

IBM Parallel Environment for AIX IBM

MPI Programming and Subroutine
Reference
Version 2 Release 4

 GC23-3894-03

IBM Parallel Environment for AIX IBM

MPI Programming and Subroutine
Reference
Version 2 Release 4

 GC23-3894-03

 Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

| Fourth Edition (October, 1998)

| This edition applies to Version 2, Release 4, Modification 0 of the IBM Parallel Environment for AIX (5765-543), and to all
| subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has been removed,
address your comments to:

International Business Machines Corporation
Department 55JA, Mail Station P384
522 South Road

 Poughkeepsie, NY 12601-5400
United States of America

 FAX: (United States and Canada): 914+432-9405
 FAX: (Other Countries)

Your International Access Code +1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL

 Internet: mhvrcfs@us.ibm.com
World Wide Web: http://www.rs6000.ibm.com (select Parallel Computing)

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

Title and order number of this book
Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

| Permission to copy without fee all or part of these Message Passing Interface Forum documents:

MPI: A Message Passing Interface Standard, Version 1.1
| MPI-2: Extensions to the Message-Passing Interface

is granted, provided the University of Tennessee copyright notice and the title of the document appear, and notice is given that
| copying is by permission of the University of Tennessee. 1993, 1997 University of Tennessee, Knoxville, Tennessee.

 Copyright International Business Machines Corporation 1996, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xi
Trademarks . xi

About This Book . xiii
Who Should Use This Book . xiii
How This Book Is Organized . xiii

Overview of Contents . xiii
Typographic Conventions . xiv
How Fortran and C Are Documented . xiv

Related Publications . xv
IBM Parallel Environment for AIX Publications xv
Related IBM Publications . xv
Related Non-IBM Publications . xv

National Language Support . xvi
Accessing Online Information . xvi

| Online Information Resources . xvi
| Getting the Books and the Examples Online xvii
| What's New in PE 2.4? . xvii
| AIX 4.3 Support . xvii
| Parallel Checkpoint/Restart . xvii
| Enhanced Job Management Function . xvii
| MPI I/O . xviii
| 1024 Task Support . xviii
| Enhanced Compiler Support . xviii
| Xprofiler Enhancements . xviii
| Message Queue Facility . xviii

Chapter 1. Table of Subroutines . 1

Chapter 2. Descriptions of Subroutines . 11
A_SAMPLE, A_Sample . 12
MPE_IALLGATHER, MPE_Iallgather . 14
MPE_IALLGATHERV, MPE_Iallgatherv . 16
MPE_IALLREDUCE, MPE_Iallreduce . 18
MPE_IALLTOALL, MPE_Ialltoall . 20
MPE_IALLTOALLV, MPE_Ialltoallv . 22
MPE_IBARRIER, MPE_Ibarrier . 25
MPE_IBCAST, MPE_Ibcast . 27
MPE_IGATHER, MPE_Igather . 29
MPE_IGATHERV, MPE_Igatherv . 32
MPE_IREDUCE, MPE_Ireduce . 35
MPE_IREDUCE_SCATTER, MPE_Ireduce_scatter 37
MPE_ISCAN, MPE_Iscan . 39
MPE_ISCATTER, MPE_Iscatter . 41
MPE_ISCATTERV, MPE_Iscatterv . 44
MPI_ABORT, MPI_Abort . 47
MPI_ADDRESS, MPI_Address . 48
MPI_ALLGATHER, MPI_Allgather . 49
MPI_ALLGATHERV, MPI_Allgatherv . 51
MPI_ALLREDUCE, MPI_Allreduce . 53

 Copyright IBM Corp. 1996, 1998 iii

MPI_ALLTOALL, MPI_Alltoall . 55
MPI_ALLTOALLV, MPI_Alltoallv . 57
MPI_ATTR_DELETE, MPI_Attr_delete . 59
MPI_ATTR_GET, MPI_Attr_get . 60
MPI_ATTR_PUT, MPI_Attr_put . 62
MPI_BARRIER, MPI_Barrier . 64
MPI_BCAST, MPI_Bcast . 65
MPI_BSEND, MPI_Bsend . 67
MPI_BSEND_INIT, MPI_Bsend_init . 69
MPI_BUFFER_ATTACH, MPI_Buffer_attach . 71
MPI_BUFFER_DETACH, MPI_Buffer_detach 72
MPI_CANCEL, MPI_Cancel . 74
MPI_CART_COORDS, MPI_Cart_coords . 76
MPI_CART_CREATE, MPI_Cart_create . 78
MPI_CART_GET, MPI_Cart_get . 80
MPI_CART_MAP, MPI_Cart_map . 82
MPI_CART_RANK, MPI_Cart_rank . 84
MPI_CART_SHIFT, MPI_Cart_shift . 86
MPI_CART_SUB, MPI_Cart_sub . 88
MPI_CARTDIM_GET, MPI_Cartdim_get . 90
MPI_COMM_COMPARE, MPI_Comm_compare 91
MPI_COMM_CREATE, MPI_Comm_create . 92
MPI_COMM_DUP, MPI_Comm_dup . 94
MPI_COMM_FREE, MPI_Comm_free . 96
MPI_COMM_GROUP, MPI_Comm_group . 97
MPI_COMM_RANK, MPI_Comm_rank . 98
MPI_COMM_REMOTE_GROUP, MPI_Comm_remote_group 99
MPI_COMM_REMOTE_SIZE, MPI_Comm_remote_size 100
MPI_COMM_SIZE, MPI_Comm_size . 101
MPI_COMM_SPLIT, MPI_Comm_split . 103
MPI_COMM_TEST_INTER, MPI_Comm_test_inter 105
MPI_DIMS_CREATE, MPI_Dims_create . 106
MPI_ERRHANDLER_CREATE, MPI_Errhandler_create 108
MPI_ERRHANDLER_FREE, MPI_Errhandler_free 110
MPI_ERRHANDLER_GET, MPI_Errhandler_get 111
MPI_ERRHANDLER_SET, MPI_Errhandler_set 112
MPI_ERROR_CLASS, MPI_Error_class . 114
MPI_ERROR_STRING, MPI_Error_string . 117

| MPI_FILE_CLOSE, MPI_File_close . 118
| MPI_FILE_CREATE_ERRHANDLER, MPI_File_create_errhandler 120
| MPI_FILE_DELETE, MPI_File_delete . 122
| MPI_FILE_GET_AMODE, MPI_File_get_amode 124
| MPI_FILE_GET_ATOMICITY, MPI_File_get_atomicity 125
| MPI_FILE_GET_ERRHANDLER, MPI_File_get_errhandler 126
| MPI_FILE_GET_GROUP, MPI_File_get_group 127
| MPI_FILE_GET_INFO, MPI_File_get_info . 128
| MPI_FILE_GET_SIZE, MPI_File_get_size . 130
| MPI_FILE_GET_VIEW, MPI_File_get_view . 132
| MPI_FILE_IREAD_AT, MPI_File_iread_at . 134
| MPI_FILE_IWRITE_AT, MPI_File_iwrite_at . 137
| MPI_FILE_OPEN, MPI_File_open . 140
| MPI_FILE_READ_AT, MPI_File_read_at . 144
| MPI_FILE_READ_AT_ALL, MPI_File_read_at_all 146
| MPI_FILE_SET_ERRHANDLER, MPI_File_set_errhandler 148

iv IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

| MPI_FILE_SET_INFO, MPI_File_set_info . 150
| MPI_FILE_SET_SIZE, MPI_File_set_size . 151
| MPI_FILE_SET_VIEW, MPI_File_set_view . 153
| MPI_FILE_SYNC, MPI_File_sync . 155
| MPI_FILE_WRITE_AT, MPI_File_write_at . 157
| MPI_FILE_WRITE_AT_ALL, MPI_File_write_at_all 159

MPI_FINALIZE, MPI_Finalize . 161
MPI_GATHER, MPI_Gather . 163
MPI_GATHERV, MPI_Gatherv . 165
MPI_GET_COUNT, MPI_Get_count . 167
MPI_GET_ELEMENTS, MPI_Get_elements 168
MPI_GET_PROCESSOR_NAME, MPI_Get_processor_name 170
MPI_GET_VERSION, MPI_Get_version . 171
MPI_GRAPH_CREATE, MPI_Graph_create 172
MPI_GRAPH_GET, MPI_Graph_get . 174
MPI_GRAPH_MAP, MPI_Graph_map . 175
MPI_GRAPH_NEIGHBORS, MPI_Graph_neighbors 177
MPI_GRAPH_NEIGHBORS_COUNT, MPI_Graph_neighbors_count 178
MPI_GRAPHDIMS_GET, MPI_Graphdims_get 179
MPI_GROUP_COMPARE, MPI_Group_compare 180
MPI_GROUP_DIFFERENCE, MPI_Group_difference 181
MPI_GROUP_EXCL, MPI_Group_excl . 182
MPI_GROUP_FREE, MPI_Group_free . 184
MPI_GROUP_INCL, MPI_Group_incl . 185
MPI_GROUP_INTERSECTION, MPI_Group_intersection 187
MPI_GROUP_RANGE_EXCL, MPI_Group_range_excl 188
MPI_GROUP_RANGE_INCL, MPI_Group_range_incl 190
MPI_GROUP_RANK, MPI_Group_rank . 192
MPI_GROUP_SIZE, MPI_Group_size . 193
MPI_GROUP_TRANSLATE_RANKS, MPI_Group_translate_ranks 194
MPI_GROUP_UNION, MPI_Group_union . 195
MPI_IBSEND, MPI_Ibsend . 196

| MPI_INFO_CREATE, MPI_Info_create . 198
| MPI_INFO_DELETE, MPI_Info_delete . 199
| MPI_INFO_DUP, MPI_Info_dup . 200
| MPI_INFO_FREE, MPI_Info_free . 201
| MPI_INFO_GET, MPI_Info_get . 202
| MPI_INFO_GET_NKEYS, MPI_Info_get_nkeys 204
| MPI_INFO_GET_NTHKEY, MPI_Info_get_nthkey 205
| MPI_INFO_GET_VALUELEN, MPI_Info_get_valuelen 207
| MPI_INFO_SET, MPI_Info_set . 209

MPI_INIT, MPI_Init . 211
MPI_INITIALIZED, MPI_Initialized . 213
MPI_INTERCOMM_CREATE, MPI_Intercomm_create 214
MPI_INTERCOMM_MERGE, MPI_Intercomm_merge 216
MPI_IPROBE, MPI_Iprobe . 218
MPI_IRECV, MPI_Irecv . 220
MPI_IRSEND, MPI_Irsend . 222
MPI_ISEND, MPI_Isend . 224
MPI_ISSEND, MPI_Issend . 226
MPI_KEYVAL_CREATE, MPI_Keyval_create 228
MPI_KEYVAL_FREE, MPI_Keyval_free . 230
MPI_OP_CREATE, MPI_Op_create . 231
MPI_OP_FREE, MPI_Op_free . 233

 Contents v

MPI_PACK, MPI_Pack . 234
MPI_PACK_SIZE, MPI_Pack_size . 236
MPI_PCONTROL, MPI_Pcontrol . 237
MPI_PROBE, MPI_Probe . 238
MPI_RECV, MPI_Recv . 240
MPI_RECV_INIT, MPI_Recv_init . 242
MPI_REDUCE, MPI_Reduce . 244
MPI_REDUCE_SCATTER, MPI_Reduce_scatter 246
MPI_REQUEST_FREE, MPI_Request_free 248
MPI_RSEND, MPI_Rsend . 249
MPI_RSEND_INIT, MPI_Rsend_init . 251
MPI_SCAN, MPI_Scan . 253
MPI_SCATTER, MPI_Scatter . 255
MPI_SCATTERV, MPI_Scatterv . 257
MPI_SEND, MPI_Send . 259
MPI_SEND_INIT, MPI_Send_init . 261
MPI_SENDRECV, MPI_Sendrecv . 263
MPI_SENDRECV_REPLACE, MPI_Sendrecv_replace 265
MPI_SSEND, MPI_Ssend . 267
MPI_SSEND_INIT, MPI_Ssend_init . 269
MPI_START, MPI_Start . 271
MPI_STARTALL, MPI_Startall . 272
MPI_TEST, MPI_Test . 274
MPI_TEST_CANCELLED, MPI_Test_cancelled 276
MPI_TESTALL, MPI_Testall . 277
MPI_TESTANY, MPI_Testany . 279
MPI_TESTSOME, MPI_Testsome . 281
MPI_TOPO_TEST, MPI_Topo_test . 283
MPI_TYPE_COMMIT, MPI_Type_commit . 284
MPI_TYPE_CONTIGUOUS, MPI_Type_contiguous 286

| MPI_TYPE_CREATE_DARRAY, MPI_Type_create_darray 288
| MPI_TYPE_CREATE_SUBARRAY, MPI_Type_create_subarray 291

MPI_TYPE_EXTENT, MPI_Type_extent . 293
MPI_TYPE_FREE, MPI_Type_free . 294

| MPI_TYPE_GET_CONTENTS, MPI_Type_get_contents 295
| MPI_TYPE_GET_ENVELOPE, MPI_Type_get_envelope 299

MPI_TYPE_HINDEXED, MPI_Type_hindexed 301
MPI_TYPE_HVECTOR, MPI_Type_hvector 303
MPI_TYPE_INDEXED, MPI_Type_indexed . 305
MPI_TYPE_LB, MPI_Type_lb . 307
MPI_TYPE_SIZE, MPI_Type_size . 308
MPI_TYPE_STRUCT, MPI_Type_struct . 309
MPI_TYPE_UB, MPI_Type_ub . 311
MPI_TYPE_VECTOR, MPI_Type_vector . 312
MPI_UNPACK, MPI_Unpack . 314
MPI_WAIT, MPI_Wait . 316
MPI_WAITALL, MPI_Waitall . 318
MPI_WAITANY, MPI_Waitany . 320
MPI_WAITSOME, MPI_Waitsome . 322
MPI_WTICK, MPI_Wtick . 324
MPI_WTIME, MPI_Wtime . 325

Appendix A. MPI Subroutine Bindings: Quick Reference 327
Bindings for Nonblocking Collective Communication 327

vi IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Bindings for Point-to-Point Communication and Derived Datatypes 329
Bindings for Collective Communication . 335
Bindings for Groups and Communicators . 337
Bindings for Topologies . 339
Bindings for Environment Management . 341
Bindings for Profiling . 342

| Bindings for Files . 343
| Bindings for info Objects . 344

Appendix B. Profiling Message Passing 347
AIX Profiling . 347
MPI Nameshift Profiling . 347
Sample CPU MPI Time Program . 349

Appendix C. MPI Size Limits . 353
MPI Tunables and Limits . 353

Appendix D. Reduction Operations . 355
Predefined Reduction Operations . 355

Reduction Operations - Valid Datatype Arguments
Operations . 355

op Option - Valid Datatypes . 356
Examples . 357

C Example . 357
FORTRAN Example . 357

Appendix E. Parallel Utility Functions . 359
| MP_CHKPT, mp_chkpt . 361

MP_DISABLEINTR, mpc_disableintr . 363
MP_ENABLEINTR, mpc_enableintr . 366
MP_FLUSH, mpc_flush . 369
MP_MARKER, mpc_marker . 372
MP_NLIGHTS, mpc_nlights . 374
MP_QUERYINTR, mpc_queryintr . 376
MP_QUERYINTRDELAY, mpc_queryintrdelay 379
MP_SETINTRDELAY, mpc_setintrdelay . 381
MP_STDOUT_MODE, mpc_stdout_mode . 384
MP_STDOUTMODE_QUERY, mpc_stdoutmode_query 387
mpc_isatty . 390

Appendix F. Tracing Routines . 393
VT_TRC_FLUSH, VT_trc_flush_c . 394
VT_TRC_SET_PARAMS, VT_trc_set_params_c 398
VT_TRC_START, VT_trc_start_c . 403
VT_TRC_STOP, VT_trc_stop_c . 407

Appendix G. Programming Considerations for User Applications in POE 411
MPI Signal-Handling and MPI Threaded Library Considerations 412

Environment Overview . 412
Exit Status . 413
POE Job Step Function . 413
POE Additions To The User Executable . 414
Let POE Handle Signals When Possible . 415
Don't Hard Code File Descriptor Numbers 416

 Contents vii

Termination Of A Parallel Job . 416
Your Program Can't Run As Root . 416
AIX Function Limitations . 416
Shell Execution . 416
Do Not Rewind stdin, stdout Or stderr . 417
Ensuring String Arguments Are Passed To Your Program Correctly 417
Network Tuning Considerations . 417
Standard I/O Requires Special Attention . 418
Reserved Environment Variables . 419
AIX Message Catalog Considerations . 419
Language Bindings . 419

| Available Virtual Memory Segments . 420
| Using the SP Switch Clock as a Time Source 420
| 32-Bit and 64-Bit Support . 421
| Running Applications With Large Numbers of Tasks 421

MPI Signal-Handling Library Considerations 421
POE Gets Control First And Handles Task Initialization 421
Using Message Passing Handlers . 421
POE Additions To The User Executable . 421
Interrupted System Calls . 422
Forks Are Limited . 423

| Checkpoint/Restart Limitations . 424
MPI Threaded Library Considerations . 424

POE Gets Control First And Handles Task Initialization 425
Language Bindings . 425

| MPI-IO Requires GPFS To Be Used Effectively 425
Use of AIX Signals . 425
Limitations In Setting The Thread Stacksize 426
Forks Are Limited . 426
Standard I/O Requires Special Attention . 427
Thread-Safe Libraries . 427
Program And Thread Termination . 427
Other Thread-Specific Considerations . 427

| Support for M:N Threads . 428
Fortran Considerations . 428

Fortran 90 and MPI . 428
Fortran and Threads . 429

Appendix H. Using Signals and the IBM PE Programs 431
Sample Replacement Sleep Program . 431
Sample Replacement Select Program . 431

Appendix I. Predefined Datatypes . 435
Special Purpose . 435
For C Language Bindings . 435
For FORTRAN Language Bindings . 435
For Reduction Functions (C Reduction Types) 436
For Reduction Functions (FORTRAN Reduction Types) 436

| Appendix J. MPI Environment Variables Quick Reference 439

Glossary of Terms and Abbreviations . 441

Index . 449

viii IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 Tables

1. Table of Subroutines . 1
| 2. MPI Error Classes: Threaded and Non-Threaded Libraries 114
| 3. MPI Error Classes: Threaded Libraries Only 115
| 4. Combiners and Constructor Arguments 295
| 5. Combiners and Calls . 299

6. Bindings for Nonblocking Collective Communication 327
7. Bindings for Point-to-Point Communication and Derived Datatypes . . . 329
8. Bindings for Collective Communication 335
9. Bindings for Groups and Communicators 337

10. Bindings for Topologies . 339
11. Bindings for Environment Management 341
12. Bindings for Profiling . 342

| 13. Bindings for MPI I/O . 343
| 14. Bindings for info Objects . 344

15. MPI Eager Limits . 353
| 16. Memory Segments Used By the MPI and LAPI Libraries 420
| 17. How the Clock Source Is Determined . 420
| 18. POE Environment Variables and Command-Line Flags for MPI 439

 Copyright IBM Corp. 1996, 1998 ix

x IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

| � AIX

| � IBM

| � LoadLeveler

| � RS/6000

| � SP

| Adobe, Acrobat, Acrobat Reader, and PostScript are trademarks of Adobe
| Systems, Incorporated.

 Copyright IBM Corp. 1996, 1998 xi

| Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
| Microsoft Corporation in the United States and/or other countries.

| Netscape is a registered trademark of Netscape Communications Corporation in the
| United States and other countries.

| UNIX is a registered trademark in the United States and/or other countries licensed
| exclusively through X/Open Company Limited.

| Other company, product and service names may be the trademarks or service
| marks of others.

xii IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

About This Book

This book lists the subroutines a programmer can use when writing parallel
applications along with the associated parameters, and syntax. The IBM Message
Passing Interface implementation intends to comply with the requirements of the
Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,

| Version 1.1, University of Tennessee, Knoxville, Tennessee, June 6, 1995 and
| MPI-2: Extensions to the Message-Passing Interface, University of Tennessee,
| Knoxville, Tennessee, July 18, 1997. In addition, this book provides brief

introductory information regarding parallel programming.

Who Should Use This Book
This book is intended for experienced programmers who want to write parallel
applications using either the C or Fortran programming languages. Readers of this
book should know C and Fortran and should be familiar with AIX and UNIX
commands, file formats, and special files. They should also be familiar with the
Message Passing Interface (MPI) concepts. In addition, readers should be familiar
with distributed-memory machines.

How This Book Is Organized

Overview of Contents
This book is divided into the following sections:

� Chapter 1, “Table of Subroutines” on page 1 lists the subroutines
alphabetically along with their descriptions, type, syntax and so on.
MPI_SAMPLE is included which is not an MPI function but a brief description of
how each routine is structured.

� Appendix A, “MPI Subroutine Bindings: Quick Reference” on page 327 briefly
lists the subroutines and their arguments. Use it as a quick reference. For
detailed information on the subroutines refer to Chapter 1, “Table of
Subroutines” on page 1.

� Appendix B, “Profiling Message Passing” on page 347 gives information about
the name-shifted interface for Message Passing Interface (MPI).

� Appendix C, “MPI Size Limits” on page 353 gives information about the MPI
size limits.

� Appendix D, “Reduction Operations” on page 355 gives additional information
about reduction functions.

� Appendix E, “Parallel Utility Functions” on page 359 contains the syntax man
pages of the user-callable functions that take advantage of the Parallel
Operating Environment (POE).

� Appendix F, “Tracing Routines” on page 393 contains the syntax man pages
for modifying trace generation for the visualization tool.

� Appendix G, “Programming Considerations for User Applications in POE” on
page 411 contains various information for user applications written to run under

 Copyright IBM Corp. 1996, 1998 xiii

the IBM Parallel Environment for AIX. This includes specific considerations for
Fortran, threaded, and signal-handling library applications.

� Appendix H, “Using Signals and the IBM PE Programs” on page 431 contains
information for understanding how the IBM Parallel Environment for AIX (PE)
calls use timer signals to manage message traffic. Sample programs are
included. This section applies to the signal-handling version of the Message
Passing library.

� Appendix I, “Predefined Datatypes” on page 435 contains a list of the various
MPI predefined datatypes that you can use with the signal-handling library.

| � Appendix J, “MPI Environment Variables Quick Reference” on page 439 lists
| and defines the environment variables and flags for the Message Passing
| Interface.

 Typographic Conventions
This book uses the following typographic conventions:

Type Style Used For

Bold Bold words or characters represent system elements that you must
use literally, such as command names, program names, file names,
flag names, and path names.

Bold words also indicate the first use of a term included in the
glossary.

Italic Italic words or characters represent variable values that you must
supply.

Italics are also used for book titles and for general emphasis in
text.

Constant width Examples and information that the system displays appear in
constant width typeface.

How Fortran and C Are Documented
C is case-sensitive. Fortran is not case-sensitive. This means that unless you use
the XLF complier option -qmixed , case does not matter in Fortran subroutine
names. However, to ensure MPI standard compliant code, it is suggested that all
Fortran subroutine names use uppercase. The C subroutines must be entered
exactly as specified.

For the purpose of distinguishing between the C and Fortran syntax in this
document, C is documented in mixed case. Fortran subroutines are documented in
all upper case and are referred to as Fortran throughout the book.

For both C and Fortran, the Message Passing Interface (MPI) uses the same
spelling for function names. The only distinction is in the capitalization. For the
purpose of clarity, when referring to a function without specifying C or Fortran
version, the function is in all uppercase.

xiv IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 Related Publications

IBM Parallel Environment for AIX Publications
� IBM Parallel Environment for AIX: General Information, (GC23-3906)

� IBM Parallel Environment for AIX: Hitchhiker's Guide, (GC23-3895)

� IBM Parallel Environment for AIX: Installation, (GC28-1981)

� IBM Parallel Environment for AIX: Messages, (GC28-1982)

� IBM Parallel Environment for AIX: Operation and Use, Volume 1, (SC28-1979)

| � IBM Parallel Environment for AIX: Operation and Use, Volume 2, (SC28-1980)

| – Part 1: Debugging and Visualizing

| – Part 2: Profiling

� IBM Parallel Environment for AIX: MPI Programming and Subroutine
Reference, (GC23-3894)

� IBM Parallel Environment for AIX: MPL Programming and Subroutine
Reference, (GC23-3893)

� IBM Parallel Environment for AIX: Licensed Program Specifications,
(GC23-3896)

As an alternative to ordering the individual books, you can use SBOF-8588 to order
the entire IBM Parallel Environment for AIX library.

Related IBM Publications
� IBM AIX Technical References, (SBOF-1852)

� IBM XL Fortran Compiler for AIX Language Reference, (SC09-1611)

Related Non-IBM Publications
� Snir, M., Otto, Steve W., Huss-Lederman, Steven, Walker, David W., Dongarra,

Jack, MPI: The Complete Reference, The MIT Press, 1995, ISBN
0-262-69184-1.

� Gropp, W., Lusk, E., Skejellum, A., Using MPI, The MIT Press, 1994.

As an alternative, you can use SR28-5757-00 to order this book through your
IBM representative or IBM branch office serving your locality.

| � Koelbel, Charles H., David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr.,
| and Mary E. Zosel, The High Performance Fortran Handbook, The MIT Press,
| 1993.

� Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard, Version 1.1, University of Tennessee, Knoxville, Tennessee, June 6,
1995.

| � Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing
| Interface, University of Tennessee, Knoxville, Tennessee, July 18, 1997.

Permission to copy without fee all or part of Message Passing Interface Forum
material is granted, provided the University of Tennessee copyright notice and the
title of the document appear, and notice is given that copying is by permission of

 About This Book xv

the University of Tennessee. 1993, 1997 University of Tennessee, Knoxville,
Tennessee.

| For more information about the Message Passing Interface Forum and the MPI
| standards documents, see:

| http://www.mpi-forum.org

National Language Support
For National Language Support (NLS), all PE components and tools display
messages located in externalized message catalogs. English versions of the
message catalogs are shipped with the PE program product, but your site may be
using its own translated message catalogs. The AIX environment variable
NLSPATH is used by the various PE components to find the appropriate message
catalog. NLSPATH specifies a list of directories to search for message catalogs.
The directories are searched, in the order listed, to locate the message catalog. In
resolving the path to the message catalog, NLSPATH is affected by the values of
the environment variables LC_MESSAGES and LANG . If you get an error saying
that a message catalog is not found, and want the default message catalog:

ENTER export NLSPATH=/usr/lib/nls/msg/%L/%N

 export LANG=C

The PE message catalogs are in English, and are located in the following
directories:

 /usr/lib/nls/msg/C
 /usr/lib/nls/msg/En_US
 /usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG . For
additional information on NLS and message catalogs, see IBM Parallel Environment
for AIX: Messages and IBM AIX Version 4 General Programming Concepts: Writing
and Debugging Programs

Accessing Online Information
| In order to use the PE man pages or access the PE online (HTML) publications,
| the ppe.pedocs file set must first be installed. To view the PE online publications,
| you also need access to an HTML document browser such as Netscape. An index
| to the HTML files that are provided with the ppe.pedocs file set is installed in the
| /usr/lpp/ppe.pedocs/html directory.

| Online Information Resources
| If you have a question about the SP, PSSP, or a related product, the following
| online information resources make it easy to find the information:

| � Access the new SP Resource Center by issuing the command:
| /usr/lpp/ssp/bin/resource_center

| Note that the ssp.resctr fileset must be installed before you can do this.

xvi IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

| If you have the Resource Center on CD-ROM, see the readme.txt file for
| information on how to run it.

| � Access the RS/6000 Web Site at: http://www.rs6000.ibm.com .

| Getting the Books and the Examples Online
| All of the PE books are available in Portable Document Format (PDF). They are
| included on the product media (tape or CD-ROM), and are part of the ppe.pedocs
| file set. If you have a question about the location of the PE softcopy books, see
| your system administrator.

| To view the PE PDF publications, you need access to the Adobe Acrobat Reader
| 3.0.1. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack, or you
| can download it for free from Adobe's site:

| http://www.adobe.com

| As stated above, you can also view or download the PE books from the IBM
| RS/6000 Web site at:

| http://www.rs6000.ibm.com

| At the time this manual was published, the full path was:

| http://www.rs6000.ibm.com/resource/aix_resource/sp_books

| However, note that the structure of the RS/6000 Web site can change over time.

| What's New in PE 2.4?

| AIX 4.3 Support
| With PE 2.4, POE supports user programs developed with AIX 4.3. It also supports
| programs developed with AIX 4.2, intended for execution on AIX 4.3.

| Parallel Checkpoint/Restart
| This release of PE provides a mechanism for temporarily saving the state of a
| parallel program at a specific point (checkpointing), and then later restarting it from
| the saved state. When a program is checkpointed, the checkpointing function
| captures the state of the application as well as all data, and saves it in a file. When
| the program is restarted, the restart function retrieves the application information
| from the file it saved, and the program then starts running again from the place at
| which it was saved.

| Enhanced Job Management Function
| In earlier releases of PE, POE relied on the SP Resource Manager for performing
| job management functions. These functions included keeping track of which nodes
| were available or allocated and loading the switch tables for programs performing
| User Space communications. LoadLeveler, which had only been used for batch job
| submissions in the past, is now replacing the Resource Manager as the job
| management system for PE. One notable effect of this change is that LoadLeveler
| now allows you to run more than one User Space task per node.

 About This Book xvii

| MPI I/O
| With PE 2.4, the MPI library now includes support for a subset of MPI I/O,
| described by Chapter 9 of the MPI-2 document: MPI-2: Extensions to the
| Message-Passing Interface, Version 2.0. MPI-I/O provides a common programming
| interface, improving the portability of code that involves parallel I/O.

| 1024 Task Support
| This release of PE supports a maximum of 1024 tasks per User Space MPI/LAPI
| job, as opposed to the previous release, which supported a maximum of 512 tasks.
| For jobs using the IP version of the MPI library, PE supports a maximum of 2048
| tasks.

| Enhanced Compiler Support
| In this release, POE is adding support for the following compilers:

| � C
| � C++
| � Fortran Version 5
| � xlhpf

| Xprofiler Enhancements
| This release includes a variety of enhancements to Xprofiler, including:

| � Save Configuration and Load Configuration options for saving the names of
| functions, currently in the display, and reloading them later in order to
| reconstruct the function call tree.

| � An Undo option that lets you undo operations that involve adding or removing
| nodes or arcs from the function call tree.

| Message Queue Facility
| The pedb debugger now includes a message queue facility. Part of the pedb
| debugger interface, the message queue viewing feature can help you debug
| Message Passing Interface (MPI) applications by showing internal message request
| queue information. With this feature, you can view:

| � A summary of the number of active messages for each task in the application.
| You can select criteria for the summary information based on message type
| and source, destination, and tag filters.

| � Message queue information for a specific task.

| � Detailed information about a specific message.

xviii IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Chapter 1. Table of Subroutines

Table 1 lists the subroutines in alphabetical order. Refer to the appropriate section
in Chapter 2 for information related to subroutine purpose, syntax, and other
information.

Table 1 (Page 1 of 10). Table of Subroutines

Subroutine C/FORTRAN Page Type Description

MPE_Iallgather

MPE_IALLGATHER

14 Nonblocking
Collective
Communication

Nonblocking allgather operation.

MPE_Iallgatherv

MPE_IALLGATHERV

16 Nonblocking
Collective
Communication

Nonblocking allgatherv operation.

MPE_Iallreduce

MPE_IALLREDUCE

18 Nonblocking
Collective
Communication

Nonblocking allreduce operation.

MPE_Ialltoall

MPE_IALLTOALL

20 Nonblocking
Collective
Communication

Nonblocking alltoall operation.

MPE_Ialltoallv

MPE_IALLTOALLV

22 Nonblocking
Collective
Communication

Nonblocking alltoallv operation.

MPE_Ibarrier

MPE_IBARRIER

25 Nonblocking
Collective
Communication

Nonblocking barrier operation.

MPE_Ibcast

MPE_IBCAST

27 Nonblocking
Collective
Communication

Nonblocking broadcast operation.

MPE_Igather

MPE_IGATHER

29 Nonblocking
Collective
Communication

Nonblocking gather operation.

MPE_Igatherv

MPE_IGATHERV

32 Nonblocking
Collective
Communication

Nonblocking gatherv operation.

MPE_Ireduce

MPE_IREDUCE

35 Nonblocking
Collective
Communication

Nonblocking reduce operation.

MPE_Ireduce_scatter

MPE_IREDUCE_SCATTER

37 Nonblocking
Collective
Communication

Nonblocking reduce_scatter operation.

MPE_Iscan

MPE_ISCAN

39 Nonblocking
Collective
Communication

Nonblocking scan operation.

MPE_Iscatter

MPE_ISCATTER

41 Nonblocking
Collective
Communication

Nonblocking scatter operation.

MPE_Iscatterv

MPE_ISCATTERV

44 Nonblocking
Collective
Communication

Nonblocking scatterv operation.

 Copyright IBM Corp. 1996, 1998 1

Table 1 (Page 2 of 10). Table of Subroutines

Subroutine C/FORTRAN Page Type Description

MPI_Abort

MPI_ABORT

47 Environment
Management

Forces all tasks of an MPI job to
terminate.

MPI_Address

MPI_ADDRESS

48 Derived Datatype Returns address of a location in
memory.

MPI_Allgather

MPI_ALLGATHER

49 Collective
Communication

Collects messages from each task and
distributes the resulting message to
each.

MPI_Allgatherv

MPI_ALLGATHERV

51 Collective
Communication

Collects messages from each task and
distributes the resulting message to all
tasks. Messages can have variable sizes
and displacements.

MPI_Allreduce

MPI_ALLREDUCE

53 Collective
Communication

Applies a reduction operation.

MPI_Alltoall

MPI_ALLTOALL

55 Collective
Communication

Sends a distinct message from each
task to every task.

MPI_Alltoallv

MPI_ALLTOALLV

57 Collective
Communication

Sends a distinct message from each
task to every task. Messages can have
different sizes and displacements.

MPI_Attr_delete

MPI_ATTR_DELETE

59 Communicator Removes an attribute value from a
communicator.

MPI_Attr_get

MPI_ATTR_GET

60 Communicator Retrieves an attribute value from a
communicator.

MPI_Attr_put

MPI_ATTR_PUT

62 Communicator Associates an attribute value with a
communicator.

MPI_Barrier

MPI_BARRIER

64 Collective
Communication

Blocks each task until all tasks have
called it.

MPI_Bcast

MPI_BCAST

65 Collective
Communication

Broadcasts a message from root to all
tasks in the group.

MPI_Bsend

MPI_BSEND

67 Point-to-Point Blocking buffered mode send.

MPI_Bsend_init

MPI_BSEND_INIT

69 Point-to-Point Creates a persistent buffered mode send
request.

MPI_Buffer_attach

MPI_BUFFER_ATTACH

71 Point-to-Point Provides MPI with a message buffer for
sending.

MPI_Buffer_detach

MPI_BUFFER_DETACH

72 Point-to-Point Detaches the current buffer.

MPI_Cancel

MPI_CANCEL

74 Point-to-Point

| File

Marks a nonblocking operation for
cancellation.

MPI_Cart_coords

MPI_CART_COORDS

76 Topology Translates task rank in a communicator
into cartesian task coordinates.

2 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Table 1 (Page 3 of 10). Table of Subroutines

Subroutine C/FORTRAN Page Type Description

MPI_Cart_create

MPI_CART_CREATE

78 Topology Creates a communicator containing
topology information.

MPI_Cart_get

MPI_CART_GET

80 Topology Retrieves cartesian topology information
from a communicator.

MPI_Cart_map

MPI_CART_MAP

82 Topology Computes placement of tasks on the
physical machine.

MPI_Cart_rank

MPI_CART_RANK

84 Topology Translates task coordinates into a task
rank.

MPI_Cart_shift

MPI_CART_SHIFT

86 Topology Returns shifted source and destination
ranks for a task.

MPI_Cart_sub

MPI_CART_SUB

88 Topology Partitions a cartesian communicator into
lower-dimensional subgroups.

MPI_Cartdim_get

MPI_CARTDIM_GET

90 Topology Retrieves the number of cartesian
dimensions from a communicator.

MPI_Comm_compare

MPI_COMM_COMPARE

91 Communicator Compares the groups and contexts of
two communicators.

MPI_Comm_create

MPI_COMM_CREATE

92 Communicator Creates a new intracommunicator with a
given group.

MPI_Comm_dup

MPI_COMM_DUP

94 Communicator Creates a new communicator that is a
duplicate of an existing communicator.

MPI_Comm_free

MPI_COMM_FREE

96 Communicator Marks a communicator for deallocation.

MPI_Comm_group

MPI_COMM_GROUP

97 Task Group Returns the group handle associated
with a communicator.

MPI_Comm_rank

MPI_COMM_RANK

98 Communicator Returns the rank of the local task in the
group associated with a communicator.

MPI_Comm_remote_group

MPI_COMM_REMOTE_GROUP

99 Communicator Returns the handle of the remote group
of an intercommunicator.

MPI_Comm_remote_size

MPI_COMM_REMOTE_SIZE

100 Communicator Returns the size of the remote group of
an intercommunicator.

MPI_Comm_size

MPI_COMM_SIZE

101 Communicator Returns the size of the group associated
with a communicator.

MPI_Comm_split

MPI_COMM_SPLIT

103 Communicator Splits a communicator into multiple
communicators based on color and key .

MPI_Comm_test_inter

MPI_COMM_TEST_INTER

105 Communicator Returns the type of a communicator
(intra or inter).

MPI_Dims_create

MPI_DIMS_CREATE

106 Topology Defines a cartesian grid to balance
tasks.

 Chapter 1. Table of Subroutines 3

Table 1 (Page 4 of 10). Table of Subroutines

Subroutine C/FORTRAN Page Type Description

MPI_Errorhandler_create

MPI_ERRORHANDLER_CREATE

108 Environment
Management

Registers a user defined error handler.

MPI_Errorhandler_free

MPI_ERRORHANDLER_FREE

110 Environment
Management

Marks an error handler for deallocation.

MPI_Errorhandler_get

MPI_ERRORHANDLER_GET

111 Environment
Management

Gets an error handler associated with a
communicator.

MPI_Errorhandler_set

MPI_ERRORHANDLER_SET

112 Environment
Management

Associates a new error handler with a
communicator.

MPI_Error_class

MPI_ERROR_CLASS

114 Environment
Management

Returns the error class for the
corresponding error code.

MPI_Error_string

MPI_ERROR_STRING

117 Environment
Management

Returns the error string for a given error
code.

| MPI_File_close

| MPI_FILE_CLOSE

| 118| File| Closes a file.

| MPI_File_create_errhandler

| MPI_FILE_CREATE_ERRHANDLER

| 120| Environment
| Management
| Registers a user-defined error handler
| that you can associate with an open file.

| MPI_File_delete

| MPI_FILE_DELETE

| 122| File| Deletes a file after pending operations to
| the file complete.

| MPI_File_get_amode

| MPI_FILE_GET_AMODE

| 124| File| Retrieves the access mode specified
| when the file was opened.

| MPI_File_get_atomicity

| MPI_FILE_GET_ATOMICITY

| 125| File| Retrieves the current atomicity mode in
| which the file is accessed

| MPI_File_get_errhandler

| MPI_FILE_GET_ERRHANDLER

| 126| Environment
| Management
| Retrieves the error handler currently
| associated with a file handle.

| MPI_File_get_group

| MPI_FILE_GET_GROUP

| 127| File| Retrieves the group of tasks that opened
| the file.

| MPI_File_get_info

| MPI_FILE_GET_INFO

| 128| File| Returns a new info object identifying the
| hints associated with a file.

| MPI_File_get_size

| MPI_FILE_GET_SIZE

| 130| File| Retrieves the current file size.

| MPI_File_get_view

| MPI_FILE_GET_VIEW

| 132| File| Retrieves the current file view.

| MPI_File_iread_at

| MPI_FILE_IREAD_AT

| 134| File| Nonblocking read operation using an
| explicit offset.

| MPI_File_iwrite_at

| MPI_FILE_IWRITE_AT

| 137| File| Nonblocking write operation using an
| explicit offset.

| MPI_File_open

| MPI_FILE_OPEN

| 140| File| Opens a file.

4 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Table 1 (Page 5 of 10). Table of Subroutines

Subroutine C/FORTRAN Page Type Description

| MPI_File_read_at

| MPI_FILE_READ_AT

| 144| File| Nonblocking read operation using an
| explicit offset.

| MPI_File_read_at_all

| MPI_FILE_READ_AT_ALL

| 146| File| Collective version of
| MPI_FILE_READ_AT.

| MPI_File_set_errhandler

| MPI_FILE_SET_ERRHANDLER

| 148| Environment
| Management
| Associates a new error handler with a
| file.

| MPI_File_set_info

| MPI_FILE_SET_INFO

| 150| File| Specifies new hints for an open file.

| MPI_File_set_size

| MPI_FILE_SET_SIZE

| 151| File| Expands or truncates an open file.

| MPI_File_set_view

| MPI_FILE_SET_VIEW

| 153| File| Associates a new view with an open file.

| MPI_File_sync

| MPI_FILE_SYNC

| 155| File| Commits file updates of an open file to
| storage device(s).

| MPI_File_write_at

| MPI_FILE_WRITE_AT

| 157| File| Nonblocking write operation using an
| explicit offset.

| MPI_File_write_at_all

| MPI_FILE_WRITE_AT_ALL

| 159| File| Collective version of
| MPI_FILE_WRITE_AT.

MPI_Finalize

MPI_FINALIZE

161 Environment
Management

Terminates all MPI processing.

MPI_Gather

MPI_GATHER

163 Collective
Communication

Collects individual messages from each
task in a group at the root task.

MPI_Gatherv

MPI_GATHERV

165 Collective
Communication

Collects individual messages from each
task in comm at the root task.
Messages can have different sizes and
displacements.

MPI_Get_count

MPI_GET_COUNT

167 Point-to-Point Returns the number of elements in a
message.

MPI_Get_elements

MPI_GET_ELEMENTS

168 Derived Datatype Returns the number of basic elements in
a message.

MPI_Get_processor_name

MPI_GET_PROCESSOR_NAME

170 Environment
Management

Returns the name of the local processor.

MPI_Get_version

MPI_GET_VERSION

171 Environment
Management

Returns the version of MPI standard
supported.

MPI_Graph_create

MPI_GRAPH_CREATE

172 Topology Creates a new communicator containing
graph topology information.

MPI_Graph_get

MPI_GRAPH_GET

174 Topology Retrieves graph topology information
from a communicator.

MPI_Graph_map

MPI_GRAPH_MAP

82 Topology Computes placement of tasks on the
physical machine.

 Chapter 1. Table of Subroutines 5

Table 1 (Page 6 of 10). Table of Subroutines

Subroutine C/FORTRAN Page Type Description

MPI_Graph_neighbors

MPI_GRAPH_NEIGHBORS

177 Topology Returns the neighbors of the given task.

MPI_Graph_neighbors_count

MPI_GRAPH_NEIGHBORS_COUNT

178 Topology Returns the number of neighbors of the
given task.

MPI_Graphdims_get

MPI_GRAPHDIMS_GET

179 Topology Retrieves graph topology information
from a communicator.

MPI_Group_compare

MPI_GROUP_COMPARE

180 Task Group Compares the contents of two task
groups.

MPI_Group_difference

MPI_GROUP_DIFFERENCE

181 Task Group Creates a new group that is the
difference of two existing groups.

MPI_Group_excl

MPI_GROUP_EXCL

182 Task Group Removes selected tasks from an
existing group to create a new group.

MPI_Group_free

MPI_GROUP_FREE

184 Task Group Marks a group for deallocation.

MPI_Group_incl

MPI_GROUP_INCL

185 Task Group Creates a new group consisting of
selected tasks from an existing group.

MPI_Group_intersection

MPI_GROUP_INTERSECTION

187 Task Group Creates a new group that is the
intersection of two existing groups.

MPI_Group_range_excl

MPI_GROUP_RANGE_EXCL

188 Task Group Creates a new group by excluding
selected tasks of an existing group.

MPI_Group_range_incl

MPI_GROUP_RANGE_INCL

190 Task Group Creates a new group consisting of
selected ranges of tasks from an
existing group.

MPI_Group_rank

MPI_GROUP_RANK

192 Task Group Returns the rank of the local task with
respect to group.

MPI_Group_size

MPI_GROUP_SIZE

193 Task Group Returns the number of tasks in a group.

MPI_Group_translate_ranks

MPI_GROUP_TRANSLATE_RANKS

194 Task Group Converts task ranks of one group into
ranks of another group.

MPI_Group_union

MPI_GROUP_UNION

195 Task Group Creates a new group that is the union of
two existing groups.

MPI_Ibsend

MPI_IBSEND

196 Point-to-Point Nonblocking buffered send.

| MPI_Info_create

| MPI_INFO_CREATE

| 198| Info| Creates a new empty info object.

| MPI_Info_delete

| MPI_INFO_DELETE

| 199| Info| Deletes a (key , value) pair from an info
| object.

| MPI_Info_dup

| MPI_INFO_DUP

| 200| Info| Duplicates an info object.

6 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Table 1 (Page 7 of 10). Table of Subroutines

Subroutine C/FORTRAN Page Type Description

| MPI_Info_free

| MPI_INFO_FREE

| 201| Info| Frees an info object and sets its handle
| to MPI_INFO_NULL.

| MPI_Info_get

| MPI_INFO_GET

| 202| Info| Retrieves the value associated with key
| in an info object.

| MPI_Info_get_nkeys

| MPI_INFO_GET_NKEYS

| 204| Info| Returns the number of keys defined in
| an info object.

| MPI_Info_get_nthkey

| MPI_INFO_GET_NTHKEY

| 205| Info| Retrieves the nth key defined in an info
| object.

| MPI_Info_get_valuelen

| MPI_INFO_GET_VALUELEN

| 207| Info| Retrieves the length of the value
| associated with a key of an info object.

| MPI_Info_set

| MPI_INFO_SET

| 209| Info| Adds a pair (key , value) to an info
| object.

MPI_Init

MPI_INIT

211 Environment
Management

Initializes MPI.

MPI_Initialized

MPI_INITIALIZED

213 Environment
Management

Determines if MPI is initialized.

MPI_Intercomm_create

MPI_INTERCOM_CREATE

214 Communicator Returns the handle of the remote group
of an intercommunicator.

MPI_Intercomm_merge

MPI_INTERCOMM_MERGE

216 Communicator Creates an intracommunicator by
merging the local and the remote groups
of an intercommunicator.

MPI_Iprobe

MPI_IPROBE

218 Point-to-Point Checks if a message matching source ,
tag , and comm has arrived.

MPI_Irecv

MPI_IRECV

220 Point-to-Point Nonblocking receive.

MPI_Irsend

MPI_IRSEND

222 Point-to-Point Nonblocking ready send.

MPI_Isend

MPI_ISEND

224 Point-to-Point Nonblocking standard mode send.

MPI_Issend

MPI_ISSEND

226 Point-to-Point Nonblocking synchronous mode send.

MPI_Keyval_create

MPI_KEYVAL_CREATE

228 Communicator Generates a new attribute key.

MPI_Keyval_free

MPI_KEYVAL_FREE

230 Communicator Marks an attribute key for deallocation.

MPI_Op_create

MPI_OP_CREATE

231 Collective
Communication

Binds a user defined reduction operation
to an op handle.

MPI_Op_free

MPI_OP_FREE

233 Collective
Communication

Marks a user defined reduction
operation for deallocation.

 Chapter 1. Table of Subroutines 7

Table 1 (Page 8 of 10). Table of Subroutines

Subroutine C/FORTRAN Page Type Description

MPI_Pack

MPI_PACK

234 Derived Datatype Packs the message in the specified
send buffer into the specified buffer
space.

MPI_Pack_size

MPI_PACK_SIZE

236 Dervived
Datatype

Returns the number of bytes required to
hold the data.

MPI_Pcontrol

MPI_PCONTROL

237 Environment
Management

Provides profile control.

MPI_Probe

MPI_PROBE

238 Point-to-Point Waits until a message matching source ,
tag , and comm arrives.

MPI_Recv

MPI_RECV

240 Point-to-Point Blocking receive

MPI_Recv_init

MPI_RECV_INIT

242 Point-to-Point Creates a persistent receive request.

MPI_Reduce

MPI_REDUCE

244 Collective
Communication

Reduces tasks specified and places the
result in recvbuf on root .

MPI_Reduce_scatter

MPI_REDUCE_SCATTER

246 Collective
Communication

Applies a reduction operation to the
vector sendbuf over the set of tasks
specified by comm and scatters the
result according to the values in
recvcounts .

MPI_Request_free

MPI_REQUEST_FREE

248 Point-to-Point Marks a request for deallocation.

MPI_Rsend

MPI_RSEND

249 Point-to-Point Blocking ready mode send.

MPI_Rsend_init

MPI_RSEND_INIT

251 Point-to-Point Creates a persistent ready mode send
request.

MPI_Sample

MPI_SAMPLE

12 Sample This is not an MPI function but a brief
description of how each routine is
structured.

MPI_Scan

MPI_SCAN

253 Collective
Communication

Performs a parallel prefix reduction on
data distributed across a group.

MPI_Scatter

MPI_SCATTER

255 Collective
Communication

Distributes individual messages from
root to each task in comm .

MPI_Scatterv

MPI_SCATTERV

257 Collective
Communication

Distributes individual messages from
root to each task in comm . Messages
can have different sizes and
displacements.

MPI_Send

MPI_SEND

259 Point-to-Point Blocking standard mode send.

MPI_Send_init

MPI_SEND_INIT

261 Point-to-Point Creates a persistent standard mode
send request.

8 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Table 1 (Page 9 of 10). Table of Subroutines

Subroutine C/FORTRAN Page Type Description

MPI_Sendrecv

MPI_SENDRECV

263 Point-to-Point A blocking send and receive operation.

MPI_Sendrecv_replace

MPI_SENDRECV_REPLACE

265 Point-to-Point Blocking send and receive operation
using a common buffer.

MPI_Ssend

MPI_SSEND

267 Point-to-Point Blocking synchronous mode send.

MPI_Ssend_init

MPI_SSEND_INIT

269 Point-to-Point Creates a persistent synchronous mode
send request.

MPI_Start

MPI_START

271 Point-to-Point Activates a persistent request operation.

MPI_Startall

MPI_STARTALL

272 Point-to-Point Activates a collection of persistent
request operations.

MPI_Test

MPI_TEST

274 Point-to-Point

| File

Checks to see if a nonblocking operation
has completed.

MPI_Test_cancelled

MPI_TEST_CANCELLED

276 Point-to-Point

| File

Tests whether a nonblocking operation
was cancelled.

MPI_Testall

MPI_TESTALL

277 Point-to-Point

| File

Tests a collection of nonblocking
operations for completion.

MPI_Testany

MPI_TESTANY

279 Point-to-Point

| File

Tests for the completion of any specified
| nonblocking operation.

MPI_Testsome

MPI_TESTSOME

281 Point-to-Point

| File

Tests a collection of nonblocking
operations for completion.

MPI_Topo_test

MPI_TOPO_TEST

283 Topology Returns the type of virtual topology
associated with a communicator.

MPI_Type_commit

MPI_TYPE_COMMIT

284 Derived Datatype Makes a datatype ready for use in
communications.

MPI_Type_contiguous

MPI_TYPE_CONTIGUOUS

286 Derived Datatype Returns a new datatype that represents
the concatenation of count instances of
oldtype .

| MPI_Type_create_darray

| MPI_TYPE_CREATE_DARRAY

| 288| Derived Datatype| Generates the datatypes corresponding
| to an HPF-like distribution of an
| ndims -dimensional array of oldtype
| elements onto an ndims -dimensional
| grid of logical tasks.

| MPI_Type_create_subarray

| MPI_TYPE_CREATE_SUBARRAY

| 291| Derived Datatype| Returns a new datatype that represents
| an ndims -dimensional subarray of an
| ndims -dimensional array.

MPI_Type_extent

MPI_TYPE_EXTENT

293 Derived Datatype Returns the extent of any defined
datatype.

MPI_Type_free

MPI_TYPE_FREE

294 Derived Datatype| Marks a derived datatype for
| deallocation and sets its handle to
| MPI_DATATYPE_NULL.

 Chapter 1. Table of Subroutines 9

Table 1 (Page 10 of 10). Table of Subroutines

Subroutine C/FORTRAN Page Type Description

| MPI_Type_get_contents

| MPI_TYPE_GET_CONTENTS

| 295| Derived Datatype| Obtains the arguments used in the
| creation of the datatype.

| MPI_Type_get_envelope

| MPI_TYPE_GET_ENVELOPE

| 299| Derived Datatype| Determines the constructor that was
| used to create the datatype.

MPI_Type_hindexed

MPI_TYPE_HINDEXED

301 Derived Datatype Returns a new datatype that represents
count distinct blocks with offsets
expressed in bytes.

MPI_Type_hvector

MPI_TYPE_HVECTOR

303 Derived Datatype Returns a new datatype of count blocks
with stride expressed in bytes.

MPI_Type_indexed

MPI_TYPE_INDEXED

305 Derived Datatype Returns a new datatype that represents
count blocks with stride in terms of
defining type.

MPI_Type_lb

MPI_TYPE_LB

307 Derived Datatype Returns the lower bound of a datatype.

MPI_Type_size

MPI_TYPE_SIZE

308 Derived Datatype Returns the number of bytes
represented by any defined datatype.

MPI_Type_struct

MPI_TYPE_STRUCT

309 Derived Datatype Returns a new datatype that represents
count blocks each with a distinct format
and offset.

MPI_Type_ub

MPI_TYPE_UB

311 Derived Datatype Returns the upper bound of a datatype.

MPI_Type_vector

MPI_TYPE_VECTOR

312 Derived Datatype Returns a new datatype that represents
equally spaced blocks of replicated data.

MPI_Unpack

MPI_UNPACK

314 Derived Datatype Unpacks the message into the specified
receive buffer from the specified packed
buffer.

MPI_Wait

MPI_WAIT

316 Point-to-Point

| File

Waits for a nonblocking operation to
complete.

MPI_Waitall

MPI_WAITALL

318 Point-to-Point

| File

Waits for a collection of nonblocking
operations to complete.

MPI_Waitany

MPI_WAITANY

320 Point-to-Point

| File

Waits for any specified nonblocking
operation to complete.

MPI_Waitsome

MPI_WAITSOME

322 Point-to-Point

| File

Waits for at least one of a list of
nonblocking operations to complete.

MPI_Wtick

MPI_WTICK

324 Environment
Management

Returns the resolution of MPI_Wtime in
seconds.

MPI_Wtime

MPI_WTIME

325 Environment
Management

Returns the current value of time as a
floating point value.

10 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Chapter 2. Descriptions of Subroutines

This chapter includes descriptions of the subroutines available for parallel
programming. The subroutines are listed in alphabetical order. For each subroutine,
a purpose, C synopsis, Fortran synopsis, description, notes, and error conditions
are provided. Review the following sample subroutine before proceeding to better
understand how the subroutine descriptions are structured.

 Copyright IBM Corp. 1996, 1998 11

 A_SAMPLE

 A_SAMPLE, A_Sample

 Purpose
Shows how the subroutines described in this book are structured.

 C Synopsis
Header file mpi.h supplies ANSI-C prototypes for every function described in the
message passing subroutine section of this manual.

#include <mpi.h>
int A_Sample (one or more parameters);

In the C prototype, a declaration of void * indicates that a pointer to any datatype is
allowable.

 Fortran Synopsis
include 'mpif.h'
A_SAMPLE (ONE OR MORE PARAMETERS);

In the Fortran routines, formal parameters are described using a subroutine
prototype format, even though Fortran does not support prototyping. The term
CHOICE indicates that any Fortran datatype is valid.

 Parameters
| Argument or parameter definitions appear below:

parameter1 parameter description (type)

...

parameter4 parameter description (type)

Parameter types:

IN - call uses but does not update an argument
OUT - call returns information via an argument but does not
use its input value
INOUT - call uses and updates an argument

 Description
This section contains a more detailed description of the subroutine or function.

 Notes
If applicable, this section contains notes about the IBM MPI implementation and its
relationship to the requirements of the MPI Standard. The IBM implementation
intends to comply fully with the requirements of the MPI Standard. There are
issues, however, which the Standard leaves open to the implementation's choice.

12 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 A_SAMPLE

 Errors
| For non-file-handle errors, a single list appears here.

| For errors on a file handle, up to 3 lists appear:

| � Fatal Errors:

| Non-recoverable errors are listed here.

| � Returning Errors (MPI Error Class):

| Errors that by default return an error code to the caller appear here. These are
| normally recoverable errors and the error class is specified to allow you to
| identify the failure cause.

| � Errors Returned By Completion Routine (MPI Error Class):

| Errors that by default return an error code to the caller at one of the WAIT or
| TEST calls appear here. These are normally recoverable errors and the error
| class is specified to allow you to identify the failure cause.

In almost every routine, the C version is invoked as a function returning integer. In
the Fortran version, the routine is called as a subroutine; that is, it has no return
value. The Fortran version includes a return code parameter IERROR as the last
parameter.

 Related Information
This section contains a list of related functions or routines in this book.

For both C and Fortran, the Message-Passing Interface (MPI) uses the same
spelling for function names. The only distinction is the capitalization. For the
purpose of clarity, when referring to a function without specifying Fortran or C
version, all uppercase letters are used.

Fortran refers to Fortran 77 (F77) bindings, which are officially supported for MPI.
However, F77 bindings for MPI can be used by Fortran 90. Fortran 90 and High
Performance Fortran (HPF) offer array section and assumed shape arrays as
parameters on calls. These are not safe with MPI.

 Chapter 2. Descriptions of Subroutines 13

 MPE_IALLGATHER

 MPE_IALLGATHER, MPE_Iallgather

 Purpose
Performs a nonblocking allgather operation.

 C Synopsis
#include <mpi.h>
int MPE_Iallgather(void\ sendbuf,int sendcount,MPI_Datatype sendtype,

void\ recvbuf,int recvcount,MPI_Datatype recvtype,MPI_Comm comm,
 MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_IALLGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,
INTEGER REQUEST,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

sendcount is the number of elements in the send buffer (integer) (IN)

sendtype is the datatype of the send buffer elements (handle) (IN)

recvbuf is the address of the receive buffer (choice) (OUT)

recvcount is the number of elements received from any task (integer) (IN)

recvtype is the datatype of the receive buffer elements (handle) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_ALLGATHER. It performs the same
function as MPI_ALLGATHER except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of your applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective communication routines generally do,
tasks running at different speeds do not waste time waiting for each other.

14 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_IALLGATHER

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

The nonblocking collective routines can be used in conjunction with the MPI
blocking collective routines and can be completed by any of the MPI wait or test
functions. Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Unequal message length

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent message length

 Related Information
 MPI_ALLGATHER

 Chapter 2. Descriptions of Subroutines 15

 MPE_IALLGATHERV

 MPE_IALLGATHERV, MPE_Iallgatherv

 Purpose
Performs a nonblocking allgatherv operation.

 C Synopsis
#include <mpi.h>
int MPE_Iallgatherv(void\ sendbuf,int sendcount,

MPI_Datatype sendtype,void\ recvbuf,int recvcounts,
int \displs,MPI_Datatype recvtype,
MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_IALLGATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

CHOICE RECVBUF,INTEGER RECVCOUNTS(\),INTEGER DISPLS(\),
INTEGER RECVTYPE,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

sendcount is the number of elements in the send buffer (integer) (IN)

sendtype is the datatype of the send buffer elements (handle) (IN)

recvbuf is the address of the receive buffer (choice) (OUT)

recvcounts integer array (of length group size) that contains the number of
elements received from each task (IN)

displs integer array (of length group size). Entry i specifies the
displacement (relative to recvbuf) at which to place the
incoming data from task i (IN)

recvtype is the datatype of the receive buffer elements (handle) (IN)

comm is the communictor (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_ALLGATHERV. It performs the same
function as MPI_ALLGATHERV except that it returns a request handle that must
be explicitly completed by using one of the MPI wait or test operations.

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

16 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_IALLGATHERV

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

The nonblocking collective routines can be used in conjunction with the MPI
blocking collective routines and can be completed by any of the MPI wait or test
functions. Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Unequal message length

MPI not initialized

MPI already finalized

Develop mode error if:

None

 Related Information
 MPI_ALLGATHERV

 Chapter 2. Descriptions of Subroutines 17

 MPE_IALLREDUCE

 MPE_IALLREDUCE, MPE_Iallreduce

 Purpose
Performs a nonblocking allreduce operation.

 C Synopsis
#include <mpi.h>
int MPE_Iallreduce(void\ sendbuf,void\ recvbuf,int count,

MPI_Datatype datatype,MPI_Op op,MPI_Comm comm,
 MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_IALLREDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,

INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER REQUEST,
 INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

recvbuf is the starting address of the receive buffer (choice) (OUT)

count is the number of elements in the send buffer (integer) (IN)

datatype is the datatype of elements in the send buffer (handle) (IN)

op is the reduction operation (handle) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_ALLREDUCE. It performs the same
function as MPI_ALLREDUCE except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

18 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_IALLREDUCE

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

The nonblocking collective routines can be used in conjunction with the MPI
blocking collective routines and can be completed by any of the MPI wait or test
functions. Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

Invalid communicator type must be intracommunicator

Unequal message length

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

Inconsistent message length

 Related Information
 MPI_ALLREDUCE

 Chapter 2. Descriptions of Subroutines 19

 MPE_IALLTOALL

 MPE_IALLTOALL, MPE_Ialltoall

 Purpose
Performs a nonblocking alltoall operation.

 C Synopsis
#include <mpi.h>
int MPE_Ialltoall(void\ sendbuf,int sendcount,MPI_Datatype sendtype,

void\ recvbuf,int recvcount,MPI_Datatype recvtype,MPI_Comm comm,
 MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_IALLTOALL(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,
INTEGER REQUEST,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

sendcount is the number of elements sent to each task (integer) (IN)

sendtype is the datatype of the send buffer elements (handle) (IN)

recvbuf is the address of the receive buffer (choice) (OUT)

recvcount is the number of elements received from any task (integer) (IN)

recvtype is the datatype of the receive buffer elements (handle) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_ALLTOALL. It performs the same
function as MPI_ALLTOALL except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

20 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_IALLTOALL

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

Nonblocking collective function can be used in conjunction with the MPI blocking
collective routines and can be completed by any of the MPI wait or test functions.
Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Invalid communicator

Invalid communicator type must be intracommunicator

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent message lengths

 Related Information
 MPI_ALLTOALL

 Chapter 2. Descriptions of Subroutines 21

 MPE_IALLTOALLV

 MPE_IALLTOALLV, MPE_Ialltoallv

 Purpose
Performs a nonblocking alltoallv operation.

 C Synopsis
#include <mpi.h>
int MPE_Ialltoallv(void\ sendbuf,int \sendcounts,int \sdispls,

MPI_Datatype sendtype,void\ recvbuf,int \recvcounts,int \rdispls,
MPI_Datatype recvtype,MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_ALLTOALLV(CHOICE SENDBUF,INTEGER SENDCOUNTS(\),

INTEGER SDISPLS(\),INTEGER SENDTYPE,CHOICE RECVBUF,
INTEGER RECVCOUNTS(\),INTEGER RDISPLS(\),INTEGER RECVTYPE,
INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

sendcounts integer array (of length group size) specifying the number of
elements to send to each task (IN)

sdispls integer array (of length group size). Entry j specifies the
displacement relative to sendbuf from which to take the outgoing
data destined for task j. (IN)

sendtype is the datatype of the send buffer elements (handle) (IN)

recvbuf is the address of the receive buffer (choice) (OUT)

recvcounts integer array (of length group size) specifying the number of
elements that can be received from each task (IN)

rdispls integer array (of length group size). Entry i specifies the
displacement relative to recvbuf at which to place the incoming
data from task i. (IN)

recvtype is the datatype of the receive buffer elements (handle) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_ALLTOALLV. It performs the same
function as MPI_ALLTOALLV except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

22 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_IALLTOALLV

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

The nonblocking collective routines can be used in conjunction with the MPI
blocking collective routines and can be completed by any of the MPI wait or test
functions. Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Invalid communicator

Invalid communicator type must be intracommunicator

A send and receive have unequal message lengths

MPI not initialized

MPI already finalized

 Chapter 2. Descriptions of Subroutines 23

 MPE_IALLTOALLV

 Related Information
 MPI_ALLTOALLV

24 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_IBARRIER

 MPE_IBARRIER, MPE_Ibarrier

 Purpose
Performs a nonblocking barrier operation.

 C Synopsis
#include <mpi.h>
int MPE_Ibarrier(MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_IBARRIER(INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
comm is a communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_BARRIER. It returns immediately,
without blocking, but will not complete (via MPI_WAIT or MPI_TEST) until all group
members have called it.

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

A typical use of MPE_IBARRIER is to make a call to it, and then periodically test
for completion with MPI_TEST. Completion indicates that all tasks in comm have
arrived at the barrier. Until then, computation can continue.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.

 Chapter 2. Descriptions of Subroutines 25

 MPE_IBARRIER

See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

MPI not initialized

MPI already finalized

 Related Information
 MPI_BARRIER

26 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_IBCAST

 MPE_IBCAST, MPE_Ibcast

 Purpose
Performs a nonblocking broadcast operation.

 C Synopsis
#include <mpi.h>
int MPE_Ibcast(void\ buffer,int count,MPI_Datatype datatype,

int root,MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_IBCAST(CHOICE BUFFER,INTEGER COUNT,INTEGER DATATYPE,INTEGER ROOT,

INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
buffer is the starting address of the buffer (choice) (INOUT)

count is the number of elements in the buffer (integer) (IN)

datatype is the datatype of the buffer elements (handle) (IN)

root is the rank of the root task (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_BCAST. It performs the same function
as MPI_BCAST except that it returns a request handle that must be explicitly
completed by using one of the MPI wait or test operations.

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

 Chapter 2. Descriptions of Subroutines 27

 MPE_IBCAST

The nonblocking collective routines can be used in conjunction with the MPI
blocking collective routines and can be completed by any of the MPI wait or test
functions. Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Error Conditions:

Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count count < 0

Invalid datatype

Type not committed

Invalid root root < 0 or root >= groupsize

Unequal message length

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

Inconsistent message length

 Related Information
 MPI_BCAST

28 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_IGATHER

 MPE_IGATHER, MPE_Igather

 Purpose
Performs a nonblocking gather operation.

 C Synopsis
#include <mpi.h>
int MPE_Igather(void\ sendbuf,int sendcount,MPI_Datatype sendtype,

void\ recvbuf,int recvcount,MPI_Datatype recvtype,int root,
MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_IGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,
INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

sendcount is the number of elements in the send buffer (integer) (IN)

sendtype is datatype of the send buffer elements (integer) (IN)

recvbuf is the address of the receive buffer (choice, significant only at
root) (OUT)

recvcount is the number of elements for any single receive (integer,
significant only at root) (IN)

recvtype is the datatype of the receive buffer elements (handle, significant
at root) (IN)

root is the rank of the receiving task (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_GATHER. It performs the same
function as MPI_GATHER except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

 Chapter 2. Descriptions of Subroutines 29

 MPE_IGATHER

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

The nonblocking collective routines can be used in conjunction with the MPI
blocking collective routines and can be completed by any of the MPI wait or test
functions. Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Invalid root root <0 or root >= groupsize

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

Inconsistent message lengths

30 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_IGATHER

 Related Information
 MPI_GATHER

 Chapter 2. Descriptions of Subroutines 31

 MPE_IGATHERV

 MPE_IGATHERV, MPE_Igatherv

 Purpose
Performs a nonblocking gatherv operation.

 C Synopsis
#include <mpi.h>
int MPE_Igatherv(void\ sendbuf,int sendcount,MPI_Datatype sendtype,

void\ recvbuf,int recvcounts,int \displs,MPI_Datatype recvtype,
int root,MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_IGATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

CHOICE RECVBUF,INTEGER RECVCOUNTS(\),INTEGER DISPLS(\),
INTEGER RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER REQUEST,

 INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

sendcount is the number of elements to be sent (integer) (IN)

sendtype is the datatype of the send buffer elements (handle) (IN)

recvbuf is the address of the receive buffer (choice, significant only at
root) (OUT)

recvcounts integer array (of length group size) that contains the number of
elements received from each task (significant only at root) (IN)

displs integer array (of length group size). Entry i specifies the
displacement relative to recvbuf at which to place the incoming
data from task i (significant only at root) (IN)

recvtype is the datatype of the receive buffer elements (handle, significant
only at root) (IN)

root is the rank of the receiving task (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_GATHERV. It performs the same
function as MPI_GATHERV except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

32 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_IGATHERV

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

The nonblocking collective routines can be used in conjunction with the MPI
blocking collective routines and can be completed by any of the MPI wait or test
functions. Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count(s)

Invalid datatype(s)

Type not committed

Invalid root root < 0 or root >= groupsize

A send and receive have unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

 Chapter 2. Descriptions of Subroutines 33

 MPE_IGATHERV

 Related Information
 MPI_GATHERV

34 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_IREDUCE

 MPE_IREDUCE, MPE_Ireduce

 Purpose
Performs a nonblocking reduce operation.

 C Synopsis
#include <mpi.h>
int MPE_Ireduce(void\ sendbuf,void\ recvbuf,int count,

MPI_Datatype datatype,MPI_Op op,int root,MPI_Comm comm,
 MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_IREDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,

INTEGER DATATYPE,INTEGER OP,INTEGER ROOT,INTEGER COMM,
INTEGER REQUEST,INTEGER IERROR)

 Parameters
sendbuf is the address of the send buffer (choice) (IN)

recvbuf is the address of the receive buffer (choice, significant only at root)
(OUT)

count is the number of elements in the send buffer (integer) (IN)

datatype is the datatype of elements of the send buffer (handle) (IN)

op is the reduction operation (handle) (IN)

root is the rank of the root task (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_REDUCE. It performs the same
function as MPI_REDUCE except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

 Chapter 2. Descriptions of Subroutines 35

 MPE_IREDUCE

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

The nonblocking collective routines can be used in conjunction with the MPI
blocking collective routines and can be completed by any of the MPI wait or test
functions. Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid op

Invalid root root < 0 or root > = groupsize

Invalid communicator

Invalid communicator type must be intracommunicator

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

Inconsistent root

Inconsistent message length

 Related Information
 MPI_REDUCE

36 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_IREDUCE_SCATTER

 MPE_IREDUCE_SCATTER, MPE_Ireduce_scatter

 Purpose
Performs a nonblocking reduce_scatter operation.

 C Synopsis
#include <mpi.h>
int MPE_Ireduce_scatter(void\ sendbuf,void\ recvbuf,int \recvcounts,

MPI_Datatype datatype,MPI_Op op,MPI_Comm comm,
 MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_IREDUCE_SCATTER(CHOICE SENDBUF,CHOICE RECVBUF,

INTEGER RECVCOUNTS(\),INTEGER DATATYPE,INTEGER OP,
INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

recvbuf is the starting address of the receive buffer (choice) (OUT)

recvcounts integer array specifying the number of elements in result
distributed to each task. Must be identical on all calling tasks.
(IN)

datatype is the datatype of elements in the input buffer (handle) (IN)

op is the reduction operation (handle) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_REDUCE_SCATTER. It performs the
same function as MPI_REDUCE_SCATTER except that it returns a request handle
that must be explicitly completed by using one of the MPI wait or test operations.

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

 Chapter 2. Descriptions of Subroutines 37

 MPE_IREDUCE_SCATTER

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

The nonblocking collective routines can be used in conjunction with the MPI
blocking collective routines and can be completed by any of the MPI wait or test
functions. Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid recvcount(s) recvcounts(i) < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

Invalid communicator type must be intracommunicator

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

 Related Information
 MPI_REDUCE_SCATTER

38 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_ISCAN

 MPE_ISCAN, MPE_Iscan

 Purpose
Performs a nonblocking scan operation.

