Implementing to the new

Management Central Java Framework

VeeFiveAreOneEmZero
Final Version

Document last changed: June27,2001 11:19am

Preface

Graphical Client .
Endpoint Systems

“ Managing multiple systems as easy Cental System ;
- F

T

as managing a single system.” =

Management Central Documentation \ I

This Management Central How To... document I
is a bridge between the code you need to write
for your gpplication and the JavaDoc provided by

the Management Centra Java Framework. To assst in your application development, you should first
find the documentation listed below and take aquick look at it. Next, read this document to get ahigh

level understanding of whet is available for your gpplication development with tips on design and

implementation. When you are finished reading this book, refer to the JavaDoc for the details about the

classes and interfaces discussed in this book that will gpply to your application.

Management Central Web Site:
http://www.as400.ibm.com/sftsol/MgmtCentral .htm

Java Class Documentation (JavaDoc):

AS/400 Toolbox for Java
http://www-1.ibm.com/servers/eserver/iseries/tool box/

What This How To Book Contains

This book is organized with three different intended readers in mind with different points of view:
* Application Desgner
e GUI Developer
* Application Developer

The Application Designer is the person who understands the “big picture’ of the project, the customer
vaue, and the functions needed to be performed. The gpplication designer influences the user interface
design, performs object oriented andysis and design, and determines the structure and flow of the
goplication.

The Application Developer uses the design from the gpplication designer and implements the design.
Some design decisions will need to be made during this process, but the application designer should be
made aware of any sgnificant changes. The application developer primarily devel ops code that runs on
the AS/400 system, but also needs to provide some interfaces and functions for the GUI Developer.

The GUI Developer dso uses the design from the gpplication designer and implements the design.
Some design decisions will need to be made during this process, but usudly the User Interface Designer
will influence the overdl design to provide the best user experience to the cusomer. Any significant
changes should be reviewed by the application designer. The GUI developer primarily develops code
that runs on the client, but aso needs to provide good requirements and feedback to the gpplication
developer.

Each mgor section or chapter contains the follow information:
* Overview - abrief description of the topic being discussed
* |Interfaces and Flows - Application Designer, Application Developer and GUI Developer points
of view
* Terms, Classes, and Interfaces - atable of Javaterms, classes, and interfaces that are used
* Scenarios - commonly used development scenarios with code snippets
* Hintsand Tips - technique hints and tips when designing and developing your gpplication
* Program Examples - full source code examples with comments

Conventions Used in this Cookbook

This book uses the following typographica conventions:

This style.... Isused for...

Fi xed width font Code elements such as classes and methods.
Fi xed width font underline Emphasis for code dements.

Bold Management Central Classes and Interfaces.

Underlined Management Central Methods.

Table of Contents

INTRODUCTION ...
DESIGNING A DISTRIBUTED APPLICATION ...,

O ERVIEW ot vttt et e ettt e et e e e et e et e e e e e e e e e e
KNOW YOUR MANAGEMENT CENTRAL OBJIECTS - vttt et et e et et et e e e e e e e e e
TERMS, CLASSES, AND INTERFACES o\ttt ettt ettt et e e ettt et ettt

MANAGEMENT CENTRAL DEFINITIONS ...
(/= =/ =Y

INTERFACE AND FLOW o\ttt e e et e e e e e e e e
Application Designer

Application Developer

Scenario 1: Defining a new class that contains all your application data
Scenario 2: Defining your Application’s Definition
Scenario 3: Advanced Features

MANAGEMENT CENTRAL DISTRIBUTED TASKS
LY/ =/ =Y

INTERFACES AND FFLOWS oottt e e e et e e et ettt
Application Designer

Application Developer

Scenario 2: Create a new class that extends the McDistributedTaskDescriptor class
Scenario 3: Create a new class that extends the McEndpointTaskDescriptor class

Scenario 4: Create a new class that implements the McExecutable interface
GUI Developer

Scenario 1: Create and Execute an instance of your new Application Task
Scenario 2: Get a list of your Application Task Instances
Scenario 3: Get asynchronous status and results of an Activity

Scenario 4: Get asynchronous status updates for Lists of Tasks
Scenario 5: Delete an Application Task Instance

Scenario 6: Change an Application Task Instance
Scenario 7: Schedule your task

Scenario 8: Retrieve your scheduled tasks

TERMS, CLASSES, AND INTERFACES . .ot i ittt et et et e e e e e e e e e et 36

HINTS AND TIPS ottt t ettt ettt ettt e e ettt e ettt et e ettt e 38
MANAGEMENT CENTRAL DISTRIBUTED SERVICES 38
O RV EW ittt ettt ettt ittt e e et e e e e e 39
INTERFACES AND FLOWS .ottt e e et e e et e et e et e e 40
Application Designer 40
Application Developer 41
Scenario 1: Create a new class that contains all your applicationdata 42
Scenario 2: Create a new class that extends the McDistributedServiceDescriptor class 42
Scenario 3: Create a new class that extends the McEndpointServiceDescriptor class 43
Scenario 4: Create a new class that implements the McSwitchable interface 44
UL DeVeIOper 45
Scenario 1: Creating Instances of your new Application Service, 46
Scenario 2: Turn On/Off your Application Service Instance; receive Status and Results 46
Scenario 3: Get a list of your Application Service Instances 47
Scenario 4: Get asynchronous status and results of a Service 47
Scenario 5: Get asynchronous status updates for Lists of Services, 49
Scenario 6: Delete an Application Service Instance 50
Scenario 7: Change an Application Service Instance |, 50
TERMS, CLASSES, AND INTERFACES .\ ittt ittt e e e e e et e e e e e e e e 51
HINTS AND TIPS ottt ettt et et e e e e e e e e e e et e e e e 53
ADVANCED FEATURES 54
Scenario 1: Receiving connection updates 54
Scenario 2: Private DesCriptors e 55
Scenario 3: Public Descriptor Sharing 55

Scenario 4: Auto Increment 56

Scenario 5: CalegONeS . . .ttt 57
Scenario 6: Logging activity events 58
@ W 0 1 Yo 1 61
QUERY IMANAGER .+« v vttt ettt ettt ettt e e e e e e e e e e e e et 63
MANAGEMENT CENTRAL DISTRIBUTED COMMAND CALL
APPLICATION L 65
L Y 65
INTERFACES AND FLOWS L\ttt e ettt 65
Application Designer 65
GUIDRVEIODET 66
Scenario 1: Create and Execute a Distributed Command Call Task 66
Scenario 2: Get list of Distributed Command Call Tasks 67
Scenario 3: Delete a Distributed Command Call Task _ i, 67
Scenario 4: Change a Distributed Command Call Task 68
Scenario 5: Get asynchronous status and results of a Task 68

TERMS, CLASSES, AND INTERFACES . .ot i ittt et et et e e e e e e e e e et 70

P ROGRAMMING B XAMPLES .ttt ettt ittt ettt e et e e et ettt ettt 72
MANAGEMENT CENTRAL DISTRIBUTED API APPLICATION 74
O RV EW ittt ettt ettt ittt e e et e e e e e 74
INTERFACES AND FLOWS .ottt e e et e e et e et e et e e 74
Application Designer 74
U DBVIODEr 74
Scenario 1: Create and Execute a Distributed API Application Task 75
Scenario 2: Get a list of Distributed API Application Tasks 77

Scenario 4: Change a Distributed API Task 78
TERMS, CLASSES, AND INTERFACES .. ittt ittt e e et et e e e e e e e e e 79
PROGRAMMING EXAMPLES . . ittt ettt et et e et e e e e et e et ettt 81
A DVANCED FEATURES & ittt ittt ettt ettt e et e ettt et e e e e 82
UT LI TIES o 83
HANDLING EXCEPTIONS . ettt ettt et et e e et e et e et e e et et et ettt 83
TRACING MESSAGES ottt ittt ittt et ittt ettt ettt et et ettt e et et et 83
SERVICE LOG ittt e e 85
A DDITIONAL UTILITIES &t ittt ettt ettt e ettt ettt e e ettt e ettt et et e, 86

AS/A00 DEPLOYMENT oo 86

Introduction

If you are new to Management Centrd, here are a some basic principles, behaviors, and a brief history
of Management Centrd.

Principles of Management Centrd:
* Make the management of multiple systems as easy as managing asingle sysem
* Provide this management capability in the base AS/400 operating system
* Provide an easy-to-use graphica user interface to management functions

Management Centrd Application behaviors:
* Asynchronous
* Unattended
e Scheduled
* Multiple System
e Short or Long running

A little bit of higtory ...

Management Centrd is a suite of integrated systems management goplications that began to appear in
V4R3 with Client Access for Windows (5763-XD1) V3R2. When indaling Client Accessfor
Windows, you can select to perform a Custom ingtdlation and optiondly choose to ingal Management
Centrd dong with Operations Navigator.

