1394

1394
Open Host Controller Interface
Specification

Draft 0.97
Friday September 19, 1997

Copyright © 1996,1997 by the Promoters of the 1394 Open HCI.

1394 Open Host Controller Interface Specification1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Copyright © 1996,1997 All rights reserved. Page i

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

PREFACE

Intellectual Property

This specification may contain and sometimes even require the use of intellectual property owned by others.
Rights to such intellectual property are not conveyed except as provided by the 1394 Open HCI Adopters
agreement and the 1394 Open HCI Adopters agreement.

Notice

This specification has reached a level of maturity suitable for device development. The authors of this specification
do not believe that it is reasonable to expect that all problems can be discovered before implementations are
attempted. Implementors are encouraged to use the 1394 Open HCI reflector (1394ohci-l@austin.ibm.com) to ask
guestions about portions of the specification that are not perfectly clear, to point out inconsistencies, and to identify

and propose fixes to errors.

Workshops will be scheduled as required to review the specification and to correct any deficiencies in function or inade-
quacies in specification of the 1394 OpenHCI.

Updates to the specification and notices about the specification will be maintained on an ftp site
(ftp:/lwww.austin.ibm.com/pub/chrptech/13940hci).

Copyright © 1996,1997 All rights reserved. Pageiii

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Promoters

| The Promoters of record on Friday, September 19, 1997, the date of publication of the 1394 Open Host Controller Inter-
face Specification, Draft 0.97, are:

Apple Computer, Inc.

Compag Computer Corporation
Intel Corporation

Microsoft Corporation

National Semiconductor Corporation
Sun Microsystems, Inc.

Texas Instruments, Inc.

Contributors

This specification was developed using Apple Computegle design as a starting point. TRele contributors were Jim
Baldwin, Kevin Christiansen, Nikhil Jayaram, Michael Johas Teener and Rahoul Puri. The original Editor of the 1394
OpenHCI specification up through Draft 0.7, was Michael Johas Teener.

The following is a list of key contributors to the 1394 Open Host Controller Interface specification.

Lee Wilson, Chair
Diana Klashman, Editor

Eric W. Anderson
Richard Baker
Joe Bennett
Mike Eneboe
John Fuller
Jerry Hauck
Robert Macomber
Rahoul Puri
Michael Johas Teener
Peter Teng
Scott Smyers
Erik Staats
David Wooten

The following is a list of other major participants (those who attended at least three meetings and/or conference calls).

Larry Blackledge Yehuda Peled
Dmitriy L. Budko Gerhard Ringel
Josh Collier Curtis Stevens

Carl Humphreys

Page iv Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

PREFACE

... iii
L] E=To (N E= U o] oT=] o PP PP T POPPPPPPI iii
10 o = iii
g (0] 1 110 (= £ iv
(@] 011 10| (o] £ iv
IS o) o 10 =SSP Xi
I ESS A0 7= o] N xiii
I 10T 1 T 1T o 1

1.1 Related documents
L2 OV B VIBW .. et ee et et et et e e e e e et e e e et e e et e e et e e et e e et e e et e e et e e et e et e somm———— 4 21 e et e e et e e e aerans
1.2.1 Asynchronous functions
1.2.2 1SOChronoUS fUNCHIONSiiiiiiiiec e e e e e e
1.2.3 Miscellaneous functions

1.3 Hardware deSCHPLIONocuuiti ettt ettt e e e et ettt e e e e e e e e e e s
1.3.1 Host bus interface
T2 B 1Y SRR
1.3.2.1 Asynchronous tranSmMIt DMA ... e e e e e e e et e e e eaaeaaeees 4

1.3.2.2 Asynchronous receive DMA

1.3.2.3 Isochronous transmit DMA

1.3.2.4 Isochronous receive DMA

1.3.2.5 SElf-ID FECEIVE DIMAot e e e e e et e e et e et e e et e e et e eeaans

1.3.3 Global unique ID (GUID) interface
1.3.4 FIFOs

1.3.4.1 Asynchronous tranSmit FIFOSouiiiiiii e e e e e eeaans 6
1.3.4.2 1sochronous transmit FIFO e e e e eemmeemmeenes 6
1.3.4.3 RECEIVE FIFOS ..ottt et e e et e e et mmmmmmm—————— 111 6
G T T T PSRN 6
1.4 SOftWArE INTEITACE OVEIVIEW i et e et e et e et e et e e nmm e nnn—ennstneeetneeetneeetans 7

I =T 1S3 (= £ PPN
1.4.2 DMA operation
L4 .3 INTEITUPES ..ttt ettt e et e e et e et e e e e e et e e e eeaaaeeeennaens
1.5 System Requirements
L 1T [T 0= | PP
1.6.1 Data alignment
1.6.2 Memory structure and buffer alignment ... ——— 9

2. Conventions - NOTAtION AN TEIMSiuiie i e et e e e et ettt e e et e et e e e st e ea e e s e b s ea e sanssa e et senesansnnes 11

2.1 INOTALION ...ttt e oottt oo e e et ettt e oo oo e et e et bbb S— 1111111t 2 2 bbb e
2.1.1 Numeric Notation
2.1.2 Register Notation

A N R =T To FA VAV (S (=T] (=] 11
2.1.2.2 Set and ClEar MEOISTEIScvvui it eeei et e e e e et e e e et e ——— 11
2.1.2.3 Register Reset Values
2.1.2. 4 RESErVEd fieldS.

2.0.2.5 RESEIVEU FEQISIEIS .. et ieii e ettt e e e et e e e e et e e e e et s e e e ete s nm———
2.1.2.6 Register field notation

2.2 Terms

Copyright © 1996,1997 All rights reserved. Pagev

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

3. CommON DMA CONrOIEE FEATUIESu ittt e e e et e et e et e e et e smmmmeemmm———esa s eetneetnessnns 17
G TR O] g1 (=T R =0 1= (= PP 17
0 I A 0T) (=2 (L0 T 1 o I =T |13 (= 17
700 It 0 A 0T 01 (=) (0o T a1 {01 N {1 o PSP 19

3.1.1.2 CoONtEXICONIIOLWAKEouiiiiei et e et e et e e et e e et e smnmmnemm—ameees 20

3.1.1.3 CoONtEXICONIIOLACHIVE. .. .cvu it e e e et e et eeerne s eaeaeeaans 20

3.1.1.4 ContexXtCONrOLAEAAceeniiii e e et e et e e s mmmmmmmm————ees 21

70 2 @0 0] 0 F= T o | o (g T=T 0 1= (= PN 21
I N = - T I V- [V PR 22
o JZa I 1= 1Y = U g = Vo =0 =T o | O 22
3.2.1 SOftWAIE BERNAVIOK .. .cviiiiice et et e e et e e et e e et etenm e enm e enmsaneranneeenns 22
3.2.1.1 Context INItIAlIZAtION e e e e e r e eaas 22

3.2.1.2 Appending t0 RUNNING LIStcoiiiiiiiiiiie e e et e e e eeeeee 22

T2 G IS 1 (o] o o1 o k= W O o] 1 (=) ST OO 23

3.2.2 HArdWare BERAVIOLiiiiiiii ettt e et e et e et s m——— 11 aan 23

3.3 ASYNCRIONOUS RECEIVEuiciiiii et e et e et e e e et e ettt e e et ettt e e e et e e eeana e eeasanaeeennnnaaeens 25
3.3. 1 FIFO IMPIEMENTALION ...ttt e ettt ettt s e e e e e e e e e bbb e e e e e e e eeebbeaan s 25

3.3. 1.1 UNIECOVEIADIE EITOr ... et e e e e et s sr—— 26

3.3.2 Ack COdEeS fOr WILE REQUESTESciiiiiiiiiie ettt e et e e e e e e et e e e e e e eeeennan s 26
33,3 POSTEA VWS e ittt e et e et e e et e e et e e et e e et e e et e s snm——— s e e e e e 27

TR o Y 1 [T PSPPI

3.4 DMA Summary

Lo T 0 1Y (= = o [0 £ =17 o PP 29
4.1 DMA Context NUMDEr ASSIGNMIENTSiiiiiiiiee e eeetie e e et e e e e e e e e et e e e e et e e eeste e s e mmmmm—— s 29
o |1 (=] g1 =Y o IS U PPPPP 30

5. 1394 OPEN HCI REUISTEIS ...ttt e ettt e oo e et ettt bt oo e e e e e e eesba e e e e e eeeeabba e e e eeeeeeenbrnan s 35

5.1 Register Conventions
A (S €710 T =0 £ (= S
5.3 GUID ROM register (optional)
T N I = (e TSR LTS3 = P
5.5 AULONOMOUS CSR RESOUITESc.uuiiiiiiieeiite ettt ettt e et ettt e ettt e et et e e e et e e e eanaeaeeenanns

5.5.1 Bus Management CSR Registers

5.5.2 CONfIg ROM NEBAAETttt e ettt e e e et e e e e et s e s—— 11

5.5.3 BUS identifiCation FEQISTEIcciiii eaaaaeaaa

5.5.4 BUS OPLIONS FEQISTET ...ttt et

5.5.5 GIlobal UNIQUE 1D ...t eees

5.5.6 Configuration ROM mapping register
ISRV Lo (o T g 10 =0 £ (= P
5.7 HCControl registers (set and clear)
5.8 FairnessControl register
5.9 LinkControl registers (Set @and CIEAI)ccc.uui i e e e e s —— s
5.10 Node identification and status register
o R o D oo | o B =T 0 £S5 = PN
5.12 Isochronous Cycle Timer Register
5.13 Asynchronous Request Filters

5.13.1 AsynchronousRequestFilter Registers (set and clear)ccccoeeiiieeiiiiiiiiiiiineeeeeceeieeeeee 2 490
5.13.2 PhysicalRequestFilter Registers (Set and CIEAr)couiiiiiiiiiiiiiii e occeeeeeens 51
5.14 Physical Upper Bound register (OPtIONAl).........ooouuuiiiiiie e e e e oo 52

Page vi Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

(O [T =T (0] o TP UP PRSPPI 53

6.1 INTEVENT (SEL AN CIEAI) ... et e et e e e et e e s ——— 11t e e e e ta s
B.1.0 DUSRESEL ...t

6.2 INtMASK (SEt aNd ClEAI)........cceeii i e

6.3 ISOCNTX INTEITUPL FEOISTEIS ...ttt e e e e e
6.3.1 isoXmitIntEvent (set and clear)
6.3.2 isoXmitIntMask (set and clear)

6.4 ISOCNRX INTEITUPL FROISTEIS ... ettt e e et ettt e e e et ettt bbb smmmmmmm—s e e e e e e e e neanan
6.4.1 isoRecVINtEVENt (SEt and CIEAN)ciiuiii e e e e e e e eneaaan s 58
6.4.2 iISORECVINIMASK (SEt AN CIEAI)ceeeii e e e e e e e e e et e e e e aaaeaeaees 58

7. ASYNChronOUS TranSMUt DIMIAo it e e e et e e e et e e e e et s e e e et s e e et mmmmmm———m—m e ssnn e eesnneeeennnns 59
7.1 AT DMA CONTEXE PrOgIaMS .. ittt ittt ettt et e e e e e e e et e e et s et n e et s e et e s mmmmmemmmm——— s een e esn e ees 59
7.1.1 OUTPUT_MORE ESCIIPLOL ..ttt ettt ettt e et ettt e e e e e e e e reennaaaeeaeas 60
7.1.2 OUTPUT_MORE_IMMediate deSCHIPLONciiiiiieiiiiiiiie ettt e e e e e e 61..
7.1.3 OUTPUT _LAST AESCHIPLON «.eetttuiiieeeiteeeitte ettt e ettt e e e e e e eeettt e e e e e eee e e s mmmmmmmmmmmmm e ees 62
7.1.4 OUTPUT_LAST_Immediate deSCIIPLON. .. .cciiiiiiiiiiiiie e et e ettt e e e e eeebei e e e s emeemnnnns] 6.3
7.1.5 AT DMA OESCIIPLOI USBQE ...ceetttuuiieeeieeetttt e et et ettt e e e et ettt s e e e e e e et taba e e e eeeeeesbnnaaaeaaaeeessnnnns 64
7.0.5.1 COMMANT.Z ..ottt e e et ettt oo e e e et e et bbb+ o— 64
7.1.5.2 ComMmMAaNd.XFEISTATUSoieiiiiiii ettt e ettt e e e e e e eeeeeenmmaeas 65
7.1.5.3 CommaNnd.tiMESTAIMPiiiiiiiiiii et e e e e e ettt e e e e et eeebbae s smeeeenenennne 65
7.1.5.3.1 timeStamp value fOor REQUESTS.........ooiiiiiiiiie et 65.......
7.1.5.3.2 timeStamp value for PINg REQUESTS..........uuuuiiiiiiiiii e 65..........
7.1.5.3.3 timeStamp value fOr RESPONSEScooiiiiiiiiiiie e 66..........
7.2 AT DMA context registers
7.2.0 COMMANAPIE ...ttt e oo e e ettt ettt e e e e e et e et et s —— 42555111
7.2.2 ContextControl register (Set and Clear)ccevuui i i e eeemm e e 68
7.2.2.1 Writing status back to context command deSCriptOrS..........uuuiiiieiiiiiiiiiii e L DUV 6
T.2.3 BUS RESEL....ee ittt e et e e et e e et e ettt mmmmmenmmma e e e eeaa e eeran
7.2.3.1 Host Controller Behavior for AT
7.2.3.2 SOMtWAIE GUITERIINES ...ttt e e e e e e et r—
7.3 AT REIMES -ttt e ettt oo oo et ettt bbb oo e e ettt et bbb ¢ ——— £ 1111111 e et et e e bbaans
A I L1 =T 4 (V] o TP PPT R PPPPN
7.5 AT DAta FOIMALS ... ettt ettt ettt e ettt e e e eet e e e eeta e et eaba e aetenemmaeeemmmns e eesbnaeeennnaaaes
7.5.1 Asynchronous TranSMit REQUESTSii ittt e e et e e e e e e e s
7.5.1.1 NO-AAtA trANSIMIT ...t e et e e e e e et bbb b s e
7.5.1.2 QUAIET trANSIMIL ...uieieee e e e e s e e e e e e e e et e e e e e te e e e s mmmm—
7.5.1.3 BIOCK traNSMILceueiiiee et eeeereaa
7.5.1.4 PHY packet transmit

7.5.2 ASynchronous TranSmMit RESPONSESiii ittt e et c———
7.5.2.1 NO-AAtA trANSIMIT ...ttt e e e e et e bbb s e
7.5.2.2 QUAIET trANSIMIL ...ueeeeei e e e e e e e e et e e e e et e e e e ate e e e s mmmm———
7.5.2.3 Block transmit

7.5.3 ASynchronous TranSMIt SIFEAMISuui i e e e e e e e e e e e e e s mm———

8. ASYNCHIoNOUS RECEIVE DIMA ... ettt et e ettt e et et e e e et e e s eemmmaeeammmsan e esennnaeeeennnaaeens 81

8.1 AR DIMA CONTEXE PrOQIAIMIS ...uuiiiiiiii ettt e et e e et et e e e e et e e et s e e et et et et as et et e s s enansenaneesneeesnnees 81
8.1.1 INPUT_MORE GESCIIPLONieeeitiiiiee ettt ettt e e ettt e e e e e e e ee bbb s s e e e s eaeeeeeeeann s 81
8.1.2 AR DMA dESCHIPION USAQGE ..uuuniieeiiieiiitte e e e e ettt e e e ettt bbb e e e e e et e ee bbb r e e e e e e e eebbbmmm e eeaanaaeeeeeas 82

8.2 DUFEIFII MOME ...ttt s ee e e e e e e e e enmeabb e e e e e eeeennbnann s 82

8.3 Asynchronous Receive CoNteXt REQISTEIS.........iiiiiii e e e e e e e e ena e e e eenaaaeeeeeen 83

Copyright © 1996,1997 All rights reserved. Page vii

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

8.3.1 AR DMA ComMmandPtr FEOISTEuuu i e e e e e e e e e e e e e eeaaa s 83
8.3.2 AR ContextControl register (set and ClEaAr)ccoiuiii i e e e eeaas 84
8.4 AR DIMA CONIIOIIBT ...ttt oo e e et ettt bbb s 4o e e e e ¢ o £ £ £ 42442 e st b e s
8.4.1 Asynchronous Filter Registers
8.4.2 AR DMA Controller processing
8.4.2.1 AR DMA Packet Trailer........coouuiuiiiiiieiieeii e
8.4.2.2 ErrOr HANGING ...vuneeiii ettt e et e e e e e e e e et e e e e et s mm—— 111
8.4.2.3 BUS RESEE PACKETt e 11
8.5 PHY PaACKELS ...ttt e e et ettt bt S———— 1111ttt bt nn s
8.6 ASYNCNIONOUS RECEIVE INTEITUPLS ...uuiiii ittt e ettt e e e e e e e e e e e nnmm e e e e eeeeees
8.7 Asynchronous ReCeIVE Data FOIMMALSooiiiiiii i e e e e e e et e e e et e e e e e e e e et e e e e ara s 87
8.7.1 NO-UAA FECERIVE ...ttt e ettt e e e e e e e aaeee
8.7.2 Quadlet Receive
8.7.3 Block receive

8.7.4 PHY PACKEL FECRIVEttt e e e e ettt ettt — 2111111 94
9. 1SOChroNOUS TranSIMIt DIMIA ...ttt ettt e e e e ettt ettt e e e e e e e amaaaammaennn saeeeeteeesbbnnnaaeaaaaeenes 95
0.1 IT DMA CONEEXE PrOQIamMS ...uiiuiiiiiieiiee et e e et e et e et e e et e e et e e et e e e et e e et e eat et et st mmmmmnmma—m e eenee et eeeen
9.1.1 IT DMA command deSCIPLON OVEIVIEWieeiiieiiiiii e e e ettt e e e ettt e e e e e e eebea e e mmmmeeeaas
9.1.2 OUTPUT_MORE G SCIIPLOL ...ttt ettt ettt e ettt e e e e e e e e ea bbb a e e e e eeeeeeennnaanns
9.1.3 OUTPUT_MORE-Immediate descriptor
9.1.4 OQUTPUT _LAST AESCHIPLONciieetitii ettt ettt e ettt e e e e e e eeebaa e e e e s dmmmmeenmmmmn e e
9.1.5 OUTPUT_LAST-IMMediate deSCIIPLONceiiiiiiiiiei ettt e e e e e et as
9.1.6 STORE_VALUE GESCIIPION ...ciiiiittiiiie ettt ettt ettt e e e e e et ettt e e e e e e e mmeeemmmmmmmn e
9.1.7 IT DMA dESCIIPLOI USBQE ... eeiiiiiiti e e e ettt e e et e bbb e e e e e e et tb b e e e e e e e et abbb e e e e aeeenennanaaaeaas
Lo B I 0]) (= A =0 £ 1=
9.2.1 COMMANAPHE ...t e ettt b oo oo e e e ettt bbb e oo e e e e oo & et £ 111222242 e e
9.2.2 IT CoNteXtCONLIOl REQISTEIevii it e e e e e et e e e et e e e et e e e e aaaeeeenens
9.3 Isochronous transmit DMA CONIOIIETooiiiiiii e oo eeeen e
LS TG T A I I 1Y AN o 0 Yo = 1= o P
9.3.2 PrefetChing 1T PaCKELS et e e e et e e e et it mmmeeenmmmmnsaneeeees
9.3.3 1S0Chronous TranSMIt CYCIE LOSSuuuiiiiiii i e et e e e e e e e et e e e et e e eenmnaeeas
LRSI N e | @ B U T (=] ¢ (U | o TP PP
9.3.5 Determining the number of implemented IT DMA CONTEXES......coiiiiiiiiiiiiiiee e 8....... 10
9.4 Appending to an IT DMA CONteXt PrOGramM........ccoiiiiiiiiiieee et e e et e e e e e eeeeennnes 108
LS I L1 (=T A (U] o PP PP TPPPTT 108
9.5.1 cyCleINCONSISTENT INTEITUPLttt ettt e e e e e e e e enmmm e ee e e e e 108
9.5.2 DUSRESEL INTEITUPL ...ttt e e e e et ettt e e e e e ettt e aaeeeeeenn s e aeeaaeenes 108
9.6 IT DAta FOIMALttt ettt ettt e ettt e ettt e et e et e et e tba s e et e e e emmeeeesa e eeennn e eeennnnnes 109
10. 1SOChION0OUS RECEIVE DIMA ... ittt e e e et ettt e e e e e s s £ 4442 s bbb e e e e eeeeees 111
10.1 IR DMA CONEEXE PrOQIamMS . cuuieiiiiieieie et e s et e e et e et e e et e e ea s e et n e et e e eaaneeaaeeeteeeaanseaanaasneeeanaeen 111
10.2 RECEIVE IMOUESottt oo oo ettt ettt e e e e et e e ettt s mennmmmmmmmeesbbnn s e eeaaeeenes 113
10.2.1 BUFEI Fill MOttt e e e e et s mmeemmmmmmmm e e e e e eeeeaanns 113
10.2.2 Packet-per-Buffer MOGE..........uuuii e c———— 114
10.2.2.1 Command.xferStatus and Command.resCount UPAAteS.........cceuuruuuuiiirieiiiiiiiiie e
L10.3 IR CONEXE REQISTEISuui i iiiiii ittt e ettt e e e r e e e et e e e e et e e e e eta e e s mo——— et a e e e eeas 115
10.3.1 COMMANAPLE .ottt e e e e e e eebb e as S .115
10.3.2 IRContextControl register (Set and CIEar)ocvveiii i e e e e e 116
10.3.3 Isochronous receive conteXtMatCh regiSter.........coovviuiiii i e e e e e 118
10.4 I1sochronous receive DIMA CONTIOIIBTot e e e e e eeee e 118
10.4.1 Isochronous receive multi-cChannel SUPPOIT.......coooiiiiiiiiii e e 119

Page viii Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

10.4.1.1 IRMultiChanMask registers (set and Clear)c.ccoeiiiiiii i 119......
10.4.2 Isochronous receive single-channel SUPPOIT i e 120
10.4.3 DUPlIiCAte ChANNEISee e et seee e e e e mmmmmn e e e eeeeees 120
10.4.4 Determining the number of implemented IR DMA CONEXISuuuuiiiieiiiiiiiiiiie e 120
LO.5 TR INEEITUPES ...ttt e ettt e et et e et e e e e et e e e erba s e e e e s
10.5.1 cyclelnconsistent Interrupt
10.5.2 DUSRESEL INTEITUPL ...ttt ettt e et ettt e bbb e e e e e et e ena e e e e e eeebana e eas
10.6 IR DAta FOIMIALSceuneiiiii ettt ettt ettt e et et e et e et e e et ea e e e et —— 11222 e 2 e e e e reas
10.6.1 bufferFill mode formats
10.6.1.1 IR With header/trailer.........cooviiiii e e e e e e e e e 122
10.6.1.2 IR without header/trailer..........cooiiiiiii e 122
10.6.2 packet-per-buffer mode fOrMALSoouuueiiii e 123
10.6.2.1 IR With header/trailer.........coooiiiiii e e e e e e e e 123
10.6.3 IR WithOUt NEAEIIAIIETeeii e e e e e e e e e e 123
L1, SEIF ID RECEIVE. ... oottt e oo ettt ettt oo e e e et e Smeaeameenmnm e eeeeeeeeabban e e e eeeeeeebbannn s 125
11.1 Self ID BUffer POINTEr REQISTEIciiii e e e e e e e e e et s e emmmmmne e e e e ranneeees 125
S T | 1 B @0 0T =T |] (= N 125
L11.3 SEIF-ID FBCRIVE ...ttt e e ettt ettt e+ s £ £ £ £ 551 e e e e e e e e enee 126
11.4 Enabling the SEIfID DIMA ... et e et e e e et e e e e et e e e e et e e e e et s e e e et e eaearaaeaes 127
11.5 Interrupt Considerations for SEIfID DIMAue et a e e e 127
11.6 SelflIDs Received Outside of BUS INItIAlIZATION..........uueiiiiiie e 127
12, PRYSICAI REOUESTS ...ttt e oottt e e e e e ettt ettt oo e e e et eemmemmmmmmmmmasss e e eeeeeeestbbnn s aeeaaaeenes 129
12.1 Filtering PRYSICAl REQUESTSuii it e e e e e e e s e e e e eena s e e e eeaeennes 129
12.2 POSEEA WIILES ...ttt ettt oo e e et ettt e oo e e et e e ettt s £ £ £ 555114222 eeeebees 130
12.3 PRYSICAI RESPONSES ...ttt ettt e ettt ettt e e e e e et ettt bbb s eeemmmm e aaaaessbannaeeeeaaeees 130
12.4 PhySiCal RESPONSE RETIESuiiieiiiiiiiiti ettt e ettt e e e e e et ee e e e e e e e eeeebbbaa e e ee s 130
12.5 Interrupt Considerations for Physical REQUESTESuuuiiiiiiiiiiiii e 130
12,6 BUS RSB ..ottt a et e meemmmmmenmn e e e eea e e e en e e eraanas 130
13, HOSE BUS EFTOIS ..ttt ettt e ettt e ettt e e et et e e et etaa e e et e mmm e e eemmma s e eeaba e eeeebbn e eeeebnaeaennnnses 131
13.1 Causes Of HOSt BUS EITOISoii i
13.2 Host Controller Actions When Host Bus Error Occurs
13.2.1 DeSCHPLOr REAM EFTOX ...ttt e et ———— e
13.2.2 XFErStAtUS WIIEE EFTOF ..ottt e ettt et e e e e e ernenn e e eeeeeeees
13.2.3 Transmit Data REAA ErTOr.........u ettt e e e eee e e e e e eeees
13.2.4 I1sochronous Transmit Data WIte EFTOrcooi oo eeeeeeenaeee
13.2.5 Asynchronous Receive DMA Data WItE EITOrcocuuiiiiiiiiic e e e e et
13.2.6 Isochronous Receive Data WIte EFTOruuuiiiiiiiiiiiiii e ceeeeemmmmmne
R T A =)74 of= LI == To I 4 o] U
13.2.8 POSIEA WIIE ETTOF ... ittt ettt e et ettt bbb e e e e e e e s eemmemmmmmmmmms e s e es
13.2.8.1 PoStedWriteAddreSs REQISIENuuiiiiiii et e e e e e e s wemmmmans
13.2.8.2 QUEUE RUIBS......ui ittt e et e e et e e e e et e e e e et e e e et e e e ennnaeaeeeeen
Annex A. P1394A enhancements required for 1394 Open HClooooiiiiiiiiiiiiie e e ee e e 137
ANNEX B. PCIINTEITACE ...ttt e ettt e e e e ettt ettt b mmmmmmmeeen e e e e e e e et eebbba e e eeeaeees 139
B.1 PCI CONfIQUIAtioN SPACEcouueiiiiieeiiieiitie ettt e e e ettt ettt e e e e et e e s memmmmmmmmmmnm e s bbe e e as 139

B.2 Busmastering Requirements

Copyright © 1996,1997 All rights reserved. Page ix

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

B.3 PCI Configuration Space for 1394 OpenHCI With PCl Interface ..o 139.....
B.3.1 COMMAND REGISIEIceiiiiiiiiiiiiieeeee e 140
B.3.2 STATUS REQISTEI ...uttttttiiiititiiiteeietttee et e et e ettt e ettt e ettt ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 141
B.3.3 CLASS_CODE REQISIENuuuiiiiiiiiiiiiiiiieiteteereieb e e e s— 141
B.3.4 REVISION D REQISIEN ...ttt e e e e et e e e e et e eene e e ennnn e eanans 141
B.3.5 BASE Al 0 REQISTEI ittt i e e e e e e e e et e e e et e e e et ennmm——————————ata s 141
B.3.6 CAP_PTR REGISIEI (O] ... eeiitiiitiiiie e e ettt e ettt e e et ettt e e e e e et eetbba s s smmmmmnnnnmms e 142
2 o O I = [I O o] B =0] (] PP 143
B.5 PCI Expansion ROM for 1394 OpenHCI wammnn. 143
o Ol o O ST Lo =l 1 (o] £ TP UPPPTT 143
Annex C. Summary of Register Reset Values (INfOrmative)coouuiiiiiiiii i e e 145
Annex D. Summary of Bus Reset Behavior (INformative)cooouuiiiiiiii i emmmmmeemm e 151
D1 OVEIVIBW ...ttt e ettt ettt oo e e e et ettt e b oo e e e e et eeaaaa s emmemmmmmm e e ee e et ebban e aeaaaaee 151
D.2 Asynchronous Transmit: REQUEST & RESPONSEooiiiiiiiiiiiiii ettt e e s mmmmmmmmmnnes 151
D.3 Asynchronous Receive: REQUEST & RESPONSE.......uuuuii ittt ettt e s e eee e e e e e e 151
DI =Yool o o] o[10 IS I r= 1 0 <1 1| AP O TR USUPPPPIN 151
D.5 ISOCHIONOUS RECEIVEttt e e e ettt e e e e e et e e eaaaaeeeeennn e e eeeeeeesrannns 151
D.B SEIF ID RECEIVE. ... it e ettt e e e e e e et et ¢ s 42222ttt e e b s 152
D.7 Physical REQUESIS/RESPONSESceiuiiiiiiieeiieeetit ettt e e e et e et e e e e e e e et bbb emmmmm e eaaeesaa e eeas 152
D.7.1 PRYSICAl RESPONSE. ...ttt e ettt e e et e e e e bbb s e e e e e e e 152
D.7.2 PRYSICAl REOQUESTES. ...ttt e ettt e e e e e e et e et b eeeeeeeeeeeernnanns 152
DR S 00T o] B =01 (=] PN 152
Annex E. IT DMA Supplement (INFOrMEaLIVE)..........u ettt e e e e e e e eea e e e e e aeeeees 153
E.L IT DIMA BERAVION .. .ttttttiiiitiiiiiett ettt s e e s s s £ 1188888 R e R e e e nnnr e 153
E.2 IT DMA Flowchart Summary .153
E.3 DMA-sIde IT DMA fIOWCRHAIT.ot e e e e e e ee e 153
E.3.1 DMA-SIE tOP NAIT... ..ot e et e e e e e e e e aeees 155
E.3.2 DMA-side DOttom Nalfoooo i e s 155
E.4 Link-side IT DMA fIOWCRAIT ...ttt a e e e e e e e e e eennaaas 156
E.4.1 LiNK-Side tOp NaAIfo e 156
E.4.2 Link-side DOttom Nalf ..o e 158
Annex F. Sample IT DMA Controller Implementation (INfOrmMative)oooiiiiiiiiiii e 159

Page x Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Listoffigures

Figure 1-1 — 1394 Open HCI conceptual bIOCK diagramcoooeiiiiiiiiiiiie et e e 3
Figure 3-1 — ContextControl (set and clear) register FOrMAaLccoooi e 17
Figure 3-2 — CommandPtr regisSter fOrMALoooiii i e e e e e e e s e e e e e e 21
Figure 3-3 — Flow Chart for Processing @ DIMA CONEXTuuuiiiiiiiiieiiiee et e 24
FIQUre 5-1 — VEISION FEOISTEI .ioiiiiiiiiiiiiiii i
Figure 5-2 — GUID ROM register

Figure 5-3 — ATRETIES MEQISTEIuuuuuuiitiiiiiiiiiiiitietiteteeeeeeeeeeaeabeeeessseeeesseeseeseessseessseeeeeeeeennee

FIQUIE 5-4 — CSR UALA MEQISTENeeiiiiiiiiiiiiiiiie ettt ettt ettt ettt ettt ettt ettt ettt eeeeeeeeeee et eeeeeeeeeeeeeeeeeeeees
FIgure 5-5 — CSR COMPAIE FEOISTEI . ..iiiiiiiiiiii e ettt ettt e e ettt ea bt e e e e e e eeeettbea s eesaaaeenmmmmmmeessssnn e aeeeaeeees 38
FIQUre 5-6 — CSR CONIOI FEQISTET ... e et ettt e e e e e e e e ettt e s eeeemen s e e e e e eeeanbann e aeeaas 38
Figure 5-7 — Config ROM NEAUET FEQISTEIuutiiiiiiiiiiiiiiiieiiit ittt e e e e e s s s s 39
Figure 5-8 — Bus ID register

Figure 5-9 — BUS OPLIONS FEOISIET .. .ot ——— ettt ettt e e e e e e e e

Figure 5-10 — GlobalUniquelDHi register
Figure 5-11 — GlobalUniquelDLo register
Figure 5-12 — Configuration ROM Mapping rEQISTEruuuuuuruuuuimuriiiiiiniiiinierierirnereeneereneennssss s m——— 42

FIQUre 5-13 — VENAOIID FEOISTET ... 22 e e e e e e e neae e e ettt e et eeeeeeeeeeeeees 42
FIgure 5-14 — HCCONIIO! FEOISTETuuuiiiiiiiiiiiiiiiete bbb e e e 43
Figure 5-15 — FairN@SSCONIOl FEUISTEI ..o e aaeeas 45
FIgure 5-16 — LINKCONTIOI FEOISTET ...ttt et e ettt e e e e et e e et b b mmmmmmmmmms e s e e e e e e e eesbrnnn s 46
FIQUIE 5-17 —— NOUE ID FOUISTEI ...uuttttttuttututttittiiittteteeeeeeteeeeeeeee e e e e s e e e e e e s e s e e e s e e e e e e e e e e e ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 47
FIgure 5-18 — PHY CONLIOl FEOISTEI ...ttt e ettt e e e e e e e e eeette e meeemmmmmmeeeesbbnn s s eeaeeeeen 48
Figure 5-19 — 1SOChronous CYCle tIMEr FEOISIETccoii e 49
Figure 5-20 — AsynchronousRequestFilterHi (set and clear) registerccccoooueuiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeees 50

Figure 5-21 — AsynchronousRequestFilterLo (set and clear) registerccccoovveviiieiiiiii e smmmccceeeeenems D0
Figure 5-22 — PhysicalRequestFilterHi (set and clear) register
Figure 5-23 — PhysicalRequestFilterLo (set and clear) register
Figure 5-24 — 48-bit Physical Upper BoUNdccccccciiiiiiiiiiii

Figure 5-25 — Physical Upper Bound regiSterooooiiiiiiii

FIQUIE B-1 — I EV Nt T OIS Or i e aaaaaaaens
FIQUIE 6-2 — INIMASK FEOISTEI ...eeiiiii ettt oottt e e e e e et ettt e e e e e e et ettt bt e e ennmmmmmmma s eeeessannn e eeeeeeeennnns
Figure 6-3 — isoXmitIntEvent (set and clear) register
Figure 6-4 — isoRecvINtEvent (Set and Clear) FEQISTENu i uiiiiiiiiiiiiiiiiie bbb ———— e
Figure 7-1 — OUTPUT_MORE deSCIPLOr FOIMMALuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieiieiieieseeeesaseseeseseesseeeesesesssssssesssessnnnnnes
Figure 7-2 — OUTPUT_MORE-Immediate descriptor format
Figure 7-3 — OUTPUT_LAST desCriptor FOIMALoooiiiiiiiiiiee e e
Figure 7-4 — OUTPUT_LAST-Immediate descriptor fOrmat ...
Figure 7-5 — timeStamp fOIMAL ..o et
Figure 7-6 — CommandP1tr regisSter fOrMALooooiiiiiiiee e e e e e e e e e e e e e e
Figure 7-7 — ContextControl (set and clear) register fOrMAalcccooo e
Figure 7-8 — Quadlet read request transSmit FOIMALcooiiiiiiiiii e e e
Figure 7-9 — Quadlet write request transmMit FOrMALouuueiiii i e
Figure 7-10 — Block read request transSmit FOrMAaloooiiiiiiiiiiiiiii
Figure 7-11 — Write request transmit FOrMatcccccoiiiiiiiii e

Figure 7-12 — Lock request tranSmit fOrMALuuuuiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeee e

Figure 7-13 — PHY packet transmit fOrmatccccooviiiiiii e

Figure 7-14 — Write response transmit format
Figure 7-15 — Quadlet read response transmit fOrMatiiiiiiiiiiii e ee e e e e e e e eeees
Figure 7-16 — Block read response transmit format
Figure 7-17 — Lock response transSmit fONMALooooiiiiiiiii s
Figure 7-18 — Asynchronous stream packet FOrmMatooiiiiiiiiiiiii e e e e
Figure 8-1 — INPUT_MORE deSCriptor FOMMALoiiiiiiiiiiiiiie ettt oo eeen e

Copyright © 1996,1997 All rights reserved. Page xi

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Figure 8-2 — DUfferFill FECEIVE MOUEciiiii et e e e e e e et e e e+ emmm—— et 221 e e e e e tn s 83
Figure 8-3 — CommandPtr regiSter FOrMALiiiiiiiii e e e e e e e e e e e e enmae et eeeaaa s 83
Figure 8-4 — AR ContextControl (set and clear) register formatccoooviiiiiiiii e, 84
Figure 8-5 — AR DMA packet trailer TOrMALcoooiuiiiii et e e e e e e e eeaeenes 86
Figure 8-6 — AR Request Context Bus Reset packet fOrmat ..o e 1 86
Figure 8-7 — Quadlet read request reCeIVE TOIMALoii i e e e e e e
Figure 8-8 — Write resSpoNnSe reCeIVE TOMMAL ..ottt e e e e e e e e e e e e e e e e eeeebaaan s
Figure 8-9 — Quadlet write request reCeIVE FOIMALccoiiiiiiiii e e e e e
Figure 8-10 — Quadlet read response receive format
Figure 8-11 — Block read request reCeive FOrMEALoi oo eeeee e e e
Figure 8-12 — Block write request reCeive FOIMALooiiiiiiiiii e e s
Figure 8-13 — Lock request reCeIVe TOIMALoooiiiiiiiii e ereee e e e e nmmm e e e e e e eeebbaan s
Figure 8-14 — Block read response reCeive fOIMALoooiiiiiiiiiiii e eeeeee e e mmmmmme e e eeeeeaeas
Figure 8-15 — Lock response receive format
Figure 8-16 — PHY packet reCeIVE TOIMALuuiiii ettt — ettt s
Figure 9-1 — OUTPUT_MORE command descCriptor fOrMALccoiiiiiiiuiiiiieiiiieiiiie et 96
Figure 9-2 — OUTPUT_MORE-Immediate descriptor fOrmMatooooiiiiiiiiiiin e e

Figure 9-3 — OUTPUT_LAST command descriptor fOrmatoiiiiiiiiiiiiiiii e

Figure 9-4 — OUTPUT_LAST-Immediate command descriptor format
Figure 9-5 — STORE_VALUE AESCIIPION ...ttt ettt ettt e et e et ettt 2225 b1 s
Figure 9-6 — CommandPtr register FOrMaliiiiiiiii e e e e e et e nm e e e e nmn e rta e e eenens
Figure 9-7 — IT DMA ContextControl (set and clear) register formatcooiiiiiiiii e,
FIigure 9-8 — ITDMA SUIMIMATY ...iiiiiieeiiie e et e ettt e e et e e e e et e e e e et e e e e at e e ee et eeeetan e eeatan e e eeeanaserennssaesennnsaeeesnnnns
Figure 9-9 — Isochronous transmit cycle 10SS eXample ... e s
Figure 9-10 — Isochronous transmit FOrMALoooiiiiiiiii e mmmmm———————— e
Figure 10-1 — INPUT_MORE/INPUT_LAST descriptor fOrmatcoouuiuiiiiiiiiiiiiiii et
Figure 10-2 — IR BUFfer Fill MOE oo e e e e e e e e et er— 1112t e 22t e e e eanas
Figure 10-3 — packet-per-buffer reCeIVE MOTEcoooiiiiiiii e e e e s
Figure 10-4 — CommandPtr register FOrMaLccoouiiiiiiii e e e e e e e e e e e et eeenaas
Figure 10-5 — IR DMA ContextControl (set and clear) register format
Figure 10-6 — IR DMA ContextMatch register formatccoooiiiiiiii i,
Figure 10-7 — IRMultiChanMaskHi (set and clear) registerccoeeviiiieiiiiin e,
Figure 10-8 — IRMultiChanMaskLo (set and clear) register ..
Figure 10-9 — Receive isochronous format in bufferFill mode W|th header/traﬂer ...
Figure 10-10 — Receive isochronous format in bufferFill mode without header/trailerccccoooeviiiiieinnnnn.n.
Figure 10-11 — Receive isochronous format in packet-per-buffer mode with header/trailercccccvvvnnnes
Figure 10-12 — Receive isochronous format in packet-per-buffer mode without header/trailer .
Figure 11-1 — Self ID BUffer POINtEr FEOISIEEiiiii et e e et e e s —— 111 eeeees

Figure 11-2 — Self ID COUNT FEOISTEL . .ovviiiiiiii ettt e e e e e e e e e et et e e e et e e eeeeenaneata e eeeatnaeeeennns
Figure 11-3 — Self-ID receive fOrMatcooouiiiiiiiii e et s

Figure 13-1 — PoStedWrite AddreSSHI FEQISIENuu i e e e e et e e e e e e e et e e e enens
Figure 13-2 — PoOStedWIriteAdAreSSLO FEQISIENiiiiiii e e e e e e et e e e et eeeemnaeeeeeasaaaaes
Figure 13-3 — Posted WIite ErrOr QUEUEcoeiuiieeiiiie e et e ettt e e et e e e et e e e e et e e e e et e e e e eanneeenaannaeeesnnaeeees
Figure B-1 — PCI CONfIQUIALION SPACEiiiiiiiiiiiiiiie ettt e ettt e ettt e e e e et e e+ £ e e s b s
Figure B-2 — Pointers to OHCI Resources in PCl Configuration SPacCeoiiiieiiiiiiiiiiiiieeeeeeeiiinie e eeees 140
Figure E-1 — IT DMA DMA-SIAE FIOWCRNAITcvuiiiieiii et e e et e e e e e e e et s e e e e e mmaneeeaannnaeaees 154
Figure E-2 — IT DMA LinK-Side FIOWCRAITuiiiiiiii et e e e e et s e e e nmmmn e e e e raaeeaes 157
Figure F-1 — DMA Cycle Matching CONtiNUUM ... oo e e e e e et e e nmmmne e e e eeeas 159
Figure F-2 — IT DMA Controller counters and cycle matching logiCcooeviiiiiiiiiii e ccceeemmmaes 160
Figure F-3 — IT DIMA FIOWCRNEAIT ...t e et e e e e e et e e e e et e e e et s mm—— 11 a e e e 2t neae e 161
Figure F-4 — Process IT Contexts FIOWCNAIiiiiiii e e e e e e e e e e enaas 162
Figure F-5 — SKip IT CoNteXtS FIOWCNAITooouiiiiiii et eee e e e e nmmmme e e e e eeenaaaa s 163

Page xii Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Listoftables

Table 1-1 — DMA cONtrollers And CONTEXESoiiiiiiiiiiiiiiiiiiiiii ittt ettt e e e e e e e e aaaaa s s e e e e e e e e a e e aes 4
Table 1-2 — Link generated aCKNOWIEUGESuuiiiiiiiiiiiiiiiiiii ettt et e e e+ sr— s 7
Table 2-1 — read/write register field ACCESS TAUSiviiiiiiiiiii e 11
Table 2-2 — Set and Clear register field 8CCESS TAUSiviiiiiiiiiiiiiiiiiiii 12
Table 2-3 — Register field reSEL VAIUESoo i e ettt emeeeee e e s m e e e bbb s e e e eeeaeees 12
Table 3-1 — ContextControl (set and clear) register deSCriptioncccccvvviiiiiiiii s e 1T
TaDIE 3-2 — PACKETL EVENT COUERS ...uutuiuiiiiiiiiiiiiitiitit ittt b bbb e s s e eeemeeemmmnn £ e e e e e eeeeeeeeeeeeeeees 18
Table 3-3 — CommandPtr register deSCrPLIONoooiiiiiiii i 21
Table 3-4 — CommMaNdPLr FEAU VAIUES bbbk eeeeeeememeenen e s e e e eeeeeeeeees 21
Table 3-5 — DMA SUMMABIY ...oiiiiiiiiiiiiii e e 28
Table 4-1 — 1394 Open HCI regiSter SPACE M@vvrrrrrurrunreruerrenenseeeteesnseseessssessseseseeeesseseeeeeeesmemaaaaamaamaamssssnnnnnes 29
Table 4-2 — Asynchronous DMA Context NUMber asSigNMENTS ..., 29
Table 4-3 — REQISIEr AUUMNESSES .. .ceiiuiiie ettt e e ettt e s e e et et eetbb s e e e e et eetttb e aaeaaaaeeesssnnnaeeeaeeenennns 30
Table 5-1 — Version regiSter fIElUSooviiiiiiiiiiiiii e 35
Table 5-2 — GUID ROM regiSter fIElUScooiiiiieeeeeeeee e i £ £ 36
Table 5-3 — ATRELNES regiSter fIEIASieieiiiiiiiiiiiie ettt e e e e e e e e e e e e eeees s e e e s e e e e aas 37
Table 5-4 — Serial BUS REJISIEISooiiiiiiiiiiiiiiiiiii e 38
Table 5-5 — CSR regisSters’ fIRIUScooi i ettt st e e e et taaa s 39
Table 5-6 — Config ROM header regiSter fIElUSu i i e 39
Table 5-7 — BUS ID register fIelds ... 40
Table 5-8 — BUS OptioNS regISter fIEIASuuiiiiiiiiiiiiiiiii e e 40
Table 5-9 — GlobalUniquelD regiSter fIRIUS e 41
Table 5-10 — Configuration ROM mapping register fIeldsS ...t e s 42
Table 5-11 — VendorID regiSter fI@IUSuuuuuuiuiiiiiiiiiiiiiiiiii bbbt ee e e e e ee e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeees
Table 5-12 — HCCONLIOl regISLEr fIEIUSuueiiiiiiiiiiiiiiieii bbb e e e e e e e e e e e e e e e e eeeeeeeeeees
Table 5-13 — FairnessControl register fileldS ...