 C Synopsis
#include <mpi.h>
int MPE_Iscan(void\ sendbuf,void\ recvbuf,int count,

MPI_Datatype datatype,MPI_Op op,MPI_Comm comm,
 MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_ISCAN(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,

INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER REQUEST,
 INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

recvbuf is the starting address of the receive buffer (choice) (OUT)

count is the number of elements in sendbuf (integer) (IN)

datatype is the datatype of elements in sendbuf (handle) (IN)

op is the reduction operation (handle) (IN)

comm is the communicator (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_SCAN. It performs the same function
as MPI_SCAN except that it returns a request handle that must be explicitly
completed by using one of the MPI wait or test operations.

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

 Chapter 2. Descriptions of Subroutines 39

 MPE_ISCAN

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

The nonblocking collective routines can be used in conjunction with the MPI
blocking collective routines and can be completed by any of the MPI wait or test
functions. Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

Invalid communicator type must be intracommunicator

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

Inconsistent message length

 Related Information
 MPI_SCAN

40 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_ISCATTER

 MPE_ISCATTER, MPE_Iscatter

 Purpose
Performs a nonblocking scatter operation.

 C Synopsis
#include <mpi.h>
int MPE_Iscatter(void\ sendbuf,int sendcount,MPI_Datatype sendtype,

void\ recvbuf,int recvcount,MPI_Datatype recvtype,int root,
MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPE_ISCATTER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,
INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
sendbuf is the address of the send buffer (choice, significant only at root)

(IN)

sendcount is the number of elements to be sent to each task (integer,
significant only at root) (IN)

sendtype is the datatype of the send buffer elements (handle, significant
only at root) (IN)

recvbuf is the address of the receive buffer (choice) (OUT)

recvcount is the number of elements in the receive buffer (integer) (IN)

recvtype is the datatype of the receive buffer elements (handle) (IN)

root is the rank of the sending task (integer) (IN)

comm is the communicator (handle) (IN)

request communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_SCATTER. It performs the same
function as MPI_SCATTER except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

 Chapter 2. Descriptions of Subroutines 41

 MPE_ISCATTER

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

The nonblocking collective routines can be used in conjunction with the MPI
blocking collective routines and can be completed by any of the MPI wait or test
functions. Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Invalid root root < 0 or root >= groupsize

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

Inconsistent message length

42 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_ISCATTER

 Related Information
 MPI_SCATTER

 Chapter 2. Descriptions of Subroutines 43

 MPE_ISCATTERV

 MPE_ISCATTERV, MPE_Iscatterv

 Purpose
Performs a nonblocking scatterv operation.

 C Synopsis
#include <mpi.h>
int MPE_Iscatterv(void\ sendbuf,int \sendcounts,int \displs,

MPI_Datatype sendtype,void\ recvbuf,int recvcount,
MPI_Datatype recvtype,int root,MPI_Comm comm,MPI_Comm \request);

 Fortran Synopsis
include 'mpif.h'
MPE_ISCATTERV(CHOICE SENDBUF,INTEGER SENDCOUNTS(\),INTEGER DISPLS(\),

INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,
INTEGER ROOT,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
sendbuf is the address of the send buffer (choice, significant only at root)

(IN)

sendcounts integer array (of length group size) that contains the number of
elements to send to each task (significant only at root) (IN)

displs integer array (of length group size). Entry i specifies the
displacement relative to sendbuf from which to take the outgoing
data to task i (significant only at root) (IN)

sendtype is the datatype of the send buffer elements (handle, significant
only at root) (IN)

recvbuf is the address of the receive buffer (choice) (OUT)

recvcount is the number of elements in the receive buffer (integer) (IN)

recvtype is the datatype of the receive buffer elements (handle) (IN)

root is the rank of the sending task (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a nonblocking version of MPI_SCATTERV. It performs the same
function as MPI_SCATTERV except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

44 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPE_ISCATTERV

 Notes
The MPE prefix used with this routine indicates that it is an IBM extension to the
MPI standard and is not part of the standard itself. MPE routines are provided to
enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance then the nonblocking versions.

The nonblocking collective routines can be used in conjunction with the MPI
blocking collective routines and can be completed by any of the MPI wait or test
functions. Use of MPI_REQUEST_FREE and MPI_CANCEL is not supported.

| Beginning with Parallel Environment for AIX Version 2.4, the thread library has a
| limit of 7 outstanding nonblocking collective calls. A nonblocking call is considered
| outstanding between the time the call is made and the time the wait is completed.
| This restriction does not apply to the signal library. It does not apply to any call
| defined by the MPI standard.

Applications using nonblocking collective calls often provide their best performance
when run in interrupt mode.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Invalid root root < 0 or root >= groupsize

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

 Chapter 2. Descriptions of Subroutines 45

 MPE_ISCATTERV

 Related Information
 MPI_SCATTERV

46 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ABORT

 MPI_ABORT, MPI_Abort

 Purpose
Forces all tasks of an MPI job to terminate.

 C Synopsis
#include <mpi.h>
int MPI_Abort(MPI_Comm comm,int errorcode);

 Fortran Synopsis
include 'mpif.h'
MPI_ABORT(INTEGER COMM,INTEGER ERRORCODE,INTEGER IERROR)

 Parameters
comm is the communicator of the tasks to abort. (IN)

errorcode is the error code returned to the invoking environment. (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine forces an MPI program to terminate all tasks in the job. comm
currently is not used. All tasks in the job are aborted. The low order 8 bits of
errorcode are returned as an AIX return code.

 Notes
MPI_ABORT causes all tasks to exit immediately.

 Errors
MPI already finalized

MPI not initialized

 Chapter 2. Descriptions of Subroutines 47

 MPI_ADDRESS

 MPI_ADDRESS, MPI_Address

 Purpose
Returns the address of a variable in memory.

 C Synopsis
#include <mpi.h>
int MPI_Address(void\ location,MPI_Aint \address);

 Fortran Synopsis
include 'mpif.h'
MPI_ADDRESS(CHOICE LOCATION,INTEGER ADDRESS,INTEGER IERROR)

 Parameters
location is the location in caller memory (choice) (IN)

address is the address of location (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the byte address of location .

 Notes
On the IBM RS/6000 SP, this is equivalent to address = (MPI_Aint) location in C,
but the MPI_ADDRESS routine is portable to machines with less straightforward
addressing.

 Errors
MPI not initialized

MPI already finalized

 Related Information
 MPI_TYPE_INDEXED
 MPI_TYPE_HINDEXED
 MPI_TYPE_STRUCT

48 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ALLGATHER

 MPI_ALLGATHER, MPI_Allgather

 Purpose
Gathers individual messages from each task in comm and distributes the resulting
message to each task.

 C Synopsis
#include <mpi.h>
int MPI_Allgather(void\ sendbuf,int sendcount,MPI_Datatype sendtype,

void\ recvbuf,int recvcount,MPI_Datatype recvtype,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_ALLGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,
 INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

sendcount is the number of elements in the send buffer (integer) (IN)

sendtype is the datatype of the send buffer elements (handle) (IN)

recvbuf is the address of the receive buffer (choice) (OUT)

recvcount is the number of elements received from any task (integer) (IN)

recvtype is the datatype of the receive buffer elements (handle) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_ALLGATHER is similar to MPI_GATHER except that all tasks receive the
result instead of just the root .

The block of data sent from task j is received by every task and placed in the jth
block of the buffer recvbuf .

The type signature associated with sendcount , sendtype at a task must be equal
to the type signature associated with recvcount , recvtype at any other task.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Chapter 2. Descriptions of Subroutines 49

 MPI_ALLGATHER

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Unequal message length

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent message length

 Related Information
 MPE_IALLGATHER
 MPI_ALLGATHER
 MPI_GATHER

50 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ALLGATHERV

 MPI_ALLGATHERV, MPI_Allgatherv

 Purpose
Collects individual messages from each task in comm and distributes the resulting
message to all tasks. Messages can have different sizes and displacements.

 C Synopsis
#include <mpi.h>
int MPI_Allgatherv(void\ sendbuf,int sendcount,MPI_Datatype sendtype,

void\ recvbuf,int \recvcounts,int \displs,MPI_Datatype recvtype,
 MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_ALLGATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

CHOICE RECVBUF,INTEGER RECVCOUNTS(\),INTEGER DISPLS(\),
INTEGER RECVTYPE,INTEGER COMM,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

sendcount is the number of elements in the send buffer (integer) (IN)

sendtype is the datatype of the send buffer elements (handle) (IN)

recvbuf is the address of the receive buffer (choice) (OUT)

recvcounts integer array (of length group size) that contains the number of
elements received from each task (IN)

displs integer array (of length group size). Entry i specifies the
displacement (relative to recvbuf) at which to place the
incoming data from task i (IN)

recvtype is the datatype of the receive buffer elements (handle) (IN)

comm is the communictor (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine collects individual messages from each task in comm and distributes
the resulting message to all tasks. Messages can have different sizes and
displacements.

The block of data sent from task j is recvcounts[j] elements long, and is received
by every task and placed in recvbuf at offset displs[j] .

The type signature associated with sendcount , sendtype at task j must be equal
to the type signature of recvcounts[j] , recvtype at any other task.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See

 Chapter 2. Descriptions of Subroutines 51

 MPI_ALLGATHERV

Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

None

 Related Information
 MPE_IALLGATHERV
 MPI_ALLGATHER

52 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ALLREDUCE

 MPI_ALLREDUCE, MPI_Allreduce

 Purpose
Applies a reduction operation to the vector sendbuf over the set of tasks specified
by comm and places the result in recvbuf on all of the tasks in comm .

 C Synopsis
#include <mpi.h>
int MPI_Allreduce(void\ sendbuf,void\ recvbuf,int count,

MPI_Datatype datatype,MPI_Op op,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_ALLREDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,

INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

recvbuf is the starting address of the receive buffer (choice) (OUT)

count is the number of elements in the send buffer (integer) (IN)

datatype is the datatype of elements in the send buffer (handle) (IN)

op is the reduction operation (handle) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine applies a reduction operation to the vector sendbuf over the set of
tasks specified by comm and places the result in recvbuf on all of the tasks.

This routine is similar to MPI_REDUCE except the result is returned to the receive
buffer of all the group members.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Notes
See Appendix D, “Reduction Operations” on page 355.

 Chapter 2. Descriptions of Subroutines 53

 MPI_ALLREDUCE

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

Invalid communicator type must be intracommunicator

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

Inconsistent message length

 Related Information
 MPE_IALLREDUCE
 MPI_REDUCE
 MPI_REDUCE_SCATTER
 MPI_OP_CREATE

54 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ALLTOALL

 MPI_ALLTOALL, MPI_Alltoall

 Purpose
Sends a distinct message from each task to every task.

 C Synopsis
#include <mpi.h>
int MPI_Alltoall(void\ sendbuf,int sendcount,MPI_Datatype sendtype,

void\ recvbuf,int recvcount,MPI_Datatype recvtype,
 MPI_Comm comm):

 Fortran Synopsis
include 'mpif.h'
MPI_ALLTOALL(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,
 INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

sendcount is the number of elements sent to each task (integer) (IN)

sendtype is the datatype of the send buffer elements (handle) (IN)

recvbuf is the address of the receive buffer (choice) (OUT)

recvcount is the number of elements received from any task (integer) (IN)

recvtype is the datatype of the receive buffer elements (handle) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_ALLTOALL sends a distinct message from each task to every task.

The jth block of data sent from task i is received by task j and placed in the ith
block of the buffer recvbuf .

The type signature associated with sendcount , sendtype , at a task must be equal
to the type signature associated with recvcount , recvtype at any other task. This
means the amount of data sent must be equal to the amount of data received, pair
wise between every pair of tasks. The type maps can be different.

All arguments on all tasks are significant.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Chapter 2. Descriptions of Subroutines 55

 MPI_ALLTOALL

 Errors
Unequal lengths

Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Invalid communicator

Invalid communicator type must be intracommunicator

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent message lengths

 Related Information
 MPE_IALLTOALL
 MPI_ALLTOALLV

56 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ALLTOALLV

 MPI_ALLTOALLV, MPI_Alltoallv

 Purpose
Sends a distinct message from each task to every task. Messages can have
different sizes and displacements.

 C Synopsis
#include <mpi.h>
int MPI_Alltoallv(void\ sendbuf,int \sendcounts,int \sdispls,

MPI_Datatype sendtype,void\ recvbuf,int \recvcounts,int \rdispls,
MPI_Datatype recvtype,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_ALLTOALLV(CHOICE SENDBUF,INTEGER SENDCOUNTS(\),

INTEGER SDISPLS(\),INTEGER SENDTYPE,CHOICE RECVBUF,
INTEGER RECVCOUNTS(\),INTEGER RDISPLS(\),INTEGER RECVTYPE,
INTEGER COMM,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

sendcounts integer array (of length group size) specifying the number of
elements to send to each task (IN)

sdispls integer array (of length group size). Entry j specifies the
displacement relative to sendbuf from which to take the outgoing
data destined for task j. (IN)

sendtype is the datatype of the send buffer elements (handle) (IN)

recvbuf is the address of the receive buffer (choice) (OUT)

recvcounts integer array (of length group size) specifying the number of
elements to be received from each task (IN)

rdispls integer array (of length group size). Entry i specifies the
displacement relative to recvbuf at which to place the incoming
data from task i. (IN)

recvtype is the datatype of the receive buffer elements (handle) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_ALLTOALLV sends a distinct message from each task to every task.
Messages can have different sizes and displacements.

This routine is similar to MPI_ALLTOALL with the following differences.
MPI_ALLTOALLV allows you the flexibility to specify the location of the data for the
send with sdispls and the location of where the data will be placed on the receive
with rdispls .

 Chapter 2. Descriptions of Subroutines 57

 MPI_ALLTOALLV

The block of data sent from task i is sendcounts[j] elements long, and is received
by task j and placed in recvbuf at offset offset rdispls[i] . These blocks do not have
to be the same size.

The type signature associated with sendcount[j] , sendtype at task i must be equal
to the type signature associated with recvcounts[i] , recvtype at task j. This means
the amount of data sent must be equal to the amount of data received, pair wise
between every pair of tasks. Distinct type maps between sender and receiver are
allowed.

All arguments on all tasks are significant.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Invalid communicator

Invalid communicator type must be intracommunicator

A send and receive hand unequal message lengths

MPI not initialized

MPI already finalized

 Related Information
 MPE_IALLTOALLV
 MPI_ALLTOALL

58 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ATTR_DELETE

 MPI_ATTR_DELETE, MPI_Attr_delete

 Purpose
Removes an attribute value from a communicator.

 C Synopsis
#include <mpi.h>
int MPI_Attr_delete(MPI_Comm comm,int keyval);

 Fortran Synopsis
include 'mpif.h'
MPI_ATTR_DELETE(INTEGER COMM,INTEGER KEYVAL,INTEGER IERROR)

 Parameters
comm is the communicator that the attribute is attached (handle) (IN)

keyval is the key value of the deleted attribute (integer) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine deletes an attribute from cache by key. MPI_ATTR_DELETE also
invokes the attribute delete function delete_fn specified when the keyval is
created.

 Errors
A delete_fn did not return MPI_SUCCESS

Invalid communicator

Invalid keyval keyval is undefined

Invalid keyval keyval is predefined

MPI not initialized

MPI already finalized

 Related Information
 MPI_KEYVAL_CREATE

 Chapter 2. Descriptions of Subroutines 59

 MPI_ATTR_GET

 MPI_ATTR_GET, MPI_Attr_get

 Purpose
Retrieves an attribute value from a communicator.

 C Synopsis
#include <mpi.h>
int MPI_Attr_get(MPI_Comm comm,int keyval,void \attribute_val,
 int \flag);

 Fortran Synopsis
include 'mpif.h'
MPI_ATTR_GET(INTEGER COMM,INTEGER KEYVAL,INTEGER ATTRIBUTE_VAL,

LOGICAL FLAG,INTEGER IERROR)

 Parameters
comm is the communicator to which attribute is attached (handle) (IN)

keyval is the key value (integer) (IN)

attribute_val is the attribute value unless flag = false (OUT)

flag is true if an attribute value was extracted and false if no attribute
is associated with the key. (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This function retrieves an attribute value by key. If there is no key with value
keyval , the call is erroneous. However, the call is valid if there is a key value
keyval , but no attribute is attached on comm for that key. In this case, the call
returns flag = false .

 Notes
The implementation of the MPI_ATTR_PUT and MPI_ATTR_GET involves saving a
single word of information in the communicator. The languages C and Fortran have
different approaches to using this capability:

In C: As the programmer, you normally define a struct which holds arbitrary
"attribute" information. Before calling MPI_ATTR_PUT, you allocate some storage
for the attribute structure and then call MPI_ATTR_PUT to record the address of
this structure. You must assure that the structure remains intact as long as it may
be useful. As the programmer, you will also declare a variable of type "pointer to
attribute structure" and pass the address of this variable when calling
MPI_ATTR_GET. Both MPI_ATTR_PUT and MPI_ATTR_GET take a void*
parameter but this does not imply the same parameter is passed to either one.

In Fortran: MPI_ATTR_PUT records an INTEGER*4 and MPI_ATTR_GET returns
the INTEGER*4. As the programmer, you may choose to encode all attribute
information in this integer or maintain a some kind of database in which the integer
can index. Either of these approaches will port to other MPI implementations.

60 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ATTR_GET

XL Fortran has an additional feature which will allow some of the same function a C
programmer would use. This is the POINTER type which is described in the IBM
XL Fortran Compiler V3.2 for AIX Language Reference Use of this will impact the
program's portability.

 Errors
Invalid communicator

Invalid keyval keyval is undefined

MPI not initialized

MPI already finalized

 Related Information
 MPI_ATTR_PUT

 Chapter 2. Descriptions of Subroutines 61

 MPI_ATTR_PUT

 MPI_ATTR_PUT, MPI_Attr_put

 Purpose
Stores an attribute value in a communicator.

 C Synopsis
#include <mpi.h>
int MPI_Attr_put(MPI_Comm comm,int keyval,void\ attribute_val);

 Fortran Synopsis
include 'mpif.h'
MPI_ATTR_PUT(INTEGER COMM,INTEGER KEYVAL,INTEGER ATTRIBUTE_VAL,
INTEGER IERROR)

 Parameters
comm is the communicator to which attribute will be attached (handle)

(IN)

keyval is the key value as returned by MPI_KEYVAL_CREATE (integer)
(IN)

attribute_val is the attribute value (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine stores the attribute value for retrieval by MPI_ATTR_GET. Any
previous value is deleted with the attribute delete_fn being called and the new
value is stored. If there is no key with value keyval , the call is erroneous.

 Notes
The implementation of the MPI_ATTR_PUT and MPI_ATTR_GET involves saving a
single word of information in the communicator. The languages C and Fortran have
different approaches to using this capability:

In C: As the programmer, you normally define a struct which holds arbitrary
"attribute" information. Before calling MPI_ATTR_PUT, you allocate some storage
for the attribute structure and then call MPI_ATTR_PUT to record the address of
this structure. You must assure that the structure remains intact as long as it may
be useful. As the programmer, you will also declare a variable of type "pointer to
attribute structure" and pass the address of this variable when calling
MPI_ATTR_GET. Both MPI_ATTR_PUT and MPI_ATTR_GET take a void*
parameter, but this does not imply the same parameter is passed to either one.

In Fortran: MPI_ATTR_PUT records an INTEGER*4 and MPI_ATTR_GET returns
the INTEGER*4. As the programmer, you may choose to encode all attribute
information in this integer or maintain a some kind of database in which the integer
can index. Either of these approaches will port to other MPI implementations.

XL Fortran has an additional feature which will allow some of the same function a C
programmer would use. This is the POINTER type which is described in the IBM

62 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ATTR_PUT

XL Fortran Compiler V3.2 for AIX Language Reference Use of this will impact the
program's portability.

 Errors
A delete_fn did not return MPI_SUCCESS

Invalid communicator

Invalid keyval keyval is undefined

Predefined keyval cannot modify predefined attributes

MPI not initialized

MPI already finalized

 Related Information
 MPI_ATTR_GET
 MPI_KEYVAL_CREATE

 Chapter 2. Descriptions of Subroutines 63

 MPI_BARRIER

 MPI_BARRIER, MPI_Barrier

 Purpose
Blocks each task in comm until all tasks have called it.

 C Synopsis
#include <mpi.h>
int MPI_Barrier(MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_BARRIER(INTEGER COMM,INTEGER IERROR)

 Parameters
comm is a communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine blocks until all tasks have called it. Tasks cannot exit the operation
until all group members have entered.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

MPI not initialized

MPI already finalized

 Related Information
 MPE_IBARRIER

64 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_BCAST

 MPI_BCAST, MPI_Bcast

 Purpose
Broadcasts a message from root to all tasks in comm .

 C Synopsis
#include <mpi.h>
int MPI_Bcast(void\ buffer,int count,MPI_Datatype datatype,

int root,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_BCAST(CHOICE BUFFER,INTEGER COUNT,INTEGER DATATYPE,INTEGER ROOT,

INTEGER COMM,INTEGER IERROR)

 Parameters
buffer is the starting address of the buffer (choice) (INOUT)

count is the number of elements in the buffer (integer) (IN)

datatype is the datatype of the buffer elements (handle) (IN)

root is the rank of the root task (integer) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine broadcasts a message from root to all tasks in comm . The contents of
root 's communication buffer is copied to all tasks on return.

The type signature of count , datatype on any task must be equal to the type
signature of count , datatype at the root. This means the amount of data sent
must be equal to the amount of data received, pair wise between each task and the
root. Distinct type maps between sender and receiver are allowed.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count count < 0

Invalid datatype

Type not committed

 Chapter 2. Descriptions of Subroutines 65

 MPI_BCAST

Invalid root root < 0 or root >= groupsize

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

Inconsistent message length

 Related Information
 MPE_IBCAST

66 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_BSEND

 MPI_BSEND, MPI_Bsend

 Purpose
Performs a blocking buffered mode send operation.

 C Synopsis
#include <mpi.h>
int MPI_Bsend(void\ buf,int count,MPI_Datatype datatype,

int dest,int tag,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_BSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

INTEGER TAG,INTEGER COMM,INTEGER IERROR)

 Parameters
buf is the initial address of the send buffer (choice) (IN)

count is the number of elements in the send buffer (integer) (IN)

datatype is the datatype of each send buffer element (handle) (IN)

dest is the rank of destination (integer) (IN)

tag is the message tag (integer) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a blocking buffered mode send. This is a local operation. It does not
depend on the occurrence of a matching receive in order to complete. If a send
operation is started and no matching receive is posted, the outgoing message is
buffered to allow the send call to complete.

Make sure you have enough buffer space available. An error occurs if the
message must be buffered and there is there is insufficient buffer space.

Return from an MPI_BSEND does not guarantee the message was sent. It may
remain in the buffer until a matching receive is posted. MPI_BUFFER_DETACH will
block until all messages are received.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid destination dest < 0 or dest > = groupsize

Invalid tag tag < 0

 Chapter 2. Descriptions of Subroutines 67

 MPI_BSEND

Invalid comm

Insufficient buffer space

MPI not initialized

MPI already finalized

 Related Information
 MPI_IBSEND
 MPI_SEND
 MPI_BUFFER_ATTACH
 MPI_BUFFER_DETACH

68 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_BSEND_INIT

 MPI_BSEND_INIT, MPI_Bsend_init

 Purpose
Creates a persistent buffered mode send request.

 C Synopsis
#include <mpi.h>
int MPI_Bsend_init(void\ buf,int count,MPI_Datatype datatype,

int dest,int tag,MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_BSEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER REQUEST,
 INTEGER IERROR)

 Parameters
buf is the initial address of the send buffer (choice) (IN)

count is the number of elements to be sent (integer) (IN)

datatype is the type of each element (handle) (IN)

dest is the rank of the destination task (integer) (IN)

tag is the message tag (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a persistent communication request for a buffered mode send
operation. MPI_START or MPI_STARTALL must be called to activate the send.

 Notes
See MPI_BSEND for additional information.

Because it is the MPI_START which initiates communication, any error related to
insufficient buffer space occurs at the MPI_START.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid destination dest < 0 or dest > &equals groupsize

Invalid tag tag < 0

 Chapter 2. Descriptions of Subroutines 69

 MPI_BSEND_INIT

Invalid comm

MPI not initialized

MPI already finalized

 Related Information
 MPI_START
 MPI_IBSEND

70 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_BUFFER_ATTACH

 MPI_BUFFER_ATTACH, MPI_Buffer_attach

 Purpose
Provides MPI with a buffer to use for buffering messages sent with MPI_BSEND
and MPI_IBSEND.

 C Synopsis
#include <mpi.h>
int MPI_Buffer_attach(void\ buffer,int size);

 Fortran Synopsis
include 'mpif.h'
MPI_BUFFER_ATTACH(CHOICE BUFFER,INTEGER SIZE,INTEGER IERROR)

 Parameters
buffer is the initial buffer address (choice) (IN)

size is the buffer size in bytes (integer) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine provides MPI a buffer in the user's memory which is used for buffering
outgoing messages. This buffer is used only by messages sent in buffered mode,
and only one buffer is attached to a task at any time.

 Notes
MPI uses part of the buffer space to store information about the buffered
messages. The number of bytes required by MPI for each buffered message is
given by MPI_BSEND_OVERHEAD.

If a buffer is already attached, it must be detached by MPI_BUFFER_DETACH
before a new buffer can be attached.

 Errors
Invalid size size < 0

Buffer is already attached

MPI not initialized

MPI already finalized

 Related Information
 MPI_BUFFER_DETACH
 MPI_BSEND
 MPI_IBSEND

 Chapter 2. Descriptions of Subroutines 71

 MPI_BUFFER_DETACH

 MPI_BUFFER_DETACH, MPI_Buffer_detach

 Purpose
Detaches the current buffer.

 C Synopsis
#include <mpi.h>
int MPI_Buffer_detach(void\ buffer,int \size);

 Fortran Synopsis
include 'mpif.h'
MPI_BUFFER_DETACH(CHOICE BUFFER,INTEGER SIZE,INTEGER IERROR)

 Parameters
buffer is the initial buffer address (choice) (OUT)

size is the buffer size in bytes (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine detaches the current buffer. Blocking occurs until all messages in the
active buffer are transmitted. Once this function returns, you can reuse or

| deallocate the space taken by the buffer. There is an implicit
| MPI_BUFFER_DETACH inside MPI_FINALIZE. Because a buffer detach can block,
| the impicit detach creates some risk that an incorrect program will hang in
| MPI_FINALIZE.

If there is no active buffer, MPI acts as if a buffer of size 0 is associated with the
task.

 Notes
It is important to detach an attached buffer before it is deallocated. If this is not
done, any buffered message may be lost.

In Fortran 77, the buffer argument for MPI_BUFFER_DETACH cannot return a
useful value because Fortran 77 does not support pointers. If a fully portable MPI
program written in Fortran calls MPI_BUFFER_DETACH, it either passes the name
of the original buffer or a throwaway temp as the buffer argument.

If a buffer was attached, this implementation of MPI returns the address of the
freed buffer in the first word of the buffer argument. If the size being returned is
zero to four bytes, MPI_BUFFER_DETACH will not modify the buffer argument.
This implementation is harmless for a program that uses either the original buffer or
a throwaway temp of at least word size as buffer . It also allows the programmer
who wants to use an XL Fortran POINTER as the buffer argument to do so. Using
the POINTER type will affect portability.

72 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_BUFFER_DETACH

 Errors
MPI not initialized

MPI already finalized

 Related Information
 MPI_BUFFER_ATTACH
 MPI_BSEND
 MPI_IBSEND

 Chapter 2. Descriptions of Subroutines 73

 MPI_CANCEL

 MPI_CANCEL, MPI_Cancel

 Purpose
| Marks a nonblocking request for cancellation.

 C Synopsis
#include <mpi.h>
int MPI_Cancel(MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_CANCEL(INTEGER REQUEST,INTEGER IERROR)

 Parameters
request is a communication request (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
| This routine marks a nonblocking request for cancellation. The cancel call is local. It

returns immediately; it can return even before the communication is actually
| cancelled. It is necessary to complete an operation marked for cancellation by
| using a call to MPI_WAIT or MPI_TEST (or any other wait or test call).

You can use MPI_CANCEL to cancel a persistent request in the same way it is
used for nonpersistent requests. A successful cancellation cancels the active
communication, but not the request itself. After the call to MPI_CANCEL and the
subsequent call to MPI_WAIT or MPI_TEST, the request becomes inactive and can
be activated for a new communication. It is erroneous to cancel an inactive
persistent request.

The successful cancellation of a buffered send frees the buffer space occupied by
the pending message.

| Either the cancellation succeeds or the operation succeeds, but not both. If a send
is marked for cancellation, then either the send completes normally, in which case
the message sent was received at the destination task, or the send is successfully
cancelled, in which case no part of the message was received at the destination.
Then, any matching receive has to be satisfied by another send. If a receive is
marked for cancellation, then the receive completes normally or the receive is
successfully cancelled, in which case no part of the receive buffer is altered. Then,
any matching send has to be satisfied by another receive.

| If the operation has been cancelled successfully, information to that effect is
returned in the status argument of the operation that completes the communication,
and may be retrieved by a call to MPI_TEST_CANCELLED.

74 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_CANCEL

| Notes
| Nonblocking collective communication requests cannot be cancelled.
| MPI_CANCEL may be called on non-blocking file operation requests. The eventual
| call to MPI_TEST_CANCELLED will show that the cancellation did not succeed.

 Errors
Invalid request

CCL request

Cancel inactive persistent request

MPI not initialized

MPI already finalized

 Related Information
 MPI_TEST_CANCELLED
 MPI_WAIT

 Chapter 2. Descriptions of Subroutines 75

 MPI_CART_COORDS

 MPI_CART_COORDS, MPI_Cart_coords

 Purpose
Translates task rank in a communicator into cartesian task coordinates.

 C Synopsis
#include <mpi.h>
MPI_Cart_coords(MPI_Comm comm,int rank,int maxdims,int \coords);

 Fortran Synopsis
include 'mpif.h'
MPI_CART_COORDS(INTEGER COMM,INTEGER RANK,INTEGER MAXDIMS,

INTEGER COORDS(\),INTEGER IERROR)

 Parameters
comm is a communicator with cartesian topology (handle) (IN)

rank is the rank of a task within group comm (integer) (IN)

maxdims is the length of array coords in the calling program (integer) (IN)

coords is an integer array specifying the cartesian coordinates of a task.
(OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine translates task rank in a communicator into task coordinates.

 Notes
Task coordinates in a cartesian structure begin their numbering at 0. Row-major
numbering is always used for the tasks in a cartesian structure.

 Errors
MPI not initialized

MPI already finalized

Invalid communicator

No topology

Invalid topology type must be cartesian

Invalid rank rank < 0 or rank > = groupsize

Invalid array size maxdims < 0

76 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_CART_COORDS

 Related Information
 MPI_CART_RANK
 MPI_CART_CREATE

 Chapter 2. Descriptions of Subroutines 77

 MPI_CART_CREATE

 MPI_CART_CREATE, MPI_Cart_create

 Purpose
Creates a communicator containing topology information.

 C Synopsis
#include <mpi.h>
int MPI_Cart_create(MPI_Comm comm_old,int ndims,int \dims,

int \periods,int reorder,MPI_Comm \comm_cart);

 Fortran Synopsis
include 'mpif.h'
MPI_CART_CREATE(INTEGER COMM_OLD,INTEGER NDIMS,INTEGER DIMS(\),

INTEGER PERIODS(\),INTEGER REORDER,INTEGER COMM_CART,INTEGER IERROR)

 Parameters
comm_old is the input communicator (handle) (IN)

ndims is the number of cartesian dimensions in grid (integer) (IN)

dims is an integer array of size ndims specifying the number of tasks in
each dimension (IN)

periods is a logical array of size ndims specifying if the grid is periodic or
not in each dimension (IN)

reorder if true, ranking may be reordered. If false, then rank in
comm_cart must be the same as in comm_old . (logical) (IN)

comm_cart is a communicator with new cartesian topology (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a new communicator containing cartesian topology information
defined by ndims, dims , periods and reorder . MPI_CART_CREATE returns a
handle for this new communicator in comm_cart . If there are more tasks in comm
than required by the grid, some tasks are returned comm_cart =
MPI_COMM_NULL. comm_old must be an intracommunicator.

 Notes
The reorder argument is ignored.

 Errors
MPI not initialized

| Conflicting collective operations on communicator

MPI already finalized

Invalid communicator

78 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_CART_CREATE

Invalid communicator type must be intracommunicator

Invalid ndims ndims < 0 or ndims > groupsize

Invalid dimension

 Related Information
 MPI_CART_SUB
 MPI_GRAPH_CREATE

 Chapter 2. Descriptions of Subroutines 79

 MPI_CART_GET

 MPI_CART_GET, MPI_Cart_get

 Purpose
Retrieves cartesian topology information from a communicator.

 C Synopsis
#include <mpi.h>
MPI_Cart_get(MPI_Comm comm,int maxdims,int \dims,int \periods,int \coords);

 Fortran Synopsis
include 'mpif.h'
MPI_CART_GET(INTEGER COMM,INTEGER MAXDIMS,INTEGER DIMS(\),

INTEGER PERIODS(\),INTEGER COORDS(\),INTEGER IERROR)

 Parameters
comm is a communicator with cartesian topology (handle) (IN)

maxdims is the length of dims, periods, and coords in the calling
program (integer) (IN)

dims is the number of tasks for each cartesian dimension (array of
integer) (OUT)

periods is a logical array specifying if each cartesian dimension is
periodic or not. (OUT)

coords is the coordinates of the calling task in the cartesian structure
(array of integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine retrieves the cartesian topology information associated with a
communicator in dims, periods and coords .

 Errors
MPI not initialized

MPI already finalized

Invalid communicator

No topology

Invalid topology type must be cartesian

Invalid array size maxdims < 0

80 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_CART_GET

 Related Information
 MPI_CARTDIM_GET
 MPI_CART_CREATE

 Chapter 2. Descriptions of Subroutines 81

 MPI_CART_MAP

 MPI_CART_MAP, MPI_Cart_map

 Purpose
Computes placement of tasks on the physical machine.

 C Synopsis
#include <mpi.h>
MPI_Cart_map(MPI_Comm comm,int ndims,int \dims,int \periods,
 int \newrank);

 Fortran Synopsis
include 'mpif.h'
MPI_CART_MAP(INTEGER COMM,INTEGER NDIMS,INTEGER DIMS(\),

INTEGER PERIODS(\),INTEGER NEWRANK,INTEGER IERROR)

 Parameters
comm is the input communicator (handle) (IN)

ndims is the number of dimensions of the cartesian structure (integer)
(IN)

dims is an integer array of size ndims specifying the number of tasks in
each coordinate direction (IN)

periods is a logical array of size ndims specifying the periodicity in each
coordinate direction (IN)

newrank is the reordered rank or MPI_UNDEFINED if the calling task does
not belong to the grid (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_CART_MAP allows MPI to compute an optimal placement for the calling task
on the physical machine by reordering the tasks in comm .

 Notes
No reordering is done by this function; it would serve no purpose on an SP.
MPI_CART_MAP returns newrank as the original rank of the calling task if it
belongs to the grid, or MPI_UNDEFINED if it does not.

 Errors
MPI not initialized

MPI already finalized

Invalid communicator

Invalid communicator type must be intracommunicator

Invalid ndims ndims < 1 or ndims > groupsize

Invalid dimension ndims[i] <= 0

82 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_CART_MAP

Invalid grid size n < 0 or n > groupsize, where n is the product of
dims[i]

 Chapter 2. Descriptions of Subroutines 83

 MPI_CART_RANK

 MPI_CART_RANK, MPI_Cart_rank

 Purpose
Translates task coordinates into a task rank.

 C Synopsis
#include <mpi.h>
MPI_Cart_rank(MPI_Comm comm,int \coords,int \rank);

 Fortran Synopsis
include 'mpif.h'
MPI_CART_RANK(INTEGER COMM,INTEGER COORDS(\),INTEGER RANK,
 INTEGER IERROR)

 Parameters
comm is a communicator with cartesian topology (handle) (IN)

coords is an integer array of size ndims specifying the cartesian
coordinates of a task (IN)

rank is an integer specifying the rank of specified task (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine translates cartesian task coordinates into a task rank.

For dimension i with periods(i) = true , if the coordinate coords(i) is out of range,
that is, coords(i) < 0 or coords(i) k dims(i) , it is shifted back to the interval 0 k
coords(i) < dims(i) automatically. Out of range coordinates are erroneous for
non-periodic dimensions.

 Notes
Task coordinates in a cartesian structure begin their numbering at 0. Row-major
numbering is always used for the tasks in a cartesian structure.

 Errors
MPI not initialized

MPI already finalized

Invalid communicator

No topology

Invalid topology type must be cartesian

Invalid coordinates refer to Description above

84 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_CART_RANK

 Related Information
 MPI_CART_CREATE
 MPI_CART_COORDS

 Chapter 2. Descriptions of Subroutines 85

 MPI_CART_SHIFT

 MPI_CART_SHIFT, MPI_Cart_shift

 Purpose
Returns shifted source and destination ranks for a task.

 C Synopsis
#include <mpi.h>
MPI_Cart_shift(MPI_Comm comm,int direction,int disp,

int \rank_source,int \rank_dest);

 Fortran Synopsis
include 'mpif.h'
MPI_CART_SHIFT(INTEGER COMM,INTEGER DIRECTION,INTEGER DISP,

INTEGER RANK_SOURCE,INTEGER RANK_DEST,INTEGER IERROR)

 Parameters
comm is a communicator with cartesian topology (handle) (IN)

direction is the coordinate dimension of shift (integer) (IN)

disp is the displacement (>0 = upward shift, <0 = downward shift)
(integer) (IN)

rank_source is the rank of the source task (integer) (OUT)

rank_dest is the rank of the destination task (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine shifts the local rank along a specified coordinate dimension to generate
source and destination ranks.

rank_source is obtained by subtracting disp from the nth coordinate of the local
task, where n is equal to direction . Similarly, rank_dest is obtained by adding
disp to the nth coordinate. Coordinate dimensions (direction) are numbered
starting with 0.

If the dimension specified by direction is non-periodic, off-end shifts result in the
value MPI_PROC_NULL being returned for rank_source and/or rank_dest .

 Notes
In C and Fortran, the coordinate is identified by counting from 0. For example,
Fortran A(X,Y) or C A[x] [y] both have x as direction 0.

 Errors
MPI not initialized

MPI already finalized

Invalid communicator

86 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_CART_SHIFT

Invalid topology type must be cartesian

No topology

 Related Information
 MPI_CART_RANK
 MPI_CART_COORDS
 MPI_CART_CREATE

 Chapter 2. Descriptions of Subroutines 87

 MPI_CART_SUB

 MPI_CART_SUB, MPI_Cart_sub

 Purpose
Partitions a cartesian communicator into lower-dimensional subgroups.

 C Synopsis
#include <mpi.h>
MPI_Cart_sub(MPI_Comm comm,int \remain_dims,MPI_Comm \newcomm);

 Fortran Synopsis
include 'mpif.h'
MPI_CART_SUB(INTEGER COMM,LOGICAL REMAIN_DIMS(\),INTEGER NEWCOMM,
 INTEGER IERROR)

 Parameters
comm is a communicator with cartesian topology (handle) (IN)

remain_dims the ith entry of remain_dims specifies whether the ith dimension
is kept in the subgrid or is dropped. (logical vector) (IN)

newcomm is the communicator containing the subgrid that includes the
calling task (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
If a cartesian topology was created with MPI_CART_CREATE, you can use the
function MPI_CART_SUB:

� to partition the communicator group into subgroups forming lower-dimensional
cartesian subgrids, and

� to build a communicator with the associated subgrid cartesian topology for each
of those subgroups.

(This function is closely related to MPI_COMM_SPLIT.)

For example, MPI_CART_CREATE (..., comm) defined a 2 × 3 × 4 grid. Let
remain_dims = (true, false, true). Then a call to:

 MPI_CART_SUB(comm,remain_dims,comm_new),

creates three communicators. Each has eight tasks in a 2 × 4 cartesian topology. If
remain_dims = (false, false, true), then the call to:

 MPI_CART_SUB(comm,remain_dims,comm_new),

creates six non-overlapping communicators, each with four tasks in a
one-dimensional cartesian topology.

88 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_CART_SUB

 Errors
MPI not initialized

MPI already finalized

Invalid communicator

Invalid topology must be cartesian

No topology

 Related Information
 MPI_CART_CREATE
 MPI_COMM_SPLIT

 Chapter 2. Descriptions of Subroutines 89

 MPI_CARTDIM_GET

 MPI_CARTDIM_GET, MPI_Cartdim_get

 Purpose
Retrieves the number of cartesian dimensions from a communicator.

 C Synopsis
#include <mpi.h>
MPI_Cartdim_get(MPI_Comm comm,int \ndims);

 Fortran Synopsis
include 'mpif.h'
MPI_CARTDIM_GET(INTEGER COMM,INTEGER NDIMS,INTEGER IERROR)

 Parameters
comm is a communicator with cartesian topology (handle) (IN)

ndims is an integer specifying the number of dimensions of the cartesian
topology (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine retrieves the number of dimensions in a cartesian topology.

 Errors
Invalid communicator

No topology

Invalid topology type must be cartesian

MPI not initialized

MPI already finalized

 Related Information
 MPI_CART_GET
 MPI_CART_CREATE

90 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_COMM_COMPARE

 MPI_COMM_COMPARE, MPI_Comm_compare

 Purpose
Compares the groups and context of two communicators.

 C Synopsis
#include <mpi.h>
int MPI_Comm_compare(MPI_Comm comm1,MPI_Comm comm2,int \result);

 Fortran Synopsis
include 'mpif.h'
MPI_COMM_COMPARE(INTEGER COMM1,INTEGER COMM2,INTEGER RESULT,INTEGER IERROR)

 Parameters
comm1 is the first communicator (handle) (IN)

comm2 is the second communicator (handle) (IN)

result is an integer specifying the result. The defined values are:
MPI_IDENT, MPI_CONGRUENT, MPI_SIMILAR, and
MPI_UNEQUAL. (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine compares the groups and contexts of two communicators. The
following is an explanation of each MPI_COMM_COMPARE defined value:

MPI_IDENT comm1 and comm2 are handles for the identical object

MPI_CONGRUENT the underlying groups are identical in constituents and rank
order (both local and remote groups for intercommunications), but are
different in context

MPI_SIMILAR the group members of both communicators are the same but are
different in rank order (both local and remote groups for
intercommunications),

MPI_UNEQUAL if none of the above.

 Errors
Invalid communicator(s)

MPI not initialized

MPI already finalized

 Related Information
 MPI_GROUP_COMPARE

 Chapter 2. Descriptions of Subroutines 91

 MPI_COMM_CREATE

 MPI_COMM_CREATE, MPI_Comm_create

 Purpose
Creates a new intracommunicator with a given group.

 C Synopsis
#include <mpi.h>
int MPI_Comm_create(MPI_Comm comm,MPI_Group group,MPI_Comm \newcomm);

 Fortran Synopsis
include 'mpif.h'
MPI_COMM_CREATE(INTEGER COMM,INTEGER GROUP,INTEGER NEWCOMM,
 INTEGER IERROR)

 Parameters
comm is the communicator (handle) (IN)

group is Group which is a subset of the group of comm (handle) (IN)

newcomm is the new communicator (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_COMM_CREATE is a collective function that is invoked by all tasks in the
group associated with comm . This routine creates a new intracommunicator
newcomm with communication group defined by group and a new context.
Cached information is not propagated from comm to newcomm .

For tasks that are not in group , MPI_COMM_NULL is returned. The call is
erroneous if group is not a subset of the group associated with comm . The call is
executed by all tasks in comm even if they do not belong to the new group.

This call applies only to intracommunicators.

 Notes
MPI_COMM_CREATE provides a way to subset a group of tasks for the purpose of
separate MIMD computation with separate communication space. You can use
newcomm in subsequent calls to MPI_COMM_CREATE or other communicator
constructors to further subdivide a computation into parallel sub-computations.

 Errors
| Conflicting collective operations on communicator

Invalid communicator

Invalid group group is not a subset of the group associated with
comm

MPI not initialized

92 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_COMM_CREATE

MPI already finalized

 Related Information
 MPI_COMM_DUP
 MPI_COMM_SPLIT

 Chapter 2. Descriptions of Subroutines 93

 MPI_COMM_DUP

 MPI_COMM_DUP, MPI_Comm_dup

 Purpose
Creates a new communicator that is a duplicate of an existing communicator.

 C Synopsis
#include <mpi.h>
int MPI_Comm_dup(MPI_Comm comm,MPI_Comm \newcomm);

 Fortran Synopsis
include 'mpif.h'
MPI_COMM_DUP(INTEGER COMM,INTEGER NEWCOMM,INTEGER IERROR)

 Parameters
comm is the communicator (handle) (IN)

newcomm is the copy of comm (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_COMM_DUP is a collective function that is invoked by the group associated
with comm . This routine duplicates the existing communicator comm with its
associated key values.

For each key value the respective copy callback function determines the attribute
value associated with this key in the new communicator. One action that a copy
callback may take is to delete the attribute from the new communicator. Returns in
newcomm a new communicator with the same group and any copied cached
information, but a new context.

This call applies to both intra and inter communicators.

 Notes
Use this operation to produce a duplicate communication space that has the same
properties as the original communicator. This includes attributes and topologies.

This call is valid even if there are pending point to point communications involving
the communicator comm .

| Remember that MPI_COMM_DUP is collective on the input communicator, so it is
| erroneous for a thread to attempt to duplicate a communicator that is
| simultaneously involved in an MPI_COMM_DUP or any collective on some other
| thread.

94 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_COMM_DUP

 Errors
| Conflicting collective operations on communicator

A copy_fn did not return MPI_SUCCESS

A delete_fn did not return MPI_SUCCESS

Invalid communicator

MPI not initialized

MPI already finalized

 Related Information
 MPI_KEYVAL_CREATE

 Chapter 2. Descriptions of Subroutines 95

 MPI_COMM_FREE

 MPI_COMM_FREE, MPI_Comm_free

 Purpose
Marks a communicator for deallocation.

 C Synopsis
#include <mpi.h>
int MPI_Comm_free(MPI_Comm \comm);

 Fortran Synopsis
include 'mpif.h'
MPI_COMM_FREE(INTEGER COMM,INTEGER IERROR)

 Parameters
comm is the communicator to be freed (handle) (INOUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This collective function marks either an intra or an inter communicator object for
deallocation. MPI_COMM_FREE sets the handle to MPI_COMM_NULL. Actual
deallocation of the communicator object occurs when active references to it have
completed. The delete callback functions for all cached attributes are called in
arbitrary order. The delete functions are called immediately and not deferred until
deallocation.

 Errors
A delete_fn did not return MPI_SUCCESS

Invalid communicator

MPI not initialized

MPI already finalized

 Related Information
 MPI_KEYVAL_CREATE

96 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_COMM_GROUP

 MPI_COMM_GROUP, MPI_Comm_group

 Purpose
Returns the group handle associated with a communicator.

 C Synopsis
#include <mpi.h>
int MPI_Comm_group(MPI_Comm comm,MPI_Group \group);

 Fortran Synopsis
include 'mpif.h'
MPI_COMM_GROUP(INTEGER COMM,INTEGER GROUP,INTEGER IERROR)

 Parameters
comm is the communicator (handle) (IN)

group is the group corresponding to comm (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the group handle associated with a communicator.

 Notes
If comm is an intercommunicator, then group is set to the local group. To
determine the remote group of an intercommunicator, use
MPI_COMM_REMOTE_GROUP.

 Errors
Invalid communicator

MPI not initialized

MPI already finalized

 Related Information
 MPI_COMM_REMOTE_GROUP

 Chapter 2. Descriptions of Subroutines 97

 MPI_COMM_RANK

 MPI_COMM_RANK, MPI_Comm_rank

 Purpose
Returns the rank of the local task in the group associated with a communicator.

 C Synopsis
#include <mpi.h>
int MPI_Comm_rank(MPI_Comm comm,int \rank);

 Fortran Synopsis
include 'mpif.h'
MPI_COMM_RANK(INTEGER COMM,INTEGER RANK,INTEGER IERROR)

 Parameters
comm is the communicator (handle) (IN)

rank is an integer specifying the rank of the calling task in group of
comm (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the rank of the local task in the group associated with a
communicator.

You can use this routine with MPI_COMM_SIZE to determine the amount of
concurrency available for a specific job. MPI_COMM_RANK indicates the rank of
the task that calls it in the range from 0...size – 1, where size is the return value of
MPI_COMM_SIZE.

This routine is a shortcut to accessing the communicator's group with
MPI_COMM_GROUP, computing the rank using MPI_GROUP_RANK and freeing
the temporary group by using MPI_GROUP_FREE.

If comm is an intercommunicator, rank is the rank of the local task in the local
group.

 Errors
Invalid communicator

MPI not initialized

MPI already finalized

 Related Information
 MPI_GROUP_RANK

98 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_COMM_REMOTE_GROUP

 MPI_COMM_REMOTE_GROUP, MPI_Comm_remote_group

 Purpose
Returns the handle of the remote group of an intercommunicator.

 C Synopsis
#include <mpi.h>
int MPI_Comm_remote_group(MPI_Comm comm,MPI_group \group);

 Fortran Synopsis
include 'mpif.h'
MPI_COMM_REMOTE_GROUP(INTEGER COMM,MPI_GROUP GROUP,INTEGER IERROR)

 Parameters
comm is the intercommunicator (handle) (IN)

group is the remote group corresponding to comm . (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a local operation that returns the handle of the remote group of an
intercommunicator.

 Notes
To determine the local group of an intercommunicator, use MPI_COMM_GROUP.

 Errors
Invalid communicator

Invalid communicator type it must be intercommunicator

MPI not initialized

MPI already finalized

 Related Information
 MPI_COMM_GROUP

 Chapter 2. Descriptions of Subroutines 99

 MPI_COMM_REMOTE_SIZE

 MPI_COMM_REMOTE_SIZE, MPI_Comm_remote_size

 Purpose
Returns the size of the remote group of an intercommunicator.

 C Synopsis
#include <mpi.h>
int MPI_Comm_remote_size(MPI_Comm comm,int \size);

 Fortran Synopsis
include 'mpif.h'
MPI_COMM_REMOTE_SIZE(INTEGER COMM,INTEGER SIZE,INTEGER IERROR)

 Parameters
comm is the intercommunicator (handle) (IN)

size is an integer specifying the number of tasks in the remote group
of comm . (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a local operation that returns the size of the remote group of an
intercommunicator.

 Notes
To determine the size of the local group of an intercommunicator, use
MPI_COMM_SIZE.

 Errors
Invalid communicator

Invalid communicator type it must be intercommunicator

MPI not initialized

MPI already finalized

 Related Information
 MPI_COMM_SIZE

100 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_COMM_SIZE

 MPI_COMM_SIZE, MPI_Comm_size

 Purpose
Returns the size of the group associated with a communicator.

 C Synopsis
#include <mpi.h>
int MPI_Comm_size(MPI_Comm comm,int \size);

 Fortran Synopsis
include 'mpif.h'
MPI_COMM_SIZE(INTEGER COMM,INTEGER SIZE,INTEGER IERROR)

 Parameters
comm is the communicator (handle) (IN)

size is an integer specifying the number of tasks in the group of
comm (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the size of the group associated with a communicator. This
routine is a shortcut to:

� accessing the communicator's group with MPI_COMM_GROUP,
� computing the size using MPI_GROUP_SIZE, and
� freeing the temporary group using MPI_GROUP_FREE.

If comm is an intercommunicator, size will be the size of the local group. To
determine the size of the remote group of an intercommunicator, use
MPI_COMM_REMOTE_SIZE.

You can use this routine with MPI_COMM_RANK to determine the amount of
concurrency available for a specific library or program. MPI_COMM_RANK
indicates the rank of the task that calls it in the range from 0...size – 1, where size
is the return value of MPI_COMM_SIZE. The rank and size information can then be
used to partition work across the available tasks.

 Notes
This function indicates the number of tasks in a communicator. For
MPI_COMM_WORLD, it indicates the total number of tasks available.

 Errors
Invalid communicator

MPI not initialized

MPI already finalized

 Chapter 2. Descriptions of Subroutines 101

 MPI_COMM_SIZE

 Related Information
 MPI_GROUP_SIZE
 MPI_COMM_GROUP
 MPI_COMM_RANK
 MPI_COMM_REMOTE_SIZE
 MPI_GROUP_FREE

102 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_COMM_SPLIT

 MPI_COMM_SPLIT, MPI_Comm_split

 Purpose
Splits a communicator into multiple communicators based on color and key .

 C Synopsis
#include <mpi.h>
int MPI_Comm_split(MPI_Comm comm,int color,int key,MPI_Comm \newcomm);

 Fortran Synopsis
include 'mpif.h'
MPI_COMM_SPLIT(INTEGER COMM,INTEGER COLOR,INTEGER KEY,

INTEGER NEWCOMM,INTEGER IERROR)

 Parameters
comm is the communicator (handle) (IN)

color is an integer specifying control of subset assignment (IN)

key is an integer specifying control of rank assignment (IN)

newcomm is the new communicator (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_COMM_SPLIT is a collective function that partitions the group associated with
comm into disjoint subgroups, one for each value of color . Each subgroup
contains all tasks of the same color. Within each subgroup, the tasks are ranked in
the order defined by the value of the argument key . Ties are broken according to
their rank in the old group. A new communicator is created for each subgroup and
returned in newcomm . If a task supplies the color value MPI_UNDEFINED,
newcomm returns MPI_COMM_NULL. Even though this is a collective call, each
task is allowed to provide different values for color and key .

This call applies only to intracommunicators.

The value of color must be greater than or equal to zero.

 Errors
| Conflicting collective operations on communicator

Invalid color color < 0

Invalid communicator

Invalid communicator type it must be intracommunicator

MPI not initialized

MPI already finalized

 Chapter 2. Descriptions of Subroutines 103

 MPI_COMM_SPLIT

 Related Information
 MPI_CART_SUB

104 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_COMM_TEST_INTER

 MPI_COMM_TEST_INTER, MPI_Comm_test_inter

 Purpose
Returns the type of a communicator (intra or inter).

 C Synopsis
#include <mpi.h>
int MPI_Comm_test_inter(MPI_Comm comm,int \flag);

 Fortran Synopsis
include 'mpif.h'
MPI_COMM_TEST_INTER(INTEGER COMM,LOGICAL FLAG,INTEGER IERROR)

 Parameters
comm is the communicator (handle) (INOUT)

flag communicator type (logical)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is used to determine if a communicator is an inter or an
intracommunicator.

If comm is an intercommunicator, the call returns true . If comm is an
intracommunicator, the call returns false .

 Notes
An intercommunicator can be used as an argument to some of the communicator
access routines. However, intercommunicators cannot be used as input to some of
the constructor routines for intracommunicators, such as MPI_COMM_CREATE.

 Errors
Invalid communicator

MPI not initialized

MPI already finalized

 Chapter 2. Descriptions of Subroutines 105

 MPI_DIMS_CREATE

 MPI_DIMS_CREATE, MPI_Dims_create

 Purpose
Defines a cartesian grid to balance tasks.

 C Synopsis
#include <mpi.h>
MPI_Dims_create(int nnodes,int ndims,int \dims);

 Fortran Synopsis
include 'mpif.h'
MPI_DIMS_CREATE(INTEGER NNODES,INTEGER NDIMS,INTEGER DIMS(\),
 INTEGER IERROR)

 Parameters
nnodes is an integer specifying the number of nodes in a grid (IN)

ndims is an integer specifying the number of cartesian dimensions (IN)

dims is an integer array of size ndims that specifies the number of
nodes in each dimension. (INOUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a cartesian grid with a given number of dimensions and a
given number of nodes. The dimensions are constrained to be as close to each
other as possible.

If dims[i] is a positive number when MPI_DIMS_CREATE is called, the routine will
not modify the number of nodes in dimension i. Only those entries where dims[i] =0
are modified by the call.

 Notes
MPI_DIMS_CREATE chooses dimensions so that the resulting grid is as close as
possible to being an ndims–dimensional cube .

 Errors
MPI not initialized

MPI already finalized

Invalid ndims ndims < 0

Invalid nnodes nnodes <0

Invalid dimension dims[i] < 0 or nnodes is not a multiple of the
non-zero entries of dims

106 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_DIMS_CREATE

 Related Information
 MPI_CART_CREATE

 Chapter 2. Descriptions of Subroutines 107

 MPI_ERRHANDLER_CREATE

 MPI_ERRHANDLER_CREATE, MPI_Errhandler_create

 Purpose
Registers a user-defined error handler.

 C Synopsis
#include <mpi.h>
int MPI_Errhandler_create(MPI_Handler_function \function,
 MPI_Errhandler \errhandler);

 Fortran Synopsis
include 'mpif.h'
MPI_ERRHANDLER_CREATE(EXTERNAL FUNCTION,INTEGER ERRHANDLER,
 INTEGER IERROR)

 Parameters
function is a user defined error handling procedure (IN)

errhandler is an MPI error handler (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_ERRHANDLER_CREATE registers the user routine function for use as an
MPI error handler.

You can associate an error handler with a communicator. MPI will use the specified
error handling routine for any exception that takes place during a call on this
communicator. Different tasks can attach different error handlers to the same
communicator. MPI calls not related to a specific communicator are considered as
attached to the communicator MPI_COMM_WORLD.

| Notes
| The MPI standard specifies the following error handler prototype. A correct user
| error handler would be coded as:

| void my_handler(MPI_Comm \comm, int \errcode, ...){}

| The Parallel Environment for AIX implementation of MPI passes additional
| arguments to an error handler. The MPI standard allows this and urges an MPI
| implementation that does so to document the additional arguments. These
| additional arguments will be ignored by fully portable user error handlers. Anyone
| who wants to use the extra errhandler arguments can do so by using the C varargs
| (or stdargs) facility, but will be writing code that does not port cleanly to other MPI
| implementations, which happen to have different additional arguments.

| The effective prototype for an error handler in IBM's implementation is:

| typedef void (MPI_Handler_function)
| (MPI_Comm \comm, int \code, char \routine_name, int \flag, int \badval)

| The additional arguments are:

108 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ERRHANDLER_CREATE

| routine_name the name of the MPI routine in which the error occurred

| flag TRUE if badval is meaningful, FALSE if not

| badval the non-valid integer value that triggered the error

| The interpretation of badval is context-dependent, so badval is not likely to be
| useful to a user error handler function that cannot identify this context. The
| routine_name string is more likely to be useful.

 Errors
NULL function

MPI not initialized

MPI already finalized

 Related Information
 MPI_ERRHANDLER_SET
 MPI_ERRHANDLER_GET
 MPI_ERRHANDLER_FREE

 Chapter 2. Descriptions of Subroutines 109

 MPI_ERRHANDLER_FREE

 MPI_ERRHANDLER_FREE, MPI_Errhandler_free

 Purpose
Marks an error handler for deallocation.

 C Synopsis
#include <mpi.h>
int MPI_Errhandler_free(MPI_Errhandler \errhandler);

 Fortran Synopsis
include 'mpif.h'
MPI_ERRHANDLER_FREE(INTEGER ERRHANDLER,INTEGER IERROR)

 Parameters
| errhandler is an MPI error handler (handle) (INOUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine marks error handler errhandler for deallocation and sets errhandler to
MPI_ERRHANDLER_NULL. Actual deallocation occurs when all communicators
associated with the error handler have been deallocated.

 Errors
Invalid error handler

MPI not initialized

MPI already finalized

 Related Information
 MPI_ERRHANDLER_CREATE

110 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ERRHANDLER_GET

 MPI_ERRHANDLER_GET, MPI_Errhandler_get

 Purpose
Gets an error handler associated with a communicator.

 C Synopsis
#include <mpi.h>
int MPI_Errhandler_get(MPI_Comm comm,MPI_Errhandler \errhandler);

 Fortran Synopsis
include 'mpif.h'
MPI_ERRHANDLER_GET(INTEGER COMM,INTEGER ERRHANDLER,INTEGER IERROR)

 Parameters
comm is a communicator (handle) (IN)

errhandler is the MPI error handler currently associated with comm (handle)
(OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the error handler errhandler currently associated with
communicator comm .

 Errors
Invalid communicator

MPI not initialized

MPI already finalized

 Related Information
 MPI_ERRHANDLER_SET
 MPI_ERRHANDLER_CREATE

 Chapter 2. Descriptions of Subroutines 111

 MPI_ERRHANDLER_SET

 MPI_ERRHANDLER_SET, MPI_Errhandler_set

 Purpose
Associates a new error handler with a communicator.

 C Synopsis
#include <mpi.h>
int MPI_Errhandler_set(MPI_Comm comm,MPI_Errhandler errhandler);

 Fortran Synopsis
include 'mpif.h'
MPI_ERRHANDLER_SET(INTEGER COMM, INTEGER ERRHANDLER, INTEGER IERROR)

 Parameters
comm is a communicator (handle) (IN)

errhandler is a new MPI error handler for comm (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine associates error handler errhandler with communicator comm . The
association is local.

MPI will use the specified error handling routine for any exception that takes place
during a call on this communicator. Different tasks can attach different error
handlers to the same communicator. MPI calls not related to a specific
communicator are considered as attached to the communicator
MPI_COMM_WORLD.

 Notes
An error handler that does not end in the MPI job being terminated, creates
undefined risks. Some errors are harmless while others are catastrophic. For
example, an error detected by one member of a collective operation can result in
other members waiting indefinitely for an operation which will never occur.

It is also important to note that the MPI standard does not specify the state the MPI
library should be in after an error occurs. MPI does not provide a way for users to
determine how much, if any, damage has been done to the MPI state by a
particular error.

The default error handler is MPI_ERRORS_ARE_FATAL, which behaves as if it
contains a call to MPI_ABORT. MPI_ERRHANDLER_SET allows users to replace
MPI_ERRORS_ARE_FATAL with an alternate error handler. The MPI standard
provides MPI_ERRORS_RETURN, and IBM adds the non-standard
MPE_ERRORS_WARN. These are pre-defined handlers that cause the error code
to be returned and MPI to continue to run. Error handlers that are written by MPI
users may call MPI_ABORT. If they do not abort, they too will cause MPI to deliver
an error return code to the caller and continue to run.

112 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ERRHANDLER_SET

Error handlers that let MPI return should only be used if every MPI call checks its
return code. Continuing to use MPI after an error involves undefined risks. You may
do cleanup after an MPI error is detected, as long as it doesn't use MPI calls. This
should normally be followed by a call to MPI_ABORT.

| The error Invalid error handler will be raised if errhandler is a file error handler
| (created with the routine MPI_FILE_CREATE_ERRHANDLER). Predefined error
| handlers, MPI_ERRORS_ARE_FATAL and MPI_ERRORS_RETURN, can be
| associated with both communicators and file handles.

 Errors
Invalid Communicator

Invalid error handler

MPI not initialized

MPI already finalized

 Related Information
 MPI_ERRHANDLER_GET
 MPI_ERRHANDLER_CREATE

 Chapter 2. Descriptions of Subroutines 113

 MPI_ERROR_CLASS

 MPI_ERROR_CLASS, MPI_Error_class

 Purpose
Returns the error class for the corresponding error code.

 C Synopsis
#include <mpi.h>
int MPI_Error_class(int errorcode,int \errorclass);

 Fortran Synopsis
include 'mpif.h'
MPI_ERROR_CLASS(INTEGER ERRORCODE,INTEGER ERRORCLASS,INTEGER IERROR)

 Parameters
errorcode is the error code returned by an MPI routine (IN)

errorclass is the error class for the errorcode (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the error class corresponding to an error code.

| Table 2 lists the valid error classes for threaded and non-threaded libraries.

| Table 2 (Page 1 of 2). MPI Error Classes: Threaded and Non-Threaded Libraries

Error Classes Description

MPI_SUCCESS No error

MPI_ERR_BUFFER Non-valid buffer pointer

MPI_ERR_COUNT Non-valid count argument

MPI_ERR_TYPE Non-valid datatype argument

MPI_ERR_TAG Non-valid tag argument

MPI_ERR_COMM Non-valid communicator

MPI_ERR_RANK Non-valid rank

MPI_ERR_REQUEST Non-valid request (handle)

MPI_ERR_ROOT Non-valid root

MPI_ERR_GROUP Non-valid group

MPI_ERR_OP Non-valid operation

MPI_ERR_TOPOLOGY Non-valid topology

MPI_ERR_DIMS Non-valid dimension argument

MPI_ERR_ARG Non-valid argument

MPI_ERR_IN_STATUS Error code is in status

| MPI_ERR_PENDING| Pending request

MPI_ERR_TRUNCATE Message truncated on receive

114 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ERROR_CLASS

| Table 3 lists the valid error classes for threaded libraries only.

| Table 2 (Page 2 of 2). MPI Error Classes: Threaded and Non-Threaded Libraries

Error Classes Description

MPI_ERR_INTERN Internal MPI error

MPI_ERR_OTHER Known error not provided

MPI_ERR_UNKNOWN Unknown error

MPI_ERR_LASTCODE Last standard error code

| Table 3. MPI Error Classes: Threaded Libraries Only

| Error Classes| Description

| MPI_ERR_FILE| Non-valid file handle

| MPI_ERR_NOT_SAME| Collective argument is not identical on all
| tasks

| MPI_ERR_AMODE| Error related to the amode passed to
| MPI_FILE_OPEN

| MPI_ERR_UNSUPPORTED_DATAREP| Unsupported datarep passed to
| MPI_FILE_SET_VIEW

| MPI_ERR_UNSUPPORTED_OPERATION| Unsupported operation, such as seeking
| on a file that supports sequential access
| only

| MPI_ERR_NO_SUCH_FILE| File does not exist

| MPI_ERR_FILE_EXISTS| File exists

| MPI_ERR_BAD_FILE| Non-valid file name (the path name is too
| long, for example)

| MPI_ERR_ACCESS| Permission denied

| MPI_ERR_NO_SPACE| Not enough space

| MPI_ERR_QUOTA| Quota exceeded

| MPI_ERR_READ_ONLY| Read-only file or file system

| MPI_ERR_FILE_IN_USE| File operation could not be completed
| because the file is currently opened by
| some task

| MPI_ERR_DUP_DATAREP| Conversion functions could not be
| registered because a previously-defined
| data representation was passed to
| MPI_REGISTER_DATAREP

| MPI_ERR_CONVERSION| An error occurred in a user-supplied data
| conversion function

| MPI_ERR_IO| Other I/O error

 Notes
For this implementation of MPI, refer to the IBM Parallel Environment for AIX:
Messages, which provides a listing of all the error messages issued as well as the
error class to which the message belongs. Be aware that the MPI standard is not
explicit enough about error classes to guarantee that every implementation of MPI
will use the same error class for every detectable user error.

 Chapter 2. Descriptions of Subroutines 115

 MPI_ERROR_CLASS

 Errors
MPI not initialized

MPI already finalized

 Related Information
 MPI_ERROR_STRING

116 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ERROR_STRING

 MPI_ERROR_STRING, MPI_Error_string

 Purpose
Returns the error string for a given error code.

 C Synopsis
#include <mpi.h>
int MPI_Error_string(int errorcode,char \string,
 int \resultlen);

 Fortran Synopsis
include 'mpif.h'
MPI_ERROR_STRING(INTEGER ERRORCODE,CHARCTER STRING(\),

INTEGER RESULTLEN,INTEGER IERROR)

 Parameters
errorcode is the error code returned by an MPI routine (IN)

string is the error message for the errorcode (OUT)

resultlen is the character length of string (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the error string for a given error code. The returned string is
null terminated with the terminating byte not counted in resultlen .

Storage for string must be at least MPI_MAX_ERROR_STRING characters long.
The number of characters actually written is returned in resultlen .

 Errors
Invalid error code errorcode is not defined

MPI not initialized

MPI already finalized

 Related Information
 MPI_ERROR_CLASS

 Chapter 2. Descriptions of Subroutines 117

 MPI_FILE_CLOSE

| MPI_FILE_CLOSE, MPI_File_close

| Purpose
| Closes the file referred to by its file handle fh . It may also delete the file if the
| appropriate mode was set when the file was opened.

| C Synopsis
| #include <mpi.h>
| int MPI_File_close (MPI_File \fh);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_CLOSE(INTEGER FH,INTEGER IERROR)

| Parameters
| fh is the file handle of the file to be closed (handle) (INOUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_CLOSE closes the file referred to by fh and deallocates associated
| internal data structures. This is a collective operation. The file is also deleted if
| MPI_MODE_DELETE_ON_CLOSE was set when the file was opened. In this
| situation, if other tasks have already opened the file and are still accessing it
| concurrently, these accesses will proceed normally, as if the file had not been
| deleted, until the tasks close the file. However, new open operations on the file will
| fail. If I/O operations are pending on fh , an error is returned to all the participating
| tasks, the file is neither closed nor deleted, and fh remains a valid file handle.

| Notes
| You are responsible for making sure all outstanding nonblocking requests and split
| collective operations associated with fh made by a task have completed before that
| task calls MPI_FILE_CLOSE.

| If you call MPI_FINALIZE before all files are closed, an error will be raised on
| MPI_COMM_WORLD.

| MPI_FILE_CLOSE deallocates the file handle object and sets fh to
| MPI_FILE_NULL.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

118 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_CLOSE

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle

| Pending I/O operations (MPI_ERR_OTHER)
| There are pending I/O operations

| Internal close failed (MPI_ERR_IO)
| An internal close operation on the file failed

| Returning Errors When a File Is To Be Deleted (MPI Error Class):

| Permission denied (MPI_ERR_ACCESS)
| Write access to the directory containing the file is
| denied

| File does not exist (MPI_ERR_NO_SUCH_FILE)
| The file that is to be deleted does not exist

| Read-only file system (MPI_ERR_READ_ONLY)
| The directory containing the file resides on a
| read-only file system

| Internal unlink failed (MPI_ERR_IO)
| An internal unlink operation on the file failed

| Related Information
| MPI_FILE_OPEN
| MPI_FILE_DELETE
| MPI_FINALIZE

 Chapter 2. Descriptions of Subroutines 119

 MPI_FILE_CREATE_ERRHANDLER

| MPI_FILE_CREATE_ERRHANDLER, MPI_File_create_errhandler

| Purpose
| Registers a user-defined error handler that you can associate with an open file.

| C Synopsis
| #include <mpi.h>
| int MPI_File_create_errhandler (MPI_File_errhandler_fn \function,
| MPI_Errhandler \errhandler);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_CREATE_ERRHANDLER(EXTERNAL FUNCTION,INTEGER ERRHANDLER,
| INTEGER IERROR)

| Parameters
| function is a user defined file error handling procedure (IN)

| errhandler is an MPI error handler (handle) (OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_CREATE_ERRHANDLER registers the user routine function for use as
| an MPI error handler that can be associated with a file handle. Once associated
| with a file handle, MPI uses the specified error handling routine for any exception
| that takes place during a call on this file handle.

| Notes
| Different tasks can associate different error handlers with the same file.
| MPI_ERRHANDLER_FREE is used to free any error handler.

| The MPI standard specifies the following error handler prototype:

| typedef void (MPI_File_errhandler_fn) (MPI_File \, int \, ...);

| A correct user error handler would be coded as:

| void my_handler(MPI_File \fh, int \errcode,...){}

| The Parallel Environment for AIX implementation of MPI passes additional
| arguments to an error handler. The MPI standard allows this and urges an MPI
| implementation that does so to document the additional arguments. These
| additional arguments will be ignored by fully portable user error handlers. Anyone
| who wants to use the extra errhandler arguments can do so by using the C varargs
| (or stdargs) facility, but will be writing code that does not port cleanly to other MPI
| implementations, which happen to have different additional arguments.

| The effective prototype for an error handler in IBM's implementation is:

| typedef void (MPI_File_errhandler_fn)
| (MPI_File \fh, int \code, char \routine_name, int \flag, int \badval)

| The additional arguments are:

120 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_CREATE_ERRHANDLER

| routine_name the name of the MPI routine in which the error occurred

| flag TRUE if badval is meaningful, FALSE if not

| badval the non-valid integer value that triggered the error

| The interpretation of badval is context-dependent, so badval is not likely to be
| useful to a user error handler function that cannot identify this context. The
| routine_name string is more likely to be useful.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Null function not allowed function cannot be NULL.

| Related Information
| MPI_FILE_SET_ERRHANDLER
| MPI_FILE_GET_ERRHANDLER
| MPI_ERRHANDLER_FREE

 Chapter 2. Descriptions of Subroutines 121

 MPI_FILE_DELETE

| MPI_FILE_DELETE, MPI_File_delete

| Purpose
| Deletes the file referred to by filename after pending operations on the file
| complete. New operations cannot be initiated on the file.

| C Synopsis
| #include <mpi.h>
| int MPI_File_delete (char \filename,MPI_Info info);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_DELETE(CHARACTER\(\) FILENAME,INTEGER INFO,
| INTEGER IERROR)

| Parameters
| filename is the name of the file to be deleted (string) (IN)

| info is an info object specifying file hints (handle) (IN)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| This routine deletes the file referred to by filename . If other tasks have already
| opened the file and are still accessing it concurrently, these accesses will proceed
| normally, as if the file had not been deleted, until the tasks close the file. However,
| new open operations on the file will fail. There are no hints defined for
| MPI_FILE_DELETE.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Pathname too long (MPI_ERR_BAD_FILE)
| A filename must contain less than 1024 characters.

| Invalid file system type (MPI_ERR_OTHER)
| filename refers to a file belonging to a file system of
| an unsupported type.

| Invalid info (MPI_ERR_INFO)
| info is not a valid info object.

| Permission denied (MPI_ERR_ACCESS)
| Write access to the directory containing the file is
| denied.

