IBM Parallel Environment for AIX

Operation and Use, Volume 2, Part 1
Debugging and Visualizing

Version 2 Release 4

SC28-1980-02

IBM Parallel Environment for AIX

Operation and Use, Volume 2, Part 1
Debugging and Visualizing

Version 2 Release 4

SC28-1980-02

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

Third Edition (October 1998)

This edition applies to Version 2, Release 4 , Modification 0 of the IBM Parallel Environment for AIX (5765-543), and to all
subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation, Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400
United States of America
FAX (United States and Canada: 1+914+432-9405
FAX (Other Countries)

Your International Access Code)+1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL

Internet e-mail: mhvrcf@vnet.ibm.com

World Wide Web: http://www.rs6000.ibm.com (select Parallel Computing)
If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
¢ Title and order number of this book
e Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

Copyright International Business Machines Corporation 1998 . All rights reserved. Note to U.S. Government Users — Documentation
related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with
IBM Corp.

© Copyright International Business Machines Corporation 1995, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices Vi
Trademarks iX
About This Book Xi
Who Should Use This Book Xi
How This Book is Organized Xi
Overview of Contents Xi
Typographic Conventions Xii
Related Publications Xii
IBM Parallel Environment for AIX Publications Xiii
Related IBM Publications Xiii
Related Non-IBM Publications Xiv
National Language Support Xiv
Accessing Online Information Xiv
Online Information Resources XV
Getting the Books Online XV
Chapter 1. Using the pdbx Debugger, . 1
pdbx Subcommands 1
Starting the pdbx Debugger 4
Normal Mode 4
Attach Mode e 6
Attach Screen L 7
Loading the Partition with the Load Subcommand 10
Displaying Tasks and their States 11
Grouping Tasks 11
Controlling Program Execution 20
Examining Program Data 27
Other Key Features 33
Other Important Notes on pdbx 37
Exiting pdbx 39
Chapter 2. Using the pedb Debugger 41
Starting the pedb Debugger 41
Normal Mode 42
Attach Mode 43
Attach Window 44
The pedb Main Window 46
Loading the Partition from the Load Executables Window 48
Program Search Path 48
The pedb Window with a Partition Loaded 50
Chapter 3. Visualizing Program and System Performance 109
Starting the Visualization Tool 113
Opening and Closing Views 114
Using VT for Trace Visualization 117
Types of Trace Records 117
Trace Record Timestamps 118
Generating Trace Files 119

© Copyright IBM Corp. 1995, 1998 ili

Using VT to Play Trace Files 125

Using VT for Performance Monitoring 139

The Performance Monitor Window 140
Adjusting a View's Time Resolution and Colors 144

Adjusting View Colors 146
Saving and Loading a VT Configuration File 147
View Descriptions 148

View Types e 149

Communication/Program Views 149

Computation Views 162

Disk Views 174

Network Views 180

System Views 184
Appendix A. Parallel Environment Tools Commands 193
pdbx .. 193
pdbx alias Subcommand 198
pdbx assign Subcommand 199
pdbx attach Subcommand 200
pdbx attribute Subcommand 200
pdbx back Subcommand 201
pdbx call Subcommand 201
pdbx case Subcommand 201
pdbx catch Subcommand 202
pdbx condition Subcommand 202
pdbx cont Subcommand 203
pdbx dbx Subcommand 203
pdbx delete Subcommand L. 204
pdbx detach Subcommand oL 205
pdbx dhelp Subcommand 205
pdbx display memory Subcommand 206
pdbx down Subcommand 207
pdbx dump Subcommand 207
pdbx file Subcommand 207
pdbx func Subcommand 208
pdbx goto Subcommand 208
pdbx gotoi Subcommand 208
pdbx group Subcommand 208
pdbx halt Subcommand 210
pdbx help Subcommand 211
pdbx hook Subcommand 211
pdbx ignore Subcommand 212
pdbx list Subcommand 213
pdbx listi Subcommand 214
pdbx load Subcommand 215
pdbx map Subcommand 215
pdbx mutex Subcommand 215
pdbx next Subcommand 216
pdbx nexti Subcommand 217
pdbx on Subcommand 217
pdbx print Subcommand 219
pdbx quit Subcommand 220
pdbx registers Subcommand 220
pdbx return Subcommand 220

iV IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx search Subcommand 221

pdbx set Subcommand Lo 221
pdbx sh Subcommand 221
pdbx skip Subcommand 222
pdbx source Subcommand 222
pdbx status Subcommand 222
pdbx step Subcommand 223
pdbx stepi Subcommand 224
pdbx stop Subcommand 224
pdbx tasks Subcommando 226
pdbx thread Subcommand 226
pdbx trace Subcommand 228
pdbx unalias Subcommand 229
pdbx unhook Subcommand 230
pdbx unset Subcommand 231
pdbx up Subcommand 231
pdbx use Subcommand 231
pdbx whatis Subcommand 232
pdbx where Subcommand 232
pdbx whereis Subcommand 232
pdbx which Subcommand 232
pedb . .. 233
VU 235
Appendix B. Command Line Flags for Normal or Attach Mode 239
Appendix C. Exporting Arrays to Hierarchical Data Format (HDF) ... 241
Appendix D. Visualization Customization and Data Explorer Samples . 243
Appendix E. Customizing Tool Resources 247
Glossary of Terms and Abbreviations 249
Index 257

Contents V

Vi IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, NY 10594

USA
Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Mail Station P300

522 South Road
Poughkeepsie, NY 12601-5400
USA

Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 1995, 1998 vii

Viii IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

AlX

AIX/6000

IBM

LoadLeveler

Micro Channel
RISC System/6000
RS/6000
POWERparallel

SP

Microsoft, Windows, and the Windows logo are trademarks or registered
trademarks of Microsoft Corporation.

PostScript is a trademark of Adobe Systems, Incorporated.
Motif is a trademark of Open Software Foundation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service hames, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1995, 1998

X IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

About This Book

This book describes the facilities and tools for the IBM Parallel Environment (PE)
for AIX program product and how to use them to debug and analyze parallel
programs. It describes the various PE tools for debugging parallel programs and
visualizing a program's performance.

This book concentrates on the actual commands, graphical user interfaces, and use
of these tools as opposed to the writing of parallel programs. For this reason, you
should use this book in conjunction with IBM Parallel Environment for AIX: MPI
Programming and Subroutine Reference, (GC23-3894) and IBM Parallel
Environment for AIX: MPL Programming and Subroutine Reference (GC23-3893).

This book assumes that AIX Version 4.3.2 or later , X-Windows**, and the PE
software are already installed. It also assumes that you have been authorized to
run the Parallel Operating Environment (POE). The PE software is designed to run
on an IBM RS/6000 SP, an RS/6000 network cluster, or on a mixed system where
additional RS/6000 processors supplement an SP system. For complete information
on installing the PE software and setting up users, see IBM Parallel Environment
for AIX: Installation, (GC23-3892). Also, see the appropriate AIX 4.3.2 or later
documentation listed under “Related Publications” on page xii. For information on
POE and executing parallel programs, see IBM Parallel Environment for AlX:
Operation and Use, Volume 1, Using the Parallel Operating Environment and I1BM
Parallel Environment for AlIX: Hitchhiker's Guide

Who Should Use This Book

This book is designed primarily for end users and application developers. It is also
intended for those who run parallel programs, and some of the information and
tools covered should interest system administrators. Readers should have some
experience with graphical user interface concepts such as windows, pull-down
menus, and menu bars. They should also have knowledge of the AIX operating
system and the X-Window system. Where necessary, this book provides some
background information relating to these areas. More commonly, this book refers
you to the appropriate documentation.

How This Book is Organized

Overview of Contents
This book contains the following information:

e Chapter 1, “Using the pdbx Debugger” on page 1 describes the Parallel
Environment's command line debugger — pdbx . This tool uses a line-oriented
interface, allowing you to invoke a parallel program from an ASCII terminal.

e Chapter 2, “Using the pedb Debugger” on page 41 describes the other Parallel
Environment debugger — pedb. This tool uses an X-windows interface for
interactive debugging.

e Chapter 3, “Visualizing Program and System Performance” on page 109
describes the PE Visualization Tool (VT). Intended for application developers,
this chapter describes how you can play back statistical and event records —

© Copyright IBM Corp. 1995, 1998 Xi

called trace records — generated during a program's execution. It also describes
how you can use VT to monitor the operational status and activity of each of
the processor nodes.

* Appendix A, “Parallel Environment Tools Commands” on page 193 contains
the manual pages for the PE commands discussed throughout this book.

e Appendix B, “Command Line Flags for Normal or Attach Mode” on page 239
shows the command line flags for pedb debugging in normal or attach mode.

e Appendix C, “Exporting Arrays to Hierarchical Data Format (HDF)” on
page 241 describes additional information about the format of the data used for
the pedb export feature.

e Appendix D, “Visualization Customization and Data Explorer Samples” on
page 243 shows additional information on the Data Explorer samples that are
included as a set of pre-packaged interfaces for the visualization of program
data.

e Appendix E, “Customizing Tool Resources” on page 247 describes how to
customize X-Windows resources for PE tools.

Typographic Conventions
This book uses the following typographic conventions:

Type Style Used For

bold Bold words or characters represent system elements that you must use literally,
such as command names, flag names, and path names.

Bold words also indicate the first use of a term included in the glossary.

italic Italic words or characters represent variable values that you must supply.

Italics are also used for book titles and for general emphasis in text.

Constant width Examples and information that the system displays appear in constant width
typeface.

In addition to the highlighting conventions, this manual uses the following
conventions when describing how to perform tasks. User actions appear in
uppercase boldface type. For example, if the action is to enter the pedb command,
this manual presents the instruction as:

ENTER pedb

The symbol “®” indicates the system response to an action. So the system's
response to entering the pedb command would read:

® The pedb main window opens.

Related Publications

Xii IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

IBM Parallel Environment for AlX Publications

IBM Parallel Environment for AlX: General Information, GC23-3906
IBM Parallel Environment for AlX: Hitchhiker's Guide, GC23-3895
IBM Parallel Environment for AlX: Installation, GC28-1981

IBM Parallel Environment for AlX: Operation and Use, Volume 1, Using the
Parallel Operating Environment, SC28-1979

IBM Parallel Environment for AlIX: MPI Programming and Subroutine
Reference, GC23-3894

IBM Parallel Environment for AIX: MPL Programming and Subroutine
Reference, GC23-3893

IBM Parallel Environment for AlX: Messages, GC28-1982
IBM Parallel Environment for AlX: Licensed Program Specification, GC23-3896

As an alternative to ordering the individual books, you can use SBOF-8588 to order
the entire IBM Parallel Environment for AIX library.

Related IBM Publications

IBM AIX Version 4 Getting Started, SC23-2527
IBM AIX General Concepts and Procedures for RS/6000 GC23-2202
IBM AIX Version 4 Files Reference, SC23-2512

IBM AIX Version 4 System Management Guide: Communications and
Networks, SC23-2526

IBM AIX Version 4.1 Installation Guide SC23-2550

IBM AIX Version 4.2 Installation Guide SC23-1924

IBM AIX Version 4 Commands Reference, SBOF-1851 (all volumes)
IBM AIX Versions 3.2 and 4 Performance Tuning Guide SC23-2365
IBM AIX Version 4 Messages Guide and Reference SC23-2641

IBM AIX Version 4.1 Network Installation Management Guide and Reference,
SC23-2627

IBM AIX Version 4.2 Network Installation Management Guide and Reference,
SC23-1926

IBM AIX Version 4 System Management Guide: Operating System and
Devices, SC23-2525

IBM AIX Version 4 General Programming Concepts: Writing and Debugging
Programs, SC23-2533

IBM AIX Version 4 Communications Programming Concepts SC23-2610
Diskless Workstation Management Guide, SC23-2433

C++ for AIX/6000: Language Reference, SC09-1606

C++ for AIX/6000: Standard Class Library Reference, SC09-1604

C++ for AIX/6000: User's Guide, SC09-1605

IBM Performance Toolbox 1.2 and 2 for AlX: Guide and Reference, SC23-2625

About This Book Xili

Related Non-IBM Publications

* Almasi, G., Gottlieb, A., Highly Parallel Computing Benjamin-Cummings
Publishing Company, Inc., 1989.

e Gropp, W., Lusk, E., Skjellum, A., Using MPI, The MIT Press, 1994.

¢ Message Passing Interface Forum, MPIl: A Message-Passing Interface
Standard Version 1.1, University of Tennessee, Knoxville, Tennessee, June 6,
1995.

e Foster, |., Designing and Building Parallel Programs Addison-Wesley, 1995.
e Pfister, Gregory, F., In Search of Clusters Prentice Hall, 1995.

National Language Support

For National Language Support (NLS), all PE components and tools display
messages located in externalized message catalogs. English versions of the
message catalogs are shipped with the PE program product, but your site may be
using its own translated message catalogs. The AlX environment variable
NLSPATH is used by the various PE components to find the appropriate message
catalog. NLSPATH specifies a list of directories to search for message catalogs.
The directories are searched, in the order listed, to locate the message catalog. In
resolving the path to the message catalog, NLSPATH is affected by the values of
the environment variables LC_MESSAGES and LANG. If you get an error saying
that a message catalog is not found, and want the default message catalog:

ENTER export NLSPATH=/usr/lib/nls/msg/%L/%N
export LANG=C

The PE message catalogs are in English, and are located in the following
directories:

Jusr/lib/nls/msg/C
/usr/lib/nls/msg/En_US
/usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG. For
additional information on NLS and message catalogs, see IBM Parallel Environment
for AIX: Messages and AlX for RS/6000: General Programming Concepts.

Accessing Online Information

Xiv

In order to use the PE man pages or access the PE online (HTML) publications,
the ppe.pedocs file set must first be installed. To view the PE online publications,
you also need access to an HTML document browser such as Netscape. An index
to the HTML files that are provided with the ppe.pedocs file set is installed in the
lusr/lpp/ppe.pedocs/html directory.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Online Information Resources

If you have a question about the SP, PSSP, or a related product, the following
online information resources make it easy to find the information:

* Access the new SP Resource Center by issuing the command:
lusr/lpp/ssp/bin/resource_center . Note that the ssp.resctr fileset must be
installed before you can do this.

If you have the Resource Center on CD ROM, see the readme.txt file for
information on how to run it.

e Access the RS/6000 Web Site at: http://www.rs6000.ibm.com

Getting the Books Online

All of the PE books are available in Portable Document Format (PDF). They are
included on the product media (tape or CD ROM), and are part of the ppe.pedocs
file set. If you have a question about the location of the PE softcopy books, see
your System Administrator.

To view the PE PDF publications, you need access to the Adobe Acrobat Reader
3.0.1. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is
also freely available for downloading from the Adobe web site at URL
http://www.adobe.com

As stated above, you can also view or download the PE books from the IBM
RS/6000 web site at http://www.rs6000.ibm.com . At the time this manual was
published, the full path was
http://www.rs6000.ibm.com/resource/aix_resource/sp_books. However, note
that the structure of the RS/6000 web site can change over time.

About This Book XV

XVi IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Chapter 1. Using the pdbx Debugger

This chapter describes the pdbx debugger. This debugger extends the dbx
debugger's line-oriented interface and subcommands. Some of these
subcommands, however, have been modified for use on parallel programs. The
pdbx debugger is a POE application with some modifications on the home node to
provide a user interface.

Before invoking a parallel program using pdbx for interactive debugging, you first
need to compile the program and set up the execution environment. See I1BM
Parallel Environment for AlX: Operation and Use, Volume 1, Using the Parallel
Operating Environment for more information on the following:

e Compiling the program. Be sure to specify the -g flag when compiling the
program. This produces an object file with symbol table references needed for
symbolic debugging. It is also advisable to not use the optimization option, -O.
Using the debugger on optimized code may produce inconsistent and
erroneous results. For more information on the -g and -O compiler options,
refer to their use on other compiler commands such as cc and xIf. These
compiler commands are described in IBM AlIX Version 4 Commands Reference
or your online manual pages.

e Copying files to individual nodes. Like poe, pdbx requires that your application
program be available to run on each node in your partition. To support source
level debugging, pdbx requires the source files to be available as well. You will
generally use the same mechanism to make the source files accessible as you
used for the application program.

e Setting up the execution environment.

As you read these steps, keep in mind that pdbx accepts almost all the option flags
that poe accepts, and responds to the same environment variables.

Also, throughout this book, keep in mind the following information.

The RS/6000 processors of your system are called processor nodes. A parallel
program executes as a number of individual, but related, parallel tasks on a number
of your system's processor nodes. The group of parallel tasks is called a partition.
The processor nodes are connected on the same network, so the parallel tasks of
your partition can communicate to exchange data or synchronize execution.

pdbx Subcommands

Table 1 on page 2 outlines the pdbx subcommands described in this chapter.
Complete syntax information for all these subcommands is also provided under the
entry for the pdbx command in Appendix A, “Parallel Environment Tools
Commands” on page 193.

The debugger supports most of the familiar dbx subcommands, as well as some
additional pdbx subcommands. In pdbx, command context refers to a setting that
controls which task(s) receive the subcommands entered at the pdbx command
prompt.

© Copyright IBM Corp. 1995, 1998 1

pdbx subcommands can either be context sensitive or context insensitive. The
debugger directs context sensitive subcommands to just the tasks in the current
command context. Command context has no bearing on context insensitive
commands, which control overall debugger behavior, and are generally processed
on the home node only. These include subcommands for setting help and other

information, and ending a pdbx session.

You can set the command context on a single task or a group of tasks as

described in “Setting Command Context” on page 15.

Table 1. pdbx Subcommands

Context Insensitive pdbx Subcommands

This
subcommand:

Is used to:

For more information see:

alias [alias_name
string]

Set or display aliases.

“Creating, Removing, and
Listing Command Aliases” on
page 34

[dbx_command]

information about them.

attach <[all | Attach the debugger to some or all the tasks of a given “Attach Mode” on page 6
task_list]> poe job.
detach Detach pdbx from all tasks that were attached. This “Exiting pdbx” on page 39
subcommand causes the debugger to exit but leaves
the poe application running.
dhelp Display a brief list of dbx commands or help “Accessing Help for dbx

Subcommands” on page 33

group <action>
[group_name]
[task_list]

Manipulate groups. The actions are add, change,
delete, and list. To indicate a range of tasks, enter the
first and last task numbers, separated by a colon or
dash. To indicate individual tasks, enter the numbers,
separated by a space or comma.

“Grouping Tasks” on page 11

help [subject]

Display a list of pdbx commands and topics or help
information about them.

“Accessing Help for pdbx
Subcommands” on page 33

on <[group | task]>

Set the command context used to direct subsequent

“Setting the Current Command

[command] commands to a specific task or group of tasks. This Context” on page 15
subcommand can also be used to deviate from the
command context for a single command without
changing the current command context.

quit End a pdbx session. “Exiting pdbx” on page 39

source <cmd_file>

Execute pdbx subcommands from a specified file.

Note: The file may contain context sensitive

commands.

“Reading Subcommands From
a Command File” on page 36

tasks [long]

Display information about all the tasks in the partition.

“Displaying Tasks and their
States” on page 11

unalias alias_name

Remove a command alias specified by the alias
subcommand.

“Creating, Removing, and
Listing Command Aliases” on
page 34

Context Sensitive pdbx Subcommands

2 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

This
Subcommand:

Is used to:

For more information see:

delete <[event_list |
* | all]>

Remove breakpoints and tracepoints set by the stop
and trace subcommands. To indicate a range of
events, enter the first and last event numbers,
separated by a colon or a dash. To indicate individual
events, enter the number(s), separated by a space or
comma.

“Deleting pdbx Events” on
page 25

dbx
<dbx_command>

Issue a dbx subcommand directly to the dbx sessions
running on the remote nodes. This subcommand is not
intended for casual use. It must be used with caution,
because it circumvents the pdbx server which
normally manages communication between the user
and the remote dbx sessions. It enables experienced
dbx users to communicate directly with remote dbx
sessions, but can cause problems as pdbx will have
no knowledge of the communication that transpired.

Note: In addition to the pdbx subcommands shown
in this table, you can use most of the dbx
subcommands. The dbx subcommands are all
context sensitive. The only dbx subcommands
that you cannot use are clear, detach, edit,
multproc , prompt , run, rerun, screen, and

the sh subcommand with no arguments.

the online PE manual page for
pdbx . This manual page also
appears in Appendix A,
“Parallel Environment Tools
Commands” on page 193.

hook

Regain control over an unhooked task.

“Unhooking and Hooking
Tasks” on page 26

list [line_number |
line_number,
line_number |
procedure]

Display lines of the current source file, or of a
procedure.

“Displaying Source” on
page 32

load <program>
[program_arguments]

Load a program on each node in the current context.
This can only be issued once per task per pdbx
session. pdbx will look for the program in the current
directory unless a relative or absolute pathname is
specified.

“Loading the Partition with the
Load Subcommand” on
page 10

print <[expression |

Print the value of an expression, or run a procedure

“Viewing Program Variables”

procedure]> and print the return code of that procedure. on page 28

status [all] Display a list of breakpoints and tracepoints set by the “Checking Event Status” on
stop and trace subcommands in the current context. If page 26
“all” is specified, all events, regardless of context are
shown.

stop Set a breakpoint for tasks in the current context. “Setting Breakpoints” on
Breakpoints are stopping places in your program that page 20
halt execution.

trace Set a tracepoint for tasks in the current context. “Setting Tracepoints” on
Tracepoints are places in your program that, when page 22
reached during execution, cause the debugger to print
information about the state of the program.

unhook Unhook a task or group of tasks. Unhooking allows the “Unhooking and Hooking
task(s) to run without intervention from the debugger. Tasks” on page 26

where Display a list of active procedures and functions. “Viewing Program Call Stacks”

on page 27

Chapter 1. Using the pdbx Debugger

3

<Ctrl-c >

Regain debugger control when some tasks in the “Context Switch when Blocked”
current context are running. This causes a pdbx on page 17

subset prompt to be displayed, which allows a subset
of the pdbx function to be performed.

Starting the pdbx Debugger

Normal Mode

4

You can start the pdbx debugger in either normal mode or attach mode. In normal
mode your program runs under the control of the debugger. In attach mode you
attach to a program that is already running. Certain options and functions are only
available in one of the two modes. Since pdbx is a source code debugger, some
files need to be compiled with the -g option so that the compiler provides debug
symbols, source line numbers, and data type information.

When the application is started using pdbx in normal mode, debugger control of
the application is given to the user by default at the first executable source line
within the main routine. This is function main in C code or the the routine defined
by the program statement in Fortran. In Fortran, if there is no program statement,
the program name defaults to main. If the file containing the main routine is not
compiled with -g the debugger will exit. The environment variable
MP_DEBUG_INITIAL_STOP can be set before starting the debugger to manually
set an alternate file name and source line where the user initially receives debugger
control of the application. Refer to the appendix on POE environment variables and
command-line flags in IBM Parallel Environment for AIX: Operation and Use,
Volume 1, Using the Parallel Operating Environment

The way you start the debugger in normal mode depends on whether the
program(s) you are debugging follow the SPMD (Single Program Multiple Data) or
MPMD (Multiple Program Multiple Data) model of parallel programming. In the
SPMD model, the same program runs on each of the nodes in your partition. In the
MPMD model, different programs can run on the nodes of your partition.

If you are debugging an SPMD program, you can enter its name on the pdbx
command line. It will be loaded on all the nodes of your partition automatically. If
you are debugging an MPMD program, you will load the tasks of your partition after
the debugger is started. pdbx will look for the program in the current directory
unless a relative or absolute pathname is specified.

ENTER pdbx [program [program_options]] [poe opt ions] [-c command_file] [-d
nesting_depth] [-| directory [-I directory]...] [-F] [-X]

® This starts pdbx . If you specified a program, it is loaded on each node
of your partition and you see the message:

0031-504 Partition loaded ...
You will then see the pdbx prompt:
pdbx (all)

The prompt shows the command context all. For more information see
“Setting Command Context” on page 15.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

ENTER pdbx -a poe process id [limited poe options] [-c command _file] [-d

nesting_depth] [-1 directory [-I directory]...] [-F] [-X]

® This starts pdbx in attach mode. See “Attach Mode” on page 6 for
more information.

pdbx -h

® This writes the pdbx usage to STDERR. It includes pdbx command
line syntax and a description of pdbx options.

ENTER

The options you specify with the pdbx command can be program options, POE
options, or pdbx options listed in Table 2. Program options are those that your
application program will understand.

You can use the same command-line flags on the pdbx command as you use
when invoking a parallel program using the poe command. For example, you can
override the MP_PROCS variable by specifying the number of processes with the
-procs flag. Or you could use the -hostfile flag to specify the name of a host list
file. For more information on the POE command-line flags, see IBM Parallel
Environment for AIX: Operation and Use, Volume 1, Using the Parallel Operating
Environment

Note: poe uses the PATH environment variable to find the program, while pdbx
does not.

After pdbx initializes, the pdbx command prompt displays to indicate that pdbx is

ready for a command.

Table 2 (Page 1 of 2). Debugger Option Flags (pdbx)

Use this flag: To: For example:

-a Attach to a running poe job by specifying its process id. This To attach the pdbx debugger to an
must be executed from the node where the poe job was initiated. already running poe job.

When using the debugger in attach mode there are some ENTER pdbx -a <poe_process. id>
debugger command line arguments that should not be used. In

general, any arguments that control how the partition is set up or

specify application names and arguments should not be used.

-C Read pdbx startup commands from the specified commands_file. To start the pdbx debugger and read
The commands stored in the specified file are executed before startup commands from a file called
command input is accepted from the keyboard. start.cmd:

If the -c flag is not used, the pdbx debug program attempts to ENTER pdbx -c start.cmd
read startup commands from the file .pdbxinit. To find this file, it
first looks in the current directory, and then in the user's home
directory.
In a pdbx session, you can also read commands from a file using
the source subcommand. “Reading Subcommands From a
Command File” on page 36 describes how to use this
subcommand in pdbx .
-d Set the limit for the nesting of program blocks. The default To specify a nesting depth limit:

nesting depth limit is 25. This flag is passed to dbx unmodified.

ENTER pdbx -d nesting.depth

Chapter 1. Using the pdbx Debugger

5

Table 2 (Page 2 of 2). Debugger Option Flags (pdbx)

Use this flag:

To:

For example:

-F

This flag can be used to turn off lazy reading mode. Turning lazy
reading mode off forces the remote dbx sessions to read all
symbol table information at startup time. By default, lazy reading
mode is on.

Lazy reading mode is useful when debugging large executable
files, or when paging space is low. With lazy reading mode on,
only the required symbol table information is read upon
initialization of the remote dbx sessions. Because all symbol
table information is not read at dbx startup time when in lazy
reading mode, local variable and related type information will not
be initially available for functions defined in other files. The effect
of this can be seen with the whereis command, where instances
of the specified local variable may not be found until the other
files containing these instances are somehow referenced.

To start the pdbx debugger and read
all symbol table information:

ENTER pdbx -F

-h

Write the pdbx usage to STDERR then exit. This includes pdbx
command line syntax and a description of pdbx options.

ENTER pdbx -h

(upper case i)

Specify a directory to be searched for an executable's source
files. This flag must be specified multiple times to set multiple
paths. (Once pdbx is running, this list can be overridden on a
group or single node basis with the use command.)

To add directory1 to the list of
directories to be searched when
starting the pdbx debugger:

ENTER pdbx -l dirl

You can add as many directories as
you like to the directory list in this
way. For example, to add two
directories:

ENTER pdbx -l dirl -l dir2

-X

Prevent the dbx command from stripping _ (trailing underscore)
characters from symbols originating in Fortran source code. This
flag allows dbx to distinguish between symbols which are
identical except for an underscore character, such as xxx and
XXX_.

To prevent trailing underscores from
being stripped from symbols in
Fortran source code:

ENTER pdbx -x

Attach Mode

6

These pdbx flags are closely tied to the flags supported by dbx. For more
information on the option flags described in this table, refer to their use with dbx as
described in IBM AlIX Version 4 Commands Reference and IBM AlX Version 4
General Programming Concepts: Writing and Debugging Programs

For a listing of pdbx subcommands, you can also refer to its online manual page.
This manual page also appears in Appendix A, “Parallel Environment Tools

Commands” on page 193.

The pdbx debugger provides an attach feature, which allows you to attach the
debugger to a parallel application that is currently executing. This feature is
typically used to debug large, long running, or apparently “hung” applications. The
debugger attaches to any subset of tasks without restarting the executing parallel

program.

Parallel applications run on the partition managed by poe. For attach mode, you
must specify the appropriate process identifier (PID) of the poe job, so the
debugger can attach to the correct application processes contained in that
particular job. To get the PID of the poe job, enter the following command on the

node where poe was started:

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Attach Screen

$ ps -ef | grep poe

You initiate attach mode by invoking pdbx with the -a flag and the PID of the
appropriate poe process:

$ pdbx -a <poe PID>

For example, if the process id of the poe process is 12345 then the command
would be:

$ pdbx -a 12345

After you invoke the debugger in attach mode, it displays a list of tasks you can
choose. The paging tool used to display the menu will default to pg -e unless
another pager is specified by the PAGER environment variable.

pdbx starts by showing a list of task numbers that comprise the parallel job. The
debugger obtains this information by reading a configuration file created by poe
when it begins a job step. At this point you must choose a subset of that list to
attach the debugger. Once you make a selection and the attach debug session
starts, you cannot make additions or deletions to the set of tasks attached to. It is
possible to attach a different set of tasks by detaching the debugger and attaching
again, then selecting a different set of tasks.

The debugger attaches to the specified tasks. The selected executables are
stopped wherever their program counters happen to be, and are then under the
control of the debugger. The other tasks in the original poe application continue to
run. pdbx displays information about the attached tasks using the task numbering
of the original poe application partition.

Figure 1 shows a sample pdbx Attach screen.

Chapter 1. Using the pdbx Debugger

7

pdbx Version 2, Release 3 -- Mar 1 1997 15:33:03

ATTENTION: 0029-9049 The following environment variables have been
ignored since they are not valid when starting the debugger

in attach mode -

'MP_PROCS' .

To begin debugging in attach mode, select a task or tasks to attach.

Task

0 9
1 9
2 9
3 9
4 9
5 9
6 9
7 9

At the pdbx prompt enter the "attach" command followed by a
list of tasks or "all". (ex. "attach 2 4 5-7" or "attach all")
You may also type "help" for more information or "quit" to exit

the debugger without attaching.

pdbx (none)

IP Addr

.117.

.117.

117,

.117.

.117.

L117.

.117.

L117.

.62
.63
.64
.65
.66
.67
.68
.69

Node PID Program
pe02.kgn.ibm.com 23870 ftoc
pe03.kgn.ibm.com 14908 ftoc
pe04.kgn.ibm.com 14400 ftoc
pe05.kgn.ibm.com 13114 ftoc
pe06.kgn.ibm.com 11330 ftoc
pe07.kgn.ibm.com 19784 ftoc
pe08.kgn.ibm.com 19524 ftoc
pe09.kgn.ibm.com 22086 ftoc

Figure 1. pdbx Attach screen

8

The pdbx Attach screen contains a list of tasks and, for each task, the following
information:

e Task - the task number
e |IP - the ip address of the node on which the task/application is running

* Node - the name of the node on which the task/application is running, if
available

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

e PID - the process identifier of the task/application

¢ Program - the name of the application and arguments, if any.

After initiating attach mode, you can select a set of tasks to attach to. At the
command prompt:

ENTER attach all
OR

ENTER attach followed by the task list (see “Syntax for task_list” on page 12
for the correct syntax).

It is also possible to use the quit or help command at this prompt. Any other
command will produce an error message. The quit command will not kill the
application at this point, since the debugger has not been attached as of yet.

Note: When debugging in attach mode, the load subcommand is not available. An
error message is displayed if an attempt is made to use it.

Other Compiling Options

pdbx provides substantial information when debugging an executable compiled with
the -g option. However, you may find it useful to attach to an application not
compiled with -g. pdbx allows you to attach to an application not compiled with -g,
however, the information provided is limited to a stack trace.

You can also attach pdbx to an application compiled with both the -g and
optimization flags. However, the optimized code can cause some confusion when
debugging. For example, when stepping through code, you may notice the line
marker points to different source lines than you would expect. The optimization
causes this re-mapping of instructions to line numbers.

Command Line Arguments

You should not use certain command line arguments when debugging in attach
mode. If you do, the debugger will not start, and you will receive a message saying
the debugger will not start. In general, do not use any arguments that control how
the debugger partition is set up or that specify application names and arguments.
You do not need information about the application, since it is already running and
the debugger uses the PID of the poe process to attach. Other information the
debugger needs to set up its own partition, such as node names and PIDs, comes
from the configuration file and the set of tasks you select. See Appendix B,
“Command Line Flags for Normal or Attach Mode” on page 239 for a list of
command line flags showing which ones are valid in normal and in attach
debugging mode.

The information in the appendix is also true for the corresponding environment
variables, however pdbx ignores the invalid setting. The debugger displays a
message containing a list of the variables it ignores, and continues.

For example, if you had MP_PROCS set, when the debugger starts in attach mode

it ignores the setting. It displays a message saying it ignored MP_PROCS, and
continues initializing the debug session.

Chapter 1. Using the pdbx Debugger 9

Loading the Partition with the Load Subcommand

Before you can debug a parallel program with the pdbx debugger, you need to
load your partition. If you specified a program name on the pdbx command, it is
already loaded on each task of your partition. If not, you need to load your partition
using the load subcommand. pdbx will look for the program in the current
directory unless a relative or absolute pathname is specified. The Partition Manager
allocates the tasks of your partition when you enter the pdbx command. It does this
either by connecting to the Resource Manager or by looking to your host list file.
The number of tasks in the partition depends on the value of the MP_PROCS
environment variable (or the value specified on the -procs flag) when you enter the

pdbx command.

The following pdbx commands are available before the program is loaded on all

tasks:

e alias

e group
e help

e load

e on

e quit

e source
e tasks

e unalias

To load

the same executable on all tasks of the partition:

To load separate executables on the partition:

CHECK the pdbx command prompt to make sure the SET the command context before loading each
command context is on all tasks. The context all is program. For example, say your partition consists
the default when you start the pdbx debugger, so of five tasks numbered O through 4. To load a
the prompt should read: program named programl on task 0 and a
pdbx (a11) program named program?2 on tasks 1 through 4,
you would:
If the command context is not set on all tasks, reset it. To do
this: ENTER on 0
ENTER on all t- Tl?e0 debugger sets the command context on
as
Once the command context is on all tasks: .
ENTER load programl [program_options]
ENTER load program [program_options]
The debugger loads program1 on task 0.
® The specified program is loaded onto all tasks in
the partition, and the message “Partition loaded...” ENTER group add groupa 1-4
displays. The parallel program runs up to the first ® The debugger creates a task group named
executable statement and stops. groupa consisting of tasks 1 through 4.
Note: The example above has the same effect as putting ENTER on groupa
the program name and options on the command line.
prog P The debugger sets the command context on tasks
1 through 4.
ENTER load program2 [program_options]
® The debugger loads programZ2 onto tasks 1
through 4, and the message “Partition loaded...”
displays. The parallel program runs up to the first
executable statement and stops.
10 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Displaying Tasks and their States

With the tasks subcommand, you display information about all the tasks in the
partition. Task state information is always displayed (see Table 3 on page 15 for
information on task states). If you specify “long” after the command, it also displays
the name, ip address, and job manager number associated with the task.

Following is an example of output produced by the tasks and tasks long
command.

pdbx (others) tasks

0:D 1:D 2:U 3:U 4:R 5:D 6:D 7:R

pdbx (others) tasks long

0:Debug ready pe04.kgn.ibm.com 9.117.8.68 -1
1:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1
2:Unhooked pe02.kgn.ibm.com 9.117.11.56 -1
3:Unhooked augustus.kgn.ibm.com 9.117.7.77 -1
4:Running pe04.kgn.ibm.com 9.117.8.68 -1
5:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1
6:Debug ready pe02.kgn.ibm.com 9.117.11.56 -1
7 :Running augustus.kgn.ibm.com 9.117.7.77 -1

Grouping Tasks

You can set the context on a group of tasks by first using the context insensitive
group subcommand to collect a number of tasks under a group name you choose.
None of these tasks need to have been loaded for you to include them in a group.
Later, you can set the context on all the tasks in the group by specifying its group
name with the on subcommand.

For example, you could use the group subcommand to collect a number of tasks
(tasks 0, 1, and 2) as a group named groupa. Then, to set the context on tasks O,
1, and 2, you would:

ENTER on groupa

® The debugger sets the command context on tasks 0, 1, and 2.
Another use of the group subcommand is to give a name to a task. For example,
assume you have a typical master/worker program. Task O is the master task,

controlling a number of worker tasks. You could create a group named master
consisting of just task 0. Then, to set the context on the master task you would:

Chapter 1. Using the pdbx Debugger 11

ENTER on master

® The debugger sets the command context on task 0. Entering
on master, therefore, is the same as entering on 0, but would be more
meaningful and easier to remember.

The group subcommand has a nhumber of actions. You can use it to:

» Create a task group, or add tasks to an existing task group

e Delete a task group, or delete tasks from an existing task group

e Change the name of an existing task group

e List the existing task groups, or list the members of a particular task group.

Syntax for group_name
Provide a group name that is no longer than 32 characters which starts with an
alphabetic character, and is followed by any alphanumeric character combination.

Syntax for task_list

To indicate a range of tasks, enter the first and last task numbers, separated by a
colon or dash. To indicate individual tasks, enter the numbers, separated by a
space or comma.

Note: Group names “all,” “none,” and “attached” are reserved group names.
They are used by the debugger and cannot be used in the group add or
group delete commands. However, the group “all” or “attached” can be
renamed using the group change command, if it currently exists in the
debugging session.

Adding a Task to a Task Group
To add a task to a new or already existing task group, use the add action of the
group subcommand. The syntax is:

group add group_name task_list
If the specified group _name already exists, then the debugger adds the tasks in

task_list to that group. If the specified group_name does not yet exist, the debugger
creates it.

For example, to
add the following o The following message
The variable task list can be: task(s) to groupa: You would ENTER: displays:
a single task task 6 group add groupa 6 1 task was added to group
"groupa".
a collection of tasks tasks 6, 8, and 10 group add groupa 6 8 10 3 tasks were added to group
"groupa".
a range of tasks tasks 6 through 10 group add groupa 6:10 5 tasks were added to group
"groupa".
a range of tasks tasks 6 through 10 group add groupa 6-10 5 tasks were added to group
"groupa".

12 I1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Deleting Tasks from a Task Group

To delete tasks from a task group, use the delete action of the group

subcommand. The syntax is:

group delete group _name [task_list]

For example, to
delete the
following from
The variable task_list can be: groupa: You would ENTER:

o The following message
displays:

a single task task 6 group delete groupa 6

Task: 6 was successfully

deleted from group "groupa".

a collection of tasks task 6, 8, and 10 group delete groupa 6 8
10

Task: 6 was successfully

deleted from group "groupa".

Task: 8 was successfully

deleted from group "groupa".

Task: 10 was successfully

deleted from group "groupa".

a range of tasks tasks 6 through 10 group delete groupa 6:10

Task: 6 was successfully

deleted from group "groupa".

Task: 7 was successfully

deleted from group "groupa".

Task: 8 was successfully

deleted from group "groupa".

Task: 9 was successfully

deleted from group "groupa".

Task: 10 was successfully

deleted from group "groupa".

a range of tasks tasks 6 through 8 group delete groupa 6-8

Task: 6 was successfully

deleted from group "groupa".

Task: 7 was successfully

deleted from group "groupa".

Task: 8 was successfully

deleted from group "groupa".

You can also use the delete action of the group subcommand to delete an entire
task group. For example, to delete the task group groupa, you would:

ENTER group delete groupa
® The debugger deletes the task group.

Note: The pre-defined task group all cannot be deleted.

Chapter 1. Using the pdbx Debugger

13

Changing the Name of a Task Group
To change the name of an existing task group, use the change action of the group
subcommand. The syntax is:

group change old_group_name new_group_name

For example, say you want to change the name of task group groupl to groupa. At
the pdbx command prompt, you would:

ENTER group change groupl groupa

® The following message displays:

Group "groupl" has been renamed to "groupa".

Listing Task Groups
To list task groups, their members, and task states use the list action of the group
subcommand. The syntax is:

group list [group_name]

You can use the list
action to:

For example, if you
ENTER: L]

list all the task
groups.

group list The debugger displays a list of all existing task groups and their members.

An example of such a list is shown below.
pdbx(0) group list

allTasks 0:R 1:D 2:D 3:U 4:U 5:D 6:D
7:D 8:D 9:D 10:D 11:D

evenTasks 0:R 2:D 4:U 6:D 8:D 10:R

oddTasks 1:D 3:U 5:D 7:D 9:D 11:R
master 0:R
workers 1:D 2:D 3:U 4:U 5:D 6:D 7:D

8:D 9:D 10:R 11:R

list all the members
of a single task group

group list oddTasks The debugger displays a list of all the members of task group oddTasks.

1:D 3:U 5:D 7:D 9:D 11:R

When you list tasks, a single letter will follow each task number. The following table
represents the state of affairs on the remote tasks. Common states are “debug
ready,” where pdbx commands can be issued, and running, where the application
has control and is executing.

14 I1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Table 3. Task States

This letter displayed

after a task number: Represents: And indicates that:
Not loaded the remote task has not yet been loaded with an executable.
S Starting the remote task is being loaded with an executable.
D Debug ready the remote task is stopped and debug commands can be issued.
R Running the remote task is in control and executing the program.
X Exited the remote task has completed execution.
U Unhooked the remote task is executing without debugger intervention.
E Error the remote task is in an unknown state.

Figure 2 on page 15 illustrates the relationship between the pdbx debugger, which
runs on the home task, and the various dbx processes running on the remote
tasks. When thinking about “task states,” consider the perspective of the remote
tasks which are each running a copy of dbx. pdbx attempts to coordinate activities
in multiple dbx sessions. There are times when this is not possible, typically when
one or more tasks have not yet stopped. In this case, from a remote task's dbx
perspective, a dbx prompt has not yet been displayed, and your application is still
running. Similarly, pdbx will not display a pdbx prompt until all the remote dbx
sessions are “debug ready.”

pdbx
Home Node
Remote Tasks
dbx dbx dbx cee
program program program coe

Figure 2. Relationship between home node (pdbx) and remote tasks (dbx processes)

Setting Command Context
You can set the current command context on a specific task or group of tasks so
that the debugger directs subsequent context sensitive subcommands to just that
task or group. This section also shows how you can temporarily deviate from the
current command context you set.

Setting the Current Command Context:

Task

When you begin a pdbx session, the

default command context is set on all tasks. The pdbx command prompt always
indicates the current command context setting, so it initially reads:

pdbx(all)

Chapter 1. Using the pdbx Debugger 15

16

You can use the on subcommand to set the current command context on one task
or a group of tasks. The debugger then directs context sensitive subcommands to
just the task(s) specified by group or task name.

You can use the on subcommand to set the current command context before you
load your partition. The debugger will only direct context sensitive subcommands to
the tasks in the current context. The syntax of the on subcommand is:

on {group_name | task_id}

For example, assume you have a parallel program divided into tasks numbered 0
through 4. To set the current command context on just task 1:

ENTER on 1

® The pdbx command prompt indicates the new setting of the current
command context.

pdbx (1)

You can also use the on subcommand to set the current command context on all
the tasks in a specified task group. The task group all — consisting of all tasks — is
automatically defined for you and cannot be deleted. To set the command context
back on all tasks, you would:

ENTER on all

® The pdbx command prompt shows that the current command context
has changed, and that the debugger will now direct context sensitive
subcommands to all tasks in the partition.

pdbx(al1)

When you switch context using on context_name, and the new context has at least
one task in the “running” state, a message is displayed stating that at least one
task is in the “running” state. No pdbx prompt is displayed until all tasks in this
context are in the “debug ready” state.

When you switch to a context where all tasks are in the “debug ready” state, the
pdbx prompt is displayed immediately, indicating pdbx is ready for a command.

At the pdbx subset prompt, on context_name causes one of the following to
happen: either a pdbx prompt is displayed; or a message is displayed indicating
the reason why the pdbx prompt will be displayed at a later time. This is generally
because one of the tasks is in “running” state. See “Context Switch when Blocked”
on page 17 for more information.

Temporarily Deviating from the Current Command Context: There are times
when it is convenient to deviate from the current command context for a single
command. You can temporarily deviate from the command context by entering the
on subcommand with, on the same line, a context sensitive subcommand. The
pdbx prompt will be presented after all of the tasks in the temporary context have
completed the command specified. It is possible, using <Ctrl-c > followed by the
back or the on command, to issue further pdbx commands in the original context.
The syntax is:

on {group_name | task_id} [subcommand]

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

For example, assume a task group named groupa contains tasks 3 through 5. The
current command context is on this group. You want to set a breakpoint at line 99
of task 3 only, and then continue directing commands to all three members of
groupa. One way to do this is to enter the three subcommands shown in the
following example. This example shows the pdbx command prompt for additional
illustration.

pdbx(groupa) on 3

pdbx(3) stop at 99

pdbx(3) on groupa

pdbx (groupa)

It is easier, however, to temporarily deviate from the current command context.

pdbx(groupa) on 3 stop at 99
pdbx (groupa)

The context sensitive stop subcommand is directed to task 3 only, but the current
command context is unchanged. The next command entered at the pdbx command
prompt is directed to all the tasks in the groupa task group.

At a pdbx prompt, you cannot use on context_name pdbx_command if any of the
tasks in the specified context are running.

Context Switch when Blocked

When a task is blocked (there is no pdbx prompt), you can press <Ctrl-c > to
acquire control. This displays the pdbx subset prompt pdbx-subset ([group |
task]), and provides a subset of pdbx functionality including:

e Changing the current context

» Displaying information about groups/tasks
 Interrupting the application

e Showing breakpoint/tracepoint status

e Getting help

e Exiting the debugger.

You can change the subset of tasks to which context sensitive commands are
directed. Also, you can understand more about the current state of the application,
and gain control of your application at any time, not just at user-defined
breakpoints.

When a pdbx subset prompt is encountered, all input you type at the command line
is intercepted by pdbx . All commands are interpreted and operated on by the home
node. No data is passed to the remote nodes and standard input (STDIN) is not
given to the application. Most commands in the pdbx subset produce information
about the application and display the pdbx subset prompt. The exceptions are the
halt, back, on, and quit commands. The halt, back, and on commands cause the
pdbx prompt to be displayed when all of the tasks in the current context are in
“debug ready” state.

Chapter 1. Using the pdbx Debugger 17

18

The following example shows how the function works. A user is trying to
understand the behavior of a program when tasks in the current context hang. This
is a four task job with two groups defined called Tow and high. Low has tasks 0 and
1 while high has tasks 2 and 3. A breakpoint is set after a blocking read in task 2,
and somewhere else in task 3. Group high is allowed to continue, and task 2 has a
blocking read that will be satisfied by a write from task 0. Since task 0 is not
executing, the job is effectively deadlocked and the pdbx prompt will not be
displayed. The “effective deadlock” happens because the debugger controls some
of the tasks that would otherwise be running. This could be called a debugger
induced deadlock.

Using <Ctrl-c > allows the debugger to switch to task 0, then step past the write that
satisfies the blocking read in task 2. A subsequent switch to group high shows task
2.

pdbx Subset Commands: The following table shows some commands that are
uniquely available at the pdbx subset prompt, plus other pdbx commands that can
be used. Certain commands are not allowed. The available commands keep the
same command syntax as the pdbx subcommands (see “pdbx Subcommands” on

page 1).

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

This subset
command:

Is used to:

For more information see:

alias [alias_name
string]

Set or display aliases.

“Creating, Removing, and Listing
Command Aliases” on page 34

back

Return to a pdbx prompt.

“Returning to a pdbx Prompt” on
page 19

group <action>
[group_name]

Manipulate groups. The actions are add, change, delete, and
list. To indicate a range of tasks, enter the first and last task

“Grouping Tasks” on page 11

[task_list] numbers, separated by a colon or dash. To indicate individual
tasks, enter the numbers, separated by a space or comma.
halt [all] Interrupt all tasks in the current context that are running. If “Interrupting Tasks” on page 22

“all” is specified, all tasks, regardless of state, are interrupted.
This command always returns to a pdbx prompt.

help [subject]

Display a list of pdbx commands and topics or help
information about them.

“Accessing Help for pdbx
Subcommands” on page 33

on <[group | task]>

Set the current context for later subcommands. This
command always returns to a pdbx prompt.

“Setting Command Context” on
page 15

source <cmd_file>

Execute subcommands stored in a file.

Note: The file may contain context sensitive commands.

“Reading Subcommands From a
Command File” on page 36

status [all] Display the trace and stop events within the current context. If “Checking Event Status” on
“all” is specified, all events, regardless of context, are page 26
displayed.
tasks [long] Display processes (tasks) and their states. “Displaying Tasks and their States”
on page 11
quit Exit the pdbx program and kill the application. “Exiting pdbx” on page 39

unalias alias_name

Remove a previously defined alias.

“Creating, Removing, and Listing
Command Aliases” on page 34

<Ctrl-c >

Has no effect, except to display the following message:

Typing Ctrl-c from the pdbx subset prompt
has no effect.

Use the halt command to interrupt

the application.

Use the quit command to quit pdbx.

Type help then enter to view brief help of

the commands available.

“Context Switch when Blocked” on
page 17

Returning to a pdbx Prompt:

The back command causes the pdbx prompt to be

displayed, when all the tasks in the current context are in “debug ready” state. You
can use the back command if you want the application to continue as it was before
<Ctrl-c > was issued. Also, you can use it if during subset mode all of the nodes are
checked into debug ready state, and you want to do normal pdbx processing. The

back command is only valid in pdbx subset mode.

It is also possible to return to the pdbx prompt using the on and the halt

commands.

Chapter 1. Using the pdbx Debugger 19

Controlling Program Execution

20

Like the dbx debugger, pdbx lets you set breakpoints and tracepoints to control
and monitor program execution. Breakpoints are stopping places in your program.
They halt execution, enabling you to then examine the state of the program.
Tracepoints are places in the program that, when reached during execution, cause
the debugger to print information about the state of the program. An occurrence of
either a breakpoint or a tracepoint is called an event.

If you are already familiar with breakpoints and tracepoints as they are used in dbx,
be aware that they work somewhat differently in pdbx . The subcommands for
setting, checking, and deleting them are similar to their counterparts in dbx, but
have been modified for use on parallel programs. These differences stem from the
fact that they can now be directed to any number of parallel tasks.
This section describes how to:
e Set a breakpoint for tasks in the current context using the stop subcommand.
¢ Use the halt subcommand to interrupt tasks in the current context.
» Set a tracepoint for tasks in the current context using the trace subcommand.
e Use the delete subcommand to remove events for tasks in the current context.
e Use the status subcommand to display events set for tasks in the current
context.

If you are already familiar with the dbx subcommands stop, trace, status, and
delete, read the following as a discussion of how these subcommands are changed
for pdbx .

The next few pages should act as an introduction to breakpoints and tracepoints if
you are unfamiliar with dbx.

Refer to IBM AlX Version 4 Commands Reference and IBM AlIX Version 4 General
Programming Concepts: Writing and Debugging Programs for more information on
subcommands.

Setting Breakpoints

The stop subcommand sets breakpoints for all tasks in the current context. When
all tasks reach some breakpoint, execution stops and you can then examine the
state of the program using other pdbx or dbx subcommands. These breakpoints
can be different on each task.

The syntax of this context sensitive subcommand is:

stop if <condition>

stop at <source_line_numbers [if <condition>]

stop in <procedure> [if <condition>]

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

stop <variable> [if <condition>]

stop <variable> at <source_line_number>
[if <condition>]

stop <variable> in <procedure> [if <condition>]

Specifying stop at <source_line_numbers> causes the breakpoint to be triggered
each time that source line is reached.

Specifying stop in <procedure> causes the breakpoint to be triggered each time
the program counter reaches the first executable source line in the procedure
(function, subroutine).

Using the <variable> argument to stop causes the breakpoint to be triggered when
the contents of the variable changes. This form of breakpoint can be very time
consuming. For better results, when possible, further qualify these breakpoints with
a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
Expressions” on page 36.

For example, to set a breakpoint at line 19 for all tasks in the current context, you
would:

ENTER stop at 19

® The debugger displays a message reporting the event it has built.
The message includes the current context, the event ID associated with
your breakpoint, and an interpretation of your command. For example:

all:[0] stop at "ftoc.c":19

The message reports that a breakpoint was set for the tasks in the task
group all, and that the event ID associated with the breakpoint is 0.
Notice that the syntax of the interpretation is not exactly the same as the
command entered.

Notes:

1. The pdbx debugger will not set a breakpoint at a line number in a group
context if the group members have different current source files. Instead, the
following error message will be displayed.

ERROR: 0029-2081 Cannot set breakpoint or tracepoint event in

different source files.
If this happens, you can either:

» change the current context so that the stop subcommand will be directed
to tasks with identical source files.

Chapter 1. Using the pdbx Debugger 21

22

» set the same source file for all members of the group using the file
subcommand.

