IBM Parallel Environment for AIX

Operation and Use, Volume 2, Part 2
Profiling

Version 2 Release 4

SC28-1980-02

IBM Parallel Environment for AIX

Operation and Use, Volume 2, Part 2
Profiling

Version 2 Release 4

SC28-1980-02

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page v.

Third Edition (October 1998)

This edition applies to Version 2, Release 4 , Modification 0 of the IBM Parallel Environment for AIX (5765-543), and to all
subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation, Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400
United States of America
FAX (United States and Canada: 1+914+432-9405
FAX (Other Countries)

Your International Access Code)+1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL

Internet e-mail: mhvrcf@vnet.ibm.com

World Wide Web: http://www.rs6000.ibm.com (select Parallel Computing)
If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
¢ Title and order number of this book
e Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

Copyright International Business Machines Corporation 1998 . All rights reserved. Note to U.S. Government Users — Documentation
related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with
IBM Corp.

© Copyright International Business Machines Corporation 1995, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices v
Trademarks Vi
About This Book iX
Who Should Use This Book iX
How This Book is Organized iX
Overview of Contents iX
Typographic Conventions X
Related Publications X
IBM Parallel Environment for AIX Publications X
Related IBM Publications Xi
Related Non-IBM Publications Xi
National Language Support Xii
Accessing Online Information Xii
Online Information Resources Xii
Getting the Books Online Xiii
Chapter 1. Profiling Parallel Programs with Xprofiler 1
Before You Begin 1
About Xprofiler 1
Requirements and Limitations 1
Xprofiler versus gprof 2
Compiling Applications to be Profiled 2
Starting Xprofiler 3
Xprofiler Command Line Options 3
Loading Files from the Xprofiler GUI 6
Setting the File Search Sequence 14
Understanding the Xprofiler Display 15
The Xprofiler Main Window 16
Using the Xprofiler Graphical User Interface 20
Using the Dialog Window Buttons 21
Using the Search Engine 21
Using the Save Dialog Windows 21
Using the Dialog Window Filters 22
Using the Radio/Toggle Buttons and Sliders 22
Manipulating the Function Call Tree 24
Zooming In on the Function Call Tree 24
Other Viewing Options 28
Filtering What You See 30
Clustering Libraries Together 36
Locating Specific Objects in the Function Call Tree 39
Getting Performance Data for Your Application 41
Getting Basic Data 41
Getting Detailed Data via Reports 46
Looking at Source Code 56
Saving Screen Images of Profiled Data 60
Appendix A. Parallel Environment Tools Commands 63
xprofiler . . 63

© Copyright IBM Corp. 1995, 1998 ili

iv

Appendix B. Customizing Tool Resources
Xprofiler Resource Variables o
Controlling Fonts
Controlling the Appearance of the Xprofiler Main Window
Controlling Variables Related to the File Menu
Controlling Variables Related to the View Menu
Controlling Variables Related to the Filter Menu

Appendix C. Profiling Programs with the AIX prof and gprof Commands

Glossary of Terms and Abbreviations

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, NY 10594

USA
Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Mail Station P300

522 South Road
Poughkeepsie, NY 12601-5400
USA

Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 1995, 1998

Vi IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AlX

AIX/6000

IBM

LoadLeveler

Micro Channel
RISC System/6000
RS/6000
POWERparallel

SP

Microsoft, Windows, and the Windows logo are trademarks or registered
trademarks of Microsoft Corporation.

PostScript is a trademark of Adobe Systems, Incorporated.
Motif is a trademark of Open Software Foundation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service hames, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1995, 1998 vii

Viii IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

About This Book

This book describes the profiling facilities for the IBM Parallel Environment (PE) for
AIX program product and how to use these profiling tools to analyze and tune your
parallel programs.

This book concentrates on the actual commands, graphical user interfaces, and use
of these tools as opposed to the writing of parallel programs. For this reason, you
should use this book in conjunction with IBM Parallel Environment for AIX: MPI
Programming and Subroutine Reference, (GC23-3894) and IBM Parallel
Environment for AIX: MPL Programming and Subroutine Reference (GC23-3893).

This book assumes that AIX Version 4.3.2 or later , X-Windows**, and the PE
software are already installed. It also assumes that you have been authorized to
run the Parallel Operating Environment (POE). The PE software is designed to run
on an IBM RS/6000 SP, an RS/6000 network cluster, or on a mixed system where
additional RS/6000 processors supplement an SP system. For complete information
on installing the PE software and setting up users, see IBM Parallel Environment
for AIX: Installation, (GC23-3892). Also, see the appropriate AIX 4.3.2 or later
documentation listed under “Related Publications” on page x. For information on
POE and executing parallel programs, see IBM Parallel Environment for AlX:
Operation and Use, Volume 1, Using the Parallel Operating Environment and I1BM
Parallel Environment for AIX: Hitchhiker's Guide

Who Should Use This Book

This book is designed primarily for end users and application developers. It is also
intended for those who run parallel programs, and some of the information and
tools covered should interest system administrators. Readers should have some
experience with graphical user interface concepts such as windows, pull-down
menus, and menu bars. They should also have knowledge of the AlX operating
system and the X-Window system. Where necessary, this book provides some
background information relating to these areas. More commonly, this book refers
you to the appropriate documentation.

How This Book is Organized

Overview of Contents
This book contains the following information:

* Chapter 1, “Profiling Parallel Programs with Xprofiler’ on page 1 describes how
to profile your programs with the Parallel Environment's Xprofiler.

e Appendix A, “Parallel Environment Tools Commands” on page 63 contains the
manual pages for the PE commands discussed throughout this book.

e Appendix B, “Customizing Tool Resources” on page 67 describes how to
customize X-Windows resources for PE tools.

e Appendix C, “Profiling Programs with the AIX prof and gprof Commands” on
page 75 describes how to use the AlIX profilers prof and gprof to profile
parallel programs.

© Copyright IBM Corp. 1995, 1998 4

Typographic Conventions
This book uses the following typographic conventions:

Type Style Used For

bold Bold words or characters represent system elements that you must use literally,
such as command names, flag names, and path names.
Bold words also indicate the first use of a term included in the glossary.

italic Italic words or characters represent variable values that you must supply.

Italics are also used for book titles and for general emphasis in text.

Constant width

Examples and information that the system displays appear in constant width
typeface.

In addition to the highlighting conventions, this manual uses the following
conventions when describing how to perform tasks. User actions appear in
uppercase boldface type. For example, if the action is to enter the xprofiler
command, this manual presents the instruction as:

ENTER xprofiler

The symbol “e” indicates the system response to an action. So the system's
response to entering the xprofiler command would read:

® The xprofiler main window opens.

Related Publications

IBM Parallel Environment for AlX Publications

X

IBM Parallel Environment for AlX: General Information, GC23-3906
IBM Parallel Environment for AlX: Hitchhiker's Guide, GC23-3895
IBM Parallel Environment for AlX: Installation, GC28-1981

IBM Parallel Environment for AlX: Operation and Use, Volume 1, Using the
Parallel Operating Environment, SC28-1979

IBM Parallel Environment for AIX: MPI Programming and Subroutine
Reference, GC23-3894

IBM Parallel Environment for AIX: MPL Programming and Subroutine
Reference, GC23-3893

IBM Parallel Environment for AIX: Messages, GC28-1982
IBM Parallel Environment for AlX: Licensed Program Specification, GC23-3896

As an alternative to ordering the individual books, you can use SBOF-8588 to order
the entire IBM Parallel Environment for AIX library.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Related IBM Publications

IBM AIX Version 4 Getting Started, SC23-2527
IBM AIX General Concepts and Procedures for RS/6000 GC23-2202
IBM AIX Version 4 Files Reference, SC23-2512

IBM AIX Version 4 System Management Guide: Communications and
Networks, SC23-2526

IBM AIX Version 4.1 Installation Guide SC23-2550

IBM AIX Version 4.2 Installation Guide SC23-1924

IBM AIX Version 4 Commands Reference, SBOF-1851 (all volumes)
IBM AIX Versions 3.2 and 4 Performance Tuning Guide SC23-2365
IBM AIX Version 4 Messages Guide and Reference SC23-2641

IBM AIX Version 4.1 Network Installation Management Guide and Reference,
SC23-2627

IBM AIX Version 4.2 Network Installation Management Guide and Reference,
SC23-1926

IBM AIX Version 4 System Management Guide: Operating System and
Devices, SC23-2525

IBM AIX Version 4 General Programming Concepts: Writing and Debugging
Programs, SC23-2533

IBM AIX Version 4 Communications Programming Concepts SC23-2610
Diskless Workstation Management Guide, SC23-2433

C++ for AIX/6000: Language Reference, SC09-1606

C++ for AIX/6000: Standard Class Library Reference, SC09-1604

C++ for AIX/6000: User's Guide, SC09-1605

IBM Performance Toolbox 1.2 and 2 for AlX: Guide and Reference, SC23-2625

Related Non-IBM Publications

Almasi, G., Gottlieb, A., Highly Parallel Computing Benjamin-Cummings
Publishing Company, Inc., 1989.

Gropp, W., Lusk, E., Skjellum, A., Using MPI, The MIT Press, 1994.

Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard Version 1.1, University of Tennessee, Knoxville, Tennessee, June 6,
1995.

Foster, |., Designing and Building Parallel Programs Addison-Wesley, 1995.
Pfister, Gregory, F., In Search of Clusters Prentice Hall, 1995.

About This Book

Xi

National Language Support

For National Language Support (NLS), all PE components and tools display
messages located in externalized message catalogs. English versions of the
message catalogs are shipped with the PE program product, but your site may be
using its own translated message catalogs. The AIX environment variable
NLSPATH is used by the various PE components to find the appropriate message
catalog. NLSPATH specifies a list of directories to search for message catalogs.
The directories are searched, in the order listed, to locate the message catalog. In
resolving the path to the message catalog, NLSPATH is affected by the values of
the environment variables LC_MESSAGES and LANG. If you get an error saying
that a message catalog is not found, and want the default message catalog:

ENTER export NLSPATH=/usr/lib/nls/msg/%L/%N
export LANG=C

The PE message catalogs are in English, and are located in the following
directories:

/usr/lib/nis/msg/C
/usr/lib/nls/msg/En_US
/usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG. For
additional information on NLS and message catalogs, see IBM Parallel Environment
for AIX: Messages and AlIX for RS/6000: General Programming Concepts.

Accessing Online Information

In order to use the PE man pages or access the PE online (HTML) publications,
the ppe.pedocs file set must first be installed. To view the PE online publications,
you also need access to an HTML document browser such as Netscape. An index
to the HTML files that are provided with the ppe.pedocs file set is installed in the
lusr/lpp/ppe.pedocs/html directory.

Online Information Resources

Xii

If you have a question about the SP, PSSP, or a related product, the following
online information resources make it easy to find the information:

e Access the new SP Resource Center by issuing the command:
lusr/lpp/ssp/bin/resource_center . Note that the ssp.resctr fileset must be
installed before you can do this.

If you have the Resource Center on CD ROM, see the readme.txt file for
information on how to run it.

¢ Access the RS/6000 Web Site at: http://www.rs6000.ibm.com

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Getting the Books Online

All of the PE books are available in Portable Document Format (PDF). They are
included on the product media (tape or CD ROM), and are part of the ppe.pedocs
file set. If you have a question about the location of the PE softcopy books, see
your System Administrator.

To view the PE PDF publications, you need access to the Adobe Acrobat Reader
3.0.1. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is
also freely available for downloading from the Adobe web site at URL
http://www.adobe.com

As stated above, you can also view or download the PE books from the IBM
RS/6000 web site at http://www.rs6000.ibm.com . At the time this manual was
published, the full path was
http://www.rs6000.ibm.com/resource/aix_resource/sp_books. However, note
that the structure of the RS/6000 web site can change over time.

About This Book Xili

XiV IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Chapter 1. Profiling Parallel Programs with Xprofiler

This chapter describes how to profile your programs with the Xprofiler profiling tool
of the IBM Parallel Environment for AIX. This chapter explains how to use the
Xprofiler graphical user interface (GUI) to profile your application, so it is best to
read it while you have the GUI up and running.

If you intend to use the AIX gprof command to profile your parallel application, see
Appendix C, “Profiling Programs with the AIX prof and gprof Commands” on

page 75 for information on how to do so. You may also find it helpful to consult the
IBM AIX Version 4 Commands Reference

You do not need to be familiar with the AIX gprof command to use Xprofiler.

Xprofiler is a tool that helps you analyze your parallel application's performance
quickly and easily. It uses data collected by the -pg compiling option to construct a
graphical display of the functions within your application. Xprofiler provides quick
access to the profiled data, which lets you identify the functions that are the most
CPU-intensive. The graphical user interface also lets you manipulate the display in
order to focus on the application's critical areas.

Before You Begin

About Xprofiler

Xprofiler lets you profile both serial and parallel applications. The difference is that
when you run a serial application, a single profile data file is generated, while a
parallel application produce multiple profile data files. Either way, you can use
Xprofiler to analyze the resulting profiling information.

Xprofiler provides a set of resource variables that let you customize some of the
features of the Xprofiler window and reports. For information about customizing
resources for Xprofiler, see IBM Parallel Environment for AIX: Operation and Use,
Volume 2, Tools Reference

The word function is used frequently throughout this chapter. Consider it to be
synonymous with the terms routine, subroutine, and procedure.

Requirements and Limitations

To use Xprofiler, your application must be compiled with the -pg option. For more
information about compiling, see “Compiling Applications to be Profiled” on page 2.

Like gprof, Xprofiler lets you analyze CPU (busy) usage only. It cannot give you
other kinds of information such as CPU idle, I/O, or communication.

To run Xprofiler, AIX 4.2.1 (or later) must be installed on your machine.

If you compile your application on one machine, and then analyze it on another,
you must first make sure that both machines have similar library configurations, at
least for the system libraries used by the application. For instance, say you ran an
HPF application on an SP, then tried to analyze the profiled data on a workstation.
The levels of HPF runtime libraries must match, and must be placed in a location

© Copyright IBM Corp. 1995, 1998 1

Xprofiler versus

that Xprofiler recognizes on the workstation. Otherwise, Xprofiler produces
unpredictable results.

Since Xprofiler collects data by sampling, short-executing functions may show no
CPU use.

Xprofiler does not give you information about the specific threads in a
multi-threaded program. The data that Xprofiler presents is a summary of the
activities of all the threads.

gprof

With Xprofiler, you can produce the same tabular reports that you may be
accustomed to seeing with gprof . Just as with gprof , you can generate the Flat
Profile, Call Graph Profile, and Function Index reports. Xprofiler is different from
gprof in that it provides a graphical user interface (GUI) from which you can profile
your application. It generates a graphical display of your application's performance,
as opposed to just a text-based report. Unlike gprof , Xprofiler also lets you profile
your application at the source statement level.

From the Xprofiler GUI, you can use all the same command line flags as gprof, plus
a few more that are unique to Xprofiler.

Compiling Applications to be Profiled

In order to use Xprofiler, you must compile and link your application with the -pg
option of the compiler command. This applies regardless of whether you are
compiling a serial or parallel application. You can compile and link your application
all at once, or perform the compile and link operations separately. Here's an
example of how you would compile and link all at once:

cc -pg -o foo foo.c

And here's an example of how you would first compile your application and then
link it. To compile:

cc -pg -c foo.c

To link:

cc -pg -o foo foo.o

Notice that when you compile and link separately, you must use the -pg option with
both the compile and link commands.

The -pg option compiles and links the application so that when you run it, the CPU
usage data gets written to one or more output files. For a serial application, this
output consists of just one file called gmon.out, by default. For parallel applications,
the output is written into multiple files, one for each task that is running in the
application. To prevent each output file from overwriting the others, POE appends
the task ID to each gmon.out file. For instance, gmon.out.10.

The -pg option is not a combination of the -p and the -g compiling options.

Note: You must set the LIBPATH environment variable to the profiled POE
libraries in order to profile system libraries (like libc). For more information,
see IBM Parallel Environment for AlX: Operation and Use, Volume 2, Tools
Reference

2 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

In order to get a complete picture of your parallel application's performance, you
must indicate all of its gmon.out files when you load the application into Xprofiler.
When you specify more than one gmon.out file, Xprofiler shows you the sum of the
profile information contained in each file.

The Xprofiler GUI provides the capability of viewing included functions. Note,
however, that your application must also be compiled with the -g option in order for
Xprofiler to display the included functions.

The -g option, in addition to the -pg option, is also required for source statement
profiling.

Starting Xprofiler

You start Xprofiler from the AIX command line, using the xprofiler command. To
use Xprofiler, you also need to specify the executable file (a.out), the profile data
file (gmon.out), and any command line options.

Under some circumstances you may have multiple profile data files (gmon.out files).
You will have more than one of these files if you are profiling a parallel application,
because a gmon.out file is created for each task in the application when it is run. If
you are running a serial application, there may be times when you want to
summarize the profiling results from multiple runs of the application. In these cases,
you will need to specify each of the profile data files you want to profile with
Xprofiler.

You start Xprofiler by issuing the xprofiler command from the AIX command line.
You also need to specify the executable, profile data file(s), and options, which you
can do one of two ways. You can either specify them on the command line, with
the xprofiler command, or you can issue the xprofiler command alone, then
specify them from within the GUI. See “Loading Files from the Xprofiler GUI” on
page 6.

To start Xprofiler and specify the executable, profile data file(s), and options:
ENTER xprofiler a.out gmon.out... [options]

where a.out is the binary executable file, gmon.out is the
name of your profile data file(s), and options may be one or
more of the options listed in “Xprofiler Command Line
Options.”

To print basic Xprofiler command syntax to the screen, use the -h or -? option with
the xprofiler command from the command line. For example, xprofiler -h.

Xprofiler Command Line Options

You can specify the same command line options with the xprofiler command that
you do with gprof , plus one additional option (-disp_max), which is specific to
Xprofiler. The command line options let you control the way Xprofiler displays the
profiled output.

When you enter an option, there must be a space between the option and its
corresponding value. For example,

-e main

Chapter 1. Profiling Parallel Programs with Xprofiler 3

You can specify the following options from either the Xprofiler GUI or the command
line. See “Specifying Command Line Options (from the GUI)” on page 11 for more

information.

The Xprofiler command line options are:

Table 1 (Page 1 of 3). Xprofiler Command Line Options

Use this flag: To:

For example:

-b Suppresses the printing of the field descriptions for the Flat
Profile, Call Graph Profile, and Function Index reports when they
are written to a file with the Save As option of the File menu.

To suppress printing of the field
descriptions for the Flat Profile, Call
Graph Profile, and Function Index
reports in the saved file: file,

ENTER xprofiler -b a.out
gmon.out

-S If multiple gmon.out files are specified when Xprofiler is started,
produces the gmon.sum profile data file. The gmon.sum file
represents the sum of the profile information in all the specified
profile files. Note that if you specify a single gmon.out file, the
gmon.sum file contains the same data as the gmon.out file.

To write the sum of the data from
three profile data files, gmon.out.1,
gmon.out.2, and gmon.out.3, into a
file called gmon.sum:

ENTER xprofiler -s a.out
gmon.out.1 gmon.out.2
gmon.out.3

-z Includes functions that have both zero CPU usage and no call
counts in the Flat Profile, Call Graph Profile, and Function Index
reports. A function will not have a call count if the file that
contains its definition was not compiled with the -pg option, which
is common with system library files.

To include all functions used by the
application, in the Flat Profile, Call
Graph Profile, and Function Index
reports, that have zero CPU usage
and no call counts:

ENTER xprofiler -z a.out gmon.out

-a Adds alternative paths to search for source code and library files,
or changes the current path search order. When using this
command line option, you can use the “at” symbol (@) to
represent the default file path, in order to specify that other paths
be searched before the default path.

To set the alternative file search
path(s) so that Xprofiler searches
pathA, the default path, then pathB:

ENTER xprofiler -a
pathA:@:pathB

-C Loads the specified configuration file. If the -c option is used on
the command line, the configuration file name specified with it will
appear in the Configuration File (-c): text field in the Load Files
Dialog, and the Selection field of the Load Configuration File
Dialog. When both the -c and -disp_max options are specified on
the command line, the -disp_max option is ignored, but the value
that was specified with it will appear in the Initial Display
(-disp_max): field in the Load Files Dialog, the next time it is
opened.

To load the configuration file:

ENTER xprofiler a.out gmon.out -c
config_file_name

-disp_max Sets the number of function boxes that Xprofiler initially displays
in the function call tree. The value supplied with this flag can be
any integer between 0 and 5,000. Xprofiler displays the function
boxes for the most CPU-intensive functions through the number
you specify. For instance, if you specify 50, Xprofiler displays the
function boxes for the 50 functions in your program that consume
the most CPU. After this, you can change the number of function
boxes that are displayed via the Filter menu options. This flag has
no effect on the content of any of the Xprofiler reports.

