA, M/S P961, Bldg. 415
522 South Road Poughkeepsie, N.Y. 12601-5400 ATTN: APAR Processing

Opening a Problem Management Record (PMR)
A PMR is an online software record used to keep track of software problems
reported by customers.

Follow your local support/service procedures for opening a PMR.

Note: To aid in quick problem determination and resolution, it will be very useful to
have the SDR data specific to the problem included in the PMR.

 SDR data can be obtained through the splstdata command. Use the appropriate
command flag to view data relevant to the problem. For example:

splstdata -e Lists environment choices

splstdata -n Lists node information

splstdata -s Lists switch information

For more information on splstdata , refer to IBM Parallel System Support Programs
for AIX: Command and Technical Reference.

 Error Logging
Error logging is a convenient way to record error information in persistent storage
for later reference and debugging. Refer to the IBM Parallel System Support
Programs for AIX: Diagnosis and Messages Guide for a general discussion of error
logging for the SP

Identifying PTPE Error Log Entries
PTPE error log entries are generated for the software class with the resource
name, perfmon . To obtain the error log entries PTPE generated for a node, issue
the errpt command as follows:

errpt -a -N perfmon > ptpe.err

The PTPE daemons generate error log entries under two conditions:

Change in collection or archiving state
Whenever the PTPE daemons begin or stop collection or archiving of
performance collection

Daemon failure
Whenever the PTPE daemons encounter unexpected conditions
resulting in daemon failure, or the inability of a daemon to handle a
request.

308 Monitoring Guide and Reference

Log Entries for Change in Collection or Archiving State
PTPE generates these log entries in the following format:

--
LABEL: PERFMON_COLLECT_ST
IDENTIFIER: 65ðAFF61

Date/Time: Fri Jul 19 16:51:57
Sequence Number: 3167
Machine Id: ððð131141ððð
Node Id: avenger
Class: S
Type: UNKN
Resource Name: perfmon

Description
PERFORMANCE TOOLBOX PARALLEL EXT. EVENT

Probable Causes
NONE

Failure Causes
NONE

 Recommended Actions
 NONE

Detail Data
DETECTING MODULE
LPP=PTPE,Fn=spdmspld.c,SID=1.34,L#=254,
EVENT DATA:
Performance monitor data sampling started
--

Error log records that indicate a change in the current performance information
collection status are given the label, PERFMON_COLLECT_ST, while those indicating a
change in the current performance information archiving status have a
PERFMON_ARCHIVE_ST label. The description code used in either case is PERFORMANCE
TOOLBOX PARALLEL EXT. EVENT. Event data may vary, depending on the event being
recorded:

Performance monitor data sampling started
This entry is made by the PTPE spdmspld daemon when it executes
and begins collecting performance information from the node. An entry
of this type should appear on all nodes within the monitoring hierarchy
after performance information collection has begun.

Performance monitor data sampling terminated
This entry is made by the PTPE spdmspld daemon when it halts itself,
either in response to an error or in response to a stop request. An entry
of this type should appear on all nodes within the monitoring hierarchy
after performance information collection has been shut down.

Performance monitor aggregate data collection started
This entry is made by the PTPE spdmcold daemon when it executes
and begins performing manager duties in a monitoring hierarchy. An
entry of this type should appear on all data manager nodes within the
monitoring hierarchy, as well as the g node, after performance

 Chapter 9. Diagnosing PTPE Problems and Messages 309

information collection has begun. This entry should not appear in the
error log of a node that is not configured as a data manager or the g in
the monitoring hierarchy, unless the node was previously configured as
such a node, and the error log was not cleared out after the hierarchy
was changed.

Performance monitor aggregate data collection terminated
This entry is made by the PTPE spdmcold daemon when it halts itself,
either in response to an error or in response to a stop request. An entry
of this type should appear on all data manager nodes within the
monitoring hierarchy, as well as the g, after performance information
collection has been shut down. This entry should not appear in the error
log of a node that is not configured as a data manager or g in the
monitoring hierarchy, unless the node was previously configured as such
a node, and the error log was not cleared out after the hierarchy was
changed.

Performance monitor archiving of data started or resumed
This entry is made by the PTPE spdmspld daemon when it begins
recording performance information to the archive. This daemon also
generates an entry of this type whenever it resumes recording
performance data, should the daemon have temporarily suspended
recording due to filesystem space limitations. An entry of this type
should appear on any nodes in a monitoring hierarchy after performance
information archiving has begun.

Performance monitor archiving of data terminated
This entry is made by the PTPE spdmspld daemon when it ceases
recording performance information to the archive. This daemon also
generates an entry of this type whenever it suspends recording of
performance data due to filesystem space limitations. An entry of this
type should appear on any nodes within the monitoring hierarchy after
performance information archiving has been shut down for the node.

Log Entries for Daemon Failure
PTPE generates these log entries in the following format:

310 Monitoring Guide and Reference

--
LABEL: PERFMON_ERROR_ER
IDENTIFIER: 673DC2ð5

Date/Time: Fri Jul 19 16:27:41
Sequence Number: 316ð
Machine Id: ððð131141ððð
Node Id: avenger
Class: S
Type: PERM
Resource Name: perfmon

Description
PERFORMANCE TOOLBOX PARALLEL EXT. ERROR

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE SUBTASK

Recommended Actions
PERFORM PROBLEM DETERMINATION PROCEDURES
IDENTIFY OFFENDING SOFTWARE COMPONENT
IF PROBLEM PERSISTS THEN DO THE FOLLOWING
CONTACT YOUR LOCAL IBM SERVICE REPRESENTATIVE

Detail Data
DETECTING MODULE
LPP=PTPE,Fn=debug.c,SID=1.9,L#=2ð2,
EVENT REASON CODE:
spdmspld : 2516-746 Cannot connect to socket file
/var/ha/soc/em.RMIBM.PSSP.harmld.part1:

No such file or directory
--

Records of this type are given a label of PERFMON_ERROR_ER and a description code
of PERFORMANCE TOOLBOX PARALLEL EXT. ERROR. The detecting module file name will
always be listed as debug.c, because of the structure of the PTPE source code, but
the daemon that is making the error log entry will always record its name in the
Event Reason Code. The text of the Event Reason Code varies, depending upon
the error encountered. The contents of the Event Reason Code come from the
PTPE message catalog. For a more complete description of the error being
recorded and recommendations for corrective action to take, consult the
Performance “PTPE Messages” on page 330.

Diagnosing PTPE Command Problems
Error conditions encountered during PTPE command execution can be divided into
two groups: those common to most PTPE commands, and those that are unique to
certain commands. The following discussions of both types of error conditions
include suggestions for solving these problems, or bypassing them.

 Chapter 9. Diagnosing PTPE Problems and Messages 311

Common PTPE Command Errors
These error messages can be returned by most PTPE command:

User is not authorized to use this command

User is not a member of the perfmon user group
Most PTPE commands can only be issued by members of the perfmon
user group. This error occurs if the user not a member of this group, but
more frequently, the user is not running with the perfmon group as the
primary group.

Verify that the user is a member of the perfmon user group, and that
the user has set that group as the primary group. To change the primary
group, use the newgrp command:

newgrp perfmon

User is not authorized to use this command

Unexpected System Data Repository Error
The user may be a member of the perfmon user group, and have the
primary group correctly set, however the user's account may not have
sufficient privileges to issue SDR commands. Refer to the IBM Parallel
System Support Programs for AIX: Administration Guide for information
on SDR access privileges, and certify that the user account has these
privileges, or create a new user account with these privileges, and
assign it to the perfmon user group.

Unexpected System Data Repository Error

Cannot contact the System Data Repository
This error can occur when the System Data Repository, or the control
workstation, is temporarily off-line. This error can also occur if the sdrd
daemon on the local node has terminated or lost contact with its server
system. For assistance in resolving System Data Repository problems,
refer to IBM Parallel System Support Programs for AIX: Administration
Guide

This command cannot be issued from a read-only PTPE session
Commands that set controls within the monitoring hierarchy of a specific
system partition, or alter the hierarchy structure, must be issued from
nodes within that system partition. Nodes outside the system partition
cannot issue these commands. When they attempt to do so, the above
error results.

The user issued a command to control or alter the hierarchy from
another SP system partition. For example, such an error would be
caused by attempting to start collection on partition “syspar2” from a
node (not the control workstation) on partition “syspar1” while the
SP_NAME environment variable is set to “syspar2.”

Ensure that the system partition variables are set correctly.

Performance information collection is not in the proper state to issue this
command

Performance information archiving is not in the proper state to issue this
command

Certain commands cannot be issued while collection or archiving are
active. These include commands that attempt to restart collection, restart
archiving, or alter the structure of the monitoring hierarchy. Conversely,

312 Monitoring Guide and Reference

certain actions cannot be issued when collection or archiving are
disabled. For example, collection cannot be disabled when collection is
inactive, archiving cannot be disabled if either archiving or collection is
inactive, and the daemon intervals cannot be altered if collection is
inactive.

Check the current status of collection by issuing

ptpectrl -q

Verify that collection or archiving is in the proper state for the command
you wish to issue.

Cannot perform the requested action because another application holds a
PTPE session

Most PTPE commands attempt to obtain a PTPE session as part of their
operation. However, only one PTPE application or command may
possess a PTPE session at any one time, regardless of where they
execute within the same system partition. For this reason, commands
and applications may occasionally fail to obtain the PTPE session
because another PTPE command or application currently holds it. In
such cases, the command should be executed at a later time. If you find
that the session cannot be obtained for a prolonged period of time,
search for other PTPE applications that may be executing, and which
may also be holding the PTPE session for longer periods than
“Controlling Sessions” on page 48 recommends.

ptpectrl Command Errors
Many errors encountered by the ptpectrl command result in messages that are
explained in “PTPE Messages” on page 330. Consult this section for recommended
actions for the more common ptpectrl error conditions.

The following scenarios cover more complex error conditions that may be
encountered by the ptpectrl command, or the PTPE daemons it attempted to
contact in the monitoring hierarchy.

Symptoms of Daemon Failure During Collection Startup: A node may report
that performance information collection was successfully started during the initial
startup phase of the ptpectrl -a or ptpectrl -c command, but may report that the
collection daemons have terminated during the statistic enablement phase of the
command. The most likely causes of this failure are:

1. Inability to create or update the /var/adm/ptpe/perftab file. During collection
startup, if this table does not exist on the node, the PTPE daemons attempt to
create it after the initial phase of collection startup has completed. If the file
cannot be created or updated, the daemons terminate, creating an entry in that
node's error log to explain the error. If the file does not exist on the node, the
filesystem containing the /var/adm/ptpe directory does not have enough space,
and should be extended. If the file exists, the permissions on the file may have
been changed to prohibit further modification, and should be reset to
-rw-r--r--.

2. Spmi error - After the completion of the first phase of collection startup, the
PTPE daemons attempt to register their new statistics with Performance
Toolbox for AIX, using the Spmi interface. If an error occurred during this effort,
the daemons many not be able to continue, and will terminate. Again, the
daemons will create an entry in that node's error log to explain the error. If an
Spmi error has occurred, certain Spmi shared memory may need to be

 Chapter 9. Diagnosing PTPE Problems and Messages 313

refreshed or removed to correct the problem. To refresh the xmservd daemon
and remove unused shared memory, send a SIGINT signal to the xmservd
process on that node with the kill -1 command. Consult the IBM Performance
Toolbox for AIX: Guide and Reference for further recommendations on handling
the error.

In either case, the error log on the failing node should be examined to determine
the cause of the error.

Symptoms of Reporter Node Failure After Collection or Archiving Startup
Process Completes: PTPE is not informed when nodes fail, or are purposely
taken offline. When a node fails, the global status information for PTPE, which is
stored in the System Data Repository, is not modified. The spdmcold daemon
running on the failing node's data manager node will notice a lack of input from the
failed node, but it will not be able to distinguish this event from slow network traffic
or a network failure. The data manager node will compensate for the missing input
by excluding the node from the calculation of the statistical averages, but no other
action is taken.

Because the global status information is not modified, the ptpectrl command may
encounter difficulties when shutting off performance information collection or
archiving. If a node has failed and has not been restarted, the manager daemon
will report that it cannot issue the shutdown request to the node, recoding this in its
own error log. The ptpectrl command will report that it failed in executing the
request on the failed node. Subsequent ptpectrl commands may report that
performance information archiving is still active, or that it cannot determine the
status of performance information archiving.

This problem can usually be cleared by temporarily shutting down performance
information collection with the ptpectrl -s command, then restarting collection again
after the reporting node has been brought back online. Shutting down collection will
terminate all daemons that record performance information to the archives, and
should reset the global PTPE status information stored in the System Data
Repository. If the problem is not cleared by temporarily shutting down performance
information collection, further steps need to be taken. These steps are listed below.
However, use these steps only as a last resort.

1. Shut down performance information collection, using the ptpectrl -s command.
2. Ensure that all PTPE daemons have terminated within the monitoring hierarchy.

This is easily accomplished with the following dsh command:

dsh -a ps -ef : grep spdm

If any nodes show that the spdmspld sampler daemon or the spdmcold
manager daemon are executing, terminate them using the kill command, either
directly on those nodes or remotely with the dsh command. Do not issue the
kill -9 command on these daemons, for that will prevent the daemons from
cleaning up their shared memory resources, and make it difficult or impossible
to restart the PTPE daemons without clearing out unused shared memory on
the nodes.

3. Reset the global status information stored for PTPE in the System Data
Repository. The following command must be executed only within the same
system partition as the one where PTPE was previously running:

/usr/lpp/ssp/bin/SDRChangeAttrValues SPDM active=ð archive=ð

314 Monitoring Guide and Reference

These steps should reset PTPE, allowing you to restart collection and archiving
within that system partition. However, keep in mind that these steps are only to be
taken as a last resort, when all other methods to reset PTPE have failed.

If a reporter node should fail and then be restarted before you need to take any
corrective action, do not attempt to restart the PTPE daemons manually. The
spdmspld data sampling daemon cannot be restarted from the AIX command line
or from a shell script. This daemon expects input in a specific format from a socket
in order to complete its setup. While the daemon may execute for a short time if
started from the command line, the daemon will eventually timeout while waiting for
input on an unestablished socket connection, and terminate once again.

Symptoms of Data Manager Node Failure After Collection or Archiving
Startup Process Completes: As with reporter nodes, PTPE is not informed when
a data manager node in the monitoring hierarchy fails, or is purposely taken offline.
The global status information, maintained for PTPE by the System Data Repository,
is not updated to reflect the failure.

When a data manager node fails, the nodes in its hierarchy reporting group begin
to encounter errors when reporting their performance information to the data
manager node. The spdmspld daemons expect to occasionally encounter a
problem transmitting this data, due to increased network traffic or other temporary
network difficulty, and create an entry in their own error logs when such events
occur. However, if the reporter nodes are unable to transmit their performance
information in five consecutive attempts, the nodes will shut down the spdmspld
daemon, recoding this event in the error log on that node. The exact time between
failure of the data manager node and the subsequent shutdown of the data
sampling daemons will depend on the current setting of the data sampling interval
for the monitoring hierarchy. The g will not detect the failure of the data manager
node, but will recognize that the data manager has not reported new data, and will
exclude the data manager from calculations of the summary data that it prepares.
Applications will encounter PTPE_NO_CONNECT errors when attempting to obtain
performance information or status from the data manager node, or any nodes
reporting to the data manager in the monitoring hierarchy.

Because the global status information is not modified, the ptpectrl command may
encounter difficulties when shutting off performance information collection or
archiving. If a data manager node has failed and has not been restarted, the g will
report that it cannot issue the shutdown request to the node, recoding this in its
own error log. The ptpectrl command will report that it failed in executing the
request on the failed node, as well as reporting failures for all nodes that are
members of the data manager's group. Subsequent ptpectrl commands may report
that performance information archiving is still active, or that it cannot determine the
status of performance information archiving.

You can resolve this problem by temporarily shutting down performance information
collection using the ptpectrl -s command, then restarting collection when the data
manager node has been brought back online. Shutting down collection will
terminate all daemons that record performance information to the archives, and
should reset the global PTPE status information stored in the System Data
Repository.

If the problem is not cleared up by temporarily shutting down performance
information collection, use the steps listed in “Symptoms of Data Manager Node

 Chapter 9. Diagnosing PTPE Problems and Messages 315

Failure After Collection or Archiving Startup Process Completes” to reset the PTPE
status stored in the System Data Repository. Use these steps only as a last resort.

If a data manager node should fail and then be restarted before you need to take
any corrective action, do not attempt to restart the PTPE daemons manually. Like
the spdmspld daemon, the spdmcold manager daemon cannot be restarted from
the AIX command line or from a shell script. This daemon expects input in a
specific format from a socket in order to complete its setup. While the daemon may
execute for a short time if started from the command line, the daemon will
eventually timeout while waiting for input on an unestablished socket connection,
and terminate once again.

Symptoms of Failure of Central Coordinator Node After Collection or
Archiving Startup Process Completes: Failure of the g node is similar to a
failure in a data manager node, except the effects are felt throughout the monitoring
hierarchy. As with all other node failures, the PTPE global status information is not
updated. If not detected in time, the spdmcold daemons on all data manager
nodes in the hierarchy shut down, similar to the manner in which the spdmspld
daemons on reporter nodes shut down after repeated failures in contacting the
manager. After five unsuccessful attempts to transmit the summary performance
information to the central coordinator, the spdmcold daemons on all data manager
nodes will shut down. The spdmspld daemons on all reporter nodes will shut down
in a similar fashion after five failed attempts to forward their information to their data
managers. Therefore, all PTPE daemons on all nodes in the monitoring hierarchy
should shut down after ten data sampling intervals have expired. However, PTPE
will still believe that performance information collection or archiving is still active
within the monitoring hierarchy. All application requests and commands made to the
hierarchy should fail with a PTPE_NO_CONNECT error to the g, and to all other nodes in
the monitoring hierarchy. The application will not be able to contact any node within
the hierarchy.

You can resolve this problem by temporarily shutting down performance information
collection using the ptpectrl -s command, then restarting collection when the g
node has been brought back online. Shutting down collection will terminate all
daemons that record performance information to the archives, and should reset the
global PTPE status information stored in the System Data Repository.

If the problem is not resolved by temporarily shutting down performance information
collection, use the steps listed in “Symptoms of Reporter Node Failure After
Collection or Archiving Startup Process Completes” on page 314 to reset PTPE
status stored in the System Data Repository. Use these steps only as a last resort.

If the g node should fail and then be restarted before you need to take any
corrective action, do not attempt to restart the PTPE daemons manually. The
spdmspld and spdmcold daemons cannot be restarted from the AIX command
line or from a shell script. These daemons expect input in a specific format from a
socket in order to complete its setup. While the daemon may execute for a short
time if started from the command line, the daemon will eventually timeout while
waiting for input on an unestablished socket connection, and terminate once again.

Symptoms of Interference from PTPE API Applications: Each instance of the
ptpectrl command obtains a PTPE session for the duration of the command. This
session is not released until all options have been performed, no matter how many
options are provided. Within that period of time, other PTPE applications and

316 Monitoring Guide and Reference

commands will not be able to obtain a PTPE session. This effectively prevents
them from altering the hierarchy structure or the status of the hierarchy while the
command runs.

After the command runs, however, the PTPE session can be acquired by any
application or PTPE command. These commands and applications may alter the
controls set by the ptpectrl command, or even shut down collection and alter the
monitoring hierarchy. As a result, you may discover the monitoring hierarchy in a
different state, or even in a different structure, than you previously left it.

The PTPE monitoring hierarchy is a shared resource, and you should plan for this
eventuality.

Performance Information Archives Not Modified After Archiving Started On
Node: When ptpectrl -r is issued, the command instructs all nodes within the
monitoring hierarchy to begin recording performance information to the archive. In
certain instances, you may discover that no performance information is being
recorded to the archive file /var/adm/ptpe/perflog on some or all of the nodes in
the monitoring hierarchy. The two most common reasons for this are:

1. Lack of space

When the filesystem containing the /var/adm/ptpe/perflog file reaches 95% of
its capacity, the PTPE daemons disable recording of performance information
to the archive file. This is done to prevent PTPE from consuming all the
filesystem space. If the filesystem grows, or space is made so that the
filesystem is less than 95% used, the daemons will resume recoding
performance information without user intervention.

2. Statistics have bee restricted by another application

Another PTPE application, or another instance of the ptpectrl command, may
have explicitly disabled some or all performance statistics from being recorded
to the archive file. Since the PTPE monitoring hierarchy is a resource shared by
all users of the perfmon user group, you should plan for this eventuality.

ptpehier Command Errors
Many errors encountered by the ptpehier command result in messages that are
explained in “PTPE Messages” on page 330. Consult this section for recommended
actions for the more common ptpehier error conditions.

The following scenarios cover more complex error conditions that may be
encountered by the ptpehier command, or by the PTPE daemons it attempts to
contact in the monitoring hierarchy.

Attempting to Include Nodes Outside Current System Partition: ptpehier
operates on the system partition currently active in the command's environment.
When automatically creating a hierarchy, the command will only include in the
monitoring hierarchy nodes belonging to that system partition.

When creating a reporting hierarchy manually with the ptpehier -i command, the
user can only specify nodes that belong to the current system partition. If the user
attempts to include a node outside the current system partition, an error will result
when attempting to record the hierarchy format in the System Data Repository.

 Chapter 9. Diagnosing PTPE Problems and Messages 317

Users of the ptpehier command should ensure that the command is being issued
from within the proper system partition, and should also be familiar with the nodes
available within that partition.

Using Node Names Different from The Node's Reliable Hostname: When
creating a reporting hierarchy manually with the ptpehier -i command, the user
may only specify node names that match those used as reliable hostnames in the
System Data Repository. Partial domain name specifications are permitted. For
example, nodeð1.ibm would be accepable for the nodeð1.ibm.com system, but
alternate names are not permitted. If nodeð1.ibm.com is also known as
prllð5.ibm.com, the name used as the reliable hostname must be specified. If the
user does not follow this convention, an error will occur when the command
attempts to record the hierarchy to the System Data Repository.

Users of ptpehier should have knowledge of each node's reliable hostname, and
use that name in creating the monitoring hierarchy.

Including Nodes with Back-Level Operating Systems in The Monitoring
Hierarchy: When using the ptpehier -e or ptpehier -f commands, the hierarchy
will only contain nodes which have Parallel System Support Programs Version 2.2
installed on the node. Back-level nodes will be excluded from the hierarchy.

When using the ptpehier -i command, the hierarchy will be checked for back-level
nodes. If any nodes in the hierarchy do not have the appropriate level of PSSP
installed, the hierarchy will not be considered valid, and will not be stored in the
System Data Repository.

Attempting to Alter Monitoring Hierarchy while Collection or Archiving Active
in System Partition: A monitoring hierarchy's structure cannot be altered while
performance information collection or archiving is active in that hierarchy. Node
assignments cannot be changed, and nodes cannot be added to or removed from
the hierarchy. This is an intended function of the ptpehier command: to prevent
confusion within the PTPE daemons should the reporting paths suddenly become
altered during their operation.

To alter the hierarchy's structure, performance information collection and archiving
must be shut down.

ptpedump and spdm_dump Command Errors
Many errors encountered by these commands result in messages that are
explained in “PTPE Messages” on page 330. Consult this section for recommended
actions for the more common error conditions.

The following scenarios cover more complex error conditions that may be
encountered by the these commands.

Incomplete Text File Output: The ptpedump command makes use of the
spdm_dump utility on each node where it has been targeted to run, redirecting the
output of that utility to a text file. The spdm_dump utility reads records from the
archive file /var/adm/ptpe/perflog sequentially.

Because the spdm_dump utility writes its results to standard output, it does not
need to check for existing space. The ptpedump command has no understanding

318 Monitoring Guide and Reference

of the inner format of the archive file, and cannot anticipate how much disk space is
needed for the text dump.

If the filesystem containing the /var/adm/ptpe directory has a limited amount of
space, it is possible for the resulting text file to exceed the storage capacity of the
filesystem. A truncated text file may result. To correct this, add more space to the
filesystem containing the /var/adm/ptpe directory, or execute the spdm_dump
utility locally on the node, and redirect the output of the utility to a filesystem that
can accept the text file.

Missing Text File Output: If the ptpedump command cannot contact a node to
generate the requested dump, the command indicates this with an error message.
If you cannot locate the text dump file on the node after the command has
completed, the ptpedump command most likely failed in contacting the node.
Three possible sources of error are:

 1. Node failure

If a node failed, the ptpedump command would not be successful in creating a
text dump file on that node.

 2. Network failure

Failures in the network also prevent ptpectrl from contacting a node and
initiating a dump of the archive file.

 3. dsh error

ptpedump uses dsh to invoke the spdm_dump utility on the targeted nodes. If
the dsh command failed, ptpedump would be unsuccessful in contacting the
target nodes to generate the dump. For an explanation of the possible causes
of a dsh error, see the IBM Parallel System Support Programs for AIX:
Administration Guide

Diagnosing PTPE API Problems
This section addresses error conditions that might occur when a program uses the
PTPE application programming interface.

User Permission Problems
In order to use the PTPE API, you must be a member of the perfmon user group,
and specify perfmon as your primary group.

You must also have sufficient privileges to use the System Data Repository. Refer
to the IBM Parallel System Support Programs for AIX: Administration Guide for
details on SDR privileges.

Read-Only Sessions Problems
If an application is executing on a node where the environment has been set to use
a system partition other than the node's own system partition, a PTPE application
will only be able to acquire a read-only PTPE session. This is indicated by a
PTPE_RONLY_SESS return code from the PtpeOpenSession call. Since the application
does not hold control over the monitoring hierarchy of that system partition in such
a session, it can only issue the following query routines:

 1. PtpeArchQueryState

 2. PtpeColQueryState

 Chapter 9. Diagnosing PTPE Problems and Messages 319

 3. PtpeQueryHostRates

All other control and query routines, other than the PtpeCloseSession routine, will
fail with a return code of PTPE_RONLY_SESS, indicating that the application does not
have a proper session to issue the request. Host list and statistics list interfaces
within the PTPE API are not disabled.

Read-only sessions should only be used to query basic status information about the
monitoring hierarchy in another system partition. If an application needs to exercise
control over the monitoring hierarchy in another system partition, the application
should be executed on a node within that system partition.

Invalid Pointer Problems
The PTPE API avoids writing to memory that has not been allocated by ensuring
that pointers it receives are either initialized or cleared out before use. If the
subroutine you are using expects this condition and finds that local variables have
not been set to zero values, the API subroutine may return a PTPE_INV_PTR
code. Chapter 8, “The PTPE API Subroutines” on page 113, states whether
subroutines expect parameters to contain NULL or non-NULL values.

Determining the Cause of API Failures
This section discusses how an application can determine the success or failure of
an API request, how to isolate the cause of the error, and when the user should
consult the error logs on nodes in the monitoring hierarchy to identify the cause of
an error.

All interfaces that contact the PTPE monitoring hierarchy to set hierarchy controls
or obtain performance information return two information elements to the calling
application to indicate success or failure of the request:

1. A return code

This code, which is described in the documentation for the routine and listed in
the <spdm.h> header file, indicates the overall success or failure of the request.
Applications should use this to determine whether or not the API request could
be carried out by the monitoring hierarchy.

2. A host list

This list contains entries for each node that was targeted for the API request. If
performance information was requested from these nodes, statistics lists will be
attached to the nodes' entries if the nodes successfully carried out the request.

Even if a PTPE API routine indicated complete success of a request
(PTPE_SUCCESS), the application should scan the reply list and verify the
results from each node. The reply list can be scanned with the PtpeFirstHost,
PtpeNextHost, PtpeFindHost, and PtpeIsLastHost routines. The results from
each node within the list can be obtained using the PtpeGetHostResult routine.
(See subroutine man pages or Performance Toolbox Parallel Extensions for
AIX Guide and Reference to to learn when a host list is generated.)

API Return Codes: The following return codes indicate that the monitoring
hierarchy was successfully contacted, and reflect the degree of success with which
the nodes could carry out the request:

320 Monitoring Guide and Reference

PTPE_SUCCESS The API request was successfully completed on all
nodes targeted for the request. The reply host list
contains the actual results from each node.