2. When specifying a variable name on the stop subcommand in pdbx, it is
important to use fully-qualified hames as arguments. See “Specifying Variables
On the Trace and Stop subcommands” on page 24 for more information.

3. For further details on the stop subcommand, refer to its use on the dbx
command as described in IBM AlX Version 4 Commands Reference and IBM
AIX Version 4 General Programming Concepts: Writing and Debugging
Programs

Interrupting Tasks

By using the halt command, you interrupt all tasks in the current context that are
running. This allows the debugger to gain control of the application at whatever
point the running tasks happen to be in the application. To a dbx user, this is the
same as using <Ctrl-c >. This command works at the pdbx prompt and at the pdbx
subset prompt. If you specify “all” with the halt command, all running tasks,
regardless of context, are interrupted.

Note: At a pdbx prompt, the halt command never has any effect without “all”
specified. This is because by definition, at a pdbx prompt, none of the tasks
in the current context are in “running” state.

The halt all command at the pdbx prompt affects tasks outside of the current
context. Messages at the prompt show the task numbers that are and are not
interrupted, but the pdbx prompt returns immediately because the state of the tasks
in the current context is unchanged.

When using halt at the pdbx subset prompt, the pdbx prompt occurs when all
tasks in the current context have returned to “debug ready” state. If some of the
tasks in the current context are running, a message is presented.

Setting Tracepoints

The trace subcommand sets tracepoints for all tasks in the current context. When
any task reaches a tracepoint, it causes the debugger to print information about the
state of the program for that task.

The syntax of this context sensitive subcommand is:

trace [in <procedure>] [if <condition>]

trace <source_line_numbers> [if <condition>]

trace <procedure> [in <procedure>|
[if <condition>]

trace <variable> [in <procedure>]
[if <condition>]

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

trace <expression> at <source_line_number>
[if <condition>]

Specifying trace with no arguments causes trace information to be displayed for
every source line in your program.

Specifying trace <source_line_numbers causes the tracepoint to be triggered each
time that source line is reached.

Specifying trace [in <procedure>] causes the tracepoint to be triggered each time
your program executes a source line within the procedure (function, subroutine).

Using the <variable> argument to trace causes the tracepoint to be triggered when
the contents of the variable changes. This form of tracepoint can be very time
consuming. For better results, when possible, further qualify these tracepoints with
a source_line_number or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
Expressions” on page 36.

The trace subcommand prints tracing information for a specified procedure,
function, sourceline, expression, variable, or condition. For example, to set a
tracepoint for the variable foo at line 21 for all tasks in the current context, you
would:

ENTER trace foo at 21

® The debugger displays a message reporting the event it has built.
The message includes the current context, the event ID associated with
your tracepoint, and an interpretation of your command. For example:

all:[1] trace foo at "bar.c":21

This message reports that the tracepoint was set for the tasks in the
task group all, and that the event ID associated with the tracepoint is 1.
Notice that the syntax of the interpretation is not exactly the same as the
command entered.

Notes:

1. The pdbx debugger will not set a tracepoint at a line number in a group context
if the group members have different current source files. Instead, the following
error message will be displayed.

ERROR: 0029-2081 Cannot set breakpoint or tracepoint event in

different source files.
If this happens, you can either:

¢ change the current context so that the trace subcommand will be directed
to tasks with identical source files.

¢ set the same source file for all members of the group using the file
subcommand.

2. When specifying a variable name on the trace subcommand in pdbx, it is
important to use fully-qualified names as arguments. See “Specifying Variables
On the Trace and Stop subcommands” on page 24 for more information.

Chapter 1. Using the pdbx Debugger 23

24

3. For further detail on the trace subcommand, refer to its use on the dbx
command as described in IBM AIX Version 4 Commands Reference

Specifying Variables On the Trace and Stop subcommands

When specifying a variable name as an argument on either the stop or trace
subcommand, you should use fully-qualified hames. This is because, when the
stop or trace subcommand is issued, the tasks of your program could be in
different functions, and the variable name may resolve differently depending on a
task's position.

For example, consider the following SPMD code segment in myfile.c. It is running
as two parallel tasks — task 0 and task 1. Task O is in funcl at line 4, while task 1
is in func2 at line 9.

1 int i;

2 funcl()

3

4 i++;
5}

6 func2()

7 A

8 int i;
9 it++;
10 }

To display the full qualification of a given variable, you use the which
subcommand. For example, to display the full qualification of the variable i if the
current context is all.

ENTER which

® The pdbx debugger displays the full qualification of the variable
specified.

0:Cmyfile.i (from line 1 of previous example)
1:@myfile.func2.i (from line 8 of previous example)

Because the tasks are at different lines, issuing the following stop command would
set a different breakpoint for each task:

stop if (i==5)

The debugger would display a message reporting the event it has built.
all:[0] stop if (i == b5)

The jfor task 0, however, would represent the global variable (@myfile.i) while the i
for task 1 would represent the local variable i/ declared within func2

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

(@myfile.func2.i). To specify the global variable i without ambiguity on the stop
subcommand, you would:

ENTER stop if (@myfile.i == 5)
® The debugger reports the event it has built.
all:[0] stop if (Gmyfile.i == 5)

Deleting pdbx Events

The delete subcommand removes events (breakpoints and tracepoints) of the
specified pdbx event numbers. To indicate a range of events, enter the first and
last event numbers, separated by a colon or dash. To indicate individual events,
enter the numbers, separated by a space or comma. You can specify “ * ", which
deletes all events that were created in the current context. You can also specify
“all’, which deletes all events regardless of context. The syntax of this context
sensitive subcommand is:

delete [event list | * | all]

The event number is the one associated with the breakpoint or tracepoint. This
number is displayed by the stop and trace subcommands when an event is built.
Event numbers can also be displayed using the status subcommand. The output of
the status command shows the creating context as the first token on the left before
the colon.

Event numbers are unique to the context in which they were set, but not globally
unigue. Keep in mind that, in order to remove an event, the context must be on the
appropriate task or task group, except when using the “all” keyword. For example,
say the current context is on task 1 and the output of the status subcommand is:

1:[0] stop in celsius
all:[0] stop at "foo.c":19
all:[1] trace "foo.c":21

To delete all these events, you would do one of the following:

ENTER on 1
delete 0
on all
delete 0,1

OR

ENTER on 1
delete 0
on all
delete *

OR

ENTER delete all

Chapter 1. Using the pdbx Debugger 25

26

Checking Event Status

A list of pdbx events can be displayed using the status subcommand. You can
specify “all” after this command to list all events (breakpoints and tracepoints) that
have been set in all groups and tasks. This is valid at the pdbx prompt and the
pdbx subset prompt.

The following shows examples of status , status all , and incorrect syntax with
different breakpoints set on three different groups and two tasks.

pdbx(all) status

all:[0] stop at "test/vtsample.c":60

pdbx(all) status all

1:[0] stop in main

2:[0] stop in mpl_ring

all:[0] stop at "test/vtsample.c":60
evenTasks:[0] stop at "test/vtsample.c":58

oddTasks:[0] stop at "test/vtsample.c":56

pdbx(all) status woops
0029-2062 The correct syntax is either 'status' or 'status all'.

Because the status command (without “all” specified) is context sensitive, it will not
display status for events outside the context.

Unhooking and Hooking Tasks

The unhook subcommand lets you unhook a task so that it executes without
intervention from the debugger. This subcommand is context sensitive and similar
to the detach subcommand in dbx. The important difference is that you can regain
control over a task that has been unhooked, while you cannot regain control over
one that has been detached. To regain control over an unhooked task, use the
hook subcommand. Detach is not supported in pdbx.

To better understand the hook and unhook subcommands, consider the following
example. You are debugging a typical master/worker program containing many
blocking sends and receives. You have created two task groups. One — named
workers — contains all the worker tasks, and the other — named master — contains
the master task. You would like to manipulate the master task and let the worker
tasks process without debugger interaction. This would save you the bother of
switching the command context back and forth between the two task groups.

Since the unhook subcommand is context sensitive, you must first set the context
on the workers task group using the on subcommand. At the pdbx command
prompt:

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

ENTER on workers
® The debugger sets the command context on the task group workers.
ENTER unhook

® The debugger unhooks the tasks in the task group workers.

The worker tasks are still indirectly affected by the debugger since they might, for
example, have to wait on a blocking receive for a message from the master task.
However, they do execute without any direct interaction from the debugger. If you
later wish to reestablish control over the tasks in the workers task group, you
would, assuming the context is on the workers task group:

ENTER hook

® The debugger hooks any unhooked task in the current command
context.

Note: The hook subcommand is actually an interrupt. When you interrupt a
blocking receive, you cause the request to fail. If the program does not deal
with an interrupted receive, then data loss may occur.

Examining Program Data

The following section explains the where, print, and list subcommands for
displaying and verifying data.

Viewing Program Call Stacks
The where subcommand displays a list of active procedures and functions.

The syntax of this context sensitive subcommand is:
where
To view the stack trace, issue the where command. The following stack trace was

encountered after halting task 1. You can see that the main routine at line 144 has
issued an mpi_recv() call.

pdbx (1) where

read(??, ??, ??) at 0xd07b5ce0
readsocket () at 0xd07542f4
kickpipes() at 0xd0750el4
mpci_recv() at 0xd076032c
_mpi_recv() at 0xd0700e2c
MPI__Recv() at 0xd06ffab8
mpi__recv() at 0xd03c4474

main(), line 144 in "sendl.f"

Chapter 1. Using the pdbx Debugger 27

28

Viewing Program Variables
The print subcommand does either of the following:

e Prints the value of a list of expressions, specified by the expression
parameters.

e Executes a procedure, specified by the procedure parameter, and prints the
return value of that procedure. Parameters that are included are passed to the
procedure.

The syntax of this context sensitive subcommand is:

print expression ...

print procedure ([parameters])
See “Specifying Expressions” on page 36 for a description of valid expressions.

Following are some examples of printing portions of a two dimensional array of
floats in a ¢ program which is running on two nodes.

To display the type of array ff, enter:
pdbx(all) whatis ff

0:float ff[10][10];

l:float ff[10][10];

We can see the differences in the array values across the two nodes.

To show elements 4 through 7 of rows 2 and 3, enter:

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(all) print ff[2..3][4..7]
0:

0:

[2][4]
(2] [5]

:[2][6]
:[2][7]
:[311[4]
: [3]1[5]
: [3][6]
:[31107]

:[2][4]
:[2][5]
:[2][6]
:[2][7]
:[311[4]
:[311[5]
:[3][6]
:[31[7]

30.0000076

42.0

0.0

-3.52516241e+30

-3.54361545e+30

-3.60971468e+30

2.68063283e-09

4.65661287e-10

-1.60068157e+10

0.0

0.0

-3.52516241e+30

-3.54361545e+30

-3.60971468e+30

2.63675126e-09

1.1920929e-07

The same results as above could be achieved by entering:
print ff(2..3,4..7)

The array ff is being processed within a loop with loop counters i and j. The

following demonstrates printing multiple variables and using program variables to

specify the array elements.

Chapter 1. Using the pdbx Debugger

29

pdbx(all) print "i is:", i, "\tj is:", j, "\n", ff[i][j..j+1]
1:7 is: 0 Jjis: 1
1: [0][1] = -3.54331806e+30

1:[0][2] = 4.40487202e-10

0:1 is: 2 j is: 6
0: [2][6] = 0.0

0:[2][7] = -3.52516241e+30

Following are some examples which display the elements of an array of structs:

The command whatis here is used to show that the type of the variable tree is an
array size 4 of wood_attr_t's.

pdbx(0) whatis tree
0:wood_attr t tree[4];

Here the whatis command shows that wood_attr_t is a typedef for the listed
structure.

pdbx (0) whatis wood_attr_t

0:typedef struct {

0: int max_age;
0: int max_size;
0: int is_hard wood;

0:} wood_attr t;

This whatis command shows that this_tree is a wood attr_t ptr.
pdbx(0) whatis this tree

0:wood attr_t *this_tree;

To display the elements of the first three entries in the tree array, enter:

30 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(0) print tree[0..2]

0:[0]

(max_age

0:[1] = (max_age

0:[2] (max_age = 200, max_size

150, max_size = 120, is_hard_wood
250, max_size = 150, is_hard wood

125, is_hard_wood

0)
1)

0)

To display the element max_size of entry 1 of the tree array, enter:

pdbx(0) p tree[l].max_size
0:150
To display the entry that this_tree is pointing to, enter:

pdbx(0) p *this_tree

0:(max_age = 200, max_size = 125, is_hard_wood = 0)

To display just the max_size of the entry that this_tree is pointing to, enter:

pdbx(0) p this_tree->max_size

0:125

Following are some examples of displaying elements of a two dimensional array of

reals in a Fortran program:

To take a look at the type of var43:
pdbx(all) whatis var43

real*4 var43(4,3)

To display the entire array var43, enter:

Chapter 1. Using the pdbx Debugger 31

32

pdbx(all) print var43

(1,1) 11.0
(2,1) 21.0
(3,1) 31.0
(4,1) 41.0
(1,2) 12.0
(2,2) 22.0
(3,2) 32.0
(4,2) 42.0
(1,3) 13.0
(2,3) 23.0
(3,3) 33.0
(4,3) 43.0

To display a portion of the array var43, enter:
pdbx(all) print vard43(1..2, 2..3)

(1,2) = 12.0
(2,2) = 22.0
(1,3) = 13.0
(2,3) = 23.0

Refer to IBM AIX Version 4 General Programming Concepts: Writing and
Debugging Programs for more information on expression handling.

Displaying Source
The list subcommand displays a specified humber of lines of the source file. The
number of lines displayed is specified in one of two ways:

Tip: Use on <tasks> list, or specify the ordered standard output option.
e By specifying a procedure using the procedure parameter.

In this case, the list subcommand displays lines starting a few lines before the
beginning of the specified procedure and until the list window is filled.

e By specifying a starting and ending source line number using the
sourceline-expression parameter.

The sourceline-expression parameter should consist of a valid line number
followed by an optional + (plus sign), or — (minus sign), and an integer. In
addition, a sourceline of $ (dollar sign) can be used to denote the current line

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

number. A sourceline of @ (at sign) can be used to denote the next line
number to be listed.

All lines from the first line number specified to the second line number
specified, inclusive, are then displayed, provided these lines fit in the list
window.

If the second source line is omitted, 10 lines are printed, beginning with the line
number specified in the sourceline parameter.

If the list subcommand is used without parameters, the default number of lines
is printed, beginning with the current source line. The default is 10.

To change the number of lines to list by default, set the special debug program
variable, $listwindow, to the number of lines you want. Initially, $listwindow is
set to 10.

The syntax of this context sensitive subcommand is:

list [procedure | sourceline-expression|, sourceline-expression)]

Other Key Features

Some other features offered by pdbx include the following subcommands:
* help
e dhelp
e alias
e source

Also, this section includes information about how to specify expressions for the
print , stop, and trace commands.

Accessing Help for pdbx Subcommands
The help command with no arguments displays a list of pdbx commands and
topics about which detailed information is available.

If you type “help” with one of the help commands or topics as the argument,
information will be displayed about that subject.

The syntax of this context insensitive command is:
help [subject]

Accessing Help for dbx Subcommands
The dhelp command with no arguments displays a list of dbx commands about
which detailed information is available.

If you type “dhelp” with an argument, information will be displayed about that
command.

Note: The partition must be loaded before you can use this command, because it
invokes the dbx help command. It is also required that a task be in “debug
ready” state to process this command. After the program has finished
execution, the dhelp command is no longer available.

The syntax of this context insensitive command is:

Chapter 1. Using the pdbx Debugger 33

34

dhelp [dbx_command]

Creating, Removing, and Listing Command Aliases

The alias subcommand specifies a command alias. You could use it to reduce the
amount of typing needed, or to create a hame more easily remembered. The
syntax of this context insensitive subcommand is:

alias [alias_name [alias_string]]

For example, assume that you have organized all tasks into two convenient groups
— master and workers. During the execution of a program, you need to switch the
command context back and forth between these two groups. You could save
yourself some typing by creating one alias for on workers and one for on master. At
the pdbx command prompt, you would:

ENTER alias mas on master

alias wor on workers
Now to set the command context on the task group master, all you have to do is:
ENTER mas

Likewise, you can now enter wor instead of on workers.

In addition to any aliases you create, there are a humber of aliases supplied by
pdbx when the partition is loaded. To display the list of all existing aliases, use the
alias subcommand with no parameters. At the pdbx command prompt:

ENTER alias

® The debugger displays a list of existing aliases. The example listing
below shows all the default aliases provided by pdbx, as well as the two
aliases — mas and wor — created in the previous example.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

t where

J status

st stop

S step

X registers
q quit

p print

n next

m map

1 Tist

h help

d delete

o cont

mas on master
wor on workers
th thread

mu mutex

cv condition
attr attribute
active tasks
threads thread

Any aliases you create are not saved between pdbx sessions. You can also
remove command aliases using the unalias subcommand. The syntax of this
context insensitive subcommand is:

unalias alias_name

For example, to remove the alias mas defined above, you would:
ENTER unalias mas

Note: You can create, remove, and list command aliases as soon as you start the
debugger. The partition does not need to be loaded.

Chapter 1. Using the pdbx Debugger 35

36

Reading Subcommands From a Command File
The source subcommand enables you to read a series of subcommands from a
specified command file. The syntax of this context-insensitive subcommand is:

source command_file

The command_file should reside on the home node, and can contain any of the
subcommands that are valid on the pdbx command line. For example, say you
have a commands file named myalias which contains a number of command alias
settings. To read its commands:

ENTER source myalias
® The debugger reads the commands listed in myalias as if they had
each been entered at the command line.

Notes:

1. You can also read commands from a file when starting the debugger. This is
done using the -c flag on the pdbx command, or via a .pdbxinit file, as
described in Table 2 on page 5. The .pdbxinit file would be a great way to
automatically create your common aliases. When using a .pdbxinit file or the -c
flag, you need to keep in mind that only a limited set of commands are
supported until the partition is loaded.

2. STDIN cannot be included in a command file.
Specifying Expressions

Expressions are commonly used in the print command, and when specifying
conditions for the stop or trace command.

You can specify conditions with a subset of C syntax, with some Fortran
extensions. The following operators are valid:

Arithmetic Operators

+ Addition

- Subtraction

- Negation

* Multiplication

/ Floating point division
div Integer division

mod Modulo

exp Exponentiation

Relational and Logical Operators

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
== Equal to

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

= Equal to

I= Not equal to
<> Not equal to
Il Logical OR
or Logical OR
&& Logical AND
and Logical AND

Bitwise Operators

bitand Bitwise AND

| Bitwise OR

xor Bitwise exclusive OR
Bitwise complement
<< Left shift

>> Right shift

Data Access and Size Operators

0 Array element

0 Array element

* Indirection or pointer dereferencing
& Address of a variable

Member selection for structures and unions
Member selection for pointers to structures and unions
-> Member selection for pointers to structures and unions

sizeof Size in bytes of a variable

Miscellaneous Operators

0 Operator grouping
(Type)Expression Type cast
Type(Expression) Type cast
Expression\Type Type cast

Other Important Notes on pdbx

Initial Breakpoint

The initial automatic breakpoint, which is set by default at function main, for pdbx
can be redefined by the environment variable MP_DEBUG_INITIAL_STOP. See
the manual page for the pdbx command in Appendix A, “Parallel Environment
Tools Commands” on page 193 for more information.

Chapter 1. Using the pdbx Debugger 37

38

Overloaded Symbols

While pdbx recognizes function names, it is the combination of a function's name
and its parameters, or the function name and the shared object it resides in, that
uniquely identify it to pdbx . When encountering ambiguous functions, pdbx issues
the Select menu, which lets the user choose the desired instance of the function.

The Select menu looks like this:
pdbx(all) stop in fl

1.ambig.f1(double)
2.ambig.f1(float)
3.ambig.f1l(char)
4.,ambig.f1(int)

Select one or more of [1 - 4]:

The whatis subcommand can be used to determine whether or not a function is
ambiguous. If whatis returns more than one function definition for a given symbol,
pdbx will consider it ambiguous.

There are a few restrictions for the pdbx select menu:

¢ All tasks in the context must have an identical view of the ambiguous function
because pdbx will only present one menu to the user that covers all tasks. As
a result, you my need to create additional groups. The view of the ambiguous
function is determined by the result of the whatis subcommand. In the example
above, whatis f1 should have returned the same result on all tasks, in order to
proceed.

e The hook subcommand will not restore the set of events generated by the
Select menu.

e The trace and print subcommands do not support ambiguous functions within
complex expressions. For example, simple expressions are always allowed:

trace myfunc

print myfunc(parml, parm2)

but complex expressions are not allowed when a function (myfunc) is
ambiguous:

trace myvar-myfunc(parml, parm2)

print myvar*myfunc(parml)

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Exiting pdbx

It is possible to end the debug session at any time using either the quit
subcommand, or the detach subcommand if debugging in attach mode.

To end a debug session in normal mode:
ENTER quit
® This returns you to the shell prompt.
To end a debug session in attach mode, you can choose either quit or detach .
Quitting causes the debugger and all the members of the original poe application

partition to exit. Detaching causes only the debugger to exit and leaves all the
tasks running.

ENTER quit

® The debugger session ends, along with the poe application partition
tasks.

OR
ENTER detach

® The debugger session ends. All tasks have been detached, but stay
running.

Note: You can enter the quit and detach subcommands from either the pdbx
prompt or pdbx subset prompt.

Choosing detach causes pdbx to exit, and allows the program to which you had
attached to continue execution if it hasn't already finished. If this program has
finished execution, and is part of a series of job steps, then detaching allows the
next job step to be executed.

If instead you want to exit the debugger and end the program, choose quit as
described above.

Chapter 1. Using the pdbx Debugger

39

40 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Chapter 2. Using the pedb Debugger

This chapter describes the pedb debugger. The pedb debugger provides a
simplified, Motif graphical point-and-click interface. pedb is designed to debug
parallel C or Fortran applications. The pedb debugger is a poe application with
some modifications on the home node to provide a user interface. This means that
most of the setup for the debugger is identical to the setup for poe.

pedb can be used to debug an application either by starting the application under
the control of the debugger, or by attaching to an already running poe application.

If starting the application under the control of the debugger, it is first necessary to
compile the program and set the execution environment. See IBM Parallel
Environment for AIX: Operation and Use, Volume 1, Using the Parallel Operating
Environment for more information on the following:

e Compiling the program. Be sure to specify the -g flag when compiling the
program. This produces an object file with symbol table references needed for
symbolic debugging. It is also advisable to not use the optimization option, -O.
Using the debugger on optimized code may produce inconsistent and
erroneous results. For more information on the -g and -O compiler options,
refer to their use on other compiler commands such as cc and xIf. These
compiler commands are described in IBM AlIX Version 4 Commands Reference
or your online manual pages.

e Copying files to individual nodes. Like poe, pedb requires that your application
program be available to run on each node in your partition. To support source
level debugging, pedb requires the source files to be available too, but they are
only required on the home node.

e Setting up the execution environment.

If using pedb to attach to an application, much of the setup described above is not
necessary since the application is already running. However, it is still highly
desirable, but not absolutely necessary, to have the application compiled with the
-g option. When pedb attaches to an application that is not compiled with -g, the
debug information is limited to a stack trace.

As you read these steps, keep in mind that pedb accepts almost all the option flags
that poe accepts, and responds to almost all of the same environment variables.

This release of pedb does not support the debugging of applications that were
compiled with previous releases of poe.

Starting the pedb Debugger

You can start the pedb debugger in either normal mode or attach mode. In normal
mode your program runs under the control of the debugger. In attach mode you
attach to a program that is already running. Certain options and functions are only
available in one of the two modes. Since pedb is a source code debugger, some
files need to be compiled with the -g option so that the compiler provides debug
symbols, source line numbers, and data type information. When the application is
started using pedb, debugger control of the application is given to the user by
default at the first executable source line within the main routine. This is function

© Copyright IBM Corp. 1995, 1998 41

Normal Mode

main in C code or the the routine defined by the program statement in Fortran. In
Fortran, if there is no program statement, the program name defaults to main. If the
file containing the main routine is not compiled with -g the debugger will exit. The
environment variable MP_DEBUG_INITIAL_STOP can be set before starting the
debugger to manually set an alternate file name and source line where the user
initially receives debugger control of the application. Refer to the appendix on POE
environment variables and command-line flags in IBM Parallel Environment for AlX:
Operation and Use, Volume 1, Using the Parallel Operating Environment

The way you start the debugger in normal mode depends on whether the
program(s) you are debugging follow the SPMD or MPMD model of parallel
programming. In the SPMD model, the same program runs on each of the nodes in
your partition. In the MPMD model, different programs can run on the nodes of your
partition.

If you are debugging an SPMD program, you can enter its name on the pedb
command line. It will be loaded on all the nodes of your partition automatically. If
you are debugging an MPMD program, you will load the tasks of your partition after
the debugger is started.

ENTER pedb [[program] program options] [poe options] [X options] [[-| source
directory]...] [-d nesting depth] [-X]

® This starts pedb. You will see the pedb main window open. If you
specified a program, it is loaded on each node of your partition and you
see the message:

0030-0101 Partition loaded.

ENTER pedb -a poe process id [limited poe options] [X options] [[-] source
directory]...] [-d nesting depth] [-X]

® This starts pedb in attach mode. See “Attach Mode” on page 43 for
more information.

ENTER pedb -h

® This writes the pedb usage to STDERR. It includes pedb command
line syntax and a description of pedb options.

The options you specify with the pedb command can be program options, POE
options, or pedb options listed in Table 4 on page 43. Program options are those
that your application program will understand. You can also specify certain
X-Windows options with the pedb command.

For the most part, you can use the same command-line flags on the pedb
command as you use when invoking a parallel program using the poe command.
For example, you can override the MP_PROCS variable by specifying the number
of processes with the -procs flag. Or you could use the -hostfile flag to specify the
name of a host list file. For more information on the POE command-line flags, see
IBM Parallel Environment for AlX: Operation and Use, Volume 1, Using the Parallel
Operating Environment

42 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Table 4. Debugger Option Flags (pedb)

Use this flag: To: For example:
-a Attach to a running poe job by specifying its process id. This To start pedb in attach mode:
must be c_axecuted from the_ node where the poe job was initiated. ENTER pedb -a <poe PID>
When using the debugger in attach mode there are some
debugger command line arguments that should not be used. In
general, any arguments that control how the partition is set up or
specify application names and arguments should not be used.
-d Set the limit for the nesting of program blocks. The default To specify a nesting depth limit:
nesting depth limit is 25. ENTER pedb -d nesting.depth
-h Write the pedb usage to STDERR then exit. This includes pedb To write the pedb usage to STDERR:

command line syntax and a description of pedb flags. ENTER pedb -h

(upper case i)

Specify a directory to be searched for an executable's source To add directory1 to the list of
files. This flag must be specified multiple times to set multiple directories to be searched when
paths. (Once pedb is running, this list can also be updated using starting the pedb debugger:

the Update Source Path window.) ENTER pedb -l dir

You can add as many directories as
you like to the directory list in this
way. For example, to add two

directories:
ENTER pedb -l dirl -l dir2
-X Prevents stripping _ (trailing underscore) characters from To prevent trailing underscores from
symbols originating in Fortran source code. This enables being stripped from symbols in
distinguishing between symbols which are identical except for an Fortran source code:

underscore character, such as xxx and xxx_.

ENTER pedb -x

Attach Mode

The pedb debugger provides an attach feature, which allows you to attach the
debugger to a parallel application that is currently executing. This feature is
typically used to debug large, long running, or apparently “hung” applications. The
debugger attaches to any subset of tasks without restarting the executing parallel
program.

Parallel applications run on the partition managed by poe. For attach mode, you
must specify the appropriate process identifier (PID) of the poe job, so the
debugger can attach to the correct application processes contained in that
particular job. To get the PID of the poe job, enter the following command on the
node where poe was started:

$ ps -ef | grep poe

You initiate attach mode by invoking pedb with the -a flag and the PID of the
appropriate poe process:

$ pedb -a <poe PID>

For example, if the process id of the poe is 12345 then the command would be:
$ pedb -a 12345

pedb starts by showing a list of task numbers that comprise the parallel job. The
debugger obtains this information by reading a configuration file created by poe
when it begins a job step. At this point you must choose a subset of that list to
attach the debugger. Once you make a selection and the attach debug session
starts, you cannot make additions or deletions to the set of tasks attached to. It is

Chapter 2. Using the pedb Debugger

Attach Window

possible to attach a different set of tasks by detaching the debugger and attaching
again, then selecting a different set of tasks.

Note: The debugger supports up to 32 nodes. When attaching to jobs larger than
32 nodes, it is suggested you select a subset of tasks less than or equal to
32.

The debugger attaches to the specified tasks. The executable is stopped wherever
its program counter happens to be, and is then under the control of the debugger.
The other tasks in the original poe application continue to run. pedb displays
information about the attached tasks using the task numbering of the original poe
application partition.

Figure 3 shows the pedb. Attach window.

pedh Attach Dialog

Figure 3. pedb Attach window

44

The pedb Attach window contains a list of tasks and, for each task, the following
information:

e Task - the task humber
e |P - the ip address of the node on which the task/application is running

¢ Node - the name of the node on which the task/application is running, if
available

e PID - the process identifier of the task/application

e Program - the name of the application and arguments, if any.

At the bottom of the window there are four buttons:

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

e Attach - causes the debugger to attach to the tasks you select. It remains
grayed out until you make a selection.

e Attach All - causes the debugger to attach to all tasks listed in the window. You
do not need to make any specific selections.

e Quit - closes the Attach window and exits the debugger, leaving the poe job
running.

* Help - accesses help information about the Attach window.

At this point you can select a set of tasks to which the debugger attaches:
PRESS Attach All to select all tasks
OR

SELECT individual tasks by holding down the Ctrl key and clicking with the left
mouse button.

PRESS Attach

® The window closes and the pedb Main Window appears.

Task buttons appear for each task selected for debugging. Once the debugger
attaches to the selected tasks, the buttons change from a label of “UA”
(unattached) to “D” (debug state), and from the default color of “wheat” to “green.”

The default group button is labelled “Attached” and consists of all the tasks chosen
for attach.

When starting the debugger in attach mode, the default context is “Attached,” as
indicated at the top of the main window:

pedb: View - 1, Context - Group Attached

Other Compiling Options

pedb provides substantial information when debugging an executable compiled with
the -g option. However, you may find it useful to attach to an application not
compiled with -g. pedb allows you to attach to an application not compiled with -g,
however, the information provided is limited to a stack trace.

You can also attach pedb to an application compiled with both the -g and
optimization flags. However, the optimized code can cause some confusion when
debugging. For example, when stepping through code, you may notice the line
marker points to different source lines than you would expect. The optimization
causes this re-mapping of instructions to line numbers.

Command Line Arguments

You should not use certain command line arguments when debugging in attach
mode. If you do the debugger will not start, and you will receive a message saying
the debugger will not start. In general, do not use any arguments that control how
the debugger partition is set up or that specify application names and arguments.
You do not need information about the application, since it is already running and
the debugger uses the PID of the poe process to attach. Other information the
debugger needs to set up its own partition, such as node names and PIDs, comes
from the configuration file and the set of tasks you select. See Appendix B,
“Command Line Flags for Normal or Attach Mode” on page 239 for a list of

Chapter 2. Using the pedb Debugger 45

command line flags showing which ones are valid in normal and in attach
debugging mode.

The information in the appendix is also true for the corresponding environment
variables, however pedb ignores the invalid setting. The debugger displays a
message containing a list of the variables it ignores, and continues.

For example, if you had MP_PROCS set, when the debugger starts in attach mode
it ignores the setting. It displays a message saying it ignored MP_PROCS, and
continues initializing the debug session.

The pedb Main Window

As mentioned previously, you have the option of specifying the name of your
application when you invoke pedb which causes it to be loaded on all the tasks
automatically. This method is generally used to debug SPMD codes. If you need to
load an MPMD code, or prefer to use the file selection window to load your partition
you should not specify your application name on the pedb command line.

The initial pedb window you see will have blank areas as illustrated in Figure 4 on
page 47. If you specified an application name on the command line, the debugger
will continue, by loading your application for each task which will fill in the main
window as illustrated in Figure 6 on page 51.

Following is a brief overview of the pedb main window layout.
* Across the top is a menu bar, which contains the functions you will need for
debugging.
SELECT File — Load Executables ... to choose a program to debug.

SELECT Find — Find in Source Window to position source by search
strings.

* The left half of the screen contains the source code window and the pedb
control buttons.

— Double click on a source line to set a breakpoint.

— Control execution of your application with the buttons below the source
code.

e Application data by task is shown in the windows on the right side of the
display.

Global variable on request.

Variables local to the current block (or stack frame).

Calling stack listing.

Threads listing.

Event data (Break and Trace points).
e Context selection buttons at the lower right

e At the bottom, a message window.

46 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

ictilbr: o = 1. Crnlex] = Grougp &l

Figure 4. pedb main window before the partition is loaded

If you didn't do an SPMD load from the pedb command line, the initial screen
opens with many options unavailable. For example, the View option and control
buttons are inactive. These options will become available after all the tasks have
been loaded.

During this initial loading phase, you can:

e create or delete groups

¢ load programs, tasks, or groups
¢ set a different context

e get help

¢ select hide/show options

e update the source path

¢ change context to group or task
e quit pedb

Chapter 2. Using the pedb Debugger 47

Loading the Partition from the Load Executables Window

If you did not specify a program to load on the pedb command line, you will use
the Load Executables window. In this case, a partition has been created to support
the number of tasks that were defined for the application. In general, the term task
refers to an individual program that is part of a parallel application. The number of
tasks was determined by the value of the MP_PROCS environment variable, or the
value specified by the -procs flag, if entered on the command line when invoking
pedb.

A partition may be thought of as a system of one or more physical processor
nodes, along with the infrastructure necessary to execute a parallel application.
When you load a partition, you provide programs for the infrastructure to run.

When you specify a program to run by invoking pedb with a program name on the
command line, it assumes an SPMD model and automatically loads all tasks with
this program. With the Load Executables window however, you also have the ability
to load different executables on different tasks or groups of tasks (as in the case of
an MPMD application), or to load the same executable on all tasks in the instance
when the file is not located in a shared file system or in the same directory on all
tasks. You can load programs one task at a time by selecting a different button in
the Tasks area before opening the Load Executables window. You can also load a
subset of all the tasks at one time by first creating the desired task group(s), and
then selecting the corresponding group button in the Task Groups area before
using the Load Executables window.

Program Search Path

48

Like POE, pedb uses the normal shell search path that is established by the
environment variable PATH if you don't explicitly give a path. pedb checks this
path and loads the first occurrence of the program you specify (scanning from left
to right) for each task. The mechanism for finding source files is different from this.
See “Source Code Search Path” on page 101 for information on the source code
search path.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Load

Figure 5. Load Executables window

Chapter 2. Using the pedb Debugger 49

To load the same executable for all tasks (SPMD):

To load different executables (MPMD):

CHECK the title bar of the pedb window to make sure the

context is set to all tasks.

This is the default when you start the pedb
debugger. If the context is not on the task group
ALL, reset it.

To set the context on all tasks:

PRESS the task group button labeled ALL in the Task

Groups Area.
Once the context is set on all tasks:
SELECT File — Load Executables ...

® The Load Executables window opens. This
window allows you to choose the appropriate
directory and select the corresponding executable
file.

TYPE IN any command line arguments to the executable

selected for loading.

SELECT the directory and executable file you want to load
by clicking on each name. Double clicking on the

file name automatically loads the program.
PRESS OK

® The Load Executables window closes, and the
specified program is loaded for all tasks. Each
task stops at the first executable source line.
MP_DEBUG_INITIAL_STOP can be set to
override the default of the first executable source
line in main(). Set MP_DEBUG_INITIAL_STOP to
the file: linenumber.

DISPLAYS MESSAGE 0030-0101 Partition Loaded

Set the context before loading each program. For example,
suppose there will be five tasks numbered 0 through 4. To
load a program for task 0 and a program for tasks 1 through
4, you would:

PRESS
SELECT

the task button labeled 0 in the Task Area.
File — Load Executables ...

® The Load Executables window opens. This
window allows you to choose the appropriate
directory and select the corresponding executable
file.

SELECT the directory and executable file you want to load
by clicking on each name. Double clicking on the

file name automatically loads the program.

TYPE IN the command line arguments to the executable

selected for loading.
PRESS OK

® The Load Executables window closes and the
debugger loads the program for task 0.

Create a group, say groupl, containing tasks 1 through 4.

PRESS the task group button labeled groupl to set the

context.

SELECT File — Load Executables ...
® The Load Executables window opens.

SELECT the directory and executable file you want to load
by clicking on each name. Double clicking on the
file name automatically loads the program.

TYPE IN any command line arguments to the executable
selected for loading.

PRESS OK

® The Load Executables window closes and the
debugger loads the program for tasks 1 through 4.
Each tasks stops at the first executable statement.
MP_DEBUG_INITIAL_STOP can be set to
override the default of the first executable source
line in main(). Set MP_DEBUG_INITIAL_STOP to
the file: linenumber.

DISPLAYS MESSAGE 0030-0101 Partition Loaded

The pedb Window with a Partition Loaded

Once the partition is loaded, the pedb window will make all of its options available.

50 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

welb: Wiemw - 1. Conlax) - Groop Al (|

Figure 6. pedb main window after partition is loaded

This window consists of:

e The Title Bar. The Title Bar is located at the top most part of the window. It
identifies the view and context of the program.

e A menu bar with the following options:

— File

— View
— Group
— Find

— Options
— Tools
— Help

e The Source File Label. This label displays the name of the source file you are
currently debugging and the task number with which the source file is
associated.

Chapter 2. Using the pedb Debugger 51

52

The Source Area. This area displays the source code of the parallel program
you are debugging. This area has both horizontal and vertical scroll bars for
reading text displayed outside it.

The Message Area. This area displays informational and status messages
about events and actions that occur. Messages about errors, warnings, and
other severe conditions may not appear here; instead, they may appear in a
message pop-up window. The contents of this message area window is
controlled by a fixed-size buffer. When the buffer fills, earlier messages may no
longer be accessible from the message area window. However, all error
messages are duplicated in the window from which pedb was started.

The Global Data Area. The global variable viewer displays the variables that
are defined globally within the executing task(s). Global variables are only
relevant when debugging C programs. For more information on global data, see
“Examining Program Data” on page 68. The Global Data Area has both
horizontal and vertical scroll bars for reading text displayed outside it.

The Local Data Area. This area displays the values of the current routine's local
variables. The Data Area has both horizontal and vertical scroll bars for reading
text displayed outside it.

The Stack Area. This area displays the call stack for the current procedure or
function. The Stack Area has both horizontal and vertical scroll bars for reading
text displayed outside it. See “Displaying Local Variables Within the Program
Stack” on page 69 for more information.

The Threads Area. This area displays the threads contained in the task. The
Threads Area has both horizontal and vertical scroll bars for reading text
displayed outside it. See “Displaying Threads Information” on page 73 for more
information.

The Break/Trace Area. This area displays the active Break/Trace points for the
tasks in the current context. The Break/Trace Area has both horizontal and
vertical scroll bars for reading text displayed outside it. See “Locating
Breakpoint in Source” on page 68 for more information.

The pedb Execution Controls. These controls are directly below the Source
Area and allow you to control the execution of the application you are
debugging. These controls are similar to those you might find on a VCR or CD
player, and are described in “Controlling Program Execution” on page 57.

A Task Area. This area contains a number of task and task group push buttons
that you can use to select tasks, or task groups, when you are defining current
context. See “Setting the Context” and “Creating Task Groups” on page 54 for
more information.

Setting the Context

In pedb, context is defined as a task or group of tasks to which the debugger
directs certain actions or requests. The context sensitive controls, directly below the
Source Area (lower-left), only affect those tasks in the current context. The context
also determines which task's variables and stack traces will be displayed.

When you start a pedb session, the context is initially set to all tasks. As illustrated
in Figure 4 on page 47, the title bar of the pedb window reads

pedb: View - 1, Context - Group ALL.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

If you want the current context to be something other than all tasks, you can use
the push buttons in the Task and Task Groups areas to change it. Press the button
that corresponds to the task or group of tasks you wish to include in the current
context. Note that you can select only one task or task group at a time.

For example, assume you have a parallel program that is divided into five tasks.
The tasks are numbered 0 through 4, and each has a task push button in the Task
area. To set the context to just task 1:

PRESS the task push button labeled 1 in the Task Area.

® The pedb debugger sets the context to task 1. To illustrate this, the
debugger highlights the task's push button and updates the title bar of
the pedb window to read pedb: View - 1, Context - 1.

You can also define the current context by specifying groups of tasks. When you
start a pedb session, a task group is automatically defined that consists of all
tasks. This task group is named ALL. See “Creating Task Groups” on page 54 for
information on how to create task groups.

To set the command context back to the task group ALL:
PRESS the task group push button labeled ALL in the Task Area.

® The pedb debugger sets the context to all tasks. To illustrate this, the
debugger highlights the ALL task group push button, as well as the
other task push buttons, and updates the title bar of the pedb window to
read pedb: View - 1, Context - ALL.

You can change the context at any time during the debugging session.
Creating and Deleting Task Groups:

In general, the term task refers to an individual program that is part of a parallel
application.

You can collect a number of tasks under a common group name. When you do
this, the debugger creates a push button for the task group in the Task Groups
area. You can then set the context to include the tasks in the group by pressing its
push button.

To understand why you would want to define your own task groups, consider the
following example. You are debugging a master/worker program containing many
blocking sends and receives. The program has ten tasks. Task 0 is the master
task, and tasks 1 through 9 are the workers. During debugging you might start off
by running the master until a blocking receive operation cannot complete. Then you
could set the context on all the workers and run them past the matching send. This
will allow the master task to proceed. Then set the context back on the master and
run it some more.

Since you plan to keep switching the context back and forth between the master
and workers, you might find it helpful to group tasks 1 through 9 into a task group
named workers. Then you would be able to press a task group button to set the
context on the workers only.

Chapter 2. Using the pedb Debugger 53

You could also create a group named master containing just task 0. Although the
“group” in this case has only one task, the nhame master is more meaningful than a
task number and is therefore easier to remember.

Provide a group name that is no longer than 32 characters which starts with an
alphabetic character, and is followed by any alphanumeric character combination.

Creating Task Groups: You can create a group at any time during the debugging
session using the Add Group window.

To create a task group:
SELECT Group — Add Group

® The Add Group window opens.

Add Group

Figure 7. Add Group window

FOCUS on the Enter Group Name entry field.
TYPE IN the name of the group to be added.
FOCUS on the Select Task(s) area.

SELECT

a task by placing the cursor over a task number and depressing the left
mouse button.

or

54 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

PRESS

a range of tasks by depressing the left mouse button over the first task,
and dragging it over the range of tasks to be included in the group.

or

a set of nonconsecutive tasks by selecting the first task, and while
holding down the control key, selecting the next task(s). Note that
selecting a previously selected variable will de-select it.

Apply

or

OK

® Apply creates the task group. A button containing the name of the
group appears in the Task Groups area of the main window. The Add
Group window remains open for further selections. OK creates the
group, as above, and closes the Add Group window.

Clear removes all task selections and clears the text in the group name
field.

Cancel closes the Add Group window.

The Select By Range feature is useful when you need to select a large range of
tasks. To indicate the tasks using the Select By Range button:

SELECT

FOCUS
TYPE IN

the Select By Range button.
® The Select By Range window opens.
on the Enter range of tasks to select: field.

the task list. To indicate a range of tasks, enter the first and last task
numbers, separated by a colon or dash. To indicate individual tasks,
enter the numbers, separated by a space or a comma.

For example:

To add:

Type in:

task 6 and 8 6,8

tasks 6 and 8 68

6 through 8, and 75 6:8 75

6 through 8, and 75 6-8 75

® Apply adds the selected tasks to the Add Group window and leaves
the Select By Range window open for other selections.

OK adds the tasks to the Add Group window and closes the Select By
Range window.

Cancel closes the Select By Range window.

Deleting Task Groups: If a particular task group no longer seems necessary, you

can delete it using the Delete Group window. You may delete a group (except “all”
or “attached”) at any time during the debugging session.

Chapter 2. Using the pedb Debugger

55

56

To delete a task group:
SELECT Group — Delete Group
® The Delete Group window opens.
PLACE the cursor over the name of the group.
PRESS the left mouse button.
® The group name highlights to show that you have selected it.
PRESS Apply
or
OK

® Apply deletes the group and removes the group button from the Task
Groups area. The Delete Group window remains open. OK deletes the
group, as above, and closes the Delete Group window.

Cancel closes the Delete Group window.

Task Status Information: The task buttons used to change pedb context also
display information about the status of each task. During your debug session, the
color and the code letter change during different activities. For example, during the
load process, the color will change from red to yellow to green and the status code
letter will change from N to L to D.

Note: These are the default colors, but you can configure them by updating your
Xdefaults file.

Since each task runs independently of pedb, the debugger maintains status
information for each task in the partition. The following table shows the status
codes that are displayed in each task button and describes their meanings.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Table 5. Status Codes

Code

Default Color

Status

Description

N

Red

Not loaded

The task has not yet
been loaded with an
executable.

Yellow

Loaded

The task has been
loaded with an
executable.

Green

Debug Ready

The task is stopped and
can be debugged using
pedb.

White

Running

The task is in control and
running.

MediumSeaGreen

Playing

The Play button has
been depressed. The
task is switching
between Playing and
Running, with some
limited function.

Khaki

Exit Requested

The task in the parallel
application has issued
exit or returned from
main, and is thus waiting
in the POE specific exit
code for its peer tasks to
indicate that they too are
waiting to exit.

Goldenrod

Exited

The task has reached
the hidden_exit
breakpoint that was set
by libdbx .

Orange

Error

The task is in an
unknown state.

LightSteelBlue

Unhooked

The task has been
unhooked.

UA

Wheat

Unattached

The task has not yet
been attached.

Controlling Program Execution

The pedb debugger lets you control execution by setting breakpoints in, or else by
stepping through, the source code. This section describes how to perform these
familiar debugging tasks using the pedb debugger. It also describes some
additional functions pedb provides such as unhooking tasks so they can run
without intervention from the debugger.

The simplest method of controlling program execution with pedb is by manipulating
the control buttons located directly below the Source Area on the pedb window.
From left to right, the control buttons are Step Over, Step Into, Step Return,

Continue, Halt, Play, and Stop.

Chapter 2. Using the pedb Debugger

57

Table 6. Control Buttons

In order to:

Press this Control Button:

Manually step the execution of tasks in the current context, by a line of source Step Over
code, stepping over subroutines and functions.

Manually step the execution of tasks in the current context, by a line of source Step Into
code, stepping into subroutines and functions.

Return from the current function to the function which called it. This typically Step Return
reduces the call stack by one function.

Continue executing the tasks in the current context up to the next breakpoint or to Continue
the program's completion.

Interrupt execution of running tasks. The Halt button is used for situations in which a Halt
process is in a running state, such as blocked, and must be interrupted.

Have the debugger repeatedly execute the tasks. Available Play choices are Step Play

Over, Step Into, and Continue.

Break out of Play mode (as tasks finish, they will stop) Stop

Note: To modify the function of the Play button, refer to “Customizing the Play Control Button” on page 65.

58

Every time execution of a task in the current context stops, the debugger updates
the pedb window to display the current information. In the Source Area, the
debugger uses a line marker to identify the line of code at which execution has
stopped. The debugger draws a line marker as an arrow pointing at the line of
code. For example, when you first load a parallel program onto the partition, it runs
up to the first executable statement and stops. In Fortran and C programs, this is
the first executable source line defined by the user, so the debugger draws a line
marker there. Since you can set the context on a subset of tasks and run them
independently of the others, you can have a number of line markers displayed.
When more than one task is at the same line of code, the line marker appears as a
button.

If you are unsure of the task(s) associated with a particular line marker:
PLACE the mouse cursor over the line marker.
PRESS the left mouse button.

® A label appears identifying the tasks and threads at that line of code.
For threaded programs, each task number is followed by the displayed
thread number, which is the thread whose source file, local variables,
and stack are displayed. The label is visible only while you hold the
mouse button down.

Line markers may be thought of as ad hoc groups which can be used to manipulate
the parallel application. This manipulation is independent of the current context. For
example, say you are debugging a parallel program with three tasks numbered 0,

1, and 2. Tasks 0 and 1 are at line 22, while task two is at line 24. You want to
step tasks 0 and 1 to the same line as task two. To step tasks 0 and 1 as if they
were in a group:

PLACE the mouse cursor over the line marker at line 22.
PRESS the right mouse button.

® A menu appears containing four items — Step Over, Step Into, Step
Return, and Continue. These menu items correspond to the Step Over,
Step Into, Step Return, and Continue pedb control buttons.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

SELECT Step Over
The debugger runs tasks 0 and 1 one line and stops them at line 23.

REPEAT these steps so that tasks 0, 1, and 2 are all at line 24.

The line marker, as used above, allows you to perform simple operations on single
or multiple tasks that are not in a predefined task group. If tasks 0 and 1 comprised
a group, you could change the context to that group, and then use the control
buttons as above, then restore the original context.

Note: For more information on stepping, see “Stepping Execution” on page 63.

Threaded Programs: Each task can contain multiple threads. The threads for the
tasks are listed in the threads pane on the right hand side of the pedb main
window just below the stack pane. The list of threads for a single task can also be
displayed in a separate window known as the Threads Viewer window.

When a task is in “debug ready” state, the interrupted thread is defined as the
thread that stopped due to encountering a breakpoint or a signal. When this thread
stopped, it in turn stopped all of the other threads in the process. The interrupted
thread is treated specially by single step execution control. Subsequent step
execution control that is issued will have the effect of stepping the interrupted
thread while letting all other threads continue. It is not possible to change the
interrupted thread to another thread. The interrupted thread is denoted by an
asterisk at the start of the threads row.

Initially, when a task reaches “debug ready” state, the displayed thread is the same
as the interrupted thread. The displayed thread for a task is alterable by the user.
When changed to another thread, the stack, local variables, source line arrow, and
the source file will be updated to reflect those for the new displayed thread. The
displayed thread is denoted by a “greater than” (>) operator at the start of the
threads row.

Setting Breakpoints: The pedb debugger lets you set stopping places, called
breakpoints, in your program. You mark which lines are to be breakpoints for the
tasks in the current context and then run the program using the Continue button.
When the tasks reach a breakpoint, execution stops and you can then examine the
state of the program.

In threaded programs, setting a breakpoint on a task, sets the breakpoint for all
threads in the task. When any thread in a task hits a breakpoint, all other threads in
the task are also stopped.

Note: The Play button will not stop execution at breakpoints, so it is suggested
that you use the Continue button.

To set a breakpoint:

PLACE the mouse cursor over an executable source line in the Source
Area.
PRESS the left mouse button.

® The line highlights to show that you have selected it.
PRESS the right mouse button.

® A selection menu appears.

Chapter 2. Using the pedb Debugger 59

60

SELECT Breakpoint

® The debugger sets, for each task in the current context, a
breakpoint at the marked line of code.

Note: You can also set a breakpoint by double clicking the left
mouse button after placing the cursor over an executable
source line.

In the Source Area, the debugger places a stop marker (drawn
to look like a stop sign containing an exclamation point) next to
the line with the breakpoint.

In addition to the stop marker, the debugger displays a
breakpoint event message (one for each of the tasks in the
current context) in the Break/Trace area. The message includes
an interpretation of the breakpoint. For example:

[1] stop at "ptst4.f":22
Note: The debugger sets a separate breakpoint for each task in the context.

You can also specify a condition when setting a breakpoint. The task then stops
executing at the breakpoint only if the condition evaluates to true.

Specifying Conditions for Breakpoints and Tracepoints: You can specify conditions
with a subset of C syntax, with some Fortran extensions. The following operators
are valid:

Arithmetic Operators

+ Addition

- Subtraction

- Negation

* Multiplication

/ Floating point division
div Integer division

mod Modulo

exp Exponentiation

Relational and Logical Operators

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
== Equal to

= Equal to

I= Not equal to

<> Not equal to

Il Logical OR

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

or Logical OR
&& Logical AND
and Logical AND

Bitwise Operators

bitand Bitwise AND

| Bitwise OR

xor Bitwise exclusive OR
Bitwise complement
<< Left shift

>> Right shift

Data Access and Size Operators

0 Array element

0 Array element

* Indirection or pointer dereferencing
& Address of a variable

Member selection for structures and unions
Member selection for pointers to structures and unions
-> Member selection for pointers to structures and unions

sizeof Size in bytes of a variable

Miscellaneous Operators

0 Operator grouping
(Type)Expression Type cast
Type(Expression) Type cast
Expression\Type Type cast

To set a conditional breakpoint:
PLACE the mouse cursor over an executable source line.
PRESS the left mouse button.

® The line highlights to show that you have selected it.
PRESS the right mouse button.

® A selection menu appears.
SELECT Conditional Breakpoint

® The debugger displays the Conditional Breakpoint window.
FOCUS on the text entry field of the Conditional Breakpoint window.

TYPE IN the condition that must evaluate to true for the execution to stop at the
breakpoint. For example, to stop execution at the breakpoint only if the
variable x is greater than 19, you would type in x > 19. x > 19.