To display the function boxes for only
50 most CPU-intensive functions in
the function call tree:

ENTER xprofiler -disp_max 50
a.out gmon.out

4

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Table 1 (Page 2 of 3). Xprofiler Command Line Options

Use this flag: To:

For example:

-e De-emphasizes the general appearance of the function box(es)
for the specified function(s) in the function call tree, and limits the
number of entries for these function in the Call Graph Profile
report. This also applies to the specified function's descendants,
as long as they have not been called by non-specified functions.

In the function call tree, the function box(es) for the specified
function(s) appears greyed-out. Its size and the content of the
label remain the same. This also applies to descendant functions,
as long as they have not been called by non-specified functions.

In the Call Graph Profile report, an entry for the specified function
only appears where it is a child of another function, or as a parent
of a function that also has at least one non-specified function as
its parent. The information for this entry remains unchanged.
Entries for descendants of the specified function do not appear
unless they have been called by at least one non-specified
function in the program.

To de-emphasize the appearance of
the function boxes for foo and bar, as
well as their qualifying descendants in
the function call tree, and limit their
entries in the Call Graph Profile
report:

ENTER xprofiler -e foo -e bar
a.out gmon.out

-E Changes the general appearance and label information of the
function box(es) for the specified function(s) in the function call
tree. Also limits the number of entries for these functions in the
Call Graph Profile report, and changes the CPU data associated
with them. These results also apply to the specified function's
descendants, as long as they have not been called by
non-specified functions in the program.

In the function call tree, the function box for the specified function
appears greyed-out, and its size and shape also changes so that
it appears as a square of the smallest allowable size. In addition,
the CPU time shown in the function box label, appears as 0
(zero). The same applies to function boxes for descendant
functions, as long as they have not been called by non-specified
functions. This option also causes the CPU time spent by the
specified function to be deducted from the left side CPU total in
the label of the function box for each of the specified function's
ancestors.

In the Call Graph Profile report, an entry for the specified function
only appears where it is a child of another function, or as a parent
of a function that also has at least one non-specified function as
its parent. When this is the case, the time in the self and
descendants columns for this entry is set to 0 (zero). In addition,
the amount of time that was in the descendants column for the
specified function is subtracted from the time listed under the
descendants column for the profiled function. As a result, be
aware that the value listed in the % time column for most profiled
functions in this report will change.

To change the display and label
information for foo and bar, as well as
their qualifying descendants in the
function call tree, and limit their
entries and data in the Call Graph
Profile report:

ENTER xprofiler -E foo -E bar
a.out gmon.out

-f De-emphasizes the general appearance of all function boxes in
the function call tree, except for that of the specified function(s)
and its descendant(s). In addition, the number of entries in the
Call Graph Profile report for the non-specified functions and
non-descendant functions is limited. The -f flag overrides the -e
flag.

In the function call tree, all function boxes except for that of the
specified function(s) and its descendant(s) appear greyed-out.
The size of these boxes and the content of their labels remain the
same. For the specified function(s), and its descendant(s), the
appearance of the function boxes and labels remain the same.

In the Call Graph Profile report, an entry for a non-specified or
non-descendant function only appears where it is a parent or
child of a specified function or one of its descendants. All
information for this entry remains the same.

To de-emphasize the display of
function boxes for all functions in the
function call tree except for foo, bar,
and their descendants, and limit their
types if entries in the Call Graph
Profile report:

ENTER xprofiler -f foo -f bar a.out
gmon.out

Chapter 1. Profiling Parallel Programs with Xprofiler

5

Table 1 (Page 3 of 3). Xprofiler Command Line Options

Use this flag: To:

For example:

-F Changes the general appearance and label information of all
function boxes in the function call tree except for that of the
specified function(s) and its descendants. In addition, the number
of entries in the Call Graph Profile report for the non-specified
and non-descendant functions is limited, and the CPU data
associated with them is changed. The -F flag overrides the -E
flag.

In the function call tree, all function boxes except for that of the
specified function(s) and its descendant(s) appear greyed-out.
The size and shape of these boxes also changes so that they
appear as squares of the smallest allowable size. In addition, the
CPU time shown in the function box label, appears as 0 (zero).

In the Call Graph Profile report, an entry for a non-specified or
non-descendant function only appears where it is a parent or
child of a specified function or one of its descendants. When this
is the case, the time in the self and descendants columns for this
entry is set to 0 (zero). As a result, be aware that the value listed
in the % time column for most profiled functions in this report will
change.

To change the display and label
information of the function boxes for
all functions except the functions foo
and bar and their descendants, and
limit their types of entries and data in
the Call Graph Profile:

ENTER xprofiler -F foo -F bar
a.out gmon.out

-L Sets the pathname for locating shared libraries. If you plan to
specify multiple paths, use the Set File Search Path option of the
File menu on the Xprofiler GUI. See “Setting the File Search
Sequence” on page 14 for information.

To specify /lib/profiled/libc.a:shr.o as
an alternate pathname for your shared
libraries:

ENTER xprofiler -L
/lib/profiled/libc.a:shr.o

After you issue the xprofiler command, the Xprofiler main window appears, and

displays your application's data.

Loading Files from the Xprofiler GUI

If you issue the xprofiler command without specifying an executable file, a profile
data file, or options, you may do so from within the Xprofiler GUI. You use the Load

6

File option of the File menu to do this.

When you issue the xprofiler command alone, the Xprofiler main window appears.
Since you did not load an executable or specify a profile data file, the window will

be empty.

If you issue the xprofiler command with the -h option only, Xprofiler displays the

syntax for the command and then exits.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Xproliker v1.1 - BH POAYER Paralkel System

Film i K1 ltaw K. THA by AN I

I]_Ih]rl‘.y ddeplay, nes "Fila-dload Films" apbdesn to load oo va Hd 1 ls s=h

Figure 1. Xprofiler Main Window with No Executables Loaded

Select the File menu, and then the Load File option. The Load Files Dialog window
appears.

Chapter 1. Profiling Parallel Programs with Xprofiler 7

- Load File= Dialog

Hnmry Kxacotahin 14 1n- runn,nnt 'enfMin Minlel-
I'i1tan Iriitan
| Arr]Turmire | | T, T
IHrAr: KFilsc IHrar: Filac
-] Esun.uul.? B - | Cure &
runn,nnt, runn,nnt
gmun.uul.d gmun.uul. i
runn, nnt, 0§ runn, nnt, |
KUl dum Emun.uul.?
limlIn runn, nnt,
hellu.cfg Emun.uul.d
T limlIn HAPlIA, E ™ ¥ runn, nnt, 0 ™
FIE |1 1= EIE H J I
imlactinn fimlantinn
| o Do T e 110 | Pl R U W F ¥ T T TR
| "1 Itnr-l "1 Itnr-l

Inuunnd Linm liptinne-

%0 Dezacgiplion =% O gmun.wum Eile (-al Fems Bano Ly (=220

a1l File Zcacch Palhiul r-al. |_'

Cunfiguralivn File r-cl. |' l:huil.'l.':l...l

Iniliul Displuy (—diap_maxl. |Ennn

Exclude Funcliuvnfal r-el. |'

Exclude Funcliunfal r-El.

Include Funclivnfal =81,

Include Funcliuvnfal r-E1.

all Librucw Balh 7-L7.

Figure 2. Load Files Dialog Window

The Load Files Dialog window lets you specify your application's executable, and
its corresponding profile data (gmon.out) files. When you load a file, you can also
specify the various command line options that let you control the way Xprofiler
displays the profiled data.
To load the files for the application you wish to profile, you need to specify the:

» Binary Executable (required)

e Profile Data File(s) (required)

e Command Line Options (optional)
Specifying the Binary Executable

You specify the binary executable from the Binary Executable File of the Load Files
Dialog window. The Binary Executable File area looks similar to this:

8 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Binary Executahle File:

Filter

me/holly/xprofiler/%

Direct: Files

= | gmon.out

Fas gmon ., out,n
hello,old
hello world
hello_world.c

naive
¥
=1 = |
selection

Ihellq_uurlé

Filterl

Figure 3. Binary Executable File Area

Use the scroll bars of the Directories and Files selection boxes to locate the
executable file you wish to load. By default, all the files in the directory from which
you invoked Xprofiler appear in the Files selection box. To select a file, click on it
with the left mouse button.

To make locating your binary executable files easier, the Binary Executable File
area includes a Filter button. Filtering lets you limit the files that are displayed in the
Files selection box to those of a specific directory or of a specific type. For
information on using the Filter, see “Using the Dialog Window Filters” on page 22.

Specifying the Profile Data File(s)

You specify the profile data file(s) from the gmon.out Profile Data File(s) area of the
Load Files Dialog window. The gmon.out Profile Data File(s) area looks similar to
this:

Chapter 1. Profiling Parallel Programs with Xprofiler 9

gmon.out Profile File(=s):

Filter

me/holly/xprofiler/s

Directi Files

< | gmon. out

fao. gmon,out ., n
hello,old
hello world
hello world.c
naive

i
[=ld= I~ I |

selection

I gmon ., out

Filterl

Figure 4. gmon.out Profile Data File(s) Area

When you started Xprofiler, with the xprofiler command, you were not required to
indicate the name of the profile data file (which is probably why you are specifying
it from the GUI). If you did not specify a profile data file, Xprofiler searches your
directory for the presence of a file named gmon.out and, if found, places it in the
Selection field of the gmon.out Profile File(s) area, as the default. Xprofiler then
uses this file as input, even if it is not related to the binary executable file you
specify. Since this will cause Xprofiler to display incorrect data, it is important that
you enter the correct file into this field. So, if the profile data file you wish to use is
named something other than what appears in the Selection field, you must replace
it with the correct file name, as follows.

Use the scroll bars of the Directories and Files selection boxes to locate one or
more of the profile data (gmon.out) files you wish to specify. The file you use does
not have to be named gmon.out, and you may specify more than one profile data
file. To select a file, click on it with the left mouse button. You can select multiple
files by holding down the <Ctrl> key and clicking on each one with the left mouse
button. To select multiple consecutive files, press and hold the left mouse button
over the first file, and then drag the mouse over the other files. To de-select a file,
press and hold the <Ctrl> key while clicking on the file.

To make locating your output files easier, the gmon.out Profile File(s) area includes
a Filter button. Filtering lets you limit the files that get displayed in the Files
selection box to those in a specific directory or of a specific type. For information on
using the Filter, see “Using the Dialog Window Filters” on page 22.

10 I1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Specifying Command Line Options (from the GUI)
You specify command line options from the Command Line Options area of the
Load Files Dialog window. The Command Line Options area looks similar to this:

Inuunnd l.inn liptinne-

%0 Tezmeyriplion (=% O geun.uum Eile r=ul

 Flems Tavyna Lraye: (=]

all File Zcacch Palhial r-ul.

Cunfigucalivn Eile (=cl.

Ehuiuuu...l

Iniliul Diaplav F-disp_max=1- |SOON0

Exclude Funclivafal r-ci.

Inelude Euncliualal r-£1.

Include Funclivafad r-E71.

I
I
I
I
Exelude Euncliunful r-E1. |
I
I
I

all Libcury Pulh r-Li.

Figure 5. Command Line Options Area

You may specify one or more options as follows:

Table 2 (Page 1 of 4). Xprofiler GUI Command Line Options

Use this flag: To:

For example:

-b (button) Suppresses the printing of the field descriptions for the Flat
Profile, Call Graph Profile, and Function Index reports when they

are written to a file with the Save As option of the File menu.

To suppress printing of the field
descriptions for the Flat Profile, Call
Graph Profile, and Function Index
reports in the saved file, set the -b
button to the pressed-in position.

-s (button) If multiple gmon.out files are specified in the gmon.out Profile To write the sum of the data from
File(s) area, produces the gmon.sum profile data file. The three profile data files, gmon.out.1,
gmon.sum file represents the sum of the profile information in all gmon.out.2, and gmon.out.3, into a
the specified profile files. Note that if you specify a single file called gmon.sum, set the -s button
gmon.out file, the gmon.sum file contains the same data as the to the pressed-in position to activate
gmon.out file. this option.

-z (button) Includes functions that have both zero CPU usage and no call To include all functions used by the
counts in the Flat Profile, Call Graph Profile, and Function Index application, in the Flat Profile, Call
reports. A function will not have a call count if the file that Graph Profile, and Function Index
contains its definition was not compiled with the -pg option, which reports, that have zero CPU usage
is common with system library files. and no call counts, set the -z button

to the pressed-in position to activate
this option.

-a (field) Adds alternative paths to search for source code and library files, To set the alternative file search

or changes the current path search order. After clicking on the
OK button, any modifications to this field are also made to the
Enter Alt File Search Paths: field of the Alt File Search Path
Dialog window. If both the Load Files Dialog window and the Alt
File Search Path Dialog window are opened at the same time,
when you make path changes in the Alt File Search Path Dialog
and click the OK button, these changes are also made to the
Load Files Dialog window. Also, when both of these windows are
open concurrently, clicking on the OK or Cancel buttons in the
Load Files Dialog causes both windows to close. If you wish to
restore the Alt File Search Path(s) (-a): field to the same state
as when the Load Files Dialog window was opened, click on the
Reset button.

You can use the “at” symbol (@) with this option to represent the
default file path, in order to specify that other paths be searched
before the default path.

path(s) so that Xprofiler searches
pathA, the default path, then pathB,
type pathA:@:pathB in the Alt File
Search Path(s) (-a) field.

Chapter 1. Profiling Parallel Programs with Xprofiler 11

Table 2 (Page 2 of 4). Xprofiler GUI Command Line Options

Use this flag:

To:

For example:

-c (field)

Loads the specified configuration file. If the -c option was used on
the command line, or a configuration file had been previously
loaded with the Load Files Dialog or Load Configuration File
Dialog windows, the name of the most recently loaded file will
appear in the Configuration File (-c): text field in the Load Files
Dialog, as well as the Selection field of the Load Configuration
File Dialog. If both the Load Files Dialog and Load Configuration
File Dialog windows are open at the same time, when you specify
a configuration file in the Load Configuration File Dialog and then
click the OK button, the name of the specified file also appears in
the Load Files Dialog. Also, when both of these windows are
open concurrently, clicking on the OK or Cancel buttons in the
Load Files Dialog causes both windows to close. When entries
are made to both the Configuration File (-c): and Initial Display
(-disp_max): fields in the Load Files Dialog, the value in the
Initial Display (-disp_max): field is ignored, but is retained the
next time this window is opened. If you wish to retrieve the file
name that was in the Configuration File (-c): field when the
Load Files Dialog window was opened, click on the Reset button.

To load the configuration file, type
gmon.out in the Configuration File (-c)
field.

-disp_max
(field)

Sets the number of function boxes that Xprofiler initially displays
in the function call tree. The value supplied with this flag can be
any integer between 0 and 5,000. Xprofiler displays the function
boxes for the most CPU-intensive functions through the number
you specify. For instance, if you specify 50, Xprofiler displays the
function boxes for the 50 functions in your program that consume
the most CPU. After this, you can change the number of function
boxes that are displayed via the Filter menu options. This flag has
no effect on the content of any of the Xprofiler reports.

To display the function boxes for only
50 most CPU-intensive functions in
the function call tree, type 50 in the
Init Display (-disp_max) field

-e (field)

De-emphasizes the general appearance of the function box(es)
for the specified function(s) in the function call tree, and limits the
number of entries for these function in the Call Graph Profile
report. This also applies to the specified function's descendants,
as long as they have not been called by non-specified functions.

In the function call tree, the function box(es) for the specified
function(s) appears greyed-out. Its size and the content of the
label remain the same. This also applies to descendant functions,
as long as they have not been called by non-specified functions.

In the Call Graph Profile report, an entry for the specified function
only appears where it is a child of another function, or as a parent
of a function that also has at least one non-specified function as
its parent. The information for this entry remains unchanged.
Entries for descendants of the specified function do not appear
unless they have been called by at least one non-specified
function in the program.

To de-emphasize the appearance of
the function boxes for foo and bar, as
well as their qualifying descendants in
the function call tree, and limit their
entries in the Call Graph Profile
report, type foo and bar in the
Exclude Routines (-e) field.

You specify multiple functions by
separating each one with a space.

12 I1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Table 2 (Page 3 of 4). Xprofiler GUI Command Line Options

Use this flag:

To:

For example:

-E (field)

Changes the general appearance and label information of the
function box(es) for the specified function(s) in the function call
tree. Also limits the number of entries for these functions in the
Call Graph Profile report, and changes the CPU data associated
with them. These results also apply to the specified function's
descendants, as long as they have not been called by
non-specified functions in the program.

In the function call tree, the function box for the specified function
appears greyed-out, and its size and shape also changes so that
it appears as a square of the smallest allowable size. In addition,
the CPU time shown in the function box label, appears as 0
(zero). The same applies to function boxes for descendant
functions, as long as they have not been called by non-specified
functions. This option also causes the CPU time spent by the
specified function to be deducted from the left side CPU total in
the label of the function box for each of the specified function's
ancestors.

In the Call Graph Profile report, an entry for the specified function
only appears where it is a child of another function, or as a parent
of a function that also has at least one non-specified function as
its parent. When this is the case, the time in the self and
descendants columns for this entry is set to 0 (zero). In addition,
the amount of time that was in the descendants column for the
specified function is subtracted from the time listed under the
descendants column for the profiled function. As a result, be
aware that the value listed in the % time column for most profiled
functions in this report will change.

To change the display and label
information for foo and bar, as well as
their qualifying descendants in the
function call tree, and limit their
entries and data in the Call Graph
Profile report, type foo and bar in the
Exclude Routines (-E) field.

You specify multiple functions by
separating each one with a space.

- (field)

De-emphasizes the general appearance of all function boxes in
the function call tree, except for that of the specified function(s)
and its descendant(s). In addition, the number of entries in the
Call Graph Profile report for the non-specified functions and
non-descendant functions is limited. The -f flag overrides the -e
flag.

In the function call tree, all function boxes except for that of the
specified function(s) and its descendant(s) appear greyed-out.
The size of these boxes and the content of their labels remain the
same. For the specified function(s), and its descendants, the
appearance of the function boxes and labels remain the same.

In the Call Graph Profile report, an entry for a non-specified or
non-descendant function only appears where it is a parent or
child of a specified function or one of its descendants. All
information for this entry remains the same.

To de-emphasize the display of
function boxes for all functions in the
function call tree except for foo, bar,
and their descendants, and limit their
types if entries in the Call Graph
Profile report, type foo and bar in the
Include Routines (-f) field.

You specify multiple functions by
separating each one with a space.

Chapter 1. Profiling Parallel Programs with Xprofiler

13

Table 2 (Page 4 of 4). Xprofiler GUI Command Line Options

Use this flag: To: For example:

-F (field) Changes the general appearance and label information of all To change the display and label
function boxes in the function call tree except for that of the information of the function boxes for
specified function(s) and its descendants. In addition, the number all functions except the functions foo
of entries in the Call Graph Profile report for the non-specified and bar and their descendants, and
and non-descendant functions is limited, and the CPU data limit their types of entries and data in
associated with them is changed. The -F flag overrides the -E the Call Graph Profile, type foo and
flag. bar in the Include Routines (-F) field.
In the function call tree, all function boxes except for that of the You specify multiple functions by
specified function(s) and its descendant(s) appear greyed-out. separating each one with a space.
The size and shape of these boxes changes so that they appear
as squares of the smallest allowable size. In addition, the CPU
time shown in the function box label, appears as 0 (zero).

In the Call Graph Profile report, an entry for a non-specified or
non-descendant function only appears where it is a parent or
child of a specified function or one of its descendants. When this
is the case, the time in the self and descendants columns for this
entry is set to 0 (zero). As a result, be aware that the value listed
in the % time column for most profiled functions in this report will
change.

-L (field) Sets the alternate pathname for locating shared objects. If you Type the alternate library pathname in
plan to specify multiple paths, use the Set File Search Path this field.
option of the File menu on the Xprofiler GUI. See “Setting the File
Search Sequence” on page 14 for information.

Once you have specified the binary executable, the profile data file, and any

command line options you wish to use, press the OK button to save the changes

and close the dialog window. Xprofiler loads your application and displays its
performance data.

Setting the File Search Sequence

You can specify where you want Xprofiler to look for your library files and source
code files by using the Set File Search Paths option of the File menu. By default,
Xprofiler searches the default paths first and then any alternative paths you specify.

Default Paths

For library files, Xprofiler uses the paths recorded in the specified gmon.out file(s).
If you use the -L command line option, the path you specify with this option will be
used instead of those in the gmon.out file.

Note: -L allows only one path to be specified and you can use this option only
once.

For source code files, the paths recorded in the specified a.out file are used.

Alternative Paths
These are the paths you specify with the Set File Search Paths option of the File
menu.

For library files, if everything else failed, the search will be extended to the path(s)
specified in the LIBPATH environment variable.
To specify alternative path(s), do the following:

e Select the File menu, and then the Set File Search Paths option. The Alt File
Search Path Dialog window appears.

14 I1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

e Enter the name of the path in the Enter Alt File Search Path(s) text field. You
can specify more than one path by separating each with colon (:) or a space.