122 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_DELETE

| File or directory does not exist (MPI_ERR_NO_SUCH_FILE)
| The file that is to be deleted does not exist, or a
| directory in the path does not exist.

| Read-only file system (MPI_ERR_READ_ONLY)
| The directory containing the file resides on a
| read-only file system.

| Internal unlink failed (MPI_ERR_IO)
| An internal unlink operation on the file failed.

| Related Information
| MPI_FILE_CLOSE

 Chapter 2. Descriptions of Subroutines 123

 MPI_FILE_GET_AMODE

| MPI_FILE_GET_AMODE, MPI_File_get_amode

| Purpose
| Retrieves the access mode specified when the file was opened.

| C Synopsis
| #include <mpi.h>
| int MPI_File_get_amode (MPI_File fh,int \amode);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_GET_AMODE(INTEGER FH,INTEGER AMODE,INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (IN)

| amode is the file access mode used to open the file (integer) (OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_GET_AMODE allows you to retrieve the access mode specified when
| the file referred to by fh was opened.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| Related Information
| MPI_FILE_OPEN

124 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_GET_ATOMICITY

| MPI_FILE_GET_ATOMICITY, MPI_File_get_atomicity

| Purpose
| Retrieves the current atomicity mode in which the file is accessed.

| C Synopsis
| #include <mpi.h>
| int MPI_File_get_atomicity (MPI_File fh,int \flag);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_GET_ATOMICITY (INTEGER FH,LOGICAL FLAG,INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (IN)

| flag TRUE if atomic mode, FALSE if non-atomic mode (boolean)
| (OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_GET_ATOMICITY returns in flag 1 if the atomic mode is enabled for the
| file referred to by fh , otherwise flag returns 0.

| Notes
| The atomic mode is set to FALSE by default when the file is first opened. In
| MPI-2, MPI_FILE_SET_ATOMICITY is defined as the way to set atomicity.
| However, it is not provided in this release.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| Related Information
| MPI_FILE_OPEN

 Chapter 2. Descriptions of Subroutines 125

 MPI_FILE_GET_ERRHANDLER

| MPI_FILE_GET_ERRHANDLER, MPI_File_get_errhandler

| Purpose
| Retrieves the error handler currently associated with a file handle.

| C Synopsis
| #include <mpi.h>
| int MPI_File_get_errhandler (MPI_File file,MPI_Errhandler \errhandler);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_GET_ERRHANDLER (INTEGER FILE,INTEGER ERRHANDLER,
| INTEGER IERROR)

| Parameters
| fh is a file handle or MPI_FILE_NULL (handle)(IN)

| errhandler is the error handler currently associated with fh or the current
| default file error handler (handle)(OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| If fh is MPI_FILE_NULL, then MPI_FILE_GET_ERRHANDLER returns in
| errhandler the default file error handler currently assigned to the calling task. If fh
| is a valid file handle, then MPI_FILE_GET_ERRHANDLER returns in errhandler ,
| the error handler currently associated with the file handle fh . Error handlers may be
| different at each task.

| Notes
| At MPI_INIT time, the default file error handler is MPI_ERRORS_RETURN. You
| can alter the default by calling the routine MPI_FILE_SET_ERRHANDLER and
| passing MPI_FILE_NULL as the file handle parameter. Any program that uses
| MPI_ERRORS_RETURN should check function return codes.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid file handle fh must be a valid file handle or MPI_FILE_NULL.

| Related Information
| MPI_FILE_CREATE_ERRHANDLER
| MPI_FILE_SET_ERRHANDLER
| MPI_ERRHANDLER_FREE

126 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_GET_GROUP

| MPI_FILE_GET_GROUP, MPI_File_get_group

| Purpose
| Retrieves the group of tasks that opened the file.

| C Synopsis
| #include <mpi.h>
| int MPI_File_get_group (MPI_File fh,MPI_Group \group);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE GET_GROUP (INTEGER FH,INTEGER GROUP,INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (IN)

| group is the group which opened the file handle (handle) (OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_GET_GROUP lets you retrieve in group the group of tasks that opened
| the file referred to by fh . You are responsible for freeing group via
| MPI_GROUP_FREE.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| Related Information
| MPI_FILE_OPEN

 Chapter 2. Descriptions of Subroutines 127

 MPI_FILE_GET_INFO

| MPI_FILE_GET_INFO, MPI_File_get_info

| Purpose
| Returns a new info object identifying the hints associated with fh .

| C Synopsis
| #include <mpi.h>
| int MPI_File_get_info (MPI_File fh,MPI_Info \info_used);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_GET_INFO (INTEGER FH,INTEGER INFO_USED,
| INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (IN)

| info_used is the new info object (handle) (OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| Because no file hints are defined in this release, MPI_FILE_GET_INFO simply
| creates a new empty info object and returns its handle in info_used after checking
| for the validity of the file handle fh . You are responsible for freeing info_used via
| MPI_INFO_FREE.

| Notes
| File hints can be specified by the user through the info parameter of routines:
| MPI_FILE_SET_INFO, MPI_FILE_OPEN, MPI_FILE_SET_VIEW. MPI can also
| assign default values to file hints it supports when these hints are not specified by
| the user.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

128 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_GET_INFO

| Related Information
| MPI_FILE_SET_INFO
| MPI_FILE_OPEN
| MPI_FILE_SET_VIEW
| MPI_INFO_FREE

 Chapter 2. Descriptions of Subroutines 129

 MPI_FILE_GET_SIZE

| MPI_FILE_GET_SIZE, MPI_File_get_size

| Purpose
| Retrieves the current file size.

| C Synopsis
| #include <mpi.h>
| int MPI_File_get_size (MPI_File fh,MPI_Offset size);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_GET_SIZE (INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) SIZE,
| INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (IN)

| size is the size of the file in bytes (long long) (OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_GET_SIZE returns in size the current length in bytes of the open file
| referred to by fh .

| Notes
| You can alter the size of the file by calling the routine MPI_FILE_SET_SIZE. The
| size of the file will also be altered when a write operation to the file results in
| adding data beyond the current end of the file.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| Internal fstat failed (MPI_ERR_IO)
| An internal fstat operation on the file failed.

130 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_GET_SIZE

| Related Information
| MPI_FILE_SET_SIZE
| MPI_FILE_WRITE_AT
| MPI_FILE_WRITE_AT_ALL
| MPI_FILE_IWRITE_AT

 Chapter 2. Descriptions of Subroutines 131

 MPI_FILE_GET_VIEW

| MPI_FILE_GET_VIEW, MPI_File_get_view

| Purpose
| Retrieves the current file view.

| C Synopsis
| #include <mpi.h>
| int MPI_File_get_view (MPI_File fh,MPI_Offset \disp,
| MPI_Datatype \etype,MPI_Datatype \filetype,char \datarep);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_GET_VIEW (INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) DISP,
| INTEGER ETYPE,INTEGER FILETYPE,INTEGER DATAREP,INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (IN)

| disp is the displacement (long long) (OUT)

| etype is the elementary datatype (handle) (OUT).

| filetype is the file type (handle) (OUT).

| datarep is the data representation (string) (OUT).

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_GET_VIEW retrieves the current view associated with the open file
| referred to by fh . The current view displacement is returned in disp . A reference to
| the current elementary datatype is returned in etype and a reference to the current
| file type is returned in filetype . The current data representation is returned in
| datarep . If etype and filetype are named types, they cannot be freed. If either one
| is a user-defined types, it should be freed. Use MPI_TYPE_GET_ENVELOPE to
| identify which types should be freed via MPI_TYPE_FREE. Freeing the
| MPI_Datatype reference returned by MPI_FILE_GET_VIEW invalidates only this
| reference.

| Notes
| � The default view is associated with the file when the file is opened. This view
| corresponds to a byte stream starting at file offset 0 (zero) and using the native
| data representation, which is:

| disp equals 0(zero)
| etype equals MPI_BYTE
| filetype equals MPI_BYTE
| datarep equals “native”

| To alter the view of the file, you can call the routine MPI_FILE_SET_VIEW.

132 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_GET_VIEW

| � An MPI type constructor, such as MPI_TYPE_CONTIGUOUS, creates a
| datatype object within MPI and gives a handle for that object to the caller. This
| handle represents one reference to the object. In this implementation of MPI,
| the MPI datatypes obtained with calls to MPI_TYPE_GET_VIEW are new
| handles for the existing datatype objects. The number of handles (references)
| given to the user is tracked by a reference counter in the object. MPI cannot
| discard a datatype object unless MPI_TYPE_FREE has been called on every
| handle the user has obtained.

| The use of reference-counted objects is encouraged, but not mandated, by the
| MPI standard. Another MPI implementation may create new objects instead.
| The user should be aware of a side effect of the reference count approach.
| Suppose mytype was created by a call to MPI_TYPE_VECTOR and used so
| that a later call to MPI_TYPE_GET_VIEW returns its handle in hertype.
| Because both handles identify the same datatype object, attribute changes
| made with either handle are changes in the single object. That object will exist
| at least until MPI_TYPE_FREE has been called on both mytype and hertype.
| Freeing either handle alone will leave the object intact and the other handle will
| remain valid.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| Related Information
| MPI_FILE_OPEN
| MPI_FILE_SET_VIEW
| MPI_TYPE_FREE

 Chapter 2. Descriptions of Subroutines 133

 MPI_FILE_IREAD_AT

| MPI_FILE_IREAD_AT, MPI_File_iread_at

| Purpose
| A nonblocking version of MPI_FILE_READ_AT. The call returns immediately with a
| request handle that you can use to check for the completion of the read operation.

| C Synopsis
| #include <mpi.h>
| int MPI_File_iread_at (MPI_File fh,MPI_Offset offset,void \buf,
| int count,MPI_Datatype datatype,MPI_Request \request);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_IREAD_AT (INTEGER FH,INTEGER (KIND=MPI_OFFSET_KIND) OFFSET,
| CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER REQUEST,
| INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (IN).

| offset is the file offset (long long) (IN).

| buf is the initial address of buffer (choice) (OUT).

| count is the number of elements in the buffer (integer) (IN).

| datatype is the datatype of each buffer element (handle) (IN).

| request is the request object (handle) (OUT).

| IERROR is the Fortran return code. It is always the last argument.

| Description
| This routine, MPI_FILE_IREAD_AT, is the nonblocking version of
| MPI_FILE_READ_AT and it performs the same function as MPI_FILE_READ_AT
| except it immediately returns in request a handle. This request handle can be used
| to either test or wait for the completion of the read operation or it can be used to
| cancel the read operation. The memory buffer buf cannot be accessed until the
| request has completed via a completion routine call. Completion of the request
| guarantees that the read operation is complete.

| When MPI_FILE_IREAD_AT completes, the actual number of bytes read is stored
| in the completion routine's status argument. If an error occurs during the read
| operation, the error is returned by the completion routine through its return value or
| in the appropriate index of the array_of_statuses argument.

| If the completion routine is associated with multiple requests, it returns when
| requests complete successfully. Or, if one of the requests fails, the errorhandler
| associated with that request is triggered. If that is an "error return" errorhandler,
| each element of the array_of_statuses argument is updated to contain
| MPI_ERR_PENDING for each request that did not yet complete. The first error
| dictates the outcome of the entire completion routine whether the error is on a file

134 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_IREAD_AT

| request or a communication request. The order in which requests are processed is
| not defined.

| Notes
| A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The
| eventual call to MPI_TEST_CANCELLED on the status will show that the cancel
| was unsuccessful.

| Note that when you specify a value for the offset argument, constants of the
| appropriate type should be used. In Fortran, constants of type INTEGER(KIND=8)
| should be used, for example, 45_8.

| Passing MPI_STATUS_IGNORE for the status argument or
| MPI_STATUSES_IGNORE for the array_of_statuses argument in the completion
| routine call is not supported in this release.

| If an error occurs during the read operation, the number of bytes contained in the
| status argument of the completion routine is meaningless.

| For additional information, see MPI_FILE_READ_AT.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Permission denied (MPI_ERR_ACCESS)
| The file was opened in write-only mode.

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| Invalid count (MPI_ERR_COUNT)
| count is an invalid count.

| MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
| datatype has already been freed.

| Undefined datatype (MPI_ERR_TYPE)
| datatype is not a defined datatype.

| Invalid datatype (MPI_ERR_TYPE)
| datatype can be neither MPI_LB nor MPI_UB.

| Uncommitted datatype (MPI_ERR_TYPE)
| datatype must be committed.

| Unsupported operation on sequential access file
| (MPI_ERR_UNSUPPORTED_OPERATION)
| MPI_MODE_SEQUENTIAL was set when the file
| was opened.

| Invalid offset (MPI_ERR_ARG)
| offset is an invalid offset.

 Chapter 2. Descriptions of Subroutines 135

 MPI_FILE_IREAD_AT

| Error Returned By Completion Routine (MPI Error Class):

| Internal read failed (MPI_ERR_IO) An internal read operation failed.

| Internal lseek failed (MPI_ERR_IO) An internal lseek operation failed.

| Related Information
| MPI_FILE_READ_AT
| MPI_WAIT
| MPI_TEST
| MPI_CANCEL

136 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_IWRITE_AT

| MPI_FILE_IWRITE_AT, MPI_File_iwrite_at

| Purpose
| A nonblocking version of MPI_FILE_WRITE_AT. The call returns immediately with
| a request handle that you can use to check for the completion of the write
| operation.

| C Synopsis
| #include <mpi.h>
| int MPI_File_iwrite_at (MPI_File fh,MPI_Offset offset,void \buf,
| int count,MPI_Datatype datatype,MPI_Request \request);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_IWRITE_AT(INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,
| CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER REQUEST,
| INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (INOUT).

| offset is the file offset (long long) (IN).

| buf is the initial address of buffer (choice) (IN).

| count is the number of elements in buffer (integer) (IN).

| datatype is the datatype of elements in count (handle) (IN).

| request is the request object (handle) (OUT).

| IERROR is the Fortran return code. It is always the last argument.

| Description
| This routine, MPI_FILE_IWRITE_AT, is the nonblocking version of
| MPI_FILE_WRITE_AT and it performs the same function as MPI_FILE_WRITE_AT
| except it immediately returns in request a handle. This request handle can be used
| to either test or wait for the completion of the write operation or it can be used to
| cancel the write operation. The memory buffer buf cannot be modified until the
| request has completed via a completion routine call. For example, MPI_WAIT,
| MPI_TEST, or one of the other MPI wait or test functions. Completion of the
| request does not guarantee that the data has been written to the storage device(s).
| In particular, written data may still be present in system buffers. However, it
| guarantees that the memory buffer can be safely reused.

| When MPI_FILE_IWRITE_AT completes, the actual number of bytes written is
| stored in the completion routine's status argument. If an error occurs during the
| write operation, then the error is returned by the completion routine through its
| return code or in the appropriate index of the array_of_statuses argument.

| If the completion routine is associated with multiple requests, it returns when all
| requests complete successfully. Or, if one of the requests fails, the errorhandler

 Chapter 2. Descriptions of Subroutines 137

 MPI_FILE_IWRITE_AT

| associated with that request is triggered. If that is an "error return" errorhandler,
| each element of the array_of_statuses argument is updated to contain
| MPI_ERR_PENDING for each request that did not yet complete. The first error
| dictates the outcome of the entire completion routine whether the error is on a file
| request or a communication request. The order in which requests are processed is
| not defined.

| Notes
| A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The
| eventual call to MPI_TEST_CANCELLED on the status will show that the cancel
| was unsuccessful.

| Note that when you specify a value for the offset argument, constants of the
| appropriate type should be used. In Fortran, constants of type INTEGER(KIND=8)
| should be used, for example, 45_8.

| Passing MPI_STATUSES_IGNORE for the status argument or
| MPI_STATUSES_IGNORE for the array_of_statuses argument in the completion
| routine call is not supported in this release.

| If an error occurs during the write operation, the number of bytes contained in the
| status argument of the completion routine is meaningless.

| For more information, see MPI_FILE_WRITE_AT.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Permission denied (MPI_ERR_ACCESS)
| The file was opened in read-only mode.

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| Invalid count (MPI_ERR_COUNT)
| count is an invalid count.

| MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
| datatype has already been freed.

| Undefined datatype (MPI_ERR_TYPE)
| datatype is not a defined datatype.

| Invalid datatype (MPI_ERR_TYPE)
| datatype can be neither MPI_LB nor MPI_UB.

| Uncommitted datatype (MPI_ERR_TYPE)
| datatype must be committed.

138 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_IWRITE_AT

| Unsupported operation on sequential access file
| (MPI_ERR_UNSUPPORTED_OPERATION)
| MPI_MODE_SEQUENTIAL was set when the file
| was opened.

| Invalid offset (MPI_ERR_ARG)
| offset is an invalid offset.

| Errors Returned By Completion Routine (MPI Error Class):

| Not enough space in file system (MPI_ERR_NO_SPACE) The file system on
| which the file resides is full.

| File too big (MPI_ERR_OTHER) The file has reached the maximum size allowed.

| Internal write failed (MPI_ERR_IO) An internal write operation failed.

| Internal lseek failed (MPI_ERR_IO) An internal lseek operation failed.

| Related Information
| MPI_FILE_WRITE_AT
| MPI_FILE_WAIT
| MPI_FILE_TEST
| MPI_FILE_CANCEL

 Chapter 2. Descriptions of Subroutines 139

 MPI_FILE_OPEN

| MPI_FILE_OPEN, MPI_File_open

| Purpose
| Opens the file called filename.

| C Synopsis
| #include <mpi.h>
| int MPI_File_open (MPI_Comm comm,char \filename,int amode,MPI_info,
| MPI_File \fh);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_OPEN(INTEGER COMM,CHARACTER FILENAME(\),INTEGER AMODE,
| INTEGER INFO,INTEGER FH,INTEGER IERROR)

| Parameters
| comm is the communicator (handle) (IN)

| filename is the name of the file to open (string) (IN)

| amode is the file access mode (integer) (IN)

| info is the info object (handle) (IN)

| fh is the new file handle (handle) (OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_OPEN opens the file referred to by filename , sets the default view on
| the file, and sets the access mode amode . MPI_FILE_OPEN returns a file handle
| fh used for all subsequent operations on the file. The file handle fh remains valid
| until the file is closed (MPI_FILE_CLOSE). The default view is similar to a linear
| byte stream in the native representation starting at file offset 0. You can call
| MPI_FILE_SET_VIEW to set a different view of the file.

| MPI_FILE_OPEN is a collective operation. comm must be a valid
| intracommunicator. Values specified for amode by all participating tasks must be
| identical. The program is erroneous when participating tasks do not refer to the
| same file through their own instances of filename .

| No hints are defined in this release; therefore, info is presumed to be empty.

| Notes
| This implementation is targeted to the IBM Generalized Parallel File System
| (GPFS) for production use. It requires that a single GPFS file system be available
| across all tasks of the MPI job. It can also be used for development purposes on
| any other file system that supports the POSIX interface (AFS, DFS, JFS, or NFS),
| as long as the application runs on only one node or workstation.

| For AFS, DFS, and NFS, MPI-IO uses file locking for all accesses by default. If
| other tasks on the same node share the file and also use file locking, file

140 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_OPEN

| consistency is preserved. If the MPI_FILE_OPEN is done with mode
| MPI_MODE_UNIQUE_OPEN, file locking is not done.

| If you call MPI_FINALIZE before all files are closed, an error will be raised on
| MPI_COMM_WORLD.

| The following access modes (specified in amode), are supported:

| MPI_MODE_RDONLY - read only
| MPI_MODE_RDWR - reading and writing
| MPI_MODE_WRONLY - write only
| MPI_MODE_CREATE - create the file if it does not exist
| MPI_MODE_EXCL - raise an error if the file already exists and
| MPI_MODE_CREATE is specified
| MPI_MODE_DELETE_ON_CLOSE - delete file on close
| MPI_MODE_UNIQUE_OPEN - file will not be concurrently opened elsewhere
| MPI_MODE_SEQUENTIAL - file will only be accessed sequentially
| MPI_MODE_APPEND - set initial position of all file pointers to end of file

| In C and C++: You can use bit vector OR to combine these integer constants.

| In Fortran: You can use the bit vector IOR intrinsic to combine these integers. If
| addition is used, each constant should only appear once.

| MPI-IO depends on hidden threads that use MPI message passing. MPI-IO cannot
| be used with MP_SINGLE_THREAD set to yes .

| The default for MP_CSS_INTERRUPT is no . If you do not override the default,
| MPI-IO enables interrupts while files are open. If you have forced interrupts to yes
| or no , MPI-IO does not alter your selection.

| Parameter consistency checking is only performed if the environment variable
| MP_EUIDEVELOP is set to yes . If this variable is set and the amodes specified are
| not identical, the error Inconsistent amodes will be raised on some tasks.
| Similarly, if this variable is set and the file inodes associated with the file names are
| not identical, the error Inconsistent file inodes will be raised on some tasks. In
| either case, the error Consistency error occurred on another task will be raised
| on the other tasks.

| When MPI-IO is used correctly, a file name will be represented at every task by the
| same file system. In one detectable error situation, a file will appear to be on
| different file system types. For example, a particular file could be visible to some
| tasks as a GPFS file and to others as NFS-mounted.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid communicator comm is not a valid communicator.

| Can't use an intercommunicator
| comm is an intercommunicator.

 Chapter 2. Descriptions of Subroutines 141

 MPI_FILE_OPEN

| Conflicting collective operations on communicator

| Returning Errors (MPI Error Class):

| Pathname too long (MPI_ERR_BAD_FILE)
| File name must contain less than 1024 characters.

| Invalid access mode (MPI_ERR_AMODE)
| amode is not a valid access mode.

| Invalid file system type (MPI_ERR_OTHER)
| filename refers to a file belonging to a file system of
| an unsupported type.

| Invalid info (MPI_ERR_INFO)
| info is not a valid info object.

| Locally detected error occurred on another task (MPI_ERR_ARG)
| Local parameter check failed on other task(s).

| Inconsistent file inodes (MPI_ERR_NOT_SAME)
| Local filename corresponds to a file inode that is not
| consistent with that associated with the filename of
| other task(s).

| Inconsistent file system types (MPI_ERR_NOT_SAME)
| Local file system type associated with filename is
| not identical to that of other task(s).

| Inconsistent amodes (MPI_ERR_NOT_SAME)
| Local amode is not consistent with the amode of
| other task(s).

| Consistency error occurred on another task (MPI_ERR_ARG)
| Consistency check failed on other task(s).

| Permission denied (MPI_ERR_ACCESS)
| Access to the file was denied.

| File already exists (MPI_ERR_FILE_EXISTS)
| MPI_MODE_CREATE and MPI_MODE_EXCL are
| set and the file exists.

| File or directory does not exist (MPI_ERR_NO_SUCH_FILE)
| The file does not exist and MPI_MODE_CREATE is
| not set, or a directory in the path does not exist.

| Not enough space in file system (MPI_ERR_NO_SPACE)
| The directory or the file system is full.

| File is a directory (MPI_ERR_BAD_FILE)
| The file is a directory.

| Read-only file system (MPI_ERR_READ_ONLY)
| The file resides in a read-only file system and write
| access is required.

| Internal open failed (MPI_ERR_IO)
| An internal open operation on the file failed.

142 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_OPEN

| Internal stat failed (MPI_ERR_IO)
| An internal stat operation on the file failed.

| Internal fstat failed (MPI_ERR_IO)
| An internal fstat operation on the file failed.

| Internal fstatvfs failed (MPI_ERR_IO)
| An internal fstatvfs operation on the file failed.

| Related Information
| MPI_FILE_CLOSE
| MPI_FILE_SET_VIEW
| MPI_FINALIZE

 Chapter 2. Descriptions of Subroutines 143

 MPI_FILE_READ_AT

| MPI_FILE_READ_AT, MPI_File_read_at

| Purpose
| Reads a file starting at the position specified by offset.

| C Synopsis
| #include <mpi.h>
| int MPI_File_read_at (MPI_File fh,MPI_Offset offset,void \buf,
| int count,MPI_Datatype datatype,MPI_Status \status);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_READ_AT(INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,
| CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
| INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (IN).

| offset is the file offset (long long) (IN).

| buf is the initial address of buffer (choice) (OUT).

| count is the number of items in buffer (integer) (IN).

| datatype is the datatype of each buffer element (handle) (IN).

| status is the status object (status) (OUT).

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_READ_AT attempts to read from the file referred to by fh count items of
| type datatype into the buffer buf , starting at the offset offset , relative to the current
| view. The call returns only when data is available in buf . status contains the
| number of bytes successfully read and accessor functions MPI_GET_COUNT and
| MPI_GET_ELEMENTS allow you to extract from status the number of items and
| the number of intrinsic MPI elements successfully read, respectively. You can
| check for a read beyond the end of file condition by comparing the number of items
| requested with the number of items actually read.

| Notes
| Note that when you specify a value for the offset argument, constants of the
| appropriate type should be used. In Fortran, constants of type INTEGER(KIND=8)
| should be used, for example, 45_8.

| Passing MPI_STATUS_IGNORE for the status argument is not supported in this
| release.

| If an error is raised, the number of bytes contained in the status argument is
| meaningless.

144 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_READ_AT

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Permission denied (MPI_ERR_ACCESS)
| The file was opened in write-only mode.

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| Invalid count (MPI_ERR_COUNT)
| count is not an invalid count.

| MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
| datatype has already been freed.

| Undefined datatype (MPI_ERR_TYPE)
| datatype is not a defined datatype.

| Invalid datatype (MPI_ERR_TYPE)
| datatype can be neither MPI_LB nor MPI_UB.

| Uncommitted datatype (MPI_ERR_TYPE)
| datatype must be committed.

| Unsupported operation on sequential access file
| (MPI_ERR_UNSUPPORTED_OPERATION)
| MPI_MODE_SEQUENTIAL was set when the file
| was opened.

| Invalid offset (MPI_ERR_ARG)
| offset is and invalid offset.

| Internal read failed (MPI_ERR_IO)
| An internal read operation failed.

| Internal lseek failed (MPI_ERR_IO)
| An internal lseek operation failed.

| Related Information
| MPI_FILE_READ_AT_ALL
| MPI_FILE_IREAD_AT

 Chapter 2. Descriptions of Subroutines 145

 MPI_FILE_READ_AT_ALL

| MPI_FILE_READ_AT_ALL, MPI_File_read_at_all

| Purpose
| A collective version of MPI_FILE_READ_AT.

| C Synopsis
| #include <mpi.h>
| int MPI_File_read_at_all (MPI_File fh,MPI_Offset offset,void \buf,
| int count,MPI_Datatype datatype,MPI_Status \status);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_READ_AT_ALL(INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,
| CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
| INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

| Parameters
| fh is the file handle (handle)(IN).

| offset is the file offset (long long) (IN).

| buf is the initial address of the buffer (choice) (OUT).

| count is the number of elements in buffer (integer) (IN).

| datatype is the datatype of each buffer element (handle) (IN).

| status is the status object (Status) (OUT).

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_READ_AT_ALL is the collective version of the routine
| MPI_FILE_READ_AT. It has the exact semantics as its counterpart. The number of
| bytes actually read by the calling task is returned in status . The call returns when
| the data requested by the calling task is available in buf . The call does not wait for
| accesses from other tasks associated with the file handle fh to have data available
| in their buffers.

| Notes
| Note that when you specify a value for the offset argument, constants of the
| appropriate type should be used. In Fortran, constants of type INTEGER(KIND=8)
| should be used, for example, 45_8.

| Passing MPI_STATUS_IGNORE for the status argument is not supported in this
| release.

| If an error is raised, the number of bytes contained in status is meaningless.

| For additional information, see MPI_FILE_READ_AT.

146 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_READ_AT_ALL

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Permission denied (MPI_ERR_ACCESS)
| The file was opened in write-only mode.

| Invalid count (MPI_ERR_COUNT)
| count is an invalid count.

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
| datatype has already been freed.

| Undefined datatype (MPI_ERR_TYPE)
| datatype is not a defined datatype.

| Invalid datatype (MPI_ERR_TYPE)
| datatype can be neither MPI_LB nor MPI_UB.

| Uncommitted datatype (MPI_ERR_TYPE)
| datatype must be committed.

| Unsupported operation on sequential access file
| (MPI_ERR_UNSUPPORTED_OPERATION)
| MPI_MODE_SEQUENTIAL was set when the file
| was opened.

| Invalid offset (MPI_ERR_ARG)
| offset is an invalid offset.

| Internal read failed (MPI_ERR_IO)
| An internal read operation failed.

| Internal lseek failed (MPI_ERR_IO)
| An internal lseek operation failed.

| Related Information
| MPI_FILE_READ_AT
| MPI_FILE_IREAD_AT

 Chapter 2. Descriptions of Subroutines 147

 MPI_FILE_SET_ERRHANDLER

| MPI_FILE_SET_ERRHANDLER, MPI_File_set_errhandler

| Purpose
| Associates a new error handler to a file.

| C Synopsis
| #include <mpi.h>
| int MPI_File_set_errhandler (MPI_File fh,
| MPI_Errhandler errhandler);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_SET_ERRHANDLER(INTEGER FH,INTEGER ERRHANLDER,
| INTEGER IERROR)

| Parameters
| fh is the valid file handle (handle) (IN)

| errhandler is the new error handler for the opened file (handle) (IN)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_SET_ERRHANDLER associates a new error handler to a file. If fh is
| equal to MPI_FILE_NULL, then MPI_FILE_SET_ERRHANDLER defines the new
| default file error handler on the calling task to be error handler errhandler . If fh is a
| valid file handle, then this routine associates the error handler errhandler with the
| file referred to by fh .

| Notes
| The error Invalid error handler is raised if errhandler was created with any error
| handler create routine other than MPI_FILE_CREATE_ERRHANDLER. You can
| associate the predefined error handlers, MPI_ERRORS_ARE_FATAL and
| MPI_ERRORS_RETURN, as well as the implementation-specific
| MPE_ERRORS_WARN, with file handles.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid file handle fh must be a valid file handle or MPI_FILE_NULL.

| Invalid error handler errhandler must be a valid error handler.

148 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_SET_ERRHANDLER

| Related Information
| MPI_FILE_CREATE_ERRHANDLER
| MPI_FILE_GET_ERRHANDLER
| MPI_ERRHANDLER_FREE

 Chapter 2. Descriptions of Subroutines 149

 MPI_FILE_SET_INFO

| MPI_FILE_SET_INFO, MPI_File_set_info

| Purpose
| Specifies new hints for an open file.

| C Synopsis
| #include <mpi.h>
| int MPI_File_set_info (MPI_File fh,MPI_Info info);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_SET_INFO(INTEGER FH,INTEGER INFO,INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (INOUT)

| info is the info object (handle) (IN)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_SET_INFO sets any hints that the info object contains for fh . In this
| release, file hints are not supported, so all info objects will be empty. However, you
| are free to associate new hints with an open file. They will just be ignored by MPI.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| Invalid info (MPI_ERR_INFO)
| info is not a valid info object.

| Related Information
| MPI_FILE_GET_INFO
| MPI_FILE_OPEN
| MPI_FILE_SET_VIEW

150 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_SET_SIZE

| MPI_FILE_SET_SIZE, MPI_File_set_size

| Purpose
| Expands or truncates an open file.

| C Synopsis
| #include <mpi.h>
| int MPI_File_set_size (MPI_File fh,MPI_Offset size);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_SET_SIZE (INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) SIZE,
| INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (INOUT)

| size is the requested size of the file after truncation or expansion
| (long long) (IN).

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_SET_SIZE is a collective operation that allows you to expand or truncate
| the open file referred to by fh . All participating tasks must specify the same value
| for size . If I/O operations are pending on fh , then an error is returned to the
| participating tasks and the file is not resized.

| If size is larger than the current file size, the file length is increased to size and a
| read of unwritten data in the extended area returns zeros. However, file blocks are
| not allocated in the extended area. If size is smaller than the current file size, the
| file is truncated at the position defined by size . File blocks located beyond this point
| are de-allocated.

| Notes
| Note that when you specify a value for the size argument, constants of the
| appropriate type should be used. In Fortran, constants of type INTEGER(KIND=8)
| should be used, for example, 45_8.

| Parameter consistency checking is only performed if the environment variable
| MP_EUIDEVELOP is set to yes . If this variable is set and the sizes specified are
| not identical, the error Inconsistent file sizes will be raised on some tasks, and
| the error Consistency error occurred on another task will be raised on the other
| tasks.

 Chapter 2. Descriptions of Subroutines 151

 MPI_FILE_SET_SIZE

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Permission denied (MPI_ERR_ACCESS)
| The file was opened in read-only mode.

| Unsupported operation on sequential access file
| (MPI_ERR_UNSUPPORTED_OPERATION)
| MPI_MODE_SEQUENTIAL was set when the file
| was opened.

| Pending I/O operations (MPI_ERR_OTHER)
| There are pending I/O operations.

| Locally detected error occurred on another task (MPI_ERR_ARG)
| Local parameter check failed on other task(s).

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| Invalid file size (MPI_ERR_ARG)
| Local size is negative

| Inconsistent file sizes (MPI_ERR_NOT_SAME)
| Local size is not consistent with the file size of other
| task(s)

| Consistency error occurred on another task (MPI_ERR_ARG)
| Consistency check failed on other task(s).

| Internal ftruncate failed (MPI_ERR_IO)
| An internal ftruncate operation on the file failed.

| Related Information
| MPI_FILE_GET_SIZE

152 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_SET_VIEW

| MPI_FILE_SET_VIEW, MPI_File_set_view

| Purpose
| Associates a new view with the open file.

| C Synopsis
| #include <mpi.h>
| int MPI_File_set_view (MPI_File fh,MPI_Offset disp,
| MPI_Datatype etype,MPI_Datatype filetype,
| char \datarep,MPI_Info info);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_SET_VIEW (INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) DISP,
| INTEGER ETYPE,INTEGER FILETYPE,CHARACTER DATAREP(\),INTEGER INFO,
| INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (IN).

| disp is the displacement (long long) (IN).

| etype is the elementary datatype (handle) (IN).

| filetype is the filetype (handle) (IN).

| datarep is the data representation (string) (IN).

| info is the info object (handle) (IN).

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_SET_VIEW is a collective operation and associates a new view defined
| by disp , etype , filetype , and datarep with the open file referred to by fh . All
| participating tasks must specify the same values for datarep and the same extents
| for etype .

| There are no further restrictions on etype and filetype except those referred to in
| the MPI-2 standard. No checking is performed on the validity of these datatypes. If
| I/O operations are pending on fh , an error is returned to the participating tasks and
| the new view is not associated with the file. The only data representation currently
| supported is native. Since in this release file hints are not supported, the info
| argument will be ignored, after its validity is checked.

| Notes
| Note that when you specify a value for the disp argument, constants of the
| appropriate type should be used. In Fortran, constants of type INTEGER(KIND=8)
| should be used, for example, 45_8.

| It is expected that a call to MPI_FILE_SET_VIEW will immediately follow
| MPI_FILE_OPEN in many instances.

 Chapter 2. Descriptions of Subroutines 153

 MPI_FILE_SET_VIEW

| Parameter consistency checking is only performed if the environment variable
| MP_EUIDEVELOP is set to yes . If this variable is set and the extents of the
| elementary datatypes specified are not identical, the error Inconsistent elementary
| datatypes will be raised on some tasks and the error Consistency error occurred
| on another task will be raised on the other tasks.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Invalid displacement (MPI_ERR_ARG)
| Invalid displacement.

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
| Either etype or filetype has already been freed.

| Undefined datatype (MPI_ERR_TYPE)
| etype or filetype is not a defined datatype.

| Invalid datatype (MPI_ERR_TYPE)
| etype or filetype can be neither MPI_LB nor
| MPI_UB.

| Uncommitted datatype (MPI_ERR_TYPE)
| Both etype or filetype must be committed.

| Invalid data representation (MPI_ERR_UNSUPPORTED_DATAREP)
| datarep is an invalid data representation.

| Invalid info (MPI_ERR_INFO)
| info is not a valid info object.

| Pending I/O operations (MPI_ERR_OTHER)
| There are pending I/O operations.

| Locally detected error occurred on another task (MPI_ERR_ARG)
| Local parameter check failed on other task(s).

| Inconsistent elementary datatypes (MPI_ERR_NOT_SAME)
| Local etype extent is not consistent with the
| elementary datatype extent of other task(s).

| Consistency error occurred on another task (MPI_ERR_ARG)
| Consistency check failed on other task(s).

| Related Information
| MPI_FILE_GET_VIEW

154 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_SYNC

| MPI_FILE_SYNC, MPI_File_sync

| Purpose
| Commits file updates of an open file to one or more storage devices.

| C Synopsis
| #include <mpi.h>
| int MPI_File_sync (MPI_File fh);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_SYNC (INTEGER FH,INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (INOUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_SYNC is a collective operation. It forces the updates to the file referred
| to by fh to be propagated to the storage device(s) before it returns. If I/O
| operations are pending on fh , an error is returned to the participating tasks and no
| sync operation is performed on the file.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| Permission denied (MPI_ERR_ACCESS)
| The file was opened in read-only mode.

| Pending I/O operations (MPI_ERR_OTHER)
| There are pending I/O operations.

| Locally detected error occurred on another task (MPI_ERR_ARG)
| Local parameter check failed on other task(s).

| Internal fsync failed (MPI_ERR_IO)
| An internal fsync operation failed.

 Chapter 2. Descriptions of Subroutines 155

 MPI_FILE_SYNC

| Related Information
| MPI_FILE_WRITE_AT
| MPI_FILE_WRITE_AT_ALL
| MPI_FILE_IWRITE_AT

156 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_WRITE_AT

| MPI_FILE_WRITE_AT, MPI_File_write_at

| Purpose
| Writes to a file starting at the position specified by offset.

| C Synopsis
| #include <mpi.h>
| int MPI_File_write_at (MPI_File fh,MPI_Offset offset,void \buf,
| int count,MPI_Datatype datatype,MPI_Status \status);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_WRITE_AT(INTEGER FH,INTEGER(KIND_MPI_OFFSET_KIND) OFFSET,
| CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
| INTEGER STATUS(MPI_STATUS_SIZE),
| INTEGER IERROR)

| Parameters
| fh is the file handle (handle) (INOUT).

| offset is the file offset (long long) (IN).

| buf is the initial address of buffer (choice) (IN).

| count is the number of elements in buffer (integer) (IN).

| datatype is the datatype of each buffer element (handle) (IN).

| status is the status object (Status) (OUT).

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_WRITE_AT attempts to write into the file referred to by fh count items
| of type datatype out of the buffer buf , starting at the offset offset and relative to
| the current view. MPI_FILE_WRITE_AT returns when it is safe to reuse buf .
| status contains the number of bytes successfully written and accessor functions
| MPI_GET_COUNT and MPI_GET_ELEMENTS allows you to extract from status
| the number of items and the number of intrinsic MPI elements successfully written,
| respectively.

| Notes
| Note that when you specify a value for the offset argument, constants of the
| appropriate type should be used. In Fortran, constants of type INTEGER(KIND=8)
| should be used, for example, 45_8.

| Passing MPI_STATUS_IGNORE for the status argument is not supported in this
| release.

| If an error is raised, the number of bytes contained in status is meaningless.

 Chapter 2. Descriptions of Subroutines 157

 MPI_FILE_WRITE_AT

| When the call returns, it does not necessarily mean that the write operation has
| completed. In particular, written data may still be in system buffers and may not
| have been written to storage device(s) yet. To ensure that written data is committed
| to the storage device(s), you must use MPI_FILE_SYNC.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Permission denied (MPI_ERR_ACCESS)
| The file was opened in read-only mode.

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| Invalid count (MPI_ERR_COUNT)
| count is not a valid count.

| MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
| datatype has already been freed.

| Undefined datatype (MPI_ERR_TYPE)
| datatype is not a defined datatype.

| Invalid datatype (MPI_ERR_TYPE)
| datatype can be neither MPI_LB nor MPI_UB.

| Uncommitted datatype (MPI_ERR_TYPE)
| datatype must be committed.

| Unsupported operation on sequential access file
| (MPI_ERR_UNSUPPORTED_OPERATION)
| MPI_MODE_SEQUENTIAL was set when the file
| was opened.

| Invalid offset(MPI_ERR_ARG)
| offset is an invalid offset.

| Not enough space in file system (MPI_ERR_NO_SPACE)
| The file system on which the file resides is full.

| File too big (MPI_ERR_IO) The file has reached the maximum size allowed.

| Internal write failed (MPI_ERR_IO)
| An internal write operation failed.

| Internal lseek failed (MPI_ERR_IO)
| An internal lseek operation failed.

| Related Information
| MPI_FILE_WRITE_AT_ALL
| MPI_FILE_IWRITE
| MPI_FILE_SYNC

158 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FILE_WRITE_AT_ALL

| MPI_FILE_WRITE_AT_ALL, MPI_File_write_at_all

| Purpose
| A collective version of MPI_FILE_WRITE_AT.

| C Synopsis
| #include <mpi.h>
| int MPI_File_write_at_all (MPI_File fh,MPI_Offset offset,void \buf,
| int count,MPI_Datatype datatype,MPI_Status \status);

| Fortran Synopsis
| include 'mpif.h'
| MPI_FILE_WRITE_AT_ALL (INTEGER FH,
| INTEGER (KIND=MPI_OFFSET_KIND) OFFSET,
| CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
| INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

| Parameters
| fh is the file handle (handle)(INOUT).

| offset is the file offset (long long) (IN).

| buf is the initial address of buffer (choice) (IN).

| count is the number of elements in buffer (integer) (IN).

| datatype is the datatype of each buffer element (handle) (IN).

| status is the status object (Status) (OUT).

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_FILE_WRITE_AT_ALL is the collective version of MPI_FILE_WRITE_AT. In
| status is stored the number of bytes actually written by the calling task. The call
| returns when the calling task can safely reuse buf . It does not wait until the storing
| buffers in other participating tasks can safely be re-used.

| Notes
| Note that when you specify a value for the offset argument, constants of the
| appropriate type should be used. In Fortran, constants of type INTEGER(KIND=8)
| should be used, for example, 45_8.

| Passing MPI_STATUS_IGNORE for the status argument is not supported in this
| release.

| If an error is raised, the number of bytes contained in status is meaningless.

| When the call returns, it does not necessarily mean that the write operation has
| completed. In particular, written data may still be in system buffers and may not
| have been written to storage device(s) yet. To ensure that written data is committed
| to the storage device(s), you must use MPI_FILE_SYNC.

 Chapter 2. Descriptions of Subroutines 159

 MPI_FILE_WRITE_AT_ALL

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Returning Errors (MPI Error Class):

| Permission denied (MPI_ERR_ACCESS)
| The file was opened in read-only mode.

| Invalid count (MPI_ERR_COUNT)
| count is not a valid count.

| Invalid file handle (MPI_ERR_FILE)
| fh is not a valid file handle.

| MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
| datatype has already been freed.

| Undefined datatype (MPI_ERR_TYPE)
| datatype is not a defined datatype.

| Invalid datatype (MPI_ERR_TYPE)
| datatype can be neither MPI_LB nor MPI_UB.

| Uncommitted datatype (MPI_ERR_TYPE)
| datatype must be committed.

| Unsupported operation on sequential access file
| (MPI_ERR_UNSUPPORTED_OPERATION)
| MPI_MODE_SEQUENTIAL was set when the file
| was opened.

| Invalid offset (MPI_ERR_ARG)
| offset is an invalid offset.

| Not enough space in file system (MPI_ERR_NO_SPACE)
| The file system on which the file resides is full.

| File too big (MPI_ERR_IO) The file has reached the maximum size allowed.

| Internal write failed (MPI_ERR_IO)
| An internal write operation failed.

| Internal lseek failed (MPI_ERR_IO)
| An internal lseek operation failed.

| Related Information
| MPI_FILE_WRITE_AT
| MPI_FILE_IWRITE_AT
| MPI_FILE_SYNC

160 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_FINALIZE

 MPI_FINALIZE, MPI_Finalize

 Purpose
Terminates all MPI processing.

 C Synopsis
#include <mpi.h>
int MPI_Finalize(void);

 Fortran Synopsis
include 'mpif.h'
MPI_FINALIZE(INTEGER IERROR)

 Parameters
IERROR is the Fortran return code. It is always the last argument.

 Description
Make sure this routine is the last MPI call. Any MPI calls made after MPI_FINALIZE

| raise an error. You must be sure that all pending communications involving a task
| have completed before the task calls MPI_FINALIZE. You must also be sure that all
| files opened by the task have been closed before the task calls MPI_FINALIZE.

Although MPI_FINALIZE terminates MPI processing, it does not terminate the task.
It is possible to continue with non-MPI processing after calling MPI_FINALIZE, but
no other MPI calls (including MPI_INIT) can be made.

In a threaded environment both MPI_INIT and MPI_FINALIZE must be called on
the same thread. MPI_FINALIZE closes the communication library and terminates
the service threads. It does not affect any threads you created, other than returning
an error if one subsequently makes an MPI call. If you had registered a SIGIO
handler, it is restored as a signal handler; however, the SIGIO signal is blocked
when MPI_FINALIZE returns. If you want to catch SIGIO after MPI_FINALIZE has
been called, you should unblock it.

 Notes
The MPI standard does not specify the state of MPI tasks after MPI_FINALIZE,

| therefore, an assumption that all tasks continue may not be portable. If
| MPI_BUFFER_ATTACH has been used and MPI_BUFFER_DETACH has been not
| called, there will be an implicit MPI_BUFFER_DETACH within MPI_FINALIZE. See
| MPI_BUFFER_DETACH.

 Errors
MPI already finalized

MPI not initialized

 Chapter 2. Descriptions of Subroutines 161

 MPI_FINALIZE

 Related Information
 MPI_ABORT

| MPI_BUFFER_DETACH
 MPI_INIT

162 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GATHER

 MPI_GATHER, MPI_Gather

 Purpose
Collects individual messages from each task in comm at the root task.

 C Synopsis
#include <mpi.h>
int MPI_Gather(void\ sendbuf,int sendcount,MPI_Datatype sendtype,

void\ recvbuf,int recvcount,MPI_Datatype recvtype,int root,
 MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_GATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,
INTEGER COMM,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

sendcount is the number of elements in the send buffer (integer) (IN)

sendtype is the datatype of the send buffer elements (integer) (IN)

recvbuf is the address of the receive buffer (choice, significant only at
root) (OUT)

recvcount is the number of elements for any single receive (integer,
significant only at root) (IN)

recvtype is the datatype of the receive buffer elements (handle, significant
only at root) (IN)

root is the rank of the receiving task (integer) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine collects individual messages from each task in comm at the root task
and stores them in rank order.

The type signature of sendcount , sendtype on task i must be equal to the type
signature of recvcount , recvtype at the root. This means the amount of data sent
must be equal to the amount of data received, pairwise between each task and the
root. Distinct type maps between sender and receiver are allowed.

The following is information regarding MPI_GATHER arguments and tasks:

� On the task root , all arguments to the function are significant.

� On other tasks, only the arguments sendbuf, sendcount, sendtype, root, and
comm are significant.

 Chapter 2. Descriptions of Subroutines 163

 MPI_GATHER

� The argument root must be the same on all tasks.

Note that the argument revcount at the root indicates the number of items it
receives from each task. It is not the total number of items received.

A call where the specification of counts and types causes any location on the root
to be written more than once is erroneous.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Invalid root root < 0 or root >= groupsize

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

Inconsistent message lengths

 Related Information
 MPE_IGATHER
 MPI_SCATTER
 MPI_GATHER
 MPI_ALLGATHER

164 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GATHERV

 MPI_GATHERV, MPI_Gatherv

 Purpose
Collects individual messages from each task in comm at the root task. Messages
can have different sizes and displacements.

 C Synopsis
#include <mpi.h>
int MPI_Gatherv(void\ sendbuf,int sendcount,MPI_Datatype sendtype,

void\ recvbuf,int recvcounts,int \displs,MPI_Datatype recvtype,
int root,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_GATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

CHOICE RECVBUF,INTEGER RECVCOUNTS(\),INTEGER DISPLS(\),
INTEGER RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

sendcount is the number of elements in the send buffer (integer) (IN)

sendtype is the datatype of the send buffer elements (handle) (IN)

recvbuf is the address of the receive buffer (choice, significant only at
root) (OUT)

recvcounts integer array (of length group size) that contains the number of
elements received from each task (significant only at root) (IN)

displs integer array (of length group size). Entry i specifies the
displacement relative to recvbuf at which to place the incoming
data from task i (significant only at root) (IN)

recvtype is the datatype of the receive buffer elements (handle, significant
only at root) (IN)

root is the rank of the receiving task (integer) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine collects individual messages from each task in comm at the root task
and stores them in rank order. With recvcounts as an array, messages can have
varying sizes, and displs allows you the flexibility of where the data is placed on
the root.

The type signature of sendcount , sendtype on task i must be equal to the type
signature of recvcounts[i] , recvtype at the root. This means the amount of data
sent must be equal to the amount of data received, pairwise between each task
and the root. Distinct type maps between sender and receiver are allowed.

 Chapter 2. Descriptions of Subroutines 165

 MPI_GATHERV

The following is information regarding MPI_GATHERV arguments and tasks:

� On the task root , all arguments to the function are significant.

� On other tasks, only the arguments. sendbuf, sendcount, sendtype, root, and
comm are significant.

� The argument root must be the same on all tasks.

A call where the specification of sizes, types and displacements causes any
location on the root to be written more than once is erroneous.

 Notes
Displacements are expressed as elements of type recvtype , not as bytes.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Invalid root root < 0 or root >= groupsize

A send and receive have unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

 Related Information
 MPE_IGATHER
 MPI_GATHER

166 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GET_COUNT

 MPI_GET_COUNT, MPI_Get_count

 Purpose
Returns the number of elements in a message.

 C Synopsis
#include <mpi.h>
int MPI_Get_count(MPI_Status \status,MPI_Datatype datatype,
 int \count);

 Fortran Synopsis
include 'mpif.h'
MPI_GET_COUNT(INTEGER STATUS(MPI_STATUS_SIZE),INTEGER DATATYPE,

INTEGER COUNT,INTEGER IERROR)

 Parameters
status is a status object (status) (IN). Note that in Fortran a single status

object is an array of integers.

datatype is the datatype of each message element (handle) (IN)

count is the number of elements (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This subroutine returns the number of elements in a message. The datatype
argument and the argument provided by the call that set the status variable should
match.

When one of the MPI wait or test calls returns status for a non-blocking operation
request and the corresponding blocking operation does not provide a status
argument, the status from this wait/test does not contain meaningful source, tag or
message size information.

 Errors
Invalid datatype

Type not committed

MPI not initialized

MPI already finalized

 Related Information
 MPI_IRECV
 MPI_WAIT
 MPI_RECV
 MPI_PROBE

 Chapter 2. Descriptions of Subroutines 167

 MPI_GET_ELEMENTS

 MPI_GET_ELEMENTS, MPI_Get_elements

 Purpose
Returns the number of basic elements in a message.

 C Synopsis
#include <mpi.h>
int MPI_Get_elements(MPI_Status \status,MPI_Datatype datatype,
 int \count);

 Fortran Synopsis
include 'mpif.h'
MPI_GET_ELEMENTS(INTEGER STATUS(MPI_STATUS_SIZE),INTEGER DATATYPE,

INTEGER COUNT,INTEGER IERROR)

 Parameters
status is a status of object (status) (IN). Note that in Fortran a single

status object is an array of integers.

datatype is the datatype used by the operation (handle) (IN)

count is an integer specifying the number of basic elements (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the number of type map elements in a message. When the
number of bytes does not align with the type signature, MPI_GET_ELEMENTS
returns MPI_UNDEFINED. For example, given type signature (int, short, int, short)
a 10 byte message would return 3 while an 8 byte message would return
MPI_UNDEFINED.

When one of the MPI wait or test calls returns status for a nonblocking operation
request and the corresponding blocking operation does not provide a status
argument, the status from this wait/test does not contain meaningful source, tag or
message size information.

 Errors
Invalid datatype

Type is not committed

MPI not initialized

MPI already finalized

168 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GET_ELEMENTS

 Related Information
 MPI_GET_COUNT

 Chapter 2. Descriptions of Subroutines 169

 MPI_GET_PROCESSOR_NAME

 MPI_GET_PROCESSOR_NAME, MPI_Get_processor_name

 Purpose
Returns the name of the local processor.

 C Synopsis
#include <mpi.h>
int MPI_Get_processor_name(char \name,int \resultlen);

 Fortran Synopsis
include 'mpif.h'
MPI_GET_PROCESSOR_NAME(CHARACTER NAME(\),INTEGER RESULTLEN,
 INTEGER IERROR)

 Parameters
name is a unique specifier for the actual node (OUT)

resultlen specifies the printable character length of the result returned in
name (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the name of the local processor at the time of the call. The
name is a character string from which it is possible to identify a specific piece of
hardware. name represents storage that is at least
MPI_MAX_PROCESSOR_NAME characters long and
MPI_GET_PROCESSOR_NAME can write up to this many characters in name .

The actual number of characters written is returned in resultlen . The returned
name is a null terminated C string with the terminating byte not counted in
resultlen .

 Errors
MPI not initialized

MPI already finalized

170 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GET_VERSION

 MPI_GET_VERSION, MPI_Get_version

 Purpose
Returns the version of the MPI standard supported in this release.

 C Synopsis
#include <mpi.h>
int MPI_Get_version(int \version,int \subversion);

 Fortran Synopsis
include 'mpif.h'
MPI_GET_VERSION(INTEGER VERSION, INTEGER SUBVERSION, INTEGER IERROR)

 Parameters
version MPI standard version number (integer) (OUT)

subversion MPI standard subversion number (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is used to determine the version of the MPI standard supported by the
MPI implementation.

There are also new symbolic constants, MPI_VERSION and MPI_SUBVERSION,
provided in mpi.h and mpif.h that provide similar compile-time information.

MPI_GET_VERSION can be called before MPI_INIT.

 Chapter 2. Descriptions of Subroutines 171

 MPI_GRAPH_CREATE

 MPI_GRAPH_CREATE, MPI_Graph_create

 Purpose
Creates a new communicator containing graph topology information.

 C Synopsis
#include <mpi.h>
MPI_Graph_create(MPI_Comm comm_old,int nnodes, int \index,

int \edges,int reorder,MPI_Comm \comm_graph);

 Fortran Synopsis
include 'mpif.h'
MPI_GRAPH_CREATE(INTEGER COMM_OLD,INTEGER NNODES,INTEGER INDEX(\),

INTEGER EDGES(\),INTEGER REORDER,INTEGER COMM_GRAPH,
 INTEGER IERROR)

 Parameters
comm_old is the input communicator (handle) (IN)

nnodes is an integer specifying the number of nodes in the graph (IN)

index is an array of integers describing node degrees (IN)

edges is an array of integers describing graph edges (IN)

reorder if true, ranking may be reordered (logical) (IN)

comm_graph is the communicator with the graph topology added (handle)
(OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a new communicator containing graph topology information
provided by nnodes, index, edges, and reorder . MPI_GRAPH_CREATE returns
the handle for this new communicator in comm_graph .

If there are more tasks in comm_old then nnodes , some tasks are returned
comm_graph as MPI_COMM_NULL.

 Notes
The reorder argument is currently ignored.

The following is an example showing how to define the arguments nnodes , index ,
and edges . Assume there are four tasks (0, 1, 2, 3) with the following adjacency
matrix:

172 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GRAPH_CREATE

Then the input arguments are:

Thus, in C, index[0] is the degree of node zero, and index[i]–index[i–1] is the
degree of node i, i=1, ..., nnodes–1 . The list of neighbors of node zero is stored in
edges[j] , for 0 k j k index[0]–1 and the list of neighbors of node i, i > 0, is stored
in edges[j] , index[i–1] k j k index[i]–1 .

In Fortran, index(1) is the degree of node zero, and index(i +1)– index(i) is the
degree of node i, i=1, ..., nnodes–1 . The list of neighbors of node zero is stored in
edges(j) , for 1 k j k index(1) and the list of neighbors of node i, i > 0, is stored in
edges(j) , index(i) +1 k j k index(i +1).

Observe that because node 0 indicates node 1 is a neighbor, that node 1 must
indicate that node 0 is its' neighbor. For any edge A→B the edge B→A must also
be specified.

Task Neighbors

0 1, 3

1 0

2 3

3 0, 2

Argument Input

nnodes 4

index 2, 3, 4, 6

edges 1, 3, 0, 3, 0, 2

 Errors
MPI not initialized

MPI already finalized

Invalid communicator

Invalid communicator type must be intracommunicator

Invalid nnodes nnodes <0 or nnodes > groupsize

Invalid node degree (index[i] –index[i–1]) < 0

Invalid neighbor edges[i] < 0 or edges[i] >=nnodes

Asymmetric graph

| Conflicting collective operations on communicator

 Related Information
 MPI_CART_CREATE

 Chapter 2. Descriptions of Subroutines 173

 MPI_GRAPH_GET

 MPI_GRAPH_GET, MPI_Graph_get

 Purpose
Retrieves graph topology information from a communicator.

 C Synopsis
#include <mpi.h>
MPI_Graph_get(MPI_Comm comm,int maxindex,int maxedges,

int \index,int \edges);

 Fortran Synopsis
include 'mpif.h'
MPI_GRAPH_GET(INTEGER COMM,INTEGER MAXINDEX,INTEGER MAXEDGES,

INTEGER INDEX(\),INTEGER EDGES(\),INTEGER IERROR)

 Parameters
comm is a communicator with graph topology (handle) (IN)

maxindex is an integer specifying the length of index in the calling program
(IN)

maxedges is an integer specifying the length of edges in the calling program
(IN)

index is an array of integers containing node degrees (OUT)

edges is an array of integers containing node neighbors (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine retrieves the index and edges graph topology information associated
with a communicator.

 Errors
MPI not initialized

MPI already finalized

Invalid communicator

No topology

Invalid topology type topology type must be graph

Invalid array size maxindex < 0 or maxedges < 0

 Related Information
 MPI_GRAPHDIMS_GET
 MPI_GRAPH_CREATE

174 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GRAPH_MAP

 MPI_GRAPH_MAP, MPI_Graph_map

 Purpose
Computes placement of tasks on the physical machine.

 C Synopsis
#include <mpi.h>
MPI_Graph_map(MPI_Comm comm,int nnodes,int \index,int \edges,int \newrank);

 Fortran Synopsis
include 'mpif.h'
MPI_GRAPH_MAP(INTEGER COMM,INTEGER NNODES,INTEGER INDEX(\),

INTEGER EDGES(\),INTEGER NEWRANK,INTEGER IERROR)

 Parameters
comm is the input communicator (handle) (IN)

nnodes is the number of graph nodes (integer) (IN)

index is an integer array specifying node degrees (IN)

edges is an integer array specifying node adjacency (IN)

newrank is the reordered rank,or MPI_Undefined if the calling task does
not belong to the graph (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_GRAPH_MAP allows MPI to compute an optimal placement for the calling task
on the physical machine by reordering the tasks in comm .

 Notes
MPI_CART_MAP returns newrank as the original rank of the calling task if it
belongs to the grid or MPI_UNDEFINED if it does not. Currently, no reordering is
done by this function.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid nnodes nnodes <0 or nnodes > groupsize

Invalid node degree index[i] < 0

Invalid neighbors edges[i] < 0 or edges[i] >= nnodes

MPI not initialized

MPI already finalized

 Chapter 2. Descriptions of Subroutines 175

 MPI_GRAPH_MAP

 Related Information
 MPI_GRAPH_CREATE
 MPI_CART_MAP

176 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GRAPH_NEIGHBORS

 MPI_GRAPH_NEIGHBORS, MPI_Graph_neighbors

 Purpose
Returns the neighbors of the given task.

 C Synopsis
#include <mpi.h>
MPI_Graph_neighbors(MPI_Comm comm,int rank,int maxneighbors,int \neighbors);

 Fortran Synopsis
include 'mpif.h'
MPI_GRAPH_NEIGHBORS(MPI_COMM COMM,INTEGER RANK,INTEGER MAXNEIGHBORS,

INTEGER NNEIGHBORS(\),INTEGER IERROR)

 Parameters
comm is a communicator with graph topology (handle) (IN)

rank is the rank of a task within group of comm (integer) (IN)

maxneighbors is the size of array neighbors (integer) (IN)

neighbors is the ranks of tasks that are neighbors of the specified task
(array of integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine retrieves the adjacency information for a particular task.

 Errors
Invalid array size maxneighbors < 0

Invalid rank rank < 0 or rank > groupsize

MPI not initialized

MPI already finalized

Invalid communicator

No topology

Invalid topology type no graph topology associate with communicator

 Related Information
 MPI_GRAPH_NEIGHBORS_COUNT
 MPI_GRAPH_CREATE

 Chapter 2. Descriptions of Subroutines 177

 MPI_GRAPH_NEIGHBORS_COUNT

 MPI_GRAPH_NEIGHBORS_COUNT, MPI_Graph_neighbors_count

 Purpose
Returns the number of neighbors of the given task.

 C Synopsis
#include <mpi.h>
MPI_Graph_neighbors_count(MPI_Comm comm,int rank,
int \neighbors);

 Fortran Synopsis
include 'mpif.h'
MPI_GRAPH_NEIGHBORS_COUNT(INTEGER COMM,INTEGER RANK,
INTEGER NEIGHBORS(\),INTEGER IERROR)

 Parameters
comm is a communicator with graph topology (handle) (IN)

rank is the rank of a task within comm (integer) (IN)

neighbors is the number of neighbors of the specified task (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the number of neighbors of the given task.

 Errors
Invalid rank rank < 0 or rank > = groupsize

MPI not initialized

MPI already finalized

Invalid communicator

No graph topology associated with communicator

Invalid topology type

 Related Information
 MPI_GRAPH_NEIGHBORS
 MPI_GRAPH_CREATE

178 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GRAPHDIMS_GET

 MPI_GRAPHDIMS_GET, MPI_Graphdims_get

 Purpose
Retrieves graph topology information from a communicator.

 C Synopsis
#include <mpi.h>
MPI_Graphdims_get(MPI_Comm comm,int \nnodes,int \nedges);

 Fortran Synopsis
include 'mpif.h'
MPI_GRAPHDIMS_GET(INTEGER COMM,INTEGER NNDODES,INTEGER NEDGES,
 INTEGER IERROR)

 Parameters
comm is a communicator with graph topology (handle) (IN)

nnodes is an integer specifying the number of nodes in the graph. The
number of nodes and the number of tasks in the group are equal.
(OUT)

nedges is an integer specifying the number of edges in the graph. (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine retrieves the number of nodes and the number of edges in the graph
topology associated with a communicator.

 Errors
MPI not initialized

MPI already finalized

Invalid communicator

No topology

Invalid topology type topology type must be graph

 Related Information
 MPI_GRAPH_GET
 MPI_GRAPH_CREATE

 Chapter 2. Descriptions of Subroutines 179

 MPI_GROUP_COMPARE

 MPI_GROUP_COMPARE, MPI_Group_compare

 Purpose
Compares the contents of two task groups.

 C Synopsis
#include <mpi.h>
int MPI_Group_compare(MPI_Group group1,MPI_Group group2,
 int \result);

 Fortran Synopsis
include 'mpif.h'
MPI_GROUP_COMPARE(INTEGER GROUP1,INTEGER GROUP2,INTEGER RESULT,
 INTEGER IERROR)

 Parameters
group1 is the first group (handle) (IN)

group2 is the second group (handle) (IN)

result is the result (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine compares the contents of two task groups and returns one of the
following:

MPI_IDENT both groups have the exact group members and
group order

MPI_SIMILAR group members are the same but group order is
different

MPI_UNEQUAL group size and/or members are different

 Errors
Invalid group(s)

MPI not initialized

MPI already finalized

 Related Information
 MPI_COMM_COMPARE

180 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GROUP_DIFFERENCE

 MPI_GROUP_DIFFERENCE, MPI_Group_difference

 Purpose
Creates a new group that is the difference of two existing groups.

 C Synopsis
#include <mpi.h>
int MPI_Group_difference(MPI_Group group1,MPI_Group group2,
 MPI_Group \newgroup);

 Fortran Synopsis
include 'mpif.h'

MPI_GROUP_DIFFERENCE(INTEGER GROUP1,INTEGER GROUP2,
INTEGER NEWGROUP,INTEGER IERROR)

 Parameters
group1 is the first group (handle) (IN)

group2 is the second group (handle) (IN)

newgroup is the difference group (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a new group that is the difference of two existing groups. The
new group consists of all elements of the first group (group1) that are not in the
second group (group2), and is ordered as in the first group.

 Errors
Invalid group(s)

MPI not initialized

MPI already finalized

 Related Information
 MPI_GROUP_UNION
 MPI_GROUP_INTERSECTION

 Chapter 2. Descriptions of Subroutines 181

 MPI_GROUP_EXCL

 MPI_GROUP_EXCL, MPI_Group_excl

 Purpose
Creates a new group by excluding selected tasks of an existing group.

 C Synopsis
#include <mpi.h>
int MPI_Group_excl(MPI_Group group,int n,int \ranks,
 MPI_Group \newgroup);

 Fortran Synopsis
include 'mpif.h'
MPI_GROUP_EXCL(INTEGER GROUP,INTEGER N,INTEGER RANKS(\),

INTEGER NEWGROUP,INTEGER IERROR)

 Parameters
group is the group (handle) (IN)

n is the number of elements in array ranks (integer) (IN)

ranks is the array of integer ranks in group not to appear in newgroup
(IN)

newgroup is the new group derived from above preserving the order defined
by group (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine removes selected tasks from an existing group to create a new group.

MPI_GROUP_EXCL creates a group of tasks newgroup obtained by deleting from
group tasks with ranks ranks[0],... ranks[n-1] . The ordering of tasks in newgroup
is identical to the ordering in group . Each of the n elements of ranks must be a
valid rank in group and all elements must be distinct. If n= 0, then newgroup is
identical to group .

 Errors
Invalid group

Invalid size n <0 or n > groupsize

Invalid rank(s) ranks [i] < 0 or ranks [i] > = groupsize

Duplicate rank(s)

MPI not initialized

MPI already finalized

182 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GROUP_EXCL

 Related Information
 MPI_GROUP_INCL
 MPI_GROUP_RANGE_EXCL
 MPI_GROUP_RANGE_INCL

 Chapter 2. Descriptions of Subroutines 183

 MPI_GROUP_FREE

 MPI_GROUP_FREE, MPI_Group_free

 Purpose
Marks a group for deallocation.

 C Synopsis
#include <mpi.h>
int MPI_Group_free(MPI_Group \group);

 Fortran Synopsis
include 'mpif.h'
MPI_GROUP_FREE(INTEGER GROUP,INTEGER IERROR)

 Parameters
group is the group (handle) (INOUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_GROUP_FREE sets the handle group to MPI_GROUP_NULL and marks the
group object for deallocation. Actual deallocation occurs only after all operations
involving group are completed. Any active operation using group completes
normally but no new calls with meaningful references to the freed group are
possible.

 Errors
Invalid group

MPI not initialized

MPI already finalized

184 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GROUP_INCL

 MPI_GROUP_INCL, MPI_Group_incl

 Purpose
Creates a new group consisting of selected tasks from an existing group.

 C Synopsis
#include <mpi.h>
int MPI_Group_incl(MPI_Group group,int n,int \ranks,
 MPI_Group \newgroup);

 Fortran Synopsis
include 'mpif.h'
MPI_GROUP_INCL(INTEGER GROUP,INTEGER N,INTEGER RANKS(\),

INTEGER NEWGROUP,INTEGER IERROR)

 Parameters
group is the group (handle) (IN)

n is the number of elements in array ranks and the size of
newgroup (integer) (IN)

ranks is the ranks of tasks in group to appear in newgroup (array of
integers) (IN)

newgroup is the new group derived from above in the order defined by
ranks (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a new group consisting of selected tasks from an existing
group.

MPI_GROUP_INCL creates a group newgroup consisting of n tasks in group with
ranks rank[0], ..., rank[n-1] . The task with rank i in newgroup is the task with rank
ranks[i] in group .

Each of the n elements of ranks must be a valid rank in group and all elements
must be distinct. If n = 0, then newgroup is MPI_GROUP_EMPTY. This function
can be used to reorder the elements of a group.

 Errors
Invalid group

Invalid size n <0 or n > groupsize

Invalid rank(s) ranks [i] < 0 or ranks [i] >= groupsize

Duplicate rank(s)

MPI not initialized

MPI already finalized

 Chapter 2. Descriptions of Subroutines 185

 MPI_GROUP_INCL

 Related Information
 MPI_GROUP_EXCL
 MPI_GROUP_RANGE_INCL
 MPI_GROUP_RANGE_EXCL

186 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GROUP_INTERSECTION

 MPI_GROUP_INTERSECTION, MPI_Group_intersection

 Purpose
Creates a new group that is the intersection of two existing groups.

 C Synopsis
#include <mpi.h>
int MPI_Group_intersection(MPI_Group group1,MPI_Group group2,
 MPI_Group \newgroup);

 Fortran Synopsis
include 'mpif.h'

MPI_GROUP_INTERSECTION(INTEGER GROUP1,INTEGER GROUP2,
INTEGER NEWGROUP,INTEGER IERROR)

 Parameters
group1 is the first group (handle) (IN)

group2 is the second group (handle) (IN)

newgroup is the intersection group (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a new group that is the intersection of two existing groups. The
new group consists of all elements of the first group (group1) that are also part of
the second group (group2), and is ordered as in the first group.

 Errors
Invalid group(s)

MPI not initialized

MPI already finalized

 Related Information
 MPI_GROUP_UNION
 MPI_GROUP_DIFFERENCE

 Chapter 2. Descriptions of Subroutines 187

 MPI_GROUP_RANGE_EXCL

 MPI_GROUP_RANGE_EXCL, MPI_Group_range_excl

 Purpose
Creates a new group by removing selected ranges of tasks from an existing group.

 C Synopsis
#include <mpi.h>
int MPI_Group_range_excl(MPI_Group group,int n,

int ranges[][3],MPI_Group \newgroup);

 Fortran Synopsis
include 'mpif.h'
MPI_GROUP_RANGE_EXCL(INTEGER GROUP,INTEGER N,INTEGER RANGES(3,\),

INTEGER NEWGROUP,INTEGER IERROR)

 Parameters
group is the group (handle) (IN)

n is the number of triplets in array ranges (integer) (IN)

ranges is an array of integer triplets of the form (first rank, last rank,
stride) specifying the ranks in group of tasks that are to be
excluded from the output group newgroup . (IN)

newgroup is the new group derived from above that preserves the order in
group (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a new group by removing selected ranges of tasks from an
existing group. Each computed rank must be a valid rank in group and all
computed ranks must be distinct.