Chapter 2. Using the pedb Debugger 61

62

PRESS OK

® The debugger closes the Conditional Breakpoint window and sets a
breakpoint for the tasks in the current context.

As with regular breakpoints, the debugger places a stop marker next to
the line with the breakpoint in the Source Area. In the Break/Trace area,
it adds a message reporting the conditional breakpoint the debugger has
built for each of the tasks in the current context. For example:

[1] if x > 19 { stop } at "ptst4.f":22

Specifying Thread Specific Breakpoints and Tracepoints: Thread specific
conditions can be added to breakpoints and tracepoints using the conditional
breakpoint and conditional tracepoint windows. You set the conditions using the
variable $running_thread . This variable represents the thread that encountered
the breakpoint first. This thread (the interrupted thread) will cause all of the other
threads to stop. For example, adding the condition $running thread == 1 after
selecting line 234 in your source would result in the program stopping when the
thread labeled $t1 encountered line 234. To state this another way, the breakpoint
is triggered only when thread 1 encounters the breakpoint. Refer to IBM AIX
Version 4 General Programming Concepts: Writing and Debugging Programs for
more details.

Identifying the Tasks Associated with a Breakpoint: \When you set a breakpoint by
following the previous instructions, remember that a separate breakpoint is set for
each of the tasks in the current context. If you wish to see a list of the task(s)
associated with a particular stop marker in the Source Area:

PLACE the mouse cursor over the stop marker.
PRESS the left mouse button.

® A label appears identifying the tasks with a breakpoint at that line of
code. The label is visible only while you hold the mouse button down.

When multiple breakpoints are set for a given task, the breakpoint will
appear multiple times in the Break/Trace area. The corresponding
breakpoint events will also be highlighted in the Break/Trace Area. This
graphically shows the breakpoints that would be deleted if you used the
procedure for removing all breakpoints at the same line of code,
described in Table 7 on page 63.

Removing Breakpoints: Any number of the active tasks may have one or more
breakpoints at that same line of code. You can remove:
¢ a breakpoint for a single task
or

¢ all the breakpoints at that line of code for all tasks in the current context.

The following table shows how to remove breakpoints.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Table 7. Removing Breakpoints

To remove the breakpoint for a single task:

To remove all breakpoints at the same line of code:

PLACE

PRESS

PRESS

SELECT

the mouse cursor over the breakpoint's event
message for that task in the Break/Trace Area.

Note: The task must be in the current context for
the event message to be displayed.

the left mouse button

® The breakpoint's event message highlights to
show that you have selected the breakpoint.

the right mouse button.
® A selection menu appears.
Delete

® The breakpoint's event message disappears to
show that the debugger has removed the
breakpoint for the task.

PLACE

PRESS

SELECT

the mouse cursor over the stop marker
at that line of code.

the right mouse button.
® A selection menu appears.
Delete

® The debugger removes all
breakpoints set at the line of code for
the tasks in the current context. The
stop marker disappears as well as the
event strings highlighted in the
Break/Trace Area.

Stepping Execution:

The pedb debugger lets you single—step execution of your

program. In other words, you can run the tasks in the current context one source
code line at a time. For threaded programs, single step execution has the effect of
single stepping the interrupted thread, while letting all other non-held threads in the
task continue freely without stopping at any breakpoints. All threads will again be
stopped when the stepping thread reaches the appropriate source line. You can
manually control each step, or have the debugger repeatedly step through the tasks
in the current context at a selected interval. There are three methods of stepping
the execution of your program. You can use the Step Over button to step over the
subroutines and functions of your program. The Step Into button lets you step into
the subroutines and functions of your program. Also, the Step Return button lets
you return to the calling function.

To step execution, stepping over subroutines and functions:

PRESS

the Step Over Control Button.

® The debugger runs one line of the source code for the tasks in the
current context and stops.

The function of the Step Over Control Button is to:

e step one line of source code

e step over functions, keeping the scope within the current function.

To step execution, stepping into subroutines and functions:

PRESS

the Step Into Control Button.

® The debugger runs one line of the source code for the tasks in the
current context and stops.

The function of the Step Into Control Button is to:

e step one line of source code

e step into functions, following execution into called functions with
debugging information.

The debugger changes the source code displayed in the Source Area to that of the
called function, and adds the function call to the Stack Area.

Chapter 2. Using the pedb Debugger 63

64

To step execution, returning to the calling function:

PRESS the Step Return Control Button.
® The debugger returns to the calling function and stops.
The function of the Step Return Control Button is to:

e execute the remainder of the current function
e stop in the calling function.

To automatically repeat execution:
PRESS the Play Control Button.

® The debugger repeatedly steps execution of the tasks in the current
context.

When using the Play Control Button, execution continues for the tasks in the
current context until you press the Stop Control Button. The Play function allows
you to execute multiple iterations of Step Over, Step Into or Continue (see
“Customizing the Play Control Button” on page 65 for more information). It updates
the pedb window for each play cycle executed.

The Continue function of the Play Control Button can be particularly valuable when
looking at loop processing. A break point may be set within a loop and the
application data will be updated for each loop iteration.

Since the debugger has to keep updating the pedb window when in play mode, this
is a slower form of execution than using the Continue Control Button. The
advantage is that it provides you with more intermediate information.

For example, say you are debugging a master/worker program containing many
blocking sends and receives. The context is on the worker tasks. You set a
breakpoint and then press the Continue Control Button to continue execution of the
worker tasks. Before reaching the breakpoint, however, the tasks hit a blocking
receive intended to synchronize execution between the workers and the master
task. Because the master is not in the current context, the receive operation cannot
complete and so the workers cannot reach the breakpoint. Since the debugger
cannot refresh the pedb window until the pending Continue function completes, the
problem is not immediately observable. However, if you were repeatedly stepping
the tasks using the Play function, you would see the line marker and other
application information in effect just prior to the pending Step. You would see the
task buttons holding in the running state and have a clear indication of where the
program is hung.

To stop execution (stop playing):
PRESS the Stop Control Button.

® The debugger stops executing the program's tasks.

To interrupt execution (interrupt a waiting process):
PRESS the Halt Control Button.

® The debugger interrupts execution and returns control to the user.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Customizing the Play Control Button: When you press the Play Control Button, by
default it repeatedly executes Step Into (s), with one-second between each Step
Into. However, you can customize the Play Control Button to:

¢ select which command to repeatedly execute
e specify the delay between the command iterations in tenths of a second.

You can set these options from the main menu, using the Options pulldown.

To specify the command:
SELECT Options — Change Play Command
® Another menu appears with the command choices.

SELECT the command you want the debugger to execute repeatedly when you
press the Play Control Button.

® The menu closes, and the Play Control Button is set to execute the
command you specified.
To specify the delay between command iterations:
SELECT Options — Change Play Delay
® The Change Play Delay window opens.
FOCUS on the text entry field in this window.
TYPE IN The new delay time in tenths of seconds.
PRESS OK
® The Change Play Delay window closes, and the Play Control Button is

set to execute its command with the new delay you specified.

You can also set these options from the pop-up menu on the Play Control Button:

To specify the command:

To specify the delay between command iterations:

PLACE the cursor over the Play Control Button. PLACE the cursor over the Play Control Button.
PRESS the right mouse button. PRESS the right mouse button.
® The Play Menu appears. ® The Play Menu appears.
SELECT Change Play Command SELECT Change Play Delay
e Another menu appears with the command e The Change Play Delay window opens.
choices.

SELECT the command you want the debugger to execute
repeatedly when you press the Play Control

Button. PRESS OK
e The menu closes, and the Play Control Button is ® The Change Play Delay window closes, and the
set to execute the command you specified. Play Control Button is set to execute its command

FOCUS on the text entry field in this window.

TYPE IN The new delay time in tenths of seconds.

with the new delay you specified.

Tracing Program Execution: ~ The pedb debugger lets you set tracepoints in your
program. When tasks reach a tracepoint during execution, the debugger writes
information regarding the state of the program to the window from which pedb was
invoked.

For threaded programs, tracepoints are set for all threads in the task by default.
Each time a thread in the task encounters the tracepoint, a trace record is written.

Chapter 2. Using the pedb Debugger 65

66

Tracepoints can be set at any executable line of code within the program.

To set a tracepoint:
PLACE the mouse cursor over an executable source line.
PRESS the left mouse button.

® The line highlights to show that it is selected.
PRESS the right mouse button.

® The Break/Trace menu appears.
SELECT Tracepoint

® The debugger sets a tracepoint at the selected line for the
tasks in the current context.

In the Source Area, the debugger places a blue trace marker
next to the line with the tracepoint. The trace marker is drawn as
two eyes looking at the line of code.

In addition to the trace marker, the debugger displays a
tracepoint event message (one for each of the tasks in the
current context) in the Break/Trace area. The message includes
an interpretation of the tracepoint preceded by the event ID
associated with it. For example:

[6] trace at "mikia.f":15
Note: The debugger sets a separate tracepoint for each task in the context.
You can also specify a condition when setting a tracepoint. The tasks then write

trace information only if the condition evaluates to true. See “Specifying Conditions
for Breakpoints and Tracepoints” on page 60 for more information.

Thread specific tracepoints can be set in a similar fashion to thread specific
breakpoints. See “Specifying Thread Specific Breakpoints and Tracepoints” on
page 62 for more information.
To set a conditional tracepoint:
PLACE the mouse cursor over a source line.
PRESS the left mouse button.

® The line highlights to show that you have selected it.
PRESS the right mouse button.

® A selection menu appears.
SELECT Conditional Tracepoint

e The debugger displays the Conditional Tracepoint window.
FOCUS on the text entry field of the Conditional Tracepoint window.

TYPE IN the condition that must evaluate to true for trace information to be
written. For example, x > 19.

PRESS OK

® The debugger closes the Conditional Tracepoint window and sets a
tracepoint for the tasks in the current context.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

As with regular tracepoints, the debugger places a trace marker next to
the line with the tracepoint in the Source Area. In the Break/Trace area,
it adds a message reporting the conditional tracepoint for each of the
tasks in the current context. For example:

[7] trace at "blist.f":23 if x > 19

Identifying the Tasks Associated with a Tracepoint: If you wish to see a list of the
task(s) associated with a particular trace marker in the Source Area:

PLACE the mouse cursor over the trace marker.
PRESS the left mouse button.

® A label appears identifying the tasks with a tracepoint at that line of
code. The label is visible only while you hold the mouse button down.

When multiple tracepoints are set for a given task, the tracepoint will
appear multiple times in the Break/Trace area. The corresponding
breakpoint events will also be highlighted in the Break/Trace Area. This
graphically shows the tracepoints that would be deleted if you used the
procedure for removing all tracepoints at the same line of code,

described in Table 8.

Removing Tracepoints: Any number of the active tasks may have a tracepoint at
that same line of code. You can remove:

e a tracepoint for a single task

or

¢ all tracepoints at that line of code for all tasks in the current context.

The following table shows how to remove tracepoints.

Table 8. Removing Tracepoints

To remove the tracepoint for a single task:

To remove all tracepoints at the same line of code:

PLACE

PRESS

PRESS

SELECT

the mouse cursor over the tracepoint's event
message for that task in the Break/Trace Area.

Note: The task must be in the current context for
the event message to be displayed.

the left mouse button

® The tracepoint's event message highlights to
show that you have selected the tracepoint.

the right mouse button.
® A selection menu appears.
Delete

® The tracepoint's event message disappears to
show that the debugger has removed the
tracepoint for the task.

PLACE the mouse cursor over the trace marker
at that line of code.
PRESS the right mouse button.

® The Break/Trace menu appears.
SELECT Delete

® The debugger removes all tracepoints
for the tasks in the current context. The
trace marker disappears as well as the
event strings highlighted in the
Break/Trace Area.

Unhooking Tasks: A task or group of tasks may be unhooked so that they
execute without intervention from the debugger.

To unhook a task or group of tasks:

PLACE the mouse over a task or group button in the task area of the pedb

window.

Chapter 2. Using the pedb Debugger 67

68

PRESS the right mouse button.
SELECT the Unhook option.

® The debugger unhooks the selected task or group of tasks. The task
buttons are set to the appropriate color (the default is blue) to indicate
that they have been unhooked. Note that you can change the default
colors used by pedb by updating the X defaults file.

Examining Program Data: This section describes how to use the Data Area of
the pedb Window to examine your program's data. This area shows the names and
values of variables in the current routine.

Each time execution of the program stops, the debugger automatically updates the
information displayed.

Data, Stack, Threads, and Break/Trace Information: In the pedb window, the
Local Data, Global Data, Stack, Threads, and Break/Trace areas present
information for each task in the current context. There are times when you want to
stop displaying information for a particular task or task group in one or more of
these areas. This allows you to conserve space in the area and improve the
readability of information still displayed there.

For example, say you are debugging a master/worker program. The program has
15 identical worker tasks and you are stepping execution through them. Since the
information displayed for each task is essentially the same, you might want to hide
all but one. The information will then be easier to read and the information
refreshes will be faster.

To hide a task's data, stack, threads,and break/trace information:

PLACE the mouse cursor over a task button or a task group button in the task
area of the pedb window.

PRESS the right mouse button.
® A selection menu appears.

SELECT either Hide Local Data , Hide Global Data , Hide Stack , Hide Threads ,
Hide Break/Trace , or Hide All

® The debugger no longer displays information for the task in the
specified window. If you selected Hide All, the debugger hides the tasks
information in all four areas. When you hide a window, the Hide option
on the selection menu toggles to Show. You can then repeat these
steps to again display the task's information in the specified window.

Locating Breakpoint in Source: You can select a Break/Trace event and show the
source line associated with it.
DOUBLE CLICK on an item in one of the Break/Trace window lists.

® The source window centers at the source line that is associated with
the selected breakpoint and highlights that line.

OR
PLACE the mouse cursor on an item in one of the Break/Trace window lists.

PRESS the left mouse button to highlight your selection.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

PRESS the right mouse button

® A menu pops up with two choices: Delete and Goto Source .
Selecting Goto Source has the same effect as the double click
described above.

Displaying Local Variables Within the Program Stack: pedb displays the variables
that are in scope within the local program block. The Stack Area lets you display,
for any of the functions or subroutines listed, the local variables that are outside the
local execution block (not on the top of the stack). To display these variables:

PLACE the mouse button on a line in the Stack Area.
DOUBLE-CLICK the left mouse button.

® The line highlights to show that it is selected, and the local variables
associated with the function, subroutine, or unnamed block are
displayed within the Local Data. All the data variable menu options are
available.

Note: Local variables for the associated tasks that are outside the local execution
block (not on the top of the stack), are displayed only until you issue
another Stack Area selection or execution function within pedb.

Displaying Local Variables and Program Stack Within a Thread: The pedb
debugger will display program states about one thread of each task at a time. The
source code, local variables, and stack trace for a task will be those of the
displayed thread for the task. To select the displayed thread:

DOUBLE-CLICK on the thread.
OR

SELECT the thread from the pull-down available from each thread entry.

To select a stack entry:
PLACE the mouse button on a line in the Stack Area.
DOUBLE-CLICK the left mouse button.

® The line highlights to show that it is selected, and the local variables
associated with the function, subroutine, or unnamed block are
displayed within the Local Data. All the data variable menu options are
available.

Understanding Data Types: In pedb, you can view program data through either
the Global Variable Viewer or the Local Variable Viewer. These windows display a
specific type of data (global or local), and the way you use them depends on the
programming language.

Local Variables: The Local Variable Viewer displays the variables, in C and
Fortran, that are currently visible within your local execution block.

Stepping in and out of functions and subroutines during the debugging session will
alter the list of local variables that the Local Variable Viewer displays. The Local
Variable Viewer displays the set of variables for the function or subroutine that is at
the top of the execution stack for a particular task.

Chapter 2. Using the pedb Debugger 69

Global Variables: The Global Variable Viewer displays the variables that are
defined globally within the executing task. Global variables are only relevant when
debugging C programs. Unless you specifically modify it, the list of global variables
displayed in the Global Variable Viewer remains constant throughout the debugging
session. Initially no global variables are displayed.

Note: xIf and xlc optimize out variables that are not referenced within a program.
As a result, these variables may not be available in the Global or Local
Data areas.

Data Display Policies: The following table shows how variables are initially
displayed in the Data Area.

In the Data Area, this type

of variable: Will initially be displayed: For example:
scalar with its value formatted x = 300
according to its default type.
a = -.0001
b = 331.789978
char_val ='W’
structure with its type indicated. struc_1 = <struct MyStruct_t>
array with its type indicated. a = <array 8192 of int>
X = <array 5 struct foo>
z = <array 10 * of int>
pointer with its type indicated Character Pointer examples:
x = (nil); (unreferenced)
X = — 0x4a567 (ptr to address)
x = ——4; (dereferenced)
Structure Pointer Examples:
structx = (nil); (unreferenced)
structx = — <struct foo> (dereferenced)
union with its type indicated MyOwnUnion_T = <union MyOwnUnion_T>
enum with its value formatted x = foo
according to its default type.
logical with its value formatted do_this = .false
according to its default type.
Viewing Variables with the Variable Viewer: Both the local and global variable
windows are physically limited by the number and size of the variable information to
be shown in the display. Therefore, conditions can exist where the user is unable to
view all the data contained within the variable viewer due to geometry restriction on
the pedb main window; or that the amount of data to be displayed exceeds the
limitations of the window. In either of these cases, all of the variable list can be
viewed using the Variable Viewer, which is an expanded form of the data window.
Initially, the variable list (local and global) is displayed in a list form, or in an iconic
form. Note that when the condition of overflow occurs the variable list is replaced
by the overflow icon.
70 I1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Task DI

Figure 8. Overflow icon

To view the variable list in its own window,

PLACE

PRESS

SELECT

the cursor over the task number label of the task, in the data area, of
the variable you want to view.

the right mouse button.
® A pop-up menu appears with an option Variable Viewer... .

Note: The pop-up menu that appears for the local and global variable
viewer will present a different set of options.

the Variable Viewer Option

® A separate window appears displaying the list of variables that was
previously displayed in the local or global data area. The list (or icon) in
the data areas on the main window of pedb should be replaced with the
Variable Viewer icon.

Figure 9. Variable Viewer icon

Using the Variable Viewer Window: The Variable Viewer window displays a list of
global or local variables for a specified task. The task and type of data being
displayed is identified by the title of the window. Figure 10 on page 72 shows the
Variable Viewer window displaying local variables for the specified task. Note that
all of the variable pop-up menus options that are described in “Policies for Global
Variables” on page 72 are also available in this window.

Chapter 2. Using the pedb Debugger 71

I]
= Task 1: Local Variables ==

Action Search Help

L-|

804339136
<array 50 x 50 x 50 of float>

804359136
{array 2 of int>
-3=3" 7
1

o
ir]
11}
-
nnn

|- =

Figure 10. Variable Viewer window

To close the variable window and return the variable list back to the main window:
PLACE the mouse cursor over the Action pulldown on the menubar.
PRESS the left mouse button.
® A pop-up menu should appear with a Close option.
SELECT the close option with the left mouse button.

e The window will close and return the contents back to the main
window data area.

Note: Variables displayed in a task that is not in the current context will
not be refreshed.

Policies for Local Variables: The Local Variable subwindow for each task displays
all the variables within the local execution block.

Policies for Global Variables: The Global Variable subwindow requires you to
explicitly select the global variables you want to view. You can do this with the
Variable Selection window.

To display a global variable:

PLACE the cursor over the task number label of the task, in the Global Data
area, for which you wish to choose global variables.

PRESS the right mouse button.
® a pop-up menu appears with the following options:

¢ Variable Selection, which provides a list from which you can select
variables

e Show All, which shows all global variables for the task

e Hide All, which hides all global variables for the task

e Variable Viewer, which moves the display for the variables of this
task to a separate window.

72 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

SELECT the Variable Selection... option.
® The Variable Selection window appears.

Note: The Variable Selection window shows only the global variables in your
program that have accessible source files. If the source code of a particular
program is not accessible, you may wish to use the -1 flag, or the Source
Path Window.

SELECT

a single variable by placing the cursor over it and depressing the left
mouse button.

or

multiple, contiguous variables by depressing the left mouse button and
dragging it over the range of variables.

or

multiple, non-contiguous variables by selecting the first variable and,
while holding down the control key, selecting the next variable(s). Note
that selecting a previously selected variable will de-select it.

PRESS Apply
or
OK

® Apply selects the variable(s) and leaves the Variable Selection
window open. The variable(s) appear under the corresponding task label
in the Global Data area.

OK selects the variable(s), as above, and closes the window.

Cancel discards your selection and closes the window.

Displaying Threads Information: In pedb, you can display threads data for tasks in
the current context. You can view a list of threads and some detailed information
about the condition variables, attributes, and mutual exclusion locks pertaining to
each task.

The Threads area of the pedb main window displays a list of threads for each task.
Any one of the threads is available to select. Initially, the interrupted thread is the
displayed thread. You are free to change the displayed thread for any task.

Like the local and global variable viewers, when a window representing a task in
the threads area reaches a threshold, the overflow icon is displayed. See
“Understanding Data Types” on page 69 for information on the local and global
data viewer. At this time, you can open a Threads Viewer window, which contains
the same information in the same format as in the Threads area for that task.

Chapter 2. Using the pedb Debugger 73

Tauk 2 Thresals viewnsr : |

=p - g |
Lhoecud alule-h Hehan alule-u h=-Lid mude held acope Funcliun
DEL AR cun Lluched M7 u nu pru Thriead
ML Hudl Nzehin®Rbe bluched 353147 h nu avyd _plhoead halecp
LK | Hudl N=NSedTe®: cunndng 23335 h nu awa WETRGL
wLd Hudil N=ehinThbe bloched anads h nu auvyd _plhoead _haleep
WL5 cun cunning M7 u nu pru Thriead
mulex ubg_uddr Lupe luch wHncc Bluchuoa
imi N=fNTAEMAN e nu
im? N=fNT1cn3 oucs nu
LTk N=fNT1e?d? nuce nu
nd N=fNT1e1d? nuce nu
L M1 N=fNT1cqull nuce o
Wal N=#MNT1 330 nuce o
¥aT N=INTIRLE nuce nu
L IH N=#N5I2NN uce nu
L %] N=#N5IF33 nuce nu
dmili N=dNSINuf nuce nu
i NN alidull nuce nu
7
| =

Figure 11. Threads Viewer window

74

The interrupted and displayed thread are denoted by “*” and “>" respectively. The
“>" may move as you select different threads to display. The “*" does not change
unless the program is executed and then stops again. The interrupted thread is
important because it has an effect on further single stepping execution control. The
displayed thread identifier is important because it denotes the thread that is
represented in the stack, local variables, and source code windows.

Selecting a Thread to Display: To display a thread, go to the Threads area of the
pedb main window:

SELECT a thread by pressing the left mouse button to highlight it.

PRESS the right button.

® The Thread menu appears.

SELECT the Show thread option.

® The currently highlighted thread becomes the displayed thread. The
stack, local variables, and source windows will update accordingly. You
can also double click on a thread with the left mouse button to display it.
In this way you bypass the Thread menu.

Holding a Thread from Further Execution: You can hold a thread from execution,
and then release it again for execution. To do this, enable the Thread menu as in
Selecting a Thread to Display above, then:

SELECT the Hold thread option.

® This option controls whether the thread is dispatchable or not, and will
affect subsequent execution control of the program. Held threads will not
execute when single stepping or allowing the program to continue. Note
that it is possible to induce hangs on other threads by holding a thread.
When you select this option, the Thread menu disappears. The next
time you enable the menu, the option will read “Release thread.” The
held field in the Threads area (of the pedb main window) for this thread
will update appropriately when you select either of these options.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Displaying Thread Details: You can display the details of threads by opening the
Threads Display menu. From the pedb main window:

PRESS any of the task buttons in the Threads area.
® The Threads Display menu appears.
CHOOSE Select Display Details...
or
Open Threads Viewer...

® The Select Display Details... option opens the Threads Details
Selections window. From here you can choose what thread details to
view. This option is available only when the task is in “debug ready”
state; otherwise it is disabled. The Open Threads Viewer... option
opens a separate window to display threads information for the task.

The Threads Details Selections Window: This window contains three toggle
buttons that specify the additional thread information to be displayed in the Threads
area or the Threads Viewer. You can choose any or all of:

e Display Attributes
e Display Conditions

* Display Mutexes.

After using this window to change the level of thread detail displayed, these
changes you made for this task will persist across further execution control.

The Threads Viewer: The Threads Viewer is another way to view threads data. It
is similar to the local and global data viewer concept. One Threads Viewer is
available for each task. It exists for two reasons. First, it overcomes the limitation in
the display areas on the right side of the pedb main window when displaying large
amounts of data. Second, it provides you with a separate and larger area for
displaying threads data that interests you. You can iconify the Threads Viewer
window separately.

The same actions are available in the Threads Viewer as in the Thread menu.
Refer to “Selecting a Thread to Display” on page 74 and “Holding a Thread from
Further Execution” on page 74 for this information. There is also a find selection in
the Threads Viewer window main menu bar to allow finding strings within the
displayed threads data.

The Threads Viewer window menu bar has three options available: Action , Find,
and Help.
SELECT Action
CHOOSE Select Display Details...
or
Close Viewer

® The Select Display Details... option opens the Threads Details
Selections window, as shown in “Displaying Thread Details” on page 75.
This option is only available when the task is in debug state, otherwise
it is disabled. The Close Viewer option closes the Threads Viewer

Chapter 2. Using the pedb Debugger 75

window, and either redisplays the contents of the window in the threads
area (if there is enough room), or displays the overflow icon.

For a description of the Find option, see “Source File, Variable Viewer, and
Threads Viewer Find” on page 102.

Threaded MPI Library: If your application uses a threaded implementation of MPI,
the debugger will display the existence and status of these threads even though
you may not have explicitly coded threads. Refer to IBM Parallel Environment for
AIX: Operation and Use, Volume 1, Using the Parallel Operating Environment, and
IBM Parallel Environment for AIX: MPI Programming and Subroutine Reference for
details.

Data Display Techniques: This section describes how, with appropriate mouse
clicks in the Data Area, you can bring up menus and windows to:

e Select and display a variable

e Display a variable in more or less detail
e Change a variable's value

e Change a variable's format

e Display the variable's declaration

e Select the subrange of an array.

Displaying More or Less Detail for a Variable: The More Detail and Less Detalil
variable options on the variable options menu operate differently depending on the
data type of the selected variable. The following describes these differences.

e Simple types

Scalers, logicals, and enumerated types have one level of detail. The name
of the variable and its value are displayed by default. The More Detail and
Less Detail options are not available on the Variable Options menu for these
variables.

e Complex types

Structures and unions have two levels of detail. They have their type
displayed by default. To show more detail:

PLACE the mouse cursor over the variable name, equal sign, or variable
type.

PRESS the left mouse button.
® The selection is highlighted.

PRESS the right mouse button.
® The Variable Options menu appears.

SELECT the More Detail option.

® This option shows the structure or union expanded with all
members having their respective default levels of more or less.

After selecting More Detail , the Less Detail option then becomes available.
When selected, Less Detail also shows the type of the structure or union. To
show less detail:

PLACE the mouse cursor over the variable name or equal sign, and follow
the same procedure as above for showing more detalil.

76 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

e Arrays

An array has three levels of detail. The first level (the default) is its type, the
second displays the array elements horizontally, and the third displays the
elements vertically. When displaying the second level (horizontal), rows of more
than 1000 characters are broken into multiple lines.

At the first level of detail, the More Detail option is available and when
selected, shows the array elements horizontally. At the second level of detall,
both the More Detail and Less Detail options are available. The Less Detall
option will revert to the default of displaying the array type. The More Detall
option, when selected, will then display the array elements vertically. At the
third level of detail, the Less Detail option is available, and when selected,
again shows the array elements horizontally.

Note that the default is to display one element of an array. To display more
array elements, the Select Subrange option of the Variable Options menu
must be selected to bring up the Array Subrange window (see “Viewing the
Contents of an Array” on page 79 for more information). This window allows
selecting ranges, slices, and strides within the selected array. There is a
limitation of displaying 1000 elements per array at one time.

¢ Pointers

Pointers to any other type have two levels of detail. By default, the second
level of detalil is displayed, any dereferencing is done, and the value of the
native type is displayed. To show less detail:

PLACE the mouse cursor over anywhere from the “-” portion of the arrow
and to its left.

PRESS the left mouse button.
® The Variable Options menu appears.
SELECT the Less Detail option.

® This option shows the value of the pointer in ‘hex’ format, or the
string at the pointer location in the case where the native type is
‘char’.

Pointers with multiple levels of indirection, which point to other than ‘char’
types, have a level of detail for the native type and another level of detail for
each level of indirection. By default, all pointer dereferencing is done and the
value of the native type is shown. To show less detail on any level of
indirection:

PLACE the mouse cursor over anywhere from the “-” portion of the arrow
and to its left, and follow the same procedure as above for showing
less detail.

After any Less Detail option has been selected on any of the arrow pointers,
subsequent selections anywhere on this variable to the right of any remaining
arrows will result in bringing up a menu with the More Detail option available. If
there are no remaining arrows, then selections anywhere on this variable will
result in bringing up a menu with the More Detail option available. The More
Detail option will always bring the variable back to the default of displaying the
value of the native type.

Chapter 2. Using the pedb Debugger 77

Changing a Variable's Value: You can select a variable in the Data area and
modify its value.
To select a variable and change its value:
PLACE the mouse cursor over a variable in the Data Area.
PRESS the left mouse button.
® The selection position is highlighted.
PRESS the right mouse button.
® A selection menu appears.
SELECT Change Value

® The debugger displays a Change Value window that corresponds to
the type of variable you selected.

FOCUS on the text entry field of the Change Value window.
TYPE IN the value you want to set the selected variable to.
PRESS OK

® The debugger closes the Change Value window, and sets the variable
to the value you specified.

Cancel closes the Change Value window and discards any changes.
Changing a Variable's Format: You can select a variable in the Data area and
change its displayed format. You could modify the format of a variable to:

e default

e decimal

¢ hex

e octal

e scientific
e char

e string

e declaration

Note: Some options may be inactive, depending on the type of variable selected.

To select a variable and change its format:

PLACE the mouse cursor over a variable in the Data Area.
PRESS the left mouse button.

PRESS the right mouse button.

® A selection menu appears. This menu is type-sensitive, so the only
options it makes available to you are those that correspond to the type
of variable you have chosen.

SELECT Change Format
® A selection menu appears listing the possible display formats.
SELECT the format you want.

® The debugger formats the selected variable accordingly.

78 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Display Declaration of a Variable: After selecting a variable in the Local Variable
Viewer, Global Variable Viewer, or Variable Viewer for text, you can press the right
mouse button to view the Variable Selection menu. From here you can select:

Change Format — Declaration

When selected, the declaration of the variable which was previously selected is
displayed after the equal sign. This is only available for scalar types.

Default display:
a=>5
Display after declaration format is chosen:
a = 1int a;
or
a = integer*4 a

Viewing the Contents of an Array: The Array Subrange window allows you to view
the elements of an array. By defining the range of elements, you can control the
portion of the array that you see. To open the Array Subrange window:

PLACE the mouse cursor over the array you want to select.
PRESS the left mouse button to highlight your selection.
PRESS the right mouse button

® the Variable Options menu appears.
SELECT Array Subrange

® The Array Subrange window opens, shown in Figure 12.

Chapter 2. Using the pedb Debugger 79

Figure 12. Array Subrange window

80

Specifying the Array Subrange: The Specify Subrange for Array: area of the
Array Subrange window allows you to specify the set of array cells that you want to
display (per dimension). Each array dimension is presented in the form of a slider,
which is labelled with a scale that represents the actual range for that dimension of
the array. The slider has two markers; one marks the minimum value of the
subrange, the other marks the maximum value. These values are reflected in the
Minimum and Maximum fields below the slider. To define a subrange for display,
you choose the minimum and maximum values of the subrange individually for
each dimension.

You can define a subrange in one of two ways:

PRESS the left mouse button to move the sliders horizontally left or right to mark
the minimum and maximum values. These values appear in the
Minimum and Maximum fields below the scale.

OR
CLICK ON the Minimum or Maximum field and clear the current value.

TYPE IN a value to define the new subrange.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

The Stride field accepts non-zero integer values. This value allows you to skip
elements for each range. The default is 1, which selects every element within the
subrange for that dimension. A stride of 2 specifies every other element, and so
forth. Specifying a negative stride value reverses the order of elements from which
the subrange is selected. After doing this, the order goes from Maximum to
Minimum, instead of Minimum to Maximum.

Note: The maximum number of array elements that can be displayed is 1000.

After you define the subrange with the appropriate values:
PRESS the OK button.

® The contents of the array elements that you specified are displayed,
and the Array Subrange window closes. All subrange and stride
specifications are retained for the next time the Array Subrange window
is opened for this array on this task.

Cancel and Help Buttons

PRESS the Cancel button.

® The Array Subrange window closes, and all changes are discarded.
All subrange and stride specifications when the window was opened are
retained for the next time it is opened for this array on this task.

PRESS the Help button.
® Help information is displayed for the Array Subrange window.
Exporting Array Information to File: The Export window allows you to write

elements of a C or Fortran array to a file in a specified data format. By defining the
range of elements, you can control the portion of the array that is written to the file.

The format of the file is Hierarchical Data Format (HDF) Version 3.3. HDF is a
standard format for scientific and visualization data. It was developed at the
National Center for Supercomputing Applications (NCSA). See Appendix C,
“Exporting Arrays to Hierarchical Data Format (HDF)” on page 241 for more
information on HDF.

The Export function is only available for arrays of integer and floating point data
types.

The function of the Export window is completely independent from the function of
the Array Subrange window, and vice versa. This means that any specifications for
a particular array in one of these windows will not affect the specifications for the
same array in the other.
To open the Export window:
PLACE the mouse cursor over an array in the Local or Global variable list.
PRESS the left mouse button to highlight your selection.
PRESS the right mouse button

® The Variable Options menu appears.
SELECT Export to File...

® The Export window opens, shown in Figure 13.

Chapter 2. Using the pedb Debugger 81

Figure 13. Export window

Specifying the Subrange for Export: As with the Array Subrange window, the
Export window allows you to specify the subrange of an array. For details on this
area, see “Specifying the Array Subrange” on page 80.

Dimension Attributes: The Note(s) ... pushbutton allows you to enter optional
information pertaining to the associated array dimension. Clicking on this button
displays the Optional Notes window, shown in Figure 14, with fields to enter
attribute annotations that are specific to the output file type. To edit any of the text
fields, click on the field and type in the desired text.

82 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Dimenszion: 1

Label:

Uhits:

Format:

[k | Cancel | Help |

Figure 14. Optional Notes window

After you annotate the dimensions with the appropriate information:
PRESS the OK button.

® The notes you entered are saved and the Optional Notes window
closes.

Cancel and Help Buttons
PRESS the Cancel button.

® The Optional Notes window closes, discarding any changes.
PRESS the Help button.

® Help information is displayed for the Optional Notes window.

Export Options: The following fields and buttons are available for you to specify
aspects of the export:

Export File Type: Clicking on this with the left mouse button displays a menu that
allows you to select the output format of the data to be written to a file. Currently,
this menu has only one choice, which is HDF. This will result in the array contents
being written in Hierarchical Data Format.

Context Setting: This option menu lets you select the tasks that will participate in
the export, based on the criteria described below. This allows the selected array
data to be written to one file in separate Scientific Data Sets, one set for each
participating task.

The three choices for context are:

e “Task” - export the array data for the task from which this Export window was
opened.

e “Current” - export the array data from each task within the current context. In
this context the array must be displayed in all of the Global Data area task
windows in the current context for all tasks to participate.

e “All” - export the array data from each of the tasks that are executing in this
pedb debugging session. This is the same as the tasks which are included in
the task group “All” if you are running pedb in normal mode, or the task group

Chapter 2. Using the pedb Debugger 83

84

“Attached” if you are running in attach mode. In this context, the array must be
displayed in all of the Global Data area task windows for all tasks to participate.

If the context setting is either “Current” or “All,” the following criteria must be met for
a task within the specified context to participate in the Export:

1. An array of the same name exists on each task (within the local or global block,
depending on where the variable was selected).

2. The array on that task must have the same number of dimensions as the array
on the task from which the Export window was opened.

3. The minimum element number for each dimension of the array must match
those for the array on the task where the export is initiated. This is only a
consideration with Fortran arrays, where a program can have arrays that are
declared with any integer as the minimum element number. The maximum
element numbers are not checked, in order to allow support for pointer
variables and allocatable arrays.

4. If the array is a global array variable, then the array must be displayed in the
associated task window of the Global Data area.

5. The task must be in “debug ready” state.

If any of the tasks within the context do not meet all of the above criteria, they
will be excluded from the export, and a message will be displayed to inform you
of this.

As stated above, the selected array data will be output to the HDF file as
separate Scientific Data Sets. These data sets will be written to the file in order
by task number.

Append and Overwrite Buttons: Clicking on the Append button results in the
selected array contents to be appended to the end of an existing HDF file. This
allows you to collect the contents of multiple subranges from the same array, or
contents of multiple arrays, and group this information in any order within the file.
Clicking on the Overwrite button causes the specified file to be created if it doesn't
already exist, or be completely overwritten if it does exist. The default file writing
method is Overwrite.

File Label: The File Label is a text string annotation that is written to the file just
prior to writing the selected array element data for each task participating in the
export. The File Label is an optional annotation which has the declaration of the
array as a default text string. You can either change the label or eliminate it entirely
by clicking in the text field and editing it.

Filename Specification: The Export Filename: field is a required field that
specifies the name and path of the file that the array export data is written to. You
can specify both the name of the file, and the directory where it will be located.
There are two ways to do this:

CLICK ON the Export Filename: field with the left mouse button, and edit the
current pathf/file text string.

OR

CLICK ON the File... button located to the right of the Export Filename: field. This
opens the Export File Selection window, that allows you to select
location and file name by choosing directories and files from selection
lists.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Figure 15 shows the Export File Selection window. After making these selections,
the Export Filename: field is updated with your choice.

The Export Filename: field contains a default path and file name every time the
Export window is opened. The default path is the directory from which pedb was
started, and the file name consists of the name of the array that you are exporting
data for, along with a .hdf suffix.

Figure 15. Export File Selection window

Export Button: Clicking on this button initiates the export of the selected array data
to the specified file. The Export window remains open to allow additional exports on
this array.

Chapter 2. Using the pedb Debugger 85

86

Stop Sign Icon: The export process can typically take more than a few seconds.
When the export begins, an icon in the shape of a stop sign appears in the upper
right hand corner of the Export window, and remains there until the export has
completed. If you wish to stop an export that is in progress, click on this icon with
the left mouse button.

Defaults Button: Clicking on this button will reset all fields and states in the Export
window back to the default settings that were used the first time this window was
opened for this array on this task. The subranges for all array dimensions will be
set back to their full ranges.

Cancel Button: Pressing this button closes the window without exporting any data.
The settings and specifications from the last export are retained for the next time
the Export window is opened for this array on this task. If an export was not
performed while the window was open, the settings and specifications when the
window was opened for this array on this task are retained.

Help Button: This button displays help information for the Export window.

Viewing MPI Request Queues: This section describes the pedb debugger's
message queue facility. Part of the pedb debugger interface, the message queue
viewing feature is designed to help you debug Message Passing Interface (MPI)
applications by showing internal message request queue information. This feature
allows you to view:

¢ A summary of the number of active messages for each task in the application.
You can select criteria for the summary information based on message type
and source, destination, and tag filters.

* Message queue information for a specific task.

e Detailed information concerning a specific message.

Initial Error and Warning Messages: It is possible that there could be problems
when pedb does it's initial checking. For example:

* The version of MPI being used may not be supported by the version of the
debugger.

* The application may be using the non-threaded version of MPI, which the
debugger does not support.

If either of these problems are discovered, an error message will appear, and the
message queue debugging window will not appear, or will close.

When you start the message queue facility, it is possible that MPI has not initialized
yet. If this is true, the initial message queue window will indicate that there is no
data. The following describes this case in more detail.

During the initial checking, the debugger also determines the mode in which the
MPI application is running. If it is not running in “debug” mode, the data will not
include information on blocking messages. Debug mode is achieved by setting the
MP_EUIDEVELOPenvironment variable to DEB. For more information on
MP_EUIDEVELOP, refer to IBM Parallel Environment for AlX: Operation and Use,
Volume 1, Using the Parallel Operating Environment. If the application is not
running in debug mode, a warning message will be displayed along with the initial
message queue debugging window.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Requesting information for any of the message queue windows causes the cursor
to change to a “stopwatch” Further requests are disabled until the current request
has finished. While the stopwatch is showing, the pedb main window is disabled. If

a problem occurs, or a request is taking too much time, the message queue
windows can be cancelled by pressing the Cancel button on the Application
Message Queues window. This closes all message queue windows and enables
the pedb main window. Pressing the Cancel button on the Application Message
Queues window will always have the effect of closing all the message queue
debugging windows.

Note: You can customize the colors used in any of the message queue windows.
You can define these resources in the pedb X defaults file
lusr/Ipp/ppe.pedb/defaults/Pedb.ad

Application Message Queues Window: To start the message queue facility, from
the pedb main menu area:

SELECT Tools — Message Queues

® The Application Message Queues window opens.

Application Message Queues

Queue Display Options

Task Queues

I~ Blocking Sends |

I~ Hon-Blocking Sends |

I~ Blocking Receives |

I~ Hon-Blocking Receives |

I~ Early Arrivals |

I” Collective Conn. |

0 53 5 0 o e s
15[e e

[- 0]

Queue Size
M - -

[]=11-20
B =6-10
Bl=1-5
[]=0

[n] = no data

Select Filters... |

Task #2 | @ Size:| |

Update |

Cancel |

Help |

Figure 16. Application Message Queues window)

The Application Message Queues window displays message queue summary
information and provides a starting point for additional message queue debugging

features.

The center of the Application Message Queues window contains a set of buttons
representing all the tasks defined for the MPI application. The color of each button
indicates the approximate size of the queue. The interpretation of the colors is
given in the Queue Size scale on the right side of the window.

To further assist in interpreting these buttons, there is a message area at the
bottom of the window containing the task identifier and the actual queue size.
These values are filled in automatically when you move the cursor over one of the

Chapter 2. Using the pedb Debugger 87

88

task buttons. On the right side of this area, informational messages appear at
appropriate times.

This window also contains a list of Queue Display Options on the left side, and a
Select Filters... button on the right, under the Queue Size scale. The criteria for
selecting summary information can be modified by selecting these options and
filters. Once you set option and filter information, it remains set for future updates
until you change it.

Note: You should use caution when leaving criteria set, since this can incur
considerable overhead, especially in the case of filters.

See “Selecting Options” on page 88, and “Select Filters Window” on page 88 for
more information.

When you first open this window, it contains summary information that includes all
types of messages, including early arrivals. Early arrivals refer to messages that
have arrived at a task, but have no posted receives to accept them.

A button with a tan colored (default color) background and labeled with an “n”
indicates there is currently no data available for that task. There could be many
reasons for no available data. Basically, there is no data unless a task is in “debug”
state, as indicated by the task buttons at the bottom of the pedb main window.
Also, no data is available unless a task is in the current debugger context. The
reason for a task not having any data is displayed in the right side of the message
area when you move the cursor over the task button.

Pressing the Cancel button on this window causes all message queue windows to
close.

Selecting Options: On the left side of the window there is a series of toggle
buttons representing different categories of messages. When you first open the
window, all the toggles are selected indicating the summary information is being
collected for all categories. You can select or deselect any combination of these
options for future summary information. Once you make the selections, you can
retrieve the summary information by pressing the Update button at the bottom of
the window.

Select Filters Window: Another way to set the criteria for gathering summary
information is by using the Select Filters window. To open this window:
PRESS Select Filters...

® The Select Filters window opens.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

= Select Filters
Shou nessages fron: Show nessages tol Show nessages with tag:
I 5 [s]ss|ss|s|s|s|s|s|s|ss|ss]s[s]s]s]s] 1 =
I o e s]s[s]s|s]s]s]s s s s]s] e |
3
4
Default Default I]eFaultI
Task Hunber: Select a new filter Cor filters), then press "Apply” or “0k’.
Dk Apply I Cancel | Help |

Figure 17. Select Filters window

The Select Filters window is used to set source, destination, and tag values as
selection criteria for message queue summary information.

This window consists of three categories of filters you can set:
e Show messages from: (source area)
e Show messages to: (destination area)

e Show messages with tag:

Both the source and destination areas contain a set of buttons representing tasks
defined for the application. The corresponding task numbers are displayed in the
bottom left hand side of the window when you move the cursor over the buttons.
You can select one task by pressing the task button. You can select multiple
contiguous tasks by pressing and holding the left mouse button and moving the
pointer across the desired tasks. Also, you can select multiple non-contiguous tasks
by holding down the Ctrlkey and selecting individual or contiguous tasks.

The “Show messages with tag:” list on the right side of the window is created by
extracting all the unique tags from the message records of the available tasks. The
way you select tags is similar to the way you select the other filters, except lines of
the tag list are selected instead of task buttons.

You can select one or more values from each category. If you do not want a
specific setting, press the default button to select all possible values. Any value
found in a message is acceptable and meets the criteria. You should select at least
one value for each category. In other words, a message record satisfies the filter
criteria if it has one source value, one destination value, and one tag value. The
window opens displaying the current settings.

Note: Once the filters are set, you need to go back to the Application Message
Queues window to request an update.

Scale Range Setting Window: The default queue size ranges on the Application
Message Queues window may not be appropriate for all MPI applications. You can
adjust the top three ranges to more reasonable sizes. To modify the range for a
particular button:

Chapter 2. Using the pedb Debugger 89

SELECT

ENTER
PRESS

the button with the mouse to open a Scale Range Setting window.

The color of the small square in this window corresponds to the color of
the range button, to help you keep track of which button is being
changed. To change the minimum value:

the new value.
OK

® The minimum value of this range and the maximum value of the
previous lower range is adjusted. If you attempt to set the minimum
value lower than the previous range minimum value plus one, you will
get an error message. You are responsible for not defining overlapping
maximum ranges.

Task Message Queue Window: You can also get further information on a
particular task's message queue by opening the Task Message Queue window. On
the Application Message Queues window:

SELECT the task button for the desired task with the mouse.
® The Task Message Queue window opens. The number of the task the
cursor is on and the actual queue size is displayed in the lower left side
of the Application Message Queues window.
=| Message Request Queue for Task 31 [=]
Sends Receives Early Arrivals Collective Comm,
dest : tag : comn src @ tag : comn src @ tag I cCOMR # 8 CORR
31 1: nlj 31: 4: 0 |4 0: 1: 0 |- A
0 2 0
31 = [i] [1: 1]
[2 1]
30 : 1 0
30 2: 0 [§
14 1 Q
14 : 2t Q
16 ¢ 1: 0
16 : % 6 0
21 1 Q
21 2 Q
23 ¢ 1: 0
19 ¢ 1: 0
1% ¢ & Q
31 1: Q
31 2 0
r Al »: 2: 0 X
~d 1 ~d 1 =] 1 =] 1
Select a messzage to get message details or group information.
M Cancel | Help

Figure 18. Task Message Queue window

90

The Task Message Queue window gives a list of the message request records and
early arrival records for the task. This window displays the queue of currently active
messages for this task. The information is separated into four categories:

e Sends
* Receives
e Early Arrivals
e Collective Communications.
Each entry represents a uniqgue message. Entries in the first three categories

provide the tag, communicator, and source or destination of the message. The
source and destination is given in terms of task id. Entries in the Collective

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Communications column contain an arbitrary message index and the
communicator. Blocking message entries are printed in red and non-blocking
messages are printed in blue.

The early arrival messages are unique in that they represent messages sent by a
task that have arrived before a receive has been posted to accept them.

From this window you can get additional message details or message
communicator and group data. To view this data:
SELECT a particular entry with the left mouse button.
HOLD DOWN the right mouse button.
® The Message Data menu opens.
SELECT Message Details
or

Group Info

Message Details Window: To open the Message Details window:

SELECT Tools — Message Queues from the pedb main window to get the
Application Message Queues window.

SELECT the desired task button to get the Task Message Queue window.
SELECT the desired message entry.

HOLD the right mouse button to get the Message Data menu.

SELECT Message Details from the Message Data menu.

This window displays details for a specific message. There are four basic formats
to this window corresponding to point to point, send/receive, collective

communication, and early arrival messages. The following figures show examples
of each window.

Chapter 2. Using the pedb Debugger 91

— Poirtl TiaFind Mg Fosdaily o [

| Figure 19. Point to Point Message Details window

92 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

— eeerdR e iy Blsep Deelails; r

| Figure 20. Send/Receive Message Details window

Chapter 2. Using the pedb Debugger 93

— Coallesz Hiwer Domm, Qe lAils; r

| Figure 21. Collective Communications Details window

= Early Arrival Msg Details = |

| Figure 22. Early Arrival Message Details window

94 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Message Group Information Window: To open the Message Group Information
window:

SELECT Tools — Message Queues from the pedb main window to get the
Application Message Queues window.

SELECT the desired task button to get the Task Message Queue window.
SELECT the desired message entry.
HOLD the right mouse button to get the Message Data menu.

SELECT Group Info from the Message Data menu.

This window displays information about the selected message followed by the task
id, rank, and local communicator of the group members. The format of the window

varies based on whether the communicator is an inter-communicator or an

intra-communicator. If it is an intra-communicator, the window displays information

about both the local and remote groups.

Chapter 2. Using the pedb Debugger

95

— Message Group Info a ||

| Figure 23. Message Group Information window

Updating Message Queue Information: Message queue information is retrieved
from the task (executable) when it has been stopped by the debugger and is in
pedb “debug” state. The task buttons at the bottom of the pedb main window
indicate “debug” state. When the task is executed by the debugger, by stepping,
etc., the message queue could potentially change. Therefore, it is necessary to
update the message queue information when the task returns to “debug” state.

| If the message queue debugging features are currently being used, the debugger
| automatically updates the message queue windows when the task returns to
| “debug” state after being executed. The procedure for updating is as follows:

| e The Application Message Queues window is updated using the current option
| and filter settings.

96 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

e The tags in the Select Filters window are updated to list the current set of tags
in use.

e Any Task Message Queue windows that are open for tasks in the current
debugger context are updated with the current list of messages for the task.
This is assuming the tasks are in “debug” state.

e Any Task Message Queue windows for tasks not in the current context, or not
available, are not updated and are closed.

e Any Message Details or Message Group Information windows are closed. This
is because there is no absolute way to determine if the message is still on the
queue.

Visualizing Program Arrays: The Visualization window allows you to select
elements of a C or Fortran array, and display the data in those elements using data
visualization tools of your choice. By defining the range of elements, you can
control the portion of the array that is visualized. Two types of visualizations are
available with this feature: pre-packaged and user-defined.

The Visualization function is only available for arrays of integer and floating point
data types.
To open the Visualization window:
PLACE the mouse cursor over an array from a local or global variable list.
PRESS the left mouse button to highlight your selection.
PRESS the right mouse button
® A pop-up menu appears.
SELECT Visualize...

® The Visualization window opens, shown in Figure 24.

Chapter 2. Using the pedb Debugger 97

Figure 24. Visualization window

98

Visualization Type: Clicking on the raised button in this field results in a menu
being displayed to allow you to choose the method for visualizing the selected array
data. The first five menu options are pre-defined visualization methods for IBM's
Visualization Data Explorer product. To execute these visualizations, the Data
Explorer runtime fileset is required (see Appendix D, “Visualization Customization
and Data Explorer Samples” on page 243 for more information). The last five
options are available for you to call user-defined visualization tools. The default
value is set to “DX 2D Colormap.” This menu, and the tools that can be invoked
from it, are able to be customized.

The interface to the pre-defined samples is the same as that used with user-defined
visualizations. Therefore, you can modify or replace them, if desired. Additional
Data Explorer visualizations are included in a samples directory, but not pre-defined
on the pedb user interface. The user-defined options are set up through the X
defaults file and through a separate configuration script.

The following Data Explorer visualizations are pre-defined:

e 2D Colormap

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

e 2D Contour map

e Statistical analysis (text)

2D Height field (with a colormap)

3D Volume rendering.

The following are included in a samples directory:
» 3D Isosurface (3D contours)
e 3D Volume slicer.
The samples directory holds all of the visualization scripts (.net and .cfg files in

Data Explorer terminology). It also includes the source for the program with which
pedb interfaces to Data Explorer, and a makefile for the sample source.

User-defined Visualizations: You can insert your own visual tools for the debugger
to invoke. When you define visualizations, you need a common method for
integrating your applications.

A two step process is required to enable the tools you define and integrate with
pedb:

1. Each menu option label has a corresponding label string entry in Pedb.ad (the
pedb X defaults file). You change this string entry to your user tool name:

Pedb*VisualTypeOption_1.TabelString: DX Colormap

changes to

Pedb*VisualTypeOption_1.labelString: User Tool 1

Note: You can edit your .Xdefaults file from your $HOME directory using the
Pedb.ad file as a reference to the things you can change.