Notes:

1. You can use the “at” symbol (@) with this option to represent the default
file path, in order to specify that other paths be searched before the default
path. For example, to set the alternative file search path(s) so that Xprofiler
searches pathA, the default path, then pathB, type pathA:@:pathB in the Alt
File Search Path(s) (-a) field.

2. If @ is used in the alternative search path, the two buttons in the Alt File
Search Path Dialog will be greyed out, and have no effect on the search
order.

e Click on the OK button. The paths you specified in the text field become the
alternative paths.

Changing the Search Sequence: You can change the order of the search
sequence for library files and source code files via the Set File Search Paths option
of the File menu. To change the search sequence, do the following:

1. Select the File menu, and then the Set File Search Paths option. The Alt File
Search Path Dialog window appears.

2. To indicate the file search should use alternative paths first, click on the Check
alternative path(s) first button.

3. Click on the OK button. This changes the search sequence to the:
a. Alternative paths
b. Default paths
c. Path(s) specified in LIBPATH (library files only)
To return the search sequence back to its default order, repeat steps 1 through 3,
but in step 2 above, click on the Check default path(s) first button. When the action

is confirmed (by clicking on the OK button), the search sequence will start with the
default paths again.

Keep in mind that if a file is found in one of the alternative paths or a path in
LIBPATH, this path now becomes the default path for this file throughout the
current Xprofiler session (until you exit this Xprofiler session or load a new set of
data).

Understanding the Xprofiler Display

The primary difference between Xprofiler and the UNIX gprof command is that
Xprofiler gives you a graphical picture of your application's CPU consumption in
addition to textual data. This allows you to focus quickly on the areas of your
application that consume a disproportionate amount of CPU.

Xprofiler displays your profiled program in a single main window. It uses several
types of graphic images to represent the relevant parts of your program. Functions
appear as solid green boxes (called function boxes), and the calls between them
appear as blue arrows (called call arcs). The function boxes and call arcs that
belong to each library within your application appear within a fenced-in area called

Chapter 1. Profiling Parallel Programs with Xprofiler 15

a cluster box. The way that functions, calls, and library clusters are depicted is
discussed later.

The Xprofiler Main Window

The Xprofiler main window contains a graphical representation of the functions and
calls within your application as well as their inter-relationships. It provides six
menus, including one for online help.

The Xprofiler main window looks similar to this when an application has been
loaded:

[—| Xproliker vid - EW FOWER Paraliel System

Film i K1 ltaw K. IHA by Tmlp I

ShumieSHang jefDesudCrhellu

Alib/pcudiled libic. aoahe.u

] |

]_I‘-wfmn; bl in et 1 I Il=aes; B 12 meceowds Cainmavyr ol 1 oeremn ok gosnl™ Te 191 Dss)
I D lay Btatns; shoatiys D okl (D wedems avd 2 ook At L v

Figure 6. Sample Xprofiler Main Window

In the main window, Xprofiler displays the function call tree. The function call tree
displays the function boxes, arcs, and cluster boxes that represent the functions
within your application.

Note: When Xprofiler first opens, by default, the function boxes for your
application will be clustered by library, as in the example above. This
means that a cluster box appears around each library, and the function
boxes and arcs within the cluster box are reduced in size. If you wish to see
more detail, you need to uncluster the functions. To do this, select the File
menu and then the Uncluster Functions option.

16 I1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Xprofiler Main Menus

Along the upper portion of the main window is the menu bar. The left side of the
menu bar contains the Xprofiler menus that let you work with your profiled data. On
the right side of the menu bar, there is a Help menu for accessing online help.

The Xprofiler menus are described below:

File Menu: The File menu lets you specify the executable (a.out) files and profile
data (gmon.out) files that Xprofiler will use. It also lets you control how your files
are accessed and saved.

View Menu: The View menu lets you focus on specific portions of the function call
tree in order to get a better view of the application's critical areas.

Filter Menu: The Filter menu lets you add, remove, and change specific parts of
the function call tree. By controlling what Xprofiler displays, you can focus on the
objects that are most important to you.

Report Menu: The Report menu provides several types of profiled data in a
textual and tabular format. In addition to presenting the profiled data, the options of
the Report menu let you:

e Display textual data
e Save it to a file
* View the corresponding source code

e Locate the corresponding function box or call arc in the function call tree.

Utility Menu: The Utility menu contains one option; Locate Function By Name,
which lets you highlight a particular function in the function call tree.

Xprofiler Hidden Menus

Function Menu: The Function menu lets you perform a number of operations for
any of the functions shown in the function call tree. You can access statistical data,
look at source code, and control which functions get displayed.

The Function menu is not visible from the Xprofiler window. You access it by
clicking on the function box of the function in which you are interested with your
right mouse button. By doing this, you not only bring up the Function menu, but you
select this function as well. Then, when you select actions from the Function menu,
they are applied to this function.

Arc Menu: The Arc menu lets you locate the caller and callee functions for a
particular call arc. A call arc is the representation of a call between two functions
within the function call tree.

The Arc menu is not visible from the Xprofiler window. You access it by clicking on
the call arc in which you are interested with your right mouse button. By doing this,
you not only bring up the Arc menu, but you select that call arc as well. Then, when
you perform actions with the Arc menu, they are applied to that call arc.

Cluster Node Menu: The Cluster Node menu lets you control the way your
libraries are displayed by Xprofiler. In order to access the Cluster Node Menu, the
function boxes, in the function call tree, must first be clustered by library. See
“Clustering Libraries Together” on page 36 for information about clustering and

Chapter 1. Profiling Parallel Programs with Xprofiler 17

18

unclustering the function boxes of your application. When the function call tree is
clustered, all the function boxes within each library appear within a cluster box.

The Cluster Node menu is not visible from the Xprofiler window. You access it by
clicking on the edge of the cluster box in which you are interested with your right
mouse button. By doing this, you not only bring up the Cluster Node menu, but you
select that cluster as well. Then, when you perform actions with the Cluster Node
menu, they are applied to the functions within that library cluster.

Display Status Field
At the bottom of the Xprofiler window is a single field that tells you:

e The name of your application
e The number of gmon.out files used in this session.
¢ The total amount of CPU used by the application.

e The number of functions and calls in your application, and how many of these
are currently displayed

How Functions are Depicted

Functions are represented by green, solid-filled boxes in the function call tree. The
size and shape of each function box indicates its CPU usage. The height of each
function box represents the amount of CPU time it spent on executing itself. The
width of each function box represents the amount of CPU time it spent executing
itself, plus its descendant functions.

This type of representation is known as summary mode. In summary mode, the
size and shape of each function box is determined by the total CPU time of multiple
gmon.out files used on that function alone, and the total time used by the function
and its descendant functions. A function box that is wide and flat represents a
function that uses a relatively small amount of CPU on itself (it spends most of its
time on its descendants). On the other hand, the function box for a function that
spends most of its time executing only itself will be roughly square-shaped.

Functions can also be represented in average mode. In average mode, the size
and shape of each function box is determined by the average CPU time used on
that function alone, among all loaded gmon.out files, and the standard deviation of
CPU time for that function among all loaded gmon.out files. The height of each
function node represents the average CPU time, among all the input gmon.out files,
used on the function itself. The width of each node represents the standard
deviation of CPU time, among the gmon.out files, used on the function itself. The
average mode representation is available only when more than one gmon.out file is
entered. For more information on summary mode and average mode, see
“Controlling the Representation of the Function Call Tree” on page 29.

Under each function box in the function call tree is a label that contains the name
of the function and related CPU usage data. For information on the function box
labels, see “Getting Basic Data” on page 41.

The example below shows the function boxes for two functions, subl and printf, as
they would appear in the Xprofiler display.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

 suby Vi 0 130 ey

Figure 7. Example of Function Boxes and Arcs in Xprofiler Display

Each function box has its own menu. To access it, place your mouse cursor over
the function box of the function in which you are interested, and press the right
mouse button. Each function also has an information box that lets you get basic
performance numbers quickly. To access the information box, place your mouse
cursor over the function box of the function in which you are interested, and press
the left mouse button.

How Calls Between Functions are Depicted

The calls made between each of the functions in the function call tree are
represented by blue arrows extending between their corresponding function boxes.
These lines are called call arcs. Each call arc appears as a solid blue line between
two functions. The arrowhead indicates the direction of the call; the function
represented by the function box it points to is the one that receives the call. The

Chapter 1. Profiling Parallel Programs with Xprofiler 19

function making the call is known as the caller, while the function receiving the call
is known as the callee.

Each call arc includes a numerical label that tells you how many calls were
exchanged between the two corresponding functions.

Figure 7 on page 19, above, shows several call arcs. For the call arc that connects
subl and printf, subl is the caller and printfis the callee. The label tells you that
subl called printf four times.

Note that each call arc has its own menu that lets you locate the function boxes for
its caller and callee functions. To access it, place your mouse cursor over the call
arc for the call in which you are interested, and press the right mouse button. Each
call arc also has an information box that shows you the number of times the caller
function called the callee function. To access the information box, place your
mouse cursor over the call arc for the call in which you are interested, and press
the left mouse button.

How Library Clusters are Depicted

Xprofiler lets you collect the function boxes and call arcs that belong to each of
your shared libraries into cluster boxes. Figure 6 on page 16 shows an example of
an Xprofiler display in which the libraries are clustered.

Since there will be a box around each library, the individual function boxes and call
arcs will be difficult to see. If you want to see more detail, you will need to uncluster
the function boxes. To do this, select the Filter menu and then the Uncluster
Functions option.

When viewing function boxes within a cluster box, note that the size of each
function box is relative to those of the other functions within the same library
cluster. On the other hand, when all the libraries are unclustered, the size of each
function box is relative to all the functions in the application (as shown in the
function call tree).

Each library cluster has its own menu that lets you manipulate the cluster box. To
access it, place your mouse cursor over the edge of the cluster box you are
interested in, and press the right mouse button. Each cluster also has an
information box that shows you the name of the library and the total CPU usage (in
seconds) consumed by the functions within it. To access the information box, place
your mouse cursor over the edge of the cluster box you are interested in and press
the left mouse button.

Using the Xprofiler Graphical User Interface

20

The Xprofiler graphical user interface (GUI) contains features and buttons that are
common throughout the interface. This section explains how to use some of these
common elements.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Using the Dialog Window Buttons

The buttons that appear on the Xprofiler dialog windows are explained below:

OK
Saves the changes, executes the action, and closes the dialog window.

Apply

Saves the changes, executes the action, but leaves the dialog window open.

Reset
Restores the fields of the dialog window to their original values (at the time you
opened it), and keeps the dialog window open.

Cancel
Ignores changes and closes the dialog window.

Help
Brings up the Xprofiler online help.

Filter
Executes filtering criteria provided by you in the dialog window.

Using the Search Engine

Some of the Xprofiler windows that are accessible via the Report and Function
menus provide a Search Engine field that lets you search for a specific string. In
the Search Engine field, which is located at the bottom of these windows, you type
the string in which you are interested. The first row that contains the string you
specified is highlighted.

To use the Search Engine to search for a string:

1. Click on the Search Engine field with the left mouse button. The Search
Engine field highlights to show that it is selected.

2. Type the string you are looking for in the Search Engine field.

Extended regular expressions are allowed. For more information, see the
explanation of the regcmp and regcomp commands in AlX Technical
Reference, Volume 2: Base Operating System and Extensions (SC23-2615).

3. Press the <Enter > key. The first row, in the Report or Source Code window,
that contains the string you specified is highlighted. Each time you press the
<Enter > key, a subsequent occurrence of the string in highlighted. The Search
wraps back to the first occurrence after all other occurrences have been
highlighted.

Using the Save Dialog Windows
A Save dialog window appears when you choose the Save As option from any of
the Xprofiler reports windows or from the File Menu. It allows you to save the data
you see, in the report window that is currently open, to a file.

Note: If you choose the Save As option from one of the reports windows, the title
of the dialog window included the name of the report (for example Save Flat
Profile).

Chapter 1. Profiling Parallel Programs with Xprofiler 21

To save the current report data to a file using the Save dialog window:

1. Specify the file into which the data should be placed. You can specify either an
existing file or a new one. If you specify and existing file, be aware that
Xprofiler replaces the file altogether (instead of appending to the existing data).
To replace an existing file, use the scroll bars of the Directories and the Files
selection boxes to locate the file you want. To make locating your file easier,
you can also use the Filter button (see “Using the Dialog Window Filters” for
more information). To specify a new file, type its name in the Selection field.

2. Click on the OK button. A file containing the profiled window data appears in
the directory you specified, under the name you gave it.

Using the Dialog Window Filters

Many of the Xprofiler dialog windows include a Filter button. The use of the
Xprofiler Filter function follows the Motif standard. To use the Filter:

1. In the Filter field, specify the directory that contains the files that you wish to
see in the Files selection box. You may specify an asterisk (*) as a wildcard.

2. Click on the Filter button with the left mouse button. The list of files in the Files
selection box is updated to reflect your selection.

Using the Radio/Toggle Buttons and Sliders

22

Many of the dialog windows include buttons and sliders that allow you to select
options and specify values.

Using the Buttons

Aside from push-buttons, the Xprofiler dialog windows also use radio buttons and
toggle buttons. Radio buttons let you select one item from a set of items, while
toggle buttons let you activate or de-activate a single item.

In the example below, the Screen Dump Options Dialog window uses both radio
buttons and toggle buttons. For instance, under Output To, there are two radio
buttons; File and Printer . You must select one or the other, but you cannot select
both. Just above the Default Directory field, notice two toggle buttons; Enable
Landscape and Annotate Output . By using the toggle buttons, you can activate
either one or both of these options.

To select (or activate) an option with a radio or toggle button, set the button to the
pressed-in position by by clicking on it. When a button is pressed-in, it appears
shaded. Under Output To, in the example below, File is selected and Printer is not.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

—|Screen Dump Oplions Diallt:g

Output To:

“ File + Printer
Postscript Output:

4 GreyShades < Color
Numher Of Grey Bhades:
v2 w4 16

Delay Before Grah:

1
| Enable Landscape
| Annotate Output

Default File Name:

fXprofiler screenlump.ps, U

Print Command:

G o s ws o Pag

oK Cancel Help

Figure 8. Example Showing Radio Buttons, Toggle Buttons, and Slider

Using the Sliders

Several of the Xprofiler dialog windows include sliders that let you specify a
numerical value. In the example above, the Delay Before Grab slider lets you
specify the number of seconds you want to pass before the screen image is
actually captured.

Place your mouse cursor over the slider. Press and hold the left mouse button
while moving the slider horizontally in either direction. The number above the slider
changes as you move it, and indicates the number selected. Once the slider is at
the setting you want, release the mouse button.

If the number of selectable values on the slider is high, you may want to have finer

control over the placement of the slider. If so, click on the slider and then use the
arrow keys on your keyboard to place it.

Chapter 1. Profiling Parallel Programs with Xprofiler 23

Manipulating the Function Call Tree

Xprofiler lets you look at your profiled data a number of ways, depending on what
you want to see. It provides:

» Navigation that lets you move around the display and zoom in on specific areas
¢ Display options, based on your personal viewing preferences.

» Filtering capability, to let you include and exclude certain objects from the
display

Zooming In on the Function Call Tree

Xprofiler lets you magnify specific areas of the window to get a better view of your
profiled data. The View menu includes three options that let you do this:

e Overview

e Zoom In

e Zoom Out
To resize a specific area of the display, you can use either the Overview or Zoom
In options of the View menu. To magnify an area with the Overview option:

1. Select the View menu, and then the Overview option. The Overview Window
appears, as in the example below.

File Utility Help

Figure 9. The Overview Window

The Overview Window contains a miniature view of the function call tree, just as it
appears in the Xprofiler main display. When you open the Overview Window, the
light blue highlight area represents the current view of the main window.

You control the size and placement of the highlight area with your mouse.
Depending on where you place your mouse over the highlight area, your cursor
changes to indicate the operation you can perform. Here is an explanation of the
cursor images, and what they indicate to you:

When your cursor appears as two crossed arrows, it means that by pressing and
holding your mouse button, you can control where the box is placed.

24 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Figure 10. Cursor when movement of highlight box is under mouse control

When your cursor appears as a line with an arrow perpendicular to it, it means that
your mouse button has grabbed the edge of the highlight area, and you now have
the ability to resize it. By pressing and holding your mouse button, and dragging it
in or out, you can increase or decrease the size of the box. Notice that as you
move the edge in or out, the size of the entire highlight area changes.

)

Figure 11. Cursor when edge of highlight box is under mouse control

When your cursor appears as a right angle with an arrow pointing into it, it means
that your mouse button has grabbed the corner of the highlight area and you now
have the ability to resize it. By pressing and holding your mouse button, and
dragging it diagonally up or down, you can increase or decrease the size of the
box. Notice that as you move the corner up or down, the size of the entire highlight
area changes.

[

Figure 12. Cursor when corner of highlight box is under mouse control

3. Place your mouse cursor within the light blue highlight area. Notice that the
cursor changes to four crossed arrows. This indicates that your cursor has
control over the placement of the box.

Chapter 1. Profiling Parallel Programs with Xprofiler 25

26

4. Move your cursor over one of the four corners of the highlight area. Notice
that the cursor changes to a right angle with an arrow pointing into it. This
indicates that you now have control over the corner of the highlight area.

5. Press and hold the left mouse button, and drag the corner of the box
diagonally inward. The box shrinks as you move it. The example below shows
the highlight area reduced in size, with only a few function boxes visible within
it.

File Utility Help

Figure 13. Highlight Area Reduced in Size

6. When the highlight area is as small as you would like it (or the smallest
allowable size), release the mouse button. The Xprofiler main display redraws
itself to contain only the functions within the highlight area, and in the same
proportions. This has the effect of magnifying the items within the highlight
area.

7. Place your mouse cursor over the highlight area. Your cursor again changes
to four crossed arrows to indicate that you have control over the placement of
the highlight area. Press and hold the left mouse button and drag the highlight
area to the area of the Xprofiler display you want to magnify.

8. Release the mouse button. The Xprofiler main display now contains the
items in which you are interested.

The example below shows the Xprofiler main display with the area, indicated by the
highlight area in Figure 13, magnified. Note that the performance data, on the label
of each function box, is now visible.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Xproliker v1.1 - BH POAYER Paralkel System

Film i K1 ltaw K. THA by AN I
[)
[
(]
[
'
1
1
'
N 1
Doadd | o LA L
rEuz- k| [ik R T
L
Ll [T T
=y knp [0 TR A EE N |
JRCIRC T
Pzl osizitw L B
o
I =
I]_I‘-wfmn; LSRG Frda | S0 Il=agm; B 1Y smcevels Caimmavyr nlt 1 e aocke ovn ' 1a 19 Tmsd
I Do lay Btatns; choadvs U5 cark Al U wedee avd L ok Al L v

Figure 14. Magnified View of Xprofiler Display

To use the Zoom In option of the View menu to magnify a specific area of the
function call tree:

1. Select the View menu, and then the Zoom In option. Once you select the
Zoom In option, your cursor changes to a hand to indicate that your selection is
active.

2. Place the mouse cursor in the upper left hand corner of the area you would like
to view more closely. Press and hold the left mouse button while dragging it
diagonally downward, until the rubber band box surrounds the area you want to
view.

3. Release the mouse button. Xprofiler redraws the display so that the area of the
function call tree you selected is centered and sized proportionately, according
to the size of the rubber band box you drew.

To get an even closer view of the area you selected, choose the Zoom In option
again and follow the steps above.

There may be times when you are looking at the function call tree too closely. The
Zoom Out option lets you widen the view of the function call tree, as if you were
taking a few steps back from a painting on a wall.

The Zoom Out option is most useful after using the Zoom In or Overview options to
magnify an area of the function call tree. By default, the Xprofiler main window is
completely zoomed out (it shows you the entire function call tree). The Zoom Out
option helps you return the main window to this state.

Chapter 1. Profiling Parallel Programs with Xprofiler 27

To zoom out:

1. Select the View menu, and then the Zoom Out option. Once you select the
Zoom Out option, your cursor changes to a hand to indicate that your selection
is active.

2. Place the mouse cursor in the upper left hand corner of the area you want to
view. Press and hold the left mouse button while dragging it diagonally
downward, until the rubberband box surrounds the area you want to widen.

3. Release the mouse button. Xprofiler redraws the display so that the area of the
function call tree you selected is centered and sized proportionately according
to the size of the rubber band box that you drew.

To further step back from the area you selected, choose the Zoom Out option
again, and follow the steps above.

Controlling How the Display is Updated

The Utility menu of the Overview window lets you choose the mode in which the
display is updated. The default is the Immediate Update option, which causes the
display to show you the items in the highlight area as you are moving it around.
The Delayed Update option, on the other hand, causes the display to be updated
only when you have moved the highlight area over the area in which you are
interested, and released the mouse button. The Immediate Update option only
applies to what you see when you move the highlight area; it has no effect on the
resizing of items in highlight area, which is always delayed.

Other Viewing Options

28

Xprofiler lets you change the way it displays the function call tree, based on your
own personal preferences.

Controlling the Graphic Style of the Function Call Tree
You can choose between 2-D and 3-D function boxes in the function call tree. The
default style is 2-D, but you can change this to 3-D. To do this:

1. Select the View menu, and then the 3-D Image option. The function boxes in
the function call tree now appear in 3-D format.