The function of this routine is equivalent to expanding the array ranges to an array
of the excluded ranks and passing the resulting array of ranks and other arguments
to MPI_GROUP_EXCL. A call to MPI_GROUP_EXCL is equivalent to a call to
MPI_GROUP_RANGE_EXCL with each rank i in ranks replaced by the triplet (i,i,1)
in the argument ranges .

 Errors
Invalid group

Invalid size n < 0 or n > groupsize

Invalid rank(s) a computed rank < 0 or >= groupsize

Duplicate rank(s)

Invalid stride(s) stride[i] = 0

Too many ranks Number of ranks > groupsize

MPI not initialized

188 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GROUP_RANGE_EXCL

MPI already finalized

 Related Information
 MPI_GROUP_RANGE_INCL
 MPI_GROUP_EXCL
 MPI_GROUP_INCL

 Chapter 2. Descriptions of Subroutines 189

 MPI_GROUP_RANGE_INCL

 MPI_GROUP_RANGE_INCL, MPI_Group_range_incl

 Purpose
Creates a new group consisting of selected ranges of tasks from an existing group.

 C Synopsis
#include <mpi.h>
int MPI_Group_range_incl(MPI_Group group,int n,

int ranges[][3],MPI_Group \newgroup);

 Fortran Synopsis
include 'mpif.h'
MPI_GROUP_RANGE_INCL(INTEGER GROUP,INTEGER N,INTEGER RANGES(3,\),

INTEGER NEWGROUP,INTEGER IERROR)

 Parameters
group is the group (handle) (IN)

n is the number of triplets in array ranges (integer) (IN)

| ranges is a one-dimensional array of integer triplets of the form (first
rank, last rank, stride) indicating ranks in group of tasks to be
included in newgroup (IN)

newgroup is the new group derived from above in the order defined by
ranges (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a new group consisting of selected ranges of tasks from an
existing group. The function of this routine is equivalent to expanding the array of
ranges to an array of the included ranks and passing the resulting array of ranks
and other arguments to MPI_GROUP_INCL. A call to MPI_GROUP_INCL is
equivalent to a call to MPI_GROUP_RANGE_INCL with each rank i in ranks
replaced by the triplet (i,i,1) in the argument ranges .

 Errors
Invalid group

Invalid size n <0 or n > groupsize

Invalid rank(s) a computed rank < 0 or >= groupsize

Duplicate rank(s)

Invalid stride(s) stride[i] = 0

Too many ranks nranks > groupsize

MPI not initialized

MPI already finalized

190 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GROUP_RANGE_INCL

 Related Information
 MPI_GROUP_RANGE_EXCL
 MPI_GROUP_INCL
 MPI_GROUP_EXCL

 Chapter 2. Descriptions of Subroutines 191

 MPI_GROUP_RANK

 MPI_GROUP_RANK, MPI_Group_rank

 Purpose
Returns the rank of the local task with respect to group .

 C Synopsis
#include <mpi.h>
int MPI_Group_rank(MPI_Group group,int \rank);

 Fortran Synopsis
include 'mpif.h'
MPI_GROUP_RANK(INTEGER GROUP,INTEGER RANK,INTEGER IERROR)

 Parameters
group is the group (handle) (IN)

rank is an integer that specifies the rank of the calling task in group or
MPI_UNDEFINED if the task is not a member. (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the rank of the local task with respect to group . This local
operation does not require any intertask communication.

 Errors
Invalid group

MPI not initialized

MPI already finalized

 Related Information
 MPI_COMM_RANK

192 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GROUP_SIZE

 MPI_GROUP_SIZE, MPI_Group_size

 Purpose
Returns the number of tasks in a group.

 C Synopsis
#include <mpi.h>
int MPI_Group_size(MPI_Group group,int \size);

 Fortran Synopsis
include 'mpif.h'
MPI_GROUP_SIZE(INTEGER GROUP,INTEGER SIZE,INTEGER IERROR)

 Parameters
group is the group (handle) (IN)

size is the number of tasks in the group (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the number of tasks in a group. This is a local operation and
does not require any intertask communication.

 Errors
Invalid group

MPI not initialized

MPI already finalized

 Related Information
 MPI_COMM_SIZE

 Chapter 2. Descriptions of Subroutines 193

 MPI_GROUP_TRANSLATE_RANKS

 MPI_GROUP_TRANSLATE_RANKS, MPI_Group_translate_ranks

 Purpose
Converts task ranks of one group into ranks of another group.

 C Synopsis
#include <mpi.h>
int MPI_Group_translate_ranks(MPI_Group group1,int n,

int \ranks1,MPI_Group group2,int \ranks2);

 Fortran Synopsis
include 'mpif.h'
MPI_GROUP_TRANSLATE_RANKS(INTEGER GROUP1, INTEGER N,

INTEGER RANKS1(\),INTEGER GROUP2,INTEGER RANKS2(\),INTEGER IERROR)

 Parameters
group1 is group1 (handle) (IN)

n is an integer that specifies the number of ranks in ranks1 and
ranks2 arrays (IN)

ranks1 is an array of zero or more valid ranks in group1 (IN)

group2 is group2 (handle) (IN)

ranks2 is an array of corresponding ranks in group2 . If the task of
ranks1(i) is not a member of group2 , ranks2(i) returns
MPI_UNDEFINED. (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This subroutine converts task ranks of one group into ranks of another group. For
example, if you know the ranks of tasks in one group, you can use this function to
find the ranks of tasks in another group.

 Errors
Invalid group(s)

Invalid rank count n < 0

Invalid rank ranks1[i] < 0 or ranks1[i] > &equals size of group1

MPI not initialized

MPI already finalized

 Related Information
MPI_COMM_COMPARE

194 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_GROUP_UNION

 MPI_GROUP_UNION, MPI_Group_union

 Purpose
Creates a new group that is the union of two existing groups.

 C Synopsis
#include <mpi.h>
int MPI_Group_union(MPI_Group group1,MPI_Group group2,
 MPI_Group \newgroup);

 Fortran Synopsis
include 'mpif.h'

MPI_GROUP_UNION(INTEGER GROUP1,INTEGER GROUP2,INTEGER NEWGROUP,
 INTEGER IERROR)

 Parameters
group1 is the first group (handle) (IN)

group2 is the second group (handle) (IN)

newgroup is the union group (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a new group that is the union of two existing groups. The new
group consists of the elements of the first group (group1) followed by all the
elements of the second group (group2) not in the first group.

 Errors
Invalid group(s)

MPI not initialized

MPI already finalized

 Related Information
 MPI_GROUP_INTERSECTION
 MPI_GROUP_DIFFERENCE

 Chapter 2. Descriptions of Subroutines 195

 MPI_IBSEND

 MPI_IBSEND, MPI_Ibsend

 Purpose
Performs a nonblocking buffered mode send operation.

 C Synopsis
#include <mpi.h>
int MPI_Ibsend(void\ buf,int count,MPI_Datatype datatype,

int dest,int tag,MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_IBSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
buf is the initial address of the send buffer (choice) (IN)

count is the number of elements in the send buffer (integer) (IN)

datatype is the datatype of each send buffer element (handle) (IN)

dest is the rank of the destination task in comm (integer) (IN)

tag is the message tag (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_IBSEND starts a buffered mode, nonblocking send. The send buffer may not
be modified until the request has been completed by MPI_WAIT, MPI_TEST, or
one of the other MPI wait or test functions.

 Notes
See MPI_BSEND for additional information.

 Errors
Invalid count count < 0

Invalid datatype

Invalid destination

Type not committed dest < 0 or dest > = groupsize

Invalid tag tag < 0

Invalid comm

MPI not initialized

196 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_IBSEND

MPI already finalized

Develop mode error if:

Illegal buffer update

 Related Information
 MPI_BSEND
 MPI_BSEND_INIT
 MPI_WAIT
 MPI_BUFFER_ATTACH

 Chapter 2. Descriptions of Subroutines 197

 MPI_INFO_CREATE

| MPI_INFO_CREATE, MPI_Info_create

| Purpose
| Creates a new info object.

| C Synopsis
| #include <mpi.h>
| int MPI_Info_create (MPI_Info \info);

| Fortran Synopsis
| include 'mpif.h'
| MPI_INFO_CREATE (INTEGER INFO,INTEGER IERROR)

| Parameters
| info is the info object created (handle)(OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_INFO_CREATE creates a new info object and returns a handle to it in the
| info argument.

| Because this release does not recognize any key, info objects are always empty.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Related Information
| MPI_INFO_FREE
| MPI_INFO_SET
| MPI_INFO_GET
| MPI_INFO_GET_NKEYS
| MPI_INFO_GET_VALUELEN
| MPI_INFO_GET_NTHKEY
| MPI_INFO_DELETE
| MPI_INFO_DUP

198 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_INFO_DELETE

| MPI_INFO_DELETE, MPI_Info_delete

| Purpose
| Deletes a (key, value) pair from an info object.

| C Synopsis
| #include <mpi.h>
| int MPI_Info_delete (MPI_Info info,char \key);

| Fortran Synopsis
| include 'mpif.h'
| MPI_INFO_DELETE (INTEGER INFO,CHARACTER KEY(\),
| INTEGER IERROR)

| Parameters
| info is the info object (handle)(OUT)

| key is the key of the pair to be deleted (string)(IN)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_INFO_DELETE deletes a pair (key, value) from info . If the key is not
| recognized by MPI, it is ignored and the call returns MPI_SUCCESS and has no
| effect on info .

| Because this release does not recognize any key, this call always returns
| MPI_SUCCESS and has no effect on info .

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid info info is not a valid info object

| Invalid info key key must contain less than 128 characters

| Related Information
| MPI_INFO_CREATE
| MPI_INFO_SET
| MPI_INFO_GET
| MPI_INFO_GET_NKEYS
| MPI_INFO_GET_VALUELEN
| MPI_INFO_GET_NTHKEY
| MPI_INFO_DUP
| MPI_INFO_FREE

 Chapter 2. Descriptions of Subroutines 199

 MPI_INFO_DUP

| MPI_INFO_DUP, MPI_Info_dup

| Purpose
| Duplicates an info object.

| C Synopsis
| #include <mpi.h>
| int MPI_Info_dup (MPI_Info info,MPI_Info \newinfo);

| Fortran Synopsis
| include 'mpif.h'
| MPI_INFO_DUP (INTEGER INFO,INTEGER NEWINFO,INTEGER IERROR)

| Parameters
| info is the info object to be duplicated(handle)(IN)

| newinfo is the new info object (handle)(OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_INFO_DUP duplicates the info object referred to by info and returns in
| newinfo a handle to this newly created info object.

| Because this release does not recognize any key, the new info object is empty.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid info info is not a valid info object

| Related Information
| MPI_INFO_CREATE
| MPI_INFO_FREE
| MPI_INFO_SET
| MPI_INFO_GET
| MPI_INFO_GET_NKEYS
| MPI_INFO_GET_VALUELEN
| MPI_INFO_GET_NTHKEY
| MPI_INFO_DELETE

200 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_INFO_FREE

| MPI_INFO_FREE, MPI_Info_free

| Purpose
| Frees the info object referred to by the info argument and sets it to
| MPI_INFO_NULL.

| C Synopsis
| #include <mpi.h>
| int MPI_Info_free (MPI_Info \info);

| Fortran Synopsis
| include 'mpif.h'
| MPI_INFO_FREE (INTEGER INFO,INTEGER IERROR)

| Parameters
| info is the info object (handle)(IN/OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_INFO_FREE frees the info object referred to by the info argument and sets
| info to MPI_INFO_NULL.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid info info is not a valid info object

| Related Information
| MPI_INFO_CREATE
| MPI_INFO_DELETE
| MPI_INFO_SET
| MPI_INFO_GET
| MPI_INFO_GET_NKEYS
| MPI_INFO_GET_VALUELEN
| MPI_INFO_GET_NTHKEY
| MPI_INFO_DUP

 Chapter 2. Descriptions of Subroutines 201

 MPI_INFO_GET

| MPI_INFO_GET, MPI_Info_get

| Purpose
| Retrieves the value associated with key in an info object.

| C Synopsis
| #include <mpi.h>
| int MPI_Info_get (MPI_Info info,char \key,int valuelen,
| char \value,int \flag);

| Fortran Synopsis
| include 'mpif.h'
| MPI_INFO_GET (INTEGER INFO,CHARACTER KEY(\),INTEGER VALUELEN,
| CHARACTER VALUE(\),LOGICAL FLAG,INTEGER IERROR)

| Parameters
| info is the info object (handle)(IN)

| key is the key (string)(IN)

| valuelen is the length of the value argument (integer)(IN)

| value is the value (string)(OUT)

| flag is true if key is defined and is false if not (boolean)(OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_INFO_GET retrieves the value associated with key in the info object referred
| to by info .

| Because this release does not recognize any key, flag is set to false, value
| remains unchanged, and valuelen is ignored.

| Notes
| In order to determine how much space should be allocated for the value argument,
| call MPI_INFO_GET_VALUELEN first.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid info info is not a valid info object

| Invalid info key key must contain less than 128 characters

202 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_INFO_GET

| Related Information
| MPI_INFO_CREATE
| MPI_INFO_FREE
| MPI_INFO_SET
| MPI_INFO_GET_NKEYS
| MPI_INFO_GET_VALUELEN
| MPI_INFO_GET_NTHKEY
| MPI_INFO_DUP
| MPI_INFO_DELETE

 Chapter 2. Descriptions of Subroutines 203

 MPI_INFO_GET_NKEYS

| MPI_INFO_GET_NKEYS, MPI_Info_get_nkeys

| Purpose
| Returns the number of keys defined in an info object.

| C Synopsis
| #include <mpi.h>
| int MPI_Info_get_nkeys (MPI_Info info,int \nkeys);

| Fortran Synopsis
| include 'mpif.h'
| MPI_INFO_GET_NKEYS (INTEGER INFO,INTEGER NKEYS,INTEGER IERROR)

| Parameters
| info is the info object (handle)(IN)

| nkeys is the number of defined keys (integer)(OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_INFO_GET_NKEYS returns in nkeys the number of keys currently defined in
| the info object referred to by info .

| Because this release does not recognize any key, the number of keys returned is
| zero.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid info info is not a valid info object

| Related Information
| MPI_INFO_CREATE
| MPI_INFO_FREE
| MPI_INFO_SET
| MPI_INFO_GET
| MPI_INFO_GET_VALUELEN
| MPI_INFO_GET_NTHKEY
| MPI_INFO_DUP
| MPI_INFO_DELETE

204 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_INFO_GET_NTHKEY

| MPI_INFO_GET_NTHKEY, MPI_Info_get_nthkey

| Purpose
| Retrieves the nth key defined in an info object.

| C Synopsis
| #include <mpi.h>
| int MPI_Info_get_nthkey (MPI_Info info, int n, char \key);

| Fortran Synopsis
| include 'mpif.h'
| MPI_INFO_GET_NTHKEY (INTEGER INFO,INTEGER N,CHARACTER KEY(\),
| INTEGER IERROR)

| Parameters
| info is the info object (handle)(IN)

| n is the key number (integer)(IN)

| key is the key (string)(OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_INFO_GET_NTHKEY retrieves the nth key defined in the info object referred
| to by info . The first key defined has the rank of 0 so n must be greater than – 1
| but less than the number of keys returned by MPI_INFO_GET_NKEYS.

| Because this release does not recognize any key, this function always raises an
| error.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid info info is not a valid info object

| Invalid info key index n must have a value between 0 and N -1, where N
| is the number of keys returned by
| MPI_INFO_GET_NKEYS

| Related Information
| MPI_INFO_CREATE
| MPI_INFO_FREE
| MPI_INFO_SET
| MPI_INFO_GET
| MPI_INFO_GET_VALUELEN
| MPI_INFO_GET_NKEYS
| MPI_INFO_DUP

 Chapter 2. Descriptions of Subroutines 205

 MPI_INFO_GET_NTHKEY

| MPI_INFO_DELETE

206 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_INFO_GET_VALUELEN

| MPI_INFO_GET_VALUELEN, MPI_Info_get_valuelen

| Purpose
| Retrieves the length of the value associated with a key of an info object.

| C Synopsis
| #include <mpi.h>
| int MPI_Info_get_valuelen (MPI_Info info,char \key,int \valuelen,
| int \flag);

| Fortran Synopsis
| include 'mpif.h'
| MPI_INFO_GET_VALUELEN (INTEGER INFO,CHARACTER KEY(\),INTEGER VALUELEN,
| LOGICAL FLAG,INTEGER IERROR)

| Parameters
| info is the info object (handle)(IN)

| key is the key (string)(IN)

| valuelen is the length of the value associated with key
| (integer)(OUT)

| flag is true if key is defined and is false if not (boolean)(OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_INFO_GET_VALUELEN retrieves the length of the value associated with the
| key in the info object referred to by info .

| Because this release does not recognize any key, flag is set to false and valuelen
| remains unchanged.

| Notes
| Use this routine prior to calling MPI_INFO_GET to determine how much space
| must be allocated for the value parameter of MPI_INFO_GET.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid info info is not a valid info object

| Invalid info key key must contain less than 128 characters

 Chapter 2. Descriptions of Subroutines 207

 MPI_INFO_GET_VALUELEN

| Related Information
| MPI_INFO_CREATE
| MPI_INFO_FREE
| MPI_INFO_SET
| MPI_INFO_GET
| MPI_INFO_GET_NKEYS
| MPI_INFO_GET_NTHKEY
| MPI_INFO_DUP
| MPI_INFO_DELETE

208 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_INFO_SET

| MPI_INFO_SET, MPI_Info_set

| Purpose
| Adds a pair (key, value) to an info object.

| C Synopsis
| #include <mpi.h>
| int MPI_Info_set(MPI_Info info,char \key,char \value);

| Fortran Synopsis
| include 'mpif.h'
| MPI_INFO_SET (INTEGER INFO,CHARACTER KEY(\),CHARACTER VALUE(\),
| INTEGER IERROR)

| Parameters
| info is the info object (handle)(INOUT)

| key is the key (string)(IN)

| value is the value (string)(IN)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_INFO_SET adds a recognized (key , value) pair to the info object referred to
| by info . When MPI_INFO_SET is called with a key which is not recognized, it
| behaves as a no-op.

| Because this release does not recognize any key, the info object remains
| unchanged.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid info info is not a valid info object

| Invalid info key key must contain less than 128 characters

| Invalid info value value must contain less than 1024 characters

| Related Information
| MPI_INFO_CREATE
| MPI_INFO_FREE
| MPI_INFO_GET
| MPI_INFO_GET_VALUELEN
| MPI_INFO_GET_NKEYS
| MPI_INFO_GET_NTHKEY
| MPI_INFO_DUP

 Chapter 2. Descriptions of Subroutines 209

 MPI_INFO_SET

| MPI_INFO_DELETE

210 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_INIT

 MPI_INIT, MPI_Init

 Purpose
Initializes MPI.

 C Synopsis
#include <mpi.h>
int MPI_Init(int \argc,char \\\argv);

 Fortran Synopsis
include 'mpif.h'
MPI_INIT(INTEGER IERROR)

 Parameters
IERROR is the Fortran return code. It is always the last argument.

 Description
This routine initializes MPI. All MPI programs must call this routine before any other
MPI routine (with the exception of MPI_INITIALIZED). More than one call to
MPI_INIT by any task is erroneous.

 Notes
argc and argv are the arguments passed to main . The IBM MPI implementation of
the MPI Standard does not examine or modify these arguments when passed to
MPI_INIT.

In a threaded environment, MPI_INIT needs to be called once per task and not
once per thread. You don't need to call it on the main thread but both MPI_INIT
and MPI_FINALIZE must be called on the same thread.

MPI_INIT opens a local socket and binds it to a port, sends that information to
POE, receives a list of destination addresses and ports, opens a socket to send to
each one, verifies that communication can be established, and distributes MPI
internal state to each task.

In the signal-handling library, this work is done in the initialization stub added by
POE, so that the library is open when your main program is called. MPI_INIT sets a
flag saying that you called it.

In the threaded library, the work of MPI_INIT is done when the function is called.
| The local socket is not open when your main program starts. This may affect the

numbering of file descriptors, the use of the environment strings, and the treatment
of stdin (the MP_HOLD_STDIN variable). If an existing non-threaded program is

| relinked using the threaded library, the code prior to calling MPI_INIT should be
examined with these thoughts in mind.

Also for the threaded library, if you had registered a function as an AIX signal
handler for the SIGIO signal at the time that MPI_INIT was called, that function will
be added to the interrupt service thread and be processed as a thread function
rather than as a signal handler. You'll need to set the environment variable

 Chapter 2. Descriptions of Subroutines 211

 MPI_INIT

MP_CSS_INTERRUPT=YES to get arriving packets to invoke the interrupt service
thread.

 Errors
MPI already initialized

MPI already finalized

 Related Information
 MPI_INITIALIZED
 MPI_FINALIZE

212 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_INITIALIZED

 MPI_INITIALIZED, MPI_Initialized

 Purpose
Determines whether MPI is initialized.

 C Synopsis
#include <mpi.h>
int MPI_Initialized(int \flag);

 Fortran Synopsis
include 'mpif.h'
MPI_INITIALIZED(INTEGER FLAG,INTEGER IERROR)

 Parameters
flag is true if MPI_INIT was called; otherwise is false.

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine determines if MPI is initialized. This and MPI_GET_VERSION are the
only MPI calls that can be made before MPI_INIT is called.

 Notes
Because it is erroneous to call MPI_INIT more than once per task, use
MPI_INITIALIZED if there is doubt as to the state of MPI.

 Related Information
 MPI_INIT

 Chapter 2. Descriptions of Subroutines 213

 MPI_INTERCOMM_CREATE

 MPI_INTERCOMM_CREATE, MPI_Intercomm_create

 Purpose
Creates an intercommunicator from two intracommunicators.

 C Synopsis
#include <mpi.h>
int MPI_Intercomm_create(MPI_Comm local_comm,int local_leader,

MPI_Comm peer_comm,int remote_leader,int tag,MPI_Comm \newintercom);

 Fortran Synopsis
include 'mpif.h'
MPI_INTERCOMM_CREATE(INTEGER LOCAL_COMM,INTEGER LOCAL_LEADER,

INTEGER PEER_COMM,INTEGER REMOTE_LEADER,INTEGER TAG,
INTEGER NEWINTERCOM,INTEGER IERROR)

 Parameters
local_comm is the local intracommunicator (handle) (IN)

local_leader is an integer specifying the rank of local group leader in
local_comm (IN)

peer_comm is the "peer" intracommunicator (significant only at the
local_leader) (handle) (IN)

remote_leader is the rank of remote group leader in peer_comm (significant only
at the local_leader) (integer) (IN)

tag "safe" tag (integer) (IN)

newintercom is the new intercommunicator (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates an intercommunicator from two intracommunicators and is
collective over the union of the local and the remote groups. Tasks should provide
identical local_comm and local_leader arguments within each group. Wildcards
are not permitted for remote_leader , local_leader , and tag .

MPI_INTERCOMM_CREATE uses point-to-point communication with communicator
peer_comm and tag tag between the leaders. Make sure that there are no pending
communications on peer_comm that could interfere with this communication. It is
recommended that you use a dedicated peer communicator, such as a duplicate of
MPI_COMM_WORLD, to avoid trouble with peer communicators.

214 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_INTERCOMM_CREATE

 Errors
| Conflicting collective operations on communicator

Invalid communicator(s)

Invalid communicator type(s)
must be intracommunicator(s)

Invalid rank(s) rank < 0 or rank > = groupsize

Invalid tag tag < 0

MPI not initialized

MPI already finalized

 Related Information
 MPI_COMM_DUP
 MPI_INTERCOMM_MERGE

 Chapter 2. Descriptions of Subroutines 215

 MPI_INTERCOMM_MERGE

 MPI_INTERCOMM_MERGE, MPI_Intercomm_merge

 Purpose
Creates an intracommunicator by merging the local and the remote groups of an
intercommunicator.

 C Synopsis
#include <mpi.h>
int MPI_Intercomm_merge(MPI_Comm intercomm,int high,
 MPI_Comm \newintracom);

 Fortran Synopsis
include 'mpif.h'
MPI_INTERCOMM_MERGE(INTEGER INTERCOMM,INTEGER HIGH,

INTEGER NEWINTRACOMM,INTEGER IERROR)

 Parameters
intercomm is the intercommunicator (handle) (IN)

high (logical) (IN)

newintracomm is the new intracommunicator (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates an intracommunicator from the union of two groups associated
with intercomm . Tasks should provide the same high value within each of the two
groups. If tasks in one group provide the value high = false and tasks in the other
group provide the value high = true , then the union orders the "low" group before
the "high" group. If all tasks provided the same high argument, then the order of
the union is arbitrary.

This call is blocking and collective within the union of the two groups.

 Errors
Invalid communicator

Invalid communicator type must be intercommunicator

Inconsistent high within group

MPI not initialized

MPI already finalized

216 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_INTERCOMM_MERGE

 Related Information
 MPI_INTERCOMM_CREATE

 Chapter 2. Descriptions of Subroutines 217

 MPI_IPROBE

 MPI_IPROBE, MPI_Iprobe

 Purpose
Checks to see if a message matching source, tag, and comm has arrived.

 C Synopsis
#include <mpi.h>
int MPI_Iprobe(int source,int tag,MPI_Comm comm,int \flag,
 MPI_Status \status);

 Fortran Synopsis
include 'mpif.h'
MPI_IPROBE(INTEGER SOURCE,INTEGER TAG,INTEGER COMM,INTEGER FLAG,

INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

 Parameters
source is a source rank or MPI_ANY_SOURCE (integer) (IN)

tag is a tag value or MPI_ANY_TAG (integer) (IN)

comm is a communicator (handle) (IN)

flag (logical) (OUT)

status is a status object (status) (OUT). Note that in Fortran a single
status object is an array of integers.

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine allows you to check for incoming messages without actually receiving
them.

MPI_IPROBE(source, tag, comm, flag, status) returns flag = true when there is a
message that can be received that matches the pattern specified by the arguments
source , tag , and comm . The call matches the same message that would have
been received by a call to MPI_RECV(..., source, tag, comm, status) executed at
the same point in the program and returns in status the same values that would
have been returned by MPI_RECV(). Otherwise, the call returns flag = false and
leaves status undefined.

When MPI_IPROBE returns flag = true , the content of the status object can be
accessed to find the source, tag and length of the probed message.

A subsequent receive executed with the same comm , and the source and tag
returned in status by MPI_IPROBE receives the message that was matched by the
probe, if no other intervening receive occurs after the initial probe.

source can be MPI_ANY_SOURCE and tag can be MPI_ANY_TAG. This allows
you to probe messages from any source and/or with any tag, but you must provide
a specific communicator with comm .

218 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_IPROBE

When a message is not received immediately after it is probed, the same message
can be probed for several times before it is received.

 Notes
In a threaded environment, MPI_PROBE or MPI_IPROBE followed by MPI_RECV,
based on the information from the probe, may not be a thread-safe operation. You
must ensure that no other thread received the detected message.

An MPI_IPROBE cannot prevent a message from being cancelled successfully by
the sender, making it unavailable for the MPI_RECV. Structure your program so
this will not occur.

 Errors
Invalid source source < 0 or source > &equals groupsize

Invalid tag tag < 0

Invalid communicator

MPI not initialized

MPI already finalized

 Related Information
 MPI_PROBE
 MPI_RECV

 Chapter 2. Descriptions of Subroutines 219

 MPI_IRECV

 MPI_IRECV, MPI_Irecv

 Purpose
Performs a nonblocking receive operation.

 C Synopsis
#include <mpi.h>
int MPI_Irecv(void\ buf,int count,MPI_Datatype datatype,

int source,int tag,MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_IRECV(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER SOURCE,

INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
buf is the initial address of the receive buffer (choice) (OUT)

count is the number of elements in the receive buffer (integer) (IN)

datatype is the datatype of each receive buffer element (handle) (IN)

source is the rank of source or MPI_ANY_SOURCE (integer) (IN)

tag is the message tag or MPI_ANY_TAG (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine starts a nonblocking receive and returns a handle to a request object.
You can later use the request to query the status of the communication or wait for
it to complete.

A nonblocking receive call means the system may start writing data into the receive
buffer. Once the nonblocking receive operation is called, do not access any part of
the receive buffer until the receive is complete.

 Notes
The message received must be less than or equal to the length of the receive
buffer. If all incoming messages do not fit without truncation, an overflow error
occurs. If a message arrives that is shorter than the receive buffer, then only those
locations corresponding to the actual message are changed. If an overflow occurs,
it is flagged at the MPI_WAIT or MPI_TEST. See MPI_RECV for additional
information.

220 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_IRECV

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid source source < 0 or source > = groupsize

Invalid tag tag < 0

Invalid comm

MPI not initialized

MPI already finalized

 Related Information
 MPI_RECV
 MPI_RECV_INIT
 MPI_WAIT

 Chapter 2. Descriptions of Subroutines 221

 MPI_IRSEND

 MPI_IRSEND, MPI_Irsend

 Purpose
Performs a nonblocking ready mode send operation.

 C Synopsis
#include <mpi.h>
int MPI_Irsend(void\ buf,int count,MPI_Datatype datatype,

int dest,int tag,MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_IRSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
buf is the initial address of the send buffer (choice) (IN)

count is the number of elements in the send buffer (integer) (IN)

datatype is the datatype of each send buffer element (handle) (IN)

dest is the rank of the destination task in comm (integer) (IN)

tag is the message tag (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_IRSEND starts a ready mode, nonblocking send. The send buffer may not be
modified until the request has been completed by MPI_WAIT, MPI_TEST, or one of
the other MPI wait or test functions.

 Notes
See MPI_RSEND for additional information.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid destination dest < 0 or dest > = groupsize

Invalid tag tag < 0

Invalid comm

No receive posted error flagged at destination

222 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_IRSEND

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update

 Related Information
 MPI_RSEND
 MPI_RSEND_INIT
 MPI_WAIT

 Chapter 2. Descriptions of Subroutines 223

 MPI_ISEND

 MPI_ISEND, MPI_Isend

 Purpose
Performs a nonblocking standard mode send operation.

 C Synopsis
#include <mpi.h>
int MPI_Isend(void\ buf,int count,MPI_Datatype datatype,

int dest,int tag,MPI_Comm comm,MPI_request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_ISEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
buf is the initial address of the send buffer (choice) (IN)

count is the number of elements in the send buffer (integer) (IN)

datatype is the datatype of each send buffer element (handle) (IN)

dest is the rank of the destination task in comm (integer) (IN)

tag is the message tag (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine starts a nonblocking standard mode send. The send buffer may not be
modified until the request has been completed by MPI_WAIT, MPI_TEST, or one of
the other MPI wait or test functions.

 Notes
See MPI_SEND for additional information.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid destination dest < 0 or dest > = groupsize

Invalid tag tag < 0

Invalid comm

MPI not initialized

224 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ISEND

MPI already finalized

Develop mode error if:

Illegal buffer update

 Related Information
 MPI_SEND
 MPI_SEND_INIT
 MPI_WAIT

 Chapter 2. Descriptions of Subroutines 225

 MPI_ISSEND

 MPI_ISSEND, MPI_Issend

 Purpose
Performs a nonblocking synchronous mode send operation.

 C Synopsis
#include <mpi.h>
int MPI_Issend(void\ buf,int count,MPI_Datatype datatype,

int dest,int tag,MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_ISSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
buf is the initial address of the send buffer (choice) (IN)

count is the number of elements in the send buffer (integer) (IN)

datatype is the datatype of each send buffer element (handle) (IN)

dest is the rank of the destination task in comm (integer) (IN)

tag is the message tag (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_ISSEND starts a synchronous mode, nonblocking send. The send buffer may
not be modified until the request has been completed by MPI_WAIT, MPI_TEST, or
one of the other MPI wait or test functions.

 Notes
See MPI_SSEND for additional information.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid destination dest < 0 or dest > = groupsize

Invalid tag tag < 0

Invalid comm

MPI not initialized

226 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_ISSEND

MPI already finalized

Develop mode error if:

Illegal buffer update

 Related Information
 MPI_SSEND
 MPI_SSEND_INIT
 MPI_WAIT

 Chapter 2. Descriptions of Subroutines 227

 MPI_KEYVAL_CREATE

 MPI_KEYVAL_CREATE, MPI_Keyval_create

 Purpose
Generates a new attribute key.

 C Synopsis
#include <mpi.h>
int MPI_Keyval_create(MPI_Copy_function \copy_fn,

MPI_Delete_function \delete_fn,int \keyval,
 void\ extra_state);

 Fortran Synopsis
include 'mpif.h'
MPI_KEYVAL_CREATE(EXTERNAL COPY_FN,EXTERNAL DELETE_FN,

INTEGER KEYVAL,INTEGER EXTRA_STATE,INTEGER IERROR)

 Parameters
copy_fn is the copy callback function for keyval (IN)

delete_fn is the delete callback function for keyval (IN)

keyval is an integer specifying the key value for future access (OUT)

extra_state is the extra state for callback functions (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine generates a new attribute key. Keys are locally unique in a task,
opaque to the user, and are explicitly stored in integers. Once allocated, keyval
can be used to associate attributes and access them on any locally defined
communicator. copy_fn is invoked when a communicator is duplicated by
MPI_COMM_DUP. It should be of type MPI_COPY_FUNCTION, which is defined
as follows:

In C:

typedef int MPI_Copy_function (MPI_Comm oldcomm,int keyval,
void \extra_state,void \attribute_val_in,
void \attribute_val_out,int \flag);

In Fortran:

| SUBROUTINE COPY_FUNCTION(INTEGER OLDCOMM,INTEGER KEYVAL,
INTEGER EXTRA_STATE,INTEGER ATTRIBUTE_VAL_IN,
INTEGER ATTRIBUTE_VAL_OUT,LOGICAL FLAG,INTEGER IERROR)

You can use the predefined functions MPI_NULL_COPY_FN and MPI_DUP_FN to
never copy or to always copy, respectively.

delete_fn is invoked when a communicator is deleted by MPI_COMM_FREE or
when a call is made to MPI_ATTR_DELETE. A call to MPI_ATTR_PUT that

228 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_KEYVAL_CREATE

overlays a previously put attribute also causes delete_fn to be called. It should be
defined as follows:

In C:

typedef int MPI_Delete_function (MPI_Comm comm,int keyval,
void \attribute_val, void \extra_state);

In Fortran:

| SUBROUTINE DELETE_FUNCTION(INTEGER COMM,INTEGER KEYVAL,
INTEGER ATTRIBUTE_VAL,INTEGER EXTRA_STATE,

 INTEGER IERROR)

You can use the predefined function MPI_NULL_DELETE_FN if no special handling
of attribute deletions is required.

In Fortran, the value of extra_state is recorded by MPI_KEYVAL_CREATE and the
callback functions should not attempt to modify this value.

The MPI standard requires that when copy_fn or delete_fn gives a return code
other than MPI_SUCCESS, the MPI routine in which this occurs must fail. The
standard does not suggest that the copy_fn or delete_fn return code be used as
the MPI routine's return value. The standard does require that an MPI return code
be in the range between MPI_SUCCESS and MPI_ERR_LASTCODE. It places no
range limits on copy_fn or delete_fn return codes. For this reason, we provide a
specific error code for a copy_fn failure and another for a delete_fn failure. These
error codes can be found in error class MPI_ERR_OTHER. The copy_fn or the
delete_fn return code is not preserved.

 Errors
MPI not initialized

MPI already finalized

 Related Information
 MPI_ATTR_PUT
 MPI_ATTR_DELETE
 MPI_COMM_DUP
 MPI_COMM_FREE

 Chapter 2. Descriptions of Subroutines 229

 MPI_KEYVAL_FREE

 MPI_KEYVAL_FREE, MPI_Keyval_free

 Purpose
Marks an attribute key for deallocation.

 C Synopsis
#include <mpi.h>
int MPI_Keyval_free(int \keyval);

 Fortran Synopsis
include 'mpif.h'
MPI_KEYVAL_FREE(INTEGER KEYVAL,INTEGER IERROR)

 Parameters
keyval attribute key (integer) (INOUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine sets keyval to MPI_KEYVAL_INVALID and marks the attribute key for
deallocation. You can free an attribute key that is in use because the actual
deallocation occurs only when all active references to it are complete. These
references, however, need to be explicitly freed. Use calls to MPI_ATTR_DELETE
to free one attribute instance. To free all attribute instances associated with a
communicator, use MPI_COMM_FREE.

 Errors
Invalid attribute key attribute key is undefined

Predefined attribute key attribute key is predefined

MPI not initialized

MPI already finalized

 Related Information
 MPI_ATTR_DELETE
 MPI_COMM_FREE

230 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_OP_CREATE

 MPI_OP_CREATE, MPI_Op_create

 Purpose
Binds a user-defined reduction operation to an op handle.

 C Synopsis
#include <mpi.h>
int MPI_Op_create(MPI_User_function \function,int commute,
 MPI_Op \op);

 Fortran Synopsis
include 'mpif.h'
MPI_OP_CREATE(EXTERNAL FUNCTION,INTEGER COMMUTE,INTEGER OP,
 INTEGER IERROR)

 Parameters
function is the user-defined reduction function (function) (IN)

commute is true if commutative; otherwise it's false (IN)

op is the reduction operation (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine binds a user-defined reduction operation to an op handle which you
can then use in MPI_REDUCE, MPI_ALLREDUCE, MPI_REDUCE_SCATTER and
MPI_SCAN and their nonblocking equivalents.

The user-defined operation is assumed to be associative. If commute = true , then
the operation must be both commutative and associative. If commute = false , then
the order of the operation is fixed. The order is defined in ascending, task rank
order and begins with task zero.

function is user-defined function. It must have the following four arguments: invec ,
inoutvec , len , and datatype .

The following is the ANSI-C prototype for the function:

typedef void MPI_User_function(void \invec, void \inoutvec,
int \len, MPI_Datatype \datatype);

The following is the Fortran declaration for the function:

| SUBROUTINE USER_FUNCTION(INVEC(\), INOUTVEC(\), LEN, TYPE)
<type> INVEC(LEN), INOUTVEC(LEN)
 INTEGER LEN, TYPE

 Chapter 2. Descriptions of Subroutines 231

 MPI_OP_CREATE

 Notes
See Appendix D, “Reduction Operations” on page 355 for information about
reduction functions.

 Errors
Null function

MPI not initialized

MPI already finalized

 Related Information
 MPI_OP_FREE
 MPI_REDUCE
 MPI_ALLREDUCE
 MPI_REDUCE_SCATTER
 MPI_SCAN

232 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_OP_FREE

 MPI_OP_FREE, MPI_Op_free

 Purpose
Marks a user-defined reduction operation for deallocation.

 C Synopsis
#include <mpi.h>
int MPI_Op_free(MPI_Op \op);

 Fortran Synopsis
include 'mpif.h'
MPI_OP_FREE(INTEGER OP,INTEGER IERROR)

 Parameters
| op is the reduction operation (handle) (INOUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This function marks a reduction operation for deallocation, and set op to
MPI_OP_NULL. Actual deallocation occurs when the operation's reference count is
zero.

 Errors
Invalid operation

Predefined operation

MPI not initialized

MPI already finalized

 Related Information
 MPI_OP_CREATE

 Chapter 2. Descriptions of Subroutines 233

 MPI_PACK

 MPI_PACK, MPI_Pack

 Purpose
Packs the message in the specified send buffer into the specified buffer space.

 C Synopsis
#include <mpi.h>
int MPI_Pack(void\ inbuf,int incount,MPI_Datatype datatype,

void \outbuf,int outsize,int \position,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_PACK(CHOICE INBUF,INTEGER INCOUNT,INTEGER DATATYPE,

CHOICE OUTBUF,INTEGER OUTSIZE,INTEGER POSITION,INTEGER COMM
 INTEGER IERROR)

 Parameters
inbuf is the input buffer start (choice) (IN)

incount is an integer specifying the number of input data items (IN)

datatype is the datatype of each input data item (handle) (IN)

outbuf is the output buffer start (choice) (OUT)

outsize is an integer specifying the output buffer size in bytes (OUT)

position is the current position in the output buffer counted in bytes
(integer) (INOUT)

comm is the communicator for sending the packed message (handle)
(IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine packs the message specified by inbuf , incount , and datatype into the
buffer space specified by outbuf and outsize . The input buffer is any
communication buffer allowed in MPI_SEND. The output buffer is any contiguous
storage space containing outsize bytes and starting at the address outbuf .

The input value of position is the beginning offset in the output buffer that will be
used for packing. The output value of position is the offset in the output buffer
following the locations occupied by the packed message. comm is the
communicator that will be used for sending the packed message.

 Errors
Invalid incount incount < 0

Invalid datatype

Type not committed

234 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_PACK

Invalid communicator

Outbuf too small

MPI not initialized

MPI already finalized

 Related Information
 MPI_UNPACK
 MPI_PACK_SIZE

 Chapter 2. Descriptions of Subroutines 235

 MPI_PACK_SIZE

 MPI_PACK_SIZE, MPI_Pack_size

 Purpose
Returns the number of bytes required to hold the data.

 C Synopsis
#include <mpi.h>
int MPI_Pack_size(int incount,MPI_Datatype datatype,

MPI_Comm comm, int \size);

 Fortran Synopsis
include 'mpif.h'
MPI_PACK_SIZE(INTEGER INCOUNT,INTEGER DATATYPE,INTEGER COMM,
INTEGER SIZE,INTEGER IERROR)

 Parameters
incount is an integer specifying the count argument to a packing call (IN)

datatype is the datatype argument to a packing call (handle) (IN)

comm is the communicator to a packing call (handle) (IN)

size size of packed message in bytes (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the number of bytes required to pack incount replications of
the datatype. You can use MPI_PACK_SIZE to determine the size required for a
packing buffer or to track space needed for buffered sends.

 Errors
Invalid datatype

Type is not committed

MPI not initialized

MPI already finalized

Invalid communicator

Invalid incount incount < 0

 Related Information
 MPI_PACK

236 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_PCONTROL

 MPI_PCONTROL, MPI_Pcontrol

 Purpose
Provides profiler control.

 C Synopsis
#include <mpi.h>
int MPI_Pcontrol(const int level, ...);

 Fortran Synopsis
include 'mpif.h'
MPI_PCONTROL(INTEGER LEVEL, ...)

 Parameters
level is the profiling level (IN)

The proper values for level and the meanings of those values are
determined by the profiler being used.

... 0 or more parameters

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_PCONTROL is a placeholder to allow applications to run with or without an
independent profiling package without modification. MPI implementations do not
use this routine and do not have any control of the implementation of the profiling
code.

Calls to this routine allow a profiling package to be controlled from MPI programs.
The nature of control and the arguments required are determined by the profiling
package. The MPI library routine by this name returns to the caller without any
action.

 Notes
For each additional call level introduced by the profiling code, the global variable
VT_instaddr_depth needs to be incremented so the Visualization Tool Tracing
Subsystem(VT) can record where the application called the MPI message passing
library routine. The VT_instaddr_depth variable is defined in
/usr/lpp/ppe.vt/include/VT_mpi.h.

 Errors
MPI does not report any errors for MPI_PCONTROL.

 Chapter 2. Descriptions of Subroutines 237

 MPI_PROBE

 MPI_PROBE, MPI_Probe

 Purpose
Waits until a message matching source, tag, and comm arrives.

 C Synopsis
#include <mpi.h>
int MPI_Probe(int source,int tag,MPI_Comm comm,MPI_Status \status);

 Fortran Synopsis
include 'mpif.h'
MPI_PROBE(INTEGER SOURCE,INTEGER TAG,INTEGER COMM,

INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

 Parameters
source is a source rank or MPI_ANY_SOURCE (integer) (IN)

tag is a source tag or MPI_ANY_TAG (integer) (IN)

comm is a communicator (handle) (IN)

status is a status object (status) (OUT). Note that in Fortran a single status
object is an array of integers.

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_PROBE behaves like MPI_IPROBE. It allows you to check for an incoming
message without actually receiving it. MPI_PROBE is different in that it is a
blocking call that returns only after a matching message has been found.

 Notes
In a threaded environment, MPI_PROBE or MPI_IPROBE followed by MPI_RECV,
based on the information from the probe, may not be a thread-safe operation. You
must ensure that no other thread received the detected message.

An MPI_IPROBE cannot prevent a message from being cancelled successfully by
the sender, making it unavailable for the MPI_RECV. Structure your program so
this will not occur.

 Errors
Invalid source source < 0 or source > = groupsize

Invalid tag tag < 0

Invalid communicator

MPI not initialized

MPI already finalized

238 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_PROBE

 Related Information
 MPI_IPROBE
 MPI_RECV

 Chapter 2. Descriptions of Subroutines 239

 MPI_RECV

 MPI_RECV, MPI_Recv

 Purpose
Performs a blocking receive operation.

 C Synopsis
#include <mpi.h>
int MPI_Recv(void\ buf,int count,MPI_Datatype datatype,

int source,int tag,MPI_Comm comm,MPI_Status \status);

 Fortran Synopsis
include 'mpif.h'
MPI_RECV(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER SOURCE,

INTEGER TAG,INTEGER COMM,INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

 Parameters
buf is the initial address of the receive buffer (choice) (OUT)

count is the number of elements to be received (integer) (IN)

datatype is the datatype of each receive buffer element (handle) (IN)

source is the rank of the source task in comm or MPI_ANY_SOURCE
(integer) (IN)

tag is the message tag or MPI_ANY_TAG (integer) (IN)

comm is the communicator (handle) (IN)

status is the status object (status) (OUT). Note that in Fortran a single
status object is an array of integers.

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_RECV is a blocking receive. The receive buffer is storage containing room for
count consecutive elements of the type specified by datatype , starting at address
buf .

The message received must be less than or equal to the length of the receive
buffer. If all incoming messages do not fit without truncation, an overflow error
occurs. If a message arrives that is shorter than the receive buffer, then only those
locations corresponding to the actual message are changed.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid source source < 0 or source > = groupsize

Invalid tag tag < 0

240 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_RECV

Invalid comm

Truncation occurred

MPI not initialized

MPI already finalized

 Related Information
 MPI_IRECV
 MPI_SENDRECV
 MPI_SEND

 Chapter 2. Descriptions of Subroutines 241

 MPI_RECV_INIT

 MPI_RECV_INIT, MPI_Recv_init

 Purpose
Creates a persistent receive request.

 C Synopsis
#include <mpi.h>
int MPI_Recv_init(void\ buf,int count,MPI_Datatype datatype,

int source,int tag,MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_RECV_INIT(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

INTEGER SOURCE,INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
buf is the initial address of the receive buffer (choice) (OUT)

count is the number of elements to be received (integer) (IN)

datatype is the type of each element (handle) (IN)

source is the rank of source or MPI_ANY_SOURCE (integer) (IN)

tag is the tag or MPI_ANY_TAG (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a persistent communication request for a receive operation.
The argument buf is marked as OUT because the user gives permission to write to
the receive buffer by passing the argument to MPI_RECV_INIT.

A persistent communication request is inactive after it is created. No active
communication is attached to the request.

A send or receive communication using a persistent request is initiated by the
function MPI_START.

 Notes
See MPI_RECV for additional information.

242 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_RECV_INIT

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid source source < 0 or source > = groupsize

Invalid tag tag < r

Invalid comm

MPI not initialized

MPI already finalized

 Related Information
 MPI_START
 MPI_IRECV

 Chapter 2. Descriptions of Subroutines 243

 MPI_REDUCE

 MPI_REDUCE, MPI_Reduce

 Purpose
Applies a reduction operation to the vector sendbuf over the set of tasks specified
by comm and places the result in recvbuf on root .

 C Synopsis
#include <mpi.h>
int MPI_Reduce(void\ sendbuf,void\ recvbuf,int count,

MPI_Datatype datatype,MPI_Op op,int root,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_REDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,

INTEGER DATATYPE,INTEGER OP,INTEGER ROOT,INTEGER COMM,
 INTEGER IERROR)

 Parameters
sendbuf is the address of the send buffer (choice) (IN)

recvbuf is the address of the receive buffer (choice, significant only at
root) (OUT)

count is the number of elements in the send buffer (integer) (IN)

datatype is the datatype of elements of the send buffer (handle) (IN)

op is the reduction operation (handle) (IN)

root is the rank of the root task (integer) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine applies a reduction operation to the vector sendbuf over the set of
tasks specified by comm and places the result in recvbuf on root .

Both the input and output buffers have the same number of elements with the same
type. The arguments sendbuf , count , and datatype define the send or input buffer
and recvbuf , count and datatype define the output buffer. MPI_REDUCE is called
by all group members using the same arguments for count , datatype , op , and
root . If a sequence of elements is provided to a task, then the reduce operation is
executed element-wise on each entry of the sequence. Here's an example. If the
operation is MPI_MAX and the send buffer contains two elements that are floating
point numbers (count = 2 and datatype = MPI_FLOAT), then recvbuf (1) = global
max(sendbuf (1)) and recvbuf (2) = global max(sendbuf (2)).

Users may define their own operations or use the predefined operations provided
by MPI. User defined operations can be overloaded to operate on several
datatypes, either basic or derived. A list of the MPI predefined operations is in this
manual. Refer to Appendix D, “Reduction Operations” on page 355.

244 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_REDUCE

The argument datatype of MPI_REDUCE must be compatible with op . For a list of
predefined operations refer to Appendix I, “Predefined Datatypes” on page 435.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Notes
See Appendix D, “Reduction Operations” on page 355.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid op

Invalid root root < 0 or root > = groupsize

Invalid communicator

Invalid communicator type must be intracommunicator

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

Inconsistent root

Inconsistent message length

 Related Information
 MPE_IREDUCE
 MPI_ALLREDUCE
 MPI_REDUCE_SCATTER
 MPI_SCAN
 MPI_OP_CREATE

 Chapter 2. Descriptions of Subroutines 245

 MPI_REDUCE_SCATTER

 MPI_REDUCE_SCATTER, MPI_Reduce_scatter

 Purpose
Applies a reduction operation to the vector sendbuf over the set of tasks specified
by comm and scatters the result according to the values in recvcounts .

 C Synopsis
#include <mpi.h>
int MPI_Reduce_scatter(void\ sendbuf,void\ recvbuf,int \recvcounts,

MPI_Datatype datatype,MPI_Op op,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_REDUCE_SCATTER(CHOICE SENDBUF,CHOICE RECVBUF,

INTEGER RECVCOUNTS(\),INTEGER DATATYPE,INTEGER OP,
INTEGER COMM,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

recvbuf is the starting address of the receive buffer (choice) (OUT)

recvcounts integer array specifying the number of elements in result
distributed to each task. Must be identical on all calling tasks.
(IN)

datatype is the datatype of elements in the input buffer (handle) (IN)

op is the reduction operation (handle) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_REDUCE_SCATTER first performs an element-wise reduction on vector of
count = Σ i recvcounts[i] elements in the send buffer defined by sendbuf , count
and datatype . Next, the resulting vector is split into n disjoint segments, where n is
the number of members in the group. Segment i contains recvcounts[i] elements.
The ith segment is sent to task i and stored in the receive buffer defined by
recvbuf , recvcounts[i] and datatype .

 Notes
MPI_REDUCE_SCATTER is functionally equivalent to MPI_REDUCE with count
equal to the sum of recvcounts[i] followed by MPI_SCATTERV with sendcounts
equal to recvcounts . When you use this routine in a threaded application, make
sure all collective operations on a particular communicator occur in the same order
at each task. See Appendix G, “Programming Considerations for User Applications
in POE” on page 411 for more information on programming with MPI in a threaded
environment.

246 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_REDUCE_SCATTER

 Errors
Invalid recvcounts recvcounts[i] < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

Invalid communicator type must be intracommunicator

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

 Related Information
 MPE_IREDUCE_SCATTER
 MPI_REDUCE
 MPI_OP_CREATE

 Chapter 2. Descriptions of Subroutines 247

 MPI_REQUEST_FREE

 MPI_REQUEST_FREE, MPI_Request_free

 Purpose
Marks a request for deallocation.

 C Synopsis
#include <mpi.h>
int MPI_Request_free(int MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_REQUEST_FREE(INTEGER REQUEST,INTEGER IERROR)

 Parameters
request is a communication request (handle) (INOUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine marks a request object for deallocation and sets request to
MPI_REQUEST_NULL. An ongoing communication associated with the request is
allowed to complete before deallocation occurs.

 Notes
This function marks a communication request as free . Actual deallocation occurs
when the request is complete. Active receive requests and collective
communication requests cannot be freed.

 Errors
Invalid request

Attempt to free receive request

Attempt to free CCL request

MPI not initialized

MPI already finalized

 Related Information
 MPI_WAIT

248 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_RSEND

 MPI_RSEND, MPI_Rsend

 Purpose
Performs a blocking ready mode send operation.

 C Synopsis
#include <mpi.h>
int MPI_Rsend(void\ buf,int count,MPI_Datatype datatype,

int dest,int tag,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_RSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

INTEGER TAG,INTEGER COMM,INTEGER IERROR)

 Parameters
buf is the initial address of the send buffer (choice) (IN)

count is the number of elements in the send buffer (integer) (IN)

datatype is the datatype of each send buffer element (handle) (IN)

dest is the rank of destination (integer) (IN)

tag is the message tag (integer) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a blocking ready mode send. It can be started only when a matching
receive is posted. If a matching receive is not posted, the operation is erroneous
and its outcome is undefined.

The completion of MPI_RSEND indicates that the send buffer can be reused.

 Notes
A ready send for which no receive exists produces an asynchronous error at the
destination. The error is not detected at the MPI_RSEND and it returns
MPI_SUCCESS.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid destination dest < 0 or dest > = groupsize

Invalid tag tag < 0

Invalid comm

 Chapter 2. Descriptions of Subroutines 249

 MPI_RSEND

No receive posted error flagged at destination

MPI not initialized

MPI already finalized

 Related Information
 MPI_IRSEND
 MPI_SEND

250 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_RSEND_INIT

 MPI_RSEND_INIT, MPI_Rsend_init

 Purpose
Creates a persistent ready mode send request.

 C Synopsis
#include <mpi.h>
int MPI_Rsend_init(void\ buf,int count,MPI_Datatype datatype,

int dest,int tag,MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_RSEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
buf is the initial address of the send buffer (choice) (IN)

count is the number of elements to be sent (integer) (IN)

datatype is the type of each element (handle) (IN)

dest is the rank of the destination task (integer) (IN)

tag is the message tag (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_RSEND_INIT creates a persistent communication object for a ready mode
send operation. MPI_START or MPI_STARTALL is used to activate the send.

 Notes
See MPI_RSEND for additional information.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid destination dest < 0 or dest > = groupsize

Invalid tag tag < 0

Invalid comm

MPI not initialized

MPI already finalized

 Chapter 2. Descriptions of Subroutines 251

 MPI_RSEND_INIT

 Related Information
 MPI_START
 MPI_IRSEND

252 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_SCAN

 MPI_SCAN, MPI_Scan

 Purpose
Performs a parallel prefix reduction on data distributed across a group.

 C Synopsis
#include <mpi.h>
int MPI_Scan(void\ sendbuf,void\ recvbuf,int count,

MPI_Datatype datatype,MPI_Op op,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_SCAN(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,

INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER IERROR)

 Parameters
sendbuf is the starting address of the send buffer (choice) (IN)

recvbuf is the starting address of the receive buffer (choice) (OUT)

count is the number of elements in sendbuf (integer) (IN)

datatype is the datatype of elements in sendbuf (handle) (IN)

op is the reduction operation (handle) (IN)

comm is the communicator (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_SCAN is used to perform a prefix reduction on data distributed across the
group. The operation returns, in the receive buffer of the task with rank i, the
reduction of the values in the send buffers of tasks with ranks 0, ..., i (inclusive).
The type of operations supported, their semantics, and the restrictions on send and
receive buffers are the same as for MPI_REDUCE.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

 Chapter 2. Descriptions of Subroutines 253

 MPI_SCAN

Invalid communicator type must be intracommunicator

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

Inconsistent message length

 Related Information
 MPE_ISCAN
 MPI_REDUCE
 MPI_OP_CREATE

254 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_SCATTER

 MPI_SCATTER, MPI_Scatter

 Purpose
Distributes individual messages from root to each task in comm .

 C Synopsis
#include <mpi.h>
int MPI_Scatter(void\ sendbuf,int sendcount,MPI_Datatype sendtype,

void\ recvbuf,int recvcount,MPI_Datatype recvtype,int root,
 MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_SCATTER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,
INTEGER COMM,INTEGER IERROR)

 Parameters
sendbuf is the address of the send buffer (choice, significant only at root)

(IN)

sendcount is the number of elements to be sent to each task (integer,
significant only at root) (IN)

sendtype is the datatype of the send buffer elements (handle, significant
only at root) (IN)

recvbuf is the address of the receive buffer (choice) (OUT)

recvcount is the number of elements in the receive buffer (integer) (IN)

recvtype is the datatype of the receive buffer elements (handle) (IN)

root is the rank of the sending task (integer) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_SCATTER distributes individual messages from root to each task in comm .
This routine is the inverse operation to MPI_GATHER.

The type signature associated with sendcount , sendtype at the root must be equal
to the type signature associated with recvcount , recvtype at all tasks. (Type maps
can be different.) This means the amount of data sent must be equal to the amount
of data received, pairwise between each task and the root. Distinct type maps
between sender and receiver are allowed.

The following is information regarding MPI_SCATTER arguments and tasks:

� On the task root , all arguments to the function are significant.

 Chapter 2. Descriptions of Subroutines 255

 MPI_SCATTER

� On other tasks, only the arguments recvbuf, recvcount, recvtype, root, and
comm are significant.

� The argument root must be the same on all tasks.

A call where the specification of counts and types causes any location on the root
to be read more than once is erroneous.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Invalid root (root < 0 or root >= groupsize)

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

Inconsistent message length

 Related Information
 MPE_ISCATTER
 MPI_SCATTER
 MPI_GATHER

256 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_SCATTERV

 MPI_SCATTERV, MPI_Scatterv

 Purpose
Distributes individual messages from root to each task in comm . Messages can
have different sizes and displacements.

 C Synopsis
#include <mpi.h>
int MPI_Scatterv(void\ sendbuf,int \sendcounts,

int \displs,MPI_Datatype sendtype,void\ recvbuf,
int recvcount,MPI_Datatype recvtype,int root,

 MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_SCATTERV(CHOICE SENDBUF,INTEGER SENDCOUNTS(\),INTEGER DISPLS(\),

INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,
INTEGER ROOT,INTEGER COMM,INTEGER IERROR)

 Parameters
sendbuf is the address of the send buffer (choice, significant only at root)

(IN)

sendcounts integer array (of length group size) that contains the number of
elements to send to each task (significant only at root) (IN)

displs integer array (of length group size). Entry i specifies the
displacement relative to sendbuf from which to send the
outgoing data to task i (significant only at root) (IN)

sendtype is the datatype of the send buffer elements (handle, significant
only at root) (IN)

recvbuf is the address of the receive buffer (choice) (OUT)

recvcount is the number of elements in the receive buffer (integer) (IN)

recvtype is the datatype of the receive buffer elements (handle) (IN)

root is the rank of the sending task (integer) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine distributes individual messages from root to each task in comm .
Messages can have different sizes and displacements.

With sendcounts as an array, messages can have varying sizes of data that can
be sent to each task. displs allows you the flexibility of where the data can be
taken from on the root .

 Chapter 2. Descriptions of Subroutines 257

 MPI_SCATTERV

The type signature of sendcount[i] , sendtype at the root must be equal to the
type signature of recvcount , recvtype at task i. (The type maps can be different.)
This means the amount of data sent must be equal to the amount of data received,
pairwise between each task and the root . Distinct type maps between sender and
receiver are allowed.

The following is information regarding MPI_SCATTERV arguments and tasks:

� On the task root , all arguments to the function are significant.

� On other tasks, only the arguments recvbuf, recvcount, recvtype, root, and
comm are significant.

� The argument root must be the same on all tasks.

A call where the specification of sizes, types and displacements causes any
location on the root to be read more than once is erroneous.

When you use this routine in a threaded application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
Appendix G, “Programming Considerations for User Applications in POE” on
page 411 for more information on programming with MPI in a threaded
environment.

 Errors
Invalid communicator

Invalid communicator type must be intracommunicator

Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Invalid root root < 0 or root >= groupsize

Unequal message lengths

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

 Related Information
 MPI_SCATTER
 MPI_GATHER

258 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_SEND

 MPI_SEND, MPI_Send

 Purpose
Performs a blocking standard mode send operation.

 C Synopsis
#include <mpi.h>
int MPI_Send(void\ buf,int count,MPI_Datatype datatype,

int dest,int tag,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_SEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

INTEGER TAG,INTEGER COMM,INTEGER IERROR)

 Parameters
buf is the initial address of the send buffer (choice) (IN)

count is the number of elements in the send buffer (non-negative
integer) (IN)

datatype is the datatype of each send buffer element (handle) (IN)

dest is the rank of the destination task in comm (integer) (IN)

tag is the message tag (integer) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a blocking standard mode send. MPI_SEND causes count elements
of type datatype to be sent from buf to the task specified by dest . dest is a task
rank which can be any value from 0 to n–1, where n is the number of tasks in
comm .

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid destination dest < 0 or dest > = groupsize

Invalid tag tag < 0

Invalid comm

MPI not initialized

MPI already finalized

 Chapter 2. Descriptions of Subroutines 259

 MPI_SEND

 Related Information
 MPI_ISEND
 MPI_BSEND
 MPI_SSEND
 MPI_RSEND
 MPI_SENDRECV

260 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_SEND_INIT

 MPI_SEND_INIT, MPI_Send_init

 Purpose
Creates a persistent standard mode send request.

 C Synopsis
#include <mpi.h>
int MPI_Send_init(void\ buf,int count,MPI_Datatype datatype,

int dest,int tag,MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_SEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
buf is the initial address of the send buffer (choice) (IN)

count is the number of elements to be sent (integer) (IN)

datatype is the type of each element (handle) (IN)

dest is the rank of the destination task (integer) (IN)

tag is the message tag (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a persistent communication request for a standard mode send
operation, and binds to it all arguments of a send operation. MPI_START or
MPI_STARTALL is used to activate the send.

 Notes
See MPI_SEND for additional information.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid destination dest < 0 or dest > = groupsize

Invalid tag tag < 0

Invalid comm

MPI not initialized

 Chapter 2. Descriptions of Subroutines 261

 MPI_SEND_INIT

MPI already finalized

 Related Information
 MPI_START
 MPI_ISEND

262 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_SENDRECV

 MPI_SENDRECV, MPI_Sendrecv

 Purpose
Performs a blocking send and receive operation.

 C Synopsis
#include <mpi.h>
int MPI_Sendrecv(void\ sendbuf,int sendcount,MPI_Datatype sendtype,

int dest,int sendtag,void \recvbuf,int recvcount,MPI_Datatype recvtype,
int source,int recvtag,MPI_Comm comm,MPI_Status \status);

 Fortran Synopsis
include 'mpif.h'
MPI_SENDRECV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

INTEGER DEST,INTEGER SENDTAG,CHOICE RECVBUF,INTEGER RECVCOUNT,
INTEGER RECVTYPE,INTEGER SOURCE,INTEGER RECVTAG,INTEGER COMM,
INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

 Parameters
sendbuf is the initial address of the send buffer (choice) (IN)

sendcount is the number of elements to be sent (integer) (IN)

sendtype is the type of elements in the send buffer (handle) (IN)

dest is the rank of the destination task (integer) (IN)

sendtag is the send tag (integer) (IN)

recvbuf is the initial address of the receive buffer (choice) (OUT)

recvcount is the number of elements to be received (integer) (IN)

recvtype is the type of elements in the receive buffer (handle) (IN)

source is the rank of the source task or MPI_ANY_SOURCE (integer)
(IN)

recvtag is the receive tag or MPI_ANY_TAG (integer) (IN)

comm is the communicator (handle) (IN)

status is the status object (status) (OUT). Note that in Fortran a single
status object is an array of integers.

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a blocking send and receive operation. Send and receive use the
same communicator but can use different tags. The send and the receive buffers
must be disjoint and can have different lengths and datatypes.

 Chapter 2. Descriptions of Subroutines 263

 MPI_SENDRECV

 Errors
Invalid count(s) count < 0

Invalid datatype(s)

Type not committed

Invalid destination dest < 0 or dest > = groupsize

Invalid source source < 0 or source > = groupsize

Invalid communicator

Invalid tag(s) tag < 0

MPI not initialized

MPI already finalized

 Related Information
 MPI_SENDRECV_REPLACE
 MPI_SEND
 MPI_RECV

264 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_SENDRECV_REPLACE

 MPI_SENDRECV_REPLACE, MPI_Sendrecv_replace

 Purpose
Performs a blocking send and receive operation using a common buffer.

 C Synopsis
#include <mpi.h>
int MPI_Sendrecv_replace(void\ buf,int count,MPI_Datatype datatype,

int dest,int sendtag,int source,int recvtag,MPI_Comm comm,
 MPI_Status \status);

 Fortran Synopsis
include 'mpif.h'
MPI_SENDRECV_REPLACE(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

INTEGER DEST,INTEGER SENDTAG,INTEGER SOURCE,INTEGER RECVTAG,
INTEGER COMM,INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

 Parameters
buf is the initial address of the send and receive buffer (choice)

(INOUT)

count is the number of elements to be sent and received (integer) (IN)

datatype is the type of elements in the send and receive buffer (handle)
(IN)

dest is the rank of the destination task (integer) (IN)

sendtag is the send message tag (integer) (IN)

source is the rank of the source task or MPI_ANY_SOURCE (integer)
(IN)

recvtag is the receive message tag or MPI_ANY_TAGE (integer) (IN)

comm is the communicator (handle) (IN)

status is the status object (status) (OUT). Note that in Fortran a single
status object is an array of integers.

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a blocking send and receive operation using a common buffer. Send
and receive use the same buffer so the message sent is replaced with the
message received.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

 Chapter 2. Descriptions of Subroutines 265

 MPI_SENDRECV_REPLACE

Invalid destination dest < 0 or dest > = groupsize

Invalid source source < 0 or source > = groupsize

Invalid communicator

Invalid tag(s) tag < 0

Out of memory

MPI not initialized

MPI already finalized

 Related Information
 MPI_SENDRECV

266 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_SSEND

 MPI_SSEND, MPI_Ssend

 Purpose
Performs a blocking synchronous mode send operation.

 C Synopsis
#include <mpi.h>
int MPI_Ssend(void\ buf,int count,MPI_Datatype datatype,

int dest,int tag,MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_SSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

INTEGER TAG,INTEGER COMM,INTEGER IERROR)

 Parameters
buf is the initial address of the send buffer (choice) (IN)

count is the number of elements in the send buffer (integer) (IN)

datatype is the datatype of each send buffer element (handle) (IN)

dest is the rank of the destination task (integer) (IN)

tag is the message tag (integer) (IN)

comm is the communicator (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine is a blocking synchronous mode send. This a non-local operation. It
can be started whether or not a matching receive was posted. However, the send
will complete only when a matching receive is posted and the receive operation has
started to receive the message sent by MPI_SSEND.

The completion of MPI_SSEND indicates that the send buffer is freed and also that
the receiver has started executing the matching receive. If both sends and receives
are blocking operations, the synchronous mode provides synchronous
communication.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid destination dest < 0 or dest > = groupsize

Invalid tag tag < 0

Invalid comm

MPI not initialized

 Chapter 2. Descriptions of Subroutines 267

 MPI_SSEND

MPI already finalized

 Related Information
 MPI_ISSEND
 MPI_SEND

268 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_SSEND_INIT

 MPI_SSEND_INIT, MPI_Ssend_init

 Purpose
Creates a persistent synchronous mode send request.

 C Synopsis
#include <mpi.h>
int MPI_Ssend_init(void\ buf,int count,MPI_Datatype datatype,

int dest,int tag,MPI_Comm comm,MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_SSEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST

INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

 Parameters
buf is the initial address of the send buffer (choice) (IN)

count is the number of elements to be sent (integer) (IN)

datatype is the type of each element (handle) (IN)

dest is the rank of the destination task (integer) (IN)

tag is the message tag (integer) (IN)

comm is the communicator (handle) (IN)

request is the communication request (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine creates a persistent communication object for a synchronous mode
send operation. MPI_START or MPI_STARTALL can be used to activate the send.

 Notes
See MPI_SSEND for additional information.

 Errors
Invalid count count < 0

Invalid datatype

Type not committed

Invalid destination dest < 0 or dest > = groupsize

Invalid tag tag < 0

Invalid comm

MPI not initialized

MPI already finalized

 Chapter 2. Descriptions of Subroutines 269

 MPI_SSEND_INIT

 Related Information
 MPI_START
 MPI_ISSEND

270 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_START

 MPI_START, MPI_Start

 Purpose
Activates a persistent request operation.

 C Synopsis
#include <mpi.h>
int MPI_Start(MPI_Request \request);

 Fortran Synopsis
include 'mpif.h'
MPI_START(INTEGER REQUEST,INTEGER IERROR)

 Parameters
request is a communication request (handle) (INOUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_START activates a persistent request operation. request is a handle returned
by MPI_RECV_INIT, MPI_RSEND_INIT, MPI_SSEND_INIT, MPI_BSEND_INIT or
MPI_SEND_INIT. Once the call is made, do not access the communication buffer
until the operation completes.

If the request is for a send with ready mode, then a matching receive must be
posted before the call is made. If the request is for a buffered send, adequate
buffer space must be available.

 Errors
Invalid request

Request not persistent

Request already active

Insufficient buffer space only if buffered send

MPI not initialized

MPI already finalized

 Related Information
 MPI_STARTALL
 MPI_SEND_INIT
 MPI_BSEND_INIT
 MPI_RSEND_INIT
 MPI_SSEND_INIT
 MPI_RECV_INIT

 Chapter 2. Descriptions of Subroutines 271

 MPI_STARTALL

 MPI_STARTALL, MPI_Startall

 Purpose
Activates a collection of persistent request operations.

 C Synopsis
#include <mpi.h>
int MPI_Startall(int count,MPI_request \array_of_requests);

 Fortran Synopsis
include 'mpif.h'
MPI_STARTALL(INTEGER COUNT,INTEGER ARRAY_OF_REQUESTS(\),INTEGER IERROR)

 Parameters
count is the list length (integer) (IN)

array_of_requests is the array of requests (array of handle) (INOUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_STARTALL starts all communications associated with request operations in
array_of_requests .

A communication started with MPI_STARTALL is completed by a call to one of the
MPI wait or test operations. The request becomes inactive after successful
completion but is not deallocated and can be reactivated by an MPI_STARTALL. If
a request is for a send with ready mode, then a matching receive must be posted
before the call. If a request is for a buffered send, adequate buffer space must be
available.

 Errors
Invalid count

Invalid request array

Request(s) invalid

Request(s) not persistent

Request(s) active

Insufficient buffer space only if a buffered send

MPI not initialized

MPI already finalized

272 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_STARTALL

 Related Information
 MPI_START

 Chapter 2. Descriptions of Subroutines 273

 MPI_TEST

 MPI_TEST, MPI_Test

 Purpose
| Checks to see if a nonblocking request has completed.

 C Synopsis
#include <mpi.h>
int MPI_Test(MPI_Request \request,int \flag,MPI_Status \status);

 Fortran Synopsis
include 'mpif.h'
MPI_TEST(INTEGER REQUEST,INTEGER FLAG,INTEGER STATUS(MPI_STATUS_SIZE),
 INTEGER IERROR)

 Parameters
| request is the operation request (handle) (INOUT)

flag true if operation completed (logical) (OUT)

status status object (status) (OUT). Note that in Fortran a single status
object is an array of integers.

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_TEST returns flag = true if the operation identified by request is complete.

| The status object is set to contain information on the completed operation. The
| request object is deallocated and the request handle is set to

MPI_REQUEST_NULL. Otherwise, flag = false and the status object is undefined.
MPI_TEST is a local operation. The status object can be queried for information
about the operation. (See MPI_WAIT.)

You can call MPI_TEST with a null or inactive request argument. The operation
returns flag = true and empty status.

The error field of MPI_Status is never modified. The success or failure is indicated
by the return code only.

When one of the MPI wait or test calls returns status for a nonblocking operation
request and the corresponding blocking operation does not provide a status
argument, the status from this wait/test does not contain meaningful source, tag or
message size information.