2. Each menu option has a corresponding Korn shell script in
/usr/lpp/ppe.pedb/bin that is executed to start the visualization:

/usr/1pp/ppe.pedb/bin/VisualTypeOption_1.ksh

By modifying this shell script, you can direct pedb to call your own tools.

Context Setting: This option menu lets you select the tasks for which array data
will be visualized, based on the criteria described below. In the visualization
process, the selected array data is written in HDF format to a temporary file located
in /tmp. Certain context settings allow the selected array data to be written to the
temporary file in separate Scientific Data Sets, one set for each participating task.

The three choices for context are:

e “Task” - visualize the array data for the task from which this Visualization
window was opened.

e “Current” - visualize the array data from each task within the current context. In
this context the array must be displayed in all of the Global Data area task
windows in the current context for all tasks to participate.

Chapter 2. Using the pedb Debugger 99

100

o “All” - visualize the array data from each of the tasks that are executing in this
pedb debugging session. This is the same as the tasks which are included in
the task group “All” if you are running pedb in normal mode, or the task group
“Attached” if you are running in attach mode. In this context, the array must be
displayed in all of the Global Data area task windows for all tasks to participate.

Note: Context settings of “Current” or “All” result in multiple data sets being written
to a temporary file for visualization. Verify that the tool you have chosen to
perform the visualization allows you to visualize more that one data set at a
time.

If the context setting is either “Current” or “All,” the following criteria must be met for
a task within the specified context to participate in the data visualization:

1. An array of the same name exists on each task (within the local or global block,
depending on where the variable was selected).

2. The array on that task must have the same number of dimensions as the array
on the task from which the Visualization window was opened.

3. The minimum element number for each dimension of the array must match
those for the array on the task where the visualization is initiated. This is only a
consideration with Fortran arrays, where a program can have arrays that are
declared with any integer as the minimum element number. The maximum
element numbers are not checked.

4. If the array is a global array variable, then the array must be displayed in the
associated task window of the Global Data area.

5. The task must be in “debug ready” state.

If any of the tasks within the context do not meet all of the above criteria, they
will be excluded from the visualization, and a message will be displayed to
inform you of this.

As stated above, the selected array data will be output to the HDF file as
separate Scientific Data Sets. These data sets will be written to the file in order
by task number. The visualization program is required to determine the order in
which the data will be visualized.

Array Subrange Area: For details on this area, see “Specifying the Array
Subrange” on page 80.

Visualize Button: Clicking on this button initiates the visualization of the selected
array data. The Visualization window remains open to allow additional visualizations
on this array. The visualization program will be re-initialized each time this button is
pressed. This will create multiple instances of the visual, rather than refreshing the
data from the previous visualization.

Stop Sign Icon: Transferring data for visualization can typically take more than a
few seconds. When the data transfer begins, an icon in the shape of a stop sign
appears in the upper right hand corner of the Visualization window, and remains
there until the data transfer has completed. If you wish to stop a data transfer that
is in progress along with the visualization, click on this icon with the left mouse
button.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Defaults Button: Clicking on this button will reset all fields and states in the
Visualization window back to the default settings that were used the first time this
window was opened for this array on this task. The subranges for all array
dimensions will be set back to their full ranges.

Cancel Button: Pressing this button closes the window without initiating the
visualization. The settings and specifications from the last visualization are retained
for the next time the Visualization window is opened for this array on this task. If a
visualization was not performed while the window was open, the settings and
specifications when the window was opened for this array on this task are retained.

Help Button: This button displays help information for the Visualization window.

Source Code Control

During a pedb session, the source code file displayed in the Source Area may
change many times. Each time execution of the tasks in a context stops, the
debugger updates the pedb window and checks that the source code displayed
matches the program counter. For example, if execution has stopped in a
procedure located in a different file, the debugger automatically updates the Source
Area to display the current source.

When tasks have stopped in different source files, the lowest numbered task in
debugged state in the group determines the source file displayed. This excludes
tasks which are unhooked, exit requested, or exited.

To display the source from a different task, you can either change the context or
open a view with a different context. You can also change the current source code
displayed by opening a source code file using the Source File(s) window, selecting
a line in the stack window, or double clicking on a thread in the Threads window.

Opening a Source Code File: You can open a source code file and display it in
the Source Area using the Source File(s) window. To do this:
SELECT File — Get Source File ...

® The Source File(s) window opens.
This window contains a list of accessible source files associated with your program
that have been compiled with the -g flag. The source path is used to find the files.
PRESS the left mouse button to select a file in the list.
PRESS OK
OR
DOUBLE-CLICK on the desired file in the list.

® The File Selection window closes, and the source code of the selected

file appears in the Source Area.

Source Code Search Path: The first default path searched is “ .” (the current
directory). If you do not explicitly specify a path when choosing a file to load, pedb
uses the AIX path established by the PATH environment variable to locate the file.
The path in which the program is located, whether explicitly specified or not, is
added to the end of the list of directories searched for source files.

Chapter 2. Using the pedb Debugger 101

You may explicitly set the source code search path on the command line when
invoking pedb using -l flags. The effective search path is set to the -I paths
specified, in the order they appear on the command line. If you do not explicitly set
it, the source code search path is based on the program(s) you load for debugging
in the partition, as described above.

Note: In addition to having access to your program on each remote node, pedb
requires source files on the home node to do source level debugging. See
IBM Parallel Environment for AIX: Operation and Use, Volume 1, Using the
Parallel Operating Environment for more information.

Source Path Window: During your pedb session, the search path used to locate
source files may be modified. You may edit it, adding new paths or deleting or
changing existing ones. This is helpful when source is distributed in multiple
directories and you step into a source file which is located in a directory you missed
at startup.

SELECT File — Update Source Path ...
® The Update Source Path window opens.
FOCUS on the edit field.
TYPE IN the new source search path, or modify the existing one.
PRESS OK

® The Update Source Path window closes. Subsequent source files will
be accessed using the new path.

Cancel closes the Update Source Path window without changing the
current source path.

Edit Current Source File: You can edit the source file which is shown in the
source area by selecting the Edit Source File menu from the File pulldown menu
on the main window.

PRESS File — Edit Source File

® You open an edit session in an aixterm window.

Notes:
1. The editor used is determined by the $EDITOR environment variable.

2. If the source file in the Source Area is modified using the Edit Source File
option, the program counter icon (—) may then be out of synch. This is
because the line number information is based on the compiled version of the
source. If you wish to continue debugging after editing your source file,
consider saving it under a different name or directory instead of overwriting the
copy that the debugger is referring to.

Source File, Variable Viewer, and Threads Viewer Find: Use the Find option to
locate text in the source code, Variable Viewer, or Threads Viewer. You first open
the Find window and specify the text to find. Once you have entered text, the find
options are enabled. The find options are available from the menu bar pulldown
and from buttons in the Find window. Accelerators <ctrl-f >, <ctrl-n >, <ctrl-p >, and
<ctrl-l > are available for First, Next, Previous , and Last respectively. Search
results are displayed differently for the source code window and the Variable or
Threads Viewer.

102 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

To find text in the source code window, Variable Viewer, or Threads Viewer, go to
the menu bar.

PRESS Find
® You see a pulldown menu with the following options:

e Open Find Dialog ... - This option opens the Find window where
you will enter the text to find.

¢ First - Finds the first occurrence of the text.
e Next - From the current line, finds the next occurrence of the text.

e Previous - From the current line, finds the previous occurrence of
the text.

e Last - Finds the last occurrence of the text.
Using the Find Window: To open the Find window, go to the menu bar in the
Main window or Variable Viewer.

From the Main window:
SELECT Find — Find Text in the Source Window ...

From the Variable Viewer:
SELECT Find — Find ...

® The Find window opens as shown in Figure 25. The Find window title
will indicate if you are using Find from the source code window or the
Variable Viewer.

=

Enter Text to Find: 7 Case sensitive

IHPI_InitI

First | Mect. | Previous

Lazt | Done | Clear | Help |

Figure 25. Find window

Enter the text to find in the text field. Entering text automatically enables the find
option buttons in the window and the menu bar. Pressing Enter in the text field is
the same as pressing the Next button. Use the Case sensitive toggle button to
ignore the case of the text when searching. At the bottom of the Find window are
the following buttons:

e Find options - These buttons (First, Next, Previous , and Last) and their
corresponding buttons on the menu bar pulldown initiate a search for the text
you typed.

¢ Done - closes the Find window.

» Clear - clears the text field. Note that the find options are desensitized (grayed
out) when there is no text in the text field.

e Help - displays help text for using Find.

Chapter 2. Using the pedb Debugger 103

If the search fails, a message is displayed in the information area indicating the
search direction and the actual string used in the search. You may want to broaden
the search by specifying fewer characters or using the Case sensitive toggle
button to ignore case.

When text is found in the source window or Threads Viewer, the entire line
containing the text is highlighted. This becomes the current line, and the reference
point for locating the next and previous occurrences.

When text is found in the Variable Viewer, the text that was matched is highlighted.
The first character of the text is the reference point for the Variable Options
pop-up menu as described in “Data Display Techniques” on page 76.

Source Emphasis: pedb provides source code emphasis when displaying code in
the source area of the main window. For example, the language symbols, variable
and function names, and comments are all displayed in different colors. See

Table 9 below for details.

The debugger scans the current source file to identify elements of the language.
Each element is then drawn with a different foreground and background color to
emphasize that element. This may help you to quickly identify points of interest in
your source code. It is particularly useful when you are not familiar with the code
being debugged. Instead of scrutinizing the code to identify variables and comment
blocks, their color will automatically alert you to their function.

To turn this feature off, set Pedb*SourceEmphasis: False in your .Xdefaults file, or
use the toggle button on the menu bar:

File — Source Emphasis

The following table lists the default color scheme for each language element
identified. Each resource can be given a unique color, but be aware that each
unique color used will increase the total number of colors required for pedb.
Resource values are any valid color specification for your system, for example, the
values found in /usr/lpp/X11/lib/X11/rgb.txt.

Table 9 (Page 1 of 2). Default Color Scheme

Resource Language Element

Pedb*AlphaForeground: Alphanumerics - variable and functions names.
Pedb*AlphaBackground:

Pedb*CommentForeground: Comments

Pedb*CommentBackground:

Pedb*MessageForeground: Message passing routines - MPL and MPI.

Pedb*MessageBackground:

Pedb*KeywordForeground: Language specific keywords. For example
int

Pedb*KeywordBackground:
class

subroutine

104 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Table 9 (Page 2 of 2). Default Color Scheme

Resource

Language Element

Pedb*LiteralForeground:

Pedb*LiteralBackground:

Literal (quoted) strings.

Pedb*LinenumForeground:

Pedb*LinenumBackground:

Line numbers. See note 2 below.

Pedb*NumberForeground:

Pedb*NumberBackground:

Numbers.

Pedb*PreprocForeground:

Pedb*PreprocBackground:

Preprocessor directives, for example
#ifdef

#include

#pragma

Pedb*SymbolForeground:

Pedb*SymbolBackground:

Language symbols (punctuation).

Pedb*LabelForeground:

Pedb*LabelBackground:

Fortran labels.

Pedb*FortranProfile:

Fortran parser profile. See note 3 below.

Pedb*ProfilePath:

Path to the Fortran parser profile.

See note 3 below.

Notes:

1. This feature may not properly identify all elements of your source code in all

instances. pedb can only scan the current source file. It is not aware of other
aspects of the compilation used to produce the executable. For example, a
section of code may be bracketed by the directive

#ifdef DEBUG

#endif

pedb will identify the directives and the elements within the block, but cannot
determine if DEBUG was set at compile time.

. This feature may also be used to turn off the display of line numbers in the
source code area. By setting the Pedb*LinenumForeground: resource to the
same value as Pedb*LinenumBackground..

. For expert users, pedb uses a profile driven parser for the Fortran source
emphasis. There are 2 profiles provided in /usr/lpp/ppe.pedb/bin/FOR.PPR and
Jusr/lpp/ppe.pedb/bin/FF.PPR. FF.PPR supports free form Fortran, the default
FOR.PPR supports fixed form. Experienced users may wish to change the
default profile using the Pedb*FortranProfile: resource, or use a local copy by
changing the Pedb*ProfilePath:.

Chapter 2. Using the pedb Debugger 105

106

Other Key Features
Some other features offered by pedb include the capabilities of displaying multiple
views, and linking to online help.

Debugging Programs Using Multiple Views: You can think of pedb as a
window into the debug space. The window you have is just one way of looking into
the debug space, and depends on the current context, the source code displayed in
the Source Area, the variables, and the stack trace. You can open multiple pedb
windows and have multiple views into the same debug space.

For example, you have two tasks — tasks 0 and 1 — involved in message passing.
You could open two pedb windows to follow send and receive pairs between the
two tasks. In one window, you would set the context on task 0. In the other, you
would set the context on task 1. You could then step execution past the send in
one window, and then step execution past the receive in the other.

When dealing with multiple views into the same debug space, keep in mind that
actions made on one pedb window may be reflected on the others. For example,
say you have two views into the same debug space. The context of one is set on
just task 0, while the context of the other is set on all the tasks including task 0. If
you step all the tasks in the second window, the first window also reflects the step.

To open another pedb window to provide an additional view into the debug space:
SELECT View — Open new view

e Another pedb window opens.
To close a pedb window:

SELECT View — Close this view

Getting Help: There are help buttons on most windows and help options on many
menus. Selecting these help buttons or options provide built-in online help for the
particular window or menu from which the help was selected.

The pedb main window includes a Help button to access online help in a variety of
ways by selecting one of the following options:

Help on Main Window: Displays built-in online help information about the pedb
main window. There are main window left and right button presses that may not be
obvious. Here you will find a list of the actions available using the buttons on the
main window.

Help on Main Window Menu Bar: Displays built-in online help for the main window
menu bar pop-up menus: File, View, Group, Find, and Options .

Index of Online Help Topics: Displays a list of the built-in online help items that
are available on the various windows and menus throughout the pedb debugger.
Any of the listed items can be selected, which results in a window displaying that
help section.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Notes:

1. The main window menu bar pull downs (File, View, Group, Find) do not have
help options. You can get help about options by pressing the Help button in the
upper right corner of the main window, then selecting the Help on Main Menu
Bar option.

2. The menu bar pull downs in the Local or Global Variable windows do not have
help options. You can get help about these options by pressing the Help button
in the upper right hand corner of the Local or Global Variable windows.

Customizing pedb Resources: Customizable resources for pedb are defined in
Jusr/Ipp/ppe.pedb/defaults/Pedb.ad (the pedb X defaults file). In this file is a set of
X resources for defining graphical user interfaces based on the following criteria:

e Window geometry
e Push button and label text
e Pixmaps.
Leaving pedb: It is possible to end the debug session at any time using either the
Quit option, or the Detach option if debugging in attach mode.
To end a debug session in normal mode:
SELECT File — Quit from the pedb Main Window.
® The Quit Confirmation window appears.
PLACE the mouse cursor over OK.
PRESS the left mouse button.
® The pedb window closes and you return to the window from which

you started pedb.

To end a debug session in attach mode, you can choose either Quit or Detach .
Quitting causes the debugger and all the members of the original poe application
partition to exit. Detaching causes only the debugger to exit and leaves all the
tasks running.

SELECT File — Quit from the pedb Main Window.
® The Quit Confirmation window appears.

PLACE the mouse cursor over OK.

PRESS the left mouse button.

® The debugger session ends, along with the poe application partition
tasks.

OR

SELECT File — Detach from the pedb Main Window.
® The Detach Confirmation window appears.

PLACE the mouse cursor over Detach.

PRESS the left mouse button.

® The debugger session ends. All tasks have exited, but stay running.

Chapter 2. Using the pedb Debugger 107

Clicking on this button causes pedb to exit, and allows the program to which you
had attached to continue execution if it hasn't already finished. If this program has
finished execution, and is part of a series of job steps, then detaching allows the
next job step to be executed.

If instead you want to exit the debugger and end the program, cancel the Detach
Confirmation window and use the Quit option as described above.

108 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Chapter 3. Visualizing Program and System Performance

This chapter describes the Parallel Environment's Visualization Tool (VT). VT is a
group of displays, or views, which show unique performance characteristics of an
application program and your system. Each view presents specific, often complex,
information in some familiar and easily-interpretable form. For example, a view
could be a bar chart, a strip graph, a pie chart, or a grid. Since there are many
different views, you open the ones most appropriate to your needs and the
information you wish to see visualized.

You can use the VT views for trace visualization and online performance
monitoring.

e In trace visualization, you play back statistical and event records — or trace
records — generated during a program's execution. You can use VT to visualize
information about the program as well as its use of the underlying system. This
visualized information can help you tune the program — optimize its use of the
underlying system. “Using VT for Trace Visualization” on page 117 describes
how to run a program to generate files containing trace records, and how to
play back these trace records using VT.

— F J

File Print Help

Trace File:

I fusrflpp/fppe.vt/sanples/vtsample, trd Select |

kKl dlm > D2 e
Eese‘l:lﬁtepll;Fl-mlﬁteplepl N tEUE7

Time:

|1u:22:15+925623533

Tracefile Time Control

hlljlll i 1 i
) d

.
i Tmﬁ T 1 j[||||| e

+ 100Events

Figure 26. VT Window for Trace Visualization
* In performance monitoring, you use VT as an online monitor to study the

operational status and activity of each of the processor nodes in your IBM
RS/6000 SP or RS/6000 network cluster. In performance monitoring, VT only

© Copyright IBM Corp. 1995, 1998 109

110

displays system statistics and not communication information. See “Using VT
for Performance Monitoring” on page 139.

- 1
— Performance Monitor

i s

@

Figure 27. VT Window for Performance Monitoring

The VT views enable you to visualize:

IBM PE for AIX V2R4.0:

communication among processor nodes (only available in trace visualization
mode)

the type and duration of communication events (only available in trace
visualization mode)

the size of the messages (only available in trace visualization mode)
CPU utilization of processor nodes

a parallel program's source code as it relates to the executable's run (only
available in trace visualization mode)

the number of times tasks are swapped in and out of active execution on a
processor node

the number of disk reads, disk writes, and disk transfers for a processor node

the number of TCP/IP packets sent and received by a processor node.

Operation and Use, Vol. 2, Part 1

» the number of times a processor node has to load a page of virtual memory
back into real memory

e the number of times a processor node invokes a kernel subroutine

e a summary of system activity.

Often, a number of views take the same information and present it in different
ways. For example, one might use a bar chart, and another a strip graph. This
allows you to select not only the information you wish to visualize, but also the
form. “Opening and Closing Views” on page 114 contains a general description of
views and their use. “View Descriptions” on page 148 contains a more detailed
description of the views, the information each presents, and how to interpret them.

Table 10 on page 112 is designed for those who wish to start using VT
immediately for either trace visualization or performance monitoring. While the
remainder of this chapter takes a slower, more detailed, approach to describing the
steps involved in generating and playing a trace file and monitoring system activity,
this table does not. It is designed to get you started as quickly as possible, and so
little detail or explanation is given for each step. Many readers may prefer the more
detailed approach to VT, which begins with “Starting the Visualization Tool” on
page 113.

Note: For additional information on VT, refer to IBM Parallel Environment for AlX:
Hitchhiker's Guide

Chapter 3. Visualizing Program and System Performance 111

Table 10. VT Quick Operation

For Trace Visualization:

For Performance Monitoring:

Step 1: Compile your program using the command mpcc
(for C programs), mpCC (for C++ programs), or mpxIf
(for Fortran programs). You must use the standard -g
compiler option to generate an object file needed by the
VT Source Code view. For more information, see “Step 2:
Compile the Program” on page 120.

For information on compiling threaded C, C++, or Fortran
programs using mpcc_r , mpCC_r, or mpxIf_r , see IBM
Parallel Environment for AlX: Operation and Use, Volume
1, Using the Parallel Operating Environment

Step 2: Invoke the parallel program using the POE
command-line flag -tlevel .

ENTER poe program -tlevel 9

® The program executes, generating a trace
file called program.trc.

Step 3: After program has finished executing, start a VT
session and begin playback of the trace file. If you have
not generated a trace file of your own, use vtsample.trc
(as shown in the instruction below) for demonstration.

ENTER vt -tfile /usr/pp/ppe.vt/samples/vtsample.trc

® The Trace Visualization window and the
View Selector window open.

Step 4: Open views to visualize the trace records. To do
this:

PRESS the following icons in the View Selector
window:

— Source Code

— User Load Balance

— Interprocessor Communication

® The three views open. You can select any of
the views and are not limited to these. To
interpret the information these views present,
see “View Descriptions” on page 148.

Step 5: Start playback of the trace file. To do this:

PRESS the Play Control Button in the Trace

Visualization window.

® VT begins playing back the trace records
stored in vtsample.trc. The trace records are
visualized in the three open views.

Step 6: Stop Playback of the trace file. To do this:

PRESS the Stop Control Button on the Trace

Visualization window.

e VT stops playing back vtsample.trc.
Step 7: End the VT session. To do this:
SELECT File — Exit

e Step 1: Start a VT session for performance monitoring.

If you are in an environment where the SP system
Resource Manager is available:

ENTER vt

If you are in an environment where the Resource
Manager is not available:

ENTER vt -norm

® The Trace Visualization window and the
View Selector window open.

SELECT File — Performance Monitor

® The Performance Monitor window and the
PM View Selector window open. Each of the
squares on this window represents a
processor node of your SP system or cluster.
The processor nodes are also listed by name
in the Node Name List, and, if you are using
an SP system, each of the jobs running are
listed in the Jobs List.

Note: Before you start monitoring, you should first select

nodes and open views.
e Step 2: Select processor nodes for monitoring.

PLACE the cursor over one of the squares on this
window, over the name of a processor node in
the Node List, or over the name of a job in the

Job List.

PRESS the left mouse button.

e |f you placed the cursor over one of the
squares on the window, or over the name of a
processor node in the Node List, that
processor node is selected for monitoring. If
you placed the cursor over the name of a job
in the Job List, then all the processor nodes
that job is running on are selected for
monitoring.

e Step 3: Open views to visualize the kernel statistics being

sent from the selected processor nodes. In the PM View
Selector window:

PRESS the Computation category push button.

o All the Computation views open. To interpret
these views, see “View Descriptions” on
page 148.

e Step 4: Start monitoring the selected processor nodes.

SELECT File — Monitor

® Each of the selected processor nodes starts
sending samplings of AIX kernel statistics to
VT.

e Step 5: End the monitoring session. To do this:

SELECT File — Done

112

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Starting the Visualization Tool

The following table describes how to start VT for either trace visualization or
performance monitoring.

Table 11. Starting VT

To start VT for trace visualization:

To start VT for performance
monitoring when the Resource
Manager is available:

To start VT for performance
monitoring when the Resource
Manager is not available:

ENTER vt

® The Trace Visualization
window and the View
Selector window
automatically open, marking
the start of a VT session.

After reading the following description
of the vt command-line flags and the
next section on how to open and use
views, go to “Using VT for Trace
Visualization” on page 117.

ENTER vt

® The Trace Visualization
window and the View
Selector window
automatically open, marking
the start of a VT session.

SELECT File — Performance

Monitor

® The Performance Monitor
window and the PM View
Selector window open.

After reading the following description
of vt command-line flags and the next
section on how to open and use views,
go to “Using VT for Performance
Monitoring” on page 139.

ENTER vt -norm

® The Trace Visualization
window and the View
Selector window
automatically open, marking
the start of a VT session.

SELECT File — Performance

Monitor

® The Performance Monitor
window and the PM View
Selector window open.

After reading the following description
of vt command-line flags and the next
section on how to open and use views,
go to “Using VT for Performance
Monitoring” on page 139.

There are also a number of optional command-line flags you can use on the vt
command. These are summarized in the following table:

Table 12 (Page 1 of 2). VT Command-line Flags

Use this For more
command-line information,
flag: To: For example: see:
-tracefile Automatically load a specified trace file for vt -tracefile tracefile page on
playback when starting VT. page 128
or or
-tfile vt -tfile tracefile
“Step 1: Load
a Trace File
for Playback”
on page 127
-go Start playing back the trace file vt-cfile config -go page 133
immediately upon starting VT. When you
use this flag, you must also specify a
configuration file using the -configfile (or
-cfile)) flags.
“Step 2: Start
Playback of a
Trace File” on
page 133
-configfile Load a configuration file. These files vt -configfile config page 148
contain previously saved arrangements of
or VT windows, as well as input field or
specifications.
-cfile vt -cfile config

Chapter 3. Visualizing Program and System Performance

113

Table 12 (Page 2 of 2). VT Command-line Flags

Use this For more
command-line information,
flag: To: For example: see:
“Saving and
Loading a VT
Configuration
File” on
page 147
-cmap Request a private color map. When you vt -cmap page 147
use this flag, VT's color allocation is
independent of other X-Windows
applications.
“Adjusting a
View's Time
Resolution
and Colors”
on page 144
-norm Indicate that you are not using the vt -norm table 11
Resource Manager. If you are using an
RS/6000 network cluster, you must use
this option.
-spath Indicate a search path to a program's vt -spath /u/files/source:/u/hink/source page 159
source code. Like the AIX PATH
environment variable, this is a series of
colon-delimited directory names to search.
Unless the program's source is in the
current directory, the search path is
needed to display it in the Source Code
view. You can also indicate a search path
to a program's source code using the
Source Code view.
“Adding and
Deleting
Paths to the
Source” on
page 159
-log_file Specify the file name where the results of vt -log_file logfile page 128
the trace file post-processing will be
written. The default name is
$HOME /tracefilename.pplog .
-h Get help. vt -h page 138
-? vt -?
or or
-help vt -help
-mp_source Specify which task's source code is vt -mp_source 2 page 157
displayed in the Source Code view.

Opening and Closing Views

Whether you are using VT for trace visualization or performance monitoring, it
provides a set of displays called views. You can open and close these views from
the View Selector window. These views show, or visualize, specific information
about your program or system in forms such as bar charts and strip graphs. Using
mouse clicks, you can display details of the displayed information or change a

114 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

view's appearance or configuration. Some VT views are for trace visualization only,
and some are for both trace visualization and performance monitoring.

There are two types of views — instantaneous and streaming. Instantaneous views
present information for a specific point in time, while streaming views represent a
range of time. On a streaming view, a vertical line drawn towards the right of the
display shows the current point of trace playback. If doing performance monitoring,
this line represents the current point in time.

VT arranges the views into the following view categories:

e Communication/Program
e Computation

e Disk

e Network

e System

The view(s) in this
category: Visualize:

Communication/Program information regarding message passing events between
processor nodes while running a particular program. Also shows
the source code of a program whose trace records are being
played back. These views are for trace visualization only.

Computation information regarding the utilization of the processor nodes
running a particular program. These views can be used for
performance monitoring or trace visualization.

Disk information regarding the number of disk reads, disk writes, and
disk transfers. These views can be used for trace visualization or
performance monitoring.

Network information regarding the number of TCP/IP packets sent or
received by processor nodes. These views can be used for trace
visualization or performance monitoring.

System information regarding system activities and events such as page
faults and context switches. These views can be used for
performance monitoring or trace visualization.

Whether you are using VT for trace visualization or performance monitoring, you
want to open the views most appropriate to the events or statistics you wish to
examine.

If you are doing trace visualization, for example, and are interested in studying the
message passing events that occurred between processor nodes as your program
ran, you would open the Interprocessor Communication and Message Status Matrix
views. If you want to see the actual lines of source code associated with the
message passing events, you would also open the Source Code view.

You can open and close these views as you see fit during a VT session. For
example, as you play a particular trace file, you might initially be interested only in
the processor load balance as shown in the User Load Balance view. If the load
balance is particularly skewed, however, you might want to then look at some
system views.

Note: Those views displaying cumulative information are only valid from the point
at which the display was opened. Opening views after playback has started
will result in incorrect cumulative information. See “View Descriptions” on
page 148 for more information on cumulative views.

Chapter 3. Visualizing Program and System Performance 115

You can open and close views by selecting their icons in the View Selector window.
The icons in this window are labeled by view name and grouped by view category.

Each view category has a labeled push button.

= VIViewSeletr |

Actions Help |
. S
Computati onl
| MIE|I M| E|m]| E
] T
[rosoooc] T omrees:
=
User Uszer Kernel Kernel Processor Processor
Utilization Utilization Utilization Utilization Mait Wait
W || B
[e]
[roceovonc]
=]
Uszer Processor
Pr'olc;lssor' Prolccflssor' Load Utilization
£ £ EBalance 3D
Communication / Program |
=B ==
g =
—o e
Interpr_oces_sor Hsets:’taug: Connectivity Source
Communication Mithreisg Graph Code
Syst eml
]] T
[roserose]
=] =]

System Page FPaze System System Context
Summary Faults Faults Calls Calls Switches
Context

Switches
Networkl
3
Packets Packets Packets Packets
Sent Sent Received Received
Disk

= |IMmM|[E|M]E ||]

o] [er]]

ST

=] =]

Dizk Dizk Disk Disk Dizk Dizk ~
Transfers Transfers Reads Reads HWrites Writes ¥

Figure 28. View Selector Window

To select a single view from the View Selector window.
PRESS the icon associated with the view in the View Selector window.

® The view opens. If already open, it closes.

To select all the views in a particular view category from the View Selector window.
PRESS the labeled push button for that view category.

o |f there are any unopened views in the category, they are opened.
Otherwise, all the views in the category are closed.

Note: “View Descriptions” on page 148 contains a description of each of the
views in the five view categories. Refer to this section to decide on the
view(s) most appropriate for your purposes.

116 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Using VT for Trace Visualization

Trace visualization enables you to play back statistical and event records generated
during a program's execution. These statistical and event records are called trace
records and are stored in a trace file. By playing a trace file and opening views to
visualize its trace records, you can perform algorithm characterization and study
your program's performance. This section discusses:

e The four types of trace records
e How to generate a trace file
* How to play back the trace file and visualize its trace records using VT.

Note: If you are running the Parallel Environment on an SP system with the
High-Performance Communication Adapter configured, ensure that the
switch fault handler (fault_service_ Worm_RTG) is running before using the
trace facility of the Visualization Tool. The digd daemon requires services
that are initialized by the fault handler. The switch fault handler and the digd
daemon are specified in /etc/inittab and are started automatically. If the digd
daemon is used by the trace facility before the switch handler is running, a
switch channel check may occur which could cause the switch to crash.

Types of Trace Records
There are four types of trace records. They are:

e Message Passing

¢ Collective Communication
e AIX Kernel Statistics

e Application Markers

The following sections describe each type of trace record in more detail. In
addition, the header file VT _trc.h and VT_mpi.h in the directory
Just/Ipp/ppe.poe/include defines the structure of trace records. Refer to this header
file if you want to write your own program to read, manipulate, or interpret trace
records independent of VT. A sample program is provided in
Jusr/lpp/ppe.vi/util/rtre.c which displays the contents of a trace file in ASCII format.
This program can be used as an example for creating your own program to extract
information from the trace file. Refer to “Trace File Post-Processing” on page 128
for more details on post-processing, and refer to the appropriate VT README file
for more details on the format and structure of the individual trace records.

Message Passing

Message passing trace records contain information regarding point-to-point
message passing events such as blocking sends and receives among tasks of your
program. Each of these events is the result of a call to a message passing
subroutine. Message passing subroutines are described in greater detail in /1BM
Parallel Environment for AIX: MPI Programming and Subroutine Reference and IBM
Parallel Environment for AIX: MPL Programming and Subroutine Reference

Collective Communication

Collective communication trace records contain information about communication
events involving groups of tasks. Broadcasts and combines are examples of
collective communication trace records. Each of these events is the result of a call
to a collective communication subroutine, for example: mpc_bcast or MPI_Bcast.
Collective communication subroutines are described in greater detail in IBM Parallel
Environment for AIX: MPI Programming and Subroutine Reference

Chapter 3. Visualizing Program and System Performance 117

AIX Kernel Statistics
AIX kernel statistics trace records contain a sampling of statistics from the kernel.
These include the:

e Percent of CPU utilization (user, kernel, wait, and idle)
¢ Number of system calls

e Number of page faults

e Number of transfers to and from disk

e Number of blocks read from disk

e Number of blocks written to disk

e Number of TCP/IP packets received

e Number of TCP/IP packets sent

Application Marker

This type of trace record contains marker information created for application calls.
You may code markers using the Parallel Utility Function mpc_marker (for C
programs) or MP_MARKER (for Fortran programs). When you run a program, you
can display these markers online using the Program Marker Array as described in
IBM Parallel Environment for AlX: Operation and Use, Volume 1, Using the Parallel
Operating Environment When you later play back a trace file of the program's run
using VT, the marker information can again be displayed — this time in the Source
Code view. See the description of the Source Code view on page 157. The
mpc_marker and MP_MARKER Parallel Utility Function calls are described in IBM
Parallel Environment for AIX: MPI Programming and Subroutine Reference

Trace Record Timestamps

118

If the High-Performance Communication Adapter is configured, the trace records
are timestamped with the switch clock value, regardless of whether the adapter is
used for communication. If the adapter is not present, the system clock is used.
When the tracing process completes, the trace records are ordered by timestamp
and the switch clock values are converted to a time of day timestamp.

The tracing routines use the synchronized counter on the communication adapter.
When tracing is initialized, VT_trc_init() synchronizes the trace file timestamp of all
tasks to the time of task 0. During the run, trace records will only use the register
as a timestamp. When the application on a single node is complete, VT _trc_done()
is called, which merges the communication and kernel statistics records into a
single file. It also maps the counter timestamp to the time of day using the
synchronized timestamp from VT_trc_init() .

When no communication adapter is present (for example when running on a cluster
of RS/6000 workstations), the Time of Day (TOD) clock provides the timestamp
information. The TOD clock should be synchronized across all nodes so that the
timestamp information can be properly correlated, otherwise the system times may
produce misleading results. For example, a receive may appear to complete before
the matching send. This is obviously not possible, yet if the system clock of the
sender is behind the clock of the receiver, the trace record will be timestamped,
and therefore visualized as if it occurred later in time. The TOD can be set on
multiple nodes using a standard synchronization tool like Network Time Protocol
(NTP).

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Generating Trace Files

To generate trace files:

1. VT generates trace records for all events for the entire duration of the program.
You have the option to turn trace generation off and on within your application
program. You can select which type(s) of trace records you wish to switch off or
on. This ability (described in “Step 1: Control Trace Record Generation Within
the Program”) enables you to generate trace files containing just the types of
trace records (for just the part of the program) that you are interested in
visualizing. In order for a trace record type to be generated, however, it must
also be enabled by the MP_TRACELEVEL environment variable, or its
associated command-line flag when you invoke your program. See “Step 3:
Process the Program to Generate a Trace File” on page 120 for more
information.

2. Compile your program as described in “Step 2: Compile the Program” on
page 120.

3. Invoke the compiled program with trace record generation turned on. You can
turn trace record generation on for one, some, or all trace record types. See
“Step 3: Process the Program to Generate a Trace File” on page 120.

Step 1: Control Trace Record Generation Within the Program

VT uses its own routines to create trace records and does not utilize the AIX trace
facility. Some of these can be called from your application program, allowing you to
generate trace files containing just the type(s) of trace records you are interested in
visualizing. To turn tracing off or on, use the following prototypes:

For Fortran programs

For C programs

CALL VT_TRC_STOP (INTEGER RETURN_CODE)

CALL VT_TRC_START (INTEGER FLAGS, INTEGER RETURN_CODE)

int VT_trc_stop_c()

int VT _trc_start _c(int flags)

The variable flags is an integer flag that specifies one, some, or all trace record
types. The following table shows the possible values of flags and the trace record
type(s) indicated by each.

Table 13. Trace Record Integer Flags

Flag Collective

Value Message Passing Communication AIX Kernel Statistic Application Markers
0

1 v

2 v v

3 &check v v

9 v v v v

Let us say you wanted trace records to be generated for only the second half of a
program, and that you felt only AlX Kernel Statistics and Application Markers trace
records were necessary for your purposes.

1. At the top of the program, you would add the following line.

119

Chapter 3. Visualizing Program and System Performance

For Fortran Programs

For C Programs

CALL VT_TRC_STOP (RC)

VT_trc_stop_c()

This stops the generation of all trace record types for the first half of the
program.

2. In the second half of the program, to start generating Message Passing and
Collective Communication trace records, you would then insert the following line
at the appropriate place in your program.

For Fortran Programs

For C Programs

CALL VT_TRC_START (3, RC) VT _trc_start_c(3)

Note: During normal trace file playback, VT attempts to simulate actual time. If
you have turned trace record generation off for, say, five minutes of a
program's run, VT does not automatically skip over that area of the trace
file. During normal playback, you will have to wait the five minutes before
any of the views are updated. You can get around this by advancing
playback over the next trace record as described in “Step 5: Stepping
Playback” on page 134.

Step 2: Compile the Program

In order to take advantage of all VT features, you need to use the -g option as
shown below when compiling your program with the mpcc, mpCC, or mpxIf
command. These compiler commands are actually shell scripts that call the regular
cc, XIC, or xIf compilers. The -g option produces an object file with symbol table
references needed to take advantage of the Source Code view. This view lets you
see the actual lines of code associated with the trace record events you are
visualizing. The -g flag is not required if you do not wish to use the Source Code
view.

Notes:

1. For more information on the mpcc, mpCC, and mpxIf commands, see IBM
Parallel Environment for AlX: Operation and Use, Volume 1, Using the Parallel
Operating Environment

2. For information on compiling threaded C, C++, or Fortran programs using
mpcc_r, mpCC_r, or mpxIf_r, see IBM Parallel Environment for AlIX: Operation
and Use, Volume 1, Using the Parallel Operating Environment

3. For more information on the -g option, refer to its use on the cc command as
described in IBM AlIX Version 4 Commands Reference

Step 3: Process the Program to Generate a Trace File

To generate a trace file, you need to run your program with tracing turned on. You
can turn tracing on by setting the environment variable MP_TRACELEVEL, or
using the -tracelevel or -tlevel flag when invoking the program. By default the trace
level is 0, meaning that tracing is off. As with most POE command-line flags,
-tracelevel and -tlevel override their associated environment variable.

Whether you set the MP_TRACELEVEL environment variable or use one of the
command-line flags, you use an integer to indicate the trace record type(s) you
wish to generate.

120 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

The integer you use with the MP_TRACELEVEL environment variable and its
associated flags are the same ones you use on the VT _trc_start statement within
your programs, and are detailed in Table 13 on page 119. For example, to
generate a trace file for all trace record types you could:

Use the -tracelevel or -tlevel flag when invoking the

Set the MP_TRACELEVEL environment variable: program:

export MP_TRACELEVEL= 9 ENTER poe program -tracelevel 9

or

poe program -tlevel 9

Notes:

1. When you enable tracing with MP_TRACELEVEL, you may then run tracing on
and off within the program using VT _trc_stop and VT trc start. If you do not
enable tracing with MP_TRACELEVEL, calling VT _trc_stop and VT trc_start
within the program will have no effect.

2. Useful informational messages can be displayed during trace generation. In
order to get these messages, the MP_INFOLEVEL environment variable, or its
associated flag -infolevel , must be set to level 2 or higher. Refer to IBM
Parallel Environment for AlX: Operation and Use, Volume 1, Using the Parallel
Operating Environment for more information on MP_INFOLEVEL.

Specifying a Trace File Name: By default, trace files are named the same as
the program name with the suffix .trc added. There are times when you do not want
to use the default name and want to specify your own. To specify a trace file name,
you can set the environment variable MP_TRACEFILE or use the -tracefile or -tfile
flag to temporarily override their associated environment variable.

For example, say you generate a trace file for program. If you do not specify a
name, it is named program.trc by default. You play back the trace records in
program.trc, and based on the information visualized decide to modify program so it
runs more efficiently. You make the modifications and now want to process
program to generate a second trace file. You do not want to overlay program.trc,
however, so you need to give this one a new name. To name the trace file
tracefile2.trc, you could:

Use the -tracefile or -tfile flag when invoking the

Set the MP_TRACEFILE environment variable: program:

export MP_TRACEFILE= tracefile2 ENTER poe program -tlevel 9 -tracefile tracefile2

or

poe program -tlevel 9 -tfile tracefile2

Changing the Sampling Interval for AIX Kernel Statistics: If you are
generating trace records for AlX Kernel Statistics, VT gets a sampling of those
statistics at set intervals. By default, the set interval is every twenty milliseconds.
You can change the sampling interval by setting the environment variable
MP_SAMPLEFREQ, or using the -samplefreq or -sfreq flag when invoking the
program. As with most POE command-line flags, -samplefreq and -sfreq
temporarily override their associated environment variable.

If you sample the AIX Kernel Statistics more frequently, your resulting trace file will
be more detailed, but will also require more storage. If storage is a consideration,

Chapter 3. Visualizing Program and System Performance 121

you might want to sample AlX Kernel Statistics less frequently. For example, say
you want to get a sampling of AlIX Kernel Statistics every 50 milliseconds. You
could:

Use the -samplefreq or -sfreq flag when invoking the

Set the MP_SAMPLEFREQ environment variable: program:

ENTER

export MP_SAMPLEFREQ= 50 ENTER poe program -tlevel 9 -samplefreq 50

or

poe program -tlevel 9 -sfreq 50

122

Note: You can also set the sampling interval from within your application program.
To do this, use the routine VT_trc_set _params (for Fortran programs) or the
routine VT_trc_set params_c (for C programs). See IBM Parallel
Environment for AIX: MPI Programming and Subroutine Reference for more
information.

Managing Storage for Trace Files: The system uses the following three-tiered
approach to manage the storage of trace files:

1. The system writes the trace records to a 1 MB buffer in memory on the local
nodes.

2. When the memory buffer is full, the records are appended to a file in the
directory specified by the MP_TMPDIR environment variable or -tmdir
command line parameter. It is suggested that the temporary directory be a
directory that is local on each node so that network traffic is minimized.

3. The files from all the nodes are merged into a single file in the directory
specified by the MP_TRACEDIR environment variable. MP_TRACEDIR can be
overridden by the -tracedir command line option. Refer to IBM Parallel
Environment for AIX: Operation and Use, Volume 1, Using the Parallel
Operating Environment for more information.

Communication event records and system statistics trace records are written
independently to files with generated temporary names. Communication trace
records are written by instrumentation in the communication library. System
statistics are written by a spawned process which samples the kernel at a specified
interval.

To reduce its impact on an application's performance characteristics, the tracing
process makes efficient use of memory, disk 1/0O, and network traffic during
execution and defers formatting, synchronization, and derivation operations until the
application is complete. The three-tier tracing architecture passes large data blocks
to the disk at less frequent intervals rather than passing small data blocks
continuously. In addition, the format of the trace records generated on the local
nodes while the job is running is more compact than the format of the records read
during trace playback so that it can be generated more quickly.

Integration of the trace data from the individual nodes into the final trace file on the
home nodes is deferred until the application completes. VT uses an internal
communications channel provided by POE to distribute clock synchronization
information and collect trace data. Figure 29 on page 123 illustrates the
three-tiered approach used to manage the storage of trace files.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Individual
Trace File
Integrated Into

= [

Flushed when

filed fo , o
Tier Two Trace File
Application (MP_TTEMPSIZE) (MP_TRACEFILE)
(MP_TMPDIR) (MP_TRACEDIR)

Tier One
(MP_TBUFFSIZE)

Figure 29. Three-Tiered Trace File Storage Approach

You have several options regarding the storage of trace files. You can specify:
 a directory other than /tmp for the temporary trace file.
e a directory other than your current directory for final trace file output.
¢ the maximum size of the buffer and the temp file.

e a wraparound storage approach instead of the default three-tiered approach.
With this approach, the system overwrites the buffer instead of flushing it to a
temp file.

Writing the Temporary Trace File to a Specified Directory: By default, VT writes
the memory buffer to a file in /tmp. You can have it write the temporary trace file to
a different directory by setting the MP_TMPDIR environment variable or using the
-tmpdir flag when invoking the program. If this directory is a local file system, it will
minimize the network traffic. As with most POE command-line flags, the -tmpdir
flag temporarily overrides its associate environment variable.

For example, to use a samples directory under your home directory for temporary
trace files, you could:

Set the MP_TMPDIR environment variable: Use the -tmpdir flag when invoking the program:

export MP_TMPDIR= $HOME/samples ENTER poe program -tlevel 9 -tmpdir $HOME/samples

Writing the Final Trace File to a Specified Directory: By default, VT writes the final
trace file to the your current directory. You can use the environment variable
MP_TRACEDIR to specify a different directory. The directory specified by
MP_TRACEDIR must be accessible to all the nodes of a partition. If a partition
consists of more than one node, the trace file must not reside in a local directory.
You can also temporarily override the value of MP_TRACEDIR using one of its
associated command-line flags — either -tracedir or -tdir . To specify that VT should
build the final trace file in the directory /u/salat/cris, you could:

Use the MP_TRACEDIR environment variable: Use the -tracedir or -tdir flag when invoking the program:

export MP_TRACEDIR= /u/salat/cris ENTER poe program -tlevel 9 -tracedir /u/salat/cris

poe program -tlevel 9 -tdir /u/salat/cris

Chapter 3. Visualizing Program and System Performance 123

Specifying the Buffer, Temp File, and Trace File Size:

There are times when you

will want to increase the size of the buffer, the temp file, or the trace file. For
example, each time the system flushes the contents of your buffer or temp file,
some of its resources are not available to run your program. By increasing the size
of the buffer and temp file, you could decrease the number of times this happens.
Also, the amount of trace files generated from a run can be quite large and may
exceed the default 10 MB limit. For these reasons, you can specify:

» the size of the buffer by setting the MP_TBUFFSIZE environment variable or
using the -tbuffsize or -tbsize command-line flag.

* the size of the temp file by setting the MP_TTEMPSIZE environment variable or
using the -ttempsize or -ttsize command-line flags.

Note:

You can also manage storage for trace files from within your application

program. To do this, use the routine VT _trc_set params (for Fortran
programs) or the routine VT _trc_set _params_c (for C programs). See IBM
Parallel Environment for AIX: MPI Programming and Subroutine Reference

for more information.

Say you wanted to increase the size of the buffer to 5 MB, and the size of the temp
files to 20 MB. To do this, you could:

Set the three environment variables:

Use the command-line flags:

ENTER export MP_TBUFFSIZE= 5M

export MP_TTEMPSIZE= 20M

ENTER poe program -tlevel 9 -tbuffsize 5M -ttempsize

20M

or

poe program -tlevel 9 -tbsize 5M -ttsize 20M

Note:

Remember that specifying a larger buffer size decreases the amount of free

memory available to the application.

Specifying a Wraparound Storage Approach: You can change to a wraparound
storage approach instead of the default three-tiered approach by setting the
MP_TBUFFWRAP environment variable or using the -tbuffwrap or -tbwrap
command-line flag when invoking a parallel program. With a wraparound storage
approach, the system overwrites the buffer instead of flushing it to a temp file. As
with most POE command-line flags, -tbuffwrap and -tbwrap temporarily override
their associated environment variable. To specify a wraparound storage approach,

you could:

Set the MP_TBUFFWRAP environment variable:

Use the -tbuffwrap or -tbwrap flag when invoking the
program:

ENTER export MP_TBUFFWRAP= yes

ENTER poe program -tlevel 9 -tbuffwrap yes
or

poe program -tlevel 9 -tbwrap yes

124 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Using VT to Play Trace Files

The Trace Visualization window automatically opens at the start of a VT session.

Visualization Tool 2.0 (C) IBM Corp 1997

e/ ipp/ppe.vi/aampiee/visampie g Select

| ajm > | bS]
\ K2
7 R |

Figure 30. Trace Visualization Window

You use this window to monitor and control the playback of trace files. It consists

of:

A menu bar with the following options:

— File
— Print
— Help

These menus may also be posted to a separate window (“torn off”) by selecting
the dashed line below the menu title when the menu is first posted.

The Trace File Field. This field is just below the Menu Bar. It displays the full
path name of the trace file you have selected for playback. You can also
select a file for playback by typing it in this field and then pressing Enter.

The File Select Button. This manages the File Selection box as described in
“Step 1: Load a Trace File for Playback” on page 127.

The Basic Trace Visualization Controls. These allow you to control the playback
of your trace files and are similar to the controls you might find on a VCR or
CD player. They are directly below the Trace File Field and, from left to right,
are:

— The Reset Control Button. This is used to return playback to the start (or an
earlier point) in the trace file.

Chapter 3. Visualizing Program and System Performance 125

— The Step Back Control Button. This allows you to step back a single trace
record.

— The Stop Control Button. This allows you to stop playback.
— The Play Control Button. This allows you to start or resume playback.

— The Step Forward Control Button. This allows you to step forward a single
trace record.

— The Loop Control Button. This allows you to continuously play a trace file
or a portion of a trace file.

e The Magnification Control. This control (to the right of the Basic Trace
Visualization Controls) allows you to increase or decrease the amount of time
represented in certain views. By varying the amount of time, you present more
or less detalil in these views. See “Step 8: Adjust View Magnification” on
page 136 for more information on this control.

e The Replay Speed Control. This control is located to the right of the
Magnification Control. By adjusting the marker within it, you can change the
speed of playback. By default, VT attempts to play back trace records at the
same rate they were generated. If any of the open views cannot keep up with
the speed at which VT is feeding them trace records, a lag light appears in the
corner of the Replay Speed Control. For more information on speed control,
see “Step 6: Adjust Playing Speed” on page 135.

e The Application Time Display. This display (just below the Basic Trace
Visualization Controls) shows the time recorded in the trace file during the
application's execution. This time is displayed in hours, minutes, and seconds.
Keep in mind that this display refers to the original processing time, and not to
the trace file's playback time. If, for example, your program turns trace record
generation off and on (as described in “Generating Trace Files” on page 119),
the time shown in the Application Time Display will skip over the time during
which trace record generation was set off.

The Application Time Display is an editable field. You can click on the time field
and manually enter a time. This allows you to pinpoint a time in the trace file for
a particular view. See “Step 9: Going to a Specific Time” on page 136 for more
information.

e The Trace File Time Control. This control (at the bottom of the Trace
Visualization window) contains a scale showing your current playback position
either as elapsed time or as number of trace records. Two toggle buttons to the
right of this control let you select whether the scale is elapsed time or number
of trace records. Labels on these toggle buttons indicate the value of units in
the scale. As you play the trace file, a Playback Position Line moves through
the scale to show your current playback position. You can also change the
current playback position by dragging the small triangle at the base of the
Playback Position Line to a new position within the Trace File Time Control.

The Trace File Time Control also contains two range markers. The one to the
left is the start-of-range marker and the one to the right is the end-of-range
marker. You use these markers in conjunction with the Reset and Loop Control
Buttons.

The following steps demonstrate how to play back trace files by leading you
through all the controls on the Trace Visualization window. By following these

126 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

steps, you can quickly master the simple controls and so be able to play and

interpret your own trace files.

The intention of these steps is to touch on all the pertinent controls you can use
when playing back a trace file. These steps do not indicate a specific order that
must be followed when playing your own trace files. There are some obvious
exceptions. For example, you must load a trace file before you can begin playback

of it.

If you do not want to work through these steps because you are already familiar
with VT, but do need to refresh your memory regarding some specific control, refer

to the following table.

To:

Refer to:

load a trace file for playback

“Step 1: Load a Trace File for Playback”

start trace file playback

“Step 2: Start Playback of a Trace File” on page 133

return playback to the start (or an earlier point) in a trace file

“Step 3: Return to an Earlier Point in the Trace File” on
page 133

cycle playback through a trace file or a portion of a trace file

“Step 4: Cycle Playback Through a Trace File” on page 134

reverse or advance stepping by a single trace record

“Step 5: Stepping Playback” on page 134

adjust the speed of playback

“Step 6: Adjust Playing Speed” on page 135

scroll back over view history buffers

“Step 7: Scrolling Over History Buffers” on page 136

adjust the level of detail shown in certain views

“Step 8: Adjust View Magnification” on page 136

move to a place in the trace file by entering a time directly

“Step 9: Going to a Specific Time” on page 136

print a view

“Step 10: Printing a View” on page 137

get help

“Step 11: Getting Help” on page 138

Notes:

1. In the steps that follow, use the left mouse button for all menu bar and control
selections unless otherwise noted.

2. There is a sample trace file provided with VT in the directory
Jusr/lpp/ppe.vt/samples. It is called vtsample.trc. You can use it if you want to
familiarize yourself with the controls described in the following steps, but have
not yet generated any trace files of your own.

3. In the steps that follow, it is assumed that you have already opened the views
appropriate to your needs as described in “Opening and Closing Views” on
page 114. If you are new to VT and are following these steps to familiarize
yourself with its controls, open the Interprocessor Communication, User Load
Balance, and Source Code views for demonstration.

Step 1: Load a Trace File for Playback
Before you can play back a trace file, you need to load it. From the menu bar of the

Trace Visualization window:
PRESS
OR

the Select button on the VT control panel.

SELECT File — Tracefile — Select

® The Trace File Selection Dialog window opens.

This window contains:

127

Chapter 3. Visualizing Program and System Performance

A filter area showing the current search path

A list of the directories in the current search path

A list of the trace files in the current search path

A list showing up to the last 10 trace files that were viewed.

If the trace file you want to load is not in the current search path, you can specify a
new search path. To do this:

FOCUS on the filter area.
TYPE IN the new search path.
PRESS Filter

e VT updates the list of directories and files accordingly.