Controlling the Orientation of the Function Call Tree

You can choose to have Xprofiler display the function call tree in either
Top-to-Bottom or Left-to-Right format. The default is Top-to-Bottom. If you would
rather see the function call tree displayed in Left-to-Right format:

1. Select the View menu, and then the Layout: Left—Right option. The function
call tree appears in Left-to-Right format.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Xproliker v1.1 - BH POAYER Paralkel System

Film i K1 ltaw K. THA by AN I

TN N HHEREH HESTIEEH] FTHIHEH]

I]_I‘-wfmn; LSRG Frda | S0 Il=aem; B 1Y smcevels Caimmavyr nl 1 e aocke oen ' 1 19 Tmsd
I Do lay Btatns; choadvys S) crk Al 05 wedee avd D1 ok Al L e

Figure 15. Left-to-Right Format

Controlling the Representation of the Function Call Tree
You can choose to have Xprofiler represent the function call tree in either summary
mode or average mode.

When you select the Summary Mode option of the View menu, the size and shape
of each function box is determined by the total CPU time of multiple gmon.out files
used on that function alone, and the total time used by the function and its
descendant functions. The height of each function node represents the total CPU
time used on the function itself. The width of each node represents the total CPU
time used on the function and its descendant functions. When the display is in
summary mode, the Summary Mode option is greyed out and the Average Mode
option is activated.

When you select the Average Mode option of the View menu, the size and shape
of each function box is determined by the average CPU time used on that function
alone, among all loaded gmon.out files, and the standard deviation of CPU time for
that function among all loaded gmon.out files. The height of each function node
represents the average CPU time, among all the input gmon.out files, used on the
function itself. The width of each node represents the standard deviation of CPU
time, among the gmon.out files, used on the function itself.

The purpose of average mode is to reveal workload balancing problems when an
application is involved with multiple gmon.out files. In general, a function node with

Chapter 1. Profiling Parallel Programs with Xprofiler 29

large standard deviation has a wide width, and a node with small stadard deviation
has a slim width.

Note: Both summary mode and average mode only affect the appearance of the
function call tree and the labels associated with it. All the performance data
in Xprofiler reports and code displays are always summary data. If only one
gmon.out file is given, both Summary Mode and Average Mode will be
greyed out, and the display is always in Summary Mode.

Filtering What You See

When Xprofiler first opens, the entire function call tree appears in the main window.
This includes the function boxes and call arcs that belong to your executable as
well as the shared libraries that it utilizes. At times, you may want to simplify what
you see in the main window, and there are a number of ways to do this.

Note: Filtering options of the Filter menu let you change the appearance of the
function call tree only. The performance data contained in the reports (via
the Reports menu) is not affected.

Restoring the Status of the Function Call Tree

Xprofiler allows you to undo operations that involve adding or removing nodes and
arcs from the function call tree. When you undo an operation, you reverse the
effect of any operation which adds or removes function boxes or call arcs to the
function call tree. When you select the Undo option, the function call tree is
returned to its appearance just prior to the performance of the add or remove
operation. To undo an operation:

1. Select the Filter menu, and then the Undo option. The function call tree is
returned to its appearance just prior to the performance of the add or remove
operation.

Whenever you invoke the Undo option, the function call tree loses its zoom focus
and zooms all the way out to reveal the entire function call tree in the main display.
When you start Xprofiler, the Undo option is greyed out. It is activated only after an
add or remove operation involving the function call tree takes place. After you undo
an operation, the option greys out again until the next add or remove operation
takes place.
The options that activate the Undo option include:

e In the main File menu:

e Load Configuration

e In the main Filter menu:

e Show Entire Call Tree

e Hide All Library Calls

e Add Library Calls

e Filter by Function Names

e Filter by CPU Time

 Filter by Call Counts

* In the Function menu:

¢ Immediate Parents

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

e All Paths To

e Immediate Children

e All Paths From

e All Functions on The Cycle
e Show This Function Only

e Hide This Function

* Hide Descendant Functions

¢ Hide This & Descendant Functions

If a dialog, like the Load Configuration Dialog or the Filter by CPU Time Dialog, is
invoked and then cancelled immediately, the status of the Undo option is not
affected. Once the option is available, it stays that way until you invoke it, or a new
set of files is loaded into Xprofiler through the Load Files Dialog.

Displaying the Entire Function Call Tree

When you first open Xprofiler, by default, all the function boxes and call arcs of
your executable and its shared libraries appear in the main window. After that, you
may choose to filter out specific items from the window. However, there may be
times when you want to see the entire function call tree again, without having to
reload your application. To do this:

1. Select the Filter menu, and then the Show Entire Call Tree option. Xprofiler
erases whatever is currently displayed in the main window and replaces it with
the entire function call tree.

Excluding and Including Specific Objects

There are a number of ways that Xprofiler lets you control the items that get
displayed in the main window. For the most part, you will want to include or exclude
certain objects so that you can more easily focus on the things that are of most
interest to you.

Filtering Shared Library Functions: In most cases, your application will call
functions that are within shared libraries. By default, these shared libraries will
appear in the Xprofiler window along with your executable. As a result, the window
may get crowded and obscure the items that you really want to see. If this is the
case, you may want to filter the shared libraries from the display. To do this:

1. Select the Filter menu, and then the Remove All Library Calls option.

The shared library function boxes disappear from the function call tree, leaving only
the function boxes of your executable file visible.

If you removed the library calls from the display, you may want to add all or some
of them back. To do this:

1. Select the File menu, and then the Add Library Calls option

The function boxes once again appear with the function call tree. Note, however,
that all of the shared library calls that were in the initial function call tree may not
be added back. This is because the Add Library Calls option only adds back in the
function boxes for the library functions that were called by functions that are
currently displayed in the Xprofiler window.

Chapter 1. Profiling Parallel Programs with Xprofiler 31

There may be times when you want to add only specific function boxes back into
the display. To do this:

1. Select the Filter menu, and then the Filter by Function Names option. The Filter
By Function Names Dialog window appears.

2. From the Filter By Function Names Dialog window, select the add these
functions to graph button, and then type the name of the function you want to
add in the Enter function name field. If you enter more than one function name,
you must separate them by putting a blank space between each function name
string.

If there are multiple functions in your program that include the string you enter
in their names, the filter applies to each one. For example, say you specified
sub, and print, and your program also included functions named subl, psubl
and printf. The sub, subl, psubl, print, and printf functions would all be added
to the graph.

3. Click on the OK button. The function box(es) appears in the Xprofiler display
with the function call tree.

Filtering by Function Characteristics: The Filter menu of Xprofiler offers you
three options that allow you to add or subtract function boxes from the main
window, based on specific characteristics. The options are:

e Filter by Function Names

e Filter by CPU Time

» Filter by Call Counts
Each one of these options uses a different dialog window to let you specify the
criteria by which you want to include or exclude function boxes from the window.
To filter by function names:

1. Select the Filter menu.
2. Select the Filter by Function Names option. The Filter By Function Names
Dialog window appears.

— Filter By Function Names Dialog

4+ add these functions to graph
+ renove these functions from graph

o+ dizplay only these functions

Enter function name: (regular expressions supported)

I

OK | Applyl Cam::ell Help |

Figure 16. Filter By Function Names Dialog window

32 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

3. The Filter By Function Names Dialog window includes three options:
e add these functions to graph
e remove these functions from the graph

 display only these functions

From the Filter By Function Names Dialog window, select the option you want,
and then type the name of the function(s) to which you want it applied in the
Enter function name field. For example, say you wanted to remove function box
for a function called printf, from the main window. You would click on the
remove this function from the graph button and type printf in the Enter function
name field.

You can enter more than one function name in this field. If there are multiple
functions in your program that include the string you enter in their names, the
filter will apply to each one. For example, say you specified sub and print, and
your program also included functions named subl, psubl, and printf. The
option you chose would be applied to the sub, subl, psubl, print, and printf
functions.

4. Click on the OK button. The contents of the function call tree now reflect the
filtering options you specified.

To filter by CPU time:

1. Select the Filter menu.
2. Select the Filter by CPU Time option. The Filter By CPU Time Dialog window
appears.

Filter By CPU Time Dialog

Number Of Functions To Be Displayed:

1
[-

SHlider Yalue:]I

4 gshow functions consuming the most CPU time

+w ghow functions consuning the least CPU time

0K | prl}rl Cancell Help |

Figure 17. Filter By CPU Time Dialog window

3. The Filter By CPU Time Dialog window includes two options:
e show functions consuming the most CPU time

e show functions consuming the least CPU time

Chapter 1. Profiling Parallel Programs with Xprofiler 33

34

4. Click on the button for the option you want (show functions consuming the
most CPU time is the default).

5. Select the number of functions to which you want it applied (1 is the default).
You can move the slider in the Functions bar until the desired number appears,
or you can enter the number in the Slider Value field. The slider and Slider
Value field are synchronized so when the slider is updated, the text field value
is updated also. If you enter a value in the text field, the slider is updated to
that value when you click on the Apply button or the OK button.

For example, if you wanted to display the function boxes for the 10 functions in
your application that consumed the most CPU, you would select the show
functions consuming the most CPU button, and specify 10 with the slider or
enter the value 10 in the text field.

6. Click on the Apply button to show the changes to the function call tree
without closing the dialog. Click on the OK button to show the changes and
close the dialog.

To filter by call counts:

1. Select the Filter menu.
2. Select the Filter by Call Counts option. The Filter By Call Counts Dialog
window appears.

Filter By Call Counis Dialog

Number Of Call Arcs To Be Displayed:

1
-

Slider Yalue:]I

“ zhow arcs with the mozt call counts

s+ zhow arcz with the least call count=s

OK | Apply Cancel

Figure 18. Filter By Call Counts Dialog window

3. The Filter By Call Counts Dialog window includes two options:
e show arcs with the most call counts
e show arcs with the least call counts

4. Click on the button for the option you want (show arcs with the most call
counts is the default).

5. Select the number of call arcs to which you want it applied (1 is the default).
You can move the slider in the Call Arcs bar until the desired number appears,
or you can enter the number in the Slider Value field. The slider and Slider
Value field are synchronized so when the slider is updated, the text field value

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

is updated also. If you enter a value in the text field, the slider is updated to
that value when you click on the Apply button or the OK button.

For example, if you wanted to display the 10 call arcs in your application that
represented the least number of calls, you would select the show arcs with the
least call counts button, and specify 10 with the slider or enter the value 10 in
the text field.

6. Click on the Apply button to show the changes to the function call tree
without closing the dialog. Click on the OK button to show the changes and
close the dialog.

Including and Excluding Parent and Child Functions: When tuning the
performance of your application, you will want to know which functions consumed
the most CPU time, and then you will need to ask several questions in order to
understand their behavior:

e Where did each function spend most of the CPU time?

e What other functions called this function? Were the calls made directly or
indirectly?

* What other functions did this function call? Were the calls made directly or
indirectly?

Once you understand how these functions behave, and are able to improve their
performance, you can move on to analyzing the functions that consume less CPU.

When your application is large, the function call tree will also be large. As a result,
the functions that are the most CPU-intensive may be difficult to see in the function
call tree. To get around this, use the Filter by CPU option of the Filter menu, which
lets you display only the function boxes for the functions that consume the most
CPU time. Once you've done this, the Function menu for each function lets you add
the parent and descendant function boxes to the function call tree. By doing this,
you create a smaller, simpler function call tree that displays the function boxes
associated with most CPU-intensive area of the application.

A child function is one that is directly called by the function of interest. To see only
the function boxes for the function of interest and its child functions:

1. Place your mouse cursor over the function box in which you are interested, and
press the right mouse button. The Function menu appears.

2. From the Function menu, select the Immediate Children option, and then the
Show Child Functions Only option.

Xprofiler erases the current display and replaces it with only the function boxes
for the function you chose, plus its child functions.
A parent function is one that directly calls the function of interest. To see only the
function box for the function of interest and its parent functions:

1. Place your mouse cursor over the function box in which you are interested, and
press the right mouse button. The Function menu appears.

2. From the Function menu, select the Immediate Parents option, and then the
Show Parent Functions Only option.

Xprofiler erases the current display and replaces it with only the function boxes
for the function you chose, plus its parent functions.

Chapter 1. Profiling Parallel Programs with Xprofiler 35

There may be times when you may want to see the function boxes for both the
parent and child functions of the function in which you are interested, without
erasing the rest of the function call tree. This is especially true if you chose to
display the function boxes for two or more of the most CPU-intensive functions with
the Filter by CPU option of the Filter menu (you suspect that more than one
function is consuming too much CPU). To do this:

1. Place your mouse cursor over the function box in which you are interested, and
press the right mouse button. The Function menu appears.

2. From the Function menu, select the Immediate Parents option, and then the
Add Parent Functions to Tree option.

Xprofiler leaves the current display as it is, but adds the parent function boxes.

3. Place your mouse cursor over the same function box and press the right
mouse button. The Function menu appears.

4. From the Function menu, select the Immediate Children option, and then the
Add Child Functions to Tree option.

Xprofiler leaves the current display as it is, but now adds the child function
boxes in addition to the parents.

Clustering Libraries Together

36

When you first bring up the Xprofiler window, by default, the function boxes of your
executable, and the libraries associated with it, are clustered. Since Xprofiler
shrinks the call tree of each library when it places it in a cluster, you will need to
uncluster the function boxes if you want to look closely at a specific function box
label.

It is important to understand that you can see significantly more detail per function,
when your display is in the unclustered or expanded state, than when it is in the
clustered or collapsed state. So, depending on what you want to do, you will need
to cluster or uncluster (collapse or expand) the display.

There may be times when the Xprofiler window is visually crowded. This is
especially true if your application calls functions that are within shared libraries;
function boxes representing your executable functions as well as the functions of
the shared libraries get displayed. As a result, you may want to organize what you
see in the Xprofiler window so you can focus on the areas that are most important
to you. One way you can do this is to collect all the function boxes of each library
into a single area, known as a library cluster.

When you choose to cluster your libraries, Xprofiler gathers all the functions for
each one into a single area, and draws a green box around them. This is known
as a cluster box. The name of the library also appears below the box.

The function boxes in the application shown in Figure 6 on page 16 have been
clustered. Note that one cluster box holds the function boxes associated with the
executable hello_world, while the other cluster box holds the function boxes of the
shared library /lib/profiled/libc.a:shr.o.

The example below shows the same application, hello_world, with its function
boxes unclustered. Now that the function boxes of your executable and its shared
libraries are displayed together, which means their relationships are more apparent.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

= Xproliler v1.1 - BM FOAYER Paralkel System [- i|

Film i K1 ltaw K. THA by AN

I] =

evwoear; bl e Frda | S0 Il=am; B K mmcevede Canmmavyr nl’ 1 e aocke o' 1 19 Tmsd
M| P lay Bbatas; choudve U1 cok ol U1 wedecs awd 0 cak Alt G0 A

Figure 19. Xprofiler Window with Function Boxes Unclustered

Clustering Functions
If the functions within your application are unclustered, you can use an option of the
Filter menu to cluster them.

1. Select the Filter menu, and then the Cluster Functions by Library option. The
libraries within your application appear within their respective cluster boxes.

Once you cluster the functions in your application, as shown in Figure 6 on
page 16, you can further reduce the size (also referred to as collapse) of each
cluster box. To do this:

1. Place your mouse cursor over the edge of the cluster box and press the right
mouse button. The Cluster Node Menu appears.

2. Select the Collapse Cluster Node option. The cluster box, and its contents, now
appear as a small solid green box. In the example below, the library
/lib/profiled/libc.a:shr.o is collapsed.

Chapter 1. Profiling Parallel Programs with Xprofiler 37

= Xproliler v1.1 - BM FOAYER Paralkel System [- i|

Film i K1 ltaw K. THA by AN

Flbgprnfd Inds 1 he, m-rlin, n

B T =

]_I‘-wfmn; LSRG Frda | S0 Il=am; B K mmcevede Canmmavyr nl’ 1 e aocke o' 1 19 Tmsd
| B lay Batas; choudve U1 cok ol U1 wedms awd 0 ek Alt L0 A

Figure 20. Xprofiler Window with One Library Cluster Box Collapsed

To return the cluster box to its original condition (expand it):

1. Place your mouse cursor over the collapsed cluster box and press the right
mouse button. The Cluster Node Menu appears.

2. Select the Expand Cluster Node option. The cluster box, and its contents,
appear once again.

Unclustering Functions
If the functions within your application are clustered, you can use an option of the
Filter menu to uncluster them.

1. Select the Filter menu, and then the Uncluster Functions option. The cluster
boxes disappear and the functions boxes of each library expand to fill the
Xprofiler window.

If your functions have been clustered, you may want to remove one or more (but
not all) cluster boxes. For example, say you wanted to uncluster only the functions
of your executable, but keep its shared libraries within their cluster boxes. You
would:

1. Place your mouse cursor over the edge of the cluster box that contains the
executable and press the right mouse button. The Cluster Node Menu appears.

2. Select the Remove Cluster Box option. The cluster box disappears and the
function boxes and call arcs, that represent the executable functions,now
appear in full detail. The function boxes and call arcs of the shared libraries

38 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

remain within their cluster boxes, which now appear smaller to make room for
the unclustered executable function boxes.

The example below shows the executable, hello_world with its cluster box removed.
Its shared library, /lib/profiled/libc.a:shr.o, remains within its cluster box.

—] Xpraliker v1.1 - W FOWIER Paralel Gy=em I

Fila BT FA T Empeect. THA Ty Tialg

1] =

ll‘uwﬁun: [AREY Feda | I Tleaps; DR sasmvede Canmmayr alt 1 eren sick poan ™ s 171 Tae)
1 Mg lay Btatas; shndvg: 1 ok Al 1 wewdse aved L0 sk alt (L) avee

Figure 21. Xprofiler Window with One Library Cluster Box Removed

Locating Specific Objects in the Function Call Tree

If you are interested in one or more specific functions in a complex program, you
may need help locating their corresponding function boxes in the function call tree.

If you would like to locate a single function, and you know its name, you can use
the Locate Function By Name option of the Utility menu. To locate a function by
name:

1. Select the Utility menu, and then the Locate Function By Name option. The
Search By Function Name Dialog window appears.

2. Type the name of the function you wish to locate in the Enter Function Name
field. The function name you type here must be a continuous string (it cannot
include blanks).

3. Press the OK or Apply button. The corresponding function box is highlighted
(its color changes to red) in the function call tree and Xprofiler zooms in on its
location.

Chapter 1. Profiling Parallel Programs with Xprofiler 39

40

To display the function call tree in full detail again, go to the View menu and
use the Overview option.

There may also be times when you want to see only the function boxes for the
functions you are concerned with, plus other specific functions that are related to it.
For instance, suppose you want to see all the functions that directly called the
function in which you are interested. It might not be easy to pick out these function
boxes when you view the entire call tree, so you would want to display them, plus
the function of interest, alone.

Each function has its own menu, called a Function menu. Via the Function menu,
you can choose to see the following for the function in which you are interested:

e Parent functions (functions that directly call the function of interest)
e Child functions (functions that are directly called by the function of interest)

¢ Ancestor functions (functions that can call, directly or indirectly, the function of
interest)

e Descendant functions (functions that can be called, directly or indirectly, by the
function of interest)

¢ Functions that belong to the same cycle

When you use these options, Xprofiler erases the current display and replaces it
with only the function boxes for the function of interest and all the functions of the
type you specified.

Locating and Displaying Parent Functions
A parent is any function that directly calls the function in which you are interested.
To locate the parent function boxes of the function in which you are interested:

1. Click on the function box of interest with the right mouse button. The Function
menu appears.

2. From the Function menu, select Immediate Parents—Show Parent Functions
Only. Xprofiler redraws the display to show you only the function boxes for the
function of interest and its parent functions.

Locating and Displaying Child Functions

A child is any function that is directly called by the function in which you are
interested. To locate the child functions boxes for the function in which you are
interested:

1. Click on the function box of interest with the right mouse button. The Function
menu appears.

2. From the Function menu, select Immediate Children— Show Child Functions
Only. Xprofiler redraws the display to show you only the function boxes for the
function of interest and its child functions.

Locating and Displaying Ancestor Functions
An ancestor is any function that can call, directly or indirectly, the function in which
you are interested. To locate the ancestor functions:

1. Click on the function box of interest with the right mouse button. The Function
menu appears.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

2. From the Function menu, select All Paths To— Show Ancestor Functions Only.
Xprofiler redraws the display to show you only the function boxes for the
function of interest and its ancestor functions.

Locating and Displaying Descendant Functions

A descendant is any function that can be called, directly or indirectly, by the
function in which you are interested. To locate the descendant functions (all the
functions that the function of interest can reach, directly or indirectly):

1. Click on the function box of interest with the right mouse button. The Function
menu appears.

2. From the Function menu, select All Paths From— Show Descendant Functions
Only. Xprofiler redraws the display to show you only the function boxes for the
function of interest and its descendant functions.