PTPE_LIMITED The API request was successfully completed on some
of the nodes targeted for the request. The reply host
list contains the actual results from each node, an can
be scanned to determine which nodes failed.

PTPE_API_FAILED The API request failed on all nodes targeted for the
request. The reply list contains the results from these
failing nodes.

On some occasions, the PTPE library will receive an indication of the overall
success or failure of an API request, but it may encounter difficulties in retrieving
the reply host list containing the results from each node. Upon receipt of one of
these return codes, the application may attempt to retry the request. If the error
persists, check the error log on the central coordinator node for the most recent
perfmon resource entries for a possible explanation of a data transmission error,
and the error log on the node executing the application for any entries that might
indicate a network error. These replies are:

PTPE_SUCCESS_BADR The API request was successfully completed on all
nodes targeted for the request. However, the reply list
could not be obtained. For API requests that set
hierarchy controls, the application can assume that the
request was successful. For API requests that query
node status or performance information, the
application should treat this as an error.

PTPE_LIMITED_BADR The API request was successfully completed on some
of the nodes targeted for the request. However, the
reply list could not be obtained. Upon receipt of this
error, the application cannot know which systems
succeeded in the request and which ones failed, and
should therefore treat this condition as an error,
regardless of the request made. The error logs on
each node within the monitoring hierarchy can be
examined, looking for perfmon resource entries that
might indicate which nodes failed the request, but this
is usually not possible from an application.

PTPE_API_FAILED_BADR The API request failed on all nodes targeted for the
request. This return code can be treated the same as
a PTPE_API_FAILED return code.

When the following return code is received, the application cannot know whether
the monitoring hierarchy received the API request correctly, or to what extent the
hierarchy could complete the request. The application may attempt the API request
again, but if the condition persists, the error log should be examined on the central
coordinator, looking for perfmon resource entries that might indicate the cause of
the error. The error log on the node executing the application can also be checked
for entries that would reflect network errors:

PTPE_BAD_RECEIVE The library did not receive a valid response from the
central coordinator node. It cannot be determined if
the central coordinator received the API request in full,

 Chapter 9. Diagnosing PTPE Problems and Messages 321

or whether any of the request was carried out.
Applications should treat this as an error.

If the library cannot transmit the API request to the central coordinator node, one of
the following error codes may be returned. These errors may be caused by
temporary conditions, such as socket unavailability on the central coordinator or
network traffic problems. The application can choose to reissue the request, but if
the conditions persist, the error log on the node executing the application should be
checked for indications of network problems. The error log on the central
coordinator node can also be checked, but may yield little information. The
application should also be checked to make sure the session control information
block, created by the PtpeOpenSession routine, is not being inadvertently
modified:

PTPE_NO_CONNECT The library could not establish a connection with the g
node. The g may be offline, or it may be experiencing
network difficulties. PTPE may also have been
uninstalled on the g. The session control block in the
user's application may also be be damaged, or the
application may be using an invalid session control
block. Ensure that the application is valid, then check
the error logs on both the g node and the local node
to detect possible networking errors.

PTPE_BAD_SEND The application was able to establish a network
connection to the g node, but the library could not
transmit the full request. The network connection may
have been dropped. Check the error log on the g node
for perfmon resource entries that might indicate
reasons for the connection being terminated. Also
check the error log on the local node for possible
network errors.

When the application receives any other return code from an API control request or
query, the application should assume that the request was not transmitted to the
monitoring hierarchy. In these cases, the application should be checked for errors.

API Host Lists: Some of the possible results that can be obtained from the
PtpeGetHostResult routine are listed below. When one of these results is noted,
the user should consult error logs on one or more systems to determine the source
of the error.

PTPE_DAEMON_ERROR The PTPE daemons on this node received an
unknown, unsupported, or corrupted instruction. This
code can indicate that the versions of PTPE on the
node issuing the request and the node receiving the
request do not match; specifically, the node receiving
the request may be running a back-leveled version. If
this is not the case, the request was corrupted in
transmission. In either case, the error log on the node
returning this error should be checked for perfmon
resource entries that should explain the cause of the
error.

322 Monitoring Guide and Reference

PTPE_NO_CONTACT The manager of a node that was targeted for the
request could not establish a network connection to
the node. The target node may be experiencing
network difficulty, or PTPE may have been uninstalled
on that node. The error log on the data manager node
should be checked for perfmon resource entries that
might indicate the cause of the error. The error log on
the target node can also be checked for evidence of
network difficulty.

PTPE_NO_EXEC The manager of a node that was targeted for the
request established a network connection to the node,
but the node could not start the appropriate PTPE
daemon to handle the request. The node may be
experiencing high workload that might prevent the
daemon from executing, or the daemons may have
been removed from their expected location in the
/usr/lpp/ptpe/bin directory. The error log on the failing
node should be checked for perfmon resource entries
that might indicate the cause of the error.

PTPE_API_FAILED The application made a request to the targeted node
that the node could not fulfil. The application should be
checked to ensure it is making an appropriate request
to the node.

Diagnosing PTPE Daemon Problems
Daemon failures might be indicated whenever an API call returns a message about
an unusual node failure, or whenever a command lists the node as a failing node.
Check the g or the data manager node whenever that node is listed as the failing
node, or when the error message cites a communication failure from a reporting
node in the monitoring hierarchy. Check the reporting node whenever it is citing as
failing.

 spdmd
This is the PTPE master daemon, which operates as a subserver of the inetd
master daemon on all nodes in the monitoring hierarchy.

spdmd executes on a node when:

� An API request is made of that node,

� The node is a data manager or the central coordinator, and an API request is
made of a node reporting to that system,

� The node is a data manager or the g, and a reporter node is submitting its
performance information to that node for aggregation.

spdmd will execute under the following conditions:

� The node is offline,

� PTPE has been uninstalled on the node,

� The spdmd entry has been removed from, or commented out of, the
/etc/inetd.conf file, and the inetd daemon was refreshed,

 Chapter 9. Diagnosing PTPE Problems and Messages 323

� Another application is using the socket reserved for spdmd in the /etc/services
file,

� The node is not a target for an API request, and is not the data manager of a
node targeted for an API request.

In the first four cases, PTPE will not be able to generate an error on the node
where the error occurred. The data manager of the node may detect that the node
did not accept the connection or respond favorably to the request, and may
generate a perfmon resource entry in its own error log.

The spdmd daemon may also indicate an error if it needed to execute another
PTPE daemon to handle the API request, but failed in the attempt. In this case, the
daemon will create a perfmon resource entry in the node's error log, as well as
pass back a PTPE_NO_EXEC response to the API request.

Symptoms of spdmd daemon failure include:

� The PtpeGetHostResult routine returns a PTPE_NO_CONNECT error for the
system,

� The ptpectrl command indicates that the node failed during the first stage of
collection startup, or reports an spdmd error on the node.

 spdmcold
spdmcold , the PTPE collector daemon runs on the central coordinator node and all
data manager nodes in the monitoring hierarchy. It prepares the averaged
performance statistics for the monitoring hierarchy. This daemon also executes
when the monitoring hierarchy is being initialized by the PtpeColSetup subroutine,
or by the ptpectrl -i command.

spdmcold will not execute under the following conditions:

� PTPE has been uninstalled on the node,

� The daemon's binary file has been removed from its default location in the
/usr/lpp/ptpe/bin directory,

� The node is not a data manager or the g in the monitoring hierarchy

� The nodes is a data manager or the g, but performance information collection
is not active

� The node is a data manager or the g, but the monitoring hierarchy is not
currently being initialized

� The node is a data manager or the g, but the spdmd daemon failed to execute
on the node when collection was started or initialization was started

Only the final condition is in error. Use the methods described in “spdmd” on
page 323 to determine the cause of the spdmd daemon error.

spdmcold may start, but fail, under the following conditions:

� The daemon did not receive all the input it expected from the socket connection
during startup, or the socket connection was unexpectedly terminated

� The daemon believed that an spdmcold daemon was already running on the
node, because of information remaining in the /etc/perf/spdm.pid file, and
could not terminate the other instance of the daemon

324 Monitoring Guide and Reference

� The daemon could not establish itself as a Spmi dynamic data supplier daemon
during startup, possibly because certain Spmi shared memory remained active
on the node from a previous execution of the daemon,

� The daemon could not forward a collection startup or a hierarchy initialization
request to any of the nodes that report to it in the monitoring hierarchy

� The daemon could not find enough space in the filesystem containing the
/var/adm/ptpe directory to record the statistic translation file perftab

� The spdmcold daemon on the g node terminated abnormally, and the daemon
on this node could not report its summary performance information to the g for
five consecutive attempts,

� The shared memory used by the daemon is removed by an external process,
such as the ipcrm command, which would cause a segmentation fault

� The daemon cannot report the initialization results or confirmation of collection
startup to its superior node, or to the library if the daemon is executing on the g

� An external process sends a termination or abort signal to the daemon, which
the daemon would interpret as a request for termination.

In each of the following cases, the spdmcold daemon should create a perfmon
resource entry in the node's error log to explain the reason for the daemon's
termination. The following information should also be checked on a node where the
spdmcold daemon has failed abnormally:

� The /etc/perf/spdm.pid file. This file should not exist if neither the spdmcold
and spdmspld daemons are active on the node. The file contains the process
identifiers of these daemons, as well as the shared memory segment identifier
for the statistics table used by the spdmcold daemon.

If these daemons are not currently running on the node but the file exists,
examine this file. Check for the presence of the shared memory identifier listed
in the file. It will be contained in an entry starting with the letter M. If the shared
memory segment is still active on the node, remove it with the ipcrm -m
command. After verifying that the shared memory identifier no longer exists on
the node, or determining that none is listed in this file, remove the file.

� The /etc/perf/ptpe.shseg file. This file is used as a token file for the spdmcold
daemon's Spmi shared memory. If the spdmcold daemon is not active on this
node and this file exists, remove the file.

� The xmservd daemon. Occasionally, this daemon retains information from a
prior execution of the spdmcold daemon. If the xmservd daemon is running
on the node when the spdmcold daemon is inactive, instruct the xmservd
daemon to refresh itself by determining its process identifier, then issue a kill
-1 command to the daemon.

The ptpectrl -s command and the PtpeColStop API routine are the only means
that should be used to terminate the spdmcold daemon on a data manager or g.
However, if you must terminate the daemon manually, do not issue the kill -9
command on the daemon. This will not permit the daemon to properly discard its
shared memory, remove its temporary work files, or properly update the /etc/perf
directory before termination. This can lead later instances of the daemon to assume
that the earlier instance is still active, or can cause failures in the Spmi initialization
of the daemon at a later time.

 Chapter 9. Diagnosing PTPE Problems and Messages 325

Symptoms of spdmcold failure include:

� PtpeGetHostResult indicates a PTPE_NO_EXEC error for this node in
response to a PtpeColSetup or PtpeColStart request

� Widespread failures in the spdmspld daemons on the nodes reporting to this
node, if this node is a data manager

� Widespread failures in the spdmcold daemons on the data manager nodes if
this node is the g

� The results of PtpeQueryHostStatus on the node will not indicate
PTPE_COLLECT, even though collection is active in the hierarchy and this
node is either a data manager or the g

� PtpeColGetStats will be unable to retrieve the summary performance statistics
from a data manager node or the g, even though performance information
collection is active

� Summary performance statistics do not seem to be appended to the
performance information archive when archiving is active, if these statistics
have been enabled.

 spdmspld
The PTPE sampler daemon runs on all nodes within the monitoring hierarchy. It
obtains all the performance information from the node, forwards this information to
the node's data manager node, and records the information to that node's
performance information archive.

spdmspld also executes when the monitoring hierarchy is being initialized by the
PtpeColSetup subroutine or by the Ptpectrl -i command.

spdmspld will not execute under the following conditions:

� PTPE has been uninstalled on the node

� The daemon's binary file has been removed from its default location in the
/usr/lpp/ptpe/bin directory

� Performance information collection is not active

� The monitoring hierarchy is not currently being initialized

� The spdmd daemon failed to execute on the node when collection was started
or initialization was started.

Only the final condition is in error. Use the methods described in “spdmd” on
page 323 to determine the cause of the spdmd daemon error.

spdmspld may start, but fail, under the following conditions:

� The daemon did not receive all the input it expected from the socket connection
during startup, or the socket connection was unexpectedly terminated

� The daemon believed that an spdmspld daemon was already running on the
node, because of information remaining in the /etc/perf/spdm.pid file, and
could not terminate the other instance of the daemon

� The daemon could not establish itself as a Spmi data consumer daemon during
startup

� The daemon could not find enough space in the filesystem containing the
/var/adm/ptpe directory to record the statistic translation file perftab

326 Monitoring Guide and Reference

� The spdmcold daemon on the node's data manager terminated abnormally,
and the daemon on this node could not report its performance information to
the g for five consecutive attempts

� The shared memory used by the daemon is removed by an external process,
such as the ipcrm command, which would cause a segmentation fault

� The daemon cannot report the initialization results or confirmation of collection
startup to its superior node, or to the library if the daemon is executing on the g

� An external process sends a termination or abort signal to the daemon, which
the daemon would interpret as a request for termination.

In each of the following cases, the spdmspld daemon should create a perfmon
resource entry in the node's error log to explain the reason for the daemon's
termination. The following information should also be checked on a node where the
spdmspld daemon has failed abnormally:

� The /etc/perf/spdm.pid file. This file should not exist if neither the spdmcold
nor the spdmspld daemons are active on the node. The file contains the
process identifiers of these daemons, as well as the shared memory segment
identifier for the statistics table used by the spdmcold daemon. If this node is
only a reporter node within the monitoring hierarchy, and the spdmspld
daemon is not active on this node, remove this file. If this node is also a data
manager or the g, consult the previous information on spdmcold errors.

� The xmservd daemon. Occasionally, this daemon retains information from a
prior execution of the spdmcold daemon, which can also cause errors in
subsequent data consumer requests. If the xmservd daemon is running on the
node when the spdmspld daemon is inactive, instruct the xmservd daemon to
refresh itself by determining its process identifier, then issue a kill -1 command
to the daemon.

The ptpectrl -s command and the PtpeColStop API routine are the only means
that should be used to terminate the spdmspld daemon on any node in the
monitoring hierarchy. However, if you must terminate the daemon manually, do not
issue the kill -9 command on the daemon. This will not permit the daemon to
properly discard its shared memory, remove its temporary work files, or properly
update the /etc/perf directory before termination. This can lead later instances of
the daemon to assume that the earlier instance is still active, or can cause failures
in the Spmi initialization of the daemon at a later time.

Symptoms of spdmspld failure include:

� PtpeGetHostResult indicates a PTPE_NO_EXEC error for this reporting node
in response to a PtpeColSetup or PtpeColStart request

� The node's performance information does not appear to be reflected in the
summary performance statistics prepared by the node's data manager

� The results of a PtpeQueryHostStatus on the node will not indicate
PTPE_SAMPLE, even though collection is active within the hierarchy

� PtpeColGetStats will be unable to retrieve the basic performance statistics
from a data manager node or the g, even though performance information
collection is active

 Chapter 9. Diagnosing PTPE Problems and Messages 327

� Basic performance statistics do not seem to be appended to the performance
information archive when archiving is active, if these statistics have been
enabled.

 spdmapid
The PTPE programming library request handler runs on any node that responds to
a programming library request. The daemon obtains performance data recorded in
the archives of the node, enables or restricts information from being collected or
archived, and (on data manager nodes) relays requests on to other nodes for
further processing.

spdmapid executes on a node under the following conditions:

� The node is a target of an API request

� The node is a data manager node, and at least one of the nodes is a target of
an API request

� The node is the g, and at least one node in the monitoring hierarchy is targeted
for an API request.

spdmapid will not execute on a node under the following conditions:

� PTPE has been uninstalled on the node,

� The daemon's binary file has been removed from its default location in the
/usr/lpp/ptpe/bin directory,

� The node is not the target of an API request, and is not the data manager of a
node targeted for an API request,

� The spdmd daemon failed to execute on the node when collection was started
or initialization was started

Only the final condition is in error. Use the methods described in “spdmd” on
page 323 to determine the cause of the spdmd daemon error.

spdmapid may start, but fail, under the following conditions:

� The daemon did not receive all the input it expected from the socket connection
to its data manager or to the application

� The daemon was executing on the g, and could not establish connections to
any of the data managers that needed to be contacted to carry out the request

� The daemon was executing on a data manager node, and could not establish
connections to any of the reporter nodes that were targeted for the request

� The API requested to set controls for collection and archiving, but the
spdmspld daemon could not attach to the shared memory areas used by the
spdmcold and spdmspld daemons on the node to store control information,
indicating that these other daemons may have terminated

� The API requested to set controls for collection and archiving, and the
spdmcold or spdmspld binary files have been removed from their default
location in the /usr/lpp/ptpe/bin directory

� The API requested performance information stored in the archive, but the
daemon could not open the statistics table file /var/adm/ptpe/perftab

� The API requested performance information stored in the archive, but the
daemon could not open the archive file /var/adm/ptpe/perflog

328 Monitoring Guide and Reference

� The daemon cannot report its results to its superior node, or to the library if the
daemon is executing on the g

In each of the following cases, the spdmapid daemon should create a perfmon
resource entry in the node's error log to explain the reason for the daemon's failure.

Symptoms of spdmapid failure include:

� A failure reported for the node during the statistics enablement phase of
collection start, or a failure reported while starting or stopping archiving from the
ptpectrl command

� The PtpeGetHostResult command reports a PTPE_NO_EXEC or
PTPE_DAEMON_ERROR error for the node after an API request has been
made to the node

� An application request returns a code of PTPE_BAD_SEND,
PTPE_BAD_RECEIVE, PTPE_SUCCESS_BADR, PTPE_LIMITED_BADR, or
PTPE_API_FAILED_BADR, which may indicate a failure in the spdmapid
daemon on the g node

 spdmtrmd
The PTPE termination daemon runs on a node whenever performance information
collection is being shut down. It is responsible for forcing the other PTPE daemons
to exit.

spdmtrmd will not execute under the following conditions:

� PTPE has been uninstalled on the node,

� The daemon's binary file has been removed from its default location in the
/usr/lpp/ptpe/bin directory,

� The spdmd daemon failed to execute on the node when collection was started
or initialization was started.

Only the final condition is in error. Use the methods described in “spdmd” on
page 323 to determine the cause of the spdmd daemon error.

spdmtrmd may start, but fail, under the following conditions:

� The daemon did not receive all the input it expected from the socket connection
during startup, or the socket connection was unexpectedly terminated

� The /etc/perf/spdm.pid file cannot be located on the node, making it
impossible for the daemon to locate the spdmspld and spdmcold daemons

� The /etc/perf/spdm.pid file exists, but the daemon cannot send a termination
signal to the processes listed in that file, implying that the spdmcold and
spdmspld daemons are no longer active on the node

� The daemon cannot report its status to its superior node, or to the library if the
daemon is executing on the g

In each of the following cases, the spdmtrmd daemon should create a perfmon
resource entry in the node's error log to explain the reason for the daemon's error.
The following information should also be checked on a node where the spdmtrmd
daemon has failed abnormally:

� The /etc/perf/spdm.pid file. This file should exist if the spdmcold or
spdmspld daemons are active on the node. The file contains the process

 Chapter 9. Diagnosing PTPE Problems and Messages 329

identifiers of these daemons, as well as the shared memory segment identifier
for the statistics table used by the spdmcold daemon.

If the file does not exist, check if the spdmcold or spdmspld daemons are
active, using the ps command. If the daemons are active, you will need to
terminate these daemons manually, using the kill command. Do not terminate
these daemons with the kill -9 command option, because this will not permit
the daemons to properly discard their shared memory, or remove their
temporary work files before termination. This can lead later failures of the
spdmcold or spdmspld daemons when collection is restarted within the
monitoring hierarchy.

Symptoms of spdmtrmd failure include:

� The spdmcold or the spdmspld daemons remain operational on a node, even
after the ptpectrl -s command or the PtpeColStop subroutine has been issued

� The PtpeGetHostResult routine returns a PTPE_NO_EXEC error for a node
after the PtpeColStop routine has been executed

 PTPE Messages
Not all PTPE messages are included in this listing.

� Informational messages provide status or usage information and do not
require an explanation. These messages are not included here.

� Error messages indicate a possible problem or error has occurred. They
require further explanation to help you understand the cause and recover from
the situation. These messages are included, beginning on page 331.

The following message indicates that the system cannot find the message catalog:

Msg nnnn not found

This could be caused by an error or it might indicate that your language is not
supported.

If this happens, perform these steps to access the catalog:

1. Check the LANG environmental variable. If it is coded En_US, en_US or C.,

a. Check for a directory with your language variable name in /usr/lib/nls/msg/
and ensure that it contains the message catalogs.

If the LANG environmental variable is coded other than En_US, en_US or C.,
then your language is not supported.

a. In this case you can access the messages by creating a link from the
directory with your language variable name in /usr/lib/nls/msg/ to the
/usr/lib/nls/msg/en_US directory. If you prefer, you can also link each
message catalog separately.

330 Monitoring Guide and Reference

 2516-014 � 2516-024

 Error Messages

2516-014 ptpectrl: Problem contacting the System
Data Repository.

Explanation: Could not get a session with the System
Data Repository (SDR), or cannot locate necessary
information in the SDR.

Action: Check if SDR is off-line or damaged; verify
that the classes SPDM and SPDM_NODES exist in the
SDR

2516-015 ptpectrl: Cannot find the reporting
hierarchy.

Explanation: Could not find SPDM_NODES objects in
the System Data Repository, or error getting it from the
SDR.

Action: Check if the SDR is off-line; verify that the
SPDM_NODES class exists in the SDR; verify that
SPDM_NODES class objects exist in the SDR; build a
reporting hierarchy and save it

2516-016 ptpectrl: Cannot contact the Central
Coordinator Node.

Explanation: Cannot establish a socket connection to
the g node.

Action: Try again later; check that g node is up and
not fenced off; have system administrator check for
other network errors on the g; have system
administrator tune the network

2516-017 ptpectrl: Not enough memory available.

Explanation: Memory allocation failed

Action: Try again later; have system administrator
check for applications that are consuming large
amounts of memory

2516-018 ptpectrl: Internal memory error.

Explanation: The ptpectrl command used its own
memory incorrectly

Action: Note the conditions that caused the error and
contact IBM Service

2516-019 ptpectrl: Cannot send data to the Central
Coordinator Node.

Explanation: An error occurred during a write to the g
node. Socket connection may have dropped
unexpectedly

Action: Check that central coordinator node is up and
not fenced off; have system administrator check for
other network errors on the central coordinator node.

2516-020 ptpectrl: Central Coordinator Node did
not confirm message.

Explanation: central coordinator node did not reply to
the data sent to it in time. Socket may have dropped
unexpectedly, or the spdmcold daemon on the central
coordinator node may have been killed.

Action: Check that Central Coordinator Node is up
and not fenced off; have system administrator check for
other network errors on the central coordinator node;
check error logs on the central coordinator node.

2516-021 ptpectrl: Central Coordinator Node
confirmation was corrupted.

Explanation: The confirmation message from the
Central Coordinator Node was not in the expected
format - socket may have dropped unexpectedly, or
some other application may have seized the socket

Action: Check that Central Coordinator Node is up
and not fenced off; have system administrator check for
other network errors on the Central Coordinator Node

2516-022 ptpectrl: node name could not be
contacted, or a failure occurred while
running the spdmd daemon on that
node.

Explanation: The Performance Monitor daemon
registered with inetd did not start, or failed after
starting.

Action: Verify that the node is online; verify that the
Performance Monitor is installed on the indicated node;
verify that spdmd has an entry in both the
/etc/inetd.conf and /etc/services files on the node; try
again later; have system administrator check for other
network errors on the node.

2516-023 ptpectrl: A failure occurred while running
the spdmcold daemon on node name.

Explanation: The collector daemon (spdmcold) did
not start, or failed after starting.

Action: Verify that the Performance Monitor is
installed on the g node; check that g is up and not
fenced off; try again later; have system administrator
check for other network errors on the g.

2516-024 ptpectrl: Central Coordinator Node
replied with an invalid response.

Explanation: the g node sent back an unknown code
to this command - another application may be sending
information on the socket, or the socket may have
dropped unexpectedly

Action: Check that g node is up and not fenced off;

 Chapter 9. Diagnosing PTPE Problems and Messages 331

 2516-025 � 2516-033

check error logs on the g; have system administrator
check for other network errors on the g.

2516-025 ptpectrl: Manager node name failed.

Explanation: The data manager node reported that it
could not continue, or the g node lost contact with that
manager node

Action: Revise the reporting hierarchy to use another
system as the manager node for the group; check error
logs on the failing manager node; verify that the
manager node is up and not fenced off; have system
administrator check for other network errors on the
manager node.

2516-026 ptpectrl: System node name failed.

Explanation: The system reported that it could not
continue, or that system's manager node lost contact
with that system

Action: Check error logs on both the failing system
and that system's manager node; verify that the system
is up and not fenced off; have system administrator
check for other network errors on the data manager
node.

2516-027 ptpectrl: Performance information
collection is running. The action you
have requested cannot be carried out
when performance information is
running.

Explanation: Performance information collection is
running - user cannot attempt a setup or another start
while the collection is running.

Action: Run the setup or start after collection has
been stopped.

2516-028 ptpectrl: Performance information
collection is not running. The action you
have requested cannot be carried out
unless performance information
collection is active.

Explanation: Performance information collection is not
running - user cannot stop collection, since it isn't on

Action: Do not attempt to stop collection when it is not
running.

2516-029 ptpectrl: Cannot obtain list of failing
systems.

Explanation: An error occurred in reading the failing
node list from the g node. This message will be paired
with another message to indicate if the related startup,
setup, or stop command succeeded or failed. However,
some systems did not succeed in the attempt, but the
command cannot isolate these failures for the user.

Action: Check error logs on all data manager nodes to
see if a cause for the error may be logged there; verify
that the g node is up and not fenced off.

2516-030 ptpectrl: Cannot determine current status
of performance information collection.

Explanation: The Performance Monitor cannot
determine if performance information collection is
currently running on all systems.

Action: Issue

ptpectrl -s

to shut down all performance information collection;
verify that a SPDM object class exists in the System
Data Repository (SDR); verify that an object of the
SPDM class exists in the SDR; verify that the SDR is
online.

2516-031 ptpectrl: Performance information
archiving is active. The action you have
requested cannot be carried out while
performance information is being
archived.

Explanation: Performance information collection is not
running - user cannot start archiving this information if it
is not being collected first

Action: Start collecting performance information by
issuing

ptpectrl -c

.

2516-032 ptpectrl: Performance information
archiving is not active. The action you
have requested cannot be carried out
unless performance information
archiving is active.

Explanation: An attempt was made to stop archiving
performance information when this information was not
being archived

Action: Do not attempt to stop archiving when it is not
on.

2516-033 ptpectrl: All systems failed to start
performance information archiving.

Explanation: ptpectrl -r failed on all systems in the
reporting hierarchy

Action: Check error logs on all systems to determine
the cause of the error; verify that performance
information is being collected on all nodes.

332 Monitoring Guide and Reference

 2516-034 � 2516-047

2516-034 ptpectrl: All systems failed to stop
performance information archiving.

Explanation: ptpectrl -t failed on all systems in the
reporting hierarchy

Action: Check error logs on all systems to determine
the cause of the error; verify that performance
information is being collected on all nodes; verify that
performance information is being archived on all nodes.

2516-035 ptpectrl: Setup failed.

Explanation: ptpectrl -a or ptpectrl -i failed

Action: Consult other error messages to help
determine the cause of failure.

2516-036 ptpectrl: Could not start collecting
performance information.

Explanation: ptpectrl -a or ptpectrl -c failed

Action: Consult other error messages to help
determine the cause of failure.

2516-037 ptpectrl: Could not stop collecting
performance information.

Explanation: ptpectrl -s failed

Action: Consult other error messages to help
determine the cause of failure.

2516-038 ptpectrl: Could not start archiving
performance information.

Explanation: ptpectrl -r failed

Action: Consult other error messages to help
determine the cause of failure.

2516-039 ptpectrl: Could not stop archiving
performance information.