When you use this routine in a threaded application, make sure the request is
tested on only one thread. The request does not have to be tested on the thread
that created the request. See Appendix G, “Programming Considerations for User
Applications in POE” on page 411 for more information on programming with MPI
in a threaded environment.

274 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TEST

 Errors
Invalid request handle

Truncation occurred

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update

 Related Information
 MPI_TESTALL
 MPI_TESTSOME
 MPI_TESTANY
 MPI_WAIT

 Chapter 2. Descriptions of Subroutines 275

 MPI_TEST_CANCELLED

 MPI_TEST_CANCELLED, MPI_Test_cancelled

 Purpose
Tests whether a nonblocking operation was cancelled.

 C Synopsis
#include <mpi.h>
int MPI_Test_cancelled(MPI_Status \ status,int \flag);

 Fortran Synopsis
include 'mpif.h'
MPI_TEST_CANCELLED(INTEGER STATUS(MPI_STATUS_SIZE),INTEGER FLAG,
 INTEGER IERROR)

 Parameters
status is a status object (status) (IN). Note that in Fortran a single status

object is an array of integers.

flag true if the operation was cancelled (logical) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_TEST_CANCELLED returns flag = true if the communication associated with
the status object was cancelled successfully. In this case, all other fields of status
(such as count or tag) are undefined. Otherwise, flag = false is returned. If a
receive operation might be cancelled, you should call MPI_TEST_CANCELLED first
to check if the operation was cancelled, before checking on the other fields of the
return status.

| Notes
| In this release, nonblocking I/O operations are never cancelled successfully.

 Errors
MPI not initialized

MPI already finalized

 Related Information
 MPI_CANCEL

276 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TEST_ALL

 MPI_TESTALL, MPI_Testall

 Purpose
Tests a collection of nonblocking operations for completion.

 C Synopsis
#include <mpi.h>
int MPI_Testall(int count,MPI_Request \array_of_requests,

int \flag,MPI_Status \array_of_statuses);

 Fortran Synopsis
include 'mpif.h'
MPI_TESTALL(INTEGER COUNT,INTEGER ARRAY_OF_REQUESTS(\),INTEGER FLAG,

INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,\),INTEGER IERROR)

 Parameters
count is the number of requests to test (integer) (IN)

array_of_requests is an array of requests of length count (array of handles)
(INOUT)

flag (logical) (OUT)

array_of_statuses is an array of status of length count objects (array of status)
(OUT). Note that in Fortran a status object is itself an array.

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine tests a collection of nonblocking operations for completion. flag = true
is returned if all operations associated with active handles in the array completed,
or when no handle in the list is active.

Each status entry of an active handle request is set to the status of the
corresponding operation. A request allocated by a nonblocking operation call is
deallocated and the handle is set to MPI_REQUEST_NULL.

Each status entry of a null or inactive handle is set to empty . If one or more
requests have not completed, flag = false is returned. No request is modified and
the values of the status entries are undefined.

The error fields are never modified unless the function gives a return code of
MPI_ERR_IN_STATUS. In which case, the error field of every MPI_Status is
modified to reflect the result of the corresponding request.

When one of the MPI wait or test calls returns status for a nonblocking operation
request and the corresponding blocking operation does not provide a status
argument, the status from this wait/test does not contain meaningful source, tag or
message size information.

When you use this routine in a threaded application, make sure the request is
tested on only one thread. The request does not have to be tested on the thread

 Chapter 2. Descriptions of Subroutines 277

 MPI_TEST_ALL

that created it. See Appendix G, “Programming Considerations for User
Applications in POE” on page 411 for more information on programming with MPI
in a threaded environment.

 Errors
Invalid count count <0

Invalid request array

Invalid request(s)

Truncation occurred

MPI not initialized

MPI already finalized

 Related Information
 MPI_TEST
 MPI_WAITALL

278 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TESTANY

 MPI_TESTANY, MPI_Testany

 Purpose
Tests for the completion of any nonblocking operation.

 C Synopsis
#include <mpi.h>
int MPI_Testany(int count,MPI_Request \array_of_requests,

int \index,int \flag,MPI_Status \status);

 Fortran Synopsis
include 'mpif.h'
MPI_TESTANY(INTEGER COUNT,INTEGER ARRAY_OF_REQUESTS(\),INTEGER INDEX,

INTEGER FLAG,INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

 Parameters
count is the list length (integer) (IN)

array_of_requests is the array of request (array of handles) (INOUT)

index is the index of the operation that completed, or
MPI_UNDEFINED is no operation completed (OUT)

flag true if one of the operations is complete (logical) (OUT)

status status object (status) (OUT). Note that in Fortran a single status
object is an array of integers.

IERROR is the Fortran return code. It is always the last argument.

 Description
If one of the operations has completed, MPI_TESTANY returns flag = true and
returns in index the index of this request in the array, and returns in status the
status of the operation. If the request was allocated by a nonblocking operation, the
request is deallocated and the handle is set to MPI_REQUEST_NULL.

If none of the operations has completed, it returns flag = false and returns a value
of MPI_UNDEFINED in index , and status is undefined. The array can contain null
or inactive handles. When the array contains no active handles, then the call
returns immediately with flag = true , index = MPI_UNDEFINED, and empty status .

MPI_TESTANY(count, array_of_requests, index, flag, status) has the same
effect as the execution of MPI_TEST(array_of_requests[i], flag, status), for i = 0,
1, ..., count-1 , in some arbitrary order, until one call returns flag = true , or all fail.

The error fields are never modified unless the function gives a return code of
MPI_ERR_IN_STATUS. In which case, the error field of every MPI_Status is
modified to reflect the result of the corresponding request.

When one of the MPI wait or test calls returns status for a nonblocking operation
request and the corresponding blocking operation does not provide a status

 Chapter 2. Descriptions of Subroutines 279

 MPI_TESTANY

argument, the status from this wait/test does not contain meaningful source, tag or
message size information.

When you use this routine in a threaded application, make sure the request is
tested on only one thread. The request does not have to be tested on the thread
that created it. See Appendix G, “Programming Considerations for User
Applications in POE” on page 411 for more information on programming with MPI
in a threaded environment.

 Notes
The array is indexed from zero in C and from one in Fortran.

 Errors
Invalid count count <0

Invalid request array

Invalid request(s)

Truncation occurred

MPI not initialized

MPI already finalized

 Related Information
 MPI_TEST
 MPI_WAITANY

280 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TESTSOME

 MPI_TESTSOME, MPI_Testsome

 Purpose
Tests a collection of nonblocking operations for completion.

 C Synopsis
#include <mpi.h>
int MPI_Testsome(int incount,MPI_Request \array_of_requests,

int \outcount,int \array_of_indices,
 MPI_Status \array_of_statuses);

 Fortran Synopsis
include 'mpif.h'
MPI_TESTSOME(INTEGER INCOUNT,INTEGER ARRAY_OF_REQUESTS(\),

INTEGER OUTCOUNT,INTEGER ARRAY_OF_INDICES(\),
INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,\),INTEGER IERROR)

 Parameters
incount is the length of array_of_requests (integer) (IN)

array_of_requests is the array of requests (array of handles) (INOUT)

outcount is the number of completed requests (integer) (OUT)

array_of_indices is the array of indices of operations that completed (array of
integers) (OUT)

array_of_statuses is the array of status objects for operations that completed
(array of status) (OUT). Note that in Fortran a status object is
itself an array.

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine tests a collection of nonblocking operations for completion.
MPI_TESTSOME behaves like MPI_WAITSOME except that MPI_TESTSOME is a
local operation and returns immediately. outcount = 0 is returned when no
operation has completed.

When a request for a receive repeatedly appears in a list of requests passed to
MPI_TESTSOME and a matching send is posted, then the receive eventually
succeeds unless the send is satisfied by another receive. This fairness requirement

| also applies to send requests and to I/O requests.

The error fields are never modified unless the function gives a return code of
MPI_ERR_IN_STATUS. In which case, the error field of every MPI_Status is
modified to reflect the result of the corresponding request.

When one of the MPI wait or test calls returns status for a nonblocking operation
request and the corresponding blocking operation does not provide a status
argument, the status from this wait/test does not contain meaningful source, tag or
message size information.

 Chapter 2. Descriptions of Subroutines 281

 MPI_TESTSOME

When you use this routine in a threaded application, make sure the request is
tested on only one thread. The request does not have to be tested on the thread
that created it. See Appendix G, “Programming Considerations for User
Applications in POE” on page 411 for more information on programming with MPI
in a threaded environment.

 Errors
Invalid count count < 0

Invalid request array

Invalid request(s)

Truncation occurred

MPI not initialized

MPI already finalized

 Related Information
 MPI_TEST
 MPI_TESTSOME

282 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TOPO_TEST

 MPI_TOPO_TEST, MPI_Topo_test

 Purpose
Returns the type of virtual topology associated with a communicator.

 C Synopsis
#include <mpi.h>
MPI_Topo_test(MPI_Comm comm,int \status);

 Fortran Synopsis
include 'mpif.h'
MPI_TOPO_TEST(INTEGER COMM,INTEGER STATUS,INTEGER IERROR)

 Parameters
comm is the communicator (handle) (IN)

status is the topology type of communicator comm (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the type of virtual topology associated with a communicator.
The output of status will be as follows:

MPI_GRAPH graph topology

MPI_CART cartesian topology

MPI_UNDEFINED no topology

 Errors
MPI not initialized

MPI already finalized

Invalid communicator

 Related Information
 MPI_CART_CREATE
 MPI_GRAPH_CREATE

 Chapter 2. Descriptions of Subroutines 283

 MPI_TYPE_COMMIT

 MPI_TYPE_COMMIT, MPI_Type_commit

 Purpose
Makes a datatype ready for use in communication.

 C Synopsis
#include <mpi.h>
int MPI_Type_commit(MPI_Datatype \datatype);

 Fortran Synopsis
include 'mpif.h'
MPI_TYPE_COMMIT(INTEGER DATATYPE,INTEGER IERROR)

 Parameters
datatype is the datatype that is to be committed (handle) (INOUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
A datatype object must be committed before you can use it in communication. You
can use an uncommitted datatype as an argument in datatype constructors.

This routine makes a datatype ready for use in communication. The datatype is the
formal description of a communication buffer. It is not the content of the buffer.

Once the datatype is committed it can be repeatedly reused to communicate the
changing contents of a buffer or buffers with different starting addresses.

 Notes
| Basic datatypes are precommitted. It is not an error to call MPI_TYPE_COMMIT on
| a type that is already committed. Types returned by MPI_TYPE_GET_CONTENTS
| may or may not already be committed.

 Errors
Invalid datatype

MPI not initialized

MPI already finalized

 Related Information
 MPI_TYPE_CONTIGUOUS

| MPI_TYPE_CREATE_DARRAY
| MPI_TYPE_CREATE_SUBARRAY

 MPI_TYPE_FREE
| MPI_TYPE_GET_CONTENTS

 MPI_TYPE_HINDEXED
 MPI_TYPE_HVECTOR
 MPI_TYPE_INDEXED
 MPI_TYPE_STRUCT

284 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_COMMIT

 MPI_TYPE_VECTOR

 Chapter 2. Descriptions of Subroutines 285

 MPI_TYPE_CONTIGUOUS

 MPI_TYPE_CONTIGUOUS, MPI_Type_contiguous

 Purpose
Returns a new datatype that represents the concatenation of count instances of
oldtype.

 C Synopsis
#include <mpi.h>
int MPI_Type_contiguous(int count,MPI_Datatype oldtype,
 MPI_Datatype \newtype);

 Fortran Synopsis
include 'mpif.h'
MPI_TYPE_CONTIGUOUS(INTEGER COUNT,INTEGER OLDTYPE,INTEGER NEWTYPE,
 INTEGER IERROR)

 Parameters
count is the replication count (non-negative integer) (IN)

oldtype is the old datatype (handle) (IN)

newtype is the new datatype (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns a new datatype that represents the concatenation of count
instances of oldtype . MPI_TYPE_CONTIGUOUS allows replication of a datatype
into contiguous locations.

 Notes
newtype must be committed using MPI_TYPE_COMMIT before being used for
communication.

 Errors
Invalid count count < 0

Undefined oldtype

Oldtype is MPI_LB, MPI_UB, or MPI_PACKED

| Stride overflow

| Extent overflow

| Size overflow

| Upper or lower bound overflow

MPI not initialized

MPI already finalized

286 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_CONTIGUOUS

 Related Information
 MPI_TYPE_COMMIT

| MPI_TYPE_FREE
| MPI_TYPE_GET_CONTENTS
| MPI_TYPE_GET_ENVELOPE

 Chapter 2. Descriptions of Subroutines 287

 MPI_TYPE_CREATE_DARRAY

| MPI_TYPE_CREATE_DARRAY, MPI_Type_create_darray

| Purpose
| Generates the datatypes corresponding to the distribution of an ndims–dimensional
| array of oldtype elements onto an ndims–dimensional grid of logical tasks.

| C Synopsis
| #include <mpi.h>
| int MPI_Type_create_darray (int size,int rank,int ndims,
| int array_of_gsizes[],int array_of_distribs[],
| int array_of_dargs[],int array_of_psizes[],
| int order,MPI_Datatype oldtype,MPI_Datatype \newtype);

| Fortran Synopsis
| include 'mpif.h'
| MPI_TYPE_CREATE_DARRAY (INTEGER SIZE,INTEGER RANK,INTEGER NDIMS,
| INTEGER ARRAY_OF_GSIZES(\),INTEGER ARRAY_OF_DISTRIBS(\),
| INTEGER ARRAY_OF_DARGS(\),INTEGER ARRAY_OF_PSIZES(\),
| INTEGER ORDER,INTEGER OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

| Parameters
| size is the size of the task group (positive integer)(IN)

| rank is the rank in the task group (nonnegative integer)(IN)

| ndims is the number of array dimensions as well as task grid
| dimensions (positive integer)(IN)

| array_of_gsizes is the number of elements of type oldtype in each
| dimension of the global array (array of positive
| integers)(IN)

| array_of_distribs is the distribution of the global array in each dimension
| (array of state)(IN)

| array_of_dargs is the distribution argument in each dimension of the
| global array (array of positive integers)(IN)

| array_of_psizes is the size of the logical grid of tasks in each dimension
| (array of positive integers)(IN)

| order is the array storage order flag (state)(IN)

| oldtype is the old datatype (handle)(IN)

| newtype is the new datatype (handle)(OUT)

| IERROR is the Fortran return code. It is always the last argument.

288 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_CREATE_DARRAY

| Description
| MPI_TYPE_CREATE_DARRAY generates the datatypes corresponding to an
| HPF-like distribution of an ndims–dimensional array of oldtype elements onto an
| ndims–dimensional grid of logical tasks. The ordering of tasks in the task grid is
| assumed to be row-major. See The High Performance Fortran Handbook for more
| information.

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid group size size must be a positive integer

| Invalid rank rank must be a nonnegative integer

| Invalid dimension count ndims must be a positive integer

| Invalid array element Each element of array_of_gsizes and
| array_of_psizes must be a positive integer

| Invalid distribution element Each element of array_of_distribs must be either
| MPI_DISTRIBUTE_BLOCK,
| MPI_DISTRIBUTE_CYCLIC, or
| MPI_DISTRIBUTE_NONE

| Invalid darg element Each element of array_of_dargs must be a positive
| integer or equal to MPI_DISTRIBUTE_DFLT_DARG

| Invalid order order must either be MPI_ORDER_C or
| MPI_ORDER_Fortran

| MPI_DATATYPE_NULL not valid
| oldtype cannot be equal to MPI_DATATYPE_NULL

| Undefined datatype oldtype is not a defined datatype

| Invalid datatype oldtype cannot be MPI_LB, MPI_UB or
| MPI_PACKED

| Invalid grid size The product of the elements of array_of_psizes
| must be equal to size

| Invalid block distribution The condition (array_of_psizes[i]*
| array_of_dargs[i]) <array_of_ gsizes[i] must be
| satisfied for all indices i between 0 and ndims-1 for
| which a block distribution is specified

| Invalid psize element Each element of array_of_psizes must be equal to
| 1 if the same element of array_of_distribs has a
| value of MPI_DISTRIBUTE_NONE

| Stride overflow

| Extent overflow

| Size overflow

| Upper or lower bound overflow

 Chapter 2. Descriptions of Subroutines 289

 MPI_TYPE_CREATE_DARRAY

| Related Information
| MPI_TYPE_COMMIT
| MPI_TYPE_FREE
| MPI_TYPE_GET_CONTENTS
| MPI_TYPE_GET_ENVELOPE

290 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_CREATE_SUBARRAY

| MPI_TYPE_CREATE_SUBARRAY, MPI_Type_create_subarray

| Purpose
| Returns a new datatype that represents an ndims-dimensional subarray of an
| ndims-dimensional array.

| C Synopsis
| #include <mpi.h>
| int MPI_Type_create_subarray (int ndims,int array_of_sizes[],
| int array_of_subsizes[],int array_of_starts[],
| int order,MPI_Datatype oldtype,MPI_Datatype \newtype);

| Fortran Synopsis
| include 'mpif.h'
| MPI_TYPE_CREATE_SUBARRAY (INTEGER NDIMS,INTEGER ARRAY_OF_SUBSIZES(\),
| INTEGER ARRAY_OF_SIZES(\),INTEGER ARRAY_OF_STARTS(\),
| INTEGER ORDER,INTEGER OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

| Parameters
| ndims is the number of array dimensions(positive integer)(IN)

| array_of_sizes is the number of elements of type oldtype in each
| dimension of the full array (array of positive integers)(IN)

| array_of_subsizes is the number of type oldtype in each dimension of the
| subarray (array of positive integers)(IN)

| array_of_starts is the starting coordinates of the subarray in each
| dimension (array of nonnegative integers)(IN)

| order is the array storage order flag (state)(IN)

| oldtype is the array element datatype (handle)(IN)

| newtype is the new datatype (handle)(OUT)

| IERROR is the Fortran return code. It is always the last argument.

| Description
| MPI_TYPE_CREATE_SUBARRAY creates an MPI datatype describing an
| ndims-dimensional subarray of an ndims-dimensional array. The subarray may be
| situated anywhere within the full array and may be of any nonzero size up to the
| size of the larger array as long as it is confined within this array.

| This function facilitates creating filetypes to access arrays distributed in blocks
| among tasks to a single file that contains the full array.

 Chapter 2. Descriptions of Subroutines 291

 MPI_TYPE_CREATE_SUBARRAY

| Errors
| Fatal Errors:

| MPI not initialized

| MPI already finalized

| Invalid dimension count ndims must be a positive integer

| Invalid array element Each element of array_of_sizes and
| array_of_subsizes must be a positive integer, and
| each element of array_of_starts must be a
| nonnegative integer

| Invalid order order must be either MPI_ORDER_C or
| MPI_ORDER_Fortran

| MPI_DATATYPE_NULL not valid
| oldtype cannot be equal to MPI_DATATYPE_NULL

| Undefined datatype oldtype is not a defined datatype

| Invalid datatype oldtype cannot be MPI_LB, MPI_UB or
| MPI_PACKED

| Invalid subarray size Each element of array_of_subsizes cannot be
| greater than the same element of array_of_sizes

| Invalid start element The subarray must be fully contained within the full
| array.

| Stride overflow

| Extent overflow

| Size overflow

| Upper or lower bound overflow

| Related Information
| MPI_TYPE_COMMIT
| MPI_TYPE_FREE
| MPI_TYPE_GET_CONTENTS
| MPI_TYPE_GET_ENVELOPE

292 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_EXTENT

 MPI_TYPE_EXTENT, MPI_Type_extent

 Purpose
Returns the extent of any defined datatype.

 C Synopsis
#include <mpi.h>
int MPI_Type_extent(MPI_Datatype datatype,int \extent);

 Fortran Synopsis
include 'mpif.h'
MPI_TYPE_EXTENT(INTEGER DATATYPE,INTEGER EXTENT,INTEGER IERROR)

 Parameters
datatype is the datatype (handle) (IN)

extent is the datatype extent (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the extent of a datatype. The extent of a datatype is the span
from the first byte to the last byte occupied by entries in this datatype and rounded
up to satisfy alignment requirements.

 Notes
Rounding for alignment is not done when MPI_UB is used to define the datatype.
Types defined with MPI_LB, MP_UB or with any type that itself contains MPI_LB or
MPI_UB may return an extent which is not directly related to the layout of data in
memory. Refer to MPI_Type_struct for more information on MPI_LB and MPI_UB.

 Errors
Invalid datatype

MPI not initialized

MPI already finalized

 Related Information
 MPI_TYPE_SIZE

 Chapter 2. Descriptions of Subroutines 293

 MPI_TYPE_FREE

 MPI_TYPE_FREE, MPI_Type_free

 Purpose
Marks a datatype for deallocation.

 C Synopsis
#include <mpi.h>
int MPI_Type_free(MPI_Datatype \datatype);

 Fortran Synopsis
include 'mpif.h'
MPI_TYPE_FREE(INTEGER DATATYPE,INTEGER IERROR)

 Parameters
datatype is the datatype to be freed (handle) (INOUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine marks the datatype object associated with datatype for deallocation. It
sets datatype to MPI_DATATYPE_NULL. All communication currently using this
datatype completes normally. Derived datatypes defined from the freed datatype
are not affected.

| Notes
| MPI_FILE_GET_VIEW and MPI_TYPE_GET_CONTENTS both return new
| references or handles for existing MPI_Datatypes. Each new reference to a derived
| type should be freed after the reference is no longer needed. New references to
| named types must not be freed. You can identify a derived datatype by calling
| MPI_TYPE_GET_ENVELOPE and checking that the combiner is not
| MPI_COMBINER_NAMED. MPI cannot discard a derived MPI_datatype if there are
| any references to it that have not been freed by MPI_TYPE_FREE.

 Errors
Invalid datatype

Predefined datatype

Type is already free

MPI not initialized

MPI already finalized

 Related Information
 MPI_TYPE_COMMIT

| MPI_FILE_GET_VIEW
| MPI_TYPE_GET_CONTENTS
| MPI_TYPE_GET_ENVELOPE

294 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_GET_CONTENTS

| MPI_TYPE_GET_CONTENTS, MPI_Type_get_contents

| Purpose
| Obtains the arguments used in the creation of the datatype.

| C Synopsis
| #include <mpi.h>
| int MPI_Type_get_contents(MPI_Datatype datatype,
| int \max_integers, int \max_addresses, int \max_datatypes,
| int array_of_integers[],
| int array_of_addresses[],
| int array_of_datatypes[]);

| Fortran Synopsis
| include 'mpif.h'
| MPI_TYPE_GET_CONTENTS(INTEGER DATATYPE, INTEGER MAX_INTEGERS,
| INTEGER MAX_ADDRESSES, INTEGER MAX_DATATYPES,
| INTEGER ARRAY_of_INTEGERS, INTEGER ARRAY_OF_ADDRESSES,
| INTEGER ARRAY_of_DATATYPES, INTEGER IERROR)

| Parameters
| datatype is the datatype to access (handle) (IN)

| max_integers is the number of elements in array_of_integers (non-negative
| integer) (IN)

| max_addresses is the number of elements in the array_of_addresses
| (non-negative integer) (IN)

| max_datatypes is the number of elements in array_of_datatypes (non-negative
| integer) (IN)

| array_of_integers contains integer arguments used in the constructing datatype
| (array of integers) (OUT)

| array_of_addresses contains address arguments used in the constructing datatype
| (array of integers) (OUT)

| array_of_datatypes contains datatype arguments used in the constructing datatype
| (array of handles) (OUT)

| If the combiner is MPI_COMBINER_NAMED, it is erroneous to call
| MPI_TYPE_GET_CONTENTS.

| Table 4 lists the combiners and constructor arguments. The lowercase names of
| the arguments are shown.

| Table 4 (Page 1 of 3). Combiners and Constructor Arguments

| Constructor Argument| C Location| Fortran Location

| ni
| na
| nd

| MPI_COMBINER_DUP

 Chapter 2. Descriptions of Subroutines 295

 MPI_TYPE_GET_CONTENTS

| Table 4 (Page 2 of 3). Combiners and Constructor Arguments

| Constructor Argument| C Location| Fortran Location

| ni
| na
| nd

| oldtype| d[0]| D(1)| 0
| 0
| 1

| MPI_COMBINER_CONTIGUOUS

| count
| oldtype
| i[0]
| d[0]
| I(1)
| D(1)
| 1
| 0
| 1

| MPI_COMBINER_VECTOR

| count
| blocklength
| stride
| oldtype

| i[0]
| i[1]
| i[2]
| d[0]

| I(1)
| I(2)
| I(3)
| D(1)

| 3
| 0
| 1

| MPI_COMBINER_HVECTOR
| MPI_COMBINER_HVECTOR_INTEGER

| count
| blocklength
| stride
| oldtype

| i[0]
| i[1]
| a[0]
| d[0]

| I(1)
| I(2)
| A(1)
| D(1)

| 2
| 1
| 1

| MPI_COMBINER_INDEXED

| count
| array_of_blocklengths
| array_of_displacements
| oldtype

| i[0]
| i[1] to i[i[0]]
| i[i[0]+1] to i[2*i[0]]
| d[0]

| I(1)
| I(2) to I(I(1)+1)
| I(I(1)+2) to I(2*I(1)+1)
| D(1)

| 2*count+1
| 0
| 1

| MPI_COMBINER_HINDEXED
| MPI_COMBINER_HINDEXED_INTEGER

| count
| array_of_blocklengths
| array_of_displacements
| oldtype

| i[0]
| i[1] to i[i[0]]
| a[0] to a[i[0]-1]
| d[0]

| I(1)
| I(2) to I(I(1)+1)
| A(1) to A(I(1))
| D(1)

| count+1
| count
| 1

| MPI_COMBINER_INDEXED_BLOCK

| count
| blocklength
| array_of_displacements
| oldtype

| i[0]
| i[1]
| i[2] to i[i[0]+1]
| d[0]

| I(1)
| I(2)
| I(3) to I(I(1)+2)
| D(1)

| count+2
| 0
| 1

| MPI_COMBINER_STRUCT
| MPI_COMBINER_STRUCT_INTEGER

| count
| array_of_blocklengths
| array_of_displacements
| array_of_types

| i[0]
| i[1] to i[i[0]]
| a[0] to a[i[0]-1]
| d[0] to d[i[0]-1]

| I(1)
| I(2) to I(I(1)+1)
| A(1) to A(I(1))
| D(1)

| count+1
| count
| count

| MPI_COMBINER_SUBARRAY

296 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_GET_CONTENTS

| Table 4 (Page 3 of 3). Combiners and Constructor Arguments

| Constructor Argument| C Location| Fortran Location

| ni
| na
| nd

| ndims
| array_of_sizes
| array_of_subsizes
| array_of_starts
| order
| oldtype

| i[0]
| i[1] to i[i[0]]
| i[i[0]+1] to i[2*i[0]]
| i[2*i[0]+1] to i[3*i[0]]
| d[0]

| I(1)
| I(2) to I(I(1)+1)
| I(I(1)+2) to I(2*I(1)+1)
| I(2*I(1)+2) to I(3*I(1)+1)
| I(3*I(1)+2)
| D(1)

| 3*ndims+2
| 0
| 1

| MPI_COMBINER_DARRAY

| size
| rank
| ndims
| array_of_gsizes
| array_of_distribs
| array_of_dargs
| array_of_psizes
| order
| oldtype

| i[0]
| i[1]
| i[2]
| i[3] to i[i[2]+2]
| i[i[2]+3] to i[2*i[2]+2]
| i[2*i[2]+3] to i[3*i[2]+2]
| i[3*i[2]+3] to i[4*i[2]+2]
| i[4*i[2]+3]
| d[0]

| I(1)
| I(2)
| I(3)
| I(4) to I(I(3)+3)
| I(I(3)+4) to I(2*I(3)+3)
| I(2*I(3)+4) to I(3*I(3)+3)
| I(3*I(3)+4) to I(4*I(3)+3)
| I(4*I(3)+4)
| D(1)

| 4*ndims+4
| 0
| 1

| MPI_COMBINER_F90_REAL
| MPI_COMBINER_F90_COMPLEX

| p
| r
| i[0]
| i[1]
| I(1)
| I(2)
| 2
| 0
| 0

| MPI_COMBINER_F90_INTEGER

| r| i[0]| I(1)| 1
| 0
| 0

| MPI_COMBINER_RESIZED

| lb
| extent
| oldtype

| a[0]
| a[1]
| d[0]

| A(1)
| A(2)
| D(1)

| 0
| 2
| 1

| Description
| MPI_TYPE_GET_CONTENTS identifies the combiner and returns the arguments
| that were used with this combiner to create the datatype of interest. A call to
| MPI_TYPE_GET_CONTENTS is normally preceded by a call to
| MPI_TYPE_GET_ENVELOPE to discover whether the type of interest is one that
| can be decoded and if so, how large the output arrays must be. An
| MPI_COMBINER_NAMED datatype is a predefined type that may not be decoded.
| The datatype handles returned in array_of_datatypes can include both named and
| derived types. The derived types may or may not already be committed. Each entry
| in array_of_datatypes is a separate datatype handle that must eventually be freed if
| it represents a derived type.

 Chapter 2. Descriptions of Subroutines 297

 MPI_TYPE_GET_CONTENTS

| Notes
| An MPI type constructor, such as MPI_TYPE_CONTIGUOUS, creates a datatype
| object within MPI and gives a handle for that object to the caller. This handle
| represents one reference to the object. In this implementation of MPI, the MPI
| datatypes obtained with calls to MPI_TYPE_GET_CONTENTS are new handles for
| the existing datatype objects. The number of handles (references) given to the user
| is tracked by a reference counter in the object. MPI cannot discard a datatype
| object unless MPI_TYPE_FREE has been called on every handle the user has
| obtained.

| The use of reference-counted objects is encouraged, but not mandated, by the MPI
| standard. Another MPI implementation may create new objects instead. The user
| should be aware of a side effect of the reference count approach. Suppose mytype
| was created by a call to MPI_TYPE_VECTOR and used so that a later call to
| MPI_TYPE_GET_CONTENTS returns its handle in hertype. Because both handles
| identify the same datatype object, attribute changes made with either handle are
| changes in the single object. That object will exist at least until MPI_TYPE_FREE
| has been called on both mytype and hertype. Freeing either handle alone will leave
| the object intact and the other handle will remain valid.

| Errors
| Invalid datatype

| Predefined datatype

| Maximum array size is not big enough

| MPI already finalized

| MPI not initialized

| Related Information
| MPI_TYPE_COMMIT
| MPI_TYPE_FREE
| MPI_TYPE_GET_ENVELOPE

298 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_GET_ENVELOPE

| MPI_TYPE_GET_ENVELOPE, MPI_Type_get_envelope

| Purpose
| Determines the constructor that was used to create the datatype and the amount of
| data that will be returned by a call to MPI_TYPE_GET_CONTENTS for the same
| datatype.

| C Synopsis
| #include <mpi.h>
| int MPI_Type_get_envelope(MPI_Datatype datatype, int \num_integers,
| int \num_addresses, int \num_datatypes, int \combiner);

| Fortran Synopsis
| include 'mpif.h'
| MPI_TYPE_GET_ENVELOPE(INTEGER DATATYPE, INTEGER NUM_INTEGERS,
| INTEGER NUM_ADDRESSES, INTEGER NUM_DATATYPES, INTEGER COMBINER,
| INTEGER IERROR)

| Parameters
| datatype is the datatype to access (handle) (IN)

| num_integers is the number of input integers used in the call constructing
| combiner (non-negative integer) (OUT)

| num_addresses is the number of input addresses used in the call constructing
| combiner (non-negative integer) (OUT)

| num_datatypes is the number of input datatypes used in the call constructing
| combiner (non-negative integer) (OUT)

| combiner is the combiner (state) (OUT)

| Table 5 lists the combiners and the calls associated with them.

| Table 5 (Page 1 of 2). Combiners and Calls

| Combiner| What It Represents

| MPI_COMBINER_NAMED| A named, predefined datatype

| MPI_COMBINER_DUP| MPI_TYPE_DUP

| MPI_COMBINER_CONTIGUOUS| MPI_TYPE_CONTIGUOUS

| MPI_COMBINER_VECTOR| MPI_TYPE_VECTOR

| MPI_COMBINER_HVECTOR| MPI_TYPE_HVECTOR from C and in some cases
| Fortran or MPI_TYPE_CREATE_HVECTOR

| MPI_COMBINER_HVECTOR_INTEGER| MPI_TYPE_HVECTOR from Fortran

| MPI_COMBINER_INDEXED| MPI_TYPE_INDEXED

| MPI_COMBINER_HINDEXED| MPI_TYPE_HINDEXED from C and in some cases
| Fortran or MPI_TYPE_CREATE_HINDEXED

| MPI_COMBINER_HINDEXED_INTEGER| MPI_TYPE_HINDEXED from Fortran

 Chapter 2. Descriptions of Subroutines 299

 MPI_TYPE_GET_ENVELOPE

| Table 5 (Page 2 of 2). Combiners and Calls

| Combiner| What It Represents

| MPI_COMBINER_INDEXED_BLOCK| MPI_TYPE_CREATE_INDEXED_BLOCK

| MPI_COMBINER_STRUCT| MPI_TYPE_STRUCT from C and in some cases
| Fortran or MPI_TYPE_CREATE_STRUCT

| MPI_COMBINER_STRUCT_INTEGER| MPI_TYPE_STRUCT from Fortran

| MPI_COMBINER_SUBARRAY| MPI_TYPE_CREATE_SUBARRAY

| MPI_COMBINER_DARRAY| MPI_TYPE_CREATE_DARRAY

| MPI_COMBINER_F90_REAL| MPI_TYPE_CREATE_F90_REAL

| MPI_COMBINER_F90_COMPLEX| MPI_TYPE_CREATE_F90_COMPLEX

| MPI_COMBINER_F90_INTEGER| MPI_TYPE_CREATE_F90_INTEGER

| MPI_COMBINER_RESIZED| MPI_TYPE_CREATE_RESIZED

| Description
| MPI_TYPE_GET_ENVELOPE provides information about an unknown datatype
| which will allow it to be decoded if appropriate. This includes identifying the
| combiner used to create the unknown type and the sizes that the arrays must be if
| MPI_TYPE_GET_CONTENTS is to be called. MPI_TYPE_GET_ENVELOPE is also
| used to determine whether a datatype handle returned by
| MPI_TYPE_GET_CONTENTS or MPI_FILE_GET_VIEW is for a predefined, named
| datatype. When the combiner is MPI_COMBINER_NAMED, it is an error to call
| MPI_TYPE_GET_CONTENTS or MPI_TYPE_FREE with the datatype.

| Errors
| Invalid datatype

| MPI already finalized

| MPI not initialized

| Related Information
| MPI_TYPE_FREE
| MPI_TYPE_GET_CONTENTS

300 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_HINDEXED

 MPI_TYPE_HINDEXED, MPI_Type_hindexed

 Purpose
Returns a new datatype that represents count blocks. Each block is defined by an
entry in array_of_blocklengths and array_of_displacements. Displacements are
expressed in bytes.

 C Synopsis
#include <mpi.h>
int MPI_Type_hindexed(int count,int \array_of_blocklengths,

MPI_Aint \array_of_displacements,MPI_Datatype oldtype,
 MPI_Datatype \newtype);

 Fortran Synopsis
include 'mpif.h'
MPI_TYPE_HINDEXED(INTEGER COUNT,INTEGER ARRAY_OF_BLOCKLENGTHS(\),

INTEGER ARRAY_OF DISPLACEMENTS(\),INTEGER OLDTYPE,INTEGER NEWTYPE,
 INTEGER IERROR)

 Parameters
count is the number of blocks and the number of entries in

array_of_displacements and array_of_blocklengths
(non-negative integer) (IN)

array_of_blocklengths is the number of instances of oldtype for each block
(array of non-negative integers) (IN)

array_of_displacements is a byte displacement for each block (array of integer)
(IN)

oldtype is the old datatype (handle) (IN)

newtype is the new datatype (handle) (OUT)

IERROR is the Fortran return code. It is always the last
argument.

 Description
This routine returns a new datatype that represents count blocks. Each is defined
by an entry in array_of_blocklengths and array_of_displacements .
Displacements are expressed in bytes rather than in multiples of the oldtype extent
as in MPI_TYPE_INDEXED.

 Notes
newtype must be committed using MPI_TYPE_COMMIT before being used for
communication.

 Chapter 2. Descriptions of Subroutines 301

 MPI_TYPE_HINDEXED

 Errors
Invalid count count < 0

Invalid blocklength blocklength [i] < 0

Undefined oldtype

Oldtype is MPI_LB, MPI_UB or MPI_PACKED

MPI not initialized

MPI already finalized

 Related Information
 MPI_TYPE_COMMIT

| MPI_TYPE_FREE
| MPI_TYPE_GET_CONTENTS
| MPI_TYPE_GET_ENVELOPE

 MPI_TYPE_INDEXED

302 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_HVECTOR

 MPI_TYPE_HVECTOR, MPI_Type_hvector

 Purpose
Returns a new datatype that represents equally-spaced blocks. The spacing
between the start of each block is given in bytes.

 C Synopsis
#include <mpi.h>
int MPI_Type_hvector(int count,int blocklength,MPI_Aint stride,

MPI_Datatype oldtype,MPI_Datatype \newtype);

 Fortran Synopsis
include 'mpif.h'
MPI_TYPE_HVECTOR(INTEGER COUNT,INTEGER BLOCKLENGTH,INTEGER STRIDE,

INTEGER OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

 Parameters
count is the number of blocks (non-negative integer) (IN)

blocklength is the number of oldtype instances in each block (non-negative
integer) (IN)

stride is an integer specifying the number of bytes between start of
each block. (IN)

oldtype is the old datatype (handle) (IN)

newtype is the new datatype (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns a new datatype that represents count equally spaced blocks.
Each block is a concatenation of blocklength instances of oldtype . The origins of
the blocks are spaced stride units apart where the counting unit is one byte.

 Notes
newtype must be committed using MPI_TYPE_COMMIT before being used for
communication.

 Errors
Invalid count count < 0

Invalid blocklength blocklength < 0

Undefined oldtype

Oldtype is MPI_LB, MPI_UB or MPI_PACKED

MPI not initialized

MPI already finalized

 Chapter 2. Descriptions of Subroutines 303

 MPI_TYPE_HVECTOR

 Related Information
 MPI_TYPE_COMMIT

| MPI_TYPE_FREE
| MPI_TYPE_GET_CONTENTS
| MPI_TYPE_GET_ENVELOPE

 MPI_TYPE_VECTOR

304 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_INDEXED

 MPI_TYPE_INDEXED, MPI_Type_indexed

 Purpose
Returns a new datatype that represents count blocks. Each block is defined by an
entry in array_of_blocklengths and array_of_displacements. Displacements are
expressed in units of extent(oldtype).

 C Synopsis
#include <mpi.h>
int MPI_Type_indexed(int count,int \array_of_blocklengths,

int \array_of_displacements,MPI_Datatype oldtype,
 MPI_datatype \newtype);

 Fortran Synopsis
include 'mpif.h'
MPI_TYPE_INDEXED(INTEGER COUNT,INTEGER ARRAY_OF_BLOCKLENGTHS(\),

INTEGER ARRAY_OF DISPLACEMENTS(\),INTEGER OLDTYPE,INTEGER NEWTYPE,
 INTEGER IERROR)

 Parameters
count is the number of blocks and the number of entries in

array_of_displacements and array_of_blocklengths
(non-negative integer) (IN)

array_of_blocklengths is the number of instances of oldtype in each block
(array of non-negative integers) (IN)

array_of_displacements is the displacement of each block in units of
extent(oldtype) (array of integer) (IN)

oldtype is the old datatype (handle) (IN)

newtype is the new datatype (handle) (OUT)

IERROR is the Fortran return code. It is always the last
argument.

 Description
This routine returns a new datatype that represents count blocks. Each is defined
by an entry in array_of_blocklengths and array_of_displacements .
Displacements are expressed in units of extent(oldtype).

 Notes
newtype must be committed using MPI_TYPE_COMMIT before being used for
communication.

 Chapter 2. Descriptions of Subroutines 305

 MPI_TYPE_INDEXED

 Errors
Invalid count count < 0

Invalid count blocklength [i] < 0

Undefined oldtype

Oldtype is MPI_LB, MPI_UB or MPI_PACKED

MPI not initialized

MPI already finalized

 Related Information
 MPI_TYPE_COMMIT

| MPI_TYPE_FREE
| MPI_TYPE_GET_CONTENTS
| MPI_TYPE_GET_ENVELOPE

 MPI_TYPE_HINDEXED

306 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_LB

 MPI_TYPE_LB, MPI_Type_lb

 Purpose
Returns the lower bound of a datatype.

 C Synopsis
#include <mpi.h>
int MPI_Type_lb(MPI_Datatype datatype,int \displacement);

 Fortran Synopsis
include 'mpif.h'
MPI_TYPE_LB(INTEGER DATATYPE,INTEGER DISPLACEMENT,INTEGER IERROR)

 Parameters
datatype is the datatype (handle) (IN)

displacement is the displacement of lower bound from the origin in bytes
(integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the lower bound of a specific datatype.

Normally the lower bound is the offset of the lowest address byte in the datatype.
Datatype constructors with explicit MPI_LB and vector constructors with negative
stride can produce lb < 0. Lower bound cannot be greater than upper bound. For a
type with MPI_LB in its ancestry, the value returned by MPI_TYPE_LB may not be
related to the displacement of the lowest address byte. Refer to
MPI_TYPE_STRUCT for more information on MPI_LB and MPI_UB.

 Errors
Invalid datatype

MPI not initialized

MPI already finalized

 Related Information
 MPI_TYPE_UB
 MPI_TYPE_STRUCT

 Chapter 2. Descriptions of Subroutines 307

 MPI_TYPE_SIZE

 MPI_TYPE_SIZE, MPI_Type_size

 Purpose
Returns the number of bytes represented by any defined datatype.

 C Synopsis
#include <mpi.h>
int MPI_Type_size(MPI_Datatype datatype,int \size);

 Fortran Synopsis
include 'mpif.h'
MPI_TYPE_SIZE(INTEGER DATATYPE,INTEGER SIZE,INTEGER IERROR)

 Parameters
datatype is the datatype (handle) (IN)

size is the datatype size (integer) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the total number of bytes in the type signature associated with
datatype . Entries with multiple occurrences in the datatype are counted.

 Errors
Invalid datatype

MPI not initialized

MPI already finalized

 Related Information
 MPI_TYPE_EXTENT

308 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_STRUCT

 MPI_TYPE_STRUCT, MPI_Type_struct

 Purpose
Returns a new datatype that represents count blocks. Each is defined by an entry
in array_of_blocklengths, array_of_displacements and array_of_types.
Displacements are expressed in bytes.

 C Synopsis
#include <mpi.h>
int MPI_Type_struct(int count,int \array_of_blocklengths,

MPI_Aint \array_of_displacements,MPI_Datatype \array_of_types,
 MPI_datatype \newtype);

 Fortran Synopsis
include 'mpif.h'
MPI_TYPE_STRUCT(INTEGER COUNT,INTEGER ARRAY_OF_BLOCKLENGTHS(\),

INTEGER ARRAY_OF DISPLACEMENTS(\),INTEGER ARRAY_OF_TYPES(\),
INTEGER NEWTYPE,INTEGER IERROR)

 Parameters
count is an integer specifying the number of blocks. It is also

the number of entries in arrays array_of_types ,
array_of_displacements and
array_of_blocklengths . (IN)

array_of_blocklengths is the number of elements in each block (array of
integer). That is, array_of_blocklengths(i) specifies
the number of instances of type array_of_types(i) in
block(i). (IN)

array_of_displacements is the byte displacement of each block (array of
integer) (IN)

array_of_types is the datatype comprising each block. That is, block(i)
is made of a concatenation of type array_of_types(i) .
(array of handles to datatype objects) (IN)

newtype is the new datatype (handle) (OUT)

IERROR is the Fortran return code. It is always the last
argument.

 Description
This routine returns a new datatype that represents count blocks. Each is defined
by an entry in array_of_blocklengths , array_of_displacements and
array_of_types . Displacements are expressed in bytes.

MPI_TYPE_STRUCT is the most general type constructor. It allows each block to
consist of replications of different datatypes. This is the only constructor which
allows MPI pseudo types MPI_LB and MPI_UB. Without these pseudo types, the
extent of a datatype is the range from the first byte to the last byte rounded up as
needed to meet boundary requirements. For example, if a type is made of an

 Chapter 2. Descriptions of Subroutines 309

 MPI_TYPE_STRUCT

integer followed by 2 characters, it will still have an extent of 8 because it is padded
to meet the boundary constraints of an int. This is intended to match the behavior
of a compiler defining an array of such structures.

Because there may be cases in which this default behavior is not correct, MPI
provides a means to set explicit upper and lower bounds which may not be directly
related to the lowest and highest displacement datatype. When the pseudo type
MPI_UB is used, the upper bound will be the value specified as the displacement of
the MPI_UB block. No rounding for alignment is done. MPI_LB can be used to set
an explicit lower bound but its use does not suppress rounding. When MPI_UB is
not used, the upper bound of the datatype is adjusted to make the extent a multiple
of the type's most boundary constrained component.

The marker placed by a MPI_LB or MPI_UB is 'sticky'. For example, assume type
A is defined with a MPI_UB at 100. Type B is defined with a type A at 0 and a
MPI_UB at 50. In effect, type B has received a MPI_UB at 50 and an inherited
MPI_UB at 100. Because the inherited MPI_UB is higher, it is kept in the type B
definition and the MPI_UB explicitly placed at 50 is discarded.

 Notes
newtype must be committed using MPI_TYPE_COMMIT before being used for
communication.

 Errors
Invalid count count < 0

Invalid blocklength blocklength [i] < 0

Undefined oldtype in array_of_types

MPI not initialized

MPI already finalized

 Related Information
 MPI_TYPE_COMMIT

| MPI_TYPE_FREE
| MPI_TYPE_GET_CONTENTS
| MPI_TYPE_GET_ENVELOPE

310 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_UB

 MPI_TYPE_UB, MPI_Type_ub

 Purpose
Returns the upper bound of a datatype.

 C Synopsis
#include <mpi.h>
int MPI_Type_ub(MPI_Datatype datatype,int \displacement);

 Fortran Synopsis
include 'mpif.h'
MPI_TYPE_UB(INTEGER DATATYPE,INTEGER DISPLACEMENT,
INTEGER IERROR)

 Parameters
datatype is the datatype (handle) (IN)

displacement is the displacement of upper bound from origin in bytes (integer)
(OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine returns the upper bound of a specific datatype.

The upper bound is the displacement you use in locating the origin byte of the next
instance of datatype for operations which use count and datatype. In the normal
case, ub represents the displacement of the highest address byte of the datatype +
e (where e >= 0 and results in (ub − lb) being a multiple of the boundary
requirement for the most boundary constrained type in the datatype). If MPI_UB is
used in a type constructor, no alignment adjustment is done so ub is exactly as you
set it.

For a type with MPI_UB in its ancestry, the value returned by MPI_TYPE_UB may
not be related to the displacement of the highest address byte (with rounding).
Refer to MPI_TYPE_STRUCT for more informatin on MPI_LB and MPI_UB.

 Errors
Invalid datatype

MPI not initialized

MPI already finalized

 Related Information
 MPI_TYPE_LB

| MPI_TYPE_STRUCT

 Chapter 2. Descriptions of Subroutines 311

 MPI_TYPE_VECTOR

 MPI_TYPE_VECTOR, MPI_Type_vector

 Purpose
Returns a new datatype that represents equally spaced blocks. The spacing
between the start of each block is given in units of extent (oldtype).

 C Synopsis
#include <mpi.h>
int MPI_Type_vector(int count,int blocklength,int stride,

MPI_Datatype oldtype,MPI_Datatype \newtype);

 Fortran Synopsis
include 'mpif.h'
MPI_TYPE_VECTOR(INTEGER COUNT,INTEGER BLOCKLENGTH,

INTEGER STRIDE,INTEGER OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

 Parameters
count is the number of blocks (non-negative integer) (IN)

blocklength is the number of oldtype instances in each block (non-negative
integer) (IN)

stride is the number of units between the start of each block (integer)
(IN)

oldtype is the old datatype (handle) (IN)

newtype is the new datatype (handle) (OUT)

IERROR is the Fortran return code. It is always the last argument.

 Description
This function returns a new datatype that represents count equally spaced blocks.
Each block is a a concatenation of blocklength instances of oldtype . The origins
of the blocks are spaced stride units apart where the counting unit is
extent(oldtype). That is, from one origin to the next in bytes = stride * extent
(oldtype).

 Notes
newtype must be committed using MPI_TYPE_COMMIT before being used for
communication.

 Errors
Invalid count count < 0

Invalid blocklength blocklength < 0

Undefined oldtype

Oldtype is MPI_LB, MPI_UB or MPI_PACKED

MPI not initialized

312 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_TYPE_VECTOR

MPI already finalized

 Related Information
 MPI_TYPE_COMMIT

| MPI_TYPE_FREE
| MPI_TYPE_GET_CONTENTS
| MPI_TYPE_GET_ENVELOPE

 MPI_TYPE_HVECTOR

 Chapter 2. Descriptions of Subroutines 313

 MPI_UNPACK

 MPI_UNPACK, MPI_Unpack

 Purpose
Unpacks the message into the specified receive buffer from the specified packed
buffer.

 C Synopsis
#include <mpi.h>
int MPI_Unpack(void\ inbuf,int insize,int \position,

void \outbuf,int outcount,MPI_Datatype datatype,
 MPI_Comm comm);

 Fortran Synopsis
include 'mpif.h'
MPI_UNPACK(CHOICE INBUF,INTEGER INSIZE,INTEGER POSITION,

CHOICE OUTBUF,INTEGER OUTCOUNT,INTEGER DATATYPE,INTEGER COMM,
 INTEGER IERROR)

 Parameters
inbuf is the input buffer start (choice) (IN)

insize is an integer specifying the size of input buffer in bytes (IN)

position is an integer specifying the current packed buffer offset in bytes
(INOUT)

outbuf is the output buffer start (choice) (OUT)

outcount is an integer specifying the number of instances of datatype to
be unpacked (IN)

datatype is the datatype of each output data item (handle) (IN)

comm is the communicator for the packed message (handle) (IN)

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine unpacks the message specified by outbuf , outcount , and datatype
from the buffer space specified by inbuf and insize . The output buffer is any
receive buffer allowed in MPI_RECV. The input buffer is any contiguous storage
space containing insize bytes and starting at address inbuf .

The input value of position is the beginning offset in the input buffer for the data to
be unpacked. The output value of position is the offset in the input buffer following
the data already unpacked. That is, the starting point for another call to
MPI_UNPACK. comm is the communicator that was used to receive the packed
message.

314 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_UNPACK

 Notes
In MPI_UNPACK the outcount argument specifies the actual number of items to
be unpacked. The size of the corresponding message is the increment in position .

 Errors
Invalid outcount outcount < 0

Invalid datatype

Type is not committed

Invalid communicator

Inbuf too small

MPI not initialized

MPI already finalized

 Related Information
 MPI_PACK

 Chapter 2. Descriptions of Subroutines 315

 MPI_WAIT

 MPI_WAIT, MPI_Wait

 Purpose
Waits for a nonblocking operation to complete.

 C Synopsis
#include <mpi.h>
int MPI_Wait(MPI_Request \request,MPI_Status \status);

 Fortran Synopsis
include 'mpif.h'
MPI_WAIT(INTEGER REQUEST,INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

 Parameters
request is the request to wait for (handle) (INOUT)

status is the status object (status) (OUT). Note that in Fortran a single
status object is an array of integers.

IERROR is the Fortran return code. It is always the last argument.

 Description
MPI_WAIT returns after the operation identified by request completes. If the object
associated with request was created by a nonblocking operation, the object is
deallocated and request is set to MPI_REQUEST_NULL. MPI_WAIT is a non-local
operation.

You can call MPI_WAIT with a null or inactive request argument. The operation
returns immediately. The status argument returns tag = MPI_ANY_TAG, source =
MPI_ANY_SOURCE. The status argument is also internally configured so that
calls to MPI_GET_COUNT and MPI_GET_ELEMENTS return count = 0. (This is
called an empty status.)

Information on the completed operation is found in status . You can query the
status object for a send or receive operation with a call to
MPI_TEST_CANCELLED. For receive operations, you can also retrieve information
from status with MPI_GET_COUNT and MPI_GET_ELEMENTS. If wildcards were
used by the receive for either the source or tag, the actual source and tag can be
retrieved by:

 In C:
source = status.MPI_SOURCE
tag = status.MPI_TAG

 In Fortran:
source = status(MPI_SOURCE)
tag = status(MPI_TAG)

The error field of MPI_Status is never modified. The success or failure is indicated
by the return code only.

316 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_WAIT

When one of the MPI wait or test calls returns status for a nonblocking operation
request and the corresponding blocking operation does not provide a status
argument, the status from this wait/test does not contain meaningful source, tag or
message size information.

When you use this routine in a threaded application, make sure that the wait for a
given request is done on only one thread. The wait does not have to be done on
the thread that created the request. See Appendix G, “Programming
Considerations for User Applications in POE” on page 411 for more information on
programming with MPI in a threaded environment.

 Errors
Invalid request handle

Truncation occurred

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update

 Related Information
 MPI_WAITALL
 MPI_WAITSOME
 MPI_WAITANY
 MPI_TEST

 Chapter 2. Descriptions of Subroutines 317

 MPI_WAITALL

 MPI_WAITALL, MPI_Waitall

 Purpose
Waits for a collection of nonblocking operations to complete.

 C Synopsis
#include <mpi.h>
int MPI_Waitall(int count,MPI_Request \array_of_requests,
 MPI_Status \array_of_statuses);

 Fortran Synopsis
include 'mpif.h'
MPI_WAITALL(INTEGER COUNT,INTEGER ARRAY_OF_ REQUESTS(\),

INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,\),INTEGER IERROR)

 Parameters
count is the lists length (integer) (IN)

array_of_requests is an array of requests of length count (array of handles)
(INOUT)

array_of_statuses is an array of status objects of length count (array of status)
(OUT). Note that in Fortran a status object is itself an array.

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine blocks until all operations associated with active handles in the list
complete, and returns the status of each operation. array_of_requests and
array_of statuses contain count entries.

The ith entry in array_of_statuses is set to the return status of the ith operation.
Requests created by nonblocking operations are deallocated and the corresponding
handles in the array are set to MPI_REQUEST_NULL. If array_of_requests
contains null or inactive handles, MPI_WAITALL sets the status of each one to
empty .

MPI_WAITALL(count, array_of_requests, array_of_statuses) has the same effect
as the execution of MPI_WAIT(array_of_requests[i], array_of_statuses[i]) for i =
0, 1, ..., count-1 , in some arbitrary order. MPI_WAITALL with an array of length
one is equivalent to MPI_WAIT.

The error fields are never modified unless the function gives a return code of
MPI_ERR_IN_STATUS. In which case, the error field of every MPI_Status is
modified to reflect the result of the corresponding request.

When you use this routine in a threaded application, make sure that the wait for a
given request is done on only one thread. The wait does not have to be done on
the thread that created it. See Appendix G, “Programming Considerations for User
Applications in POE” on page 411 for more information on programming with MPI
in a threaded environment.

318 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_WAITALL

 Errors
Invalid count count <0

Invalid request array

Invalid request(s)

Truncation occurred

MPI not initialized

MPI already finalized

 Related Information
 MPI_WAIT
 MPI_TESTALL

 Chapter 2. Descriptions of Subroutines 319

 MPI_WAITANY

 MPI_WAITANY, MPI_Waitany

 Purpose
Waits for any specified nonblocking operation to complete.

 C Synopsis
#include <mpi.h>
int MPI_Waitany(int count,MPI_Request \array_of_requests,

int \index,MPI_Status \status);

 Fortran Synopsis
include 'mpif.h'
MPI_WAITANY(INTEGER COUNT,INTEGER ARRAY_OF_REQUESTS(\),INTEGER INDEX,

INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

 Parameters
count is the list length (integer) (IN)

array_of_requests is the array of requests (array of handles) (INOUT)

index is the index of the handle for the operation that completed
(integer) (OUT)

status status object (status) (OUT). Note that in Fortran a single status
object is an array of integers.

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine blocks until one of the operations associated with the active requests in
the array has completed. If more than one operation can complete, one is arbitrarily
chosen. MPI_WAITANY returns in index the index of that request in the array, and
in status the status of the completed operation. When the request is allocated by a
nonblocking operation, it is deallocated and the request handle is set to
MPI_REQUEST_NULL.

The array_of_requests list can contain null or inactive handles. When the list has
a length of zero or all entries are null or inactive, the call returns immediately with
index = MPI_UNDEFINED, and an empty status.

MPI_WAITANY(count, array_of_requests, index, status) has the same effect as
the execution of MPI_WAIT(array_of_requests[i], status), where i is the value
returned by index . MPI_WAITANY with an array containing one active entry is
equivalent to MPI_WAIT.

The error fields are never modified unless the function gives a return code of
MPI_ERR_IN_STATUS. In which case, the error field of every MPI_Status is
modified to reflect the result of the corresponding request.

When one of the MPI wait or test calls returns status for a nonblocking operation
request and the corresponding blocking operation does not provide a status

320 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_WAITANY

argument, the status from this wait/test does not contain meaningful source, tag or
message size information.

When you use this routine in a threaded application, make sure that the wait for a
given request is done on only one thread. The wait does not have to be done on
the thread that created it. See Appendix G, “Programming Considerations for User
Applications in POE” on page 411 for more information on programming with MPI
in a threaded environment.

 Notes
In C, the array is indexed from zero and in Fortran from one.

 Errors
Invalid count count < 0

Invalid requests array

Invalid request(s)

Truncation occurred

MPI not initialized

MPI already finalized

 Related Information
 MPI_WAIT
 MPI_TESTANY

 Chapter 2. Descriptions of Subroutines 321

 MPI_WAITSOME

 MPI_WAITSOME, MPI_Waitsome

 Purpose
Waits for at least one of a list of nonblocking operations to complete.

 C Synopsis
#include <mpi.h>
int MPI_Waitsome(int incount,MPI_Request \array_of_requests,

int \outcount,int \array_of_indices,MPI_Status \array_of_statuses);

 Fortran Synopsis
include 'mpif.h'
MPI_WAITSOME(INTEGER INCOUNT,INTEGER ARRAY_OF_REQUESTS,INTEGER OUTCOUNT,

INTEGER ARRAY_OF_INDICES(\),INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,\),
 INTEGER IERROR)

 Parameters
incount is the length of array_of_requests , array_of_indices , and

array_of_statuses (integer) (IN)

array_of_requests is an array of requests (array of handles) (INOUT)

outcount is the number of completed requests (integer) (OUT)

array_of_indices is the array of indices of operations that completed (array of
integers) (OUT)

array_of_statuses is the array of status objects for operations that completed
(array of status) (OUT). Note that in Fortran a status object is
itself an array.

IERROR is the Fortran return code. It is always the last argument.

 Description
This routine waits for at least one of a list of nonblocking operations associated with
active handles in the list to complete. The number of completed requests from the
list of array_of_requests is returned in outcount . Returns in the first outcount
locations of the array array_of_indices the indices of these operations.

The status for the completed operations is returned in the first outcount locations
of the array array_of_statuses . When a completed request is allocated by a
nonblocking operation, it is deallocated and the associated handle is set to
MPI_REQUEST_NULL.

When the list contains no active handles, then the call returns immediately with
outcount = MPI_UNDEFINED.

When a request for a receive repeatedly appears in a list of requests passed to
MPI_WAITSOME and a matching send was posted, then the receive eventually
succeeds unless the send is satisfied by another receive. This fairness requirement

| also applies to send requests and to I/O requests.

322 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_WAITSOME

The error fields are never modified unless the function gives a return code of
MPI_ERR_IN_STATUS. In which case, the error field of every MPI_Status is
modified to reflect the result of the corresponding request.

When one of the MPI wait or test calls returns status for a nonblocking operation
request and the corresponding blocking operation does not provide a status
argument, the status from this wait/test does not contain meaningful source, tag or
message size information.

When you use this routine in a threaded application, make sure that the wait for a
given request is done on only one thread. The wait does not have to be done on
the thread that created it. See Appendix G, “Programming Considerations for User
Applications in POE” on page 411 for more information on programming with MPI
in a threaded environment.

 Notes
In C, the index within the array array_of_requests , is indexed from zero and from
one in Fortran.

 Errors
Invalid count count <0

Invalid request(s)

Invalid index array

Truncation occurred

MPI not initialized

MPI already finalized

 Related Information
 MPI_WAIT
 MPI_TESTSOME

 Chapter 2. Descriptions of Subroutines 323

 MPI_WTICK

 MPI_WTICK, MPI_Wtick

 Purpose
Returns the resolution of MPI_WTIME in seconds.

 C Synopsis
#include <mpi.h>
double MPI_Wtick(void);

 Fortran Synopsis
include 'mpif.h'
DOUBLE PRECISION MPI_WTICK()

 Parameters
None.

 Description
This routine returns the resolution of MPI_WTIME in seconds, the time in seconds
between successive clock ticks.

 Errors
MPI not initialized

MPI already finalized

 Related Information
 MPI_WTIME

324 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MPI_WTIME

 MPI_WTIME, MPI_Wtime

 Purpose
Returns the current value of time as a floating-point value.

 C Synopsis
#include <mpi.h>
double MPI_Wtime(void);

 Fortran Synopsis
include 'mpif.h'
DOUBLE PRECISION MPI_WTIME()

 Parameters
None.

 Description
This routine returns the current value of time as a double precision floating point
number of seconds. This value represents elapsed time since some point in the
past. This time in the past will not change during the life of the task. You are
responsible for converting the number of seconds into other units if you prefer.

 Notes
You can use the attribute key MPI_WTIME_IS_GLOBAL to determine if the values
returned by MPI_WTIME on different nodes are synchronized. See
MPI_ATTR_GET for more information.

| The environment variable MP_CLOCK_SOURCE allows you to control where
| MPI_WTIME gets its time values from. See “Using the SP Switch Clock as a Time
| Source” on page 420 for more information.

 Errors
MPI not initialized

MPI already finalized

 Related Information
 MPI_WTICK
 MPI_ATTR_GET

 Chapter 2. Descriptions of Subroutines 325

 MPI_WTIME

326 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Appendix A. MPI Subroutine Bindings: Quick Reference

Bindings for Nonblocking Collective Communication 327
Bindings for Point-to-Point Communication and Derived Datatypes 329
Bindings for Collective Communication . 335
Bindings for Groups and Communicators . 337
Bindings for Topologies . 339
Bindings for Environment Management . 341
Bindings for Profiling . 342

| Bindings for Files . 343
| Bindings for info Objects . 344

The tables in this appendix summarize the C and FORTRAN binding information for
all of the subroutines listed in this book.

Note: FORTRAN refers to FORTRAN 77 bindings which are officially supported
for MPI. However, FORTRAN 77 bindings can be used by Fortran 90.
Fortran 90 and High Performance Fortran (HPF) offer array section and
assumed shape arrays as parameters on calls. These are not safe with
MPI.

Bindings for Nonblocking Collective Communication
Table 6 lists the C and FORTRAN bindings for nonblocking collective
communication routines.

Table 6 (Page 1 of 3). Bindings for Nonblocking Collective Communication

C/FORTRAN Subroutine C/FORTRAN Binding

MPE_Ibarrier int MPE_Ibarrier(MPI_Comm comm,MPI_Request *request);

MPE_IBARRIER MPE_IBARRIER(INTEGER COMM,INTEGER REQUEST,INTEGER
IERROR)

MPE_Ibcast int MPE_Ibcast(void* buffer,int count,MPI_Datatype datatype,int
root,MPI_Comm comm,MPI_Request *request);

MPE_IBCAST MPE_IBCAST(CHOICE BUFFER,INTEGER COUNT,INTEGER
DATATYPE,INTEGER ROOT,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

MPE_Igather int MPE_Igather(void* sendbuf,int sendcount,MPI_Datatype sendtype,void*
recvbuf,int recvcount,MPI_Datatype recvtype,int root, MPI_Comm
comm,MPI_Request *request);

MPE_IGATHER MPE_IGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER
SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER
RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

MPE_Igatherv int MPE_Igatherv(void* sendbuf,int sendcount,MPI_Datatype
sendtype,void* recvbuf,int *recvcounts,int *displs,MPI_Datatype
recvtype,int root,MPI_Comm comm,MPI_Request *request);

MPE_IGATHERV MPE_IGATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER
SENDTYPE, CHOICE RECVBUF,INTEGER RECVCOUNTS(*),INTEGER
DISPLS(*),INTEGER RECVTYPE,INTEGER ROOT,INTEGER
COMM,INTEGER REQUEST,INTEGER IERROR)

 Copyright IBM Corp. 1996, 1998 327

Table 6 (Page 2 of 3). Bindings for Nonblocking Collective Communication

C/FORTRAN Subroutine C/FORTRAN Binding

MPE_Iscatter int MPE_Iscatter(void* sendbuf,int sendcount,MPI_Datatype sendtype,void*
recvbuf,int recvcount,MPI_Datatype recvtype,int root,MPI_Comm
comm,MPI_Request *request);

MPE_ISCATTER MPE_ISCATTER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER
SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER
RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

MPE_Iscatterv int MPE_Iscatterv(void* sendbuf,int *sendcounts,int *displs,MPI_Datatype
sendtype,void* recvbuf,int recvcount,MPI_Datatype recvtype,int
root,MPI_Comm comm,MPI_Request *request);

MPE_ISCATTERV MPE_ISCATTERV(CHOICE SENDBUF,INTEGER
SENDCOUNTS(*),INTEGER DISPLS(*),INTEGER SENDTYPE,CHOICE
RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER
ROOT,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

MPE_Iallgather int MPE_Iallgather(void* sendbuf,int sendcount,MPI_Datatype
sendtype,void* recvbuf,int recvcount,MPI_Datatype recvtype, MPI_Comm
comm,MPI_Request *request);

MPE_IALLGATHER MPE_IALLGATHER(CHOICE SENDBUF,INTEGER
SENDCOUNT,INTEGER SENDTYPE, CHOICE RECVBUF,INTEGER
RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

MPE_Iallgatherv int MPE_Iallgatherv(void* sendbuf,int sendcount,MPI_Datatype
sendtype,void* recvbuf,int *recvcounts,int *displs,MPI_Datatype
recvtype,MPI_Comm comm,MPI_Request *request);

MPE_IALLGATHERV MPE_IALLGATHERV(CHOICE SENDBUF,INTEGER
SENDCOUNT,INTEGER SENDTYPE, CHOICE RECVBUF,INTEGER
RECVCOUNTS(*),INTEGER DISPLS(*),INTEGER RECVTYPE,INTEGER
COMM,INTEGER REQUEST,INTEGER IERROR)

MPE_Ialltoall int MPE_Ialltoall(void* sendbuf,int sendcount,MPI_Datatype sendtype,void*
recvbuf,int recvcount,MPI_Datatype recvtype,MPI_Comm
comm,MPI_Request *request);

MPE_IALLTOALL MPE_IALLTOALL(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER
SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER
RECVTYPE,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

MPE_Ialltoallv int MPE_Ialltoallv(void* sendbuf,int *sendcounts,int *sdispls,MPI_Datatype
sendtype,void* recvbuf,int *recvcounts,int *rdispls,MPI_Datatype
recvtype,MPI_Comm comm,MPI_Request *request);

MPE_IALLTOALLV MPE_IALLTOALV(CHOICE SENDBUF,INTEGER
SENDCOUNTS(*),INTEGER SDISPLS(*),INTEGER SENDTYPE,CHOICE
RECVBUF,INTEGER RECVCOUNTS(*),INTEGER RDISPLS(*),INTEGER
RECVTYPE,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

MPE_Ireduce int MPE_Ireduce(void* sendbuf,void* recvbuf,int count,MPI_Datatype
datatype,MPI_Op op,int root,MPI_Comm comm,MPI_Request *request);

MPE_IREDUCE MPE_IREDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER
COUNT,INTEGER DATATYPE,INTEGER OP,INTEGER ROOT,INTEGER
COMM,INTEGER REQUEST,INTEGER IERROR)

MPE_Iallreduce int MPE_Iallreduce(void* sendbuf,void* recvbuf,int count,MPI_Datatype
datatype,MPI_Op op,MPI_Comm comm,MPI_Request *request);

328 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Table 6 (Page 3 of 3). Bindings for Nonblocking Collective Communication

C/FORTRAN Subroutine C/FORTRAN Binding

MPE_IALLREDUCE MPE_IALLREDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER
COUNT,INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

MPE_Ireduce_scatter int MPE_Ireduce_scatter(void* sendbuf,void* recvbuf,int
*recvcounts,MPI_Datatype datatype,MPI_Op op,MPI_Comm
comm,MPI_Request *request);

MPE_IREDUCE_SCATTER MPE_IREDUCE_SCATTER(CHOICE SENDBUF,CHOICE
RECVBUF,INTEGER RECVCOUNTS(*),INTEGER DATATYPE,INTEGER
OP,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

MPE_Iscan int MPE_Iscan(void* sendbuf,void* recvbuf,int count,MPI_Datatype
datatype,MPI_Op op,MPI_Comm comm,MPI_Request *request);

MPE_ISCAN MPE_ISCAN(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER
COUNT,INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

Bindings for Point-to-Point Communication and Derived Datatypes
Table 7 lists the C and FORTRAN bindings for point-to-point communication and
derived datatype routines.