Locating and Displaying Functions on a Cycle
To locate the functions that are on the same cycle as the function you are
interested in:

1. Click on the function of interest with the right mouse button. The Function menu
appears.

2. From the Function menu, select All Functions on the Cycle—Show Cycle
Functions Only. Xprofiler redraws the display to show you only the function of
interest and all the other functions on its cycle.

Getting Performance Data for Your Application

With Xprofiler, you can get performance data for your application on a number of
levels, and in a number of ways. You can easily view data pertaining to a single
function, or you can use the reports provided to get information on your application
as a whole.

Getting Basic Data

Xprofiler makes it easy to get data on specific items in the function call tree. Once
you've located the item you are interested in, you can get data a number of ways. If
you are having trouble locating a function in the function call tree, see “Locating
Specific Objects in the Function Call Tree” on page 39.

Basic Function Data

Below each function box in the function call tree is a label that contains basic
performance data. The example below shows the function box for the function
main, and it's label.

Chapter 1. Profiling Parallel Programs with Xprofiler 41

42

0.030 x 0.030
.subl <cycle 1> [5]

Figure 22. Example of a Function Box Label

The label contains the name of the function, its associated cycle, if any, and its
index. In the example above, the name of the function is subl. It is associated with
cycle 1, and its index is 5. Also, depending on whether the function call tree is
viewed in summary mode or average mode, the label will contain the information
listed below. See “Controlling the Representation of the Function Call Tree” on
page 29 for more about summary mode and average mode.

e |n summary mode:

¢ The total amount of CPU time (in seconds) this function spent on itself plus the
amount of CPU time it spent on its descendants (the number on the left of the
X). In the example above, the function subl spent .030 seconds on itself, plus
its descendants.

e The amount of CPU time (in seconds) this function spent only on itself (the
number on the right of the x). In the example above, the function subl spent
.030 seconds on itself.

¢ In average mode:

¢ The average CPU time (in seconds), among all the input gmon.out files, used
on the function itself.

¢ The standard deviation of CPU time (in seconds), among all the input gmon.out
files, used on the function itself.

Since labels are not always visible in the Xprofiler window when it is fully zoomed
out, you may need to zoom in on it in order to see the labels. See “Zooming In on
the Function Call Tree” on page 24 for information on how to do this.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Basic Call Data
Call arc labels appear over each call arc. The label shows you the number of calls
that were made between the two functions (from caller to callee). For example:

Figure 23. Example of a call arc label

In order to see a call arc label, you will probably need to zoom in on it. See
“Zooming In on the Function Call Tree” on page 24 for information on how to do
this.

Basic Cluster Data
Cluster box labels tell you the name of the library that is represented by that
cluster. If it is a shared library, the label shows its full pathname.

Information Boxes
For each function box, call arc, and cluster box, there is a corresponding
information box that you can access with your mouse. It gives you the same basic
data that appears on the label. This is useful when the Xprofiler display is fully
zoomed out and the labels are not visible. To access the information box, click on
the function box, call arc, or cluster box (place it over the edge of the box) with the
left mouse button. The information box appears.
For a function, the information box contains:

e The name of the function, its associated cycle, if any, and its index.

¢ The amount of CPU used by this function. There are two values supplied in this
field. The first is the amount of CPU time spent on this function plus the time
spent on its descendants. The second value represents the amount of CPU
time this function spent only on itself.

* The number of times this function was called (by itself or any other function in
the application).

For a call, the information box contains:

— The caller and callee functions (their names) and their corresponding
indexes.

— The number of times the caller function called the callee.
For cluster, the information box contains:
¢ The name of the library

e The total CPU usage (in seconds) consumed by the functions within it.

Chapter 1. Profiling Parallel Programs with Xprofiler 43

Function Menu Statistics Report Option

You can get performance statistics for a single function via the Statistics Report
option of the Function menu. It lets you see data on the CPU usage and call counts
of the selected function. If you are using more than one gmon.out file, this option
breaks down the statistics per each gmon.out file you use.

When you select the Statistics Report menu option, the Function Level Statistics
Report window appears, as in the example below.

=| Function Level Statistics Report [= 1]

File Help |

L

Function Name: main

Summary Data: (summary of 1 gmon.out profile files)
CPU Usage: 0.10 seconds (self+desc) x 0.01 seconds (self)

Call Counts; 1 times (call itself+being called)

Statistics Data: (statistics of 1 gmon.out profile files)

CPU Uzage (=zelf):

Average = 0.0100 seconds
Std Dev = 0.0000 seconds
Haximum = 0.01 seconds in file "gmon.out™
Minimum = 0.01 seconds in file "gmon.out™

Call Counts:
Being Calle

d i
Average = 1.00 times
Std Dev = 0.00 times
Haximum = 1 times in file “gmon,out"
Minimum = 1 times in file "gmon,out”

]]

Search Engine: (regular expressions supported)

Figure 24. Function Level Statistics Report window

The Function Level Statistics Report window provides the following information:

Function Name
The name of the function you selected. In Figure 24, the function name is main.

Summary Data
The total amount of CPU used by this function. If you used multiple gmon.out files,
the value shown here represents their sum.

The CPU Usage field shows you:

¢ The amount of CPU used by this function. There are two values supplied in this
field. The first is the amount of CPU time spent on this function plus the time
spent on its descendants. The second value represents the amount of CPU
time this function spent only on itself.

In Figure 24, CPU usage is listed as 0.10 seconds (self+desc) x 0.10 seconds
(self)
The Call Counts field shows you:

e The number of times this function called itself, plus the number of times it was
called by other functions.

44 |BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

In Figure 24, the value in the Call Counts field is 1 times.

Statistics Data
The CPU usage and calls made to or by this function, broken down by gmon.out
file.

The CPU Usage field shows you:

e Average

The average CPU time used by the data in each gmon.out file. In Figure 24 on
page 44, the Average is listed as 0.0100 seconds.

e Std Dev

Standard deviation. A value that represents the difference in CPU usage
samplings, per function, from one gmon.out file to another. The smaller the
standard deviation, the more balanced the workload. In Figure 24 on page 44,
the Std Dev is listed as 0.0000 seconds.

¢ Maximum

Of all the gmon.out files, the maximum amount of CPU time used. The
corresponding gmon.out file appears to the right. In Figure 24 on page 44, the
Maximum is listed as 0.01 seconds.

e Minimum

Of all the gmon.out files, the minimum amount of CPU time used. The
corresponding gmon.out file appears to the right. In Figure 24 on page 44, the
Minimum is listed as 0.01 seconds.

The Call Counts field shows you:

* Average

The average number of calls made to this function or by this function, per
gmon.out file. In Figure 24 on page 44, the Average is 1.00 times.

e Std Dev

Standard deviation. A value that represents the difference in call count
sampling, per function, from one gmon.out file to another. A small standard
deviation value in this field means that the function was almost always called
the same number of times in each gmon.out file. In Figure 24 on page 44, the
Std Dev is 0.00 times.

e Maximum

The maximum number of calls made to this function or by this function in a
single gmon.out file. The corresponding gmon.out file appears to the right. In
Figure 24 on page 44, the Maximum is 1 times.

e Minimum

The minimum number of calls made to this function or by this function in a
single gmon.out file. The corresponding gmon.out file appears to the right. In
Figure 24 on page 44, the Minimum is 1 times.

Chapter 1. Profiling Parallel Programs with Xprofiler 45

Getting Detailed Data via Reports

46

Xprofiler provides performance data in textual and tabular format. This data is
provided in various tables called reports. If you are a gprof user, you are familiar
with the Flat Profile, Call Graph Profile, and Function Index reports. Xprofiler
generates these same reports, in the same format, plus two others.

You can access the Xprofiler reports from the Report menu. The Report menu lets
you see the following reports:

e Flat Profile

e Call Graph Profile

e Function Index

e Function Call Summary

e Library Statistics

Each report window includes a File menu. Under the File menu is the Save As
option which allows you to save the report to a file. For information on using the
Save File Dialog window to save a report to a file, see “Using the Save Dialog
Windows” on page 21.

Each report window also includes a Search Engine field, which is located at the
bottom of the window. The Search Engine lets you search for a specific string in
the report. For information on using the Search Engine field, see “Using the Search
Engine” on page 21.

Note: If you select the Save As option from the Flat Profile, Function Index, or
Function Call Summary report windows, you must either complete the save
operation or cancel it before you can select any other option from the
menus of these reports. You can, however, use the other menus of Xprofiler
before completing the save operation or canceling it, with the exception of
the Load Files option, of the File menu, which remains greyed out.

Each of the Xprofiler reports are explained below.

Flat Profile Report

When you select the Flat Profile menu option, the Flat Profile window appears. The
Flat Profile report shows you the total execution times and call counts for each
function (including shared library calls) within your application. The entries for the
functions that use the greatest percentage of the total CPU usage appear at the top
of the list, while the remaining functions appear in descending order, based on the
amount of time used.

Unless you specified the -z command line option, the Flat Profile report does not
include functions whose CPU usage is 0 (zero) and have no call counts.

Note that the data presented in the Flat Profile window is the same data that is
generated with the UNIX gprof command.

The Flat Profile report looks similar to this:

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

File Code Display Utility Help |H

cumulative =self =zelf total
Ftime seconds seconds calls msfcall msfcall name

54.5 0.06 0.06 2 30,00 30.00 .subZ <cycle 1> [2] hello_world.c A
27.3 0.0% 0.03 2 15.00 15.00 .subl <cycle 1> [5] hello_world.c

3.1 0.10 0.01 1 10.00 100.00 .main [3] hello_world.c

9.1 0.11 0.01 +_mcount [6] PRV O S SRV RO
0.0 0.11 0.00 11 0.00 0.00 .,_doprnt [67] PRV O S ST BT
0.0 0.11 0.00 11 0.00 0.00 ._xflsbuf [68] soflooliosllsollcalioo
0.0 0.11 0.00 11 0.00 0.00 ._xwrite [69] S PO RN IR
0.0 0.11 0.00 11 0.00 0.00 ., fwrite [70] . P Y
0.0 0.11 0.00 11 0.00 0.00 .memchr [71] soflooliosllsollcalioo
0.0 0.11 0.00 11 0.00 0.00 .printf [72] sl fo oo
0.0 0.11 0.00 11 0.00 0.00 .urite [73] PRV O S ST BT
0.0 0.11 0.00 3 0.00 0.00 .splay [74] sofloolioslisolloatica
0.0 0.11 0.00 2 0.00 0.00 .free [75] sl fo oo
0.0 0.11 0.00 2 0.00 0.00 .free y [76] PRV O S ST BT
0.0 0.11 0.00 1 0.00 0.00 ._ doctl [77] P R R P P A |
0.0 0.11 0.00 1 0.00 0.00 ._findbuf [78] coflsoliosllcalicatica
0.0 0.11 0.00 1 0.00 0.00 ., _wrtchk [79] PRV O S ST BT
0.0 0.11 0.00 1 0.00 0.00 .catopen [80] sofloolioolisolloatica
0.0 0.11 0.00 1 0.00 0.00 .exit [81] soflooliosllsollcalioo
0.0 0.11 0.00 1 0,00 0.00 .expand catname [32] [V ERY SOV IOV ROV P

Search Engine: (regular expressions supported)

Figure 25. Flat Profile Report

Flat Profile Window Fields: ~ The Flat Profile window fields are explained below.

%time

The percentage of the program's total CPU usage that is consumed by this
function.

cumulative seconds

A running sum of the number of seconds used by this function and those listed
above it.

self seconds

The number of seconds used by this function alone. The self seconds values
are what Xprofiler uses to sort the functions of the Flat Profile report.

calls

The number of times this function was called (if this function is profiled).
Otherwise, it is blank.

self ms/call

The average number of milliseconds spent in this function per call (if this
function is profiled). Otherwise, it is blank.

total ms/call

The average number of milliseconds spent in this function and its descendants
per call (if this function is profiled). Otherwise, it is blank.

name

The name of the function. The index appears in brackets [] to the right of the
function name. The index serves as the function's identifier within Xprofiler. It
also appears below the corresponding function in the function call tree.

Chapter 1. Profiling Parallel Programs with Xprofiler 47

48

Call Graph Profile Report

The Call Graph Profile menu option lets you view the functions of your application,
sorted by the percentage of total CPU usage that each function, and its
descendants, consumed. When you select this option, the Call Graph Profile
window appears.

Unless you specified the -z command line option, the Call Graph Profile report does
not include functions whose CPU usage is 0 (zero) and have no call counts.

Note that the data presented in the Call Graph Profile window is the same data that
is generated with the UNIX gprof command.

The Call Graph Profile report looks similar to this:

E—nﬁﬁ

File Help
called/total parents
index %Htime self descendents called+self name index
called/total children
i[11 45.0 0.0% 0.00 242 <cycle 1 as a whole> [1] &
0.06 0.00 2 .=ub2 <cycle 1> [2] J
0.03 0.00 2 .subl <cycle 1> [5]
1 .subl <cycle 1> [5]
0,04 0.00 172 .main [3]
[2]1 30.0 0.06 0.00 2 sub2 <cycle 1> [2]
0.00 0.00 4/11 .printf [72]
1 .subl <cycle 1> [5]
Q 0.0% 1/1 .__start [4]
[31 50.0 0.01 0.0% 1 .main [3]
0.04 Q.00 1/2 .subl <cycle 1> [5]
0.04 Q.00 1/2 .sub2 <cycle 1> [2]
0.00 3711 .printf [72]
{spontansous} 7
5] |

Search Engine: (regular expressions supported)

Figure 26. Call Graph Profile Report

Call Graph Profile Window Fields: The fields of the Call Graph Profile are
explained below.

¢ index

The index of the function in the Call Graph Profile. Each function in the Call
Graph Profile has an associated index number which serves as the function's
identifier. The same index also appears with each function box label in the
function call tree, as well as other Xprofiler reports.

e Optime

The percentage of the program's total CPU usage that was consumed by this
function and its descendants.

e self
The number of seconds this function spends within itself.
e descendants

The number of seconds spent in the descendants of this function, on behalf of
this function.

o called/total, called+self, called/total

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

The heading of this column refers to the three different kinds of calls that take
place within your program. The values in this field correspond to the functions
listed in the name, index, parents, children field to its right. Depending on
whether the function is a parent, child, or the function of interest (the function
who's index is listed in the index field of this row), this value can stand for one
of the following:

— Number of times a parent called the function of interest
— Number of times the function of interest called itself, recursively
— Number of times the function of interest called a child

In the example below, sub2 is the function of interest, sub1l and main are its
parents, and printf and subl are its children.

called/total parents
called+self name index
called/total children
1 .subl <cycle 1> [5]
1/2 .main [3]
2 .sub2 <cycle 1> [2]
4/11 printf [72]
1 .subl <cycle 1> [5]

Figure 27. called/total, call/self, called/total field

o called/total

For a parent function, this refers to the number of calls made to the function of
interest, as well as the total number of calls it made to all functions. In the
example above, one of the parent functions, main, made two calls; one to the
function of interest, sub2, and one to another function.

o called+self

This refers to the number of times the function of interest called itself,

recursively. In the example above, the function of interest, sub2, called itself
two times. For a child function, this refers to the number of times the function of
interest called this child. In the example above, one of the child functions, printf,
was called eleven times; four times by the function of interest, sub2, and seven
times by other functions.

e name, index, parents, children

The layout of the heading of this column is indicative of the information that is
provided. To the left is the name of the function, and to its right is the function's
index number. Appearing above the function are its parents, and below are its
children.

Chapter 1. Profiling Parallel Programs with Xprofiler 49

50

parents
name index
children

.subl <cycle 1> [5]
.main [3]

.sub2 <cycle 1> [2]
.printf [72]
.subl <cycle 1> [5]

Figure 28. name/index/parents/children field

* hame

The name of the function, with an indication of its membership in a cycle, if
any. Note that the function of interest appears to the left, while its parent
and child functions are indented above and below it. In the example above,
the name of the function is sub2.

¢ index

The index of the function in the Call Graph Profile. This number
corresponds to the index that appears in the index column of the Call
Graph Profile and the on the function box labels in the function call tree. In
the example above, the index of sub2 is [2].

 parents

The parents of the function. A parent is any function that directly calls the
function in which you are interested. In the example above, the parents are
subl and main.

If any portion of your application was not compiled with the -pg option,
Xprofiler will not be able to identify the parents for the functions within
those portions. As a result, these parents will be listed as spontaneous in
the Call Graph Profile report.

¢ children

The children of the function. A child is any function that is directly called by
the function in which you are interested. In the example above, the children
are printf and subl.

Function Index Report

The Function Index menu option lets you view a list of the function names included
in the function call tree. When you select this option, the Function Index window
appears, and displays the function names in alphabetical order. To the left of each
function name is its index, enclosed in brackets []. The index is the function's
identifier, which is assigned by Xprofiler. An index also appears on the label of
each corresponding function box in the function call tree as well as other reports.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Unless you specified the -z command line option, the Function Index report does
not include functions whose CPU usage is 0 (zero) and have no call counts.

The Function Index menu option includes a Code Display menu, like the Flat Profile
menu option, allowing you to view source code or disassembler code. For more
information on viewing code, see “Viewing Source Code” on page 56 and “Viewing
Disassembler Code” on page 58.

The Function Index report looks similar to this:

— Funotion index 1

Fila Liade Diep layr THA Tty T Iy

7l .__iucll 1171 [
lal . dnprent [&]

MRl ._FindLud 1171

[14]1 , wrtrnk [14]

1Tl . _xdlabiud IT7I

[ul . =uritm [u]

1201 . calupen 1200

[21] .mxit [21]

1321 . exzpand_caloase 13731
[15] ,rrmam [16]

il Aece_w 161

[4] ,ruritn [4]

110l . #wcile_unluched 1101
[24] .patane [2]

1341 . iwcll 1241

[26] ientty [26]

131 .muin 131

[11] ,wmurhr [11]

1301 . wuncunlewl 1201

[#¥] ,unnitnr [2¥]

1381 .pee_iucll 1271 .

danymh Ko dvem; (remrn lave aapremecdones anpqeoedbaad)

Figure 29. Sample Function Index Report

Function Call Summary Report

The Function Call Summary menu option lets you display all the functions in your
application that call other functions. They appear as caller-callee pairs (call arcs, in
the function call tree), and are sorted by the number of calls in descending order.
When you select this option, the Function Call Summary window appears.

The Function Call Summary report looks similar to this:

Chapter 1. Profiling Parallel Programs with Xprofiler 51

52

E—Illp_iﬁ

File Utility He
Ftotal calls function

10.78% 11 calls from .printf [72] to ._doprnt [67] B
10.78% 11 calls from ._doprat [67] to . furite [70]

10.78% 11 calls from ._xflshuf [68] to ._urite [69]

10, 78% 11 calls from . _xwrite [69] to .write [73]

10.78% 11 calls from .furite [70] to .memchr [71]

10.78% 11 calls from . furite [70] to ._xflshuf [&68]

3.92% 4 calls from .sub2 {cycle 1> [2] to .printf [72]

3.92% 4 calls from .subl <cycle 1> [5] to .printf [72]

2.94% 3 calls from .free y [76] to .splay [741

2.94% 3 calls from .main [3]1 to .printf [72]

1.96% 2 calls from .free [75] to .free y [76]

0.98% 1 calls from .ioctl [84] to ._ ioctl [77]

0.98% 1 calls from .setlocale [89] to .saved category_name [88]

0.98% 1 calls from .monitor [87] to .catopen [80]

0.98% 1 calls from .monztn [1465] to . free [75] ~

0.98% 1 calls from .monstartup [1463]1 to .free [V5]

0.98% 1 calls from .monitor [87] to .moncontrol [B6]

0.98% 1 calls from .expand_catname [82] to .getenv [831

0.98% 1 calls from .expand_catnane [82] to .setlocale [891

0.938% 1 calls from ,isatty [85] to .ioctl [34]

0.98% 1 calls from .catopen [80] to .expand_catname [82] 7
Search Engine: (regular expressions supported)

Figure 30. Sample Function Call Summary Report

Function Call Summary Window Fields:

The fields of the Function Call

Summary window are explained below.

e Optotal

The percentage of the total number of calls generated by this caller-callee pair.

e calls

The number of calls attributed to this caller-callee pair.

e function

The name of the caller fu

Library Statistics Report

nction and callee function.

The Library Statistics menu option lets you display the CPU time consumed and
call counts of each library within your application. When you select this option, the
Library Statistics window appears.

The Library Statistics report looks similar to this:

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

= Library Statistics [« 0]

File Help |
total Htotal total Htotal Hcalls Fcalls $calls load
seconds time calls calls out of into within unit
0.10 90.91 5 4.90 11.76 0.00 4.90 hello world
0.01 9.0% 37 95.10 0.00 11.76 83.33 /slibfprofiled/flibc.a : shr.o
0.00 0.00 NA == 0.00 - -- /flib/profiled/libc.a : meth,o

Search Engine: (regular expressions supported)

Figure 31. Sample Library Statistics Report

Library Statistics Window Fields: The fields of the Library Statistics window are
explained below.

total seconds

The total CPU usage of the library, in seconds.