With V4R3, Management Central provided the base for multiple syssem management with the
introduction of the Management Centrd C++ infrastructure. This infrastructure provided a horizonta
architectura approach to software development when devel oping AS/400 system management
solutions. This horizontal gpproach separates the user interface from the transport mechanism, the
gpplication from common service components, etc. AS/400 Endpoint Systems, AS/400 System
Groups, Event Log, and a Monitor gpplication provided an intuitive graphicd interface to red-time
performance information with Smple automation and noatification for management of multiple AS'400
sysems.

In V4R4, Management Central added a number of new integrated graphica gpplicationsto hep
manage AS400 systems:. Inventory Collection, Software Fix(PTF) Management, Remote Operations,
Package and Object Digtribution, and Performance Collection Services. This extended the
Management Centrd C++ horizonta infrastructure with additional common services like Bulk Data
Transfer, Discovery, and Collection Services. Management Centra is now an integrated part of
AS400 Operations Navigator in V4AR4. The Operations Navigator tree hierarchy has been enhanced
to include Task Activity, Scheduled Tasks, Definitions, Monitors, AS/400 Endpoint Systems, and
AS/400 System Groups.

InV5R1, Management Central continues to extend its AS/400 management control with additional
goplications like enhancing historical Monitor capahilities, Product and Fix Packager, Job Resource
Monitors, Message Monitors, User Profile Management, and System Vaue Management. With dl the
interest in Management Centra, areas within IBM and externd to IBM are looking at using
Management Centra to implement their management applications and solutions. For this reason, we
have aso developed the Management Central Java Framework(jMC).

The Management Centra Java Framework is an extendible and pluggable infrastructure for areas within
IBM and external system management solution partners to use to their advantage when developing their
auite of applications. Areaswithin IBM such as DASD Management, Backup Recovery and Media

Horizontal Architectual Design

User Interfaces

Transport

Applications

Distributed Services
Transport

Local Services

Application Agents

Services (BRMYS), and Logicd Partitioning (LPAR) are using the JMC to build functions that balance
disk drives, backup and restore data, and build system groups based on hardware configurations.

This document helpsin the development of new such applications that want or need to have the
behaviors and capabilities that the]MC offers.

Designing a Distributed Application

Overview

This chapter gives you an overview and alittle ingght on what is available when designing your
gpplication. The Management Centrd Java Framework provides the building blocks and toolsto assst
you in the congtruction of your management gpplications. There are a number of different concepts that
you will want to take alook at to seeif your application can benefit from them. Some management
application will use dl these concepts while otherswill only use acouple. Y ou should take alook at al
of them to see what best fits your needs. At ahigh leve these concepts include:

* Ddfinitions

e Activities
e Tasks
e Savices

* Destriptors
e Definition, Task, and Service
* Public and Private

* Viewsaxd Lig Views

Definitions dlow you to store information persstently on the Central System to be used or reused at a
later time. Once stored on the Central System, it can be optionally viewed, changed, removed, and
shared by dl the operators and adminigtrator connecting to that Centrd System. The Definition will
remain on the Central System, even across system IPL's, until it isexplicitly removed. A Package
Definition is one example of a Definition. The Package Definition is used in an existing MC gpplication
that distributes packages of files or AS/400 objects to multiple systems. The Package Definition
contains alist of AS400 objects, files, folders or libraries which are grouped together for distribution.
The operator can add or remove files to the package definition and store it persistently on the central
system. Once the operator thinks the package contains the right files, they can then make arequest to
distribute the package to one or more System Groups or Endpoint Systems. This distribution request
would then take the information from the package definition and create a new activity called a Task.

Activities are operations that have one or more of the following characteritics: can be short or long
running, asynchronous, unattended, scheduled, and can run on multiple systems. There are two types of
activities: Tasks and Services. Parameters and properties about how atask or service should run may
come from a definition, or can be retrieved from an intuitive user interface (e.g. property pages, wizard,
or didogs). The definition may be a placeholder of information before the task or service needsto be
created or started.

Tasks have dl the characterigtics of an activity but run only a sngle time to completion and finish with
someformof status(i.e. Completed Successfully or Failed). When atask isinitiated, the client will pass
the request for the operation to occur to the Centra System. The Centrd System will then take the
request and fan it out, or broadcast it, to al the Endpoint Systems that are supposed to performthe

activity. After the request completes on the Endpoint System, status and results flow back to the
Centra System whereit is stored. Once the task request has been delivered to the Central System, the
client can disconnect from the Central System. At alater date or time, the client can reconnect to the
Centrd System and view the status and results for the task. The System Va ues Compare-and-Update
function is an example of atask. With thistask, a syssem administrator is able to update any number of
AS400 System Vaues, on any number of endpoint systems based on asingle modd system. The
System Vaues to be changed and the endpoint systems on which the compare and update should occur
is stored as a definition on the central system. Whenever the administrator wishes to execute the
compare and update, atask can be created from the stored definition, and executed on the endpoints.

Sarvices, like tasks, have dl the characteristics of an activity, but unlike tasks, are turned on and run
indefinitely until turned off. When you use Services, you start them and stop them and something
meaningful happensin between. Unlike tasks, a service can be run multiple times, where each time the
sarvice isturned on and turned off. A performance monitor is an example of a Service. If you writea
Service to monitor CPU percentage, you would start the monitor, graph the data being monitored, and
then stop the monitor when you no longer want to graph the data. A trace or collection facility would
be another example where you intend to turn the function on, have something meaningful happen, and
then turn it off with the ability to turn it on and off whenever necessary.

Know Your Management Central Objects

Within the Management Central Java Framework there are severa categories of objects you'll need to
become familiar with in order to implement your own definition or activity. Some classes from each
category were brushed upon in the preceding section; they and others will be classified and described
here.

There are three main categories to be concerned with when dedling with the jMC. Thefirg, cdassfied as
the Action, isthe real mest of the activity. It's the server Sde code that provides the behavior and
actions that define the gpplication. It resides on the endpoint system, and is the workhorse that performs
the application' s goas on each individud system. For instance, in the Distributed Command Call
gpplication supplied by the j]MC, M cEndpCommandAction isthe class that actualy providesthe
mechanism to execute or cancd the command on each endpoint syslem. When implementing your own
activity, the Application Developer implements the M cActionl fc and either the M cSwitchable or

M cExecutable interfaces. These interfaces will be explained in detail in their respective sections, but in
generd, these classes provide the interface to start and stop the activities. The McSwitchable interface
defines methods on and off that alow the user to start a service, alow it to run aslong as they wish, and
then end it when they are ready. The McExecutable interface defines methods execute and cancedl,
which alow auser to start atask and let it run to completion, or cancel it in mid-execution, if they
choose.

The second category of Objectsin the JMC, and the most important for the GUI programmer, isthe
View. Views provide a bridge between the graphica client and the server-side gpplication. By creating
and maintaining a reference to a View, many of the complexitiesinvolved with maintaining aremote
reference to the server are abstracted from the GUI programmer. For instance, the View handles dl
connection details with the Centrd System. The AS/400 that the user has specified as the central
system is stored within Operations Navigator, and upon congtruction of any View object, thisdatais
retrieved, and used to connect to the system. The interfaces that exist on the View objects are there to
propagate data from the client to the server, and to maintain the integrity of that data; that is, when data
is changed on the client, that change must be sent to the server to ensure the endpoint action is executed
correctly. They, when paired with a descriptor, give you access to create, change, and delete tasks and
services, and provide listener actions to attach, detach, and be notified when eements change. Thelist
view bridges dl the interfaces and methods that the GUI developer needs to manipulate lists of
elements. It givesyou accessto get ligts of definition, task, and service views, and dso ligener actions
to attach, detach, and be notified when e ements are added, changed, or removed from the list.

Views come in amultitude of flavors, but at the topmost level resdes the interface dl Views must
implement, M cM anageableViewl fc. Key methods from thisinterface are:

addManageabl () Allowsthe JMC to manage the data associated with this View on the
Centrd Site. “Management” conssts of (among other things) caching the
datainto memory, persstently storing it in a database, updating created
and changed dates, and distributing the data to the endpoint systems when
instructed to do so.

changeManageable() | Updatesthe state of a presently managed object. If, after caling

addM anageablg(), the data stored within the View is changed, the jMC
on the Centrd Site must be updated with the changed data. This method
provides an interface to notify the j]MC of the change.

getManageablg() Allowsfor retrieva of managed objects from the Centra Site into the
View object. Techniques for selecting which managed objects should be
returned will be discussed in depth in alater section.
removeManageable() | Once amanaged object is no longer needed (because the associated
action has completed, for instance), this method must be called on the
object to dlow the jMc to clean up any data associated with the managed
object.