Table 5-14 — Packet types governed by FairnessControl

Table 5-15 — LinkControl register fieldseueiiiiiiiiiiiiiiiiiiiiiie e

Table 5-16 — Node ID register fIells ...
Table 5-17 — PHY coNtrol regiSter fIElASuuuuiiiiiiiiiiiiiiiiiiiiiieie ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees
Table 5-18 — Isochronous cycle timer register fIElUSeiiiiiiiiiiiiii e
Table 5-19 — AsynchronousRequestFilter register fields

Table 5-20 — PhysicalRequestFilter regiSter fIeldScoooo oo
Table 5-21 — Physical Upper Bound register fIelds ... eeeee e e e e e e e
Table 6-1 — IntEvent regiSter deSCIPLIONoooiiiiiiiii
Table 6-2 — INtMaSK regiSter dESCIPTIONiiiiiiiiiiiiiiiiiiie ettt e et e e ee e et e e e ee e e e e ee e e s e e e e e e e eeanees s s s e e s e a e e e e eaaas

Table 7-1 — OUTPUT_MORE descriptor element summary . .
Table 7-2 — OUTPUT_MORE-Immediate descriptor element summary

Table 7-3 — OUTPUT_LAST descriptor element SUMMIEIYcoooioeooi e nnnsssnsnsnnees
Table 7-4 — OUTPUT_LAST-Immediate descriptor element SUMMANYeueerurrirmmmiemmmmmnerieninnnneeeneesss s 63...
Table 7-5 — Z valu@ @NCOAINGviiiiiiiiiiiiiiiiiiie ettt e et e et e et et et e e e s e

Table 7-6 — timeStamp description

Table 7-7 — Results of timeStamp.cycleSeconds - cycleTimer.cycleSecondsccoooiiiiiiiiiiiiiiin e 66...
Table 7-8 — timeStamp.cycleCount-cycleTime.cycleCount EXxample 1cccccoviiiiiiiii e 67
Table 7-9 — timeStamp.cycleCount-cycleTime.cycleCount EXample 2ccccooiiiiii e 67
Table 7-10 — timeStamp.cycleCount-cycleTime.cycleCount Example 3 ... 67.
Table 7-11 — ContextControl (set and clear) register desCriptionccccoviiiiiiiiii e e 68
Table 7-12 — Quadlet read request transmit fIEldS ... 71
Table 7-13 — Quadlet tranSMIt fIEIASui i e et —— et a e e e aeas 72
Table 7-14 — BIoCK transmit fIElAScoooiiiiii i mmmm e e bbb 74
Table 7-15 — Write response tranSMIt fIEIASu.uuuuuiiiiiiiiiiiiiiii bbb e e e e e e e e e e eeeeeeeees 76
Table 7-16 — Quadlet tranSMIt fIEIASui i e et ——— et a e e e aeas 77

Copyright © 1996,1997 All rights reserved. Page xiii

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 7-17 — BIOCK transSmit fIEIASouuueiiiee i ettt e s e eenemmm e e e e e e e e tbba e 78
Table 7-18 — Asynchronous stream packet fIeldScoooi i 79
Table 8-1 — INPUT_MORE descriptor element SUMMATYuuuiiiiaiiiiiiiiii ettt e e e e eeabbi s seeeeeeeeeeenaaees 81
Table 8-2 — AR ContextControl (set and clear) register deSCriptioNoocoiiiiiiiiiiiii e e 84
Table 8-3 — AR DMA Traller fIEIUScouuueiiii ettt e+ ¢ c———— e e e e e e nbbaan s 86
Table 8-4 — AR Request Context Bus Reset packet descCriptionoiiiiiiiiiiiiiiii e e e eeeae 87
Table 8-5 — ASYNCN FECEIVE TIEIUS ...covee i e e e e e et mm—— et a e e e et s 88
Table 9-1 — OUTPUT_MORE descriptor element summary .. ST PPPPPPRRPSRRRN © | o
Table 9-2 — OUTPUT_MORE-Immediate descriptor element summary ... a7....
Table 9-3 — OUTPUT_LAST descriptor €lement SUMMATYcoioiiiiiiiiiiiie ettt e e e e eeeennneeeeeas
Table 9-4 — OUTPUT_LAST-Immediate descriptor element summary

Table 9-5 — STORE_VALUE descriptor element SUMMAIYcoooeeiiiiiiiiiiie et eeeeeeeees

Table 9-6 — Z Value €NCOUING ...covviiiiiiii e e e e e e e e e e e e et e e e e et e s e mmm—— 11

Table 9-7 — IT DMA ContextControl (set and clear) register deSCrPLIONcooiiiiiiiiiiiir i s
Table 9-8 — 1S0Chronous tranSMIt fIEIASuueie e e eeee e e e e e eees

Table 10-1 — INPUT_MORE/INPUT_LAST descriptor element SUMMAIYocooiiiiiiiiiiiineeeeeeeiiiiane e 111.......
Table 10-2 — Z ValUE ENCOUINGuuuiiiiiiii et e e e et e e e e et e e e eeta e e e e e ta s eom— 111 e e e e st e s 112
Table 10-3 — IR DMA ContextControl (set and clear) register desCriptioncccuuiiiiiiiniiiieiiiii e 116
Table 10-4 — IR DMA ContextMatch register deSCHPLIONcooiiiiiiiiiie e e e ee e 118
Table 10-5 — I1SOChronous reCeIVE fIElUSoouuueiii i et e e e e e e e e e s 121
Table 11-1 — Self ID BUFfer POINIEr FEQISIEIuu i e et e emm— e 125
Table 11-2 — Self ID COUNE FEOISIEI . .ieiiii et e e e e et e e e e et e e et e at e e e e et s e e e et e eeettn s aeeetanaaaees 125
Table 11-3 — Self-ID reCeIVE fIEIUSco i et eee e e e e n e e e e e e e e e 126
Table 13-1 — PostedWriteAddress register deSCrPLIONuuuuiii i e e oo eee e s 134
Table B-1 — COMMAND REQISIET ...uuiiiiiiii et e e e e e e et e e e et e e e e et e e e s tnn e eennnnsaeeesnnaaeeennns 140
TaDIE B-2 — STATUS REQISTEI . .oiuiiiiiiii ettt et e e e e e e e e e e et e e e e ettt e e e et s e e e et e eeeaan s eeestnaeresnnsaerennns 141
Table B-3 — CLASS _CODE REQISIEIciiiiiii et e et e et e e e e e e e e e eta e e s mmmmmmm—— e e e eeas 141
Table B-4 — Base_Adr_0 REQISIENoiiiiiieiii ettt e e e e e et et e et et e s mmeeemmmm——en e eeeta e e eetan s 142
Table B-5 — CAP_PTR REQISIEI ..ouuiiiiiii ittt e e e e e e e e et e e e e et e e s nmm———— e a2t 142
Table B-6 — PCI_HCI_CONLrOl REQISTENcvvuiieeiiii ettt et e e e e e e e e e e e et e e nnneseennn e eesaneeeeenans 143
Table C-1 — RegIiSter RESET SUMIMAIYc.uuiiiiiiiieeeiiie e e e e r e e et e e e e et e e e eat e e e eata e eeessn s mmeemmmmmeen e eeeesnneeeenen 145

Page xiv Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

1. Introduction

1.1 Related documents

The following documents may be useful in understanding the terms and concepts used in this specification. The docu
ments are for general background purposes only and are not incorporated into and do not form a part of this specificatior

[A] IEEE 1394-1995 High Performance Serial Bus
IEEE, 1995

[B] ISO/IEC 13213:1994 Control and StatusgiRéer Architecture for Microcomputer Busses
International Standards Organization, 1994

[C] IEEE P1394A
IEEE Draft Standard for a High Performance Serial bus (Supplement), Work-in-Progress

The 1394 Open HCI requires certain features proposed for the IEEE P1394A update. There are features proposed for tt
PHY layer, link layer and for the bus manager. See Annex A., “P1394A enhancements required for 1394 Open HCI,” for
the complete requirements list.

All references to 1394 in this document refer to IEEE 1394-1995 ([A] above) unless otherwise specified.
Following IEEE conventions, the term “quadlet” is used throughout this document to specify a 32-bit word.

1.2 Overview

The 1394 Open Host Controller Interfag@pen HCI) is an implementation of the link layer protocol of the 1394 Serial
Bus, with additional features to support the transaction and bus management layers. The 1394 Open HCI also include
DMA engines for high-performance data transfer and a host bus interface.

IEEE 1394 (and the 1394 Open HCI) supports two types of data transfer: asynchronous and isochronous. Asynchronou
data transfer puts the emphasis on guaranteed delivery of data, with less emphasis on guaranteed timing. Isochronous d
transfer is the opposite, with the emphasis on the guaranteed timing of the data, and less emphasis on delivery.

1.2.1 Asynchronous functions

The 1394 Open HCI can transmit and receive all of the defined 1394 packet formats. Packets to be transmitted are rec
out of host memory and received packets are written into host memory, both using DMA. The 1394 Open HCI can also
be programmed to act as a bus bridge between host bus and 1394 by directly executing 1394 read and write requests
the first 4 GB of node offset addresses as reads and writes to host bus memory space.

1.2.2 Isochronous functions

The 1394 Open HCI is capable of performing the cycle master function as defined by 1394. This means it contains a cycl
timer and counter, and can queue the transmission of a special packet called a “cycle start” after every rising edge of th
8 kHz cycle clock. The 1394 Open HCI can generate the cycle clock internally (required) or use an external reference
(optional). When not the cycle master, the 1394 Open HCI keeps its internal cycle timer synchronized with the cycle
master node by correcting its own cycle timer with the reload value from the cycle start packet.

The 1394 Open HCI supports one DMA controller each for isochronous transmit and isochronous receive, for a total of
two isochronous DMA controllers. Each DMA controller can be implemented to support up to 32 different DMA
channels, referred to &VA contextswithin this document.

Copyright © 1996,1997 All rights reserved. Pagel

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

The isochronous transmit DMA controller can transmit from each context during each cycle. Each context can transmit
data for a single isochronous channel.

The isochronous receive DMA controller can receive data for each context during each cycle. Each context can be config-
ured to receive data from a single isochronous channel. Additionally, one context can be configured to receive data from
multiple isochronous channels.

1.2.3 Miscellaneous functions

Upon detecting a bus reset, the 1394 Open HCI automatically flushes all packets queued for asynchronous transmission.
Asynchronous packet reception continues without interruption, and a token appears in the received request packet stream
to indicate the occurrence of the bus reset. When the PHY provides the new local node ID, the 1394 Open HCI loads this
value into its Node ID register. Asynchronous packet transmit will not resume until directed to by software. Because
target node ID values may have changed during the bus reset, software will not generally be able to re-issue old asynchro-
nous requests until software has determined the new target node IDs.

Isochronous transmit and receive functions are not halted by a bus reset, instead they restart as soon as the bus initializa-
tion process is complete.

A number of management functions are also implemented by the 1394 Open HCI:

a) A global unique ID register of 64 bits which can only be written once. For full compliance with higher level
standards, this register must be written before the boot block is read. To make this implementation simpler, the
1394 Open HCI optionally has an interface to an external hardware global unique ID (GUID, also know as the
IEEE EUI-64). An example device is the Dallas Semiconductor DS2501-EUI-64.

b) Four registers that implement the compare-swap operation needed for isochronous resource management.

Page 2 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

1.3 Hardware description

Figure 1-1 provides a conceptual block diagram of the 1394 Open HCI, and its connections in the host system. The 139
Open HCI attaches to the host via the host bus. The host bus is assumed to be at least 32 bits wide with adequate perf
mance to support the data rate of the particular implementation (L00Mbit/sec or higher plus overhead for DMA structures)
as well as bounded latency so that the FIFO’s can have a reasonable size.

IT
> DMA

IT
FIFO

AT Request
DMA

AT Request
FIFO

AT Response
DMA

AT Response
FIFO

p| Physical Re-
* sponse Unit [

AT Physical
Response FIFO

or=vfor=ufur=v [o>sw

1394 bus
]

host bus
P

internal
| .
registers

Phys Read | o | Physical Read
+— Request Rcv Request FIFO <

1394 Link
and PHY

(bus master)

Phys Write
Request Rcv

Physical Write
Request FIFO <

Host Bus Interface

Gen Request
Receive DMA

AR Request
FIFO

Serial
ROM (Opt)

Gen Response

AR Response
- Receive DMA

FIFO “

Parallel
ROM (Opt)| ™ > Dll\F/TA <]

IR
FIFO <

Self-ID Receive
FIFO <

Self-1D
Receive DMA

orSu|orsu]orsuorsu |[T>S0)

Figure 1-1 — 1394 Open HCI conceptual block diagram
1.3.1 Hostbus interface

This block acts both as a master and a slave on the host bus. As a slave, it decodes and responds to register access wi
the 1394 Open HCI. As a master, it acts on behalf of the 1394 Open HCI DMA units to generate transactions on the hos
bus. These transactions are used to move streams of data between system memory and the devices, as well as to read
write the DMA command lists.

Copyright © 1996,1997 All rights reserved. Page 3

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

1.3.2 DMA

The 1394 Open HCI supports seven types of DMA. Each type of DMA has reserved register space and can support at
least one distinct logical data stream referred to BMaA context

Table 1-1 — DMA types and contexts

DMA type number of contexts
Asynchronous Transmit 1 Request, 1 Response
Asynchronous Receive 1 Request, 1 Responde
Isochronous Transmit 4 minimum, 32 maximpyim
Isochronous Receive 4 minimum, 32 maximum
Self-ID Receive 1
Physical Receive & 0 (not programmable lik
Physical Response those above) T

Each asynchronous and isochronous context is comprised of a buffer descriptor list BAll&dcantext programstored

in main memory. Buffers are specified within the DMA context prograrDlyA descriptors Although there are some
differences from controller to controller as to how the DMA descriptors are used, all DMA descriptors use the same basic
format. The DMA controller sequences through its DMA context program(s) to find the necessary data buffers. This frees
the system from stringent interrupt response requirements after buffer completions. The mechanism for sequencing
through DMA contexts differs somewhat from one controller to the next and is described in detail for each type of DMA
in its respective chapter.

The Self-ID receive controller does not utilize a DMA context program and consists instead of a pair of registers; one to
be configured by software, and one to be maintained by hardware.

The 1394 Open HCI also has physical request DMA controller that processes incoming requests that read directly from
host memory. This controller does not have a DMA context, it is instead controlled by dedicated registers.

1.3.2.1 Asynchronous transmit DMA

Asynchronous transmit DMA (AT DMA) utilizes three data streams, one each for AT DMA request, AT DMA response,
and the Physical Response Unit. These three functions can share resources.

AT DMA request and AT DMA response move transmit packets from buffers in memory to the corresponding FIFO
(request transmit FIFO or response transmit FIFO). For each packet sent, it waits for the acknowledge to be returned. If
the acknowledge ibusy the DMA context will resend the packet up to a software-configurable number of times for
single-phase retry, or up to a software-configurable time limit for dual-phase retry.

When the receive DMA indicates that a physical read has been received, the Physical Response Unit takes over to send
the response packet. The Physical Response Unit can only interrupt the AT DMA response controller or AT DMA request
controller between packets.

The asynchronous transmit DMA supports either the single-phase retry protocol (retry_X) or the dual-phase retry protocol
(retry_Alretry_B).

Page 4 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

1.3.2.2 Asynchronous receive DMA

The asynchronous receive DMA (AR DMA), contains two DMA controllers: the Physical Request Unit and the AR DMA
controller.

The Physical Request Unit takes control when a request with a physical address is received. There are three types
physical addresses: host memory addresses (corresponding to the 4Gbyte address of a typical 32-bit CPU), compare-sw
management addresses, and the bus_info_block. A “complete” acknowledge is sent to all accepted write requests handle
by the Physical Request Unit so no response packets are necessary.

The AR DMA controller handles all incoming asynchronous packets not handled by the other functions in the AR DMA.

It consists of two contexts, one for asynchronous response packets, and one for asynchronous request packets. Eg
packet is copied into the buffers described by the corresponding DMA context program. Note that received lock requests
not targeted to one of the four compare-swap management registers are always handled by the AR DMA request contex

It is recommended that Open HCI asynchronous receive support dual-phase retry.
1.3.2.3 Isochronous transmit DMA

The isochronous transmit DMA controller supports a minimum of four isochronous transmit DMA contexts and can be
implemented to support up to 32 isochronous transmit DMA contexts. Each context is used to transmit data for a single
isochronous channel. Data can be transmitted from each IT DMA context during each isochronous cycle.

1.3.2.4 lIsochronous receive DMA

The isochronous receive DMA controller supports a minimum of four isochronous receive DMA contexts and can be

implemented to support up to 32 isochronous receive DMA contexts. All but one IR DMA context is used to receive

packets from a single isochronous stream (channel). One context, as selected by software, can be used to receive pack
from multiple isochronous streams (channels).

Isochronous packets in the receive FIFO are processed by the context configured to receive their respective isochrono
channel numbers. Each DMA context can be configured to strip packet headers or include the headers and trailers whe
moving the packets into the buffers. In addition, each DMA context can be configured to concatenate multiple packets
into its buffers (bufferFill mode) or to place just a single packet into each buffer (packet-per-buffer mode).

1.3.2.5 Self-ID receive DMA

Self-ID packets (received during the bus initialization self-ID phase) are automatically routed to a single designated host
memory buffer by 1394 Open HCI self-ID receive DMA. Each time bus initialization occurs, the new self-ID packets will
be written into the self-ID buffer from the beginning of the buffer, thereby overwriting the old self-ID packets.

1.3.3 Global unique ID (GUID) interface

The optional GUID (EUI-64) interface is intended to interface to an external ROM device from which the 1394 64-bit
"node_unique_ID" may be loaded. If this interface is provided and an external device is present, the GUID_ROM bit in
the Version Register is set and the GUID will be automatically loaded from the external ROM device following a
hardware reset. This interface is required for Host Controllers that are intended to be used on add-in cards. The specific
of the interface to the external ROM device are outside the scope of this specification.

Copyright © 1996,1997 All rights reserved. Page5

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

1.3.4 FIFOs

Data entering or leaving the FIFO’s is conditionally byte-swapped. The 1394 Open HCI is designed to run in both little-
endian environments (x86/PCIl) and byte-swapped big-endian environments (PowerMac/PCI). Note, however, that the
1394 standard specifies that data is treated as big-endian, with the most significant byte of a doublet, quadlet, or octlet
transmitted first. This means that the data coming through the FIFOs should be byte swapped if it is intended for a byte-
swapped little-endian PCI like the PowerMac (two byte-swap operations leaves the data in the original big-endian 1394
format). Little-endian x86 systems may or may not want the data byte swapped, so there is an Open HCI control flag to
enable byte swapping for 1394 packet data.

1.3.4.1 Asynchronous transmit FIFOs

The asynchronous transmit FIFOs are temporary storage for non-isochronous packets that will be sent from the Host
Controller to devices on 1394. The asynchronous request FIFO is loaded by the asynchronous request DMA unit, the
asynchronous response FIFO is loaded by the asynchronous response DMA unit and the physical response FIFO is loaded
by the physical DMA response unit.

It is not required that these FIFOs be implemented as separate physical entities. A single FIFO can be used for all asyn-
chronous transmit packets as long as the implementation prevents pending asynchronous requests and asynchronous
responses from blocking each other. For example, if a read request is being sent to a 1394 device that is returning
ack_busy, this should not prevent responses from either the physical DMA unit or the asynchronous response unit from
being sent. Furthermore, a busied response from the asynchronous response unit should not block responses from the
physical DMA unit. Other sections of this specification will provide implementation guidelines that will help ensure that

the non-blocking requirements can be met with a single asynchronous transmit FIFO.

1.3.4.2 Isochronous transmit FIFO

The isochronous transmit FIFO, is temporary storage for the isochronous transmit data. It is filled by the ITDMA and is
emptied by the transmitter.

1.3.4.3 Receive FIFOs

Conceptually there are several receive FIFOs for handling incoming asynchronous requests, asynchronous responses,
isochronous packets and self-ID packets. The FIFOs are used as a staging area for packets which will be routed to the
appropriate handler. There is no requirement on the number of hardware FIFOs that must be implemented to provide the
required functionality set forth in this document. However, any specific FIFO implementation must ensure that physical
requests, asynchronous requests, asynchronous responses, isochronous packets and self-ID receive contexts proceed
independently and do not block each other.

For example, if a unified receive FIFO is used and the transaction layer request queue is busy or stopped, all other
received packet types (physical requests, asynchronous responses, isochronous packets, and self-ID packets) must still
pass through the FIFO and be delivered to the transaction layer or host bus interface. Other sections of this specification
will provide implementation guidelines that will help ensure that the non-blocking requirements can be met with a single
receive FIFO.

1.3.5 Link

The link module sends packets which appear at the transmit FIFO interfaces, and places correctly addressed packets into
the receive FIFO. It includes the following features.

« Transmits and receives correctly formatted 1394 serial bus packets.

« Generates the appropriate acknowledge for all received asynch packets, including support for both the single and
dual phase retry protocol for received packets.

Page 6 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

« Performs the function of cycle master.

» Generates and checks 32-bit CRC.

» Detects missing cycle start packets.

» Interfaces to Open-HCI-compliant PHY. (see Annex A.)

» Receives isoch packets at all times (does not ignore isoch packets received outside of the expected period betwee
cycle start and a subaction gap). This allows isoch data to be received even if there is a CRC error in a received cycl
start.

» Ignores asynch packets received during the isochronous phase (such packets are not ack’ed and isoch pha
continues).

The acknowledges generated by the link depend on the type of received packet, the address and the state of the Opent-
FIFOs:

Table 1-2 — Link generated acknowledges

Acknowledge Condition

ack _complete A packet with good CRC in both the header and data block (if there is one) and which flso falls
into one of the following classifications:

a) Any response that can be fully copied into the host memory receive buffer.

b) A write request with the offset address between 48h0 and the configurable

(optional) PhysicalUpperBound-1 or 48’0000 _FFFF_FFFF wheos}ed writesare

enabled, ii) the request will be handled as a physical request, and iii) the number of

outstanding posted writes is within the implementation specific limit.

c) A write request with the offset address between either the configurable (ogtional)

PhysicalUpperBound or 48'h0001_0000_0000, and 48'hFFFE_FFFF_FFFF that can

be fully copied into the host memory receive buffer.

NOTE: For further information on implementation requirements for posted writes, see Section|3.3.3.
ack _pending A packet with good CRC in both the header and data block (if there is one) and which also falls
into one of the following classifications:
a) Any read request that can be fully loaded into the receive buffer.
b) Any lock request that can be fully loaded into the receive buffer.
c) Any block request with a non-zero extended tcode.
d) A write request with the offset address between 48hFFFF_0000_000p and
48’'hFFFF_FFFF_FFFF (the top 4GB, which includes the register space) that|can be
fully loaded into the receive buffer.

ack _busy X, Any received packet with a good CRC in both the header and data block (if there is ope) that
ack_busy A, cannot be fully loaded into the receive buffer. (The choice of _X, _A, or _B depends op the
ack _busy B choice of acknowledge algorithm and the particular “rt” value of the received packet.)

ack _data_error Any received packet with a good header CRC and a bad data CRC.

ack_type_error For a block write request with a good CRC in both the header and data block, this efror ack:

e May be returned when the data_length is larger than the size indicated in the max_rec
field of the Bus_Info_Block of the Host Controller.
< Shall be returned if data_length is larger than maxaretthe request is not handlgd
by the physical response unit.

1.4 Software interface overview

There are three basic means by which software communicates with the 1394 Open HCI: registers, DMA, and interrupts.

Copyright © 1996,1997 All rights reserved. Page7

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

1.4.1 Registers

The host architecture (PCI, for example) is responsible for mapping the 1394 Open HCI’s registers into a portion of the
host’s address space.

1.4.2 DMA operation

DMA transfers in the 1394 Open HCI are accomplished through one of two methods:

a) DMA. Memory resident data structures are used to describe lists of data buffers. The 1394 Open HCI
automatically sequences through this buffer descriptor list. This data structure also contains status information
regarding the transfers. Upon completion of each data transfer, the DMA controller conditionally updates the
corresponding DMA Context Command and conditionally interrupts the processor so it can observe the status of
the transaction. A set of registers within the 1394 Open HCI is used to initialize each DMA context and to
perform control actions such as starting the transfer.

b) Physical response DMA. The 1394 Open HCI can be programmed to accept 1394 read and write transactions to
the first 4 GB of node-offset address and treat them as reads and writes to the 32-bit memory space. In this mode,
the 1394 Open HCI acts as a bus bridge from 1394 into host memaory.

The formats for the data sent and received in all these modes are specified in the applicable chapters.
1.4.3 Interrupts

When any DMA transfer completes (or aborts) an interrupt may be sent to the host system. In addition to the interrupt
sources which correspond to each DMA context completion, there is also a set of interrupts which correspond to other
1394 Open HCI functions/units. For example, one of these interrupts could be sent when a selfID packet stream has been
received.

The processor interrupt line is controlled by the IntEvent and IntMask registers. The IntEvent register indicates which
interrupt events have occurred, and the IntMask register is used to enable selected interrupts. Software writes to the
IntEventClear register to clear interrupt conditions in IntEvent.

In addition, there are registers used by the isochronous transmit and isochronous receive controllers to indicate interrupt
conditions for each context.

Page 8 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

1.5 1394 Open HCI Node Offset (Address) Map

OpenHCI divides the 48-bit node offsets as depicted below:

48'hFFFF_FFFF_FFFF CSR Space } some Physical

48'hFFFF_0000_0000 Upper Address Space

48'hFFFE_FFFF_FFFF

Middle Address Space

48'h0001_0000_0000
48'h0000_FFFF_FFFF -1.

Low Address Space

Physical Range

48’h0000_0000_0000 .J

Figure 1-2 — Node Offset Map

Low Address Spaceis from 48’h0 through 48’h0000_FFFF_FFFF, providing a range of 4GB. Asynchronous read and
write requests into this range can be handled by the Physical Request/Physical Response units, providing an efficier
mechanism for moving asynchronous data. Whether or not a request can be handled in this manner depends on a set
criteria as described in section 12. For write requests which are handled by the Physical Request unit, the Host Controlle
may issue an ack_complete immediately, even before the data has been written to host memory, to maximize packe
transaction efficiency (this is referred to a®asted Writg¢ Or,depending on circumstances, the Host Controller may
instead issue an ack_pending.

Note that there is an optional register that some Host Controller's may implement which provides a means to change th
upper bound of the low address space to a higher address. In this way, 64-bit systems can increase the size of the Physi
Range.

Middle Address Spaceis from 48’h0001_0000_0000 through 48’'hFFFE_FFFF_FFFF. Packets with destination offsets
within this range are not candidates for handling by the Physical Request/Response units, and are instead passed
software for processing. Although there will be added latency while software performs processing, the Host Controller
nevertheless issues an ack_complete for all write requests within this range. This is to maximize packet transactior
efficiency. However, although the node that issued the write request is told (via the ack complete) that the write
succeeded, it is possible that an error may occur and the write does not in fact reach it's destination. This address range
best suited to protocols such as TCP/IP for example which have their own mechanisms for detecting an recovering fron
lost packets.

Copyright © 1996,1997 All rights reserved. Page9

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Upper Address Spacds from 48’'hFFFF_0000_0000 to 48'hFFFF_EFFF_FFFF. Packets with destination offsets within

this range are not candidates for handling by the Physical Request/Response units, and are instead passed to software for
processing. The Host Controller will respond to write requests to this range with ack_pending, and software will issue a
write response with resp_complete only after the data has been written to it's specified destination. This range is best
suited to protocols that do not tolerate lost packets.

CSR Spaceis from 48'hFFFF_FO000_0000 to 48'FFFF_FFFF_FFFF providing a range of 256MB. This range is the
reserved register space as specified in ISO/IEC 13213:1994. Most packets with destination offsets within this range are
not candidates for handling by the Physical Request/Response units, and are instead passed to software for processing.
Some however are handled directly by the Host Controller without involving software and are listed in section 12.

1.6 System Requirements

This Host Controller specification is intended to be largely independent of the type of system to which it is attached. The
intent is that Host Controller designs that follow this specification may be built for many different types of systems and
still adhere to the same programming model. The required system facilities are:

a) Host Controller must be able to initiate accesses of host system memory,

b) Host Controller must be able to modify system memory with byte granularity,

c) Host Controller must be able to signal an exception/interrupt to the host CPU,

d) access of 32-bit entities in either system memory or on the Host Controller must be endian neutral and atomic. No
8-bit or 16-bit access to Host Controller registers are supported.

The 1394 Open HCI does not preclude a system from having multiple 1394 Open HCI controllers.

1.7 Alignment

1.7.1 Data alignment
The 1394 Open HCI must perform these two alignment functions:

a) Translate between the byte alignments of the host-based data and the quadlet aligned FIFO. For instance, if a 5
byte 1394 data packet is to be stored at host bus address 6, then the first two bytes of the first data quadlet in the
FIFO must be stored at host bus address 6 and 7 using a single quadlet write, then the next two bytes of the first
guadlet in the FIFO combined with the first byte of the next quadlet in the FIFO are written to host bus address 8,
9, and 10.

b) Stuff extra zero bytes into the transmit FIFO when the number of bytes to transmit is not an integral number of
qguadlets

1.7.2 Memory structure and buffer alignment

Alignment requirements for host memory data structures and host memory buffers can be found in sections of this
document where those elements are described.

Page 10 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

2. Conventions-Notationand Terms

2.1 Notation

2.1.1 Numeric Notation

Unless otherwise specified, numbers will be represented in Verilog language style. In particular, numbers with a “h”
prefix are hexadecimal, “’b” are binary, and *’d” or those without a prefix are decimal. If a number precedes the “ ' ”,
then it indicates the length of the number in bits. For example, 4'h8 is the binary number 'b1000.

2.1.2 Register Notation

2.1.2.1 Read/Write registers

All register field descriptions are tagged with one or more of the following:

Table 2-1 — read/write register field access tags

access tag

(rwu) name meaning

r read field may be read

w write field may be written from the host bus

u update field may be autonomously updated by Open HCI hardwarg

2.1.2.2 Setand Clear registers

Throughout this document there are Host Controller registers that are identietl asd Clearegisters. These registers

have the property of having two addresses by which they may be referenced by the host. Unless otherwise stated in tf
description of the register, a host read of either address will return the current contents of the register. Host writes.
however, have different effects when addressing the different addresses.

When the host writes to thfeetaddress the value written is taken as a bit mask indicating which bits in the underlying
register are to be set to one. A one bit in the value written indicates that the corresponding bit in the register is to be se
to one, while a zero bit in the value written indicates that the corresponding bit in the register is not to be changed. Simi-
larly, host writes to th€lear address specify a value that is a bit mask of bits to clear to zero in the underlying register,
a one bit means to clear the corresponding bit while a zero bit means to leave the corresponding bit unchanged. It i
intended that writing zero bits to these addresses has no effect on the corresponding bits in the underlying registel
including transient effects that could affect the operation of the Host Controller.

There are several reasons to use this type of register:

* The host doesn’t need to do both a read and a write to affect only a single bit.

* The host doesn'’t risk the Host Controller modifying a bit while the host does a read-modify-write operation, thus
causing unintended effects.

* The host doesn’t have to serialize its access to frequently used registers in order to ensure that conflict with anothe
process doesn’t cause unintended effects.

For set and clear registers that have an undefined value following a reset, it is recommended that software write all one
to the Clear address to ensure the register has a known value.

Copyright © 1996,1997 All rights reserved. Page 11

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 2-2 — Set and Clear register field access tags

access tag

(rscu) name meaning

r read field may be read

S set field may be set from the host bus

c clear field may be cleared from the host bus

u update field may be autonomously updated by Open HCI hardwar¢

2.1.2.3 Register Reset Values

Register field descriptions may be tagged with one or more of the following reset values. This column indicates the value of
the field immediately following a software reset or hardware reset. Except where otherwise noted, the results from a software
reset and hardware reset are the same. Note that the reset column is for software and hardware resets only and does not
include bus reset values (those are discussed as needed in the applicable text).

Table 2-3 — Regjister field reset values

reset value | meaning

x'by or x’hy | Indicates the value (in binary or hexadecimal) of the field upon
completion of a reset. For description of Verilog notation seg
section 2.1.1.

undef Following a reset, the value of this field is undefined and may
contain (any combination of) zero(s) or one(s).

N/A Not applicable. A reset does not have any effect on this field.

Unless otherwise specified, all fields will remain unchanged after a 1394 bus reset.
2.1.2.4 Reserved fields

All reserved fields (indicated by a hatched or grayed-out pattern) are read as zeros (but must be ignored) and must be
written as zeros.

2.1.2.5 Reserved registers

Addresses within the OpenHCI Register Address space that are marked as reserved must return zeros when read and must
ignore writes.

2.1.2.6 Register field notation

In descriptions which refer to specific register fields, the notation fiffwill be used where Rrrrr refers to the register
name andffff refers to the referenced field within that register.

Page 12 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

2.2 Terms

The following terms and acronyms are used throughout this document.

AR DMA
AR DMA Request

AR DMA Response

asynchronous stream
packet

AT DMA
AT DMA Request Unit

AT DMA Response Unit
big endian

bridge
channel
CSR architecture

Config ROM

DMA context

DMA context program
DMA controller

DMA descriptor
DMA descriptor block

EUI-64

Global Unique ID
GUID

GUID ROM

A synchronoufkeceiveDMA .

Refers to the asynchronous receive DMA context that handles all incoming request packets not
handled by th@hysical request unit

Refers to the asynchronous receive DMA context that handles all incoming response packets.

A stream packet for which only a channel has been reserved at the isochronous resource managel
An asynchronous stream packet shall be transmitted during the asynchronous period and not
during the isochronous period. For the same channel number, there is no restriction on multiple
talkers nor upon a single talker sending multiple asynchronous stream packets. Fair arbitration
rules govern the transmission of these packets. Seésaltdwonous stream packahdstream

packet

A synchronou§ransmitDMA .

Refers to the asynchronous transmit DMA subunit which moves transmit packets from buffers in
memory to the request transmit FIFO.

Refers to the asynchronous transmit DMA subunit which moves transmit packets from buffers in
memory to the response transmit FIFO.

A term used to describe the arithmetic significance of data-byte addresses. With big-endian, the
data byte with the largest address is the least significant.

A hardware adapter that forwards transactions between Buses.
Refers to ansochronous channelumber.

ISO/IEC 13213: 1994 [ANSI/IEEE Std 1212, 1994 Editidnfpormation technology - Micropro-
cessor systems - Control and Status Registers (CSR) Architecture for microcomputerhneises
CSR architecture supports the concept of bus bridges, which can transparently forward transac-
tions from one compliant bus to another.

A portion of a node’s 1394 address space defined by clause 8 of ISO/IEC 13213:1994
[ANSI/IEEE Std 1212, 1994 Edition]. The region contains information describing the node and
it's units. The region is read-only to other 1394 nodes. Se&dsd ROMandPCI Expansion
ROM.

A distinct logical stream (not necessarily physical) through the Open HCI which can be described
by aDMA context progranand a minimum of two registers: ContextControl and CommandPtr.

A list of DMA descriptorsvhich identify buffers used for data transfer.

Refers to the mechanism used in support of a specific DMA function. Each controller utilizes and
maintains its own set of registers to perform its specified functionality.

A data structure used to describe buffers and buffer-list control.

A group of DMA descriptors that are contiguous in host memory and can therefore be prefetched
by the Host Controller. The last DMA descriptor in a block contains the address of the next block
as well as a count of the number of descriptors contained in the next block. This count is referred
to as the Z value.

Extended Unique Identifier. S&obal Unique IDbelow.
A 64-bit node unique identifier, comprised of a 24-bit node company ID and a 40-bit chip ID.
SeeGlobal UniquelD.

A hardware component that holds the EUI-64 of the node and is automatically loaded into the
GlobalUniquelD registers of the controller when power is applied. Additional information may
be stored in the GUID ROM and is available via the controller's GUID ROM register. See also
Config ROMandPCI Expansion ROM.

Copyright © 1996,1997 All rights reserved. Page 13

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

hardware reset

HC

HCI

INPUT_*

IR DMA
isochronous channel

isochronous stream
packet

IT DMA
ITF
link layer (LINK)

little endian

Node ID

OHCI
OUTPUT_*
PCI

PCI Expansion ROM

PHY
physical layer

Physical Request Unit

Physical Response Unit

posted write

ROM
RQTF
RSTF

stream packet

quadlet

Refers to a host power reset.

HostController. The device whose interface is defined by this specification.
H ostControllerInterface. The interface defined by this specification.
Abbreviated notation for INPUT_MORE and INPUT_LAST DMA commands.
| sochronouRkeceiveDMA.

Within the packet header of an IEEE 1394 isochronous packet there is a 6 bit channel number.
Receivers “listen” for packets transmitted with particular channel number(s).

A stream packet for which both channel and bandwidth have been reserved at the isochronous
resource manager. Only one talker may transmit an isochronous stream packet during a single iso-
chronous cycle. Isochronous stream packets shall not be transmitted outside of the isochronous
period. See alsasynchronous stream paclkatdstream packet

| sochronoud ransmitDMA.
| sochronoug ransmitFIFO.

The layer, in a stack of three protocol layers defined for the Serial Bus, that provides the service
to the transaction layer of one-way data transfer with confirmation of reception. The link layer
also provides addressing, data checking, and data framing. The link layer also provides an isoch-

ronous data transfer service directly to the applicdtion.

A term used to describe the arithmetic significance of data-byte addresses. With little-endian, the
data byte with the smallest address is the least significant.

This is a unique 16-bit number, which distinguishes the node from other nodes in the®system.

O penHostControllerInterface.

Abbreviated notation for OUTPUT_MORE and OUTPUT_LAST DMA commands.

PeripheralComponent nterconnect. Specification that defines the PCI bus. This bus is intended
to define the interconnect and bus transfer protocol between highly-integrated peripheral adapters
that kr)eside on a common local bus on the system board (or add-in expansion cards on the PCI
bus).

A hardware component on a PCI add-in card that contains the x86 BIOS and/or Open Firmware
required by the device. See alSonfig ROMandGUID ROM

Abbreviation for the physical layér.

The layer, in a stack of three protocol layers defined for the Serial Bus, that translates the logical
symbols used by the link layer into electrical signals on the different Serial Bus media. The
physical layer guarantees that only one node at a time is sending data and defines the mechanical

interfaces for the Serial BUs.

PysicalRequestUnit. Refers to the asynchronous receive DMA subunit that handles physical
requests.

Refers to the asynchronous transmit DMA subunit that handles physical responses.

A write request received by the Host Controller for which the Host Controller sends an
ack _complete before the data is actually written to system memory.

SeeConfig ROMGUID ROMandPCI Expansion ROM
RequestTransmitFIFO. Refers to the FIFO used for asynchronous transmit requests.

ResponseTransmitFIFO. Refers to the FIFO used for asynchronous transmit responses. Used
for AT DMA responses and physical responses.

A 1394 primary packet with transaction code 4’hA. See atyomchronous stream pacleetidiso-
chronous stream packet

A 32-bit word.

Page 14

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

RDMA R eceiveDMA .

ROM ReadOnly Memory.

software reset Refers to a Host Controller reset that is initiated by host software. See section 5.7, “HCControl
registers (set and clear).”

Z block SeeDMA descriptor block

a. Information technology - Microprocessor systems - Control and Status Registers (CSR) Architecture for microcom-
puter busesISO/IEC 13213 [1994], The Institute of Electrical And Electronics Engineers, Inc., New York, NY.

b. Shanley, T. and Anderson, D. [February 198%}] System Architectur@dddison-Wesley, Reading, MA.

c. IEEE Standard for a High Performance Serial Bus, Std 1394-1995, The Institute of Electrical And Electronics Engi-
neers, Inc., New York, NY.

Copyright © 1996,1997 All rights reserved. Page 15

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Page 16 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

3. Common DMA Controller Features
The 1394 Open HCI provides several types of DMA functionality:

a) General-purpose DMA handling asynchronous transmit and receive packets and isochronous transmit and receiv
packets.

b) An inbound bus bridge function that allows 1394 devices to directly access system memory called “physical
DMA.

c) A separate write buffer for the received self-ID packets.

d) A mapping between a 1K byte block in system memory and the first 1K of 1394 Configuration ROM.

This section will describe the common controller features and attributes.

3.1 Context Registers

A context provides the basic information to the Host Controller to allow it to fetch and process descriptors for one of the
several DMA controllers. All contexts (except for SelfID) minimally have a ContextControl Register and a CommandPtr
Register. The format of the ContextControl Registers is DMA controller specific but all ContextControl registers mini-
mally have the bits as shown in figure 3-1 and described in table 3-1. The CommandPtr Registers for all controllers are
the same and follow the format shown in figure 3-2 and described in table 3-3.

3.1.1 ContextControl register

31 30 29 28) 27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4;3 2 1 0
T 1]
spd event
code
| |
r | | | |
run
active
dead
wake
Figure 3-1 — ContextControl (set and clear) register format
Table 3-1 — ContextControl (set and clear) register description
Field rscu |reset Description
run rscu 1'b0 The run bit is set by software to enable descriptor processing for a context gnd

cleared by software to stop descriptor processing. The Host Controller will only
change this bit on a hardware or software reset to set it to 0. See section 3.1|1.1 for
details.

wake rsu undef Software sets this bit to 1 to cause the Host Controller to continue or resume descrip-
tor processing. The Host Controller will clear this bit on every descriptor fetch. See
section 3.1.1.2 for details.

dead ru 1'b0 The Host Controller sets this bit when it encounters a fatal error. The Host controller
clears this bit when software clears the run bit. See section 3.1.1.4 for detailq.
active ru 1'b0 The Host Controller sets this bit to 1 when it is processing descriptors. See

section 3.1.1.3 for details.

Copyright © 1996,1997 All rights reserved. Page 17

1394 Open Host Controller Interface Specification/Draft 0.97

Table 3-1 — ContextControl (set and clear) register description

Field

rscu

reset

Description

spd

ru

undef

Printed 9/19/97

This field indicates the speed at which the packet was received or transmitted. 3’'b000

= 100 Mbits/sec, 3'b001 = 200 Mbits/sec and 3'b010 = 400 Mbits/sec. All other

values are reserved. Spd only contains meaningful information for receive contexts.

Software should not attempt to interpret the contents of this field while the
ContextControhctiveor ContextControWakebits are set.

event code ru

undef

This field holds the acknowledge sent by the Link core for this packet, or af inter-

nally generated error code (evt_*) if the packet was not transferred successfuly.
possible event codes are shown in Table 3-2, “Packet event codes,” below.

The packet event codes shown in the table below are possible values for the five-bit Contex¢@emifield. This field
may contain either a 1394 defined ack code or an Open HCI generated event code.

All

1394 ack codes are denoted by the high (fifth) bit set to 1 followed by the 1394 four-bit ack code as received from 1394
(e.g. 1394 ack_pending = 4’'h2, OpenHCI ack_pending = 5'h12). The list of ack codes provided in the table below is

informative not normative; i.e. for asynchronous packets the event code may be set to any ack code specified in current
and future 1394 standards.

OpenHCI generated event codes have an “evt " prefix and are denoted by a code with the high (fifth) bit equal to 0. In
some cases for isochronous 1/0 Open HCI may generate a 1394 style ack code for Contexamttrol.

Table 3-2 — Packet event codes

Code | Name DMA | Meaning
5'h00 | evt_no_status AT,ARNo event status.
IT,IR

5'h01 |reserved

5'h02 | evt_long_packet IR The received data length was greater than the buffer’'s data_length.

5'h03 | evt_missing_ack AT A subaction gap was detected before an ack arritredireceived ack had a parity,
error.

5'h04 | evt_underrun AT, IT| Underrun on the corresponding FIFO. The packet was truncated. See Section 13.2.3 for
further details.

5'h05 | evt_overrun IR A receive FIFO overflowed during the reception of an isochronous packet.

5'h06 | evt_descriptor_read AT,ARAn unrecoverable error occurred while the Host Controller was reading a descrjptor

IT,IR |block.

5'h07 | evt_data_read AT, IT An error occurred while the Host Controller was attempting to read from host mmemory
in the data stage of descriptor processing.

5'h08 | evt_data_write AR,IR An error occurred while the Host Controller was attempting to write to host memmory in
the data stage of descriptor processing.

5'h09 | evt_bus_reset AR Identifies a PHY packet in the receive buffer as being the synthesized bus resgt packet.
(See section 8.4.2.3).

5'h0A | evt_timeout AT Indicates that the asynchronous transmit response packet expired and was nog
transmitted.

5'hOB | evt_tcode_err AT, IT| A bad tCode is associated with this packet. The packet was flushed.

5'h0C- | reserved

5'h0D

Page 18

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

Table 3-2 — Packet event codes

Printed 9/19/97

Code | Name DMA | Meaning
5’hOE | evt_unknown AT,AR An error condition has occurred that cannot be represented by any other event|codes
IT,IR |defined herein.

5'hOF | evt_flushed AT Sent by the link side of the output FIFO when asynchronous packets are being flushec
due to a bus reset.

5’h10 |reserved Reserved for definition by future 1394 standards.

5'h1l | ack _complete AT,ARThe destination node has successfully accepted the packet. If the packet was g reques

IT,IR | subaction, the destination node has successfully completed the transaction and no

response subaction shall follow.
The event code for transmitted PHY, isochronous, asynchronous stream and brpadcast
packets, none of which yields a 1394 ack code, will be set by hardware to ack_cdmplete
unless an event occurs.

5'h12 | ack pending AT,AR The destination node has successfully accepted the packet. If the packet was|a reque
subaction, a response subaction will follow at a later time. This code is not returfed for
a response subaction.

5'h13 |reserved Reserved for definition by future 1394 standards.

5'h14 | ack busy X AT The packet could not be accepted after max ATRetries (see section 5.4) atten]pts, anc
the last ack received was ack_busy X.

5’h15 | ack_busy A AT The packet could not be accepted after max ATRetries (see section 5.4) attenjpts, anc
the last ack received was ack busy A.