Table 7 (Page 1 of 7). Bindings for Point-to-Point Communication and Derived Datatypes

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Send int MPI_Send(void* buf,int count,MPI_Datatype datatype,int dest,int
tag,MPI_Comm comm);

MPI_SEND MPI_SEND(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER COMM, INTEGER
IERROR)

MPI_Recv int MPI_Recv(void* buf,int count,MPI_Datatype datatype,int source,int tag,
MPI_Comm comm, MPI_Status *status);

MPI_RECV MPI_RECV(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER SOURCE, INTEGER TAG,INTEGER
COMM,INTEGER STATUS(MPI_STATUS_SIZE),,INTEGER IERROR)

MPI_Get_count int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int
*count);

MPI_GET_COUNT MPI_GET_COUNT(INTEGER STATUS(MPI_STATUS_SIZE),,INTEGER
DATATYPE,INTEGER COUNT, INTEGER IERROR)

MPI_Bsend int MPI_Bsend(void* buf,int count,MPI_Datatype datatype,int dest,int
tag,MPI_Comm comm);

MPI_BSEND MPI_BSEND(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST, INTEGER TAG,INTEGER COMM,INTEGER
IERROR)

MPI_Ssend int MPI_Ssend(void* buf,int count,MPI_Datatype datatype,int dest,int
tag,MPI_Comm comm);

MPI_SSEND MPI_SSEND(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER
IERROR)

 Appendix A. MPI Subroutine Bindings: Quick Reference 329

Table 7 (Page 2 of 7). Bindings for Point-to-Point Communication and Derived Datatypes

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Rsend int MPI_Rsend(void* buf,int count,MPI_Datatype datatype,int dest,int
tag,MPI_Comm comm);

MPI_RSEND MPI_RSEND(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER
IERROR)

MPI_Buffer_attach int MPI_Buffer_attach(void* buffer,int size);

MPI_BUFFER_ATTACH MPI_BUFFER_ATTACH(CHOICE BUFFER,INTEGER SIZE,INTEGER
IERROR)

MPI_Buffer_detach int MPI_Buffer_detach(void* buffer,int* size);

MPI_BUFFER_DETACH MPI_BUFFER_DETACH(CHOICE BUFFER,INTEGER SIZE,INTEGER
IERROR)

MPI_Isend int MPI_Isend(void* buf,int count,MPI_Datatype datatype,int dest,int
tag,MPI_Comm comm,MPI_Request *request);

MPI_ISEND MPI_ISEND(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

MPI_Ibsend int MPI_Ibsend(void* buf,int count,MPI_Datatype datatype,int dest,int
tag,MPI_Comm comm,MPI_Request *request);

MPI_IBSEND MPI_IBSEND(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

MPI_Issend int MPI_Issend(void* buf,int count,MPI_Datatype datatype,int dest,int
tag,MPI_Comm comm,MPI_Request *request);

MPI_ISSEND MPI_ISSEND(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

MPI_Irsend int MPI_Irsend(void* buf,int count,MPI_Datatype datatype,int dest,int
tag,MPI_Comm comm,MPI_Request *request);

MPI_IRSEND MPI_IRSEND(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

MPI_Irecv int MPI_Irecv(void* buf,int count,MPI_Datatype datatype,int source,int
tag,MPI_Comm comm,MPI_Request *request);

MPI_IRECV MPI_IRECV(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER SOURCE,INTEGER TAG,INTEGER
COMM,INTEGER REQUEST,INTEGER IERROR)

MPI_Wait int MPI_Wait(MPI_Request *request,MPI_Status *status);

MPI_WAIT MPI_WAIT(INTEGER REQUEST,INTEGER
STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_Test int MPI_Test(MPI_Request *request,int *flag,MPI_Status *status);

MPI_TEST MPI_TEST(INTEGER REQUEST,INTEGER FLAG,INTEGER
STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_Request_free int MPI_Request_free(MPI_Request *request);

MPI_REQUEST_FREE MPI_REQUEST_FREE(INTEGER REQUEST,INTEGER IERROR)

330 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Table 7 (Page 3 of 7). Bindings for Point-to-Point Communication and Derived Datatypes

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Waitany int MPI_Waitany(int count,MPI_Request *array_of_requests,int
*index,MPI_Status *status);

MPI_WAITANY MPI_WAITANY(INTEGER COUNT,INTEGER
ARRAY_OF_REQUESTS(*),INTEGER INDEX, INTEGER
STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_Testany int MPI_Testany(int count, MPI_Request *array_of_requests, int *index, int
*flag,MPI_Status *status);

MPI_TESTANY MPI_TESTANY(INTEGER COUNT,INTEGER
ARRAY_OF_REQUESTS(*),INTEGER INDEX,INTEGER FLAG,INTEGER
STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_Waitall int MPI_Waitall(int count,MPI_Request *array_of_requests,MPI_Status
*array_of_statuses);

MPI_WAITALL MPI_WAITALL(INTEGER COUNT,INTEGER ARRAY_OF_
REQUESTS(*),INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*),
INTEGER IERROR)

MPI_Testall int MPI_Testall(int count,MPI_Request *array_of_requests,int
*flag,MPI_Status *array_of_statuses);

MPI_TESTALL MPI_TESTALL(INTEGER COUNT,INTEGER
ARRAY_OF_REQUESTS(*),INTEGER FLAG, INTEGER
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*),INTEGER IERROR)

MPI_Waitsome int MPI_Waitsome(int incount,MPI_Request *array_of_requests,int
*outcount,int *array_of_indices,MPI_Status *array_of_statuses);

MPI_WAITSOME MPI_WAITSOME(INTEGER INCOUNT,INTEGER
ARRAY_OF_REQUESTS,INTEGER OUTCOUNT,INTEGER
ARRAY_OF_INDICES(*),INTEGER
ARRAY_OF_STATUSES(MPI_STATUS_SIZE),*),INTEGER IERROR)

MPI_Testsome int MPI_Testsome(int incount,MPI_Request *array_of_requests,int
*outcount,int *array_of_indices,MPI_Status *array_of_statuses);

MPI_TESTSOME MPI_TESTSOME(INTEGER INCOUNT,INTEGER
ARRAY_OF_REQUESTS(*),INTEGER OUTCOUNT,INTEGER
ARRAY_OF_INDICES(*),INTEGER
ARRAY_OF_STATUSES(MPI_STATUS_SIZE),*),INTEGER IERROR)

MPI_Iprobe int MPI_Iprobe(int source,int tag,MPI_Comm comm,int *flag,MPI_Status
*status);

MPI_IPROBE MPI_IPROBE(INTEGER SOURCE,INTEGER TAG,INTEGER
COMM,INTEGER FLAG,INTEGER
STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_Probe int MPI_Probe(int source,int tag,MPI_Comm comm,MPI_Status *status);

MPI_PROBE MPI_PROBE(INTEGER SOURCE,INTEGER TAG,INTEGER
COMM,INTEGER STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_Cancel int MPI_Cancel(MPI_Request *request);

MPI_CANCEL MPI_CANCEL(INTEGER REQUEST,INTEGER IERROR)

MPI_Test_cancelled int MPI_Test_cancelled(MPI_Status *status,int *flag);

MPI_TEST_CANCELLED MPI_TEST_CANCELLED(INTEGER
STATUS(MPI_STATUS_SIZE),INTEGER FLAG,INTEGER IERROR)

 Appendix A. MPI Subroutine Bindings: Quick Reference 331

Table 7 (Page 4 of 7). Bindings for Point-to-Point Communication and Derived Datatypes

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Send_init int MPI_Send_init(void* buf,int count,MPI_Datatype datatype,int dest,int
tag,MPI_Comm comm,MPI_Request *request);

MPI_SEND_INIT MPI_SEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

MPI_Bsend_init int MPI_Bsend_init(void* buf,int count,MPI_Datatype datatype,int dest,int
tag,MPI_Comm comm,MPI_Request *request);

MPI_BSEND_INIT MPI_SEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

MPI_Ssend_init int MPI_Ssend_init(void* buf,int count,MPI_Datatype datatype,int dest,int
tag,MPI_Comm comm,MPI_Request *request);

MPI_SSEND_INIT MPI_SSEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER
REQUEST,IERROR)

MPI_Rsend_init int MPI_Rsend_init(void* buf,int count,MPI_Datatype datatype,int dest,int
tag,MPI_Comm comm,MPI_Request *request);

MPI_RSEND_INIT MPI_RSEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER
REQUEST,INTEGER IERROR)

MPI_Recv_init int MPI_Recv_init(void* buf,int count,MPI_Datatype datatype,int source,int
tag,MPI_Comm comm,MPI_Request *request);

MPI_RECV_INIT MPI_RECV_INIT(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER SOURCE,INTEGER TAG,INTEGER
COMM,INTEGER REQUEST,INTEGER IERROR)

MPI_Start int MPI_Start(MPI_Request *request);

MPI_START MPI_START(INTEGER REQUEST,INTEGER IERROR)

MPI_Startall int MPI_Startall(int count,MPI_Request *array_of_requests);

MPI_STARTALL MPI_STARTALL(INTEGER COUNT,INTEGER
ARRAY_OF_REQUESTS(*),INTEGER IERROR)

MPI_Sendrecv int MPI_Sendrecv(void *sendbuf,int sendcount,MPI_Datatype sendtype,int
dest,int sendtag,void *recvbuf,int recvcount, MPI_Datatype recvtype,int
source,int recvtag,MPI_Comm comm,MPI_Status *status);

MPI_SENDRECV MPI_SENDRECV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER
SENDTYPE,INTEGER DEST,INTEGER SENDTAG,CHOICE
RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER
SOURCE,INTEGER RECVTAG,INTEGER COMM,INTEGER
STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_Sendrecv_replace int MPI_Sendrecv_replace(void* buf,int count,MPI_Datatype datatype,int
dest,int sendtag,int source,int recvtag,MPI_Comm comm,MPI_Status
*status);

MPI_SENDRECV_REPLACE MPI_SENDRECV_REPLACE(CHOICE BUF,INTEGER COUNT,INTEGER
DATATYPE,INTEGER DEST,INTEGER SENDTAG,INTEGER
SOURCE,INTEGER RECVTAG,INTEGER COMM,INTEGER
STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_Type_contiguous int MPI_Type_contiguous(int count,MPI_Datatype oldtype,MPI_Datatype
*newtype);

332 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Table 7 (Page 5 of 7). Bindings for Point-to-Point Communication and Derived Datatypes

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_TYPE_CONTIGUOUS MPI_TYPE_CONTIGUOUS(INTEGER COUNT,INTEGER
OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

| MPI_Type_create_darray| int MPI_Type_create_darray (int size,int rank,int ndims, int
| array_of_gsizes[],int array_of_distribs[], int array_of_dargs[],int
| array_of_psizes[], int order,MPI_Datatype oldtype,MPI_Datatype
| *newtype);

| MPI_TYPE_CREATE_DARRAY| MPI_TYPE_CREATE_DARRAY (INTEGER SIZE,INTEGER
| RANK,INTEGER NDIMS, INTEGER ARRAY_OF_GSIZES(*),INTEGER
| ARRAY_OF_DISTRIBS(*), INTEGER ARRAY_OF_DARGS(*),INTEGER
| ARRAY_OF_PSIZES(*), INTEGER ORDER,INTEGER
| OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

| MPI_Type_create_subarray| int MPI_Type_create_subarray (int ndims,int array_of_sizes[], int
| array_of_subsizes[],int array_of_starts[] , int order,MPI_Datatype
| oldtype,MPI_Datatype *newtype);

| MPI_TYPE_CREATE_SUBARRAY| MPI_TYPE_CREATE_SUBARRAY (INTEGER NDIMS,INTEGER
| ARRAY_OF_SUBSIZES(*), INTEGER ARRAY_OF_SIZES(*),INTEGER
| ARRAY_OF_STARTS(*), INTEGER ORDER,INTEGER
| OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

| MPI_Type_get_contents| int MPI_Type_get_contents(MPI_Datatype datatype, int *max_integers, int
| *max_addresses, int *max_datatypes, int array_of_integers[], int
| array_of_addresses[], int array_of_datatypes[]);

| MPI_TYPE_GET_CONTENTS| MPI_TYPE_GET_CONTENTS(INTEGER DATATYPE, INTEGER
| MAX_INTEGERS, INTEGER MAX_ADDRESSES, INTEGER
| MAX_DATATYPES, INTEGER ARRAY_of_INTEGERS, INTEGER
| ARRAY_OF_ADDRESSES, INTEGER ARRAY_of_DATATYPES,
| INTEGER IERROR)

| MPI_Type_get_envelope| int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers, int
| *num_addresses, int *num_datatypes, int *combiner);

| MPI_TYPE_GET_ENVELOPE| MPI_TYPE_GET_ENVELOPE(INTEGER DATATYPE, INTEGER
| NUM_INTEGERS, INTEGER NUM_ADDRESSES, INTEGER
| NUM_DATATYPES, INTEGER COMBINER, INTEGER IERROR)

MPI_Type_vector int MPI_Type_vector(int count,int blocklength,int stride,MPI_Datatype
oldtype,MPI_Datatype *newtype);

MPI_TYPE_VECTOR MPI_TYPE_VECTOR(INTEGER COUNT,INTEGER
BLOCKLENGTH,INTEGER STRIDE,INTEGER OLDTYPE,INTEGER
NEWTYPE,INTEGER IERROR)

MPI_Type_hvector int MPI_Type_hvector(int count,int blocklength,MPI_Aint
stride,MPI_Datatype oldtype,MPI_Datatype *newtype);

MPI_TYPE_HVECTOR MPI_TYPE_HVECTOR(INTEGER COUNT,INTEGER
BLOCKLENGTH,INTEGER STRIDE,INTEGER OLDTYPE,INTEGER
NEWTYPE,INTEGER IERROR)

MPI_Type_indexed int MPI_Type_indexed(int count,int *array_of_blocklengths,int
*array_of_displacements,MPI_Datatype oldtype, MPI_Datatype *newtype);

MPI_TYPE_INDEXED MPI_TYPE_INDEXED(INTEGER COUNT, INTEGER
ARRAY_OF_BLOCKLENGTHS(*), INTEGER ARRAY_OF
DISPLACEMENTS(*),INTEGER OLDTYPE,INTEGER
NEWTYPE,INTEGER IERROR)

MPI_Type_hindexed int MPI_Type_hindexed(int count,int *array_of_blocklengths,MPI_Aint
*array_of_displacements,MPI_Datatype oldtype, MPI_Datatype *newtype);

 Appendix A. MPI Subroutine Bindings: Quick Reference 333

Table 7 (Page 6 of 7). Bindings for Point-to-Point Communication and Derived Datatypes

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_TYPE_HINDEXED MPI_TYPE_HINDEXED(INTEGER COUNT,INTEGER
ARRAY_OF_BLOCKLENGTHS(*),INTEGER ARRAY_OF
DISPLACEMENTS(*),INTEGER OLDTYPE,INTEGER
NEWTYPE,INTEGER IERROR)

MPI_Type_struct int MPI_Type_struct(int count,int *array_of_blocklengths, MPI_Aint
*array_of_displacements,MPI_Datatype *array_of_types, MPI_Datatype
*newtype);

MPI_TYPE_STRUCT MPI_TYPE_STRUCT(INTEGER COUNT,INTEGER
ARRAY_OF_BLOCKLENGTHS(*),INTEGER ARRAY_OF
DISPLACEMENTS(*),INTEGER ARRAY_OF_TYPES(*),INTEGER
NEWTYPE,INTEGER IERROR)

MPI_Address int MPI_Address(void* location,MPI_Aint *address);

MPI_ADDRESS MPI_ADDRESS(CHOICE LOCATION,INTEGER ADDRESS,INTEGER
IERROR)

MPI_Type_extent int MPI_Type_extent(MPI_Datatype datatype,int *extent);

MPI_TYPE_EXTENT MPI_TYPE_EXTENT(INTEGER DATATYPE,INTEGER EXTENT,INTEGER
IERROR)

MPI_Type_size int MPI_Type_size(MPI_Datatype datatype,int *size);

MPI_TYPE_SIZE MPI_TYPE_SIZE(INTEGER DATATYPE,INTEGER SIZE,INTEGER
IERROR)

MPI_Type_lb int MPI_Type_lb(MPI_Datatype datatype,int* displacement);

MPI_TYPE_LB MPI_TYPE_LB(INTEGER DATATYPE,INTEGER
DISPLACEMENT,INTEGER IERROR)

MPI_Type_ub int MPI_Type_ub(MPI_Datatype datatype,int* displacement);

MPI_TYPE_UB MPI_TYPE_UB(INTEGER DATATYPE,INTEGER
DISPLACEMENT,INTEGER IERROR)

MPI_Type_commit int MPI_Type_commit(MPI_Datatype *datatype);

MPI_TYPE_COMMIT MPI_TYPE_COMMIT(INTEGER DATATYPE,INTEGER IERROR)

MPI_Type_free int MPI_Type_free(MPI_Datatype *datatype);

MPI_TYPE_FREE MPI_TYPE_FREE(INTEGER DATATYPE,INTEGER IERROR)

MPI_Get_elements int MPI_Get_elements(MPI_Status *status,MPI_Datatype datatype,int
*count);

MPI_GET_ELEMENTS MPI_GET_ELEMENTS(INTEGER
STATUS(MPI_STATUS_SIZE),INTEGER DATATYPE,INTEGER
COUNT,INTEGER IERROR)

MPI_Pack int MPI_Pack(void* inbuf,int incount,MPI_Datatype datatype,void *outbuf,int
outsize,int *position,MPI_Comm comm);

MPI_PACK MPI_PACK(CHOICE INBUF,INTEGER INCOUNT,INTEGER
DATATYPE,CHOICE OUTBUF,INTEGER OUTSIZE,INTEGER
POSITION,INTEGER COMM,INTEGER IERROR)

MPI_Unpack int MPI_Unpack(void* inbuf,int insize,int *position,void *outbuf,int
outcount,MPI_Datatype datatype,MPI_Comm comm);

MPI_UNPACK MPI_UNPACK(CHOICE INBUF,INTEGER INSIZE,INTEGER
POSITION,CHOICE OUTBUF,INTEGER OUTCOUNT,INTEGER
DATATYPE,INTEGER COMM, INTEGER IERRROR)

334 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Table 7 (Page 7 of 7). Bindings for Point-to-Point Communication and Derived Datatypes

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Pack_size int MPI_Pack_size(int incount,MPI_Datatype datatype,MPI_Comm
comm,int *size);

MPI_PACK_SIZE MPI_PACK_SIZE(INTEGER INCOUNT,INTEGER DATATYPE,INTEGER
COMM,INTEGER SIZE,INTEGER IERROR)

Bindings for Collective Communication
Table 8 lists the C and FORTRAN bindings for collective communication routines.

Table 8 (Page 1 of 3). Bindings for Collective Communication

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Barrier int MPI_Barrier(MPI_Comm comm);

MPI_BARRIER MPI_BARRIER(INTEGER COMM,INTEGER IERROR)

MPI_Bcast int MPI_Bcast(void* buffer,int count,MPI_Datatype datatype,int
root,MPI_Comm comm);

MPI_BCAST MPI_BCAST(CHOICE BUFFER,INTEGER COUNT,INTEGER
DATATYPE,INTEGER ROOT,INTEGER COMM,INTEGER IERROR)

MPI_Gather int MPI_Gather(void* sendbuf,int sendcount,MPI_Datatype sendtype,void*
recvbuf,int recvcount,MPI_Datatype recvtype,int root,MPI_Comm comm);

MPI_GATHER MPI_GATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER
SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER
RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER IERROR)

MPI_Gatherv int MPI_Gatherv(void* sendbuf,int sendcount,MPI_Datatype sendtype,void*
recvbuf,int *recvcounts,int *displs,MPI_Datatype recvtype,int
root,MPI_Comm comm);

MPI_GATHERV MPI_GATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER
SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNTS(*),INTEGER
DISPLS(*),INTEGER RECVTYPE,INTEGER ROOT,INTEGER
COMM,INTEGER IERROR)

MPI_Scatter int MPI_Scatter(void* sendbuf,int sendcount,MPI_Datatype sendtype,void*
recvbuf,int recvcount,MPI_Datatype recvtype,int root MPI_Comm comm);

MPI_SCATTER MPI_SCATTER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER
SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER
RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER IERROR)

MPI_Scatterv int MPI_Scatterv(void* sendbuf,int *sendcounts,int *displs,MPI_Datatype
sendtype,void* recvbuf,int recvcount,MPI_Datatype recvtype,int
root,MPI_Comm comm);

MPI_SCATTERV MPI_SCATTERV(CHOICE SENDBUF,INTEGER
SENDCOUNTS(*),INTEGER DISPLS(*),INTEGER SENDTYPE,CHOICE
RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER
ROOT,INTEGER COMM,INTEGER IERROR)

MPI_Allgather int MPI_Allgather(void* sendbuf,int sendcount,MPI_Datatype
sendtype,void* recvbuf,int recvcount,MPI_Datatype recvtype, MPI_Comm
comm);

 Appendix A. MPI Subroutine Bindings: Quick Reference 335

Table 8 (Page 2 of 3). Bindings for Collective Communication

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_ALLGATHER MPI_ALLGATHER(CHOICE SENDBUF,INTEGER
SENDCOUNT,INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER
RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,INTEGER
IERROR)

MPI_Allgatherv int MPI_Allgatherv(void* sendbuf,int sendcount,MPI_Datatype
sendtype,void* recvbuf,int *recvcounts,int *displs, MPI_Datatype
recvtype,MPI_Comm comm);

MPI_ALLGATHERV MPI_ALLGATHERV(CHOICE SENDBUF,INTEGER
SENDCOUNT,INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER
RECVCOUNTS(*),INTEGER DISPLS(*),INTEGER RECVTYPE,INTEGER
COMM,INTEGER IERROR)

MPI_Alltoall int MPI_Alltoall(void* sendbuf,int sendcount,MPI_Datatype sendtype,void*
recvbuf,int recvcount,MPI_Datatype recvtype, MPI_Comm comm);

MPI_ALLTOALL MPI_ALLTOALL(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER
SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER
RECVTYPE,INTEGER COMM,INTEGER IERROR)

MPI_Alltoallv int MPI_Alltoallv(void* sendbuf,int *sendcounts,int *sdispls,MPI_Datatype
sendtype,void* recvbuf,int *recvcounts,int *rdispls,MPI_Datatype
recvtype,MPI_Comm comm);

MPI_ALLTOALLV MPI_ALLTOALLV(CHOICE SENDBUF,INTEGER
SENDCOUNTS(*),INTEGER SDISPLS(*),INTEGER SENDTYPE,CHOICE
RECVBUF,INTEGER RECVCOUNTS(*),INTEGER RDISPLS(*),INTEGER
RECVTYPE,INTEGER COMM,INTEGER IERROR)

MPI_Reduce int MPI_Reduce(void* sendbuf,void* recvbuf,int count,MPI_Datatype
datatype,MPI_Op op,int root,MPI_Comm comm);

MPI_REDUCE MPI_REDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER
COUNT,INTEGER DATATYPE,INTEGER OP,INTEGER ROOT,INTEGER
COMM,INTEGER IERROR)

MPI_Op_create int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op
*op);

MPI_OP_CREATE MPI_OP_CREATE(EXTERNAL FUNCTION,INTEGER
COMMUTE,INTEGER OP,INTEGER IERROR)

MPI_Op_free int MPI_Op_free(MPI_Op *op);

MPI_OP_FREE MPI_OP_FREE(INTEGER OP,INTEGER IERROR)

MPI_Allreduce int MPI_Allreduce(void* sendbuf,void* recvbuf,int count,MPI_Datatype
datatype,MPI_Op op,MPI_Comm comm);

MPI_ALLREDUCE MPI_ALLREDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER
COUNT,INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER
IERROR)

MPI_Reduce_scatter int MPI_Reduce_scatter(void* sendbuf,void* recvbuf,int
*recvcounts,MPI_Datatype datatype,MPI_Op op,MPI_Comm comm);

MPI_REDUCE_SCATTER MPI_REDUCE_SCATTER(CHOICE SENDBUF,CHOICE
RECVBUF,INTEGER RECVCOUNTS(*),INTEGER DATATYPE,INTEGER
OP,INTEGER COMM,INTEGER IERROR)

MPI_Scan int MPI_Scan(void* sendbuf,void* recvbuf,int count,MPI_Datatype
datatype,MPI_Op op,MPI_Comm comm);

336 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Table 8 (Page 3 of 3). Bindings for Collective Communication

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_SCAN MPI_SCAN(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER
COUNT,INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER
IERROR)

Bindings for Groups and Communicators
Table 9 lists the C and FORTRAN bindings for group and communicator routines.

Table 9 (Page 1 of 3). Bindings for Groups and Communicators

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Group_size int MPI_Group_size(MPI_Group group,int *size);

MPI_GROUP_SIZE MPI_GROUP_SIZE(INTEGER GROUP,INTEGER SIZE,INTEGER
IERROR)

MPI_Group_rank int MPI_Group_rank(MPI_Group group,int *rank);

MPI_GROUP_RANK MPI_GROUP_RANK(INTEGER GROUP,INTEGER RANK,INTEGER
IERROR)

MPI_Group_translate_ranks int MPI_Group_translate_ranks (MPI_Group group1,int n,int
*ranks1,MPI_Group group2,int *ranks2);

MPI_GROUP_TRANSLATE_RANKS MPI_GROUP_TRANSLATE_RANKS(INTEGER GROUP1, INTEGER
N,INTEGER RANKS1(*),INTEGER GROUP2,INTEGER
RANKS2(*),INTEGER IERROR)

MPI_Group_compare int MPI_Group_compare(MPI_Group group1,MPI_Group group2,int
*result);

MPI_GROUP_COMPARE MPI_GROUP_COMPARE(INTEGER GROUP1,INTEGER
GROUP2,INTEGER RESULT,INTEGER IERROR)

MPI_Comm_group int MPI_Comm_group(MPI_Comm comm,MPI_Group *group);

MPI_COMM_GROUP MPI_COMM_GROUP(INTEGER COMM,INTEGER GROUP,INTEGER
IERROR)

MPI_Group_union int MPI_Group_union(MPI_Group group1,MPI_Group group2,MPI_Group
*newgroup);

MPI_GROUP_UNION MPI_GROUP_UNION(INTEGER GROUP1,INTEGER GROUP2,INTEGER
NEWGROUP,INTEGER IERROR)

MPI_Group_intersection int MPI_Group_intersection(MPI_Group group1,MPI_Group
group2,MPI_Group *newgroup);

MPI_GROUP_INTERSECTION MPI_GROUP_INTERSECTION(INTEGER GROUP1,INTEGER
GROUP2,INTEGER NEWGROUP,INTEGER IERROR)

MPI_Group_difference int MPI_Group_difference(MPI_Group group1,MPI_Group
group2,MPI_Group *newgroup);

MPI_GROUP_DIFFERENCE MPI_GROUP_DIFFERENCE(INTEGER GROUP1,INTEGER
GROUP2,INTEGER NEWGROUP,INTEGER IERROR)

MPI_Group_incl int MPI_Group_incl(MPI_Group group,int n,int *ranks,MPI_Group
*newgroup);

MPI_GROUP_INCL MPI_GROUP_INCL(INTEGER GROUP,INTEGER N,INTEGER
RANKS(*),INTEGER NEWGROUP,INTEGER IERROR)

 Appendix A. MPI Subroutine Bindings: Quick Reference 337

Table 9 (Page 2 of 3). Bindings for Groups and Communicators

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Group_excl int MPI_Group_excl(MPI_Group group,int n,int *ranks,MPI_Group
*newgroup);

MPI_GROUP_EXCL MPI_GROUP_EXCL(INTEGER GROUP,INTEGER N,INTEGER
RANKS(*),INTEGER NEWGROUP,INTEGER IERROR)

MPI_Group_range_incl int MPI_Group_range_incl(MPI_Group group,int n,int
ranges[][3],MPI_Group *newgroup);

MPI_GROUP_RANGE_INCL MPI_GROUP_RANGE_INCL(INTEGER GROUP,INTEGER N,INTEGER
RANGES(3,*),INTEGER NEWGROUP,INTEGER IERROR)

MPI_Group_range_excl int MPI_Group_range_excl(MPI_Group group,int n,int ranges
[][3],MPI_Group *newgroup);

MPI_GROUP_RANGE_EXCL MPI_GROUP_RANGE_EXCL(INTEGER GROUP,INTEGER N,INTEGER
RANGES(3,*),INTEGER NEWGROUP,INTEGER IERROR)

MPI_Group_free int MPI_Group_free(MPI_Group *group);

MPI_GROUP_FREE MPI_GROUP_FREE(INTEGER GROUP,INTEGER IERROR)

MPI_Comm_size int MPI_Comm_size(MPI_Comm comm,int *size);

MPI_COMM_SIZE MPI_COMM_SIZE(INTEGER COMM,INTEGER SIZE,INTEGER IERROR)

MPI_Comm_rank int MPI_Comm_rank(MPI_Comm comm,int *rank);

MPI_COMM_RANK MPI_COMM_RANK(INTEGER COMM,INTEGER RANK,INTEGER
IERROR)

MPI_Comm_compare int MPI_Comm_compare(MPI_Comm comm1,MPI_Comm comm2,int
*result);

MPI_COMM_COMPARE MPI_COMM_COMPARE(INTEGER COMM1,INTEGER COMM2,INTEGER
RESULT,INTEGER IERROR)

MPI_Comm_dup int MPI_Comm_dup(MPI_Comm comm,MPI_Comm *newcomm);

MPI_COMM_DUP MPI_COMM_DUP(INTEGER COMM,INTEGER NEWCOMM,INTEGER
IERROR)

MPI_Comm_create int MPI_Comm_create(MPI_Comm comm,MPI_Group group,MPI_Comm
*newcomm);

MPI_COMM_CREATE MPI_COMM_CREATE(INTEGER COMM,INTEGER GROUP,INTEGER
NEWCOMM,INTEGER IERROR)

MPI_Comm_split int MPI_Comm_split(MPI_Comm comm,int color,int key,MPI_Comm
*newcomm);

MPI_COMM_SPLIT MPI_COMM_SPLIT(INTEGER COMM,INTEGER COLOR,INTEGER
KEY,INTEGER NEWCOMM,INTEGER IERROR)

MPI_Comm_free int MPI_Comm_free(MPI_Comm *comm);

MPI_COMM_FREE MPI_COMM_FREE(INTEGER COMM,INTEGER IERROR)

MPI_Comm_test_inter int MPI_Comm_test_inter(MPI_Comm comm,int *flag);

MPI_COMM_TEST_INTER MPI_COMM_TEST_INTER(INTEGER COMM,LOGICAL FLAG,INTEGER
IERROR)

MPI_Comm_remote_size int MPI_Comm_remote_size(MPI_Comm comm,int *size);

MPI_COMM_REMOTE_SIZE MPI_COMM_REMOTE_SIZE(INTEGER COMM,INTEGER SIZE,INTEGER
IERROR)

MPI_Comm_remote_group int MPI_Comm_remote_group(MPI_Comm comm,MPI_Group *group);

338 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Table 9 (Page 3 of 3). Bindings for Groups and Communicators

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_COMM_REMOTE_GROUP MPI_COMM_REMOTE_GROUP(INTEGER COMM,INTEGER
GROUP,INTEGER IERROR)

MPI_Intercomm_create int MPI_Intercomm_create(MPI_Comm local_comm,int
local_leader,MPI_Comm peer_comm,int remote_leader,int tag, MPI_Comm
*newintercomm);

MPI_INTERCOMM_CREATE MPI_INTERCOMM_CREATE(INTEGER LOCAL_COMM,INTEGER
LOCAL_LEADER,INTEGER PEER_COMM,INTEGER
REMOTE_LEADER,INTEGER TAG,INTEGER NEWINTERCOM,INTEGER
IERROR)

MPI_Intercomm_merge int MPI_Intercomm_merge(MPI_Comm intercomm,int high,MPI_Comm
*newintracomm);

MPI_INTERCOMM_MERGE MPI_INTERCOMM_MERGE(INTEGER INTERCOMM,INTEGER
HIGH,INTEGER NEWINTRACOMM,INTEGER IERROR)

MPI_Keyval_create int MPI_Keyval_create(MPI_Copy_function *copy_fn,MPI_Delete_function
*delete_fn,int *keyval, void* extra_state);

MPI_KEYVAL_CREATE MPI_KEYVAL_CREATE(EXTERNAL COPY_FN,EXTERNAL
DELETE_FN,INTEGER KEYVAL,INTEGER EXTRA_STATE,INTEGER
IERROR)

MPI_Keyval_free int MPI_Keyval_free(int *keyval);

MPI_KEYVAL_FREE MPI_KEYVAL_FREE(INTEGER KEYVAL,INTEGER IERROR)

MPI_Attr_put int MPI_Attr_put(MPI_Comm comm,int keyval,void* attribute_val);

MPI_ATTR_PUT MPI_ATTR_PUT(INTEGER COMM,INTEGER KEYVAL,INTEGER
ATTRIBUTE_VAL,INTEGER IERROR)

MPI_Attr_get int MPI_Attr_get(MPI_Comm comm,int keyval,void *attribute_val,int *flag);

MPI_ATTR_GET MPI_ATTR_GET(INTEGER COMM,INTEGER KEYVAL,INTEGER
ATTRIBUTE_VAL, LOGICAL FLAG,INTEGER IERROR)

MPI_Attr_delete int MPI_Attr_delete(MPI_Comm comm,int keyval);

MPI_ATTR_DELETE MPI_ATTR_DELETE(INTEGER COMM,INTEGER KEYVAL,INTEGER
IERROR)

Bindings for Topologies
Table 10 lists the C and FORTRAN bindings for topology routines.

Table 10 (Page 1 of 3). Bindings for Topologies

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Cart_create int MPI_Cart_create(MPI_Comm comm_old,int ndims,int *dims,int
*periods,int reorder,MPI_Comm *comm_cart);

MPI_CART_CREATE MPI_CART_CREATE(INTEGER COMM_OLD,INTEGER NDIMS,INTEGER
DIMS(*), INTEGER PERIODS(*),INTEGER REORDER,INTEGER
COMM_CART,INTEGER IERROR)

MPI_Dims_create int MPI_Dims_create(int nnodes,int ndims,int *dims);

MPI_DIMS_CREATE MPI_DIMS_CREATE(INTEGER NNODES,INTEGER NDIMS,INTEGER
DIMS(*), INTEGER IERROR)

 Appendix A. MPI Subroutine Bindings: Quick Reference 339

Table 10 (Page 2 of 3). Bindings for Topologies

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Graph_create int MPI_Graph_create(MPI_Comm comm_old,int nnodes,int *index,int
*edges,int reorder,MPI_Comm *comm_graph);

MPI_GRAPH_CREATE MPI_GRAPH_CREATE(INTEGER COMM_OLD,INTEGER
NNODES,INTEGER INDEX(*), INTEGER EDGES(*),INTEGER
REORDER,INTEGER COMM_GRAPH,INTEGER IERROR)

MPI_Topo_test int MPI_Topo_test(MPI_Comm comm,int *status);

MPI_TOPO_TEST MPI_TOPO_TEST(INTEGER COMM,INTEGER STATUS,INTEGER
IERROR)

MPI_Graphdims_get int MPI_Graphdims_get(MPI_Comm comm,int *nnodes,int *nedges);

MPI_GRAPHDIMS_GET MPI_GRAPHDIMS_GET(INTEGER COMM,INTEGER
NNDODES,INTEGER NEDGES, INTEGER IERROR)

MPI_Graph_get int MPI_Graph_get(MPI_Comm comm,int maxindex,int maxedges,int
*index, int *edges);

MPI_GRAPH_GET MPI_GRAPH_GET(INTEGER COMM,INTEGER MAXINDEX,INTEGER
MAXEDGES,INTEGER INDEX(*),INTEGER EDGES(*),INTEGER
IERROR)

MPI_Cartdim_get int MPI_Cartdim_get(MPI_Comm comm, int *ndims);

MPI_CARTDIM_GET MPI_CARTDIM_GET(INTEGER COMM,INTEGER NDIMS,INTEGER
IERROR)

MPI_Cart_get int MPI_Cart_get(MPI_Comm comm,int maxdims,int *dims,int *periods,int
*coords);

MPI_CART_GET MPI_CART_GET(INTEGER COMM,INTEGER MAXDIMS,INTEGER
DIMS(*),INTEGER PERIODS(*),INTEGER COORDS(*),INTEGER
IERROR)

MPI_Cart_rank int MPI_Cart_rank(MPI_Comm comm,int *coords,int *rank);

MPI_CART_RANK MPI_CART_RANK(INTEGER COMM,INTEGER COORDS(*),INTEGER
RANK,INTEGER IERROR)

MPI_Cart_coords int MPI_Cart_coords(MPI_Comm comm,int rank,int maxdims,int *coords);

MPI_CART_COORDS MPI_CART_COORDS(INTEGER COMM,INTEGER RANK,INTEGER
MAXDIMS,INTEGER COORDS(*),INTEGER IERROR)

MPI_Graph_neighbors_count int MPI_Graph_neighbors_count(MPI_Comm comm,int rank,int
*nneighbors);

MPI_GRAPH_NEIGHBORS_COUNT MPI_GRAPH_NEIGHBORS_COUNT(INTEGER COMM,INTEGER
RANK,INTEGER NEIGHBORS, INTEGER IERROR)

MPI_Graph_neighbors int MPI_Graph_neighbors(MPI_Comm comm,int rank,int maxneighbors,int
*neighbors);

MPI_GRAPH_NEIGHBORS MPI_GRAPH_NEIGHBORS(MPI_COMM COMM,INTEGER
RANK,INTEGER MAXNEIGHBORS,INTEGER NNEIGHBORS(*),INTEGER
IERROR)

MPI_Cart_shift int MPI_Cart_shift(MPI_Comm comm,int direction,int disp,int
*rank_source,int *rank_dest);

MPI_CART_SHIFT MPI_CART_SHIFT(INTEGER COMM,INTEGER DIRECTION,INTEGER
DISP, INTEGER RANK_SOURCE,INTEGER RANK_DEST,INTEGER
IERROR)

340 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Table 10 (Page 3 of 3). Bindings for Topologies

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Cart_sub int MPI_Cart_sub(MPI_Comm comm,int *remain_dims,MPI_Comm
*newcomm);

MPI_CART_SUB MPI_CART_SUB(INTEGER COMM,INTEGER REMAIN_DIMS,INTEGER
NEWCOMM, INTEGER IERROR)

MPI_Cart_map int MPI_Cart_map(MPI_Comm comm,int ndims,int *dims,int *periods,int
*newrank);

MPI_CART_MAP MPI_CART_MAP(INTEGER COMM,INTEGER NDIMS,INTEGER
DIMS(*),INTEGER PERIODS(*),INTEGER NEWRANK,INTEGER IERROR)

MPI_Graph_map int MPI_Graph_map(MPI_Comm comm,int nnodes,int *index,int *edges,int
*newrank);

MPI_GRAPH_MAP MPI_GRAPH_MAP(INTEGER COMM,INTEGER NNODES,INTEGER
INDEX(*),INTEGER EDGES(*),INTEGER NEWRANK,INTEGER IERROR)

Bindings for Environment Management
Table 11 lists the C and FORTRAN bindings for environment management
routines.

Table 11 (Page 1 of 2). Bindings for Environment Management

C/FORTRAN Subroutine C/FORTRAN Binding

| MPI_File_create_errhandler| int MPI_File_create_errhandler (MPI_File_errhandler_fn *function,
| MPI_Errhandler *errhandler);

| MPI_FILE_CREATE_ERRHANDLER| MPI_FILE_CREATE_ERRHANDLER(EXTERNAL FUNCTION,INTEGER
| ERRHANDLER, INTEGER IERROR)

| MPI_File_get_errhandler| int MPI_File_get_errhandler (MPI_File file,MPI_Errhandler *errhandler);

| MPI_FILE_GET_ERRHANDLER| MPI_FILE_GET_ERRHANDLER (INTEGER FILE,INTEGER
| ERRHANDLER, INTEGER IERROR)

| MPI_File_set_errhandler| int MPI_File_set_errhandler (MPI_File fh, MPI_Errhandler errhandler);

| MPI_FILE_SET_ERRHANDLER| MPI_FILE_SET_ERRHANDLER(INTEGER FH,INTEGER ERRHANLDER,
| INTEGER IERROR)

MPI_Get_version int MPI_Get_version(int *version,int *subversion);

MPI_GET_VERSION MPI_GET_VERSION(INTEGER VERSION,INTEGER
SUBVERSION,INTEGER IERROR)

MPI_Get_processor_name int MPI_Get_processor_name(char *name,int *resultlen);

MPI_GET_PROCESSOR_NAME MPI_GET_PROCESSOR_NAME(CHARACTER NAME(*),INTEGER
RESULTLEN,INTEGER IERROR)

MPI_Errhandler_create int MPI_Errhandler_create(MPI_Handler_function *function,
MPI_Errhandler *errhandler);

MPI_ERRHANDLER_CREATE MPI_ERRHANDLER_CREATE(EXTERNAL FUNCTION,INTEGER
ERRHANDLER, INTEGER IERROR)

MPI_Errhandler_set int MPI_Errhandler_set(MPI_Comm comm,MPI_Errhandler errhandler);

MPI_ERRHANDLER_SET MPI_ERRHANDLER_SET(INTEGER COMM,INTEGER
ERRHANDLER,INTEGER IERROR)

 Appendix A. MPI Subroutine Bindings: Quick Reference 341

Table 11 (Page 2 of 2). Bindings for Environment Management

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Errhandler_get int MPI_Errhandler_get(MPI_Comm comm,MPI_Errhandler *errhandler);

MPI_ERRHANDLER_GET MPI_ERRHANDLER_GET(INTEGER COMM,INTEGER
ERRHANDLER,INTEGER IERROR)

MPI_Errhandler_free int MPI_Errhandler_free(MPI_Errhandler *errhandler);

MPI_ERRHANDLER_FREE MPI_ERRHANDLER_FREE(INTEGER ERRHANDLER,INTEGER
IERROR)

MPI_Error_string int MPI_Error_string(int errorcode, char *string, int *resultlen);

MPI_ERROR_STRING MPI_ERROR_STRING(INTEGER ERRORCODE,CHARACTER
STRING(*),INTEGER RESULTLEN,INTEGER IERROR)

MPI_Error_class int MPI_Error_class(int errorcode, int *errorclass);

MPI_ERROR_CLASS MPI_ERROR_CLASS(INTEGER ERRORCODE,INTEGER
ERRORCLASS,INTEGER IERROR)

MPI_Wtime double MPI_Wtime(void);

MPI_WTIME DOUBLE PRECISION MPI_WTIME()

MPI_Wtick double MPI_Wtick(void);

MPI_WTICK DOUBLE PRECISION MPI_WTICK()

MPI_Init int MPI_Init(int *argc, char ***argv);

MPI_INIT MPI_INIT(INTEGER IERROR)

MPI_Finalize int MPI_Finalize(void);

MPI_FINALIZE MPI_FINALIZE(INTEGER IERROR)

MPI_Initialized int MPI_Initialized(int *flag);

MPI_INITIALIZED MPI_INITIALIZED(INTEGER FLAG,INTEGER IERROR)

MPI_Abort int MPI_Abort(MPI_Comm comm, int errorcode);

MPI_ABORT MPI_ABORT(INTEGER COMM,INTEGER ERRORCODE,INTEGER
IERROR)

Bindings for Profiling
Table 12 lists the C and FORTRAN bindings for profiling.

Table 12. Bindings for Profiling

C/FORTRAN Subroutine C/FORTRAN Binding

MPI_Pcontrol int MPI_Pcontrol(const int level,...);

MPI_PCONTROL MPI_PCONTROL(INTEGER LEVEL,...)

342 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

| Bindings for Files
| Table 13 lists the C and FORTRAN bindings for files.

| Table 13 (Page 1 of 2). Bindings for MPI I/O

| C/FORTRAN Subroutine| C/FORTRAN Binding

| MPI_File_close| int MPI_File_close (MPI_File *fh);

| MPI_FILE_CLOSE| MPI_FILE_CLOSE(INTEGER FH,INTEGER IERROR)

| MPI_File_delete| int MPI_File_delete (char *filename,MPI_Info info);

| MPI_FILE_DELETE| MPI_FILE_DELETE(CHARACTER*(*) FILENAME,INTEGER INFO,
| INTEGER IERROR)

| MPI_File_get_amode| int MPI_File_get_amode (MPI_File fh,int *amode);

| MPI_FILE_GET_AMODE| MPI_FILE_GET_AMODE(INTEGER FH,INTEGER AMODE,INTEGER
| IERROR)

| MPI_File_get_atomicity| int MPI_File_get_atomicity (MPI_File fh,int *flag);

| MPI_FILE_GET_ATOMICITY| MPI_FILE_GET_ATOMICITY (INTEGER FH,LOGICAL FLAG,INTEGER
| IERROR)

| MPI_File_get_group| int MPI_File_get_group (MPI_File fh,MPI_Group *group);

| MPI_FILE GET_GROUP| MPI_FILE GET_GROUP (INTEGER FH,INTEGER GROUP,INTEGER
| IERROR)

| MPI_File_get_info| int MPI_File_get_info (MPI_File fh,MPI_Info *info_used);

| MPI_FILE_GET_INFO| MPI_FILE_GET_INFO (INTEGER FH,INTEGER INFO_USED, INTEGER
| IERROR)

| MPI_File_get_size| int MPI_File_get_size (MPI_File fh,MPI_Offset size);

| MPI_FILE_GET_SIZE| MPI_FILE_GET_SIZE (INTEGER
| FH,INTEGER(KIND=MPI_OFFSET_KIND) SIZE, INTEGER IERROR)

| MPI_File_get_view| int MPI_File_get_view (MPI_File fh,MPI_Offset *disp, MPI_Datatype
| *etype,MPI_Datatype *filetype,char *datarep);

| MPI_FILE_GET_VIEW| MPI_FILE_GET_VIEW (INTEGER
| FH,INTEGER(KIND=MPI_OFFSET_KIND) DISP, INTEGER
| ETYPE,INTEGER FILETYPE,INTEGER DATAREP,INTEGER IERROR)

| MPI_File_iread_at| int MPI_File_iread_at (MPI_File fh,MPI_Offset offset,void *buf, int
| count,MPI_Datatype datatype,MPI_Request *request);

| MPI_FILE_IREAD_AT| MPI_FILE_IREAD_AT (INTEGER FH,INTEGER
| (KIND=MPI_OFFSET_KIND) OFFSET, CHOICE BUF,INTEGER
| COUNT,INTEGER DATATYPE,INTEGER REQUEST, INTEGER IERROR)

| MPI_File_iwrite_at| int MPI_File_iwrite_at (MPI_File fh,MPI_Offset offset,void *buf, int
| count,MPI_Datatype datatype,MPI_Request *request);

| MPI_FILE_IWRITE_AT| MPI_FILE_IWRITE_AT(INTEGER
| FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, CHOICE
| BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER REQUEST,
| INTEGER IERROR)

| MPI_File_open| int MPI_File_open (MPI_Comm comm,char *filename,int amode,MPI_info,
| MPI_File *fh);

| MPI_FILE_OPEN| MPI_FILE_OPEN(INTEGER COMM,CHARACTER
| FILENAME(*),INTEGER AMODE, INTEGER INFO,INTEGER
| FH,INTEGER IERROR)

 Appendix A. MPI Subroutine Bindings: Quick Reference 343

| Table 13 (Page 2 of 2). Bindings for MPI I/O

| C/FORTRAN Subroutine| C/FORTRAN Binding

| MPI_File_read_at| int MPI_File_read_at (MPI_File fh,MPI_Offset offset,void *buf, int
| count,MPI_Datatype datatype,MPI_Status *status);

| MPI_FILE_READ_AT| MPI_FILE_READ_AT(INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND)
| OFFSET, CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
| INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

| MPI_File_read_at_all| int MPI_File_read_at_all (MPI_File fh,MPI_Offset offset,void *buf, int
| count,MPI_Datatype datatype,MPI_Status *status);

| MPI_FILE_READ_AT_ALL| MPI_FILE_READ_AT_ALL(INTEGER
| FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, CHOICE
| BUF,INTEGER COUNT,INTEGER DATATYPE, INTEGER
| STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

| MPI_File_set_info| int MPI_File_set_info (MPI_File fh,MPI_Info info);

| MPI_FILE_SET_INFO| MPI_FILE_SET_INFO(INTEGER FH,INTEGER INFO,INTEGER IERROR)

| MPI_File_set_size| int MPI_File_set_size (MPI_File fh,MPI_Offset size);

| MPI_FILE_SET_SIZE| MPI_FILE_SET_SIZE (INTEGER
| FH,INTEGER(KIND=MPI_OFFSET_KIND) SIZE, INTEGER IERROR)

| MPI_File_set_view| int MPI_File_set_view (MPI_File fh,MPI_Offset disp, MPI_Datatype
| etype,MPI_Datatype filetype, char *datarep,MPI_Info info);

| MPI_FILE_SET_VIEW| MPI_FILE_SET_VIEW (INTEGER
| FH,INTEGER(KIND=MPI_OFFSET_KIND) DISP, INTEGER
| ETYPE,INTEGER FILETYPE,CHARACTER DATAREP(*),INTEGER INFO,
| INTEGER IERROR)

| MPI_File_sync| int MPI_File_sync (MPI_File fh);

| MPI_FILE_SYNC| MPI_FILE_SYNC (INTEGER FH,INTEGER IERROR)

| MPI_File_write_at| int MPI_File_write_at (MPI_File fh,MPI_Offset offset,void *buf, int
| count,MPI_Datatype datatype,MPI_Status *status);

| MPI_FILE_WRITE_AT| MPI_FILE_WRITE_AT(INTEGER
| FH,INTEGER(KIND_MPI_OFFSET_KIND) OFFSET, CHOICE
| BUF,INTEGER COUNT,INTEGER DATATYPE, INTEGER
| STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

| MPI_File_write_at_all| int MPI_File_write_at_all (MPI_File fh,MPI_Offset offset,void *buf, int
| count,MPI_Datatype datatype,MPI_Status *status);

| MPI_FILE_WRITE_AT_ALL| MPI_FILE_WRITE_AT_ALL (INTEGER FH, INTEGER
| (KIND=MPI_OFFSET_KIND) OFFSET, CHOICE BUF,INTEGER
| COUNT,INTEGER DATATYPE, INTEGER
| STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

| Bindings for info Objects
| Table 14 lists the C and FORTRAN bindings for info objects.

| Table 14 (Page 1 of 2). Bindings for info Objects

| C/FORTRAN Subroutine| C/FORTRAN Binding

| MPI_Info_create| int MPI_Info_create (MPI_Info *info);

344 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

| Table 14 (Page 2 of 2). Bindings for info Objects

| C/FORTRAN Subroutine| C/FORTRAN Binding

| MPI_INFO_CREATE| MPI_INFO_CREATE (INTEGER INFO,INTEGER IERROR)

| MPI_Info_delete| int MPI_Info_delete (MPI_Info info,char *key);

| MPI_INFO_DELETE| MPI_INFO_DELETE (INTEGER INFO,CHARACTER KEY(*), INTEGER
| IERROR)

| MPI_Info_dup| int MPI_Info_dup (MPI_Info info,MPI_Info *newinfo);

| MPI_INFO_DUP| MPI_INFO_DUP (INTEGER INFO,INTEGER NEWINFO,INTEGER
| IERROR)

| MPI_Info_free| int MPI_Info_free (MPI_Info *info);

| MPI_INFO_FREE| MPI_INFO_FREE (INTEGER INFO,INTEGER IERROR)

| MPI_Info_get| int MPI_Info_get (MPI_Info info,char *key,int valuelen, char *value,int
| *flag);

| MPI_INFO_GET| MPI_INFO_GET (INTEGER INFO,CHARACTER KEY(*),INTEGER
| VALUELEN, CHARACTER VALUE(*),LOGICAL FLAG,INTEGER IERROR)

| MPI_Info_get_nkeys| int MPI_Info_get_nkeys (MPI_Info info,int *nkeys);

| MPI_INFO_GET_NKEYS| MPI_INFO_GET_NKEYS (INTEGER INFO,INTEGER NKEYS,INTEGER
| IERROR)

| MPI_Info_get_nthkey| int MPI_Info_get_nthkey (MPI_Info info, int n, char *key);

| MPI_INFO_GET_NTHKEY| MPI_INFO_GET_NTHKEY (INTEGER INFO,INTEGER N,CHARACTER
| KEY(*), INTEGER IERROR)

| MPI_Info_get_valuelen| int MPI_Info_get_valuelen (MPI_Info info,char *key,int *valuelen, int *flag);

| MPI_INFO_GET_VALUELEN| MPI_INFO_GET_VALUELEN (INTEGER INFO,CHARACTER KEY(*),
| INTEGER VALUELEN,LOGICAL FLAG,INTEGER IERROR)

| MPI_Info_set| int MPI_Info_set(MPI_Info info,char *key,char *value);

| MPI_INFO_SET| MPI_INFO_SET (INTEGER INFO,CHARACTER KEY(*),CHARACTER
| VALUE(*), INTEGER IERROR)

 Appendix A. MPI Subroutine Bindings: Quick Reference 345

346 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Appendix B. Profiling Message Passing

 AIX Profiling
If you use prof , gprof or xprofiler and the appropriate compiler flag (-p or -pg),
you can profile your program.

The message passing library is not enabled for prof or gprof , profiling counts. You
can obtain profiling information by using the name-shifted MPI functions provided.

MPI Nameshift Profiling
To use nameshift profiling routines that are written to the C bindings with an MPI
program written in C, or the FORTRAN bindings with an MPI program written in
FORTRAN, do the following:

1. Create .o files for your profiling routines.

2. Use one of the following commands to list both the MPI program .o files and
the profiling .o files as inputs:

 � mpcc
 � mpxlf
 � mpcc_r
 � mpxlf_r
 � mpCC
 � mpCC_r

See IBM Parallel Environment for AIX: Operation and Use, Volume 1 for more
information on these commands.

3. Run the resulting executable normally.

To use nameshift profiling routines which are written to the C bindings with an MPI
program written in FORTRAN, follow these steps:

� If you are both the creator and user of the profiling library, follow all the steps
(1 through 17).

� If you are the creator of the profiling library, follow steps 1 through 6. You also
need to provide the user with the file created in step 2.

� If you are the user of the profiling library, follow steps 7 through 17. For step
14, use the file generated by the creator of the profiling library in step 2.

Based on the above, follow the appropriate steps:

1. Create a source file containing profiling versions of all the MPI routines you
want to profile. As an example, create a source file called myprof.c containing
the following code:

 Copyright IBM Corp. 1996, 1998 347

#include <stdio.h>
#include "mpi.h"
int MPI_Init(int \argc, char \\\argv) {
 int rc;

printf("hello from profiling layer MPI_Init...\n");
rc = PMPI_Init(argc, argv);
printf("goodbye from profiling layer MPI_Init...\n");

 return(rc);
}

2. Create an export file containing all of the symbols your profiling library will
export. Begin this file with the name your profiling library will have and the
name of the .o that will have the object code of your profiling routines. As an
example, create a file called myprof.exp containing the following statements:

#!libmyprof.a(newmyprof.o)
MPI_Init

3. Create a file called mpicore.imp . This file will import all of the PMPI symbols
that your profiling library needs. Begin this file with the statement
#!libmpi.a(mpicore.o). The following is an example of mpicore.imp:

#!libmpi.a(mpicore.o)
PMPI_Init

4. Compile the source file containing your profiling MPI routines. For example:

cc -c myprof.c -I/usr/lpp/ppe.poe/include

The -I defines the location of mpi.h.

5. Create your profiling MPI library. Use the file created in step 2 as the export file
and the file created in step 3 as the import file. Include any other libraries your
profiling code needs, such as libc. For example:

ld -o newmyprof.o myprof.o -bM:SRE -H512 -T512 -bnoentry
-bI:mpicore.imp -bE:myprof.exp -lc

6. Archive the object module created in step 5 into a library. The library name
should be the same as that listed in the first statement of the export file created
in step 2. For example:

ar rv libmyprof.a newmyprof.o

7. Use the following command to extract mpifort.o from libmpi.a:

ar -xv /usr/lpp/ppe.poe/lib/libmpi.a mpifort.o

8. Use the following command to create a non-shared version of mpifort.o:

ld -o mpifort.tmp mpifort.o -r -bnso -bnoentry

9. Use the following command to extract mpicore.o from libmpi.a:

ar -xv /usr/lpp/ppe.poe/lib/libmpi.a mpicore.o

10. Use the following command to create an export list from the extracted
mpicore.o:

/usr/bin/dump -nvp mpicore.o | /usr/bin/grep "∧\[" | cut -f2-
| cut -c26- | grep -y "^exp" | cut -c35- | sort | uniq > mpicore.exp

11. Delete all of the symbols selected for profiling in step 2 from mpicore.exp. Then
create a new line at the top of the file. We'll call this the new line 1 To the new
line 1, add #!libmpi.a(mpicore.o). Continuing with our example: MPI_Init would

348 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

now be deleted from mpicore.exp. and #!libmpi.a(mpicore.o) would now
comprise line 1 of mpicore.exp.

12. Create a file called vt.exp with the following statements:

#!libvtd.a(dynamic.o)
VT_instaddr_depth

13. Use the following command to create an export list from the extracted mpifort.o:

/usr/bin/dump -nvp mpifort.o | /usr/bin/grep "∧\[" | cut -f2-
| cut -c26- | grep -y "^exp" | cut -c35- | sort | uniq > mpifort.exp

insert #!libpmpi.a (newmpifort.o) as the first line of the new mpifort.exp file

14. Create a new version of mpifort.o from the non-shared version you created in
step 8. It will import the symbols representing your profiling functions from your
profiling library using the file created in step 2. It will import the remaining MPI
symbols from mpicore.o using the file created in step 11. One additional
symbol must be imported using the file created in step 12. The new mpifort.o
will export symbols using the file created in step 13.

ld -o newmpifort.o mpifort.tmp -bI:
mpicore.exp -bI:myprof.exp -bI:vt.exp
-bE:mpifort.exp -bM:SRE -H512 -T512 -bnoentry

15. Use the following command to create a library containing a FORTRAN object
which will reference your profiling library:

ar rv libpmpi.a newmpifort.o

16. Create a program that uses an MPI function you've profiled. An example would
be a file called hwinit.f that contains the following statements:

 c -------------------------------------
 program hwinit
 include 'mpif.h'
 integer forterr
 c
 call MPI_INIT(forterr)
 c
 c Write comments to screen.
 c

write(6,\)'Hello from task '
 c
 call MPI_FINALIZE(forterr)
 c
 stop
 end
 c

17. Compile your program linking in the library created in step 15. For example:

mpxlf -o hwinit hwinit.f -lpmpi -L.

Sample CPU MPI Time Program
The following is a sample MPI program that uses the name-shifted MPI interface to
separate the amount of user and system CPU time used by MPI.

CPU MPI Time Example

 Appendix B. Profiling Message Passing 349

#include "mpi.h"
#include <sys/types.h>
#include <time.h>
#include <sys/times.h>

#define ARRAY_SIZE 1ðððððð
#define VALUE 123

struct tms mpitms;
double mpi_elapsed;

void main()
{
 int in[ARRAY_SIZE],out[ARRAY_SIZE],tasks,me,src,dest;
 int i;
 MPI_Status status[2];

MPI_Request msgid [2];

 for (i═ð;i<ARRAY_SIZE;i++)out[i]═VALUE;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&tasks);
 MPI_Comm_rank(MPI_COMM_WORLD,&me);

mpi_elapsed ═ MPI_Wtime();

dest ═ (me══tasks-1) ? ð : me+1;
 MPI_Isend(out,ARRAY_SIZE,MPI_INT,dest,5,MPI_COMM_WORLD,&msgid[ð]);

src ═ (me══ð) ? tasks-1 : me-1;
 MPI_Irecv(in,ARRAY_SIZE,MPI_INT,src,5,MPI_COMM_WORLD,&msgid[1]);
 MPI_Waitall(2,msgid,status);

for (i═ð; i< ARRAY_SIZE; i++) {
if(in[i] !═ VALUE)

printf("ERROR on node %d, in ═ %d\n",me,in[i]);
 break;
 }

 MPI_Barrier(MPI_COMM_WORLD);

mpi_elapsed ═ MPI_Wtime() - mpi_elapsed;

printf("MPI CPU times: user %f, system %f, total %f sec\n",
 ((float)mpitms.tms_utime)/CLK_TCK,
 ((float)mpitms.tms_stime)/CLK_TCK,
 (float)(mpitms.tms_utime+mpitms.tms_stime)/CLK_TCK);

printf("MPI Elapsed time: %f sec\n", mpi_elapsed);

 MPI_Finalize();
}

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
/\ Replacement functions for profiling \/
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int MPI_Isend(void\ buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request \request)

{

350 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

struct tms beforetms, aftertms;
 int rc;
 times(&beforetms);

rc ═ PMPI_Isend(buf,count,datatype,dest,tag,comm,request);

 times(&aftertms);
mpitms.tms_utime +═ (aftertms.tms_utime - beforetms.tms_utime);
mpitms.tms_stime +═ (aftertms.tms_stime - beforetms.tms_stime);

 return (rc);
 }

int MPI_Waitall(int count, MPI_Request \array_of_requests,
 MPI_Status \array_of_statuses)
{

struct tms beforetms, aftertms;
 int rc;
 times(&beforetms);

rc ═ PMPI_Waitall(count,array_of_requests,array_of_statuses);

 times(&aftertms);
mpitms.tms_utime +═ (aftertms.tms_utime - beforetms.tms_utime);
mpitms.tms_stime +═ (aftertms.tms_stime - beforetms.tms_stime);

 return (rc);
 }

int MPI_Irecv(void\ buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request \request)

{
struct tms beforetms, aftertms;

 int rc;
 times(&beforetms);

rc ═ PMPI_Irecv(buf,count,datatype,source,tag,comm,request);

 times(&aftertms);
mpitms.tms_utime +═ (aftertms.tms_utime - beforetms.tms_utime);
mpitms.tms_stime +═ (aftertms.tms_stime - beforetms.tms_stime);

 return (rc);
 }

int MPI_Barrier(MPI_Comm comm)
{

struct tms beforetms, aftertms;
 int rc;
 times(&beforetms);

rc ═ PMPI_Barrier(comm);

 times(&aftertms);
mpitms.tms_utime +═ (aftertms.tms_utime - beforetms.tms_utime);
mpitms.tms_stime +═ (aftertms.tms_stime - beforetms.tms_stime);

 return (rc);
 }

 Appendix B. Profiling Message Passing 351

352 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Appendix C. MPI Size Limits

MPI Tunables and Limits
The following is a list of MPI size limits. This list includes system limits on the size
of various MPI elements and the relevant environment variable or tunable
parameter.

� Number of tasks: MP_PROCS

| � Maximum number of tasks: 1024 (2048 for IP library)

� Maximum message size for Point-to-Point communication: No specific limit

� Default receive buffer size: (MP_BUFFER_MEM)

When using Internet Protocol (IP): 2,800,000 bytes
When using User Space (US): 64MB

| � Maximum receive buffer size: 64MB

� Default eager limit: See Table 15

� Maximum eager limit: 64K bytes

� To ensure that at least 32 messages can be outstanding between any two
| tasks, MP_EAGER_LIMIT is adjusted according to Table 15 (and: when
| MP_USE_FLOW_CONTROL=YES and MP_EAGER_LIMIT and

MP_BUFFER_MEM have not been set by the user):

� The maximum number of outstanding unmatched send requests (smaller than
MP_EAGER_LIMIT) per node for any single destination node is given by the
formula:

(ð.75\MP_BUFFER_MEM)/(MP_PROCS\(max(MP_EAGER_LIMIT,64)))

� Maximum aggregate unsent data, per task: No specific limit

� Maximum number of communicators: approximately 2000

� Maximum number of data types: Depends on MP_BUFFER_MEM

� Maximum data type depth: Default is 5 (MP_MAX_TYPEDEPTH)

� Maximum number of distinct tags: All non-negative integers less than 2**32-1

Table 15. MPI Eager Limits

Number of Tasks MP_EAGER_LIMIT

1 to 16 4096

17 to 32 2048

33 to 64 1024

| 65 to 128 512

| 129 to 256| 256

| 257 to the maximum number of tasks
| supported by the implementation
| 128

 Copyright IBM Corp. 1996, 1998 353

354 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 Appendix D. Reduction Operations

Predefined Reduction Operations
The following is a list of the predefined operations for use with MPI_REDUCE,
MPI_ALLREDUCE, MPI_REDUCE_SCATTER and MPI_SCAN. To invoke a
predefined operation, place any of the following in op .

Reduction Operation Description

MPI_MAX maximum

MPI_MIN minimum

MPI_SUM sum

MPI_PROD product

MPI_LAND logical AND

MPI_BAND bitwise AND

MPI_LOR logical OR

MPI_BOR bitwise OR

MPI_LXOR logical XOR

MPI_BXOR bitwise XOR

MPI_MAXLOC max value and location

MPI_MINLOC min value and location

Reduction Operations - Valid Datatype Arguments
Operations

The reduction operations have the following basic datatype arguments.

Type Valid Datatype Arguments

C integer MPI_INT
MPI_LONG

| MPI_LONG_LONG_INT
MPI_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG

| MPI_UNSIGNED_LONG_LONG
MPI_UNSIGNED_SHORT

FORTRAN integer MPI_INTEGER
| MPI_INTEGER8

Floating point MPI_DOUBLE
MPI_DOUBLE_PRECISION
MPI_FLOAT
MPI_LONG_DOUBLE
MPI_REAL

Logical MPI_LOGICAL

Complex MPI_COMPLEX

 Copyright IBM Corp. 1996, 1998 355

Type Valid Datatype Arguments

Byte MPI_BYTE

C Pair MPI_DOUBLE_INT
MPI_FLOAT_INT
MPI_LONG_INT
MPI_LONG_DOUBLE_INT
MPI_SHORT_INT
MPI_2INT

FORTRAN Pair MPI_2DOUBLE_PRECISION
MPI_2INTEGER
MPI_2REAL

op Option - Valid Datatypes
The following are the valid datatypes for each op option.

Type Valid Datatypes For op Option

C integer MPI_BAND
MPI_BOR
MPI_BXOR
MPI_LAND
MPI_LOR
MPI_LXOR
MPI_MAX
MPI_MIN
MPI_SUM
MPI_PROD

FORTRAN integer MPI_BAND
MPI_BOR
MPI_BXOR
MPI_MAX
MPI_MIN
MPI_PROD
MPI_SUM

Floating point MPI_MAX
MPI_MIN
MPI_PROD
MPI_SUM

Logical MPI_LAND
MPI_LOR
MPI_LXOR

Complex MPI_PROD
MPI_SUM

Byte MPI_BAND
MPI_BOR
MPI_BXOR

C Pair MPI_MAXLOC
MPI_MINLOC

FORTRAN Pair MPI_MAXLOC
MPI_MINLOC

356 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 Examples
Examples of user-defined reduction functions for integer vector addition.

 C Example
void int_sum (int \in, int \inout,

int \len, MPI_Datatype \type);

{
 int i

for (i=ð; i<\len; i++) {
inout[i] + = in[i];

 }
}

 FORTRAN Example
 SUBROUTINE INT_SUM(IN,INOUT,LEN,TYPE)

 INTEGER IN(\),INOUT(\),LEN,TYPE,I

DO I = 1,LEN
INOUT(I) = IN(I) + INOUT(I)

 ENDDO
 END

User-supplied reduction operations have four arguments:

� The first argument, in , is an array or scalar variable. The length, in elements, is
specified by the third argument, len .

This argument is an input array to be reduced.

� The second argument, inout , is an array or scalar variable. The length, in
elements, is specified by the third argument, len .

This argument is an input array to be reduced and the result of the reduction
will be placed here.

� The third argument, len is the number of elements in in and inout to be
reduced.

� The fourth argument type is the datatype of the elements to be reduced.

Users may code their own reduction operations, with the restriction that the
operations must be associative. Also, C programmers should note that the values
of len and type will be passed as pointers. No communication calls are allowed in
user-defined reduction operations. See “Limitations In Setting The Thread
Stacksize” on page 426 in Appendix G, “Programming Considerations for User
Applications in POE” on page 411 for thread stacksize considerations when using
the threaded MPI library.

 Appendix D. Reduction Operations 357

358 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Appendix E. Parallel Utility Functions

This chapter contains the man pages for the Parallel Utility functions. These
user-callable, thread-safe functions exploit features of the IBM Parallel Environment
for AIX. Included are functions for:

� updating the Program Marker Array lights
� controlling distribution of STDIN and STDOUT
� synchronizing parallel tasks without using the message passing library
� improving control of interrupt driven programs.

There is a C version and a Fortran version for most of the functions.

The Parallel Utility functions are:

| MP_CHKPT, mp_chkpt
| starts user-initiated checkpointing.

MP_DISABLEINTR, mpc_disableintr
| disables packet arrival interrupts on the task on which it is

executed.

MP_ENABLEINTR, mpc_enableintr
| enables interrupts on the task on which it is executed.

MP_FLUSH, mpc_flush
flushes output buffers to STDOUT. This is a synchronizing call
across all parallel tasks.

MP_MARKER, mpc_marker
requests that the numeric and text data passed in the call be
forwarded to the Program Marker Array for display.

MP_NLIGHTS, mpc_nlights
returns the number of Program Marker Array lights defined for this
session.

MP_QUERYINTR, mpc_queryintr
| returns the state of interrupts on a task.

MP_QUERYINTRDELAY, mpc_queryintrdelay
returns, in microseconds, the current interrupt delay time.

MP_SETINTRDELAY, mpc_setintrdelay
sets the delay parameter to the specified value in val . This call can
be made multiple times in a program with different values being
passed to it each time.

MP_STDOUT_MODE, mpc_stdout_mode
requests that STDOUT be set to single, ordered, or unordered
mode. In single mode, only one task output is displayed. In
unordered mode, output is displayed in the order received at the
home node. In ordered mode, each parallel task writes output data
to its own buffer; when a flush request is made all the task buffers
are flushed, in order of the task id, to home node's STDOUT.

MP_STDOUTMODE_QUERY, mpc_stdoutmode_query
returns the mode to which STDOUT is currently set.

mpc_isatty determines if a device is a terminal on the home node.

 Copyright IBM Corp. 1996, 1998 359

For more information on the Program Marker Array, or on controlling STDIN and
STDOUT using POE, refer to IBM Parallel Environment for AIX: Operation and Use,
Volume 1.

360 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_CHKPT

| MP_CHKPT, mp_chkpt

| Purpose
| Starts user-initiated checkpointing.

| Version
| libmpi.a

| C Synopsis
| #include <pm_util.h>
| int mp_chkpt(int flags);

| Fortran Synopsis
| i = MP_CHKPT(%val(j))

| Parameters
| In C, flags can be set to MP_CUSER, which indicates complete user-initiated
| checkpointing.

| In Fortran, j should be set to 0 (zero), which is the value of MP_CUSER.

| Description
| MP_CHPKT initiates complete user-initiated checkpointing. When this function is
| reached, the program's execution is suspended. At that point, the state of the
| application is captured, along with all data, and saved to a file pointed to by the
| MP_CHECKFILE and MP_CHECKDIR environment variables.

| Only POE/MPI applications submitted under LoadLeveler in batch mode are able to
| call this function. LoadLeveler is required for programs to call this function.
| Checkpointing of interactive POE applications is not allowed.

| Notes
| In complete user-initiated checkpointing, all instances of the parallel program must
| call MP_CHKPT. After all instances of the application have issued the MP_CHKPT
| call and have been suspended, a local checkpoint is taken on each node, with or
| without saving the message state, depending on the stage of the implementation.

| Upon returning from the MP_CHKPT call, the application continues to run. It may,
| however, be a restarted application that is now running, rather than the original.

| There are certain limitations associated with checkpointing an application. See
| “Checkpoint/Restart Limitations” on page 424 for details.

| For general information on checkpointing and restarting programs, refer to IBM
| Parallel Environment for AIX: Operation and Use, Volume 1.

| For more information on the use of LoadLeveler and checkpointing, refer to Using
| and Administering LoadLeveler.

 Appendix E. Parallel Utility Functions 361

 MP_CHKPT

| Return Values
| 0 indicates successful completion

| -1 indicates that an error occurred. A message describing the error will be
| issued.

| 1 indicates that a restart operation occurred.

362 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_DISABLEINTR

 MP_DISABLEINTR, mpc_disableintr

 Purpose
Disables message arrival interrupts on a node.

 Version
libmpi.a

 C Synopsis
#include <pm_util.h>
int mpc_disableintr();

 Fortran Synopsis
MP_DISABLEINTR(INTEGER RC)

 Parameters
In Fortran, rc contains the values as described below in Return Values.

 Description
This Parallel Utility function disables message arrival interrupts on the individual
node on which it is run. Use this function to dynamically control masking interrupts
on a node.

 Notes
� This function overrides the setting of the environment variable

MP_CSS_INTERRUPT.

� Inappropriate use of the interrupt control functions may reduce performance.

� This function can be used for IP and US protocols.

� This function is thread safe.

| � Using this function will suppress the MPI-directed switching of interrupt mode,
| leaving the user in control for the rest of the run. See MPI_FILE_OPEN.

 Return Values
0 indicates successful completion

-1 indicates that an error occurred. A message describing the error will be
issued.