In addition, class M cM anageablel istView exists to manage alist of Views. It dlowsthe user to
retrieve an entire list of qualifying View objectswith asingle cdl to the Server. Each View in thelist can
then be managed independently or as part of the LisView. Key methods from
McManagegbleListView are:

getManageableViews() Returnsalig of quaifying View objects from the server.
Theligt of Viewsis based on criteria you specify.

removeManagesblel ist() Removes managesbility of each View that’s part of thislist
from the server. The jMC will no longer manage any of the
elements.

It'simportant to note that none of the specific details behind View objects need be known by the GUI
developer. That is, you don't need to know how to manage objects within the Management Centra
Java Framework; rather, you smply need to tell the Framework which objects to manage.

Thethird crucid category of objectsin the jMC isthe actud managed object. A managed object is
technicaly any object implementing the McManageable interface, but more specificaly, a category of
objects called Descriptors, provided by the jMC, has aready extended the McManagesble interface,
The Descriptor is bascdly the definition part of the activity. It contains the system group on which to
digtribute the activity, aswell as the information about how and where to perform the activity. This
descriptor must be created on the client, usualy by gethering information from the user, and then placed
within aView object. When addManageable is caled on the View, the Descriptor is passed dong to
the Central System, and, based on data within the Descriptor, the Action can then be performed.

Digtributed descriptors, which are created on the client, are used to store data about how the activity
should behave. They supply system groups, and interfaces to create the specific endpoint data.
Endpoint descriptors, which are created on each endpoint system, are used to direct the specific activity
that should be performed. These descriptors store the class name of the action class (the class
implementing execute and cancel for Tasks, or on and off for Services), and the application attributes,
or data, that the action will need.

Animportant detail that is abstracted from the gpplication developer is the distributed nature of activities
within thejMC. When the descriptor is crested on the client, a system group is defined withinit. Then,
when the View object is created, it sends the descriptor to the central system (the centrd systemiis
retrieved from Operations Navigator - adetal that will be explained in more depth later) where
information about the activity can be managed. When you tell your task to exeute, or turn your service
on, theJMC handles dl communication details to distribute and start the activity on the endpoint
sysems. Similarly, the endpoints maintain areference to centrd system, and the central system
maintains a reference to the client, and therefore can propagate status and results about the endpoint
activity back to the client. (See the figure on the following page for details).

Central System Objects: Descriptor
“When you call an activation method on your View (on or off for Services, or
execute or cancel for Tasks) the Descriptor information 15 retrieved from
persistence, and sent to each Endpoint Systerm along with the request.
Updates, such as results and status of your activity

on each Endpoint System are sent back to the client. 2

Endpoint Sy stem Objects: Descriptor, Action

Client Objects: View, Descriptor Each Endpoint receives the Descriptor from the
Through your custormn UL instantiate a View Central Bystern, which includes information about
object containing a Descriptor. This where to locate your Action class. The Endpoint
Descriptor will be passed to the Central instantiates the Action class and inv ckes the ‘ -
Systermto be managed. requested method. Updates, such as status

and results of your activity on this Endpoint 3

Systern, are sent back to the Central Systemn.

Figure: Objects and actions within the Management Central Java Framework.

“When you call methods on your View object, the jMC interacts with the Central System to fulfill the request. Ifthe
request applies to the Endpomt Systemns, as it would if, for instance, you asked to start a service, the Central System
sends requests to each Endpoint Systern on your behalf Updates from each request flow back to the client. While the
Descriptor Hlows trom client to Central Systermn to Endp oint Systerns, othar Objects have their appointed place.

In designing your gpplication, you' Il most likely want to extend one of two distributed descriptor
implementations, M cDistributedTaskDescriptor or M cDistributedServiceDescriptor, and one of
two endpoint descriptor implementations, M cEndpoint Task Descriptor or

M cEndpoint ServiceDescriptor.

Terms, Classes, and Interfaces

Common Management Centra Java classes and interfaces that you need to be familiar with when
working with Definitions, Tasks, and Services.

Thing Type What todo Purpose
with it
McManageableView Class Use Views help bridge the client portion of your

application to the Management Central Java
Framework, making programming easier for the
developer. They provide the interfaces to manage
your activities on the endpoint.

McManageableListView Class Use List Views provide you with away to retrieve
multiple Views, using asingle call to the server.

Thisretrieval isbased on criteriayou set up with
objects called selection criteria
McManageableSelectionCriteria | Class Use Use this classin conjunction with
McManageableListView to specify the type of
manageables to retrieve. The selection criteria
allowsyou to specify Owner, Type, Category,

Sharing, etc.

M cDistributedDescriptor Class Extend You'll extend either the Task or Service subclass
of McDistributedDescritptor.

M cEndpointDescriptor Class Extend You'll extend either the Task or Service subclass
of McEndpointDescriptor

McActionlfc Interface | Implement Thisinterface defines methods that must be

implemented by your Action class. They allow
the jMCto associate an instance of your
Descriptor with your activity.

MCcActivitylfc Interface | Use Thisisthe highest level interface that all
distributed activities must support. It provides
methods necessary for the jMCto manage your
activity. Increating your activity, you'll extend an
implementation of McActivitylfc.

McExecutable Interface | Implement Thisinterface defines the methods that you may
call on adistributed task. Useit when you want
to begin the execution of atask or to cancel an
executing task.

McSwitchable Interface | Implement Thisinterface defines the methods that you may
call on adistributed service. Useit whenyou
want to start (turn on) a service or to stop (turn
off) arunning service.

In addition to what' s available from the Management Central Java Framework, the AS/400 Toolbox
for Java will play akey role in helping you develop your activity. For accessing everything from
commands and programs, to data queues and user spaces, or job logs and message queues, the classes
provided by the Toolbox can help your client or server code access objects specific to the AS400
environment. Many of the examples in this document make use of the Toolbox, and a URL to ther
JavaDoc has been provided in the preface of this document.

Management Central Definitions

Overview

In this chapter, you will learn how to build your own application
gpecific Definitions using the Management Centrd Java
Framework. Definitions alow your application to store
commonly used information on the Centra System that you can
share between users.

Deﬁn;tion
. Store |

Graphical Client Central System

With V4R4, Management Centrd ddivered two types of Definitions: Command and Package. Asyou
can see from the AS/400 Operations Navigator window, thereis a container caled Definitions within
Management Central tha gpplications

can plug their own definition containers "‘“5 ""“'ais "a”'“"

. e File Edt “iew UOphons Help

into. In the case of command definitions,

. .]| el M L N | 0 mitutes old
gtoring a command definition on the centra | cBn!m Sl l_] SlE|o| — :
yatem: Bchasfdd | Definitions: Command Dwner: Al
Syam dlovvs yOU to g’]ae Comm0n|y Uﬁj EI@ tdanagement Central [Rchasfdd) [« || Definition | Description | o
or complex commands with other users. T Task Activiy 8 cpuioad diive cpu
. e e . @ Soheduled Tasks Create Library GSH2
Depending on the definition sharing vaue, [Definitions B Delete Library GSH2 =
Command ioload drive cpu

multiple users can sdlect the command
definition at any time, modify it, and then

B ivhg ha

Laural Test 2 dsplibl
PR PN PR) Aermlib e x
hd| 3

use and reuse the information to create a -0 AS/400 System Groups
Task or Service and either run it [A et T | Z
immediately or scheduleittoruna a
Gereral | Options | Shaing | later time.
Name: ICleate Library G5H2 .) . .
The information stored in the definition
pescrpton ! is up to the application designer. In the
—_— smple case of acommand definition,
pe— | we store the name, description,
command, and afew other options
related to running a command on an
AS/400. When implementing
definitions usng the Management
-] Centrd Java Framework, many of the
Check Syntax Previous Commends... | attributes necessary for the definition,
such as Name, Description, Owner and
Sharing, have dready been
implemented by the jMC, and therefore
Ok | Coned heb || are inherently free to the gpplication

developer.

Interface and Flow

Application Designer pesrpon

As the gpplication designer for the new definition, you need to e

determine what information needs to be saved with your definition. s

When you extend the M cDefinition dass, you automatically get poveiotio S
Name, Description, Owner, and Sharing attributes along with other 1 getCommand
advanced features. In the case of this command definition example, ="

you need to create a class to contain the command data member with | secommans
getter and setter methods and a class to represent your definition.

This data class (referred to as "application attributes') should be contained within your definition class.
In thisway, the J]MC can easly manage the data associated with your new definition.