Explanation: ptpectrl -t failed

Action: Consult other error messages to help
determine the cause of failure.

2516-040 ptpectrl: Cannot locate message catalog.

Explanation: Message catalog
/usr/lib/nls/msg/ <lang >/ptpectrl.cat cannot be found,
or cannot be opened

Action: Verify that the message catalog exists for your
specific locale; verify that the message catalog has read
permission.

2516-041 ptpectrl: Cannot use -s along with -a, -i,
-c, -f, -l, -m, -n, -r or -v options.

Explanation: User used mutually exclusive
parameters

Action: Use command with proper options

2516-042 ptpectrl: Cannot use -t along with -a, -i,
-c, -f, -l, -m, -n, -r or -v options.

Explanation: User used mutually exclusive
parameters

Action: Use command with proper options

2516-043 ptpectrl: Missing operands.

Explanation: User failed to provide any parameters to
the command

Action: Use command with proper options

2516-044 ptpectrl: The Performance Toolbox
Parallel Extensions Information Object,
class SPDM, does not exist.

Explanation: The global information object for the
Performance Toolbox Parallel Extensions does not exist
in the System Data Repository (SDR).

Action: Create a reporting hierarchy; recreate the
reporting hierarchy; check if SDR is off-line or damaged;
verify that the class SPDM exists in the SDR

2516-045 ptpectrl: Another Performance Toolbox
Parallel Extensions application is
currently running. Please wait for that
application to complete, then run this
command again.

Explanation: Another application has exclusive use of
the reporting hierarchy

Action: Wait for the application to complete, then try
again later.

2516-046 ptpectrl: Unexpected error - function
name returned code function return code.

Explanation: An unanticipated error occurred, and the
command could not proceed

Action: Note the function name and the return code,
make note of the system conditions when the error
occurred, and contact IBM Service.

2516-047 ptpectrl: Cannot use option along with
any other option.

Explanation: User specified mutually exclusive
parameters

Action: Use command with proper options

 Chapter 9. Diagnosing PTPE Problems and Messages 333

 2516-048 � 2516-055

2516-048 ptpectrl: A failure occurred while running
the spdmapid daemon on node name.

Explanation: The API handing daemon, spdmapid ,
could not be started on the indicated node, or failed
after starting - the daemon might be missing, or the
node may not be able to start any more processes.

Action: Check if the indicated node is unable to start
any new processes; verify that the named node is up
and not fenced off.

2516-049 ptpectrl: User is not authorized to use
this command.

Explanation: User is not a member of the perfmon
user group, or is not currently running as a member of
the perfmon user group

Action: User must issue

newgrp perfmon

Add user to the perfmon user group; verify that the
user is a member of the perfmon user group

2516-050 ptpectrl: The performance information
archives could not be erased on the
above systems.

Explanation: Attempt to erase the performance
information archive on one or more nodes failed.
Network traffic may have prevented the request.

Action: Rerun the request; make sure that the failing
systems are up and not fenced off; have system
administrator check for network errors on the failing
systems

2516-051 ptpectrl: Performance information
collection is currently in Error state.
Please take corrective action.

Explanation: The state of performance information
collection is unclear - some systems may be collecting
information while others are not.

Action: Issue

ptpectrl -s

to shut down all performance information collection;
verify that a SPDM object class exists in the System
Data Repository (SDR); verify that an object of the
SPDM class exists in the SDR; verify that the SDR is
online; note the conditions that caused the error and
contact IBM service.

2516-052 ptpectrl: Performance information
archiving is currently in Error state.
Please take corrective action.

Explanation: The state of performance information
archiving is unclear - some systems may be archiving
information while others are not.

Action: Issue

ptpectrl -t

to shut down all performance information collection;
verify that a SPDM object class exists in the System
Data Repository (SDR); verify that an object of the
SPDM class exists in the SDR; verify that the SDR is
online; note the conditions that caused the error and
contact IBM service.

2516-053 ptpectrl: Cannot determine current status
of performance information archiving.

Explanation: The Performance Monitor cannot
determine if performance information collection is
currently running on all systems.

Action: Issue

ptpectrl -s

to shut down all performance information collection;
verify that a SPDM object class exists in the System
Data Repository (SDR); verify that an object of the
SPDM class exists in the SDR; verify that the SDR is
online.

2516-054 ptpectrl: command line option was
provided more than once.

Explanation: The caller used the same option on the
command line more than once.

Action: Issue the command with the proper
combination of parameters; Issue

ptpectrl -h

to view the proper command combinations.

2516-055 ptpectrl: option is not a valid interval
specification for the -f option.

Explanation: The interval specification for the -f option
does not conform to the expected format of
<number>,<number>.

Action: Issue the command with the proper interval
specification.

334 Monitoring Guide and Reference

 2516-056 � 2516-064

2516-056 ptpectrl: Could not alter the performance
information reporting and recording
frequencies.

Explanation: An error occurred within the reporting
hierarchy that prevented the command from updating
the data reporting and recording intervals. Some of the
systems may have modified their frequencies, but some
may not have updated their intervals.

Action: Attempt the command again; verify that all
nodes in the reporting hierarchy are operational and not
fenced off; verify that the data sampling and collection
daemons are active on all systems in the reporting
hierarchy.

2516-057 ptpectrl: Could not obtain the
performance information reporting and
recording frequencies.

Explanation: Could not retrieve the current
performance information reporting and recording
frequencies from the System Data Repository.

Action: Verify that a SPDM object class exists in the
System Data Repository (SDR); verify that an object of
the SPDM class exists in the SDR; verify that the SDR
is online.

2516-058 ptpectrl: Cannot locate a statistics list
file in the System Data Repository.
Initialize the reporting hierarchy with
ptpectrl -i.

Explanation: The collection start command cannot
locate the list of statistics in the System Data
Repository. The most likely cause of the error is that
ptpectrl -i was not executed before ptpectrl -c .
Another cause would be if the file SPDM_STATS was
removed from the System Data Repository with the
SDRDeleteFile command.

Action: Issue the

ptpectrl -i

or the

ptpectrl -a

command to initialize the hierarchy; verify that the
SPDM_STATS file is not being removed from the
System Data Repository.

2516-059 ptpectrl: The System Data Repository
cannot create a copy of the statistics list
file on this node. The /tmp filesystem
may be full.

Explanation: The System Data Repository (SDR) was
unable to create an AIX file to contain the contents of
the SDR's SPDM_STATS file. The command attempts
to create this file in /tmp .

Action: Verify that there is a reasonable amount of
space available in the /tmp filesystem.

2516-060 ptpectrl: Node name was not ready to
accept the request.

Explanation: The command could not be carried out
on the named node because that system was not ready
to accept requests at that point in time. The delay is
most likely the result of a Spmi delay.

Action: Reissue the command at a later time.

2516-061 ptpectrl: Node name reported that
performance information archiving is
active on that node.

Explanation: The command could not complete
successfully because the named node is archiving
performance information.

Action: Shut down archiving before attempting the
command; verify that you are issuing the proper
command.

2516-063 ptpectrl: The performance data collection
daemons have terminated

Explanation: While attempting a command on the
node, the request handling daemon found that the
collector daemon (spdmcold), the data sampling
daemon (spdmspld), or both, were no longer running.
The request could not be completed on this node.

Action: Examine earlier output from the command for
any indication of error on this node; examine the error
logs on the node for information that might explain why
the daemons shut down; perform the appropriate
corrective action for any errors found on the node.

2516-064 Daemon name: The following node is not
a member of the currently active system
partition: hostname.

Explanation: A node has been included in the
monitoring hierarchy, but that node is not a member of
the system partition that is currently active.

Action: Verify that the command is executing in the
proper system partition; verify that the node is a
member of the system partition; verify that the name
used to identify the node within the monitoring hierarchy
is also the reliable_hostname for the node in the
System Data Repository; repair the monitoring
hierarchy; remove the node from the monitoring
hierarchy

 Chapter 9. Diagnosing PTPE Problems and Messages 335

 2516-075 � 2516-084

2516-075 ptpectrl: Cannot use -m along with -a, -c,
-e, -h, -i, -q, -r, -s, -t, or -v options.

Explanation: User used mutually exclusive
parameters

Action: Use command with proper options

2516-076 ptpectrl: Some of the statistics listed in
the file configuration filename could not be
found on node name.

Explanation: The node is not capable of providing
some of the statistics listed in the configuration file.
Therefore, some of the statistics were not enabled or
disabled as the configuration file requested. The
statistics that could be found were enabled or disabled
as requested.

Action: none

2516-077 ptpectrl: Cannot locate or open
configuration file.

Explanation: The ptpectrl -v command cannot locate
a ptpe.cf file, either in the user's HOME directory, or in
the default /etc/perf directory

Action: Verify that the ptpe.cf file exists, either in the
user's HOME directory or the default /etc/perf directory;
ensure that the ptpe.cf file allows read permission to
the root user; ensure that the access control lists
(ACLs) for the directory containing the ptpe.cf file
permit read permission to the root user.

2516-078 ptpectrl: Cannot access or open file
filename for reading.

Explanation: The file cannot be accessed, or cannot
be opened for reading by the ptpectrl command.

Action: Ensure that the file name is correct; ensure
that the file exists has read permissions set; check the
access control lists (ACLs) for the directory and make
sure the root user has read permission on the directory
containing the file.

2516-079 ptpectrl: Cannot use option with the
option option.

Explanation: User used mutually exclusive
parameters

Action: Use command with proper options

2516-080 ptpectrl: Node name reported a general
error. Check the error logs on that node
for more information.

Explanation: The indicated node reported a general
failure. The error log entries on that node may contain
additional information that would indicate the actual
error.

Action: Consult the error logs on the indicated node
for more information; make sure the node is up and not
fenced off; check the node for networking errors; check
if performance information collection is active for the
node; check that the Performance Toolbox Parallel
Extensions daemons are installed and available on that
node.

2516-081 ptpectrl: Archiving is not active on node
name

Explanation: The ptpectrl command attempted to
enable or disable statistics for archiving on the indicated
node, but performance information archiving does not
appear to be active on this node.

Action: Verify that performance information archiving
is active; check the error log on the indicated node to
see if an error occurred while starting archiving; check if
/var on the indicated node is nearly full.

2516-082 ptpectrl: None of the statistics listed in
the configuration file exist on node name.

Explanation: The ptpectrl command attempted to
enable or disable statistics for collection and/or
archiving on the indicated node, but none of the
statistics listed in the ptpe.cf file could be found on that
node.

Action: Verify that the ptpe.cf file entries are correct;
if the reporting hierarchy has changed recently, execute
ptpectrl -i to initialize the hierarchy.

2516-083 ptpectrl: The following systems reported
a failure in disabling statistics for
archiving:

Explanation: Some systems in the reporting hierarchy
were unable to enable performance statistics for
archiving. A list of these systems may follow this
message, if the ptpectrl command was able to receive
this information from the g node.

Action: Examine the failures for each node for clues
on how to repair the problem; if the hierarchy has been
modified recently, issue

ptpectrl -i

to initialize the hierarchy; check for networking errors.

2516-084 ptpectrl: The following systems reported
a failure in enabling statistics for
archiving:

Explanation: Some systems in the reporting hierarchy
were unable to enable performance statistics for
archiving. A list of these systems may follow this
message, if the ptpectrl command was able to receive
this information from the g node.

336 Monitoring Guide and Reference

 2516-085 � 2516-091

Action: Examine the failures for each node for clues
on how to repair the problem; if the hierarchy has been
modified recently, issue

ptpectrl -i

to initialize the hierarchy; check for networking errors.

2516-085 ptpectrl: The following systems reported
a failure in disabling statistics for
collection.

Explanation: Some systems in the reporting hierarchy
were unable to enable performance statistics for
collection. A list of these systems may follow this
message, if the ptpectrl command was able to receive
this information from the g node.

Action: Examine the failures for each node for clues
on how to repair the problem; if the hierarchy has been
modified recently, issue

ptpectrl -i

to initialize the hierarchy; check for networking errors.

2516-086 ptpectrl: The following systems reported
a failure in enabling statistics for
collection.

Explanation: Some systems in the reporting hierarchy
were unable to enable performance statistics for
collection. A list of these systems may follow this
message, if the ptpectrl command was able to receive
this information from the g node.

Action: Examine the failures for each node for clues
on how to repair the problem; if the hierarchy has been
modified recently, issue

ptpectrl -i

to initialize the hierarchy; check for networking errors.

2516-087 ptpectrl: All systems reported a failure in
disabling statistics for archiving.

Explanation: All systems in the reporting hierarchy
were unable to enable performance statistics for
archiving. A list of these systems may follow this
message, if the ptpectrl command was able to receive
this information from the g node.

Action: Examine the failures for each node for clues
on how to repair the problem; if the hierarchy has been
modified recently, issue

ptpectrl -i

to initialize the hierarchy; check for networking errors.

2516-088 ptpectrl: All systems reported a failure in
enabling statistics for archiving.

Explanation: All systems in the reporting hierarchy
were unable to enable performance statistics for
archiving. A list of these systems may follow this
message, if the ptpectrl command was able to receive
this information from the g node.

Action: Examine the failures for each node for clues
on how to repair the problem; if the hierarchy has been
modified recently, issue

ptpectrl -i

to initialize the hierarchy; check for networking errors.

2516-089 ptpectrl: All systems reported a failure in
disabling statistics for collection.

Explanation: All systems in the reporting hierarchy
were unable to enable performance statistics for
collection. A list of these systems may follow this
message, if the ptpectrl command was able to receive
this information from the g node.

Action: Examine the failures for each node for clues
on how to repair the problem; if the hierarchy has been
modified recently, issue

ptpectrl -i

to initialize the hierarchy; check for networking errors.

2516-090 ptpectrl: All systems reported a failure in
enabling statistics for collection.

Explanation: All systems in the reporting hierarchy
were unable to enable performance statistics for
collection. A list of these systems may follow this
message, if the ptpectrl command was able to receive
this information from the g node.

Action: Examine the failures for each node for clues
on how to repair the problem; if the hierarchy has been
modified recently, issue

ptpectrl -i

to initialize the hierarchy; check for networking errors.

2516-091 ptpectrl: Could not enable all statistics
for archiving.

Explanation: An error occurred while attempting to set
up the command to enable all statistics for archiving, or
an error occurred in the reporting hierarchy while
enabling all statistics. Messages that precede this
message may indicate the source of the error.

Action: Consult the recommended actions for any of
the preceding messages.

 Chapter 9. Diagnosing PTPE Problems and Messages 337

 2516-092 � 2516-120

2516-092 ptpectrl: Could not enable all statistics
for collection.

Explanation: An error occurred while attempting to set
up the command to enable all statistics for collection, or
an error occurred in the reporting hierarchy while
enabling all statistics. Messages that precede this
message may indicate the source of the error.

Action: Consult the recommended actions for any of
the preceding messages.

2516-093 ptpectrl: Could not selectively restrict
statistics from the configuration file file for
archiving.

Explanation: An error occurred while attempting to set
up the command to disable specific statistics for
archiving, or an error occurred in the reporting hierarchy
while disabling these statistics. Messages that precede
this message may indicate the source of the error.

Action: Consult the recommended actions for any of
the preceding messages.

2516-094 ptpectrl: Could not selectively enable
statistics from the configuration file for
archiving.

Explanation: An error occurred while attempting to set
up the command to enable specific statistics for
archiving, or an error occurred in the reporting hierarchy
while enabling these statistics. Messages that precede
this message may indicate the source of the error.

Action: Consult the recommended actions for any of
the preceding messages.

2516-095 ptpectrl: Could not selectively restrict
statistics from the configuration file file for
collection.

Explanation: An error occurred while attempting to set
up the command to disable specific statistics from
collection, or an error occurred in the reporting
hierarchy while disabling these statistics. Messages that
precede this message may indicate the source of the
error.

Action: Consult the recommended actions for any of
the preceding messages.

2516-096 ptpectrl: Could not selectively enable
statistics from the configuration file for
collection.

Explanation: An error occurred while attempting to set
up the command to enable specific statistics for
collection, or an error occurred in the reporting
hierarchy while enabling these statistics. Messages that
precede this message may indicate the source of the
error.

Action: Consult the recommended actions for any of
the preceding messages.

2516-097 ptpectrl: None of the statistics listed in
the configuration file configuration file
were found in the statistics list used by
the reporting hierarchy.

Explanation: No matches could be found for any of
the entries provided in the ptpe.cf file.

Action: Verify the entries in the ptpe.cf file; ensure
that any wildcards used in statistic names are used
correctly.

2516-098 ptpectrl: ptpe.cf file entry is not a valid
entry - ignoring.

Explanation: The entry within the ptpe.cf file is not in
a valid format.

Action: Correct the format of the entry in the ptpe.cf
file.

2516-099 ptpectrl: Statistic statistic name not
known - ignoring.

Explanation: A statistic name, listed in the user's
ptpe.cf file, cannot be located in the summary statistics
list file retrieved from the System Data Repository.

Action: Make sure the statistic name is correct;
replace the name, if incorrect, with the correct statistic
name.

2516-100 ptpectrl: Cannot open the following file
for reading: filename

Explanation: The command created a temporary file
and attempted to open that file as a read-only file, but
the open attempt failed.

Action: Rerun the command. If the condition persists,
verify that no other commands, such as skulker , are
running and possibly removing this file before it can be
used.

2516-120 ptpehier: Cannot specify option with any
other arguments.

Explanation: User specified a command line option
that does not permit other options, along with other
options

Action: Rerun command with proper parameters;
check command usage

338 Monitoring Guide and Reference

 2516-121 � 2516-130

2516-121 ptpehier: Cannot use “-e” , “-f,” or “-i”
options together.

Explanation: User specified mutually exclusive
parameters on the command line

Action: Rerun without mutually exclusive parameters;
check command usage

2516-122 ptpehier: Another Performance Toolbox
Parallel Extensions application is
currently running. Please wait for that
application to complete, then run this
command again.

Explanation: Another application has exclusive use of
the reporting hierarchy

Action: Wait for the application to complete, then try
again later.

2516-123 ptpehier: The Performance Toolbox
Parallel Extensions Information Object,
class SPDM, does not exist.

Explanation: The global information object for the
Performance Toolbox Parallel Extensions does not exist
in the System Data Repository (SDR).

Action: Create a reporting hierarchy; recreate the
reporting hierarchy; check if SDR is off-line or damaged;
verify that the class SPDM exists in the SDR

2516-124 ptpehier: Unexpected System Data
Repository error.

Explanation: Could not get a session with the System
Data Repository (SDR), cannot locate necessary
information in the SDR.

Action: Check if SDR is off-line or damaged; verify
that the filesystem used by the SDR has some space
available; verify that the classes SPDM and
SPDM_NODES exist in the SDR

2516-125 ptpehier: Cannot find the reporting
hierarchy.

Explanation: Could not find SPDM_NODES objects in
the System Data Repository, or error getting it from the
SDR.

Action: Check if the SDR is off-line; verify that the
SPDM_NODES class exists in the SDR; verify that
SPDM_NODES class objects exist in the SDR; build a
reporting hierarchy and save it

2516-126 ptpehier: Not enough memory available.

Explanation: Memory allocation failed

Action: Try again later; have system administrator
check for applications that are consuming large
amounts of memory

2516-127 ptpehier: Unexpected error - function
name returned code function return code.

Explanation: An unanticipated error occurred, and the
command could not proceed

Action: Note the function name and the return code,
make note of the system conditions when the error
occurred, and contact IBM Service.

2516-128 ptpehier: Performance information
collection is running.

Explanation: Performance information collection is
running - user cannot attempt to alter the hierarchy
while collection is active.

Action: Stop collection and then modify the hierarchy

2516-129 ptpehier: Cannot determine current
status of performance information
collection.

Explanation: The Performance Monitor cannot
determine if performance information collection is
currently running on all systems.

Action: Issue

ptpectrl -s

to shut down all performance information collection;
verify that a SPDM object class exists in the System
Data Repository (SDR); verify that an object of the
SPDM class exists in the SDR; verify that the SDR is
online.

2516-130 ptpehier: The host specified as the
preferred Central Coordinator: node name
is either not listed in the System Data
Repository Nodes object class, or has
not installed the proper level of Parallel
System Support Programs.

Explanation: The hostname specified as the preferred
g cannot be found in the System Data Repository
(SDR), or the node does not have PSSP version 2.2 or
later installed.

Action: Verify the hostname. Ensure that the
hostname is the same one used by the System Data
Repository to refer to that node. Verify that the node
has version 2.2 of the Parallel System Support
Programs installed. Ensure that the information listed for
the node in the System Data Repository's Node class is
correct. Verify the reporting hierarchy input.

 Chapter 9. Diagnosing PTPE Problems and Messages 339

 2516-131 � 2516-141

2516-131 ptpehier: Too many arguments provided,
or options are missing.

Explanation: The caller provided too many arguments
to the command - the command accepts only one
argument after all options have been specified, which is
the name of the system to use as the central
coordinator.

Action: Check command usage

2516-132 ptpehier: Invalid option option provided.

Explanation: User specified an unknown option to this
command

Action: Specify proper options; run ptpehier -h to
determine valid options

2516-133 ptpehier: Missing required operands.

Explanation: User failed to supply at least one of the
required operands

Action: Specify proper options; run ptpehier -h to
determine valid options

2516-134 ptpehier: Unable to print reporting
hierarchy.

Explanation: The ptpehier command encountered an
error while printing the reporting hierarchy

Action: Make sure a reporting hierarchy exists by
examining the SPDM_NODES object class in the
System Data Repository; check that the system has not
run out of virtual memory

2516-135 ptpehier: Error in hierarchy input.

Explanation: The reporting hierarchy input provided to
the command contains a syntax error

Action: Check for badly placed “{” and “}” characters
in the input; ensure that all “{” and “}” characters are on
a separate line and not preceded by spaces, tabs, or
other characters; make sure that at least one host name
is listed between each set of “{” and “}” lines; check
other output from the command for clues to the error

2516-136 ptpehier: A Central Coordinator name is
required for this command, but one was
not provided on the command line.

Explanation: The user failed to specify a central
coordinator node when one was required.

Action: Verify the command parameters; provide the
central coordinator node name on the command line
and rerun the command.

2516-137 ptpehier: node name has been
designated both a data manager node
and the Central Coordinator.

Explanation: The user specified a host as the central
coordinator of the reporting hierarchy on the command
line, but also specified it as a group manager in the
input.

Action: Change the name of the central coordinator
on the command line and rerun the command; change
the order of the hosts specified for a node group in the
input and rerun the command.

2516-138 ptpehier: option option was provided
more than once.

Explanation: The caller used the same option on the
command line more than once.

Action: Issue the command with the proper
combination of parameters; Issue

ptpehier -h

to view the proper command combinations.

2516-139 ptpehier: User is not authorized to use
this command.

Explanation: User is not a member of the perfmon
user group, or is not currently running as a member of
the perfmon user group

Action: User must execute

newgrp perfmon

add user to the perfmon user group; verify that the
user is a member of the perfmon user group

2516-140 ptpehier: The host specified as the
preferred Central Coordinator: node name
was not also listed in the reporting
hierarchy input.

Explanation: The host name provided does not
appear in the reporting hierarchy input, provided by the
user through standard input.

Action: Verify the reporting hierarchy input.

2516-141 ptpehier: The following host is either not
listed in the System Data Repository, or
has not installed the proper level of the
Parallel System Support Programs.

Explanation: The specified hostname cannot be found
in the System Data Repository (SDR), or the node does
not have PSSP version 2.2 or later installed.

Action: Verify the hostname. Ensure that the
hostname is the same one used by the System Data
Repository to refer to that node. Verify that the node
has version 2.2 of the Parallel System Support
Programs installed. Ensure that the information listed for

340 Monitoring Guide and Reference

 2516-142 � 2516-214

the node in the System Data Repository's Node class is
correct. Verify the reporting hierarchy input.

2516-142 ptpehier: Syntax error in the input. The
last node group was not terminated with
the “}” marker.

Explanation: The user's input contained an error. The
final node group in the hierarchy was not terminated
with the end of group marker character, “}.”

Action: Verify the input format; rerun the command
with the proper input.

2516-143 ptpehier: Syntax error in line number of
the input. “{” or end of input marker
expected. Contents of the failing line:
contents.

Explanation: The user's input contained an error. The
“{” character was expected, but was not found, or did
not appear alone on a line.

Action: Verify the input format; rerun the command
with the proper input.

2516-144 ptpehier: Syntax error in line number of
the input. “{” not expected within a
group definition. Contents of the failing
line: contents.

Explanation: The user's input contained an error. The
“{” character cannot appear within a group definition,
before the “}” character to close the group definition.

Action: Verify the input format; rerun the command
with the proper input.

2516-145 ptpehier: Syntax error in line number of
the input. No members were provided
for a group.

Explanation: The user's input contained an error. An
empty group was specified in the input. At least one
host name must appear between the “{” and “}” lines in
the input.

Action: Verify the input format; rerun the command
with the proper input.

2516-147 ptpehier: The following host name was
provided more than once: nodename

Explanation: A host was listed more than once within
the hierarchy input.

Action: Correct the input to provide the host name
once, and retry the command.

2516-148 ptpehier: Node number number does not
have an entry in the System Data
Repository. This node will not be
included in the monitoring hierarchy.

Explanation: A node number was listed in the Adapter
class of the System Data Repository (SDR), but an
entry for this node number did not exist in the node
class in the SDR.

Action: To include this node in the monitoring
hierarchy, update the SDR by adding an entry in the
Node class for the number listed, then reconstruct the
hierarchy.

2516-210 ptpeconf: Invalid option option provided.

Explanation: User specified an unknown option to this
command

Action: Specify proper options; run ptpeconf -h to
determine valid options

2516-211 ptpeconf: Cannot specify option and
option options at the same time.

Explanation: User specified mutually exclusive
parameters on the command line

Action: Rerun without mutually exclusive parameters;
check command usage

2516-212 ptpeconf: Cannot establish session with
the System Data Repository server.

Explanation: SDROpenSession returned with an
error code of 80, indicating that it could not connect to
the System Data Repository server

Action: Check if the SDR is off-line or damaged;
contact the system administrator and report the SDR
problem.

2516-213 ptpeconf: System Data Repository
authorization failure.

Explanation: SDROpenSession returned with an
error code of 82, indicating that the application or the
user is not authorized to use the SDR

Action: Ensure that the user has sufficient privileges
to use the SDR; ensure that the permissions on the
ptpeconf binary are correct

2516-214 ptpeconf: Problem contacting the
System Data Repository.

Explanation: Could not get a session with the System
Data Repository (SDR).

Action: Check if SDR is off-line or damaged; contact
the system administrator and report difficulty in using
the SDR.

 Chapter 9. Diagnosing PTPE Problems and Messages 341

 2516-215 � 2516-361

2516-215 ptpeconf: Unexpected error - function
name returned code return code.

Explanation: An unanticipated error occurred, and the
command could not proceed.

Action: Note the function name and the return code,
make note of the system conditions when the error
occurred, and contact IBM Service.

2516-216 ptpeconf: option option was provided
more than once.

Explanation: The caller used the same option on the
command line more than once.

Action: Issue the command with the proper
combination of parameters; Issue ptpeconf -h to view
the proper command combinations.

2516-310 ptpegroup: This command can only be
executed by the root user.

Explanation: Command was executed by a user
without root permissions

Action: Rerun the command as root or a user with
equivalent permissions.

2516-311 ptpegroup: The user group perfmon
already exists.

Explanation: The user group that the command would
create already exists

Action: Make sure that this command is being run on
the proper system; check that the /etc/group and
/etc/security/group files are not corrupted; ensure that
the /etc/group and /etc/security/groups files agree on
a list of valid user groups.

2516-312 ptpegroup: Incorrect number of
parameters.

Explanation: The user invoked the command with
more than one parameter.

Action: use the command with the proper parameters.

2516-313 ptpegroup: Invalid parameter specified:
parameter.

Explanation: The user provided a parameter other
than -h.

Action: invoke command with the proper parameters.

2516-314 ptpegroup: Cannot create group
perfmon. Exit code from mkgroup is exit
code.

Explanation: mkgroup failed to create the user group.

Action: Check that the /etc/group and
/etc/security/group files are not corrupted; ensure that
/etc/group and /etc/security/groups files agree on a
list of valid user groups.