 Examples
C Example

 Appendix E. Parallel Utility Functions 363

 MP_DISABLEINTR

/\
 \ Running this program, after compiling with mpcc,
 \ without setting the MP_CSS_INTERRUPT environment variable,
 \ and without using the "-css_interrupt" command-line option,
 \ produces the following output:
 \
 \ Interrupts are DISABLED
 \ About to enable interrupts..
 \ Interrupts are ENABLED
 \ About to disable interrupts...
 \ Interrupts are DISABLED
 \/

#include "pm_util.h"

#define QUERY if (intr = mpc_queryintr()) {\
printf("Interrupts are ENABLED\n");\
} else {\
printf("Interrupts are DISABLED\n");\

 }

main()
{
 int intr;

 QUERY

 printf("About to enable interrupts...\n");
 mpc_enableintr();

 QUERY

 printf("About to disable interrupts...\n");
 mpc_disableintr();

 QUERY
}

Fortran Example

Running the following program, after compiling with mpxlf, without setting the
MP_CSS_INTERRUPT environment variable, and without using the "-css_interrupt"
command-line option, produces the following output:

Interrupts are DISABLED
About to enable interrupts..
Interrupts are ENABLED
About to disable interrupts...
Interrupts are DISABLED

 PROGRAM INTR_EXAMPLE

 INTEGER RC

364 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_DISABLEINTR

 CALL MP_QUERYINTR(RC)
IF (RC .EQ. ð) THEN

WRITE(6,\)'Interrupts are DISABLED'
 ELSE

WRITE(6,\)'Interrupts are ENABLED'
 ENDIF

WRITE(6,\)'About to enable interrupts...'
 CALL MP_ENABLEINTR(RC)

 CALL MP_QUERYINTR(RC)
IF (RC .EQ. ð) THEN

WRITE(6,\)'Interrupts are DISABLED'
 ELSE

WRITE(6,\)'Interrupts are ENABLED'
 ENDIF

WRITE(6,\)'About to disable interrupts...'
 CALL MP_DISABLEINTR(RC)

 CALL MP_QUERYINTR(RC)
IF (RC .EQ. ð) THEN

WRITE(6,\)'Interrupts are DISABLED'
 ELSE

WRITE(6,\)'Interrupts are ENABLED'
 ENDIF

 STOP
 END

 Related Information
Functions:

 � MP_ENABLEINTR, mpc_enableintr

 � MP_QUERYINTR, mpc_queryintr

 � MP_QUERYINTRDELAY, mpc_queryintrdelay

 � MP_SETINTRDELAY, mpc_setintrdelay

 Appendix E. Parallel Utility Functions 365

 MP_ENABLEINTR

 MP_ENABLEINTR, mpc_enableintr

 Purpose
Enables message arrival interrupts on a node.

 Version
libmpi.a

 C Synopsis
#include <pm_util.h>
int mpc_enableintr();

 Fortran Synopsis
MP_ENABLEINTR(INTEGER RC)

 Parameters
In Fortran, rc contains the values as described below in Return Values.

 Description
This Parallel Utility function enables message arrival interrupts on the individual
node on which it is run. Use this function to dynamically control masking interrupts
on a node.

 Notes
� This function overrides the setting of the environment variable

MP_CSS_INTERRUPT.

� Inappropriate use of the interrupt control functions may reduce performance.

� This function can be used for IP and US protocols.

� This function is thread safe.

| � Using this function will suppress the MPI-directed switching of interrupt mode,
| leaving the user in control for the rest of the run. See MPI_FILE_OPEN.

 Return Values
0 indicates successful completion

-1 indicates that an error occurred. A message describing the error will be
issued.

 Examples
C Example

366 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_ENABLEINTR

/\
 \ Running this program, after compiling with mpcc,
 \ without setting the MP_CSS_INTERRUPT environment variable,
 \ and without using the "-css_interrupt" command-line option,
 \ produces the following output:
 \
 \ Interrupts are DISABLED
 \ About to enable interrupts..
 \ Interrupts are ENABLED
 \ About to disable interrupts...
 \ Interrupts are DISABLED
 \/

#include "pm_util.h"

#define QUERY if (intr = mpc_queryintr()) {\
printf("Interrupts are ENABLED\n");\
} else {\
printf("Interrupts are DISABLED\n");\

 }

main()
{
 int intr;

 QUERY

 printf("About to enable interrupts...\n");
 mpc_enableintr();

 QUERY

 printf("About to disable interrupts...\n");
 mpc_disableintr();

 QUERY
}

Fortran Example

Running this program, after compiling with mpxlf, without setting the
MP_CSS_INTERRUPT environment variable, and without using the "-css_interrupt"
command-line option, produces the following output:

Interrupts are DISABLED
About to enable interrupts..
Interrupts are ENABLED
About to disable interrupts...
Interrupts are DISABLED

 PROGRAM INTR_EXAMPLE

 INTEGER RC

 Appendix E. Parallel Utility Functions 367

 MP_ENABLEINTR

 CALL MP_QUERYINTR(RC)
IF (RC .EQ. ð) THEN

WRITE(6,\)'Interrupts are DISABLED'
 ELSE

WRITE(6,\)'Interrupts are ENABLED'
 ENDIF

WRITE(6,\)'About to enable interrupts...'
 CALL MP_ENABLEINTR(RC)

 CALL MP_QUERYINTR(RC)
IF (RC .EQ. ð) THEN

WRITE(6,\)'Interrupts are DISABLED'
 ELSE

WRITE(6,\)'Interrupts are ENABLED'
 ENDIF

WRITE(6,\)'About to disable interrupts...'
 CALL MP_DISABLEINTR(RC)

 CALL MP_QUERYINTR(RC)
IF (RC .EQ. ð) THEN

WRITE(6,\)'Interrupts are DISABLED'
 ELSE

WRITE(6,\)'Interrupts are ENABLED'
 ENDIF

 STOP
 END

 Related Information
Functions:

 � MP_DISABLEINTR, mpc_disableintr

 � MP_QUERYINTR, mpc_queryintr

 � MP_QUERYINTRDELAY, mpc_queryintrdelay

 � MP_SETINTRDELAY, mpc_setintrdelay

368 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_FLUSH

 MP_FLUSH, mpc_flush

 Purpose
Flushes task output buffers.

 Version
libmpi.a

 C Synopsis
#include <pm_util.h>
int mpc_flush(int option);

 Fortran Synopsis
MP_FLUSH(INTEGER OPTION)

 Parameters
option is an AIX file descriptor. The only valid value is:

1 to flush STDOUT buffers.

 Description
This Parallel Utility function flushes output buffers from all of the parallel tasks to
STDOUT at the home node. This is a synchronizing call across all parallel tasks.

If the current STDOUT mode is ordered, then when all tasks have issued this call
or when any of the output buffers are full:

1. all STDOUT buffers are flushed and put out to the user screen (or redirected)
in task order.

2. an acknowledgement is sent to all tasks and control is returned to the user.

If current STDOUT mode is unordered and all tasks have issued this call, all output
buffers are flushed and put out to the user screen (or redirected).

If the current STDOUT mode is single and all tasks have issued this call, the output
buffer for the current single task is flushed and put out to the user screen (or
redirected).

 Notes
� This is a synchronizing call regardless of the current STDOUT mode.

� All STDOUT buffers are flushed at the end of the parallel job.

� If mpc_flush is not used, standard output streams not terminated with a
new-line character are buffered, even if a subsequent read to standard input is
made. This may cause prompt message to appear only after input has been
read.

� This function is thread safe.

 Appendix E. Parallel Utility Functions 369

 MP_FLUSH

 Return Values
In C and C++ calls, the following applies:

0 indicates successful completion

-1 indicates that an error occurred. A message describing the error will be
issued.

 Examples
C Example

The following program uses poe with the -labelio yes option and three tasks:

 #include <pm_util.h>

main()
{
 mpc_stdout_mode(STDIO_ORDERED);
 printf("These lines will appear in task order\n");
 /\
\ Call mpc_flush here to make sure that one task
\ doesn't change the mode before all tasks have
\ sent the previous printf string to the home node.

 \/
 mpc_flush(1);
 mpc_stdout_mode(STDIO_UNORDERED);
 printf("These lines will appear in the order received by the home node\n");
 /\
\ Since synchronization is not used here, one task could actually
\ execute the next statement before one of the other tasks has
\ executed the previous statement, causing one of the unordered
\ lines not to print.

 \/
 mpc_stdout_mode(1);
 printf("Only 1 copy of this line will appear from task 1\n");
}

Running the above C program produces the following output (task order of lines 4-6
may differ):

ð : These lines will appear in task order.

1 : These lines will appear in task order.

2 : These lines will appear in task order.

1 : These lines will appear in the order received by the home node.

2 : These lines will appear in the order received by the home node.

370 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_FLUSH

ð : These lines will appear in the order received by the home node.

1 : Only 1 copy of this line will appear from task 1.

Fortran Example

 CALL MP_STDOUT_MODE(-2)
WRITE(6, \) 'These lines will appear in task order'

 CALL MP_FLUSH(1)
 CALL MP_STDOUT_MODE(-3)

WRITE(6, \) 'These lines will appear in the order received by the
 xhome node'
 CALL MP_STDOUT_MODE(1)

WRITE(6, \) 'Only 1 copy of this line will appear from task 1'
 END

 Related Information
Functions:

 � MP_STDOUT_MODE, mpc_stdout_mode

 � MP_STDOUTMODE_QUERY, mpc_stdoutmode_query

 Appendix E. Parallel Utility Functions 371

 MP_MARKER

 MP_MARKER, mpc_marker

 Purpose
Passes numeric and text data to the Program Marker Array.

 Version
libmpi.a

 C Synopsis
#include <mp_marker.h>
void mpc_marker(int light, int color, char \string);

 Fortran Synopsis
MP_MARKER(INTEGER LIGHT, INTEGER COLOR,
 CHARACTER STRING)

 Parameters
light is the light number to be colored. The lights in each task row are

numbered, left to right, from 0 to one less than the number of
lights. The row on which the light is colored is that of the calling
task.

If the value of light is out of range, the parameter is ignored. No
light is colored by the subroutine. Setting the light to a negative
number lets you update the string only.

color is the color you want to make the light. Supported values range
from 0 to 102. The range 0 to 99 is, roughly, a spectrum starting
with black and going through brown, green, blue, purple, red,
orange, yellow, and ending with white. 100, 101, and 102 are three
shades of gray growing increasingly dark. These are
approximations, as the actual colors used are requested from the
default X-Windows color map. If the X-Server is not capable of
providing the colors in the RGB intensities requested, it colors the
light with a close approximation.

If the value of color is out of range, the parameter is ignored. The
subroutine does not give the light a new color.

string is the output string to be passed to the Program Marker Array. In
C programs, the string must be null-terminated. This is not
necessary in Fortran programs. The string can be any length,
although only the first 80 characters can display. A null string can
be passed.

 Description
This Parallel Utility function requests that the numeric and text data passed in the
call be forwarded to the Program Marker Array for display. This call waits for a
specific acknowledgement from the Partition Manager if the number of lights
(specified by the MP_PMLIGHTS environment variable) is positive. The program
returns only after the message has been acknowledged by the POE home node.

372 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_MARKER

Hence, this call will slow down the user's application and synchronize it
approximately with the Program Marker Array.

If MP_PMLIGHTS is set to 0, no message is sent.

 Notes
� Creates a Visualization Tool (VT) trace record (marker event).

� Sends a message only if PMLIGHTS is greater than 0. Each call waits for an
acknowledgement from the home node.

� The Program Marker Array X-Windows display routine is distributed as a
sample program.

� This function is thread safe.

 Examples
C Example

The C statement:

 #include <mp_marker.h>
 mpc_marker(2, ð, "Starting task 2");

gives the third light of the calling task the color black and after the lights on that
task's row, prints the string "Starting task 2".

Fortran Example

The Fortran statement:

CALL MP_MARKER(2, ð, 'Starting task 2')

gives the third light of the calling task the color black and after the lights on that
task's row, prints the string 'Starting task 2'.

 Related Information
Commands: pmarray

Functions: MP_NLIGHTS, mpc_nlights

 Appendix E. Parallel Utility Functions 373

 MP_NLIGHTS

 MP_NLIGHTS, mpc_nlights

 Purpose
Gets the number of Program Marker Array lights defined for this session.

 Version
libmpi.a

 C Synopsis
#include <mp_marker.h>
int mpc_nlights();

 Fortran Synopsis
MP_NLIGHTS(INTEGER NLIGHT)

 Parameters
In Fortran, the number of Program Marker Array lights defined for this session is
returned in the variable NLIGHT.

 Description
This Parallel Utility function returns the number of Program Marker Array lights
defined for this session.

 Notes
� You can set the number of Program Marker Array lights by using the

environment variable MP_PMLIGHTS or the command line option -pmlights .

� This function is thread safe.

 Return Values
In C, the current number of the Program Marker Array lights is the return value.

 Examples
C Example

The following program uses poe with the -pmlights 3 option and 1 task:

 #include <mp_marker.h>

main()
{
 printf("Number of Program Marker Array lights for this session is %d\n",
 mpc_nlights());
}

Running the above C program produces the following output:

Number of Program Marker Array lights for this session is 3.

374 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_NLIGHTS

Fortran Example

The following program uses poe with the -pmlights 3 option and 1 task:

 INTEGER LIGHTS

 CALL MP_NLIGHTS(LIGHTS)
WRITE(6, \) 'Number of Program Marker Array lights for this
xsession is ', LIGHTS

 END

Running the above produces the following output:

 Number of Program Marker Array lights for this session is 3.

 Related Information
Commands: pmarray

Functions: MP_MARKER, mpc_marker

 Appendix E. Parallel Utility Functions 375

 MP_QUERYINTR

 MP_QUERYINTR, mpc_queryintr

 Purpose
Returns the state of interrupts on a node.

 Version
libmpi.a

 C Synopsis
#include <pm_util.h>
int mpc_queryintr();

 Fortran Synopsis
MP_QUERYINTR(INTEGER RC)

 Parameters
In Fortran, rc contains the values as described below in RETURN VALUES.

 Description
This Parallel Utility function returns the state of interrupts on a node.

 Notes
� This function is thread safe.

 Return Values
0 indicates that interrupts are disabled on the node from which this

function is called.

1 indicates that interrupts are enabled on the node from which this
function is called.

 Examples
C Example

/\
 \ Running this program, after compiling with mpcc,
 \ without setting the MP_CSS_INTERRUPT environment variable,
 \ and without using the "-css_interrupt" command-line option,
 \ produces the following output:
 \
 \ Interrupts are DISABLED
 \ About to enable interrupts..
 \ Interrupts are ENABLED
 \ About to disable interrupts...
 \ Interrupts are DISABLED
 \/

#include "pm_util.h"

#define QUERY if (intr = mpc_queryintr()) {\

376 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_QUERYINTR

printf("Interrupts are ENABLED\n");\
} else {\
printf("Interrupts are DISABLED\n");\

 }

main()
{
 int intr;

 QUERY

 printf("About to enable interrupts...\n");
 mpc_enableintr();

 QUERY

 printf("About to disable interrupts...\n");
 mpc_disableintr();

 QUERY
}

Fortran Example

Running this program, after compiling with mpxlf, without setting the
MP_CSS_INTERRUPT environment variable, and without using the "-css_interrupt"
command-line option, produces the following output:

Interrupts are DISABLED
About to enable interrupts..
Interrupts are ENABLED
About to disable interrupts...
Interrupts are DISABLED

 PROGRAM INTR_EXAMPLE

 INTEGER RC

 CALL MP_QUERYINTR(RC)
IF (RC .EQ. ð) THEN

WRITE(6,\)'Interrupts are DISABLED'
 ELSE

WRITE(6,\)'Interrupts are ENABLED'
 ENDIF

WRITE(6,\)'About to enable interrupts...'
 CALL MP_ENABLEINTR(RC)

 CALL MP_QUERYINTR(RC)
IF (RC .EQ. ð) THEN

WRITE(6,\)'Interrupts are DISABLED'
 ELSE

WRITE(6,\)'Interrupts are ENABLED'
 ENDIF

 Appendix E. Parallel Utility Functions 377

 MP_QUERYINTR

WRITE(6,\)'About to disable interrupts...'
 CALL MP_DISABLEINTR(RC)

 CALL MP_QUERYINTR(RC)
IF (RC .EQ. ð) THEN

WRITE(6,\)'Interrupts are DISABLED'
 ELSE

WRITE(6,\)'Interrupts are ENABLED'
 ENDIF

 STOP
 END

 Related Information
Functions:

 � MP_DISABLEINTR, mpc_disableintr

 � MP_ENABLEINTR, mpc_enableintr

 � MP_QUERYINTRDELAY, mpc_queryintrdelay

 � MP_SETINTRDELAY, mpc_setintrdelay

378 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_QUERYINTRDELAY

 MP_QUERYINTRDELAY, mpc_queryintrdelay

 Purpose
Returns the current interrupt delay time.

 Version
libmpi.a

 C Synopsis
#include <pm_util.h>
int mpc_queryintrdelay();

 Fortran Synopsis
MP_QUERYINTRDELAY(INTEGER RC)

 Parameters
In Fortran, rc contains the values as described below in RETURN VALUES.

 Description
This Parallel Utility function returns the current interrupt delay time in microseconds.

 Notes
� The default interrupt delay time is 35 microseconds for TB2 and 1 microsecond

for TB3.

� This function is thread safe.

 Return Values
The current interrupt delay time in microseconds.

 Examples
C Example

/\
 \ Running this program, after compiling with mpcc,
 \ without setting the MP_INTRDELAY environment variable,
 \ and without using the "-intrdelay" command-line option,
 \ produces the following output:
 \
 \ Current interrupt delay time is 35
 \ About to set interrupt delay time to 1ðð...
 \ Current interrupt delay time is 1ðð
 \/

#include "pm_util.h"

main()
{
 printf("Current interrupt delay time is %d\n", mpc_queryintrdelay());

 Appendix E. Parallel Utility Functions 379

 MP_QUERYINTRDELAY

 printf("About to set interrupt delay time to 1ðð...\n");
 mpc_setintrdelay(1ðð);

 printf("Current interrupt delay time is %d\n", mpc_queryintrdelay());
}

Fortran Example

Running this program, after compiling with mpxlf, without setting the
MP_INTRDELAY environment variable, and without using the "-intrdelay"
command-line option, produces the following output:

Current interrupt delay time is 35
About to set interrupt delay time to 1ðð...
Current interrupt delay time is 1ðð

 PROGRAM INTRDELAY_EXAMPLE

INTEGER DELAY, RC

 CALL MP_QUERYINTRDEALY(DELAY)
WRITE(6,\)'Current interrupt delay time is', delay

WRITE(6,\)'About to set interrupt delay time to 1ðð...'
DELAY = 1ðð
CALL MP_SETINTRDELAY(DELAY, RC)

 CALL MP_QUERYINTRDELAY(DELAY)
WRITE(6,\)'Current interrupt delay time is', delay

 STOP
 END

 Related Information
Functions:

 � MP_DISABLEINTR, mpc_disableintr

 � MP_ENABLEINTR, mpc_enableintr

 � MP_QUERYINTR, mpc_queryintr

 � MP_SETINTRDELAY, mpc_setintrdelay

380 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_SETINTRDELAY

 MP_SETINTRDELAY, mpc_setintrdelay

 Purpose
Sets the delay parameter.

 Version
libmpi.a

 C Synopsis
#include <pm_util.h>
int mpc_setintrdelay(integer val);

 Fortran Synopsis
MP_SETINTRDELAY(INTEGER VAL, INTEGER RC)

 Parameters
val is the delay parameter in microseconds

rc in Fortran, rc contains the values as described below in RETURN
VALUES.

 Description
This Parallel Utility function sets the delay parameter to the value specified in val .
This call can be made multiple times in a program with different values being
passed to it each time.

You can use the environment variable MP_INTERDELAY to set an integer value
before running your program. In this way, you can tune your delay parameter
without having to recompile existing applications.

The cost of servicing an interrupt is quite high. For an application with few nodes
exchanging small messages, it will help latency if the interrupt delay is kept small.
For an application with a large number of nodes or one which exchanges large
messages, keeping the delay parameter large will help the bandwidth. This allows
multiple read transmissions to occur in a single read cycle. You should experiment
with different values functions to achieve the desired performance depending on the
communication pattern.

 Notes
� The default interrupt delay time is 35 microseconds for TB2 and 1 microsecond

for TB3.

� Overrides the setting of the environment variable MP_INTERDELAY.

� This function is thread safe.

 Appendix E. Parallel Utility Functions 381

 MP_SETINTRDELAY

 Return Values
0 indicates successful completion

-1 indicates that an error occurred. A message describing the error will be
issued.

 Examples
C Example

/\
 \ Running this program, after compiling with mpcc,
 \ without setting the MP_INTRDELAY environment variable,
 \ and without using the "-intrdelay" command-line option,
 \ produces the following output:
 \
 \ Current interrupt delay time is 35
 \ About to set interrupt delay time to 1ðð...
 \ Current interrupt delay time is 1ðð
 \/

#include "pm_util.h"

main()
{
 printf("Current interrupt delay time is %d\n", mpc_queryintrdelay());

 printf("About to set interrupt delay time to 1ðð...\n");
 mpc_setintrdelay(1ðð);

 printf("Current interrupt delay time is %d\n", mpc_queryintrdelay());
}

Fortran Example

Running this program, after compiling with mpxlf, without setting the
MP_INTRDELAY environment variable, and without using the "-intrdelay"
command-line option, produces the following output:

Current interrupt delay time is 35
About to set interrupt delay time to 1ðð...
Current interrupt delay time is 1ðð

 PROGRAM INTRDELAY_EXAMPLE

INTEGER DELAY, RC

 CALL MP_QUERYINTRDELAY(DELAY)
WRITE(6,\)'Current interrupt delay time is', delay

WRITE(6,\)'About to set interrupt delay time to 1ðð...'
DELAY = 1ðð
CALL MP_SETINTRDELAY(DELAY, RC)

382 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_SETINTRDELAY

 CALL MP_QUERYINTRDELAY(DELAY)
WRITE(6,\)'Current interrupt delay time is', delay

 STOP
 END

 Related Information
Functions:

 � MP_DISABLEINTR, mpc_disableintr

 � MP_ENABLEINTR, mpc_enableintr

 � MP_QUERYINTR, mpc_queryintr

 � MP_QUERYINTRDELAY, mpc_queryintrdelay

 Appendix E. Parallel Utility Functions 383

 MP_STDOUT_MODE

 MP_STDOUT_MODE, mpc_stdout_mode

 Purpose
Sets the mode for STDOUT.

 Version
libmpi.a

 C Synopsis
#include <pm_util.h>
int mpc_stdout_mode(int mode);

 Fortran Synopsis
MP_STDOUT_MODE(INTEGER MODE)

 Parameters
mode is the mode to which STDOUT is to be set. The valid values are:

taskid specifies single mode for STDOUT, where taskid is the
task identifier of the new single task. This value must be
between 0 and n-1, where n is the total of tasks in the
current partition. The taskid requested does not have to
be the issuing task.

-2 specifies ordered mode for STDOUT. The macro
STDIO_ORDERED is supplied for use in C programs.

-3 specifies unordered mode for STDOUT. The macro
STDIO_UNORDERED is supplied for use in C programs.

 Description
This Parallel Utility function requests that STDOUT be set to single, ordered, or
unordered mode. In single mode, only one task output is displayed. In unordered
mode, output is displayed in the order received at the home node. In ordered
mode, each parallel task writes output data to its own buffer. When a flush request
is made all the task buffers are flushed, in order of task ID, to STDOUT home
node.

 Notes
� All current STDOUT buffers are flushed before the new STDOUT mode is

established.

� The initial mode for STDOUT is set by using the environment variable
MP_STDOUTMODE, or by using the poe command line option -stdoutmode ,
with the latter overriding the former. The default STDOUT mode is unordered.

� This function is implemented with a half second sleep interval to ensure that
the mode change request is processed before subsequent writes to STDOUT.

� This function is thread safe.

384 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_STDOUT_MODE

 Return Values
In C and C++ calls, the following applies:

0 indicates successful completion.

-1 indicates that an error occurred. A message describing the error will be
issued.

 Examples
C Example

The following program uses poe with the -labelio yes option and three tasks:

 #include <pm_util.h>

main()
{
 mpc_stdout_mode(STDIO_ORDERED);
 printf("These lines will appear in task order\n");
 /\
\ Call mpc_flush here to make sure that one task
\ doesn't change the mode before all tasks have
\ sent the previous printf string to the home node.

 \/
 mpc_flush(1);
 mpc_stdout_mode(STDIO_UNORDERED);
 printf("These lines will appear in the order received by the home node\n");
 /\
\ Since synchronization is not used here, one task could actually
\ execute the next statement before one of the other tasks has
\ executed the previous statement, causing one of the unordered
\ lines not to print.

 \/
 mpc_stdout_mode(1);
 printf("Only 1 copy of this line will appear from task 1\n");
}

Running the above C program produces the following output (task order of lines 4-6
may differ):

ð : These lines will appear in task order.

1 : These lines will appear in task order.

2 : These lines will appear in task order.

1 : These lines will appear in the order received by the home node.

2 : These lines will appear in the order received by the home node.

 Appendix E. Parallel Utility Functions 385

 MP_STDOUT_MODE

ð : These lines will appear in the order received by the home node.

1 : Only 1 copy of this line will appear from task 1.

Fortran Example

 CALL MP_STDOUT_MODE(-2)
WRITE(6, \) 'These lines will appear in task order'

 CALL MP_FLUSH(1)
 CALL MP_STDOUT_MODE(-3)

WRITE(6, \) 'These lines will appear in the order received by the
 xhome node'
 CALL MP_STDOUT_MODE(1)

WRITE(6, \) 'Only 1 copy of this line will appear from task 1'
 END

Running the above program produces the following output (task order of lines 4-6
may differ):

ð : These lines will appear in task order.

1 : These lines will appear in task order.

2 : These lines will appear in task order.

1 : These lines will appear in the order received by the home node.

2 : These lines will appear in the order received by the home node.

ð : These lines will appear in the order received by the home node.

1 : Only 1 copy of this line will appear from task 1.

 Related Information
Functions:

 � MP_FLUSH, mpc_flush

 � MP_STDOUTMODE_QUERY, mpc_stdoutmode_query

 � MP_SYNCH, mpc_synch

 � mpcc

 � mpCC

 � mpxlf

386 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_STDOUTMODE_QUERY

 MP_STDOUTMODE_QUERY, mpc_stdoutmode_query

 Purpose
Queries the current STDOUT mode setting.

 Version
libmpi.a

 C Synopsis
#include <pm_util.h>
int mpc_stdoutmode_query(int \mode);

 Fortran Synopsis
MP_STDOUTMODE_QUERY(INTEGER MODE)

 Parameters
mode is the address of an integer in which the current STDOUT mode

setting will be returned. Possible return values are:

taskid indicates that the current STDOUT mode is single, i.e.
output for only task taskid is displayed.

-2 indicates that the current STDOUT mode is ordered. The
macro STDIO_ORDERED is supplied for use in C
programs.

-3 indicates that the current STDOUT mode is unordered. The
macro STDIO_UNORDERED is supplied for use in C
programs.

 Description
This Parallel Utility function returns the mode to which STDOUT is currently set.

 Notes
� Between the time one task issues a mode query request and receives a

response, it is possible that another task can change the STDOUT mode
setting to another value unless proper synchronization is used.

� This function is thread safe.

 Return Values
In C and C++ calls, the following applies:

0 indicates successful completion

-1 indicates that an error occurred. A message describing the error will be
issued.

 Appendix E. Parallel Utility Functions 387

 MP_STDOUTMODE_QUERY

 Examples
C Example

The following program uses poe with one task:

 #include <pm_util.h>

 main()
 {
 int mode;

 mpc_stdoutmode_query(&mode);
printf("Initial (default) STDOUT mode is %d\n", mode);

 mpc_stdout_mode(STDIO_ORDERED);
 mpc_stdoutmode_query(&mode);
printf("New STDOUT mode is %d\n", mode);

 }

Running the above program produces the following output:

Initial (default) STDOUT mode is -3

New STDOUT mode is -2

Fortran Example

The following program uses poe with one task:

 INTEGER MODE

 CALL MP_STDOUTMODE_QUERY(mode)
WRITE(6, \) 'Initial (default) STDOUT mode is', mode

 CALL MP_STDOUT_MODE(-2)
 CALL MP_STDOUTMODE_QUERY(mode)

WRITE(6, \) 'New STDOUT mode is', mode
 END

Running the above program produces the following output:

Initial (default) STDOUT mode is -3

New STDOUT mode is -2

 Related Information
Functions:

 � MP_FLUSH, mpc_flush

 � MP_STDOUT_MODE, mpc_stdout_mode

 � MP_SYNCH, mpc_synch

388 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 MP_STDOUTMODE_QUERY

 � mpcc

 � mpCC

 � mpxlf

 Appendix E. Parallel Utility Functions 389

 mpc_isatty

 mpc_isatty

 Purpose
Determines whether a device is a terminal on the home node.

 Version
libmpi.a

 C Synopsis
#include <pm_util.h>
int mpc_isatty(int FileDescriptor);

 Fortran Synopsis
A Fortran version of this function is not available.

 Parameters
FileDescriptor is the file descriptor number of the device. Valid values are:

0 or STDIN specifies STDIN as the device to be checked.

1 or STDOUT specifies STDOUT as the device to be checked.

2 or STDERR specifies STDERR as the device to be checked.

 Description
This Parallel Utility function determines whether the file descriptor specified by the
FileDescriptor parameter is associated with a terminal device on the home node. In
a Parallel Operating Environment partition, these three file descriptors are
implemented as pipes to the Partition Manager Daemon. Therefore, the AIX isatty()
function will always return FALSE for each of them. This function is provided for
use by remote tasks that may want to know whether one of these devices is
actually a terminal on the home node, for example, to determine whether or not to
output a prompt.

 Notes
� This function is thread safe.

 Return Values
In C and C++ calls, the following applies:

0 indicates that the device is not associated with a terminal on the home
node.

1 indicates that the device is associated with a terminal on the home
node.

-1 indicates an invalid FileDescriptor parameter.

390 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 mpc_isatty

 Examples
C Example

/\
 \ Running this program, after compiling with mpcc,
 \ without redirecting STDIN, produces the following output:
 \
 \ isatty() reports STDIN as a non-terminal device
 \ mpc_isatty() reports STDIN as a terminal device
 \/

#include "pm_util.h"

main()
{
 if (isatty(STDIN)) {
printf("isatty() reports STDIN as a terminal device\n");

 } else {
printf("isatty() reports STDIN as a non-terminal device\n");
if (mpc_isatty(STDIN)) {
printf("mpc_isatty() reports STDIN as a terminal device\n");
} else {
printf("mpc_isatty() reports STDIN as a non-terminal device\n");

 }
 }
}

 Appendix E. Parallel Utility Functions 391

 mpc_isatty

392 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 Appendix F. Tracing Routines

This chapter contains the syntax man pages for the tracing routines used in the
Visualization Tool Tracing Subsystem Tracing Subsystem. These user-callable
routines allow the programmer to customize the trace collection from within the
application being traced. Included are functions for:

� modifying trace collection parameters
� starting and stopping the trace from within the program, dynamically and

selectively
� writing trace records back to the home node.

There is a C version and a Fortran version for each of the routines.

The tracing routines are:

VT_TRC_FLUSH and VT_trc_flush_c flushes the memory buffer to the trace
collection directory.

VT_TRC_SET_PARAMS and VT_trc_set_params_c sets certain tracing
parameters at which the dig should sample kernel
statistics.

VT_TRC_START and VT_trc_start_c requests a trace from within the program,
dynamically and selectively.

VT_TRC_STOP and VT_trc_stop_c requests that the collecting of trace events be
discontinued.

For more information, see IBM Parallel Environment for AIX: Operation and Use,
Volume 2.

 Copyright IBM Corp. 1996, 1998 393

 VT_TRC_FLUSH

 VT_TRC_FLUSH, VT_trc_flush_c

 Purpose
Flushes the memory buffer to the trace collection directory.

 Version
� C Library (libvtd.a)

� Fortran Library (libvtd.a)

The above are automatically included by the POE functions.

 C Synopsis
#include <VT_trc.h>
int VT_trc_flush_c();

 Fortran Synopsis
VT_TRC_FLUSH(INTEGER RETURN_CODE)

 Parameters
In Fortran, the following applies:

return_code integer which receives the return value.

0 indicates successful completion

-1 indicates an error occurred.

 Description
This routine may be called from the application to flush the memory buffer to the
trace collection directory. This is specified by the MP_TRACE directory environment
variable or -tracedir parameter and defaults to the directory from which the
application was stored.

 Return Values
In C and C++ calls, the following applies:

0 indicates successful completion

-1 indicates that an error occurred. A message describing the error will be
issued.

 Errors
� 0033-3090 write failed to the dig daemon,, error is ...

The application could not contact the kernel statistics sampling daemon.

For more information about error conditions, refer to IBM Parallel Environment for
AIX: Messages .

394 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 VT_TRC_FLUSH

 Examples
C Example

 #include <stdlib.h>
 #include <stdio.h>
 #include <mpi.h>
 #include <VT_trc.h>

 #define COUNT 1ð24

 int main(int argc, char \\argv)
 {
 int i;
 int numtask;
 int taskid;

int msg_in[COUNT], msg_out[COUNT];
int src, dest, len, send_msgid, recv_msgid, nBytes;

/\ Find out number of tasks/nodes. \/
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtask);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

 /\\

Set tracing parameters as follows:
Memory buffer ═ 5ððK
Temporary trace file ═ 1M
Sample every second
Do not use wrap around buffer

 \\/

 if(ð!═VT_trc_set_params_c(5ððððð,1ðððððð,1ððð,ð))
 {

printf("Could not reset trace parameters!\n");
 }

/\ Disable tracing while the message buffer is being initialized \/
 if(ð!═VT_trc_stop_c())
 {

printf("Could not stop tracing!\n");
 }

/\ Flush the memory buffer to disk \/
 if(ð!═VT_trc_flush_c())
 {

printf("Could not flush trace buffer!\n");
 }
 for(i═ð;i<COUNT;i++)
 msg_out[i]═taskid;

/\ Re-enable tracing. Level 9 asks for everything \/
/\ but only events enabled by the command line or \/
/\ environment variable will be re-enabled) \/

 if(ð!═VT_trc_start_c(9))
 {

printf("Could not restart tracing!\n");
 }

 Appendix F. Tracing Routines 395

 VT_TRC_FLUSH

dest ═ (taskid<(numtask-1))?(taskid+1):ð;
MPI_Send(msg_out, COUNT, MPI_INT, dest, ð, MPI_COMM_WORLD);

src ═ (taskid>ð)?(taskid-1):(numtask-1);
MPI_Recv(msg_in, COUNT, MPI_INT, src, ð, MPI_COMM_WORLD);

 MPI_Finalize();
 }

Fortran Example

 PROGRAM TRCDEMO
 C
 INCLUDE "mpif.h"
 IMPLICIT NONE
 INTEGER COUNT, I
 INTEGER BUFFSZ, FILESZ
 INTEGER SMPL, WRAP

PARAMETER (COUNT ═ 1ð24)
PARAMETER (BUFFSZ ═ 5ððððð, FILESZ ═ 1ðððððð)
PARAMETER (SMPL ═ 1ððð, WRAP ═ ð)

 INTEGER MSG_IN(COUNT), MSG_OUT(COUNT)
 INTEGER NUMTASK, TASKID
 INTEGER SRC, DEST
 INTEGER RC
 C
 C FIND OUT NUMBER OF TASKS

CALL MPI_INIT(RC)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, NUMTASK, RC)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, TASKID, RC)

 C
 C
 C SET TRACING PARAMETERS AS FOLLOWS:
 C MEMORY BUFFER ═ 5ððK
 C TEMPORARY TRACE FILE ═ 1M
 C SAMPLE EVERY SECOND
 C DO NOT USE WRAP AROUND BUFFER
 C
 C

CALL VT_TRC_SET_PARAMS(BUFFSZ, FILESZ, SMPL, WRAP, RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not reset trace parameters!'

 ENDIF

 C DISABLE TRACING WHILE THE MESSAGE BUFFER IS BEING INITIALIZED
CALL VT_TRC_STOP(RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not stop tracing!'

 ENDIF

 C FLUSH THE MEMORY BUFFER TO DISK
CALL VT_TRC_FLUSH(RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not flush trace buffer!'

396 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 VT_TRC_FLUSH

 ENDIF

DO I ═ 1,COUNT
MSG_OUT(I) ═ TASKID

 ENDDO

 C RE-ENABLE TRACING. LEVEL 9 ASKS FOR EVERYTHING
 C BUT ONLY EVENTS ENABLED BY THE COMMAND LINE OR
 C ENVIRONMENT VARIABLE WILL BE RE-ENABLED)

CALL VT_TRC_START(9, RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not restart tracing!'

 ENDIF

IF(TASKID .GE. NUMTASK-1) THEN
DEST ═ ð

 ELSE
DEST ═ TASKID + 1

 ENDIF

CALL MPI_SEND(MSG_OUT, COUNT, MPI_INTEGER, DEST, ð,
+ MPI_COMM_WORLD, RC)

IF(TASKID .LE. ð) THEN
SRC ═ NUMTASK - 1

 ELSE
SRC ═ TASKID - 1

 ENDIF

CALL MPI_RECV(MSG_IN, COUNT, MPI_INTEGER, SRC, ð,
 + MPI_COMM_WORLD, RC)

CALL MPI_FINALIZE(RC)

 STOP
 END
 C

 Related Information
Functions:

 � VT_TRC_SET_PARAMS, VT_trc_set_params_c

 � VT_TRC_START, VT_trc_start_c

 � VT_TRC_STOP, VT_trc_stop_c

For more information about VT tracing, see IBM Parallel Environment for AIX:
Operation and Use, Volume 2.

 Appendix F. Tracing Routines 397

 VT_TRC_SET_PARAMS

 VT_TRC_SET_PARAMS, VT_trc_set_params_c

 Purpose
Lets applications set tracing parameters.

 Version
� C Library (libvtd.a) functions.

� Fortran Library (libvtd.a)

The above are automatically included by the POE.

 C Synopsis
#include <VT_trc.h>
int VT_trc_set_params_c(size_t buff_size, size_t file_size,

int sampling_freq, int wrap_around_flag);

 Fortran Synopsis
VT_TRC_SET_PARAMS(INTEGER BUFF_SIZE, INTEGER FILE_SIZE,

INTEGER SAMPLING_FREQ, INTEGER WRAP_AROUND_FLAG,
 INTEGER RETURN_CODE)

 Parameters
buff_size the size of the memory buffer

file_size the size of the node trace files

sampling_freq the interval with which to sample AIX units (microseconds)

wrap_around_flag if non-zero, a wrap around memory buffer will be used.

return_code integer which receives the return value.

0 indicates successful completion

-1 indicates an error occurred.

 Description
This routine allows applications to set certain tracing parameters, such as:

� The size of the memory buffer and trace files

� The kernel statistics sampling interval

 Notes
� Parameter values replace command line values.

 Return Values
In C and C++ calls, the following applies:

0 indicates successful completion

-1 indicates that an error occurred. A message describing the error will be
issued.

398 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 VT_TRC_SET_PARAMS

 Errors
� 0033-3101 Setting Temp File size to threshold size. Set Size =, Minimum size =

"

You tried to set the size of the temporary file less than the minimum threshold
size. The program automatically set the size to the minimum and continued
trace generation.

Change the parameters in VT_TRC_SET_PARAMS call above the threshold
value.

� 0033-3103 Setting Buffer size to Threshold size. Set size = , Minimum size =

You tried to set the size of the trace buffer less than the minimum threshold
size. The program automatically set the size to the threshold size and
continued trace generation.

Change the parameters in VT_TRC_SET_PARAMS call above the threshold
value.

� 0033-3104 Setting system statistics sampling frequency to the threshold value.
Set Size = , Minimum size =

You tried to set the sampling frequency to be less than the minimum threshold
value. The program automatically set the size to the threshold value and
continued trace generation.

Change the parameters in VT_TRC_SET_PARAMS call above the threshold
value.

� 0033-3011 VT_trc_set-params(), reallocation of ... bytes failed

The application could not obtain the memory required to change parameters.

� 0033-3090 write failed to the dig daemon,, error is ...

The application could not contact the kernel statistics sampling daemon.

For more information about error conditions, refer to IBM Parallel Environment for
AIX: Messages .

 Examples
C Example

 #include <stdlib.h>
 #include <stdio.h>
 #include <mpi.h>
 #include <VT_trc.h>

 #define COUNT 1ð24

 int main(int argc, char \\argv)
 {
 int i;
 int numtask;
 int taskid;

int msg_in[COUNT], msg_out[COUNT];
int src, dest, len, send_msgid, recv_msgid, nBytes;

/\ Find out number of tasks/nodes. \/
MPI_Init(&argc, &argv);

 Appendix F. Tracing Routines 399

 VT_TRC_SET_PARAMS

MPI_Comm_size(MPI_COMM_WORLD, &numtask);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

 /\\

Set tracing parameters as follows:
Memory buffer ═ 5ððK
Temporary trace file ═ 1M
Sample every second
Do not use wrap around buffer

 \\/

 if(ð!═VT_trc_set_params_c(5ððððð,1ðððððð,1ððð,ð))
 {

printf("Could not reset trace parameters!\n");
 }

/\ Disable tracing while the message buffer is being initialized \/
 if(ð!═VT_trc_stop_c())
 {

printf("Could not stop tracing!\n");
 }

/\ Flush the memory buffer to disk \/
 if(ð!═VT_trc_flush_c())
 {

printf("Could not flush trace buffer!\n");
 }
 for(i═ð;i<COUNT;i++)
 msg_out[i]═taskid;

/\ Re-enable tracing. Level 9 asks for everything \/
/\ but only events enabled by the command line or \/
/\ environment variable will be re-enabled) \/

 if(ð!═VT_trc_start_c(9))
 {

printf("Could not restart tracing!\n");
 }

dest ═ (taskid<(numtask-1))?(taskid+1):ð;
MPI_Send(msg_out, COUNT, MPI_INT, dest, ð, MPI_COMM_WORLD);

src ═ (taskid>ð)?(taskid-1):(numtask-1);
MPI_Recv(msg_in, COUNT, MPI_INT, src, ð, MPI_COMM_WORLD);

 MPI_Finalize();
 }

Fortran Example

 PROGRAM TRCDEMO
 C
 INCLUDE "mpif.h"
 IMPLICIT NONE
 INTEGER COUNT, I
 INTEGER BUFFSZ, FILESZ
 INTEGER SMPL, WRAP

PARAMETER (COUNT ═ 1ð24)
PARAMETER (BUFFSZ ═ 5ððððð, FILESZ ═ 1ðððððð)

400 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 VT_TRC_SET_PARAMS

PARAMETER (SMPL ═ 1ððð, WRAP ═ ð)
 INTEGER MSG_IN(COUNT), MSG_OUT(COUNT)
 INTEGER NUMTASK, TASKID
 INTEGER SRC, DEST
 INTEGER RC
 C
 C FIND OUT NUMBER OF TASKS

CALL MPI_INIT(RC)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, NUMTASK, RC)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, TASKID, RC)

 C
 C
 C SET TRACING PARAMETERS AS FOLLOWS:
 C MEMORY BUFFER ═ 5ððK
 C TEMPORARY TRACE FILE ═ 1M
 C SAMPLE EVERY SECOND
 C DO NOT USE WRAP AROUND BUFFER
 C
 C

CALL VT_TRC_SET_PARAMS(BUFFSZ, FILESZ, SMPL, WRAP, RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not reset trace parameters!'

 ENDIF

 C DISABLE TRACING WHILE THE MESSAGE BUFFER IS BEING INITIALIZED
CALL VT_TRC_STOP(RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not stop tracing!'

 ENDIF

 C FLUSH THE MEMORY BUFFER TO DISK
CALL VT_TRC_FLUSH(RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not flush trace buffer!'

 ENDIF

DO I ═ 1,COUNT
MSG_OUT(I) ═ TASKID

 ENDDO

 C RE-ENABLE TRACING. LEVEL 9 ASKS FOR EVERYTHING
 C BUT ONLY EVENTS ENABLED BY THE COMMAND LINE OR
 C ENVIRONMENT VARIABLE WILL BE RE-ENABLED)

CALL VT_TRC_START(9, RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not restart tracing!'

 ENDIF

IF(TASKID .GE. NUMTASK-1) THEN
DEST ═ ð

 ELSE
DEST ═ TASKID + 1

 ENDIF

CALL MPI_SEND(MSG_OUT, COUNT, MPI_INTEGER, DEST, ð,

 Appendix F. Tracing Routines 401

 VT_TRC_SET_PARAMS

+ MPI_COMM_WORLD, RC)

IF(TASKID .LE. ð) THEN
SRC ═ NUMTASK - 1

 ELSE
SRC ═ TASKID - 1

 ENDIF

CALL MPI_RECV(MSG_IN, COUNT, MPI_INTEGER, SRC, ð,
 + MPI_COMM_WORLD, RC)

CALL MPI_FINALIZE(RC)

 STOP
 END
 C

 Related Information
Functions:

 � VT_TRC_FLUSH, VT_trc_flush_c

 � VT_TRC_START, VT_trc_start_c

 � VT_TRC_STOP, VT_trc_stop_c

For more information about VT tracing, see IBM Parallel Environment for AIX:
Operation and Use, Volume 2.

402 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 VT_TRC_START

 VT_TRC_START, VT_trc_start_c

 Purpose
Lets an application start a trace from within the program.

 Version
� C Library (libvtd.a)

� Fortran Library (libvtd.a)

The above is automatically included by the POE functions.

 C Synopsis
#include <VT_trc.h>
int VT_trc_start_c(int flag);

 Fortran Synopsis
VT_TRC_START(INTEGER FLAG, INTEGER RETURN_CODE)

 Parameters
flag the trace control flags that define what information is traced.

return_code integer which receives the return value.

0 indicates successful completion

-1 indicates an error occurred.

 Description
This routine can be called by the application program. This lets the program start
the trace from within the program, dynamically and selectively. The flag has the
same meaning as the trace flag passed by PM upon startup. If the flag indicates
VT_AIX_TRACE, this routine also sends a message to the monitoring daemon task.

 Notes
� Tracing is initially on when the application starts.

� If a trace event, such as kernel statistics or communication events, was not
selected at the start of the application it cannot be enabled by this routine.

 Return Values
In C and C++ calls, the following applies:

0 indicates successful completion

-1 indicates that an error occurred. A message describing the error will be
issued.

 Appendix F. Tracing Routines 403

 VT_TRC_START

 Errors
� 0033-3090 write failed to the dig daemon, error is ...

The application could not contact the kernel statistics sampling daemon.

For more information about error conditions, see IBM Parallel Environment for AIX:
Messages.

 Examples
C Example

 #include <stdlib.h>
 #include <stdio.h>
 #include <mpi.h>
 #include <VT_trc.h>

 #define COUNT 1ð24

 int main(int argc, char \\argv)
 {
 int i;
 int numtask;
 int taskid;

int msg_in[COUNT], msg_out[COUNT];
int src, dest, len, send_msgid, recv_msgid, nBytes;

/\ Find out number of tasks/nodes. \/
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtask);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

 /\\

Set tracing parameters as follows:
Memory buffer ═ 5ððK
Temporary trace file ═ 1M
Sample every second
Do not use wrap around buffer

 \\/

 if(ð!═VT_trc_set_params_c(5ððððð,1ðððððð,1ððð,ð))
 {

printf("Could not reset trace parameters!\n");
 }

/\ Disable tracing while the message buffer is being initialized \/
 if(ð!═VT_trc_stop_c())
 {

printf("Could not stop tracing!\n");
 }

/\ Flush the memory buffer to disk \/
 if(ð!═VT_trc_flush_c())
 {

printf("Could not flush trace buffer!\n");
 }
 for(i=ð;i<COUNT;i++)
 msg_out[i]═taskid;

404 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 VT_TRC_START

/\ Re-enable tracing. Level 9 asks for everything \/
/\ but only events enabled by the command line or \/
/\ environment variable will be re-enabled) \/

 if(ð!═VT_trc_start_c(9))
 {

printf("Could not restart tracing!\n");
 }

dest ═ (taskid<(numtask-1))?(taskid+1):ð;
MPI_Send(msg_out, COUNT, MPI_INT, dest, ð, MPI_COMM_WORLD);

src ═ (taskid>ð)?(taskid-1):(numtask-1);
MPI_Recv(msg_in, COUNT, MPI_INT, src, ð, MPI_COMM_WORLD);

 MPI_Finalize();
 }

Fortran Example

 PROGRAM TRCDEMO
 C
 INCLUDE "mpif.h"
 IMPLICIT NONE
 INTEGER COUNT, I
 INTEGER BUFFSZ, FILESZ
 INTEGER SMPL, WRAP

PARAMETER (COUNT ═ 1ð24)
PARAMETER (BUFFSZ ═ 5ððððð, FILESZ ═ 1ðððððð)
PARAMETER (SMPL ═ 1ððð, WRAP ═ ð)

 INTEGER MSG_IN(COUNT), MSG_OUT(COUNT)
 INTEGER NUMTASK, TASKID
 INTEGER SRC, DEST
 INTEGER RC
 C
 C FIND OUT NUMBER OF TASKS

CALL MPI_INIT(RC)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, NUMTASK, RC)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, TASKID, RC)

 C
 C
 C SET TRACING PARAMETERS AS FOLLOWS:
 C MEMORY BUFFER ═ 5ððK
 C TEMPORARY TRACE FILE ═ 1M
 C SAMPLE EVERY SECOND
 C DO NOT USE WRAP AROUND BUFFER
 C
 C

CALL VT_TRC_SET_PARAMS(BUFFSZ, FILESZ, SMPL, WRAP, RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not reset trace parameters!'

 ENDIF

 C DISABLE TRACING WHILE THE MESSAGE BUFFER IS BEING INITIALIZED
CALL VT_TRC_STOP(RC)

 Appendix F. Tracing Routines 405

 VT_TRC_START

IF(RC .NE. ð) THEN
WRITE(6,\)'Could not stop tracing!'

 ENDIF

 C FLUSH THE MEMORY BUFFER TO DISK
CALL VT_TRC_FLUSH(RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not flush trace buffer!'

 ENDIF

DO I ═ 1,COUNT
MSG_OUT(I) ═ TASKID

 ENDDO

 C RE-ENABLE TRACING. LEVEL 9 ASKS FOR EVERYTHING
 C BUT ONLY EVENTS ENABLED BY THE COMMAND LINE OR
 C ENVIRONMENT VARIABLE WILL BE RE-ENABLED)

CALL VT_TRC_START(9, RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not restart tracing!'

 ENDIF

IF(TASKID .GE. NUMTASK-1) THEN
DEST ═ ð

 ELSE
DEST ═ TASKID + 1

 ENDIF

CALL MPI_SEND(MSG_OUT, COUNT, MPI_INTEGER, DEST, ð,
+ MPI_COMM_WORLD, RC)

IF(TASKID .LE. ð) THEN
SRC ═ NUMTASK - 1

 ELSE
SRC ═ TASKID - 1

 ENDIF

CALL MPI_RECV(MSG_IN, COUNT, MPI_INTEGER, SRC, ð,
 + MPI_COMM_WORLD, RC)

CALL MPI_FINALIZE(RC)

 STOP
 END
 C

 Related Information
Functions:

 � VT_TRC_FLUSH, VT_trc_flush_c

 � VT_TRC_SET_PARAMS, VT_trc_setparams_c

 � VT_TRC_STOP, VT_trc_stop_c

For more information about VT tracing, see IBM Parallel Environment for AIX:
Operation and Use, Volume 2.

406 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 VT_TRC_STOP

 VT_TRC_STOP, VT_trc_stop_c

 Purpose
Stops collecting trace events.

 Version
� C Library (libvtd.a)

� Fortran Library (libvtd.a)

The above is automatically included by the POE functions.

 C Synopsis
#include <VT_trc.h>
int VT_trc_stop_c();

 Fortran Synopsis
VT_TRC_STOP(INTEGER RETURN_CODE)

 Parameters
return_code integer which receives the return value.

0 indicates successful completion

-1 indicates an error occurred.

 Description
This routine can be called by the application program to stop tracing.

 Return Values
In C and C++ calls, the following applies:

0 indicates successful completion

-1 indicates that an error occurred. A message describing the error will be
issued.

 Errors
� 0033-3090 write failed to the dig daemon, error is ...

The application could not contact the kernel statistics sampling daemon.

For more information about error conditions, see IBM Parallel Environment for AIX:
Messages .

 Examples
C Example

 Appendix F. Tracing Routines 407

 VT_TRC_STOP

 #include <stdlib.h>
 #include <stdio.h>
 #include <mpi.h>
 #include <VT_trc.h>

 #define COUNT 1ð24

 int main(int argc, char \\argv)
 {
 int i;
 int numtask;
 int taskid;

int msg_in[COUNT], msg_out[COUNT];
int src, dest, len, send_msgid, recv_msgid, nBytes;

/\ Find out number of tasks/nodes. \/
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtask);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

 /\\

Set tracing parameters as follows:
Memory buffer ═ 5ððK
Temporary trace file ═ 1M
Sample every second
Do not use wrap around buffer

 \\/

 if(ð!═VT_trc_set_params_c(5ððððð,1ðððððð,1ððð,ð))
 {

printf("Could not reset trace parameters!\n");
 }

/\ Disable tracing while the message buffer is being initialized \/
 if(ð!═VT_trc_stop_c())
 {

printf("Could not stop tracing!\n");
 }

/\ Flush the memory buffer to disk \/
 if(ð!═VT_trc_flush_c())
 {

printf("Could not flush trace buffer!\n");
 }
 for(i═ð;i<COUNT;i++)
 msg_out[i]═taskid;

/\ Re-enable tracing. Level 9 asks for everything \/
/\ but only events enabled by the command line or \/
/\ environment variable will be re-enabled) \/

 if(ð!═VT_trc_start_c(9))
 {

printf("Could not restart tracing!\n");
 }

dest = (taskid<(numtask-1))?(taskid+1):ð;
MPI_Send(msg_out, COUNT, MPI_INT, dest, ð, MPI_COMM_WORLD);

408 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 VT_TRC_STOP

src = (taskid>ð)?(taskid-1):(numtask-1);
MPI_Recv(msg_in, COUNT, MPI_INT, src, ð, MPI_COMM_WORLD);

 MPI_Finalize();
 }

Fortran Example

 PROGRAM TRCDEMO
 C
 INCLUDE "mpif.h"
 IMPLICIT NONE
 INTEGER COUNT, I
 INTEGER BUFFSZ, FILESZ
 INTEGER SMPL, WRAP

PARAMETER (COUNT = 1ð24)
PARAMETER (BUFFSZ = 5ððððð, FILESZ = 1ðððððð)
PARAMETER (SMPL = 1ððð, WRAP = ð)

 INTEGER MSG_IN(COUNT), MSG_OUT(COUNT)
 INTEGER NUMTASK, TASKID
 INTEGER SRC, DEST
 INTEGER RC
 C
 C FIND OUT NUMBER OF TASKS

CALL MPI_INIT(RC)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, NUMTASK, RC)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, TASKID, RC)

 C
 C
 C SET TRACING PARAMETERS AS FOLLOWS:
 C MEMORY BUFFER = 5ððK
 C TEMPORARY TRACE FILE = 1M
 C SAMPLE EVERY SECOND
 C DO NOT USE WRAP AROUND BUFFER
 C
 C

CALL VT_TRC_SET_PARAMS(BUFFSZ, FILESZ, SMPL, WRAP, RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not reset trace parameters!'

 ENDIF

 C DISABLE TRACING WHILE THE MESSAGE BUFFER IS BEING INITIALIZED
CALL VT_TRC_STOP(RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not stop tracing!'

 ENDIF

 C FLUSH THE MEMORY BUFFER TO DISK
CALL VT_TRC_FLUSH(RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not flush trace buffer!'

 ENDIF

DO I = 1,COUNT
MSG_OUT(I) = TASKID

 Appendix F. Tracing Routines 409

 VT_TRC_STOP

 ENDDO

 C RE-ENABLE TRACING. LEVEL 9 ASKS FOR EVERYTHING
 C BUT ONLY EVENTS ENABLED BY THE COMMAND LINE OR
 C ENVIRONMENT VARIABLE WILL BE RE-ENABLED)

CALL VT_TRC_START(9, RC)
IF(RC .NE. ð) THEN
WRITE(6,\)'Could not restart tracing!'

 ENDIF

IF(TASKID .GE. NUMTASK-1) THEN
DEST ═ ð

 ELSE
DEST = TASKID + 1

 ENDIF

CALL MPI_SEND(MSG_OUT, COUNT, MPI_INTEGER, DEST, ð,
+ MPI_COMM_WORLD, RC)

IF(TASKID .LE. ð) THEN
SRC = NUMTASK - 1

 ELSE
SRC = TASKID - 1

 ENDIF

CALL MPI_RECV(MSG_IN, COUNT, MPI_INTEGER, SRC, ð,
 + MPI_COMM_WORLD, RC)

CALL MPI_FINALIZE(RC)

 STOP
 END
 C

 Related Information
Functions:

 � VT_TRC_FLUSH, VT_trc_flush_c

 � VT_TRC_SETPARAMS, VT_trc_setparams_c

 � VT_TRC_START, VT_trc_start_c

For more information about VT tracing, see IBM Parallel Environment for AIX:
Operation and Use, Volume 2.

410 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Appendix G. Programming Considerations for User
Applications in POE

MPI Signal-Handling and MPI Threaded Library Considerations 412
Environment Overview . 412
Exit Status . 413
POE Job Step Function . 413
POE Additions To The User Executable . 414

Signal Handlers . 414
Replacement exit/atexit . 415

Let POE Handle Signals When Possible . 415
Don't Hard Code File Descriptor Numbers 416
Termination Of A Parallel Job . 416
Your Program Can't Run As Root . 416
AIX Function Limitations . 416
Shell Execution . 416
Do Not Rewind stdin, stdout Or stderr . 417
Ensuring String Arguments Are Passed To Your Program Correctly 417
Network Tuning Considerations . 417
Standard I/O Requires Special Attention . 418

STDIN/STDOUT Piping Example . 418
Reserved Environment Variables . 419
AIX Message Catalog Considerations . 419
Language Bindings . 419

| Available Virtual Memory Segments . 420
| Using the SP Switch Clock as a Time Source 420
| 32-Bit and 64-Bit Support . 421
| Running Applications With Large Numbers of Tasks 421

MPI Signal-Handling Library Considerations 421
POE Gets Control First And Handles Task Initialization 421
Using Message Passing Handlers . 421
POE Additions To The User Executable . 421

Message Passing Initialization Module 422
Signal Handlers . 422

Interrupted System Calls . 422
Forks Are Limited . 423

| Checkpoint/Restart Limitations . 424
MPI Threaded Library Considerations . 424

POE Gets Control First And Handles Task Initialization 425
Language Bindings . 425

| MPI-IO Requires GPFS To Be Used Effectively 425
Use of AIX Signals . 425

SIGALRM . 426
SIGIO . 426
SIGPIPE . 426

Limitations In Setting The Thread Stacksize 426
Forks Are Limited . 426
Standard I/O Requires Special Attention . 427
Thread-Safe Libraries . 427
Program And Thread Termination . 427
Other Thread-Specific Considerations . 427

Order Requirement For System Includes 427

 Copyright IBM Corp. 1996, 1998 411

MPI_INIT . 428
Collective Communications . 428

| Support for M:N Threads . 428
Fortran Considerations . 428

Fortran 90 and MPI . 428
Fortran and Threads . 429

Restrictions . 429

This appendix documents various limitations, restrictions, and programming
considerations for user applications written to run under the IBM Parallel
Environment for AIX (PE) licensed program.

PE includes two versions of the message passing libraries. These are called the
signal-handling library and the threaded library.

� The signal-handling library uses AIX signals as an asynchronous way to move
data in and out of message buffers. They also ensure that message packets
are acknowledged and retransmitted when necessary. It supports both MPL
and MPI calls.

� The threaded library uses AIX kernel threads for the same message passing
tasks. It supports MPI only. The threaded library also supports message
passing on user-created threads. The threaded library is required if MPI
coexists with the other user space protocols, for example, the LAPI interface on
the IBM RS/6000 SP.

This appendix consists of sections that list the programming considerations
common to both libraries, as well as those unique to either the signal-handling
library or the threaded library. There is also a subsection on using POE and the
Fortran compiler. Specifically, the sections are as follows:

� “MPI Signal-Handling and MPI Threaded Library Considerations”

� “MPI Signal-Handling Library Considerations” on page 421

� “MPI Threaded Library Considerations” on page 424

� “Fortran Considerations” on page 428

MPI Signal-Handling and MPI Threaded Library Considerations
The information in this section pertains to both the (MPL/MPI) signal-handling
library and the MPI threaded library.

 Environment Overview
As the end user, you are encouraged to think of the Parallel Operating
Environment(POE) (also referred to as the poe command) as an ordinary (serial)
command. It accepts redirected I/O, can be run under the nice and time
commands, interprets command flags, and can be invoked in shell scripts.

An n-task parallel job running in the Parallel Operating Environment actually
consists of the n user tasks, an equal number (n) of instances of the IBM Parallel
Environment for AIX pmd daemon (which is the parent task of the user's task), and
the POE home node task in which the poe command runs. A pmd daemon is

412 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

started by the POE home node on each machine on which each user task runs,
and serves as the point of contact between the home node and the user's tasks.

The POE home node routes standard input, standard output and standard error
streams between the home node and the user's tasks via the pmd daemon, using
TCP/IP sockets for this purpose. The sockets are created when the POE home
node starts the pmd daemon for each task of a parallel job. The POE home node
and pmd also use the sockets to exchange control messages to provide task
synchronization, exit status and signaling. These capabilities do not depend upon
the message passing library and are available to control any parallel program run
by the poe command.

 Exit Status
Exit status is a value between 0 and 255 inclusive. It is returned from POE on the
home node reflecting the composite exit status of your parallel application, as
follows:

� If MPI_ABORT(comm,nn>0,ierror) or MPI_Abort(comm,nn>0) is called, the exit
status is nn (mod 256).

� If MP_STOPALL(nn>=0) or mpc_stopall(nn>=0) is called, the exit status is nn
(mod 256). This does not apply to threaded libraries.

� If all tasks terminate via exit(MM>=0) or STOP MM>=0 and MM is not equal to
1 and is <128 for all nodes, then POE provides a synchronization barrier at the
exit. The exit status is the largest value of MM from any parallel job (mod 256).

� If any task terminates via exit(MM =1) or STOP MM =1, then POE will
immediately terminate the parallel job, as if MP_STOPALL(1) or
MPI_Abort(MPI_COMM_WORLD,1) had been called. This may also occur if a
Fortran I/O library error occurs.

� If any task terminates via a signal (for example, a segment violation), the exit
status is 128+signal and the entire job is immediately terminated.

� If POE terminates before the start of the user's application, the exit status is =1.

� If the user's application cannot be loaded or fails before the user's main() is
called, the exit status is =255.

� You should explicitly call exit(MM) or STOP MM to set the desired exit code. A
program exiting without an explicit exit value returns unpredictable status, and
may result in causing premature termination of the parallel application.

POE Job Step Function
The POE job-step function is intended for the execution of a sequence of separate
yet inter-related dependent programs. Therefore, it provides you with a job control
mechanism that allows both job-step progression and job-step termination. The job
control mechanism is the program's exit code.

 � Job-step progression:

POE continues the job-step sequence if the task exit code is 0 or in the range
of 2 - 127.

 � Job-step termination:

POE terminates the parallel job, and does not execute any remaining user
programs in the job-step list if the task exit code is 1 or greater than 127.

 Appendix G. Programming Considerations for User Applications in POE 413

 � Default termination:

Any POE infrastructure detected failure (such as failure to open pipes to the
child task or an exec failure to start the user's executable) terminates the
parallel job, and does not execute any remaining user programs in the job-step
queue.

POE Additions To The User Executable
POE links in the following routines when your executable is compiled with any of
the POE compilation scripts (mpcc, mpcc_r, mpxlf,etc.).

 Signal Handlers
POE installs signal handlers for most signals that cause program termination in
order to notify the other tasks of termination and to complete the VT trace file, if
enabled. POE then causes the program to exit normally with a code of

| (128+signal). When running non-threaded applications under POE, you may install
| a signal handler for any of these signals, and it should call the POE registered
| signal handler if the task decides to terminate. (See “Let POE Handle Signals
| When Possible” on page 415.) When running threaded applications, any attempt to
| install a signal handler is ignored.

Signals that are specifically handled by POE or the message passing library follow:

 � SIGHUP

Caught and exits with an exit code of 128+SIGHUP.

 � SIGINT

Caught and exits with an exit code of 128+SIGINT.

Note: This signal may be caught by user or by dbx, in which case this usage is
ignored.

 � SIGQUIT

Caught, sets the default signal handler and calls exit handler with an exit code
of 128+SIGQUIT. The exit handler dumps the user's context and takes the
default signal action.

 � SIGFPE

Caught, sets the default signal handler and calls exit handler with an exit code
of 128+SIGFPE. The exit handler dumps the user's context and takes the
default signal action.

 � SIGSEGV

Caught, sets the default signal handler and calls exit handler with an exit code
of 128+SIGSEGV. The exit handler dumps the user's context and takes the
default signal action.

 � SIGBUS

Caught, sets the default signal handler and calls exit handler with an exit code
of 128+SIGBUS. The exit handler dumps the user's context and takes the
default signal action.

 � SIGTERM

414 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Caught and exits with an exit code of 128+SIGTERM. This is also used by
POE to signal orderly termination of a parallel job. If it must be caught by the
user, please read carefully the section on program termination (below).

 � SIGSTOP

Default action (cannot be caught)

 � SIGTSTP

Default action

 � SIGCONT

Default action

 � SIGPWR

Caught, sets the default signal handler and calls exit handler with an exit code
of 128+SIGPWR. The exit handler dumps the user's context and takes the
default signal action.

 � SIGDANGER

Caught and exits with an exit code of 128+SIGDANGER.

The signal-handling library uses SIGIO, SIGALRM and SIGPIPE for its operations
and it also handles these signals. For more information about the signal-handling

| library, see “MPI Signal-Handling Library Considerations” on page 421. For more
| information about signals, see “Use of AIX Signals” on page 425.

 Replacement exit/atexit
POE requires its own versions of the library exit()/atexit() functions, and expects to
load them dynamically from its own version of libc.a (or libc_r.a) in
/usr/lpp/ppe.poe/lib ; therefore, do not code your own exit function to override the
library function. This is to synchronize profiling and to provide barrier
synchronization upon exit.

Let POE Handle Signals When Possible
Programs that handle signals must coordinate with POE's handling of most of the
common signals (see above).

DO NOT issue message passing calls from signal handlers. Also, many AIX library
calls are not "signal safe", and should not be issued from signal handlers. Check
the AIX Technical Reference (function sigaction()) for a list of AIX functions callable
from signal handlers.

POE sets up signal handlers for all the signals that normally terminate program
execution. It does this so that it can terminate the entire parallel job in an orderly
fashion if one task terminates abnormally (via signal). A user program may install a
handler for any or all of these signals, but should save the address of the POE
signal handler. If the user program decides to terminate, it should call the POE
signal handler. If the user program decides not to terminate, it should just return to
the interrupted code. SIGTERM is used by POE to shutdown the parallel job in a
variety of abnormal circumstances, and should be allowed to terminate the job.

The POE home node converts a user's SIGTSTP signal (Ctrl-z) to a SIGSTOP
signal to all the remote nodes, and passes the SIGCONT signal sent by the fg or
bg command to all the remote nodes to restart the job.

 Appendix G. Programming Considerations for User Applications in POE 415

Don't Hard Code File Descriptor Numbers
Do not use hard coded file descriptor numbers beyond those specified by STDIN,
STDOUT and STDERR.

POE opens several files and uses file descriptors as message passing handles.
These are allocated before the user gets control, so the first file descriptor allocated
to a user is unpredictable.

Termination Of A Parallel Job
POE provides for orderly termination of a parallel job, so that all tasks terminate at
the same time. This is accomplished in the atexit routine registered at program
initialization. For normal exits (codes 0, 2-127), the atexit routine sends a control
message to the POE home node, and waits for a positive response. For abnormal
exits and those which don't go through the atexit routine, the pmd daemon catches
the exit code and sends a control message to the POE home node.

For normal exits, when POE gets a control message for every task, it responds to
each node, allowing that node to exit normally with its individual exit code. The
pmd daemon monitors the exit code and passes it back to the POE home node for
presentation to the user.

For abnormal exits and those detected by pmd , POE sends a message to each
pmd asking that it send a SIGTERM signal to its task, thereby terminating the task.
When the task finally exits, pmd sends its exit code back to the POE home node
and exits itself.

User-initiated termination of the POE home node via SIGINT (Ctrl-c) and/or
SIGQUIT (Ctrl-\) causes a message to be sent to pmd asking that the appropriate
signal be sent to the parallel task. Again, pmd waits for the task to die then
terminates itself.

Your Program Can't Run As Root
To prevent uncontrolled root access to the entire parallel job computation resource,
POE checks to see that the user is not root as part of its authentication.

AIX Function Limitations
The use of the following AIX functions may be limited, but no formal testing has
been done:

� wide character sets

� shared memory - the message passing library uses shared memory for adapter
mapping. You can use the remaining data segments as desired.

� getuinfo does not show terminal information, since the user program running in
the parallel partition does not have an attached terminal.

 Shell Execution
You can have POE run a shell script which is loaded and run on the remote nodes
as if it were a binary file.

If the POE home node task is not started under the Korn shell, mounted file system
names may not be mapped correctly to the names defined for the automount

416 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

daemon or AIX equivalent running on the IBM RS/6000 SP. See the IBM Parallel
Environment for AIX: Operation and Use, Volume 1 for a discussion of alternative
name mapping techniques.

The program executed by POE on the parallel nodes does not run under a shell on
those nodes. Redirection and piping of STDIO applies to the POE home node (poe
binary), and not the user's code. If shell processing of a command line is desired
on the remote nodes, invoke a shell script on the remote nodes to provide the
desired preprocessing before the user's application is executed.

Do Not Rewind stdin, stdout Or stderr
The partition manager daemon uses pipes to direct stdin, stdout and stderr to the
user's program, therefore, do not rewind these files.

Ensuring String Arguments Are Passed To Your Program Correctly
Quotation marks, either single or double, used as argument delimiters are stripped
away by the shell and are never "seen" by poe. Therefore, the quotation marks
must be escaped to allow the quoted string to be passed correctly to the remote
task(s) as one argument. For example, if you want to pass the following string to
the user program (including the imbedded blank)

 a b

then you need to enter the following:

poe user_program \"a b\"

user_program is passed the following argument as one token:

 a b

Without the backslashes, the string would have been treated as two arguments (a
and b).

POE behaves like rsh when arguments are passed to POE. Therefore, the
following:

poe user_program "a b"

is equivalent to:

rsh some_machine user_program "a b"

In order to pass the string argument as one token, the quotes have to be escaped.

Network Tuning Considerations
Programs generating large volumes of STDOUT or STDERR may overload the
home node. As described previously, standard output and standard error files
generated by a user's program are piped to pmd , then forwarded to the poe binary
via a TCP/IP socket. It is possible to generate so much data that the IP message
buffers on the home node are exhausted, the poe binary hangs and possibly the
entire node may hang). Note that the option -stdoutmode (environment variable
MP_STDOUTMODE) controls which output stream is displayed by the poe binary,

 Appendix G. Programming Considerations for User Applications in POE 417

but does not limit the standard output traffic received from the remote nodes, even
if set to display the output of just one node.

The POE environment variable MP_SNDBUF can be used to override the default
network settings for the size of the TCP buffers used.

If you have large volumes of standard I/O, work with your network administrator to
establish appropriate TCP/IP tuning parameters. You may also want to examine if
using named pipes is appropriate for your application.

Standard I/O Requires Special Attention
When your program runs on the remote nodes, it has no controlling terminal.
STDIN and STDOUT, STDERR are always piped.

Programs that depend on piping standard input or standard output as part of a
processing sequence may wish to bypass the home node poe binary. Running the
poe command (or starting a program compiled with one of the POE compile
scripts) causes the poe binary to be loaded on the machine on which you typed the
command (the POE home node). The poe binary, in turn, starts a daemon named
pmd on each parallel node assigned to run the job, and then requests pmd to run
your executable (via fork and exec). The poe binary reads STDIN and passes it to
each of the parallel tasks via a TCP/IP socket connection to the pmd daemon,
which pipes it to the user. Similarly, STDOUT and STDERR from the user are
piped to pmd and sent on the socket back to the home node, where it is written to
the poe binary's STDOUT and STDERR descriptors. If you know that the task
reading STDIN or writing STDOUT must be on the same node (processor) as the
poe binary (the poe home node), named pipes can be used to bypass poe's
reading and forwarding STDIN and STDOUT.

If STDIN is piped or redirected to the poe binary (via ordinary pipes), and your
application is linked with the signal handling message passing library, (via mpcc,
mpxlf, or mpCC), then set the environment variable MP_HOLD_STDIN to "yes".
This lets poe initialize the signal-handling library before handling the STDIN file.

If your application is linked with the threaded library, see “Standard I/O Requires
Special Attention” on page 427 for more information.