For the more advanced users, the gpplication developer will also need to look at the default handling
provided with the M cDefault DefinitionContainer and M cDefaultDefinitionPer sistence classes
and interfaces. If the definition store on the AS/400 needs to be very specific to your application or
interface with an existing application, then cregting new classes that implement the M cContainer I fc
and/or M cPer sistentl fc interfaces would be needed. This would be the case if you need to control
table definitions, support unique queries, or if you want to store your information in something other than
adatabase.

Classes and Interfaces:
e com.ibm.mc.client.definition.McDefinition
e com.ibm.mc.server.container.McContainerlfc
e com.ibm.mc.server.container.M cDefaultDefinitionContainer
e com.ibm.mc.server.persistence. McPersstentlfc
e com.ibm.mc.server.persistence McDefaultDefinitionPers stence

As the gpplication designer, you will want to identify a number of different gpplication specific desgn
points when designing a new type of definition. Use the following checklist to assist you in your design.

Design checklit:
v" What data or attributes do you need to store in your specific definition?
Example: Name, Description, Owner, Sharing, and a Command

Guiddines

e Think of dataand information you want to store persistently on the Centrd System.

e Don't include System Groups or Endpoint Systems information in your definition, or
information available viajMC base implementation, such as Name and Owner.

v' Where in the Operations Navigator hierarchy do you want to see the list of your application’s
Definitions?

EI--@ M anagement Central [Rochasfdd)

----- @ Task Activity
----- @ Scheduled Tasks
[—]—-- Diefivitions

Command

@ Package

@ My Definitions
Monitors
- Bl 45400 Endpoint Systems
-8 AS/400 System Groups

£
[

=B My A5 /400 Connections

Guiddines

See your Ul Designer for help.

v" What context menu options do you want on your definition Container?

Explore
Open
Create Shortcut

Mew Definition. .

Eroperties

Guiddines

If integrating into Operations Navigator, you will want the same behavior as other definition
containers. Thisincludes context menu options for Explore, Open, and Create Shortcut.
Seeyour Ul Designer for help.

v What context menu options do you want on each of your Definitions?

Run...

Mew Based On..
Delete...

Properties:

Guiddines

If you choose to use the information stored in your definition to perform atask, then context
menu options like Run or Distribute may be appropriate. This context menu action would
then take the information out of the definition and use it asinput when congtructing the task.
See your Ul Designer for help.

Application Developer

The application developer will take the design specification and first creste aclassto hold al the
gpplication data or attributes, and second, extend the M cDefinition class to create your new
goplication definition class. From the design, the gpplication developer may aso need to extend the
M cDefaultDefinitionContainer and/or M cDefaultDefinitionPer sistence or may choose to
implement the corresponding interfaces M cContainer I fc and M cPer sistentifc. Thiswould only be
necessary if the persstent storage and/or caching mechanisms provided by the Management Central
Java Framework was not adequate.

Classes and Interfaces:
e com.ibm.mc.client.definition.McD€finition
e com.ibm.mc.server.container.McContainerlfc
e com.ibm.mc.sarver.container.M cDefaultDefinitionContainer
e com.ibm.mc.server.persistence McPersstentlfc
e com.ibm.mc.server.persstence McDefaultDefinitionPers stence

Scenario 1. Defining a new classthat contains all your application data

In this scenario you create anew Java class that represents the data or attributes for your application’s
definition. Thisclassiscommonly referred to as Application Attributes. This class needs to implement
the javaio.Seridizable interface so it can be sent to the centra system and stored in a persistent manner.

package com i bm as400. opnav. McDefiniti onSanpl e;
inport java.io.Serializable;

public final class MyCormandData inplements Serializable

{

private String m.comrmand;

public MyCommandDat a(String nane) {
m command = nane;

}

public String get Command() ({
return m command;

}

Hintsand Tips: All your goplication’s definition data should be present in this
data class, referred to as "Application Attributes’. The Management Centrd Java
Framework can easily manage your definition’s data when you treet it as
application attributes. See the JavaDoc for

com.ibm.mc.client.definition.M cDefinition for details. This daawill be
contained within your definition dass that youll create in the next step.

Scenario 2: Defining your Application’s Definition

In this scenario you create a new Java class that represents your gpplication’s definition. After looking at
the Management Central Java class M cDefinition and it's base classes, you will see that Name,
Description, Owner, and Sharing are al provided for you. When you extend M cDefinition, dl you
need to add is public getter and setter methods hiding the containment relationship to your gpplication
dataclass. The applicationData field used in the getCommand method below, is defined by
McDefinition’s superclass, M cM anageable. It refers to the object you set as your application
attributes. In this casg, it's an instance of MyCommandData ingtantiated in the class constructor.

package com i bm as400. opnav. McDefi niti onSanpl e;
inmport java.io.Serializable;

import comibmunr.client.definition. McDefinition;
i mport comibm as400. opnav. McDefi niti onSanpl e. MyCommandDat a;

public final class MyCommandDefinition extends MDefinition
{

public MyCommandDefinition(String nane, /1 Name for the
definition
String description, [// Brief description
int sharing, /1 Sharing attributes
String command) /1 AS/ 400 Command to

:::::: { narm Aaocrrintinn charinn nawn M/CammmndNat al ramronAd)) -

Scenario 3: Advanced Features
Overriding the Default Persistence Mechanism for a Definition

By default, anew type of definition will have itsingtances stored in asmilar manner to most other
definitions. This storage mechanism is defined in the dass
com.ibm.mc.server .per sistence.M cDefaultDefinitionPer sistence

In some cases, specid circumstances may exist where the default persistence mecheniam for definitions
is not appropriate for a particular type of definition, eg.:

* You requirethat your definitions be stored in a manner such that programs besides the
Management Centrd Java Framework may accessthem. For example, your definitions are
actualy stored in adatabase table that is used by programs other than your Management
Centrd gpplication.

* Your type of definition is already stored persstertly. The definition mapsto a system object or
some other persigtent entity. Because of this persstence, you don’t need the Management
Centra Java Framework to store your definition instances for you.

In cases like these, you need to replace the default persistence mechanism provided by Management
Centra and provide a persistence mechanism that you design and develop. To provide your own
pers stence mechanism for anew type of definition, you must do two things:

1. Create anew classtha implements the com.ibm.mc.server.per sistence.M cPer sistencel fc
interface. This classisyour new pergstence mechanism, and must map the functions provided
in the McPersstencel fc to the specifics of your persstence environment.

2. Overide the getDefinitionPers stenceClass method in your new definition class. Your
implementation of this method must return the fully-qudified name of the dassyou created in
step 1. (The default implementation of this method returns the class
"com.ibm.mc.server .per sistence.M cDefault DefinitionPer sistence”). An example
override is shown below:

public final class MyConmandDefinition extends MDefinition
{

public static String getDefinitionPersistenceClass() throws
McExcepti on
{

}

return "com nyconpany. mypackage. MyDefi niti onPersistence";

Overriding the Default Container Behavior for a Definition

A definition object may exigt in two forms on the server. Thefirs formisits persgtent form. A
persistent representation of every definition will dways exist on the centrd system. The second formis
atrangent Java object that represents the definition. The transient form of the object may go in and out
of existence over time, as Management Centrd gpplications accessit. There is some amount of
overhead associated with the indantiation of the trangent Java object from its perastent form. First the
persastent form must be retrieved from the persstent store, then atransent Java object is created from
this persstent representation.

By default, no caching is done of trangent definition instances. This meansthat it will always accessthe
persstent representation of the definition when performing queries or updates, and it will always have to
indantiate transient Java object(s) when it returns one or more instances to an application. This default
container behavior is defined in the class com.ibm.mc.ser ver .container .M dNoCacheContainer.

If performance becomes a concern when ng your definitions, you have two choices. You can
use the MC Java Framework's container implementation that automatically caches transent versions of
your definition objects, or you may want to implement a more intelligent container mechanism of your
own that provides a caching mechanism. Thiswill diminate the need to go to the persistent store and
ingtantiate new transient objects for some operations. The jMC's caching container is defined in the
class com.ibm.mc.server .container .M cCacheContainer. To useit, skip step 1 below and specify

thisclassin step 2. If you don't want to use the McCacheContainer, you will need to provide a new
container mechaniam for your definition. To accomplish this, you must do two things:

1. Create anew class that implements the com.ibm.mc.server.container .McContainerlfc
interface. Thiscdassisyour new container mechanism, and must map the functions provided in
the M cContainerlfc to the specifics of your caching approach.