5'h16 | ack busy B AT The packet could not be accepted after max AT Retries (see section 5.4) attemqpts, an
the last ack received was ack _busy B.

5'h17 - | reserved Reserved for definition by future 1394 standards.

5'h1A

5'h1B | ack_tardy AT The destination node could not accept the packet because the link and higher layers ar
in a suspended state.

5’h1C |reserved Reserved for definition by future 1394 standards.

5'hlD | ack_data_error AT,IR The destination node could not accept the block packet because the data field|failed th
CRC check, or because the length of the data block payload did not match the [length
contained in the data_length field. This code is not returned for any packet that dpes not
have a data block payload.

5'h1E | ack type error AT,AR A field in the request packet header was set to an unsupported or incorrect value, or a
invalid transaction was attempted (e.g., a write to a read-only address).

5'h1F |reserved Reserved for definition by future 1394 standards.

3.1.1.1 ContextControl.run

The ContextContralun bit is set by software when the Host Controller is to begin processing descriptors for the context.
Before software sets ContextContraoh, ContextControhctive must not be set, and the CommandPtr Register for the
context must contain a valid descriptor block address and a Z value that is appropriate for the descriptor block address.

Software may stop the Host Controller from further processing of a context by clearing Context@ontvdhen a
ContextControkun is cleared, the Host Controller will stop processing of the context in a manner that will not impact the
operation of any other context or DMA controller. The Host Controller may require a significant amount of time to safely
stop processing for a context but when the Host Controller does stop, it will clear Context@ctinteollf software
clears a ContextControlin for an isochronous context while the Host Controller is processing a packet for the context,

Copyright © 1996,1997 All rights reserved.

Page 19

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

the Host Controller will continue to receive or transmit the packet and update descriptor status. The Host Controller will,
however, stop at the conclusion of that packet. If ContextControls cleared for a non-isochronous context, the Host
Controller may stop processing at any convenient point as long as the context and descriptors end up in a consistent state
(e.g., status updated if a packet was sent and acknowledged).

Clearing ContextContralun may have other side effects that are DMA controller dependent. These effects are described
in the chapters that cover each of the DMA controllers.

When software clears ContextControh and the Host Controller has stopped, the Host Controller is not necessarily in a
state that can be restarted simply by setting ContextCamtnol. Software should always ensure that
CommandPtdescriptorAddresand CommandP#.are set to valid values before setting ContextComtnal.

3.1.1.2 ContextControl.wake

When software adds to a list of descriptors for a context, the Host Controller may have already read the descriptor that
was at the end of the list before it was updated. The value that the Host Controller read may contain a Z value of zero
indicating the end of the descriptor list. The ContextContate bit provides a simple semaphore to the hardware to
indicate that the list may be changed since the last time that Host Controller read a descriptor. Therefore, if the Host
Controller had fetched a descriptor and the indicated branch address had a Z value of zero, then the Host Controller
should reread the pointer value.

For transmit contexts, and receive contextdurffer-fill mode (a mode described later in which a context can receive
multiple packets into one data buffer), if the Z value is still zero, then the end of the list has been reached and the Host
Controller should clear ContextContiadtive For receive contexts in buffer-fill mode, if the Z value is still zero on the
reread, then the packet cannot be accepted. For asynchronous contexts, the Host Controller will return the appropriate
ack_busy* code. In addition, the Host Controller will “back out” the packet by not updating the buffer’s byte count
(resCount), and will flush the packet from the FIFO. The Host Controller will not go inactive, as there is still buffer space
available, and it is expected that software is attempting to provide more buffer space.

For both transmit and receive contexts, if the Z value is now non-zero, the Host Controller will continue processing.

In order to ensure that a wake condition is not missed, the Host Controller should clear Contexi@éstoelfore it
reads or rereads a descriptor.

ContextControlwakeis ignored when ContextContraln is zero.
3.1.1.3 ContextControl.active

ContextControkctive is set and cleared only by the Host Controller. It is set when the Host Controller receives an
indication from software that a valid descriptor is available for processing. This indication will occur as a result of
software setting the ContextContron or by software setting ContextContrmehke while ContextControfun is set.

There are four cases in which the Host Controller will clear ContextCattigk when a branch is indicated by a
descriptor but the Z value of the branch address is 0; when software clears ContextGoratnal.the Host Controller

has reached a safe stopping point; while ContextCod&aflis set; and after a hardware or software reset of the Host
Controller. Additionally, for the asynchronous transmit contexts (request and response), the Host Controller will clear
ContextControhctive when a bus reset occurs.

When ContextContractiveis cleared and ContextContmin is already clear, the Host Controller will set the IntEvent
bit for the context. This interrupt is the same interrupt that would have been generated by the context if a completed
descriptor had indicated that an interrupt should be generated.

Page 20 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

3.1.1.4 ContextControl.dead

ContextControdeadis used to indicate a fatal error in processing a descriptor. When Context@eatrids. set by the

Host Controller, ContextContraictive is immediately cleared but ContextControh remains set. In addition, setting
ContextControdead causes an unrecoverableError interrupt event (see Table 6-1) and blocks a normal context event
interrupt from being set.

ContextControdeadis immediately cleared when software clears ContextConiroar by either a hardware or software
reset of the Host Controller.

Software can determine the cause of a context going dead by checking the Contex&@entiude (table 3-2). The
defined reasons for the Host Controller to set ContextCouadare described in section 3.1.2.1 and section 13., “Host
Bus Errors.”

3.1.2 CommandPtr register

31302928‘27262524‘23222120\19 18 17 16‘15 14 13 1211 10 9 8|7 6 5 4,3 2 1 O

Figure 3-2 — CommandPtr register format

Table 3-3 — CommandPtr register description

Field rwu |reset [Description

descriptorAddress rwu| undefi Contains the upper 28 bits of the address of a 16-byte aligned descriptor bhlock.
See section 3.1.2 for details.

z rwu | undef | Indicates the number of contiguous 16-byte aligned blocks at the address pajinted to
by descriptorAddress. If Z is 0, it indicates that the descriptorAddress is not \alid.
Valid values for Z are context specific. Handling of invalid Z values is describgd in
section 3.1.2.1.

Software initializes CommandRtescriptorAddresdo contain the address of the first descriptor block that the Host
Controller will access when software enables the context by setting ContextGontr@oftware also initializes
CommandPtZ to indicate the number of descriptors in the first descriptor block. Software shall only write to this register
when both ContextControln and ContextContractiveare zero. The Host Controller is not required to enforce this rule
and its behavior when this rule is violated is undefined.

Since the Host Controller utilizes the CommandPtr register while processing a context, there is a set of guidelines by
which software may safely and deterministically read CommandPtr. These guidelines are based on the ContextControl bit
as follows (X='don'’t care’):

Table 3-4 — CommandPtr read values

ContextControl fields

run | dead | active| wake| CommandPtr.descriptorAddres&/alue

A descriptor block address. Either last
0 0 X X X
written or last executed

Refers to the descriptor block that contains
1 0 0 0 | the Z=0 that caused the Host Controller o
set active to 0.

-

Copyright © 1996,1997 All rights reserved. Page 21

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 3-4 — CommandPtr read values

ContextControl fields

run | dead | active| wake| CommandPtr.descriptorAddres&/alue
0 0 1 Contents unspecified.
0 1 0 Contents unspecified.
0 1 1 Contents unspecified.
Points to the descriptor block in which a
1 1 0 0
fatal error occurred.

If ContextControlun is set and ContextContrdeadis not set, then the contents of CommandPtr are only specified if
both ContextControhctive and ContextContrakake are clear. In this instance, CommandftscriptorAddresswill

contain the address of a descriptor within the last descriptor block that was executed. If Context@oranal.
ContextControldead are both set, then descriptorAddress points to a descriptor within the descriptor block in which an
unrecoverable error occurred.

Except for the case where software initializes CommandPtr, the value of CommaisiBirdefined and Z may contain
a value that is implementation dependent.

The value of CommandPir is undefined after a hardware or software reset of the Host Controller.
3.1.2.1 Bad Z Value

When software sets ContextControh to 1 and CommandP#r.contains an invalid value for the controller and context,
or if a Z value is invalid for a fetched descriptor block in a running context, the Host Controller:

 will set ContextControtleadto 1
« will set ContextControéventto evt_unknown and
» will not process any descriptors in that context.

3.2 List Management

All contexts use an identical method for controlling the processing of descriptors associated with the context. This
presents a uniform interface to controlling software and allows reuse of hardware on the Host Controller.

3.2.1 Software Behavior

3.2.1.1 Context Initialization

Software initializes the context by first checking to see that ContextControContextControhctive and ContextCon-
trol.deadare all 0. Then, CommandRiescriptorAddresss written to point to a valid descriptor block and CommandaPtr.
is set to a value that is consistent with the descriptor block. Then ContextCGantoan be set.

3.2.1.2 Appending to Running List
Software may append to a list of descriptors at any time. Software may append either a single descriptor or a linked list
of descriptors. When the to-be-appended list is properly formatted, software updates the branch address and Z value of the

descriptor that was at the end of the list being processed by the Host Controller.

When software completes linking process it must set ContextCavei@ for the context. This ensures that the Host
Controller will resume operation if it had previously reached the end of the list and gone inactive.

Page 22 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

3.2.1.3 Stopping a Context

Software can stop a running context by clearing ContextCominolThe context might not stop immediately. To ensure
that the context has stopped, software must wait for ContextCactiokto be cleared by the Host Controller. This indi-
cates that the Host Controller has completed all processing associated with the context.

3.2.2 Hardware Behavior

The Host Controller has several DMA controllers each of which has one or more contexts. Each DMA controller is

expected to examine each of its contexts on a periodic basis and make operational decisions based on the context state
contained in ContextControl. The flow-chart for how a DMA controller uses the ContextControl state to govern descriptor

processing is shown below. This process is executed once each time a context is ‘scheduled’. Scheduling of a context

dependent on the DMA controller. For example, an isochronous transmit context will be scheduled once per cycle while
an asynchronous request transmit context will only be scheduled once per fairness interval.

Copyright © 1996,1997 All rights reserved. Page 23

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

set
active=0

no set
active=0

set
wake=0

Y

get branch

addr**=*

<>

yes

set cmd=
branch addr

v

set
active=1

(0]
iso_context
?
yes

b ¢

“ donen

branch addr

process no set
> difcrigior active=0
oc
yes
set cmd=

**fetches and processes the descriptor
block. yields the branch entry (addr+2)

of the next cmd descriptor

branch entry

context runs.

***refetch last known cmd’s

= wait until the next time the

Figure 3-3 — Flow Chart for Processing a DMA Context

Page 24

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

3.3 Asynchronous Receive
The Host Controller accepts 1394 transactions and groups them as follows:

1) physical requests - physical requests, including physical read, physical write and lock requests to some CSR
registers (section 5.5), are handled directly by the Host Controller and are not made visible to system
software. DMA contexts and controllers that are used in a Host Controller for the physical request unit are
implementation specific. This specification places no limits on the physical response unit other than its
effective address range and the requirement that the Host Controller may not block processing of other
transaction types while dealing with physical requests. Chapter 12., “Physical Requests,” provides details on
which requests can be processed as physical.

2) self-ID paclets - PHY packets with the selfID format can be received at any time. However, only those
packets that are received during the selflID phase of bus initialization which immediately follows a bus reset
are considered to be selfID packets. Others are considered simply to be PHY packets which are handled like
asynchronous requests. The Host Controller can be programmed to accept or ignore selflID packets. Wher
selfID packets are accepted, they are stored in a special memory buffer which has a dedicated controller anc
context. Because of this special memory buffer, selfID packets can never get ‘stuck’ in a FIFO. See chapter
11., “Self ID Receive,” for more information.

3) asynchronous responses - when the host system initiates a request through the asynchronous transmit reque
context, the response will be handled by the asynchronous receive response context. The fact that host systel
software initiates the process and the fact that the Host Controller has a separate context for responses allow
system software to budget for all responses which ensures that the Host Controller will always have a place
in system memory to store a response when it arrives. In the unlikely event that the Host Controller does not
have a place for the response it is allowed to drop the response when it arrives. This will cause a split-
transaction timeout which is an error condition with which the software is already able to deal.

4) asynchronous requests - a request may arrive at the Host Controller at any time. Additionally, a request can
be of any size up to the limits imposed by the max_rec field in the Bus_Info_Block. Due to the unpredictable
nature of this transaction type, it is impractical for the system software to ensure that there is always
sufficient buffer space defined in the asynchronous request receive buffers. If the FIFO which is receiving
requests becomes full, all subsequent requests will be busied until there is room to receive them.

3.3.1 FIFO Implementation

The limitations and requirements for handling each of the transaction types suggest some ways of simplifying the
hardware implementation so that a FIFO is not needed for each of the input transaction types. One simplification would
be to place asynchronous requests into a first FIFO and then send all other transaction types (except for physical read
through a second FIFO. This two FIFO scheme provides the necessary non-blocking behavior because the Host Controlle
will always be able to remove transactions from the second FIFO whether or not buffer space exists for the transaction
The selfID, isochronous and asynchronous response transactions will either have a buffer defined for the transaction or
is permissible to discard the transaction if no buffer exists to receive it. This leaves requests to be sent to the first FIFO
When that FIFO fills, additional requests will receive ack_busy until system software makes space available to the Host
Controller by adding descriptors to the context.

There is an alternative implementation which is to use a single physical FIFO but ensure that it provides the behavior o
the multiple FIFO's. This is a bit more complex than the dual FIFO case but may result in a net savings in hardware. The
issue with using a single physical FIFO for all incoming transactions is to make sure that no request is placed in the FIFC
unless there is a place for it in system memory. There are several way of accomplishing this with one given as an exampl
here.

On the link side of the input FIFO a counter is maintained. This counter is initialized to 0 when, for the AR DMA request

context, ContextContraolin is not set. When the system side of the FIFO reads a request descriptor, the reqgLength value
from the descriptor is passed to the link side of the FIFO. The link side then adds this value to the current count value
When the count value on the link side is greater than zero, the link can accept request data and place it into the FIFC
After each request quadlet is placed in the FIFO, other than those for a physical write request, the link side decrement
the counter. When the counter reaches 1, the link checks to see if the end of packet has been reached. If it has, the li

Copyright © 1996,1997 All rights reserved. Page 25

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

uses the last entry for the footer value (cycleCount, speed and ackSent.) If the end of the packet has not been reached, the
link places an error value in the last quadlet to indicate that the packet was not totally received and then the link returns
an ack_busy to the requestor. The system side of the fifo can indicate that additional space has been made available by
writing a new value to the link side. The link side will add these values to the current count value.

The system side of the FIFO will send count values to the link side on two occasions. The first is when a descriptor is
initially fetched and the reqLength in the descriptor is sent to the link side. It is required that the Host Controller have a
look ahead of at least one descriptor (current plus next). If the Host Controller does not look ahead, the link side will not
be able to accept packets that cross descriptor boundaries.

The second instance when the system side of the input FIFO sends a count value to the link side is when the system side
sees a packet that has an error. Packets that contain errors (e.g., CRC) are always 'backed out' of the buffer when the
context is in buffer fill mode. The AR DMA request context can only be in buffer fill mode so all bad packets must be
'‘backed out’. When a packet is backed out, the space that was allocated for that packet is made available for other packets
and the link side of the FIFO must be informed of the amount of data that has been backed out. A simple implementation
of this is to maintain a counter on the system side of the FIFO that is reset at the beginning of each packet. As each
quadlet is removed from the FIFO, the counter is incremented. At the end of the packet, the Host Controller checks the
error code. If it indicates that there was an error, and the packet was a request, the count value is sent to the link side of
the FIFO to indicate the amount of space that has been ‘reclaimed'.

The regLength field in a descriptor may indicate a size as large as 65,532 bytes (16,383 quadlets.) If quadlet counts are
maintained this means that 14 bits are required to indicate the maximum number of quadlets (14’h3FFF). To allow for
look ahead, the link side counter should be able to hold a value equal to two maximum sized buffers which is 32,766
(15'h7FFE) quadlets or 15 bits. Since the system software is required to allocate buffers that are sized to accept the
maximum sized packet (as described in max_rec of the Bus_Info_Block) the Host Controller need only do one level of
look ahead on the buffer descriptors to make sure that the maximum sized packet can be accepted.

3.3.1.1 Unrecoverable Error

If an unrecoverable error occurs when the Host Controller is writing to the AR DMA request buffer, a fail indication is
sent to the link side of the FIFO. This indicates that the link side should set its count to zero which will busy further read
requests and write requests that are destined for the AR DMA request buffer.

If the AR DMA request context has an unrecoverable error, the system side of the FIFO will continue to unload the FIFO
even though the AR DMA request context is dead. All asynchronous requests that would have been sent to the AR DMA
request queue shall be dropped and no responses for them shall be sent to the initiating node. Dropping requests destined
for the AR DMA request queue is acceptable because i) AR DMA read requests are always split transactions
(ack_pended), ii) write requests within the physical range have been ack_pended and iii) write requests above the physical
range which have been posted (ack_completed) are by definition permitted to fail.

3.3.2 Ack Codes for Write Requests

For write requests that will be handled by the Physical Request controller, the Host Controller may send an ack_complete
before the data is actually written to system memory. For a full description of which requests are candidates for Physical
Requests, refer to Chapter 12.

The ack_code sent for write requests to offsets in the range of PhysicalUpperBound to 48’hFFFE_FFFF_FFFF when not
busied is always ack complete. The ack _code sent for requests to offsets in the range 48hFFFF_0000_0000 to
48'hFFFF_FFFF_FFFF and for block requests with a non-zero extended tcode is always ack_pending.

Page 26 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

3.3.3 Posted Writes

As described above, a write request that will be handled by the Physical Request controller or which is in the addres:
range PhysicalUpperBound to 48'hFFFE_FFFF_FFFF to be handled by the Asynchronous Request Unit, may generate &
ack_complete before the data is actually written to the designated system memory location. These writes are referred t
asposted writes.

Write requests to the physical memory range of the host may be posted if the host controller supports the
PostedWriteAddressLo/Hi error registers (see section 13.2.8.1) and software has enabled posted writes (see section 5.
If posting is not enabled/supported, the Host Controller must not return a complete indication (ack_complete or
resp_complete) until the data has been successfully written to the addressed location in physical memory.

If posting of physical writes is supported and enabled, then the Host Controller is allowed to return ack_complete to a
physical write request with certain restrictions.

* A Host Controller implementation is allowed to support any number of posted writes. However, for error reporting
purposes a posted write is considered pending until the write is actually completed to the offset address. For eacl
pending posted write, there must be an error reporting register to hold the request’s source node ID and 48-bit offse
address should that posted write fail. If the maximum allowed posted writes are pending, the Host Controller must
return ack_pending or ack_busy* for subsequent posted write request candidates and shall only return ack_complet
when those writes have actually been performed.

* Read and write requests within the Asynchronous Request ghiBIDnot pasgary posted writes, whether posted in
the Physicabr Asynchronous Request FIFO’s.

» Within the Physical Request FIFO, read requeasdy coherently pass posted writes, but writes requests and posted
writes shall not pass other writes posted in the Physical Request FIFO. Physical read and write meuesiss
writes posted to the Asynchronous Request FIFO.

In conjunction with the ordering rules set forth above for Host Controller implementations, the following protocol
restrictions must be adhered to so that proper ordering and therefore data integrity is maintained. Vikélerside-

effectis used to mean an indirect action caused by a request or response which results in the alteration of the contents |
usage of host memory outside the address scope of the request or response.

» Write requests within the range PhysicalUpperBound to 48'hFFFE_FFFF_FFFF shall not have 1394 visible side-
effects.

* Read or write requests within the range 48'h0 to PhysicalUpperBound-1, whether handled by the Physical Reques
controller or not, shall not have 1394 visible side-effects.

* Read requests to CSR addresses which are processed autonomously by the Host Controller (see section 5.5) shall r
have 1394 visible side-effects

If an error occurs in writing the posted data packet, then the Host Controller sets an interrupt event to notify software anc
provides information about the failed write in an error reporting register. For more information about error handling of
posted writes, refer to section 13.2.8.

3.3.4 Retries

For asynchronous receive, it is recommended that the Host Controller support dual-phase retry for packets that must b
busied.

For asynchronous transmit, Host Controller implementations must support the single-phase retry protocol and may
optionally support the dual-phase retry protocol. The implemented retry mechanism shall be managed by hardware an
invisible to software. Refer to section 7.3 and table 7-12 for details.

Copyright © 1996,1997 All rights reserved. Page 27

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

3.4 DMA Summary

The following chapters provide details about Open HCI registers and interrupts, and about all the supported DMA types.
The table below is a summary of DMA information for reference purposes. Each DMA type is fully described in the
indicated chapter.

Table 3-5 — DMA Summary

Per Context Per Context tcodes
DMA Contexts Registers Interrupts Receive mode DMA commands Z | (4’hx)
Asynchronous 0,1,4,
Transmit | 1 Request SONEXICoNtrol o, ycomplete OUTPUT_MORE 50,
(section 7.0) CommandPir OUTPUT MORE-Immediaté AE
ContextContro OUTPUT_LAST 281567
1 Responsac:ommandPtr respTxComplete OUTPUT_LAST-Immediate ‘s
Asynchronous 1 Request ContextContro| ARRQ 0,1,4,
(Sggi%er:"g 0) CommandPtr | RQPkt buffer-fill | INPUT_MORE 1[5 9E
B RespOnanontextContro ARRS 2,6,7,
"CommandPtr | RSPkt B
Isochronous OUTPUT_MORE
Transmit isochTx OUTPUT_MORE-Immediate
(section 9.0)| 4-32 gg”mtfnxgﬁgggo isoXmitintEvent OUTPUT_LAST 1-8| A
isoXmitintMaskn OUTPUT_LAST-Immediate
STORE_VALUE
Isochronous ContextContro| isochRx packet-per-buffer NP UT_MORE 1-8
Receive . INPUT_LAST
(section 10.0 4-32 CommandPtr isoRecvIntEvent : A
ContextMatch | isoRecvIntMash buffer-fill INPUT_MORE 1
Self-ID SelfIDBuffer .
(section 11.0 1 SelfiDCount SelfIDComplete buffer-fill N/A

E* - this includes packets considered to be PHY packets and the synthesized phy (bus_reset) packet.

For transmit, software may use the tcodes as specified in the table above. The Host Controller hardware shall allow any
IEEE 1394-1995 tcode to be transmitted by any transmit context.

For receive, the Host Controller shall only receive packets which have tcodes that are defined by an approved IEEE 1394
standard. Packets with undefined tcodes shall be dropped.

Page 28 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

4. Registeraddressing

The 1394 Open HCI's registers occupy a 2048 byte address space. This 2048 byte space is allocated to control registel
common DMA controller registers and individual DMA context registers as indicated below. Registers shall be accessed
as 32-bit entities; 8-bit or 16-bit access to Host Controller registers is not supported. Writes to reserved addresses of th
1394 Open HCI address space may have unexpected results and are disallowed. Reads of reserved addresses are ul
fined. Host processors may only access Host Controller registers with quadlet reads or writes on quadlet boundaries.

Host Controller registers which are written through physical access to the Host Controller will yield unspecified results.

When HCControLPSis 0, the only accessible registers are Version, VendorIlD, HCControl, GUID_ROM, GUIDHi and
GUIDLo. Access to all other registers is undefined until HCCohfRd.is set to 1.

All addresses within this 2K address space are reserved for OpenHCI and not for vendor defined registers.

Annex B. describes how this memory space is accessed from PCI.

Table 4-1 — 1394 Open HCI register space map

Offset (binary) Space
00R_RRRR_RRO0O control register space
(11°h000 to 11°'h17C) R_RRRR_RR selects register
001_1ccR_RROO Asynchronous DMA context register space
(11°'h180 to 11'h1FC) cc= 2’h0-2'h3 selects DMA context
R_RR selects DMA context register
01t _tttt RROO Isochronous Transmit DMA context register space
(11’'h200 to 11'h3FC) t_tttt = 5'h00-5'h1F selects IT DMA context
RR selects DMA context register
1vww_vvwwR_RROO Isochronous Receive DMA context register space
(11'h400 to 11'7FC) w_vwv = 5'h00-5'h1F selects IR DMA context

R_RR selects DMA context register

4.1 DMA Context Number Assignments

The 1394 Open HCI contains up to 68 DMA contexts, 4 for asynchronous and from 8 up to 64 for isochronous. The
controller number assignments for asynchronous DMA are illustrated below. Note that these numbers correspond to th
“cc” DMA controller select values in the table above.

Table 4-2 — Asynchronous DMA Context number assignments

DMA Context
Number Context Name
2'h0 Asynchronous Transmit Request
2'hl Asynchronous Transmit Response
2’h2 Asynchronous Request Receive
2'h3 Asynchronous Response Receive

For the isochronous transmit contextdftt represents IT contexts numbered 0-31.
For the isochronous receive contextg, vvv represents IR contexts numbered 0-31.

Copyright © 1996,1997 All rights reserved. Page 29

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

4.2 Register Map

Table 4-3 — Register addresses (Sheet 1 of 4)

Offset DMA Context Read value Write value See clause
11’h000 Version - 5.2
11’h004 GUID_ROM GUID_ROM 5.3
11'h008 ATRetries ATRetries 54
11’ho0C CSRReadData CSRWriteData 55.1
11'h010 CSRCompareData CSRCompareData 5.5.1
11'h014 CSRControl CSRControl 5.5.1
11’h018 ConfigROMhdr ConfigROMhdr 55.2
11'h01C BusID - 5.5.3
11'h020 BusOptions BusOptions 554
11'h024 GUIDHi GUIDHI 5.5.5
11'h028 GUIDLo GUIDLo 5.5.5
11'h02C Reserved Reserved

11’h030 Reserved Reserved

11'h034 ConfigROMmap ConfigROMmap 5.5.6
11'h038 PostedWriteAddressLo PostedWriteAddressLo 13.2.8.1
11’'h03C PostedWriteAddressHi PostedWriteAddressHi

11'h040 Vendor ID - 5.6
11'h044 - Reserved Reserved

11'ho4C

11’h050 HCControl HCControlSet 5.7
11'h054 HCControlClear 5.7
11'h058 - Reserved Reserved

11’h05C

11'h060 | Self ID Reserved Reserved

11'h064 SelfIDBuffer SelfIDBuffer 111
11'h068 SelfIDCount 11.2
11'h06C Reserved Reserved

11'h070 IRMultiChanMaskHi IRMultiChanMaskHiSet 104.1.1
11'h074 IRMultiChanMaskHiClear

11'h078 IRMultiChanMaskLo IRMultiChanMaskLoSet

11'h07C IRMultiChanMaskLoClear

Page 30

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

Table 4-3 — Register addresses (Sheet 2 of 4)

Offset DMA Context Read value Write value See clause
11’'h080 IntEvent IntEventSet 6.1
11'h084 (IntEvent & IntMask) IntEventClear
11'h088 IntMask IntMaskSet 6.2
11’h08C IntMaskClear
11'h090 IsoXmitIntEvent IsoXmitintEventSet 6.3.1
11'h094 (IsoXmitintEvent & IsoXmitintEventClear

IsoXmitintMask)
11'h098 IsoXmitIntMask IsoXmitintMaskSet 6.3.2
11'h09C IsoXmitintMaskClear
11’h0AO IsoRecvIntEvent IsoRecviIntEventSet 6.4.1
11'h0A4 (IsoRecvintEvent & IsoRecvIntEventClear

IsoRecvIntMask)
11'h0A8 IsoRecvIntMask IsoRecvIntMaskSet 6.4.2
11’'h0OAC IsoRecvIintMaskClear
11'h0BO- Reserved Reserved
11'h0D8
11'hoDC Fairness Control Fairness Control 5.8
11'hOEO LinkControl LinkControlSet 5.9
11'hOE4 LinkControlClear
11'hOES8 Node ID Node ID 5.10
11'hOEC Phy Control Phy Control 5.11
11'hOF0 Isochronous Cycle Timer Isochronous Cycle Timer 5.12
11’hOF4- Reserved Reserved
11’hOFC
11'h100 AsynchronousRequestFilterHi AsynchronousRequestFilterHi$et 5.13.1
11'h104 AsynchronousRequestFilterHiClgar
11’h108 AsynchronousRequestFilterLo AsynchronousRequestFilterLoSet
11'hi0C AsynchronousRequestFilterLoClgar
11'h110 PhysicalRequestFilterHi PhysicalRequestFilterHiSet 5.13.2
11’h114 PhysicalRequestFilterHiClear
11'h118 PhysicalRequestFilterLo PhysicalRequestFilterLoSet
11'h11C PhysicalRequestFilterLoClear
11’h120 PhysicalUpperBound PhysicalUpperBound 5.14
11'h124- Reserved Reserved
11’'h17C
11’'h180 | Async request | ContextControl ContextControlSet 3.1,7.2.2
11'h184 transmit ContextControlClear
11'h188 Reserved Reserved
11'h18C CommandPtr CommandPtr 3.1.2,7.2|]1

Copyright © 1996,1997 All rights reserved. Page 31

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

Table 4-3 — Register addresses (Sheet 3 of 4)

Offset DMA Context Read value Write value See clause
11'h190- Reserved Reserved
11’h19C
11'h1AQ0 | Async response ContextControl ContextControlSet 31,722
11'h1A4 transmit ContextControlClear
11’'h1A8 Reserved Reserved
11’h1AC CommandPtr CommandPtr 3.1.2,7.211
11'h1BO- Reserved Reserved
11’h1BF
11'h1CO | Async request | ContextControl ContextControlSet 3.1,83.2
11’'h1ca |'eceve ContextControlClear
11'h1C8 Reserved Reserved
11’h1CC CommandPtr CommandPtr 3.1.2,8.3|1
11’h1DO0- Reserved Reserved
11’h1DF
11'h1EOQ | Async response| ContextControl ContextControlSet 3.1,8.3.2
11'h1E4 |'€ceve ContextControlClear
11'h1E8 Reserved Reserved
11’h1EC CommandPtr CommandPtr 3.1.2,8.3|1
11’h1F0- Reserved Reserved
11’h1FF
11'h200 +| Isoch transmit n,| ContextControl ContextControlSet 3.1,9.2.2
16*n where “n” = 0 for
11'h204+ context 0, 1 for ContextControlClear
16*n context 1, etc...
11'h208+ Reserved Reserved
16*n
11’'h20C + CommandPtr CommandPtr 3.1.2,9.2011
16*n

Page 32 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

Table 4-3 — Register addresses (Sheet 4 of 4)

Offset DMA Context Read value Write value See clause
11’'h400 +| Isoch Receive n,| ContextControl ContextControlSet 3.1, 10.3.7
32*n where “n” = 0 for
11'h404 + context 0, 1 for ContextControlClear
32%n context 1, etc.
11'h408 + Reserved Reserved
32*n
11'h40C + CommandPtr CommandPtr 3.1.2,10.3.1
32*n
11'h410+ ContextMatch ContextMatch 10.3.3
32*n
11’'h414+ Reserved Reserved
32*n
11'h418+ Reserved Reserved
32*n
11’h41C+ Reserved Reserved
32*n
Copyright © 1996,1997 All rights reserved. Page 33

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Page 34 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

5. 1394 OpenHCIRegisters

5.1 Register Conventions

Unless otherwise specified, all register fields will initialize as zeros. For software, reads of reserved locations (indicated
by a hatched or grayed-out pattern) yield undefined results.

Similarly, unless otherwise specified, all fields will remain unchanged after a 1394 bus reset.

Refer to Section 2.1.2 for an explanation of register notation.

5.2 Version Register

This register contains a 32 bit value which indicates the version and capabilities of the interface. The register is expecte
to be used to indicate the level of functionality present in the 1394 Open HCI. This register is read only.

31 30 29 28) 27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4;3 2 1 0
T T T T

version revision

|
GUID_ROM

Figure 5-1 — Version register

Table 5-1 — Version register fields

field name rwu | reset | description
GUID_ROM r N/A | The bus_info_block will be automatically loaded on hardware reset.
version r N/A | Major version of the Open HCI. This field contains the bcd encoded vajue

representing the major version of the highest numbered 1394 OpenHC
specification with which this controller is compliant. For example, a Hos
Controller implemented to this specification (Draft 0.97) will have a verd
value of 8'h00 and a Host Controller implemented to version 2.25 of thi
specification will have a value of 8'h02.

revision r N/A | Minor version of the Open HCI. This field contains the BCD encoded value
representing the minor version of the highest numbered 1394 OpenHC
specification with which this controller is compliant. For example, a Hos
Controller implemented to this specification (Draft 0.97) will have a revi
value of 8'h97 and a Host Controller implemented to version 2.25 of thi
specification will have a value of 8'h25.

— —

on

vl

U U~
o
]

Copyright © 1996,1997 All rights reserved. Page 35

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

5.3 GUID ROM register (optional)

The GUID ROM register is used to access the GUID ROM, and is only present if the \@tHIDNROM bit is set.

31 30 29 28) 27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4,3 2 1 0

T
addrReset

rdStart
Figure 5-2 — GUID ROM register
Table 5-2 — GUID ROM register fields
field name rwu | reset | description
addrReset rsul 1'b0| Software sets this bit to one to reset the GUID ROM address to zero. WWhen the

Host Controller completes the reset, it clears addrReset to zero. Upon refsetting
the GUID ROM address, the host controller doesautomatically fill rdDatg
with the Oth byte.

rdStart rsu| 1'b0| Aread of the currently addressed GUID ROM byte is started on the trahsition
of this bit from a zero to a one. When the Host Controller completes the|read,
it clears rdStart to zero and advances the GUID ROM byte address by orje byte.

rdData ru undef The data read from the GUID ROM.

To initialize the GUID ROM read address, software sets GUIDRfNtResetto one. Once software detects that
GUIDROM.addrResets zero, indicating that the reset has completed, then software may set GUIRIS@k 1o read a
byte. Upon the completion of each read, the Host Controller places the read byte into GUIBIR&4].advances the
GUID ROM address by one byte to set up for the next read, and clears GUIDdSDtto O to indicate to software that
the requested byte has been read.

5.4 ATRetries Register

The AT retries register holds the number of times the 1394 Open HCI will attempt to do a retry for asynchronous DMA
request transmit and for asynchronous physical and DMA response transmit. A packatlghsl retried when a “busy”
acknowledge or ack_data_error is received from the target node, including ack_data_error's resulting from FIFO
underflows. A packet shatiot be retried under any other circumstance, including receipt of ack_missing.

31302928\27262524‘23222120\191817161514131211109 8|7 6 5 4,3 2 1 0
Il T T L L

secondLimit maxPhysRespRetries | mMaxATReqRetries
maxATRespRetries

Figure 5-3 — ATRetries register

Page 36 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

Table 5-3 — ATRetries register fields

field name

r'wu

reset

description

secondLimit

3'h0

attempts when the outbound dual-phase retry protocol is in use. The

represents a count in cycles modulo 8000.

cycleLimit

or
rw

13'h0

If the retry time expires for a physical response, the packet is discarded
Host Controller. Software isot notified.

and shall read as 16’h0.

and a value of 0 written to both fields shall disable dual phase retry.

Together the secondLimit and cycleLimit fields define a time limit for retry

secondLimit field represents a count in seconds modulo 8, and cycleLim

If outbound dual-phase retig implemented, both fields shall be read/write,

it

by the

If outbound dual-phase retryn®t implemented, both fields shall be read-only

maxPhysRespRetries

"w

und

times to attempt to retry the transmit operation for the response packet
that this value is used only for responsephysicalrequests.

If the retry count expires for a physical response, the packet is discarded
Host Controller. Software isot notified.

ef The maxPhysRespRetries field tells the Physical Response Unit how many

Note

by the

maxATRespRetries

w

undg

how many times to attempt to retry the transmit operation for a softwarg
transmitted (non-physical) asynchronous response packet.

2f The maxATRespRetries field tells the Asynchronous Transmit Respofse Unit

maxATReqRetries

rw

undgf The maxATRetries field tells the Asynchronous Transmit Request Un

many times to attempt to retry the transmit operation for an asynchrond
request packet.

t how
us

The Host Controller is required to pace the retries of both requests and responses using fairness intervals as described

P1394A and 1394-1995.

The interrelationship between retries and packet transmission is as follows:

» Retried requests shall not block responses.

» Retried requests may block other requests.

* Retried responses should not block requests.

» Retried AT DMA responses shall not block physical responses.

» Retried AT DMA and physical responses may block AT DMA responses.
» Retried physical responses may block other physical responses.

5.5 Autonomous CSR Resources

The 1394 Open HCI implements a number of autonomous CSR resources. In particular the 1394 compare-swap bu
management registers are implemented in hardware, as is the config ROM header, the bus_info_block and access to t
first 1K bytes of the configuration ROM. The DMA units handle external 1394 bus requests to these resources automati
cally, and the following registers manage this function for the local host

Copyright © 1996,1997 All rights reserved.

Page 37

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

5.5.1 Bus Management CSR Registers

1394 requires certain 1394 bus management resource registers be accessible only via "quadlet read” and “quadlet lock"
(compare-and-swap) transactions, otherwise ack_type_error shall be sent. These special bus management resource regis-
ters are implemented internal to the 1394 Open Host Controller to allow atomic compare-and-swap access from either the
host system or from the 1394 bus.

Table 5-4 — Serial Bus Registers

reset
1394-1995 | (hardware reset or
CSR address csrSel description Section # bus reset)
48'hFFFF_F000_021C 2'h0 BUS_MANAGER_ID 8.3.2.3.6 6'h3F
48'hFFFF_F000_0220 2'hl BANDWIDTH_AVAILABLE 8.3.2.3.7 13'h1333
('d4915)
48'hFFFF_F000_0224 2'h2 CHANNELS_AVAILABLE_HI 8.3.2.3.8 32’hFFFF_FFRF
48'hFFFF_F000_0228 2'h3 CHANNELS_AVAILABLE_LO 8.3.2.3.8 32'hFFFF_FFRFF

When these bus management resource registers are accessed from the 1394 bus, the atomic compare-and-swap transactior
is autonomous, without software intervention. If ack_complete is not received to end the transaction for the generated
lock response, IntEveiackRespErr(table 6-1) shall be triggered.

To access these bus management resource registers from the host, the following registers are used.

31302928\27262524‘23222120\19 18 17 16‘15 14 13 12)11 10 9 8‘7 6 5 4,3 2 1 0

Figure 5-4 — CSR data register

31302923\27262524‘23222120\19 18 17 16‘15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0

Figure 5-5 — CSR compare register

31 30 29 28) 27 26 25 24|23 22 21 20/19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4;3 2 1 0
I

csrSel

I
csrDone

Figure 5-6 — CSR control register

Page 38 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 5-5 — CSR registers’ fields

field name rwu | reset | description
csrData rwu| undef At start of operation, the data to be stored if the compare is successfyl.
csrCompare rw | undgf The data to be compared with the existing value of the CSR resourced.
csrDone ru | 1'bl| This bitis set when a compare-swap operation is completed. It is reset when-
ever this register is written.
csrSel rw | undef This field selects the CSR resource:
2'h0 - BUS_MANAGER_ID
2’hl - BANDWIDTH_AVAILABLE
2'h2 - CHANNELS_AVAILABLE_HI
2'h3 - CHANNELS_AVAILABLE_LO

To access these bus management resource registers from the host bus, first load the CSRData register with the new d
value to be loaded into the appropriate resource. Then load the CSRCompare register with the expected value. Finall
write the CSRControl register with the selector value of the resource. A write to the CSRControl register initiates a
compare-and-swap operation on the selected resource. When the compare-and-swap operation is complete, tt
CSRControl register csrDone bit will be set, and the CSRData register will contain the value of the selected resource prio
to the host initiated compare-and-swap operation.

Note that an arbitrary update of these resources cannot be done. Only compare-and-swap operations can be used
modify the contents of these internal resource registers.

5.5.2 Config ROM header

The config ROM header register is a 32-bit number that externally maps to the 1st quadlet of the 1394 configuration ROM
(offset 48’'hFFFF_F000_0400). This register is written locally at the following register (the field names match the IEEE
1394 names):

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16|15 14 13 12,11 10 9 8‘7 6 5 4,3 2 1 0
T T T

info_length crc_length rom_crc_value
NN T T I I T N N H [N N N N O I

Figure 5-7 — Config ROM header register

Table 5-6 — Config ROM header register fields

hard |soft

field name rwu |reset |[reset | description

info_length rw 8'h0 N/A | IEEE 1394 bus management field. Must be valid at any time the
HCControllinkEnablebit is set.

crc_length rw 8'h0 N/A | IEEE 1394 bus management field. Must be valid at any time the
HCControllinkEnablebit is set.

rom_crc_value rw | 16’h0 N/A| IEEE 1394 bus management field. Must be valid at any time the
HCControllinkEnablebit is set.

For a clarification of the meaning of Config ROM versus GUID ROM versus PCI Expansion ROM, see section 2.2.

Copyright © 1996,1997 All rights reserved. Page 39

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

5.5.3 Bus identification register

The bus identification register is a 32-bit number that externally maps to the first quadlet of the Bus_Info_Block. This
register is read locally at the following register:

31302928\27262524‘23222120\19 18 17 16‘15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O

Figure 5-8 — Bus ID register

Table 5-7 — Bus ID register fields

field name

rwu

reset

description

N/A

busID r

Contains the constant 32'h31333934, which is the ASCII value for “139

4",

5.5.4 Bus options register

The bus options register is a 32-bit number that externally maps to the 2nd quadlet of the Bus_Info_Block. This register
is written locally at the following register (the field names match the IEEE 1394 names):

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16|15 14 13 12/11 10 9 8|7 6 5 4;3 2 1 0
L L I O
r cyc_clk_acc max_rec r g r |link_spd
NN T N N N [N (N e A |
1
| pmc
bmc
isc
cmc
irmc

Figure 5-9 — Bus options register

Table 5-8 — Bus options register fields

field name

rwu

reset

description

irmc, cmc, isc, bmc, pmd
cyc_clk_acc

undef

IEEE 1394 bus management fields. Must be valid at any time the
HCControllinkEnablebit is set.

max_rec

w

%

IEEE 1394 bus management field. Hardware shall initialize max_rec to)
maximum value supported by the implementation which shall be 512 o
greater. Software may change max_rec, however this field must be valid
time the HCControlinkEnablebit is set to 1. Note that received block wri
request packets with a length greater than max_rec may generate an
ack_type_error (see table 1-2).

** Reset values: For a hardware reset, max_rec is set to the maximum

supported by the implementation, 512 or greater. For a soft neartrecis
not changed.

the

atany
fe

value

w

undef

Generation counter. This field shall be incremented if any portion of
configuration ROM has changed since the prior bus reset.

Page 40

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

Table 5-8 — Bus options register fields

field name

rwu | reset | description

link_spd

rwu | ** Link speed.
or

speeds. Link_spd may also be implemented as read-only.
**On a software reset, the value of link_spd is undefined.

**On a hardware reset, link_spd is set by the Host Controller to the maximum
ru speed the link can send and receive. The Host Controller shall support|the
maximum size asynchronous and isochronous packets for the reported speed.
If implemented as read/write, software is permitted to change link_spd fo a
lower value, which shall cause the link to reject packets arriving at higher

bits 3-5, 8-11 and 24-26| rw| undef Currently reserved in 1394-1995.

5.5.5 Global Unique ID

The global unique ID (GUID) is a 64-bit number that externally maps to the third and fourth quadlets of the
Bus_Info_Block. These registers are written locally at the following registers (the field names match the IEEE 1394

names):

31 30 29 28 27 26 25 24‘23 22 21 20,19 18 17 16‘15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O

rrrrrrrrrtrr Tt T r T T 1T T 1" T T
node_vendor_ID chip_ID_hi

Figure 5-10 — GlobalUniquelDHi register

31 30 29 28 27 26 25 24‘23 22 21 20719 18 17 16‘15 14 13 12;11 10 9 8 ‘7 6 5 4,3 2 1 0

rrrrrrrrrtrrrrrrrrrrrtrrr Tt > T 7 T T 1T T 1T T T T
chip_ID_lo

Figure 5-11 — GlobalUniquelDLo register

Table 5-9 — GlobalUniquelD register fields

field name

rwu | reset description

node_vendor_ID, rw | **see IEEE 1394 bus management fields. Must be set by firmware or hardware
chip_ID_hi, chip_ID_lo comments before the HCContrdInkEnablebit is set.

**The Global Unique ID (GUID) Registers are reset to 0 after a host power (hardware) reset. A value of 0 is an illegal
value. These registers are not affected by a software reset. These GUID registers shall be written only once after ho:
power reset, by either

1) an autonomous load operation from a loaakmodifiable resource (i.e. local GUID ROM or local parallel
ROM) performed by the 1394 OHCI hardware, or
2) asingle host write to each register perforrmaty by firmware that is always executed on a hardware reset

which affects the Host Controller. This firmware, as well as the GUID value that is laadgdnot be
modifiable by any user action

After one of these load mechanisms has executed, the GUID registeesd@nly.

Copyright © 1996,1997 All rights reserved.

Page 41

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

5.5.6 Configuration ROM mapping register

The configuration ROM mapping register contains the start address within system bus space that will map to the start
address of the 1394 configuration ROM for this node. Only quadlet reads to the first 1K bytes of the configuration ROM
will map to system bus space, all other transactions to this space will be rejected with a 1394 “ack_type_error”. Since the
low order 10 bits of this address are reserved and assumed to be zero, the system address for the config ROM must start
on a 1K byte boundary. Note that the first five quadlets of the 1394 config ROM space are mapped to the config ROM
header and the bus_info_block, and so are handled directly by the 1394 Open Host Controller as described in sections
5.5.2,5.5.3, 5.5.4 and 5.5.5. This means that the first five quadlets addressed by the config ROM mapping register are not
used.

Software should ensure this address is valid before setting HCClimtéehableto one.