STDIN/STDOUT Piping Example
The following two scripts show how STDIN and STDOUT can be piped directly
between pre- and post-processing steps, bypassing the POE home node task. This
example assumes that parallel task 0 is known or forced to be on the same node
as the POE home node.

The script compute_home runs on the home node; the script compute_parallel runs
on the parallel nodes (those running tasks 0 through n-1).

418 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

compute_home:
#! /bin/ksh
Example script compute_home runs three tasks:
data_generator creates/gets data and writes to stdout
data_processor is a parallel program that reads data
from stdin, processes it in parallel, and writes
the results to stdout.
data_consumer reads data from stdin and summarizes it
#
mkfifo poe_in_$$
mkfifo poe_out_$$
export MP_STDOUTMODE=ð
export MP_STDINMODE=ð
data_generator >poe_in_$$ |

poe compute_parallel poe_in_$$ poe_out_$$ data_processor |
 data_consumer <poe_out_$$
 rc=$?
 rm poe_in_$$
 rm poe_out_$$
 exit rc

compute_parallel:
#! /bin/ksh
Example script compute_parallel is a shell script that
takes the following arguments:
1) name of input named pipe (stdin)
2) name of output named pipe (stdout)
3) name of program to be run (and arguments)
#
poe_in=$1
poe_out=$2
shift 2
$\ <$poe_in >$poe_out

Reserved Environment Variables
Environment variables starting with MP_ are intended for use by POE, and should
be set only as instructed in the documentation. POE also uses a handful of MP_...
environment variables for internal purposes, which should not be interfered with.

AIX Message Catalog Considerations
POE assumes that NLSPATH contains the appropriate POE message catalogs,
even if LANG is set to "C" or is unset. Duplicate message catalogs are provided for
languages "En_US", "en_US", and "C".

 Language Bindings
The Fortran, C and C++ bindings for MPI are contained in the same library and can
be freely intermixed.

� libmpi.a for the signal-handling version
� libmpi_r.a for the threaded version

Refer to “Fortran Considerations” on page 428 for more information about the
Fortran compiler.

The AIX compilers support the flag -qarch. This option allows you to target code
generation to a particular processor architecture. While this option can provide

 Appendix G. Programming Considerations for User Applications in POE 419

performance enhancements on specific platforms, it inhibits portability, particularly
between the Power and PowerPC machines. The MPI library is not targeted to a
specific architecture and is the same on PowerPC and Power nodes.

| The MPI-IO functions from MPI-2 are only available with the threaded library.

| Available Virtual Memory Segments
| AIX makes available up to 11 additional address segments for end user programs.
| The MPI libraries use some of these as listed in Table 16. The remaining are
| available to the user for either extended heap (-bmaxdata option) or shared
| memory (shmget). Very large jobs, which include all jobs with more than 1000
| tasks, will need to use the -bmaxdata option to ensure a large enough heap.

| * If the environment variable MP_CLOCK_SOURCE=AIX, the value is 0.

| Table 16. Memory Segments Used By the MPI and LAPI Libraries

| Component
| RS/6000 SP node with
| switch
| RS/6000 workstation or
| no switch

| MPI User Space| 2| not available

| MPI IP| 1*| 0

| VT Trace Capture| 1| 0

| LAPI User Space| 2| not available

| Using the SP Switch Clock as a Time Source
| The RS/6000 SP switch clock is a globally-synchronized counter that may be used
| as a source for the MPI_WTIME function, provided that all tasks are run on nodes
| of the same SP system. The environment variable MP_CLOCK_SOURCE provides
| additional control. Table 17 shows how the clock source is determined. MPI
| guarantees that MPI_WTIME_IS_GLOBAL has the same value at every task.

| Table 17 (Page 1 of 2). How the Clock Source Is Determined

| MP_CLOCK_SOURCE
| Library
| Version
| All Nodes
| SP?
| Source
| Used| MPI_WTIME_IS_GLOBAL

| not set| ip| yes| switch| false

| no| AIX| false

| us| yes| switch| true

| no| Error

| SWITCH| ip| yes*| switch| false

| no| AIX| false

| us| yes| switch| true

| no| Error

| AIX| ip| yes| AIX| false

| no| AIX| false

| us| yes| AIX| false

420 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

| Table 17 (Page 2 of 2). How the Clock Source Is Determined

| MP_CLOCK_SOURCE
| Library
| Version
| All Nodes
| SP?
| Source
| Used| MPI_WTIME_IS_GLOBAL

| no| AIX| false

| * The user is responsible for ensuring all of the nodes are in the same SP system.

| 32-Bit and 64-Bit Support
| POE compiles and runs all applications as 32-bit applications. 64-bit applications
| are not supported yet.

| Running Applications With Large Numbers of Tasks
| If you plan to run your parallel applications with a large number of tasks (more than
| 256), the following tips may improve stability and performance:

| � Use a host list file with the switch IP names, instead of the IP host name.

| � You may avoid a potential problem running out of memory by linking
| applications with a data buffer using data segment three (3), by specifying the
| -bD:0x3000000 loader option. The default is to use data segment zero.

| � To avoid potential problems opening sockets, increase the user resource limit
| for the number of open file descriptors (nofiles) to at least 10,000, using the
| ulimit command. For example:

| ulimit -n 1ðððð

MPI Signal-Handling Library Considerations
The information in this subsection provides you with specific additional
programming considerations for when you are using POE and the MPL/MPI
signal-handling library.

POE Gets Control First And Handles Task Initialization
POE sets up its environment environment via the entry point mp_main().
mp_main() initializes the message passing library, sets up signal handlers, sets up
an atexit routine, and initializes VT trace data collection before calling your main
program.

Using Message Passing Handlers
Only a subset of MPL message passing is allowed on handlers created by the MPL
Receive and Call function (mpc_rcvncall or MP_RCNVCALL). MPI calls on these
handlers are not supported.

POE Additions To The User Executable
POE links in the following routines when your executable is compiled with mpcc,
mpxlf or mpCC. These are routines specific for the signal handling environment.

 Appendix G. Programming Considerations for User Applications in POE 421

Message Passing Initialization Module
POE initializes the parallel message passing library and determines that all nodes
can communicate successfully before the user main() program gains control. As a
result, any program compiled with the POE compiler scripts must be run under the
control of POE and is not suitable as a serial program.

If communication initialization fails, the parallel task is terminated with an
appropriate exit code.

 Signal Handlers
The message passing library sets up signal handlers for SIGALRM, SIGIO and
SIGPIPE to manage message passing activity. A user program may install a
handler for any or all of these signals, but should save the address of and invoke
the POE signal handler before returning to the interrupted code. The sigaction()
function returns the required structure. Also, set SA_RESTART as well as the
mask so all signals are masked when the signal handler is running.

The following are the signals used and specifically handled by the message
passing library in a signal handling environment:

 � SIGPIPE

Caught by the non-threaded User Space message passing library to manage
the RS/6000 SP switch. If your application catches this signal, it should call the
registered message passing signal handler before returning to the main code.

Do not block this signal for more than a few milliseconds.

 � SIGALRM

Caught by message passing library to manage message traffic. If you provide
your own interval timing mechanism, then you should arrange to call the POE
signal handler approximately every 200-800 milliseconds. Message passing
calls from user programs may be blocked until the POE signal handler is called.

If the user application catches this signal but doesn't do interval timing, it
should call the registered message passing signal handler before returning to
the main code.

 � SIGIO

Caught by the user space message passing library to manage message traffic.
If your application catches this signal, it should call the registered message
passing signal handler before returning to the main code.

Interrupted System Calls
The message passing library uses an interval timer to manage message traffic,
specifically to ensure that messages progress even when message passing calls
are not being made. When this interval timer expires, a SIGALRM signal is sent to
the program, interrupting whatever computation is in progress. The message
passing library has a signal handler set, and normally handles the signal and
returns to the user's program without the program's knowledge. However, the
following library and system calls are interrupted and do not complete normally. The
user is responsible for testing whether an interrupt occurred and recovering from
the interrupt. In many cases, this is accomplished by just retrying the call.

� sleep(see note below)/usleep/nsleep
 � select

422 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 � open/close/fopen/fclose
 � pause
 � sigpause
 � accept
 � connect
 � recv/recvfrom/recvmsg
 � send/sendto/sendmsg
 � aio_read/aio_write/aio_suspend
 � fork
 � system
 � exec/execv/...
 � msem_lock/semop
� AIX msg... routines

 � poll

Note: The normal timer interval is less than 500 milliseconds. So a sleep call (with
time specified in seconds) returns to the original sleep interval, due to rounding,
and can't be used to determine how much time remains in the interval. You should
use the functions usleep and nsleep instead. See also the “Sample Replacement
Sleep Program” on page 431 in Appendix H, “Using Signals and the IBM PE
Programs” on page 431.

With the exception of sleep, system and exec, the routines listed above set the
system error indicator (the variable errno) to EINTR, which can be tested by the
user's program. See the “Sample Replacement Select Program” on page 431 in
Appendix H, “Using Signals and the IBM PE Programs” on page 431.

Normal file read and write are restarted automatically by AIX, and should not
require any special treatment by the user.

The system and fork calls create a new task in which the interval timer is still
running. If a fork is followed by an exec (which is what system does), the signal
handler for the timer is overlaid, and the task is terminated when the interval timer
expires.

To handle this for the system call, temporarily turn the interval timer off (using the
alarm (0) call) before the call, and turn it on again (ualarm (500000, 500000) will do)
after the system call.

To handle the interval timer for a forked child, merely turn off the interval timer via
alarm (0) in the child.

There are other restrictions on fork described below.

Forks Are Limited
As described earlier, if a task forks, the forked child inherits the running timer. The
timer should be turned off before forking another program. If the forked child does
not exec another program, it should be aware that an atexit routine has been
registered for the parent which is also inherited by the child. In most cases, the
atexit routine will request POE to terminate the task (parent). A forked child should
terminate with an _exit(0) system call to prevent the atexit routine from being
called. Also, if the forked parent terminates before the child, the child task will not
be cleaned up by POE.

 Appendix G. Programming Considerations for User Applications in POE 423

A forked child must not call the message passing library.

| Checkpoint/Restart Limitations
| A user may initiate a checkpoint sequence from within a parallel MPI program by
| calling the MP_CHKPT function. All tasks in the parallel job must issue the call,
| which does not return until the checkpoint files have been created for all tasks. If
| the job subsequently fails and is restarted, the restart returns from the MP_CHKPT
| function with an indication that the parallel job has been restarted.

| Programs using the signal handling (non-threaded) MPI library may be linked as a
| checkpointable executable, which is run as a LoadLeveler batch job. LoadLeveler
| Version 2.1 or later is required. Restrictions on the program follow:

| � For some processes, it is impossible to obtain or recreate the state of the
| process. For this reason, you should only checkpoint programs with states that
| are simple to checkpoint and recreate. A program that is long-running,
| computation-intensive, and does not fork any processes is an example of a job
| that is well-suited for checkpointing.

| � In order to prevent unpredictable results from occurring, checkpointing jobs
| should not use the following system services:

| – Administrative (audit and swapqry , for example)
| – Dynamic loading
| – Forks
| – Internal timers
| – Messages
| – Semaphores
| – Set user ID or group ID
| – Shared memory
| – Signals
| – Threads

| � Another limitation of checkpointing jobs is file I/O. Because individual write calls
| are not traced, the file recovery scheme requires that all I/O operations, when
| repeated, must yield the same result. A job that opens all files as read-only can
| be checkpointed. A job that writes to a file and then reads the data back can
| also be checkpointed. An example of I/O that could cause unpredictable results
| is: reading an area of a file, writing to it, and then reading the same area of the
| file again.

MPI Threaded Library Considerations
When programming in a threaded environment specific skills and considerations are
required. The information in this subsection provides you with specific programming
considerations when using POE and the MPI threaded library. It assumes you are
familiar with POSIX threads in general including mutexes, thread condition waiting,
thread-specific storage, thread creation and termination.

424 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

POE Gets Control First And Handles Task Initialization
POE sets up its environment via the entry point mp_main_r(). mp_main_r() sets up
signal handlers, initializes VT, and sets up an atexit routine before calling your main
program.

Note: In the threaded library, message passing initialization takes place when
MPI_INIT is called and not by mp_main_r. The threaded library and the
signal-handling library differ significantly in this regard.

 Language Bindings
The Fortran, C and C++ bindings for MPI are contained in the same library
(libmpi_r.a) and can be freely intermixed.

Refer to “Fortran Considerations” on page 428 for more information about running
Fortran programs in a threaded environment.

| MPI-IO Requires GPFS To Be Used Effectively
| The subset implementation of MPI-IO provided in the thread library depends on all
| tasks running on a single file system. IBM Generalized Parallel File System (GPFS)
| is able to present a single file system to all nodes of an SP. Shared file systems
| (NFS and AFS, for example) do not have the same rigorous management of file
| consistency when updates occur from more than one node.

| MPI-IO can be used with most file systems as long as all tasks are on a single
| node. This single node approach may be useful in learning to use MPI-IO, but is
| not likely to be worthwhile in any production context.

| Any production use of MPI-IO must be based on GPFS.

Use of AIX Signals
| The threaded POE run-time environment creates a thread to handle the following
| asynchronous signals:

| � SIGQUIT
| � SIGPWR
| � SIGDANGER
| � SIGTSTP
| � SIGTERM
| � SIGHUP
| � SIGINT

| A user signal handler must not be invoked to handle the above signals, which are
| handled by sigwait .

| The following signals, which are used by MPI in the non-threaded library, are
| handled as described below.

 Appendix G. Programming Considerations for User Applications in POE 425

 SIGALRM
The threaded library does not use SIGALRM and long system calls such as sleep
are not interrupted by the message passing library. For example, sleep runs its
entire duration unless interrupted by a user-generated event.

 SIGIO
PE blocks SIGIO before calling your program. SIGIO is used in the IP version of
the library to notify you of an I/O event or the arrival of a message packet. This
notification is enabled via the environment variable MP_CSS_INTERRUPT. If this
environment variable is set to YES, the message packet arrival dispatches the
interrupt service thread to process the packet.

The User Space version of the library receives notification of an arriving packet via
an AIX kernel event and does not use SIGO. You may unblock it or use sigwait to
process SIGIO signals.

If you've registered a signal handler (via sigaction) for SIGIO before MPI_INIT is
called, the function is added to the interrupt service thread and is executed each
time the service thread is dispatched. Although registered as a signal handler, the
function is not required to be signal safe because it is executed on a thread. You
can use pthread calls to communicate with other threads. You cannot call MPI
functions in this handler.

After MPI_FINALIZE is called, your signal handler is restored but you need to
unblock SIGIO in order to receive subsequent SIGIO signals.

If you register or change the SIGIO signal handler after calling MPI_INIT, your
changes are ignored by the MPI library but your changes are not undone by
MPI_FINALIZE.

 SIGPIPE
Neither the threaded or non-threaded IP libraries use SIGPIPE. The threaded User
Space library polls a variable set by the AIX kernel to determine if the switch has
faulted and needs to be restarted. As a result, it does not use SIGPIPE.

Limitations In Setting The Thread Stacksize
The main thread stacksize is the same as the stacksize used for non-threaded
applications. If you write your own MPI reduce functions to use with nonblocking
collective communications or a SIGIO handler that will be executed on one of the

| library service threads, you are limited to a stacksize of 96KB by default. To
increase your thread stacksize, use the environment variable

| MP_THREAD_STACKSIZE. For more information about the default and your ability
| to change the default, see the manpage for AIX_PTHREAD_SET_STACKSIZE.

Forks Are Limited
If a task forks, only the thread that forked exists in the child task. Therefore, the
message passing library will not operate properly. Also, if the forked child does not
exec another program, it should be aware that an atexit routine has been registered
for the parent which is also inherited by the child. In most cases, the atexit routine
requests that POE terminate the task (parent). A forked child should terminate with
an _exit(0) system call to prevent the atexit routine from being called. Also, if the
forked parent terminates before the child, the child task will not be cleaned up by
POE.

426 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

A forked child MUST NOT call the message passing library.

Standard I/O Requires Special Attention
When your program runs on the remote nodes, it has no controlling terminal.
STDIN and STDOUT, STDERR are always piped.

If your threaded MPI program processes STDIN from a large file on the home
node, you must do one of the following:

� Invoke MPI_Init() before performing any STDIN processing, or

� Ensure that all STDIN has been processed (EOF) before invoking MPI_Init().

This also includes programs which may not explicitly use MPI.

If STDIN is piped (or redirected) to the poe binary (via ordinary pipes) and your
application is linked with the threaded library, then handle STDIN in the following
way:

� If all of STDIN is read by your program before MPI_Init is called, set the
environment variable MP_HOLD_STDIN=NO.

� If none of STDIN is read before MPI_Init is called, set the environment variable
MP_HOLD_STDIN=YES.

� If STDIN is less than approximately 4000 bytes in length, set
MP_HOLD_STDIN=NO.

� If none of the above applies, it may not be possible to run your program
correctly, and you will have to devise some other mechanism for providing data
to your program.

 Thread-Safe Libraries
AIX provides thread-safe versions of some libraries, such as libc_r.a. However, not
all libraries have a thread-safe version. It is your responsibility to determine whether
the libraries you use can be safely called by more than one thread.

Program And Thread Termination
MPI_FINALIZE terminates the MPI service threads but does not affect user-created
threads. Use pthread_exit to terminate any user-created threads, and exit(m) to
terminate the main program (initial thread). The value of m is used to set POE's
exit status as explained on “Exit Status” on page 413.

Other Thread-Specific Considerations

Order Requirement For System Includes
For threaded programs, AIX requires that the system include <pthread.h> must be
first with <stdio.h> or other system includes following it. <pthread.h> defines some
conditional compile variables that modify the code generation of subsequent
includes, particularly <stdio.h>. Please note that <pthread.h> is not required unless
your file uses thread-related calls or data.

 Appendix G. Programming Considerations for User Applications in POE 427

 MPI_INIT
Call MPI_INIT once per task not once per thread. MPI_INIT does not have to be
called on the main thread but MPI_INIT and MPI_FINALIZE must be called on the
same thread.

MPI calls on other threads must adhere to the MPI standard in regard to the
following:

� A thread cannot make MPI calls until MPI_INIT has been called.
� A thread cannot make MPI calls after MPI_FINALIZE has been called.
� Unless there is a specific thread protocol programmed, you cannot rely on any

specific order or speed of thread processing.

 Collective Communications
Collective communications must meet the MPI standard requirement that all

| participating tasks execute collective communications on any given communicator
in the same order. If collective communications calls are made on multiple threads,

| it is your responsibility to ensure the proper sequencing or to use distinct
| communicators.

| Support for M:N Threads
| By default, user threads are created with process contention scope, and M user
| threads are mapped to N kernel threads. The values of the ratio M:N and the
| default contention scope are settable by AIX environment variables. The service
| threads created by MPI, POE, and LAPI have system contention scope, that is,
| they are mapped 1:1 to kernel threads.

| For PSSP 2.3 and 2.4, you must create system contention scope threads. For
| PSSP 3.1, you can create process contention scope threads, but any such thread
| will be converted to a system contention scope thread when it makes its first MPI
| call.

 Fortran Considerations
The information in this subsection provides you with some specific programming
considerations for when you are using POE and the Fortran compiler.

Fortran 90 and MPI
Incompatibilities exist between Fortran 90 and MPI which may effect the ability to
use such programs. Refer to the information in

/usr/lpp/ppe.poe/samples/mpif9ð/README.mpif9ð

for further details. PE, Version 2, Release 2 provided the header file mpif90.h for
| use with Fortran 90. The file is still available in PE, Version 2, Release 4 , but

should not be used by new code. The mpif.h header file is formatted to work with
either mpxlf90 or mpxlf compilation.

428 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Fortran and Threads
| Version 5 of the AIX XLF Fortran compiler supports threads.

| Version 4.1 of the AIX XLF Fortran compiler is not thread-safe. However, XLF
Version 4.1.0.1 provides a partial thread-support XLF runtime library. It supports
multi-threaded applications that have one Fortran thread. Be sure you thoroughly
test such use.

The partial thread-support library is libxlf90_t.a and is installed as
/usr/lib/libxlf90_t.a . When you use the mpxlf_r command, this library is included
automatically.

 Restrictions
When you use libxlf90_t.a the following restrictions apply. Therefore, only one
Fortran thread in a multi-threaded application may use the library.

� Routines in the library are not thread-reentrant.

� Use of routines in the math library (libm.a) by more than one thread may
produce unpredictable results.

 Appendix G. Programming Considerations for User Applications in POE 429

430 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Appendix H. Using Signals and the IBM PE Programs

This section applies to the signal-handling version of the Message Passing library.
Any AIX function that is interruptible by a signal may not behave as expected
because the message passing subsystem uses timer signals to manage message
traffic. For example, the user's program does not sleep for the full time but returns
quickly with an error code of EINTR. This indicates the sleep was interrupted by a
signal. This happens for select system call as well.

The following are some sample programs to replace sleep and select.

Sample Replacement Sleep Program
The following sample replacement program for sleep guarantees to sleep for the
specified interval, even if interrupted.

Sleep Example

 #include <errno.h>
 #include <sys/time.h>

int SLEEP(int amount)
 {

struct timestruc_t Requested, Remaining;
double famount = amount;

 int rc;
while (famount > ð.ð) {
Requested.tv_sec = (int) famount;

 Requested.tv_nsec =
(int) ((famount - Requested.tv_sec)\1ððððððððð.);
rc = nsleep (&Requested, &Remaining);
if ((rc == -1) && (errno == EINTR)) {
/\ Sleep interrupted. Resume it \/
famount = Remaining.tv_sec + Remaining.tv_nsec /

 1ððððððððð.;
 continue;
 }

else /\ Completed sleep. Set return to zero \/
 {
 return (ð);
 }
 } /\ end of while \/

/\ famount = ð; exit \/
 return (ð);
 }

Sample Replacement Select Program
The following is a sample replacement program for select. SELECT restores the
status of the file descriptor bit masks and handles the remaining time after an
interrupt.

Select Example

 Copyright IBM Corp. 1996, 1998 431

 #include <stdio.h>
 #include <sys/select.h>
 #include <sys/types.h>
 #include <sys/time.h>
 #include <errno.h>

int SELECT(int maxfds, fd_set \reads, fd_set \writes, fd_set \errors,
struct timeval \timeout)

 {
struct timestruc_t Timer1, Timer2;
struct timeval timetogo;
static fd_set readcopy;
static fd_set writecopy;
static fd_set errcopy;

 int rc;
 double worktime;
 double remaining;

/\ If we get interrupted, will need to restore select bits \/
if (reads) bcopy(reads,&readcopy,sizeof(fd_set));
if (writes) bcopy(writes,&writecopy,sizeof(fd_set));
if (errors) bcopy(errors,&errcopy,sizeof(fd_set));

/\ two cases: if timeout specifies a time structure, we
need to worry about timeouts. Otherwise, we can
ignore it \/

if (timeout == NULL) {
while (TRUE) {
rc = select(maxfds,reads,writes,errors,NULL);
if ((rc == -1) && (errno == EINTR)) { /\ interrupted \/
if (reads) bcopy(&readcopy,reads,sizeof(fd_set));
if (writes) bcopy(&writecopy,writes,sizeof(fd_set));
if (errors) bcopy(&errcopy,errors,sizeof(fd_set));

 continue;
 }
 else return(rc);
 }
 }

else { /\ timeout is not null \/
timetogo.tv_sec = timeout->tv_sec;
timetogo.tv_usec = timeout->tv_usec;
remaining = timetogo.tv_sec + timetogo.tv_usec/1ðððððð.;

 /\
fprintf(stderr,"remaining time = %f\n",remaining);

 fflush(stderr);
 \/
 gettimer(TIMEOFDAY, &Timer2);

while (TRUE) {
Timer1.tv_sec = Timer2.tv_sec;
Timer1.tv_nsec = Timer2.tv_nsec;
rc = select(maxfds,reads,writes,errors,&timetogo);
if ((rc == -1) && (errno == EINTR)) { /\ interrupted \/

 gettimer(TIMEOFDAY, &Timer2);
/\ compute amount remaining \/
worktime = (Timer2.tv_sec - Timer1.tv_sec) +
(Timer2.tv_nsec - Timer1.tv_nsec)/1ððððððððð.;
remaining = remaining - worktime;

432 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

timetogo.tv_sec = (int) remaining;
timetogo.tv_usec = (int) ((remaining - timetogo.tv_sec)\

 1ðððððð.);
/\ restore the select bits \/
if (reads) bcopy(&readcopy,reads,sizeof(fd_set));
if (writes) bcopy(&writecopy,writes,sizeof(fd_set));
if (errors) bcopy(&errcopy,errors,sizeof(fd_set));

 continue;
 }
 else return(rc);
 }
 }
 }

 Appendix H. Using Signals and the IBM PE Programs 433

434 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 Appendix I. Predefined Datatypes

The following is a list of the various predefined MPI datatypes by category that you
| can use with MPI .

 Special Purpose

Datatype Description

MPI_LB Explicit lower bound marker

MPI_UB Explicit upper bound marker

MPI_BYTE Untyped byte data

MPI_PACKED Packed data (byte)

For C Language Bindings

Datatype Description

MPI_CHAR 8-bit character

MPI_UNSIGNED_CHAR 8-bit unsigned character

MPI_SIGNED_CHAR 8-bit signed character

MPI_SHORT 16-bit integer

MPI_INT 32-bit integer

MPI_LONG 32-bit integer

MPI_UNSIGNED_SHORT 16-bit unsigned integer

MPI_UNSIGNED 32-bit unsigned integer

MPI_UNSIGNED_LONG 32-bit unsigned integer

MPI_FLOAT 32-bit floating point

MPI_DOUBLE 64-bit floating point

MPI_LONG_DOUBLE 64-bit floating point

| MPI_UNSIGNED_LONG_LONG| 64-bit unsigned integer

| MPI_LONG_LONG_INT| 64-bit integer

| MPI_WCHAR| Wide (16-bit) unsigned character

For FORTRAN Language Bindings

 Copyright IBM Corp. 1996, 1998 435

Datatype Description

MPI_INTEGER1 8 bit integer

MPI_INTEGER2 16 bit integer

MPI_INTEGER4 32 bit integer

MPI_INTEGER 32 bit integer

| MPI_INTEGER8| 64 bit integer

MPI_REAL4 32 bit floating point

MPI_REAL 32 bit floating point

MPI_REAL8 64 bit floating point

MPI_DOUBLE_PRECISION 64 bit floating point

MPI_REAL16 128 bit floating point

MPI_COMPLEX8 32 bit float real, 32 bit float imag.

MPI_COMPLEX 32 bit float real, 32 bit float imag.

MPI_COMPLEX16 64 bit float real, 64 bit float imag.

MPI_DOUBLE_COMPLEX 64 bit float real, 64 bit float imag.

MPI_COMPLEX32 128 bit float real, 128 bit float imag.

MPI_LOGICAL1 8 bit logical

MPI_LOGICAL2 16 bit logical

MPI_LOGICAL4 32 bit logical

MPI_LOGICAL 32 bit logical

| MPI_LOGICAL8| 64 bit logical

MPI_CHARACTER 8 bit character

For Reduction Functions (C Reduction Types)

Datatype Description

MPI_FLOAT_INT {MPI_FLOAT, MPI_INT}

MPI_DOUBLE_INT {MPI_DOUBLE, MPI_INT}

MPI_LONG_INT {MPI_LONG, MPI_INT}

MPI_2INT {MPI_INT, MPI_INT}

MPI_SHORT_INT {MPI_SHORT, MPI_INT}

MPI_LONG_DOUBLE_INT {MPI_LONG_DOUBLE, MPI_INT}

For Reduction Functions (FORTRAN Reduction Types)

436 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Datatype Description

MPI_2REAL {MPI_REAL, MPI_REAL}

MPI_2DOUBLE_PRECISION {MPI_DOUBLE_PRECISION, MPI_DOUBLE_PRECISION}

MPI_2INTEGER {MPI_INTEGER, MPI_INTEGER}

MPI_2COMPLEX {MPI_COMPLEX, MPI_COMPLEX}

 Appendix I. Predefined Datatypes 437

438 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

| Appendix J. MPI Environment Variables Quick Reference

| Table 18 summarizes the environment variables and flags for the Message Passing
| Interface. These environment variables and flags allow you to change message and
| memory sizes, as well as other message passing information.

| Table 18 (Page 1 of 2). POE Environment Variables and Command-Line Flags for MPI

| Environment Variable
| Command-Line Flag| Set:
| Possible
| Values:| Default:

| MP_BUFFER_MEM

| -buffer_mem

| To change the maximum size of
| memory used by the communication
| subsystem to buffer early arrivals.

| An integer less
| than or equal to
| 64MB

| nnnn
| nnnnK
| nnM

| 2800000 bytes (IP)
| 64MB (US)

| MP_CLOCK_SOURCE

| -clock_source

| To use the SP switch clock as a time
| source. See “Using the SP Switch
| Clock as a Time Source” on
| page 420.

| AIX
| SWITCH

| MP_CSS_INTERRUPT

| -css_interrupt

| Whether or not arriving packets
| generate interrupts. This may provide
| better performance for certain
| applications. Setting this explicitly will
| suppress the MPI-directed switching of
| interrupt mode, leaving the user in
| control for the rest of the run. See
| MPI_FILE_OPEN.

| yes
| no
| no

| MP_EAGER_LIMIT

| -eager_limit

| To change the threshold value for
| message size, above which
| rendezvous protocol is used.

| To ensure that at least 32 messages
| can be outstanding between any 2
| tasks, MP_EAGER_LIMIT will be
| adjusted based on the number of
| tasks according to the following table
| (and: when
| MP_USE_FLOW_CONTROL=YES
| and MP_EAGER_LIMIT and
| MP_BUFFER_MEM have not been set
| by the user):

| Number of
Tasks MP_EAGER_LIMIT
1 to 16 4ð96
17 to 32 2ð48
33 to 64 1ð24
65 to 128 512
129 to 256 256
257 to the maximum 128
number of tasks
supported by the
implementation

| An integer less
| than or equal to
| 65536

| nnnK

| 4KB

 Copyright IBM Corp. 1996, 1998 439

| Table 18 (Page 2 of 2). POE Environment Variables and Command-Line Flags for MPI

| Environment Variable
| Command-Line Flag| Set:
| Possible
| Values:| Default:

| MP_INTRDELAY

| -intrdelay

| To tune the delay parameter without
| having to recompile existing
| applications.

| An integer
| greater than 0
| 35 µ (TB2)
| 1 µ (TB3)

| MP_MAX_TYPEDEPTH

| -max_typedepth

| To change the maximum depth of
| message derived data types.
| An integer
| greater than or
| equal to 1

| 5

| MP_SINGLE_THREAD

| -single_thread

| To avoid lock overheads in a program
| that is known to be single-threaded.
| Note that MPI-IO cannot be used if
| this variable is set to yes . Results are
| undefined if this variable is set to yes
| with multiple message threads in use.

| no
| yes
| no

| MP_THREAD_STACKSIZE

| -thread_stacksize

| To specify the additional stacksize
| allocated for user programs executing
| on an MPI service thread. If you
| allocate insufficient space, the
| program may encounter a SIGSEGV
| exception.

| nnnnn
| nnnK
| nnM

| (where K=1024
| bytes and
| M=1024*1024
| bytes)

| None

| MP_TIMEOUT

| (no associated
| command-line flag)

| To change the length of time the
| communication subsystem will wait for
| a connection to be established during
| message passing initialization.

| An integer
| greater than 0
| 150 seconds

| MP_USE_FLOW_CONTROL

| -use_flow_control

| To limit the maximum number of
| outstanding messages posted by a
| sender.

| yes
| no
| no

| MP_WAIT_MODE

| -wait_mode

| To specify how a thread or task
| behaves when it discovers it is
| blocked, waiting for a message to
| arrive.

| poll
| yield
| sleep

| poll (US)
| yield (IP)

440 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

Glossary of Terms and Abbreviations

This glossary includes terms and definitions from:

� The Dictionary of Computing, New York:
McGraw-Hill, 1994.

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies can be purchased from the
American National Standards Institute, 1430
Broadway, New York, New York 10018. Definitions
are identified by the symbol (A) after the definition.

� The ANSI/EIA Standard - 440A: Fiber Optic
Terminology, copyright 1989 by the Electronics
Industries Association (EIA). Copies can be
purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue N.W.,
Washington, D.C. 20006. Definitions are identified
by the symbol (E) after the definition.

� The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after the
definition, indicating that final agreement has not yet
been reached among the participating National
Bodies of SC1.

This section contains some of the terms that are
commonly used in the Parallel Environment books and
in this book in particular.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright 1970 by American
National Standards Institute, Incorporated), which was
prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards
Committee X3. ANSI definitions are preceded by an
asterisk (*).

Other definitions in this glossary are taken from IBM
Vocabulary for Data Processing, Telecommunications,
and Office Systems (GC20-1699).

A
address . A value, possibly a character or group of
characters that identifies a register, a device, a
particular part of storage, or some other data source or
destination.

AIX. Abbreviation for Advanced Interactive Executive,
IBM's licensed version of the UNIX operating system.
AIX is particularly suited to support technical computing
applications, including high function graphics and
floating point computations.

AIXwindows Environment/6000 . A graphical user
interface (GUI) for the RS/6000. It has the following
components:

� A graphical user interface and toolkit based on
OSF/Motif

� Enhanced X-Windows, an enhanced version of the
MIT X Window System

� Graphics Library (GL), a graphical interface library
for the applications programmer which is compatible
with Silicon Graphics' GL interface.

API. Application Programming Interface.

application . The use to which a data processing
system is put; for example, topayroll application, an
airline reservation application.

argument . A parameter passed between a calling
program and a called program or subprogram.

attribute . A named property of an entity.

B
| bandwidth . The difference, expressed in hertz,
| between the highest and the lowest frequencies of a
| range of frequencies. For example, analog transmission
| by recognizable voice telephone requires a bandwidth
| of about 3000 hertz (3 kHz). The bandwidth of an
| optical link designates the information-carrying capacity
| of the link and is related to the maximum bit rate that a
| fiber link can support.

blocking operation . An operation which does not
complete until the operation either succeeds or fails. For
example, a blocking receive will not return until a
message is received or until the channel is closed and
no further messages can be received.

breakpoint . A place in a program, specified by a
command or a condition, where the system halts

 Copyright IBM Corp. 1996, 1998 441

execution and gives control to the workstation user or to
a specified program.

broadcast operation . A communication operation in
which one processor sends (or broadcasts) a message
to all other processors.

buffer . A portion of storage used to hold input or
output data temporarily.

C
C. A general purpose programming language. It was
formalized by ANSI standards committee for the C
language in 1984 and by Uniforum in 1983.

C++. A general purpose programming language, based
on C, which includes extensions that support an
object-oriented programming paradigm. Extensions
include:

 � strong typing
� data abstraction and encapsulation
� polymorphism through function overloading and

templates
 � class inheritance.

call arc . The representation of a call between two
functions within the Xprofiler function call tree. It
appears as a solid line between the two functions. The
arrowhead indicates the direction of the call; the
function it points to is the one that receives the call. The
function making the call is known as the caller, while
the function receiving the call is known as the callee.

chaotic relaxation . An iterative relaxation method
which uses a combination of the Gauss-Seidel and
Jacobi-Seidel methods. The array of discrete values is
divided into sub-regions which can be operated on in
parallel. The sub-region boundaries are calculated using
Jacobi-Seidel, whereas the sub-region interiors are
calculated using Gauss-Seidel. See also Gauss-Seidel.

client . A function that requests services from a server,
and makes them available to the user.

cluster . A group of processors interconnected through
a high speed network that can be used for
high-performance computing. It typically provides
excellent price/performance.

collective communication . A communication
operation which involves more than two processes or
tasks. Broadcasts, reductions, and the MPI_Allreduce
subroutine are all examples of collective communication
operations. All tasks in a communicator must
participate.

command alias . When using the PE command line
debugger, pdbx, you can create abbreviations for

existing commands using the pdbx alias command.
These abbreviations are know as command aliases.

Communication Subsystem (CSS) . A component of
the Parallel System Support Programs that provides

| software support for the SP Switch. CSS provides two
protocols: IP (Internet Protocol) for LAN-based
communication and US (user space) as a message
passing interface that is optimized for performance over
the switch. See also Internet Protocol and User Space.

communicator . An MPI object that describes the
communication context and an associated group of
processes.

compile . To translate a source program into an
executable program.

condition . One of a set of specified values that a data
item can assume.

control workstation . A workstation attached to the
IBM RS/6000 SP SP that serves as a single point of
control allowing the administrator or operator to monitor
and manage the system using Parallel System Support
Programs.

core dump . A process by which the current state of a
program is preserved in a file. Core dumps are usually
associated with programs that have encountered an
unexpected, system-detected fault, such as a
Segmentation Fault, or severe user error. The current
program state is needed for the programmer to
diagnose and correct the problem.

core file . A file which preserves the state of a
program, usually just before a program is terminated for
an unexpected error. See also core dump.

current context . When using either of the PE parallel
debuggers, control of the parallel program and the
display of its data can be limited to a subset of the
tasks that belong to that program. This subset of tasks
is called the current context. You can set the current
context to be a single task, multiple tasks, or all the
tasks in the program.

D
data decomposition . A method of breaking up (or
decomposing) a program into smaller parts to exploit
parallelism. One divides the program by dividing the
data (usually arrays) into smaller parts and operating on
each part independently.

data parallelism . Refers to situations where parallel
tasks perform the same computation on different sets of
data.

442 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

dbx . A symbolic command line debugger that is often
provided with UNIX systems. The PE command line
debugger, pdbx , is based on the dbx debugger.

debugger . A debugger provides an environment in
which you can manually control the execution of a
program. It also provides the ability to display the
program's data and operation.

distributed shell (dsh) . An Parallel System Support
Programs command that lets you issue commands to a
group of hosts in parallel. See IBM Parallel System
Support Programs for AIX: Command and Technical
Reference for details.

domain name . The hierarchical identification of a host
system (in a network), consisting of human-readable
labels, separated by decimals.

E
environment variable . 1. A variable that describes the
operating environment of the process. Common
environment variables describe the home directory,
command search path, and the current time zone. 2. A
variable that is included in the current software
environment and is therefore available to any called
program that requests it.

event . An occurrence of significance to a task; for
example, the completion of an asynchronous operation
such as an input/output operation.

Ethernet . Ethernet is the standard hardware for
TCP/IP LANs in the UNIX marketplace. It is a 10
megabit per second baseband type network that uses
the contention based CSMA/CD (collision detect) media
access method.

executable . A program that has been link-edited and
therefore can be run in a processor.

execution . To perform the actions specified by a
program or a portion of a program.

expression . In programming languages, a language
construct for computing a value from one or more
operands.

F
fairness . A policy in which tasks, threads, or
processes must be allowed eventual access to a
resource for which they are competing. For example, if
multiple threads are simultaneously seeking a lock, then
no set of circumstances can cause any thread to wait
indefinitely for access to the lock.

FDDI. Fiber distributed data interface (100 Mbit/s fiber
optic LAN).

file system . In the AIX operating system, the
collection of files and file management structures on a
physical or logical mass storage device, such as a
diskette or minidisk.

fileset . 1) An individually installable option or update.
Options provide specific function while updates correct
an error in, or enhance, a previously installed product.
2) One or more separately installable, logically grouped
units in an installation package. See also Licensed
Program Product and package.

foreign host . See remote host.

Fortran . One of the oldest of the modern programming
languages, and the most popular language for scientific
and engineering computations. It's name is a
contraction of FORmula TRANslation. The two most
common Fortran versions are Fortran 77, originally
standardized in 1978, and Fortran 90. Fortran 77 is a
proper subset of Fortran 90.

function call tree . A graphical representation of all the
functions and calls within an application, which appears
in the Xprofiler main window. The functions are
represented by green, solid-filled rectangles called
function boxes. The size and shape of each function
box indicates its CPU usage. Calls between functions
are represented by blue arrows, called call arcs, drawn
between the function boxes. See also call arcs.

function cycle . A chain of calls in which the first caller
is also the last to be called. A function that calls itself
recursively is not considered a function cycle.

functional decomposition . A method of dividing the
work in a program to exploit parallelism. One divides
the program into independent pieces of functionality
which are distributed to independent processors. This is
in contrast to data decomposition which distributes the
same work over different data to independent
processors.

functional parallelism . Refers to situations where
parallel tasks specialize in particular work.

G
Gauss-Seidel . An iterative relaxation method for
solving Laplace's equation. It calculates the general
solution by finding particular solutions to a set of
discrete points distributed throughout the area in
question. The values of the individual points are
obtained by averaging the values of nearby points.
Gauss-Seidel differs from Jacobi-Seidel in that for the
i+1st iteration Jacobi-Seidel uses only values calculated

 Glossary of Terms and Abbreviations 443

in the ith iteration. Gauss-Seidel uses a mixture of
values calculated in the ith and i+1st iterations.

global max . The maximum value across all
processors for a given variable. It is global in the sense
that it is global to the available processors.

global variable . A variable defined in one portion of a
computer program and used in at least one other
portion of the computer program.

gprof . A UNIX command that produces an execution
profile of C, Pascal, Fortran, or COBOL programs. The
execution profile is in a textual and tabular format. It is
useful for identifying which routines use the most CPU
time. See the man page on gprof .

GUI (Graphical User Interface) . A type of computer
interface consisting of a visual metaphor of a real-world
scene, often of a desktop. Within that scene are icons,
representing actual objects, that the user can access
and manipulate with a pointing device.

H
SP Switch . The high-performance message passing
network, of the IBM RS/6000 SP(SP) machine, that
connects all processor nodes.

HIPPI. High performance parallel interface.

hook . hook is a pdbx command that allows you to
re-establish control over all task(s) in the current context
that were previously unhooked with this command.

home node . The node from which an application
developer compiles and runs his program. The home
node can be any workstation on the LAN.

host . A computer connected to a network, and
providing an access method to that network. A host
provides end-user services.

host list file . A file that contains a list of host names,
and possibly other information, that was defined by the
application which reads it.

host name . The name used to uniquely identify any
computer on a network.

hot spot . A memory location or synchronization
resource for which multiple processors compete
excessively. This competition can cause a
disproportionately large performance degradation when
one processor that seeks the resource blocks,
preventing many other processors from having it,
thereby forcing them to become idle.

I
IBM Parallel Environment for AIX . A program
product that provides an execution and development
environment for parallel FORTRAN, C, or C++
programs. It also includes tools for debugging, profiling,
and tuning parallel programs.

installation image . A file or collection of files that are
required in order to install a software product on a
RS/6000 workstation or on SP system nodes. These
files are in a form that allows them to be installed or
removed with the AIX installp command. See also
fileset, Licensed Program Product, and package.

Internet . The collection of worldwide networks and
gateways which function as a single, cooperative virtual
network.

Internet Protocol (IP) . 1) The TCP/IP protocol that
provides packet delivery between the hardware and

| user processes. 2) The SP Switch library, provided with
the Parallel System Support Programs, that follows the
IP protocol of TCP/IP.

IP. See Internet Protocol.

J
Jacobi-Seidel . See Gauss-Seidel.

| job management system .

| The software you use to manage the jobs across your
| system, based on the availability and state of system
| resources.

K
Kerberos . A publicly available security and
authentication product that works with the Parallel
System Support Programs software to authenticate the
execution of remote commands.

kernel . The core portion of the UNIX operating system
which controls the resources of the CPU and allocates
them to the users. The kernel is memory-resident, is
said to run in kernel mode (in other words, at higher
execution priority level than user mode) and is protected
from user tampering by the hardware.

L
Laplace's equation . A homogeneous partial
differential equation used to describe heat transfer,
electric fields, and many other applications.

The dimension-free version of Laplace's equation is:

444 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

The two-dimensional version of Laplace's equation may
be written as:

latency . The time interval between the instant at which
an instruction control unit initiates a call for data
transmission, and the instant at which the actual
transfer of data (or receipt of data at the remote end)
begins. Latency is related to the hardware
characteristics of the system and to the different layers
of software that are involved in initiating the task of
packing and transmitting the data.

Licensed Program Product (LPP) . A collection of
software packages, sold as a product, that customers
pay for to license. It can consist of packages and
filesets a customer would install. These packages and
filesets bear a copyright and are offered under the
terms and conditions of a licensing agreement. See also
fileset and package.

| LoadLeveler . A job management system that works
| with POE to allow users to run jobs and match
| processing needs with system resources, in order to
| better utilize the system.

local variable . A variable that is defined and used
only in one specified portion of a computer program.

loop unrolling . A program transformation which
makes multiple copies of the body of a loop, placing the
copies also within the body of the loop. The loop trip
count and index are adjusted appropriately so the new
loop computes the same values as the original. This
transformation makes it possible for a compiler to take
additional advantage of instruction pipelining, data
cache effects, and software pipelining.

See also optimization.

M
menu . A list of options displayed to the user by a data
processing system, from which the user can select an
action to be initiated.

message catalog . A file created using the AIX
Message Facility from a message source file that
contains application error and other messages, which
can later be translated into other languages without
having to recompile the application source code.

message passing . Refers to the process by which
parallel tasks explicitly exchange program data.

MIMD (Multiple Instruction Multiple Data) . A parallel
programming model in which different processors
perform different instructions on different sets of data.

MPMD (Multiple Program Multiple Data) . A parallel
programming model in which different, but related,
programs are run on different sets of data.

MPI. Message Passing Interface; a standardized API
for implementing the message passing model.

N
network . An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit data
to and receive data from other systems and users.

node . (1) In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network. (2) In terms of
the IBM RS/6000 SP, a single location or workstation in
a network. An SP node is a physical entity (a
processor).

node ID . A string of unique characters that identifies
the node on a network.

nonblocking operation . An operation, such as
sending or receiving a message, which returns
immediately whether or not the operation was
completed. For example, a nonblocking receive will not
wait until a message is sent, but a blocking receive will
wait. A nonblocking receive will return a status value
that indicates whether or not a message was received.

O
object code . The result of translating a computer
program to a relocatable, low-level form. Object code
contains machine instructions, but symbol names (such
as array, scalar, and procedure names), are not yet
given a location in memory.

optimization . A not strictly accurate but widely used
term for program performance improvement, especially
for performance improvement done by a compiler or
other program translation software. An optimizing
compiler is one that performs extensive code
transformations in order to obtain an executable that
runs faster but gives the same answer as the original.
Such code transformations, however, can make code
debugging and performance analysis very difficult
because complex code transformations obscure the
correspondence between compiled and original source
code.

 Glossary of Terms and Abbreviations 445

option flag . Arguments or any other additional
information that a user specifies with a program name.
Also referred to as parameters or command line
options.

P
package . A number of filesets that have been
collected into a single installable image of program
products, or LPPs. Multiple filesets can be bundled
together for installing groups of software together. See
also fileset and Licensed Program Product.

parallelism . The degree to which parts of a program
may be concurrently executed.

parallelize . To convert a serial program for parallel
execution.

Parallel Operating Environment (POE) . An execution
environment that smooths the differences between
serial and parallel execution. It lets you submit and
manage parallel jobs. It is abbreviated and commonly
known as POE.

parameter . * (1) In Fortran, a symbol that is given a
constant value for a specified application. (2) An item in
a menu for which the operator specifies a value or for
which the system provides a value when the menu is
interpreted. (3) A name in a procedure that is used to
refer to an argument that is passed to the procedure.
(4) A particular piece of information that a system or
application program needs to process a request.

partition . (1) A fixed-size division of storage. (2) In
terms of the IBM RS/6000 SP, a logical definition of
nodes to be viewed as one system or domain. System
partitioning is a method of organizing the SP into
groups of nodes for testing or running different levels of
software of product environments.

Partition Manager . The component of the Parallel
Operating Environment (POE) that allocates nodes, sets
up the execution environment for remote tasks, and
manages distribution or collection of standard input
(STDIN), standard output (STDOUT), and standard
error (STDERR).

pdbx . pdbx is the parallel, symbolic command line
debugging facility of PE. pdbx is based on the dbx
debugger and has a similar interface.

PE. The IBM Parallel Environment for AIX program
product.

performance monitor . A utility which displays how
effectively a system is being used by programs.

POE. See Parallel Operating Environment.

pool . Groups of nodes on an SP that are known to the
Resource Manager, and are identified by a number.

point-to-point communication . A communication
operation which involves exactly two processes or
tasks. One process initiates the communication through
a send operation. The partner process issues a receive
operation to accept the data being sent.

procedure . (1) In a programming language, a block,
with or without formal parameters, whose execution is
invoked by means of a procedure call. (2) A set of
related control statements that cause one or more
programs to be performed.

process . A program or command that is actually
running the computer. It consists of a loaded version of
the executable file, its data, its stack, and its kernel data
structures that represent the process's state within a
multitasking environment. The executable file contains
the machine instructions (and any calls to shared
objects) that will be executed by the hardware. A
process can contain multiple threads of execution.

The process is created via a fork () system call and
ends using an exit () system call. Between fork and
exit , the process is known to the system by a unique
process identifier (pid).

Each process has its own virtual memory space and
cannot access another process's memory directly.
Communication methods across processes include
pipes, sockets, shared memory, and message passing.

prof . A utility which produces an execution profile of
an application or program. It is useful to identifying
which routines use the most CPU time. See the man
page for prof .

profiling . The act of determining how much CPU time
is used by each function or subroutine in a program.
The histogram or table produced is called the execution
profile.

Program Marker Array . An X-Windows run time
monitor tool provided with Parallel Operating
Environment, used to provide immediate visual
feedback on a program's execution.

pthread . A thread that conforms to the POSIX
Threads Programming Model.

R
reduction operation . An operation, usually
mathematical, which reduces a collection of data by one
or more dimensions. For example, the arithmetic SUM
operation is a reduction operation which reduces an
array to a scalar value. Other reduction operations
include MAXVAL and MINVAL.

446 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

remote host . Any host on a network except the one at
which a particular operator is working.

remote shell (rsh) . A command supplied with both
AIX and the Parallel System Support Programs that lets
you issue commands on a remote host.

Report . In Xprofiler, a tabular listing of performance
data that is derived from the gmon.out files of an
application. There are five types of reports that are
generated by Xprofiler, and each one presents different
statistical information for an application.

| Resource Manager . A server that runs on one of the
| nodes of a IBM RS/6000 SP (SP) machine. It prevents
| parallel jobs from interfering with each other, and
| reports job-related node information.

RISC. Reduced Instruction Set Computing (RISC), the
technology for today's high-performance personal
computers and workstations, was invented in 1975.

S
shell script . A sequence of commands that are to be
executed by a shell interpreter such as C shell, korn
shell, or Bourne shell. Script commands are stored in a
file in the same form as if they were typed at a terminal.

segmentation fault . A system-detected error, usually
caused by referencing an invalid memory address.

server . A functional unit that provides shared services
to workstations over a network; for example, a file
server, a print server, a mail server.

signal handling . A type of communication that is used
by message passing libraries. Signal handling involves
using AIX signals as an asynchronous way to move
data in and out of message buffers.

source line . A line of source code.

source code . The input to a compiler or assembler,
written in a source language. Contrast with object
code.

SP. IBM RS/6000 SP; a scalable system from two to
128 processor nodes, arranged in various physical
configurations, that provides a high-powered computing
environment.

SPMD (Single Program Multiple Data) . A parallel
programming model in which different processors
execute the same program on different sets of data.

standard input (STDIN) . In the AIX operating system,
the primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard

input can be from a file or the output from another
command.

standard output (STDOUT) . In the AIX operating
system, the primary destination of data produced by a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command.

stencil . A pattern of memory references used for
averaging. A 4-point stencil in two dimensions for a
given array cell, x(i,j), uses the four adjacent cells,
x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1).

subroutine . (1) A sequence of instructions whose
execution is invoked by a call. (2) A sequenced set of
instructions or statements that may be used in one or
more computer programs and at one or more points in
a computer program. (3) A group of instructions that
can be part of another routine or can be called by
another program or routine.

synchronization . The action of forcing certain points
in the execution sequences of two or more
asynchronous procedures to coincide in time.

system administrator . (1) The person at a computer
installation who designs, controls, and manages the use
of the computer system. (2) The person who is
responsible for setting up, modifying, and maintaining
the Parallel Environment.

System Data Repository . A component of the Parallel
System Support Programs software that provides
configuration management for the SP system. It
manages the storage and retrieval of system data
across the control workstation, file servers, and nodes.

System Status Array . An X-Windows run time monitor
tool, provided with the Parallel Operating Environment,
that lets you quickly survey the utilization of processor
nodes.

T
task . A unit of computation analogous to an AIX
process.

thread . A single, separately dispatchable, unit of
execution. There may be one or more threads in a
process, and each thread is executed by the operating
system concurrently.

tracing . In PE, the collection of data for the
Visualization Tool (VT). The program is traced by
collecting information about the execution of the
program in trace records. These records are then
accumulated into a trace file which a user visualizes
with VT.

 Glossary of Terms and Abbreviations 447

tracepoint . Tracepoints are places in the program
that, when reached during execution, cause the
debugger to print information about the state of the
program.

trace record . In PE, a collection of information about a
specific event that occurred during the execution of your
program. For example, a trace record is created for
each send and receive operation that occurs in your
program (this is optional and may not be appropriate).
These records are then accumulated into a trace file
which allows the Visualization Tool to visually display
the communications patterns from the program.

U
unrolling loops . See loop unrolling.

US. See user space.

user . (1) A person who requires the services of a
computing system. (2) Any person or any thing that may
issue or receive commands and message to or from the
information processing system.

user space (US) . A version of the message passing
| library that is optimized for direct access to the SP
| Switch , that maximizes the performance capabilities of

the SP hardware.

utility program . A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.

utility routine . A routine in general support of the
processes of a computer; for example, an input routine.

V
variable . (1) In programming languages, a named
object that may take different values, one at a time. The
values of a variable are usually restricted to one data
type. (2) A quantity that can assume any of a given set
of values. (3) A name used to represent a data item
whose value can be changed while the program is
running. (4) A name used to represent data whose
value can be changed, while the program is running, by
referring to the name of the variable.

view . (1) In an information resource directory, the
combination of a variation name and revision number
that is used as a component of an access name or of a
descriptive name.

Visualization Tool . The PE Visualization Tool. This
tool uses information that is captured as your parallel
program executes, and presents a graphical display of
the program execution. For more information, see IBM
Parallel Environment for AIX: Operation and Use,
Volume 2.

VT. See Visualization Tool.

X
X Window System . The UNIX industry's graphics
windowing standard that provides simultaneous views of
several executing programs or processes on high
resolution graphics displays.

xpdbx . This is the former name of the PE graphical
interface debugging facility, which is now called pedb .

Xprofiler . An AIX tool that is used to analyze the
performance of both serial and parallel applications, via
a graphical user interface. Xprofiler provides quick
access to the profiled data, so that the functions that
are the most CPU-intensive can be easily identified.

448 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

 Index

B
bindings

subroutine
quick reference 327

C
collective communication subroutines

MPI_ALLGATHER 49
MPI_ALLGATHERV 51
MPI_ALLREDUCE 53
MPI_ALLTOALL 55
MPI_ALLTOALLV 57
MPI_BARRIER 64
MPI_BCAST 65
MPI_GATHER 163
MPI_GATHERV 165
MPI_OP_CREATE 231
MPI_OP_FREE 233
MPI_REDUCE 244
MPI_REDUCE_SCATTER 246
MPI_SCAN 253
MPI_SCATTER 255
MPI_SCATTERV 257

communicator subroutines
MPI_ATTR_DELETE 59
MPI_ATTR_GET 60
MPI_ATTR_PUT 62
MPI_COMM_COMPARE 91
MPI_COMM_CREATE 92
MPI_COMM_DUP 94
MPI_COMM_FREE 96
MPI_COMM_RANK 98
MPI_COMM_REMOTE_GROUP 99
MPI_COMM_REMOTE_SIZE 100
MPI_COMM_SIZE 101
MPI_COMM_SPLIT 103
MPI_COMM_TEST_INTER 105
MPI_INTERCOMM_CREATE 214
MPI_INTERCOMM_MERGE 216
MPI_KEYVAL_CREATE 228
MPI_KEYVAL_FREE 230

conventions xiv

D
datatype constructors

MPI_TYPE_CREATE_DARRAY 288
MPI_TYPE_CREATE_SUBARRAY 291

derived datatype subroutines
MPI_ADDRESS 48
MPI_GET_ELEMENTS 168

derived datatype subroutines (continued)
MPI_PACK 234
MPI_PACK_SIZE 236
MPI_TYPE_COMMIT 284
MPI_TYPE_CONTIGUOUS 286
MPI_TYPE_EXTENT 293
MPI_TYPE_FREE 294
MPI_TYPE_GET_CONTENTS 295
MPI_TYPE_GET_ENVELOPE 299
MPI_TYPE_HINDEXED 301
MPI_TYPE_HVECTOR 303
MPI_TYPE_INDEXED 305
MPI_TYPE_LB 307
MPI_TYPE_SIZE 308
MPI_TYPE_STRUCT 309
MPI_TYPE_UB 311
MPI_TYPE_VECTOR 312
MPI_UNPACK 314

E
environment management subroutines

MPI_ABORT 47
MPI_ERRHANDLER_CREATE 108
MPI_ERRHANDLER_FREE 110
MPI_ERRHANDLER_GET 111
MPI_ERRHANDLER_SET 112
MPI_ERROR_CLASS 114
MPI_ERROR_STRING 117
MPI_FINALIZE 161
MPI_GET_PROCESSOR_NAME 170
MPI_GET_VERSION 171
MPI_INIT 211
MPI_INITIALIZED 213
MPI_PCONTROL 237
MPI_WTICK 324
MPI_WTIME 325

environment variables
MP_BUFFER_MEM 439
MP_CLOCK SOURCE 439
MP_CSS_INTERRUPT 439
MP_EAGER_LIMIT 439
MP_INTRDELAY 440
MP_MAX_TYPEDEPTH 440
MP_SINGLE_THREAD 440
MP_THREAD_STACKSIZE 440
MP_TIMEOUT 440
MP_USE_FLOW_CONTROL 440
MP_WAIT_MODE 440

error classes 114

 Copyright IBM Corp. 1996, 1998 449

I
info functions

MPI_INFO_CREATE 198
MPI_INFO_DELETE 199
MPI_INFO_DUP 200
MPI_INFO_FREE 201
MPI_INFO_GET 202
MPI_INFO_GET_NKEYS 204
MPI_INFO_GET_NTHKEY 205
MPI_INFO_GET_VALUELEN 207
MPI_INFO_SET 209

M
message queue viewing xviii
MPI-IO subroutines

MPI_FILE GET_GROUP 127
MPI_FILE_CLOSE 118
MPI_FILE_CREATE_ERRHANDLER 120
MPI_FILE_DELETE 122
MPI_FILE_GET_AMODE 124
MPI_FILE_GET_ATOMICITY 125
MPI_FILE_GET_ERRHANDLER 126
MPI_FILE_GET_INFO 128
MPI_FILE_GET_SIZE 130
MPI_FILE_GET_VIEW 132
MPI_FILE_IREAD_AT 134
MPI_FILE_IWRITE_AT 137
MPI_FILE_OPEN 140
MPI_FILE_READ_AT 144
MPI_FILE_READ_AT_ALL 146
MPI_FILE_SET_ERRHANDLER 148
MPI_FILE_SET_INFO 150
MPI_FILE_SET_SIZE 151
MPI_FILE_SET_VIEW 153
MPI_FILE_SYNC 155
MPI_FILE_WRITE_AT 157
MPI_FILE_WRITE_AT_ALL 159

N
nonblocking collective communication subroutines

MPE_IALLGATHER 14
MPE_IALLGATHERV 16
MPE_IALLREDUCE 18
MPE_IALLTOALL 20
MPE_IALLTOALLV 22
MPE_IBARRIER 25
MPE_IBCAST 27
MPE_IGATHER 29
MPE_IGATHERV 32
MPE_IREDUCE 35
MPE_IREDUCE_SCATTER 37
MPE_ISCAN 39
MPE_ISCATTER 41
MPE_ISCATTERV 44

P
parallel utility functions 359

MP_CHKPT 361
MP_DISABLEINTR 363
MP_ENABLEINTR 366
MP_FLUSH 369
MP_MARKER 372
MP_NLIGHTS 374
MP_QUERYINTR 376
MP_QUERYINTRDELAY 379
MP_SETINTRDELAY 381
MP_STDOUT_MODE 384
MP_STDOUTMODE_QUERY 387
mpc_isatty 390

POE considerations
AIX function limitations 416
AIX message catalog considerations 419
checkpoint/restart limitations 424
environment overview 412
exit status 413
exits, parallel task 416
file descriptor numbers 416
fork limitations 423, 426
Fortran 90 and MPI 428
Fortran and threads 429
interrupted system calls 422
job step function 413
language bindings 419, 425
message passing handlers 421
network tuning, considerations 417
other thread considerations 427
POE additions 414, 421
reserved environment variables 419
root limitation 416
shell scripts 416
signal handlers 415
standard I/O 418, 427
stdin, stdout or stderr, rewinding 417
task initialization 421, 425
thread termination 427
thread-safe libraries 427
threads 424
user program, passing string arguments 417

point-to-point subroutines
MPI_BSEND 67
MPI_BSEND_INIT 69
MPI_BUFFER_ATTACH 71
MPI_BUFFER_DETACH 72
MPI_CANCEL 74
MPI_GET_COUNT 167
MPI_IBSEND 196
MPI_IPROBE 218
MPI_IRECV 220
MPI_IRSEND 222
MPI_ISEND 224

450 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

point-to-point subroutines (continued)
MPI_ISSEND 226
MPI_PROBE 238
MPI_RECV 240
MPI_RECV_INIT 242
MPI_REQUEST_FREE 248
MPI_RSEND 249
MPI_RSEND_INIT 251
MPI_SEND 259
MPI_SEND_INIT 261
MPI_SENDRECV 263
MPI_SENDRECV_REPLACE 265
MPI_SSEND 267
MPI_SSEND_INIT 269
MPI_START 271
MPI_STARTALL 272
MPI_TEST 274
MPI_TEST_CANCELLED 276
MPI_TESTALL 277
MPI_TESTANY 279
MPI_TESTSOME 281
MPI_WAIT 316
MPI_WAITALL 318
MPI_WAITANY 320
MPI_WAITSOME 322

predefined MPI datatypes 435
profiling message passing

restrictions 347
sample CPU time program 349

publications, related xv

R
reduction operations

C example 357
FORTRAN example 357
predefined operations 355

S
signals and PE programs 431

sample replacement select program 431
sample replacement sleep program 431

size limitations 353
subroutine bindings

collective communication 335
communicators 337
derived datatype 329
environment management 341
files 343
info objects 344
nonblocking collective communication 327
point-to-point communication 329
profiling 342
quick reference 327
task group 337

subroutine bindings (continued)
topology 339

subroutine template
A_SAMPLE 12

subroutines
alphabetically listed 1
collective communication

MPI_ALLGATHER 49
MPI_ALLGATHERV 51
MPI_ALLREDUCE 53
MPI_ALLTOALL 55
MPI_ALLTOALLV 57
MPI_BARRIER 64
MPI_BCAST 65
MPI_GATHER 163
MPI_GATHERV 165
MPI_OP_CREATE 231
MPI_OP_FREE 233
MPI_REDUCE 244
MPI_REDUCE_SCATTER 246
MPI_SCAN 253
MPI_SCATTER 255
MPI_SCATTERV 257

communicator
MPI_ATTR_DELETE 59
MPI_ATTR_GET 60
MPI_ATTR_PUT 62
MPI_COMM_COMPARE 91
MPI_COMM_CREATE 92
MPI_COMM_DUP 94
MPI_COMM_FREE 96
MPI_COMM_RANK 98
MPI_COMM_REMOTE_GROUP 99
MPI_COMM_REMOTE_SIZE 100
MPI_COMM_SIZE 101
MPI_COMM_SPLIT 103
MPI_COMM_TEST_INTER 105
MPI_INTERCOMM_CREATE 214
MPI_INTERCOMM_MERGE 216
MPI_KEYVAL_CREATE 228
MPI_KEYVAL_FREE 230

derived datatype
MPI_ADDRESS 48
MPI_GET_ELEMENTS 168
MPI_PACK 234
MPI_PACK_SIZE 236
MPI_TYPE_COMMIT 284
MPI_TYPE_CONTIGUOUS 286
MPI_TYPE_EXTENT 293
MPI_TYPE_FREE 294
MPI_TYPE_GET_CONTENTS 295
MPI_TYPE_GET_ENVELOPE 299
MPI_TYPE_HINDEXED 301
MPI_TYPE_HVECTOR 303
MPI_TYPE_INDEXED 305
MPI_TYPE_LB 307
MPI_TYPE_SIZE 308

 Index 451

subroutines (continued)
derived datatype (continued)

MPI_TYPE_STRUCT 309
MPI_TYPE_UB 311
MPI_TYPE_VECTOR 312
MPI_UNPACK 314

environment management
MPI_ABORT 47
MPI_ERRHANDLER_CREATE 108
MPI_ERRHANDLER_FREE 110
MPI_ERRHANDLER_GET 111
MPI_ERRHANDLER_SET 112
MPI_ERROR_CLASS 114
MPI_ERROR_STRING 117
MPI_FINALIZE 161
MPI_GET_PROCESSOR_NAME 170
MPI_GET_VERSION 171
MPI_INIT 211
MPI_INITIALIZED 213
MPI_PCONTROL 237
MPI_WTICK 324
MPI_WTIME 325

MPI datatype
MPI_TYPE_CREATE_DARRAY 288
MPI_TYPE_CREATE_SUBARRAY 291

MPI info
MPI_INFO_CREATE 198
MPI_INFO_DELETE 199
MPI_INFO_DUP 200
MPI_INFO_FREE 201
MPI_INFO_GET 202
MPI_INFO_GET_NKEYS 204
MPI_INFO_GET_NTHKEY 205
MPI_INFO_GET_VALUELEN 207
MPI_INFO_SET 209

MPI-IO
MPI_FILE GET_GROUP 127
MPI_FILE_CLOSE 118
MPI_FILE_CREATE_ERRHANDLER 120
MPI_FILE_DELETE 122
MPI_FILE_GET_AMODE 124
MPI_FILE_GET_ATOMICITY 125
MPI_FILE_GET_ERRHANDLER 126
MPI_FILE_GET_INFO 128
MPI_FILE_GET_SIZE 130
MPI_FILE_GET_VIEW 132
MPI_FILE_IREAD_AT 134
MPI_FILE_IWRITE_AT 137
MPI_FILE_OPEN 140
MPI_FILE_READ_AT 144
MPI_FILE_READ_AT_ALL 146
MPI_FILE_SET_ERRHANDLER 148
MPI_FILE_SET_INFO 150
MPI_FILE_SET_SIZE 151
MPI_FILE_SET_VIEW 153
MPI_FILE_SYNC 155
MPI_FILE_WRITE_AT 157

subroutines (continued)
MPI-IO (continued)

MPI_FILE_WRITE_AT_ALL 159
nonblocking collective communication

MPE_IALLGATHER 14
MPE_IALLGATHERV 16
MPE_IALLREDUCE 18
MPE_IALLTOALL 20
MPE_IALLTOALLV 22
MPE_IBARRIER 25
MPE_IBCAST 27
MPE_IGATHER 29
MPE_IGATHERV 32
MPE_IREDUCE 35
MPE_IREDUCE_SCATTER 37
MPE_ISCAN 39
MPE_ISCATTER 41
MPE_ISCATTERV 44

point-to-point
MPI_BSEND 67
MPI_BSEND_INIT 69
MPI_BUFFER_ATTACH 71
MPI_BUFFER_DETACH 72
MPI_CANCEL 74
MPI_GET_COUNT 167
MPI_IBSEND 196
MPI_IPROBE 218
MPI_IRECV 220
MPI_IRSEND 222
MPI_ISEND 224
MPI_ISSEND 226
MPI_PROBE 238
MPI_RECV 240
MPI_RECV_INIT 242
MPI_REQUEST_FREE 248
MPI_RSEND 249
MPI_RSEND_INIT 251
MPI_SEND 259
MPI_SEND_INIT 261
MPI_SENDRECV 263
MPI_SENDRECV_REPLACE 265
MPI_SSEND 267
MPI_SSEND_INIT 269
MPI_START 271
MPI_STARTALL 272
MPI_TEST 274
MPI_TEST_CANCELLED 276
MPI_TESTALL 277
MPI_TESTANY 279
MPI_TESTSOME 281
MPI_WAIT 316
MPI_WAITALL 318
MPI_WAITANY 320
MPI_WAITSOME 322

task group
MPI_COMM_GROUP 97
MPI_GROUP_COMPARE 180

452 IBM PE for AIX V2R4.0: MPI Programming and Subroutine Reference

subroutines (continued)
task group (continued)

MPI_GROUP_DIFFERENCE 181
MPI_GROUP_EXCL 182
MPI_GROUP_FREE 184
MPI_GROUP_INCL 185
MPI_GROUP_INTERSECTION 187
MPI_GROUP_RANGE_EXCL 188
MPI_GROUP_RANGE_INCL 190
MPI_GROUP_RANK 192
MPI_GROUP_SIZE 193
MPI_GROUP_TRANSLATE_RANKS 194
MPI_GROUP_UNION 195

topology
MPI_CART_COORDS 76
MPI_CART_CREATE 78
MPI_CART_GET 80
MPI_CART_MAP 82
MPI_CART_RANK 84
MPI_CART_SHIFT 86
MPI_CART_SUB 88
MPI_CARTDIM_GET 90
MPI_DIMS_CREATE 106
MPI_GRAPH_CREATE 172
MPI_GRAPH_GET 174
MPI_GRAPH_MAP 175
MPI_GRAPH_NEIGHBORS 177
MPI_GRAPH_NEIGHBORS_COUNT 178
MPI_GRAPHDIMS_GET 179
MPI_TOPO_TEST 283

T
task group subroutines

MPI_COMM_GROUP 97
MPI_GROUP_COMPARE 180
MPI_GROUP_DIFFERENCE 181
MPI_GROUP_EXCL 182
MPI_GROUP_FREE 184
MPI_GROUP_INCL 185
MPI_GROUP_INTERSECTION 187
MPI_GROUP_RANGE_EXCL 188
MPI_GROUP_RANGE_INCL 190
MPI_GROUP_RANK 192
MPI_GROUP_SIZE 193
MPI_GROUP_TRANSLATE_RANKS 194
MPI_GROUP_UNION 195

threaded library considerations
AIX signals 425

topology subroutines
MPI_CART_COORDS 76
MPI_CART_CREATE 78
MPI_CART_GET 80
MPI_CART_MAP 82
MPI_CART_RANK 84
MPI_CART_SHIFT 86

topology subroutines (continued)
MPI_CART_SUB 88
MPI_CARTDIM_GET 90
MPI_DIMS_CREATE 106
MPI_GRAPH_CREATE 172
MPI_GRAPH_GET 174
MPI_GRAPH_MAP 175
MPI_GRAPH_NEIGHBORS 177
MPI_GRAPH_NEIGHBORS_COUNT 178
MPI_GRAPHDIMS_GET 179
MPI_TOPO_TEST 283

tracing routines 393
VT_TRC_FLUSH 394
VT_TRC_SET_PARAMS 398
VT_TRC_START 403
VT_TRC_STOP 407

trademarks xi

X
Xprofiler xviii

 Index 453

Communicating Your Comments to IBM

IBM Parallel Environment for AIX
MPI Programming and Subroutine
Reference
Version 2 Release 4

Publication No. GC23-3894-03

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– FAX: (International Access Code)+1+914+432-9405

� If you prefer to send comments electronically, use this network ID:

– IBM Mail Exchange: USIB6TC9 at IBMMAIL
– Internet e-mail: mhvrcfs@us.ibm.com
– World Wide Web: http://www.s390.ibm.com/os390

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your
comments by phone.

Reader's Comments — We'd Like to Hear from You

IBM Parallel Environment for AIX
MPI Programming and Subroutine
Reference
Version 2 Release 4

Publication No. GC23-3894-03

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader's Comments — We'd Like to Hear from You
GC23-3894-03 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

GC23-3894-03

IBM

Program Number: 5765-543

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC23-3894-ð3