To select a trace file for playback:
PLACE the cursor over its entry in one of the lists of files.
PRESS the mouse button.
® The full path name of the trace file appears in the Trace File field.
PRESS OK

® VT loads the trace file and closes the Trace File Selection Dialog
window.

Note: You can also load a trace file without using the Trace File Selection Dialog
window. There are two ways to do this — from the Trace Visualization
window, or when starting a VT session.

e To load a trace file from the Trace Visualization window:
FOCUS on the Trace File field
TYPE IN the full path name of the trace file.
PRESS Enter
® VT loads the trace file for playback.

e To load a trace file when starting a VT session, use the -tracefile or
-tfile flag on the vt command. For example, say you are starting a VT
session and you want to load the sample trace file visample.trc from the
directory /usr/Ipp/ppe.vt/samples. You would:

ENTER vt -tracefile /usr/ipp/ppe.vt/samples/visample.trc
or
vt -tfile /usr/lpp/ppe.vt/samples/vtsample.trc

® The Trace Visualization window and the View Selector
window automatically open, marking the start of a VT
session. In addition, VT loads the trace file vtsample.trc for
playback.

Trace File Post-Processing: The visualization tool relies on instrumentation in
the communications library for matching and eventually visualizing communications
events. That is, each point-to-point and collective communications event must be
paired to the corresponding events. For example, a send must be paired to the
matching receive, and all members of a broadcast must be linked together for
visualization. Intermediate files from each node contain part of this information, and

128 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

after the files are merged into the final trace file a post-processing phase is
necessary to do this pairing and generate summary information. The
post-processing rewrites parts of the trace records and permanently changes the
file, so it is required only once and may be subsequently replayed any number of
times. Any errors detected during the post-processing are recorded in the
post-processing log file named $HOME/<trace file name>.pplog.

If this file cannot be opened for writing, the output will go to standard error (stderr).
An example of the contents of this file follows:

VT Post-processing: Processing of trace file /tmp/sr.trc begins.
VT Post-processing: Program source file sr not found.

No source Tines will be displayed.

VT Post-processing: Largest single message sent was 64 bytes from task 1
VT Post-processing: Largest cumulative messages sent was c8 bytes
between tasks 0 and 1

VT Post-processing: Total of 35 communications events processed
Trace file type: Post-Processed (5)

Trace file release level: 0203

Time of first trace event: 17:01:53.199213774

Time of last trace event: 17:01:53.676011400

@(#) IBM Visualization Tool trace file, Release : 0203

Number of processors used: 0004

Number of unmatched events in file: 00000000

Maximum single transfer: 00000064

Maximum cumulative transfers: 000000c8

VT Post-processing: Processing complete.

The log begins with the name of the trace file being processed. The next line
indicates that the executable which produced this trace file could not be found in
the current PATH. If available, post-processing will use the internal debug
information in the executable (XCOFF) to print source code line numbers whenever
an error is found. In this case, no post-processing errors are reported, so the
absence of the executable is not a problem. However, you will not be able to use
the Source Code display in VT. The next three lines are a summary of the
message size information collected by post-processing. This includes:

1. The largest single message

This is the largest single message sent between any two processes. In this
case it was 64 (hex) bytes sent from task 1 to task 0.

Chapter 3. Visualizing Program and System Performance 129

130

2. The largest cumulative messages sent

Each message sent between any two tasks is recorded in an array of
<number_of tasks> squared. The size of each message from one task to
another is recorded in the row of the sending task and the column of the
receiving task. All messages are counted, including point-to-point and collective
communications. At the end of post-processing, this array is scanned to identify
the largest cumulative amount of data exchanged between any two tasks
(identified by the row and column of the array). This information is used by the
Message Matrix display to visualize message size information.

3. Number of communications events processed

AIX statistics records are ignored by post-processing. This is the number of
trace records collected for all the communications events.

The remaining lines on the log file print out values from the trace header record (as
described in VT _trc.h). This includes:

¢ type (in this case VT_MATCHED_TRACEFILE or 5)
» trace_rel
e info_string

e timestamp of the header record - This is set to the timestamp of the first trace
record captured.

e end_time - This is set to the timestamp of the last trace record captured.
e num_procs (number of tasks)

e unmatched_comm_cnt (all were matched successfully in this case)

* max_single_message

* max_cumulative_message

Following is an example of output with some error information:

VT Post-processing: Processing of trace file /tmp/sendrecv_rep.trc
begins

VT Post-processing: Program source file name is sendrecv_rep.c

VT Post-processing: Warning MPI Operation with non zero return code on
task 3 at time 10:54:39.543372800 (trace file offset 3ec)

From 1ine 35 of sendrecv_rep.c

VT Post-processing: Warning Unmatched Point-to-Point Event on task 0
at time 10:54:40.582377000 (trace file offset 59a)

From 1ine 17 of sendrecv_rep.c

VT Post-processing: Largest single message sent was 64 bytes from
task 1 to 0

(the rest of the summary lines are omitted)

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

In this example, post-processing was able to find the executable file; and it was
compiled with -g so source lines could be displayed.

Note: The executable should be in the current PATH and if you plan to use the
Source Code Display, you should also have access to the source code in
the current working directory.

There are 2 error messages displayed. The first message indicates that there was
a non-zero return code from an MPI operation and the task on which it occurred.
This return code may not be fatal and should be defined on the MPI Standard. The
error message also calls out the time and the source code line number of the call
to the routine. To better isolate this problem, load the trace file into VT and open
the Source Code Display. Move to the time reported in the message by entering it
in the time field, moving the slider on the time gauge or playing and stepping up to
the event (all of these operations are described throughout this chapter). The
Source Code Display should now be displaying the source code line under the
colored bar for task 3. VT only captures the return code, and your program may or
may not continue. If it was terminated this will be obvious with VT because there
will be no more activity on that task. You will probably want to determine the exact
meaning of the return code and update your source appropriately.

The second error message indicates that the post-processing was unable to match
a point-to-point communications event. As mentioned earlier, instrumentation in the
communications library provides data whereby the post-processing should be able
to correlate all messages from their source to their destination. There are several
reasons why this could have failed:

e Tracing was off at the time the message was sent or received

Tracing may have been explicitly turned off in the application with the

VT _trc_stop() function, or may have been disabled because of some error
condition (for example, MP_TEMPSIZE was exceeded). In this case, the
communication may have completed successfully, but post-processing has no
way of knowing this because there was no trace record captured.

e Application program error

The application program may have specified an invalid destination task or some
other parameter error which, although not fatal, resulted in no message being
sent.

e Problems during integration of node trace files

At the end of the application program, the temporary trace files from all the
nodes are merged into the final trace file on the home node. If an application
program is terminated abnormally (for example, <Ctrl-c >) or if there is an error
integrating the node trace files (for example, ran out of space), then one or
more of the node trace files may be incomplete or missing. In this case, there is
more than likely many error messages from the Parallel Environment indicating
what went wrong.

When unmatched errors occur, first make sure that the poe job completed
successfully (no core dumps, interrupted tasks, error messages, etc.). If this is the
case, then follow the steps above to play the trace up to the time listed in the error
message. Then, check the information in the Interprocessor Communications and
Source Code displays to isolate the problem. If you are using a MPMD (Multiple
Program - Multiple Data) program, you will need to read the next section Using VT

Chapter 3. Visualizing Program and System Performance 131

132

with MPMD applications to specify which program will be displayed in the Source
Code display.

There are three more possible error conditions that could be reported. They are:
1. Unmatched Collective Communications Event

One of the tasks that should have been involved with the collective
communications was not found. This could occur for the same reasons as the
unmatched point-to-point event (a terminated task or tracing off, for example). If
your program produced the correct results, this may be a trace collection
problem and the visualization will simply ignore that member of the group.

2. MPI Operation Cancelled

MPI allows pending communication events to be canceled by the user
application. When the cancellation is successful, a flag is set in the trace record
and this message is displayed when the record is processed. Use the Source
Code and Interprocessor Communications displays to identify the operation that
was canceled.

3. Incomplete group info record detected. Continuing.

This is an error during the capture of group information for a collective
communications event. The specific group definition is terminated at the last
valid record processed. Any tasks that were omitted will not be visualized as
part of the group. In most cases this will occur because of a failure in trace
generation or integration and will be accompanied by other error messages
from the Parallel Environment. Regenerate your trace file and start VT again.

Use the steps listed above to verify that the application and the Parallel
Environment completed without errors, then use VT to isolate the specific area of
failure.

Using VT with MPMD applications: MPMD applications use different application
programs on each node. VT only supports one Source Code display and by default
it uses the program information from task 0. During playback, nodes that are not
running the same executable may erroneously update in the Source Code display.
In order to better support MPMD programs, a new command line flag has been
added to allow you to specify which task, and therefore which executable program
and source code will be shown in the Source Code display.

To specify a specific task for the Source Code display, use the -mp_source flag on
the VT command line followed by the task number. Specifying an invalid task will
cause VT to default to task 0. For example, if you are running an MPMD application
as follows:

task running
0 server_program
1 sub_server_program
2 client_program
3 client_program

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

and post-processing indicates an error on task 2 (in the client_program), you could
display the source for client_program in the Source Code display by starting VT
with -mp_source 2 .

Note: Remember that in this case, only tasks 2 and 3 will update correctly in the
Source Code display.

Step 2: Start Playback of a Trace File

Once you have loaded a trace file you can start playing back its trace records.
Before starting playback, you should open the views appropriate to your needs as
described in “Opening and Closing Views” on page 114. To start playback:

PRESS the Play Control Button.
® Playback begins.
As a trace file plays back:

e All open views visualize the appropriate trace records generated when the
parallel program was run.

e The Application Time Display shows the time recorded during the parallel
program's execution.

e the Playback Position Line moves within the Trace File Time Control to show
your current playback position. The Trace File Time Control shows your
playback position in either elapsed time or number of trace records depending
on which toggle button is pressed.

Playback continues until VT reaches the end-of-range marker or you press the Stop
Control Button.

Note: On the vt command, you can use the -go flag to specify that playback
should start immediately. You can only use the -go flag, however, if you
also specify the name of a configuration file using the -configfile or -cfile
flags. See “Saving and Loading a VT Configuration File” on page 147 for
more information.

For example, to start a VT session, load the sample trace file mytracefile and the
configuration file myconfigfile, and start playback immediately:

ENTER vt -tfile mytracefile -cfile myconfigfile -go

Step 3: Return to an Earlier Point in the Trace File

The Reset control button returns playback to the start, or to an earlier spot in a
trace file. Before you can return to an earlier position in a trace file, you must stop
playback.

PRESS the Stop Control Button

® Playback stops at its current position in the trace file.

To return playback to the start of a trace file:
PRESS the Reset Control Button.
PRESS the Play Control Button.

® Playback returns to the start of the trace file. All views and the
Application Time Display update accordingly.

Chapter 3. Visualizing Program and System Performance 133

134

By first adjusting the start-of-range marker in the Trace File time control, you can
use the Reset control button to return to that marked spot rather than the start of
the trace file. If you isolate an area of interest or concern within the trace file, you
could do this to keep returning to the start of that area.

To return playback to an earlier spot in a trace file:
PRESS the Stop Control Button.

DRAG the start-of-range marker in the Trace File Time Control to the desired
spot.

PRESS the Reset Control Button.
PRESS the Play Control Button.

® Playback returns to the spot indicated by the start-of-range marker. All
Views and the Application Time Display update accordingly.

Step 4: Cycle Playback Through a Trace File
When VT reaches the end of a trace file, playback stops. If you would like playback
to continuously cycle through a trace file:

PRESS the Loop Control Button.

® When VT reaches the end of the trace file, it returns to the start of the
trace file and resumes playback.

If you have isolated an area of interest or concern within a trace file, you might
wish to cycle playback through just that area. You can do this by first adjusting the
two range markers in the Trace File Time Control before pressing the Loop Control
button.

If you wanted, for example, to cycle playback between the 40 and 60 percent
marks on the Trace Visualization Time Control, you would:

PRESS the Stop Control Button.
DRAG the start-of-range marker to the 40 percent mark.
DRAG the end-of-range marker to the 60 percent mark.

DRAG the playback position line by its triangular base in between the two
markers.

PRESS the Loop Control Button.
PRESS the Play Control Button.

® Playback cycles through just this portion of the trace file.

Step 5: Stepping Playback

The Step Back Control Button and the Step Forward Control Button let you reverse
or advance playback over the previous or next trace record for which there is an
open view. This is called stepping, and is useful when you have isolated an area of
interest or concern within a trace file. During normal playback, VT attempts to
simulate actual time by advancing the views after reading each second of the trace
file. This can be a drawback when one second of a trace file contains many trace
records and when there are large gaps between trace records. When one second
of the trace file contains many trace records, stepping lets you visualize each trace
record individually to provide you with more detailed information. Stepping is also

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

useful when your trace file contains large gaps between trace records. For
example, say trace record generation was turned off and on within your program as
described in “Generating Trace Files” on page 119. If trace record generation was
turned off for, say, five minutes of the program's run, VT does not automatically
skip over that area of the trace file. During normal playback, you will have to wait
five minutes before any of the views are updated. Stepping is then a convenient
way of skipping to the next trace record. When you step, VT reads the previous or
next trace record in the trace file. If none of your open views respond to that type of
trace record, VT continues reading the trace file until it reaches a trace record for
which there is an open view. You can interrupt this read by pressing the stop
button.

Before you can step through a trace file, you must stop playback.
PRESS the Stop Control Button

® Playback stops at its current position in the trace file.
To advance playback past the next trace record:
PRESS the Step Forward Control Button

® Playback advances past the next trace record for which there is an
open view, and stops. All views, as well as the Application Time Display
and the Trace File Time Control update accordingly.

To reverse playback over the previous trace record:
PRESS the Step Back Control Button

Note: You may also step over multiple events by pressing and holding
the Step Button.

Step 6: Adjust Playing Speed

During normal playback, VT attempts to play the trace file at the same rate as it
was collected. By shortening the interval between view advances, you can make a
trace file play faster. Similarly, by lengthening the interval between view advances,
you can make a trace file play slower. VT's fastest speed is 100 times faster than
real time. Its slowest speed is 100 times slower than real time.

To control the speed of playback by changing the interval between view advances:
DRAG the marker in the Replay Speed Control towards the desired speed.
PRESS the Play Control Button

® VT changes the interval between view advances as indicated by the
number at the bottom of the Replay Speed Control.

Notes:

1. VT attempts to playback trace records at the same rate that they were collected
In other words, if one trace record was captured every second, VT would
display one every second so that the playback time would be similar to the
execution time of the parallel application. If the pace of events is too fast for VT
to display, it is indicated by the lag light on the lower left of the playback speed
control. All events are still displayed; the lag light merely indicates that the
display of events is lagging behind the actual elapsed time during collection.

2. You can also change the update rate, or time resolution, for individual views as
described in “Adjusting a View's Time Resolution and Colors” on page 144.

Chapter 3. Visualizing Program and System Performance 135

136

Keep in mind, however, that a view cannot display information faster than VT
advances it.

Step 7: Scrolling Over History Buffers

Views have history buffers. These are buffers that store trace events after they are
updated off the view. During playback, you can scroll the view windows back over
these history buffers to see the earlier information.

To scroll back over history buffers:

DRAG the playback position line by its triangular base to the left during
playback.

o All the views scroll back accordingly. If you scroll past the start of a
view's history buffer, it goes blank.

To resume playback:
PRESS the Play Control Button

® The views resume playing the current trace record information back
from the point at which Stop was pressed.

Step 8: Adjust View Magnification

The streaming views visualize information for a range of time, and can be
manipulated using the magnification control to present more or less detailed
information. The Kernel Utilization (Graph) view (see Figure 38 on page 164) is an
example of a streaming view. It shows kernel utilization for all processors over a
range of time. By increasing or decreasing the range of time represented, you can
present more or less detail in the view.

For example, say you are playing a trace file and the Kernel Utilization (Graph)
view shows a large magnitude difference between two pixels. This represents a
sudden increase in kernel utilization. Say each pixel represents one second of time.
To understand the sudden increase in kernel utilization, you need a more detailed
representation of those two seconds. By decreasing the range of time represented
in the view, you can increase the level of detail for those two seconds. Increasing
the magnification shows you more detail by decreasing the time represented.
Decreasing the magnification, similarly, shows you less detail.

To adjust magnification:
PRESS the up or down arrow button in the Magnification Control as you desire.

® The number at the bottom of the Magnification Control shows the
current magnification setting, and the views update accordingly.

Step 9: Going to a Specific Time

With the editable field of the Application Time Display, you can move to a new time
within the trace file by specifying hours, minutes, seconds, and fractions of seconds
(h:m:s.fractions). If the time is preceded by a plus or minus sign (+, -), the value
taken is relevant to the current time. When typing in a number this way, the default
value is seconds. Entering + 1 will move the time forward one second. On the
Trace Visualization window:

FOCUS the cursor over the Application Time Display field.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

PRESS the left mouse button.

® This activates the cursor and allows you to type in a value.
ENTER the new value.
PRESS Enter

® The views are updated to the new time entered.

Note: If there is no event at the exact time specified, playback is positioned at the

closest

earlier event.

Step 10: Printing a View

Print allows you to capture images from the screen and format them to a PostScript
file. The image can be printed directly or saved to a file for printing or viewing with
a PostScript viewer. VT will optionally annotate the output with the following

information:

¢ Print file creation date

e Trace file name

e Trace file creation date

¢ Trace file current time

e VT display name.

The Print Options Dialog lets you choose the way you want to print your views.
From the menu bar of the Trace Visualization window:

SELECT Print — Options

® The Set Print Options window opens. From this window, you can
select the following with regard to PostScript output format:

PRESS OK

File - sends the output to a file.
Printer - sends the output to a printer.

GreyShades - allows you to specify grey shading in numbers of 2, 4,
or 16.

Color - specifies color output.

Annotate - sets on or off the display of file information, including file
name, and time and date of file creation and printing.

Delay before Grab - allows you to set a specific time within which
you can rearrange your windows before the cursor activates to
“grab” a view.

Enable Landscape - creates landscape formatted output.

Default Directory - if you select “Output to File,” this is where the file
is created.

Print Command - if you select “Output to Printer,” this is the
command that is executed.

® The Set Print Options window closes and VT sets the print options you
chose.

Chapter 3. Visualizing Program and System Performance 137

138

To print all the displayed views:
SELECT Print — All

o All the displayed views are selected for printing. This option captures
each one of the views individually, and assigns a different name for
each PostScript file.

To print one selected view:

SELECT Print — Select

® The cursor for window selection changes to a “hand” after the delay
that you specified with the “Delay before grab” option.

FOCUS on the window you want to print.
PRESS the left mouse button.

® The window is selected for printing. This option creates the PostScript
file named Vt.printRequest.ps in the specified directory.

Note: If the PostScript file already exists, it will be overwritten.

Pressing the right mouse button cancels the print operation.

Printing the selected view in this way captures the entire window and Motif borders.
You can also capture and print a rectangular area anywhere on the screen.
FOCUS the cursor on the area you want to capture.

PRESS the middle mouse button.

® This establishes one corner of the rectangle and allows you to drag a
“rubberband” outline of the area.

RELEASE the button to establish the second corner.

® The cursor changes back to a “hand” and you can do one of three
things:

1. Re-establish the corners by pressing the middle button and dragging
to the new location.

2. Relocate the entire rectangle by pressing the middle mouse button
within the rectangle.

3. Print the contents of the rectangle by pressing the left mouse button.

Step 11: Getting Help
VT provides help information by starting Netscape with specific search information
which will place the user at the article of interest.

Note: To access VT online help, the ppe.pedocs file set must be installed first.
Refer to IBM Parallel Environment for AlX: Installation for more information.
You may get help for VT in one of three ways:
1. Pressing the Help button from a VT window.
2. Selecting context sensitive help from the Playback Control window:
SELECT Help — Context

® The cursor is changed to a ?.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

FOCUS the cursor over the item of interest in any VT window.
PRESS the left mouse button.
® The help information is displayed.
3. Selecting Help — About from the Playback Control window. An information
pop-up displays the date and time when the VT was created.
The context sensitive help is provided by invoking the following shell script:
/usr/1pp/ppe.vt/bin/invokehtml.sh -display host:screen tag name
where -display host:screen displays the help on the same VT screen, and

tag_name is the name tag used in the HTML file.

This shell script first checks the availability of the file
lusr/lpp/ppe.pedocs/peopsuse2.html | and if Netscape is available. Please see
the shell script for customization instructions.

Note: There may be a long delay when Netscape is first invoked. Any subsequent
invocation will not experience the same delay.

The default shell scripts can be overridden using the MP_VT_HELP_SHELL
environment variable to point to your own shell script. This allows you to change
the default browser or HTML file without involvement of the system administrator.

Using VT for Performance Monitoring

Performance monitoring enables you to monitor the operational status and activity
of any of the processor nodes of your SP system or RS/6000 network cluster. You
do not need a trace file for this, because VT does the monitoring in real time. Each
of the processor nodes has a Statistics Collector daemon that, upon request,
supplies VT with samplings of AlX kernel statistics at a configurable interval. It is
these statistics that you visualize during performance monitoring. This section
describes how to:

e Select processor nodes for monitoring
e start monitoring the selected processor nodes
e change the interval at which AIX kernel statistics are sampled.

Nodes that you select for monitoring are specified to VT in one of three ways:

e VT can use the Resource Manager (RM) to identify nodes to be monitored.
The RM allocates the nodes available to run jobs. These nodes are specified
for dedicated or shared use in the host list file you create. Refer to IBM Parallel
Environment for AIX: Operation and Use, Volume 1, Using the Parallel
Operating Environment for more information on the RM and allocating nodes.

e You can supply VT with a specific list of nodes.
e VT can query all the nodes on the LAN, looking for the Statistics Collector
daemon.

The default is for VT to contact the RM for the nodes it currently manages. In this
mode, VT is aware of the parallel jobs the RM is controlling and can show
allocation of jobs to nodes.

Chapter 3. Visualizing Program and System Performance 139

If the RM is not present, you should use the -norm option when starting VT to tell it
not to try and connect with the RM. In this case, VT will start with the host list file
you create, containing the list of nodes on which to run jobs, and will add to the list
any other nodes on the LAN that are running the Statistics Collector daemon.
Although VT can still monitor nodes, it does not know about parallel jobs or
allocation of jobs to nodes.

Note: If you are running the Parallel Environment on an SP system with the
High-Performance Communication adapter configured, ensure that the
switch fault handler (fault_service_ Worm_RTG) is running before using the
performance monitoring function of the Visualization Tool. This function
uses the digd daemon. The switch fault handler and the digd daemon are
specified in /etc/inittab and are started automatically. If the digd daemon is
used by the performance monitoring function before the switch handler is
running, a switch channel check may occur which could cause the switch to
crash.

The Performance Monitor Window

When you select File — Performance Monitor from the Trace Visualization
window, the Performance Monitor window and the PM View Selector window open.

Note: The playback of trace files is disabled when using the Performance Monitor.

140 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Performance Monitor

s

@

Figure 31. Performance Monitor Window

This window consists of:

e A Job List. This lists all the jobs currently running on the SP system by job
number using data provided by the Resource Manager. Horizontal and vertical
scroll bars let you view text outside the display area. If you started VT with the
-norm option (as you must for an RS/6000 network cluster), VT cannot track
jobs and so cannot list them in this area.

¢ A Node Matrix This takes up the main part of the window. Each square on the
matrix represents one of the processor nodes. The square's appearance
indicates its status.

Chapter 3. Visualizing Program and System Performance 141

If the node appears in the matrix as a: Its status is:

gray box unavailable. You cannot select it for monitoring.

pink box available. You can select it for monitoring.

job running. The processor node is currently
running a job in the job list.

green square within a pink box

selected for monitoring. You have selected the
processor node for monitoring.

yellow box within a pink box

active and selected You have selected this
active job for monitoring.

yellow box within a green square within a pink
box.

e A Node List. This lists all the processor nodes. Horizontal and vertical scroll
bars let you view text outside the display area. VT gets this information from
the Resource Manager or, if you specified the -norm option when starting VT,
from a host list file and from the LAN.

A Selected Nodes Area. This area lists the processor nodes you select for
performance monitoring.

A Frequency Control. This control displays, and lets you reset the interval
between which VT advances the views with new AIX kernel statistics from the
Statistics Collector daemons.

The following steps demonstrate how to do performance monitoring on one or more
processor nodes by leading you through the controls of the Performance Monitor
window.

If you do not want to work through these steps because you are already familiar
with VT, but do need to refresh your memory regarding some specific function of
the Performance Monitor window, refer to the following table.

To: Refer to:

Select individual processor nodes, or all the processor nodes
associated with a particular job, for monitoring.

“Step 1: Select Processor Nodes for Monitoring” on
page 143.

Start monitoring the selected processor nodes.

“Step 2: Start Monitoring” on page 143.

Change the interval between which VT updates the views
with new AIX kernel statistics from the selected processor
nodes.

“Step 3: Change Sampling Interval” on page 144.

Notes:

1. While the first two steps are

required and must be performed in the order

shown, the final step is optional.

. In the steps that follow, it is assumed that you have already opened the views

appropriate to your needs as described in “Opening and Closing Views” on

page 114. If you are new to

VT and are following these steps to familiarize

yourself with its controls, open the Computation views for demonstration.

. In the steps that follow, use
selections.

142 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

the left mouse button for all menu bar and control

Step 1: Select Processor Nodes for Monitoring
There are three ways to select processor nodes for monitoring. You can select
them:

¢ From the Node Matrix
e from the Node List
e from the Job List.

To select a processor node from the Node Matrix.

PLACE the cursor on the square representing the processor node in the Node
Matrix.

PRESS the mouse button.

® VT selects the processor node for monitoring. To show that it is
selected, the processor node appears as a yellow box within a pink box.
If the node is also active, it appears as a yellow box within a green
square within a pink box. VT also adds the node's identifier to the
Selected Nodes Area, and highlights the node in the node list.

To select processor nodes from the Node List.
PLACE the cursor on the processor node's entry in the Node List.
PRESS the mouse button.

® VT highlights the processor node's entry in the node list, and adds that
node's identifier to the Selected Nodes Area. In the Node Matrix, the
node appears as a yellow box within a pink box. If the node is also
active, it appears as a yellow box within a green square within a pink
box.

If you are using an SP system, you can also select all the processor nodes on
which a particular job is running.

PLACE the cursor over that job's process identifier in the Job list.
PRESS the mouse button.

® VT highlights the job's process identifier, colors all the node squares
associated with the job as a yellow box within a pink box, and lists the
nodes in the Selected Nodes Area.

Note: If you are monitoring an RS/6000 network cluster, you cannot
select processor nodes using the job list.

Step 2: Start Monitoring

Before you can start monitoring the selected processor nodes, you must open
views as described in “Opening and Closing Views” on page 114. To start
monitoring the performance of selected nodes:

SELECT File — Monitor

® The Statistics Collector daemon(s) on the selected processor node(s)
begin sending samplings of AlX kernel statistics to VT. All open views
begin visualizing these statistics.

Chapter 3. Visualizing Program and System Performance 143

Notes:

1. If communication between VT and a selected node cannot be established by
the network, it may take a few minutes for the network to respond with an error.

2. If you select additional processor nodes after you have already started
monitoring, you must stop and restart monitoring. File — Monitor is a toggle
switch, so you stop monitoring the same way you started it:

SELECT File — Monitor

Step 3: Change Sampling Interval

As you monitor the selected processor nodes, VT advances the views at the
specified interval with a new sampling of AlX kernel statistics from the Statistics
Collector daemons. You can change the frequency at which VT advances the views
by resetting the sampling interval. You should increase the sampling interval if you
have many performance monitor views open, or if there is a significant network
delay in communicating with one or more of the nodes. If you have already started
monitoring the selected processor nodes, you must stop monitoring before you
reset the sampling interval.

SELECT File — Monitor

To reset the sampling interval:

FOCUS on the Frequency Control. The area shows the default as 10 seconds.
TYPE IN the new sampling interval in seconds.

SELECT File — Monitor

® Sampling is restarted and VT advances the views according to the
new interval setting.

Adjusting a View's Time Resolution and Colors

144

When doing trace visualization or performance monitoring, views redisplay using
new information from VT after set intervals. By default, this interval is 0.1 second
and is called the time resolution. The actual appearance of the view — the colors it
uses — is determined by its display spectrum. You can change the time resolution
and display spectrum for each view.

Note: When running the Visualization Tool on an X-station, you may find that the
color definitions will vary from that of an RS/6000 display. X-stations do not
always have access to all possible colors. Refer to the documentation
supplied with your X-station for more information on color definitions.

To adjust a view's time resolution and select the display spectrum:

PLACE the cursor over the view.

PRESS the right mouse button.

® A selection menu appears.
SELECT configuration

® The view's Time Resolution window opens.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Tatamp meter

Figure 32. Time Resolution Window

FOCUS
TYPE IN
PRESS

on the Time Resolution input field.
the new time resolution in seconds.
OK

® The view's Parameters window opens. This window lets you change
the appearance of a view. All views let you change the display
spectrum. Some views allow you to set other parameters as discussed
in “View Descriptions” on page 148.

Figure 33. Parameters Window

PLACE
PRESS

PRESS

Notes:

The Parameters window lets you change the appearance of the view. To
change to a new display spectrum:

the cursor over the key spectrum field.
the left mouse button.

o A different display spectrum appears in the key spectrum field. The
name of the display spectrum appears below the field. You can continue
clicking on this field to see each display spectrum for the view. You can
also use the middle mouse button to display the available spectrums in
reverse order. See the next section, Adjusting View Colors, for advice
on choosing the appropriate spectrum for this view.

OK

® The Time Resolution window and Parameters window close. The view
will now redisplay itself at its new set rate using its new display
spectrum.

1. To open a view's Parameters window directly, bypassing the Time Resolution
window:

PLACE the cursor over the view.

Chapter 3. Visualizing Program and System Performance 145

PRESS the right mouse button.
® A selection menu appears.
SELECT Parameters

2. Many of the views allow you to adjust more than just their time resolution and
color. “View Descriptions” on page 148 describes, for each of the views, any
additional parameters you can adjust.

Adjusting View Colors

146

VT allocates seven different spectrums for use by the different views. Some of the
initial colors in each spectrum are determined by a set of X resources which can be
found in the Xdefaults file, or in Appendix E, “Customizing Tool Resources” on
page 247. The seven different spectrums are

1. CPU Load Spectrum

This spectrum is intended for use by the System Summary view. There is one
color allocated to represent each of the possible kernel states: idle, user,
kernel, wait and other.

2. Communications Spectrum

This spectrum is intended for use by the Interprocessor Communication view.
By setting appropriate resources, a unique color can be assigned for each
possible communication event. However the number of unique events is quite
large and allocating a unique color for each will most likely exceed the set of
available colors. Additional resources are available which will assign a single
color to all events in a particular group. For example, you can give all MPL
events one color and all MPI events another color. If you don't need to worry
about what MPL is doing, all its events can be colored black.

You can also assign one color to each group of message passing events. You
can make point-to-point events one color and CCL events another color. Going
one step further, you can make your send events a different color from your
receive events, and color your blocking events differently from your nonblocking
events. The default resource file shipped with VT specifies colors for these
groups instead of colors for each unique event type.

For individual events, you can still assign separate colors by specifying the
resource name of the event for which you want to define the color.
3. Random Spectrum

This spectrum is intended for use by the System views. There are 20 different
colors allocated for identifying unique events or states in the views.

The allocation is done internally by varying the color intensity (hue, saturation
and brightness) in each pass of a loop. Hue is initially 60 degrees (yellow).
Each successive hue is 115 degrees away from the previous hue (modulo
360). Brightness will initially be 1.0 and will alternate between 1.0 and 0.75.
Initially saturation will be 1.0 for the first 2 colors and 0.5 for the next two colors
and then will repeat this pattern. This produces a set of colors where each
entry is easily discernible from its neighbor, but may be similar to other entries.
4. Discrete Spectrum

This spectrum is intended for use by the System views. There are 10 different
colors allocated for identifying unique events or states in the views. The
allocation is done internally by varying the color intensities across a range
starting with a deep blue and ending with an orange. This scheme produces a

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

set of colors such that each entry in the spectrum has enough contrast to make
it easily discernible from all other entries.

. Fade Spectrum

6. Monochrome Spectrum

)]

These spectrums are intended for use by the Message Status Matrix and
Processor Utilization (3D) views. The color intensity is incremented from black
to white (monochrome spectrum) or black to a user specified color (fade
spectrum). The intensity of an event serves as index into the spectrum such
that extreme events (such as a spike in processor utilization) will be easily
discernible from less intense events.

7. Continuous Spectrum

Like the Monochrome and Fade spectrums, this spectrum is intended for use
where the value associated with an event is reflected by the intensity of its
color. 100 colors are allocated for this spectrum, with a user definable start and
end color. The default start color is (cool) blue and the end is (hot) red.

VT could use a large number of colors for the various display spectrums used by
the views. By default, VT attempts to use the default color map shared by all active
X-Windows applications. Depending on the number of active X-Windows
applications, there might not be enough available colors for VT. When this
happens, VT displays a message indicating the spectrum(s) it cannot allocate, and
uses black in place of the unallocated color(s). VT will still run, but in extreme
cases some display spectrums may be unusable because of the missing color(s).

One way to avoid this problem is to have fewer competing X-Windows applications
when you start VT. You can also instruct VT to create its own private copy of the
color map using the -cmap flag on the vt command when starting VT. To do this:

ENTER vt -cmap

If you have another X-Windows application running and VT is using its own color

map, window colors may change as you move focus between applications. When
VT is active, the colors in the other windows may change. When VT is not active,
its colors may change.

Saving and Loading a VT Configuration File

A configuration file controls the windows that are displayed, where they appear on
your screen, and what values they show. When you have a screen configuration
you like, you can save it in a configuration file. Later you could load that
configuration file to display the same screen configuration.

For example, say you are doing trace visualization of a program's run and have five
or six views open. Based on the information you see visualized, you plan to modify
the program so it runs more efficiently. When you have made the changes, you will
rerun the program to generate a new trace file and then play it back using VT. You
know you will want to use these same five or six views, so you decide to save the
screen configuration. To do this:

SELECT File — Save Configuration
® The Save Configuration dialog window opens.

FOCUS on the text entry field of the dialog window.

Chapter 3. Visualizing Program and System Performance 147

TYPE IN the name you want to give the configuration file.
PRESS OK

® The screen configuration is saved as the file name you specified.

To later load this saved configuration:
SELECT File — Load Configuration

® The Configuration File Selection Dialog window opens.
This window contains:

A filter area showing the current search path
e A list of the directories in the current search path
* A list of the files in the current search path.

If the configuration file you want to load is not in the current search path, you can
specify a new search path. To do this:

FOCUS on the filter area.

TYPE IN the new search path.

PRESS Filter

® /T updates the list of directories and files accordingly.

To load a configuration file:
PLACE the cursor over the configuration file name in the list of files.
PRESS the mouse button.

® The full path name of the configuration file appears in the Selection
field.

PRESS OK

® VT loads the configuration file and closes the Configuration File
Selection Dialog window.

Note: You can also load a configuration file when starting a VT session. To do
this, use the -cfile or -configfile flag on the vt command. For example, say
you want to load the configuration file myconfig located in the directory
/home/brady/john. You would:

ENTER vt -configfile /home/brady/john/myconfig
or
vt -cfile /home/brady/john/myconfig

® The VT session starts, using the screen configuration saved in
the configuration file /home/brady/john/myconfig.

View Descriptions

This reference section describes each of the views you can open for trace
visualization or performance monitoring. It is divided in the five view categories.

e Communication/Program (for trace visualization only)
e Computation

148 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

View Types

e Disk
¢ Network
e System

For those new to VT, a suggested initial selection of views is:

e Message Status Matrix (a Communication/Program view)
e User Load Balance (a Computation view)
e Source Code (a Communication/Program view)

You can then select additional views as the need arises. Using the left mouse
button on a view displays additional information regarding events where the cursor
is positioned. Using the right mouse button allows you to customize individual
views.

There are two types of views — instantaneous and streaming. Instantaneous views
present information for a specific point in time, while streaming views represent a
range of time. On the streaming views, a vertical line drawn towards the right of the
view represents the current point of trace playback or, if you are doing online
monitoring, the current point in time.

Because the duration of communication events can vary greatly, VT does the
following to ensure that all communication events are reasonably displayed in
streaming views regardless of their duration or the current level of magnification:

* The duration of some events may be so short that, given the current level of
magnification, the event would represent less than one column of pixels in a
streaming view. In these situations, VT represents the event with one column of
pixels. This ensures that VT shows all communication events. To get a more
accurate representation of the event's duration, you could increase the
magnification.

e The duration of some events may be so long that, given the current level of
magnification, the block formed to represent it would take up too much room on
the streaming view and render it less understandable. In these situations, VT
represents the time period with the maximum-sized block it allows. VT fills the
events that span this time period with a hashed pattern to show that it is not in
proportion with the rest of the view. This is called time compression. To get a
more accurate representation of the event's duration, you could decrease the
magnification.

Communication/Program Views

The four views in this category visualize communication events between processor
nodes of your system, and information about your parallel program. The views in
this category are for trace visualization only, and should not be opened once
playback of the trace file has begun. They respond to the following types of trace
records:

e Message Passing
e Application Markers

For more information on the trace records included in each type, refer to “Types of
Trace Records” on page 117.

Chapter 3. Visualizing Program and System Performance 149

Connectivity Graph

This view visualizes message passing and collective communication events. The
view uses a small circle to represent each processor node on which your program
was run. Message passing events appear as an arc joining two of the circles.
Nodes that are participating in collective communication are connected by straight
lines. The color of the connected nodes depends on what particular communication
call is being displayed. This is an instantaneous view.

Notes:

1. Some VT dialogs, such as the Connectivity Graph, include a menu bar at the
top of the window showing File, Config, and Options. This menu bar is similar
to the menu that appears after pressing the third mouse button of a
three-button mouse, which provides options for rearranging the display.

2. If the Connectivity Graph and message bar displays use the same spectrum,
the color of the Connectivity Graph nodes will match the color of the process
labels on the Interprocessor Communication display.

3. A dangled arc may appear on the Connectivity Graph if the trace records
timestamp is not synchronized properly. See “Trace Record Timestamps” on
page 118 for more information.

—| Connectivity Graph | - | |

File Configure Options

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over any one of the small circles in the view.

150 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

PRESS the left mouse button.
e A window opens displaying the:

¢ time index. This is the time during the program's execution that is
currently being depicted in the view.

¢ node number

e number of messages sent from that node

e number of messages received by that node.

The window remains open only while you hold the mouse button down.

Toggling Between Instantaneous and Cumulative Presentation: This view lets
you toggle between an instantaneous and a cumulative presentation of the
message passing information. An instantaneous presentation is the default — the
arc representing the message passing event is visible only for the duration of the
communication. With a cumulative presentation, the arcs remain visible past the
completion of the communication. A cumulative presentation lets you see the
overall communication pattern among the processor nodes.

If you want a cumulative presentation of the message passing information:
SELECT Options — Cumulative

Interprocessor Communication

This view uses a bar chart to visualize the type and duration of communication
events. Each bar represents a processor node on which your program was run, and
the chart's horizontal axis represents a range of time. A label to the right of each
bar shows the node number and the communication thread number within that
node, and is colored based on the current state of that node. A current time line is
drawn down the view's 90 percent mark. Each bar in the chart will be made up of a
number of colored blocks. Each block represents a communication event involving
the processor. The size of the block represents the event's duration, and its color
indicates the type of event. For example, blocking sends are shown in one color,
nonblocking sends in another, broadcasts in another, and so on. When messages
are sent between processor nodes, a message line is drawn between the
appropriate bars in the chart and the node labels light up. When nodes are
involved in collective communication, a polygon is drawn between all participants in
the collective communication events.

Lines are drawn when the communication is known to have completed. They are
drawn from the start of the event which initiated the communication to the end of
the event which completed it. Thus, lines are drawn from the start of blocking or
nonblocking sends to the ends of blocking receives, waits and status events. Lines
are only drawn when the wait or status for any nonblocking calls involved in the
communication have completed. This is a streaming view.

Note: Generally tracing can be turned off with no impact to the matching events in
interprocessor communication.

Chapter 3. Visualizing Program and System Performance 151

=] Interprocessor Communication ©

F

!-.

~
Fl
= ¥
] x

.

.-

¥
L Dy

P

.’| 1] -

Using the Search Feature: This view has a search feature that helps you to
easily locate the communication events and processor nodes you are interested in.

PLACE the mouse cursor over the view.
PRESS the right mouse button.
® A selection menu appears.

SELECT Search
® The Search window opens. You are now in search mode.

152 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

|

Search range: 10:22:16. 926623584 to 10:22:16.949473736
| Bearch for Point to Point Events

[T MPI Blocking Send

Nodes: -

[T MPI Blocking Receive
_Nodes: -

| Bearch for Collective Communication Events

[i

‘l"\

[T MHPI Barrier

Nodes: |

HE

[T MHPI Broadcast
_Nodes: .

| Bearch for Mizscellaneous Events

‘l‘-h.

[T HPI Get Count

Nodes: |

[T MPI Buffer Attach
_Nodes: .

| Bearch for MPI Groups and Communicator Events

HE

[0 MPI Group Size

Nodes: |

fi
- |

[1 MPI Group Rank

&
Search results: No events or no nodes =specified
| List MPL Events | Lizst MPI Events
Done First Next IPreviuus I Help

Figure 34. The Search window

The Search window is arranged as follows:

e Search range - shows the time of the first and last event in the display's history
buffer. The Search function is limited to the range of events currently stored in
the buffer.

e Search for...Events - allows you to search for specific categories of events:

Point-to-Point

Collective Communication

Miscellaneous

MPI Groups and Communicator.

Chapter 3. Visualizing Program and System Performance 153

The Search window contains a separate area for each type of communication
event. Each area contains a text entry field and a selection button. The color
shown in each area corresponds to the color used for that type of
communication event in the view.

Note: In the text field you specify the nodes to be searched in the following
way:

— Individually: 1 2 or 1,2
— Byrange: 1 - 3
— Selecting all: -

e Search results - depends on the information specified. You will see either

No events or no nodes specified
or the following

Searched to beginning/end (of range)

Event found at time

e List MPL/MPI Events - allows you to save space by only listing events of
interest.

e Search options
There are four buttons for locating occurrences of the specified pattern: First, Next,
Previous , and Last.
The following is an example of how to use the search feature:
PRESS the blocking send button.
FOCUS on the text entry field for blocking sends.
TYPEIN 2,6

To see the first blocking send involving the two nodes:
PRESS First

® The first blocking send involving the two nodes is lined up under the
Search line. In search mode, the processor labels are colored to
represent what's under the search line.

To see the next blocking send involving the two nodes:
PRESS Next

To see the previous blocking send involving the two nodes:
PRESS Previous

To see the last blocking send involving the two nodes:
PRESS Last

To close the Search window and return to play mode.
PRESS Done

154 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

The search feature can perform a number of searches simultaneously. For
example, you could set up a search for blocking sends involving node 2 or 6 and a
search for receives involving node 9, 10, or 11. Pressing First, Next, Previous , or
Last shows you the first, next, previous or last event meeting any of the specified
search requirements.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over any one of the processor labels.
PRESS the left mouse button.
e A window opens displaying the:

¢ time index. This is the time during the program's execution that is
currently being depicted in the view.

¢ node number

¢ the type of communication event

¢ the time the event occurred.

During regular play mode, the information displayed is for the
communication event under the current time line. During search mode,
the information displayed is for the communication event under the
search line. The window remains open only while you hold the mouse
button down.

Customizing the View's Colors: As described in “Adjusting a View's Time
Resolution and Colors” on page 144, the appearance of a view — the colors it uses
— is determined by its display spectrum. The Communication display spectrum is
designed especially for use with this view. Each color in the spectrum is a resource
you can customize using the .Xdefaults file. This enables you to specify the exact
color used to represent each type of event in the view. For more information, see
Appendix E, “Customizing Tool Resources” on page 247.

Message Status Matrix

This view uses a grid to visualize messages sent between processor nodes. Each
processor node has both a row and a column on the table. The rows represent
when processor nodes send a message, and the columns represent when
processor nodes receive a message. The rectangle intersections on the grid
represent the message path between the sending node (the row) and the receiving
node (the column). As you play back your trace file, the message path rectangles
light up from the time the message begins to be sent to the time the receive
completes. The color of the rectangles indicates the size of the instantaneous or
cumulative message. Smaller messages are colored from the left-hand side of the
spectrum; larger messages, from the right-hand side. This is an instantaneous
view.

Chapter 3. Visualizing Program and System Performance 155

156

Messzage Status Matrix

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over any of the rectangles representing message
paths between processor nodes.

PRESS the left mouse button.
e A window opens displaying the:

¢ time index. This is the time during the program's execution that is
currently being depicted in the view.

e node number of the sending node.

e node number of the receiving node.

¢ number of messages sent.

The window remains open only while you hold the mouse button down.

Toggling Between Instantaneous and Cumulative Presentation: This view lets
you toggle between an instantaneous and a cumulative presentation of the
message passing information. An instantaneous presentation is the default — the
message path rectangles stay lit only for the duration of the message passing
event. With a cumulative presentation, the message path rectangles remain lit past
the completion of the event. A cumulative presentation lets you see the overall
communication pattern among the processor nodes. If this display is started after
trace playback has begun, the cumulative information will only be shown with
respect to when the display was opened.

If you want a cumulative presentation of the message passing information:

PLACE the mouse cursor over the view.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

PRESS the right mouse button.
® A selection menu appears.
SELECT Cumulative

Source Code

This view shows you the C, C++ or Fortran source code of the program associated
with the most recent trace event. A series of colored bars across the top of the
display represent the different program tasks and the corresponding communication
thread numbers. As you play back the trace file, the bars move through the code to
show you each task's position in relation to the source. To be more specific, for
each time a task entered into a communication function such as a blocking send,
an environment initialization, or an application marker call, its bar moves to that line
in the source code. When there are several source files for the executable, the view
will switch to show the new source as soon as one program task goes into it.

In order to use this view, you must also have compiled your program with the -g
flag, and the executable must be accessable from the current $PATH environment
variable. The Source Code files must be in your current directory or in a special
search path used by the view. “Adding and Deleting Paths to the Source” on

page 159 describes how to add directories to this source code search path. This is
an instantaneous view.

The source code view only displays information for one executable, by default, the
executable running on task 0. In the SPMD model, all tasks run the same
executable, but for MPMD different tasks will run different executables. To make VT
display program information for an executable running on a task other than task O,
you must specify that task with the comand line flag -mp_source .

For example, consider an MPMD program with executables named master and
worker . Master runs on task 0 and worker runs on tasks 1 and 2. By default, the
source code view will display the source code for master and track the execution of
task O through that code. To track the execution of worker through its source, you
would start VT with vt -mp_source 1 .

Chapter 3. Visualizing Program and System Performance 157

158

Source Code

ra
I

1:0 2:0 3:0 i

MPI_Init(0,0);
HMPI_Comm_size (MPI_COMM_MORLD, Snuntasks);
HMPI_Comm_rank (MPI_COMM_MWORLD, &me) ;

out = me;

dest = (me==numtasks-11 7 0 : me+l:
MPI_Iszend(&out, 1, MHPI_INT, dest, 5, HPI_COHMM_MWORLD, &m=zid[0]17;
arc = (me==0) 7 numtazks-1 : me-1:

MPI_Irecv(&in, 1, MPI_INT, src, 5, MHPI_COHMH_MORLD, &msgid[1]1);
MPI_Maitall(2,
MPI_Barrier (MPI_COMM_MWORLD):

if ((me > 0) & (in t=me = 1)]
printf("ERROR on node %d, in = %d\n",me, in);
else
printf("<¢>¢>¢> 0K <><><> on node %din",me);

if ((me == Q) & (in !'= numtasks - 1])
printf("ERROR on node ®d, in = %di\n",me, in);
else
printfF("<><3¢> 0K <><>¢> on node Fdin",me);
MPI_Finalize():;

if(me == 0) printf("MPI TEST COMPLETE\n"):

uncomment and replace this to put artificial work in =/
for (j=1.0; j<=(float) (9.0 % 1024 = 1024); j+=1.0)
{
square = j ¥ j;
returng

view.

7]
Displaying Additional Data in the View: You may display additional data in this
To do this:
E the mouse cursor over any one of the bars representing a program task.

PLAC

PRESS the left mouse button.

Using

e A window opens displaying the:

e time index. This is the time during the program's execution that is
currently being depicted in the view.

e task identifier

* list of tasks at that line in the source code file

e name of the source code file

¢ line number you are at in the source code file.

the Automatic Scrolling Capability: This view has an automatic scrolling

capability that automatically scrolls the view to include the most recent trace event.

If this
scrolli

capability is off, you must manually scroll the view. To toggle the automatic
ng capability on and off:

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

PRESS the right mouse button.

® A selection menu appears.
SELECT Parameters

® The view's Parameters Window opens.
PRESS the autoscroll toggle button on the Parameter Window.
PRESS Apply
PRESS OK
Toggling Between An Instantaneous and Cumulative Presentation: The view
lets you toggle between instantaneous and cumulative presentation of the source
code's relation to trace events. By default, the view shows an instantaneous
presentation &ndash the colored bars representing program tasks move through the
source to show each task's position. Each time the task enters into a
communication function, its bar moves forward to the associated line in the source.
Its bar colors that line only until the task enters into the next communication
function. In a cumulative presentation, once a line of the source is colored by a task
bar, it remains colored. In this way, each task leaves a trail through the source.
If you want a cumulative presentation of the Source Code view:
PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Cumulative
Adding and Deleting Paths to the Source: In order to display a source code file
in this view, it must be in your current directory or in a special source code search

path. When you start VT, you can indicate a search path to a program's source
code using the -spath flag. See Table 12 on page 113.

You can also modify your source code search path from the Source Code view
window. To do this:

PRESS the right mouse button

SELECT Source

® The Select Source Files window opens.

Chapter 3. Visualizing Program and System Performance 159

Select Source Files

Directories List of Files

-
=

. tests mul.c
/NT/NT_BASE/ode_tools status_example.c
/T/YT_BASE/rc_files send_example.c

/T/YT_BASE/src

! r
I"I I—" I\I |,.—'
Selscted File ; | tests mul.c
Current File : tests mul.c
[Hold
OK | Add Path| Del Path| Cancel Help

Figure 35. Select Source Files Window

This window contains an area listing all the directories in your source
code search path.

To add a new directory to the source code search path:
PLACE the mouse cursor over the name of one of the directories listed.

PRESS the left mouse button.

e VT highlights the directory's entry in the list to show that it is selected.
PRESS Add Path

® The Add Path window opens.

160 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

— Add Path_ popup __1

“ Add Before
> Add After

Type in a Path
/brady/ john/sourcd

oK | Cuncell Help |

Figure 36. Add Path Window

FOCUS
TYPE IN
PRESS

PRESS

on this window's text entry field.
the directory path you want to add.

either the Add Before or Add After toggle button, depending on
whether you want the new directory path to be added to your source
code search path before or after the selected directory.

OK

® The Add Path window closes. The directory search path you specified
is added to the list of directories in your source code search path.

To delete a directory's entry from the source code search path:

PLACE
PRESS

PRESS

PRESS

the mouse cursor over the name of one of the directories listed.

the left mouse button.

e VT highlights the directory's entry in the list to show that it is selected.
Del Path

® A pop-up window opens, asking if you are sure.

OK on the pop-up.

® The pop-up window closes, and VT deletes the selected directory from
your source code search path.

To close the Select Source Files window:

PRESS OK

Selecting a Source to Display in the View: You can select any source in your
source code search path and have it displayed in the Source Code view. To do
this:

PRESS the right mouse button

Chapter 3. Visualizing Program and System Performance 161

SELECT Source

® The Select Source Files window (see Figure 35 on page 160) opens.
The names of all the source code files in your source code search path
are displayed in the List of Files area.

PLACE the mouse cursor over the name of the file you want displayed.
PRESS the right mouse button.

® The source code file name appears in the Selected File field.
PRESS OK

® The Select Source Files window closes and the view displays the

selected source file.

Holding the Current Source File: When there are several source files for the
executable, the view will switch to show the next source as soon as one program
task goes into it. If you want to stay with the current source file, and not have the
view switch to others:

PRESS the right mouse button
SELECT Source
® The Select Source Files window opens.
PRESS the Hold toggle button in the lower left corner of this window.
PRESS OK

® The Select Source Files window closes and the view now stays with
the current source file.

Computation Views

162

The views in this category visualize information regarding the utilization of the
processor nodes running a particular program. The views in this category are for
trace visualization and performance monitoring, and they respond to AlX kernel
statistics trace records. For more information on, and a listing of, the AIX kernel
statistic trace records, see “Types of Trace Records” on page 117.