31302928‘27262524‘23222120\19 18 17 16‘15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0
rrrrrrrrrrrrrTrr -t T T T 1° T 1T TT"]

configROMaddr

Figure 5-12 — Configuration ROM mapping register

Table 5-10 — Configuration ROM mapping register fields

field name rwu | reset | description

configROMaddr rw | undef If a quadlet read request to 1394 offset 48’'hFFFF_F000_0400 through offset
48'FFFF_F000_O7FF is received, then the low order 10 bits of the offsgt are
added to this register to determine the host memory address of the retdrned
quadlet.

5.6 Vendor ID register

The vendor ID register holds the company ID of an organization that specified any vendor-unique registers.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 12,11 10 9 8|7 6 5 4,3 2 1 0
I O B By B B B I N B A Y Y S A A A

vendorUnique vendorCompanyID

Figure 5-13 — VendorID register

Table 5-11 — VendorID register fields

field name rwu | reset | description

vendorCompanyID r N/A | The company ID of the organization that specified the particular set of yendor
unique registers and behaviors of this particular implementation of the 1394
Open HCI. If no additional features are implemented, this field shall be 24’h0.

vendorUnique r N/A | Vendor defined.

To obtain a company ID (also known as an Organizationally Unique Identifier, OUI), contact:

Page 42 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

Registration Authority Committee
The Institute of Electrical and Electronic Engineers, Inc.

445 Hoes Lane

Piscataway, NJ 08855-1331

USA
(908) 562-3812

Your company need not obtain a company ID if it has been previously assigned arm8H#EGIobally Assigned
Address Bloclor an IEEE-assigne@rganizationally Unique Identifier (OUHjor use in network applications. However,

be aware that the (left through right) order of the bits within the company ID value is not the same as the (first through

last) network-transmission order of the bits within these other identifiers. Consult the IEEE Registration Authority for
clarifying documentation.

5.7 HCControl registers (set and clear)

This register provides flags for controlling the Host Controller. There are two addresses for this register: HCControlSet
and HCControlClear. On read, both addresses return the contents of the control register. For writes, the two addresse
have different behavior: a one bit written to HCControlSet causes the corresponding bit in the HCControl register to be
set, while a zero bit leaves the corresponding bit in the HCControl register unaffected. On the other hand, a one bit writter
to HCControlClear causes the corresponding bit in the HCControl register to be cleared, while a zero bit leaves the corre

sponding bit in the HCControl register unaffected.

31 30 29 28,27 26 25 24|23 22 21 20,19 18 17 16|15 14 13 12y11 10 9 8|7 6 5 4,3 2 1 0
softReset
| I| kI . bl
LPS| linkEnable
noByteSwapData postedWriteEnable
Figure 5-14 — HCControl register
Table 5-12 — HCControl register fields

field name rscu| reset | description

noByteSwapData rsc| undef This bit is used to control whether physical accesses to locations oufside the
Host Controller itself as well as any other DMA data accesses should e
swapped or not. When 0, data quadlets are sent/received in little endiar] order.
When 1, data quadlets are sent/received in big endian order.

See the explanation following this table. Software should change this bif only
when linkEnable is 0, otherwise unspecified behavior will result.

Support of this bit is optional for motherboard implementations and reqpired
for all other implementations.

See section 5.7.1 below for more information.

LPS rs 1'b0 | This bit is used to control the Link Power Status. Software must set LHS to 1
to permit Link<> PHY communication. Once set, the link can use LREQs to
perform PHY reads and writes.

An LPS value of 0 prevents Lirk> PHY communication. In this state, the
only accessible Host Controller registers are Version, VendorID, HCCofptrol,
GUID_ROM, GUIDHi and GUIDLo. Access to other registers is not defiped.
Hardware and software resets clear LPS to 0. Software shall not clear LPS.
See section 5.7.2 below for more information.

Copyright © 1996,1997 All rights reserved.

Page 43

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 5-12 — HCControl register (Continued)fields

field name rscu| reset| description

postedWriteEnable rsq undef This bitis used to enable (1) or disable (0) physical posted writes. WWhen
disabled (0) physical writes shall be handled but shall not be posted and
instead are ack’ed with ack _pending.

Software should change this bit only when linkEnable is 0, otherwise
unspecified behavior will result. See Section 12., “Physical Requests,” for
information about posted writes.

linkEnable rs 1'b0 | Software must set this bit to 1 when the system is ready to begin operation and
then force a bus reset. This bit is necessary to keep other nodes from gending
transactions before the local system is ready.

When this bit is clear the Host Controller is logically and immediately
disconnected from the 1394 bus, no packets will be received or procesded nor
will packets be transmitted. The link shall not process or interpret any pgckets
received from the PHY, nor shall the link generatelarsrequests. Howevef,
the link may access PHY registers via the PHY control register.
This bit is cleared to 0 by a hardware reset or software reset, and shall|not be
cleared by software. Software should not set the linkEnable bit until the
Configuration ROM mapping register (section 5.5.6) is valid .

See section 5.7.2 below for more information.

softReset rsuf ** When set to 1, all Host Controller state is reset, all FIFO's are flushed pnd all
Host Controller registers are set to their hardware reset values unless otherwise
specified. Registers outside of the OpenHCI realm, i.e. host attachmen
registers such as those for PCI, are not affected.

**The read value of this bit is 1 while a soft reset or a hard reset is in progress.
The read value of this bit is 0 when neither a soft reset nor hard reset }re in

progress. Software can use of the polarity of this bit to determine when 4 reset
has completed and the Host Controller is safe to operate.

5.7.1 noByteSwapData

The 1394 bus is quadlet based big endian. By convention, when quadlets are sent in big endian order, the leftmost byte
(bits 31-24) of a quadlet is sent first. When sent in little endian order, the right most byte (bits 7-0) is sent first with the
leftmost bit of each byte sent first.

When the Host Controller sends/receives a packet, the header information is always sent/received in big endian order
(leftmost byte first). Header information is composed of a sequence of quadlets which is invariant over big and little
endian system.

When the HCContrahoByteSwapDatadit is not set, data quadlets are sent/received in little endian order and when
HCControlnoByteSwapDatés set, data quadlets are sent/received in big endian order. The data quadlets that are subject
to swap are:

1) any data quadlet covered by data CRC (tcodes 4'hl, 4'h7, 4'h9, 4'hA an 4'hB)

2) the data quadlet in a quadlet write request (tcode 4'h0)
3) the data quadlet in a quadlet read response (tcode 4'h6)

Since the cycle_time in self contained within the Host Controller, it is never byte-swapped regardless of the setting of the
noByteSwapData bit.

The data in a PHY packet (identified internally with tcode 4'hE) is not byte swapped for send or receive.

Page 44 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

5.7.2 LPS and linkEnable

There are three basic tasks and ensuing requirements with respect to the PHY/Link interface:

+ Bootstrap of Open HCI.
This requires a mechanism to configure the link and the PHY prior to receiving any packets or generating any bus
requests.

* Recoery from a hung system.

This requires a mechanism which places Open HCI in a near pre-bootstrap condition, and allows the PHY and link
to get back into sync if requred.

* Power Management via Suspend/Resume
This requires a mechanism to inform the PHY that PHY/Link communication is no longer required and, if possible,
the PHY can suspend itself if no active ports remain.

To achieve proper behavior in satisfying these requirements, software shall always assert the signals in the following
sequence: LPS, then linkEnable, then any other individual context enables or runs. The Host Controller behavior wher
violating this order is undefined and can produce unreliable behavior. The table below illustrates the progressive
functionality as these signals are asserted.

Table 5-13 — LPS and linkEnable assertion

LPS linkEnable contextControl.Run Sequence Comments

a. Off Off Off Initial State

b. On Off Off Allows SCLK to start

C. On Off Off Config PHY/Link registers

d. On On Off Physical DMA/Cycle Starts Okay
e. On On On Normal Operation

Following a hardware or software reset, LPS and linkEnable are Off as shown & Sigfbware proceeds to enable the
link power statusl)) and when SCLK has started, software can configure PHY and Link registers as listedci(esgep
Self-ID receive DMA registers). Setting linkEnable in steb enables some DMA function, and asserting
contextControl.rund) for the Host Controller contexts then yields full functionality.

5.8 FairnessControl register

This register provides a mechanism by which software can direct the Host Controller to transmit multiple asynchronous
request packets during a fairness interval.

31 30 29 28,27 26 25 24/23 22 21 20,19 18 17 16/15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O

Figure 5-15 — FairnessControl register

Copyright © 1996,1997 All rights reserved. Page 45

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 5-14 — FairnessControl register fields

soft&
hard |bus-
field name rw |reset |reset | description
pri_req rw | undefi N/A | This field specifies the maximum number of priority arbitration requests for

asynchronous request packets that the link is permitted to make of the PHY
during a fairness interval. gri_reqvalue of 8'h0 is equivalent to the behav|or
specified by IEEE 1394-1995.

The FairnessControl register is configured by software in conjunction with software support of the Fairness Budget
Register specified in P1394.A. Asynchronous request packets whose transmission is affected by this register include the
following.

Table 5-15 — Packet types governed by FairnessControl

Code Name
0 Write request for data quadlet
1 Write request for data block
4 Read request for data quadlet
5 Read request for data block
9 Lock request
A Isochronous data block (asynchronous stregms)

5.9 LinkControl registers (set and clear)

This register provides the control flags that enable and configure the link core protocol portions of the 1394 Open HCI. It
contains controls for the receiver, and cycle timer. There are two addresses for this register: LinkControlSet and LinkCon-
trolClear. On read, both addresses return the contents of the control register. For writes, the two addresses have different
behavior: a one bit written to LinkControlSet causes the corresponding bit in the LinkControl register to be set, while a
zero bit leaves the corresponding bit in the LinkControl register unaffected. On the other hand, a one bit written to Link-
ControlClear causes the corresponding bit in the LinkControl register to be cleared, while a zero bit leaves the corre-
sponding bit in the LinkControl register unaffected.

31 30 29 28, 27 26 25 24{23 22 21 20,19 18 17 1615 14 13 1291110 9 8|7 6 5 4,3 2 1 O

I
| rcvPhyPkt
cycleTimerEnable rcvSelflD cycleSyncLRegEnable
cycleMaster

cycleSource

Figure 5-16 — LinkControl register

Page 46 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 5-16 — LinkControl register fields

field name rscu| reset | description

cycleSource rsc| ** Optional. When one, the cycle timer will use an external source to detejmine
or when to increment cycleCount. When cycleCount is incremented, cycle(ffset
r is reset to 0. If cycleOffset reaches 3071 before an external event occurs), it will

remain at 3071 until the external signal is received and is then reset to
When the cycleSource bit is zero, the 1394 Open HCI will roll the cycle fimer
over when the timer reaches 3072 cycles of the 24.576 MHz clock (i.e.|8 kHz).
If not implemented, this bit will read as 0.

CycleSource has an effect only when cycleMaster is enabled.

** A hardware reset, clears this bit to 0. A software reset has no effect.

cycleMaster rscy undaf When one and the PHY has notified the 1394 Open HCI that it is root, the 1394
Open HCI will generate a cycle start packet every time the cycle timer folls
over, based on the setting of the cycleSource bit. When zero, the 1394|Open
HCI will accept received cycle start packets to maintain synchronization with
the node which is sending them. This bit is automatically zeroed when the
IntEventcycleTooLongevent occurs and cannot be set until the
IntEventcycleTooLondit is cleared.

cycleTimerEnable rsc| undef When one, the cycle timer offset will count cycles of the 24.576 MHz|clock
and roll over at the appropriate time based on the settings of the above bits.
When zero, the cycle timer offset will not count.

rcvPhyPkt rsc | undef When one, the receiver will accept incoming PHY packets into the AR fequest
context if the AR request context is enabled. This dm¢sontrol either the
receipt of self-identification packets during the Self-ID phase of bus
initialization or the queuing of synthesized bus reset packets in the AR PMA
Request Context buffer (section 8.4.2.3). This does control receipt of any self-
identification packets received outside of the Self-ID phase of bus
initialization.

rcvSelflD rsc | undef When one, the receiver will accept incoming self-identification packetq.
Before setting this bit to one, software must ensure that the self ID buff
pointer register contains a valid address.

cycleSyncLRegEnable rs¢ undef A one enables the link to send Cycle sync LRegs to the (1394A compatible)
PHY. A zero disables Cycle sync LReqs to the PHY.

1%
—

5.10 Node identification and status register

This register contains the CSR address for the node on which this chip resides. The 16-bit combination of busNumber an
nodeNumber is referred to as the node ID.

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16|15 14 13 12,11 10 9 8‘7 6 5 4,3 2 1 0

I
| root
iDValid

CPS
Figure 5-17 — Node ID register

Copyright © 1996,1997 All rights reserved. Page 47

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 5-17 — Node ID register fields

field name rwu | reset description

iDValid ru |21'b0 This bit indicates whether or not the 1394 Open HCI has a valid node nymber.
It is cleared when the bus reset state is detected and set again when the 1394
Open HCI receives a new node number from the PHY.

root ru | 1'b0 This bit is set during the bus reset process if the attached PHY is root.
CPS ru | 1'b0 Set if the PHY is reporting that cable power status is OK (VP 8V).
busNumber rwu 10’h3FF This number is used to identify the specific 1394 bus this node belongs to

when multiple 1394-compatible busses are connected via a bridge. Thip field
is set to 10’h3FF on a bus reset.

nodeNumber ru | undef This number is the physical node number established by the PHY dutling self-
identification. It is automatically set to the value received from the PHY ffter
the self-identification phase. If the PHY sets the nodeNumber to 63, software
should not set ContextContnaln for either of the AT DMA contexts.

5.11 PHY control register

The PHY control register is used to read or write a PHY register. To read a register, the address of the register is written
to the regAddr field along with a 1 in the rdReg bit. When the read request has been sent to the PHY (through the PhyReq
pin), the rdReg bit is cleared to 0. When the PHY returns the register (through a status transfer), the rdDone bit transitions
to one and then the IntEvepllyRegRcvdhterrupt is set. The address of the register received is placed in the rdAddr field

and the contents in the rdData field. Note that software should compare the rdAddr field to the value expected because the

PHY can automatically send a register, such as the nodelD register, and thus replace the contents of the read before
software can look at it.

To write to a PHY register, the address of the register is written to the regAddr field, the value to write to the wrData field,
and a 1 to the wrReg bit. The wrReg bit is cleared when the write request has been transferred to the PHY.

Note that the PHY can autonomously send the contents of register 0 to the link. If there is a pending PHY register request,
the register 0 data is automatically written to both the NodelD register and the PHY control register. If there is no pending

PHY register request, then this data is automatically routed to the NodelD register and does not affect the PHY control

register. If register 0 is explicitly read, the data is written to both the NodelD register and the PHY control register.

31 30 29 28) 27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4;3 2 1 0
[T T [T T

rdAddr rdData regAddr wrData

Ll [T O Ll [T O
T T
rdDone wrReg

rdReg

Figure 5-18 — PHY control register

Table 5-18 — PHY control register fields

field name rwu | reset | description
rdDone ru | undef rdDone is cleared to 0 by the Host Controller when either rdReg or wrReg is
set to 1. This bit is set to 1 when a register transfer is received from thg PHY.
rdAddr ru | undef| This is the address of the register most recently received from the PHY.
Page 48

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 5-18 — PHY control register fields (Continued)

field name rwu | reset | description
| rdData ru | undef Contains the data read from the PHY register at rdAddr

rdReg rwu| 1'b0 | SetrdReg to initiate a read request to a PHY register. This bit is clearefl when
the read request has been sent. The wrReg bit must not be set while th¢ rdReg
bit is set.

wrReg rwu| 1’'b0 | SetwrReg to initiate a write request to a PHY register. This bit is cleared when
the write request has been sent. The rdReg bit must not be set while thelwrReg
bit is set.

regAddr rw | undefl regAddr is the address of the PHY register to be written or read.

wrData rw | undef This is the contents to be written to a PHY register. Ignored for a read

| To ensure a consistent interface, regardless of the Phy/Link implementation the register map of P1394A Phys shall b
supported.

5.12 Isochronous Cycle Timer Register

The isochronous cycle timer register is a read/write register that shows the current cycle number and offset. The cycle
timer register is split up into three fields. The lower order 12 bits are the cycle offset, the middle 13 bits are the cycle
count, and the upper order 7 bits count time in seconds. When the 1394 Open HCI is cycle master, this register i
transmitted with the cycle start message. When the 1394 Open HCI is not cycle master, this register is loaded with the
data field in each incoming cycle start. In the event that the cycle start message is not received, the fields continue
incrementing on their own (when cycleTimerEnable is set in the LinkControl register) to maintain a local time reference.

31302928\27262524‘23222120\19181716‘1514131211109 8‘7 6 5 4,3 2 1 0
T T T

cycleSeconds cycleCount cycleOffset

Figure 5-19 — Isochronous cycle timer register

Table 5-19 — Isochronous cycle timer register fields

field name rwu | reset | description

cycleSeconds rwy N/A| This field counts seconds (cycleCount rollovers) modulo 128

cycleCount rwul N/A | This field counts cycles (cycleOffset rollovers) modulo 8000.

cycleOffset rwu| N/A | This field counts 24.576MHz clocks modulo 3072, i.e. 125 us. If an exfernal
8KHz clock configuration is being used, cycleOffset must be set to 0 at|each
tick of the external clock.

Note that the ability to support an external clock is optional. Implementations
which can supporian external clock are not required to have an external ¢lock.

| A hostinitiated write to the cycleTimer register may evoke an IntEsjgieInconsistenin some implementations.

Copyright © 1996,1997 All rights reserved. Page 49

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

5.13 Asynchronous Request Filters

The 1394 OpenHCI allows for selective access to host memory and the Asynchronous Receive Request context so that
software can maintain host memory integrity. The selective access is provided by two sets of 64-bit registers:
PhysRequestFilter and AsynchRequestFilter. These registers allow access to physical memory and the AR Request
context on a nodelD basis. The request filters are not applied to quadlet read requests directed at the Config ROM
(including the ConfigROM header, BusID, Bus Options, and Global Unique ID registers) nor to accesses directed to the
isochronous resource management registers. When the link is enabled, access by any node to the first 1K of CSR config
ROM is enabled(see section 5.5.6). The Asynchronous Request Bioteat have any effeadn Asynchronous Response
packets.

5.13.1 AsynchronousRequestFilter Registers (set and clear)

When a request is received by the Host Controller from the 1394 bus and that request does not access the first 1K of CSR
config ROM on the Host Controller, then the sourcelD is used to index into the AsynchronousRequestFilter. If the corre-
sponding bit in the AsynchronousRequestFilter is set to 0, then requests from that device are not enabled; there will be no
ack_sent, and the requests will be ignored by the Host Controller. If however, the bit is set to 1, the requests are accepted
and will be processed according to the address of the request and the setting of the PhysicalRequestFilter register.

Requests to offsets above PhysicalUpperBound (section 5.14), with the exception of offsets handled physically as

described in Section 12., are always sent to the Asynchronous Receive Request DMA context. If the AR Request DMA
context is not enabled, then the Host Controller will ignore the request.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 121110 9 8|7 6 5 4;3 2 1 0

1 1
| asynRegResource60 asynRegResource35 |
asynRegResource61 ([([([asynRegResource34
asynRegResource62 asynRegResource33
asynRegResourceAll asynRegResource32

Figure 5-20 — AsynchronousRequestFilterHi (set and clear) register

31 30 29 28,27 26 25 2423 22 21 20;19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0

| ellsynReqResource28 asynReqResource:I% |
asynReqgResource29 o o o asynRegResource2
asynRegResource30 asynRegResourcel
asynRegResource31 asynRegResource0

Figure 5-21 — AsynchronousRequestFilterLo (set and clear) register

Page 50 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 5-20 — AsynchronousRequestFilter register fields

field name rscu| reset | description

asynRegResourceN rsc 1’'bQ If setto one for local bus node number N, asynchronous requests|received
by the Host Controller from that node will be accepted. All
asynRegResourceN bits shall be cleared to zero when a bus reset ogcurs.

asynReqResourceAll rs¢ 1'bQ If settoone, all asynchronous requests received by the Host Contrdller from
all bus nodes (including the local bus) will be accepted, and the valueq of all
asynRegResourceN bits shall be ignored. A bus reset does not affec} the
value of the asynRegResourceAll bit.

The AsynchronousRequestFilter bits are set by writing a one to the corresponding bit in the AsynchronousRequestFilter
HiSet or AsynchronousRequestFilterLoSet address. They are cleared by writing a one to the corresponding bit in the
AsynchronousRequestFilterHiClear or AsynchronousRequestFilterLoClear address. If bit “asynReqResourceN” is set,
then requests with a sourcelD of either {10'h3FF, #n} or {busID, #n} will be accepted. If the asynRegResourceAll bit is
set in AsynchronousRequestFilterHi, requests from any device on any other bus are accepted (bus number other the
10’h3FF and busID).

Reading the AsynchronousRequestFilter registers returns their current state. All asynRegResourceN bits in the
AsynchronousRequestFilter register are cleared to 0 on a 1394 bus reset.

5.13.2 PhysicalRequestFilter Registers (set and clear)
If an asynchronous request is allowed from a node, and the offset is below PhysicalUpperBound (section 5.14) the
sourcelD of the request is used as an index into the PhysicalRequestFilter. If the corresponding bit in the PhysicalRe

questFilter is set to 0, then the request is forwarded to the Asynchronous Receive Request DMA context. If however, the
bit is set to 1, then the request is sent to the physical response unit.

31 30 29 28) 27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4;3 2 1 0

1 1
| physReqgResource60 physReqResource35 |
physReqgResource61 [[[physReqResource34
physReqResource62 physReqResource33
physReqResourceAllBuses physReqResource32

Figure 5-22 — PhysicalRequestFilterHi (set and clear) register

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 121110 9 8|7 6 5 4;3 2 1 0

T T
| physReqResource28 physReqResource3 |
physReqResource29 [[[physReqResource2
physRegResource30 physReqResourcel
physReqResource31 physReqResource0

Figure 5-23 — PhysicalRequestFilterLo (set and clear) register

Copyright © 1996,1997 All rights reserved. Page51

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 5-21 — PhysicalRequestFilter register fields

field name rscu| reset | description

physReqResourceN rs¢ 1’'bQ If setto one for local bus node number N, then asynchronous physical
requests received by the Host Controller from that node will be accepted.

physReqResourceAllBus¢s rsc 1'b0 If set to one, all asynchronous physical requests received by the Host Con-
troller from non-local bus nodes will be accepted.

The PhysicalRequestFilter bits are set by writing a one to the corresponding bit in the PhysicalRequestFilterHiSet or
PhysicalRequestFilterLoSet address. They are cleared by writing a one to the corresponding bit in the
PhysicalRequestFilterHiClear or PhysicalRequestFilterLoClear address. If bit “physReqRe&s@ussd, then requests

with a sourcelD of either {10'h3FF, #n} or {busID, #n} will be accepted. If the physReqResourceAllBuses bit is set in
PhysicalRequestFilterHi, physical requests from any device on any other bus are accepted (bus number other than
10’h3FF and busID).

Physical requests that are rejected by the PhysicalRequestFilter are sent to the AR Request DMA context if the AR
Request DMA context is enabled. If it is disabled then the Host Controller ignores the requests.

Reading the PhysicalRequestFilter registers returns their current state. All bits in the PhysicalRequestFilter are set to 0 on
a 1394 bus reset.

5.14 Physical Upper Bound register (optional)

Asynchronous requests which are candidates to be handled by the physical response unit include requests that have a
destination offset which falls within thghysicalrange. This range begins at 48'h0 and ends at the offset specified in this
register. In general, requests at physUpperBoundOffset or higher will be handled by the Asynchronous Receive Request
context. Refer to Chapter 12. for details about Physical Requests.

For use with 64-bit implementations, the Physical Upper Bound register comprises the top 32 bits of a 48-bit offset and
provides a mechanism for implementations to specify physical access for offsets above 48’0000 FFFF_FFFF (4GB).

Physical Upper BoundOffset (0 to 32’hFFFF_0000) 16’h0000

Physical Upper Bound

48'hFFFF_FFFF_FFFF

Physical Upper Bound —®» | — — — — — 4
1 Physical Range

48’h0000_0000_0000 -j

Figure 5-24 — 48-bit Physical Upper Bound

Page 52 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/1

31 30 29 28) 27 26 25 24|23 22 21 20;19 18 17 16‘15 14 13 1211 10 9 8|7 6 5 4,3 2 1 O

rrrrrrrrtrrrrrr T T T T T 17 T T T T T T
physUpperBoundOffset

Figure 5-25 — Physical Upper Bound register

Table 5-22 — Physical Upper Bound register fields

9/97

soft &
hard |bus-
field name rwu |reset |reset | description
physUpperBoundOffset | rw|undef| N/A | Represents the high-order 32 bits of the 48 bit destination offset, with the
or remaining 16 bits set to 16’h0. Requests to this offset or higher shal| be

handled by the Asynchronous Receive Request context, with some
exceptions as outlined in Chapter 12..

Software shall not set physUpperBoundOffset to a value above
32’hFFFF_0000.

If implemented, this shall be a read/write register.

If not implemented, this register shall be read-only with a value of 32
and the upper bound of the physical range shall be 48'h0001_0000 |

Copyright © 1996,1997 All rights reserved.

Page 53

'h0
0000.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Page 54 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

6. Interrupts

The 1394 Open HCI reports two classes of interrupts to the host: DMA interrupts and device interrupts. DMA interrupts
are generated when DMA transfers complete (or are aborted). Device interrupts come directly from the remaining 1394
Open HCI logic. For example, one of these interrupts could be sent in response to the asserting edge of cycleStart,
signal which indicates that a new isochronous cycle has started.

The 1394 Open HCI contains two primary 32-bit registers to report and control interrupts: IntEvent and IntMask. Both
registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit written t
the “Set” address causes the corresponding bit in the register to be set (excluding bits which are read-only), while a “one
bit written to the “Clear” address causes the corresponding bit to be cleared. For both addresses, writing a “zero” bit ha
no effect on the corresponding bit in the register.

The IntEvent register contains the actual interrupt request bits. Each of these bits corresponds to either a DMA completiol
event, or a transition on a device interrupt line. The IntMask register is ANDed with the IntEvent register to enable
selected bits to generate processor interrupts. Software writes to the IntEventClear register to clear interrupt condition:
reported in the IntEvent register.

A processor interrupt is generated when one or more unmasked bits are set in the IntEvent register. Low-level softwar:
responds to the interrupt by reading the IntEvent register, then writing the value read to the IntEventClear register. At this
point the interrupt request is deasserted (assuming no new interrupt bit has been set). Software can proceed to process
reported interrupts in whatever priority order it chooses, and is free to re-enable interrupts as soon as the IntEventClee
register is written.

In addition, the 1394 Open HCI contains four secondary 32-bit registers to report and control interrupts for isochronous
transmit and receive contexts. Each register has two addresses: a “Set” address and a “Clear” address.

6.1 IntEvent (set and clear)

This register reflects the state of the various interrupt sources from the 1394 Open HCI. The interrupt bits are set by al
asserting edge of the corresponding interrupt signal, or by software by writing a one to the corresponding bit in the
IntEventSet address. They are cleared by writing a one to the corresponding bit in the IntEventClear address.

Reading the IntEventSet register returns the current state of the IntEvent register. Reading the IntEventClear registe
returns thamaskedversion of the IntEvent registein{Event & IntMask.

Copyright © 1996,1997 All rights reserved. Page 53

1394 Open Host Controller Interface Specification/Draft 0.97 Printed

9/19/97

On a hardware reset or soft reset,

31 30 29 28) 27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4,3 2 1 0

the values of all bits in this register are undefined.

|phyRechv|d |
vendorSpecific cycleTooLong
unrecoverableError
cyclelnconsiste

I [SelflbComplete | I
phy husReset reqTxComplete
cycleSynch lockRespErr respTxComplete
cycle64Seconds postedWriteErr ARRQ
nt cycleLost isochRx ARRS
isochTx RQPkt
RSPkt

Figure 6-1 — IntEvent register

Table 6-1 — IntEvent register description (Sheet 1 of 2)

Field Bit # | rscu

Description

reqTxComplete 0| rscu

Asynchronous request transmit DMA interrupt. This bit is conditionally set|
completion of an AT DMA request OUTPUT_LAST* command.

upon

respTxComplete 1 rscu

Asynchronous response transmit DMA interrupt. This bit is conditionally s¢t upon

completion of an AT DMA response OUTPUT_LAST* command.

ARRQ 2 rscu

Asynchronous Receive Request DMA interrupt. This bit is conditionally set
completion of an AR DMA Request context command descriptor.

upon

ARRS 3 rscu

Asynchronous Receive Response DMA interrupt. This bit is conditionally se
completion of an AR DMA Response context command descriptor.

t upon

RQPkt 4 rscu

Indicates that a packet was sent to an asynchronous receive request contq
and the descriptor’s xferStatus and resCount fields have been updated.
This differs from ARRQ above since RQPkt is a per-packet completion indig
and ARRQ is a per-command descriptor (buffer) completion indication. AR
Request buffers may contain more than one packet.

xt buffer

ation

RSPkt 5 rscu

Indicates that a packet was sent to an asynchronous receive response context buffer

and the descriptor’s xferStatus and resCount fields have been updated.
This differs from ARRS above since RSPkt is a per-packet completion indic
and ARRS is a per-command descriptor (buffer) completion indication. AR
Response buffers may contain more than one packet.

htion

isochTx 6 ru

Isochronous Transmit DMA interrupt. Indicates that one or more isochrono
transmit contexts have generated an interrupt. This is not a latched event, it
OR’ing all bits in (isoXmitIntEvent & isoXmitintMask). The isoXmitintEvent
register indicates which contexts have interrupted. See section 6.3.

IS
is the

isochRx 7 ru

Isochronous Receive DMA interrupt. Indicates that one or more isochronod
receive contexts have generated an interrupt. This is not a latched event, it
OR’ing all bits in (isoRecvintEvent & isoRecvIntMask). The isoRecvIntEven
register indicates which contexts have interrupted. See section 6.4.

S
s the

postedWriteErr 8 rscy

Indicates that a host bus error occurred while the Host Controller was trying
a 1394 write request, which had already been given an ack_complete, into
memory. The 1394 destination offset and sourcelD are available in the

to write
bystem

PostedWriteAddress registers described in section 13.2.8.1.

Page 54

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 6-1 — IntEvent register description (Sheet 2 of 2)

Field Bit # | rscu | Description

lockRespErr 9 rscy Indicates that the Host Controller attempted to return a lock response for & lock
request to a serial bus register described in Section 5.5.1, but did not receive an
ack_complete after exhausting all permissible retries.

reserved 10-15

selfIDcomplete 16| rscu A selfID packet stream has been received. Will be generated at the end of the bus
initialization process. This bit is turned off simultaneously when IntElvesRese
is turned on.

busReset 17| rscu Indicates that the PHY chip has entered bus reset mode. See section 6.1.1f below for
information on when to clear this interrupt.

reserved 18

phy 19 | rscu| Generated when the PHY requests an interrupt through a status transfer.

cycleSynch 20| rscu Indicates that a new isochronous cycle has started. Set when the low order]bit of the
internal isochronousCycleTimeycleCountoggles.

cycle64Seconds 21 rsqu Indicates that the 7th bit of the cycle second counter has changed.

cycleLost 22 | rscy A lost cycle is indicated when no cycle_start packet is sent/received betwdgen two

successive cycleSynch events.

cyclelnconsistent 23| rscu A cycle start was received that had an isochronous cycketionetsand
isochronous cycleTimamuntdifferent from the value in the CycleTimer registgr.
Implementations are free to indicate a cyclelnconsistent if a host initiated wfite
changes the cycleSeconds or cycleCount fields of the cycleTimer register
(section 5.12). For the effect of this condition on isochronous transmit, refer|to
section 9.5.1 and for isochronous receive refer to section 10.5.1.

unrecoverableErrgr 24{ rscu This event occurs when the Host Controller encounters any error that forges it to
stop operations on any or all of its subunits. For example, when a DMA contekt sets

its contextControteadbit.
While unrecoverableError is set, all normal interrupts for the context(s) that caused
this interrupt will be blocked from being set.

cycleToolLong 25| rscy If LinkContratycleMasteris set, this indicates that 115 to 12€ecs elapsed
between the start of sending a cycle start packet and either the end of a sulpaction
gap or the detection of a bus reset. LinkCorntyamleMasteis cleared by this ever

phyRegRcvd 26| rscy The 1394 Open HCI has received a PHY register data byte which can be rpad from
the PHY control register (see 5.11).

—

reserved 27-29
vendorSpecific 30 Vendor defined.
reserved 31

6.1.1 busReset

When a bus reset occurs and the busReset interrupt is set to one, the selfIDComplete interrupt is simultaneously cleare
to 0. The Host Controller shall prevent software from clearing the busReset interrupt bit during the self-ID phase of bus
initialization. Software must take precautions regarding the asynchronous transmit contexts before clearing this interrupt
Refer to section 7.2.3 for further details.

Copyright © 1996,1997 All rights reserved. Page 55

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

6.2 IntMask (set and clear)

The bits in the IntMask register have the same format as the IntEvent register, with the addition of masterintEnable (bit
31). A one bit in the IntMask register enables the corresponding IntEvent register bit to generate a processor interrupt. A
zero bit in IntMask disables the corresponding IntEvent register bit from generating a processor interrupt. A bit is set in

the IntMask register by writing a one to the corresponding bit in the IntMaskSet address and cleared by writing a one to
the corresponding bit in the IntMaskClear address.

If masterintEnable is 0, all interrupts are disabled regardless of the values of all other bits in the IntMask register. The
value of masterintEnable has no effect on the value returned by reading the IntEventClear; even if masterintEnable is 0,
reading IntEventClear will return (IntEvent & IntMask) as described earlier in section 6.1.

On a reset, the IntMaskasterIintEnabléit (31) is set to 0 and the value of all other bits is undefined.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 121110 9 8|7 6 5 4;3 2 1 0

masterlntEnabIIe |phyRechv|d ;I)hy |busksglsDe§:omplete rleqTxCompIete
vendorSpecific cycleTooLong cycleSynch lockRespErr respTxComplete
unrecoverableError cycle64Seconds postedWriteErr ARRQ
cyclelnconsistent cycleLost isochRx ARRS
isochTx RQPkt
RSPkt

Figure 6-2 — IntMask register

Table 6-2 — IntMask register description

Field Bit # | rscu | Description

interrupt events fo: 0-9| rsg See Table 6-1.
reserved 10-15
interrupt events for 16-17 rs¢ See Table 6-1.

reserved 18

interrupt events fof 19-26 rs¢ See Table 6-1.

reserved 27-29

vendorSpecific 30 Vendor defined.

masterintEnable 31 rs¢ If set, external interrupts will be generated in accordance with the IntMask fegister.
If clear, no external interrupts will be generated regardless of the IntMask rggister
settings.

6.3 IsochTx interrupt registers

There are two 32-bit registers to report isochronous transmit context interrupts: isoXmitintEvent and isoXmitintMask.
Both registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit written
to the “Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear” address
causes the corresponding bit to be cleared. For all four addresses, writing a “zero” bit has no effect on the corresponding
bit in the register.

Page 56 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

The isoXmitintEvent register contains the actual interrupt request bits. Each of these bits corresponds to a DMA
completion event for the indicated isochronous transmit context. The isoXmitintMask register is ANDed with the
isoXmitIntEvent register to enable selected bits to generate processor interrupts. If (isoXmitintMask & isoXmitintEvent)
is not zero, then the IntEveisbchTxbit will be set to one, and if enabled via the IntMask register it will generate a
processor interrupt. A software write to the isoXmitintEventSet register can therefore cause an interrupt (if not otherwise
masked). A software write to the isoXmitintEventClear register will clear interrupt conditions reported in the
isoXmitIntEvent register.

Reading the isoXmitintEventSet register returns the current state of the isoXmitintEvent register. Reading the
isoXmitIntEventClear register returns themasked version of the isoXmitintEvent registeris¢XmitintEvent &
isoXmitIntMask.

6.3.1 isoXmitintEvent (set and clear)

This register reflects the interrupt state of the isochronous transmit contexts. An interrupt is generated on behalf of ar
isochronous transmit context if an OUTPUT_LAST DMA command completes andiits are set to 2’b11 (interrupt
always). Upon determining that the IntEvédchTxinterrupt has occurred, software can check the isoXmitintEvent
register to determine which context(s) caused the interrupt.

31 30 29 28 27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4,3 2 1 0

| ilszmit28 iszmitI3 |
isoXmit29 [) [) [) isoXmit2
isoXmit30 isoXmitl
isoXmit31 isoXmit0

Figure 6-3 — isoXmitintEvent (set and clear) register

On a hardware reset or soft reset, values of all bits in this register are undefined. Note that in these circumstances tt
IntMaskmasterintEnablds set to zero, therefore masking all interrupts until re-enabled by software.

6.3.2 isoXmitintMask (set and clear)

The bits in the isoXmitintMask register have the same format as the isoXmitintEvent register. Setting a bit in this register
enables the corresponding bit in the isoXmitintMaskSet address and cleared by writing a one to the corresponding bit ir
the isoXmitintMaskClear address.

Bits for all unimplemented contexts must read as 0’s. Software can use this register to determine which contexts ar
supported by writing to it with all 1's, then reading it back. Contexts with a 1 are implemented, and those with a 0 are not.

On a hardware reset or soft reset, values for all bits in this register are undefined.

6.4 IsochRx interrupt registers

There are two 32-bit registers to report isochronous receive context interrupts: isoRecvintEvent and isoRecvintMask.
Both registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit writte
to the “Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear” addres:
causes the corresponding bit to be cleared. For all four addresses, writing a “zero” bit has no effect on the correspondin
bit in the register.

Copyright © 1996,1997 All rights reserved. Page 57

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

The isoRecvintEvent register contains the actual interrupt request bits. Each of these bits corresponds to a DMA comple-
tion event for the indicated isochronous receive context. The isoRecvintMask register is ANDed with the isoRecvintEvent
register to enable selected bits to generate processor interrupts. If (isoRecvintMask & isoRecvintEvent) is not zero, then
the IntEventisochRxbit will be set to one, and if enabled via the IntMask register it will generate a processor interrupt. A
software write to the isoRecvIintEventSet register can therefore cause an interrupt (if not otherwise masked). A software
write to the isoRecvintEventClear register will clear interrupt conditions reported in the isoRecvIntEvent register.

Reading the isoRecvintEventSet register returns the current state of the isoRecvintEvent register. Reading the
isoRecvIntEventClear register returns thaskedversion of the isoRecvintEvent registesoRecvintEvent & isoRecvint-
Mask).

6.4.1 isoRecvintEvent (set and clear)
This register reflects the interrupt state of the isochronous receive contexts. An interrupt is generated on behalf of an
isochronous receive context if an INPUT_LAST DMA command completes aridbits are set to 2'b11 (interrupt

always). Upon determining that the IntEvédchRxinterrupt has occurred, software can check the isoRecvintEvent
register to determine which context(s) caused the interrupt.

31 30 29 28) 27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4,3 2 1 0

T J
| isoRecv28 isoRecv3 |

isoRecv29 ([([([isoRecv2
isoRecv30 isoRecvl
isoRecv31 isoRecv0

Figure 6-4 — isoRecvIntEvent (set and clear) register

On a hardware reset or soft reset, values of all bits in this register are undefined. Note that in these circumstances the
IntMaskmasterintEnablds set to zero, therefore masking all interrupts until re-enabled by software.

6.4.2 isoRecvIntMask (set and clear)
The bits in the isoRecvIntMask register have the same format as the isoRecvIntEvent register. Setting a bit in this register
enables the corresponding bit in the isoRecvIintMaskSet address and cleared by writing a one to the corresponding bit in

the isoRecvIntMaskClear address.

Bits for all unimplemented contexts must read as 0’'s. Software can use this register to determine which contexts are
supported by writing to it with all 1's then reading it back. Contexts with a 1 are implemented, and those with a 0 are not.

On a hardware reset or soft reset, values of all bits in this register are undefined.

Page 58 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

7. Asynchronous Transmit DMA

The 1394 OpenHCI divides the transmission of asynchronous packets into three categories: asynchronous requests, as)
chronous responses, and physical responses. This chapter describes how to use DMA to transmit asynchronous reque
and asynchronous responses. For information regarding physical responses, see section 12., “Physical Requests.”

There is one DMA controller for each transmit context: the Asynchronous Transmit (AT) Request Controller for the AT
request context, and the AT Response Controller for the AT response context. Although OpenHCI does not specify how
many FIFO’s are required to support the AT DMA controllers, it is required that the re-transmission of request packets
never blocks the transmission of response packets.

The AT Request context is used by software to transmit read, write and lock request packets and the AT Response conte
is used to send response packets to read, write, and lock requests that have earlier been received into the asynchronq
receive request context buffers (see section 8., “Asynchronous Receive DMA,").

Each context consists of a context program and two registers. A context program is a list of commands for that contex
which direct the Host Controller on how to assemble packets for transmission. The DMA controller for that context
executes each command, inserting data into the appropriate FIFO and interrupting as requested.

The following sections describe how to set up and manage an AT DMA context program and describe the data formats fo
the various asynchronous request and response packet types.

7.1 AT DMA Context Programs

Each asynchronous transmit packet, whether a request or response packet, shall be described by a contiguous list
command descriptors referred to adescriptor block A chain of descriptor blocks is referred to as a context program.
There are four different command descriptors that can be used within each descriptor block: OUTPUT_MORE,
OUTPUT_MORE-Immediate, OUTPUT_LAST and OUTPUT_LAST-Immediate. In the descriptions that follow,
OUTPUT_MORE* refers to both the OUTPUT_MORE and OUTPUT_MORE-Immediate commands, OUTPUT_LAST*
refers to both the OUTPUT_LAST and OUTPUT_LAST-Immediate commands and *-Immediate refers to both the
OUTPUT_MORE-Immediate and OUTPUT_LAST-Immediate commands.

Each packet shall be specified in one descriptor block. A descriptor block may have either one single OUTPUT_LAST-
Immediate descriptor, or may have one OUTPUT_MORE-Immediate descriptor followed by zero to five
OUTPUT_MORE descriptors, followed by one OUTPUT_LAST descriptor. This allows software to combine up to seven
fragments to specify a single packet. In addition, the first command descriptor in a descriptor block must be one of the *-
Immediate commands toansmit the full 1394 paekt header for the packet’s tcode type, wheaeket headeis defined

as all quadlets that appear before the 1394 packet header CRC quadlet and that are required by the respective pac
format (defined in section 7.5). Further, a descriptor block for a packet shall not exceed 128 bytes. The OUTPUT_MORE
and OUTPUT_LAST command descriptors are 16-bytes in length, and the *-Immediate descriptors are 32-bytes in length
All descriptors must be aligned on a 16-byte boundary.

In the sections below, the format for each command descriptor is shown. The shaded fields are reserved and should be :
to 0 by software. Fields with a hardcoded value must be set to that value by software. The values of all other fields are
described in each command’s descriptor element summary.

Copyright © 1996,1997 All rights reserved. Page 59

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

7.1.1 OUTPUT_MORE descriptor

The OUTPUT_MORE command descriptor is used to specify a host memory buffer from which the AT DMA controller
will insert bytes into the appropriate transmit FIFO. It has the following format.

cmd=0 |§e,[31/5

%8 reqCount

dataAddress

Figure 7-1 — OUTPUT_MORE descriptor format

Table 7-1 — OUTPUT_MORE descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h0 for OUTPUT_MORE.

key 3 Set to 3'h0 for OUTPUT_MORE.

b 2 Branch control. Software must set this field to 2'b00. Values of 2’b11, 2'b10, 2'b01 will
result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes starting at dataAddress.

dataAddress 32 Address of transmit data.

Page 60 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

7.1.2 OUTPUT_MORE_Immediate descriptor

The OUTPUT_MORE-Immediate command descriptor is used to specify up to four quadlets of packet header information
to be inserted into the appropriate transmit FIFO. It has the following format.

cmd=0 lg?ﬁ‘lzz 68 reqCount=8 or 16

timeStamp (AT response only)

first quadlet

second quadle

third quadlet

fourth quadlet

Figure 7-2 — OUTPUT_MORE-Immediate descriptor format

Table 7-2 — OUTPUT_MORE-Immediate descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h0 for OUTPUT_MORE-Immediate

key 3 Set to 3'h2 for OUTPUT_MORE-Immediate.

b 2 Branch control. Software must set this field to 2'b00. Values of 2’b11, 2'b10, 2'b01 will

result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes immediately following the 16th byte
of this descriptor. This value must be either 8(two quadlets) or 16(four quadlets). Bpeci-
fying any other value will result in unspecified behavior. Regardless of the reqCoynt
value, this descriptor is always 32 bytes long.

timeStamp 16 Valid only in the Alesponse context. This field contains the three low order bits of
cycleSeconds and all 13 bits of cycleCount. See section 5.12, “Isochronous Cyclg Timer
Register,” for information about these fields.
For AT response packets, timeStamp indicates a time after which the packet should not be
transmitted. For further information on the use of this field, see section 7.1.5.3 be|ow.

first, second, third, ang128 | Packet header quadlets to be inserted into the applicable FIFO.
fourth quadlets

The OUTPUT_MORE-Immediate command shall only be used either to specify the four quadlet 1394 transmit packet
header for a block payload or lock packet, or to specify the two quadlet 1394 transmit packet header for an isochronou:
packet. All OUTPUT_MORE-Immediate command descriptors are 32-bytes in length and are counted as two 16-byte
aligned blocks when calculating the Z value.

Copyright © 1996,1997 All rights reserved. Page61

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

7.1.3 OUTPUT_LAST descriptor

The OUTPUT_LAST command descriptor is used to specify a host memory buffer from which the AT DMA controller
will insert bytes into the appropriate transmit FIFO. This command indicates the end of a packet to the Host Controller. It
has the following format.