2516-315 ptpegroup: Cannot modify perfmon
administrator. Exit code from chgrpmem
command is exit code.

Explanation: chgrpmem failed to modify the
administrator of the user group.

Action: Check that the /etc/group and
/etc/security/group files are not corrupted; ensure that
the /etc/group and /etc/security/groups files agree on
a list of valid user groups.

2516-316 ptpegroup: Cannot add users to perfmon
group. Exit code from chgrpmem
command is exit code.

Explanation: chgrpmem failed to add users to the
user group.

Action: Check that the /etc/group and
/etc/security/group files are not corrupted; ensure that
the /etc/group and /etc/security/groups files agree on
a list of valid user groups.

2516-360 ptpedump: This command can only be
executed by members of the perfmon
user group.

Explanation: command was executed by a user
without perfmon group permissions

Action: Verify that the user is a member of the
perfmon user group; execute newgrp to change to the
perfmon user group; verify that the perfmon user
group exists; ensure that the /etc/security/group and
/etc/group files agree that the perfmon user group
exists.

2516-361 ptpedump: Invalid parameter specified:
parameter.

Explanation: The user provided a parameter other
than -h or -n

Action: Invoke command with the proper parameters

342 Monitoring Guide and Reference

 2516-362 � 2516-404

2516-362 ptpedump: Unknown host node name.

Explanation: The host name specified by the user is
unknown to this system

Action: Verify that the host name is correct; reissue
the command using the proper host name; verify that
the host is operational and connected to the network

2516-363 spdm_dump: Cannot allocate memory
for archive translation tables.

Explanation: The program could not allocate enough
memory to store the translation tables used by the
performance archive file.

Action: Contact the system administrator to report the
shortage of memory.

2516-364 spdm_dump: Cannot read translation
table information from the performance
information archive file filename.

Explanation: The program could not read the
translation table from the archive file.

Action: The archive file may be corrupted or
truncated; check the error log for filesystem errors with
this filesystem.

2516-365 spdm_dump: Cannot locate or open the
performance information archive file
filename.

Explanation: The program could not open the
performance information archive file for reading.

Action: Ensure that the file exists; ensure that the file
grants read permissions; ensure that the filesystem
containing the file is mounted.

2516-366 ptpedump: Performance information
archive files do not exist on the systems
listed below. A text archive file will not
be created on these systems.

Explanation: The file /var/adm/ptpe/perflog does not
exist on one or more systems where ptpedump was to
execute.

Action: Make sure that the system was expected to
have a performance information archive file on it;
determine if the archive file was previously removed by
the ptpectrl -e command.

2516-367 ptpedump: Parameter parameter specified
more than once.

Explanation: Parameter was specified more than once
on the command line.

Action: Invoke command with the proper parameters.

2516-368 ptpedump:Parameters “-c” and “-s”
cannot be used together.

Explanation: User specified mutually exclusive
parameters to the command.

Action: Use the -h parameter to view the acceptable
parameter to the ptpedump command; issue the
ptpedump command with the proper parameters.

2516-369 ptpedump: Host names were not
provided.

Explanation: User specified the ptpedump -n
command, but did not provide any host names on the
command line.

Action: Reissue the command with the appropriate
parameters and host names.

2516-401 ptpertm: Cannot start process resource
monitor name.

Explanation: The named resource monitor could not
be started.

Action: Check that the data supplier does exist out in
/usr/lpp/ssp/bin/haemRM file system. Check with
administrator for possible network problems. Look into
error log for any possible network, socket errors.

2516-402 ptpertm: Cannot send command
command name to resource monitor.

Explanation: Unable to send the specified command
to the resource monitor.

Action: Check with administrator for possible network
problems. Make sure no other process's are trying to
use the same port.

2516-403 ptpertm: Unexpected error in the select()
system call - error code return code.

Explanation: Select error.

Action: The socket the select is being done on, could
have closed. Check with administrator for possible
network problems. Look into error log for any possible
network, socket errors. If problem persists, contact IBM
Service.

2516-404 ptpertm: Resource monitor daemon did
not reply within timeout period seconds
after a command was issued to it.
Daemon may be hung or dead.

Explanation: The resource monitor daemon did not
reply with a confirmation message after a command
was sent to it.

Action: Verify that the resource monitor daemon is
running on this node. Check the error logs on this node
for any error message from the resource monitor

 Chapter 9. Diagnosing PTPE Problems and Messages 343

 2516-405 � 2516-411

daemon. Check for network problems or high system
loads that might have delayed the resource monitor
from running.

2516-405 ptpertm: An error occurred receiving the
response from the resource monitor
daemon: error message.

Explanation: An error occurred reading the response
from the resource monitor daemon through the socket
connection to it. The socket may have been closed, the
resource monitor daemon may have terminated
prematurely, or high system loads may have prevented
the data from being read.

Action: Verify that the resource monitor daemon is
running on this node. Check the error logs on this node
for any error message from the resource monitor
daemon. Check for network problems or high system
loads that might have delayed the resource monitor
from running.

2516-406 ptpertm: Did not receive a full reply from
the resource monitor daemon (number of
number expected bytes were received).

Explanation: An incomplete response was received
from the resource monitor daemon. The resource
monitor daemon may have terminated prematurely, or
the socket connection to the resource monitor daemon
may have been dropped.

Action: Verify that the resource monitor daemon is
running on this node. Check the error logs on this node
for any error message from the resource monitor
daemon. Check for network problems or high system
loads that might have delayed the resource monitor
from running.

2516-407 ptpertm: Cannot create a socket to
communicate with the resource monitor
daemon: system error message.

Explanation: The socket() system call failed. The
user may not have any open file descriptors available,
but this is unlikely. Check the text of the error message
for more information.

Action: Perform any corrective action associated with
the error described in the message text. If the problem
persists, contact IBM Service.

2516-408 ptpertm: Cannot connect to socket file
name of resource monitor's socket file:
system error message.

Explanation: The connect() system call failed. A
socket connection to the resource monitor daemon
could not be established. The resource monitor daemon
may not be active, or the socket may have been
dropped.

Action: Check the node's error logs for possible error
messages from the resource monitor daemon, or for
indications of network problems.

2516-409 ptpertm: Error sending command
command code/of size size of control
message to resource monitor daemon
(number bytes sent). Error message:
system error message

Explanation: Error sending command message
through the socket to the resource monitor daemon.
The resource monitor daemon may have terminated
prematurely, or the socket connection may have been
dropped.

Action: Check the error log on this node for any
possible error messages from the resource monitor
daemon. Verify that the resource monitor daemon is
running on this node. Check the error log for other
network related problems. If problem persists, contact
IBM service.

2516-410 ptpertm: Command terminated by
unexpected signal symbolic name
(numeric value of signal).

Explanation: The command received a signal that it
did not expect. The command may have encountered
an error that caused the generation of the signal, or the
process may have been terminated by the kill
command by another user.

Action: Check error output of the error logs on the
node for any indications of errors encountered by the
command before it terminated and perform any
associated corrective action. Check if another user
terminated the command. If the problem persists,
contact IBM Service.

2516-411 ptpertm: Could not instruct the resource
monitor daemon daemon name to stop
sending performance information.

Explanation: The command could not instruct the
resource monitor daemon to stop sending performance
information to Spmi. The resource monitor daemon may
have terminated prematurely, or an error may have
occurred while sending data to or receiving confirmation
from the daemon.

Action: Check the error output of the error logs on this
node for other error messages from the command or
the resource monitor daemon to determine the actual
cause of the error. Verify that the resource monitor
daemon was active at the time the command attempted
to send this instruction. Check for socket or network
errors. If the problem persists, contact IBM Service.

344 Monitoring Guide and Reference

 2516-412 � 2516-420

2516-412 ptpertm: Cannot allocate memory to
store the node's partition name.

Explanation: The command failed to allocate memory
to store the node's partition name. Another process
may be consuming large amounts of virtual memory,
but this is an unlikely cause.

Action: Use the vmstat command or Performance
Toolbox for AIX to check if the amount of free virtual
memory is low, and if the system is doing a large
amount of paging. If the virtual memory figures do not
show a problem, this error is most likely caused by an
error in the command's source code - contact IBM
Service.

2516-413 ptpertm: Cannot obtain the node's
partition name.

Explanation: The command cannot obtain the node's
partition name from the System Data Repository (SDR).
If the command is being executed from the command
line, the user may not have sufficient privilege to use
SDR commands. The SDR server may also be offline,
or network problems may be prohibiting the command
from contacting the SDR server.

Action: If running the command from the command
line, the user should verify that the user's account has
sufficient privilege to use System Data Repository
commands. Verify that the SDR is online, and that this
node is not fenced off from the rest of the partition.
Check in the error log on this node for messages that
may indicate network problems with this node, and also
check for any error log entries from the System Data
Repository.

2516-414 ptpertm: Cannot invoke the resource
monitor daemon name of resource monitor
daemon.

Explanation: The resource monitor daemon could not
be started by this command, or the command could not
determine whether or not the daemon was already
running.

Action: Check other error output or error log entries
from this command for indications of the actual cause of
the error, and take the appropriate corrective action.

2516-415 ptpertm: Cannot instruct the resource
monitor daemon to begin sending all its
performance information.

Explanation: A failure occurred while trying to instruct
the resource monitor daemon to make its performance
information available.

Action: Check other error output or error log entries
from this command for indications of the actual cause of
the error, and take the appropriate corrective action.

2516-416 ptpertm: Error occurred while becoming
a daemon process - continuing.
 Failing routine: name Error: message.

Explanation: The dae_init() internal routine failed.
This routine was called to convert the command to a
daemon. The cause of the failure should be explained
in the error message.

Action: None - the command will continue.

2516-417 ptpertm: Cannot set options on the
socket connection to the resource
monitor daemon - aborting.

Explanation: The SO_KEEPALIVE option could not
be set on the socket connection between the ptpertm
command and the resource monitor daemon. Without
this option, the system could drop the socket
connection, which would possibly terminate the
resource monitor daemon.

Action: Retry the command. If the problem persists,
contact IBM Service.

2516-418 ptpertm: A failure occurred while
connecting to the System Data
Repository server.

Explanation: The System Data Repository (SDR)
reported a server error when the ptpertm command
attempted to open a session with the SDR.

Action: Verify that the SDR is online, and that the
node has not been fenced off from the rest of the
partition. Retry the command.

2516-419 ptpertm: The user or the process
running this command does not have
authority to use the System Data
Repository.

Explanation: The System Data Repository rejected
the request to establish a session, because the user or
the process starting the ptpertm command does not
have sufficient privileges to use the System Data
Repository.

Action: If the command is being executed from the
command line, ensure that the user has sufficient
privileges.

2516-420 ptpertm: An unexpected error occurred
while establishing a session with the
System Data Repository. Error code:
error code.

Explanation: An unexpected error occurred when
contacting the System Data Repository (SDR).

Action: Verify that the SDR is online, and that the
node has not been fenced off from the rest of the
partition.

 Chapter 9. Diagnosing PTPE Problems and Messages 345

 2516-421 � 2516-465

2516-421 ptpertm: Unable to initialize System
Performance Measurement Interface
(Spmi). Error: Spmi error message (Spmi
error code)

Explanation: An error occurred when ptpertm
attempted to initialize itself as a Performance Toolbox
dynamic data supplier using the System Performance
Measurement Interface library (Spmi).

Action: Consult the IBM Performance Toolbox for AIX
manual for an explanation of the error. If the error
persists, or if the Performance Toolbox documentation
indicates that the cause is a programming error, contact
IBM service.

2516-422 ptpertm: Unable to terminate System
Performance Measurement Interface
(Spmi). Error: Spmi error message (Spmi
error code)

Explanation: An error occurred when ptpertm
attempted to shut down the System Performance
Measurement Interface library (Spmi).

Action: Consult the IBM Performance Toolbox for AIX
manual for an explanation of the error. Repair any
system conditions that may have caused the error. If
the error persists, or if the Performance Toolbox
documentation indicates that the cause is a
programming error, contact IBM service.

2516-460 spdmdctrl: Cannot read the inetd
configuration file. Update this file
manually, and refresh the inetd daemon
to enable inetd_subserver_name
subserver.

Explanation: The inetd daemon's configuration file
could not be found, or could not be read.

Action: Add the following entry to the end of the inetd
configuration file manually:

spdmd stream tcp nowait root /usr/lpp/ptpe/bin/spdmd spdmd

After making this update, refresh the inetd daemon
twice with the following command to enable the PTPE
subserver on this node:

refresh -s inetd

2516-461 spdmdctrl: Do not have permission to
modify the inetd configuration file. Update
this file manually, and refresh the inetd
daemon to enable the
inetd_subserver_name subserver.

Explanation: Permissions on the /etc/inetd.conf file
do not allow it to be modified by spdmdctrl .

Action: Add the following entry to the end of the inetd
configuration file manually:

spdmd stream tcp nowait root /usr/lpp/ptpe/bin/spdmd spdmd

After making this update, refresh the inetd daemon
twice with the following command to enable the PTPE
subserver on this node:

refresh -s inetd

2516-462 spdmdctrl: Failed to add an entry for the
inetd_subserver_name subserver to the
inetd configuration file. Update this file
manually, and refresh the inetd daemon
to enable the subserver.

Explanation: Could not add an entry to the
/etc/inetd.conf file for the named subserver.

Action: Add the following entry to the end of the inetd
configuration file manually:

spdmd stream tcp nowait root /usr/lpp/ptpe/bin/spdmd spdmd

After making this update, refresh the inetd daemon
twice with the following command to enable the PTPE
subserver on this node:

refresh -s inetd

2516-463 spdmdctrl: Cannot read the file filename.
Update this file manually, and refresh the
inetd daemon to remove the
inetd_subserver_name subserver.

Explanation: The inetd daemon's configuration file,
/etc/inetd.conf , could not be found, or could not be
read.

Action: Remove any entries for the named subserver
from the /etc/services file manually, and refresh the
inetd daemon.

2516-464 spdmdctrl: Do not have permission to
modify the inetd configuration file. Update
this file manually, and refresh the inetd
daemon to to remove the
inetd_subserver_name subserver.

Explanation: Permissions on the /etc/inetd.conf file
do not allow it to be modified by spdmdctrl .

Action: Remove any entries for the named subserver
from the /etc/inetd.conf file manually, and refresh the
inetd daemon.

2516-465 spdmdctrl: Cannot make a backup copy
of the inetd configuration file. Update this
file manually, and refresh the inetd
daemon to to remove the
inetd_subserver_name subserver.

Explanation: Permissions on the /etc/inetd.conf file
do not allow it to be modified by spdmdctrl .

Action: Remove any entries for the named subserver
from the /etc/inetd.conf file manually, and refresh the
inetd daemon.

346 Monitoring Guide and Reference

 2516-466 � 2516-475

2516-466 spdmdctrl: Failed to remove the entry for
the inetd_subserver_name subserver from
the inetd configuration file. Update this file
manually, and refresh the inetd daemon
to to remove the subserver.

Explanation: Could not delete the entry from the
/etc/inetd.conf file for the named subserver.

Action: Remove any entries for the named subserver
from the /etc/inetd.conf file manually, and refresh the
inetd daemon.

2516-467 spdmdctrl: Cannot create an object in
the System Data Repository of the class,
classname, with attributes, attributes.

Explanation: A failure occurred in creating an object
of the named System Data Repository class. This object
is required to reserve a port for use by the PTPE
programs.

Action: Verify that the System Data Repository is
online; verify that the sdrd daemon is active on this
node; retry the command.

2516-468 spdmdctrl: The refresh of the inetd
daemon failed. Refresh this daemon
manually.

Explanation: The command,

/bin/refresh -s inetd

failed.

Action: Issue the command manually.

2516-469 spdmdctrl: Internal error in the function
name routine.
 Contact IBM Service.

Explanation: A coding error was made in this
command.

Action: Contact IBM Service to resolve the problem.

2516-470 spdmdctrl: Cannot remove the entry for
the inetd_subserver_name subserver from
the server configuration file.

Explanation: The entry for the named inetd subserver
could not be removed from the services configuration
file.

Action: Verify that the named file exists; verify that the
file has its permissions set to permit this command to
modify its contents; verify that the directory containing
this file has its permissions set to permit this command
to create a file in this directory

2516-471 spdmdctrl: Cannot determine the number
for this node.

Explanation: The

/usr/lpp/ssp/bin/node_number

command could not be found, or could not provide a
valid node number.

Action: Ensure that the install_cw command has
been executed on the control workstation.

2516-472 spdmdctrl: No options were provided to
this command.

Explanation: The caller must provide an option to this
command.

Action: Issue

spdmdctrl -h

to get a list of valid command options; issue this
command with the appropriate options.

2516-473 spdmdctrl: Too many options were
provided to this command.

Explanation: Only one option can be provided to this
command.

Action: Issue

spdmdctrl -h

to get a list of valid command options; issue this
command with the appropriate options.

2516-474 spdmdctrl: The inetd subserver,
inetd_subserver_name, is active on this
node. Stop this subserver and retry this
command.

Explanation: An attempt was made to add or delete
the PTPE subsystem to this node while that
subsystem's inetd subserver was active on the node.

Action: Stop the subserver by issuing

stopsrc -t

Then retry the command.

2516-475 spdmdctrl: A port number for the
inetd_subserver_name inetd subserver
has not been reserved by the control
workstation.

Explanation: A port number must be reserved by the
control workstation for the PTPE subsystem. This port
has not been reserved at this time.

Action: Issue

spdmdctrl -a

on the control workstation, and then retry the command
on this node.

 Chapter 9. Diagnosing PTPE Problems and Messages 347

 2516-476 � 2516-618

2516-476 spdmdctrl: Cannot register the following
inetd subserver on this node
inetd_subserver_name port_number
network_protocol.

Explanation: The subserver could not be registered in
the /etc/services and /etc/inetd.conf files on this node.
If the word, NOPORT, is displayed, then the command
could not find an available port number for PTPE to
use.

Action: Contact IBM Service.

2516-477 spdmdctrl: Could not register the inetd
subserver, host name, with the System
Resource Controller on this node.

Explanation: The attempt to register the PTPE inetd
subserver with the System Resource Controller failed.

Action: Perform this registry manually by issuing

mkserver -t

2516-478 spdmdctrl: Invalid option specified to
this command.

Explanation: An invalid option was specified.

Action: Issue

spdmdctrl -h

to get a list of valid command options; issue this
command with the appropriate options.

2516-610 daemon name: Unknown command
command name received on socket socket
number.

Explanation: Unknown command received on socket
from process_request routine.

Action: Look at the /etc/services file, make sure no
other process are trying to use the same port number
as the Performance Monitor. (Look for spdmd in
/etc/services file.)

2516-611 daemon name: Read failure.

Explanation: Error reading the message passed
through the socket.

Action: Have the system administrator check for
network errors on the specified Node. Problem is either
the socket has closed or there is nothing to read on the
specified socket.

2516-612 daemon name: archiving already active
when issuing command on node name.

Explanation: Archiving already active when issuing
archive start command(ptpectrl -r).

Action: Stop archiving before issuing another archive
start command.

2516-613 daemon name: command name unable to
create archive active file filename.

Explanation: Specified command was unable to
create archive active file.

Action: Check directory permissions for the
/var/adm/ptpe file structure.

2516-614 Daemon name: command name unable to
find archive active file on node name.

Explanation: Specified command was unable to find
archive active file.

Action: Try issuing the start archiving command, see if
archive active file gets generated.

2516-615 Daemon name: command name unable to
delete archive active file filename.

Explanation: Specified command was unable to
delete archive active file.

Action: Check specified archive active file
permissions.

2516-616 Daemon name: Invalid command name in
routine(name).

Explanation: Invalid command issued.

Action: This should never occur, check that no other
process trying to use same port has performance
monitor.

2516-617 Daemon name: Cannot locate node name
in hierarchy, error: number in
routine(name).

Explanation: Cannot find specified node in the
hierarchy.

Action: Check hierarchy to see if it reflects desired
hierarchy. If not, delete hierarchy and then create
desired hierarchy.

2516-618 Daemon name: Couldn't find node name,
errno = number.

Explanation: Couldn't find node when checking for it's
type.

Action: Check with administrator for possible network
problems.

348 Monitoring Guide and Reference

 2516-619 � 2516-629

2516-619 Daemon name: Cannot get identifier to
collector daemon's shared memory.
spdmcold may have died or had its
shared memory removed.

Explanation: Specified daemon cannot get identifier to
the collector's shared memory segment.

Action: Verify that the spdmcold daemon is running
on this node; shut down collection and restart.

2516-620 Daemon name: Cannot attach to
collector daemon's shared memory (key
key). spdmcold may have died or had its
shared memory removed.

Explanation: Specified daemon cannot attach to
collector's shared memory of key specified.

Action: Verify that the spdmcold daemon is running
on the node; verify that a shared memory segment
exists with the key listed in this error log entry by using
the ipcs command; if the shared memory exists, note
the conditions that caused the error and contact IBM
service - if the shared memory does not exist, shut
down collection and restart.

2516-621 Daemon name: Cannot get identifier to
sampler daemon's shared memory.
spdmspld may have died or had its
shared memory removed.

Explanation: Specified daemon cannot get identifier to
the sampler's shared memory segment.

Action: Verify that the spdmspld daemon is running
on this node; shut down collection and restart.

2516-622 Daemon name: Cannot attach to sampler
daemon's shared memory (key key).
spdmspld daemon may have died or had
its shared memory removed.

Explanation: Specified daemon cannot attach to
sampler's shared memory of key specified.

Action: Verify that the spdmspld daemon is running
on the node; verify that a shared memory segment
exists with the key listed in this error log entry by using
the ipcs command; if the shared memory exists, note
the conditions that caused the error and contact IBM
service - if the shared memory does not exist, shut
down collection and restart.

2516-623 Daemon name: error number in routine
(name).

Explanation: Error occurred when searching for each
statistic in node's archive list with statistics in either the
collector's or sampler's shared memory.

Action: Make sure you have a shared memory
segment, if so try shutting down collection and

restarting collection. If still error, note the conditions that
caused the error and contact IBM Service.

2516-624 Daemon name: Couldn't find node name,
errno = number.

Explanation: Could not find node in hierarchy when
trying to find what type of node it is.

Action: Check that desired node is found in the
hierarchy.

2516-625 Daemon name: cannot get node
statistics list, errno = number.

Explanation: Cannot get the node's statistics list, error
returned should give more on problem found.

Action: Determine what to do, depends on error
returned. Note the conditions that caused the error and
contact IBM Service.

2516-626 Daemon name: error opening archive file
filename in routine (name).

Explanation: Error occurred when trying to open the
archive file to read or write to the code table.

Action: Verify that the archive file has read and write
permissions.

2516-627 Daemon name: Cannot allocate memory
for archive code table error: number.

Explanation: Error when allocating archive code table.

Action: Check free space for the /var/adm/ptpe file
structure.

2516-628 Daemon name: Cannot read archive
code table.

Explanation: Error occurred when trying to read
archive code table.

Action: Check directory permissions for the
/var/adm/ptpe file structure.

2516-629 Daemon name: error locating start of
archive file.

Explanation: Error occurred locating start of archive
file.

Action: Make sure that the system was expected to
have a performance information archive file on it. If not
stop archiving and then restart archiving, see if perflog
file is generated in the /var/adm/ptpe file structure.

 Chapter 9. Diagnosing PTPE Problems and Messages 349

 2516-630 � 2516-641

2516-630 Daemon name: error locating end of
archive file.

Explanation: Error occurred locating end of archive
file.

Action: Make sure that the system was expected to
have a performance information archive file on it, if not,
try stopping archiving then restart archiving and see if
perflog file is generated in the /var/adm/ptpe file
system.

2516-631 Daemon name: error locating last record
in archive file.

Explanation: Error occurred locating last record in
archive file.

Action: Make sure that the system was expected to
have a performance information archive file on it.

2516-632 Daemon name: Cannot determine current
position in the archive file.

Explanation: Cannot determine current position in the
archive file.

Action: Make sure that the system was expected to
have a performance information archive file on it.

2516-633 Daemon name: error reading archive file.

Explanation: Error reading archive file.

Action: Verify that the archive file has read
permission.

2516-634 Daemon name: Cannot locate reporter
node name in hierarchy.

Explanation: Cannot locate reporter node specified in
the hierarchy.

Action: Check that the hierarchy exists, if so, issue
the ptpectrl -i to initialize the hierarchy and then restart
collection.

2516-635 Daemon name: NULL hierarchy pointer
passed to routine (name).

Explanation: NULL hierarchy pointer passed to
send_hierarchy_to_caller routine.

Action: Try shutting down collection, check hierarchy,
if hierarchy is setup right issue the setup command
(ptpectrl -i) and then start collection again.

2516-636 Daemon name: Error making a message
of size(size) out of reply hierarchy for
node name.

Explanation: Error making a hierarchy message for
the specified node.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-637 Daemon name: Error sending message to
our manager from node name.

Explanation: Error sending message to our manager
on a specified node.

Action: Have the system administrator check for
network errors on the specified node.

2516-638 Daemon name: Unknown node type where
in routine(name).

Explanation: The daemons cannot correctly identify
the node's responsibilities in the monitoring hierarchy.
The message sent to this node may have been
corrupted.

Action: Check with administrator for possible network
problems.

2516-639 Daemon name: Unable to send back
hierarchy from node name.

Explanation: Error occurred when trying to send
hierarchy data message to the manager node.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-640 Daemon name: Error deleting process
identifier for name daemon from file:
error code.

Explanation: Error occurred when trying to delete the
pid for the specified daemon targeted for kill.

Action: Check that a daemon is still running on the
nodes. If so, it is likely that you will have to physically
kill the process.

2516-641 Daemon name: Invalid Argument Count:
number.

Explanation: Invalid argument count, the only valid
argument count is 3 (program name, socket descriptor,
and SPDM command).

Action: Ensure that no other process trying to use the
same port as PTPE. Might result when daemon is
executed from the command line with no arguments.

350 Monitoring Guide and Reference

 2516-642 � 2516-652

2516-642 Daemon name: All number failed in
routine(name).

Explanation: All the specified nodes have failures,
depending on input from the individual reporters, so all
failed is returned to spdmctrl .

Action: Look into the error log to see what the
possible causes are. The action taken will depend on
the node failures.

2516-643 Daemon name: number out of number
total failures exceeds maximum of
percent% in routine(name).

Explanation: The maximum number of failures has
been exceeded so thresh exceeded is sent back to
spdmctrl .

Action: Look into the error log to see what the
possible causes are. The action taken will depend on
the node failures.

2516-644 Daemon name: Error: Collector daemon
was started on reporter node.

Explanation: A collector daemon should never be
running on a reporter node.

Action: Make sure that a collector daemon has not
been started from the command line. If collection is
shut down and a collector daemon is still running the
process will have to be killed manually.

2516-645 Daemon name: Cannot determine the
name of this node's manager.

Explanation: Could not find out the name of the data
manager node. If the daemon name is spdmcold , this
means that a data manager node cannot get the name
of the central coordinator node from examining the
socket. If the daemon name is spdmspld , this means
that a node cannot determine the name of its data
manager node.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the
administrator for possible network problems with the
node's data manager node.

2516-646 Daemon name: Cannot save process
identifier in routine(name): error number.

Explanation: Error occurred when attempting to
access, create, open, lock or unlock the SPDM pid file.

Action: ensure that the file exists; ensure that the file
grants read/write permissions; ensure that the
filesystem containing the file is mounted.

2516-647 Daemon name: Invalid message size of
size for context and statistics data.

Explanation: Invalid message size when reading in
the size of the message for context and statistics data.

Action: Check that node is up and not fenced off;
have system administrator check for other network
errors on the node. Make sure no other process is
trying to use the same port as the spdmd daemon.

2516-648 Daemon name: Unable to allocate
memory of size size in routine(name),
error: error number.

Explanation: Memory allocation failed

Action: Try again later; have system administrator
check for applications that are consuming large
amounts of memory.

2516-649 Daemon name: Unable to read statistics
message.

Explanation: Read failed.

Action: Have system administrator check for other
network errors on the node. Either the socket has
closed or there is no message to read on the socket.

2516-650 Daemon name: Invalid statistics line size
size.