2. Overide the getDefinitionContainerClass method in your new definition class. Your
implementation of this method must return the fully-qudified name of the dassyou created in
gep 1. An example override is shown below:

public final class MyCommandDefinition extends MDefinition
{

public static String getDefinitionContainerClass() throws
McExcepti on
{

}

return "com nyconpany. nypackage. MyDefi ni ti onCont ai ner";

GUI Developer

The GUI developer puts dl the pieces together for the end user. A possible solution could beto add a
new container in Operations Navigator under the Definitions branch of the Management Centrd tree,
add a context menu option on this new container to creste new definitions, and add context menu
choices on each definition to view it’s properties and to perform actions (e.g. New Based On... and
Delete).

To perform this development you will need to know how to create an Operations Navigator Plug-in
udng ListM anager and ActionM anager interfaces and how to work with Management Centrd Java
Framework classes M cDefinition, M cDefinitionView, and M cDefinitionListView. Detailson
creating an Op-Nav plugin should be attained from the Operations Navigator project; the rest will be
presented here.

Classes and Interfaces:
e com.ibm.mc.client.definition.McDefinition
e com.ibm.mc.dient.definition.McDefinitionView
e com.ibm.mec.dient.definition.McDefinitionListView

Scenario 1: Creating Definition Instances

In Scenario 1, you take your new application’s data and definition classes, created by the Application
Developer, and explore how to create instances of them. Thiswould be the underlying function when a
New Definition menu option is selected. Badcaly there are three stepsin creating a new definition:

1.

2.

3.

{

Create an ingtance of your gpplication’s definition. This could be triggered from the user
interface where the user specifies different properties.

Creste an indance of a Definition View to manage the ingtance of your definition

Tdl the Definition View to perdstently store the instance of your definition to the definition
database on the Centra System using the addM anageable method.

public void newDefinition() throws MException

My CommandDefinition thisDefinition = null;
McDefinitionView thisDefinitionView = null;

// Step 1: Create an instance of the MyCommandDefinition class
thisDefinition = new MyCommandDef i nition(

" My Def ", /1 Name

"MyDef Description", /1 Description
McManageabl e. NONE, /'l Sharing

" SNDMSG MSG(Hi) TOUSR(poochie)"); /1 Cormmand

/] Step 2: Create a Definition View object
thisDefinitionView = new McDefinitionView(thisDefinition);

Scenario 2: Get alist of your Definitions

If you need to retrieve aligt of the Definitions that you crested in Scenario 1, this next scenario will give
you the basics. There are only afew steps needed here:

1.

2.
3.

Set up the selection criteriato only get definitions that match the dass of your gpplication's
definition MyCommandDefinition.

Creete an indance of a Definition List View to manage your list.

Ak the Definition List View to return you alist of definitions that matches the sdlection criteria
you specified in step 1.

public Vector listDefinitions() throws MException
{

McManageabl eSel ectionCriteria selCriteria = null;
McDef i ni tionLi stView vi ewLi st = null;
Vect or nyDef Views = null;

/1 Step 1: Define selection criteria for a list of your definitions
selCriteria = new McManageabl eSel ectionCriteria(
"com i bm as400. opnav. McDef i ni ti onSanpl e. M\yCommandDefi nition",

/1 Class

McManageabl e. ALL, // Category

nul |, /1 Omer list only used when next parmis
true)

fal se, /1 use sharing

0); /'l Last date changed

/1 Step 2: Create a new Definition List View object to manage your definitions
vi ewLi st = new McDefinitionListView selCriteria):

Scenario 3: Get asynchronous status updatesfor Lists of Definitions

By implementing the M cM anageabl el istener interface, you can be notified when anew definition has
been created, changed, updated, or ddeted. Thisis most useful when maintaining alist of definitions,
and you wish to be notified whenever they are added, removed, updated, or changed. Thislistis
defined using selection criteria so that you are not notified when just any definition is created, but only
those that meet your sdlection subset. This codeisidentica to the code used to retrieve alist of
definitions based on a sdlection subset, but we add a fourth step here to attach the current class as the
ManageableListener. Thisinterface, dong with the implemented update, change, and remove methods,
dlows the Management Central Java Framework to send you a natification when an activity has been
updated.

public class MyDefinitionList inmplements MManageabl eLi st ener

{
public void getList() {

McManageabl eSel ectionCriteria selCriteria = nul |;
McDef i nitionListView vi ewLi st = null;
Vect or retrievedTasks = null;

/1 Step 1: Define selection criteria to get a list of definitions
selCriteria = new McManageabl eSel ectionCriteria(

"com i bm as400. opnav. McDefini ti onSanpl e. MyConmandDef i ni tion",

/1 Class

McManageabl e. ALL, // Category

nul |, /1 Owner list (only used when next parmis
true)

fal se, /'l use sharing

0); /'l Last date changed

/'l Step 2: Create a new Definition List View to nanage your tasks
vi ewLi st = new McDefinitionListView(selCriteria);

/1 Step 3: Ask the Distributed Definition Manager for a list of Distributed
Command Tasks
retrievedTasks = viewli st. get Manageabl eVi ews();

/1l Step 4: Attach this class, which inplements the McManageabl eLi stener interface,

/1 to handl e any notifications.
vi ewLi st . att achManageabl eLi st ener (this);

}

/1 The follow ng methods are required as an inplenmentation of McManageabl eLi st ener

public void manageabl eAdded(McManageabl eEvent event) throws MException {
/1 Insert code to handl e when a new definition has been created

}

public void manageabl eChanged(McManageabl eEvent event) throws MException {
/1l Insert code to handle when a definition has changed. A "change" is a

/'l user-directed property change, such as changing the definition's description.

b}

Scenario 4: Deleting Definition I nstances

If you need to delete a definition instance, or alist of them, the Definition View and Ligt View classes

provide the methods for you. Deleting a definition removes the definition from the Management Centra
databases and is no longer a managed definition. When working with the View object, you can smply

cdl removeManagesble on theingstance of the object itsdlf; for aList of Views, you can smply call
removeManagesblel ist on the LigView instance,

/1 Step 1: Tell the Definition View to renove the instance of your task
vi ew. removeManageabl e() ;

/Il O, for a Distributed Task List View

Scenario 5: Changing an existing Definition I nstance

To change an exigting definition, the View again provides the method for you to use. Prior to calling
change, you would have a reference to a definition that you previoudy created or retrieved from aligt.
With the reference to the definition, you may have the end user modify it by displaying a set of property
pages and using the appropriate set methods to update the ingance of the definition. \When you have
the definition instance updated, you can tell the View to store the changes.

/1 Step 1: Call the set methods to update the Definition
thi sDefinition.setCommand(" SNDBRKMSG MSG(' message') TOMSGQ(QPADEVOOOH) ") ;

/1 Step 2: Tell the Definition View to change your Definition with the updates

Hints and Tips. Remember that the Management Central Java Framework
can easily clone and manage your definition’s datawhen you tredt it as
Application Attributes. See the JavaDoc for M cDefinition for detalls. If you
have any data membersin your gpplication’s definition class, it will not be
changed or saved.

NOTE: In addition to dl the definition features documented above, there are additiona advanced
features that apply to definitions that you should be aware of. Since they are features that aso gpply to
activities (and not just definitions), they have been documented in their own chapter, affectionately
entitled Advanced Features, beginning on page 54. Please note that while al advanced scenarios
apply to activities, only scenarios 2-4 apply to definitions.

Terms, Classes, and I nterfaces

Thing Type What todo Purpose
with it
McDefinition Class Extend When you create a new type of definition, you must inherit

from this classto get the data attributes and method
implementations that all definitions need.

McDefinitionView Class Use This class bridges your application to MC Java Framework
functions to manipulate definitions and provide additional
capabilities that make GUI programming easier. By using
the attach and detach capabilities, GUI classes can be
notified directly when the definition has changed.

McDefinitionListView | Class Use This class bridges your application to MC Java Framework
functions to manipulate lists of definitions and provide
additional capabilitiesthat make GUI programming easier.
By using the attach and detach capabilities, GUI classes
can be notified directly when a definition has been created,
changed, updated, and del eted.

McContainerlfc Interface Implement When your application defines a new type of definition,
you may want to implement a special container for your
definition objects. A container controlsthe policy of
accessing objects that are persistently stored and could
support more sophisticated queries. Within the container,
you can decide when it is appropriate to go to the
persistent store and when it may be appropriate to use an
“in memory” definition object.

By default, new types of definitions use a default container
implementation called McDefaultDefinitionContainer. If
you write your own container, you must identify it to the
Management Central Java Framework by providing a static
method on your definition class called
getDefinitionContainerClass. Seethe McDefinition class
for the signature of the static method.

McPersistentlfc Interface | Implement | When your application defines anew type of definition,
you may want to implement a special persistence object to
store your definitions. Y our own persistence object allows
you to control the persistence mechanism for your
definition objects. Thiswould allow you to store themin
their own database or some other kind of persistence.