Kernel Utilization (Bar Chart)

This view uses a bar chart to visualize the amount of time the CPU spent executing
the kernel function. Each node is represented as a bar on the chart. As you play
back the trace file or monitor nodes online, the length of the bars change to show
their relative value of kernel utilization. Each bar has both a solid and a hatched fill
pattern. The solid fill pattern represents the instantaneous kernel utilization. The
hatched fill pattern is the average kernel utilization. In addition, VT draws a vertical
line to the right of each bar to show the highest level of kernel utilization so far
reached by each node. This is an instantaneous view.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

LL—JI

Lo JUITTTININ

[« DU |
[2 JIIII |
[3 TN | ;

Figure 37. Kernel Utilization (Bar Chart)

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over any one of the bars representing processor
nodes.

PRESS the left mouse button.
e A window opens displaying the:

¢ time index. This is the time during the program's execution that is
currently being depicted in the view.

¢ node number

¢ instantaneous value of kernel utilization

e average value of kernel utilization

¢ maximum value of kernel utilization

The window remains open only while you hold the mouse button down.
Adjusting the Default Maximum Value: By default, this view represents kernel
utilization as a percentage of 100. You can adjust this so that the view represents
kernel utilization as a percentage of some other value. For example, say you ran
your program on four processor nodes — none of which ever exceeded 10 percent

kernel utilization. You might want to adjust the view so that it represents kernel
utilization as a percentage of 10 instead of 100. To do this:

PLACE the mouse cursor over the view.
PRESS the right mouse button.
SELECT Parameters

® The view's Parameters window opens.
FOCUS on the barMaxValue text entry field.
TYPEIN 10
PRESS Apply

® The view calibrates to the new maximum value. The purpose of the
Recalibrate button on the configuration pop-up window is to enable or
disable the automatic recalibrate function.

Chapter 3. Visualizing Program and System Performance 163

Kernel Utilization (Graph)

This view uses a strip graph, or a group of strip graphs, to visualize the amount of
time the CPU spent executing the kernel function. This view has two display modes
— aggregate and individual. By default the view is in aggregate display mode — it
uses a single strip graph. A line on this graph shows the average value of kernel
utilization across all processor nodes. Individual display mode shows a separate
strip graph for each processor node's kernel utilization. When in this mode, each
graph contains two lines — one showing the individual processor node's kernel
utilization and, for comparison, one showing the aggregate kernel utilization. To
distinguish between the two, the area between the individual kernel utilization line
and the graph's horizontal axis has a solid fill. This is a streaming view.

T

hiahidibins e nlad |,

LL-

Figure 38. Kernel Utilization (Graph)

Displaying Additional Data in the View: You may display additional data in this

view. To do this:

PLACE the mouse cursor over a point on a line representing either aggregate or
individual kernel utilization.

PRESS the left mouse button.

e A window opens displaying:

If the cursor is on a line representing aggregate kernel
utilization:

If the cursor is on a line representing an individual node's
kernel utilization:

e time index. This is the time during the program's
execution that is currently being depicted in the view.

¢ the aggregate kernel utilization at that point in time.

e time index. This is the time during the program's execution
that is currently being depicted in the view.

¢ the aggregate kernel utilization at that point in time.

¢ the individual processor node's kernel utilization at that point
in time.

The window remains open only while you hold the mouse button down.

Toggling Between Display Modes: This view has two display modes —
aggregate and individual. By default the view is in aggregate display mode — it uses
a single strip graph. To display a separate strip graph for each node:

PLACE the mouse cursor over the view.

PRESS the right mouse button.

® A selection menu appears.

SELECT Individual

164 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Statistics

o

Figure 39. Statistics window.

Displaying an Analysis of the Graph Information: You can open a Statistics
Window containing an analysis of the information — the mean and the standard
deviation — shown in the view. To open the Statistics Window:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Show Statistics

® The Statistics Window opens, as shown in Figure 39.

The Statistics Window lists the mean and standard deviation for each processor

node. The toggle buttons enable you to sort the individual views in ascending or

descending order according to processor node ID, mean, and standard deviation.
To close the Statistics Window:

PRESS Done

Processor Wait (Bar Chart)

This view uses a bar chart to visualize the percentage of time the processor node
spent waiting for some resource to become available. Each node is represented as
a bar on the chart. As you play back the trace file or monitor nodes online, the
length of the bars change to show the relative percentage of processor wait time.
Each bar has both a solid and a hatched fill pattern. The solid fill pattern represents
the instantaneous wait time. The hatched fill pattern is the average wait time. In
addition, VT draws a vertical line to the right of each bar to show the highest
percentage of processor wait time so far reached by each node. This view is similar

Chapter 3. Visualizing Program and System Performance 165

166

in appearance to the Kernel Utilization (Bar Chart) view shown in Figure 37 on
page 163. This is an instantaneous view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over any one of the bars representing processor
nodes.

PRESS the left mouse button.
e A window opens displaying the:

e time index. This is the time during the program's execution that is
currently being depicted in the view.

e node number

¢ instantaneous value of processor wait time

e average value of processor wait time

e maximum value of processor wait time

The window remains open only while you hold the mouse button down.

Adjusting the Default Maximum Value: By default, this view represents
processor wait time as a percentage of 100. You can adjust this so that the view
represents processor wait time as a percentage of some other value. Say you ran
your program on four processor nodes, and the processor wait time did not exceed
10 percent on any of them. You might want to adjust the view so that it represents
processor wait time as a percentage of 10 instead of 100. To do this:

PLACE the mouse cursor over the view.
PRESS the right mouse button.
SELECT Parameters

® The view's Parameters window opens.
FOCUS on the barMaxValue text entry field.
TYPEIN 10
PRESS Apply

® The view calibrates to the new maximum value. The purpose of the
Recalibrate button on the configuration pop-up window is to enable or
disable the automatic recalibrate function.

Processor Wait (Graph)

This view uses a strip graph, or a group of strip graphs, to visualize the percentage
of time the processor nodes spent waiting for some resource to become available.
This view has two display modes — aggregate and individual. By default the view is
in aggregate display mode — it uses a single strip graph. A line on this graph shows
the average percent of wait time across all processor nodes. Individual display
mode shows a separate strip graph for each processor node's wait time. When in
this mode, each graph contains two lines — one showing the individual processor
node's wait time and, for comparison, one showing the aggregate processor wait
time. To distinguish between the two, the area between the individual kernel
utilization line and the graph's horizontal axis has a solid fill. This view is similar in
appearance to the Kernel Utilization (Graph) view shown in Figure 38 on

page 164. This is a streaming view.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over a point on a line representing either aggregate or
individual processor wait time.

PRESS the left mouse button.

e A window opens displaying:

If the cursor is on a line representing aggregate If the cursor is on a line representing an individual node's
processor wait time: wait time:
e time index. This is the time during the program's ¢ time index. This is the time during the program's execution
execution that is currently being depicted in the view. that is currently being depicted in the view.
¢ the aggregate processor wait time at that point in ¢ the aggregate processor wait time at that point in time.

time.

¢ the individual processor node's wait time at that point in time.

The window remains open only while you hold the mouse button down.

Toggling Between Display Modes: This view has two display modes —
aggregate and individual. By default the view is in aggregate display mode — it uses
a single strip graph. To display a separate strip graph for each node:

PLACE the mouse cursor over the view.
PRESS the right mouse button.
® A selection menu appears.

SELECT Individual

Displaying an Analysis of the Graph Information: You can open a Statistics
Window containing an analysis of the information — the mean and the standard
deviation — shown in the view. To open the Statistics Window:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Show Statistics

® The Statistics Window opens. This window is shown on page 165.

Processor Idle (Bar Chart)

This view uses a bar chart to visualize the percentage of time the processor nodes
spent idle. Each node is represented as a bar on the chart. As you play back the
trace file or monitor nodes online, the length of the bars change to show the
relative percentage of processor idle time. Each bar has both a solid and a hatched
fill pattern. The solid fill pattern represents the instantaneous idle time. The hatched
fill pattern is the average idle time. In addition, VT draws a vertical line to the right
of each bar to show the highest percentage of processor idle time so far reached
by each node. This view is similar in appearance to the Kernel Utilization (Bar
Chart) view shown in Figure 37 on page 163. This is an instantaneous view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

Chapter 3. Visualizing Program and System Performance 167

168

PLACE the mouse cursor over any one of the bars representing processor
nodes.

PRESS the left mouse button.
e A window opens displaying the:

¢ time index. This is the time during the program's execution that is
currently being depicted in the view.

¢ node number

¢ instantaneous value of processor idle time

e average value of processor idle time

e maximum value of processor idle time

The window remains open only while you hold the mouse button down.

Adjusting the Default Maximum Value: By default, this view represents
processor idle time as a percentage of 100. You can adjust this so that the view
represents processor idle time as a percentage of some other value. Say you ran
your program on four processor nodes, and the processor idle time did not exceed
10 percent on any of them. You might want to adjust the view so that it represents
processor idle time as a percentage of 10 instead of 100. To do this:

PLACE the mouse cursor over the view.
PRESS the right mouse button.
SELECT Parameters

® The view's Parameters window opens.
FOCUS on the barMaxValue text entry field.
TYPEIN 10
PRESS Apply

® The view calibrates to the new maximum value. The purpose of the
Recalibrate button on the configuration pop-up window is to enable or
disable the automatic recalibrate function.

Processor Idle (Graph)

This view uses a strip graph, or a group of strip graphs, to visualize the percentage
of time processor nodes spent idle. This view has two display modes — aggregate
and individual. By default the view is in aggregate display mode — it uses a single
strip graph. A line on this graph shows the average percent of idle time across all
processor nodes. Individual display mode shows a separate strip graph for each
processor node's idle time. When in this mode, each graph contains two lines —
one showing the individual processor node's idle time and, for comparison, one
showing the aggregate processor idle time. To distinguish between the two, the
area between the individual kernel utilization line and the graph's horizontal axis
has a solid fill. This view is similar in appearance to the Kernel Utilization (Graph)
view shown in Figure 38 on page 164. This is a streaming view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over a point on a line representing either aggregate or
individual processor idle time.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

PRESS the left mouse button.

e A window opens displaying:

If the cursor is on a line representing aggregate If the cursor is on a line representing an individual node's
processor idle time: idle time:
¢ time index. This is the time during the program's ¢ time index. This is the time during the program's execution
execution that is currently being depicted in the view. that is currently being depicted in the view.
e the aggregate processor idle time at that point in time. ¢ the aggregate processor idle time at that point in time.
¢ the individual processor node's idle time at that point in time.

The window remains open only while you hold the mouse button down.

Toggling Between Display Modes: This view has two display modes —
aggregate and individual. By default the view is in aggregate display mode — it uses
a single strip graph. To display a separate strip graph for each node:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Individual

Displaying an Analysis of the Graph Information: You can open a Statistics
Window containing an analysis of the information — the mean and the standard
deviation — shown in the view. To open the Statistics Window:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Show Statistics

® The Statistics Window opens. This window is shown on page 165.

User Utilization (Bar Chart)

This view uses a bar chart to visualize the amount of time the CPU spent executing
the user code. Each node is represented as a bar on the chart. As you play back
the trace file or monitor nodes online, the length of the bars change to show their
relative value of CPU utilization. Each bar has both a solid and a hatched fill
pattern. The solid fill pattern represents the instantaneous CPU utilization. The
hatched fill pattern is the average CPU utilization. In addition, VT draws a vertical
line to the right of each bar to show the highest level of CPU utilization so far
reached by each node. This view is similar in appearance to the Kernel Utilization
(Bar Chart) view shown in Figure 37 on page 163. This is an instantaneous view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over any one of the bars representing processor
nodes.

Chapter 3. Visualizing Program and System Performance 169

170

PRESS the left mouse button.
e A window opens displaying the:

¢ time index. This is the time during the program's execution that is
currently being depicted in the view.

¢ node number

¢ instantaneous value of CPU utilization

e average value of CPU utilization

e maximum value of CPU utilization

The window remains open only while you hold the mouse button down.

Adjusting the Default Maximum Value: By default, this view represents
processor utilization as a percentage of 100. You can adjust this so that the view
represents processor utilization as a percentage of some other value. For example,
say you ran your program on four processor nodes — none of which ever exceeded
10 percent utilization. You might want to adjust the view so that it represents
processor utilization as a percentage of 10 instead of 100. To do this:

PLACE the mouse cursor over the view.
PRESS the right mouse button.
SELECT Parameters

® The view's Parameters window opens.
FOCUS on the barMaxValue text entry field.
TYPEIN 10
PRESS Apply

® The view calibrates to the new maximum value The purpose of the
Recalibrate button on the configuration pop-up window is to enable or
disable the automatic recalibrate function.

User Utilization (Graph)

This view uses a strip graph, or a group of strip graphs, to visualize CPU utilization
for the processor nodes. This view has two display modes — aggregate and
individual. By default the view is in aggregate display mode — it uses a single strip
graph. A line on this graph shows the average value of CPU utilization across all
processor nodes. Individual display mode shows a separate strip graph for each
processor node's CPU utilization. When in this mode, each graph contains two lines
— one showing the individual processor node's CPU utilization and, for comparison,
one showing the aggregate CPU utilization. To distinguish between the two, the
area between the individual CPU utilization line and the graph's horizontal axis has
a solid fill. This view is similar in appearance to the Kernel Utilization (Graph) view
shown on in Figure 38 on page 164. This is a streaming view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over a point on a line representing either aggregate or
individual CPU utilization.

PRESS the left mouse button.

e A window opens displaying:

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

If the cursor is on a line representing aggregate CPU If the cursor is on a line representing an individual node's

Utilization: CPU utilization:
e time index. This is the time during the program's ¢ time index. This is the time during the program's execution
execution that is currently being depicted in the view. that is currently being depicted in the view.
¢ the aggregate CPU utilization at that point in time. ¢ the aggregate CPU utilization at that point in time.

¢ the individual processor node's CPU utilization at that point in
time.

The window remains open only while you hold the mouse button down.

Toggling Between Display Modes: This view has two display modes —
aggregate and individual. By default the view is in aggregate display mode — it uses
a single strip graph. To display a separate strip graph for each node:

PLACE the mouse cursor over the view.
PRESS the right mouse button.
® A selection menu appears.
SELECT Individual
Displaying an Analysis of the Graph Information: You can open a Statistics

Window containing an analysis of the information — the mean and the standard
deviation — shown in the view. To open the Statistics Window:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Show Statistics

® The Statistics Window opens. This window is shown on page 165.

Processor Utilization (3D Bar Chart)

This view is similar to the user utilization bar chart. It visualizes the amount of time
the CPU spent executing the kernel code, as well as the user code. In this view,
the processor nodes are laid out as bars in a two-dimensional grid and their CPU
utilization values raise the bars up along the z-axis. As the bars rise up along the
z-axis, they appear in different colors according to your display spectrum. This is an
instantaneous view, and is for trace visualization only.

Chapter 3. Visualizing Program and System Performance 171

172

— Processor Utilization (3D)

<3
| <

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over any one of the bars representing a processor
node.

PRESS the left mouse button.
e A window opens displaying the:

e time index. This is the time during the program's execution that is
currently being depicted in the view.

e node number

¢ instantaneous CPU utilization

Changing the Display Angle: You can change the angle at which the view
displays the 3-D Bar Chart. To do this:
PLACE the mouse cursor over the view.
PRESS the right mouse button.
® A selection menu appears.
SELECT Parameters
® The view's Parameters window opens.
FOCUS on the angle field

TYPE IN 0, 1, or 2. Specifying O gives you a side view of the chart, while
specifying 2 angles the chart as if you were looking down on it. 1 is in
between these two extremes.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

User Load Balance

This view uses three overlapping polygons to show CPU utilization for each of the
processor nodes, and the overall processor load balance. This is an instantaneous
view.

User Load Balance

The largest of the polygons represents 100 percent utilization for all of the
processor nodes. Within this polygon, VT draws each processor node as a spoke
starting at the polygon's center and extending out to the rim.

VT draws the second polygon inside the first. This polygon represents the
instantaneous CPU utilization for each of the processor nodes. On each node's
spoke, VT draws a point which represents the current CPU utilization for that node.
VT then connects the points to form a polygon with a solid fill pattern. The more
regular the polygon, the better your processor load balance.

The third polygon is similar to the second. It shows the average CPU utilization for
that node, and has a hatched fill pattern.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over any one of the spokes representing processor
nodes.

PRESS the left mouse button.
e A window opens displaying the:

e time index. This is the time during the program's execution that is
currently being depicted in the view.

Chapter 3. Visualizing Program and System Performance 173

Disk Views

e node number
¢ the instantaneous value of CPU utilization
¢ the average value of CPU utilization.

The window remains open only while you hold the mouse button down.

The six views in this category visualize the number of times processes acquire
information from, or send information to, the systems' hard disks. These views are
for trace visualization and performance monitoring, and respond to AIX kernel
statistic trace records. For more information on AIX kernel statistic trace records,
refer to “Types of Trace Records” on page 117.

Disk Reads (Bar Chart)

This view uses a bar chart to visualize disk reads — the number of times processes
acquire information from the systems' hard disks. This refers to reads of cached
information rather than access to the actual physical device. Each node is
represented by a bar on the chart. If you are using this view for trace visualization,
these are the processor nodes that ran your program. If you are using this view for
performance monitoring, these are the selected nodes. The length of the bars
change to show the number of disk reads. Each bar has both a solid and a hatched
fill pattern. The solid fill pattern represents the instantaneous number of disk reads.
The hatched fill pattern is the average number of disk reads. In addition, VT draws
a vertical line to the right of each bar to show the highest instantaneous number of
disk reads so far reached for each processor node. This view is similar in
appearance to the Kernel Utilization (Bar Chart) view shown in Figure 37 on

page 163. This is an instantaneous view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over any of the bars representing processor nodes.
PRESS the left mouse button.
e A window opens displaying the:

e time index. This is the time during the program's execution that is
currently being depicted in the view.

e node number

¢ instantaneous number of disk reads

e average number of disk reads

¢ maximum number of disk reads so far recorded

The window remains open only while you hold the mouse button down.
Adjusting the Default Maximum Value: By default, this view represents disk
reads as a percentage of 100. You can adjust this so that the view represents disk
reads as a percentage of some other value. For example, say the amount of disk

reads never exceeds 10 percent. You might want to adjust the view so that it
represents disk reads as a percentage of 10 instead of 100. To do this:

PLACE the mouse cursor over the view.

PRESS the right mouse button.

174 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

SELECT Parameters

® The view's Parameters window opens.

FOCUS
TYPEIN 10
PRESS Apply

on the barMaxValue text entry field.

® The view calibrates to the new maximum value. The purpose of the
Recalibrate button on the configuration pop-up window is to enable or
disable the automatic recalibrate function.

Disk Reads (Graph)

This view uses a strip graph, or a group of strip graphs, to visualize disk reads —
the number of times processes acquire information from the systems' hard disks.
This refers to reads of cached information rather than the actual physical device. If

you are using this view for trace visualization, the processor nodes depicted are the

ones that ran your program. If you are using this view for performance monitoring,
these are the selected nodes.

This view has two display modes — aggregate and individual. By default, the view is

in aggregate display mode — it uses a single strip graph to represent the average
number of disk reads across all processor nodes. Individual display mode shows a
separate graph for each processor node's disk reads. When in this mode, each
graph contains two lines — one showing the individual processor node's disk reads,
and, for comparison, one showing the aggregate number of disk reads. To
distinguish between the two, the area between the individual disk read line and the
graph's horizontal axis has a solid fill. This view is similar in appearance to the
Kernel Utilization (Graph) view shown in Figure 38 on page 164. This is a

streaming view.

Displaying Additional Data in the View:

view. To do this:
PLACE

You may display additional data in this

the mouse cursor over a point on the line representing either aggregate

or individual disk reads.

PRESS

the left mouse button.

e A window opens displaying:

If the cursor is on a line representing aggregate disk
reads:

If the cursor is on a line representing an individual node's
disk reads:

¢ time index. This is the time during the program's
execution that is currently being depicted in the view.

¢ the aggregate number of disk reads at that point in
time.

¢ time index. This is the time during the program's execution
that is currently being depicted in the view.

¢ the aggregate number of disk reads at that point in time.

¢ the individual processor node's number of disk reads at that
point in time.

The window remains open only while you hold the mouse button down.

Toggling Between Display Modes:
aggregate and individual. By default the view is in aggregate display mode — it uses

This view has two display modes —

a single strip graph. To display a separate strip graph for each node:

PLACE

the mouse cursor over the view.

Chapter 3. Visualizing Program and System Performance 175

176

PRESS the right mouse button.
® A selection menu appears.
SELECT Individual

Displaying an Analysis of the Graph Information: You can open a Statistics
Window containing an analysis of the information — the mean and the standard
deviation — shown in the view. To open the Statistics Window:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Show Statistics

® The Statistics Window opens. This window is shown on page 165.

Disk Transfers (Bar Chart)

This view uses a bar chart to visualize disk transfers — the number of times the
system transfers blocks of read/write data to and from the hard disks. Each node is
represented by a bar on the chart. If you are using this view for trace visualization,
these are the processor nodes that ran your program. If you are using this view for
performance monitoring, these are the selected nodes. The length of the bars
change to show the number of disk transfers. Each bar has both a solid and a
hatched fill pattern. The solid fill pattern represents the instantaneous number of
disk transfers. The hatched fill pattern is the average number of disk transfers. In
addition, VT draws a vertical line to the right of each bar to show the highest
instantaneous number of disk transfers so far reached for each processor node.
This view is similar in appearance to the Kernel Utilization (Bar Chart) view shown
in Figure 37 on page 163. This is an instantaneous view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over any of the bars representing processor nodes.
PRESS the left mouse button.
e A window opens displaying the:

e time index. This is the time during the program's execution that is
currently being depicted in the view.

¢ node number

¢ instantaneous number of disk transfers

e average number of disk transfers

¢ maximum number of disk transfers so far recorded

The window remains open only while you hold the mouse button down.
Adjusting the Default Maximum Value: By default, this view represents disk
transfers as a percentage of 100. You can adjust this so that the view represents
disk transfers as a percentage of some other value. For example say the amount of

disk transfers never exceeds 10 percent. You might want to adjust the view so that
it represents disk transfers as a percentage of 10 instead of 100. To do this:

PLACE the mouse cursor over the view.

PRESS the right mouse button.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

SELECT Parameters

® The view's Parameters window opens.

FOCUS
TYPEIN 10
PRESS Apply

on the barMaxValue text entry field.

® The view calibrates to the new maximum value. The purpose of the
Recalibrate button on the configuration pop-up window is to enable or
disable the automatic recalibrate function.

Disk Transfers (Graph)
This view uses a strip graph, or a group of strip graphs, to visualize disk transfers —

the number of times the system transfers blocks of read/write data to and from the
hard disks. If you are using this view for trace visualization, the processor nodes
depicted are the ones that ran your program. If you are using this view for
performance monitoring, they are the selected nodes.

This view has two display modes — aggregate and individual. By default, the view is

in aggregate display mode — it uses a single strip graph to represent the average

number of disk transfers across all processor nodes. Individual display mode shows

a separate graph for each processor node's disk transfers. When in this mode,
each graph contains two lines — one showing the individual processor node's disk
transfers, and, for comparison, one showing the aggregate number of disk
transfers. To distinguish between the two, the area between the individual disk
transfers line and the graph's horizontal axis has a solid fill. This view is similar in
appearance to the Kernel Utilization (Graph) view shown in Figure 38 on
page 164. This is a streaming view.

Displaying Additional Data in the View:

view. To do this:
PLACE

You may display additional data in this

the mouse cursor over a point on the line representing either aggregate

or individual disk transfers.

PRESS

the left mouse button.

e A window opens displaying:

If the cursor is on a line representing aggregate disk
transfers:

If the cursor is on a line representing an individual node's
disk transfers:

e time index. This is the time during the program's
execution that is currently being depicted in the view.

¢ the aggregate number of disk transfers at that point in
time.

¢ time index. This is the time during the program's execution
that is currently being depicted in the view.

¢ the aggregate number of disk transfers at that point in time.

¢ the individual processor node's number of disk transfers at
that point in time.

The window remains open only while you hold the mouse button down.

Toggling Between Display Modes:
aggregate and individual. By default the view is in aggregate display mode — it uses

This view has two display modes —

a single strip graph. To display a separate strip graph for each node:

PLACE

the mouse cursor over the view.

Chapter 3. Visualizing Program and System Performance 177

178

PRESS the right mouse button.
® A selection menu appears.
SELECT Individual

Displaying an Analysis of the Graph Information: You can open a Statistics
Window containing an analysis of the information — the mean and the standard
deviation — shown in the view. To open the Statistics Window:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Show Statistics

® The Statistics Window opens. This window is shown on page 165.

Disk Writes (Bar Chart)

This view uses a bar chart to visualize disk writes — the number of times processes
write information to disk. Each node is represented by a bar on the chart. If you are
using this view for trace visualization, these are the processor nodes that ran your
program. If you are using this view for performance monitoring, these are the
selected nodes. The length of the bars change to show the number of disk writes.
Each bar has both a solid and a hatched fill pattern. The solid fill pattern represents
the instantaneous number of disk writes. The hatched fill pattern is the average
number of disk writes. In addition, VT draws a vertical line to the right of each bar
to show the highest instantaneous number of disk writes so far reached for each
processor node. This view is similar in appearance to the Kernel Utilization (Bar
Chart) view shown in Figure 37 on page 163. This is an instantaneous view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over any of the bars representing processor nodes.
PRESS the left mouse button.
e A window opens displaying the:

e time index. This is the time during the program's execution that is
currently being depicted in the view.

e node number

¢ instantaneous number of disk writes

e average number of disk writes

e maximum number of disk writes so far recorded

The window remains open only while you hold the mouse button down.
Adjusting the Default Maximum Value: By default, this view represents the
number of disk writes as a percentage of 100. You can adjust this so that the view
represents disk writes as a percentage of some other value. For example, say the

number of disk writes never exceeds 10 percent. You might want to adjust the view
so that it represents disk writes as a percentage of 10 instead of 100. To do this:

PLACE the mouse cursor over the view.

PRESS the right mouse button.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

SELECT Parameters

® The view's Parameters window opens.
FOCUS on the barMaxValue text entry field.
TYPEIN 10
PRESS Apply

® The view calibrates to the new maximum value. The purpose of the
Recalibrate button on the configuration pop-up window is to enable or
disable the automatic recalibrate function.

Disk Writes (Graph)

This view uses a strip graph, or a group of strip graphs, to visualize disk writes —
the number of times processes write information to disk. If you are using this view
for trace visualization, the processor nodes it depicts are the ones that ran your
program. If you are using this view for performance monitoring, they are the
selected nodes.

This view has two display modes — aggregate and individual. By default, the view is
in aggregate display mode — it uses a single strip graph to represent the average
number of disk writes across all processor nodes. Individual display mode shows a
separate graph for each processor node's disk writes. When in this mode, each
graph contains two lines — one showing the individual processor node's disk writes,
and, for comparison, one showing the aggregate number of disk writes. To
distinguish between the two, the area between the individual disk writes line and
the graph's horizontal axis has a solid fill. This view is similar in appearance to the
Kernel Utilization (Graph) view shown in Figure 38 on page 164. This is a
streaming view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over a point on the line representing either aggregate
or individual disk writes.

PRESS the left mouse button.

e A window opens displaying:

If the cursor is on a line representing aggregate disk If the cursor is on a line representing an individual node's
writes: disk writes:
e time index. This is the time during the program's ¢ time index. This is the time during the program's execution
execution that is currently being depicted in the view. that is currently being depicted in the view.
¢ the aggregate number of disk writes at that point in ¢ the aggregate number of disk writes at that point in time.
time. ¢ the individual processor node's number of disk writes at that
point in time.

The window remains open only while you hold the mouse button down.

Toggling Between Display Modes: This view has two display modes —
aggregate and individual. By default the view is in aggregate display mode — it uses
a single strip graph. To display a separate strip graph for each node:

PLACE the mouse cursor over the view.

Chapter 3. Visualizing Program and System Performance 179

Network Views

PRESS the right mouse button.
® A selection menu appears.
SELECT Individual

Displaying an Analysis of the Graph Information: You can open a Statistics
Window containing an analysis of the information — the mean and the standard
deviation — shown in the view. To open the Statistics Window:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Show Statistics

® The Statistics Window opens. This window is shown on page 165.

The four views in this category visualize the number of TCP/IP packets sent or
received. These views are for trace visualization and performance monitoring, and
respond to AIX kernel statistic trace records. For more information on AIX kernel
statistic trace records, refer to “Types of Trace Records” on page 117.

Packets Received (Bar Chart)

This view uses a bar chart to visualize the number of TCP/IP packets received by
processor nodes. Each node is represented by a bar on the chart. If you are using
this view for trace visualization, these are the processor nodes that ran your
program. If you are using this view for performance monitoring, these are the
selected nodes. The length of the bars change to show the number of packets
received. Each bar has both a solid and a hatched fill pattern. The solid fill pattern
represents the instantaneous number of packets received. The hatched fill pattern
is the average number of packets received. In addition, VT draws a vertical line to
the right of each bar to show the highest instantaneous number of packets received
so far reached by each processor node. This view is similar in appearance to the
Kernel Utilization (Bar Chart) view shown in Figure 37 on page 163. This is an
instantaneous view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:
PLACE the mouse cursor over any of the bars representing processor nodes.
PRESS the left mouse button.

e A window opens displaying the:

e time index. This is the time during the program's execution that is
currently being depicted in the view.

e node number

¢ instantaneous number of packets received

e average number of packets received

e maximum instantaneous number of packets so far received

The window remains open only while you hold the mouse button down.

180 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Adjusting the Default Maximum Value: By default, this view represents packets
received as a percentage of 100. You can adjust this so that the view represents
packets received as a percentage of some other value. For example, say the
number of packets received never exceeds 10 percent. You might want to adjust
the view so that it represents packets received as a percentage of 10 instead of
100. To do this:

PLACE the mouse cursor over the view.
PRESS the right mouse button.
SELECT Parameters

® The view's Parameters window opens.
FOCUS on the barMaxValue text entry field.
TYPEIN 10
PRESS Apply

® The view calibrates to the new maximum value. The purpose of the
Recalibrate button on the configuration pop-up window is to enable or
disable the automatic recalibrate function.

Packets Received (Graph)

This view uses a strip graph, or a group of strip graphs, to visualize the number of
TCP/IP packets received by processor nodes. If you are using this view for trace
visualization, the processor nodes it depicts are the ones that ran your program. If
you are using this view for performance monitoring, these are the selected nodes.

This view has two display modes — aggregate and individual. By default, the view is
in aggregate display mode — it uses a single strip graph to represent the average
number of packets received across all processor nodes. Individual display mode
shows a separate graph for each processor node's packets received. When in this
mode, each graph contains two lines — one showing the individual processor node's
packets received, and, for comparison, one showing the aggregate number of
packets received. To distinguish between the two, the area between the individual
packets received line and the graph's horizontal axis has a solid fill. This view is
similar in appearance to the Kernel Utilization (Graph) view shown in Figure 38 on
page 164. This is a streaming view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over a point on the line representing either aggregate
or individual packets received.

PRESS the left mouse button.

e A window opens displaying:

If the cursor is on a line representing aggregate
packets received:

If the cursor is on a line representing an individual node's
packets received:

e time index. This is the time during the program's
execution that is currently being depicted in the view.

¢ the aggregate number of packets received at that
point in time.

¢ time index. This is the time during the program's execution
that is currently being depicted in the view.

¢ the aggregate number of packets received at that point in
time.

¢ the individual processor node's number of packets received
at that point in time.

Chapter 3. Visualizing Program and System Performance 181

The window remains open only while you hold the mouse button down.

Toggling Between Display Modes: This view has two display modes —
aggregate and individual. By default the view is in aggregate display mode — it uses
a single strip graph. To display a separate strip graph for each node:

PLACE the mouse cursor over the view.
PRESS the right mouse button.
® A selection menu appears.

SELECT Individual

Displaying an Analysis of the Graph Information: You can open a Statistics
Window containing an analysis of the information — the mean and the standard
deviation — shown in the view. To open the Statistics Window:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Show Statistics

® The Statistics Window opens. This window is shown on page 165.

Packets Sent (Bar Chart)

This view uses a bar chart to visualize the number of TCP/IP packets sent by
processor nodes. Each node is represented as a bar on this chart. If you are using
this view for trace visualization, these are the processor nodes that ran your
program. If you are using this view for performance monitoring, these are the
selected nodes. The length of the bars change to show the number of packets sent.
Each bar has both a solid and a hatched fill pattern. The solid fill pattern represents
the instantaneous number of packets sent. The hatched fill pattern is the average
number of packets sent. In addition, VT draws a vertical line to the right of each bar
to show the highest instantaneous number of packets sent so far by each
processor node. This view is similar in appearance to the Kernel Utilization (Bar
Chart) view shown in Figure 37 on page 163. This is an instantaneous view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:
PLACE the mouse cursor over any of the bars representing processor nodes.
PRESS the left mouse button.

e A window opens displaying the:

e time index. This is the time during the program's execution that is
currently being depicted in the view.

e node number

¢ instantaneous number of packets sent

e average number of packets sent

e maximum instantaneous number of packets so far sent

The window remains open only while you hold the mouse button down.
Adjusting the Default Maximum Value: By default, this view represents packets

sent as a percentage of 100. You can adjust this so that the view represents
packets sent as a percentage of some other value. For example, say the number of

182 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

packets sent never exceeds 10 percent. You might want to adjust the view so that
it represents packets sent as a percentage of 10 instead of 100. To do this:

PLACE the mouse cursor over the view.
PRESS the right mouse button.
SELECT Parameters

® The view's Parameters window opens.
FOCUS on the barMaxValue text entry field.
TYPEIN 10
PRESS Apply

® The view calibrates to the new maximum value. The purpose of the
Recalibrate button on the configuration pop-up window is to enable or
disable the automatic recalibrate function.

Packets Sent (Graph)

This view uses a strip graph, or a group of strip graphs, to visualize the number of
TCP/IP packets sent by processor nodes. If you are using this view for trace
visualization, the processor nodes it depicts are the ones that ran your program. If
you are using this view for performance monitoring, these are the selected nodes.

This view has two display modes — aggregate and individual. By default, the view is
in aggregate display mode — it uses a single strip graph to represent the average
number of packets sent across all processor nodes. Individual display mode shows
a separate graph for each processor node's packets sent. When in this mode, each
graph contains two lines — one showing the individual processor node's packets
sent, and, for comparison, one showing the aggregate number of packets sent. To
distinguish between the two, the area between the individual packets sent line and
the graph's horizontal axis has a solid fill. This view is similar in appearance to the
Kernel Utilization (Graph) view shown in Figure 38 on page 164. This is a
streaming view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over a point on the line representing either aggregate
or individual packets sent.

PRESS the left mouse button.

e A window opens displaying:

If the cursor is on a line representing aggregate If the cursor is on a line representing an individual node's
packets sent: packets sent:
e time index. This is the time during the program's ¢ time index. This is the time during the program's execution
execution that is currently being depicted in the view. that is currently being depicted in the view.
¢ the aggregate number of packets sent at that point in ¢ the aggregate number of packets sent at that point in time.
time. ¢ the individual processor node's number of packets sent at
that point in time.

The window remains open only while you hold the mouse button down.

Chapter 3. Visualizing Program and System Performance 183

System Views

Toggling Between Display Modes: This view has two display modes —
aggregate and individual. By default the view is in aggregate display mode — it uses
a single strip graph. To display a separate strip graph for each node:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Individual

Displaying an Analysis of the Graph Information: You can open a Statistics
Window containing an analysis of the information — the mean and the standard
deviation — shown in the view. To open the Statistics Window:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Show Statistics

® The Statistics Window opens. This window is shown on page 165.

The seven views in this category visualize system activities and events. These
views are for trace visualization and performance monitoring, and respond to AIX
kernel statistic trace records. For more information on AlX kernel statistic trace
records, refer to “Types of Trace Records” on page 117.

Context Switches (Bar Chart)

This view uses a bar chart to visualize context switches — the number of times the
processes are swapped in and out of active execution. Each node is represented
as a bar on the chart. If you are using this view for trace visualization, these are the
processor nodes that ran your program. If you are using this view for performance
monitoring, these are the selected nodes. The length of the bars change to show
the number of context switches. Each bar has both a solid and a hatched fill
pattern. The solid fill pattern represents the instantaneous number of context
switches. The hatched fill pattern is the average number of context switches. In
addition, VT draws a vertical line to the right of each bar to show the highest
instantaneous number of context switches so far reached for each processor node.
This view is similar in appearance to the Kernel Utilization (Bar Chart) view shown
in Figure 37 on page 163. This is an instantaneous view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:
PLACE the mouse cursor over any of the bars representing processor nodes.
PRESS the left mouse button.

e A window opens displaying the:

e time index. This is the time during the program's execution that is
currently being depicted in the view.

e node number

¢ instantaneous number of context switches

e average number of context switches

184 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

e maximum number of context switches so far recorded

The window remains open only while you hold the mouse button down.

Adjusting the Default Maximum Value: By default, this view represents the
number of context switches as a percentage of 100. You can adjust this so that the
view represents context switches as a percentage of some other value. For
example, say the number of context switches never exceeds 10 percent. You might
want to adjust the view so that it represents context switches as a percentage of 10
instead of 100. To do this:

PLACE the mouse cursor over the view.
PRESS the right mouse button.
SELECT Parameters

® The view's Parameters window opens.
FOCUS on the barMaxValue text entry field.
TYPEIN 10
PRESS Apply

® The view calibrates to the new maximum value. The purpose of the
Recalibrate button on the configuration pop-up window is to enable or
disable the automatic recalibrate function.

Context Switches (Graph)

This view uses a strip graph, or a group of strip graphs, to visualize context
switches — the number of times processes are swapped in and out of active
execution. If you are using this view for trace visualization, the processor nodes
depicted in this view are the ones that ran your program. If you are using this view
for performance monitoring, these are the selected nodes.

This view has two display modes — aggregate and individual. By default, the view is
in aggregate display mode — it uses a single strip graph to represent the average
number of context switches across all processor nodes. Individual display mode
shows a separate graph for each processor node's context switches. When in this
mode, each graph contains two lines — one showing the individual processor node's
context switches, and, for comparison, one showing the aggregate number of
context switches. To distinguish between the two, the area between the line for the
individual node and the graph's horizontal axis has a solid fill. This view is similar in
appearance to the Kernel Utilization (Graph) view shown in Figure 38 on

page 164. This is a streaming view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over a point on the line representing either aggregate
or individual context switches.

PRESS the left mouse button.

e A window opens displaying:

Chapter 3. Visualizing Program and System Performance 185

If the cursor is on a line representing aggregate If the cursor is on a line representing an individual node's

context switches: context switches:
e time index. This is the time during the program's ¢ time index. This is the time during the program's execution
execution that is currently being depicted in the view. that is currently being depicted in the view.
¢ the aggregate number of context switches at that point ¢ the aggregate number of context switches at that point in
in time. time.

¢ the individual processor node's number of context switches at
that point in time.

The window remains open only while you hold the mouse button down.

Toggling Between Display Modes: This view has two display modes —
aggregate and individual. By default the view is in aggregate display mode — it uses
a single strip graph. To display a separate strip graph for each node:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Individual

Displaying an Analysis of the Graph Information: You can open a Statistics
Window containing an analysis of the information — the mean and the standard
deviation — shown in the view. To open the Statistics Window:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Show Statistics

® The Statistics Window opens. This window is shown on page 165.

Page Faults (Bar Chart)

This view uses a bar chart to visualize page faults. Each node is represented as a
bar on this chart. If you are using this view for trace visualization, these are the
processor nodes that ran your program. If you are using this view for performance
monitoring, these are the selected nodes. The length of the bars change to show
the number of page faults. Each bar has both a solid and a hatched fill pattern. The
solid fill pattern represents the instantaneous number of page faults. The hatched
fill pattern is the average number of page faults. In addition, VT draws a vertical
line to the right of each bar to show the highest instantaneous number of page
faults so far by each processor node. This view is similar in appearance to the
Kernel Utilization (Bar Chart) view shown in Figure 37 on page 163. This is an
instantaneous view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:
PLACE the mouse cursor over any of the bars representing processor nodes.
PRESS the left mouse button.

e A window opens displaying the:

e time index. This is the time during the program's execution that is
currently being depicted in the view.

186 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

e node number

¢ instantaneous number of page faults

e average number of page faults

¢ maximum number of page faults so far recorded

The window remains open only while you hold the mouse button down.

Adjusting the Default Maximum Value: By default, this view represents page
faults as a percentage of 100. You can adjust this so that the view represents page
faults as a percentage of some other value. For example, say the number of page
faults never exceeds 10 percent. You might want to adjust the view so that it
represents page faults as a percentage of 10 instead of 100. To do this:

PLACE the mouse cursor over the view.
PRESS the right mouse button.
SELECT Parameters

® The view's Parameters window opens.
FOCUS on the barMaxValue text entry field.
TYPEIN 10
PRESS Apply

® The view calibrates to the new maximum value. The purpose of the
Recalibrate button on the configuration pop-up window is to enable or
disable the automatic recalibrate function.

Page Faults (Graph)

This view uses a strip graph, or a group of strip graphs, to visualize page faults. If
you are using this view for trace visualization, the processor nodes it depicts are
the ones that ran your program. If you are using this view for performance
monitoring, these are the selected nodes.

This view has two display modes — aggregate and individual. By default, the view is
in aggregate display mode — it uses a single strip graph to represent the average
number of page faults across all processor nodes. Individual display mode shows a
separate graph for each processor node's page faults. When in this mode, each
graph contains two lines — one showing the individual processor node's page faults,
and, for comparison, one showing the aggregate number of page faults. To
distinguish between the two, the area between the individual page faults line and
the graph's horizontal axis has a solid fill. This view is similar in appearance to the
Kernel Utilization (Graph) view shown in Figure 38 on page 164. This is a
streaming view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over a point on the line representing either aggregate
or individual page faults.

PRESS the left mouse button.

e A window opens displaying:

Chapter 3. Visualizing Program and System Performance 187

If the cursor is on a line representing aggregate page If the cursor is on a line representing an individual node's
faults: page faults:
e time index. This is the time during the program's ¢ time index. This is the time during the program's execution
execution that is currently being depicted in the view. that is currently being depicted in the view.
¢ the aggregate number of page faults at that point in ¢ the aggregate number of page faults at that point in time.
time. ¢ the individual processor node's number of page faults at that
point in time.

The window remains open only while you hold the mouse button down.

Toggling Between Display Modes: This view has two display modes —
aggregate and individual. By default the view is in aggregate display mode — it uses
a single strip graph. To display a separate strip graph for each node:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Individual

Displaying an Analysis of the Graph Information: You can open a Statistics
Window containing an analysis of the information — the mean and the standard
deviation — shown in the view. To open the Statistics Window:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Show Statistics

® The Statistics Window opens. This window is shown on page 165.

System Calls (Bar Chart)

This view uses a bar chart to visualize the number of times processor nodes invoke
kernel subroutines. Each node is represented as a bar on this chart. If you are
using this view for trace visualization, these are the processor nodes that ran your
program. If you are using this view for performance monitoring, these are the
selected nodes. The length of the bars change to show the number of system calls.
Each bar has both a solid and a hatched fill pattern. The solid fill pattern represents
the instantaneous number of system calls. The hatched fill pattern is the average
number of system calls. In addition, VT draws a vertical line to the right of each bar
to show the highest number of system calls so far reached by each processor
node. This view is similar in appearance to the Kernel Utilization (Bar Chart) view
shown in Figure 37 on page 163. This is an instantaneous view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:
PLACE the mouse cursor over any of the bars representing processor nodes.
PRESS the left mouse button.

e A window opens displaying the:

e time index. This is the time during the program's execution that is
currently being depicted in the view.
e node number

188 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

¢ instantaneous number of system calls
e average number of system calls
e maximum instantaneous number of system calls so far reached

The window remains open only while you hold the mouse button down.

Adjusting the Default Maximum Value: By default, this view represents the
number of system calls as a percentage of 100. You can adjust this so that the
view represents system calls as a percentage of some other value. For example,
say the number of system calls never exceeds 10 percent. You might want to
adjust the view so that it represents system calls as a percentage of 10 instead of
100. To do this:

PLACE the mouse cursor over the view.
PRESS the right mouse button.
SELECT Parameters

® The view's Parameters window opens.
FOCUS on the barMaxValue text entry field.
TYPEIN 10
PRESS Apply

® The view calibrates to the new maximum value. The purpose of the
Recalibrate button on the configuration pop-up window is to enable or
disable the automatic recalibrate function.

System Calls (Graph)

This view uses a strip graph, or a group of strip graphs, to visualize the number of
times processor nodes invoke kernel subroutines. If you are using this view for
trace visualization, the processor nodes it depicts are the ones that ran your
program. If you are using this view for performance monitoring, these are the
selected nodes.

This view has two display modes — aggregate and individual. By default, the view is
in aggregate display mode — it uses a single strip graph to represent the average
number of system calls across all processor nodes. Individual display mode shows
a separate graph for each processor node's system calls. When in this mode, each
graph contains two lines — one showing the individual processor node's system
calls, and, for comparison, one showing the aggregate number of system calls. To
distinguish between the two, the area between the individual system calls line and
the graph's horizontal axis has a solid fill. This view is similar in appearance to the
Kernel Utilization (Graph) view shown in Figure 38 on page 164. This is a
streaming view.

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over a point on the line representing either aggregate
or individual system calls.

PRESS the left mouse button.

e A window opens displaying:

Chapter 3. Visualizing Program and System Performance 189

If the cursor is on a line representing aggregate If the cursor is on a line representing an individual node's
system calls: system calls:
e time index. This is the time during the program's ¢ time index. This is the time during the program's execution
execution that is currently being depicted in the view. that is currently being depicted in the view.
¢ the aggregate number of system calls at that point in * the aggregate number of system calls at that point in time.
time. ¢ the individual processor node's number of system calls at
that point in time.

The window remains open only while you hold the mouse button down.

Toggling Between Display Modes: This view has two display modes —
aggregate and individual. By default the view is in aggregate display mode — it uses
a single strip graph. To display a separate strip graph for each node:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Individual

Displaying an Analysis of the Graph Information: You can open a Statistics
Window containing an analysis of the information — the mean and the standard
deviation — shown in the view. To open the Statistics Window:

PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Show Statistics

® The Statistics Window opens. This window is shown on page 165.

System Summary

This view uses a series of pie charts to summarize system activity. Each pie chart
represents a processor node, and is segmented to show the percentage of time the
node spent:

e idle

e executing a program

e executing a kernel function

¢ waiting for some resource to become available. For example, waiting for a disk
to become available.

If you are using this view for trace visualization, the processor nodes shown are the

ones that ran your program. If you are using this view for performance monitoring,
these are the selected nodes. This is an instantaneous view.

190 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Syatem Summary

Displaying Additional Data in the View: You may display additional data in this
view. To do this:

PLACE the mouse cursor over any pie chart.
PRESS the left mouse button.
e A window opens displaying the:

¢ time index. This is the time during the program's execution that is
currently being depicted in the view.
¢ node number
e system state represented. This includes:
— user time
— kernel time
— wait time
— idle time
e percent of time spent in that state

Toggling Between Instantaneous and Cumulative Presentation: The view lets
you toggle between instantaneous and cumulative presentation of system activity.
By default, the pie charts summarize instantaneous system activity. A cumulative
presentation shows overall system activity for each processor node.
If you want a cumulative system summary:
PLACE the mouse cursor over the view.
PRESS the right mouse button.

® A selection menu appears.
SELECT Cumulative
Customizing the View's Colors: As described in “Adjusting a View's Time
Resolution and Colors” on page 144, the appearance of a view — the colors it uses

— is determined by its display spectrum. The CPU Load display spectrum was
designed specifically for use with this view. Each color in this spectrum is a

Chapter 3. Visualizing Program and System Performance 191

resource you can customize using the .Xdefaults file. This enables you to specify
the exact color used to represent the four system states in the view.

192 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

Appendix A. Parallel Environment Tools Commands

This appendix contains the manual pages for the PE tools commands discussed
throughout this book. Each manual page is organized into the sections listed below.
The sections always appear in the same order, but some appear in all manual
pages while others are optional.

NAME

SYNOPSIS

FLAGS

DESCRIPTION

Provides the name of the command described in the manual
page, and a brief description of its purpose.

Includes a diagram that summarizes the command syntax,
and provides a brief synopsis of its use and function. If you
are unfamiliar with the typographic conventions used in the
syntax diagrams, see “Typographic Conventions” on page Xxii.

Lists and describes any required and optional flags for the
command.

Describes the command more fully than the NAME and
SYNOPSIS sections.

ENVIRONMENT VARIABLES

EXAMPLES

FILES

Lists and describes any applicable environment variables.

Provides examples of ways in which the command is typically
used.

Lists and describes any files related to the command.

RELATED INFORMATION

Lists commands, functions, file formats, and special files that
are employed by the command, that have a purpose related

to the command, or that are otherwise of interest within the

context of the command.

pdbx

NAME

pdbx — Invokes the pdbx debugger, which is the command-line debugger built on

dbx.

SYNOPSIS

pdbx [program [program_options]] [poe options]

[-c command file]
[-d nesting _depth]
[-I directory

[-I directory]...]
[-F]

[-X]

pdbx -a poe process id

[limited poe options]
[-c command file]
[-d nesting _depth]

© Copyright IBM Corp. 1995, 1998

193

pdbx(1)

[-I directory

[-1 directory]...]
[-F]

[-X]

pdbx -h

The pdbx command invokes the pdbx debugger. This tool is based on the dbx
debugger, but adds function specific to parallel programming.

FLAGS

Because pdbx runs in the Parallel Operating Environment, it accepts all the flags
supported by the poe command.

Note: poe uses the PATH environment variable to find the program, while pdbx
does not.

See the poe manual page in IBM Parallel Environment for AlX: Operation and Use,
Volume 1, Using the Parallel Operating Environment for a description of these
options. Additional pdbx flags are:

-a Attaches to a running poe job by specifying its process id. This
must be executed from the node where the poe job was initiated.
When using the debugger in attach mode there are some
debugger command line arguments that should not be used. In
general, any arguments that control how the patrtition is set up or
specify application names and arguments should not be used.

-C Reads startup commands from the specified commands_file.

-d Sets the limit for the nesting of program blocks. The default
nesting depth limit is 25.

-F This flag can be used to turn off lazy reading mode. Turning lazy
reading mode off forces the remote dbx sessions to read all
symbol table information at startup time. By default, lazy reading
mode is on.

Lazy reading mode is useful when debugging large executable
files, or when paging space is low. With lazy reading mode on,
only the required symbol table information is read upon
initialization of the remote dbx sessions. Because all symbol table
information is not read at dbx startup time when in lazy reading
mode, local variable and related type information will not be initially
available for functions defined in other files. The effect of this can
be seen with the whereis command, where instances of the
specified local variable may not be found until the other files
containing these instances are somehow referenced.

-h Writes the pdbx usage to STDERR then exits. This includes pdbx
command line syntax and a description of pdbx options.

-I (upper-case i)
Specifies a directory to be searched for an executable's source
files. This flag must be specified multiple times to set multiple

194 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

DESCRIPTION

pdbx(1)

paths. (Once pdbx is running, this list can be overridden on a
group or single node basis with the use subcommand.)

-X Prevents dbx from stripping _ (trailing underscore) characters from
symbols originating in Fortran source code. This flag enables dbx
to distinguish between symbols which are identical except for an
underscore character, such as xxx and xxx_.

-tmpdir This POE_option flag is normally associated with Visualization Tool
trace collection. It specifies the directory to which output trace files
are written. For pdbx, it specifies the directory to which the
individual startup files (.pdbxinit.process _id.task id) are written for
each dbx task. For more information on .pdbxinit see Table 2 on
page 5 and “Reading Subcommands From a Command File” on
page 36. This is frequently local, but may be a shared directory. If
not set, and if its associated environment variable MP_TMPDIR is
not set, the default location is /tmp.

pdbx is the Parallel Environment's command-line debugger for parallel programs. It
is based, and built, on the AIX debugging tool dbx.

pdbx supports most of the familiar dbx subcommands, as well as additional pdbx
subcommands.

To use pdbx for interactive debugging you first need to compile the program and
set up the execution environment as you would to invoke a parallel program with
the poe command. Your program should be compiled with the -g flag in order to
produce an object file with symbol table references. It is also advisable to not use
the optimization option, -O. Using the debugger on optimized code may produce
inconsistent and erroneous results. For more information on the -g and -O compiler
options, refer to their use on other compiler commands such as cc and xIf. These
compiler commands are described in IBM AlX Version 4 Commands Reference

pdbx maintains dbx’s command-line interface and subcommands. When you
invoke pdbx, the pdbx command prompt displays to mark the start of a pdbx
session.

When using pdbx, you should keep in mind that pdbx subcommands can either be
context sensitive or context insensitive. In pdbx, context refers to a setting that
controls which task(s) receive the subcommands entered at the pdbx command
prompt. A default command context is provided which contains all tasks in your
partition. You can, however, set the command context on a single task or a group
of tasks you define. Context sensitive subcommands, when entered, only affect
those tasks in the current command context. Context insensitive subcommands are
not affected by the command context setting.

If you are already familiar with dbx, you should be aware that some dbx
subcommands behave somewhat differently in pdbx . Be aware that:

¢ all the dbx subcommands are context sensitive in pdbx . If you use the stop
subcommand, for example, it will only set breakpoints for the tasks in the
current context. Tasks outside the current context are not affected.

e redirection from dbx subcommands is not supported.