%total time

The percentage of the total CPU usage that was consumed by this library.
total calls

Total number of calls generated by this library.

%total calls

The percentage of the total calls that were generated by this library.
%calls out of

The percentage of the total number of calls made from this library to other
libraries.

%ocalls into

The percentage of the total number of calls made from other libraries into this
library.

%ocalls within

The percentage of the total number of calls made between the functions within
this library.

load unit

The library's full path name.

Chapter 1. Profiling Parallel Programs with Xprofiler 53

54

Saving Reports to a File
Xprofiler lets you save any of the reports you generate with the Report menu to a
file. You can do this via the File and Report menus of the Xprofiler GUI.

Saving a Single Report: To save a single report, go to the Report menu, on the
Xprofiler main window, and select the report you would like to save. Each report
window includes a File menu. Select the File menu and then the Save As option to
save the report. A Save dialog window appears, which is named according to the
report from which you selected the Save As option. For instance, if you chose Save
As from the Flat Profile window, the dialog window is named Save Flat Profile
Dialog.

Saving the Call Graph Profile, Function Index, and Flat Profile Reports to

File: You can save the Call Graph Profile, Function Index, and Flat Profile reports

to a single file with the the File menu of the Xprofiler main window. The information
you generate here is identical to the output of the UNIX gprof command. From the

File menu, select the Save As option. The Save File Dialog window appears.

To save the report(s):

1. Specify the file into which the profiled data should be placed. You can specify
either an existing file or a new one. To specify an existing file, use the scroll
bars of the Directories and the Files selection boxes to locate the file you want.
To make locating your files easier, you can also use the Filter button (see
“Using the Dialog Window Filters” on page 22 for more information). To specify
a new file, type its name in the Selection field.

2. Click on the OK bhutton. A file containing the profiled data appears in the
directory you specified, under the name you gave it.

Note: Once you select the Save As option from the File menu, and the Save
Profile Reports window opens, you must either complete the save operation
or cancel it before you can select any other option from the menus of its
parent window. For example, if you select the Save As option from the Flat
Profile report, and the Save File Dialog window appears, you cannot use
any other option of the Flat Profile report window.

The File Selection field of the Save File Dialog window follows Motif standards.

Saving Summarized Data from Multiple Profile Data Files: If you are profiling a
parallel program, you could specify more than one profile data (gmon.out) file when
you started Xprofiler. The Save gmon.sum As option of the File menu lets you save
a summary of the data in each of these files to a single file.

The Xprofiler Save gmon.sum As option produces the same result as the Xprofiler
and gprof -s command line option. If you run Xprofiler later, you can use the file
you create here as input with the -s option. In this way, you can accumulate
summary data over several runs of your application.

To create a summary file:

1. Select the File menu, and then the Save gmon.sum As option. The Save
gmon.sum Dialog window appears.

2. Specify the file into which the summarized, profiled data should be placed. By
default, Xprofiler puts the data into a file called gmon.sum, but you can
designate a different file. You can either specify a new file or an existing one.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

To specify a new file, type its name in the selection field. To specify an existing
file, use the scroll bars of the Directories and Files selection boxes to locate the
file you want. To make locating your files easier, you can also use the Filter
button (see “Using the Dialog Window Filters” on page 22 for information).

3. Click on the OK button. A file, containing the summary data, appears in the
directory you specified, under the name you gave it.

Saving a Configuration File: ~ The Save Configuration menu option lets you save
the names of the functions that are displayed currently to a file. Later, in the same
Xprofiler session or a different session, you can read in this configuration file using
the Load Configuration option. See the following section, “Loading a Configuration
File,” for more information.

To save a configuration file:

1. Select the File menu, and then the Save Configuration option. The Save
Configuration File Dialog window opens with the program.cfg file as the default
value in the Selection field. “Program” is the name of the input a.out file.

You can use the default file name, enter a file name in the Selection field, or
select a file from the dialog's files list.

2. Specify a file name in the Selection field and click on the OK button. A
configuration file is created containing the name of the program and the names
of the functions that are displayed currently.

3. Specify an existing file name in the Selection field and click on the OK button.
An Overwrite File Dialog window appears so you can check the file before
overwriting it.

If you select the Forced File Overwriting option in the Runtime Options Dialog
window, the Overwrite File Dialog does not open and the specified file is
overwritten without warning.

Loading a Configuration File: The Load Configuration menu option lets you read
in a configuration file that you saved. See the previous section, “Saving a
Configuration File,” for more information. The Load Configuration option
automatically reconstructs the function call tree according to the function names
recorded in the configuration file.

To load a configuration file:

1. Select the File menu, and then the Load Configuration option. The Load
Configuration File Dialog window opens. If a configuration files were loaded
previously during the current Xprofiler session, the name of the file that was
most recently loaded will appear in the Selection field of this dialog.

You can also load the file with the -c command line option. See “Specifying
Command Line Options (from the GUI)” on page 11 for more information.

2. Select a configuration file from the dialog's Files list or specify a file name in
the Selection field, and click on the OK button. The function call tree is
redrawn to show only those function boxes for functions that are listed in the
configuration file and are called within the program that is currently represented
in the display. All corresponding call arcs are also drawn.

Chapter 1. Profiling Parallel Programs with Xprofiler 55

If the a.out name, that is, the program name in the configuration file, is different
from the a.out name in the current display, a confirmation dialog appears to
allow you to decide whether or not you still wish to load the file.

3. If after loading a configuration file, you wish to return the function call tree back
to its previous state, select the Filter menu, and then the Undo option.

Looking at Source Code

56

Xprofiler provides several ways for you to view your source code. You can view the
source or disassembler code for your application on a per-function basis. This also
applies to any included function code your application may use.

When you view source or included function code, you use the Source Code
window. When you view disassembler code, you use the Disassembler Code
window. You can access these windows through the Report menu of the Xprofiler
GUI or the Function menu of the function in which you are interested.

Viewing Source Code
Both the Function menu and Report menu provide the means for you to access the
Source Code window, from which you will view your code.

To access the Source Code window via the Function menu:

1. Click on the function box you are interested in with the right mouse button. The
Function menu appears.

2. From the Function menu, select the Show Source Code option. The Source
Code window appears.

To access the Source Code window via the Report menu:

1. Select the Report menu, and then the Flat Profile option. The Flat Profile
window appears.

2. From the Flat Profile window, select the function you would like to view by
clicking on its entry in the window. The entry highlights to show that it is
selected.

3. Select the Code Display menu, and then the Show Source Code option. The
Source Code window appears, containing the source code for the function you
selected.

Using the Source Code Window: The Source Code window shows you only the
source code file for the function you specified from the Flat Profile window or the
Function menu. The Source Code Window looks similar to this:

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

File Utility Help |H

no, ticks
line per line source code

a A

32 £

33 * main

34 f

35 int main(int argc, char #%argv)

36

a7 int i,sum;

38

39

40 printf("entering mainin");

41

42 sub1(0):

43 sub2(0);

44

45 1 for (i = 0; i ¢ 100000; i++) {

46 sum #= ij

47 ¥

48

49 printf("Hello Morld!in");

50

!

[]
Search Engine: (regular expressions supported)
|_?_sub1

Figure 32. Sample Source Code Window

The Source Code Window contains information in the following fields:

line
The source code line number.
no. ticks per line

Each tick represents .01 seconds of CPU time used. The number that appears
in this field represents the number of ticks used by the corresponding line of
code. For instance, if the number 3 appeared in this field, for a source
statement, this source statement would have used .03 seconds of CPU time.
Note that the CPU usage data only appears in this field if you used the -g
option when you compiled your application. Otherwise, this field is blank.

source code

The application's source code.

The Search Engine field, at the bottom of the Source Code window, lets you search
for a specific string in your source code. For information on using the Search
Engine field, see “Using the Search Engine” on page 21

The Source Code window contains the following menus:

File

The Save As option lets you save the annotated source code to a file. When
you select this option, the Save File Dialog window appears. For more
information on using the Save File Dialog window, see “Using the Save Dialog
Windows” on page 21

Select Close if you wish to close the Source Code window.
Utility

The Utility menu contains only one option; Show Included Functions.

For C++ users, the Show Included Functions option lets you view the source code

of

included function files that are included by the application's source code.

Chapter 1. Profiling Parallel Programs with Xprofiler 57

58

If a selected function does not have an included function file associated with it or
does not have the function file information available because the -g option was not
used for compiling, the Utility menu will be greyed out. The availability of the Utility
menu serves as an indication of whether or not there is any included function file
information associated with the selected function.

When you select the Show Included Functions option, the Included Functions
Dialog window appears, which lists all of the included function files. Specify a file by
either clicking on one of the entries in the list with the left mouse button, or by
typing the the file name in the Selection field. Then click on the OK or Apply
button. After selecting a file from the Included Functions Dialog window, the
Included Function File window appears, displaying the source code for the file that
you specified.

Viewing Disassembler Code
Both the Function menu and Report menu provide the means for you to access the
Disassembler Code window, from which you can view your code.

To access the Disassembler Code window via the Function menu:

1. Click on the function you are interested in with the right mouse button. The
Function menu appears.

2. From the Function menu, select the Show Disassembler Code option. The
Disassembler Code window appears.

To access the Disassembler Code window via the Report menu:

1. Select the Report menu, and then the Flat Profile option. The Flat Profile
window appears.

2. From the Flat Profile window, select the function you would like to view by
clicking on its entry in the window. The entry highlights to show that it is
selected.

3. Select the Code Display menu, and then the Show Disassembler Code option.
The Disassembler Code window appears, and contains the disassembler code
for the function you selected.

Using the Disassembler Code Window: The Disassembler Code window shows
you only the disassembler code for the function you specified from the Flat Profile
window. The Disassembler Code Window looks similar to this:

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

E—nﬁﬁ

File Help
no, ticks
address per instr, dnstruction assembler code source code
100004E8 7C080246 mfspr 0,8 B
100004EC 93EIFFFC =t 31, 0xfffc(1)
100004F0 90010008 =t 0, 0x8(1)
100004F 4 9421FFB0 stu 1. 0x££HOC1)
100004F 8 83E20044 1 31, 0x44(2)
100004FC 90610068 st 3, 0x68(1)
10000500 80620048 1 3, 0x48(2)
10000504 30630004 ai 3,3, 0x4
10000508 43000141 bl Oxé&8
1000050C 60000000 oril 0.0.0
10000510 JO7FOD30 ai 3, 31, 0x30 printf("entering sublin");
10000514 43000840 bl 0x213
10000518 80410014 1 2,0x14(1)
1000051C 20610068 1 3, 0x68(1) if (c==0) {
10000520 2C030000 cmpi 0, 1, 0x8000
10000524 4082000C bc Ox4, 2, 0x3
10000528 38600001 cal 3, 0x1(0) sub2(1):
1000052C 4BFFFEES bl OxfFEELD
10000530 38600000 cal 3.000) sum = 03
10000534 90610044 st 3, 0x44(1)
10000538 90610040 st 3, 0x40(1) for (i = 0; i < 100000; i++) { J
Search Engine: (regular expressions supported)

Figure 33. Sample Disassembler Code Window

The Disassembler Code window contains information in the following fields:
e address

The address of each instruction in the function you selected (from either the
Flat Profile window or the function call tree).

* no. ticks per instr.

Each tick represents .01 seconds of CPU time used. The number that appears
in this field represents the number of ticks used by the corresponding
instruction. For instance, if the number 3 appeared in this field, this instruction
would have used .03 seconds of CPU time.

e instruction

The execution instruction.
e assembler code

The execution instruction's corresponding assembler code.
e source code

The line in your application's source code that corresponds to the execution
instruction and assembler code. In order for information to appear in this field,
you must have compiled your application with the -g compile option.

The Search Engine field, at the bottom of the Disassembler Code window, lets you
search for a specific string in your disassembler code. For information on using the
Search Engine field, see “Using the Search Engine” on page 21.
The Disassembler Code window contains only one menu:

e File

Select Save As to save the annotated disassembler code to a file. When you
select this option, the Save File Dialog window appears. For information on

Chapter 1. Profiling Parallel Programs with Xprofiler 59

using the Save File Dialog window, see “Using the Save Dialog Windows” on
page 21.

Select Close if you wish to close the Disassembler window.

Saving Screen Images of Profiled Data

The File menu of the Xprofiler GUI includes an option called Screen Dump that lets
you capture an image of the Xprofiler main window. This option is useful if you
want to save a copy of the graphical display to refer to later. You can either save
the image as a file in PostScript format, or send it directly to a printer.

To capture a window image:

1. Select the File—Screen Dump options. The Screen Dump menu opens.
2. From the Screen Dump menu, select the Set Option option. The Screen
Dump Options Dialog window appears.

=|Screen Dump Oplions Diallng

Output To:

“ File + Printer
Postscript Output:

4 GreyShades < Color
Numher Of Grey SBhades:
v2 w4 16

Delay Before Grah:

1
| Enable Landscape
| Annotate Output

Default File Name:

fprofiler screenlump.ps, U

Print Command:

Gpprd o oga wo o Pag

oK Cancel Help

Figure 34. Screen Dump Options Dialog Window

3. Make the appropriate selections in the fields of the Screen Dump Dialog
Window as follows:

e Output To:

60 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

This option lets you specify whether you want to save the captured image
as a PostScript file or send it directly to a printer.

If you would like to save the image to a file, select the File button. This file,
by default, is named Xprofiler.screenDump.ps.0, and is displayed in the
Default File Name field of this dialog window. When you select the File
button, the text in the Print Command field greys out.

If you would like to send the image directly to a printer, select the Printer
button. The image is sent to the printer you specify in the Print Command
field of this dialog window. Note that when you specify the Print option, a
file of the image is not saved. Also, selecting this option causes the text in
the Default File Name field to grey out.

PostScript Output:

This option lets you specify whether you want to capture the image in
shades of grey or in color.

If you want to capture the image in shades of grey, select the GreyShades
button. You must also select the number of shades you want the image to
include with the Number of Grey Shades option, as discussed below.

If you want to capture the image in color, select the Color button.
GreyShades.

Number of Grey Shades

This option lets you specify the number of grey shades that the captured
image will include. Select either the 2, 4, or 16 buttons, depending on the
number of shades you want to use. Typically, the more shades you use,

the longer it will take to print the image. 16.

Delay Before Grab

This option lets you specify how long of a delay will occur between
activating the capturing mechanism and when the image is actually
captured. By default, the delay is set to one second, but you may need
time to arrange the window the way you want it. Setting the delay to a
longer interval gives you some extra time to do this. You set the delay with
the slider bar of this field. The number above the slider indicates the time
interval in seconds. You can set the delay to a maximum of thirty seconds.

To set the delay, place the mouse cursor over the slider. Next, press and
hold the left mouse button while moving the slider to the right. When the
slider is at the desired number, release the mouse button.

Enable Landscape (button)

This option lets you specify that you want the output to be in landscape
format (the default is portrait). To select landscape format, select the
Enable Landscape button.

e Annotate Output (button)

This option lets you specify that you would like information about how the
file was created to be included in the PostScript image file. By default, this
information is not included. To do this, select the Annotate Output button.

Default File Name

If you chose to put your output in a file, this field lets you specify the file
name. The default file name is Xprofiler.screenDump.ps.0. If you want to

Chapter 1. Profiling Parallel Programs with Xprofiler 61

62

change to a different file name, type it over the one that appears in this
field.

If you specify the output file name with an integer suffix (that is, the file
name ends with xxx.nn, where nn is a non-negative integer), the suffix
automatically increases by one every time a new output file is written in the
same Xprofiler session.

¢ Print Command

If you chose to send the captured image directly to a printer, this field lets
you specify the print command. The default print command is gprt -B ga -c
-Pps. If you would like to use a different command, type the new command
over the one that appears in this field.

Press the OK button. The Screen Dump Options Dialog window closes.
Once you have set your screen dump options, you need to select the window, or
portion of a window, you wish to capture. From the Screen Dump menu, select the
Select Target Window option. A cursor in the image of a hand appears after the
number of seconds you specified. At any time you wish to cancel the capture, you

may do so by clicking on the right mouse button. The hand-shaped cursor will
change back to normal and the operation will be terminated.

To capture the entire Xprofiler window, place the cursor in the window and then
click the left mouse button.
To capture a portion of the Xprofiler window:

1. Place the cursor in the upper left corner of the area you wish to capture.

2. Press and hold the middle mouse button and drag the cursor diagonally
downward, until the area you wish to capture is within the rubberband box.

3. Release the middle mouse button to set the location of the rubberband box.
4. Press the left mouse button to capture the image.
If you chose to save the image as a file, the file is stored in the directory you

specified. If you chose to print the image, the image is sent to the printer you
specified.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

xprofiler(1)

Appendix A. Parallel Environment Tools Commands

This appendix contains the manual pages for the PE tools commands discussed
throughout this book. Each manual page is organized into the sections listed below.
The sections always appear in the same order, but some appear in all manual
pages while others are optional.

NAME Provides the name of the command described in the manual
page, and a brief description of its purpose.

SYNOPSIS Includes a diagram that summarizes the command syntax,
and provides a brief synopsis of its use and function. If you
are unfamiliar with the typographic conventions used in the
syntax diagrams, see “Typographic Conventions” on page X.

FLAGS Lists and describes any required and optional flags for the
command.
DESCRIPTION Describes the command more fully than the NAME and

SYNOPSIS sections.

ENVIRONMENT VARIABLES
Lists and describes any applicable environment variables.

EXAMPLES Provides examples of ways in which the command is typically
used.
FILES Lists and describes any files related to the command.

RELATED INFORMATION
Lists commands, functions, file formats, and special files that
are employed by the command, that have a purpose related
to the command, or that are otherwise of interest within the
context of the command.

xprofiler

NAME

SYNOPSIS

xprofiler — Invokes the Xprofiler, a GUI-based performance profiling tool.

xprofiler [program] [-b] [-h]

[-s] [-2] [-a] [-c]

[-L pathname]

[[-e name]...]

[[-E name]...]

[[-f namel...]

[[-F name]...]

[-disp_max number_of functions]
[[gmon.oud...]

The xprofiler command invokes the Xprofiler, a GUI-based performance profiling
tool.

© Copyright IBM Corp. 1995, 1998 63

xprofiler(1)

FLAGS

-disp_max

Suppresses the printing of the field descriptions for the Flat Profile,
Call Graph Profile, and Function Index reports when they are
written to a file with the Save As option of the File menu.

Produces the gmon.sum profile data file, if multiple gmon.out files
are specified when Xprofiler is started. The gmon.sum file
represents the sum of the profile information in all the specified
profile files. Note that if you specify a single gmon.out file, the
gmon.sum file contains the same data as the gmon.out file.

Includes functions that have both zero CPU usage and no call
counts in the Flat Profile, Call Graph profile, and Function Index
reports. A function will not have a call count if the file that contains
its definition was not compiled with the -pg option, which is
common with system library files.

Adds alternative paths to search for source code and library files,
or changes the current path search order. When using this
command line option, you can use the “at” symbol (@) to
represent the default file path, in order to specify that other paths
be searched before the default path.

Loads the specified configuration file. If the -c option is used on
the command line, the configuration file name specified with it will
appear in the Configuration File (-c): text field in the Load Files
Dialog, and the Selection field of the Load Configuration File
Dialog. When both the -c and -disp_max options are specified on
the command line, the -disp_max option is ignored, but the value
that was specified with it will appear in the Initial Display
(-disp_max): field in the Load Files Dialog, the next time it is
opened.

Sets the number of function boxes that Xprofiler initially displays in
the function call tree. The value supplied with this flag can be any
integer between 0 and 5,000. Xprofiler displays the function boxes
for the most CPU-intensive functions through the number you
specify. For instance, if you specify 50, Xprofiler displays the
function boxes for the 50 functions in your program that consume
the most CPU. After this, you can change the number of function
boxes that are displayed via the Filter menu options. This flag has
no effect on the content of any of the Xprofiler reports.

De-emphasizes the general appearance of the function box(es) for
the specified function(s) in the function call tree, and limits the
number of entries for these function in the Call Graph Profile
report. This also applies to the specified function's descendants, as
long as they have not been called by non-specified functions.

In the function call tree, the function box(es) for the specified
function(s) appears greyed-out. Its size and the content of the label
remain the same. This also applies to descendant functions, as
long as they have not been called by non-specified functions.

In the Call Graph Profile report, an entry for the specified function
only appears where it is a child of another function, or as a parent
of a function that also has at least one non-specified function as its

64 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

xprofiler(1)

parent. The information for this entry remains unchanged. Entries
for descendants of the specified function do not appear unless
they have been called by at least one non-specified function in the
program.

Changes the general appearance and label information of the
function box(es) for the specified function(s) in the function call
tree. Also limits the number of entries for these functions in the
Call Graph Profile report, and changes the CPU data associated
with them. These results also apply to the specified function's
descendants, as long as they have not been called by
non-specified functions in the program.