_ key= i |2b
Clmg_ll 3'%/p p II]11 1 1 1 1 1 1 IrquC:IOLIjntI 1 1 1 1 1
dataAddress
1 1
branchAddress 4
1 1
xferStatus timeStamp (AT requests only)

Figure 7-3 — OUTPUT_LAST descriptor format

Table 7-3 — OUTPUT_LAST descriptor element summary

Element Bits | Description

cmd 4 Set to 4'hl for OUTPUT_LAST.

key 3 Set to 3'h0 for OUTPUT_LAST.

p 1 Ping Timing. A 1 indicates that this is a ping packet. A ping packet is used to discgrn the

round-trip time of transmitting a packet to another node. The timeStamp value writtgn into
this descriptor for a ping packet shall be the time from when the last bit of the padket is

transmitted from the link to the PHY until either data is received or a subaction gap ¢ccurs.
For more information on ping timing, see section 7.1.5.3.2.

A 0 indicates that this is not a ping packet.

i 2 Interrupt control. Options:

2'b11 - Always interrupt upon command completion.
2'b01 - Interrupt only if did not receive an ack_complete or ack_pending. See table 3-2
for a list of possible ack_ and evt_ values.
2'b00 - Never interrupt.

Specifying a value of 2’'b10 will result in unspecified behavior.

b 2 Branch control. Software must set this field to 2’'b11. Values of 2'b10, 2'b01, and P’b00
will result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes described by this descriptqr, begin-
ning at dataAddress.

dataAddress 32 Address of transferred data.

branchAddress 28 16-byte aligned address of the next descriptor. A valid host memory address muyst be pro-
vided in this field unless the Z field is 0.

z 4 This field indicates the number of 16-byte command blocks that comprise the next packet.

If this is the last descriptor in the list, the Z value must be 0. Otherwise, valid valugs are
2 to 8. Note that each *-Immediate command descriptor is counted as two 16-byte|blocks
and each non-immediate command is counted as one 16-byte block.

Page 62 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 7-3 — OUTPUT_LAST descriptor element summary

Element Bits | Description
xferStatus 16 Written with ContextControl [15:0] after descriptor is processed.
timeStamp 16 This field contains the three low order bits of cycleSeconds and all 13 bits of cyclgCount.

See section 5.12, “Isochronous Cycle Timer Register,” for information about theseffields.
For AT request packets, timeStamp is a software read-only value written by hardware and
indicates the transmission time of the packet. ForeSponse packets, timeStamp is pot
valid (it is only valid in the first descriptor of a response descriptor block which willlbe a
*-Immediate descriptor). For further information on the use of the timeStamp field| see
section 7.1.5.3.

7.1.4 OUTPUT_LAST_ Immediate descriptor

The OUTPUT_LAST-Immediate command descriptor is used to specify two to four quadlets of packet header information
to be inserted into the appropriate transmit FIFO. This command indicates the end of a packet to the Host Controller. I
has the following format.

_ key= :12b _
cmd=1 3'%,.2 p i 11 reqCount=8, 12 or 16

branchAddress z

xferStatus timeStamp

first quadlet

second quadlet

third quadlet

fourth quadlet

Figure 7-4 — OUTPUT_LAST-Immediate descriptor format

Table 7-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h1 for OUTPUT_LAST-Immediate.

key 3 Set to 3’h2 for OUTPUT_LAST-Immediate.

p 1 Ping Timing. A 1 indicates that this is a ping packet. A ping packet is used to discgrn the

round-trip time of transmitting a packet to another node. The timeStamp value writtgn into
this descriptor for a ping packet shall be the time from when the last bit of the padket is

transmitted from the link to the PHY until either data is received or a subaction gap ¢ccurs.
For more information on ping timing, see section 7.1.5.3.2.

A 0 indicates that this is not a ping packet.

i 2 Interrupt control. Options:

2'b11 - Always interrupt upon command completion.
2'b01 - Interrupt only if did not receive an ack_complete or ack_pending. See table 3-2
for a list of possible ack and evt values.
2’'b00 - Never interrupt.

Specifying a value of 2'b10 will result in unspecified behavior.

Copyright © 1996,1997 All rights reserved. Page 63

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 7-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits | Description

b 2 Branch control. Software must set this field to 2’'b11. Values of 2'b10, 2'b01, and P’b00
will result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes immediately following the 16th byte
of this descriptor. Valid values are 8(two quadlets), 12(three quadlets) and 16(fou
guadlets). Specifying any other values will result in unspecified behavior. Regardless of
the reqCount value, this descriptor is always 32 bytes long.

branchAddress 28 16-byte aligned address of the next descriptor. A valid host memory address muyst be pro-
vided in this field unless the Z field is 0.
z 4 This field indicates the number of 16-byte command blocks that comprise the next packet.

If this is the last descriptor in the list, the Z value must be 0. Otherwise, valid valugs are
2 to 8. Note that each *-Immediate command descriptor is counted as two 16-byte|blocks
and each non-immediate command is counted as one 16-byte block.

xferStatus 16 Written with ContextControl [15:0] after descriptor is processed.

timeStamp 16 This field contains the three low order bits of cycleSeconds and all 13 bits of cyclgCount.
See section 5.12, “Isochronous Cycle Timer Register,” for information about thesq fields.
For AT response packets, timeStamp indicates a time after which the packet should not be
transmitted. For ATequest packets, timeStamp is a software read-only value writt¢n by

hardware and indicates the transmission time of the packet.
For further information on the use of the timeStamp field, see section 7.1.5.3 belgw.

first, second, third, and128 | Data quadlets to be inserted into the applicable FIFO.
fourth quadlets

The OUTPUT_LAST-Immediate command will be used to specify information that is protected by the header CRC or for
sending a PHY packet. OUTPUT_LAST-Immediate command descriptors are 32-bytes in length regardless of the value of
reqCount and are counted as two 16-byte aligned blocks when calculating the Z value.

7.1.5 AT DMA descriptor usage
Fields in the command descriptor are further described below.

7.1.5.1 Command.Z

The Z value is used by the Host Controller to enable several descriptors to be fetched at once, for improved efficiency. Z
values must always be encoded correctly. The contiguous descriptors described by a Z value ardesaitgrdoa block
The following table summarizes all legal Z values for the Asynchronous Transmit contexts:

Table 7-5 — Z value encoding

Z value Use
0 Indicates that the current descriptor is the last descriptor in the context program
1 reserved. (Since all descriptor blocks must start with a *-Immediate command, they are

by definition a minimum of two 16-byte blocks in size.)

2-8 Indicates that two to eight 16-byte aligned blocks starting at branchAddress are
physically contiguous and specify a single packet. Note that the 32-byte *-Immefliate
command descriptors must be counted as two 16-byte blocks when calculating the Z
value.

9-15 reserved

Page 64 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

A single packet that is to be transmitted must be entirely described by one descriptor block. This requirement permits the
Host Controller to prefetch all the descriptors for a packet, in order to avoid fetching additional descriptors during a
packet transfer. The branch address+Z allows the Host Controller to learn the Z value of the next block. Only the
OUTPUT_LAST* descriptor shall specify a branch address+Z for the next packet. BranchAddress+Z values are ignored
in all OUTPUT_MORE?* descriptors, and should not be specified.

All DMA context programs must use a Z = 0 command to indicate the end of the program. A program which ends in Z=0
can be appended to while the DMA runs, even if the DMA has already reached the end. The mechanism for doing this i
described in section 3.2.1.2.

7.1.5.2 Command.xferStatus

Upon the transmission completion of a packet, the 16 least significant bits of the current contents of the DMA Context-
Control register are written to the completed packet's OUTPUT_LAST* descriptor's ConxfeaBthtusfield. See
section 7.2.2 for the contents of this field.

7.1.5.3 Command.timeStamp

The timeStamp field is encoded as follows:

15 14 13 12/11 10 9 8|7 6 5 4,3 2 1 0
1 T

cycle
Seconds
L N N N NN N N N NN N

Figure 7-5 — timeStamp format

Table 7-6 — timeStamp description

Field Bits Description

cycleSeconds 3 Low order three bits of the seven-bit isochronous cycle timer second count.
Possible values are 0 to 7.

cycleCount 13 Full 13 bits of the 13-bit isochronous cycle timer cycle count.
Possible values are 0 to 7999.

7.1.5.3.1 timeStamp value for Requests

Asynchronous transmit request packets may initiate a transaction which should complete by a specific time. So that hos
software will know when the transaction began, the Host Controller will update the timeStamp value in all
OUTPUT_LAST* descriptors at the time when the ack is received. If no ack is received, timeStamp will be written when
the timeout on ack occurs. TimeStamp is written in the same bus operation in which xferStatus is written.

Note that a transmit request packet may sit in the transmit FIFO for some time before the PHY wins normal arbitration.
This delay is usually brief, but could be over 200 cycles (over 25 milliseconds) in the case of a bus with 80% isochronous
traffic and 63 nodes each sending maximum-size asynch packets as often as possible.

7.1.5.3.2 timeStamp value for Ping Requests

Pingingis used to discern the round-trip time of transmitting a packet to another node. In IEEE 1394-1995 this is done by
transmitting a packet to a node and timing how long it takes to receive the corresponding ack. In P1394a, this is done b
transmitting a Ping packet to a node and timing how long it takes to receive that node’s self-ID packet as a response.

Copyright © 1996,1997 All rights reserved. Page 65

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

To achieve pinging with OpenHCI, software sets gheit in the packet's OUTPUT_LAST* command descriptor to
indicate it is a ping packet. The Host Controller shall transmit the packet and track the timing based on a number of
49.152MHz clocks, and placing the final result in the descriptor’s timeStamp field.

The Ping timer begins counting from zero immediately after the last bit of every transmitted packet is delivered from the
link to the PHY. (For controllers that implement the P1394a standardized PHY/Link interface, the timer would start with
the first HOLD or IDLE driven by the link after each transmitted packet.) The Ping timer stops counting at the earliest of
either data reception or an indication of a subaction gap. (For controllers that implement the P1394a standardized
PHY/Link interface, the timer stops with the first of either a RECEIVE indication from the PHY, or a STATUS transfer

indicating a subaction gap.

Aside from the difference in meaning of the timeStamp field when an OUTPUT_LAST hpsbthenabled, all other
behaviors of the AT Request DMA context remain unchanged for the packet. For example, if an ack_busy* is returned by
the destination node, the AT Request DMA shall perform its normal retry behavior. Each retried transfer shall repeat the
ping timing, with the last attempt reported to the AT Request DMA command descriptor.

7.1.5.3.3 timeStamp value for Responses

Typically, asynchronous transmit response packets expire at a certain time and should not be transmitted after that time.
A timeStamp value can be placed in the first OUTPUT_* descriptor for such packets to indicate the expiration time.

The timeStamp used for asynchronous transmit contains a 3-bit seconds field and a 13-bit cycle number which counts
modulo 8000. Before an asynchronous response is put into the transmit FIFO, whether for the initial transmission attempt
or for a retry attempt, this timeStamp value is compared to the current cycleTimer. This comparison is used to determine
whether or not the packet will be sent or rejected as being too old.

The comparison is broken into two parts. The first compare is done on the seconds field of the timeStamp and the low
order three bits of the seconds field in the cycleTimer. The low three bits of the cycleTime is subtracted from the
timeStampseconddield using three bit arithmetic. If the most significant bit of the subtraction is 1, then the timeStamp

is considered ‘late’ and the packet is rejected. If the most significant bit is O but the other two bits are not 0, then the
timeStamp is considered to be for some time in the ‘distant’ future and the packet can be sent. If the difference is 0, then
the timeStamp and cycleTimer are referring to the same second so the cycle number portion of the timeStamp is compared
to the cycle number portion of the cycleTimer to determine if the cycle is early, late or matches. This comparison is done
by subtracting the cycleTimer cycle number from the timeStamp cycle number. If the result is negative, then the time for
the packet has passed and the packet is rejected. If the difference is positive and the timeout value is positive or zero, then
the packet can be sent. This subtraction is signed so a sign bit is assumed to be prepended to both cycle number values.

Table 7-7 — Results of timeStamp.cycleSeconds - cycleTimer.cycleSeconds

cycleTimer.seconds
timeStamp.secondg 000| 001f 010 011 10p 141 110 1f1
000 000/ 111|110{101{100| 011 010 001
001 001 00Q111|110{101|100(011 01d
010 010 001 00(¢111{110|101(100| 011
011 011} 010 001 00{111(110/101|100
100 100(011] 010 001 00|111(110|101
101 101(100| 011 01Q 001 00[111|110
110 110|101|100(011 010 001 00|111
111 111(110{101|100| 011 010 001 OOp

NOTE: Shaded entries denote ‘late’ values.

Page 66 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

For those entries in the table above which are 000, the cycledywieCount field is subtracted from the
timeStampcycleCountfield. If the result is positive or 0, it indicates that the packet can be sent. If the result is negative
the packet cannot be sent and the status error code is set to evt_timeout.

Table 7-8 — timeStamp.cycleCount-cycleTime.cycleCount Example 1

timeStamp.cycleCount cycleTime.cycleCount difference action
14’hOFAO 14’hOF9E 14’h0002 send packet
14’hOFAQ 14’hOF9F 14’h0001 send packet
14’hOFAO 14’hOFAQ 14’h0000 send packqt
14’hOFA0 14'h0OFAL 14'h3FFF reject packet

Table 7-9 — timeStamp.cycleCount-cycleTime.cycleCount Example 2

timeStamp.cycleCount cycleTime.cycleCount difference action
14’h1000 14'hOFFE 14’h0002 send packgt
14’h1000 14'hOFFF 14’0001 send packgt
14’h1000 14’h1000 14’h0000 send packgt
14’h1000 14’h1001 14'h3FFF reject packpt

Table 7-10 — timeStamp.cycleCount-cycleTime.cycleCount Example 3

timeStamp.cycleCount cycleTime.cycleCount difference action
14’h0000 14’h0000 14’h0000 send packgt
14’h0000 14’h0001 14'h3FFF reject packpt
14’h0000 14’h1000 14’h3000 reject packpgt
14’h0000 14’h1001 14'h2FFF reject packpt
14’h0000 14'h1F3E 14'h20C2 reject packpt
14’h0000 14'h1F3F 14’h20C1 reject packpt

After a transmit packet has passed the timeStamp check, it may sit in the transmit FIFO for some time before the PHY
wins normal arbitration. The Host Controller does not re-examine the timeStamp while the packet waits, even if the
descriptor is still active because only part of the packet fits into the FIFO. This delay is usually brief, but could be over
200 cycles (over 25 milliseconds) in the case of a bus with 80% isochronous traffic and 63 nodes each sending maximurr
size asynch packets as often as possible.

Software can compute the worst-case FIFO delay based on knowledge of the current node count and the current (c
maximum) isochronous load. Software can use this delay to compute an earlier expiration timeStamp to prevent late trans
mission due to FIFO delay. Using the maximum (not current) isochronous load is advisable, because additional isochro
nous reservations could be made while the packet is waiting in the transmit FIFO.

Because the Host Controller examines the timeStamp before the packet is loaded into the transmit FIFO, and because t
packet may remain in the FIFO for some period until the PHY attached to the Host Controller wins normal arbitration, it
is not possible to guarantee that the packet will not be transmitted after it expires. The maximum time the packet waits ir
the FIFO can be computed by software based on dynamic bus parameters, and this time can be factored into the packe
expiration timeStamp. (Note, this could be over 200 cycles, in unlikely case where 80% of the bus is isochronous, and 6:
nodes are each sending maximum-size asynch packets.)

Copyright © 1996,1997 All rights reserved. Page 67

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

7.2 AT DMA context registers

Each AT DMA context (request and response) has two registers: CommandPtr and ContextControl. CommandPtr is used
by software to tell the Host Controller where the DMA context program begins. ContextControl is used by software to
control the context’s behavior, and is used by hardware to indicate current status.

7.2.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. The
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically
contiguous 16-byte blocks of command descriptors are pointed to by descriptorAddress.

31302928‘27252524‘23222120\19 18 17 16‘15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0

Figure 7-6 — CommandPtr register format
Refer to Section 3.1.2 for a complete description of the CommandPtr register.
7.2.2 ContextControl register (set and clear)

The ContextControlSeandContextControlClearegisters contain bits that control options, operational state and status for

a DMA context. Software can set selected bits by writing ones to the corresponding bit€amtketControlSetegister.
Software can clear selected bits by writing ones to the corresponding bits @ontextControlClearegister. It is not
possible for software to set some bits and clear others in an atomic operation. A read from either register will return the
same value.

31 30 29 28) 27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4,3 2 1 0
[T
event
code
L I
I
run | d
: reservea-
active undefined
dead
wake
Figure 7-7 — ContextControl (set and clear) register format
Table 7-11 — ContextControl (set and clear) register description
Field rscu | Description
run rscu Refer to section 3.1.1.1 for an explanation of the contextCoumtrbit.
wake rsu Refer to section 3.1.1.2 for an explanation of the contextCuaatkebit.
dead ru Refer to section 3.1.1.4 for an explanation of the contextCdetxdbit.
active ru Refer to section 3.1.1.3 for an explanation of the contextCauatiot bit.

Page 68 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 7-11 — ContextControl (set and clear) register description

Field rscu | Description

reserved undefined| ru This field is specified as undefined and may contain any value without impacting the
intended processing of this packet.

event code ru Following an OUTPUT_LAST* command, the received ack_code or an “evt_" errgr code
is indicated in this field. Possible values are: ack_complete, ack_pending, ack_busy_X,
ack _busy A, ack_busy B, ack_data_error, ack_type_error, evt_tcode_err,
evt_missing_ack, evt_underrun, evt_descriptor_read, evt_data_read,evt_timeout,
evt_flushed and evt_unknown.

See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

7.2.2.1 Writing status back to context command descriptors

Upon OUTPUT_LAST* completion, bits 15-0 of the contextControl register are written to the OUTPUT_LAST*
command’sxferStatusfield. When CommangferStatusis written to memory, the active bit is always one. If software
prepared the descriptor's xferStaagtive bit to be zero, this change indicates that the descriptor has been executed, and
the xferStatus and timeStamp fields have been updated.

7.2.3 Bus Reset
7.2.3.1 Host Controller Behavior for AT

Upon detection of a bus reset, the Host Controller will cease transmission of asynchronous transmit packets. When thi
occurs there are two possibilities for AT packets that are left in the FIFO.

» Case 1 is when a bus reset occurs after the packet was transmitted but before an ack was received. For this catego
the link side of the Host Controller will return evt_ack_missing.

» Case 2 is when a bus reset occurs after the packet is placed in the FIFO but before it is transmitted. For this categor
the link side of the Host Controller may return evt_flushed.

When each context becomes stable (all data transfers have been halted and status writes have been completed), the H
Controller will clear the corresponding ContextCon#otive bit.

7.2.3.2 Software Guidelines

When a bus reset occurs, the link side will flush the asynchronous transmit FIFO(s) until the IntEResetondition

is cleared. Software must make sure however that IntExesiReseis not cleared until 1) software has cleared the
ContextControtun bits for both Asynchronous Transmit contexts, and 2) both Asynchronous Transmit contexts have
quiesced and both contextContaative fields are zero. This is to ensure that all queued asynchronous packets (with
potentially stale node numbers) are flushed. Once the contexts are no longer active, software may clear the busRes
interrupt condition, and hardware will stop flushing the asynchronous transmit FIFO(s). Before setting
ContextControkun for either context following a bus reset, software must ensure that NodeENumbe(section 5.10)

does not equal 63.

7.3 AT Retries

The Host Controller will retry busied asynchronous transmit request and response packets based on the configuration c
the AT Retries register. For a detailed description of the ATRetries register see section 5.4.

Hardware implementations that support dual-phase retry must ignore the retry code provided by software and must inse
a retry code as appropriate with the current state of the retry protocol (retry-1, retry-A or retry-B).

Copyright © 1996,1997 All rights reserved. Page 69

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

7.4 AT Interrupts

Each asynchronous DMA controller/context has one interrupt indication bit in the intEvent register (section 6.1). For
requests, it is theeqTx bit and for responses it is thiespTxbit. This interrupt indication bit will be set to one if a
completed OUTPUT_LAST* command has thigeld set to 2'b11, or if théfield is set to 2’b01 and transmission of the
packet did not yield an ack_complete or an ack_pending.

7.5 AT Data Formats
There are five basic formats for asynchronous data to be transmitted:

a) no-data packets (used for quadlet read requests and all write responses)

b) quadlet packets (used for quadlet write requests, quadlet read responses and block read requests)

c) block packets (used for lock requests and responses, block write requests and block read responses)
d) PHY packets

e) asynchronous stream packets (tcode 4’hA packets sent during asynchronous period)

All formats are shown below in two sections, one for asynchronous request formats and one for asynchronous response
formats.

Note that packets to go out over the 1394 wire are constructed from these Host Controller internal formats, and are not
sent in the exact order as shown below. For example, destinationID is transmitted in the first quadlet, and source ID is
automatically provided and transmitted in the second quadlet.

7.5.1 Asynchronous Transmit Requests

7.5.1.1 No-datatransmit

The no-data request transmit format is shown below. The first quadlet contains packet control information. The second
and third quadlets contain 16-bit destination ID and the 48-bit quadlet-aligned destination offset. Note that this packet

requires only three quadlets. Therefore when transmitted via an OUTPUT_LAST-Immediate descriptor, the descriptor’s
fourth quadlet is unused.

3130292827262524232221201918171615141312'1110 9 87 6 5 433 2 1 0
2 1394
[%]
é spd tLabel rt | tCode=4'n4} |eserved
[
destinationID destinationOffsetHigh

destinationOffsetLow

Figure 7-8 — Quadlet read request transmit format

Page 70 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 7-12 — Quadlet read request transmit fields

field name bits | description

srcBusID 1 | Source bus ID selector. If clear, the high order 10 bits of the source_ID field of thie trans-
mitted packet will be 10'h3FF. If set, the high order 10 bits of the source_ID field of
the transmitted packet will be Node_HDsNumbefsee section 5.10).

spd 3 | Thisfield indicates the speed at which this packet is to be sent. 000 = 100 Mbits/sec,001
= 200 Mbits/sec, and 010 = 400 Mbits/sec, other values are reserved.

tLabel 6 | This field is the transaction label, which is used to pair up a response packet with its
corresponding request packet.

rt 2 | The retry code for this packet. Software should set rt to retry X (2'b01). Hardware may
elect to ignore the software provided retry code and substitute an rt as approprfate for
the implemented retry mechanism. I.e. hardware implementing single phase refry can
use either the software provided rt or provide the equivalent 2'b01 constant, anf
hardware implementing dual phase retry should provide the proper retry 1, retry_A or
retry_B code upon transmission.

tCode 4 | The transaction code for this packet.

1394 reserved Required by IEEE 1394-1995 to be all zeros. OpenHCI will pass these bits algqng as-is
and will not verify or modify them.

destinationID 16| This is the concatenation of the 10-bit bus humber and the 6-bit node number|for the
destination of this packet.

destinationOffsetHigh, 16 | The concatenation of these two fields addresses a quadlet in the destination nqde’s

destinationOffsetLow 32 | address space. This address must be quadlet-aligned (modulo 4).

7.5.1.2 Quadlet transmit

The quadlet request transmit formats are shown below. The first quadlet contains packet control information. The secon
and third quadlets contain 16-bit destination ID and the 48-bit, quadlet-aligned destination offset. For write quadlet
requests the fourth quadlet is the quadlet data.

31302928272625242322212019181716]15141312'11109 87 6 .5 433 2 1 0

1394
spd tLabel rt | tCode=4'h0] reserved

destinationID destinationOffsetHigh

destinationOffsetLow

guadlet data

Figure 7-9 — Quadlet write request transmit format

Copyright © 1996,1997 All rights reserved. Page71

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

3130292827262524232221201918171615141312'1110 9 87 6 5 433 2 1 0
a
§ spd tLabel rt JtCode=4'h5 relss(eg;\l,ed
5
destinationID destinationOffsetHigh
destinationOffsetLow
datalLength 1394 reserved
Figure 7-10 — Block read request transmit format
Table 7-13 — Quadlet transmit fields
field name bits | description
srcBusID, spd, tLabel, rt, See Table 7-12.
tCode, 1394 reserved,
destinationID,
destinationOffsetHigh,
destinationOffsetLow
quadlet data 32| For quadlet write requests this field holds the data to be transferred.
datalLength 16| The number of bytes requested in a block read request.

Page 72 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

7.5.1.3 Block transmit

The block request transmit formats are shown below. The first quadlet contains packet control information. The seconc
and third quadlets contain the 16-bit destination node ID and the 48-bit destination offset. The fourth quadlet contains the

length of the data field and the extended transaction code (all zeros except for lock transactions). The block data, if any
follows the extended code.

3130292827262524'232221201918171615141312|1110 9 87 6 5 453 2 1 0
a)
a 1394
é spd tLabel rt JtCode=4'hl reserved
@
destinationID destinationOffsetHigh
destinationOffsetLow
datalLength 1394 reserved
block data
- -
> >
[P == = e mm e mm o mm mm mm mm e mm e mm e e
| o
I padding (if needed)
'l

Figure 7-11 — Write request transmit format

Copyright © 1996,1997 All rights reserved. Page 73

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

3130292827262524'232221201918171615141312|1110 9 87 6 5 413 2 1 0
o
é spd tLabel rt JtCode=4'h9 ré-ggli‘/ed
destinationID destinationOffsetHigh
destinationOffsetLow
datalLength extendedTcode
s s
: - block data (up to 4 quadlets) : -
Figure 7-12 — Lock request transmit format
Table 7-14 — Block transmit fields
field name bits| description
srcBuslID, spd, tLabel, rt, See Table 7-12.
tCode, 1394 reserved,
destinationID,
destinationOffsetHigh,
destinationOffsetLow
datalLength 16| The number of bytes of data to be transmitted in this packet.
extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action o be per-
formed with the data in this packet.
block data The data to be sent. If dataLength==0, no data should be written into the FIFO|for this
field. Regardless of the destination or source alignment of the data, the first byt¢ of the
block must appear in the high order byte of the first quadlet.
padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the epd of the
packet to guarantee that a whole number of quadlets is sent.
Page 74 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

7.5.1.4 PHY packet transmit

The PHY packet transmit format is shown below. The first quadlet contains packet control information. The remaining
two quadlets contain data that is transmitted without any formatting on the bus. No CRC is appended to the packet, nor i
any data in the first quadlet sent. This packet is used to send PHY configuration and Link-on packets.

31 30 29 2827 26 25 24§23 22 21 20519 18 17 16415 14 13 12911 10 9 837 6 5 433 2 1 0

spd tcode=4'hE

phy packet quadlet 1

phy packet quadlet 2

Figure 7-13 — PHY packet transmit format

7.5.2 Asynchronous Transmit Responses
7.5.2.1 No-datatransmit

The no-data transmit format is shown below. The first quadlet contains packet control information. The second and third
quadlets contain 16-bit destination ID and the response code. Note that this packet requires only three quadlets. Therefo
when transmitted via an OUTPUT_LAST-Immediate descriptor, the descriptor’s fourth quadlet is unused.

write response transmit format

31 30 29 28§27 26 25 24§23 22 21 20§19 18 17 16§15 14 13 12§11 10 9 817 6 5 433 2 1 0
2 1394
[%2)
% spd tLabel rt | tCode=4'h2] (eserved
@
S 1394
destinationID rCode reserved

1394
reserved

Figure 7-14 — Write response transmit format

Copyright © 1996,1997 All rights reserved. Page 75

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 7-15 — Write response transmit fields

field name bits | description

srcBusID 1 | Source bus ID selector. If clear, the high order 10 bits of the source_ID field of thie trans-
mitted packet will be 10'h3FF. If set, the high order 10 bits of the source_ID field of
the transmitted packet will be Node_HDsNumbe(see section 5.10).

spd 3 | Thisfield indicates the speed at which this packet is to be sent. 000 = 100 Mbits/sec,001
= 200 Mbits/sec, and 010 = 400 Mbits/sec, other values are reserved.

tLabel 6 | This field is the transaction label, which is used to pair up a response packet with its
corresponding request packet.

rt 2 | The retry code for this packet. Software should set rt to retry X (2'b01). Hardwarge may
elect to ignore the software provided retry code and substitute an rt as appropr|ate for
the implemented retry mechanism. l.e. hardware implementing single phase refry can
use either the software provided rt or provide the equivalent 2'b01 constant, anf hard-
ware implementing dual phase retry should provide the proper retry_1, retry_Alor
retry_B code upon transmission.

tCode 4 | The transaction code for this packet.

1394 reserved Required by IEEE 1394-1995 to be all zeros. OpenHCI will pass these bits algqng as-is
and will not verify them or modify them.

destinationID 16| This is the concatenation of the 10-bit bus number and the 6-bit node number|for the
destination of this packet.

rCode 4 | Response code for write response packet.

7.5.2.2 Quadlet transmit

The quadlet read response transmit format is shown below. The first quadlet contains packet control information. The
second and third quadlets contain 16-bit destination ID and the 4-bit response code. The fourth quadlet is the quadlet data
for read responses.

31 30 29 28§27 26 25 24§23 22 21 20§19 18 17 16§15 14 13 12§11 10 9 817 6 5 433 2 1 0
3 1394
12
@ spd tLabel rt | tCode=4'h6] reserved
2
I 1394
destinationID rCode reserved

1394
reserved

quadlet data

Figure 7-15 — Quadlet read response transmit format

Page 76 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 7-16 — Quadlet transmit fields

field name bits | description

srcBusID, spd, tLabel, rt, See Table 7-15.
tCode, 1394 reserved,
destinationID, rCode

gquadlet data 32 For quadlet read responses, this field holds the data to be transferred.

7.5.2.3 Block transmit

The block response transmit formats are shown below. The first quadlet contains packet control information. The secon
and third quadlets contain the 16-bit destination node ID and the response code and reserved data. The fourth quadl

contains the length of the data field and the extended transaction code (all zeros except for lock transactions). The bloc
data, if any, follows the extended code.

31 30 29 28527 26 25 2423 22 21 20,19 18 17 16§15 14 13 12511 10 9 8§7 6 5 433 2 1 0
2 1394
é’ spd tLabel rt | tCode=4'h7} |aserved
®
L 1394
destinationID rCode reserved
1394
reserved
dataLength 1394 reserved
— block data A
// ’/
i e e e e e e
| L
I padding (if needed)
'l

Figure 7-16 — Block read response transmit format

Copyright © 1996,1997 All rights reserved. Page 77

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

31 30 29 28§27 26 25 24)23 22 21 20,19 18 17 16§15 14 13 129411 10 9 87 6 5 433 2 1 O
g 1394
a spd tLabel rt | tCode=4'hB] reserved
destinationID rCode 1394
reserved
1394
reserved
dataLength extendedTcode
- block data (u -
p to 2 quadlets) -
/’ /’
Figure 7-17 — Lock response transmit format
Table 7-17 — Block transmit fields

field name bits | description
srcBuslID, spd, tLabel, rt, See Table 7-15.
tCode, 1394 reserved,
destinationID, rCode
dataLength 16| The number of bytes of data to be transmitted in this packet.
extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action o be per-

formed with the data in this packet.
block data The data to be sent. Regardless of the destination or source alignment of the glata, the

first byte of the block must appear in the high order byte of the first quadlet.
padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the epd of the

packet to guarantee that a whole number of quadlets is sent.

Page 78 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

7.5.3 Asynchronous Transmit Streams

An asynchronous stream packet is a packet in the format of an isochronous packet (e.g. using tcode = 4’hA) that i
transmitted during the asynchronous period. As such, it is governed by the same fairness rules as other asynchrono
packets. This packet format consists of two header quadlets (as specified in either the OUTPUT_MORE-Immediate ol
OUTPUT_LAST-Immediate descriptor) and a data payload. The data payload in host memory is not required be aligned
on a quadlet boundary. Padding is added by the Host Controller if needed. The format is as follows.

31 30 29 28§27 26 25 24|23 22 21 20§19 18 17 16§15 14 13 12§11 10 9 87 6 5 433 2 1 0
reserved spd tag chanNum tcode=4'hA sy
dataLength reserved
- . -
/’ isochronous data /’
-1 -1
= = = = e e e e e e e e e e = == = o]
1 o
I padding (if needed)
L

Figure 7-18 — Asynchronous stream packet format

Table 7-18 — Asynchronous stream packet fields

e 0 of the
ssary.

field name bits | description

spd 3 | The speed at which the packet will be transmitted.

tag The data format of the isochronous data (see IEEE 1394 specification)

chanNum 6 | The channel number this data is associated with.

tcode 4 | The transaction code for this packet.

sy 4 | Transaction layer specific synchronization bits.

dataLength 16| Indicates the number of bytes in this packet.

isochronous data The data to be sent with this packet. The first byte of data must appear in byt
first quadlet of this field. The last quadlet should be padded with zeroes, if necq

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the e
packet to guarantee that a whole number of quadlets is sent.

hd of the

Note that packets to go out over the 1394 wire are constructed from this Host Controller internal format, and are not sen
in the exact order as shown above. For example, spd, shown in the first quadlet, is not transmitted at all as part of th

isochronous packet header.

Copyright © 1996,1997 All rights reserved.

Page 79

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Page 80 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

8. Asynchronous Receive DMA

The Asynchronous Receive DMA controller performs the function of accepting packets for which there is no explicit
destination. This includes all packets which are accepted by the link module, but are not handled by any other receive
DMA function. However this does not include cycle start packets. There are two asynchronous receive (AR) contexts, ar
AR Request context and an AR Response context. Each context uses a DMA context program to move such packets in
memory to be interpreted by the host processor software.

Since the collection of packets that must be handled by the AR contexts may be of widely varying lengths, each contex
operates irbuffer-fill mode in which multiple packets may be concatenated into the supplied buffers. Software is respon-
sible for parsing through these buffers and taking the appropriate action required for a packet, and hardware is required t
make these buffers parsable.

This chapter describes the AR context program components, how the AR contexts are managed and how the
Asynchronous Receive controller operates. For information regarding receive FIFO implementation, refer to Section 3.3.

8.1 AR DMA Context Programs

The Asynchronous Receive DMA controller consists of two contexts for handling all asynchronous packets not handled
by the physical DMA controller. A context program is a list of DMA descriptors used to identify buffers in host memory
into which the Host Controller places received asynchronous packets.

The DMA descriptors are 16-bytes in length and must be aligned on a 16-byte boundary. There is one type of comman
descriptor used in an AR context program: INPUT_MORE.

8.1.1 INPUT_MORE descriptor

The INPUT_MORE command descriptor is used to specify a host memory buffer into which the AR controller will place
the received asynchronous packets from the Host Controller receive FIFO. It has the following format.

e %l Ik], rewcount
..., Sataaddess |
.., |branchAddless |z
., esaws | resCownt

Figure 8-1 — INPUT_MORE descriptor format

Table 8-1 — INPUT_MORE descriptor element summary

Element Bits | Description

cmd 4 Software must set this field in all AR command descriptors to 4'h2 for INPUT_MQRE,
and hardware may assume that all AR descriptors are INPUT_MORE commands
This indicates to the AR controller that this descriptor contains a buffer address for gtoring
received asynchronous packets.

s 1 Status control. Software must set this field to 1. Hardware always writes status regardless
of the setting of this bit.

key 3 This field must be set to 3'b0.

i 2 Interrupt control. Valid values are 2'b11 to generate an AsynchRx interrupt when the

descriptor is completed (see section 6.1), or 2’b00 for no interrupt. Behavior is unppeci-
fied if set to 2'b01 or 2’b10.

Copyright © 1996,1997 All rights reserved. Page 81

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 8-1 — INPUT_MORE descriptor element summary

Element Bits | Description

b 2 Branch control. Software must set this field to 2’'b11. Values of 2'b10, 2'b01, and P’b00
will result in unspecified behavior.

reqCount 16 Request count: The size in bytes of the input buffer pointed to by dataAddress. ReqgCount
must be a multiple of 4 (representing a whole number of quadlets).

dataAddress 32 Host memory address of receive buffer. This address must be aligned on a quad|et bound-
ary.

branchAddress 28 16-byte aligned address of the next descriptor. A valid address must be providef in this
field unless the Z field is 0.

z 4 Z may be set to 0 or 1. If this is the last descriptor in the context program, Z must|be set
to 0, otherwise it must be set to 1.

xferStatus 16 Written with ContextControl [15:0] whenever resCount is updated.

resCount 16 Residual count: while this descriptor is in-use by the Host Controller, resCount is ipdated
each time a packet is written to the receive buffer to indicate the number of bytes [out of
a max of reqCount) which have not been filled with received data.
For further information on resCount see section 8.4.2, “AR DMA Controller processing.”

Note that the Comman@sCountand CommandferStatudfields are updated in an indivisible operation.

8.1.2 AR DMA descriptor usage

An asynchronous receive context program consists of a list of INPUT_MORE command descriptors. Each
INPUT_MORE is required to provide a branchAddress along with a Z value of 1 for the next block. Further, it must use
Z=0 to indicate the end of the context program. A program which ends in Z=0 can be appended to while the DMA runs,
even if the DMA has already reached the final descriptor. The exact mechanism for appending to a running list is the same
for all OpenHCI controllers and is described in section 3.2.1.2.

Software may only modify a (non-completed) descriptor that may have been prefetched if a) the descriptor’'s current Z
value is 0, and b) only the branchAddress and Z fields of the descriptor are modified.

8.2 bufferFill mode

Received asynchronous packets can be either solicited responses or unsolicited requests. Since software must be prepared
to handle several packets of variable size, the Asynchronous Receive DMA contexts operate in bufferFill mode. In buffer-
Fill mode, all received packets are concatenated into a contiguous stream of data. This data is then metered out into
buffers described by a DMA context program, filling each buffer completely. As each packet is put into a buffer, the

Page 82 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

descriptor’s resCount is updated to reflect the number of remaining bytes available in the buffer. Packets may straddl
multiple buffers in this mode (see packet 2 in the illustration below). In addition to the overall concept of bufferFill mode,
there are several nuances for Asynchronous receive which are described in detail in section 8.4.2.

MORE [shey=o] | i o= |, ,, , reacount
dataAddress
‘. T Iblralnclh,la\dldrleslsl Ly .Z.:1. packetl pack
R
MORE [sjey=o]] i o=], ,, | reacount
dataAddress
-.I 1 1 1 1 1 1 1 1 1 bIraln(;h'lAdldrleslS 1 1 1 1 1 1 1 1 1 1 1 IZI:lI et‘ 2 packet 3
. esaws [rescam

Figure 8-2 — bufferFill receive mode

8.3 Asynchronous Receive Context Registers

The AR request context and AR response context each have a CommandPtr register and a ContextControl registe
CommandPtr is used by software to tell the Host Controller where the DMA context program begins. ContextControl is
used by software to control the context’s behavior, and is used by hardware to indicate current status.

8.3.1 AR DMA CommandPtr register

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. Th
least-significant bit of the CommandPtr register is used to encode a Z value. For each AR context (Request and Receive
Z may be either 1 to indicate that descriptorAddress points to a valid command descriptor, or O to indicate that there ar
no descriptors in the context program.

Refer to section 3.1.2 for a full description of the CommandPtr register.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 12,11 10 9 8|7 6 5 4,3 2 1 0
rrrrrrrrrtrrrrtt -t T T T T T T 7T T T T 1T 1T T"] L

descriptorAddress [31:4] 4

Figure 8-3 — CommandPtr register format

Copyright © 1996,1997 All rights reserved. Page 83

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

8.3.2 AR ContextControl register (set and clear)

The ContextControlSeaind ContextControlClearregisters contain bits that control options, operational state, and status
for a DMA context. Software can set selected bits by writing ones to the corresponding bitCiontagtControlSet
register. Software can clear selected bits by writing ones to the corresponding bit€onteetControlClearegister. It

is not possible for software to set some bits and clear others in an atomic operation. A read from either register will return
the same value and is referred to asGoatextControlStatusegister.

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4;3 2 1 0
[T
spd event
code
| I I
I
run |
active
dead
wake
Figure 8-4 — AR ContextControl (set and clear) register format
Table 8-2 — AR ContextControl (set and clear) register description
Field RSC | Description
run rsc Refer to section 3.1.1.1 for an explanation of the contextCoutrbit.
wake rs Refer to section 3.1.1.2 for an explanation of the contextCargkelbit.
dead ru Refer to section 3.1.1.4 for an explanation of the contextCdetxdbit.
active ru Refer to section 3.1.1.3 for an explanation of the contextCauatiot bit.
spd ru This field indicates the speed at which the last packet was received by this context] 3'b000

= 100 Mbits/sec, 3'b001 = 200 Mbits/sec and 3’'b010 = 400 Mbits/sec. All other vdlues
are reserved.

Software should not attempt to interpret the contents of this field while the
ContextControhctiveor ContextControlakebits are set.

event code ru The packet ack_ code or an “evt_" error code is indicated in this field. Possible vajues are:
ack_complete, ack_pending, ack_type_error, evt_descriptor_read, evt_data_writq,
evt_bus_reset and evt_unknown.

See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

8.4 AR DMA Controller
8.4.1 Asynchronous Filter Registers

Software can control from which nodes it will recereguestpackets by utilizing the asynchronous filter registers. There

are two registers, one for filtering out all requests from a specified set of nodes (AsynchronousRequestFilter register) and
one for filtering out physical requests from a specified set of nodes (PhysicalRequestFilter register). The settings in both
registers have a direct impact on how the AR Request context is used, e.g. disabling only physical receives from a node
will cause all request packets from that node to be routed to the AR Request context buffer(s). The usage and interrela-
tionship between these registers is fully described in section 5.13, “Asynchronous Request Filters.” Asynchronous
responsepackets are never filtered.

Page 84 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

8.4.2 AR DMA Controller processing

The AR DMA controller writes the entire packet, as described in the Asynchronous Receive Data Formats section, into
memory for software to process. This includes the packet header and packet reception status. Data chaining across conte
commands is supported.

For the AR request context, commardCountshould always be set to at least the maximum possible packet length for
an asynchronous packet as specified in the max_rec field of the bus_info ghlsckive quadlets for the header and
trailer (2*(max_rec+1) + 20 bytes). This means a single packet can cross at most one buffer boundary. This requiremer
also makes it easier for the Host Controller implementation to combine asynchronous receive FIFO’s (see section 3.3).

When the host software transmits an asynchronous request, it must first ensure that there is enough buffer space allocat
in the AR response context's context program to receive the response packet including headers and timestamp. Failure
preallocate this space may result in the hardware discarding responses that arrive when the AR response context is out
descriptors even though ack_complete may have been sent to the source node.

Since the AR request context and AR response context buffers must always be parseable by software there are thre
essential requirements.

a) The Host Controller must write a packet into a buffer(s) by first writing the asynchronous packet header, followed
by the packet data, followed by a packet trailer.

b) Requests or responses with data-length errors, CRC errors, FIFO overrun errors or buffer overrun errors must no
be presented to the software. Although the host memory buffers may have been written in anticipation of a good
packet, the xferStatus and resCount will not be updated. This in effect “backs out” the packet.

c) After each packet is written into the buffer(s), hardware must update the resCount for the INPUT_MORE
descriptor(s) for the buffer(s), to accurately reflect the number of unused bytes remaining.

Software must initialize resCount to the value of reqCount. Upon the first packet arrival into a buffer, the Host Controller
must write the appropriate residual count, based on (resCount - (packetHeaderLen + datalLength + statusquadlet)). Nof
that neither the header CRC nor data CRC quadlets are inserted into the buffer.

As depicted in figure 8-2 on page 83, it is possible for a received packet to straddle multiple buffers. For the AR Reques
context, the buffer size requirements (mentioned above) ensure that a packet can only straddle two buffers. However, th
AR Response context does not have a buffer size requirement and therefore AR response packets may straddle more th
two buffers. To ensure that the receive buffers for a context remain parsable, hardware must follow the procedure show
below. (First buffer refers to the buffer receiving the first byte of the packet or packet header, and final buffer refers to the
buffer receiving the last byte of the packet or packet trailer.)

1) After filling to the end of a buffer with a partial packet, advance to the next descriptor block and obtain the
next buffer (dataAddress), retaining all state for the first buffer as well as for the new buffer.

2) Continue writing packet bytes into the new buffer. If the end of the buffer is reached, advance to the next
buffer without updating xferStatus and without retaining state for it or any other interim buffers. Write the
remaining packet bytes into the final buffer (for the packet).

3) If there is no error: 1) write the trailer quadlet into the final buffer, 2) update xferStatus and resCount into the
final buffer's descriptor, and 3) update xferStatus and resCount into the first buffer's descriptor (where
xferStatus is the current value of ContextControl[15:0]). At that point the first buffer's state is no longer
needed.

4) If thereis an error, then the packet must be ‘backed-out’ by reverting back to the previous state of the first
buffer (as saved earlier). XferStatus and resCountatreipdated for either descriptor.

By following these steps, the AR context buffers remain intact and can be parsed. Since interim buffers (those containing
an inner portion of one packet) for the AR Response context will not have their status updated, software must only use
resCount values when the corresponding xferStatus indicates the run bit is set to one. It follows from this that if the xfer-
Statustun bit is set in a descriptor, then all prior descriptors have been filled.

Copyright © 1996,1997 All rights reserved. Page 85

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

8.4.2.1 AR DMA Packet Trailer

The trailer quadlet written by the Host Controller at the end of each packet has the following format.

31302928‘27262524‘23222120\1918171615141312\11109 8‘7 6 5 4,3 2 1 0

xferStatus timeStamp

Figure 8-5 — AR DMA packet trailer format

Table 8-3 — AR DMA trailer fields

field name bits| description

xferStatus 16| Written with ContextControl[15:0].

timeStamp 16| The low order 3 bits of cycleTinegcleSecondand the full 13 bits of
cycleTimercycleCouniat some time during receipt of the packet.

8.4.2.2 Error Handling

Packets resulting in an ack_data_error will, in effect, not go into an AR DMA buffer. Since an ack data_error condition
is not known until all data (plus data CRC) has arrived, many “corrupted” data bytes may have been moved into an AR
DMA buffer by the time the error situation is discovered. In this circumstance, hardware is required to halt its writing of
the packet into the AR DMA buffer without updating the resCount field. By not advancing the residual count location, it
will appear as though the packet never was written into the AR DMA buffer at all.