Explanation: Statistics line size is greater that the
maximum line size.

Action: Note the conditions that caused the error and
contact IBM Service

2516-651 Daemon name: Read all number statistics,
but haven't received DATA END yet.
Quitting.

Explanation: Read all the statistics but did not receive
the data end response.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the
administrator for possible network problems

2516-652 Daemon name: Received more statistics
than the maximum number that can be
handled. Quitting.

Explanation: Received more statistics than the
maximum statistics size.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the
administrator for possible network problems

 Chapter 9. Diagnosing PTPE Problems and Messages 351

 2516-653 � 2516-663

2516-653 Daemon name: Cannot get statistics
from data manager.

Explanation: Unable to get the statistics from the data
manager.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the
administrator for possible network problems with the
Regular Manager.

2516-654 Daemon name: Giving up after number
unsuccessful attempts to send statistics
data to my manager.

Explanation: The number of times it was unable to
send data to the data manager node exceeds
_SPDM_MAX_RETRIES, the manager no longer cares
about the data, so break out of the loop and terminate.

Action: Check with administrator for possible network
problems.

2516-655 Daemon name: Error in routine(error).

Explanation: Error when trying to perform specified
routine on shared memory. Possible lock_cmd's are
lock, unlock or update.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-656 Daemon name: Cannot setup statistic
archive codes

Explanation: Not able to setup statistics archive
codes.

Action: Check directory permissions and free space in
the /var/adm/ptpe file structure.

2516-657 Daemon name: String length length is
invalid.

Explanation: When initializing aggregate list the
read_reply on the caller socket receives an error.

Action: Have system administrator check for other
network errors on the node, make sure no other
process are using the same port as the spdmd
daemon.

2516-658 Daemon name: Cannot add statistic data
for statistic name to archive set.

Explanation: Error adding statistic data to archive set

Action: Look into the error log and see possible
causes to the errors adding to the archive set.

2516-659 Daemon name: Did not write data to
archive file.

Explanation: Did not write data to archive file.

Action: Check directory permissions and free space in
the /var/adm/ptpe file structure.

2516-660 Daemon name: Socket number no longer
connected.
 Peer remote node name may have closed
connection prematurely or died
unexpectedly.

Explanation: A socket connection, previously
established by the daemon to another system, has been
dropped. The most likely cause is a failure in the other
system, or a failure in the daemon running on that other
system.

Action: Check the error logs on the remote system for
an explanation of the failure; ensure that the remote
system is up and not fenced off.

2516-661 Daemon name: Connected to node name
on socket number expected to be
connected to node data manager node
name.

Explanation: Not connected to expected host

Action: Check the hierarchy to make sure the
hierarchy hasn't been altered since collection has
started, if so, stop collection, setup hierarchy to desired
hierarchy, then issue a setup followed by a start
collection command.

2516-662 Daemon name: Cannot connect to
Central Coordinator name.

Explanation: Cannot connect to the specified node
type.

Action: Check with administrator for possible network
problems. Look into error log for any possible network,
socket errors.

2516-663 Daemon name: Central Coordinator DID
NOT get our data.

Explanation: Central coordinator did not get the data
sent to it.

Action: Check with administrator for possible network
problems. Look into error log for any possible network,
socket errors.

352 Monitoring Guide and Reference

 2516-664 � 2516-675

2516-664 Daemon name: Spmi error in library
routine - error message from Spmi
interface

Explanation: Specified error occurred when issuing an
Spmi call.

Action: Note error, make sure that IBM Performance
Toolbox for AIX is installed.

2516-665 Daemon name: Cannot stop resource
monitor name data supplier.

Explanation: The sampler daemon cannot stop the
dynamic data supplier daemon.

Action: Look at error log for any possible errors, the
dynamic data supplier daemon will have to be killed
manually.

2516-666 Daemon name: Unable to initialize Spmi
interface

Explanation: Sampler daemon unable to initialize the
Spmi interface used in IBM Performance Toolbox for
AIX.

Action: Make sure that the Performance Aide for AIX
is installed on the node.

2516-667 Daemon name: Cannot invoke name
resource monitor.

Explanation: Sampler daemon cannot invoke the
specified resource monitor.

Action: Check error log for possible causes, make
sure that the resource monitor daemon is found the
/usr/lpp/ssp/bin/haemRM file system.

2516-668 Daemon name: received reply instead of
reply from collector for list received.

Explanation: The collector daemon did not receive the
list of statistics from the sampler daemon.

Action: Check with administrator for possible network
problems. Look into error log for any possible network,
socket errors. Possible that the socket has closed, or no
message to read on the socket.

2516-669 Daemon name: Cannot send reply reply
on socket descriptor.

Explanation: Cannot send the specified data on the
specified socket

Action: Check with administrator for possible network
problems. Look into error log for any possible network,
socket errors.

2516-670 Daemon name: SpmiPathAddSetStat
failed for number statistics in
routine(name).

Explanation: SpmiPathAddSetStat routine failed with
specified errors.

Action: Possible for some statistics to not be found on
every given node, but collection is still continued for
statistics that are found. If count is high, make sure
resource monitor was started if so, then individual lpp
modules might not be loaded.

2516-671 Daemon name: Cannot find statistic
name in list.

Explanation: Cannot find the statistic requested in the
list specified.

Action: This should never happen, if so, note the
conditions that caused the error and contact IBM
Service.

2516-672 Daemon name: Error return in
setup_sampling();.

Explanation: Incorrect response sent back from setup
command.

Action: Check error log for possible failures.

2516-673 Daemon name: Error killing COLLECTOR
process process id: error code.

Explanation: Terminator daemon unable to kill
collector daemon process.

Action: The process will have to be killed manually.

2516-674 Daemon name: Cannot start process
resource monitor name.

Explanation: The resource monitor passed in cannot
be started.

Action: Check that the data supplier does exist in
/usr/lpp/ssp/bin/haemRM file system. Check with
administrator for possible network problems. Look in
error log for any possible network, socket errors.

2516-675 Daemon name: Cannot start name
resource monitor.

Explanation: Unable to connect to the resource
monitor specified.

Action: Check that the resource monitor does exist in
/usr/lpp/ssp/bin/haemRM file system. Check with
administrator for possible network problems. Look into
error log for any possible network, socket errors.

 Chapter 9. Diagnosing PTPE Problems and Messages 353

 2516-678 � 2516-688

2516-678 Daemon name: data manager node name
received errors checking for reporter
nodes.

Explanation: Error finding who the specified node are
under the data manager node.

Action: Check with administrator for possible network
problems.

2516-679 Daemon name: Cannot get hierarchy from
reporter name on socket number.

Explanation: Error getting hierarchy from specified
node type on the specified socket

Action: Check that reporter node is up and not fenced
off; have system administrator check for other network
errors on the node

2516-680 Daemon name: Cannot send command
name to resource monitor.

Explanation: Unable to send the specified command
to the resource monitor.

Action: Check with administrator for possible network
problems. Make sure no other processes are trying to
use the same port.

2516-681 Daemon name: Unexpected error in the
select() system call - error code number.

Explanation: Select error.

Action: The socket the select is being done on, could
have closed. Check with administrator for possible
network problems. Look into error log for any possible
network, socket errors.

2516-682 Daemon name: select timed out after
number seconds waiting on socket
number. socket number that is waiting for
select

Explanation: Select timed out after a predetermined
time interval.

Action: The socket the select is being done on, could
have closed. Check with administrator for possible
network problems. Look into error log for any possible
network, socket errors.

2516-683 Daemon name: Error reading resource
monitor response from socket number:
error number.

Explanation: Error reading resource monitor from the
specified socket

Action: Ensure that the harmld resource monitor is
active; check error log for harmld entries and take
appropriate corrective action.

2516-684 Daemon name: Expected to read number
bytes, but read number bytes from socket
number.

Explanation: When reading from the socket, more
was expected. expected daemons are starting up, also
check error log for any possible errors that could have
caused the problem.

Action: Look for any other perfmon error log entries
generated at the same time to see if there is any
corrective action that can be taken. (This might be a
symptom of a larger problem.)

2516-685 Daemon name: system() exited with
number return code.

Explanation: When starting to run process in the
background the system() exited.

Action: Make sure the data supplier daemon is in
/usr/lpp/ptpe/bin file structure. Check with system
administrator for possible network problems .

2516-686 Daemon name: Error getting a UNIX
socket error code.

Explanation: Error getting a UNIX domain socket.

Action: Check with administrator for possible network
problems.

2516-687 Daemon name: unable to unlock archive
file filename: error number.

Explanation: Error occurred when unlocking the
archive file.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-688 Daemon name: Error sending command
command codeof size number to resource
monitor daemon (number bytes sent).
Error message: message.

Explanation: Error sending command message
through the socket to the resource monitor daemon.
The resource monitor daemon may have terminated
prematurely, or the socket connection may have been
dropped.

Action: Check the error log on this node for any
possible error messages from the resource monitor
daemon. Verify that the resource monitor daemon is
running on this node. Check the error log for other
network related problems. If problem persists, contact
IBM service.

354 Monitoring Guide and Reference

 2516-689 � 2516-700

2516-689 Daemon name: Unknown data type type
in routine(name).

Explanation: Unknown data type in specified routine

Action: Note the conditions that caused the error and
contact IBM Service.

2516-690 Daemon name: no space for statistic
statistic name in the archive set.

Explanation: archive_set is about to overflow

Action: Note the conditions that caused the error and
contact IBM Service.

2516-691 Daemon name: unable to lock archive
file filename: error number.

Explanation: Error occurred when locking the archive
file.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-692 Daemon name: Wrote number bytes written
out of total bytes into archive file: error
number.

Explanation: Write error.

Action: Check free space for the /var/adm/ptpe file
structure. Socket might have closed in the middle of
writing to archive file. Check with system administrator
for possible network problems.

2516-693 Daemon name: Cannot stat() file
filename: error number.

Explanation: Cannot successfully stat() the archive file
for some reason

Action: Check error log for possible causes. Check
with the system administrator for possible network
problems.

2516-694 Daemon name: Cannot system call Buffer
sizenumber (read number bytes) from
archive file filename: error number.

Explanation: Read error reading from archive file.

Action: Check with the system administrator for
possible network problems.

2516-695 Daemon name: Cannot get hierarchy
from manager node name on socket
number.

Explanation: Error getting hierarchy from specified
node type on the specified socket.

Action: Check that data manager node is up and not
fenced off; have system administrator check for other
network errors on the data manager node.

2516-696 Daemon name: Node name designated
as both g and data manager. This is an
invalid configuration.

Explanation: Node cannot be both a g and data
manager.

Action: Change hierarchy so that this is not the case.

2516-697 Daemon name: Central Coordinator name
received errors checking for data
managers.

Explanation: Error determining the specified node
types.

Action: Check with administrator for possible network
problems.

2516-698 Daemon name: Central Coordinator name
is reporting to itself: ERROR.

Explanation: Specified data manager node cannot
report back to itself.

Action: Should never happen, if so, note the
conditions that caused the error and contact IBM
Service.

2516-699 Daemon name: Attempted to reference
node list pointer of NULL in iteration
number.

Explanation: Attempting to reference node list pointer
of NULL when walking through hierarchy looking for
data managers.

Action: Check that the hierarchy is what is expected,
it might be possible that the hierarchy has been
changed. If hierarchy is correct, then stop collection,
then issue a setup command, then start collection
again.

2516-700 Daemon name: Central Coordinator name
received errors checking for reporting
data managers.

Explanation: Invalid argument has been returned back
from the spdm_get_reporters routine.

Action: Check that the hierarchy is what is expected,
it might be possible that the hierarchy has been
changed. If hierarchy is correct, then stop collection,
then issue a setup command, then restart collection.

 Chapter 9. Diagnosing PTPE Problems and Messages 355

 2516-701 � 2516-712

2516-701 Daemon name: Not connecting to
manager name because of connection
errors on socket number.

Explanation: Connect to node failures.

Action: Check with administrator for possible network
problems.

2516-702 Daemon name: At least one Manager
Node failed to connect.

Explanation: At least one of the data managers failed
to connect.

Action: Check with administrator for possible network
problems. Make sure no other processes are trying to
use the same port number.

2516-703 Daemon name: Error sending hierarchy
message to reporting node name on
socket number.

Explanation: Error sending hierarchy message to
reporting node specified on specified socket number.

Action: Check that node is up and not fenced off;
have system administrator check for other network
errors on the node. Make sure no other process is
trying to use the same port as the spdmd daemon.

2516-704 Daemon name: occurrence number Error
number making a message out of
hierarchy for manager name.

Explanation: Error making a message out of the
hierarchy for the manager.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-705 Daemon name: socket number is
connected to node name and not node
name as expected.

Explanation: Socket is not connected to the correct
node.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-706 Daemon name: Failed to read reply from
node name in routine(name).

Explanation: Failed to read reply from specified node
type.

Action: Check that node is up and not fenced off;
have system administrator check for other network
errors on the node. Make sure no other process is
trying to use the same port as the spdmd daemon.

2516-707 Daemon name: Received reply reply from
node name in routine(name). routine
where error occurred

Explanation: Error receiving specified reply on the
specified node type.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-708 Daemon name: Unknown reply reply from
node name in routine(name).

Explanation: Unknown reply in specified routine.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-709 Daemon name: unable to add reporter
name hierarchy to manager name
hierarchy.

Explanation: Unable to add reporter's hierarchy to the
manager's hierarchy.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-710 Daemon name: Cannot allocate memory
reconstructing hierarchy on node name.

Explanation: Memory allocation failed.

Action: Try again later; have system administrator
check for applications that are consuming large
amounts of memory.

2516-711 Daemon name: Cannot open System
Data Repository: return code from
SDROpenSession = error number.

Explanation: Could not open the System Data
Repository (SDR).

Action: Check if SDR is off-line or damaged. Note the
conditions that caused the error and contact IBM
Service.

2516-712 Daemon name: Error returning from
routine(name) System Data Repository.
errno = number.

Explanation: Could not perform specified function on
the System Data Repository (SDR).

Action: Check if SDR is off-line or damaged.

356 Monitoring Guide and Reference

 2516-713 � 2516-727

2516-713 Daemon name: Length of failing reporter
name is invalid length.

Explanation: Error reading reply on the socket.

Action: Check with administrator for possible network
problems.

2516-714 Daemon name: Unable to read a failing
reporter name.

Explanation: Error in read_string_reply reading a
failing reporter name.

Action: Check with administrator for possible network
problems.

2516-715 Daemon name: Unable to read context
name string length.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problems.

2516-716 Daemon name: Length of context name
is invalid length.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problems.

2516-717 Daemon name: Unable to read
description string length for name.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problems.

2516-718 Daemon name: Length of name
description is invalid length.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problems.

2516-719 Daemon name: Unable to read
description for name.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problems.

2516-720 Daemon name: Cannot read ASN-1
number for name.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problem.

2516-721 Daemon name: Cannot read number of
subcontexts for context name.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problem.

2516-722 Daemon name: Invalid number of
subcontexts number for context name.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problem.

2516-723 Daemon name: Cannot get minimum
statistic name from socket.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problems.

2516-724 Daemon name: Cannot read statistic
name value type.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problem.

2516-725 Daemon name: Unable to open statistic
file filename with mode mode: error
number.

Explanation: The /tmp/manager.stat.file statistics file
cannot be found, or cannot be opened

Action: Verify that the statistic file exists for your
specific locale; verify that the statistic file has read
permission.

2516-726 Daemon name: execl failed: Executing
command command with parameters
socket_string and comm_string error: error
number.

Explanation: Execution of specified program failed
with specified error.

Action: make sure the executable is in the
/usr/lpp/ptpe/bin file system.

2516-727 Daemon name: semget error: error
number

Explanation: Error getting a set of semaphores.

Action: Note the conditions that caused the error and
contact IBM Service.

 Chapter 9. Diagnosing PTPE Problems and Messages 357

 2516-728 � 2516-740

2516-728 Daemon name: semop() error on lock:
error number.

Explanation: Semaphore operations error on lock.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-729 Daemon name: Cannot remove
semaphore id: error number.

Explanation: Semaphore control operations error on
specified semid.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-730 Daemon name: Invalid input parameter
name in routine(name).

Explanation: Invalid input parameter specified in
specified routine.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-731 Daemon name: Cannot combine
REGULAR_NODE and
AGGREGATE_TABLE parameters in
routine(name).

Explanation: Error combining REGULAR_NODE and
AGGREGATE_TABLE parameters on a
REGULAR_NODE.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-732 Daemon name: Cannot create a shared
memory key. errno = error number.

Explanation: Error creating a shared memory key.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-733 Daemon name: Cannot create a shared
memory of size memory requirement: error
number.

Explanation: Error creating shared memory.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-734 Daemon name: Cannot attach to shared
memory with id shared memory id: error
number.

Explanation: Cannot do specified command with
shared memory id.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-735 Daemon name: Cannot detach shared
memory at pointer
 error number.

Explanation: Cannot do specified command with
shared memory at specified location.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-736 Daemon name: Cannot get shared
memory id from socket.

Explanation: Cannot get shared memory id from
socket.

Action: Check with administrator for possible network
problems. Make sure no other process's are trying to
use the same port.

2516-737 Daemon name: Cannot get message size
from socket.

Explanation: Cannot get message size from socket.

Action: Check with administrator for possible network
problems. Make sure no other process's are trying to
use the same port.

2516-738 Daemon name: Cannot get the name of
the local host: error number.

Explanation: Unable to get hostname.

Action: Check with administrator for possible network
problems. Possible SDR error not being able to get the
hostname.

2516-739 Daemon name: Failed getpeername call
for socket socket number: error number.

Explanation: Failure to return the name of the node
the process is connected to on the socket.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-740 Daemon name: routine(name) failed for
node name: error number.

Explanation: Specified routine failed with specified
error.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

358 Monitoring Guide and Reference

 2516-741 � 2516-753

2516-741 Daemon name: Error in routine(name)
command on socket number: Broken pipe.

Explanation: Error sending specified in string and
command on a socket and the pipe is broken.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-742 Daemon name: Error in routine(name)
command on socket number: error number
(number bytes sent).

Explanation: Error sending a specified string and
command on a socket.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-743 Daemon name: Error sending length
bytes of data to node name. The socket
was closed unexpectedly by the remote
node.

Explanation: Error sending specified in string on a
socket and the pipe is broken.

Action: The socket has closed unexpectedly. Check
with the system administrator for possible network
problems.

2516-744 Daemon name: Error sending message
size command to node socket number:
error number. number bytes sent.

Explanation: Error sending a specified string and
command on a socket.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-746 Daemon name: Cannot connect to
socket file filename: error message.

Explanation: The connect() system call failed. A
socket connection to the resource monitor daemon
could not be established. The resource monitor daemon
may not be active, or the socket may have been
dropped.

Action: Check the node's error logs for possible error
messages from the resource monitor daemon, or for
indications of network problems.

2516-747 Daemon name: Error in routine(name)
from socket number error number.

Explanation: Error sending specified in string from
socket.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-748 Daemon name: error in
set_not_found_fields().

Explanation: Error in set_not_found_fields.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-749 Daemon name: cannot make hierarchy
for reporting node name

Explanation: Error making the hierarchy for the
specified reporting node.

Action: Check that the hierarchy exists, if so, issue

ptpectrl -i

to initialize the hierarchy.

2516-750 Daemon name: Cannot find free ASN-1
number for statistic name.

Explanation: Unable to find a free ASN-1 number for
the specified statistic.

Action: Note the conditions that caused the error and
contact IBM Service

2516-751 Daemon name: Cannot find context name
in statistics file.

Explanation: Unable to find the specified context
name in the statistics file.

Action: Note the conditions that caused the error and
contact IBM Service

2516-752 Daemon name: Cannot find parent for
context name.

Explanation: Cannot find parent for specified context.

Action: Note the conditions that caused the error and
contact IBM Service

2516-753 Daemon name: Daemon received
unexpected signal number - aborting.

Explanation: The daemon received a signal that
caused it to terminate, but the signal was not one of the
expected termination signals. Signal may have been
generated by a memory access problem, an outside
source, or a coding error.

 Chapter 9. Diagnosing PTPE Problems and Messages 359

 2516-754 � 2516-765

Action: Check if someone issued a kill call on the
daemon named; If no one killed the daemon, and the
signal value is not 33, contact IBM service.

2516-754 Daemon name: Error making a message
of size(size) out of archive data for node
name.

Explanation: Error making a hierarchy message for
the specified node.

Action: Either the socket has closed or there is no
message to read on the socket. Check with the system
administrator for possible network problems.

2516-755 Daemon name: Cannot connect to
Manager name.

Explanation: Cannot connect to the specified node
type.

Action: Check with administrator for possible network
problems.

2516-756 Daemon name: Error killing SAMPLER
process process id: error number.

Explanation: Terminator daemon unable to kill
sampler daemon process.

Action: The process will have to be killed manually.

2516-757 Daemon name: Not connecting to node
name because of connection errors on
socket number.

Explanation: Connect to node failures

Action: Check with administrator for possible network
problems.

2516-758 Daemon name: At least one node failed
to connect.

Explanation: At least one of the reporter nodes failed
to connect.

Action: Check with administrator for possible network
problems. Make sure no other process's are trying to
use the same port number.

2516-759 Daemon name: At least node failed to
start archiving.

Explanation: At least one of the reporter nodes failed
to start archiving.

Action: Check with administrator for possible network
problems. Make sure no other process's are trying to
use the same port number.

2516-760 Daemon name: At least one Manager
Node failed to start archiving.

Explanation: At least one of the data manager nodes
failed to start archiving.

Action: Check with administrator for possible network
problems. Make sure no other process's are trying to
use the same port number.

2516-761 Daemon name: At least one node failed
to reply with replay.

Explanation: At least one of the nodes failed to reply
with _SPDM_INPUT_CONFIRMED.

Action: Check with administrator for possible network
problems. Make sure no other process's are trying to
use the same port number.

2516-762 Daemon name: At least one data
manager node failed to reply with reply.

Explanation: At least one of the data manager nodes
failed to reply with _SPDM_INPUT_CONFIRMED.

Action: Check with administrator for possible network
problems. Make sure no other process's are trying to
use the same port number.

2516-763 Daemon name: Error sending hierarchy
message to data manager name on
socket number.

Explanation: Error sending hierarchy message to
specified data manager on specified socket number

Action: Check that node is up and not fenced off;
have system administrator check for other network
errors on the node. Make sure no other process is
trying to use the same port as the spdmd daemon.

2516-764 Daemon name: unable to add new
manager name hierarchy to manager
name hierarchy.

Explanation: Unable to add reporter's hierarchy to the
manager's hierarchy.

Action: Check error log for network errors on two
nodes listed, as well as for perfmon entries on the
reporting node indicating reporting node failure, and
take appropriate corrective action. If none generated,
contact IBM Service.

2516-765 Daemon name: Unable to read context
name.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problems.

360 Monitoring Guide and Reference

 2516-766 � 2516-779

2516-766 Daemon name: Unable to read long
context name string length.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problems.

2516-767 Daemon name: Unable to read long
context name.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problems.

2516-768 Daemon name: Unable to read statistic
name string length.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problems.

2516-769 Daemon name: Unable to read statistic
name.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problems.

2516-770 Daemon name: Cannot read number of
statistics for context name.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problem.

2516-771 Daemon name: Invalid number of
statistics number for context name.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problem.

2516-772 Daemon name: Cannot get maximum
statistic name from socket.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problem.

2516-773 Daemon name: Cannot get data type of
statistic name from socket.

Explanation: Error reading reply on socket.

Action: Check with administrator for possible network
problem.

2516-774 Daemon name: Unable to open context
file filename with mode mode: error
number.

Explanation: /tmp/manager.cont.file statistics file
cannot be found, or cannot be opened.

Action: Verify that the context file exists for your
specific locale; verify that the context file has read and
write permission.

2516-775 Daemon name: semop() error on unlock:
error number.

Explanation: Semaphore operations error on unlock.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-776 Daemon name: Cannot remove shared
memory with id id: error number.

Explanation: Cannot do specified command with
shared memory id.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-777 Daemon name: Cannot save shared
memory id(id) to file allocated by the
routine call.

Explanation: Error saving shared memory id to file.

Action: Note the conditions that caused the error and
contact IBM Service.

2516-778 Daemon name: The sampler daemon
spdmapid was already running.
 PID number: id. The attempt to shut
down this daemon failed with an error:
error number.

Explanation: When trying to kill an already running
sampler daemon before start_sampling() is called, an
error occurred.

Action: The process will have to be killed manually.

2516-779 Daemon name: The collector daemon
spdmcold was already running. PID
number: id. The attempt to shut down
this daemon failed with an error: error
number.

Explanation: an error occurred when trying to kill an
already running collector daemon before saving the
process id to the file.

Action: The process will have to be killed manually

 Chapter 9. Diagnosing PTPE Problems and Messages 361

 2516-780 � 2516-784

2516-780 Daemon name: The inetd subserver
daemon spdmd failed on reporting node
name.

Explanation: The spdmd daemon failed to start on
the named node, or failed before starting the proper
handler daemon on that node.

Action: Check the error log on the named node for an
explanation of the failure.

2516-781 Daemon name: Cannot get statfs()
information about the filesystem
containing the directory name.

Explanation: The daemon attempted to get
information on the filesystem containing the named
directory with the statfs() function. The attempt failed.

Action: Verify that the directory exists on the node;
verify that the /var filesystem is mounted.

2516-782 Daemon name: Archive code table
requires size blocks. The filesystem
containing the directory /var/adm/ptpe
has number blocks available.

Explanation: The filesystem containing the named
directory does not have enough space to contain the
archive codes table. This file is required to start
performance information collection.

Action: Increase the amount of space in the
filesystem, or mount a new file-system on the named
directory.

2516-783 Daemon name: Cannot read system
partition information from manager's
socket message.

Explanation: The daemon could not extract the name
of the SP partition from the message sent to this node
by its data manager node.

Action: Check for network related errors on this
system and the system's data manager node.

2516-784 Daemon name: The routine, Spmi Library
routine name, could not lock the Spmi
shared memory for number seconds.
 Assuming a failure in Spmi and
terminating.

Explanation: The Spmi routine failed continuously for
the stated period of time because another process held
a shared memory lock within the Spmi. This may
indicate an error in Spmi itself. The daemon cannot
continue.

Action: The Spmi shared memory on the node may
be damaged, or another process may be using the
Spmi incorrectly. Another error log entry should follow
this one, indicating the process that has locked the
Spmi. Try to terminate this process, or refresh it with a
SIGINT if the process is the xmservd daemon. Shut
down collection and restart.

362 Monitoring Guide and Reference

 Appendixes

 Copyright IBM Corp. 1998 363

364 Monitoring Guide and Reference

 Appendix A. PTPE Files

The directories, files and processes used by PTPE are described here.

What PTPE Creates at Installation
The following files, commands, and directories are created when PTPE is installed.

Files, Directories, and Libraries
/usr/lpp/ptpe

Location of the PTPE installable image, commands, and daemons.

/var/adm/ptpe
Location of the PTPE information archive for the node.

/var/adm/ptpe/perftab
The PTPE archived statistics translation table. This file contains
the mapping between the Spmi names for performance statistics
and the identification codes used for these statistics in the
performance information archive on the node.

/usr/include/spdm.h
The PTPE C language header file, providing definitions of the data
types and prototypes of the PTPE API library subroutines.

/usr/lib/libptpe.a
The PTPE C language programming interface.

/usr.lpp/ptpe/samples
Sample API and configuration files.

/usr/lpp/ssp/info2
PTPE hypertext information database files for InfoExplorer retrieval

/usr/lpp/ssp/docs/sp_perf_parallel_ext.ps
This manual in printable PostScript format.

Manual pages for PTPE commands and subroutines are included with Parallel
System Support Programs man pages in /usr/lpp/ssp/man .

Commands and Utilities
/usr/sbin/ptpectrl

The control command for PTPE. This command controls the
current status of performance information sampling, collection, and
recording in the entire system.

/usr/lpp/ptpe/bin/ptpeconf
The configuration command for PTPE. This command creates the
necessary data classes within the System Data Repository.

/usr/lpp/ptpe/bin/ptpegroup
A user group creation command, which creates the perfmon user
group. Only users of this group, with the group set as their primary
group, can execute any PTPE commands or use its programming
library.