In the function call tree, the function box for the specified function
appears greyed-out, and its size and shape also changes so that it
appears as a square of the smallest allowable size. In addition, the
CPU time shown in the function box label, appears as 0 (zero).
The same applies to function boxes for descendant functions, as
long as they have not been called by non-specified functions. This
option also causes the CPU time spent by the specified function to
be deducted from the left side CPU total in the label of the function
box for each of the specified function's ancestors.

In the Call Graph Profile report, an entry for the specified function
only appears where it is a child of another function, or as a parent
of a function that also has at least one non-specified function as its
parent. When this is the case, the time in the self and descendants
columns for this entry is set to 0 (zero). In addition, the amount of
time that was in the descendants column for the specified function
is subtracted from the time listed under the descendants column
for the profiled function. As a result, be aware that the value listed
in the % time column for most profiled functions in this report will
change.

De-emphasizes the general appearance of all function boxes in the
function call tree, except for that of the specified function(s) and its
descendant(s). In addition, the number of entries in the Call Graph
Profile report for the non-specified functions and non-descendant
functions is limited. The -f flag overrides the -e flag.

In the function call tree, all function boxes except for that of the
specified function(s) and it descendant(s) appear greyed-out. The
size of these boxes and the content of their labels remain the
same. For the specified function(s), and it descendants, the
appearance of the function boxes and labels remain the same.

In the Call Graph Profile report, an entry for a non-specified or
non-descendant function only appears where it is a parent or child
of a specified function or one of its descendants. All information for
this entry remains the same.

Changes the general appearance and label information of all
function boxes in the function call tree except for that of the
specified function(s) and its descendants. In addition, the number
of entries in the Call Graph Profile report for the non-specified and
non-descendant functions is limited, and the CPU data associated
with them is changed. The -F flag overrides the -E flag.

Appendix A. Parallel Environment Tools Commands 65

xprofiler(1)

DESCRIPTION

EXAMPLES

FILES

RELATED INFORMATION

In the function call tree, the function box for the specified function
appears greyed-out, and its size and shape also changes so that it
appears as a square of the smallest allowable size. In addition, the
CPU time shown in the function box label, appears as 0 (zero).

In the Call Graph Profile report, an entry for a non-specified or
non-descendant function only appears where it is a parent or child
of a specified function or one of its descendants. The time in the
self and descendants columns for this entry is set to O (zero).
When this is the case, the time in the self and descendants
columns for this entry is set to 0 (zero). As a result, be aware that
the value listed in the % time column for most profiled functions in
this report will change.

Uses an alternate path name for locating shared libraries. If you
plan to specify multiple paths, use the Set File Search Path option
of the File menu on the Xprofiler GUI.

Prints basic Xprofiler command syntax to the screen.

Xprofiler is a GUI-based performance profiling tool, which can be used to analyze
the performance of sequential as well as parallel programs. Xprofiler provides
graphical function call tree display and textual profile reports to help you understand
your program's CPU usage and function call counts information.

To use xprofiler , you first compile your program (for example, foo.c) with -pg:

xlc -pg -0 foo foo.c

When the program foo is executed, one gmon.out file will be generated for each
processor involved in the execution. To invoke xprofiler , enter:

xprofiler foo [[gmon.out]...]

Jusr/lib/X11/app-defaults/Xprofiler

Commands: gprof (1), xlc (1), xIf (1)

66 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Appendix B. Customizing Tool Resources

You can customize certain features of an X-Window. For example, you can
customize its colors, fonts, orientation, and so on. This section lists each of the
resource variables you can set for Xprofiler.

You may customize resources by assigning a value to a resource name in a
standard X-Windows format. Several resource files are searched according to the
following X-Windows convention:

Jusr/lib/X11/$L ANG/app-defaults/file_name
Jusr/lib/X11/app-defaults/file_name
$XAPPLRESDIR/file_name

$HOME/. Xdefaults

Where file_name is Xprofiler. Options in the .Xdefaults file take precedence over
entries in the preceding files. This allows you to have certain specifications apply to
all users in the app-defaults file as well as user specific preferences set for each
user in their $HOME/. Xdefaults file.

You customize a resource by setting a value to a resource variable associated with
that feature. You store these resource settings in a file called .Xdefaults in your
home directory. You can create this file on a server, and so customize a resource
for all users. Individual users may also want to customize resources. The resource
settings are essentially your own personal preferences as to how the X-Windows
should look.

For example, consider the following resource variables for a hypothetical
X-Windows tool:

TOOL*MainWindow. foreground:
TOOL*MainWindow.background:

In this example, say the resource variable TOOL*MainWindow.foreground controls
the color of text on the tool's main window. The resource variable
TOOL*MainWindow.background controls the background color of this same
window. If you wanted the tool's main window to have red lettering on a white
background, you would insert the following lines into the .Xdefaults file.

TOOL*MainWindow. foreground: red
TOOL*MainWindow.background: white

Customizable resources and instructions for their use for Xprofiler are defined in
lusr/lib/X11/app-defaults/Xprofiler , as well as
lusr/lpp/ppe.xprofiler/defaults/Xprofiler.ad . In this file is a set of X resources for
defining graphical user interfaces based on the following criteria:

e Window geometry

¢ Window title

© Copyright IBM Corp. 1995, 1998 67

¢ Push button and label text

e Color maps

e text font (in both textual reports and the graphical display).

Xprofiler Resource Variables

You can use the resource variables listed below to control the appearance and
behavior of Xprofiler. Note that the values supplied here are the defaults, but you
may change them to suit your own preferences.

Controlling Fonts
To specify the font for the labels that appear with function boxes, call arcs, and

cluster boxes:

Use this resource

variable: Specify this default, or a value of your own choice:

*narc*font -ibm-block-medium-r-normal-*-0-0-*-*-*-*-jom-*

To specify the font used in textual reports:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*fontList

rom10

Controlling the Appearance of the Xprofiler Main Window

68

To specify the size of the main window:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*mainW.height

700

Xprofiler*mainW.width

900

To specify the foreground and background colors of the main window:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*foreground

black

Xprofiler*background

light gray

To specify the number of function boxes that are displayed when you first open the

Xprofiler main window:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*InitialDisplayGraph

5000

You can use the -disp_max command line option to override this value.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

To specify the colors of the function boxes and call arcs of the function call tree:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*defaultNodeColor

forest green

Xprofiler*defaultArcColor

royal blue

To specify the color in which a specified function box or call arc is highlighted:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*HighlightNode

red

Xprofiler*HighlightArc

red

To specify the color in which de-emphasized function boxes appear:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*SuppressNode

gray

Function boxes are de-emphasized with the -e, -E, -f, and -F options.

Controlling Variables Related to the File Menu

To specify the size of the Load Files Dialog box:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*loadFile.height

785

Xprofiler*loadFile.width

725

The Load Files Dialog box is invoked via Load Files option of the File menu.

To specify whether a confirmation dialog box should appear whenever a file will be

overwritten:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*OverwriteOK

False

The value True would be equivalent to selecting the Set Options option from the
File menu, and then selecting the Forced File Overwriting option from the Runtime

Options Dialog box.

To specify the alternative search paths for locating source or library files:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*fileSearchPath

search path

Appendix B. Customizing Tool Resources 69

70

The value you specify for search path is equivalent to the search path you would
designate from the Alt File Search Path Dialog box. To get to this dialog box, you
would choose the Set File Search Paths option from the File menu.

To specify the file search sequence (whether the default or alternative path is
searched first):

Specify this default, or a value of your
Use this resource variable: own choice:

Xprofiler*fileSearchDefault True

The value True is equivalent to selecting the Set File Search Paths from the File
menu, and then the Check default path(s) first option from the Alt File Search Path
Dialog box.

Controlling Variables Related to the Screen Dump Option
To specify whether a screen dump will be sent to a printer or placed in a file:

Specify this default, or a value of your
Use this resource variable: own choice:

Xprofiler*PrintToFile True

The value True is equivalent to selecting the File button in the Output To field of
the Screen Dump Options Dialog box. You access the Screen Dump Options
Dialog box by selecting the Screen Dump—Set Option options from the File menu.

To specify whether the PostScript screen dump will created in grey shades or color:

Specify this default, or a value of your
Use this resource variable: own choice:

Xprofiler*ColorPscript False

The value False is equivalent to selecting the GreyShades button in the PostScript
Output area of the Screen Dump Options Dialog box. You access the Screen Dump
Options Dialog box by selecting the Screen Dump— Set Option options from the
File menu.

To specify the number of grey shades that the PostScript screen dump will include
(if you selected GreyShades in the PostScript Output field):

Specify this default, or a value of your
Use this resource variable: own choice:

Xprofiler*GreyShades 16

The value 16 is equivalent to selecting the 16 button in the Number of Grey Shades
field of the Screen Dump Options Dialog box. You access the Screen Dump
Options Dialog box by selecting the Screen Dump— Set Option options from the

File menu.

To specify the number of seconds that Xprofiler waits before capturing a screen
image:

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Use this resource variable:

Specify this default, or a
value of your own
choice:

Xprofiler*GrabDelay

1

The value 1 is the default for the Delay Before Grab option of the Screen Dump
Options Dialog box, but you may specify a longer interval by entering a value here.
You access the Screen Dump Options Dialog box by selecting the Screen

Dump— Set Option options from the File menu.

To specify the maximum number of seconds that may be specified with the slider of

the Delay Before Grab option:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*grabDelayScale.maximum

30

The value 30 is the default for the Delay Before Grab option of the Screen Dump
Options Dialog box. This means that users cannot set the slider scale to a value
greater than 30. You access the Screen Dump Options Dialog box by selecting the
Screen Dump— Set Option options from the File menu.

To specify whether the screen dump is created in Landscape or Portrait format:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*Landscape

True

The value True is the default for the Enable Landscape option of the Screen Dump
Options Dialog box. You access the Screen Dump Options Dialog box by selecting
the Screen Dump— Set Option options from the File menu.

To specify whether or not you would like information about how the image was
created to be added to the PostScript screen dump:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*Annotate

False

The value False is the default for the Annotate Output option of the Screen Dump
Options Dialog box. You access the Screen Dump Options Dialog box by selecting
the Screen Dump— Set Option options from the File menu.

To specify the directory that will store the screen dump file (if you selected File in

the Output To field):

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*PrintDirectory

directory

Appendix B. Customizing Tool Resources 71

The value you specify for directory is equivalent to the directory you would
designate in the Default Directory field of the Screen Dump Dialog box. You access
the Screen Dump Options Dialog box by selecting the Screen Dump— Set Option
options from the File menu.

To specify the printer destination of the screen dump (if you selected Printer in the
Output To field):

Specify this default, or a value of your
Use this resource variable: own choice:

Xprofiler*PrintCommand gprt -B ga -c -Pps

The value gprt -B ga -c -Pps is the default print command, but you may supply a
different one here.

Controlling Variables Related to the View Menu

72

To specify the size of the Overview window:

Specify this default, or a
value of your own

Use this resource variable: choice:
Xprofiler*overviewMain.height 300
Xprofiler*overviewMain.width 300

To specify the color of the highlight area of the Overview window:

Specify this default, or a
value of your own
Use this resource variable: choice:

Xprofiler*overviewGraph*defaultHighlightColor sky blue

To specify whether the function call tree is updated as the highlight area is moved
(Immediate) or only when it is stopped and the mouse button released (Delayed):

Specify this default, or a value of your
Use this resource variable: own choice:

Xprofiler*Trackimmed True

The value True is equivalent to selecting the Immediate Update option from the
Utility menu of the Overview window. You access the Overview window by
selecting the Overview option from the View menu.

To specify whether the function boxes in the function call tree appear in 2-D or 3-D
format:

Specify this default, or a value of your
Use this resource variable: own choice:

Xprofiler*Shape2D True

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

The value True is equivalent to selecting the 2-D Image option from the View

menu.

To specify whether the function call tree appears in Top-to-Bottom or Left-to-Right

format:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*LayoutTopDown

True

The value True is equivalent to selecting the Layout: Top— Bottom option from the

View menu.

Controlling Variables Related to the Filter Menu

To specify whether the function boxes of the function call tree are clustered or
unclustered when the Xprofiler main window is first opened:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*ClusterNode

True

The value True is equivalent to selecting the Cluster Functions by Library option

from the Filter menu.

To specify whether the call arcs of the function call tree are collapsed or expanded
when the Xprofiler main window is first opened:

Use this resource variable:

Specify this default, or a value of your
own choice:

Xprofiler*ClusterArc

True

The value True is equivalent to selecting the Collapse Library Arcs option from the

Filter menu.

Appendix B. Customizing Tool Resources 73

74 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Appendix C. Profiling Programs with the AIX prof and gprof

Commands

The difference between profiling serial and parallel applications with the AIX
profilers is that serial applications can be run to generate a single profile data file,
while a parallel application can be run to produce many.

You request parallel profiling by setting the compile flag to -p or -pg as you would
with serial compilation. The parallel profiling capability of PE creates a monitor
output file for each task. The files are created in the current directory, and are
identified by the name mon.out.taskid or gmon.out.taskid, where taskid is a number
between 0 and one less than the number of tasks.

Following the traditional method of profiling using the AIX operating system, you
compile a serial application and run it to produce a single profile data file that you
can then process using either the prof or gprof commands. With a parallel
application, you compile and run it to produce a profile data file for each parallel
task. You can then process one, some, or all the data files produced using either
the prof or gprof commands. The following table describes how to profile parallel
programs. For comparison, the steps involved in profiling a serial program are
shown in the left-hand column of the table.

To Profile a Serial Program:

To Profile a Parallel Program:

Step 1: Compile the application source code
using the cc command with either the -p or

-pg flag.

Step 1: Compile the application source code using the command mpcc (for C
programs), mpCC (for C++ programs), or mpxIf (for Fortran programs) as
described in IBM Parallel Environment for AlX: Operation and Use, Volume 1,
Using the Parallel Operating Environment. You should use one of the standard
profiling compiler options — either -p or -pg — on the compiler command. For
more information on the compiler options -p and -pg, refer to their use on the
cc command as described in IBM AlX Version 4 Commands Reference and
IBM AIX Version 4 General Programming Concepts: Writing and Debugging
Programs

Step 2: Run the executable program to
produce a profile data file. If you have
compiled the source code with the -p option,
the data file produced is named mon.out. If
you have compiled the source code with the
-pg option, the data file produced is named
gmon.out.

Step 2: Before you run the parallel program, set the environment variable
MP_EUILIBPATH=/usr/Ipp/ppe.poellib/profiled:/usr/lib/profiled:/lib/profiled

: lusr/lpp/ppe.poellib . If your message passing library is not in
lusr/lpp/ppe.poellib , substitute your message passing library path. Run the
parallel program. When the program ends, it generates a profile data file for
each parallel task. The system gives unique names to the data files by
appending each task's identifying number to mon.out or gmon.out. If you have
compiled the source code with the -p option, the data files produced take the
form:

mon.out. taskid

If the source code has been compiled with the -pg option, the data files
produced take the form:

gmon.out. taskid

Note: The current directory must be writable from all remote nodes.
Otherwise, the profile data files will have to be manually moved to the
home node for analysis with prof and gprof . You can also use the
mcpgath command to move the files. See IBM Parallel Environment
for AIX: Operation and Use, Volume 1, Using the Parallel Operating
Environment for more about mcpgath .

© Copyright IBM Corp. 1995, 1998

75

To Profile a Serial Program: To Profile a Parallel Program:

Step 3: Use either the prof or the gprof Step 3: Use either the prof or gprof command to process the profile data
command to process the profile data file. files. The prof command processes the mon.out data files, and gprof

You use the prof command to process the processes the gmon.out data files. You can process one, some, or all of the
mon.out data file, and the gprof command to data files created during the run. You must specify the name(s) of the profile
process the gmon.out data file. data file(s) to read, however, because the prof and gprof commands read

mon.out or gmon.out by default. On the prof command, use the -m flag to
specify the name(s) of the profile data file(s) it should read. For example, to
specify the profile data file for task 0 with the prof command:

ENTER prof -m mon.out. 0

You can also specify that the prof command should take profile data from
some or all of the profile data files produced. For example, to specify three
different profile data files — the ones associated with tasks 0, 1, and 2 — on the
prof command:

ENTER prof -m mon.out. 0 mon.out. 1 mon.out. 2

On the gprof command, you simply specify the name(s) of the profile data
file(s) it should read on the command line. You must also specify the name of
the program on the gprof command, but no option flag is needed. For
example, to specify the profile data file for task O with the gprof command:

ENTER gprof program gmon.out .0

As with the prof command, you can also specify that the gprof command
should take profile data from some or all of the profile data files produced. For
example, to specify three different profile data files — the ones associated with
tasks 0, 1, and 2 — on the gprof command:

ENTER gprof program gmon.out. 0 gmon.out. 1 gmon.out. 2

The parallel utility, mp_profile (), may also be used to selectively profile portions of
a program. To start profiling, call mp_profile (1). To suspend profiling, call
mp_profile (0). The final profile data set will contain counts and CPU times for the
program lines that are delimited by the start and stop calls. In C, the calls are
mpc_profile (1), and mpc_profile (0). By default, profiling is active at the start of the
user's executable.

Note: Like the sequential version of prof /gprof , if more than one profile file is
specified, the parallel version of the prof /gprof command output shows the
sum of the profile information in the given profile files. There is no statistical
analysis contacted across the multiple profile files.

76 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

Glossary of Terms and Abbreviations

This glossary includes terms and definitions from:

e The Dictionary of Computing, New York:
McGraw-Hill, 1994.

e The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies can be purchased from the
American National Standards Institute, 1430
Broadway, New York, New York 10018. Definitions
are identified by the symbol (A) after the definition.

e The ANSI/EIA Standard - 440A: Fiber Optic
Terminology, copyright 1989 by the Electronics
Industries Association (EIA). Copies can be
purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue N.W.,
Washington, D.C. 20006. Definitions are identified
by the symbol (E) after the definition.

e The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (1)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after the
definition, indicating that final agreement has not yet
been reached among the participating National
Bodies of SC1.

This section contains some of the terms that are
commonly used in the Parallel Environment books and
in this book in particular.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright 1970 by American
National Standards Institute, Incorporated), which was
prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards
Committee X3. ANSI definitions are preceded by an
asterisk (*).

Other definitions in this glossary are taken from IBM

Vocabulary for Data Processing, Telecommunications,
and Office Systems (GC20-1699).

© Copyright IBM Corp. 1995, 1998

A

address . A value, possibly a character or group of
characters that identifies a register, a device, a
particular part of storage, or some other data source or
destination.

AIX. Abbreviation for Advanced Interactive Executive,
IBM's licensed version of the UNIX operating system.
AIX is particularly suited to support technical computing
applications, including high function graphics and
floating point computations.

AlXwindows Environment/6000 A graphical user
interface (GUI) for the RS/6000. It has the following
components:

¢ A graphical user interface and toolkit based on
OSF/Motif

¢ Enhanced X-Windows, an enhanced version of the
MIT X Window System

e Graphics Library (GL), a graphical interface library
for the applications programmer which is compatible
with Silicon Graphics' GL interface.

API. Application Programming Interface.

application . The use to which a data processing
system is put; for example, topayroll application, an
airline reservation application.

argument . A parameter passed between a calling
program and a called program or subprogram.

attribute . A named property of an entity.

B

bandwidth . The total available bit rate of a digital
channel.

blocking operation An operation which does not
complete until the operation either succeeds or fails. For
example, a blocking receive will not return until a
message is received or until the channel is closed and
no further messages can be received.

breakpoint . A place in a program, specified by a
command or a condition, where the system halts
execution and gives control to the workstation user or to
a specified program.

broadcast operation A communication operation in

which one processor sends (or broadcasts) a message
to all other processors.

77

buffer . A portion of storage used to hold input or
output data temporarily.

C

C. A general purpose programming language. It was
formalized by ANSI standards committee for the C
language in 1984 and by Uniforum in 1983.

C++. A general purpose programming language, based
on C, which includes extensions that support an
object-oriented programming paradigm. Extensions
include:

¢ strong typing

¢ data abstraction and encapsulation

¢ polymorphism through function overloading and
templates

¢ class inheritance.

call arc . The representation of a call between two
functions within the Xprofiler function call tree. It
appears as a solid line between the two functions. The
arrowhead indicates the direction of the call; the
function it points to is the one that receives the call. The
function making the call is known as the caller, while
the function receiving the call is known as the callee.

chaotic relaxation . An iterative relaxation method
which uses a combination of the Gauss-Seidel and
Jacobi-Seidel methods. The array of discrete values is
divided into sub-regions which can be operated on in
parallel. The sub-region boundaries are calculated using
Jacobi-Seidel, whereas the sub-region interiors are
calculated using Gauss-Seidel. See also Gauss-Seidel.

client. A function that requests services from a server,
and makes them available to the user.

cluster . A group of processors interconnected through
a high speed network that can be used for high
performance computing. It typically provides excellent
price/performance.

collective communication A communication
operation which involves more than two processes or
tasks. Broadcasts, reductions, and the MPI_Allreduce
subroutine are all examples of collective communication
operations. All tasks in a communicator must
participate.

command alias . When using the PE command line
debugger, pdbx, you can create abbreviations for

existing commands using the pdbx alias command.
These abbreviations are know as command aliases.