Similarly, if a bus reset occurs after a packet has been received but before the ack is sent, the packet may be “backed-out”
of the buffer(s) as described for ack _data_error above.

8.4.2.3 Bus Reset Packet
To assist software in determining which asynchronous request packets arrived before and after a bus reset, necessary since

node numbers may have changed, the Host Controller inserts a synthesized PHY packet into the AR DMA Request
Context buffer (if active) as soon as a bus reset condition is detected. This packet has the following format.

31 30 29 28327 26 25 24)23 22 21 20§19 18 17 ldlS 14 13 12911 10 9 83 7 6 5 4g3 2 1 0

tcode=4’hE 4’h0

selfIDGeneration

reserved undefined 3'h0 event = 5'h09 reserved undefined

Figure 8-6 — AR Request Context Bus Reset packet format

Page 86 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 8-4 — AR Request Context Bus Reset packet description

Field bits a) Description
tcode 4 Set to 4’hE to indicate a PHY packet.
selfIDGeneration 8 The selfIDCountlfIDGeneratiorvalue at the time this packet is created.

reserved undefined| 8 #This field is specified as undefined and may contain any value without impacting {he
16 |intended processing of this packet.

eventCode 5 A value of 5’h09 (evt_bus_reset) identifies this as a synthesized bus_reset packgt.

Software can distinguish the bus-reset packet from authentic PHY packets by the value of eventCode which is set t
evt_bus_reset. Software can further interpret and coordinate received asynchronous packets across multiple bus resets
using the selfIDGeneration number provided in the bus-reset packet. Since the bus-reset packet is fabricated when a b
reset is initially detected, the selfIDGeneration number is for the new (not previous) generation and will be the same as
the selfIDGeneration number in the SelfIDCount register as well as in the selflD buffer.

If more than one bus reset has occurred without any intervening packets, then only the “last” one is required to result ir
a synthesized bus-reset packet.

If the input FIFO is full when a bus reset occurs, the link side of the FIFO must later insert the bus-reset packet when
space becomes available. If the AR DMA request context does not have enough buffer space for the bus-reset packet, tl
packet shall be synthesized once buffer space becomes available.

The bus reset interrupt (IntEvemisResétis independent of the time when this packet goes from the FIFO into a host
buffer. This interrupt shall occur as soon as possible after a bus reset has been detected. The bus-reset packet is
different from any other packet going into the AR Request buffer in that IntR@Bktwill be generated like it would

for other packets.

8.5 PHY Packets

PHY packets will be received by asynchronous receive DMA if LinkContxdthyPktis 1, and will be received by the

AR Request context. PHY packets in the AR Request context will include the phy packet's “logical inverse” quadlet
which must be verified by software to be the logical inverse of the previous quadlet. The format of this packet is shown
in section 8.7.4.

A packet is treated as a PHY packet if it is two quadlets and fails the CRC check. This includes any Self-ID packet that
arrives outside of the Self-ID phase of bus initialization.

8.6 Asynchronous Receive Interrupts

There are two interrupts for each context (request and response) that software can use to gauge the usage of the rece
buffers. If software needs to be informed of the arrival of each packet being sent to the context buffers, it can use the
RQPkt or RSPkt interrupts in the IntEvent register (see section 6.1). If software needs to be informed of the completion
of a buffer, it can set the context commariibld to 2’b11, which will trigger either the ARRQ or ARRS interrupt in the
IntEvent register.

Copyright © 1996,1997 All rights reserved. Page 87

1394 Open Host Controller Interface Specification/Draft 0.97

8.7 Asynchronous Receive Data Formats

Printed 9/19/97

The Host Controller shall only receive packets which have tcodes that are defined by an approved IEEE 1394 standard.
Packets with undefined tcodes will be dropped.

There are four basic formats for asynchronous data to be received:

a) no-data packets (used for quadlet read requests and all write responses)
b) quadlet packets (used for quadlet write requests, quadlet read responses, and block read requests)
c) block packets (used for lock requests and responses, block write requests, and block read responses)

d) PHY packets

The names and descriptions of the fields in the received data are given in table 8-5.

Table 8-5 — Asynch receive fields

field name bits | description

destinationlD 16| This field is the concatenation of busNumber (or all ones for “local bus”) and node-
Number (or all ones for broadcast) for this node.

tLabel 6 | This field is the transaction label, which is used to pair up a response packet with its
corresponding request packet.

rt 2 | The retry code for this packet. 00=retryl, Ol=retryX, 10=retryA, 11=retryB

tCode 4 | The transaction code for this packet.

1394 reserved Required by IEEE 1394-1995 to be all zeros. OpenHCI will pass these bits alpng as
received and will not verify or modify them.

sourcelD 16| This is the node ID (bus number + node number) of the sender of this packet.

destinationOffsetHigh, 16 | The concatenation of these two fields addresses a quadlet in this node’s addregs space.

destinationOffsetLow 32 | This address must be quadlet-aligned (modulo 4).

rCode 4 | Response code for response packets.

quadlet data 32 For quadlet write requests and quadlet read responses, this field holds the data received.

datalLength 16| The number of bytes of data to be received in a block packet.

extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action o be per-
formed with the data in this packet.

block data The data received. Regardless of the destination or source alignment of the data, the
first byte of the block will appear in the high order byte of the first quadlet.

padding If the dataLength mod 4 is not zero, then bytes have been added onto the end|of the
packet by the transmitting node to guarantee that a whole number of quadlets is
received.

xferStatus 16| Written with ContextControl[15:0].

timeStamp 16| The low order 3 bits of cycleTinggcleSecondand the full 13 bits of

cycleTimercycleCountat some time during receipt of the packet.

Page 88

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

8.7.1 Asynchronous Receive Requests

8.7.1.1 No-datareceive

The no-data receive format is shown below. The first quadlet contains the destination node ID and the rest of the packe
header. The second and third quadlets contain 16-bit source ID and either the 48-bit, quadlet-aligned destination offse
(for requests) or the response code (for responses). The last quadlet contains packet reception status.

31 _30 29 28327 26 25 24|23 22 21 20p19 18 17 1d15 14 13 12911 10 9 83 7 6 5 433 2 1 0

N 1394
destinationID tLabel rt JtCode=4'h4 | [(eserved

sourcelD destinationOffsetHigh

destinationOffsetLow

xferStatus timeStamp

Figure 8-7 — Quadlet read request receive format
8.7.1.2 Quadlet Receive

The quadlet receive formats are shown below. The first quadlet contains the destination node ID and the rest of the pack
header. The second and third quadlets contain 16-bit source ID and either the 48-bit, quadlet-aligned destination offse
(for requests) or the response code (for responses). The fourth quadlet is the quadlet data for read responses and wr
quadlet requests, and is the data length and reserved for block read requests. The last quadlet contains packet recept
status.

31 30 29 28327 26 25 24I23 22 21 20519 18 17 16§15 14 13 12911 10 9 83 7 6 5 433 2 1 0

L 1394
destinationID tLabel rt JtCode=4'h0O] reserved

sourcelD destinationOffsetHigh

destinationOffsetLow

quadlet data

xferStatus timeStamp

Figure 8-8 — Quadlet write request receive format

Copyright © 1996,1997 All rights reserved. Page 89

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

31 _30 29 2827 26 25 24|23 22 21 20p19 18 17 1d15 14 13 12911 10 9 8§ 7 6 5 433 2 1 0

o 1394
destinationID tLabel rt JtCode=4'h5] reserved

sourcelD destinationOffsetHigh

destinationOffsetLow

1394
datalLength reserved
xferStatus timeStamp

Figure 8-9 — Block read request receive format

Page 90 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

8.7.1.3 Blockreceive

The block receive format is shown below. The first quadlet contains the destination node ID and the rest of the packe
header. The second and third quadlets contain the 16-bit source ID and either the 48-bit destination offset (for requests) «
the response code and reserved data (for responses). The fourth quadlet contains the length of the data field and t
extended transaction code (all zeros except for lock transactions). The block data, if any, follows the extended Tcode. Th

last quadlet contains packet reception status.

destinationID tLabel

31 _30 29 28327 26 25 24I23 22 21 20§19 18 17 16I15 14 13 12911 10 9 83 7 6 5 433 2 1 0

1394
rt JtCode=4'hl] reserved

sourcelD

destinationOffsetHigh

destinationOffsetLow

dataLength 1394 reserved
s s
- block data -
> .
[P == = e mm e mm o mm mm mm mm e mm e mm e e
| o
I padding (if needed)
'l
xferStatus timeStamp

Figure 8-10 — Block write request receive format

Copyright © 1996,1997 All rights reserved.

Printed 9/19/97

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

31 30 29 28§27 26 25 24|23 22 21 20p19 18 17 1415 14 13 12§11 10 9 817 6 5 433 2 1 0
1394
destinationID tLabel rt JtCode=4’'h9 | reserved
sourcelD destinationOffsetHigh
destinationOffsetLow
datalLength extendedTcode
s s
- block data -
> >
[P == = mm mm e mm o mm mm e mm e mm e mm e e
| L
I padding (if needed)
]
xferStatus timeStamp

Figure 8-11 — Lock request receive format

8.7.1.4 PHY packetreceive

The PHY packet receive format is shown below. The first quadlet contains a synthesized packet header with a tCode of
4’hE. The second quadlet contains the PHY quadlet and the third quadlet contains the inverse of the previous quadlet.
Software is required to verify the integrity of the second quadlet by checking it against the third quadlet. The final (fourth)
guadlet contains the packet trailer. The value of xferStatestshall be evt_no_status for PHY packets.

31 30 29 28527 26 25 24§23 22 21 20§19 18 17 16415 14 13 12511 10 9 897 6 5 4,43 2 1 0
tcode=4'hE 4’ho
PHY packet first quadlet
PHY packet second quadlet
xferStatus timeStamp

Figure 8-12 — PHY packet receive format

Page 92

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

8.7.2 Asynchronous Receive Responses

8.7.2.1 No-datareceive
The no-data receive format is shown below. The first quadlet contains the destination node ID and the rest of the packe

header. The second and third quadlets contain 16-bit source ID and either the 48-bit, quadlet-aligned destination offse
(for requests) or the response code (for responses). The last quadlet contains packet reception status.

31 30 29 28327 26 25 24I23 22 21 20§19 18 17 16§15 14 13 12911 10 9 83 7 6 5 433 2 1 0

destinationID tLabel rt JtCode=4'h2 rég:;\l,ed
sourcelD rCode rgseg,—[\l,ed
1394
reserved
xferStatus timeStamp

Figure 8-13 — Write response receive format
8.7.2.2 Quadlet Receive

The quadlet receive format is shown below. The first quadlet contains the destination node ID and the rest of the packe
header. The second and third quadlets contain 16-bit source ID and either the 48-bit, quadlet-aligned destination offse
(for requests) or the response code (for responses). The fourth quadlet is the quadlet data for read responses and wr
quadlet requests, and is the data length and reserved for block read requests. The last quadlet contains packet recept
status.

31 30 29 28327 26 25 24I23 22 21 20519 18 17 16§15 14 13 12911 10 9 83 7 6 5 433 2 1 0

destinationID tLabel rt JtCode=4’h6 résg:\l,ed
1394
sourcelD rCode reserved
1394
reserved

quadlet data

xferStatus timeStamp

Figure 8-14 — Quadlet read response receive format

Copyright © 1996,1997 All rights reserved. Page 93

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

8.7.2.3 Blockreceive

The block receive formats are shown below. The first quadlet contains the destination node ID and the rest of the packet

header. The second and third quadlets contain the 16-bit source ID and either the 48-bit destination offset (for requests) or

the response code and reserved data (for responses). The fourth quadlet contains the length of the data field and the
extended transaction code (all zeros except for lock transactions). The block data, if any, follows the extended Tcode. The

last quadlet contains packet reception status.

31 30 29 28§27 26 25 24|23 22 21 20§19 18 17 16]15 14 13 12§11 10 9 8] 7 6 5 433 2 1 0
1394
destinationID tLabel rt JtCode=4'h7 reserved
1394
sourcelD rCode reserved
1394
reserved
dataLength 1394 reserved
o o
- block data -
T T
i e e e e el e
1 L
I padding (if needed)
'l
xferStatus timeStamp

Figure 8-15 — Block read response receive format

Page 94 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

\\

31 30 29 28527 26 25 24|23 22 21 20§19 18 17 16]15 14 13 12§11 10 9 8] 7 6 5 433 2 1 0
1394
destinationID tLabel rt JtCode=4'hB] reserved
1394
sourcelD rCode RS
1394
reserved
dataLength extendedTcode
o
- block data -
T -
i e e e e el e
1 L
I padding (if needed)
'l
xferStatus timeStamp

Figure 8-16 — Lock response receive format

Copyright © 1996,1997 All rights reserved.

Page 95

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Page 96 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

9. Isochronous Transmit DMA

The Isochronous Transmit DMA (IT DMA) controller has a required minimum of four and an implementation maximum
of 32 isochronous transmit contexts. Each context is controlled by a DMA context program. Each IT DMA context will
transmit data for a single isochronous channel.

9.1 IT DMA Context Programs

For isochronous transmit DMA, a context program is a list of DMA command descriptors used to identify buffers in host

memory from which the Host Controller transmits packets onto the 1394 bus. The descriptors are 16- and 32-bytes ir
length and must be aligned on a 16-byte boundary. There are five IT DMA command descriptors: OUTPUT_MORE,

OUTPUT_MORE-Immediate, OUTPUT_LAST, OUTPUT_LAST-Immediate and STORE_VALUE.

9.1.1 IT DMA command descriptor overview

There are two components to a 1394 isochronous packet, the packet header and the packet data, and there are many w
in which software may need to organize this information in host memory. To accommodate the variety of packet
organization, there are four IT DMA descriptor commands used to instruct the Host Controller on how to assemble the
packets, and one descriptor command for writing a quadlet into host memory for software tracking purposes.

If a packet has two or more data fragments an OUTPUT_MORE-Immediate and possibly some OUTPUT_MORE
commands are used. The OUTPUT_MORE-Immediate command is used to specify the packet header, and eac
OUTPUT_MORE command allows for the specification of one packet fragment.

To indicate the end of a packet, either the OUTPUT_LAST or OUTPUT_LAST-Immediate command must be used. The
OUTPUT_LAST command allows for the specification of one data fragment, and the OUTPUT_LAST-Immediate is used

to specify a packet solely consisting of an isochronous packet header. Unlike the OUTPUT_MORE commands, the
OUTPUT_LAST commands indicate to the Host Controller that there is no more data to send for a packet.

The STORE_VALUE command descriptor provides a mechanism for software to monitor progress on a context without
using interrupts. This command will write a quadlet to a specified host memory location.

Copyright © 1996,1997 All rights reserved. Page 95

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

9.1.2 OUTPUT_MORE descriptor

cmd=0 kﬁ{g 2'b0) reqCount

dataAddress

Figure 9-1 — OUTPUT_MORE command descriptor format

Table 9-1 — OUTPUT_MORE descriptor element summary

Element Bits | Description

cmd 4 Set to 4'h0 for OUTPUT_MORE.
Identifies one data (or header) fragment used to build the packet.

key 3 This field must be set to 3'h0.

b 2 Branch control. Must be set to 2’b00. Behavior is unspecified if set to 2'b01, 2'b10 or
2'b11.

reqCount 16 Request count. The size of the specified buffer in bytes pointed to by dataAddress.

dataAddress 32 Address of transmit buffer. dataAddress has no alignment restrictions.

The OUTPUT_MORE descriptor is used to specify one data fragment for the packet. It shall not be used for specifying
the packet header, and must be preceded by an OUTPUT_MORE-Immediate or another OUTPUT_MORE.

Page 96 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

9.1.3 OUTPUT_MORE-Immediate descriptor

cmd=0 I;(gﬁlzz 2'b0 reqCount = 8
1 1 1 l 1 L L L L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1
skipAddress Z
1 1
first quadlet

second quadlet

Figure 9-2 — OUTPUT_MORE-Immediate descriptor format

Table 9-2 — OUTPUT_MORE-Immediate descriptor element summary

D or

elds

fected.
mand

a}

ontext
packet.

Element Bits | Description

cmd 4 Set to 4’h0 for OUTPUT_MORE-Immediate.

key 3 This field must be set to 3’'h2.

b 2 Branch control. Must be set to 2’'b00. Behavior is unspecified if set to 2'b01, 2’b1
2'bl1.

reqCount 16 Must be set to 8 to accommodate the IT packet header. Using any other value vyi
unspecified results.

skipAddress 28 16-byte aligned address of the next descriptor to be used if a missed cycle is de
Used only within the first command descriptor in a descriptor block. The first com
must either have a valid skipAddress, or must set the Z field to O.

z 4 Used to indicate the number of descriptors needed fakihdescriptor block. Z may b
avalue from 0 to 8. A zero indicates there is no skipAddress, and the DMA for this g
stops. A value of 1 to 8 indicates that there are 1 to 8 descriptors used in the skip|

first quadlet 32 Quadlets to be inserted into the isochronous transmit FIFO for the isochronous packet

second quadlet 32 header (see section 9.6). T

The OUTPUT_MORE-Immediate descriptor shall be used, and shall only be used, to specify the isochronous header fo
a non-zero data length packet. This is an efficient way for software to provide the packet header information since the dat
is built into the descriptor and does not need to be fetched from a separate memory buffer.

OUTPUT_MORE-Immediate command descriptors are 32 bytes in length regardless of the value of reqCount, and are
counted as two 16-byte aligned blocks when calculating the Z value.

Copyright © 1996,1997 All rights reserved.

Page 97

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

9.1.4 OUTPUT_LAST descriptor

emd=1 [s) ¥] i lobd | rewcount
., GateAddess
L Islkipl) olrcllle:sclripltolr blranclh ,:i\dldrleslsI L .%.
., MerSws |, [fimeStmp

Figure 9-3 — OUTPUT_LAST command descriptor format

Table 9-3 — OUTPUT_LAST descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h1 for OUTPUT_LAST.
Each command identifies one data (or header) fragment used to build the packet,
OUTPUT_LAST is used to signify the end of the isochronous packet to be transmitted.

s 1 Status control. If set to one, xferStatus and timeStamp will be updated upon desdriptor
completion. If set to zero, neither field is updated.

key 3 This field must be set to 3’'h0.

i 2 Interrupt control. Valid values are 2'b11 to generate an IsochTx interrupt when thd

descriptor is completed (see section 6.1), or 2'b00 for no interrupt. Behavior is ungpeci-
fied if set to 2’b01 or 2'b10.

b 2 Branch control. This field must be set to 2'b11 to branch to the location specified |in the
branchAddress field. Behavior is unspecified for all other values.

reqCount 16 Request count: The size of the buffer in bytes pointed to by dataAddress.

dataAddress 32 Address of transmit buffer.

branchAddress 28 16-byte aligned address of the next descriptor. Used only within OUTPUT_LAST
commands.

skipAddress 16-byte aligned address of the next descriptor to be used if a missed cycle is detjected.
Used only within the first command descriptor in a descriptor block.

4 4 Used in OUTPUT_LAST to indicate the number of descriptors needed irexthe

descriptor block. Z may be a value from 0 to 8. A zero indicates this is the last degcriptor
in the list for this IT DMA context. A value of 1 to 8 indicates that there are 1 to 8
descriptors used in the next descriptor block.

xferStatus 16 Written with ContextControl [15:0] after the descriptor is processed if s = 1.

timeStamp 16 Contains the three low order bits of cycleSeconds and all 13 bits of cycleCount, pnd is
written when xferStatus is written. TimeStamp indicates the cycle for which the IT PMA
controller queued the transmission of this packet. See section section 5.12, “Isocjronous
Cycle Timer Register,” for information about cycle* fields.

The OUTPUT_LAST descriptor is used to indicate the end of a packet. If reqCount is non-zero, this specifies the last data
fragment for the packet. It shall not be used for specifying the packet header.

An OUTPUT_LAST with reqCount=0 is used to indicate thatpaclet is to be sent for the current cycle. The IT DMA
controller will advance the context to the next descriptor block (branchAddress) for the next cycle. An OUTPUT_LAST
with a reqCount=0 shall not be preceded by any OUTPUT_MORE* descriptors in the descriptor block.

Page 98 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

9.1.5 OUTPUT_LAST-Immediate descriptor

cmd=1 |s 'é‘?ﬁ’z: [zFﬁl reqCount = 8
skip and descriptor branch Address z
xferStatus timeStamp

first quadlet

second quadlet

Figure 9-4 — OUTPUT_LAST-Immediate command descriptor format

Table 9-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits | Description

cmd, s Same as in Table 9-3.

key 3 This field must be set to 3'h2.

i, b Same as in Table 9-3.

reqCount 16 Must be set to 16’h0008 to accommodate the IT packet header. Using any other|value

yields unspecified results.

branchAddress, Same as in Table 9-3.
skipAddress, Z,
xferStatus, timeStamp

quadlets 32*4| The first and second quadlets are used to specify the 2 quadlets required for theg isochro-
nous packet header. (See section 9.6).

The OUTPUT_LAST-Immediate descriptor must be used, and must only be used, to specify the isochronous header for
packet with zero data bytes. OUTPUT_LAST-Immediate command descriptors are 32-bytes in length regardless of the
value of reqCount and are counted as two 16-byte aligned blocks when calculating the Z value.

Copyright © 1996,1997 All rights reserved. Page 99

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

9.1.6 STORE_VALUE descriptor

The STORE_VALUE command descriptor instructs the Host Controller to write a specified 32-bit value to a specified
host memory location. If used, STORE_VALUE must be the first command descriptor in a descriptor block, and only one
is permitted per descriptor block. STORE_VALUE must not be the only descriptor in a descriptor block and shall be
followed by one or more OUTPUT_* descriptors. It has the following format.

cmd=8 3R6 storeDoublet

dataAddress

skipAddress z

Figure 9-5 — STORE_VALUE descriptor

Table 9-5 — STORE_VALUE descriptor element summary

Element Bits | Description

cmd 4 Set to 4'h8 for STORE_VALUE.

key 3 This field must be set to 3'h6.

storeDoublet 16 16-bit value to be stored into the quadlet aligned dataAddress upon execution of this com-

mand. StoreDoublet is written as a 32 bit value, where bits 31:16 are 0’'s and bits 15:0 con-
tain the storeDoublet value provided in the descriptor.

dataAddress 32 Quadlet aligned host memory address into which storeDoublet (padded to 32) hits is
written.
skipAddress 28 16-byte aligned address of the next descriptor to be used if a missed cycle is detdcted. The

skipAddress must be valid or the Z field must be 0. If the skip address is used, th¢ store
action specified by this descriptor wilbt be executed.

4 4 Used to indicate the number of descriptors needed fakipbdescriptor block. Z may bp
avalue from 0 to 8. A zero indicates there is no skipAddress, and the DMA for this dontext
stops. A value of 1 to 8 indicates that there are 1 to 8 descriptors used in the skip|packet.

The STORE_VALUE command provides a mechanism for software to monitor a context’s progress independent of using
interrupts. For example a running IT context program could perform a STORE_VALUE periodically into a memory host
location where software would look to determine the latest IT DMA context progress.

9.1.7 IT DMA descriptor usage

The Z value is used by the Host Controller to enable several descriptors to be fetched at once, for improved efficiency. Z
values must always be encoded correctly. The contiguous descriptors described by a Z value ardesaitgrdaa block
The following table summarizes all legal Z values:

Table 9-6 — Z value encoding

Z value Use

0 Indicates that the current descriptor is the last descriptor in the context program

Page 100 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 9-6 — Z value encoding

Z value Use

1-8 Indicates that starting at descriptorAddress, there are one to eight 16-byte aligned
physically contiguous descriptors and descriptor components.

9-15 reserved

Each isochronous transmit descriptor block for a packet shall be specified with the command descriptors according to th
following rules:

* A maximum of 8 command descriptors may be used.

* Only one STORE_VALUE may be used, and it must be the first descriptor in a descriptor block.

e If STORE_VALUE is used, it shall be followed by at least one OUTPUT_* descriptor, and the Z value for the
descriptor block shall be between 2-8 inclusively.

« If the packet dataLength is not zero, one OUTPUT_MORE-Immediate must be used, followed by zero to five
OUTPUT_MORE's, followed by one OUTPUT_LAST.

 If the packet dataLength is zero, one OUTPUT_LAST-Immediate must be used.

» If no packet is to be sent during a cycle, one OUTPUT_LAST with reqCount=0 must be used and shall not be
preceded by any other OUTPUT_* descriptor.

The isochronous packet header must be specified using a *-Immediate command. The OUTPUT_LAST* command mus
have a branch control value of 2'b11. All other commands must have a branch control value of 2’b00. Depending on the
aggregate number of bytes being transmitted for one descriptor block, hardware may assist with padding. If the sum of al
reqCounts modulo 4 is 0, then padding is not necessary. If the sum of all reqCounts module 4 is not 0, then hardware wil
insert padding up to a quadlet boundary.

To indicate the end of the context program, all IT DMA context programs must use an OUTPUT_LAST or
OUTPUT_LAST-Immediate command with a branch (b) value of 2’b11 (branch always) and a Z value of 0 to indicate the
end of the program. A program which ends can be appended to while the DMA runs, even if the DMA has already
reached the last descriptor.

The first command in an isochronous packet descriptor block must have a skipAddress which points to the descriptor tc
branch to if this packet cannot be transmitted (typically due to a lost cycle). The value of the Cdnfialthéh that
descriptor does not affect a skip branch.

The use of many OUTPUT_MORE* commands to describe a single packet will generally cause extra fetch latencies, a:
the Host Controller fetches payload buffers from different parts of memory. These latencies may differ for each Host
Controller implementation, bus, and host memory architecture. Software is expected to construct IT DMA context
programs with a sufficiently low number of OUTPUT_MORE* commands so that the Host Controller can satisfy applica-
tion-specific latency requirements.

ITDMA context programs must contain exactly one descriptor block to be processed per cycle. Each descriptor block
must be identified with an accurate Z value, both when the program is started, and on each branch within the program
Each descriptor block must end with an unconditional branch to the next descriptor block, even if the next block follows
immediately in consecutive memory. (The branch enables the ITDMA to learn the Z value for the next descriptor block).
Each descriptor block must begin with a command that contains a branch to the skipAddress (also with a Z code).

Some applications of isochronous transfer do not transfer a packet on every isochronous cycle. Therefore the ITDMA will
sometimes not transmit a packet for one or more channels. Within a context program, a non-transmit cycle is indicated b
a descriptor block whose only transfer command is an OUTPUT_LAST with a length of zero. (This is not a zero-length
packet, which would be sent with an OUTPUT_LAST-Immediate.)

Copyright © 1996,1997 All rights reserved. Page 101

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

9.2 IT Context Registers
Each isochronous transmit context consists of two registers: CommandPtr and IT ContextControl. CommandPtr is used by

software to tell the IT DMA controller where the DMA context program begins. IT ContextControl is used by software to
control the context’s behavior, and is used by hardware to indicate current status.

9.2.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. The
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically

contiguous descriptors are pointed to by descriptorAddress.

Refer to section 3.1.2 for a full description of the CommandPtr register.

31 30 29 28 27 26 25 24‘23 22 21 20,19 18 17 16‘15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O

Figure 9-6 — CommandPtr register format
9.2.2 IT ContextControl Register

The IT ContextControlset and clear registers contains bits that control options, operational state, and status for the
isochronous transmit DMA contexts. Software can set selected bits by writing ones to the corresponding bits in the
ContextControlSetregister. Software can clear selected bits by writing ones to the corresponding bits in the
ContextControlClearegister. It is not possible for software to set some bits and clear others in an atomic operation. A
read from either register will return the same value.

The context control register used for isochronous transmit DMA contexts is shown below. It includes several fields which
permit software to filter packets based on various combinations of fields within the isochronous packet header.

31 30 29 28, 27 26 25 24‘23 22 21 20,19 18 17 16/15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O
N N A N Y N N N N B B N 1] 1 1 1 1

event
code

cycleMatchEnable) reserved-
active undefined

dead
wake

Figure 9-7 — IT DMA ContextControl (set and clear) register format

Page 102 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 9-7 — IT DMA ContextControl (set and clear) register description

field rscu |reset | description

cycleMatchEnable rscu| undef When setto one, processing will occur such that the packet described by the context’s
first descriptor block will be transmitted in the cycle whose number is specifigd in

the cycleMatch field of this register. The 15-bit cycleMatch field must match the low
order two bits of cycleSeconds and the 13-bit cycleCount field field in the cyclg start
packet that is sent or received immediately before isochronous transmission pegins.
Since the IT DMA controller may work ahead, the processing of the first desdriptor
block may begin slightly in advance of the actual cycle in which the first packpt is
transmitted.
The effects of this bit however are impacted by the values of other bits in this r¢gister
and are explained below this table. Once the context has become active, harfiware
clears the cycleMatchEnable bit.

cycleMatch rsc undef Contains a 15-bit value, corresponding to the low order two bits of cycleSecdnds and
the 13-bit cycleCount field. If contextContrmjcleMatchEnablés set, then this IT]
DMA context will become enabled for transmits when the bus
cycleTimercycleCountalue equals the cycleMatch value.

run rsc 1'b0 | Referto section 3.1.1.1 and the description following this table for an explangtion of
the contextContralun bit.

wake rsu undefl Refer to section 3.1.1.2 for an explanation of the contextCoakekbit.

dead ru 1'b0 | Refer to section 3.1.1.4 for an explanation of the contextCda#aadbit.

active ru 1'b0 | Refer to section 3.1.1.3 for an explanation of the contextCawtiet bit.

reserved undefined| ru undef This field is specified as undefined and may contain any value without impgcting the
intended processing of this packet.

event code ru undef Following an OUTPUT_LAST* command, the error code is indicated in thid field.

Possible values are: ack_complete, evt_underrun, evt_descriptor_read,
evt_data_read, evt_tcode_err and evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these cddes.

The cycleMatch field is used to start an IT DMA context program on a specified cycle. Software enables matching by
setting the cycleMatchEnable bit. When the cycleTioyeteCountvalue matches the cycleMatch value, hardware sets

the cycleMatchEnable bit to 0, sets the contextComirble bit to 1, and begins executing descriptor blocks for the
context. The transition of an IT DMA context to the active state from the not-active state is dependent upon the values o
the run and cycleMatchEnable bits.

« If run transitions to 1 when cycleMatchEnable is 0, then the context will become active (active = 1).

« If both run and cycleMatchEnable are set to 1, then the context will become active when the 13-bit cycleCount field
in the cycleStart packet matches the 13-bit cycleMatch value.

« If both run and cycleMatchEnable are set to 1, and cycleMatchEnable is subsequently cleared, the context become
active.

e If both run and active are 1 (the context is active), and then cycleMatchEnable is set to 1, this will result in
unspecified behavior.

Due to software latencies, software attempts to manage the startup of a context too close to the current time may not t
effective.

In addition, the usability of cycleMatchEnable for IT contexts will be impacted by the cyclelnconsistent interrupt. Refer
to Section 9.5.1 for more information.

Copyright © 1996,1997 All rights reserved. Page 103

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

9.3 Isochronous transmit DMA controller

The following sections describe how software manages the multiple isochronous transmit DMA contexts. Each context
has a commandPtr pointing to the current DMA descriptor. For every cycle start packet that the Host Controller receives

or sends, the IT DMA controller can transmit exactly one descriptor block describing exactly one packet from each DMA
context that is in the ContextContrin state.

9.3.1 IT DMA Processing

Each IT DMA context command pointer corresponds to a list of packets to be sent on successive 1394 cycles. Generally,
each list represents a single isochronous channel. Isochronous channel numbers are not tied to any internal indexing
scheme utilized by the Host Controller to track all implemented IT DMA contexts. Each IT DMA context program
pointed to by each commandPtr will specify the entire isochronous packet header, including the isochronous channel
number, for each packet that is transmitted. The entire ITDMA is summarized in the following figure:

commandPtr 0 z OUTPUT_MORE-I - OUTPUT_MORE-I - OUTPUT_MORE-I
dPtr 1 Z
oo 4 >
5
- E
OUTPUT_LAST OUTPUT_MORE OUTPUT_LAST %
o—b

OUTPUT_LAST

OUTPUT_LAST-I _I_-' OUTPUT_LAST-I [OUTPUT_LAST-I
-

channel 6

OUTPUT_MORE-I T - OUTPUT_MORE-I - OUTPUT_MORE-I

channel 42

normal branch

OUTPUT_LAST OUTPUT_LAST

OUTPUT_LAST

skip

\—l—/
cycle 2001 cycle 2002 cycle 2003
Figure 9-8 — ITDMA summary

In the example, three channels are being transmitted. Three cycles of transmit are shown. Context 0 is sending on
isochronous channel 9, using an OUTPUT_MORE-Immediate to send each packet header and an OUTPUT_LAST for
each payload. In cycle 2002 the payload spans a page boundary, so channel 9 uses an extra OUTPUT_MORE. Channel 9
will skip to the next packet if any cycle is lost. Context 1 is sending on isochronous channel 6, with zero length packets
and only headers. Because channel 6 uses a single descriptor per packet, the skip branch is equal to the normal next

Page 104 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

packet branch. Context 2 is sending on isochronous channel 42, with each skip branch pointing to itself. If a cycle is lost
channels 6 and 9 will advance to the next packet, while channel 42 will fall behind by one packet, without skipping any
packets.

For every cycle, the IT DMA controller shall process each running context in order, from the lowest numbered context
through the highest numbered context. For each cycle, the IT DMA controller will complete one descriptor block for each
active IT DMA context. Once a packet has been transferred into the transmit FIFO, the packet is considered sent eve
though it may not have been transmitted yet on the 1394 wire.

If there is a disruption while the IT DMA controller is processing a context, such as a bus reset or the loss of the isochro-
nous phase, the IT DMA controller is required to continue through its list of active contexts taking the skip branch
address for each of the remaining contexts.

9.3.2 Prefetching IT Packets

The Host Controller is permitted to work up to two cycles ahead of the current cycle time. The result is that it's possible
for data for a 1394 cycle to be put into the FIFO long before it is sent on the bus. This in effect creates a time decoupling
of the host side (input) of the FIFO from the link side (output) of the FIFO.

Since the host side and the link side are not time synchronized, the host side may have its own cycle timer. This keep
track of the cycle number for which data is being put into the FIFO.nibtithe same cycle timer that the link side uses.
When the Host Controller is initialized, the timers are set to the same value and then the host side can start putting thing
into the FIFO. Whenever the difference between the host side cycle time and the link side cycle time is less than two, the
host can start putting packets into the FIFO.

By working up to two cycles ahead it's possible for two 1394 cycles worth of packets to be in the FIFO at the same time.
To convey to the link side where the 1394 cycle boundary is between the packets, the host side puts a delimiter into th
FIFO each time processing is completed for all contexts for a cycle. When a cycle start appears on the 1394 bus, the lin
starts taking packets out of the FIFO and sends the data on the bus until the link reaches the delimiter.

9.3.3 Isochronous Transmit Cycle Loss

The IT DMA controller can send multiple packets (multiple isochronous channels) in each isochronous cycle. Because
isochronous cycles can be lost, the ITDMA is organized so that one cycle’s worth of packets can be skipped, if necessar
to catch up. The loss of an isochronous cycle is usually uncommon, and typically results from a bus reset.

If isochronous cycles were lost, and no corrective action was taken, the transmitter would gradually fall behind, sending
each packet some number of cycles after the transmission time intended by software.

In order to permit the transmitter to avoid falling behind, each packet in an IT DMA context program corskiins a
branch addressAny time the IT DMA wants to correct for a cycle loss, it will follow this branch instead of transmitting

the packet. For each cycle’s worth of packets (descriptor blocks), the IT DMA will either put all of the packets into the
FIFO and advance to the next descriptor block pointed to by branchAddress or will not put any packets into the FIFO anc
will advance to the next descriptor block pointed to by skipAddress. SkipAddress is not used for error conditions other
than cycle loss.

Software can use the skip branch in at least four ways. 1) Branching to the next packet will cause the IT DMA to skip
packets to recover from cycle loss. 2) Branching to the same packet will cause the IT DMA to fall behind (on that channel
only) without skipping any packets due to cycle loss. 3) Branching to an alternate context program can allow the genera
tion of an interrupt, and the possible early completion of transmission. 4) Stopping the IT DMA context program due to
cycle loss. Software can use the third and fourth methods to cease transmission on cycle loss in the application-specif
case that the receiver cannot tolerate either late or lost packets.

Copyright © 1996,1997 All rights reserved. Page 105

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Because the Host Controller will generally load isochronous transmit packets into a FIFO in advance of transmission,
some packets may be considered complete when cycle loss is detected, even though they have not yet left the transmit
FIFO. In this situation, the Host Controller will hold those packets in the FIFO until they can be transmitted, and will then
complete the transmission of each context packet that had been intended to go out in the same cycle. The Host Controller
will then apply the skip branching on the packets for the next cycle (the first cycle for which no transmission has been
performed). If a context in the ITDMA is arranged to skip packets on cycle loss, the packet skipped will be the one sched-
uled for the cycle following the cycle that was lost. If the Host Controller preloads more than one cycle’s worth of
packets, the skip may be delayed by a similar number of cycles, so that the transmit FIFO can empty normally, without
being flushed.

The illustration below shows how each of these cases works. In this example, the ITDMA attempts to keep two cycles
ahead of the bus. In other words, it tries to have two complete cycles in the transmit FIFO (if they will fit) whenever
possible. Context A illustrates case 1 (above), where the skip branch is chosen so that packets are skipped. Note that
because of the FIFO preload, the two packets skipped on Contexi an(AA;) follow a delayed packet @ that was

already in the FIFO. While it might have been possible to skip only one packet if the FIFO was flushed, it would be much
harder for the Host Controller to have packgtrdady in time to send it on cycle 6. Context B illustrates case 2, where
packets are not skipped. While context A loses two packets, context B instead falls two cycles behind. Context C illus-
trates case 3, where transmission ends in response to a detected cycle loss. Pacikts @ere already in the FIFO,

so they are transmitted, followed by the end-of-program packeTi@ descriptor block for packet @ops to itself in

case additional cycles are lost beforg i€ sent. This loop guarantees that @ill be sent before the program ends.
Context D illustrates case 4, where transmission ends in response to a detected cycle loss without an end-of-program
packet. The skip address indicates the end of list (Z=0) and no more packets are loaded into the FIFO upon detection of
cycle loss.

Page 106 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

In these examples, the packets that are “in the FIFO” assume an infinitely large transmit FIFO. The Host Controller will
transmit packets as shown, even if they are too big to actually fit into the FIFO.

[[[[[‘/N
context A{ Ay A, Az A4 As As o

D O O D D _p
context B { = B, Bs B4 Bs Be o
context C{ c, [Co I csIN Jcih Cs I\ Cs :>_,

0
context D{ D, 10 D, 10 10 10 >0 .

C

B,

Transmit FIFO

8
Figure 9-9 — Isochronous transmit cycle loss example

If a cycle loss is detected while the IT DMA is mid packet, that context's descriptor block will not branch to the
skipAddress, but will advance to the next descriptor block.

9.3.4 FIFO Underrun

If there is a FIFO underrun such that the isochronous period ends before all active contexts have been processed for th
cycle, then the following shall occur:

* The packet that underran is lost.
* The context with the underrun

1) records evt_underrun or evt_data_read in the event code of the OUTPUT_LAST_* as appropriate (refer to
section 13.2.3), and

2) advances to the branchAddress descriptor block.

» If there are contexts remaining to be processed for the now lost cycle, they continue to be processed normally an
then advance to the next descriptor block pointed to by branchAddress.

Copyright © 1996,1997 All rights reserved. Page 107

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

» If there were contexts processed subsequent to the underrun, then all contexts will follow the skip branch during the
next cycle.

« If there wereno contexts to be processed after the context that underran, then processing for the next cycle continues
as normal.

Through these steps, the Host Controller ensures that either all contexts skip or no contexts skip for a given cycle.
9.3.5 Determining the number of implemented IT DMA contexts

The number of supported isochronous transmit DMA contexts will vary for 1394 OpenHCI implementations from a
minimum of four to a maximum of 32. Software can determine the number of supported IT DMA contexts by writing
32’hFFFF_FFFF to isoXmitintMask register (see section 6.3.1), and then reading it back. Bits returned as 1’s indicate
supported contexts, and bits returned as 0’s indicate unsupported/unimplemented contexts.

9.4 Appending to an IT DMA Context Program

As described in Section 3.2.1.2, “Appending to Running List,” software may freely append to a context program without
knowledge of where the controller is in processing the list of descriptor blocks. Unlike other DMA contexts, the IT DMA
contexts can have two pointers that may require updating in the known last descriptor block; the skipAddress and the
branchAddress. When an IT context has reached the end of its context program and active is 0, setting wake will result in
using the descriptomqt descriptor block) which had Z=0 and will use the provided address, be it a skip or branch, for
retrieving the next descriptor block.

9.5 IT Interrupts

Each of the possible 32 isochronous transmit contexts can generate an interrupt, so each IT context has a bit in the
isoXmitIntEvent register. Software can enable interrupts on a per-context basis by setting the corresponding isoXmitMask
bit to one.

To efficiently handle interrupts which could conceivably be generated from 32 different contexts in close proximity to one
another, there is a single bit for all IT DMA contexts in the Host Controller IntEvent register. This bit signifies that at
least one but potentially several IT DMA contexts attempted to generate an interrupt. Software can read the isoXmitint-
Event register to find out which context(s) are involved. For more information on the isoXmitintEvent register, see
section 6.3.1.

9.5.1 cyclelnconsistent Interrupt

When the IntEventyclelnconsistenttondition occurs (table 6-1), the IT DMA controller shall continue processing
running contexts normally, with the exception that contexts with the ContextCoptteMatchEnabléit set will remain

inactive and cycleMatch processing shall be, in effect, disabled. To re-enable cycleMatch processing, software must first
stop the IT contexts for which cycleMatch is enabled (by clearing ContextCamtralo O and waiting for
ContextControhctiveto go to 0), then must clear the IntEvegtleIinconsisteninterrupt. The stopped IT contexts may

then be started, but software should not schedule any transmits to occur for these contexts for at least two cycles
immediately following the clearing of the interrupt condition.

9.5.2 busReset Interrupt

Bus reset does not affect isochronous transmit.

Page 108 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

9.6 IT Data Format

An isochronous transmit packet consists of two header quadlets (as specified in either the OUTPUT_MORE-Immediate ol
OUTPUT_LAST-Immediate descriptor) and a data payload. The data payload in host memory is not required be aligned
on a quadlet boundary. Padding is added by the Host Controller if needed. The format is as follows.

31 30 29 28)27 26 25 24I23 22 21 20319 18 17 16§15 14 13 12311 10 9 87 6 5 413 2 1 O
reserved spd tag chanNum tcode=4'hA sy
dataLength reserved
s . s
-~ h dat -
” ISOChronous data ”
e T T T I T g
|
I padding (if needed)
|
Figure 9-10 — Isochronous transmit format
Table 9-8 — Isochronous transmit fields
field name bits | description
spd 3 | The speed at which the packet will be transmitted.
tag 2 | The data format of the isochronous data (see IEEE 1394 specification)
chanNum 6 | The channel number this data is associated with.
tcode 4 | The transaction code for this packet.
sy 4 | Transaction layer specific synchronization bits.
dataLength 16| Indicates the number of bytes in this packet.
isochronous data The data to be sent with this packet. The first byte of data must appear in byt¢ 0 of the
first quadlet of this field. The last quadlet should be padded with zeroes, if necgssary.
padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the epd of the
packet to guarantee that a whole number of quadlets is sent.

Note that packets to go out over the 1394 wire are constructed from this Host Controller internal format, and are not sen
in the exact order as shown above. For example, spd, shown in the first quadlet, is not transmitted at all as part of th
isochronous packet header.

Copyright © 1996,1997 All rights reserved. Page 109

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Page 110 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

10. Isochronous Receive DMA

The Isochronous Receive DMA (IR DMA) controller has a required minimum of four and an implementation maximum
of 32 isochronous receive DMA contexts. Each context is controlled by a DMA context program. One single IR DMA
context can receive packets from multiple isochronous channels, and the remaining DMA contexts can each receive
packets from a single isochronous channel. IR DMA contexts can either receive exactly one packet per buffer, or they cal
concatenate packets into a stream that completely fills each of a series of buffers. Packets may be received with or witho
isochronous packet headers and timeStamps.

10.1 IR DMA Context Programs

For isochronous receive DMA, a context program is a list of DMA descriptors used to identify buffers in host memory
into which the Host Controller places received isochronous packets. The descriptors are 16 bytes in length and must b
aligned on a 16 byte boundary. There are two kinds of descriptor commands available: INPUT_MORE and
INPUT_LAST.

s ls| ol b w|, ., rescoumt
L dmaadiess
..., |ranchaddess | Z
., Mersaws | rescount

Figure 10-1 — INPUT_MORE/INPUT_LAST descriptor format

Table 10-1 — INPUT_MORE/INPUT_LAST descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h2 for INPUT_MORE, or set to 4’h3 for INPUT_LAST.
INPUT_MORE is required for receiving packets in buffer-fill mode (see section 10}2.1),
and may also be used in packet-per-buffer mode.

INPUT_LAST is required for receiving packets in packet-per-buffer mode (see
section 10.2.2), and must be the final descriptor in a descriptor block. It is not permitted
in buffer-fill mode.

s 1 Used witlpaclet-perbuffer mode only (see section 10.2.2). If set to one, xferStatug and
resCount will be updated upon descriptor completion. If set to zero, neither field is
updated. Assumed to be one for buffer-fill mode.

key 3 This field must be set to 3'b0.

i 2 Interrupt control. Valid values are 2'b11 to generate an IsochRx interrupt when thg
descriptor is completed (see section 6.1), or 2'b00 for no interrupt. Behavior is
unspecified for 2’b01 and 2’b10.