Appendix A. Parallel Environment Tools Commands 195

pdbx(1)

e you cannot use the subcommands clear, detach, edit, multproc , prompt , run,
rerun, screen, and the sh subcommand with no arguments.

e since pdbx runs in the Parallel Operating Environment, output from the parallel
tasks may not be ordered. You can force task ordering, however, by setting the
output mode to ordered using the MP_STDOUTMODE environment variable or
the -stdoutmode flag when invoking your program with pdbx .

When a task hangs (there is no pdbx prompt) you can press <Ctrl-c > to acquire
control. This displays the pdbx subset prompt pdbx-subset ([group | task]), and
provides a subset of pdbx functionality:

e Changing the current context

» Displaying information about groups/tasks
e Interrupting the application

e Showing breakpoint/tracepoint status

e Getting help

e Exiting the debugger.

You can change the subset of tasks to which context sensitive commands are
directed. Also, you can understand more about the current state of the application,
and gain control of your application at any time, not just at user-defined
breakpoints.

At the pdbx subset prompt, all input you type at the command line is intercepted by
pdbx . All commands are interpreted and operated on by the home node. No data is
passed to the remote nodes and STDIN is not given to the application. Most
commands at the pdbx subset prompt produce information about the application
and then produce another pdbx subset prompt. The exceptions are the halt, back,
on, and quit commands. For more information, see “Context Switch when Blocked”
on page 17.

ENVIRONMENT VARIABLES

Because the pdbx command runs in the Parallel Operating Environment, it
interacts with the same environment variables associated with the poe command.
See the poe manual page in IBM Parallel Environment for AlX: Operation and Use,
Volume 1, Using the Parallel Operating Environment for a description of these
environment variables. As indicated by the syntax statements, you are also able to
specify poe command line options when invoking pdbx . Using these options will
override the setting of the corresponding environment variable, as is the case when
invoking a parallel program with the poe command. Additional variables are:

HOME During pdbx initialization, pdbx uses this environment
variable to search for two special initialization files. First,
pdbx searches for .pdbxinit in the user's current directory. If
the file is not found, pdbx checks the file $HOME/.pdbxinit.

SHELL The sh subcommand in dbx, which is available through
pdbx , uses this environment variable to determine which
shell to use. If this environment variable is not set, the
default is the sh shell.

196 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

MP_DBXPROMPTMOD

MP_TMPDIR

The dbx prompt In(dbx) is used by pdbx as an indicator
denoting that a dbx subcommand has completed. This
environment variable can be used to modify the prompt. Any
value assigned to MP_DBXPROMPTMOD will have a “.”
prepended and then be inserted in the In(dbx) prompt
between the “x” and the “)". This environment variable is
needed in rare situations when the string |\n(dbx) is present in
the output of the application being debugged. For example, if
MP_DBXPROMPTMOD is set to uniquel57, the prompt
would be |n(dbx.uniquel57).

This environment variable is normally associated with
Visualization Tool trace collection. In trace collection, it
specifies the directory to which output trace files are written.
For pdbx, it specifies the directory to which the individual
startup files (.pdbxinit.process _id.task id) are written for each
dbx task. This is frequently local, but may be a shared
directory. If not set, and if its associated command-line flag
tmpdir is not used, the default location is /tmp.

MP_DEBUG_INITIAL_STOP

EXAMPLES

This environment variable redefines the initial stop point in
pdbx (overriding the stop in main). It can be set to
sourcefile:linenumber, where sourcefile is a file containing
source code of the program to be executed. Typically, the
source file name ends with the .c, .C, or f suffix. Linenumber
is a line number in this file. This line must contain executable
code, not data declarations or Fortran FORMAT statements.
It cannot be a comment, blank, or continuation line.

If no linenumber is specified (and the colon is omitted), the
sourcefile field is taken to be a function or subroutine name,
and a “stop in” is performed on entry to the function.

If MP_DEBUG_INITIAL_STOP is undefined, the default stop
location will be the first executable line in the function main.
For Fortran source programs, it will be the first executable
line in the main program.

To start pdbx , first set up the execution environment as you would for the poe
command, and then enter:

pdbx

After initialization, you should see the prompt:

pdbx(all)

FILES

.pdbxinit (Initial commands for pdbx in ./ or $HOME)

.pdbxinit.process_id.task_id (Initial commands for the individual dbx tasks)

For more information on .pdbxinit see Table 2 on page 5 and “Reading
Subcommands From a Command File” on page 36.

Appendix A. Parallel Environment Tools Commands 197

pdbx(1)

Note: The following temporary files are created during the execution of pdbx in
attach mode:

e /tmp/.pdbx.<poe-pid>.host.list - a temporary host list file containing
information needed to attach to tasks on remote nodes.

o /tmp/.pdbx.<pdbx-pid>.menu - a temporary file to hold the attach task
menu. Both of these files are removed before the debugger exits.

RELATED INFORMATION
Commands: dbx (1), mpcc (1), mpcc_r (1), mpCC (1), mpCC_r(1), mpxIf (1),
mpxIf_r (1), pedb (1), poe (1)

pdbx SUBCOMMANDS

pdbx alias Subcommand

alias [alias_name [alias_string]]

The alias subcommand creates aliases for pdbx subcommands. The alias_name
parameter is the alias being created. The alias_string is the pdbx subcommand for
which you wish you define an alias, and is a single pdbx subcommand. If used
without parameters, the alias subcommand displays all current aliases. If only
alias_name is specified, it lists the alias name and the alias string that is assigned
to it. This subcommand is context insensitive.

A number of default aliases are provided by pdbx . They are:

where
status
stop
step
registers
quit

print
next
map

list

help
delete
cont
thread
mutex
cv condition
attr attribute

oI - gSTaOaXxng—-~

c

Apart from these, aliases are only known during the current pdbx session. They
are not saved between pdbx sessions, and are lost upon exiting pdbx .

Note: One method for reusing aliases is to define them in .pdbxinit to allow them
to be created for each pdbx execution. The default aliases are available
after the partition has been loaded.

Aliases can also be removed using the unalias subcommand for the pdbx
command.

198 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

1. If you have two task groups defined in your pdbx session called “master” and

“workers”, and you wish to define aliases to easily qualify each, enter:

alias mas on master

alias w on workers

This will allow you to switch the command context between the master and

workers groups by typing:

mas

to switch context to the “master” group, or:
W

to switch context to the “workers” group.

. To display the string that has been defined for the alias “p”, enter:

alias p

. To list all aliases currently defined, enter:

alias

Related to this subcommand is the pdbx unalias subcommand.

pdbx assign Subcommand

assign <variable> = <expression>

The assign subcommand assigns the value of an expression to a variable.

1.

To assign a value of 5 to the x variable:

pdbx(all) assign x = 5

. To assign the value of the y variable to the x variable:

pdbx(all) assign x =y

. To assign the character value ‘z' to the z variable:

pdbx(all) assign z = 'z

. To assign the boolean value false to the logical type variable B:

pdbx(all) assign B = false

. To assign the “Hello World” string to a character pointer Y:

pdbx(all) assign Y = "Hello World"

. To disable type checking, activate the set variable $unsafeassign:

pdbx(all) set $unsafeassign

Appendix A. Parallel Environment Tools Commands

199

pdbx(1)

pdbx attach Subcommand

attach all

attach <task list>

The attach subcommand is used to attach the debugger to some or all the tasks of
a given poe job.

Individual tasks are separated by spaces. A range of tasks may be separated by a
dash or a colon. For example, the command attach 2 4 5-7 would mean to attach
to tasks 2,4,5,6, and 7.

pdbx attribute Subcommand

200

attribute
attribute [<attribute_numbers ...]

The attribute subcommand displays information about the user thread, mutex, or
condition attributes objects defined by the attribute _number parameters. If no
parameters are specified, all attributes objects are listed.

For each attributes object listed, the following information is displayed:

attr Indicates the symbolic name of the attributes object, in the form
Saattribute_number.

obj_addr Indicates the address of the attributes object.

type Indicates the type of the attributes object; this can be thr, mutex, or
cond for user threads, mutexes, and condition variables respectively.

state Indicates the state of the attributes object. This can be valid or invalid.

stack Indicates the stacksize attribute of a thread attributes object.

scope Indicates the scope attribute of a thread attributes object. This

determines the contention scope of the thread, and defines the set of
threads with which it must contend for processing resources. The value
can be sys or pro for system or process contention scope.

prio Indicates the priority attribute of a thread attributes object.

sched Indicates the schedpolicy attribute of a thread attributes object. This
attribute controls scheduling policy, and can be fifo (first in first out), rr
(round robin), or other.

p-shar Indicates the process-shared attribute of a mutex or condition attribute
object. A mutex or condition is process-shared if it can be accessed by
threads belonging to different processes. The value can be yes or no.

protocol Indicates the protocol attribute of a mutex. This attribute determines the
effect of holding the mutex on a thread's priority. The value can be
no_prio, prio, or protect.

Related to this subcommand are the condition mutex and thread subcommands.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

pdbx back Subcommand
back

The back command returns you to a pdbx prompt when you were already at a
pdbx subset prompt. You can use the command if you want the application to
continue as it was before <Ctrl-c > was issued. Also, you can use it at the pdbx
subset prompt if all of the nodes are checked into “debug ready” state, and you
want to do full pdbx processing.

The back command is only valid at the pdbx subset prompt.

pdbx call Subcommand
call <procedure> (<parameters>)
The call subcommand runs a procedure specified by the procedure parameter. The

return code is not printed. If any parameters are specified, they are passed to the
procedure being run.

The program stack will be returned to its previous state after the procedure
specified by call completes. Any side effect of the procedure, such as global
variable updates, will remain.

Related to this subcommand is the print subcommand.

pdbx case Subcommand

case [default | mixed | lower | upper]

The case subcommand changes how pdbx interprets symbols. The default
handling of symbols is based on the current language. If the current language is C,
C++, or undefined, the symbols are not folded. If the current language is Fortran,
the symbols are folded to lowercase. Use this command if a symbol needs to be
interpreted in a way not consistent with the current language.

Entering the case subcommand with no parameters displays the current case
mode. The parameters include:

default Varies with the current language.

mixed Causes symbols to be interpreted as they actually appear.
lower Causes symbols to be interpreted as lowercase.
upper Causes symbols to be interpreted as uppercase.

Appendix A. Parallel Environment Tools Commands 201

pdbx(1)

pdbx catch Subcommand

catch
catch <signal_numbers
catch <signal_name>

The catch subcommand with no arguments prints all signals currently being
caught. If a signal is specified, pdbx will trap the signal before it is sent to the
program. This is useful when the program being debugged has signal handlers.

When the program encounters a signal that is being caught to the debugger, a
message stating which signal was detected is shown, and the pdbx prompt is
displayed. To have the program continue and process the signal, issue the cont
subcommand with the signal option. Other execution control commands and the
cont subcommand without the signal option will cause the program to behave as if
it had never encountered the signal.

A signal may be specified by number or name. Signal nhames are by default case
insensitive and the “SIG” prefix is optional.

By default all signals are caught except SIGHUP, SIGKILL, SIGPIPE, SIGALRM,
SIGCHLD, SIGIO and SIGVIRT. When debugging a threaded application (including
those compiled with mpcc_r, mpCC_r or mpxIf_r), all signals are caught except
SIGHUP, SIGKILL, SIGALRM, SIGCHLD, SIGIO and SIGVIRT.

Related to this subcommand are the ignore and cont subcommands.

pdbx condition Subcommand

condition
condition [<condition_numbers ...]
condition [wait | nowait]

The condition subcommand displays the current state of all known conditions in
the process. Condition variables to be listed can be specified through the
<condition_number> parameters, or all condition variables will be listed. Users can
also choose to display only condition variables with or without waiters by using the
wait or nowait options.

The information listed for each condition is as follows:

cv Indicates the symbolic name of the condition variable, in the form
$ccondition_number.

obj_addr Indicates the memory address of the condition variable.
num_wait Indicates the number of threads waiting on the condition variable.

waiters Lists the user threads which are waiting on the condition variable.

Related to this subcommand are the attribute mutex and thread subcommands.

202 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

pdbx cont Subcommand

cont
cont <signal_number>
cont <signal _name>

The cont subcommand allows execution to continue from where the program last
stopped, until either the program finishes or another breakpoint is reached. If a
signal is specified, it is given to the program, and the process continues as though
it received the signal. If a signal is not specified, the process continues as though it
had not been stopped.

Related to this subcommand are the catch, ignore , step, stepi, next, and nexti
subcommands.

pdbx dbx Subcommand

dbx dbx_subcommand

The dbx subcommand is context sensitive and will pass the specified
dbx_subcommand directly to the dbx running on each task in the current context
with no pdbx intervention. The specified dbx_subcommand can be any valid dbx
subcommand.

Note: The pdbx command uses dbx to access tasks on individual nodes. In many
cases, pdbx saves and requires its own state information about the tasks.
Some dbx commands will circumvent the ability of pdbx to maintain
accurate state information about the tasks being debugged. Therefore, use
the dbx subcommand with caution. In general, dbx subcommands used to
display information will have no adverse side effects. The dbx
subcommands clear, detach, edit, multproc , prompt , run, rerun, screen,
and the sh subcommand with no arguments are currently unsupported
under pdbx and should not be used.

To display the events that the dbx running as task 1 recognizes, enter:

on 1 dbx status

Related to this subcommand is the dbx command.

Appendix A. Parallel Environment Tools Commands 203

pdbx(1)

pdbx delete Subcommand

delete [event lisf] | [*] | [all]

The delete subcommand removes events (breakpoints and tracepoints) of the
specified event numbers. An event list can be specified in the following manner. To
indicate a range of events, enter the first and last event numbers, separated by a
colon or dash. To indicate individual events, enter the numbers, separated by a
space or comma. You can specify “ * ”, which deletes all events that were created
in the current context. You can also specify “all”, which deletes all events,
regardless of context.

The event number is the one associated with the breakpoint or tracepoint. This
number is displayed by the stop and trace subcommands when an event is built.
Event numbers can also be displayed using the status subcommand.

The output of the status command shows the context from which the event was
created. Event numbers are unique to the context in which they were set. Keep in
mind that, in order to remove an event, the context must be on the appropriate task
or task group.

Assume the command context is set on task 1 and the output of the status
subcommand is:

1:[0] stop in celsius
all:[0] stop at "foo.c":19
all:[1] trace "foo.c":21

To delete all these events, you would do one of the following:

204 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

on 1
delete 0
on all

delete 0,1

OR

on 1

delete 0

on all

delete *

OR

delete all

Related to this subcommand are the pdbx status, stop, and trace subcommands.

pdbx detach Subcommand
detach

The detach subcommand detaches pdbx from all tasks that were attached. This
subcommand causes the debugger to exit but leaves the poe application running.

pdbx dhelp Subcommand
dhelp

dhelp <dbx_command>

The dhelp command with no arguments displays a list of dbx commands about
which detailed information is available.

If you type dhelp with an argument, information will be displayed about that
command.

Appendix A. Parallel Environment Tools Commands 205

pdbx(1)

Note: The partition must be loaded before you can use this command, because it
invokes the dbx help command. It is also required that a task be in “debug
ready” state to process this command.

Related to this subcommand is the pdbx help subcommand.

pdbx display memory Subcommand

<address> | [<mode>]
<address> , <address> | [<mode>]
<address> | [<count>] [<xmode>]

The display memory subcommand, which does not have a keyword to initiate the
command, displays a portion of memory controlled by the address(es), count(s) and
mode(s) specified.

If an address is specified, the display contents of memory at that address is printed.
If more than one address or count locations are specified, display contents of
memory starting at the first <address> up to the second <address> or until <count-
items are printed. If the address is “.,” the address following the one most recently
printed is used. The mode specifies how memory is to be printed. If it is omitted the

previous mode specified is used. The initial mode is “X.”

The following modes are supported:

i print the machine instruction

d print a short word in decimal

D print a long word in decimal

o] print a short word in octal

(0] print a long word in octal

X print a short word in hexadecimal

X print a long word in hexadecimal

b print a byte in octal

c print a byte as a character

h print a byte in hexadecimal

S print a string (terminated by a null byte)
print a single precision real number

g print a double precision real number

o} print a quad precision real number

Id print an 8 byte signed decimal number

llu print an 8 byte unsigned decimal number

lIx print an 8 byte unsigned hexadecimal number

llo print an 8 byte unsigned octal number

206 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

pdbx down Subcommand

down [count]

The down subcommand moves the current function down the stack the number of
levels specified by count. The current function is used for resolving hames. The
default for the count parameter is one.

The up and down subcommands can be used to navigate through the call stack.
Using these subcommands to change the current function also causes the current
file and local variables to be updated to the chosen stack level.

Related to this subcommand are the up, print, dump, func, file, and where
commands.

pdbx dump Subcommand
dump

dump <procedure>
dump .
dump <module name>

The dump subcommand prints the names and values of variables in a given
procedure, or the current one if nothing is specified. If the procedure given is “.”,

then all active variables are printed. If a module name is given, all variables in the
module are printed.

Related to this subcommand are the up, down, print, and where subcommands.

pdbx file Subcommand
file [file]

The file subcommand changes the current source file to the file specified by the file
parameter. It does not write to that file. The file parameter can specify a full path
name to the file. If the parameter does not specify a path, the pdbx program tries
to find the file by searching the use path. If the parameter is not specified, the file
subcommand displays the name of the current source file. The file subcommand
also displays the full or relative path name of the file if the path is known.

Related to this subcommand is the func subcommand.

Appendix A. Parallel Environment Tools Commands 207

pdbx(1)

pdbx func Subcommand

func [procedure]

The func command changes the current function to the procedure or function
specified by the procedure parameter. If the procedure parameter is not specified,
the default current function is displayed. Changing the current function implicitly
changes the current source file to the file containing the new function. The current
scope used for name resolution is also changed.

Related to this subcommand is the file subcommand.

pdbx goto Subcommand

goto <line_numbers
goto “<filename>" . <line_number>

The goto subcommand causes the specified source line to be run next. Normally,
the source line must be in the same function as the current source line. To override
this restriction, use the set subcommand with the $unsafegoto flag.

pdbx gotoi Subcommand

gotoi address

The gotoi subcommand changes the program counter address to the address
specified by the address parameter.

pdbx group Subcommand

group add group_name task_list
group delete group _name [task_list]
group change old_group_name new_group_name

group list [group_name]

The group subcommand groups individual tasks under a common name for easier
setting of command context. It can add or delete a group, add or delete tasks from
a group, change the name of a group, list the tasks in a group, or list all groups.
This subcommand is context insensitive.

Provide a group name that is no longer than 32 characters which starts with an
alphabetic character, and is followed by any alphanumeric character combination.

208 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

To indicate a range of tasks, enter the first and last task numbers, separated by a
colon or dash. To indicate individual tasks, enter the numbers, separated by a
space or comma. Individual task identifiers and ranges can also be combined in
creating the desired task_list.

Note: Group names “all,” “none,” and “attached” are reserved group names.
They are used by the debugger and cannot be used in the group add or
group delete commands. However, the group “all” or “attached” can be
renamed using the group change command, if it currently exists in the
debugging session.

The add action adds one or more tasks to a new or existing task group. The
task_list specified is a list of task identifiers to be included in the new or existing

group.

The delete action deletes an existing task group, or deletes one or more tasks from
an existing task group. The task_list, if specified, is a list of task identifiers to be
deleted from the new or existing group.

The change action changes the name of a task group from old_group _name to
new_group_name.

The list action displays the task members for the group name specified, or for all
task groups. The task identifiers will be followed by a one-letter status indicator.

N Not loaded the remote task has not yet been loaded with an
executable.

S Starting the remote task is being loaded with an executable.

D Debug ready the remote task is stopped and debug commands
can be issued.

R Running the remote task is in control and executing the
program.

X Exited the remote task has completed execution.

U Unhooked the remote task is executing without debugger
intervention.

E Error the remote task is in an unknown state.

Consider an application running as five tasks numbered 0 through 4.
1. To create a task group “first” containing task 0, enter:
group add first 0
The pdbx debugger responds with:
1 task was added to group "first".
2. To create a task group “rest” containing tasks 1 through 4, enter:
group add rest 1:4
The pdbx debugger responds with:
4 tasks were added to group "rest".
3. To change the name of the default group “all” to “johnny”, enter:
group change all johnny
The pdbx debugger responds with:
Group "all" has been renamed to "johnny"

4. To list all of the groups and the tasks they contain, enter:

Appendix A. Parallel Environment Tools Commands 209

pdbx(1)

group list
The pdbx debugger responds with:
johnny 0:D 1:D 2:D 3:D 4:D

first 0:D

rest 1:D 2:D 3:D 4:D
5. To delete the group “first”, enter:
group delete first
To delete members 1, 2 and 3 from group “rest”, enter:
group delete rest 1 2 3
or
group delete rest 1-3
The pdbx debugger responds with:

Task: 1 was successfully deleted from group "rest".
Task: 2 was successfully deleted from group "rest".

Task: 3 was successfully deleted from group "rest".
6. To list all of the groups and the tasks they contain, enter:
group list
The pdbx debugger responds with:
allTasks 0:R 1:D 2:D 3:U 4:U 5:D 6:D

7:D 8:D 9:D 10:D 11:D

evenTasks 0:R 2:D 4:U 6:D 8:D 10:R

oddTasks 1:D 3:U 5:D 7:D 9:D 11:R
master 0:R
workers 1:D 2:D 3:U 4:U 5:D 6:D 7:D

8:D 9:D 10:R 11:R

Related to this subcommand is the pdbx on subcommand.

pdbx halt Subcommand
halt [all]
By using the halt command, you interrupt all tasks in the current context that are
running. This allows the debugger to gain control of the application at whatever

point the running tasks happen to be in the applicaton. To a dbx user, this is the
same as using <Ctrl-c >. This command works at the pdbx prompt and pdbx

210 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

subset prompt. If you specify “all” with the command, all running tasks, regardless
of context, are interrupted.

Note: At a pdbx prompt, the halt command never has any effect without “all”
specified. This is because by definition, at a pdbx prompt, none of the tasks
in the current context are in “running” state.

The halt all command at the pdbx prompt affects tasks outside of the current
context. Messages at the prompt show the task numbers that are and are not
interrupted, but the pdbx prompt returns immediately because the state of the tasks
in the current context is unchanged.

When using halt at the pdbx subset prompt, the pdbx prompt occurs when all
tasks in the current context have returned to “debug ready” state. If some of the
tasks in the current context are running, a message is presented.

Related to this subcommand are the pdbx tasks and group list subcommands.

pdbx help Subcommand
help - display subjects

help <subject> - display details

The help command with no arguments displays a list of pdbx commands and
topics about which detailed information is available.

If you type help with one of the help commands or topics as the argument,
information will be displayed about that subject.

Related to this subcommand is the pdbx dhelp subcommand

pdbx hook Subcommand
hook
The hook subcommand allows you to reestablish control over all tasks in the
current command context that have been unhooked using the unhook
subcommand. This subcommand is context sensitive.
1. To reestablish control over task 2 if it has been unhooked, enter:
on 2 hook
or

on 2

hook

2. To reestablish control over all unhooked tasks in the task group “rest”, enter:

on rest hook

Appendix A. Parallel Environment Tools Commands 211

pdbx(1)

or

on rest
hook

Listing the members of the task group “all” using the list action of the group
subcommand will allow you to check which tasks are hooked and which are
unhooked. Enter:

group list all

The pdbx debugger will display a list similar to the following:

0:D 1:U 2:D 3:D

Tasks marked with the letter D next to them are debug ready, hooked tasks. In this

case, tasks 0, 2, and 3 are debug ready. Tasks marked with the letter U are
unhooked. In this case, task 1 is unhooked.

Related to this subcommand are the dbx detach subcommand and the pdbx
unhook subcommand.

pdbx ignore Subcommand

ignore
ignore <signal_number>
ignore <signal_name>

The ignore subcommand with no arguments prints all signals currently being
ignored. If a signal is specified, pdbx stops trapping the signal before it is sent to
the program.

A signal may be specified by number or name. Signal names are by default case
insensitive and the “SIG” prefix is optional.

All signals except SIGHUP, SIGKILL, SIGPIPE, SIGALRM, SIGCHLD, SIGIO, and
SIGVIRT are trapped by default. When debugging a threaded application (including
those compiled with mpcc_r, mpCC _r, or mpxIf_r), all signals except SIGHUP,
SIGKILL, SIGALRM, SIGCHLD, SIGIO, and SIGVIRT are trapped by default.

The pdbx debugger cannot ignore the SIGTRAP signal if it comes from a process
outside of the program being debugged.

Related to this subcommand is the catch subcommand.

212 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

pdbx list Subcommand

list

[procedure | sourceline-expression|, sourceline-expression)]

The list subcommand displays a specified humber of lines of the source file. The
number of lines displayed is specified in one of two ways:

Tip:

Use on <tasks list, or specify the ordered standard output option.
By specifying a procedure using the procedure parameter.

In this case, the list subcommand displays lines starting a few lines before the
beginning of the specified procedure and until the list window is filled.

By specifying a starting and ending source line number using the
sourceline-expression parameter.

The sourceline-expression parameter should consist of a valid line number
followed by an optional + (plus sign), or — (minus sign), and an integer. In
addition, a sourceline of $ (dollar sign) can be used to denote the current line
number. A sourceline of @ (at sign) can be used to denote the next line
number to be listed.

All lines from the first line number specified to the second line number
specified, inclusive, are then displayed, provided these lines fit in the list
window.

If the second source line is omitted, 10 lines are printed, beginning with the line
number specified in the sourceline parameter.

If the list subcommand is used without parameters, the default number of lines
is printed, beginning with the current source line. The default is 10.

To change the number of lines to list by default, set the special debug program
variable, $listwindow, to the number of lines you want. Initially, $listwindow is
set to 10.

To list the lines 1 through 10 in the current file, enter:
list 1,10

To list 10, or $listwindow, lines around the main procedure, enter:

list main

To list 11 lines around the current line, enter:
list $-5,$+5

To list the next source line to be executed, issue:
pdbx(all) list $

0:

1:

n
=
we

4 char johnny

n
=
we

4 char johnny

To just show 1 task, since both are at the same source line:
pdbx(all) on 0 list $

0:

4 char johnny = 'h';

Appendix A. Parallel Environment Tools Commands 213

pdbx(1)

To create an alias to list just task O:
pdbx(all) alias 10 on 0 Tist

To list line 5:
pdbx(all) 10 5

0: 5 char jessie = 'd';

To list lines around the procedure sub:
pdbx(all) 10 sub

0: 21
0: 22 /* return ptr to sum of parms, calc and subl */

0: 23 int *sub(char *s, int a, int k)

0: 24 |

0: 25 int *tmp;

0: 26 int it = 0;

0: 27 int i, j;

0: 28

0: 29 /* test calc */
0: 30 i=1;

0: 31 J = i*2;

To change the next line to be listed to line 25:
pdbx(all) move 25

To list the next line to be listed minus two:
pdbx(all) 10 @-2

0: 23 int *sub(char *s, int a, int k)

Related to this subcommand is the dbx list subcommand.

pdbx listi Subcommand
listi [procedure | at SourceLine |
address [,address])

The listi subcommand displays a specified set of instructions from the current
program counter, depending on whether you specify procedure, source line, or
address.

214 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

The listi subcommand with the procedure parameter lists instructions from the
beginning of the specified procedure until the list window is filled.

Using the at SourceLine flag with the listi subcommand displays instructions
beginning at the specified source line and continuing until the list window is filled.
The SourcelLine variable can be specified as an integer, or as a file name string
followed by a : (colon) and an integer.

Specifying a beginning and ending address with the listi subcommand, using the
address parameters, displays all instructions between the two addresses.

If the listi subcommand is used without flags or parameters, the next $listwindow
instructions are displayed. To change the current size of the list window, use the
set $listwindow =Value command.

pdbx load Subcommand

load program [program_options]

The load subcommand loads the specified application program to be debugged on
the task(s) in the current context. You can optionally specify program_options to be
passed to the application program. pdbx will look for the program in the current
directory unless a relative or absolute pathname is specified. The load
subcommand is context sensitive. All tasks in the partition must have an application
program loaded before other context sensitive subcommands can be issued. This
subcommand enables you to individually or selectively load programs. If you wish
to load the same program on all tasks in the partition, the name of the program can
be passed as an argument to the pdbx command at startup.

To load the program “mpprobl” on all tasks in the current context, enter:
load mpprobl

pdbx map Subcommand
map
The map subcommand displays characteristics for each loaded portion of the

application. This information includes the name, text origin, text length, data origin,
and data length for each loaded module.

pdbx mutex Subcommand

mutex
mutex [<numbers ...]

mutex [lock | unlock]

Appendix A. Parallel Environment Tools Commands 215

pdbx(1)

The mutex subcommand displays the current status of all known mutual exclusion
locks in the process. Mutexes to be listed can be specified through the <numbers
parameter, or all mutexes will be listed. Users can also choose to display only
locked or unlocked mutexes by using the lock or unlock options.

The information listed for each mutex is as follows:

mutex Indicates the symbolic name of the mutex, in the form
$mmutex_number.

type Indicates the type of the mutex: non-rec (non recursive), recursi
(recursive) or fast.

obj_addr Indicates the memory address of the mutex.

lock Indicates the lock state of the mutex: yes if the mutex is locked, no if
not.
owner If the mutex is locked, indicates the symbolic name of the user thread

which holds the mutex.

Related to this subcommand are the attribute condition and thread
subcommands.

pdbx next Subcommand

next [number

The next subcommand runs the application program up to the next source line.
The number parameter specifies the number of times the subcommand runs. If the
number parameter is not specified, next runs once only.

The difference between this and the step subcommand is that if the line contains a
call to a procedure or function, step will stop at the beginning of that block, while
next will not.

If you use the next subcommand in a multi-threaded application program, all the
user threads run during the operation, but the program continues execution until the
running thread reaches the specified source line. By default, breakpoints for all
threads are ignored during the next command. This behavior can be changed using
the $catchbp set variable. If you wish to step the running thread only, use the set
command to set the variable $hold_next. Setting this variable may result in
deadlock, since the running thread may wait for a lock held by one of the blocked
threads.

Related to this subcommmand are the nexti, step, stepi, return, cont, and set
subcommands.

216 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

pdbx nexti Subcommand

nexti [number]

The nexti subcommand runs the application program up to the next instruction. The
number parameter specifies the number of times the subcommand will run. If the
number parameter is not specified, nexti runs once only.

The difference between this and the stepi subcommand is that if the line contains a
call to a procedure or function, stepi will stop at the beginning of that block, while
nexti will not.

If you use the nexti subcommand in a multi-threaded application program, all the
user threads run during the operation, but the program continues execution until the
running thread reaches the specified machine instruction. If you wish to step the
running thread only, use the set command to set the variable $hold_next. Setting
this variable may result in deadlock since the running thread may wait for a lock
held by one of the blocked threads.

Related to this subcommand are the next, step, stepi, return, cont, and set
subcommands.

pdbx on Subcommand

on {group_name | task_id} [subcommand)|

The on subcommand sets the current command context used to direct subsequent
subcommands at a specific task or group of tasks. The context can be set on a
task group (by specifying a group_name) or on a single task (by specifying a
task_id).

When a context sensitive subcommand is specified, it is directed to the given
context without changing the current command context. Thus, specifying the
optional subcommand enables you to temporarily deviate from the command
context.

Note: The pdbx prompt will be presented after all of the tasks in the temporary
context have completed the specified command. It is possible using
<Ctrl-c > followed by the back or the on command to issue further pdbx
commands in the original context.

By using the on and group subcommands, the number of subcommands issued
and the amount of debug data displayed can be tailored to manageable amounts.

When you switch context using on context_name, and the new context has at least
one task in the running state, a message is displayed stating that at least one task
is in the running state. Thus, no pdbx prompt is displayed until all tasks in this
context are in the debug ready state.

When you switch to a context where all states are in the debug ready state, the
pdbx prompt is displayed immediately.

Appendix A. Parallel Environment Tools Commands 217

pdbx(1)

At the pdbx subset prompt, on context_name causes one of the following to
happen: either a pdbx prompt is displayed; or a message is displayed indicating
the reason why the pdbx prompt will be displayed at a later time. This is generally
because one of the tasks is in running state. See “Context Switch when Blocked”
on page 17 for more information on the pdbx subset prompt.

At a pdbx prompt, you cannot use on context_name pdbx_command if any of the
tasks in the specified context are running.

Assume you have an application running as 15 tasks, and the output of the group
list subcommand lists the existing task groups as:

all 0:D 1:U 2:D 3:D 4:D 5:D 6:U 7:D
8:D 9:D 10:R 11:R 12:R 13:U 14:U
johnny 0:D

jessica 2:D 3:D 8:D

un 1:U 6:U 13:U 14:U
run 10:R 11:R 12:R
deb 2:D 3:D 4:D 5:D 8:D 9:D

1. To add a breakpoint for task 0, enter:
on johnny stop at 31
The pdbx debugger responds with:
johnny:[0] stop at "ring.f":31
2. To add breakpoints for all of the tasks in the task group “jessica”, enter:
on jessica stop in ring
The pdbx debugger responds with:
jessica:[0] stop in ring
3. To switch the current context to the task group “johnny”, enter:
on johnny
The pdbx debugger responds with the prompt:
pdbx (johnny)
4. To add a conditional breakpoint for all tasks in the current context, enter:
stop at 48 if len <1
The pdbx debugger responds with:
johnny:[1] stop at "ring.f":48 if len < 1
5. To view the events that have been set on the task group “jessica”, enter:
on jessica status
The pdbx debugger responds with:
jessica:[0] stop in ring
6. To add a tracepoint for task 2, enter:

on 2

218 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

The pdbx debugger responds with the prompt:
pdbx(2)
Then, enter:
trace 57
The pdbx debugger responds with:
2:[0] trace "ring.f":57
7. To view all of the events that have been set, enter:
status all

The pdbx debugger responds with:
2:[0] trace "ring.f":57

johnny:[0] stop at "ring.f":48
johnny:[1] stop at "ring.f":56 if len <1
jessica:[0] stop in ring

Related to this subcommand is the pdbx group subcommand.

pdbx print Subcommand

print expression ...
print procedure ([parameters])

The print subcommand does either of the following:

¢ Prints the value of a list of expressions, specified by the expression
parameters.

e Executes a procedure, specified by the procedure parameter, and prints the
return value of that procedure. Parameters that are included are passed to the
procedure.

To display the value of x and the value of y shifted left two bits, enter:

print x, y << 2

To display the value returned by calling the sbrk routine with an argument of 0,
enter:

print sbrk(0)

To display the sixth through the eighth elements of the Fortran character string
a_string, enter:

print &_string + 5, &a_string + 7/c

Related to this subcommand are the dbx assign and call subcommands, and the
pdbx set subcommand.

Appendix A. Parallel Environment Tools Commands 219

pdbx(1)

pdbx quit Subcommand

quit

The quit subcommand terminates all program tasks, and ends the pdbx debugging
session. The quit subcommand is context insensitive and has no parameters.

Quitting a debug session in attach mode causes the debugger and all the members
of the original poe application partition to exit.

To exit the pdbx debug program, enter:

quit

pdbx registers Subcommand

registers

The registers subcommand displays the values of general purpose registers,
system control registers, floating-point registers, and the current instruction register.

Registers can be displayed or assigned to individually by using the following
predefined register names:

$r0 through $r31 for the general purpose registers.

$fr0 through $fr31 for the floating point registers.

$sp, $iar, $cr, $link for, respectively, the stack pointer, program counter, condition

register, and link register.

By default, the floating-point registers are not displayed. To display the
floating-point registers, use the unset $noflregs command.

Notes:

1. The register value may be set to the Oxdeadbeef hexadecimal value. The
Oxdeadbeef hexadecimal value is an initialization value assigned to general
purpose registers at process initialization.

2. The registers command cannot display registers if the current thread is in
kernel mode.

pdbx return Subcommand

return [procedure]

The return subcommand causes the program to execute until a return to the
procedure, specified by the procedure parameter, is reached. If the procedure
parameter is not specified, execution ceases when the current procedure returns.

220 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

pdbx search Subcommand
I<regular_expression>[/]

?<regular_expression>[?]

The search forward (/) or search backward (?) subcommands allow you to search
in the current source file for the given <regular_expression>. Both forms of search
wrap around. The previous regular expression is used if no regular expression is
given to the current command.

Related to this subcommand is the regcmp subroutine.

pdbx set Subcommand

set [variable]
set [variable=expression)

The set subcommand defines a value for the set variable. The value is specified by
the expression parameter. The set variable is specified by the variable parameter.
The name of the variable should not conflict with names in the program being
debugged. A variable is expanded to the corresponding expression within other
commands. If the set subcommand is used without arguments, the currently set
variables are displayed.

Related to this subcommand is the unset subcommand.

pdbx sh Subcommand

sh <command>

The sh subcommand passes the command specified by the command parameter to
the shell on the remote task(s) for execution. The SHELL environment variable
determines which shell is used. The default is the Bourne shell (sh).

Note: The sh subcommand with no arguments is not supported.

To run the Is command on all tasks in the current context, enter:
sh Ts

To display contents of the foo.dat data file on task 1, enter:

on 1 cat foo.dat

Appendix A. Parallel Environment Tools Commands 221

pdbx(1)

pdbx skip Subcommand

skip [numben]

The skip subcommand continues execution of the program from the current
stopping point, ignoring the next breakpoint. If a number variable is supplied, skip
ignores that next amount of breakpoints.

Related to this subcommand is the cont subcommand.

pdbx source Subcommand
source commands_file
The source subcommand reads pdbx subcommands from the specified
commands_file. The commands _file should reside on the node where pdbx was

issued and can contain any commands that are valid on the pdbx command line.
The source subcommand is context insensitive.

To read pdbx subcommands from a file named “jessica”, enter:

source jessica

Related to this subcommand is the dbx source subcommand.

pdbx status Subcommand
status
status all
A list of pdbx events (breakpoints and tracepoints) can be displayed by using the
status subcommand. You can specify “all” after this command to list all events
(breakpoints and tracepoints) that have been set in all groups and tasks. This is

valid at the pdbx prompt and the pdbx subset prompt.

Because the status command without “all” specified is context sensitive, it will not
display status for events outside the context.

Assume the following commands have been issued, setting various breakpoints and
tracepoints.

222 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

on all

stop at 19
trace 21

on 0

trace foo at 21
on 1

stop in func

To display a list of breakpoints and tracepoints for tasks in the current “task 1”
context, enter:

status

The pdbx debugger responds with lines of status like:
1:[0] stop in func

all:[0] stop at "foo.c":19
all:[1] trace "foo.c":21

Notice that the status from the “task 0” context does not get displayed since the
context is on “task 1". Also notice that event 0 is unique for the “task 1" context and
the “group all” context.

To see an example of status all , enter:

status all

The pdbx debugger responds with:
0:[0] trace foo at "foo.c":21

1:[0] stop in func
all:[0] stop at "foo.c":19
all:[1] trace "foo.c":21

Related to this subcommand are the pdbx stop, trace, and delete subcommands.

pdbx step Subcommand
step [numben]
The step subcommand runs source lines of the program. You specify the number

of lines to be executed with the number parameter. If this parameter is omitted, the
default is a value of 1.

Appendix A. Parallel Environment Tools Commands 223

pdbx(1)

The difference between this and the next subcommand is that if the line contains a
call to a procedure or function, step will enter that procedure or function, while next
will not.

If you use the step subcommand on a multi-threaded program, all the user threads
run during the operation, but the program continues execution until the interrupted
thread reaches the specified source line. By default, breakpoints for all threads are
ignored during the step command. This behavior can be changed using the
$catchbp set variable.

If you wish to step the interrupted thread only, use the set subcommand to set the
variable $hold _next. Setting this variable may result in debugger induced deadlock,
since the interrupted thread may wait for a lock held by one of the threads blocked
by $hold_next.

Note: Use the $stepignore variable of the set subcommand to control the behavior
of the step subcommand. The $stepignore variable enables step to step
over large routines for which no debugging information is available.

Related to this subcommand are the stepi, next, nexti, return, cont, and set
commands.

pdbx stepi Subcommand

stepi [Number]

The stepi subcommand runs instructions of the program. You specify the number
of instructions to be executed with the number parameter. If the parameter is
omitted, the default is 1.

If used on a multi-threaded program, the stepi subcommand steps the interrupted
thread only. All other user threads remain stopped.

Related to this subcommand are the step, next, nexti, return, cont, and set
subcommands.

pdbx stop Subcommand

stop if <condition>

stop at <source_line_numbers [if <condition>]
stop in <procedure> [if <condition>]

stop <variable> [if <condition>]

stop <variable> at <source_line_number>

[if <condition>]

stop <variable> in <procedure> [if <condition>]

Specifying stop at <source_line_numbers> causes the breakpoint to be triggered
each time that source line is reached.

224 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

Specifying stop in <procedure> causes the breakpoint to be triggered each time
the program counter reaches the first executable source line in the procedure
(function, subroutine).

Using the <variable> argument to stop causes the breakpoint to be triggered when
the contents of the variable changes. This form of breakpoint can be very time
consuming. For better results, when possible, further qualify these breakpoints with
a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
Expressions” on page 36.

The stop subcommand sets stopping places called “breakpoints” for tasks in the
current context. Use it to mark these stopping places, and then run the program.
When the tasks reach a breakpoint, execution stops and the state of the program
can then be examined. The stop subcommand is context sensitive.

Use the status subcommand to display a list of breakpoints that have been set for
tasks in the current context. Use the delete subcommand to remove breakpoints.

Specifying stop at <source_line_numbers> causes the breakpoint to be triggered
each time that source line is reached.

Specifying stop in <procedure> causes the breakpoint to be triggered each time
the program counter reaches the first executable source line in the procedure
(function, subroutine).

Using the <variable> argument to stop causes the breakpoint to be triggered when
the contents of the variable changes. This form of breakpoint can be very time
consuming. For better results, when possible, further qualify these breakpoints with
a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
Expressions” on page 36.

Notes:

1. The pdbx debugger will not attempt to set a breakpoint at a line number when
in a group context if the group members (tasks) have different current source
files.

2. When specifying variable names as arguments to the stop subcommand, fully
qualified names should be used. This should be done because, when a stop
subcommand is issued, a parallel application could be in a different function on
each node. This may result in ambiguity in variable name resolution. Use the
which subcommand to get the fully qualified name for a variable.

To set a breakpoint at line 19 of a program, enter:
stop at 19

The pdbx debugger responds with a message like:
all:[0] stop at "foo.c":19

Related to this subcommand are the dbx stop and which subcommands, and the
pdbx trace, status, and delete subcommands.

Appendix A. Parallel Environment Tools Commands 225

pdbx(1)

pdbx tasks Subcommand
tasks [long]
With the tasks subcommand, you display information about all the tasks in the
partition. Task state information is always displayed. If you specify “long” after the

command, it also displays the name, ip address, and job manager number
associated with the task.

Following is an example of output produced by the tasks and tasks long
command.

pdbx (others) tasks

0:D 1:D 2:U 3:U 4:R 5:D 6:D 7:R

pdbx (others) tasks long

0:Debug ready pe04.kgn.ibm.com 9.117.8.68 -1
1:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1
2:Unhooked pe02.kgn.ibm.com 9.117.11.56 -1
3:Unhooked augustus.kgn.ibm.com 9.117.7.77 -1
4:Running pe04.kgn.ibm.com 9.117.8.68 -1
5:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1
6:Debug ready pe02.kgn.ibm.com 9.117.11.56 -1
7 :Running augustus.kgn.ibm.com 9.117.7.77 -1

Related to this subcommand is the pdbx group subcommand.

pdbx thread Subcommand

thread

thread [<numbers...]

thread [info] [<numbers ..]]

thread [run | wait | susp | term]
thread [hold | unhold | [<xnumbers ...]
thread [current] [xnumbers]

The thread subcommand displays the current status of all known threads in the
process. Threads to be displayed can be specified through the <number>
parameters, or all threads will be listed. Threads can also be selected by states
using the run, wait, susp, term, or current options. The info option can be used

226 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

to display full information about a thread. The hold and unhold options affect
whether the thread is dispatchable when further execution control commands are
issued. A thread that has been held will not be given any execution time until the
unhold option is issued. The thread subcommand displays a column indicating
whether a thread is held or not. No further execution will occur if the interrupted
thread is held.

The information displayed by the thread subcommand is as follows:

thread

state-k

wchan

State-u

k-tid

mode

held

scope

function

The displayed thread (“>

Indicates the symbolic name of the user thread, in the form
$tthread_number.

Indicates the state of the kernel thread (if the user thread is attached to
a kernel thread). This can be run, wait, susp, or term, for running,
waiting, suspended, or terminated.

Indicates the event on which the kernel thread is waiting or sleeping (if
the user thread is attached to a kernel thread).

Indicates the state of the user thread. Possible states are running,
blocked, or terminated.

Indicates the kernel thread identifier (if the user thread is attached to a
kernel thread).

Indicates the mode (kernel or user) in which the user thread is stopped
(if the user thread is attached to a kernel thread).

Indicates whether the user thread has been held.

Indicates the contention scope of the user thread; this can be sys or pro
for system or process contention scope.

Indicates the name of the user thread function.

) is the thread that is used by other pdbx commands that

are thread specific such as:

down
dump
file

func

list

listi

print
registers
up

where

Appendix A. Parallel Environment Tools Commands 227

pdbx(1)

The displayed thread defaults to be the interrupted thread after each execution
control command. The displayed thread can be changed using the current option.

The interrupted thread (“*") is the thread that stopped first and because it stopped,
in turn caused all of the other threads to stop. The interrupted thread is treated
specially by subsequent step, next, and nexti commands. For these stepping
commands, the interrupted thread is stepped, while all other (unheld) threads are
allowed to continue.

To force only the interrupted thread to execute during execution control commands,
set the $hold_next set variable. Note that this can create a debugger induced
deadlock if the interrupted thread blocks on one of the other threads.

Note that the pdbx documentation uses “interrupted thread” in the same way the
dbx documentation uses “running thread.” Also, the pdbx documentation uses
“displayed thread” in the same way the dbx documentation uses “current thread.”

Related to this subcommand are the attribute condition and mutex
subcommands.

pdbx trace Subcommand

trace [in <procedure>] [if <condition>]

trace <source_line_numbers [if <condition>]
trace <procedure>

[in <procedure> |

[if <condition>]

trace <variable> [in <procedure>]

[if <condition>]

trace <expression> at <source_line_numbers
[if <condition>]

Specifying trace with no arguments causes trace information to be displayed for
every source line in your program.

Specifying trace <source_line_numbers causes the tracepoint to be triggered each
time that source line is reached.

Specifying trace [in <procedure>] causes the tracepoint to be triggered each time
your program executes a source line within the procedure (function, subroutine).

Using the <variable> argument to trace causes the tracepoint to be triggered when
the contents of the variable changes. This form of tracepoint can be very time
consuming. For better results, when possible, further qualify these tracepoints with
a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
Expressions” on page 36.

The trace subcommand sets tracepoints for tasks in the current context. These
tracepoints will cause tracing information for the specified procedure, function,

228 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

sourceline, expression or variable to be displayed when the program runs. The
trace subcommand is context sensitive.

Use the status subcommand to display a list of tracepoints that have been set in
the current context. Use the delete subcommand to remove tracepoints.

Specifying trace with no arguments causes trace information to be displayed for
every source line in your program.

Specifying trace <source_line_numbers causes the tracepoint to be triggered each
time that source line is reached.

Specifying trace [in <procedure>] causes the tracepoint to be triggered each time
your program executes a source line within the procedure (function, subroutine).

Using the <variable> argument to trace causes the tracepoint to be triggered when
the contents of the variable changes. This form of tracepoint can be very time
consuming. For better results, when possible, further qualify these tracepoints with
a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
Expressions” on page 36.

Notes:

1. The pdbx debugger will not attempt to set a tracepoint at a line number when
in a group context if the group members (tasks) have different current source
files.

2. When specifying variable names as arguments to the trace subcommand, fully
qualified names should be used. This should be done because, when a trace
subcommand is issued, a parallel application could be in a different function on
each node. This may result in ambiguity in variable name resolution. Use the
which subcommand to get the fully qualified name for a variable.

To set a tracepoint for the variable "foo" at line 21 of a program, enter:

trace foo at 21

The pdbx debugger responds with a message like:
all:[1] trace foo at "bar.c":21

Related to this subcommand are the dbx trace and which subcommands, and the
pdbx stop, status, and delete subcommands.

pdbx unalias Subcommand
unalias alias_name
The unalias subcommand removes pdbx command aliases. The alias_name
specified is any valid alias that has been defined within your current pdbx session.
The unalias subcommand is context insensitive.

To remove the alias “p”, enter:

Appendix A. Parallel Environment Tools Commands 229

pdbx(1)

unalias p

Related to this subcommand is the pdbx alias subcommand.

pdbx unhook Subcommand
unhook
The unhook subcommand enables you to unhook tasks. Unhooking allows tasks to
run without intervention from the pdbx debugger. You can later reestablish control
over unhooked tasks using the hook subcommand. The unhook subcommand is

similar to the detach subcommand in dbx. It is context sensitive and has no
parameters.

1. To unhook task 2, enter:
on 2 unhook

or

on 2

unhook

2. To unhook all the tasks in the task group “rest”, enter:
on rest unhook
or

on rest
unhook

Listing the members of the task group “all” using the list action of the group
subcommand will allow you to check which tasks are hooked, and which are
unhooked. Enter:

group list all

The pdbx debugger will display a list similar to the following:
0:D 1:U 2:D 3:D

Tasks marked with the letter U next to them are unhooked tasks. In this case, task
1 is unhooked. Tasks marked with the letter D are debug ready, hooked tasks. In
this case, tasks 0, 2, and 3 are hooked.

Related to this subcommand is the dbx detach subcommand and the pdbx hook
subcommand.

230 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx(1)

pdbx unset Subcommand

unset name

The unset subcommand removes the set variable associated with the specified
name.

Related to this subcommand is the set subcommand.

pdbx up Subcommand

up [count]

The up subcommand moves the current function up the stack the number of levels
you specify with the count parameter. The current function is used for resolving
names. The default for the count parameter is 1.

The up and down subcommands can be used to navigate through the call stack.
Using these subcommands to change the current function also causes the current
file and local variables to be updated to the chosen stack level.

Related to this subcommand are the down, print, dump, func, file, and where
subcommands.

pdbx use Subcommand
use [directory ...]
The use subcommand sets the list of directories to be searched when the pdbx

debugger looks for source files. If the subcommand is specified without arguments,
the current list of directories to be searched is displayed.

The @ (at sign) is a special symbol that directs pdbx to look at the full path name
information in the object file, if it exists. If you have a relative directory called @ to
search, you should use ./@ in the search path.

The use subcommand uses the + (plus sign) to add more directories to the list of
directories to be searched. If you have a directory named +, specify the full path
name for the directory (for example, ./+ or tmp/+).

Related to this subcommand are the file and list subcommands.

Appendix A. Parallel Environment Tools Commands 231

pdbx(1)

pdbx whatis Subcommand
whatis <name>
The whatis subcommand displays the declaration of what you specify as the name
parameter. The name parameter can designate a variable, procedure, or function
name, optionally qualified with a block name.

Related to this subcommand are the whereis and which subcommands.

pdbx where Subcommand

where

The where subcommand displays a list of active procedures and functions. For
example:

pdbx(all) where

init_trees(), 1ine 23 in "funcs5.c"

colors(depth = 30, str = "This is it"), line 61 in "funcs5.c"
newmain(), line 59 in "funcs2.c"

f6(), Tine 25 in "funcs2.c"

main(argc = 1, argv = 0x2ff21c58), line 125 in "funcs.c"

Related to this subcommand are the dbx up and down subcommands.

pdbx whereis Subcommand

whereis identifier

The whereis subcommand displays the full qualifications of all the symbols whose
names match the specified identifier. The order in which the symbols print is not
significant.

Related to this subcommand are the whatis and which commands.

pdbx which Subcommand
which identifier
The which subcommand displays the full qualification of the given identifier. The

full qualification consists of a list of the outer blocks with which the identifier is
associated.

232 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pedb(1)

Related to this subcommand are the whatis and whereis subcommands.

pedb

NAME

SYNOPSIS

FLAGS

pedb — Invokes the pedb debugger, which is the X-Windows interface of the PE
debugging facility.

pedb [[program] program options] [poe options] [X options]
[[- source directory]...]

[-d nesting depth]

[-X]

pedb -a poe process id [limited poe options] [X options]
[[- source directory]...]

[-d nesting depth]

[-X]

pedb -h

The pedb command invokes the pedb debugger, which is the X-Windows interface
of the PE debugging facility.

The pedb command accepts standard X-Windows flags. Because the pedb
command runs in the Parallel Operating Environment, it also accepts the flags
supported by the poe command. See the poe manual page for a description of
these POE options. Additional pdbx flags are:

-a Attaches to a running poe job by specifying its process id. This
must be executed from the node where the poe job was initiated.
When using the debugger in attach mode there are some
debugger command line arguments that should not be used. In
general, any arguments that control how the partition is set up or
specify application names and arguments should not be used.