By default, new types of definitions use a default
persistence implementation called
McDefaultDefinitionPersistence. This stores your
definitions in the same database as other types of
definitions and only allows you to perform operations that
are defined in thisinterface. If you write your own
persistence class, you must identify it to the Management
Central Java Framework by providing a static method on
your definition class called getDefinitionPersistenceClass.
See the McDefinition class for the signature of the static
method.

Hintsand Tips

This space has been included so that you can document your own specid hints and tips.

Management Central Endpoint Systems and System Groups

3 AS57400 Operations

One example where

Mavigator

File Edit “iew Optionz Help

M cDefinition classes are
used isin the congtruction of

1 minutes old

| Central Spstem: Rchasd?m

| Management Central (Fchasd?m]) AS/400 System Groups Dwner: All

EndeInt Sjﬂe’ns a]d E@ {Smagement Central [Rchazd?m) __S_y&tem Group | Owner | Dezcription | -
Task Activity et GSH Testing the CAE 480 driver

SySt_e' n Groqps Thes_e C. an 12 Scheduled Tasks {8 dantest - READ MURPHY dantest
be viewed using the existing Defrions Greg Group 1 GSH

. b Meniters Irw Test GSH o
AS400 Endpoint Systems B 45/400 Endpoint Systems Joffs Froad dccese JOWALD et

; LSS AA00 Systern Groups .
and AS/400 System Groups | g u p— i LINDBERI
Conta ners. m My A5/400 Cannections ‘ MC development gy, =Zv0962 MC development systems j
[[1-7 of 13 obiectfs] | 4
‘Rchas645' Properties EHE3
General |
The M cEndpointSystem class extends the

j Rchaszb45

(which

filds.

Description: 4R 3 45/400 with MC server
IP address: 9.5.144.208
Releass: YaR4M0
QK I Cancel Help |

The McSystemGroup dassisalittle different
from the M cEndpointSystem dassin thet it
extends the M cCompositeDefinition class.
Thisdassin turn extends M cDefinition and
implements M cComposeable. Implementing
the M cComposeable interface gives asystem
group the ability to add, remove, find, and get
children objects.

System Groups are used when executing a task
or service. A System Group may contain one
or more Endpoint Systems, and, because it
implements M cComposeable, can dso
contain other System Groups.

"Greg Group 1° Properties

General | Sharing |

M ame:

Description:

Available spstems:

M cDefinition class and adds attributes, like
Protocol, 1P Address, Release, and Operating
System, that further define an AS/400 system. Since
M cDefinition extends M cM anageableData

contains Name, Description, Owner, and

Sharing), the M cEndpoint System class doesn't
need to provide any additional code to support these

They can smply be used when congtructing an

ingance of aM cEndpointSystem.

Selected systems:

A Gsh

] Az40026. lotus. com

_! Azdprd.telaviv.ibm.com
_! Brahmns. telaviv.ibm.com
A Crcanong

_! Dean. telaviv.ibm.com
_! Fuzzywuzzy

_! Mexgpll3.gdl.mex. ibm. com

_! exgpl0d. gdl. mex. ibm. com
Mexgpll 3.gdl.mex. ibm. com

_! Mexgpl24. gdl. mex. ibm.com

_! Mexgpl2?.gdl.mex. ibm. com

_Q Mexgpl30

_!MexgplS‘I.ng.mex.ibm.com LI

[B Mahik

_@ Rchasdad
B Rchasfad
_@ Rchaziaw
_@ Rchasr0d
_@ Rchastaz

j Add --» |
Remove <- |

o |

Cancel Help

Programming Example

The following programming example provides a snippet of how you could create a Management Centra
System Group when passed an AS400 Java Toolbox AS400 object. Once you have the System
Group containing the one Endpoint System specified in the AS400 object, you can useit to dart a
Service or execute a Task.

public M SystemG oup toMSystemG oup(AS400 as4000bj)
{
McEndpoi nt System s1
McSyst emGr oup group

nul | ;
nul | ;

try {
sl = new McEndpoi nt Syst en(as4000bj . get Syst emNane(), // Name
/1 Description
McManageabl e. NONE, /1 Sharing
"), /1 1P Address

/'l Create a new System Group specifying the Endpoint System
group = new McSystemG oup(" Tenporary System Group", // System G oup Nane
"Tenporary System Group", // Description
McManageabl e. NONE, /1 Sharing
sl); /1 Endpoint System
}
catch (McException e) {
System out. println("MException:" + e);
Systemexit(1);

Y ou can dso expand the above example to dlow aVector of AS400 objects to be specified, loop
through the vector to get each Endpoint System and add it to a vector of systems, and return the System
Group containing multiple Endpoint Systems.

Management Central Distributed Tasks

Overview

Tasks arelong running

€3 AS /400 Operations Mavigato

File Edit “iew Options Help

r

(o] >]5] SIEIS)

|Last changed: 2/10/00 256 Pk

| Central Syatem: Mahlik

| M anagement Central (Mahlik]): Task Activity Started by: Al

asynchronous operations that _

E@ M anagement Central (M ahlik) Task | Type | Status | Supstemns and Groupﬂ
can be S:hajl,.“aj md run E,) test (2] Command Completed all systems for sue, |
Unatmdw on multlple ' gc?eld.uled Tasks ESUB'S Blitz test SendFiles Faledon1of8.. al s_l,l.stems for sue

' & |r_1|l|ons @Collect Ireventom Inventory Completed 1 ahilik.
remote sysems. The ' :'SD?EDDBSE . B CrmdCreatedOrMahli (2] Command Completed Mahik
‘o = napoint Systems Send and Install Fises [13] Fi Failed - stapped... Bob’

operator or administrator o W A St G [oSSR (13) Fhs - Faied - sopped.. Bobaous

. m My 45/400 Connections Eﬁ allzct [rventarn r]ventoru omolete chasr .
generdly selects an action to | |

. 38 - 42 of 89 abject(z) A
perform from the graphica

user interface, selectswhich
systems to perform the action, and then determine whether to run the action now or schedule it to be run
at alater date and time. After the action completes at the endpoint system, it sends status information

7 "Send and Install Fixes [13])" Status
File Help

Status; Failed - stopped by uzer on 1 of B systems Send from; b ahlik,

back to the centra system and can be later
viewed on the workstation.

One example of atask is the Fixes gpplication
that was ddivered with Management Centra in

e el noen | VARA. Onefunction of this application allows
E the operator to ditribute and instal Program
] Fichasd7m Stopped Temporary Fixes(PTFs) on other sysemsin the
- e network. The operator would select alist of

B Rchastéd Completed fixesto ingal and then pick which system groups

[T or systemsto indd! them on. During the

= TP T v distribution and ingtallation process, status

564417 E7EGssl whdmi Iristall ot rest restart information would be sent back to the centrd

system. If and when the operator wanted to
[|1 of 1 fixes received on ‘Fichasi 2" 7

check on the task, she could smply click on the
Task Activity container and view the detailed
gatus information for that task. Tasks will dways have some find status whether it completed
successtully, failed, or was ended by the user.

Currently the Management Centrd Java Framework provides three different ways for gpplications to
implement tasks. The first method, and smplest, is to use the Distributed Command Call Application
provided with Management Centrd. The Distributed Command Call Application alows you to execute
an AS/400 CL command on agroup of systems. If dl or part of your gpplication can be performed
smply by sending a command to the remote system dl you need to do isuse the
McDistCommandDescriptor class. This class takes a CommandCal object which you construct
from the AS/400 Java Toolbox and a M cSystemGr oup to indicate where to execute the AS/400 CL
command. For more details see section Management Centra Command Cal Application on page 65.

If ingtead of calling a command you need to cal an AS/400 program or Service program, you can use
the second way to implement tasks by using the Distributed API Application. By congtructing Program
Cdl Markup Language(PCML) statements and using the ProgramCallDocument from the AS/400 Java
Toolbox, you can create tasks using the M cDistApiDescriptor class. The M cDistApiDescriptor
class a so accepts a ProgramCall class or ServiceProgramCall class from the AS/400 Java Tool box.
For more details see section Management Centra Digtributed API Application on page 74.

A benefit of usng ether of the two aforementioned applicationsis that you won't need to write any
server code; rather, you'll make use of classes implemented by the JMC, and Ssmply write a user
interface to interact with the server. However, if neither of the provided gpplications meet your needs,
then you can create your own task by extending the Management Central Java Framework. The
following descriptions and scenarios will help to explain how to create your own task.

Interfaces and Flows

Application Designer

Asthe gpplication designer, you will need to determine what functions or actions your application needs
to perform on the endpoint systems and what data or information is needed to perform that action. The
McDistributedTaskDescriptor is provided to give you away to describe exactly how you want your
distributed task to behave. When you extend the M cDistributedTaskDescriptor class, you cregte a
new kind of distributed task which will inherit Name, Description, Owner, and Sharing data members
and methods. 'Y ou only need to supply the data specific to your application.