In paclet-perbuffer mode (see section 10.2.2), software mustteed in INPUT_MORE
descriptors and may be ignored by hardware.

172

b 2 Branch control. Valid values are 2'b11 to branch to branchAddress, and 2’b00 not to
branch. Behavior is unspecified for 2’b01 and 2'b10.

For buffer-fill mode (see section 10.2.1), this field must always be set to 2’b11.
For paclet-perbuffer mode (see section 10.2.2), this field must be 2’b00 for
INPUT_MORE commands and 2’b11 for INPUT_LAST commands.

Copyright © 1996,1997 All rights reserved. Page 111

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 10-1 — INPUT_MORE/INPUT_LAST descriptor element summary

Element Bits | Description

w 2 Wait control. Valid values are 2’'b11 to wait for a packet with a sync field which
matches the sync specified in the context’s IRContextMatch register (see sectiop 10.3),
or 2’b00 not to wait.
For paclet-perbuffer mode, 2’b11 can only be used in the first descriptor of a desdriptor
block.
For buffer-fill mode a w of 2’b11 affects all packets received into the buffer - thel wait
condition will apply the sync match requirementemch packet to be received into the
indicated buffer and not just to the first packet. Therefore, if needed it is recommended
that w only be set to 2'b11 for the very first descriptor only in a buffer-fill context
Note that all packets are filtered on the IRContextMatch tag values regardlesqy of the
value of this (w) field. Behavior is unspecified for 2’b01 and 2'b10.

reqCount 16 Request count: The size of the input buffer in bytes.

dataAddress 32 Address of receive buffer. Any receive buffer which will contain one or more packet
headers must have a quadlet aligned dataAddress. Buffers to aattionly and no
headers may have a byte alighed dataAddress.

branchAddress 28 16-byte aligned address of the next descriptor. This field is not used for INPUT_ |[MORE
commands in packet-per-buffer mode.
z 4 Forbuffer-fill mode (see section 10.2.1), Z must be either 1 to indicate the branchAgldress

is a valid address for the next INPUT_MORE, or 0 to indicate this descriptor is the pnd of
the context program.
Forpaclet-perbuffer mode (see section 10.2.2), if the command is INPUT_LAST, Z|may

be a value from 1 to 8 to indicate the number of descriptors in the next descriptor|block,
or O to indicate the end of the context program. If the command is INPUT_MORE] then
Z is not used.

xferStatus 16 Composed of 16-bits from ContextControl[15:0].
For buffer-fill mode, xferStatus is written when resCount is updated.
For paclet-perbuffer mode, xferStatus is written after the descriptor is processed if|s = 1.

resCount 16 Residual count: The number of bytes remaining in the dataAddress buffer (out of a
maximum of reqCount). Written if in packet-per-buffer mode and s = 1, or each time a
packet is received in buffer-fill mode. For further details on when resCount is updated in
buffer-fill mode, see section 10.2.1.

The Z value is used by the Host Controller to fetch multiple command descriptors at once, for improved efficiency. Z
values must always be encoded correctly. The contiguous descriptors described by a Z value ardesaitgrdoa block
The following table summarizes all legal Z values:

Table 10-2 — Z value encoding

Z value Use

0 Indicates that the current descriptor is the last descriptor in the context program

1-8 Indicates that 1 to 8 descriptors starting at descriptorAddress are physically contiguous.
9-15 reserved

To indicate the end of the context program, all IR DMA context programs must indicate the end of the program by using
a command descriptor withtavalue of 2'b11 (branch always) andavalue of 0. A context program can be appended to
while the DMA runs, even if the DMA has already reached the last descriptor. section 3.2.1.2 describes how to append to
a context program.

Page 112 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

When an IR DMA context is running and/or active, software shall not modify any command descriptors within the context
program with the exception of the last command descriptor (the one descriptor in a program2iiiii andZ=4'h0).
The last command descriptor may only be modified according to the steps described in section 3.2.1.2.

10.2 Receive Modes

The Host Controller can write isochronous receive packets into host memory buffers in one of two ways. It can place
them using either buffer-fill mode or packet-per-buffer mode.

10.2.1 Buffer Fill Mode

In bufferFill mode, all received packets are concatenated into a contiguous stream of data. This data is then metered ol
into buffers described by a DMA context program, filling each buffer completely. Packets may straddle multiple buffers in
this mode (see packet 2 in the illustration below).

MORE|S|key:0| | i |b::1 w| reqCount
dataAddress
o branchAddress Z=1 paCket 1 paCk
1 1
xferStatus | resCount=0
FMORE |s|key:O| | i |b:3| w | reqCount
1 1
dataAddress
R branchAddress z=1 et 2 packet 3
xferStatus | resCount

Figure 10-2 — IR Buffer Fill Mode

A context program for an isochronous receive context in buffer-fill mode consists of a list of independent INPUT_MORE
descriptors, each branching to the next descriptor in the list. Since each descriptor must always branch to the subseque
one, theb field must always be set to 2'b11 to indicate a branch. If a buffer-fill mode INPUT_MORE descriptor is not the
last descriptor in the list, its Z value must be set to 1 to instruct the Host Controller to fetch the next single d#scriptor.

it is the last one in the list, Z must be set to 0. Also, to ensure an acces&muntvalue software must initialize
resCount to the value of reqCount.

As depicted above, it is possible for a received packet to straddle multiple buffers. To ensure that the receive buffers for :
context remain parsable, hardware must follow the following procedure.

1) After filling to the end of a buffer with a partial packet, advance to the next descriptor block and obtain the
next buffer (dataAddress), retaining all state for the first buffer as well as for the new buffer.

2) Continue writing packet bytes into the subsequent buffer(s). If the end of a buffer is reached, advance to the
next buffer without updating status and without retaining state for any of the interim buffers. Write the
remaining packet bytes into the final packet buffer.

3) |If there is no data error: a) conditionally write the trailer quadlet into the last buffer, b) update xferStatus and
resCount into thdinal buffer's descriptor, and c) update xferStatus and resCount intdirshebuffer's
descriptor. At that point the previous state of the first buffer is no longer needed and the first buffer's
descriptor is completed.

4) If thereis an error, then the packet must be ‘backed-out’ by reverting back to the previous state (as saved
earlier). XferStatus and resCount aiet updated for either descriptor.

Copyright © 1996,1997 All rights reserved. Page 113

1394 Open Host Controller Interface Specification/Draft 0.97

By following these steps, the IR context buffers remain intact and can be parsed. Since interim buffers (those containing
an inner portion of one packet) will not have their status updated, software must only use resCount values when the

corresponding xferStatus indicates the active bit is set to one. It follows from this that if the xfea&ia#uisit is set in
a descriptor, then all prior descriptors have been filled.

For information on the effect of a host bus error on an IR DMA context in buffer-fill mode, refer to section 13.2.6.

10.2.2 Packet-per-Buffer Mode

In packet-per-buffer mode, each received packet is placed in the buffer(s) described by one descriptor block. Any leftover
bytes are discarded, and packets never straddle multiple descriptor blocks. Both INPUT_MORE and INPUT_LAST are
allowed in packet-per-buffer mode. Each INPUT_LAST marks the end of a packet, though the final byte may have been
used up in a previous INPUT_MORE (see packet 2 in the illustration below). Each packet starts in an INPUT_* command

that follows an INPUT_LAST.

MORE |s|k?ylz(1 . |i=I0|b?O| V.V | reqCount

dataAddress

X X

xferStatus [not written] resCount [not written]

pack

et 1

packet 2

LAST |s|key:0| | i |b:3| reqCount
dataAddress
. branchAddress Z=2
xferStatus resCount
"MORE |S|key=0 |i=0|b=0| w | reqCount
1 1
dataAddress
X X
xferStatus resCount
LAST |s key=(1 | i |b=3| reqCount
1 1
dataAddress
L, branchAddress z=2

xferStatus [not written] resCount [not written]

£

MORE |s|key=(1 |i=0|b=0| w| reqCount
11 1 11 1 1 1 1 11 1 1) N N N N N I I | 11 1
dataAddress
X X
xferStatus [not written] resCount [not written]
LAST |s|key=0 | i |b=3| reqCount
11 1 11 1 1 1 1 11 1 1) N N N N N I I | 11 1
dataAddress
L, branchAddress Z=2
xferStatus resCount

acket 3

Figure 10-3 — packet-per-buffer receive mode

A context program for an isochronous receive context in packet-per-buffer mode consists of a series of descriptor blocks.
Each descriptor block will receive one packet and must contain a contiguous set of 0 to 7 INPUT_MORE descriptors,
followed by one INPUT_LAST descriptor. This requirement permits the Host Controller to prefetch all the descriptors for

Page 114

Copyright © 1996,1997 All rights reserved.

Printed 9/19/97

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

a packet, in order to avoid fetching additional descriptors during a packet transfer. INPUT_MORE descriptors must have
theb field set to 2’b00 (never branch). INPUT_LAST descriptors must havbe fiedd set to 2'b11 (always branch), and

must either have a valid address in branchAddress with a Z value of 1 to 8, or must have a Z value of 0 to indicate it’s the
last descriptor in the context program.

For information on the effect of a host bus error on an IR DMA context in packet-per-buffer mode, refer to section 13.2.6.
10.2.2.1 Command.xferStatus and Command.resCount updates

In packet-per-buffer mode, when s=1 the xferStatus and resCount fields are updated only in the descriptor for the buffe
which receives the last byte of the packet. ResCount is only valid in a descriptor if the xferStatus field has the
contextControkun bit set. To obtain accurate values for xferStatus, it is recommended that software initialize xferStatus

to zero (evt_no_status).

In figure 10-3 above, there are 3 shaded xferStatus quadlets. The shaded quadlets are status fields that were never upda
and the unshaded status quadlets reflect status fields that were updated. In the top descriptor block, the xferStatus quad
in the first descriptor was not written because packet 1 did not complete in the first descriptor's buffer. In the middle
descriptor block, the first descriptor was big enough to hold packet 2 completely. Since the first descriptor’'s buffer
received the last byte of packet 2, the first descriptor’s status was written, and the second descriptor’s status is ignored.

If a descriptor block describes buffer space that cannot fit an entire packet (including header if isochHeader mode is
enabled), then the overflow bytes are discarded. When this occurs, xferStatus.ack will be set to evt_long_packet.

10.3 IR Context Registers

Each isochronous receive context consists of three registers: CommandPtr, IRContextControl, and IRContextMatch
CommandPtr is used by software to tell the IR DMA controller where the DMA context program begins. IRContextCon-
trol is used by software to control the context's behavior, and is used by hardware to indicate current status. IRContext
Match is used to start on a specified cycle number and to filter received packets based on their tag bits and possibly syt
bits. This section describes each register in detail.

10.3.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. Th
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically
contiguous descriptors are pointed to by descriptorAddress. In buffer-fill mode, Z will be either one or zero. In packet-
per-buffer mode, Z will be from zero to eight.

Refer to section 3.1.2 for a full description of the CommandPtr register.

31302928\27262524‘23222120\19 18 17 16‘15 14 13 1211 10 9 8|7 6 5 4,3 2 1 O
rrrrrrrrrtrr-rr -t Tt L

descriptorAddress [31:4] Z

Figure 10-4 — CommandPtr register format

Copyright © 1996,1997 All rights reserved. Page 115

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

10.3.2 IRContextControl register (set and clear)

The IRContextControkegister contains bits that control options, operational state, and status for the isochronous receive
DMA contexts. Software can set selected bits by writing ones to the corresponding bit€ontagtControlSetegister.
Software can clear selected bits by writing ones to the corresponding bits QonkextControlClearegister. It is not
possible for software to set some bits and clear others in an atomic operation. A read from either register will return the

same value.

The context control register used for isochronous receive DMA contexts is shown below. It includes several fields which
permit software to filter packets based on various combinations of fields within the isochronous packet header.

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4;3 2 1 0
I I I I I I

spd event
code
| T
multiChanMode run
cycleMatchEnable active
isochHeader dead
bufferFill wake

Figure 10-5 — IR DMA ContextControl (set and clear) register format

Table 10-3 — IR DMA ContextControl (set and clear) register description

field rscu |reset | description

bufferFill rsc undef| When set to one, received packets are placed back-to-back to completely fil] each
receive buffer (specified by an INPUT_MORE command). When clear, each regeived
packet is placed in a single buffer (described by zero to seven INPUT_MORH com-
mands followed by an INPUT_LAST command). If the multiChanMode bit is et to
one, this bit must also be set to one.

The value of bufferFill must not be changed wihitgive or run are set to one.

isochHeader rsc undef When set to one, received isochronous packets will include the complete 4}byte iso-
chronous packet header seen by the link layer. The end of the packet will be fnarked
with a xferStatus (bits 15:0 of this register) in the first doublet, and a 16-bit timeS-
tamp indicating the time of the most recently received (or sent) cycleStart pagket.
When clear, the packet header is stripped off of received isochronous packets. The
packet header, if received, immediately precedes the packet payload. Detailq are
shown in section 10.6.

The value of isochHeader must not be changed veletliwe or run are set to one.

cycleMatchEnable rscu| undgf In general, when set to one, the context will begin running only when the 1|5-bit
cycleMatch field in the contextMatch register matches the two bits of cycleSeronds
and the 13-bit cycleCount in the cycleStart packet. The effects of this bit howeyer are
impacted by the values of other bits in this register and are explained below. Opce the
context has become active, hardware clears the cycleMatchEnable bit.

The value of cycleMatchEnable must not be changed wabtigeor run are set to

one.

Page 116 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table 10-3 — IR DMA ContextControl (set and clear) register description

field rscu |reset | description

multiChanMode rsc undef When set to one, the corresponding isochronous receive DMA context will feceive
packets for all isochronous channels enabled in the IRChannelMaskHi and IRChan-
nelMaskLo registers (see section 10.4.1.1). The isochronous channel numbef speci-
fied in the IRDMA context match register is ignored. When set to zero, the IRPMA

context will receive packets for that single channel.

Only one IRDMA context may use the IRChannelMask registers. If more than one
IRDMA context control register has the multiChanMode bit set, results are urjde-

fined. See section 10.4.3 for more information.
The value of multiChanMode must not be changed watdtereor run are set to ong

run rscu | 1'b0 | Refer to section 3.1.1.1 for an explanation of the contextCaumrblt.

wake rsu undef| Refer to section 3.1.1.2 for an explanation of the contextCoalwehit.

dead ru 1'n0 | Refer to section 3.1.1.4 for an explanation of the contextCda#dbit.

active ru 1'b0 | Referto section 3.1.1.3 for an explanation of the contextCautreébit.

spd ru undef| This field indicates the speed at which the packet was received. 3'b000 = 100
Mbits/sec, 3'b001 = 200 Mbits/sec and 3'b010 = 400 Mbits/sec. All other valugs are
reserved.

event code ru undef FduufferFill mode, possible values are: ack_complete, evt_overrun,

evt_descriptor_read, evt_data_write and evt_unknown. Packets with data errprs
(either dataLength mismatches or dataCRC errors) are ‘backed-out’ as desciibed in
section 10.2.1. 1

For paclet-perbuffer mode, possible values are: ack_complete, ack_data_err
evt_long_packet, evt_overrun, evt_descriptor_read, evt_data_write and
evt_unknown.

See Table 3-2, “Packet event codes,” for descriptions and values for these cqdes.

r,

The cycleMatchEnable bit is used to start an IR DMA context program on a specified cycle. When the
cycleStartcycleCount value matches the cycleMatch value (in the IR contextMatch register), hardware sets the
cycleMatchEnable bit to 0, sets the contextCordntive bit to 1, and begins executing descriptor blocks for the context.

The transition of an IR DMA context to the active state, from the not-active state is dependent upon the values of the rur
and cycleMatchEnable bits.

« If run transitions to 1 when cycleMatchEnable is 0, then the context will become active (active = 1).

« If both run and cycleMatchEnable are set to 1, then the context will become active when the 13-bit cycleCount field
in the cycleStart packet match the 13-bit cycleMatch value indicated in the IR contextMatch register.

« If both run and cycleMatchEnable are set to 1, and cycleMatchEnable is subsequently cleared, the context become
active.

e If both run and active are 1 (the context is active), and then cycleMatchEnable is set to 1, this will result in
unspecified behavior.

Copyright © 1996,1997 All rights reserved. Page 117

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

10.3.3 Isochronous receive contextMatch register

The IR ContextMatch register is used to start a context running on a specified cycle number, to filter incoming isochro-
nous packets based on tag values and to wait for packets with a specified sync value. All packets are checked for a
matching tag value, and a compare on sync is only performed when the descripfield is set to 2’b11l. See

section 10.1 for proper usage of twefield. This register should only be written when contextCorictile is 0, other-

wise unspecified behavior will result.

31 30 29 28 27262524‘23222120\19181716‘1514131211109 8|7 6 5 4,3 2 1 0
T L L

cycleMatch sync channelNumber

I
tag3
tag2 | taglSynckFilter
tag
tag

Figure 10-6 — IR DMA ContextMatch register format

Table 10-4 — IR DMA ContextMatch register description

field rwu |reset |description

tag3 rw | undef | If set, this context will match on isochronous receive packets with a tag field o 2'b11.

tag2 rw | undef | If set, this context will match on isochronous receive packets with a tag field o] 2’b10.

tagl rw | undef | If set, this context will match on isochronous receive packets with a tag field of 2’'b01.

tag0 rw | undef | If set, this context will match on isochronous receive packets with a tag field of 2'b00.

cycleMatch rw | undef| Contains a 15-bit value, corresponding to the low order two bits of cycleSecorjds and
the 13-bit cycleCount field in the cycleStart packet. If

contextControkycleMatchEnablés set, then this IR DMA context will become
enabled for receives when the bus cycleStgrteCountvalue equals the cycleMatc
value.

-

sync rw | undef| This field contains the 4 bit field which is compared to the sync field of each
isochronous packet for this channel when the command descriptfiell is set to
2'b11.

taglSyncFilter rw | undef| If set and the contextMatiatyl bit is set, then packets with tag 2'b01 shall only He
accepted into the context if the two most-significant bits of the packet's sync fieJd are
2'b00. Packets with tag values other than 2'b01 shall be filtered according to th¢ tago,
tag2 and tag3 bits above with no additional restrictions.

If clear, this context will match on isochronous receive packets as specified in the tag0-
4 bits above with no additional restrictions.

channelNumber rw | undef This six bit field indicates the isochronous channel number for which this IR DMA con-
text will accept packets.

At least one tag bit must be set to 1, otherwise no received packets will match and the context will, in effect, wait forever.

Page 118 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

10.4 Isochronous receive DMA controller

The following sections describe how software manages the multiple isochronous receive DMA contexts. Each context ha:
a commandPtr pointing to the initial DMA descriptor, a contextControl register, and a contextMatch register to start the
context based on a cycle number and to filter packets. The IR DMA controller has one set of IRMultiChanMask registers
used to specify a set of isochronous channels for the single isochronous context in multiChanMode.

10.4.1 Isochronous receive multi-channel support

Any IR DMA context can receive packets from multiple isochronous channels per cycle by enabling context@dititrol.
ChanModeand using the IRMultiChanMask registers. There is a single set of IRMultiChanMask registers available in the
IR DMA controller, and onlyone IR DMA context may be using them at any given time as determined by the setting of
contextContromultiChanModebit (see section section 10.3.2).

A context to be enabled for multiChanModeust also be enabled for bufferFill and isochHeader modes. If multiChan-
Mode is enabled without bufferFill and isochHeader, the resulting behavior is undefined.

If an IR DMA context is in multi-channel mode, therefore using the IRMultiChanMask registers, the isochronous channel
field in the IR DMA context Match register (section 10.3.3) is ignored.

10.4.1.1 IRMultiChanMask registers (set and clear)

An isochronous channel mask is used to enable packet receives from up to 64 specified isochronous data channel
Software enables receives for any number of isoch channels by writing ones to the corresponding bits in the IRMulti-
ChanMaskHiSet and IRMultiChanMaskLoSet addresses. To disable receives for any isoch channels, software writes one
to the corresponding bits in the IRMultiChanMaskHiClear and IRMultiChanMaskLoClear addresses.

A read of each IRChanMask register shows which channels are enabled; a one for enabled, a zero for disabled. Th

IRMultiChanMask registers are not changed by a bus reset. The state of these registers is undefined following a hard res
or soft reset.

31 30 29 28) 27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4,3 2 1 0

T T
| isoChannel60 isoChannel35 |
isoChannel61 [) [) [) isoChannel34

isoChannel62 isoChannel33
isoChannel63 isoChannel32

Figure 10-7 — IRMultiChanMaskHi (set and clear) register

Copyright © 1996,1997 All rights reserved. Page 119

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

31 30 29 28) 27 26 25 24|23 22 21 20/19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4;3 2 1 0

| i!soChanneI28 isoChanneIIIS |
isoChannel29 [[[isoChannel2
isoChannel30 isoChannell
isoChannel31 isoChannel0

Figure 10-8 — IRMultiChanMaskLo (set and clear) register

10.4.2 lIsochronous receive single-channel support

Each isochronous receive DMA context can receive one packet per cycle from one isochronous data channel. Data
chaining across DMA context commands is supported when the contextGarffesFill bit is set.

To configure a context to receive packets from an isochronous channel, write the channel number into the contextMatch
register’s channelNumber field.

To start a context on a particular cycle, write the starting cycle time into the contextMatch register, and enable the
contextControkycleMatchEnableand contextContralun bits. When the bus cycleTimoycleCountvalue equals the
contextMatchcycleMatchvalue, the IR DMA controller will clear the contextContegtleMatchEnablebit and the

context will begin receiving packets. (see sections 10.3.2 and 10.3.3).

To wait for a packet with specified sync value in the isochronous packet header, set the desired configuration in the sync
field of the contextMatch register and set the DMA command descriptofigait) field to 2'b11. When the IR DMA
controller detects w field of 2'b11, it waits until a packet arrives matching the specified sync and directs it to the buffer
identified in the waiting descriptor’'s dataAddress field. Packets with the specified channel number and tag bits but which
do not match the specified sync are discarded.

When an IR DMA context is stopped either because it reached the end of the context program or because the run bit is

cleared, some packets following the intended stop point may have already entered the receive FIFO. These packets will be
discarded when they reach the bottom of the FIFO, unless another IR DMA context is able to receive them.

10.4.3 Duplicate channels

If more than one IR DMA context specifies receives for packets from the same isochronous channel, the context destina-
tion for that channel’'s packets is undefined.

If more than one IR DMA context has the contextContmaltiChanModebit set, then the context destination for
IRmultiChanMask packets is undefined.

If an isochronous channel is specified both in a single channel context and in the multiChannel context, then the packet
will be routed to the multiChannel context and the single channel context shall remain active.

Page 120 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

10.4.4 Determining the number of implemented IR DMA contexts

The number of supported isochronous receive DMA contexts will vary for 1394 OpenHCI implementations from a
minimum of four to a maximum of 32. Software can determine the number of supported IR DMA contexts by writing
32'hFFFF_FFFF to the isoRecvtIintMask register (see section 6.4.1), and then reading it back. Bits returned as 1's indicat
supported contexts, and bits returned as 0’s indicate unsupported/unimplemented contexts.

10.5 IR Interrupts

Each of the possible 32 isochronous receive contexts can generate an interrupt, therefore each IR DMA context has a t
in the isoRecvIntEvent register. Software can enable interrupts on a per-context basis by setting the corresponding
isoRecvMask bit to one.

To efficiently handle interrupts which could conceivably be generated from 32 different contexts in close proximity to one
another, there is a single bit for all IR DMA contexts in the Host Controller IntEvent register. This bit signifies that at
least one but potentially several IR DMA contexts attempted to generate an interrupt. Software can read the
isoRecvIntEvent register to find out which context(s) are involved. For more information on the isoRecvIntEvent register,
see section 6.4.

10.5.1 cyclelnconsistent Interrupt

When the IntEventyclelnconsistentondition occurs (table 6-1), the IR DMA controller shall continue processing
running contexts normally, with the exception that contexts with the ContextCoptteMatchEnabléit set will remain

inactive and cycleMatch processing shall be, in effect, disabled. To re-enable cycleMatch processing, software must firs
stop the IR contexts for which cycleMatch is enabled (by clearing ContextComiralo O and waiting for
ContextControhctiveto go to 0), then must clear the IntEvegtleinconsisteninterrupt. The stopped IR contexts may

then be started.

10.5.2 busReset Interrupt

Bus reset does not affect isochronous receive.

10.6 IR Data Formats

The Host Controller shall only receive packets which have tcodes that are defined by an approved IEEE 1394 standarc
Packets with undefined tcodes will be dropped.

There are four formats for isochronous receive packets depending upon the setting of the Conteis@aritedderand
ContextControbufferFill bits (see section 10.3). If the ContextContsolchHeademit is zero, then only the isochronous
data without any padding, header quadlet or timestamp quadlet is put in the buffer.

Table 10-5 — Isochronous receive fields

field name bits | description

datalLength 16| Indicates the number of bytes in this packet.

tag 2 | The data format of the isochronous data (see IEEE 1394 specification)
chanNum 6 | The channel number this data is associated with.

tcode 4 | The transaction code as received for this packet.

sy 4 | Transaction layer specific synchronization bits.

Copyright © 1996,1997 All rights reserved. Page 121

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

Table 10-5 — Isochronous receive fields

the most recently received (or sent) cycle start packet.

field name bits | description

isochronous data The data received with this packet. The first byte of data must appear in byte|0 of the
first quadlet of this field. The last quadlet should be padded with zeroes, if necgssary.

padding If the dataLength mod 4 is not zero, then zero-value bytes have been added ontp the end
of the packet to guarantee that a whole number of quadlets was sent. In three formats,
the pad bytes are stripped off the packet.

xferStatus 16 | Contains bits [15:0] from the contextControl register.

timeStamp 16 | The three low order hitgcleSecondsand the full 13-bits ofycleCountt the time off

10.6.1 bufferFill mode formats

10.6.1.1 IR with header/trailer

The format of an isochronous receive packet when ContextCdntfekFill=1 and ContextContratochHeader1 is

shown below.

31 30 29 28527 26 25 24|23 22 21 20§19 18 17 16§15 14 13 12311 10 9 87 6 5 433 2 1 0
dataLength tag chanNum tcode sy
- . -
/’ isochronous data /’
- -
R e e e e
1 o
I padding (if needed)
Il
xferStatus timeStamp

Figure 10-9 — Receive isochronous format in

buff erFill mode with header/trailer

Page 122

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

10.6.1.2 IR without header/trailer

The format of the isochronous receive packet when ContextCdniifelFill=1 and ContextControtochHeadex0 is
shown below.

31 30 29 2827 26 25 24I23 22 21 20119 18 17 16|15 14 13 12311 10 9 87 6 5 433 2 1 O

Data is appended to other byte-aligned data (if any) in the bufferFill mode buffer

isochronous data -

T

\\\
\\

Padding (if any) is stripped from the packet in this mode.

Figure 10-10 — Receive isochronous format in buff erFill mode without header/trailer
10.6.2 packet-per-buffer mode formats

10.6.2.1 IR with header/trailer

The format of an isochronous receive packet when ContextCdmitiferFill=0 and ContextContratochHeaderl is
shown below. Note that although xferStatus may be written as a side-effect of writing timeStamp, xferStatus does not
contain valid or otherwise useful values.

31 .30 20 28)27 26 25 24I23 22 21 20§10 18 17 1415 14 13 12511 10 9 8|7 6 5 433 2 1 0

INVALID timeStamp

datalength tag chanNum tcode sy

If headers & data are in the same buffer, then the data shall be quadlet aligned.

If headers are in a separate buffer from the data,
then the data buffer may be byte aligned.

el |

-

J’ isochronous data T
T Padding (if any) is stripped from the packet in this mode.

Figure 10-11 — Receive isochronous format in packet-per -buffer mode with header/trailer

Copyright © 1996,1997 All rights reserved. Page 123

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

10.6.3 IR without header/trailer

The format of the isochronous receive packet when ContextCdniifelFill=0 and ContextContratochHeadex0 is
shown below.

31 30 29 28)27 26 25 24I23 22 21 20§19 18 17 16|15 14 13 12911 10 9 8} 7 6 5 433 2 1 O

Buffers with data only (no headers), like this, may be byte aligned

\\

isochronous data

\\
\\
\\

Padding (if any) is stripped from the packet in this mode.

Figure 10-12 — Receive isochronous format in packet-per -buff er mode without header/trailer

Page 124 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

11. SelfID Receive
The purpose of the SelfID DMA controller is to receive self ID packets during the bus initialization process. The self ID

packets are received using a special pair of DMA registers, the Self ID Buffer Pointer register and the Self ID Count
register.

11.1 Self ID Buffer Pointer Register

The Self ID Buffer Pointer register points to the buffer the SelflD packets will be DMA'ed into during bus initialization.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 12,11 10 9 8|7 6 5 4,3 2 1 0
L

Figure 11-1 — Self ID Buffer Pointer register

Table 11-1 — Self ID Buffer Pointer register

field name rwu | reset | description

selfIDBufferPtr | rw | undeff Contains the 2K-byte aligned base address of the buffer in host memory where received
self-ID packets are stored. The contents of this field are undefined after a chip reget.

11.2 Self ID Count Register

This register keeps a count of the number of times the bus self ID process has occurred, flags self ID packet errors ar
keeps a count of the amount of self ID data in the Self ID buffer.

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16|15 14 13 12,11 10 9 8‘7 6 5 4,3 2 1 0

T
selfIDError

Figure 11-2 — Self ID Count register
Table 11-2 — Self ID Count register
field name rwu | reset | description
selfIDError ru | undefi When this bit is one, an error was detected during the most recent self ID packet

reception. The contents of the self ID buffer are undefined. This bit is cleared after a
self ID reception in which no errors are detected. Note that an error can be a hgrdware
error or a host bus write error.

selfIDGeneration ru undgf The value in this field increments each time a bus reset is detected. This field folls over
to 0 after reaching 255.

selfIDSize ru | undef This field indicates the numbeguédlets that have been written into the selfID buffer
for the current selfIDGeneration. This includes the header quadlet and the selflD data.
This field is cleared to zero as soon as a bus reset is detected.

Copyright © 1996,1997 All rights reserved. Page 125

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

The self ID stream can be (63 devices) * (4 packets/device) * (8 bytes/packet) = 2016 bytes. If a bus reset is received part
way through a self ID sequence, the old data will be overwritten. To keep things straight, the generation counter is written
into memory as the first quadlet of the stream. For a consistent stream, software reads the generation counter in memory,
then the stream, then the SelfIDCount register. If the generation counter in the register matches the one in memory, then
the self ID stream is consistent.

If the selfIDError flag is set, then there was either a hardware error in receiving the last self ID sequence or a host bus
error while writing to the host buffer, so the self ID data is not trustworthy. Any self ID data received after the error is
flushed. If all 2048 bytes are received, the selflIDSize field is set to 9’h7FF and the selfIDError flag is set. (This is only
possible if >64 nodes are on the bus... a gross error condition.)

Whenever a bus reset occurs, the Host Controller clears the selfIDSize field to zero, at the same time the bus reset inter-
rupt is triggered. This allows software responding to a bus reset to know that self IDs have not yet been received.

The Host Controller does not verify the integrity of the self-ID packets and software is responsible for performing this
function (i.e. using the logical inverse quadlet).

11.3 Self-ID receive

The self-ID receive format is shown below. The first quadlet contains the time stamp and the self ID generation number
(see section 11.2 “Self ID Count Register”). The remaining quadlets contain data that is received from the time a bus reset
ends to the first subaction gap. This is the concatenation of all the self-ID packets received. Note that the bit-inverted
check quadlets are included in the FIFO and must be checked by the application.

31 30 29 2827 26 25 24§23 22 21 20§19 18 17 16}15 14 13 12511 10 9 8|7 6 5 413 2 1 O

selfIDGeneration timeStamp

: : self ID packet data : :
Figure 11-3 — Self-ID receive format
Table 11-3 — Self-ID receive fields
field name description
selfIDGeneration See table 11-2.
timeStamp The three low order bits from cycleTirogeleSecondsand the full 13-bits of
cycleTimercycleCouniat the time this status quadlet was generated.
self ID packet data The data received during the selfID process of the bus initialization phase. Note thjat each
selfID packet includes the data quadlet and inverted quadlet.

Page 126 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

11.4 Enabling the SelfID DMA

The RcvSelfID bit in the LinkControl register (see section 5.9, “LinkControl registers (set and clear),”) allows the receiver
to accept incoming self-identification packets. Before setting this bit, software must ensure that the self ID buffer pointer
register contains a valid address.

11.5 Interrupt Considerations for SelfID DMA

IntEventSelfIDcompletgsection 6.1) is set and when the selfID phase of bus initialization completes.

11.6 SelfIDs Received Outside of Bus Initialization

SelfID packets received outside of the bus initialization self-ID phase are routed to the AR DMA Request context and use
the PHY packet receive format.

Copyright © 1996,1997 All rights reserved. Page 127

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Page 128 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

12. Physical Requests

When a block or quadlet read request or a block or quadlet write request is received, the 1394 Open HCI chip handles th
operation automatically without involving software if the offset address in the request packet header meets a specific se
of criteria listed below. Requests that do not meet these criteria are directed to the AR DMA Request context. Host
Controller registers which are written via physical access to the Host Controller will yield unspecified results.

The 1394 Open HCI checks to see if the offset address in the request packet header is one of the following.

a) If the offset falls within the@hysical rangethen the offset address is used as the memory address for the block or
quadlet transaction. Physical range is defined by offsets inclusively between a lower bound of 48’h0 and an uppel
bound of either the PhysicalUpperBound offset minus one (section 5.14), or 48'h0000_FFFF_FFFF if the
PhysicalUpperBound register is not implemented. If the high order 16-bits of the offset address is 16’h0000 and
PhysicalUpperBound is not implemented, then the lower 32 bits of the offset address are used as the memor)
address for the block or quadlet transaction.

Lock transactions and block transactions with a non-zero extended tcode are not supported in this address spac
instead they are diverted to the AR DMA Request context. For read requests, the information needed to formulate
the response packet is passed to the Physical Response Unit. Requests are only accepted if the source node 1D
the request has a corresponding bit in the Asynchronous Request Filter registers and Physical Request Filte
registers(section 5.13).

b) If the offset address selects one of the following addresses, the physical request unit will directly handle quadlet
compare-swaps and quadlet reads (other requests will be sent an ack _type_error) (section 5.5.1):

1) BUS_MANAGER_ID (48'hFFFFF000021C). Local register is BusManagerID.

2) BANDWIDTH_AVAILABLE (48’'hFFFFF0000220). Local register is BandwidthAvailable.
3) CHANNELS_AVAILABLE_HI (48'hFFFFF0000224). Local register is ChannelsAvailableHi.
4) CHANNELS_AVAILABLE _LO (48'hFFFFF0000228). Local register is ChannelsAvailableLo.

c) If the offset address is one of the following addresses, the Physical Request controller will directly handle quadlet
reads:

1) Config ROM header (1st quadlet of the Config ROM) (48'hFFFFF0000400). Local register is
ConfigROMheader (section 5.5.2).

2) Bus ID (1st quadlet of the Bus_Info_Block) (48'hFFFFF0000404). Local register is BuslD (section 5.5.3).

3) Bus options (2nd quadlet of the Bus_Info Block) (48'hFFFFF0000408). Local register is BusOptions
(section 5.5.4).

4) Global unique ID (3rd and 4th quadlets of the Bus_Info Block) (48'hFFFFFO00040C and
48'hFFFFF0000410). Local registers are GloballDHi and GloballDLo (section 5.5.5).

5) Configuration ROM (48'hFFFFF0000414 to 48'hFFFFFO0007FF). Mapped by the ConfigROMmapping
register to a 1K byte block of system memory (section 5.5.6)

For information about ack codes for write requests, see section 3.3.2.

12.1 Filtering Physical Requests

Software can control from which nodes it will receive packets by utilizing the asynchronous filter registers. There are two
registers, one for filtering out all requests from a specified set of hodes (AsynchronousRequestFilter register) and one fo
filtering out physical requests from a specified set of nodes (PhysicalRequestFilter register). The settings in both register
have a direct impact on how the AR DMA Request context is used, e.g. disabling only physical receives from a node will
cause all request packets from that node to be routed to the AR DMA Request context. The usage and interrelationshi
between these registers is fully described in section 5.13, “Asynchronous Request Filters.”

Copyright © 1996,1997 All rights reserved. Page 129

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

12.2 Posted Writes

For write requests which are handled by the Physical Request controller, the Host Controller may send an ack_complete
before the data is actually written to system memory. These writes are referrefostess writesSince posted writes

impact the Physical Request controller and the Asynchronous Receive Request DMA context, further information about
posted writes is located in section 3.3.3, “Posted Writes.” Information on host bus error handling of posted writes is
provided in section 13.2.8, “Posted Write Error.”

12.3 Physical Responses

The response packet generated for a physical read or lock request shall contain the transaction label as it appeared in the
request, the destination_ID as provided in the request’s source_ID, and shall be transmitted at the speed at which the
request was received. The source bus ID in the response packet shall be equal to the destination bus ID from the original
request; note that this is not necessarily the same as the contents of the busNumber field in the Open HCI Node ID
register.

Unlike AR Response packets, physical responses do not track a split_timeout expiration time.

12.4 Physical Response Retries

There is a separate nibble-wide MaxPhysRespRetries field in the ATRetries Register (see section 5.4) that tells the Physical
Response Unit how many times to attempt to retry the transmit operation for the response packet when an ack busy* or
ack _data_error is received from the target node. If the retry count expires, the packet is dropped and suftwatiiées.

12.5 Interrupt Considerations for Physical Requests

Physical read request handling does not cause an interrupt to be generated under any circumstances. Physical write
requests will generate an interrupt when posted write processing yields an error. Lock requests to the serial bus registers
will generate an interrupt when the Host Controller is unable to deliver a lock response packet.

12.6 Bus Reset

On a bus reset, all pending physical requests (those for which ack_pending was sent) shall be discarded. Following a bus
reset, only physical requests to the autonomous CSR resources (see section 5.5) can be handled immediately. Other
physical requests may be processed after software initializes the filter registers (section 5.13).

Page 130 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

13. HostBusErrors
OpenHCI has three primary goals when dealing with host bus error conditions:

1) continue transmission and/or reception on all contexts not involved in the error;

2) provide information to software which is sufficient to allow recovery from the error when possible;
3) provide a means of error recovery on a context other than a general chip reset.

13.1 Causes of Host Bus Errors
Host bus errors can generally be classified as one of the following:

1) addressing error (e.g., non-existent memory location)

2) operation error (e.g., attempt to write to read-only memory)

3) data transfer error (e.g., parity or unrecoverable ECC) and

4) time out (e.g., reply on split transaction bus was not received in time).

Each of these errors can occur at three identifiable stages in the processing of a descriptor:

1) descriptor fetch,

2) data transfer (read or write), and
3) an optional descriptor status update.

In general, the nature of the bus error is not as significant as the stage of descriptor processing in which is occurs. Fc
example, the difference between an addressing error and a data parity error is not significant to the error processing.

13.2 Host Controller Actions When Host Bus Error Occurs

When a host bus error occurs, the Host Controller performs a defined set of actions for all context types. Additionally,
there are a set of actions that are performed that are dependent on the context type. The following sections outline the:
actions.

13.2.1 Descriptor Read Error

When an error occurs during the reading of a descriptor or descriptor block, the behavior of the Host Controller is the
same regardless of the context type. The Host Controller will set ContextGaedibhnd ContextContratventwill be

set to evt_descriptor_read to indicate that the descriptor fetch failed. The unrecoverable error IntEvent is generated an
the context’s IntEvent is not set. Additionally, CommandPtr will be set to point to a descriptor within the descriptor block
in which the error occurred. Since the descriptor could not be read, its xferStatus and resCount will not be written with
current values, and software must refer to ContextCoatrntfor the status.

13.2.2 xferStatus Write Error

For any type of context, when the Host Controller encounters an error writing the status to a descriptor, it sets Context
Controldead The values that would have been written to xferStatus of a descriptor are retained in ContextControl for
inspection by system software. The unrecoverable error IntEvent is generated and the context’s IntEvent is not set regarc
less of the setting of the interrupt (1) field in the descriptor. Additionally, CommandPtr will be set to point to a descriptor
within the descriptor block in which the error occurred.

For implementations which queue multiple packets for transmit prior to updating the descriptor block status for each,
there is a boundary condition that must be considered. It's possible for the xferStatus write back for an earlier packet tc
yield a host bus error, when perhaps some later packets have successfully been transmitted.

Copyright © 1996,1997 All rights reserved. Page 131

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

To safely and consistently handle this condition, the host controller shall wait a full split timeout during which time it
discards all asynchronous responses. This will cause all packets which followed the host bus error’ed packet to time out.
Once the transmit FIFO's empty, the Host Controller shall mark the context as dead, and set the untEvever-
ableError bit.

13.2.3 Transmit Data Read Error

For asynchronous request transmit, asynchronous response transmit and isochronous transmit the Host Controller handles
system data read errors in a similar manner. The Host Controller will not stop processing for the context. Instead, the
event code in the status of the OUTPUT_LAST_* descriptor is set to indicate that there was an error and the nature of the
error. The indicated errors are evt_data_read or evt_underrun. If the error occurs before a packet’s header is placed in the
output FIFO, the Host Controller can immediately abort the packet transfer, optionally set the descriptor status to
evt_data_read or evt_underrun and move on to the next descriptor block. If, however, the error occurs after the header has
been placed in the output FIFO, the Host Controller will stop placing data in the output FIFO. This will cause the Host
Controller to send a packet with a length that does not agree with the data_length field of the header. If the Host
Controller receives an ack_data_error from the addressed node, then the Host Controller will substitute evt_data_read or
evt_underrun as appropriate. If the device returns anything other than ack_data_error, then the Host Controller will store
that value in the status for the packet. It should be noted that this means that if the addressed node returns an ack_pending
on a block write, the error indication will be lost.

If the packet was a broadcast write or an isochronous packet, no ack code is received from any node. In this case, the Host
Controller assumes that ack_data_error was received and proceeds as outlined above.

13.2.4 Isochronous Transmit Data Write Error

A data write error can occur when the Host Controller attempts to write to the address indicated in a STORE_VALUE
descriptor. This error is handled like a data read error with the exception that the event code is set to evt_data_write. The
Host Controller may not begin placing the packet associated with a STORE_VALUE into the output FIFO until the
STORE_VALUE operation is complete. This is to prevent the possibility of having multiple errors that cannot be properly
reported to system software.

13.2.5 Asynchronous Receive DMA Data Write Error

When host bus error occurs while the Host Controller is attempting to write to either the request or response buffer, the
Host Controller will set the corresponding ContextContiedd and set ContextContrelentto evt data_ write. The
unrecoverable error IntEvent is generated and the context's IntEvent is not set regardless of the setting of the interrupt (1)
field in the descriptor. CommandscriptorAddressvill point to the descriptor that contained the buffer descriptor for

the memory address at which the error occurred. Any data in the input FIFO for the context is discarded.

13.2.6 Isochronous Receive Data Write Error

If a data write error occurs for a context that is in packet-per-buffer mode, the Host Controller will set
ContextControkventto evt_data_write or evt_overrun and conditionally update xferStatus of the descriptor in which the
error occurred. Any remaining data in the input FIFO for the packet is discarded. The resCount value in a descriptor that
has an error will not necessarily reflect the correct number of data bytes successfully written to memory. If a FIFO
overrun occurs for a context that is in buffer-fill mode, the packet is treated as if a data length error had occurred and is
‘backed out’ of the receive buffer (xferStatus and resCount not updated) and the remainder of the packet is discarded from
the input FIFO.

Page 132 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

If a host bus error occurs for a context in buffer-fill mode the Host Controller will set ContextGledaddnd set
ContextControkventto evt_data_ write. The unrecoverable error IntEvent is generated and the context’'s IntEvent is not
set regardless of the setting of the interrupt (I) field in the descriptor. CommadedBtiptorAddressill point to the
descriptor that contained the buffer descriptor for the memory address at which the error occurred. Any data in the inpu
FIFO for the context is discarded.

13.2.7 Physical Read Error

When an external node does a physical access and the Host Controller’s read of system memory fails on the first read,
Host Controller will return an error response to the requester with a response code of resp_data_error. If an error occut
after a portion of packet has been returned, the Host Controller will simply stop transmitting the packet. This should
create a data_length mismatch at the requester. If the device replies with ack_busy or ack_data_error the host should ret
the packet. If the error was caused by a FIFO underrun, the Host Controller will retry with the same response. If, however
the error was a host bus error, the response packet will be changed to resp_data_error.

13.2.8 Posted Write Error

Whether to be handled by the Physical Request controller or by the Asychronous Receive Request context, write reques
to certain address ranges (see chapter 12., “Physical Requests,”) may be acked with ack_complete before the data
actually written to system memory. Since the sending node has been notified that the action is complete, when the Ho:s
Controller cannot complete @osted writeoperation due to a host bus error the system must be notified so that software
can recover.

If an error occurs in writing the posted data packet, then the Host Controller sets the IRtIStedWriteErrbit to

indicate that an error has occurred and the write remains pending. Software can then read the source node ID and offs
address from PostedWriteAddressLo and PostedWriteAddressHi and then clear IRtStedWriteErrWhen software

clears IntEvenBostedWriteErr that write is no longer pending.

A Host Controller implementation is allowed to support any number of posted writes. However, for each posted write,
there must be an error reporting register to hold the source node ID and offset address should that posted write fail.

If the Host Controller has as many pending physical writes as it has reporting registers additional physical writes may no
be posted. Instead the Host Controller will need to return ack_pending and only return a complete indication when the
write is actually done.

Although the Host Controller may allow several pending writes, error reporting is through a single pair of software visible
registers. If multiple posted write failures have occurred, software will access them one at a time through the
PostedWriteAddress registers. When software clears IntPostedWriteEry this is a signal to the Host Controller that
software has completed reading of the current contents of PostedWriteAddressLo/Hi and that the Host Controller car
report another error by again setting IntEvieostedWriteErrand presenting a new set of values when software reads
PostedWriteAddressLo/Hi.