-d Sets the limit for the nesting of program blocks. The default
nesting depth limit is 25.

-h Writes the pedb usage to STDERR. This includes pedb command
line syntax and a description of pedb flags.

-I (upper-case i)
Specifies a directory to be searched for an executable's source
files. This flag must be specified multiple times to set multiple
paths. (Once pedb is running, this list can also be updated using
the Update Source Path window.)

-X Prevents stripping _ (trailing underscore) characters from symbols
originating in Fortran source code. This flag enables distinguishing
between symbols which are identical except for an underscore
character, such as xxx and Xxx_.

Appendix A. Parallel Environment Tools Commands 233

pedb(1)

DESCRIPTION

The pedb command invokes the X-Windows interface of the PE debugging facility.
It runs in the Parallel Operating Environment.

To use pedb for interactive debugging, you first need to compile the program and
set up the execution environment as you would to invoke a parallel program with
the poe command. Your program should be compiled with the -g flag in order to
produce an object file with symbol table references. It is also advisable to not use
the optimization option, -O. Using the debugger on optimized code may produce
inconsistent and erroneous results. For more information on the -g and -O compiler
options, refer to their use on other compiler commands such as cc and xIf. These
compiler commands are described in IBM AlIX Version 4 Commands Reference

ENVIRONMENT VARIABLES

EXAMPLES

FILES

Because the pedb command runs in the Parallel Operating Environment, it
interacts with most of the same environment variables associated with the poe
command. See the poe manual page in IBM Parallel Environment for AlX:
Operation and Use, Volume 1, Using the Parallel Operating Environment for a
description of these environment variables. As indicated by the syntax statements,
you are also able to specify poe command line options when invoking pedb. Using
these options will override the setting of the corresponding environment variable, as
is the case when invoking a parallel program with the poe command.

In conjunction with pedb array visualization, you can set the MP_DEBUG_BIN_DIR
evironment variable to customize this feature. See Appendix D, “Visualization
Customization and Data Explorer Samples” on page 243 for more information.

To start the pedb debugger, enter:

pedb weather temperate asia -procs 16 -labelio yes

This will invoke pedb running the weather application on a partition containing 16
nodes with all program output labeled by task id.

The pedb window automatically opens to mark the start of the debug session.

host.list (Default host list file)

lusr/lib/X11/app-defaults/Pedb (Xdefaults file)

RELATED INFORMATION

Commands: pdbx (1), poe (1), mpxIf (1), mpcc (1), cc(1), xIf (1) mpxIf_r (1)
mpcc_r (1) mpCC_r(1)

234 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

vt(1)

vt

NAME

SYNOPSIS

FLAGS

vt — Starts the Visualization Tool, which is an X-Windows tool that enables you to
visualize performance characteristics of your partition, or playback traces
generalized from a POE program.

vt [-tracefile trace file] [-tfile trace file]

[-configfile configuration_file] [-cfile configuration_file]
[-spath directory _lisf]

[-norm]

[-cmap]

[-go]

The vt command starts the Visualization Tool for visualizing performance
characteristics of a program or the system. This X-Windows tool consists of a group
of displays which present specific, often complex, information is easily-interpretable
forms such as bar charts and strip graphs. VT can be used to play back traces
generated during a program's execution (trace visualization), or as an online
monitor to study the operational status and activity of processor nodes
(performance monitoring).

-tracefile or -tfile
Loads a specified trace file for playback. (A trace file can also be
loaded after VT is started.)

-configfile or -cfile
Loads a specified configuration file. A configuration file contains
previously saved arrangements of VT windows as well as input
field specifications. (A configuration file can also be loaded after
VT is started.)

-spath Indicates a search path to a program's source code. Like the AIX
PATH environment variable, this is a series of colon-delimited
directory names to search. Unless the program's source is in the
current directory, the search path is needed to display it in the
VT's Source Code view. (A search path to the program's source
code can also be indicated after VT is started.)

-norm Indicates that the SP system Resource Manager is unavailable. In
performance monitoring mode, VT normally uses the Resource
Manager to learn which nodes are available for monitoring. If this
flag is specified, VT instead gets this information from the host list
file indicated by the MP_HOSTFILE environment variable, and
from the LAN. If you are going to use VT for online performance
monitoring of a cluster or mixed environment, you must use this
flag.

-cmap Requests a private color map. If this flag is not used, VT attempts
to use the default color map shared by all active X-Windows
applications. Depending on the number of active X-Windows

Appendix A. Parallel Environment Tools Commands 235

vi(1)

applications, there might not be enough available colors for VT.
When this happens, VT displays a message indicating the
spectrum(s) it cannot allocate, and uses black in place of the
unallocated color(s). VT will still run, but in extreme cases some
display spectrums may be unusable because of the missing
color(s). When you use this flag, VT makes a private copy of the
default X-Windows color map.

-go Starts playing back the trace file immediately upon starting VT.
When you use this flag, you must also specify a trace file and a
configuration file using the -tracefile (or -tfile) flag and the
-configfile (or -cfile) flags.

-log_file Specifies the file name where the results of the trace file
post-processing will be written. The default name is
$HOME/tracefilename.pplog

-h, -?, or -help Gets help information.

-mp_source Specifies which task’s source code is displayed in the Source
Code view.

DESCRIPTION

The vt command starts the Visualization Tool. This is an X-Windows tool for
visualizing performance characteristics of your program and system. It consists of
a group of displays, or views, which present complex information in
easily-interpretable forms such as bar charts and strip graphs. The VT views can
be used for trace visualization and online performance monitoring.

¢ In trace visualization mode, VT plays back statistical and event records, or
trace records, generated during a program's execution. In this mode, VT can
visualize information about the user's program as well as the program's use of
the underlying system. The visualized information can help in tuning the
program to optimize its use of the underlying system.

* In performance monitoring mode, VT acts as an online monitor showing the
operational status and activity of each of the processor nodes on an SP system
or RS/6000 network cluster. In this mode, VT only displays system statistics
and not communication information. In order to use VT for performance
monitoring, a Statistics Collector Daemon process named digd needs to be
running on each of the nodes you wish to monitor. The daemon feeds VT with
the AIX kernel statistics it displays, and is created on each of your nodes as
part of the Visualization Tool's installation procedure. The digd statistics
collector daemon can also feed information to the System Status Array started
by the poestat command.

ENVIRONMENT VARIABLES

236

MP_HOSTFILE This environment variable is normally associated with node
allocation. However, it is also checked by the vt command
when running with the -norm option. It determines the name
of a host list file to use to select nodes that are available for
monitoring. If not set, the default is host.list in your current
directory.

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

EXAMPLES

FILES

vt(1)

To load the trace file mytrace, the configuration file myconfig, and to begin playback
immediately upon starting VT:

vt -tfile mytrace -cfile myconfig -go

To start VT and add the directories /uffiles/source and /u/hink/source to the source
code search path:

vt -spath /u/files/source:/u/hink/source

To start VT for performance monitoring if you are in an environment where the SP
system Resource Manager is not available:

vt -norm

host.list (Default host list file)
Jusr/lib/X11/app-defaults/Vt (Xdefaults file)

$HOME/tracefilename.pplog (Default file name where the results of the trace file
post-processing will be written)

RELATED INFORMATION

Commands: poestat (1)

Appendix A. Parallel Environment Tools Commands 237

vi(1)

238 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Appendix B. Command Line Flags for Normal or Attach Mode

This appendix lists the command line flags that poe and pedb use, indicating which
ones are valid in normal and in attach debugging mode. When starting in attach
mode, the debugger gives a message listing the invalid flags used, and then exits.

Table 14 (Page 1 of 2). Command Line Flags for Normal or Attach Mode
Flag Description Normal Mode Attach Mode
-procs number of processors yes no
-tmpdir temp output directory no no
-hostfile name of host list file yes no
-hfile name of host list file yes no
-tracefile name of trace file no no
-tfile name of trace file no no
-tracedir name of trace directory no no
-tdir name of trace directory no no
-infolevel message reporting level yes yes
-ilevel message reporting level yes yes
-tracelevel trace reporting level no no
-tlevel trace reporting level no no
-retry wait for processors yes no
-pmlights number of LEDs yes no
-usrport port for API-to-user programmable monitor yes no
-samplefreq sampling frequency no no
-sfreq sampling frequency no no
-tbuffwrap wraparound trace buffer no no
-tbwrap wraparound trace buffer no no
-tbuffsize trace buffer size no no
-tbsize trace buffer size no no
-ttempsize trace temp filesize no no
-ttsize trace temp filesize no no
-resd directive to use Resource Manager yes no
-euilib eui library to use yes no
-euidevice adapter set to use for message passing - either yes no

Ethernet, FDDI, token ring, or the RS/6000 SP’

high-performance communication adapter
-euidevelop EUI develop mode yes no
-vtlibpath VT tracing library no no
-newjob submit new PE jobs without exiting PE no no
-pmdlog use pmd logfile yes yes
-savehostfile list of hosts from resource manager yes no
-cmdfile PE command file no no
-stdoutmode STDOUT mode yes no
-stdinmode STDIN mode yes no
-labelio label output yes yes - debugger only
-euilibpath eui library path yes no

© Copyright IBM Corp. 1995, 1998

239

Table 14 (Page 2 of 2). Command Line Flags for Normal or Attach Mode

Flag Description Normal Mode Attach Mode
-pgmmodel programming model no no
-retrycount retry count for node allocation yes no
-rmpool default pool for job manager yes no
-spname hostname of SP for jm_connect yes no
-cpu_use cpu usage yes no
-adapter_use adapter usage yes no
-pulse poe pulse no no
-d nesting depth of program blocks yes yes
-I (upper case i) path to search for source files yes yes
-X prevents the dbx command from stripping yes yes
trailing underscore in Fortran
-a start in attach mode N/A yes
240 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Appendix C. Exporting Arrays to Hierarchical Data Format

(HDF)

HDF is a multi-object data format from the National Center of Excellence in

Supercomputing Applications (NCSA), which is used for scientific and visualization
data. Pedb uses HDF (version 3.3) as the data format for exporting arrays in both
the array export and visualization features. See “Exporting Array Information to File”

on page 81 and “Visualizing Program Arrays” on page 97 for more information.

HDF supports a variety of object types within a file. Pedb exports array information
using the Scientific Data Set (SDS) type plus additional array attributes. If you are
exporting more than one array to the export file concurrently, pedb will create one
SDS for each array.

The following tables list the attributes written to the HDF file by pedb.

The first table gives dimension attributes; one for each dimension of each SDS.

Table 15. Array attributes defined by pedb

Name Type Values Description

Label Dimension Any string (no default) Label that describes this dimension
Units Dimension Any string (no default) Units to be used with this dimension
Format Dimension Any string (no default) Format to be used to display scale

The next table gives SDS attributes; one for each SDS.

Table 16 (Page 1 of 2). Array attributes defined by pedb

Name Type Values Description
Variable Name File Any string (defaults to This is the string defined by the
the array declaration) user on the Export Dialog window
Language_Type| SDS “C" or “F77" The source language from which the
array was exported
Datetime SDS 32-bit signed integer The time the SDS was created
Bele SDS Always 1 (Big Endian =1, Big Endian or Little Endian
Little Endian = 0)
Attached_ID SDS -1 (always) Reserved - not used
SamplingFormat| SDS 1 (always) Reserved - not used
Attach_Type SDS “RS6000” String indicating processor type
Task_ID SDS 32-bit signed integer Task id of the task where the
array was exported
Process_ID SDS 32-bit signed integer Process id of the task where the
array was exported
Host SDS <hostname string> String name of the host where the

array was exported

© Copyright IBM Corp. 1995, 1998

241

Table 16 (Page 2 of 2). Array attributes defined by pedb

Name Type Values Description

SamplingStart SDS 32-bit signed integer(s) An array of minimum values of the

subrange for each dimension

SamplingStride | SDS 32-bit signed integer(s) An array of strides of the subrange

for each dimension

SamplingEnd SDS 32-bit signed integer(s) An array of maximum values of the

subrange for each dimension

BaseMinimum SDS 32-bit signed integer(s) An array of the base minimum of the

subrange for each dimension.

BaseMaximum SDS 32-bit signed integer(s) An array of the base maximum of the

subrange for each dimension

MemAddress SDS 32-bit signed integer The base address of the array that

was exported

242 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Appendix D. Visualization Customization and Data Explorer
Samples

Included as part of the pedb debugger array visualization feature is a set of
prepackaged sample visualization interfaces to IBM's Visualization Data Explorer
(DX).
These interfaces are provided as a set of prepackaged tools that can be:

» used directly by pedb without modification

» used along with source code so you can modify them to fit your specific needs.
The Data Explorer samples use the DXLink feature of Version 3.1 of IBM's

Visualization Data Explorer. For additional information on IBM's Visualization Data
Explorer and DXLink, see the following references:

e |IBM Visualization Data Explorer: Programmer's Reference (Fourth Edition)
SC38-0497-03

e IBM Visualization Data Explorer: Quick Start Guide (Second Edition)
SC34-3262-01

e IBM Visualization Data Explorer: User's Reference (Second Edition)
SC38-0486-01

e IBM Visualization Data Explorer: User's Guide (Fifth Edition) SC38-0496-04

The sample interfaces can be found in the pedb samples directory
Jusr/lpp/ppe.pedb/samples. The following table describes the files included in the

directory.
Name Type Description
DX Files v*.net Data Explorer visual nets
v*.cfg Data Explorer configuration files for each
of the visual nets
DXLink files DXLvisual.c Command line version
DXLvisual_Motif.c Motif version
Makefile makefile.DXL Makefile to build the DXLink files
Executables DXLvisual The executables are installed
DXLvisual_Motif and used as part of the
integrated prepackaged
visualizations in pebd.

You may wish to modify the samples in a variety of ways. Some examples include:

¢ Modifying the DX nets
e Enhancing the DXLink programs to use more advanced features
* Replacing the the DX samples with your own visualization tools.

Here is some information you may find useful when making these modifications.

© Copyright IBM Corp. 1995, 1998 243

e The visualization feature of pedb is designed to export the selected array to a
temporary file first, and then pass the name of the temporary file to a Korn shell
script for execution.

e Each Visualization type on the pedb Visualization Dialog Window has a
corresponding Korn shell script associated with it. These are located in
Jusr/lpp/ppe.pedb/bin.

e Each Visualization type on the pedb Visualization Dialog Window has a
corresponding entry in the X defaults file that defines its label.

e The default location of the shell scripts can be overridden using the
MP_DEBUG_BIN_DIR environment variable. This allows you to override
individual scripts without involvement of the system administrator.

e Each of the prepackaged scripts call DXLvisual_Motif , passing it the temporary
file name and the DX visual program (.nef) to execute.
There are three major points of customization that are available:

1. Modify the Korn shell scripts in /usr/ipp/ppe.pedb/bin to call an entirely different
visualization program or a different DX visual net.

2. Enhance the DXLvisual_Motif or DXLvisual programs to take advantage of
more advanced features of DX. A makefile (makefile.DXL) is included to rebuild
these programs.

3. Modify the DX visual nets to perform a custom visualization.
Note: The Pedb.ad for the Visualization Dialog menu label entry should be
updated to be consistent with these changes.
The following steps give an example of a visualization customization.

1. Copy shell script VisualTypeOption_1.ksh from /usr/lpp/ppe.pebd/bin into your
current working directory.

$ cp /usr/1pp/ppe.pedb/bin/VisualTypeOption 1.ksh
2. Edit the script to pass a different DX visualization, v7.net.

<old>

$MP_DEBUG_SAMPLE_DIR/DXLvisual Motif $MP_DEBUG_SAMPLE DIR/v1l.net $1 -geometry +0+0

<new>

$MP_DEBUG_SAMPLE_DIR/DXLvisual Motif $MP_DEBUG_SAMPLE DIR/v7.net $1 -geometry +0+0

3. Set the MP_DEBUG_BIN_DIR environment to allow pebd to find your custom
version of the script.

$ export MP_DEBUG_BIN DIR=.
Note: This will only override the script you have copied to your local directory.

4. Find the label entry in /usr/Ipp/ppe.pedb/defaults/Pedb.ad to copy to your local
Xdefaults file.

244 1BM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Pedb*VisualTypeOption_1.labelString: DX 2D Colormap

Pedb*VisualTypeOption_l.mnemonic: C

5. Edit the label entry to display you own custom label.
Pedb*VisualTypeOption_1.labelString: My Custom Visual
Pedb*VisualTypeOption_l.mnemonic: M

6. Try out your new visualization within pedb.

Note: Make sure that the Korn shell script is set to be executable.

Appendix D. Visualization Customization and Data Explorer Samples

245

246 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Appendix E. Customizing Tool Resources

You can customize certain features of an X-Window. For example, you can
customize its colors, fonts, orientation, and so on. This section lists each of the
resource variables you can set for pedb and the Visualization Tool.

You may customize resources by assigning a value to a resource name in a
standard X-Windows format. Several resource files are searched according to the
following X-Windows convention:

Jusr/lib/X11/$L ANG/app-defaults/file_name
Jusr/lib/X11/app-defaults/file_name
$XAPPLRESDIR/file_name

$HOME/. Xdefaults

Where file_name is Pedb for the Parallel Environment debugger and Vit for the
Visualization Tool. Options in the . Xdefaults file take precedence over entries in the
preceding files. This allows you to have certain specifications apply to all users in
the app-defaults file as well as user specific preferences set for each user in their
$HOME/. Xdefaults file.

You customize a resource by setting a value to a resource variable associated with
that feature. You store these resource settings in a file called .Xdefaults in your
home directory. You can create this file on a server, and so customize a resource
for all users. Individual users may also want to customize resources. The resource
settings are essentially your own personal preferences as to how the X-Windows
should look.

For example, consider the following resource variables for a hypothetical
X-Windows tool:

TOOL*MainWindow. foreground:
TOOL*MainWindow.background:

In this example, say the resource variable TOOL*MainWindow.foreground controls
the color of text on the tool's main window. The resource variable
TOOL*MainWindow.background controls the background color of this same
window. If you wanted the tool's main window to have red lettering on a white
background, you would insert the following lines into the . Xdefaults file.

TOOL*MainWindow. foreground: red
TOOL*MainWindow.background: white

Customizable resources and instructions for their use for pedb are defined in
lusr/lpp/ppe.pedb/defaults/Pedb.ad . In this file is a set of X resources for defining
graphical user interfaces based on the following criteria:

e Window geometry

e Push button and label text

© Copyright IBM Corp. 1995, 1998 247

e Pixmaps.

Customizable resources and instructions for their use for VT are defined in
lusr/lpp/ppe.vt/defaults/Vt . In this file is a set of X resources for defining graphical
user interfaces based on the following criteria:

¢ Window geometry
e Push button and label text

e Pixmaps.

248 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

Glossary of Terms and Abbreviations

This glossary includes terms and definitions from:

e The Dictionary of Computing, New York:
McGraw-Hill, 1994.

e The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies can be purchased from the
American National Standards Institute, 1430
Broadway, New York, New York 10018. Definitions
are identified by the symbol (A) after the definition.

e The ANSI/EIA Standard - 440A: Fiber Optic
Terminology, copyright 1989 by the Electronics
Industries Association (EIA). Copies can be
purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue N.W.,
Washington, D.C. 20006. Definitions are identified
by the symbol (E) after the definition.

e The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (1)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after the
definition, indicating that final agreement has not yet
been reached among the participating National
Bodies of SC1.

This section contains some of the terms that are
commonly used in the Parallel Environment books and
in this book in particular.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright 1970 by American
National Standards Institute, Incorporated), which was
prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards
Committee X3. ANSI definitions are preceded by an
asterisk (*).

Other definitions in this glossary are taken from IBM

Vocabulary for Data Processing, Telecommunications,
and Office Systems (GC20-1699).

© Copyright IBM Corp. 1995, 1998

A

address . A value, possibly a character or group of
characters that identifies a register, a device, a
particular part of storage, or some other data source or
destination.

AIX. Abbreviation for Advanced Interactive Executive,
IBM's licensed version of the UNIX operating system.
AIX is particularly suited to support technical computing
applications, including high function graphics and
floating point computations.

AlXwindows Environment/6000 A graphical user
interface (GUI) for the RS/6000. It has the following
components:

¢ A graphical user interface and toolkit based on
OSF/Motif

¢ Enhanced X-Windows, an enhanced version of the
MIT X Window System

e Graphics Library (GL), a graphical interface library
for the applications programmer which is compatible
with Silicon Graphics' GL interface.

API. Application Programming Interface.

application . The use to which a data processing
system is put; for example, topayroll application, an
airline reservation application.

argument . A parameter passed between a calling
program and a called program or subprogram.

attribute . A named property of an entity.

B

bandwidth . The total available bit rate of a digital
channel.

blocking operation An operation which does not
complete until the operation either succeeds or fails. For
example, a blocking receive will not return until a
message is received or until the channel is closed and
no further messages can be received.

breakpoint . A place in a program, specified by a
command or a condition, where the system halts
execution and gives control to the workstation user or to
a specified program.

broadcast operation A communication operation in

which one processor sends (or broadcasts) a message
to all other processors.

249

buffer . A portion of storage used to hold input or
output data temporarily.

C

C. A general purpose programming language. It was
formalized by ANSI standards committee for the C
language in 1984 and by Uniforum in 1983.

C++. A general purpose programming language, based
on C, which includes extensions that support an
object-oriented programming paradigm. Extensions
include:

¢ strong typing

¢ data abstraction and encapsulation

¢ polymorphism through function overloading and
templates

¢ class inheritance.

call arc . The representation of a call between two
functions within the Xprofiler function call tree. It
appears as a solid line between the two functions. The
arrowhead indicates the direction of the call; the
function it points to is the one that receives the call. The
function making the call is known as the caller, while
the function receiving the call is known as the callee.

chaotic relaxation . An iterative relaxation method
which uses a combination of the Gauss-Seidel and
Jacobi-Seidel methods. The array of discrete values is
divided into sub-regions which can be operated on in
parallel. The sub-region boundaries are calculated using
Jacobi-Seidel, whereas the sub-region interiors are
calculated using Gauss-Seidel. See also Gauss-Seidel.

client. A function that requests services from a server,
and makes them available to the user.

cluster . A group of processors interconnected through
a high speed network that can be used for high
performance computing. It typically provides excellent
price/performance.

collective communication A communication
operation which involves more than two processes or
tasks. Broadcasts, reductions, and the MPI_Allreduce
subroutine are all examples of collective communication
operations. All tasks in a communicator must
participate.

command alias . When using the PE command line
debugger, pdbx, you can create abbreviations for

existing commands using the pdbx alias command.
These abbreviations are know as command aliases.

Communication Subsystem (CSS) A component of
the IBM Parallel System Support Programs for AIX that
provides software support for the High Performance

Switch. It provides two protocols; IP (Internet Protocol)

250 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

for LAN based communication and US (user space) as
a message passing interface that is optimized for
performance over the switch. See also Internet Protocol
and User Space.

communicator . An MPI object that describes the
communication context and an associated group of
processes.

compile . To translate a source program into an
executable program.

condition . One of a set of specified values that a data
item can assume.

control workstation A workstation attached to the
RS/6000 SP that serves as a single point of control
allowing the administrator or operator to monitor and
manage the system using IBM Parallel System Support
Programs for AIX.

core dump . A process by which the current state of a
program is preserved in a file. Core dumps are usually
associated with programs that have encountered an
unexpected, system-detected fault, such as a
Segmentation Fault, or severe user error. The current
program state is needed for the programmer to
diagnose and correct the problem.

core file . A file which preserves the state of a
program, usually just before a program is terminated for
an unexpected error. See also core dump.

current context . When using either of the PE parallel
debuggers, control of the parallel program and the
display of its data can be limited to a subset of the
tasks that belong to that program. This subset of tasks
is called the current context. You can set the current
context to be a single task, multiple tasks, or all the
tasks in the program.

D

data decomposition A method of breaking up (or
decomposing) a program into smaller parts to exploit
parallelism. One divides the program by dividing the
data (usually arrays) into smaller parts and operating on
each part independently.

data parallelism . Refers to situations where parallel
tasks perform the same computation on different sets of
data.

dbx. A symbolic command line debugger that is often
provided with UNIX systems. The PE command line
debugger, pdbx, is based on the dbx debugger.

debugger . A debugger provides an environment in
which you can manually control the execution of a

program. It also provides the ability to display the
program's data and operation.

distributed shell (dsh) An IBM Parallel System
Support Programs for AIX command that lets you issue
commands to a group of hosts in parallel. See the /IBM
RISC System/6000 Scalable POWERparallel Systems:
Command and Technical Reference (GC23-3900-00) for
details.

domain name . The hierarchical identification of a host
system (in a network), consisting of human-readable
labels, separated by decimals.

E

environment variable 1. A variable that describes the
operating environment of the process. Common
environment variables describe the home directory,
command search path, and the current time zone. 2. A
variable that is included in the current software
environment and is therefore available to any called
program that requests it.

event. An occurrence of significance to a task; for
example, the completion of an asynchronous operation
such as an input/output operation.

Ethernet. Ethernet is the standard hardware for
TCP/IP LANs in the UNIX marketplace. Itis a 10
megabit per second baseband type network that uses
the contention based CSMA/CD (collision detect) media
access method.

executable . A program that has been link-edited and
therefore can be run in a processor.

execution . To perform the actions specified by a
program or a portion of a program.

expression . In programming languages, a language
construct for computing a value from one or more
operands.

F

fairness . A policy in which tasks, threads, or
processes must be allowed eventual access to a
resource for which they are competing. For example, if
multiple threads are simultaneously seeking a lock, then
no set of circumstances can cause any thread to wait
indefinitely for access to the lock.

FDDI. Fiber distributed data interface (100 Mbit/s fiber
optic LAN).

file system . In the AIX operating system, the
collection of files and file management structures on a

physical or logical mass storage device, such as a
diskette or minidisk.

fileset. 1) An individually installable option or update.
Options provide specific function while updates correct
an error in, or enhance, a previously installed product.
2) One or more separately installable, logically grouped
units in an installation package. See also Licensed
Program Product and package.

foreign host . See remote host.

Fortran . One of the oldest of the modern programming
languages, and the most popular language for scientific
and engineering computations. It's name is a
contraction of FORmula TRANslation. The two most
common Fortran versions are Fortran 77, originally
standardized in 1978, and Fortran 90. Fortran 77 is a
proper subset of Fortran 90.

function call tree . A graphical representation of all the
functions and calls within an application, which appears
in the Xprofiler main window. The functions are
represented by green, solid-filled rectangles called
function boxes. The size and shape of each function
box indicates its CPU usage. Calls between functions
are represented by blue arrows, called call arcs, drawn
between the function boxes. See also call arcs.

function cycle . A chain of calls in which the first caller
is also the last to be called. A function that calls itself
recursively is not considered a function cycle.

functional decomposition A method of dividing the
work in a program to exploit parallelism. One divides
the program into independent pieces of functionality
which are distributed to independent processors. This is
in contrast to data decomposition which distributes the
same work over different data to independent
processors.

functional parallelism Refers to situations where
parallel tasks specialize in particular work.

G

Gauss-Seidel . An iterative relaxation method for
solving Laplace's equation. It calculates the general
solution by finding particular solutions to a set of
discrete points distributed throughout the area in
question. The values of the individual points are
obtained by averaging the values of nearby points.
Gauss-Seidel differs from Jacobi-Seidel in that for the
i+1st iteration Jacobi-Seidel uses only values calculated
in the ith iteration. Gauss-Seidel uses a mixture of
values calculated in the ith and i+1st iterations.

global max . The maximum value across all

processors for a given variable. It is global in the sense
that it is global to the available processors.

Glossary of Terms and Abbreviations 251

global variable . A variable defined in one portion of a
computer program and used in at least one other
portion of the computer program.

gprof . A UNIX command that produces an execution

profile of C, Pascal, Fortran, or COBOL programs. The
execution profile is in a textual and tabular format. It is
useful for identifying which routines use the most CPU

time. See the man page on gprof .

GUI (Graphical User Interface) . A type of computer
interface consisting of a visual metaphor of a real-world
scene, often of a desktop. Within that scene are icons,
representing actual objects, that the user can access
and manipulate with a pointing device.

H

High Performance Switch The high-performance
message passing network, of the RS/6000 SP(SP)
machine, that connects all processor nodes.

HIPPI. High performance parallel interface.

hook . hook is a pdbx command that allows you to
re-establish control over all task(s) in the current context
that were previously unhooked with this command.

home node . The node from which an application
developer compiles and runs his program. The home
node can be any workstation on the LAN.

host. A computer connected to a network, and
providing an access method to that network. A host
provides end-user services.

host list file . A file that contains a list of host hames,
and possibly other information, that was defined by the
application which reads it.

host name . The name used to uniquely identify any
computer on a network.

hot spot . A memory location or synchronization
resource for which multiple processors compete
excessively. This competition can cause a
disproportionately large performance degradation when
one processor that seeks the resource blocks,
preventing many other processors from having it,
thereby forcing them to become idle.

IBM Parallel Environment for AIX A program
product that provides an execution and development
environment for parallel Fortran, C, or C++ programs. It
also includes tools for debugging, profiling, and tuning
parallel programs.

252

IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

installation image . A file or collection of files that are
required in order to install a software product on a
RS/6000 workstation or on SP system nodes. These
files are in a form that allows them to be installed or
removed with the AlX installp command. See also
fileset, Licensed Program Product, and package.

Internet . The collection of worldwide networks and
gateways which function as a single, cooperative virtual
network.

Internet Protocol (IP) . 1) The TCP/IP protocol that
provides packet delivery between the hardware and
user processes. 2) The High Performance Switch
library, provided with the IBM Parallel System Support
Programs for AlX, that follows the IP protocol of
TCP/IP.

IP. See Internet Protocol.

J

Jacobi-Seidel . See Gauss-Seidel.

job management system

The software you use to manage the jobs across your
system, based on the availability and state of system
resources.

K

Kerberos . A publicly available security and
authentication product that works with the IBM Parallel
System Support Programs for AlX software to
authenticate the execution of remote commands.

kernel. The core portion of the UNIX operating system
which controls the resources of the CPU and allocates
them to the users. The kernel is memory-resident, is
said to run in kernel mode (in other words, at higher
execution priority level than user mode) and is protected
from user tampering by the hardware.

L

Laplace's equation . A homogeneous patrtial
differential equation used to describe heat transfer,
electric fields, and many other applications.

latency . The time interval between the instant at which
an instruction control unit initiates a call for data
transmission, and the instant at which the actual
transfer of data (or receipt of data at the remote end)
begins. Latency is related to the hardware
characteristics of the system and to the different layers
of software that are involved in initiating the task of
packing and transmitting the data.

Licensed Program Product (LPP) A collection of
software packages, sold as a product, that customers
pay for to license. It can consist of packages and
filesets a customer would install. These packages and
filesets bear a copyright and are offered under the
terms and conditions of a licensing agreement. See also
fileset and package.

LoadLeveler . A job management system that works
with POE to allow users to run jobs and match
processing needs with system resources, in order to
better utilize the system.

local variable . A variable that is defined and used
only in one specified portion of a computer program.

loop unrolling A program transformation which
makes multiple copies of the body of a loop, placing the
copies also within the body of the loop. The loop trip
count and index are adjusted appropriately so the new
loop computes the same values as the original. This
transformation makes it possible for a compiler to take
additional advantage of instruction pipelining, data
cache effects, and software pipelining.

See also optimization.

M

menu. A list of options displayed to the user by a data
processing system, from which the user can select an
action to be initiated.

message catalog . A file created using the AIX
Message Facility from a message source file that
contains application error and other messages, which
can later be translated into other languages without
having to recompile the application source code.

message passing . Refers to the process by which
parallel tasks explicitly exchange program data.

MIMD (Multiple Instruction Multiple Data) A parallel
programming model in which different processors
perform different instructions on different sets of data.

MPMD (Multiple Program Multiple Data) A parallel
programming model in which different, but related,
programs are run on different sets of data.

MPI. Message Passing Interface; a standardized API
for implementing the message passing model.

N

network . An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit data
to and receive data from other systems and users.

node. (1) In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network. (2) In terms of
the RS/6000 SP, a single location or workstation in a
network. An SP node is a physical entity (a processor).

node ID. A string of unique characters that identifies
the node on a network.

nonblocking operation An operation, such as
sending or receiving a message, which returns
immediately whether or not the operation was
completed. For example, a nonblocking receive will not
wait until a message is sent, but a blocking receive will
wait. A nonblocking receive will return a status value
that indicates whether or not a message was received.

O

object code . The result of translating a computer
program to a relocatable, low-level form. Object code
contains machine instructions, but symbol names (such
as array, scalar, and procedure names), are not yet
given a location in memory.

optimization . A not strictly accurate but widely used
term for program performance improvement, especially
for performance improvement done by a compiler or
other program translation software. An optimizing
compiler is one that performs extensive code
transformations in order to obtain an executable that
runs faster but gives the same answer as the original.
Such code transformations, however, can make code
debugging and performance analysis very difficult
because complex code transformations obscure the
correspondence between compiled and original source
code.

option flag . Arguments or any other additional
information that a user specifies with a program name.
Also referred to as parameters or command line
options.

P

package . A number of filesets that have been
collected into a single installable image of program
products, or LPPs. Multiple filesets can be bundled
together for installing groups of software together. See
also fileset and Licensed Program Product.

Glossary of Terms and Abbreviations 253

parallelism . The degree to which parts of a program
may be concurrently executed.

parallelize . To convert a serial program for parallel
execution.

Parallel Operating Environment (POE) An execution
environment that smooths the differences between
serial and parallel execution. It lets you submit and
manage parallel jobs. It is abbreviated and commonly
known as POE.

parameter . * (1) In Fortran, a symbol that is given a
constant value for a specified application. (2) An item in
a menu for which the operator specifies a value or for
which the system provides a value when the menu is
interpreted. (3) A name in a procedure that is used to
refer to an argument that is passed to the procedure.
(4) A particular piece of information that a system or
application program needs to process a request.

partition . (1) A fixed-size division of storage. (2) In
terms of the RS/6000 SP, a logical definition of nodes
to be viewed as one system or domain. System
partitioning is a method of organizing the SP into
groups of nodes for testing or running different levels of
software of product environments.

Partition Manager . The component of the Parallel
Operating Environment (POE) that allocates nodes, sets
up the execution environment for remote tasks, and
manages distribution or collection of standard input
(STDIN), standard output (STDOUT), and standard
error (STDERR).

pdbx . pdbx is the parallel, symbolic command line
debugging facility of PE. pdbx is based on the dbx
debugger and has a similar interface.

PE. The IBM Parallel Environment for AIX program
product.

performance monitor A utility which displays how
effectively a system is being used by programs.

POE. See Parallel Operating Environment.

pool. Groups of nodes on an SP that are known to the
Resource Manager, and are identified by a number.

point-to-point communication A communication
operation which involves exactly two processes or
tasks. One process initiates the communication through
a send operation. The partner process issues a receive
operation to accept the data being sent.

procedure . (1) In a programming language, a block,
with or without formal parameters, whose execution is
invoked by means of a procedure call. (2) A set of

254 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

related control statements that cause one or more
programs to be performed.

process . A program or command that is actually
running the computer. It consists of a loaded version of
the executable file, its data, its stack, and its kernel data
structures that represent the process's state within a
multitasking environment. The executable file contains
the machine instructions (and any calls to shared
objects) that will be executed by the hardware. A
process can contain multiple threads of execution.

The process is created via a fork () system call and
ends using an exit() system call. Between fork and
exit, the process is known to the system by a unique
process identifier (pid).

Each process has its own virtual memory space and
cannot access another process's memory directly.
Communication methods across processes include
pipes, sockets, shared memory, and message passing.

prof. A utility which produces an execution profile of
an application or program. It is useful to identifying
which routines use the most CPU time. See the man
page for prof .

profiling . The act of determining how much CPU time
is used by each function or subroutine in a program.
The histogram or table produced is called the execution
profile.

Program Marker Array . An X-Windows run time
monitor tool provided with Parallel Operating
Environment, used to provide immediate visual
feedback on a program's execution.

pthread . A thread that conforms to the POSIX
Threads Programming Model.

R

reduction operation An operation, usually
mathematical, which reduces a collection of data by one
or more dimensions. For example, the arithmetic SUM
operation is a reduction operation which reduces an
array to a scalar value. Other reduction operations
include MAXVAL and MINVAL.

remote host . Any host on a network except the one at
which a particular operator is working.

remote shell (rsh) . A command supplied with both
AIX and the IBM Parallel System Support Programs for
AIX that lets you issue commands on a remote host.

Report. In Xprofiler, a tabular listing of performance
data that is derived from the gmon.out files of an
application. There are five types of reports that are
generated by Xprofiler, and each one presents different
statistical information for an application.

Resource Manager . A server that runs on one of the
nodes of an RS/6000 SP (SP) machine. It prevents
parallel jobs from interfering with each other, and
reports job-related node information.

RISC. Reduced Instruction Set Computing (RISC), the
technology for today's high performance personal
computers and workstations, was invented in 1975.

S

shell script . A sequence of commands that are to be
executed by a shell interpreter such as C shell, korn
shell, or Bourne shell. Script commands are stored in a
file in the same form as if they were typed at a terminal.

segmentation fault . A system-detected error, usually
caused by referencing an invalid memory address.

server . A functional unit that provides shared services
to workstations over a network; for example, a file
server, a print server, a mail server.

signal handling . A type of communication that is used
by message passing libraries. Signal handling involves
using AIX signals as an asynchronous way to move
data in and out of message buffers.

source line . A line of source code.

source code . The input to a compiler or assembler,
written in a source language. Contrast with object
code.

SP. RS/6000 SP; a scalable system from two to 128
processor nodes, arranged in various physical
configurations, that provides a high powered computing
environment.

SPMD (Single Program Multiple Data) A parallel
programming model in which different processors
execute the same program on different sets of data.

standard input (STDIN) . In the AIX operating system,
the primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard
input can be from a file or the output from another
command.

standard output (STDOUT) . In the AIX operating
system, the primary destination of data produced by a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command.

stencil . A pattern of memory references used for
averaging. A 4-point stencil in two dimensions for a
given array cell, x(i,j), uses the four adjacent cells,
x(i-1,j), x(i+1,), x(i,j-1), and x(i,j+1).

subroutine . (1) A sequence of instructions whose
execution is invoked by a call. (2) A sequenced set of
instructions or statements that may be used in one or
more computer programs and at one or more points in
a computer program. (3) A group of instructions that
can be part of another routine or can be called by
another program or routine.

synchronization The action of forcing certain points
in the execution sequences of two or more
asynchronous procedures to coincide in time.

system administrator (1) The person at a computer
installation who designs, controls, and manages the use
of the computer system. (2) The person who is
responsible for setting up, modifying, and maintaining
the Parallel Environment.

System Data Repository . A component of the IBM
Parallel System Support Programs for AlX software that
provides configuration management for the SP system.
It manages the storage and retrieval of system data
across the control workstation, file servers, and nodes.

System Status Array . An X-Windows run time monitor
tool, provided with the Parallel Operating Environment,
that lets you quickly survey the utilization of processor
nodes.

T

task. A unit of computation analogous to an AIX
process.

thread. A single, separately dispatchable, unit of
execution. There may be one or more threads in a
process, and each thread is executed by the operating
system concurrently.

tracing . In PE, the collection of data for the
Visualization Tool (VT). The program is traced by
collecting information about the execution of the
program in trace records. These records are then
accumulated into a trace file which a user visualizes
with VT.

tracepoint . Tracepoints are places in the program
that, when reached during execution, cause the
debugger to print information about the state of the
program.

trace record . In PE, a collection of information about a
specific event that occurred during the execution of your
program. For example, a trace record is created for
each send and receive operation that occurs in your
program (this is optional and may not be appropriate).
These records are then accumulated into a trace file
which allows the Visualization Tool to visually display
the communications patterns from the program.

Glossary of Terms and Abbreviations 255

U

unrolling loops See loop unrolling.

US. See user space.

user. (1) A person who requires the services of a
computing system. (2) Any person or any thing that may
issue or receive commands and message to or from the
information processing system.

user space (US) . A version of the message passing
library that is optimized for direct access to the SP High
Performance Switch, that maximizes the performance
capabilities of the SP hardware.

utility program . A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.

utility routine . A routine in general support of the
processes of a computer; for example, an input routine.

Vv

variable . (1) In programming languages, a named
object that may take different values, one at a time. The
values of a variable are usually restricted to one data
type. (2) A quantity that can assume any of a given set
of values. (3) A name used to represent a data item
whose value can be changed while the program is
running. (4) A name used to represent data whose

256 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

value can be changed, while the program is running, by
referring to the name of the variable.

view. (1) In an information resource directory, the
combination of a variation name and revision number
that is used as a component of an access name or of a
descriptive name.

Visualization Tool . The PE Visualization Tool. This
tool uses information that is captured as your parallel
program executes, and presents a graphical display of
the program execution. For more information, see IBM
Parallel Environment for AlX: Operation and Use,
Volume 2, Tools Reference

VT. See Visualization Tool.

X

X Window System . The UNIX industry's graphics
windowing standard that provides simultaneous views of
several executing programs or processes on high
resolution graphics displays.

xpdbx . This is the former name of the PE graphical
interface debugging facility, which is now called pedb.

Xprofiler . An AIX tool that is used to analyze the
performance of both serial and parallel applications, via
a graphical user interface. Xprofiler provides quick
access to the profiled data, so that the functions that
are the most CPU-intensive can be easily identified.

Index

A

adapter 239

address 8, 44

AIX Kernel Statistics trace records 117
allocating nodes 139

application 1

Application Markers trace records 117
Application Message Queues window) 87
argument 21

attribute 82

B

blocking read 18
blocking receive 27, 64
blocking send 26, 53
breakpoint 46

buffer 52

C

C 42

C++ 112

clock synchronization 122

cluster 109

collective communication 117
Collective Communications Details window 94
command alias 2

commands, PE 193
Communication/Program views 149
communicator 153

Computation views 162

condition 60

Connectivity Graph 150

context switches 184

conventions Xii

current context 2

customizing resources 247
customizing tool resources 247

D

daemon 117, 236

Data Explorer 98, 243

dbx subcommands 33, 205

debugging parallel programs 1, 41
with pdbx 1
with pedb 41

disk reads 174

disk transfers 176

disk views 174

© Copyright IBM Corp. 1995, 1998

disk writes 178

E

Early Arrival Message Details window 94
Ethernet 239

event 2

executable 5

execution 1

Export File Selection window 85

export options 83

Export window 82

expression 2

F
FDDI 239
file system 123
fileset 98
Find window 103
flag 1
Fortran 5
function 41
context sensitive subcommands 2

G

global variable 25

H

home node 2
host 241
host list file 5

IBM Parallel Environment for AIX xi
instantaneous views 115
Interprocessor Communication 151

K

kernel 111
kernel utilization 162

L

Load Executables window 49
local variable 24

257

M pdbx debugger (continued)
creating, removing, and listing aliases 34

Main window 46 deleting breakpoints 25
menu 58 deleting events 25
Message Group Information window) 96 deleting tracepoints 25
message passing 106 displaying source 32
message passing routine 104 displaying task states 11
message queue debugger 86 displaying tasks 11
starting the message queue debugger 87 exiting pdbx 39
using the message queue debugger 86 grouping tasks 15
Message Status Matrix 155 hooking tasks 26
mlxgd system xi . interrupting tasks 22
monitoring processor nodes using VT 139, 144 loading the partition 10
adjusting sampling interval when 144 normal mode 4
selecting nodes for monitoring 143 overloaded symbols 38
starting monitoring 143 reading subcommands from a command file 36

MPI Collective Communication trace records 117
MPI Message Passing trace records 117
MPMD (Multiple Program Multiple Data) 4

setting breakpoints 20
setting command context 15
setting tracepoints 22
specifying expressions 36
N specifying variables on trace and stop
subcommands 24
starting pdbx 4
unhooking tasks 26
using pdbx 1
viewing program call stacks 27
viewing program variables 28
pdbx subcommands 1, 2, 16, 198

network 109

Network Time Protocol (NTP) 118
network views 180

node 1

node ID 165

nonblocking calls 151
nonblocking sends 151

active 11
alias 34, 198
O assign 199
optimization 1 attach 200
option 1 attribute 200
Optional Notes window 83 back 201
call 201
case 201
P catch 202
packets received 180 condition 202
packets sent 182 cont 203
page faults 186 context insensitive subcommands 2
Parallel Operating Environment (POE) xi dbx 203
parallel programs 1 delete 25, 204
compiling for VT 120 detach 39, 205
debugging 1 dhelp 33, 205
visualizing performance of 117, 139 display memory 206
parameter 28 down 207
partition 1 dump 207
Partition Manager 10 file 207
pdbx Attach screen 8 func 208
pdbx debugger 1 goto 208
accessing help for dbx subcommands 33 gotoi 208
accessing help for pdbx subcommands 33 group 11, 208
attach mode 6 halt 210
checking event status 26 help 33, 211
command context 1 hook 26, 211
controlling program execution 20 ignore 212

258 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

pdbx subcommands (continued)
list 32,213
listi 214
load 10, 215
map 215
mutex 215
next 216
nexti 217
on 15,217
overview 1
print 28, 219
quick reference listing 2
quit 39, 220
registers 220
return 220
search 221
set 221
sh 221
skip 222
source 222
status 26, 222
step 223
stepi 224
stop 20, 224
tasks 226
thread 226
trace 22, 228
unalias 34, 229
unhook 26, 230
unset 231
up 231
use 231
whatis 232
where 27, 232
whereis 232
which 232
PE commands 193
pdbx 193
pedb 233
vt 234
pedb Attach window 44
pedb debugger 41, 65
attach mode 43
changing a variable's format 78
changing a variable's value 78
controlling program execution 57
controlling source code 101
creating task groups 54
customizing pedb resources 107
debugging multiple views 106
debugging programs using multiple views 106
deleting task groups 55
displaying local variables within the program
stack 69
displaying variable in more or less detail 76
editing current source file 102

pedb debugger (continued)
examining program data 68
exporting array information 81
getting help 106
hiding a task's break/trace information 68
hiding a task's data information 68
hiding a task's stack information 68
leaving pedb 107
loading the partition 48
locating breakpoint in source 68
normal mode 42
setting breakpoints 59
setting the context 52
specifying the array subrange 80
starting pedb 41
stepping execution 63
tracing program execution 65
understanding data types 69
unhooking tasks 67
using pedb 41
viewing the contents of an array 79
visualizing program arrays 97
performance monitoring 139
adjusting sampling interval during 144
selecting nodes for monitoring 143
starting monitoring 143
POE command-line flags
-a 240
-adapter_use 240
-cmdfile 239
-cpu_use 240
-d 240
-euidevelop 239
-euidevice 239
-euilib 239
-euilibpath 239
-hfile 239
-hostfile 239
-I (upper case i) 240
-ilevel 239
-infolevel 239
-labelio 239
-newjob 239
-pgmmodel 240
-pmdlog 239
-pmlights 239
-procs 5, 239
-pulse 240
-resd 239
-retry 239
-retrycount 240
-rmpool 240
-samplefreq 121, 239
-savehostfile 239
-sfreq 121, 239
-spname 240

Index

259

POE command-line flags (continued) POE environment variables (continued)

-stdinmode 239 turning tracing on using 120
-stdoutmode 239 writing a trace file to a specified directory using 123
-tbsize 122, 124, 239 Point to Point Message Details window 92
-tbuffsize 122, 124, 239 pool 240

-tbuffwrap 124, 239 post-processing 128

-tbwrap 124, 239 procedure 2

-tdir 123, 239 processor idle 167

-tfile 121, 239 processor utilization 171

-tlevel 120, 239 processor wait 165

-tmpdir 123, 239 publications, related xii

-tracedir 123, 239

-tracefile 121, 239 R

-tracelevel 120, 239

-ttempsize 122, 124, 239 remote node 2, 102

-ttsize 122, 124, 239 Resource Manager 10

-usrport 239 resource settings 247

-vtlibpath 239 resources, customizing 247

-X 240

changing the sampling interval for AIX kernel S

statistics using 121
specifying a directory for final trace output
using 123
specifying temporary trace file size using 124
specifying the maximum size of output trace files
using 124
specifying trace buffer size using 124
specifying trace file names using 121
specifying wraparound trace storage using 124
turning tracing on using 120
writing a trace file to a specified directory using 123
POE environment variables
changing the sampling interval for AIX kernel
statistics using 121
managing storage for trace files using 122
MP_DBXPROMPTMOD 197
MP_DEBUG_INITIAL_STOP 37, 197
MP_HOSTFILE 236
MP_INFOLEVEL 121
MP_PROCS 5
MP_SAMPLEFREQ 121
MP_TBUFFSIZE 122, 124
MP_TBUFFWRAP 124 T
MP_TMPDIR 123 task 1
MP_TRACEDIR 123
MP_TRACEFILE 121
MP_TRACELEVEL 120
MP_TTEMPSIZE 122, 124
specifying a directory for final trace output
using 123
specifying temporary trace file size using 124
specifying the maximum size of output trace files
using 124
specifying trace buffer size using 124
specifying trace file names using 121
specifying wraparound trace storage using 124

Select Filters window 89
Send/Receive Message Details window 93
server 2
shell script 99
source code 5, 157
source code control 101
source code emphasis 104
source line 21
SPMD (Single Program Multiple Data) 4
standard input (STDIN) 17
standard output (STDOUT) 5
streaming views 115
subcommands 33, 198

dbx 33, 205

pdbx 33, 198
subroutine 58
synchronization 118
system calls 188
system summary 190
system views 184

Task Message Queue window 90

task status information 56

Threads Viewer window 74

trace file post-processing 128

trace files
adjusting playback speed of 135
cycling playback through 134
generating 119, 124
loading for playback 127
returning playback to an earlier point in 133
starting playback of 133

260 IBM PE for AIX V2R4.0: Operation and Use, Vol. 2, Part 1

trace files (continued)
stepping playback of 134
using VT to play back 125, 139
trace records 117
AIX Kernel Statistics 117
Application Markers 117
MPI Collective Communication 117
MPI Message Passing 117
trace visualization 117, 139
generating trace files for 119, 124
types of trace records for 117
tracepoint 65
tracing routines 119
trademarks vii

U

user 2

user load balance 173

user utilization 169
user-defined visualizations 99

V

variable 12
Visualization Data Explorer 98, 243
Visualization Tool (VT) 109
closing views 114
opening views 114
performance monitoring 139
quick operation of 111
saving screen configurations for 147
starting 113
trace visualization 117
using for performance monitoring 144
using for trace visualization 139
view categories described 115
view descriptions 148, 192
Visualization window 98
VT tracing routines 119
VT views 114, 148
VT views (displays)
adjusting magnification of 136
adjusting time resolution for 144
categories described 115
changing colors displayed on 144
closing 114
Communication/Program views 149
Computation views 162
Connectivity Graph 150
Context Switches 184, 185
bar chart 184
graph 185
descriptions of 148
Disk Reads 174, 175
bar chart 174
graph 175

VT views (displays) (continued)

Disk Transfers 176, 177
bar chart 176
graph 177
Disk views 174
Disk Writes 178, 179
bar chart 178
graph 179
instantaneous views 115
Interprocessor Communication 151
Kernel Utilization 162, 164
bar chart 162
graph 164
Message Status Matrix 155
Network views 180
opening 114
Packets Received 180, 181
bar chart 180
graph 181
Packets Sent 182, 183
bar chart 182
graph 183
Page Faults 186, 187
bar chart 186
graph 187
Processor Idle 167, 168
bar chart 167
graph 168
Processor Utilization 171
3D bar chart 171
Processor Wait 165, 166
bar chart 165
graph 166
scrolling over history buffers 136
Source Code 157
streaming views 115
System Calls 188, 189
bar chart 188
graph 189
System Summary 190
System views 184
User Load Balance 173
User Utilization 169, 170
bar chart 169
graph 170

xresources, customizing 247

Index

261

Communicating Your Comments to IBM

IBM Parallel Environment for AIX
Operation and Use, Volume 2, Part 1
Debugging and Visualizing

Version 2 Release 4

Publication No. SC28-1980-02

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

¢ If you prefer to send comments by mail, use the RCF at the back of this book.
e If you prefer to send comments by FAX, use this number:

— FAX: (International Access Code)+1+914+432-9405
e If you prefer to send comments electronically, use this network ID:

— IBM Mail Exchange: USIB6TC9 at IBMMAIL
— Internet e-mail: mhvrcfs@us.ibm.com
— World Wide Web: http://www.s390.ibm.com/0s390

Make sure to include the following in your note:
¢ Title and publication number of this book
e Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your
comments by phone.

Reader's Comments — We'd Like to Hear from You

IBM Parallel Environment for AIX
Operation and Use, Volume 2, Part 1
Debugging and Visualizing

Version 2 Release 4

Publication No. SC28-1980-02

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?
Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

As an introduction As a text (student)

[] []
[1] As a reference manual [1] As a text (instructor)
[]

For another purpose (explain)

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

Reader's Comments — We'd Like to Hear from You

SC28-1980-02

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384
522 South Road

Poughkeepsie NY 12601-5400

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SC28-1980-02

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Program Number: 5765-543

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