 Copyright IBM Corp. 1998 365

/usr/lpp/ptpe/bin/ptpehier
The hierarchy construction command of PTPE. This command
permits the user to create a monitoring hierarchy, using a set of
standard methods or using input provided by the caller.

/usr/lpp/ptpe/bin/ptpedump
A distributed performance information archive dump utility. This
utility dumps a text version of the archives maintained by one or
more nodes to files on these systems.

/usr/lpp/ptpe/bin/spdm_dump
A local performance information archive dump utility. This utility
dumps a text version of the archive maintained by the local node
to standard output.

 Daemons
/usr/lpp/ptpe/bin/spdmd

The PTPE master daemon. This daemon receives all PTPE
requests for the node, validates the request, and invokes the
appropriate daemon process to handle the request.

/usr/lpp/ptpe/bin/spdmcold
The PTPE collector daemon. This daemon is executed on the
central coordinator node and all data manager nodes in the
monitoring hierarchy, and prepares the averaged performance
statistics for the monitoring hierarchy.

/usr/lpp/ptpe/bin/spdmspld
The PTPE sampler daemon. This daemon is executed on all
nodes within the monitoring hierarchy. This daemon obtains all the
performance information from the node, forwards this information
to the node's data manager node, and records the information to
that node's performance information archive.

/usr/lpp/ptpe/bin/spdmapid
The PTPE programming library request handler. This daemon
executes whenever the node is involved in the response to a
programming library request. It obtains performance data recorded
in the archives of a node, enables or restricts information from
being collected or archived, and (on data manager nodes) relays
requests on to other nodes for further processing.

/usr/lpp/ptpe/bin/spdmtrmd
The PTPE termination daemon. This daemon executes on a node
whenever performance information collection is being shut down,
and is responsible for forcing the other PTPE daemons to exit.

 Message Catalogs
/usr/lib/nls/msg/En_US/ptpe.cat

/usr/lib/nls/msg/en_US/ptpe.cat

/usr/lib/nls/msg/C/ptpe.cat
The message catalog for Performance Toolbox Parallel Extensions
for AIX. Other message catalogs may be provided in other
directories for other locales.

366 Monitoring Guide and Reference

What PTPE Creates During Use
These files are not created until PTPE is started.

/var/adm/ptpe/perflog
The PTPE information archive. This file is created on each node in
the monitoring hierarchy after collection has begun. The file
contains a statistics code translation table, plus any performance
information that was recorded by this node.

/etc/perf/spdm.pid
Ths file containing the process identifiers of any PTPE daemons
currently executing on the node. This file should not remain after
performance information collection has been shut down.

/etc/perf/ptpe.shseg
A file used by the Spmi library when creating the shared memory
to store the SP-specific performance data. This file should not
remain after performance information collection has been shut
down, or the ptpertm command has completed.

/tmp/spdm.trace
The PTPE daemon tracing file. This file will only be present if the
daemons encounter unexpected error conditions. The messages in
this file should also be mirrored in the node's error log.

/tmp/manager.cont.file

/tmp/manager.cont.file.uniq

/tmp/manager.cont.file.sorted

/tmp/manager.stat.file

/tmp/manager.stat.file.uniq

/tmp/manager.stat.file.sorted

/tmp/manager.stat.file.transposed

/tmp/current.stats
Work files used by the PTPE daemons when initializing the
monitoring hierarchy. The files should only exist on the node
during initialization phase (see “ptpectrl” on page 88), and be
removed after that phase has completed.

 Appendix A. PTPE Files 367

368 Monitoring Guide and Reference

Appendix B. PTPE Sample Application Program

This sample PTPE application can be found in
/usr/lpp/ptpe/samples/ptpe_sample.c .

/\
 \ Licensed Materials - Property of IBM
 \
 \ "Restricted Materials of IBM"
 \
 \ 5765-529
 \
 \ (C) Copyright IBM Corp. 1996 All Rights Reserved.
 \
 \ US Government Users Restricted Rights - Use, duplication or disclosure
 \ restricted by GSA ADP Schedule Contract with IBM Corp.
 \/

/\
 \ @(#)ð4 1.3 src/perfmon/pdm/samples/ptpe_sample.c, \
 \ perfmon, perfmon_rloc 8/28/96 21:11:48
 \
 \ Module Name: ptpe_example.c
 \
 \ Component: perfmon
 \
 \ Description: This module demonstrates how the Performance Toolbox Parallel
 \ Extensions programming library could be utilized to start
 \ performance information aggregation and retention within a
 \ monitoring hierarchy, and how it might also be used to retrieve
 \ performance information stored within the hierarchy's perfor-
 \ mance information archives.
 \
 \ It attempts to demonstrate the relationship between the
 \ host_list_t and the stat_list_t data types, and how assignments
 \ are made between these types in order to specify the statistics
 \ and the nodes involved in API requests. It also attempts to
 \ demonstrate how an application should "navigate" within these
 \ lists to obtain information and make assignments.
 \
 \ Routines: sig_setup exit_hdlr
 \ print_host print_stat
 \ print_result select_hosts
 \ setup_stats set_stats_time
 \ assign_stats get_different_times
 \ retry_test main
 \
 \ Macros: SUCCESS_TEST LIMITED_TEST
 \
\ Disclaimer: THE SOURCE CODE EXAMPLES PROVIDED BY IBM ARE ONLY INTENDED TO
 \ ASSIST IN THE DEVELOPMENT OF A WORKING SOFTWARE PROGRAM. THE
 \ SOURCE CODE EXAMPLES DO NOT FUNCTION AS WRITTEN: ADDITIONAL
 \ CODE IS REQUIRED. IN ADDITION, THE SOURCE CODE EXAMPLES MAY
 \ NOT COMPILE AND/OR BIND SUCCESSFULLY AS WRITTEN.
 \
 \ INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE

 Copyright IBM Corp. 1998 369

 \ SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE
 \ GROUPS, "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
 \ OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED
 \ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 \ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
 \ OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR
 \ MORE GROUPS, IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE
 \ EXAMPLES PROVE DEFECTIVE, YOU (AND NOT IBM OR AN AUTHORIZED IBM
 \ DEALER) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING,
 \ REPAIR OR CORRECTION.
 \
 \ IBM does not warrant that the contents of the source code
 \ examples, whether individually or as one or more groups, will
 \ meet your requirements or that the source code examples are
 \ error-free.
 \
 \ IBM may make improvements and/or changes in the source code
 \ examples at any time.
 \
 \ Changes may be made periodically to the information in the
 \ source code examples; these changes may be reported, for the
 \ sample device drivers included herein, in new editions of the
 \ examples.
 \
 \ References in the source code examples to IBM products,
 \ programs, or services do not imply that IBM intends to make
 \ these available in all countries in which IBM operates. Any
 \ reference to an IBM licensed program in the source code
 \ examples is not intended to state or imply that only IBM's
 \ licensed program may be used. Any functionally equivalent
 \ program may be used.
 \/

#include <stdio.h>
#include <spdm.h> /\ PTPE data types, functions, etc. \/
#include <time.h>
#include <sys/time.h>
/\\
 \
 \ Global Data Areas
 \
\\\/
/\
 \ Session control information block - will be created and initialized by the
 \ PtpeOpenSession routine, discarded by the PtpeCloseSession routine, and
 \ required by any routine that controls collection, controls archiving, or
 \ requests information from the monitoring hierarchy.
 \/
session_ptr_t sblock;

/\
 \ The names of statistics that will be retrieved from the performance infor-
 \ mation archives on some of the nodes within the monitoring hierarchy.
 \ Notice that the statistic names use the Performance Toolbox "Spmi" naming
 \ convention (the statistic names are relative to the TOP context, not
 \ absolute path names from /hosts as "Rsi" uses).

370 Monitoring Guide and Reference

 \/
#define NUM_EX_STATS 4
char test_stats[NUM_EX_STATS][PTPE_STNL] = {
 "Proc/runque",
 "PagSp/%totalfree",
 "Mem/Real/%free",
 "CPU/gluser"
 };

/\
 \ Function prototypes
 \/
extern void print_host(host_list_t);
extern void print_stat(char \, stat_list_t);
extern void print_result(int);
extern void select_hosts(host_list_t, host_list_t \);
extern void setup_stats(stat_list_t \);
extern void set_stats_time(stat_list_t, int, struct tm \);
extern void assign_stats(host_list_t, stat_list_t);
extern void get_different_times(host_list_t, stat_list_t, struct tm \);

/\\
 \
 \ Macro Name: SUCCESS_TEST
 \
 \ Description: Tests the return code from an API routine to determine if
 \ the routine was completed successfully. If an API routine
 \ is not successful, this macro forces the application to
 \ drop the session and abort.
 \
 \ Notice that if the session is dropped after collection or
 \ archiving has been activated, collection or archiving
 \ REMAINS active after the session is released. If this
 \ macro forces an abort after collection or archiving has
 \ been activated, run "ptpectrl -s" to stop collection and
 \ archiving.
 \
 \ Usage: SUCCESS_TEST(calling_func, api_routine, return_code)
 \
 \ where: calling_func Is the name of the routine making
 \ the API request.
 \ api_routine Is the name of the API routine that
 \ "calling_func" was using.
 \ return_code Is the return code from
 \ "api_routine".
 \
 \ Return Codes: None
 \
 \\\/

#define SUCCESS_TEST(calling_func, api_routine, return_code) \
{ \

if (rc != PTPE_SUCCESS && rc != PTPE_LIMITED) { \
printf("Unexpected error in %s(): %s() returned ", \

 calling_func, api_routine); \
 print_result(return_code); \

printf("RESULTS NOT AS EXPECTED - TERMINATING.\n"); \
 exit_hdlr(-1); \

 Appendix B. PTPE Sample Application Program 371

 } \
}
/\\
 \
 \ Macro Name: LIMITED_TEST
 \
 \ Description: Tests if the return code from a preceeding PTPE API library
 \ routine indicated that all hosts targeted for the request
 \ did not repsond favorably. If at least one node did not
 \ respond favorably, the reply list is displayed for the
 \ user. The user should examine the list to detect which
 \ failed, and for what reason.
 \
 \ Usage: LIMITED_TEST(api_routine, return_code, reply1, reply2)
 \
 \ where: api_routine Is the name of the API routine that
 \ was issued.
 \ return_code Is the return code from
 \ "api_routine".
 \ reply1 Is the reply host list generated by
 \ most PTPE API calls, or the
 \ manager failure lists from
 \ PtpeColStart / PtpeColStop. If
 \ NULL, no reply lists are printed.
 \ reply2 Is NULL for most calls, or the
 \ non-manager failure lists from
 \ PtpeColStart / PtpeColStop
 \
 \ Return Codes: None
 \\/

#define LIMITED_TEST(api_routine, return_code, reply1, reply2) \
{ \

if (return_code == PTPE_LIMITED) { \
printf("Not all hosts in the target list were successful in\n"); \
printf("\t performing the %s request.\n", api_routine); \
if (reply1 == (host_list_t) NULL) { \

printf("\t Check previous host list output for error notices\n");\
 } \
 else { \

if (reply2 == (host_list_t) NULL) { \
printf("\t Hosts that failed the request were:\n"); \

 print_host(reply1); \
 } \
 else { \

printf("\t Managers that failed the request were:\n"); \
 print_host(reply1); \

printf("\t Non-managers that failed:\n"); \
 print_host(reply2); \
 } \
 } \

printf("\t Continuing with application.\n"); \
 } \
}
/\\
 \
 \ Function Name: sig_setup
 \

372 Monitoring Guide and Reference

 \ Description: Sets up the handlers for specific signals. This is a
 \ simplistic handler, used for the purposes of demonstration.
 \ An actual application would consider using a more
 \ sophisticated setup.
 \
 \ Usage: (void) sig_setup()
 \
 \ Return Codes: None
 \
 \\\/

void
sig_setup()

{
 extern void exit_hdlr();

 signal(SIGHUP, exit_hdlr);
 signal(SIGINT, exit_hdlr);
 signal(SIGQUIT, exit_hdlr);
 signal(SIGABRT, exit_hdlr);
 signal(SIGBUS, exit_hdlr);
 signal(SIGSEGV, exit_hdlr);
 signal(SIGTERM, exit_hdlr);
 signal(SIGXCPU, exit_hdlr);
 signal(SIGDANGER, exit_hdlr);
 signal(SIGPRE, exit_hdlr);
 return;

}
/\\
 \
 \ Function Name: exit_hdlr
 \
 \ Description: Termination and signal handler for this application. The
 \ primary responsibility of this handler is to close the
 \ PTPE session when ending the application or terminating
 \ terminating the application because of a signal. This is
 \ necessary, to ensure the global PTPE status information is
 \ consistent and the ensure that other PTPE applications will
 \ be able to properly acquire a session.
 \
 \ Usage: (void) exit_hdlr(int sigval)
 \
\ where: sigval If this is a negative value, it specifies
 \ the exit value for the application. If
 \ this is a positive value, it specifies the
 \ numeric value of the signal that was
 \ received by the application (this is
 \ supplied by the operating system).
 \
 \ Return Codes: None
 \
 \\\/

void
exit_hdlr(int sigval)

 Appendix B. PTPE Sample Application Program 373

{

host_list_t mgrs, others, reply;
 int rc;

 /\
\ Inform the user that the application is terminating, and give
\ appropriate warnings.

 \/
if (sigval < ð) {

printf ("Application terminating\n");
 }
 else {

printf("Application terminating because of receipt of signal %d\n",
 sigval);
 }

if (sblock != (session_ptr_t) NULL) {
 /\

\ Try to shut down performance information collection and archiving.
\ If neither is active, the routine will return an error, but the
\ error will be ignored.

 \/
mgrs = others = reply = (host_list_t) NULL;
(void) PtpeArchStopAllHosts(sblock, &reply);

 (void) PtpeFreeHostList(&reply);
(void) PtpeColStop(sblock, &mgrs, &others);

 (void) PtpeFreeHostList(&mgrs);
 (void) PtpeFreeHostList(&others);
 /\

\ Release the PTPE API session.
 \/
 (void) PtpeCloseSession(&sblock);
 }
 /\

\ Terminate the application.
 \/

printf("Verify that performance information collection and archiving \n");
printf("have been shut down with the 'ptpectrl -q' command.\n");

 exit(sigval);
}
/\\
 \
 \ Function Name: print_host
 \
 \ Description: Prints the contents of a host list, along with any
 \ reated statistics and reults.
 \
 \ Usage: (void) print_host(host_list_t hosts);
 \
 \ where: hosts Contains the list of hosts to print
 \
 \ Return Codes: None
 \
 \\\/

void
print_host(host_list_t hosts)

374 Monitoring Guide and Reference

{

 int rc;
 int breakout;
 int result;
 char hostname[PTPE_NMLN];
 stat_list_t stats;
 extern void print_result(int);

 /\
\ In printing the contents of the host list, we force the internal
\ pointers of the host list to reference the first entry. We then extract
\ the name of the first entry from the host list and print it. We then
\ move to the next entry and repeat the process until we encounter the
\ end of the list.

 \
\ If any of the host entries also contain statistics (which they should,
\ after PtpeArchGetStats is called), the associated statistics list is
\ retrieved and printed out as well.

 \/
breakout = ð;
rc = PtpeFirstHost(hosts);
switch (rc) {

 case PTPE_SUCCESS: break;
case PTPE_EMPTY: printf("No entries in host list.\n");

 break;
default: printf("Unexpected failure in print_host(): ");

printf("PtpeFirstHost() returned ");
 print_result(rc);
 return;
 }

stats = (stat_list_t) NULL;
rc = PtpeInitStatList(&stats);
SUCCESS_TEST("print_host", "PtpeInitStatList", rc);
printf("Contents of host list:\n");
for (;;) {

 bzero(hostname, PTPE_NMLN);
rc = PtpeGetHost(hostname, hosts);
SUCCESS_TEST("print_host", "PtpeGetHost", rc);
rc = PtpeGetHostResult(hosts, &result);
SUCCESS_TEST("print_host", "PtpeGetHostResult", rc);
printf("\t Host Name: %s -- results: ", hostname);

 print_result(result);
rc = PtpeGetHostStatList(stats, hosts);
switch (rc) {

case PTPE_SUCCESS: (void) print_stat("\t\t", stats);
 break;

case PTPE_EMPTY: printf("\t\t No statistics listed.\n");
 break;
 default: SUCCESS_TEST("print_host",
 "PtpeGetHostStatList", rc);
 }

rc = PtpeEmptyStatList(&stats);
SUCCESS_TEST("print_host", "PtpeEmptyStatList", rc);
rc = PtpeIsLastHost(hosts);
switch (rc) {

 case PTPE_TRUE: breakout=1;
 break;

 Appendix B. PTPE Sample Application Program 375

 case PTPE_FALSE: break;
 default: SUCCESS_TEST("print_host", "PtpeIsLastHost",
 rc);
 }

if (breakout != ð) {
 break;
 }

rc = PtpeNextHost(hosts);
SUCCESS_TEST("print_host", "PtpeNextHost", rc);

 }
 return;

}
/\\
 \
 \ Function Name: print_stat
 \
 \ Description: Prints the contents of a statistic list, along with any
 \ results
 \
 \ Usage: (void) print_stat(char \indent, stat_list_t stats);
 \
\ where: indent Just a character string to keep the output
 \ format consistent... usually a tab
 \ stats Contains the list of statistics to print
 \
 \ Return Codes: None
 \
 \\\/

void
print_stat(char \indent, stat_list_t stats)

{

 int rc;
 int breakout;
 char statname[PTPE_STNL];
 char \timestr;
 unsigned int result;
 int sresult;
 float fdata;
 long ldata;
 struct tm tms;
 extern void print_result(int);

 /\
\ The printing of the statistics list is handled in the same manner as the
\ printing of the host list: reset to the first entry, retrieve the values
\ from the first entry, print the values, move to the next entry, and
\ repeat until the end of the statistics list is found.

 \
\ In order to properly interpret the value of the statistic, the data type
\ of the statistic must be determined.

 \/
rc = PtpeFirstStat(stats);
switch (rc) {

 case PTPE_SUCCESS: break;

376 Monitoring Guide and Reference

case PTPE_EMPTY: printf("No entries in statistics list.\n");
 break;

default: printf("Unexpected failure in print_stat(): ");
printf("PtpeFirstStat() returned ");

 print_result(rc);
 return;
 }

printf("%sStatistics listed:\n", indent);
breakout = ð;
for (;;) {

 bzero(statname, PTPE_STNL);
rc = PtpeGetStatName(statname, stats);
SUCCESS_TEST("print_stat", "PtpeGetStatName", rc);
rc = PtpeGetStatResult(stats, &sresult);
SUCCESS_TEST("print_stat", "PtpeGetStatResult", rc);
printf("%s\t Statistic: %s -- results: ", indent, statname);

 print_result(sresult);
bzero((char \) &tms,; sizeof(struct tm));
rc = PtpeGetStatTime(&tms,; stats);
SUCCESS_TEST("print_stat", "PtpeGetStatTime", rc);
timestr = (char \) NULL;
timestr = asctime(&tms);
rc = strlen(timestr);
\(timestr + (rc -1)) = (char) NULL;
switch (rc) {

case PTPE_TRUE: rc = PtpeGetStatValueLong(&ldata,; stats);
 SUCCESS_TEST("print_stat", "PtpeGetStatValueLong",
 rc);

printf("%s\t\t PTPE_LONG, value %d, time %s\n",
indent, ldata, timestr);

 break;
case PTPE_FALSE: break;
default: SUCCESS_TEST("print_stat", "PtpeStatIsLong", rc);

 }
rc = PtpeStatIsFloat(stats);
switch (rc) {

case PTPE_TRUE: rc = PtpeGetStatValueFloat(&fdata, stats);
 SUCCESS_TEST("print_stat", "PtpeGetStatValueFloat",
 rc);

printf("%s\t\t PTPE_FLOAT, value %f, time %s\n",
indent, fdata, timestr);

 break;
case PTPE_FALSE: break;
default: SUCCESS_TEST("print_stat", "PtpeStatIsFloat", rc);

 }
rc = PtpeIsLastStat(stats);
switch (rc) {

 case PTPE_TRUE: breakout=1;
 break;
 case PTPE_FALSE: break;
 default: SUCCESS_TEST("print_stat", "PtpeIsLastStat",
 rc);
 }

if (breakout != ð) {
 break;
 }

rc = PtpeNextStat(stats);
SUCCESS_TEST("print_stat", "PtpeNextStat", rc);

 Appendix B. PTPE Sample Application Program 377

 }

}

/\\
 \
 \ Function Name: print_result
 \
 \ Description: Translates result code back into its symbolic name.
 \
 \ Usage: (void) print_result(int code);
 \
 \ where: code Retrieved via PtpeGetResult()
 \
 \ Return Codes: None.
 \
 \\\/

void
print_result(int code)

{

 int status;

 /\
\ Return codes from PtpeQuery\HostStatus are > ð, unless an error

 \ occured.
 \/

if (code > ð) {
if (code == PTPE_INACTIVE) {

 printf("inactive\n");
 }

if (code & PTPE_SAMPLE) {
 printf("sampling ");

status = 1;
 }

if (code & PTPE_COLLECT) {
 printf("collecting ");

status = 1;
 }

if (code & PTPE_ARCHIVE) {
 printf("archiving ");

status = 1;
 }

if (status == 1) {
 printf("\n");
 }
 return;
 }
 /\

\ All other routines should provide one of the following codes (so will
\ PtpeQuery\HostStatus in error cases).

 \/
 switch(code) {
 case PTPE_SUCCESS: printf("PTPE_SUCCESS\n");
 break;
 case PTPE_SUCCESS_BADR: printf("PTPE_SUCCESS_BADR\n");

378 Monitoring Guide and Reference

 break;
 case PTPE_INV_HOSTNAME: printf("PTPE_INV_HOSTNAME\n");
 break;
 case PTPE_INV_HOSTLIST: printf("PTPE_INV_HOSTLIST\n");
 break;
 case PTPE_INV_STATNAME: printf("PTPE_INV_STATNAME\n");
 break;
 case PTPE_INV_STATLIST: printf("PTPE_INV_STATLIST\n");
 break;
 case PTPE_NO_MEMORY: printf("PTPE_NO_MEMORY\n");
 break;
 case PTPE_HOST_NOT_FOUND: printf("PTPE_HOST_NOT_FOUND\n");
 break;
 case PTPE_STAT_NOT_FOUND: printf("PTPE_STAT_NOT_FOUND\n");
 break;
 case PTPE_EMPTY: printf("PTPE_EMPTY\n");
 break;
 case PTPE_BAD_LOC_PTR: printf("PTPE_BAD_LOC_PTR\n");
 break;
 case PTPE_NO_SESSION: printf("PTPE_NO_SESSION\n");
 break;
 case PTPE_SDR: printf("PTPE_SDR\n");
 break;
 case PTPE_NO_HIERARCHY: printf("PTPE_NO_HIERARCHY\n");
 break;
 case PTPE_NO_STATFILE: printf("PTPE_NO_STATFILE\n");
 break;
 case PTPE_NO_LOCK_OBJ: printf("PTPE_NO_LOCK_OBJ\n");
 break;
 case PTPE_NO_CONNECT: printf("PTPE_NO_CONNECT\n");
 break;
 case PTPE_MEMORY: printf("PTPE_MEMORY\n");
 break;
 case PTPE_BAD_SEND: printf("PTPE_BAD_SEND\n");
 break;
 case PTPE_BAD_RECEIVE: printf("PTPE_BAD_RECEIVE\n");
 break;
 case PTPE_TIMEOUT: printf("PTPE_TIMEOUT\n");
 break;
 case PTPE_INV_PTR: printf("PTPE_INV_PTR\n");
 break;
 case PTPE_LIST_END: printf("PTPE_LIST_END\n");
 break;
 case PTPE_API_FAILED: printf("PTPE_API_FAILED\n");
 break;
 case PTPE_API_FAILED_BADR: printf("PTPE_API_FAILED_BADR\n");
 break;
 case PTPE_LIMITED: printf("PTPE_LIMITED\n");
 break;
 case PTPE_LIMITED_BADR: printf("PTPE_LIMITED_BADR\n");
 break;
 case PTPE_ARCH_ACTIVE: printf("PTPE_ARCH_ACTIVE\n");
 break;
 case PTPE_ARCH_OFF: printf("PTPE_ARCH_OFF\n");
 break;
 case PTPE_ARCH_ERROR: printf("PTPE_ARCH_ERROR\n");
 break;
 case PTPE_COL_ACTIVE: printf("PTPE_COL_ACTIVE\n");

 Appendix B. PTPE Sample Application Program 379

 break;
 case PTPE_COL_OFF: printf("PTPE_COL_OFF\n");
 break;
 case PTPE_COL_ERROR: printf("PTPE_COL_ERROR\n");
 break;
 case PTPE_NO_CONTACT: printf("PTPE_NO_CONTACT\n");
 break;
 case PTPE_NO_EXEC: printf("PTPE_NO_EXEC\n");
 break;
 case PTPE_CANT_CLOSE: printf("PTPE_CANT_CLOSE\n");
 break;
 case PTPE_DAEMON_ERROR: printf("PTPE_DAEMON_ERROR\n");
 break;
 case PTPE_STATE: printf("PTPE_STATE\n");
 break;
 case PTPE_TIME_APPROX: printf("PTPE_TIME_APPROX\n");
 break;
 case PTPE_LOCKED: printf("PTPE_LOCKED\n");
 break;
 case PTPE_AUTH: printf("PTPE_AUTH\n");
 break;
 case PTPE_FILE_ERROR: printf("PTPE_FILE_ERROR\n");
 break;
 case PTPE_AGAIN: printf("PTPE_AGAIN\n");
 break;
 case PTPE_RONLY_SESS: printf("PTPE_RONLY_SESS\n");
 break;
 case PTPE_NOT_IMP: printf("PTPE_NOT_IMP\n");
 break;
 }
 return;

}
/\\
 \
 \ Function Name: select_hosts
 \
 \ Description: Selects up to 3 hosts from a host list, and adds those
 \ host to an initialized host list.
 \
 \ Usage: (void) select_hosts(host_list_t full, host_list_t \part);
 \
 \ where: full List of hosts to select from
 \ part Pointer to an uninitialized host list
 \
 \ Notes: The first three hosts in the host list are selected. If
 \ the host list does not contain three hosts, all hosts are
 \ selected.
 \
 \ Return Codes: None
 \
 \\\/
void
select_hosts(host_list_t full, host_list_t \part)

{

 int rc;

380 Monitoring Guide and Reference

 int i;
 char hostname[PTPE_NMLN];

 bzero(hostname, PTPE_NMLN);
rc = PtpeInitHostList(part);
SUCCESS_TEST("select_hosts", "PtpeInitHostList", rc);
rc = PtpeFirstHost(full);
SUCCESS_TEST("select_hosts", "PtpeFirstHost", rc);
for (i = ð ; i < 3 ; i++) {

rc = PtpeIsLastHost(full);
if (rc == PTPE_TRUE) {

 break;
 }

if (rc == PTPE_FALSE) {
rc = PtpeGetHost(hostname, full);
SUCCESS_TEST("select_hosts", "PtpeGetHost", rc);
rc = PtpeAddHostToList(hostname, \part);
SUCCESS_TEST("select_hosts", "PtpeAddHostToList", rc);
rc = PtpeNextHost(full);
SUCCESS_TEST("select_hosts", "PtpeNextHost", rc);

 }
 else {

SUCCESS_TEST("select_hosts", "PtpeIsLastHost", rc);
 }
 }
 return;

}
/\\
 \
 \ Function Name: setup_stats
 \
 \ Description: Prepares a list of statistics. This list will contain the
 \ statistics that the application wishes to retrieve from
 \ a node's performance information archive.
 \
 \ Usage: (void) setup_stats(stat_list_t \slist);
 \
 \ where: slist Is a pointer to a statistics list
 \ anchor which has not been initialized.
 \
 \ Notes:
 \
 \ Return Codes: None
 \
 \\\/

void
setup_stats(stat_list_t \slist)

{

 int rc;
 int i;

rc = PtpeInitStatList(slist);
SUCCESS_TEST("setup_stats", "PtpeInitStatList(slist)", rc);
for (i = ð ; i < NUM_EX_STATS ; i++) {

 Appendix B. PTPE Sample Application Program 381

rc = PtpeAddStatToList(test_stats[i], \slist);
SUCCESS_TEST("setup_stats", "PtpeInitStatList(slist)", rc);

 }
 return;

}
/\\
 \
 \ Function Name: set_stats_time
 \
 \ Description: Set the timestamp on statistics within a statistics list
 \ according to the caller's specification.
 \
 \ Usage: set_stats_time(stat_list_t slist, int whence,
 \ struct tm \tstamp)
 \
 \ where: slist Contains statistics to be timestamped
 \ whence Is one of PTPE_MATCH, PTPE_EARLIEST, or
 \ PTPE_LATEST
 \ tstamp When "whence" is PTPE_MATCH, this
 \ references the time to set the
 \ statistic's timestamp to
 \
 \ Notes:
 \
 \ Return Codes: None
 \
 \\\/

void
set_stats_time(stat_list_t slist, int whence, struct tm \tstamp)

{

 int rc;

 /\
\ This routine sets the timestamps of all statistics to the same value.
\ This is not a requirement - you may set the timestamps to differing
\ values and differing "whence" indications. This example uses the same
\ timestamp and "whence" values for simplicity sake.