Classes and Interfaces:
e com.ibm.mc.dient.activity.task.McDigtributed TaskDescriptor
e com.ibm.mcdient.activity.task.M cEndpointTaskDescriptor
e com.ibm.mc.client.activity.task.M cExecutable
e com.ibm.mc.server.activity.McActionlfc

Desgn checklist:

v" What datado you need to send to the remote endpoint systems?
Example: Name, Description, Owner, Sharing, and a Command

Guiddines

* Think of dataand information you need in order to perform your task. Thisinformationis
considered the “Application Attributes’ of the task.

* Don't include System Groups, Endpoint Systems, Status, or Results informetion in your
task. Thisisdready built into the task objects. Also, omit information avallable viajMC

base implementation, such as Name and Owner.
v Once you have the data at the endpoint system, what action to do want to perform?

Guiddines:
* Inyour classtha implements the McExecutable interface you will need to decide what
function to perform in the execute method and the cancel method. Thisiswhere your

custom logic goes.

v" Wherein the Operations Navigator hierarchy do you want to see the list of your application’s
tasks? Also, if your gpplication creates multiple type of tasks do you want to filter out some or
do you want to show dl of them?

Guiddines
* Seeyour Ul Designer for help.

v" What context menu options do you want on your Task Container?

Guiddines

* If integraing into Operations Navigator, you will want the same behavior as other task
containers. Thisincludes context menu optionsfor Explore, Open, and Create Shortcut.

* Seeyour Ul Designer for help.

v" What context menu options do you want on each or your Application's Task?

Guiddines

* |f you choose to use the information stored in your definition to perform atask, then context
menu options like Run and Distribute may be specified. This context menu action would
then take the information out of the definition and use it as input when congructing a
distributed task.

* Seeyour Ul Designer for help.

Application Developer

The application devel oper takes the design specification and will need to cregte at least four classesfor
adigtributed task. Firgt, you need to create a class to contain al your application data and attributes.
This dasswill be termed the "Application Attributes’ of your activity. The jMC will austométicaly store
these attributes persistently on the Centrad System. Second, you need to extend the
McDistributedTaskDescriptor classto create your gpplication specific Distributed Task Descriptor
class. Next, you need to extend the M cEndpoint TaskDescriptor classto create your gpplication
gpecific Endpoint Task Descriptor. This classwill have the ability to set and retrieve your Application

Attributes. And findly, you need to creste a class which implements the M cActionl fc and
M cExecutable interfaces for your gpplication specific action that will execute on the endpoint system

Classes and Interfaces:
e com.ibm.mcdient.activity.task.McDigtributed TaskDescriptor
e com.ibmmc.dient.activity.task.McDigtributedTaskDescriptorlfc
e com.ibm.mcdient.activity.task.M cEndpointTaskDescriptor
e com.ibm.mc.dient.activity.task.McEndpointTaskDescriptorlfc
e com.ibm.mc.client.activity.task.M cExecutable
e com.ibm.mc.server.activity.McActionlfc

In the following scenarios, you will create the basic classes that represent your gpplication’ s task.
Scenario 1: Create a new classthat containsall your application data
In this scenario you create anew Java class that represents the data or attributes for your application’s

task. Thisclass needsto implement the javaio.Seridizable interface so it can be sent to the central
system and stored in a persistent manner.

Hints and Tips: Note the following MyCommandData class was the same
you used in the definition examples. When you create a task based on a definition,
it is easy to reuse the Application Attributes class to supply al the data from the
definition to the task.

package com i bm as400. opnav. MyTaskSanpl e;
i mport java.io.Serializable;

public final class MyCommandDat a i npl ements Serializable

{

private String m conmmand;

public MyCommandDat a(String nane) {
m command = nane;

}

public String get Command() {
return m command;

}

Hintsand Tips: All your application’s task data should be present in this data
class and should not be placed as locd data members within the Digtributed Task
Descriptor class. The Management Centrd Java Framework can easily manage
your gpplication’s task data when you tregt it as Application Attributes.

Scenario 2: Create a new classthat extendstheMcDistributedTaskDescriptor class

By extending the M cDistributedTaskDescriptor class, you inherit data members and methods for
Name, Description, Owner, etc.. Inthisexample, dl you need to provide is your public getter and
setter methods and implement the createEndpointData method defined in the

M cDistributedActivityDescriptorlfc interface class. The createEndpointData method is where you
cregte an instance of your Endpoint Task Descriptor and give it to the Management Centrd Java
Framework. Also, since endpoint descriptors are for the specific execution of the task, you need to call
setPrivate(true) on your descriptor before returning from the method. Doing so will prevent anyone else
from sharing your endpoint descriptor, and it will notify the MC Java Infrasiructure that the descriptor
should not be stored persistently. The coordinator field used to add event listenersis defined by
McDidtributedTaskDescriptor's superclass, McActivityDescriptor. 1t refers to an event coordinator that
processes events for this descriptor.

Hintsand Tips. Remember you only need to include the data that is unique to
your task. Information like System Group, Status, and Results are aready provided for
you in the Distributed Task Descriptor and associated classes.

package com i bm as400. opnav. MyTaskSanpl e;

public class MyDi stributedConmandCal | Descri ptor extends MDi stributedTaskDescri ptor
{

/1 Constructors
public MyDi stributedConmandCal | Descri pt or (
String theNane,
String theDescription,
int theSharing,
McSyst enGroup t heSyst enGr oup,
ConmandCal | applicationbData) throws McException
{
super (t heNane, theDescription, theSharing, theSystenGroup, applicationData);
coordi nat or. addEvent Li st ener (new McSt at usAspect (), new
McDef aul t St at usEvent Handl er ());
coordi nat or. addEvent Li st ener (new McResul t Aspect (), new
McDef aul t Resul t Event Handl er ()) ;

}

/1 Inmplement methods fromthe MDistributedActivityDatalfc interface
public McEndpoi nt ActivityDescriptorlfc createEndpointData() throws MException

{
MyEndpoi nt ConmandCal | Descri pt or eptData =

new MyEndpoi nt CommandCal | Descri pt or (get Name(),
get Description(),
get Sharing(),
get Command()) ;
ept Dat a. set Private(true);
return eptDat a;

}

NOTE: You may have noticed that in the code example above you'reusing a
M yEndpointCommandCallDescriptor class which you will create next.

Scenario 3: Create a new class that extends the M cEndpoint Task Descriptor class

Thisnext piece of code isto define the Endpoint Task Descriptor. Like the Distributed Task
Descriptor, this class dso contains the data for your application task. In this case, the dataiis used on
the endpoint system and needs to contain any information that your execute and cancel action methods
might need. Like the previous example, you start out by defining any private data members you need
with getter and setter methods. Next, you need to implement the getActivityActionClass method
defined in the M cActivityDescriptor I fc interface. Asyou can see, hereiswhere you tell the
Management Central Java Framework the class which implements the M cExecutable interface which
contains the execute and cancel methods.

package com i bm as400. opnav. vyTaskSanpl e;

public class MyEndpoi nt ConmandCal | Descri pt or extends MEndpoi nt TaskDescri ptor
{
/'l Constructors
publ i c MyEndpoi nt ConmandCal | Descri pt or (
String theNane,
String theDescription,
i nt theSharing,
ConmendCal | applicationData) throws McException
{
super (theNane, theDescription, theSharing, applicationData);
coordi nat or. addEvent Li st ener (new McSt at usAspect (), new
McDef aul t St at usEvent Handl er ()) ;
coordi nat or. addEvent Li st ener (new McResul t Aspect (), new
McDef aul t Resul t Event Handl er ()) ;

}

/1 Inmplement methods fromthe MActivityDescriptorlfc interface
public String getActivityActionClass()
{

Scenario 4: Create a new class that implements the M cExecutable interface

The fourth part involves implementing methods for the M cActionl fc interface and the M cExecutable
interface. The M cActionl fc interface includes the setObserver, setDescriptor, setThread,
descriptorChange, and descriptorRemove methods. The M cExecutable interface includes the execute
and cancel methods. For details on these methods, see the JavaDoc.

package com i bm as400. opnav. MyTaskSanpl e;

public class MyEndpoi nt CommandCal | Acti on i nplenents MActionlfc, MExecutable
{

private MRenptelistener observer = null;
private MEndpoi nt TaskDescriptorlfc data = null;
private McMet hodThreadl fc t hr ead = nul |;

/1 1nplement nethods fromthe MActionlfc interface
public void setObserver(MRenmotelLi stener observer) throws MException
{ /1 set observer to local nenber variable

this. observer=observer;

}

public void setDescriptor(MActivityDescriptorlfc data) throws MException
{ /1 set data to |ocal menber variable
if (data instanceof MyEndpoi nt ConmandCal | Descri ptor)
this.data = (MyEndpoi nt CommandCal | Descri pt or) dat a;
el se
/1 handl e Error

}

public void setThread(MMethodThreadlfc thrd) throws MException
{ /1 set thrd to |ocal menber variable
if((this.thread == null) && (thrd != null))
this.thread = thrd;
el se
/1 handl e Error

}

public void descriptorChange() throws MException
{}

public void descriptorRenove() throws MException

{}

GUI Developer

The GUI developer connects the user interface to the Distributed Task Descriptor class created by the
gpplication developer. One possible solution could be to add a new task container in Operations
Navigator under the Task Activity branch of the Management Central tree, adding a context menu
option on this new container to create new tasks, and adding context menu choices on each task to
view it’s properties and to perform actions (i.e. New Based On, View Status, €tc.).