Communication Subsystem (CSS) A component of
the IBM Parallel System Support Programs for AIX that
provides software support for the High Performance

Switch. It provides two protocols; IP (Internet Protocol)

78 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

for LAN based communication and US (user space) as
a message passing interface that is optimized for
performance over the switch. See also Internet Protocol
and User Space.

communicator . An MPI object that describes the
communication context and an associated group of
processes.

compile . To translate a source program into an
executable program.

condition . One of a set of specified values that a data
item can assume.

control workstation A workstation attached to the
RS/6000 SP that serves as a single point of control
allowing the administrator or operator to monitor and
manage the system using IBM Parallel System Support
Programs for AIX.

core dump . A process by which the current state of a
program is preserved in a file. Core dumps are usually
associated with programs that have encountered an
unexpected, system-detected fault, such as a
Segmentation Fault, or severe user error. The current
program state is needed for the programmer to
diagnose and correct the problem.

core file . A file which preserves the state of a
program, usually just before a program is terminated for
an unexpected error. See also core dump.

current context . When using either of the PE parallel
debuggers, control of the parallel program and the
display of its data can be limited to a subset of the
tasks that belong to that program. This subset of tasks
is called the current context. You can set the current
context to be a single task, multiple tasks, or all the
tasks in the program.

D

data decomposition A method of breaking up (or
decomposing) a program into smaller parts to exploit
parallelism. One divides the program by dividing the
data (usually arrays) into smaller parts and operating on
each part independently.

data parallelism . Refers to situations where parallel
tasks perform the same computation on different sets of
data.

dbx. A symbolic command line debugger that is often
provided with UNIX systems. The PE command line
debugger, pdbx, is based on the dbx debugger.

debugger . A debugger provides an environment in
which you can manually control the execution of a

program. It also provides the ability to display the
program's data and operation.

distributed shell (dsh) An IBM Parallel System
Support Programs for AIX command that lets you issue
commands to a group of hosts in parallel. See the /IBM
RISC System/6000 Scalable POWERparallel Systems:
Command and Technical Reference (GC23-3900-00) for
details.

domain name . The hierarchical identification of a host
system (in a network), consisting of human-readable
labels, separated by decimals.

E

environment variable 1. A variable that describes the
operating environment of the process. Common
environment variables describe the home directory,
command search path, and the current time zone. 2. A
variable that is included in the current software
environment and is therefore available to any called
program that requests it.

event. An occurrence of significance to a task; for
example, the completion of an asynchronous operation
such as an input/output operation.

Ethernet. Ethernet is the standard hardware for
TCP/IP LANs in the UNIX marketplace. Itis a 10
megabit per second baseband type network that uses
the contention based CSMA/CD (collision detect) media
access method.

executable . A program that has been link-edited and
therefore can be run in a processor.

execution . To perform the actions specified by a
program or a portion of a program.

expression . In programming languages, a language
construct for computing a value from one or more
operands.

F

fairness . A policy in which tasks, threads, or
processes must be allowed eventual access to a
resource for which they are competing. For example, if
multiple threads are simultaneously seeking a lock, then
no set of circumstances can cause any thread to wait
indefinitely for access to the lock.

FDDI. Fiber distributed data interface (100 Mbit/s fiber
optic LAN).

file system . In the AIX operating system, the
collection of files and file management structures on a

physical or logical mass storage device, such as a
diskette or minidisk.

fileset. 1) An individually installable option or update.
Options provide specific function while updates correct
an error in, or enhance, a previously installed product.
2) One or more separately installable, logically grouped
units in an installation package. See also Licensed
Program Product and package.

foreign host . See remote host.

Fortran . One of the oldest of the modern programming
languages, and the most popular language for scientific
and engineering computations. It's name is a
contraction of FORmula TRANslation. The two most
common Fortran versions are Fortran 77, originally
standardized in 1978, and Fortran 90. Fortran 77 is a
proper subset of Fortran 90.

function call tree . A graphical representation of all the
functions and calls within an application, which appears
in the Xprofiler main window. The functions are
represented by green, solid-filled rectangles called
function boxes. The size and shape of each function
box indicates its CPU usage. Calls between functions
are represented by blue arrows, called call arcs, drawn
between the function boxes. See also call arcs.

function cycle . A chain of calls in which the first caller
is also the last to be called. A function that calls itself
recursively is not considered a function cycle.

functional decomposition A method of dividing the
work in a program to exploit parallelism. One divides
the program into independent pieces of functionality
which are distributed to independent processors. This is
in contrast to data decomposition which distributes the
same work over different data to independent
processors.

functional parallelism Refers to situations where
parallel tasks specialize in particular work.

G

Gauss-Seidel . An iterative relaxation method for
solving Laplace's equation. It calculates the general
solution by finding particular solutions to a set of
discrete points distributed throughout the area in
question. The values of the individual points are
obtained by averaging the values of nearby points.
Gauss-Seidel differs from Jacobi-Seidel in that for the
i+1st iteration Jacobi-Seidel uses only values calculated
in the ith iteration. Gauss-Seidel uses a mixture of
values calculated in the ith and i+1st iterations.

global max . The maximum value across all

processors for a given variable. It is global in the sense
that it is global to the available processors.

Glossary of Terms and Abbreviations 79

global variable . A variable defined in one portion of a
computer program and used in at least one other
portion of the computer program.

gprof . A UNIX command that produces an execution

profile of C, Pascal, Fortran, or COBOL programs. The
execution profile is in a textual and tabular format. It is
useful for identifying which routines use the most CPU

time. See the man page on gprof .

GUI (Graphical User Interface) . A type of computer
interface consisting of a visual metaphor of a real-world
scene, often of a desktop. Within that scene are icons,
representing actual objects, that the user can access
and manipulate with a pointing device.

H

High Performance Switch The high-performance
message passing network, of the RS/6000 SP(SP)
machine, that connects all processor nodes.

HIPPI. High performance parallel interface.

hook . hook is a pdbx command that allows you to
re-establish control over all task(s) in the current context
that were previously unhooked with this command.

home node . The node from which an application
developer compiles and runs his program. The home
node can be any workstation on the LAN.

host. A computer connected to a network, and
providing an access method to that network. A host
provides end-user services.

host list file . A file that contains a list of host hames,
and possibly other information, that was defined by the
application which reads it.

host name . The name used to uniquely identify any
computer on a network.

hot spot . A memory location or synchronization
resource for which multiple processors compete
excessively. This competition can cause a
disproportionately large performance degradation when
one processor that seeks the resource blocks,
preventing many other processors from having it,
thereby forcing them to become idle.

IBM Parallel Environment for AIX A program
product that provides an execution and development
environment for parallel Fortran, C, or C++ programs. It
also includes tools for debugging, profiling, and tuning
parallel programs.

80 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

installation image . A file or collection of files that are
required in order to install a software product on a
RS/6000 workstation or on SP system nodes. These
files are in a form that allows them to be installed or
removed with the AlX installp command. See also
fileset, Licensed Program Product, and package.

Internet . The collection of worldwide networks and
gateways which function as a single, cooperative virtual
network.

Internet Protocol (IP) . 1) The TCP/IP protocol that
provides packet delivery between the hardware and
user processes. 2) The High Performance Switch
library, provided with the IBM Parallel System Support
Programs for AlX, that follows the IP protocol of
TCP/IP.

IP. See Internet Protocol.

J

Jacobi-Seidel . See Gauss-Seidel.

job management system

The software you use to manage the jobs across your
system, based on the availability and state of system
resources.

K

Kerberos . A publicly available security and
authentication product that works with the IBM Parallel
System Support Programs for AlX software to
authenticate the execution of remote commands.

kernel. The core portion of the UNIX operating system
which controls the resources of the CPU and allocates
them to the users. The kernel is memory-resident, is
said to run in kernel mode (in other words, at higher
execution priority level than user mode) and is protected
from user tampering by the hardware.

L

Laplace's equation . A homogeneous patrtial
differential equation used to describe heat transfer,
electric fields, and many other applications.

latency . The time interval between the instant at which
an instruction control unit initiates a call for data
transmission, and the instant at which the actual
transfer of data (or receipt of data at the remote end)
begins. Latency is related to the hardware
characteristics of the system and to the different layers
of software that are involved in initiating the task of
packing and transmitting the data.

Licensed Program Product (LPP) A collection of
software packages, sold as a product, that customers
pay for to license. It can consist of packages and
filesets a customer would install. These packages and
filesets bear a copyright and are offered under the
terms and conditions of a licensing agreement. See also
fileset and package.

LoadLeveler . A job management system that works
with POE to allow users to run jobs and match
processing needs with system resources, in order to
better utilize the system.

local variable . A variable that is defined and used
only in one specified portion of a computer program.

loop unrolling A program transformation which
makes multiple copies of the body of a loop, placing the
copies also within the body of the loop. The loop trip
count and index are adjusted appropriately so the new
loop computes the same values as the original. This
transformation makes it possible for a compiler to take
additional advantage of instruction pipelining, data
cache effects, and software pipelining.

See also optimization.

M

menu. A list of options displayed to the user by a data
processing system, from which the user can select an
action to be initiated.

message catalog . A file created using the AIX
Message Facility from a message source file that
contains application error and other messages, which
can later be translated into other languages without
having to recompile the application source code.

message passing . Refers to the process by which
parallel tasks explicitly exchange program data.

MIMD (Multiple Instruction Multiple Data) A parallel
programming model in which different processors
perform different instructions on different sets of data.

MPMD (Multiple Program Multiple Data) A parallel
programming model in which different, but related,
programs are run on different sets of data.

MPI. Message Passing Interface; a standardized API
for implementing the message passing model.

N

network . An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit data
to and receive data from other systems and users.

node. (1) In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network. (2) In terms of
the RS/6000 SP, a single location or workstation in a
network. An SP node is a physical entity (a processor).

node ID. A string of unique characters that identifies
the node on a network.

nonblocking operation An operation, such as
sending or receiving a message, which returns
immediately whether or not the operation was
completed. For example, a nonblocking receive will not
wait until a message is sent, but a blocking receive will
wait. A nonblocking receive will return a status value
that indicates whether or not a message was received.

O

object code . The result of translating a computer
program to a relocatable, low-level form. Object code
contains machine instructions, but symbol names (such
as array, scalar, and procedure names), are not yet
given a location in memory.

optimization . A not strictly accurate but widely used
term for program performance improvement, especially
for performance improvement done by a compiler or
other program translation software. An optimizing
compiler is one that performs extensive code
transformations in order to obtain an executable that
runs faster but gives the same answer as the original.
Such code transformations, however, can make code
debugging and performance analysis very difficult
because complex code transformations obscure the
correspondence between compiled and original source
code.

option flag . Arguments or any other additional
information that a user specifies with a program name.
Also referred to as parameters or command line
options.

P

package . A number of filesets that have been
collected into a single installable image of program
products, or LPPs. Multiple filesets can be bundled
together for installing groups of software together. See
also fileset and Licensed Program Product.

Glossary of Terms and Abbreviations 81

parallelism . The degree to which parts of a program
may be concurrently executed.

parallelize . To convert a serial program for parallel
execution.

Parallel Operating Environment (POE) An execution
environment that smooths the differences between
serial and parallel execution. It lets you submit and
manage parallel jobs. It is abbreviated and commonly
known as POE.

parameter . * (1) In Fortran, a symbol that is given a
constant value for a specified application. (2) An item in
a menu for which the operator specifies a value or for
which the system provides a value when the menu is
interpreted. (3) A name in a procedure that is used to
refer to an argument that is passed to the procedure.
(4) A particular piece of information that a system or
application program needs to process a request.

partition . (1) A fixed-size division of storage. (2) In
terms of the RS/6000 SP, a logical definition of nodes
to be viewed as one system or domain. System
partitioning is a method of organizing the SP into
groups of nodes for testing or running different levels of
software of product environments.

Partition Manager . The component of the Parallel
Operating Environment (POE) that allocates nodes, sets
up the execution environment for remote tasks, and
manages distribution or collection of standard input
(STDIN), standard output (STDOUT), and standard
error (STDERR).

pdbx . pdbx is the parallel, symbolic command line
debugging facility of PE. pdbx is based on the dbx
debugger and has a similar interface.

PE. The IBM Parallel Environment for AIX program
product.

performance monitor A utility which displays how
effectively a system is being used by programs.

POE. See Parallel Operating Environment.

pool. Groups of nodes on an SP that are known to the
Resource Manager, and are identified by a number.

point-to-point communication A communication
operation which involves exactly two processes or
tasks. One process initiates the communication through
a send operation. The partner process issues a receive
operation to accept the data being sent.

procedure . (1) In a programming language, a block,

with or without formal parameters, whose execution is
invoked by means of a procedure call. (2) A set of

82 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

related control statements that cause one or more
programs to be performed.

process . A program or command that is actually
running the computer. It consists of a loaded version of
the executable file, its data, its stack, and its kernel data
structures that represent the process's state within a
multitasking environment. The executable file contains
the machine instructions (and any calls to shared
objects) that will be executed by the hardware. A
process can contain multiple threads of execution.

The process is created via a fork () system call and
ends using an exit() system call. Between fork and
exit, the process is known to the system by a unique
process identifier (pid).

Each process has its own virtual memory space and
cannot access another process's memory directly.
Communication methods across processes include
pipes, sockets, shared memory, and message passing.

prof. A utility which produces an execution profile of
an application or program. It is useful to identifying
which routines use the most CPU time. See the man
page for prof .

profiling . The act of determining how much CPU time
is used by each function or subroutine in a program.
The histogram or table produced is called the execution
profile.

Program Marker Array . An X-Windows run time
monitor tool provided with Parallel Operating
Environment, used to provide immediate visual
feedback on a program's execution.

pthread . A thread that conforms to the POSIX
Threads Programming Model.

R

reduction operation An operation, usually
mathematical, which reduces a collection of data by one
or more dimensions. For example, the arithmetic SUM
operation is a reduction operation which reduces an
array to a scalar value. Other reduction operations
include MAXVAL and MINVAL.

remote host . Any host on a network except the one at
which a particular operator is working.

remote shell (rsh) . A command supplied with both
AIX and the IBM Parallel System Support Programs for
AIX that lets you issue commands on a remote host.

Report. In Xprofiler, a tabular listing of performance
data that is derived from the gmon.out files of an
application. There are five types of reports that are
generated by Xprofiler, and each one presents different
statistical information for an application.

Resource Manager . A server that runs on one of the
nodes of an RS/6000 SP (SP) machine. It prevents
parallel jobs from interfering with each other, and
reports job-related node information.

RISC. Reduced Instruction Set Computing (RISC), the
technology for today's high performance personal
computers and workstations, was invented in 1975.

S

shell script . A sequence of commands that are to be
executed by a shell interpreter such as C shell, korn
shell, or Bourne shell. Script commands are stored in a
file in the same form as if they were typed at a terminal.

segmentation fault . A system-detected error, usually
caused by referencing an invalid memory address.

server . A functional unit that provides shared services
to workstations over a network; for example, a file
server, a print server, a mail server.

signal handling . A type of communication that is used
by message passing libraries. Signal handling involves
using AIX signals as an asynchronous way to move
data in and out of message buffers.

source line . A line of source code.

source code . The input to a compiler or assembler,
written in a source language. Contrast with object
code.

SP. RS/6000 SP; a scalable system from two to 128
processor nodes, arranged in various physical
configurations, that provides a high powered computing
environment.

SPMD (Single Program Multiple Data) A parallel
programming model in which different processors
execute the same program on different sets of data.

standard input (STDIN) . In the AIX operating system,
the primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard
input can be from a file or the output from another
command.

standard output (STDOUT) . In the AIX operating
system, the primary destination of data produced by a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command.

stencil . A pattern of memory references used for
averaging. A 4-point stencil in two dimensions for a
given array cell, x(i,j), uses the four adjacent cells,
x(i-1,j), x(i+1,), x(i,j-1), and x(i,j+1).

subroutine . (1) A sequence of instructions whose
execution is invoked by a call. (2) A sequenced set of
instructions or statements that may be used in one or
more computer programs and at one or more points in
a computer program. (3) A group of instructions that
can be part of another routine or can be called by
another program or routine.

synchronization The action of forcing certain points
in the execution sequences of two or more
asynchronous procedures to coincide in time.

system administrator (1) The person at a computer
installation who designs, controls, and manages the use
of the computer system. (2) The person who is
responsible for setting up, modifying, and maintaining
the Parallel Environment.

System Data Repository . A component of the IBM
Parallel System Support Programs for AlX software that
provides configuration management for the SP system.
It manages the storage and retrieval of system data
across the control workstation, file servers, and nodes.

System Status Array . An X-Windows run time monitor
tool, provided with the Parallel Operating Environment,
that lets you quickly survey the utilization of processor
nodes.

T

task. A unit of computation analogous to an AIX
process.

thread. A single, separately dispatchable, unit of
execution. There may be one or more threads in a
process, and each thread is executed by the operating
system concurrently.

tracing . In PE, the collection of data for the
Visualization Tool (VT). The program is traced by
collecting information about the execution of the
program in trace records. These records are then
accumulated into a trace file which a user visualizes
with VT.

tracepoint . Tracepoints are places in the program
that, when reached during execution, cause the
debugger to print information about the state of the
program.

trace record . In PE, a collection of information about a
specific event that occurred during the execution of your
program. For example, a trace record is created for
each send and receive operation that occurs in your
program (this is optional and may not be appropriate).
These records are then accumulated into a trace file
which allows the Visualization Tool to visually display
the communications patterns from the program.

Glossary of Terms and Abbreviations 83

U

unrolling loops See loop unrolling.

US. See user space.

user. (1) A person who requires the services of a
computing system. (2) Any person or any thing that may
issue or receive commands and message to or from the
information processing system.

user space (US) . A version of the message passing
library that is optimized for direct access to the SP High
Performance Switch, that maximizes the performance
capabilities of the SP hardware.

utility program . A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.

utility routine . A routine in general support of the
processes of a computer; for example, an input routine.

Vv

variable . (1) In programming languages, a named
object that may take different values, one at a time. The
values of a variable are usually restricted to one data
type. (2) A quantity that can assume any of a given set
of values. (3) A name used to represent a data item
whose value can be changed while the program is
running. (4) A name used to represent data whose

84 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 2

value can be changed, while the program is running, by
referring to the name of the variable.

view. (1) In an information resource directory, the
combination of a variation name and revision number
that is used as a component of an access name or of a
descriptive name.

Visualization Tool . The PE Visualization Tool. This
tool uses information that is captured as your parallel
program executes, and presents a graphical display of
the program execution. For more information, see IBM
Parallel Environment for AlX: Operation and Use,
Volume 2, Tools Reference

VT. See Visualization Tool.

X

X Window System . The UNIX industry's graphics
windowing standard that provides simultaneous views of
several executing programs or processes on high
resolution graphics displays.

xpdbx . This is the former name of the PE graphical
interface debugging facility, which is now called pedb.

Xprofiler . An AIX tool that is used to analyze the
performance of both serial and parallel applications, via
a graphical user interface. Xprofiler provides quick
access to the profiled data, so that the functions that
are the most CPU-intensive can be easily identified.

Index

A

AIX profilers
gprof 1
prof 1

C

commands, PE 63
conventions X

customizing resources 67
customizing tool resources 67

G

gprof 1

IBM Parallel Environment for AIX ix

M

mixed system ix

P

Parallel Operating Environment (POE) ix
parallel profiling capability 75
parallel programs
profiing 1
PE commands 63
xprofiler 63
POE environment variables
MP_EUILIBPATH 75
prof 1
profilers, AIX 1
profiling parallel programs 1
publications, related x

R

resource settings 67
resources, customizing 67

S

serial program 75

T

trademarks v

© Copyright IBM Corp. 1995, 1998

X

Xprofiler 1
Xresources, customizing 67

85

Communicating Your Comments to IBM

IBM Parallel Environment for AIX
Operation and Use, Volume 2, Part 2
Profiling

Version 2 Release 4

Publication No. SC28-1980-02

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

¢ If you prefer to send comments by mail, use the RCF at the back of this book.
e If you prefer to send comments by FAX, use this number:

— FAX: (International Access Code)+1+914+432-9405
e If you prefer to send comments electronically, use this network ID:

— IBM Mail Exchange: USIB6TC9 at IBMMAIL
— Internet e-mail: mhvrcfs@us.ibm.com
— World Wide Web: http://www.s390.ibm.com/0s390

Make sure to include the following in your note:
¢ Title and publication number of this book
e Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your
comments by phone.

Reader's Comments — We'd Like to Hear from You

IBM Parallel Environment for AIX
Operation and Use, Volume 2, Part 2
Profiling

Version 2 Release 4

Publication No. SC28-1980-02

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?
Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

As an introduction As a text (student)

[] []
[1] As a reference manual [1] As a text (instructor)
[]

For another purpose (explain)

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

Reader's Comments — We'd Like to Hear from You

SC28-1980-02

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384
522 South Road

Poughkeepsie NY 12601-5400

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SC28-1980-02

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Program Number: 5765-543

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