 \/
printf("\t Setting timestamps for all statistics in list.\n");
rc = PtpeFirstStat(slist);
SUCCESS_TEST("set_stats_time", "PtpeFirstStat", rc);
for (;;) {

rc = PtpeSetStatTime(whence, tstamp, slist);
prinf("\t\t PtpeSetStatTime() returned: ");

 print_result(rc);
SUCCESS_TEST("set_stats_time", "PtpeSetStatTime", rc);
rc = PtpeIsLastStat(slist);
if (rc != PTPE_TRUE && rc != PTPE_FALSE) {

SUCCESS_TEST("set_stats_time", "PtpeIsLastStat", rc);
 }

if (rc == PTPE_TRUE) {
 break;
 }

rc = PtpeNextStat(slist);

382 Monitoring Guide and Reference

SUCCESS_TEST("set_stats_time", "PtpeNextStat", rc);
 }

}
/\\
 \
 \ Function Name: assign_stats
 \
 \ Description: This routine assigns a statistics list to each entry in a
 \ host list. Statistics lists must be assigned to entries in
 \ a host list whenever the application wants to perform
 \ operations on specific statistics on these nodes.
 \
 \ Usage: (void) assign_stats(host_list_t targets, stat_list_t slist);
 \
 \ where: targets Is the list of nodes involved in later
 \ API calls.
 \ slist Is the list of statistics the applica-
 \ tion will retrieve from these nodes.
 \
 \ Notes:
 \
 \ Return Codes: None
 \
 \\\/

void
assign_stats(host_list_t targets, stat_list_t slist)

{

 int rc;

 /\
\ This example assigns the same statistics list to all nodes listed in a
\ host list. This is not a requirement - each node within a host list
\ may have any statistics list assigned to it, and none of the lists need
\ to match. The same list is used here for coding simplicity.

 \/
rc = PtpeFirstHost(targets);
SUCCESS_TEST("assign_stats", "PtpeFirstHost()", rc);
for (;;) {

 /\
\ Before assigning the statistics list, make sure that the entry in
\ the host list does not already contain a statistics list.

 \/
 (void) PtpeRemoveStatsFromHost(targets);

rc = PtpeAssignStatsToHost(slist, targets);
SUCCESS_TEST("assign_stats", "PtpeAssignStatsToHost()", rc);
rc = PtpeIsLastHost(targets);
if (rc != PTPE_TRUE && rc != PTPE_FALSE) {

SUCCESS_TEST("assign_stats", "PtpeIsLastHost()", rc);
 }

if (rc == PTPE_TRUE) {
 break;
 }

rc = PtpeNextHost(targets);
SUCCESS_TEST("assign_stats", "PtpeNextHost()", rc);

 Appendix B. PTPE Sample Application Program 383

 }
 return;

}
/\\
 \
 \ Function Name: get_different_times
 \
 \ Description: Uses PtpeArchGetStats() to retrieve the earliest and
 \ latest entries for specific statistics in a host's
 \ performance information archive, as well as those entries
 \ that match the specified timestamps.
 \
 \ Usage: get_different_times(host_list_t targets, stat_list_t slist,
 \ struct tm \tms)
 \
 \ where: targets Are the hosts to contact to get the
 \ statistics
 \ slist Contains the statistics to retrieve
 \ tms Specifies the timestamp to match
 \
 \ Notes:
 \
 \ Return Codes: None.
 \
 \\\/

void
get_different_times(host_list_t targets, stat_list_t slist, struct tm \tms)

{

 int rc;
 host_list_t reply;
 extern session_ptr_t sblock;

reply = (host_list_t) NULL;

 /\
\ First attempt - set statistic timestamp to PTPE_MATCH, and retrieve the
\ values in the nodes' performance information archive that is closest to
\ the specified timestamp value.

 \/
printf("Attempting to get statistics that MATCH the timestamps provided ");
printf(" - timestamp\n\t requested is %s.\n", asctime(tms));
set_stats_time(slist, PTPE_MATCH, tms);

 assign_stats(targets, slist);
rc = PtpeArchGetStats(sblock, targets, &reply);
printf("\t PtpeArchGetStats() returned: ");

 print_result(rc);
printf("Host list returned by PtpeArchGetStats():\n");

 print_host(reply);
SUCCESS_TEST("get_different_times", "PtpeArchGetStats(1)", rc);
LIMITED_TEST("PtpeArchGetStats(1)", rc, ((host_list_t) NULL),

 ((host_list_t) NULL));
rc = PtpeFreeHostList(&reply);
SUCCESS_TEST("get_different_times", "PtpeFreeHostList(1)", rc);

384 Monitoring Guide and Reference

 /\
\ Second attempt - set statistics timestamp to PTPE_EARLIEST, and retrieve
\ the earliest entries for these statistics in the nodes' performance
\ information archives.

 \/
printf("Attempting to get EARLIEST entry for statistics \n");
set_stats_time(slist, PTPE_EARLIEST, tms);

 assign_stats(targets, slist);
rc = PtpeArchGetStats(sblock, targets, &reply);
printf("\t PtpeArchGetStats() returned: ");

 print_result(rc);
printf("Host list returned by PtpeArchGetStats():\n");

 print_host(reply);
SUCCESS_TEST("get_different_times", "PtpeArchGetStats(2)", rc);
LIMITED_TEST("PtpeArchGetStats(2)", rc, ((host_list_t) NULL),

 ((host_list_t) NULL));
rc = PtpeFreeHostList(&reply);
SUCCESS_TEST("get_different_times", "PtpeFreeHostList(2)", rc);

 /\
\ Third attempt - set statistics timestamp to PTPE_LATEST, and find the
\ last entry for each statistic in the nodes' performance information

 \ archives.
 \/

printf("Attempting to get LATEST entry for statistics \n");
set_stats_time(slist, PTPE_LATEST, tms);

 assign_stats(targets, slist);
rc = PtpeArchGetStats(sblock, targets, &reply);
printf("\t PtpeArchGetStats() returned: ");

 print_result(rc);
printf("Host list returned by PtpeArchGetStats():\n");

 print_host(reply);
SUCCESS_TEST("get_different_times", "PtpeArchGetStats(3)", rc);
LIMITED_TEST("PtpeArchGetStats(3)", rc, ((host_list_t) NULL),

 ((host_list_t) NULL));
rc = PtpeFreeHostList(&reply);
SUCCESS_TEST("get_different_times", "PtpeFreeHostList(3)", rc);

 return;
}
/\\
 \
 \ Function Name: retry_test
 \
 \ Description: Checks if any hosts replying to a PTPE API routine have
 \ indicated that the routine should be retried at a later
 \ time.
 \
 \ Usage: int = retry_test(host_list_t reply)
 \
 \ where: reply Is the reply host list generated from
 \ a PTPE API library routine.
 \
 \ Notes: Notice that this routine does not validate its parameters.
 \ The caller must validate the parameters before calling this
 \ routine.
 \
 \ Return Codes: (int) ð All nodes have responded with a reply

 Appendix B. PTPE Sample Application Program 385

 \ other than "retry the routine"
 \ (int) 1 At least one node within the reply list
 \ responed with a "retry the routine"
 \
 \\\/

int
retry_test(host_list_t reply)

{

 int rc;
 int result;

rc = PtpeFirstHost(reply);
SUCCESS_TEST("retry_test", "PtpeFirstHost", rc);
for (;;) {

result = ð;
rc = PtpeGetHostResult(reply, &result);
SUCCESS_TEST("retry_test", "PtpeGetHostResult", rc);
if (result == PTPE_AGAIN) {

rc = PtpeFirstHost(reply);
SUCCESS_TEST("retry_test", "PtpeFirstHost", rc);

 return(1);
 }

rc = PtpeIsLastHost(reply);
if (rc != PTPE_TRUE && rc != PTPE_FALSE) {

SUCCESS_TEST("retry_test", "PtpeIsLastHost", rc);
 }

if (rc == PTPE_TRUE) {
 break;
 }

rc = PtpeNextHost(reply);
SUCCESS_TEST("retry_test", "PtpeNextHost", rc);

 }
rc = PtpeFirstHost(reply);
SUCCESS_TEST("retry_test", "PtpeFirstHost", rc);

 return(ð);

}
/\\
 \
 \ -- MAIN ROUTINE -- MAIN ROUTINE -- MAIN ROUTINE -- MAIN ROUTINE --
 \
 \\\/

main(int arcg, char \\argv)

{

 int rc;
 int i, j;
 int done;
 int srate, arate;

host_list_t full, targets, reply;
 host_list_t mgrs, others;
 stat_list_t slist;
 struct timeval tp;

386 Monitoring Guide and Reference

 struct tm \tms;
 extern session_ptr_t sblock;
 extern void sig_setup();

 /\
\ Set up an API session. A session is required to permit the application
\ to issue commands to the monitoring hierarchy.

 \/
 sig_setup();

printf("Establishing an API session now.\n");
sblock = (session_ptr_t) NULL;
rc = PtpeOpenSession(&sblock);
SUCCESS_TEST("main", "PtpeOpenSession", rc);

 /\
\ Set up a host list to be used in obtaining performance information from
\ the performance information archives. Will use the PtpeQueryAvailHosts
\ API routine to get a list of the hosts that are available within the
\ monitoring hierarchy, and will then pick three nodes from this list.
\ Later on, this program will obtain performance information from the
\ archives on these three systems.

 \/
full = targets = reply = (host_list_t) NULL;
rc = PtpeInitHostList(&full);;
SUCCESS_TEST("main", "PtpeInitHostList(full)", rc);
printf("Obtaining list of available hosts.\n");
rc = PtpeQueryAvailHosts(sblock, &full);
SUCCESS_TEST("main", "PtpeQueryAvailHosts", rc);
printf("Setting up target host list for later use.\n");

 select_hosts(full, &targets);
printf("The host list we will be using in this program is:\n");

 print_host(targets);
 /\

\ Set up a list of statistics to retrieve from the archives of these
\ nodes that were just selected.

 \/
printf("Setting up the statistics list. This list will contain the\n");
printf("\t statistics that will be obtained from the performance\n");
printf("\t archives on the nodes that were selected in the previous\n");

 printf("\t step.\n");
slist = (stat_list_t) NULL;

 setup_stats(&slist);
printf("The statistics that will be retrieved from the archives are:\n");

 print_stat("\t", slist);

 /\
\ Nodes and statistics have been selected. Start collection and archiving
\ in the monitoring hierarchy, and enable all statistics within the
\ monitoring hierarchy for collectioon and archiving.

 \/
printf("Starting collection in the monitoring hierarchy now.\n");
printf("\t (this may take a few moments...)\n");
mgrs = others = (host_list_t) NULL;
rc = PtpeColStart(sblock, &mgrs,; &others);
if (mgrs != (host_list_t) NULL) {

printf("The following manager nodes did not start collection:\n");
 print_host(mgrs);
 }

 Appendix B. PTPE Sample Application Program 387

if (others != (host_list_t) NULL) {
printf("The following nodes did not start collection:\n");

 print_host(others);
 }

SUCCESS_TEST("main", "PtpeColStart", rc);
LIMITED_TEST("PtpeColStart", rc, mgrs, others);

 (void) PtpeFreeHostList(&mgrs);
 (void) PtpeFreeHostList(&others);
 /\

\ Note that the reply list from the following routine is checked for any
\ "not ready" responses from nodes, and that the application repeatidly
\ issues the routine until all nodes respond with an answer other than
\ "not ready".

 \/
printf("Enabling all available statistics for collection.\n");
reply = (host_list_t) NULL;
for (;;) {

 (void) PtpeFreeHostList(&reply);
rc = PtpeColEnableAllStats(sblock, full, &reply);
switch (rc) {

 case PTPE_LIMITED:
case PTPE_API_FAILED: i = retry_test(reply);

if (i == ð) {
done = 1;

 }
 break;

default: done = 1;
 break;
 }

if (done == 1) {
 break;
 }

printf("All hosts are not ready to handle PTPE requests at this \n");
printf("\t time. Will pause for 15 seconds and try request again.\n");

 sleep(15);
 }
 /\

\ Now start archiving in the hierarchy, and enable all available
\ statistics for archiving.

 \/
 (void) PtpeFreeHostList(&reply);

printf("Starting performance information archiving in the hierarchy.\n");
rc = PtpeArchStartAllHosts(sblock, &reply);
SUCCESS_TEST("main", "PtpeArchStartAllHosts", rc);
LIMITED_TEST("PtpeArchStartAllHosts", rc, reply, ((host_list_t) NULL));

 (void) PtpeFreeHostList(&reply);
printf("Enabling all available statistics for archiving.\n");
rc = PtpeArchEnableAllStats(sblock, full, &reply);
SUCCESS_TEST("main", "PtpeArchEnableAllStats", rc);
LIMITED_TEST("PtpeArchEnableAllStats", rc, reply, ((host_list_t) NULL));

 (void) PtpeFreeHostList(&reply);

 /\
\ Set up a timestamp to retrieve the statistics recorded by each node in
\ the target list a minute or so into the future.

 \/
bzero((char \) &tp, sizeof(struct timeval));
tms = (struct tm \) NULL;

388 Monitoring Guide and Reference

rc = gettimeofday(&tp, (struct timezone \) NULL);
if (rc != ð) {

printf("\t FAILURE IN gettimeofday - TERMINATING PROGRAM.\n");
 (void) PtpeFreeHostList(&targets);
 (void) PtpeFreeHostList(&full);
 (void) PtpeFreeStatList(&slist);
 exit_hdlr(-1);
 }

tp.tv_sec += 85;
tms = localtime((time_t \) &(tp;tv_sec));

 /\
\ Now the program should wait for some new data to be recordedin the
\ performance information archives. The archiving rate has not been
\ changed from the default, but to avoid making assumptions about the
\ default archiving rate, the application will retrieve the current
\ archiving rate, and pause itself for three archiving intervals to
\ Let data accumulate.

 \/
rc = PtpeQueryHostRates(sblock, &srate, &arate);
SUCCESS_TEST("main", "PtpeQueryHostRates", rc);
printf("Pausing %d seconds to allow performance information", (arate \ 3));
printf("\n\t to accumulate in the archive.\n");
sleep(arate \ 3);

 /\
\ Now attempt to get the statistics that were specified from the archives
\ on the nodes that were selected.

 \/
get_different_times(targets, slist, tms);

 /\
\ Shut down collection and archiving, and exit.

 \/
printf("Shutting down archiving... ");

 fflush(stdout);
rc = PtpeArchStopAllHosts(sblock, &reply);
SUCCESS_TEST("main", "PtpeArchStopAllHosts", rc);
LIMITED_TEST("PtpeArchStopAllHosts", rc, reply, ((host_list_t) NULL));

 printf("and collection.\n");
rc = PtpeColStop(sblock, &mgrs,; &others);
SUCCESS_TEST("main", "PtpeColStop", rc);
LIMITED_TEST("PtpeColStop", rc, reply, ((host_list_t) NULL));

 (void) PtpeFreeHostList(&others);
 (void) PtpeFreeHostList(&mgrs);
 (void) PtpeFreeHostList(&targets);
 (void) PtpeFreeHostList(&reply);
 (void) PtpeFreeHostList(&full);
 (void) PtpeFreeStatList(&slist);

rc = PtpeCloseSession(&sblock);
if (rc != PTPE_SUCCESS) {

printf("COULD NOT CLOSE SESSION - error code is ");
 print_result(rc);
 }
 else {

printf("Program successfully completed.\n");
 }
 return(ð);

 Appendix B. PTPE Sample Application Program 389

}

390 Monitoring Guide and Reference

 Bibliography

This bibliography helps you find product documentation related to the RS/6000 SP hardware
and software products.

You can find most of the IBM product information for RS/6000 SP products on the World
Wide Web. Formats for both viewing and downloading are available.

PSSP documentation is shipped with the PSSP product in a variety of formats and can be
installed on your system. The man pages for public code that PSSP includes are also
available online.

You can order hard copies of the product documentation from IBM. This bibliography lists the
titles that are available and their order numbers.

Finally, this bibliography contains a list of non-IBM publications that discuss parallel
computing and other topics related to the RS/6000 SP.

Finding Documentation on the World Wide Web
Most of the RS/6000 SP hardware and software books are available from the IBM RS/6000
web site at http://www.rs6000.ibm.com . You can view a book or download a Portable
Document Format (PDF) version of it. At the time this manual was published, the full path to
the "RS/6000 SP Product Documentation Library" page was
http://www.rs6000.ibm.com/resource/aix_resource/sp_books . However, the structure of
the RS/6000 web site can change over time.

Accessing PSSP Documentation Online
On the same medium as the PSSP product code, IBM ships PSSP man pages, HTML files,
and PDF files. In order to use these publications, you must first install the ssp.docs file set.

To view the PSSP HTML publications, you need access to an HTML document browser such
as Netscape. The HTML files and an index that links to them are installed in the
/usr/lpp/ssp/html directory. Once installed, you can also view the HTML files from the
RS/6000 SP Resource Center.

If you have installed the SP Resource Center on your SP system, you can access it by
entering the /usr/lpp/ssp/bin/resource_center command. If you have the SP Resource
Center on CD-ROM, see the readme.txt file for information about how to run it.

To view the PSSP PDF publications, you need access to the Adobe Acrobat Reader 3.0.1.
The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is also freely
available for downloading from the Adobe web site at URL http://www.adobe.com .

Manual Pages for Public Code
The following manual pages for public code are available in this product:

SUP /usr/lpp/ssp/man/man1/sup.1

NTP /usr/lpp/ssp/man/man8/xntpd.8

 /usr/lpp/ssp/man/man8/xntpdc.8

Perl (Version 4.036) /usr/lpp/ssp/perl/man/perl.man

 /usr/lpp/ssp/perl/man/h2ph.man

 Copyright IBM Corp. 1998 391

 /usr/lpp/ssp/perl/man/s2p.man

 /usr/lpp/ssp/perl/man/a2p.man

Perl (Version 5.003) Man pages are in the /usr/lpp/ssp/perl5/man/man1 directory

Manual pages and other documentation for Tcl , TclX , Tk, and expect can be found in the
compressed tar files located in the /usr/lpp/ssp/public directory.

RS/6000 SP Planning Publications
This section lists the IBM product documentation for planning for the IBM RS/6000 SP
hardware and software.

IBM RS/6000 SP:

� Planning, Volume 1, Hardware and Physical Environment, GA22-7280

� Planning, Volume 2, Control Workstation and Software Environment, GA22-7281

RS/6000 SP Hardware Publications
This section lists the IBM product documentation for the IBM RS/6000 SP hardware.

IBM RS/6000 SP:

� Planning, Volume 1, Hardware and Physical Environment, GA22-7280

� Planning, Volume 2, Control Workstation and Software Environment, GA22-7281

� Maintenance Information, Volume 1, Installation and Relocation, GA22-7375

� Maintenance Information, Volume 2, Maintenance Analysis Procedures, GA22-7376

� Maintenance Information, Volume 3, Locations and Service Procedures, GA22-7377

� Maintenance Information, Volume 4, Parts Catalog, GA22-7378

RS/6000 SP Switch Router Publications
The RS/6000 SP Switch Router is based on the Ascend GRF switched IP router product
from Ascend Communications, Inc.. You can order the SP Switch Router as the IBM 9077.

The following publications are shipped with the SP Switch Router. You can also order these
publications from IBM using the order numbers shown.

� Ascend GRF Getting Started, GA22-7368

� Ascend GRF Configuration Guide, GA22-7366

� Ascend GRF Reference Guide, GA22-7367

� IBM SP Switch Router Adapter Guide, GA22-7310.

RS/6000 SP Software Publications
This section lists the IBM product documentation for software products related to the IBM
RS/6000 SP. These products include:

� IBM Parallel System Support Programs for AIX (PSSP)

� IBM LoadLeveler for AIX (LoadLeveler)

� IBM Parallel Environment for AIX (Parallel Environment)

� IBM General Parallel File System for AIX (GPFS)

392 Monitoring Guide and Reference

� IBM Engineering and Scientific Subroutine Library (ESSL) for AIX

� IBM Parallel ESSL for AIX

� IBM High Availability Cluster Multi-Processing for AIX (HACMP)

� IBM Client Input Output/Sockets (CLIO/S)

� IBM Network Tape Access and Control System for AIX (NetTAPE)

PSSP Publications

IBM RS/6000 SP:

� Planning, Volume 2, Control Workstation and Software Environment, GA22-7281

PSSP:

� Installation and Migration Guide, GA22-7347

� Administration Guide, SA22-7348

� Managing Shared Disks, SA22-7349

� Performance Monitoring Guide and Reference, SA22-7353

� Diagnosis Guide, GA22-7350

� Command and Technical Reference, SA22-7351

� Messages Reference, GA22-7352

RS/6000 Cluster Technology (RSCT):

� Event Management Programming Guide and Reference, SA22-7354

� Group Services Programming Guide and Reference, SA22-7355

As an alternative to ordering the individual books, you can use SBOF-8587 to order the
PSSP software library.

LoadLeveler Publications

LoadLeveler:

� Using and Administering, SA22-7311

� Diagnosis and Messages Guide, GA22-7277

GPFS Publications

GPFS:

� Installation and Administration Guide, SA22-7278

Parallel Environment Publications

Parallel Environment:

� Installation Guide, GC28-1981

� Hitchhiker's Guide, GC23-3895

� Operation and Use, Volume 1, SC28-1979

� Operation and Use, Volume 2, SC28-1980

� MPI Programming and Subroutine Reference, GC23-3894

� MPL Programming and Subroutine Reference, GC23-3893

 � Messages, GC28-1982

 Bibliography 393

As an alternative to ordering the individual books, you can use SBOF-8588 to order the PE
library.

Parallel ESSL and ESSL Publications

� ESSL Products: General Information, GC23-0529

� Parallel ESSL: Guide and Reference, SA22-7273

� ESSL: Guide and Reference, SA22-7272

HACMP Publications

HACMP:

� Concepts and Facilities, SC23-1938

� Planning Guide, SC23-1939

� Installation Guide, SC23-1940

� Administration Guide, SC23-1941

� Troubleshooting Guide, SC23-1942

� Programming Locking Applications, SC23-1943

� Programming Client Applications, SC23-1944

� Master Index and Glossary, SC23-1945

� HANFS for AIX Installation and Administration Guide, SC23-1946

� Enhanced Scalability Installation and Administration Guide, SC23-1972

CLIO/S Publications

CLIO/S:

� General Information, GC23-3879

� User's Guide and Reference, GC28-1676

NetTAPE Publications

NetTAPE:

� General Information, GC23-3990

� User's Guide and Reference, available from your IBM representative

AIX and Related Product Publications
For the latest information on AIX and related products, including RS/6000 hardware
products, see AIX and Related Products Documentation Overview, SC23-2456. You can
order a hard copy of the book from IBM. You can also view it online from the "AIX Online
Publications and Books" page of the RS/6000 web site, at URL
http://www.rs6000.ibm.com/resource/aix_resource/Pubs .

 Red Books
IBM's International Technical Support Organization (ITSO) has published a number of
redbooks related to the RS/6000 SP. For a current list, see the ITSO website, at URL
http://www.redbooks.ibm.com .

394 Monitoring Guide and Reference

 Non-IBM Publications
Here are some non-IBM publications that you may find helpful.

� Almasi, G., Gottlieb, A., Highly Parallel Computing, Benjamin-Cummings Publishing
Company, Inc., 1989.

� Foster, I., Designing and Building Parallel Programs, Addison-Wesley, 1995.

� Gropp, W., Lusk, E., Skjellum, A., Using MPI, The MIT Press, 1994.

� Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
Version 1.1, University of Tennessee, Knoxville, Tennessee, June 6, 1995.

� Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing Interface,
Version 2.0, University of Tennessee, Knoxville, Tennessee, July 18, 1997.

� Ousterhout, John K., Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994, ISBN
0-201-63337-X.

� Pfister, Gregory, F., In Search of Clusters, Prentice Hall, 1998.

 Bibliography 395

396 Monitoring Guide and Reference

Glossary of Terms and Abbreviations

This glossary includes terms and definitions from:

� The IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies can be purchased from the
American National Standards Institute, 1430
Broadway, New York, New York 10018. Definitions
are identified by the symbol (A) after the definition.

� The ANSI/EIA Standard - 440A: Fiber Optic
Terminology copyright 1989 by the Electronics
Industries Association (EIA). Copies can be
purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue N.W.,
Washington, D.C. 20006. Definitions are identified
by the symbol (E) after the definition.

� The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after the
definition, indicating that final agreement has not yet
been reached among the participating National
Bodies of SC1.

The following cross-references are used in this
glossary:

Contrast with. This refers to a term that has an
opposed or substantively different meaning.
See. This refers the reader to multiple-word terms in
which this term appears.
See also. This refers the reader to terms that have
a related, but not synonymous, meaning.
Synonym for. This indicates that the term has the
same meaning as a preferred term, which is defined
in the glossary.

This section contains some of the terms that are
commonly used in the SP publications.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright 1970 by American
National Standards Institute, Incorporated), which was
prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards

Committee X3. ANSI definitions are preceded by an
asterisk (*).

Other definitions in this glossary are taken from IBM
Vocabulary for Data Processing, Telecommunications,
and Office Systems (SC20-1699) and IBM DATABASE
2 Application Programming Guide for TSO Users
(SC26-4081).

A
adapter . An adapter is a mechanism for attaching
parts. For example, an adapter could be a part that
electrically or physically connects a device to a
computer or to another device. In the SP system,
network connectivity is supplied by various adapters,
some optional, that can provide connection to I/O
devices, networks of workstations, and mainframe
networks. Ethernet, FDDI, token-ring, HiPPI, SCSI,
FCS, and ATM are examples of adapters that can be
used as part of an SP system.

address . A character or group of characters that
identifies a register, a device, a particular part of
storage, or some other data source or destination.

AFS. A distributed file system that provides
authentication services as part of its file system
creation.

AIX. Abbreviation for Advanced Interactive Executive,
IBM's licensed version of the UNIX operating system.
AIX is particularly suited to support technical computing
applications, including high function graphics and
floating point computations.

Amd . Berkeley Software Distribution automount
daemon.

API. Application Programming Interface. A set of
programming functions and routines that provide access
between the Application layer of the OSI seven-layer
model and applications that want to use the network. It
is a software interface.

application . The use to which a data processing
system is put; for example, a payroll application, an
airline reservation application.

application data . The data that is produced using an
application program.

ARP. Address Resolution Protocol.

ATM. Asynchronous Transfer Mode. (See
TURBOWAYS 100 ATM Adapter.)

 Copyright IBM Corp. 1998 397

Authentication . The process of validating the identity
of a user or server.

Authorization . The process of obtaining permission to
perform specific actions.

B
batch processing . * (1) The processing of data or the
accomplishment of jobs accumulated in advance in
such a manner that each accumulation thus formed is
processed or accomplished in the same run. * (2) The
processing of data accumulating over a period of time. *
(3) Loosely, the execution of computer programs
serially. (4) Computer programs executed in the
background.