Copyright © 1996,1997 All rights reserved. Page 133

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

13.2.8.1 PostedWriteAddress Register

If IntEventpostedWriteEriis set, then these registers contain the 48 bits of the 1394 destination offset of the write request
that resulted in a host bus error.

31 30 29 28) 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0

Figure 13-1 — PostedWriteAddressHi register

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 12,11 10 9 8|7 6 5 4,3 2 1 0
rrrrrrrrtr—rrrrrt T °rrrrrrrr -t T "7 7T T T 17T 1T T T 7T

offsetLo

Figure 13-2 — PostedWriteAddressLo register

Table 13-1 — PostedWriteAddress register description

field name rwu | reset description

sourcelD ru | undef The busNumber and nodeNumber of the node that issued the write|request
that failed.

offsetHi ru | undef The upper 16-bits of the 1394 destination offset of the write reques} that
failed.

offsetLo ru | undef The low 32-bits of the 1394 destination offset of the write request tTat
failed.

The PostedWriteAddress register is a 64-bit register which indicates the bus and node numbers (source ID) of the node
that issued the write that failed, and the address that node attempted to access. ThePosEdnriteErrbit allows
hardware to generate an interrupt when a write fails.

The PostedWriteAddress registers point to a queue in the Host Controller. This queue is accessed by software through the
PostedWriteAddress registers. When a posted write fails, its address and node’s source ID are placed in this queue, and
the interrupt is generated. In addition, that packet is removed from the FIFO. By removing the packet from the FIFO, the
Host Controller is not blocked from performing future transactions on the 1394 and host buses.

When software reads from these registers, that entry is removed from the queue, the next address and source ID are placed
at the head of the queue, and another interrupt is generated. When the queue is empty, the Host Controller stops gener-
ating interrupts.

In order to guarantee the accuracy of the Posted Write error registers, software must perform the following algorithm
when the posted write error interrupt is encountered:

1) Read the PostedWriteAddressHi register

2) Read the PostedWriteAddressLo register
3) Clear the IntEvenRostedWriteErromit.

Page 134 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

This will guarantee that software receives all information it requires about the first posted write, allowing another inter-
rupt to be generated for future posted writes, and simplifies the Host Controller hardware. The Host Controller does nof
have to monitor that all three events occur before it moves to the next item in the queue. It may consider the informatior
read once it sees the IntEvétustedWriteErrorbit cleared to O.

13.2.8.2 Queue Rules

The Host Controller is only allowed to post as many writes as its posted write error queue is deep. For example, if the
Host Controller has a queue depth of two, it shall only return “ack_complete” on two physical writes. All other physical
writes must return either “ack_pending” or “ack_busy” event codes. Only when a previous posted write is successfully
transferred into host memory, or when a posted write that resulted in an error is removed from the queue through the
method described above by software, is the Host Controller allowed to accept more posted writes.

PostedWriteErrorHi
Visible Registers

PostedWriteErrorLo
o PostedWriteErrorHi
- PostedWriteErrorLo

Invisible Register

L PostedWriteErrorHi
— PostedWriteErrorLo

Figure 13-3 — Posted Write Error Queue

An example queue is shown in Figure 13-3. In this case, the queue is three entries deep, so this particular Host Controlle
can accept three posted writes.

Note that the Host Controller is not required to implement the posted write functionality at all. Software may enable
posted writes, but the Host Controller will never accept posted writes. It will therefore never report a posted write error,
and does not need to implement this queue.

However, posted writes represent a performance gain to the overall 1394 system. By accepting posted writes, the Ho:
Controller and 1394 nodes are able to transfer data without excessive overhead on the 1394 bus. The 1394 Open HCI do
not mandate that a certain level of posting be required, allowing individual hardware implementations to determine the
posting depth based upon system needs.

Copyright © 1996,1997 All rights reserved. Page 135

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Page 136 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

AnnexA. P1394Aenhancementsrequiredfor1394 OpenHCI

For the PHY:

a) Add a “disable” bit to the port status registers. If this bit is set, the port will not source bias current on TPA and
will not pay attention to the status of either TPA or TPB. This function is needed to allow Open HCI systems to

run only on internal nodes.
b) During the self-ID process, the maximum Phy_ID will reach 63 and will remain at that number for all additional

PHYs.
c) Connection hysteresis.
d) Arbitrated short reset.

For the link:

a) A link with the phy_ID of 63 will not transmit any packets.
b) If the LK_EVENT.ind(CYCLE_TOO_LONG) signal is raised, the sending of cycle starts must be disabled.

For the bus manager:

a) Bus manager algorithms must support 3-bit speed codes.

Copyright © 1996,1997 All rights reserved. Page 137

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Page 138 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Annex B. PClInterface

B.1 PCI Configuration Space

OpenHCI's may be on any number of buses, this appendix only discusses their designs with PCl bus. This sectior
describes the PCI requirements for IEEE 1394 Open Host Controller Interface compliant devices implemented using the
PCI bus (abbreviated as OHC's herein). Only the registers and functions unique to a PCl-based OHC (basically, PC
configuration registers) are described in this appendix. OpenHCI compliant 1394 controllers must adhere to the require
ments given in the PCI Local Bus Specification, Revision 2.1.

Typically, the PCI registers and expansion ROM are only accessed during boot-up and PCI device initialization. They are
not typically accessed during runtime by device drivers. The PCI configuration registers, taken in total, are called the PCI
configuration space. The PCI configuration space for OpenHCI is header type 0. Header type 8'h00 is the format for the
device’s configuration header region which is the first 16 dwords of PCI configuration space. Operational registers are
memory mapped into PClI memory address space and pointed to by Base_Adr_0 register in the PCI configuration spac
The operational registers are described in the body of this specification. PCI configuration space is not directly memory
or I/O mapped - it's access is system dependent. Software reset issued through an OpenHCI control register does n
affect the contents of the PCI configuration space.

B.2 Busmastering Requirements

The 1394 OpenHCI controller requires a bursting capable busmaster ability on the PCI bus. If the busmaster bit in the
command register transitions from 1 to zero (see section B.3.1), the PCI logic supporting the OpenHCI controller logic
must kill all DMA contexts.

B.3 PCI Configuration Space for 1394 OpenHCI With PCI Interface

Figure B-1 shows the PCI configuration space for a 1394 OpenHCI controller designed for PCI attachment. The format of
this configuration space must be compliant vl Local Bus Specification, Revision ZRCI Special Interest Group,

1995). Any registers not pointed to by the Base_Adr_0 (OHCI registers) pointer are vendor specific. Vendor specific
registers must not be required for correct operation of the 1394 OpenHCI controller with a 1394 OpenHCI device driver.

Figure B-1 — PCI Configuration Space

Required PCI Vendor
Configuration Space Option
0 Device ID Vendor ID 40 PCI HCI Control

4 Status Command 0 (vendor opt)
8 Class Code Rev 0 (vendor opt)
c | BisT | Har | Lat Jcache 0 (vendor opt)
10 Base Adr 0 - OHCI Regs 0 (vendor opt)
14 base 1 (vendor opt) 0 (vendor opt)
18 base 2 (vendor opt) 0 (vendor opt)
1C base 3 (vendor opt) 0 (vendor opt)
20 base 4 (vendor opt) 0 (vendor opt)
24 base 5 (vendor opt) 0 (vendor opt)
28 Cardbus CIS Ptr (opt) 0 (vendor opt)
2C | Subsystem ID ISubsys. Vendor IDJ 0 (vendor opt)
30 | Expansion ROM Base | 0 (vendor opt)
34 0 | cap_pur 0 (vendor opt)
38 0 0 (vendor opt)
3c [Max_Lat]min_cnt] int_pin | int_iine FC 0 (vendor opt)

Figure B-2 shows the resources pointed to by the various Base_Adr registers and the Expansion ROM Base Addres
register.

Copyright © 1996,1997 All rights reserved. Page 139

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

Figure B-2 — Pointers to OHCI Resources in PCI Configuration Space

10
14
18

@base_adr 0
OHCI
PCI i i
CI Configuration Space Inte.rnal @base_adr 1
Device ID Vendor ID Registers
Status Command
Class Code Rev | Vendor
BIST | Hdr | Lat [cache Option 1
Base Adr 0 - OHCI Regs _J
base Adr 1(opt) —
1 @base_adr x
5 (opt) 1

base Ad

Cardbus CIS Ptr (opt) Vendor
Subsystem ID |Subsys. Vendor 1D} Option X
Expansion ROM Base H

0 @rom_base
0 Cap_Ptr|
Max_LatIMin_GntI Int_Pin | Int_line PC |
Expansion

B.3.1 COMMAND Register

ROM \Vendor Option

This register provides coarse control over the device’s ability to generate and respond to PCI cycles. For the 1394
OpenHClI it is required that the Host Controller support both PCI bus-mastering and memory-mapping of all operational
registers into the memory address space of the PC host. Consequently, thieldietdsl BM should always be set to

1'b1 during device configuration.

Once the Host Controller starts processing DMA descriptor lists, the action of resetting eithetAfieldBM to 1'b0
will halt all PCI operations from the 1394 OHC. (Do this carefully). If the fMHl is reset to 1'b0, the Host Controller
can no longer respond to any software command addressed to it and interrupt generation is halted.

Table B-1 — COMMAND Register

cycles

Read/
Field Bits | Write |Description
0 rw Refer to PCI Local Bus Specification, Revision 2.1, for definition
Memory Space 1 rw | MEMORY SPACE
Setto 1'b1 so that the OpenHCI controller can respond to PCI memory
BusMaster 2 rw | BUS MASTER
Set to 1'b1 so that the OpenHCI controller can act as a bus-master
3-5 |rw Refer to PCI Specification, Revision 2.1, for definition
Parity Error Response rw | Parity Error Response
Set to 1'b1 if error detection on the PCI bus is desired.
7 rw Refer to PCI Specification, Revision 2.1, for definition

Page 140

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

B.3.2 STATUS Register

This register tracks the status of PCI bus-related events.

Table B-2 — STATUS Register

Read/
Field Bits | Write |Description
3-0 |r Reserved.

4 r CAPABILITIES LIST
SeePClI Power Management Specification 0.99&y be 0 for motherboard

only OHCI controllers such as those integrated into a south bridge. The default
value of this bit is 1.

- 15-5 | - Seethe PCI Local Bus Specification, Revision 2.1.

B.3.3 CLASS_CODE Register

This register identifies the basic function of the device, and a specific programming interface code for an 1394 OpenHCI-
compliant Host Controller.

Table B-3 — CLASS_CODE Register

Read/

Field Bits | Write |Description
Pl 7-0 |r PROGRAMMING INTERFACE

A constant value of 8'h10 Identifies the device being a 1394 OpenHCI Host

Controller.
SC 15-8| r SUB CLASS

A constant value of 8'h00 Identifies the device being of IEEE 1394.
BC 23- |r BASE CLASS

16 A constant value of 8'h0OC Identifies the device being a serial bus contrgller.

B.3.4 Revision_ID Register

The Revision ID must contain the vendor’s revision level of their OpenHCI silicon. It is required that each new revision
of silicon receive a new revision ID.

B.3.5 Base_Adr_0 Register

The Base_Adr_0 register specifies the base address of a contiguous memory space in the PCI memory space of the hc
This memory space is assigned to the operational registers defined in this specification. All of the operational register:

described in this document are directly mapped into this 2 kilobyte memory space. Vendor unique registers are nof
allowed within this 2 KB memory space.

Copyright © 1996,1997 All rights reserved. Page 141

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Those hardware registers that are used to implement vendor specific features are not covered by this 1394 OpenHCI Spec-
ification. Additional vendor unique address spaces may be allocated by adding additional base address registers beginning
at offset h14 in PCI configuration space.

Table B-4 — Base_Adr_0 Register

Read/
Field Bits | Write |Description
IND 0 r MEMORY SPACE INDICATOR

A constant value of 1'b0 Indicates that the operational registers of the device
are mapped into memory space of the main memory of the PC host sygtem

TP 2-1 |r This bit must be programmed consistent wittPtieLocal Bus Specification,
Revision 2.1

PM 3 r PREFETCH MEMORY
A constant value of 1'b0 Indicates that there is no support for “prefetch@ble
memory”

10-4 | rw Default value of 8'h00 and is read only Represents a maximum of 2-KB
addressing space for the OpenHCI’s operational registers

OHCI_REG_PTR 31- [rw OHCI Register Pointer
11 Specifies the upper 21 bits of the 32-bit starting base address. This repfesents
a maximum of 2-KB addressing space for the OpenHCI’s operational rggis-
ters.

B.3.6 CAP_PTR Register (opt)

This register is a pointer to a linked list of additional capabilities.

Table B-5 — CAP_PTR Register

Read/
Field Bits | Write |Description
70 |r CAP_PTR

The CAP_PTR provides an offset into the function’s PCI configuration gpace
for the location of the first item in the Capabilities Linked List. The CAP_PTR
offset is dWord aligned so the two least significant bits are always “8’h00J’ See
the PCI Power Management Specification 0.98amore details. This field
only has meaning if bit 4 in the Status register is set.

Page 142 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

B.4 PCI_HCI_Control Register

This register has 1394 OpenHCI specific control bits. Vendor options are not allowed in this register. It is reserved for
OpenHCI use only.

Table B-6 — PCI_HCI_Control Register

Read/
Field Bits | Write |Description
PCI_Global_Swap 0 rw | PCl Global Swap Bit

When this bit is b1, all quadlets read from and written to the PCl interfage are
byte swapped. PCI addresses, such as expansion ROM and PCI config
registers, are unaffected by this bit (they are not byte swapped under ahy
circumstances). The hardware reset value of this bit is bO.

This bit is not required for motherboard implementations.

31-1 | rw These are reserved bits. They must be written as zeros and read as zdros.

B.5 PCI Expansion ROM for 1394 OpenHCI

1394 OHC's on add-in adapters will clearly require PCI expansion ROMs that provide BIOS, Open Firmware, etc. to boot
and configure the card. If this ROM is non-writable and soldered to the card (not socketed), it is also permitted that the
serial ROM image that the OHC autoloads at boot up can be included in this expansion ROM (saving the cost of a seria
ROM). If this is done, the serial ROM image must be loaded into the 1394 OHC by hardware state machine without
software intervention or control. It cannot be modifiable by software or 1394 devices under any circumstances.

B.6 PCI Bus Errors

Any PCI bus error encountered must be reported to the OpenHCI operational logic for error handling. The nature of the
error response is context dependent and discussed in the body of the document. No distinction is made between tt
various PCI bus errors. Basically, only one all encompassing error signal is provided to the operational logic by the PCI
specific interface logic. It is the responsibility of the implementer to insure that PCI bus errors are reported in a timely
fashion, consistent with their overall OpenHCI implementation, that insures that the errors are associated with the engine
context, etc. that the error should be posted to.

When the “Parity Error Response” bit in the Command Register in PCl Configuration Space is enabled (see sectior
B.3.1), the PCI interface logic in the OpenHCI must assert PERR# in accordance wat@lthecal Bus Specification,
Revision 2..when data with bad parity is received by the 1394 OpenHCI controller.

Copyright © 1996,1997 All rights reserved. Page 143

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Page 144 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Annex C. Summary of Register Reset Values (Informative)

The table below is a summary of all register reset values described in this document and is provided for convenience. |
the event of a discrepancy between values shown in this table and the normative part of this document, the normative pa
of this document shall be considered correct.

All registers are shown below in address order. Refer to section 4.2, “Register Map,” for the complete list. Fields for each
register are shown along with their values following a hardware reset, a software reset and a bus reset. Refer t
section 2.1.2.3 for interpretation of reset values notation. All values for bus reset are N/A unless otherwise specified.

Table C-1 — Register Reset Summary

RESET See
Register Fields Hardware Software Bus clause(s)
Version 5.2
GUID_ROM N/A
version N/A
revision N/A
G‘UID_R()I\A—S.3
addrReset undef
rdStart 1'b0
rdData undef
M
secondLimit 3'h0
cycleLimit 13'h0
maxPhysRespRetries undef
maxATRespRetries undef
maxATReqRetries undef
BUS_MANAGER_ID 6'3F undef 6'3F
BANDWIDTH_AVAILABLE | 13'h1333 undef 13'h1333
CHANNELS_AVAILABLE_HI 32'h undef 32'h
FFFF_FFFH FFFF_FFFR
CHANNELS_AVAILABLE_LO 32'h undef 32'h
FFFF_FFFH FFFF_FFFH
[CSRReadData | under | 551 |
[CSRCompareData | under | | 551
CSRControl 5.5.1
csrDone 1'bl
csrSel undef
ConfigROMhdr 5.5.2
info_length 8’h00 N/A
crc_length 8'h00 N/A
rom_crc_value 16’h0000

Copyright © 1996,1997 All rights reserved. Page 145

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

Table C-1 — Register Reset Summary

RESET See
Register Fields Hardware Software Bus clause(s)
NIA 553
BusOptions 554
irmc undef
cmc undef
isc undef
bmc undef
pmc undef
cyc_clk_acc undef
max_rec max N/A
implemented
g undef
link_spd max link undef
speed
node_vendor_ID 24'b0 N/A
chip_ID_hi 8'b0 N/A
GUIDLo 5.5.5
chip_ID_lo 32'h0 N/A
ConfigROMmap 5.5.6
configROMaddr undef
PostedWriteAddressLo 13.2.8.1
offsetLo undef
PostedWriteAddressHi 13.2.8.1
sourcelD undef
offsetHi undef
M
VendorUnique N/A
VendorCompanyID N/A
M
noByteSwapData undef
LPS 1’'b0
postedWriteEnable undef
linkEnable 1'b0
softReset **see table 5-12
M
selfIDBufferPtr undef

Page 146

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

Table C-1 — Register Reset Summary

RESET See
Register Fields Hardware Software Bus clause(s)

SelfIDCount 11.2

selfIDError undef *

selfIDGeneration undef *

selfIDSize undef 9'b0 -> *
IRMultiChanMaskHi 104.1.1
IRMultiChanMaskLo

isoChanneM undef
IntEvent 6.1

selfIDcomplete undef 1'b0

busReset undef 1'bl

all other bits undef

M
masterintEnable 1'b0
all other bits undef

l___|
IsoXmitIntEvent 6.3.1

isoXmitN undef

IsoXmitIntMask 6.3.2
isoXmitN undef
IsoRecvIntEvent 6.4.1

isoRec\N undef

IsoRecvIntMask 6.4.2

isoRecW\N undef

FairnessControl 5.8
pri_req undef N/A

LinkControl 5.9
cycleSource undef
cycleMaster undef
cycleTimerEnable undef
rcvPhyPkt undef
rcvSelfID undef

M
iDValid 1'b0 1’b0 -> 1'b1
root 1'b0 1'bl
(conditional)

CPS 1'b0
busNumber 10’h3FF 10’h3FF
nodeNumber undef from phy|

Copyright © 1996,1997 All rights reserved.

Page 147

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

Table C-1 — Register Reset Summary

Isochronous Cycle Timer

RESET
Register Fields Hardware Software Bus
PhyControl

rdDone undef
rdAddr undef
rdData undef
rdReg 1'b0

wrReg 1'b0

regAddr undef
wrData undef

AsynchronousRequestFilterHi
AsynchronousRequestFilterLo

asynRegResourceN

cycleSeconds N/A
cycleCount N/A
cycleOffset N/A

1’'b0

1'b0

asynRegResourceAll

PhysicalRequestFilterHi
PhysicalRequestFilterLo

physReqResourceN

1'b0

1'b0

1'b0

physReqResourceAllBuses

1'b0

1'b0

PhysicalUpperBound
physUpperBoundOffset undef N/A
CommandPtr
descriptorAddress undef
z undef
AT Request ContextControl
AT Response ContextControl
run 1'b0
wake undef
dead 1'b0
active 1'b0 1'b0
spd undef
event undef

See
clause(s)

5.11

5.12

5.13.1

5.13.2

Page 148

Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Table C-1 — Register Reset Summary

RESET See
Register Fields Hardware Software Bus clause(s)

AR Request ContextControl 3.1,8.3.2

AR Response ContextControl
run 1'b0
wake undef
dead 1'b0
active 1'b0
spd undef
event undef

IT ContextControl 3.1,9.2.2
cycleMatchEnable undef
cycleMatch undef
run 1'b0
wake undef
dead 1'b0
active 1'b0
spd undef
event undef
IR ContextControl 3.1,10.3.2

bufferFill undef
isochHeader undef
cycleMatchEnable undef
multiChanMode undef
run 1'b0
wake undef
dead 1'b0
active 1'b0
spd undef
event undef

M
tag3 undef
tag2 undef
tagl undef
tag0 undef
cycleMatch undef
sync undef
copyrightDataEnable undef
channelNumber undef

Copyright © 1996,1997 All rights reserved. Page 149

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Page 150 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Annex D. Summary of Bus Reset Behavior (Informative)

This section is a summary of Open HCI bus reset behavior. In the event of a discrepancy between information presente
here and in the normative part of this document, the normative part of this document shall be considered correct.

D.1 Overview

Following a bus reset, node ID’s for nodes on the bus may have changed from the values they had been prior to the bt
reset. Since asynchronous packets include a source and destination node ID, it is imperative that paskatsneidb

ID’s do not go out on the 1394 bus. Isochronous packets do not include any node ID information and therefore must be
allowed to continue un-interrupted after a bus reset. To accomplish this behavior, several things must happen in real-tim
by the Open Host Controller when a bus reset occurs. The following sections describe bus reset behavior for each DM/

type.

D.2 Asynchronous Transmit: Request & Response

While the bus reset interrupt, IntEvdntsResetis active, the Host Controller will inhibit AT Request and AT Response
transmits and flush all packets from the AT Request & AT Response FIFO(s). The host software must wait until both AT
contexts are inactive (ContextContedtive == 0) before clearing the bus reset interrupt. Refer to sections 7.2.3.1 and
7.2.3.2 for more information.

D.3 Asynchronous Receive: Request & Response

Since all nodes are required to only transmit asynchronous packets that have node ID’s as they were assigned in the mc
recent bus reset/ Self ID process, AR Requests and AR Responses continue to be processed normally by the hardware.
assist software in determining which Request packets arrived before and after the bus reset, the Host Controller inserts
fabricatedbus reset packeh the appropriate location in the receive queue. This way, packets which arrive in the receive
buffer after the bus reset packet can be interpreted using the current node ID assignments.

Also upon detection of a bus reset the Host Controller will clear all bits in the Asynchronous Filter registetfor the
Asynchronous Request Filter ldsynRegResourceAlit. If this bit also 0, receipt of all asynchronous requests which do

not reference the first 1K of CSR config ROM will be prevented and software is responsible for subsequently enabling the
Asynchronous Filter registers as appropriate.

Refer to section 8.4.2.3 for information on the bus reset packet, and section 5.13 for information on the asynchronous
filter registers.

D.4 Isochronous Transmit

A bus reset does not affect the transmission of isochronous packets, which continue being transmitted for their assigne
channels. It is software’s responsibility to perform the necessary isochronous resource re-allocation and make an
communication to the talker's and/or receivers’ control registers.

D.5 Isochronous Receive

A bus reset does not affect the receipt of isochronous packets, which continue being received for their assigned channel
It is software’s responsibility to perform the necessary isochronous resource re-allocation and communicate as required t
the talkers and/or receivers.

Copyright © 1996,1997 All rights reserved. Page 151

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

D.6 Self ID Receive

The receipt of self ID packets is part of the bus reset process. When a bus reset occurs, and the IntEvent.busReset bit is
set, the IntEvenselfIDCompleteinterrupt is cleared. Once the Self ID phase of bus initialization has completed the
IntEventselfIDCompletes set to inform software that bus initialization self ID packets have been received. See Chapter
11.0 for further information.

D.7 Physical Requests/Responses

D.7.1 Physical Response

The Host Controller will flush all Physical Asynchronous Transmit Response packets from all asynchronous transmit
FIFQO’s. The Physical AT Response engine will resume processing incoming requests which arrive following the bus reset.

D.7.2 Physical Requests

Posted write requests, that is, write requests for which ack_complete was sent but which have not yet been processed, will
be processed normally.

All split transaction AR Requests are flushed until a bus reset boundary is detected. After the bus reset boundary, normal
physical receive transactions are resumed.

In response to a bus reset, Host Controller clears the Physical Request Filter registers and physical handling of requests
outside the first 1K of CSR config ROM is disabled. Software is responsible for subsequently enabling the Physical
Request Filter registers as appropriate. See section 5.13.2 for further information.

D.8 Control Registers

In response to a bus reset, the NoddMalid bit is cleared indicating that the Host Controller does not yet have a valid
node ID, and therefore software cannot perform asynchronous transmits. When the self ID phase of bus initialization has
completed and the new Node ID has been determined, the PHY returns status which initializesndddBliimbeand

the Host Controller sets NodelDValid at which point asynchronous transmit may continue.

A bus reset will also cause the Host Controller's Isochronous Resource Management registers to be reset. Refer to
section 5.5.1 for further information.

Page 152 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

AnnexE. IT DMA Supplement (Informative)

The OpenHCI Isochronous Transmit DMA (ITDMA) is documented in Chapter 9.0. This Annex provides supplementary
explanation and example, to aid in understanding the ITDMA. It is intended that this Annex will agree completely with
Chapter 9.0. If there is any disagreement, this Annex is faulty, and the authors will attempt to resolve the problem. In suct
cases, the information in Chapter 9.0 overrides this Annex.

E.1 IT DMA Behavior

The flowcharts given in the next two sections illustrate the behavior of the ITDMA as documented in Chapter 9.0. These
flowcharts are provided in order to help the reader visualize the end result of ITDMA operation, through a set of events
that could occur within the ITDMA. These flowcharts do not specify the ITDMA algorithm, although they should yield
the same output as that specified by Chapter 9.0. Furthermore, these flowcharts do not dictate an implementation stratec
The variables such @4 andN do not necessarily correspond to OpenHCI registers. The presence of a task on the “Link
side” flowchart or the “DMA side” flowchart does not mandate that the associated logic be implemented in any particular
part of OpenHCI. Such distinctions also do not imply anything about clock domains, signal routing, or other implementa-
tion-specific aspects of an OpenHCI product.

E.2 IT DMA Flowchart Summary

The output of the IT DMA is illustrated in this Annex using two flowcharts. One flowchart represents activity that is
likely to take place within the DMA engines of a particular OpenHCI. The other flowchart represents activity that is likely
to take place in the Link (or “Link Core”) portion of a particular OpenHCI. These two flowcharts execute simultaneously,
with no interdependencies other than those shown by the shared variables, and other shared state such as the local cy
timer or the cycle start value most recently received or sent. Note also that neither flowchart contains an exit or a stoj
condition. It is intended that both flowcharts begin execution at the same instant, and then remain in operation forever. Ir
practice, the flowcharts might be restarted after a full chip reset, or other similar OpenHCI event.

The flowcharts do not attempt to capture every possible error condition, such as a dead condition in the IT DMA. Only
the states required for ordinary IT DMA processing are shown, and the level of detail varies somewhat. In this sense
cycle loss and cycle match are considered normal IT DMA events. Bus resets are not specifically identified, but those tha
cause cycle loss will be handled by the flowchart algorithm.

Because the flowcharts do not mandate implementation details, they also do not necessarily show the most optimal way «
implementing the IT DMA. For example, the detection of a cycle loss could possibly be performed with less delay, poten-
tially giving the IT DMA more time to recover, thus improving the FIFO readiness for following cycles, and reducing the
chance of further cycle losses. The presentation of these example flowcharts does not preclude a more efficient implemel
tation, within the behavior specified in Chapter 9.0.

E.3 DMA-side IT DMA flowchart

The following flowchart shows logic for processing the DMA component of the IT DMA in a manner that (when coupled
with the Link side shown below) agrees with that specified in Chapter 9.0.

Copyright © 1996,1997 All rights reserved. Page 153

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

The DMA-side flowchart has two major components. The top half consists of a loop that synchronizes the activity of the
DMA side to the correct cycle number. This loop implements a two-cycle workahead. If the FIFO were arbitrarily large,
this algorithm would always keep two cycles worth of packets in the FIFO, in addition to the packets for any cycle
currently being transmitted. The bottom half consists of a loop for each of the IT DMA contexts. This loop processes one
cycles worth of packets, either loading them all into the FIFO, or performing skip processing for all of them.

N = current cycle # + 3 > Lost=0

Put 2 cycle end tokens in FIFO |«

Flush FIFO

Y

A
Skip=0 |«

A
>\ Lost @W Sklp =1
NO
A A
no\ (Skip == 1) OR (Last cycle start # sent / received >= (N - 2)) ’D
YES

C=0 Put cycle end token in FIFO >
A

NO
4—(C <# of IT contexts ?)W’ N++ ——(Skip ==1 ?DW’ Lost - -

YES

4

C++ ‘W(ContextControl [C] . run ==1?)

A YES
A

p—(ContextControI [C] . cycleMatchEnable == 1 ’.DW

YES

4

i+wol\ ContextControl [C] . cycleMatch == N ?)
YES

A
ContextControl [C] . cycleMatchEnable = 0

4

‘WC CommandPtr [C] . Z==0"7? }7
N

[¢]

A
(Skip==1?)
W/
A A
o~ CommandPtr [C] = skipAddress [C] CommandPtr [C] packet -> FIFO
A

CommandPtr [C] = branchAddress [C]

Figure E-1 — IT DMA DMA-Side Flowchart

Page 154 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

A key point in understanding the DMA side flowchart is that neither the top loop nor the bottom loop necessarily corre-
sponds to a single cycle of real time (although, on average, they do). For example, the top loop tries to coordinate two
cycle workahead. In most systems, the FIFO is likely to be too small for full two-cycle workahead. In fact, if the FIFO is
smaller than the largest packet, there will be times when the workahead is zero cycles. The top loop acts as a gate - in tl
rare case that the DMA really achieves two cycles of workahead, the top loop will idle the DMA until there is more work
to do. Similarly, the bottom loop may correspond to more than one cycle of real time. If, in the middle of transmitting a
cycle, a cycle loss occurs, the bottom loop does not exit. It will continue to attempt to transmit the remaining packets for
the original cycle, and will not exit until it does. This behavior agrees with Chapter 9.0, in that packets are never flushed
to compensate for a cycle loss. Any packet already in the FIFO, or even potentially in the FIFO, will be transmitted (even-
tually).

E.3.1 DMA-side top half

The top half of the DMA-side flowchart regulates the IT DMA workahead, if any. The flowchart illustrated will attempt

to maintain a two-cycle workahead. To do this, the algorithm communicates with the Link side in three ways. First, both
sides share access to the local cycle timer and the most recent cycle start packet. Second, both sides share a varia
called Lost, which is a count of the number of lost cycles that have not yet been handled. Finally, the two sides commu:
nicate through the IT FIFO. The DMA side places packets into the FIFO, and the Link side removes them. The DMA side
also places end-of-cycle tokens in the FIFO, which are removed by the Link side. Many implementations are likely to also
use an end-of-packet token. This flowchart does not show such tokens, and it does not prohibit them.

Because the DMA side wants to work two cycles ahead, when it first starts running it must hold off the Link side, so that
it can try to put two cycles worth of packets in the FIFO. The DMA side immediately places two end-of-cycle tokens into
the FIFO. The Link side will consume one end-of-cycle token per cycle, as detailed below, so these two tokens will hold
off the Link side for two cycles, while the DMA side tries to work ahead.

The DMA side keeps a private variable N, to indicate the cycle number for which it wants to load packets into the FIFO.
If the DMA side were always able to maintain two-cycle workahead, N would usually be two greater than the current
cycle number. More likely, N will vary between zero and two greater than the current cycle number, depending on how
much of the desired two-cycle workahead can actually fit into the FIFO. Because the flowchart is entered in the midst of
some cycle, and it is too late to perform any IT DMA for that cycle, N is initialized to the current cycle number, plus
three.

The DMA side also has a private variable called Skip. This variable is changed only between entries to the bottom-half
loop, and it controls whether the bottom-half loop will attempt to transmit a cycles worth of packets, or apply skip
processing to a cycles worth of packets.

The top-half loop acts as a gate to the bottom-half loop. The bottom-half can be entered for two reasons. First, the top
half can determine that the workahead is less than two cycles, because the last cycle start number sent or received
greater than or equal to N minus two. Second, the top-half will immediately enter the bottom half if it learns that there is
a lost cycle to be handled. This condition is indicated by the shared variable Lost being greater than zero. When this i
the case, the DMA side will enter the bottom half loop regardless of the current cycle number, so that skip processing cal
begin as soon as possible. Because cycles cannot be lost more often than once per cycle, it is not possible for the DM
side to achieve excess workahead due to immediately entering the bottom-half loop whenever Lost is greater than zero.

E.3.2 DMA-side bottom half

The bottom-half loop begins by initializing a private variable C to zero. The variable C will count the IT DMA context

index currently being processed. For each context, cycle match processing is applied, if needed, regardless of whether |
not a cycle loss has caused cycle skip processing. This causes the cycle match mechanism to correctly start a context ev
if the desired starting cycle is lost. In such a case, the first packet of that context will be subjected to cycle skip

Copyright © 1996,1997 All rights reserved. Page 155

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

processing, rather than being loaded into the FIFO. Within the bottom-half loop, each active context (including one just
activated due to cycle match) will either load one packet into the FIFO, or receive skip processing. [Nit: an empty cycle
might not load anything into the FIFO.]

When a packet is loaded into the FIFO, the DMA side flowchart will remain in the block “packet -> FIFO” as long as
necessary to complete loading the packet into the FIFO. If the packet is larger than the FIFO, but two-cycle workahead
had been achieved prior to this packet, the DMA side might remain in this block for about two whole cycles. During this
time, the workahead drops from two to zero, and when the end of the packet is finally loaded into the FIFO, the DMA
will immediately begin work on the next packet (same or next cycle).

When skip processing is applied, the DMA side merely replaces a context’s command pointer with the skip address of the
descriptor pointed to by the current value of the command pointer.

At the end of the bottom-half loop, the private variable N is incremented, to indicate that one more cycle has been

processed. If the cycle’'s packets were loaded into the FIFO normally, an end-of-cycle token is placed in the FIFO.

However, if skip processing was applied, no packets were loaded into the FIFO, and no end-of-cycle token is placed in the
FIFO. As described below, the Link side consumes an end-of-cycle token only for cycles that are not lost, so no token is
required when skip processing is applied.

If skip processing was applied, the DMA side atomically decrements the shared variable Lost, to indicate that one lost
cycle has been handled.

E.4 Link-side IT DMA flowchart

The following flowchart shows logic for processing the Link-side component of the IT DMA in a manner that (when
coupled with the DMA side shown above) agrees with that specified in Chapter 9.0.

Like the DMA side flowchart, the Link side flowchart keeps a private variable M to indicate what cycle number it wants
to work on next. Because the Link side begins work simultaneously with the DMA side, there will already be a cycle in
progress for which it is too late to possibly do any IT DMA work. So, the Link side initializes M to the current cycle
number plus one.

Like the DMA side, the Link side flowchart has a top half and a bottom half. The top half watches the cycle number, and
tries to keep transmission synchronized with the cycle timer. The bottom half transmits packets from the FIFO. Unlike
the DMA side, the Link side flowchart can move between the top and bottom halves several times during a single cycle’s
worth of packets. However, in the absence of cycle loss, the top and bottom halves each run once per cycle.

E.4.1 Link-side top half

The top-half has two roles. First, it watches for the cycle start event that indicates that isochronous transmission can
begin. When this happens, it sends control to the bottom half. Second, the top half detects cycle losses that occur outside
of the isochronous period. If, while waiting for a cycle start, the top half determines that a cycle loss has occutred, it wil
communicate this to the DMA side, and then wait to begin work on the following cycle.

In normal operation, the top half waits until cycle M occurs, due to the transmission or reception of the cycle start packet
for cycle M. After processing cycle M, or if cycle M is lost, the top half increments M and then begins waiting for the
next cycle. While waiting for cycle M, the top half tries to detect cycle loss. The detection algorithm is simple: If the
cycle timer rolls over twice, without the receipt or transmission of a cycle start packet, then cycle loss has occurred. There

Page 156 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

are various ways to more quickly determine that a cycle has been lost, such as the observance of a subaction gap on t
bus after the cycle timer has rolled over once. Such strategies, if compatible with Chapter 9.0, may be valuable optimiza
tions, but they are not illustrated here.

M = current cycle # + 1

y
——(Last cycle start # sent / received == M ?) VES

NO
) \
4N0<Ciycle timer rolled over twice ?)

YES
y y

Clear roll-over detect (Cycle end token at FIFO head ?}7

YES NO

y

A A
» Lost++ Remove token

Y
Yers{' 1s0 period ?)

YES
YES

y
(Have bus ?)yes={(FIFO empty ?)
y

NO NO
4

Iso arbitrate Transmit packet

y /
~o\ Cycle timer rolled over twice ?) (Under@m
YES

YES

A
Delete remainder of packet (if any) from FIFO

Figure E-2 — IT DMA Link-Side Flowchart

Copyright © 1996,1997 All rights reserved. Page 157

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

E.4.2 Link-side bottom half

The bottom half of the Link-side flowchart attempts to remove packets from the FIFO and transmit them on the 1394 bus.
The bottom half will process at most one cycle’s worth of packets. However, if cycle loss occurs during the bottom half,
it will indicate this to the DMA side and then return to the top half. The remainder (if any) of the cycle that was being
transmitted will be transmitted by a future visit to the bottom half.

The bottom half begins by checking for an end-of-cycle token on the output of the FIFO. If this token is present, then the
bottom half has finished work on transmitting one (possibly empty) cycle. The token is removed, M is incremented, and
the top half now waits for the next cycle.

If the bottom of the FIFO does not contain an end-of-cycle token, then the bottom half of the Link side flowchart will
attempt to transmit packets on the 1394 bus until it does reach an end-of-cycle token. When attempting to transmit
packets, the bottom half first checks to see if the 1394 bus is in an isochronous period. When the bottom half is first
entered, due to the sending or reception of cycle start packet M, the bus should always be in an isochronous period.
However, after some time in the bottom half, the isochronous period may have ended due to a cycle loss. The bottom half
checks this before each packet, and if it finds that the bus is not in an isochronous period, it indicates a cycle loss and
exits to the top half.

If the bottom half has a packet to transmit, and the 1394 bus is in an isochronous period, the bottom half will then attempt
to arbitrate for the 1394 bus. In most silicon implementations, arbitration may have begun earlier, but for the purpose of
this flowchart, this is the point at which arbitration actually matters, so it is shown here. Note that if we have already sent
at least one packet in the bottom half, then we should already have won arbitration at this point.

If we have not yet won arbitration, the bottom half will loop tightly until we do win arbitration, or a cycle loss is detected.

If the cycle timer rolls over twice while we attempt to arbitrate, or if we receive any other indication that the isochronous

period has ended, then we indicate a cycle loss and exit the bottom half. As with the top half, there may be ways to
optimize the detection of a cycle loss, in order to more rapidly signal the DMA side that recovery is required. These

methods are not illustrated here, but as long as they comply with Chapter 9.0, they are not precluded.

If the bottom half does win arbitration, it must then immediately transmit an isochronous packet. Until this time (while
arbitrating) it did not matter if the FIFO was empty (due to the DMA having fallen behind). In such a case, the DMA may
have caught up and loaded something into the FIFO, in which case transmission can proceed. However, if the FIFO is
empty after arbitration is won, then a cycle loss is indicated.

After winning arbitration without detecting a cycle loss and with some data in the FIFO, the bottom half can then begin
transmitting a packet on the bus. This process continues until a single packet has been transmitted. If, during transmission,
the FIFO underflows, the Link side will clean up the FIFO by eating any leftover parts of the packet that underflowed (but
not any following packets). If an end-of-cycle token does not follow immediately, then a cycle loss will be indicated.
However, an underflow on the last packet of a cycle does not cause a cycle loss (although the packet itself may be lost).

Finally, after transmitting a packet, with or without underflow, the bottom half checks to see if the cycle has been
completed, by looking for an end-of-cycle token at the bottom of the FIFO. If the cycle is complete, the bottom half incre-
ments M and returns to the top half. If the cycle is not complete, the bottom half will attempt to transmit the next packet
for the current cycle. In this case, if an underflow occurred and the bus was lost, a cycle loss will then be indicated, and
the transmission of the next packet will be delayed until the following cycle, as specified in Chapter 9.0.

Page 158 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Annex F. Sample IT DMA Controller Implementation (Informative)

The OpenHCI IT DMA controller is documented in Chapter 9.0. This Annex describes a sapiplaentatiorof the IT
DMA controller. It is intended to faithfully implement the behaviors specified in Chapter 9.0. If there is any disagreement
the information in Chapter 9.0 overrides this Annex.

The basic idea behind this IT DMA implementation is that the DMA side keeps track of how far “ahead” or “behind” it
is from the link side. When thehead_ctris positive the DMA side is working ahead of the link. Whenahead_ ctris

negative the DMA side is catching up. The DMA sitlecle_countis calculated by adding thehead_ctrvalue to a

version of the link sideycle_counthat has been exported to the DMA side. This allows the IT DMA controller to work
reliably after a cycle inconsistent event. Cyclelnconsistent events do not affect contexts that don't care about the cycle
number. There is no need to shutdown all contexts when a cyclelnconsistent condition is detected. Software only needs 1
stop/reconfigure/restart contexts that care about the cycle number.

Ahead Counter

_ +
- | »l
(-4, 1034) (-3, 1035) (-2, 1036) (-1, 1037) o, 1038) (1, 1039) (2, 1040) (3, 1041)
| | | | | |
[[[[[[[
1034 1035 1036 1037 1038 1039 1040 1041

Cycle Timer

Figure F-1 — DMA Cycle Matching Continuum

Copyright © 1996,1997 All rights reserved. Page 159

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

This IT DMA controller implementation also maintains a lost courltest (ctr) that indicates the number of cycle to skip
and the logic needed to calculate a current cycle count value for cycle matching purposes.

Link side DMA side
clock domain clock domain
it_skipped
|
| Y
cycle_lost | - lost count
| p " Lost Counter |
| it_traversed
I
| Y
cycle_sync | + ahead count
Link | B ~ Ahead Counter |
I
I
o Y
cycle_timer | matching timestamp
| P Cycle Matching Arithmetic |
I
|

Figure F-2 — IT DMA Controller counters and cycle matching logic
The following pseudo-code is included to describe how the counters can be implemented.

always @(posedge dma_clk or negedge reset_z)
if(reset_z)
ahead_ctr <= #1 0;
else if(it_traverse_done && !cycle_sync && (ahead_ctr '= AHEAD_MAX))
ahead_ctr <= #1 ahead_ctr + 1;
else if(lit_traverse_done && cycle_sync && (ahead_ctr '= AHEAD_MIN))
ahead_ctr <= #1 ahead_ctr - 1;
always @(posedge dma_clk or negedge reset_z)
if(reset_z)
lost_ctr <= #1 0;
else if(lit_skipped && lost_cycle && (lost_ctr I= LOST_MAX))
lost_ctr <= #1 lost_ctr + 1;
else if(it_skipped && !'lost_cycle && (lost_ctr I= LOST_MIN))
lost_ctr <= #1 lost_ctr - 1;

/I signed arithmetic assumed here
match_cycle = (cycle_count + ahead_ctr) % 8000;

it_skipped = it_traverse_done && skipping_this_cycle

At start-up time, the IT DMA controller “primes the pump” by writing two “isochronous end” tokens into the isochronous
transmit FIFO. This causes tladead_ctrto begin with a value of 2. When the followigcle syncevent is received
from the link-side theahead_ctris decremented. The IT DMA controller attempts to service the IT contexts when

Page 160 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

ahead_ctris less than 2 or thiest_ctris greater than 0. So the IT DMA controller will service the IT contexts and then
write an isochronous end token (when not skipping) into the FIFO, causiadpé¢lad_ctrto increment back to 2. The IT
DMA controller is then stalled until the negycle syncwr cycle_lostevent.

The IT DMA controller uses a calculategcle_countfor matching purposes. It compares the cycleMatch value to the
link’s cycle_count plus thahead_ctrvalue (modulo 8000). Some care must be taken to synchronize the updates to the
ahead_ctrwith the changes to theycle_countThis is actually not too difficult since tlogcle_synevent pulse originates

from the link, too. The Host Controller designer just needs to be careful about balancing the synchronization of the
cycle_countand cycle_syncsignals. Thecycle_lostsignal needs to be synchronized, too; but it isn’t critical that it be
balanced with the others. The pseudo-code shown above assurogsl¢héostis translated into single clock cycle pulse

on the dma_clk.

If the DMA side is unable to service the IT contexts for a span of several 1394 cyclgsetiée ctrwill continue to
decrement and become a negative number. At the same time the link side will geydeatiostevents and thiost_ctr

will increment. When the DMA side is able to continue it will iteratively traverse the IT contexts performing skip
processing untilost_ctr equals 0. It can then start stuffing packets into the isochronous transmit FIF@hesatdl_ctr
equals 2.

(re)start

initialize
FIFO

ahead < 2?

skip process
IT contexts IT contexts
generate write
it_skipped iso-end token
generate

it_traversed

Figure F-3 — IT DMA Flowchart

Copyright © 1996,1997 All rights reserved. Page 161

1394 Open Host Controller Interface Specification/Draft 0.97 Printed 9/19/97

Process IT contexts

=0

i < #Contexts?
Y

matchEnable = 0

Y

process
descriptor

Y

cmdptrli] =
branchAddr

Figure F-4 — Process IT Contexts Flowchart

Page 162 Copyright © 1996,1997 All rights reserved.

1394 Open Host Controller Interface Specification/Draft 0.97

Printed 9/19/97

Skip IT contexts

o D

Exit

matchEnable = 0

cmdptrfi] =
skipAddr

Figure F-5 — Skip IT Contexts Flowchart

Copyright © 1996,1997 All rights reserved.

Page 163