BMCA . Block Multiplexer Channel Adapter. The block
multiplexer channel connection allows the RS/6000 to
communicate directly with a host System/370 or
System/390; the host operating system views the
system unit as a control unit.

BOS. The AIX Base Operating System.

C
call home function . The ability of a system to call the
IBM support center and open a PMR to have a repair
scheduled.

CDE. Common Desktop Environment. A graphical user
interface for UNIX.

charge feature . An optional feature for either software
or hardware for which there is a charge.

CLI. Command Line Interface.

client . * (1) A function that requests services from a
server and makes them available to the user. * (2) A
term used in an environment to identify a machine that
uses the resources of the network.

Client Input/Output Sockets (CLIO/S) . A software
package that enables high-speed data and tape access
between SP systems, AIX systems, and ES/9000
mainframes.

CLIO/S. Client Input/Output Sockets.

CMI. Centralized Management Interface provides a
series of SMIT menus and dialogues used for defining
and querying the SP system configuration.

connectionless . A communication process that takes
place without first establishing a connection.

connectionless network . A network in which the
sending logical node must have the address of the
receiving logical node before information interchange
can begin. The packet is routed through nodes in the
network based on the destination address in the packet.
The originating source does not receive an
acknowledgment that the packet was received at the
destination.

control workstation . A single point of control allowing
the administrator or operator to monitor and manage the
SP system using the IBM AIX Parallel System Support
Programs.

css . Communication subsystem.

D
daemon . A process, not associated with a particular
user, that performs system-wide functions such as
administration and control of networks, execution of
time-dependent activities, line printer spooling and so
forth.

DASD. Direct Access Storage Device. Storage for
input/output data.

DCE. Distributed Computing Environment.

DFS. distributed file system. A subset of the IBM
Distributed Computing Environment.

DNS. Domain Name Service. A hierarchical name
service which maps high level machine names to IP
addresses.

E
Error Notification Object . An object in the SDR that
is matched with an error log entry. When an error log
entry occurs that matches the Notification Object, a
user-specified action is taken.

ESCON. Enterprise Systems Connection. The ESCON
channel connection allows the RS/6000 to communicate
directly with a host System/390; the host operating
system views the system unit as a control unit.

Ethernet . (1) Ethernet is the standard hardware for
TCP/IP local area networks in the UNIX marketplace. It
is a 10-megabit per second baseband type LAN that
allows multiple stations to access the transmission
medium at will without prior coordination, avoids
contention by using carrier sense and deference, and
resolves contention by collision detection (CSMA/CD).
(2) A passive coaxial cable whose interconnections
contain devices or components, or both, that are all
active. It uses CSMA/CD technology to provide a
best-effort delivery system.

398 Monitoring Guide and Reference

Ethernet network . A baseband LAN with a bus
topology in which messages are broadcast on a coaxial
cabling using the carrier sense multiple access/collision
detection (CSMA/CD) transmission method.

event . In Event Management, the notification that an
expression evaluated to true. This evaluation occurs
each time an instance of a resource variable is
observed.

expect . Programmed dialogue with interactive
programs.

expression . In Event Management, the relational
expression between a resource variable and other
elements (such as constants or the previous value of an
instance of the variable) that, when true, generates an
event. An example of an expression is X < 1ð where X
represents the resource variable
IBM.PSSP.aixos.PagSp.%totalfree (the percentage of
total free paging space). When the expression is true,
that is, when the total free paging space is observed to
be less than 10%, the Event Management subsystem
generates an event to notify the appropriate application.

F
failover . Also called fallover, the sequence of events
when a primary or server machine fails and a
secondary or backup machine assumes the primary
workload. This is a disruptive failure with a short
recovery time.

fall back . Also called fallback, the sequence of events
when a primary or server machine takes back control of
its workload from a secondary or backup machine.

FDDI. Fiber Distributed Data Interface.

Fiber Distributed Data Interface (FDDI) . An American
National Standards Institute (ANSI) standard for
100-megabit-per-second LAN using optical fiber cables.
An FDDI local area network (LAN) can be up to 100 km
(62 miles) and can include up to 500 system units.
There can be up to 2 km (1.24 miles) between system
units and/or concentrators.

File Transfer Protocol (FTP) . The Internet protocol
(and program) used to transfer files between hosts. It is
an application layer protocol in TCP/IP that uses
TELNET and TCP protocols to transfer bulk-data files
between machines or hosts.

file . * A set of related records treated as a unit, for
example, in stock control, a file could consist of a set of
invoices.

file name . A CMS file identifier in the form of 'filename
filetype filemode' (like: TEXT DATA A).

file server . A centrally located computer that acts as a
storehouse of data and applications for numerous users
of a local area network.

File Transfer Protocol (FTP) . The Internet protocol
(and program) used to transfer files between hosts. It is
an application layer protocol in TCP/IP that uses
TELNET and TCP protocols to transfer bulk-data files
between machines or hosts.

foreign host . Any host on the network other than the
local host.

FTP. File transfer protocol.

G
gateway . An intelligent electronic device
interconnecting dissimilar networks and providing
protocol conversion for network compatibility. A gateway
provides transparent access to dissimilar networks for
nodes on either network. It operates at the session
presentation and application layers.

H
HACMP. High Availability Cluster Multi-Processing for
AIX.

HACWS. High Availability Control Workstation function,
based on HACMP, provides for a backup control
workstation for the SP system.

Hashed Shared Disk (HSD) . The data striping device
for the IBM Virtual Shared Disk. The device driver lets
application programs stripe data across physical disks
in multiple IBM Virtual Shared Disks, thus reducing I/O
bottlenecks.

help key . In the SP graphical interface, the key that
gives you access to the SP graphical interface help
facility.

High Availability Cluster Multi-Processing . An IBM
facility to cluster nodes or components to provide high
availability by eliminating single points of failure.

HiPPI. High Performance Parallel Interface. RS/6000
units can attach to a HiPPI network as defined by the
ANSI specifications. The HiPPI channel supports burst
rates of 100 Mbps over dual simplex cables;
connections can be up to 25 km in length as defined by
the standard and can be extended using third-party
HiPPI switches and fiber optic extenders.

home directory . The directory associated with an
individual user.

 Glossary of Terms and Abbreviations 399

host . A computer connected to a network, and
providing an access method to that network. A host
provides end-user services.

I
instance vector . Obsolete term for resource identifier.

Intermediate Switch Board . Switches mounted in the
Sp Switch expansion frame.

Internet . A specific inter-network consisting of large
national backbone networks such as APARANET,
MILNET, and NSFnet, and a myriad of regional and
campus networks all over the world. The network uses
the TCP/IP protocol suite.

Internet Protocol (IP) . (1) A protocol that routes data
through a network or interconnected networks. IP acts
as an interface between the higher logical layers and
the physical network. This protocol, however, does not
provide error recovery, flow control, or guarantee the
reliability of the physical network. IP is a connectionless
protocol. (2) A protocol used to route data from its
source to it destination in an Internet environment.

IP address . A 32-bit address assigned to devices or
hosts in an IP internet that maps to a physical address.
The IP address is composed of a network and host
portion.

ISB. Intermediate Switch Board.

K
Kerberos . A service for authenticating users in a
network environment.

kernel . The core portion of the UNIX operating system
which controls the resources of the CPU and allocates
them to the users. The kernel is memory-resident, is
said to run in “kernel mode” and is protected from user
tampering by the hardware.

L
LAN . (1) Acronym for Local Area Network, a data
network located on the user's premises in which serial
transmission is used for direct data communication
among data stations. (2) Physical network technology
that transfers data a high speed over short distances.
(3) A network in which a set of devices is connected to
another for communication and that can be connected
to a larger network.

local host . The computer to which a user's terminal is
directly connected.

log database . A persistent storage location for the
logged information.

log event . The recording of an event.

log event type . A particular kind of log event that has
a hierarchy associated with it.

logging . The writing of information to persistent
storage for subsequent analysis by humans or
programs.

M
mask . To use a pattern of characters to control
retention or elimination of portions of another pattern of
characters.

menu . A display of a list of available functions for
selection by the user.

Motif . The graphical user interface for OSF,
incorporating the X Window System. Also called
OSF/Motif.

MTBF. Mean time between failure. This is a measure
of reliability.

MTTR. Mean time to repair. This is a measure of
serviceability.

N
naive application . An application with no knowledge
of a server that fails over to another server. Client to
server retry methods are used to reconnect.

network . An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit data
to and receive data from other systems and users.

NFS. Network File System. NFS allows different
systems (UNIX or non-UNIX), different architectures, or
vendors connected to the same network, to access
remote files in a LAN environment as though they were
local files.

NIM. Network Installation Management is provided with
AIX to install AIX on the nodes.

NIM client . An AIX system installed and managed by
a NIM master. NIM supports three types of clients:

 � Standalone
 � Diskless
 � Dataless

NIM master . An AIX system that can install one or
more NIM clients. An AIX system must be defined as a
NIM master before defining any NIM clients on that

400 Monitoring Guide and Reference

system. A NIM master managers the configuration
database containing the information for the NIM clients.

NIM object . A representation of information about the
NIM environment. NIM stores this information as objects
in the NIM database. The types of objects are:

 � Network
 � Machine
 � Resource

NIS. Network Information System.

node . In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network. The SP system
can house several different types of nodes for both
serial and parallel processing. These node types can
include thin nodes, wide nodes, 604 high nodes, as well
as other types of nodes both internal and external to the
SP frame.

Node Switch Board . Switches mounted on frames
that contain nodes.

NSB. Node Switch Board.

NTP. Network Time Protocol.

O
ODM. Object Data Manager. In AIX, a hierarchical
object-oriented database for configuration data.

P
parallel environment . A system environment where
message passing or SP resource manager services are
used by the application.

Parallel Environment . A licensed IBM program used
for message passing applications on the SP or RS/6000
platforms.

parallel processing . A multiprocessor architecture
which allows processes to be allocated to tightly
coupled multiple processors in a cooperative processing
environment, allowing concurrent execution of tasks.

parameter . * (1) A variable that is given a constant
value for a specified application and that may denote
the application. * (2) An item in a menu for which the
operator specifies a value or for which the system
provides a value when the menu is interpreted. * (3) A
name in a procedure that is used to refer to an
argument that is passed to the procedure. * (4) A

particular piece of information that a system or
application program needs to process a request.

partition . See system partition.

Perl . Practical Extraction and Report Language.

perspective . The primary window for each SP
Perspectives application, so called because it provides
a unique view of an SP system.

pipe . A UNIX utility allowing the output of one
command to be the input of another. Represented by
the | symbol. It is also referred to as filtering output.

PMR. Problem Management Report.

POE. Formerly Parallel Operating Environment, now
Parallel Environment for AIX.

port . (1) An end point for communication between
devices, generally referring to physical connection. (2) A
16-bit number identifying a particular TCP or UDP
resource within a given TCP/IP node.

predicate . Obsolete term for expression.

Primary node or machine . (1) A device that runs a
workload and has a standby device ready to assume
the primary workload if that primary node fails or is
taken out of service. (2) A node on the SP Switch that
initializes, provides diagnosis and recovery services,
and performs other operations to the switch network. (3)
In IBM Virtual Shared Disk function, when physical
disks are connected to two nodes (twin-tailed), one
node is designated as the primary node for each disk
and the other is designated the secondary, or backup,
node. The primary node is the server node for IBM
Virtual Shared Disks defined on the physical disks
under normal conditions. The secondary node can
become the server node for the disks if the primary
node is unavailable (off-line or down).

Problem Management Report . The number in the
IBM support mechanism that represents a service
incident with a customer.

process . * (1) A unique, finite course of events
defined by its purpose or by its effect, achieved under
defined conditions. * (2) Any operation or combination
of operations on data. * (3) A function being performed
or waiting to be performed. * (4) A program in
operation. For example, a daemon is a system process
that is always running on the system.

protocol . A set of semantic and syntactic rules that
defines the behavior of functional units in achieving
communication.

 Glossary of Terms and Abbreviations 401

R
RAID. Redundant array of independent disks.

rearm expression . In Event Management, an
expression used to generate an event that alternates
with an original event expression in the following way:
the event expression is used until it is true, then the
rearm expression is used until it is true, then the event
expression is used, and so on. The rearm expression is
commonly the inverse of the event expression (for
example, a resource variable is on or off). It can also be
used with the event expression to define an upper and
lower boundary for a condition of interest.

rearm predicate . Obsolete term for rearm expression

remote host . See foreign host.

resource . In Event Management, an entity in the
system that provides a set of services. Examples of
resources include hardware entities such as processors,
disk drives, memory, and adapters, and software
entities such as database applications, processes, and
file systems. Each resource in the system has one or
more attributes that define the state of the resource.

resource identifier . In Event Management, a set of
elements, where each element is a name/value pair of
the form name=value, whose values uniquely identify the
copy of the resource (and by extension, the copy of the
resource variable) in the system.

resource monitor . A program that supplies
information about resources in the system. It can be a
command, a daemon, or part of an application or
subsystem that manages any type of system resource.

resource variable . In Event Management, the
representation of an attribute of a resource. An example
of a resource variable is IBM.AIX.PagSp.%totalfree,
which represents the percentage of total free paging
space. IBM.AIX.PagSp specifies the resource name and
%totalfree specifies the resource attribute.

RISC. Reduced Instruction Set Computing (RISC), the
technology for today's high performance personal
computers and workstations, was invented in 1975.
Uses a small simplified set of frequently used
instructions for rapid execution.

rlogin (remote LOGIN) . A service offered by Berkeley
UNIX systems that allows authorized users of one
machine to connect to other UNIX systems across a
network and interact as if their terminals were
connected directly. The rlogin software passes
information about the user's environment (for example,
terminal type) to the remote machine.

RPC. Acronym for Remote Procedure Call, a facility
that a client uses to have a server execute a procedure
call. This facility is composed of a library of procedures
plus an XDR.

RSH. A variant of RLOGIN command that invokes a
command interpreter on a remote UNIX machine and
passes the command line arguments to the command
interpreter, skipping the LOGIN step completely. See
also rlogin.

S
SCSI. Small Computer System Interface.

Secondary node . In IBM Virtual Shared Disk function,
when physical disks are connected to two nodes
(twin-tailed), one node is designated as the primary
node for each disk and the other is designated as the
secondary, or backup, node. The secondary node acts
as the server node for the IBM Virtual Shared disks
defined on the physical disks if the primary node is
unavailable (off-line or down).

server . (1) A function that provides services for users.
A machine may run client and server processes at the
same time. (2) A machine that provides resources to
the network. It provides a network service, such as disk
storage and file transfer, or a program that uses such a
service. (3) A device, program, or code module on a
network dedicated to providing a specific service to a
network. (4) On a LAN, a data station that provides
facilities to other data stations. Examples are file server,
print server, and mail server.

shell . The shell is the primary user interface for the
UNIX operating system. It serves as command
language interpreter, programming language, and
allows foreground and background processing. There
are three different implementations of the shell concept:
Bourne, C and Korn.

Small Computer System Interface (SCSI) . An input
and output bus that provides a standard interface for
the attachment of various direct access storage devices
(DASD) and tape drives to the RS/6000.

Small Computer Systems Interface Adapter (SCSI
Adapter) . An adapter that supports the attachment of
various direct-access storage devices (DASD) and tape
drives to the RS/6000.

SMIT. The System Management Interface Toolkit is a
set of menu driven utilities for AIX that provides
functions such as transaction login, shell script creation,
automatic updates of object database, and so forth.

SNMP. Simple Network Management Protocol. (1) An
IP network management protocol that is used to monitor
attached networks and routers. (2) A TCP/IP-based

402 Monitoring Guide and Reference

protocol for exchanging network management
information and outlining the structure for
communications among network devices.

socket . (1) An abstraction used by Berkeley UNIX that
allows an application to access TCP/IP protocol
functions. (2) An IP address and port number pairing.
(3) In TCP/IP, the Internet address of the host computer
on which the application runs, and the port number it
uses. A TCP/IP application is identified by its socket.

standby node or machine . A device that waits for a
failure of a primary node in order to assume the identity
of the primary node. The standby machine then runs
the primary's workload until the primary is back in
service.

subnet . Shortened form of subnetwork.

subnet mask . A bit template that identifies to the
TCP/IP protocol code the bits of the host address that
are to be used for routing for specific subnetworks.

subnetwork . Any group of nodes that have a set of
common characteristics, such as the same network ID.

subsystem . A software component that is not usually
associated with a user command. It is usually a
daemon process. A subsystem will perform work or
provide services on behalf of a user request or
operating system request.

SUP. Software Update Protocol.

Sysctl . Secure System Command Execution Tool. An
authenticated client/server system for running
commands remotely and in parallel.

syslog . A BSD logging system used to collect and
manage other subsystem's logging data.

System Administrator . The user who is responsible
for setting up, modifying, and maintaining the SP
system.

system partition . A group of nonoverlapping nodes on
a switch chip boundary that act as a logical SP system.

T
tar . Tape ARchive, is a standard UNIX data archive
utility for storing data on tape media.

Tcl . Tool Command Language.

TclX . Tool Command Language Extended.

TCP. Acronym for Transmission Control Protocol, a
stream communication protocol that includes error
recovery and flow control.

TCP/IP. Acronym for Transmission Control
Protocol/Internet Protocol, a suite of protocols designed
to allow communication between networks regardless of
the technologies implemented in each network. TCP
provides a reliable host-to-host protocol between hosts
in packet-switched communications networks and in
interconnected systems of such networks. It assumes
that the underlying protocol is the Internet Protocol.

Telnet . Terminal Emulation Protocol, a TCP/IP
application protocol that allows interactive access to
foreign hosts.

Tk. Tcl-based Tool Kit for X Windows.

TMPCP. Tape Management Program Control Point.

token-ring . (1) Network technology that controls media
access by passing a token (special packet or frame)
between media-attached machines. (2) A network with a
ring topology that passes tokens from one attaching
device (node) to another. (3) The IBM Token-Ring LAN
connection allows the RS/6000 system unit to
participate in a LAN adhering to the IEEE 802.5
Token-Passing Ring standard or the ECMA standard 89
for Token-Ring, baseband LANs.

transaction . An exchange between the user and the
system. Each activity the system performs for the user
is considered a transaction.

transceiver (transmitter-receiver) . A physical device
that connects a host interface to a local area network,
such as Ethernet. Ethernet transceivers contain
electronics that apply signals to the cable and sense
collisions.

transfer . To send data from one place and to receive
the data at another place. Synonymous with move.

transmission . * The sending of data from one place
for reception elsewhere.

TURBOWAYS 100 ATM Adapter . An IBM
high-performance, high-function intelligent adapter that
provides dedicated 100 Mbps ATM (asynchronous
transfer mode) connection for high-performance servers
and workstations.

U
UDP. User Datagram Protocol.

UNIX operating system . An operating system
developed by Bell Laboratories that features
multiprogramming in a multiuser environment. The UNIX
operating system was originally developed for use on
minicomputers, but has been adapted for mainframes

 Glossary of Terms and Abbreviations 403

and microcomputers. Note: The AIX operating system
is IBM's implementation of the UNIX operating system.

user . Anyone who requires the services of a
computing system.

User Datagram Protocol (UDP) . (1) In TCP/IP, a
packet-level protocol built directly on the Internet
Protocol layer. UDP is used for
application-to-application programs between TCP/IP
host systems. (2) A transport protocol in the Internet
suite of protocols that provides unreliable,
connectionless datagram service. (3) The Internet
Protocol that enables an application programmer on one
machine or process to send a datagram to an
application program on another machine or process.

user ID . A nonnegative integer, contained in an object
of type uid_t, that is used to uniquely identify a system
user.

V
Virtual Shared Disk, IBM . The function that allows
application programs executing at different nodes of a
system partition to access a raw logical volume as if it
were local at each of the nodes. In actuality, the logical
volume is local at only one of the nodes (the server
node).

W
workstation . * (1) A configuration of input/output
equipment at which an operator works. * (2) A terminal
or microcomputer, usually one that is connected to a
mainframe or to a network, at which a user can perform
applications.

X
X Window System . A graphical user interface product.

404 Monitoring Guide and Reference

 Index

Numerics
3dmon command 36

A
a2ptx command 36
about this book xi
access control 14
access to archives 36
access to performance data 77
adding nodes to host list 56
adding to statistics list 60
API

compiling code 81
subroutines for access to performance data 77
subroutines for controlling performance data 68
subroutines for controlling sessions 48
subroutines for handling data types 51
types of subroutines 47
using 47

API problems
diagnosing 319

archival 29
data 35
dumping data 36
starting 38
stopping 38

assigning statistics lists to nodes 62
audience of this book xi
averaging 28
azizo 29, 36

C
central coordinator 7, 47
collecting and displaying summary data 31
command problems

diagnosing 311
ptpectrl 313
ptpedump 318
ptpehier 317
spdm_dump 318

compiling source code 81
configuration 19
configuration file 40
control workstation 15
controlling data

archival 75
collection 71
summary 73

controlling data collection 34, 71

controlling performance data 68
controlling sessions 48

D
daemon problems

diagnosing 323
spdmapid 328
spdmcold 324
spdmd 323
spdmspld 326
spdmtrmd 329

data collection 71
data for problem resolution

getting from the SDR 308
data objects

SPDM 13
SPDM_NODES 13

data type handling 51
determining success of statistics list operation 67
diagnosing API problems 319
diagnosing command problems 311
diagnosing daemon problems 323
diagnosing problems 307
disabling data archival 75
disabling data for summary 73
displaying performance data 4
dumping archives 36

E
enabling data archival 75
enabling data for summary 73
error logging 308
Ethernet monitoring hierarchy 20
extracting archived data 40

F
formatting archive text 39
frame monitoring hierarchy 20

G
getting meaningful data 10, 31

H
handling data types 51
help, getting 307
host list

navigating 59

 Copyright IBM Corp. 1998 405

host lists 51
adding hosts 56
manipulating 55
querying 57

hosts 51
how to

collect and display data 31
control collection and summary 34
format archive text 39
locate summary data 30
record archive data 37
select data for archival 40

I
IBM, getting help from 307
initialize data summary 32
initializing pointers 80
installing 15

L
libptpe.a 50
locating performance data summaries 30
logs, error 308

M
manipulating host lists 55
manipulating statistics lists 59
manual pages for public code 391
messages

start of numbered messages 331
monitoring data 33
monitoring hierarchy

adding nodes 12
building reporting groups 12
customized 11
Ethernet 20
frame 20
guidelines 11
performance considerations 9
planning 11
specifying 19
standard 19
standard vs. customized 12, 30
system partitions 6
understanding 9

N
navigating through host list 59

O
organizing reporting groups 12

P
perfmon user group 14, 31, 36
performance archival 29
performance averaging 28
performance considerations 9
performance data

access to archives 36
archive vs. display 10
archiving 4, 35
calculating summary statistics 29
collecting and displaying 31
collection 3
controlling collection 34
disabling archival 35
disabling collection 34
dumping archives 36
enabling archival 35
enabling collection 34
extracting archived data 40
formatting text file 39
initialize summary 32
locating summary statistics 30
monitoring summary 33
querying collection 38
selecting archive data 40
selecting for summarization 28
selecting statistics for archival 35
selecting statistics for collection 34
starting collection 32
stopping collection 34
summarization 4

performance data manager 5
using 28

PMR (problem management record) 308
pointers

initializing 80
prerequisite knowledge for this book xi
prerequisites 15
problem management record (PMR) 308
problem resolution data 308
problems

diagnosing 307
ptpe.cf file 40
PtpeAddHostToList 55, 114
PtpeAddStatToList 59, 116
PtpeArchDisableAllStats 118
PtpeArchDisableStats 75, 123
PtpeArchEnableAllStats 128
PtpeArchEnableStats 75, 133
PtpeArchGetStats 78, 80, 138
PtpeArchQueryState 144
PtpeArchQueryStats 75, 147
PtpeArchStartAllHosts 152
PtpeArchStartHosts 156

406 Monitoring Guide and Reference

PtpeArchStats 78
PtpeArchStopAllHosts 161
PtpeArchStopHosts 165
PtpeAssignStatsToHost 60, 62, 170
PtpeChangeHostRates 172
PtpeCloseSession 176
PtpeColDisableAllStats 178
PtpeColDisableStats 183
PtpeColEnableAllStats 188
PtpeColEnableStats 193
PtpeColGetStats 78, 198
PtpeColQueryAvailStats 75
PtpeColQueryState 203
PtpeColQueryStats 206
PtpeColSetup 71, 211
PtpeColStart 71, 215
PtpeColStop 71, 220
ptpeconf command 13, 86
ptpectrl command 32, 76, 88
ptpectrl problems 313
PtpeDelHostFromList 55, 57, 225
PtpeDelStatFromList 59, 64, 227
ptpedump 93
ptpedump command 36
ptpedump problems 318
PtpeEmptyHostList 55, 229
PtpeEmptyStatList 60, 231
PtpeFindHost 55, 233
PtpeFindStat 55, 235
PtpeFirstHost 55, 237
PtpeFirstStat 55, 239
PtpeFreeHostList 56, 60, 241
PtpeFreeStatList 60, 243
PtpeGetHost 245
PtpeGetHostResult 247
PtpeGetHostStatList 64, 250
PtpeGetStatName 252
PtpeGetStatResult 254
PtpeGetStatTime 256
PtpeGetStatType 258
PtpeGetStatValueFloat 261
PtpeGetStatValueLong 263
ptpegroup 97
ptpegroup command 14
ptpehier 99
ptpehier command 12, 31, 73
ptpehier problems 317
PtpeInitHostList 55, 265
PtpeInitStatList 59, 267
PtpeIsLastHost 55, 269
PtpeIsLastStat 55, 271
PtpeNextHost 55, 273
PtpeNextStat 55, 275
PtpeOpenSession 277
PtpeQueryAllHostStatus 76, 280

PtpeQueryAvailHosts 57, 284
PtpeQueryAvailStats 64, 286
PtpeQueryHostRates 291
PtpeQueryHostStatus 293
PtpeRemoveStatsFromHost 60, 62, 298
ptpertm 104
PtpeSetStatTime 66, 300
PtpeStatIsFloat 303
PtpeStatIsLong 305

Q
querying data collection 38
querying nodes on host list 57
querying statistics lists 64

R
recording archive data 37
reporting groups 12

how to organize 12
size of 11

RSi library 78
run-time monitor 4

using 23

S
SDR 50
SDR objects 13
security 14
selecting archive data 40
selecting data for archival 35
selecting data for collection 34
sending problem data to IBM 307
session control 48
SP performance statistics 24
spdcold problems 324
SPDM data object 13
spdm_dump 109
spdm_dump problems 318
SPDM_NODES data object 13
spdmapid problems 328
spdmd problems 323
spdmdctrl 106
spdmspld problems 326
spdmtrmd problems 329
splstdata command, problem resolution data 308
start data collection 32
statistics 51

specifying in configuration file 40
statistics list

adding to 60
assigning to hosts 62
determining operation success 67
manipulating 59

 Index 407

statistics list (continued)
querying 64
timestamps 65, 78

statistics lists 51
statistics timestamps 65, 78
stopping data collection 34
system data repository 13, 50

T
trademarks ix
types of API subroutines 47

U
user groups 14
using the API 47

W
wildcards in ptpe.cf file 42

X
xmpeek command 40
xmperf command 33, 36

408 Monitoring Guide and Reference

Communicating Your Comments to IBM

IBM Parallel System Support
Programs for AIX
Performance Monitoring Guide and Reference
Version 3 Release 1

Publication No. SA22-7353-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– FAX: (International Access Code)+1+914+432-9405

� If you prefer to send comments electronically, use this network ID:

– IBM Mail Exchange: USIB6TC9 at IBMMAIL
– Internet e-mail: mhvrcfs@us.ibm.com
– World Wide Web: http://www.s390.ibm.com/os390

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your
comments by phone.

Reader's Comments — We'd Like to Hear from You

IBM Parallel System Support
Programs for AIX
Performance Monitoring Guide and Reference
Version 3 Release 1

Publication No. SA22-7353-00

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader's Comments — We'd Like to Hear from You
SA22-7353-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

SA22-7353-00

IBM

Program Number: 5765-D51

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7353-ðð