To perform this development you will need to know how to cregte an Operations Navigator Plug-in
usng LisManager and ActionManager interfaces, how to work with j]MC classes

M cDistributedT askDescriptor, M cDistributedTaskView, and M cDistributedTaskListView,
and how to use the GUI helpers provided by the Management Central Java Framework to display
properties, select systems and groups, and to delete your application.

Classes and Interfaces:
e com.ibm.mc.client.activity.task.M cDistributed TaskDescriptor
* comibm.mc.dient.activity.task. McDigributedTaskView
e com.ibm.mc.client.activity.task.McDidributedTaskListView

Scenario 1: Create and Execute an instance of your new Application Task

In scenario 1, you take your new set of gpplication task classes and explore how to create instances of
them and to execute your task. Thiswould be the underlying function when aNew Task menu option is
sdected. Basicaly there are four stepsin creating and executing a new task.

1. Create aningtance of your gpplication’s distributed task descriptor specifying the task name,
task description, sharing, system group, and task datainformation. The properties of the task
would be retrieved from GUI diadogs or wizards prompting the user for the information. Note
that the getSystemGroup and getCommand methods used in the Descriptor’ s constructor must
be supplied by the user to retrieve the list of endpoint systems on which to execute the
command, and get the application attributes for the task.

2. Create an ingance of aDigtributed Task View specifying the application's Distributed Task

Descriptor created in step 1.

Tdl the Digtributed Task View to add the instance of your task so thet it can be managed.

4. Cdl the execute method to distribute and execute your gpplication task on dl the endpoint
systems specified in the System Group.

w

public void newTask() throws MException

{
McDi st ri but edTaskDescriptorlfc di st ConmandDesc = nul | ;
McDi stri but edTaskVi ew di st TaskVi ew = null;

/[l Step 1: Create an instance of your Application Distributed Task Descri ptor
di st CommandDesc = new MyDi stri butedCommandCal | Descri pt or (

"MyAppTask", /1 Name

"MyAppTask Description", // Description

McManageabl e. NONE, /1 Sharing

get Syst enGr oup(), /1 User method to get System
Group

get Command()) ; /1 User method to get command

/1 Step 2: Create an instance of a Distributed Task View
di st TaskVi ew= new McDi stributedTaskVi ew(di st CommandDesc) ;

/1l Step 3: Tell the Managenent Central Java Framework Task Manager to add this

Scenario 2: Get alist of your Application Task Instances

If you need to retrieve alist of the tasks that you created in Scenario 1, this next step will show you
how. There are only afew steps needed here.

1. Set upthe sdection criteriato only get tasks of the class

M yDistributedCommandCallDescriptor

Create an ingdtance of the M cDistributedTaskListViewto manage the list of tasks

3. AsktheDidributed Task List View to return to you alist of your gpplication’s Didtributed Tasks

N

public Vector |istTasks() throws MException

{
McManageabl eSel ectionCriteria selCriteria = null;
McDi st ri but edTaskLi st Vi ew di st TaskVi ew = nul | ;
Vect or nyTaskLi st = nul l;

/] Step 1: Define selection criteria to get a |list of your application
selCriteria = new McManageabl eSel ectionCriteria(

"com i bm as400. opnav. MyTaskSanpl e. MyDi st ri but edConmandCal | Descri ptor",
McManageabl e. ALL, // Category

nul I, /1 List of owners (only used if next paraneter
is true

fal se, /1 1nclude shared tasks

0); /'l Check the | ast changed date of the task

/] Step 2: Create a new Task List View to manage your application tasks

Scenario 3: Get asynchronous status and results of an Activity

Once you' ve crested and started your activity, it will run asynchronoudy with other activities. If you
want to monitor the status of the request, you will want to attach a class to handle when status and
results are returned from the endpoint system to you. This dasswill implement the
McStatusDetailListener and M cResultDetailL istener interfaces. Note: In the example shown
below, the same class implements both these interfaces so we passin this as the object to handle status
and result updates.

/1 Previously you would have retrieved a |ist of task views and
sel ected the
/1 one task view that you want to monitor status and results

/'l Attach to be notified when a Status or Result object is received
vi ew. att achSt atusDet ai | Li stener (this);
vi ew. att achResul t Det ai | Li stener (this);

/1 Display a status wi ndow or dialog, or turn service on

public void statusUpdate(MStatusEvent event) throws MException
{

/'l Get the status object out of the event information

McSt atusl fc status = event.getStatus();

/'l 1f the overall status value indicates the task has finished

if (status.getlLevel () == McStatuslfc.DistributedAct &&
status.isFinalized())

{

public void resultUpdate(MResultEvent event) throws MException
{
/'l Get the result object out of the event information
McResultlfc result = event.getResult();

/1 Since the result object is a hierarchy of results for each Endpoint System
/'l specified in the task, you need to get the results for the specific
Endpoi nt
/] Systemto see its details.
McResul tl1fc childResult = (McResultlfc)(result.findChild("systeml"));

/1 Be sure that the result object is an instance of ProgranmCall before
/1l perform ng ProgranCall type nmethods.
if(childResult !'= null && childResult.getResultData() instanceof ProgranCall)
{
/'l Get the ProgramCall object our of the result object
ProgramCal | pgm = (ProgranCall)childResult.getResultData();

if ((pgmgetMessagelList() != null) && (pgm get MessageList().length > 0))
{

/!l Retrieve list of AS/400 nmessages

AS400Message[] msgs = pgm get MessageList();

Hintsand Tips. The resultUpdate method above is expecting result data of
type ProgramCall, but the getResultData method genericaly returns an Object

of type Seridizable. Y ou could have essily cast the result data to whatever kind
of an object your specific application expects.

The MC Java Framework aso alows you to easily implement your own Status and Result objects to
use for your gpplication. All you need to do is creste an object that extends either M cTaskStatus,

M cResult. If you don't implement your own status and result objects, these default types will be used,
but if you do decide you need extensions of the functiondity available, you only need to extend what's
gpplicable. For ingtance, if you're implementing a task, and only need your own status type, you only
need to extend McTaskStatus, and can use the default M cResult implementation.

Once you've created your objects, you'll need to override the createStatus and/or createResult methods
in your descriptor objects (both endpoint and distributed) to return an object of your new status or
result type. ThejMC will automatically invoke these create methods when it needs a status or result
object.

Scenario 4. Get asynchronous status updates for Listsof Tasks

By implementing the M cM anageabl el istener interface, you can be notified when a new task has
been created, changed, updated, or ddeted. Thisis most useful when maintaining alist of activities, and

you wish to be notified whenever they are added, removed, updated, or changed. Thisligt of tasksis
specified usng selection criteria so that you are not notified when just any activity is crested, but only
those tasks that meet your sdlection subset. This codeisidentica to the code used to retrieve alist of
task based on a selection subset, but we add a fourth step here to attach the current class as the
Manageablelistener. Thisinterface, dong with the implemented update, change, and remove methods,
alows the Management Central Java Framework to send you a natification when an activity has been
updated.

public class MyTaskLi st inplenents McManageabl eLi st ener

{
public void getList() {

McManageabl eSel ectionCriteria selCriteria = nul |
McDi stri but edTaskLi st Vi ew vi ewLi st = null
Vect or retrievedTasks = null

/1 Step 1: Define selection criteria to get a |ist of Distributed Conmmand
Tasks
selCriteria = new McManageabl eSel ectionCriteria(

"comibmnr.client.activity.task.conmmnd. McDi st ConmandDescri ptor"

"McManageabl e. ALL", /] category

nul |, /1 Omer List (only used when next parmis true)
fal se, /1l use sharing

0); /1 last changed date

/1 Step 2: Create a new Task List View to manage your tasks
vi ewLi st = new McDistributedTaskLi stView(selCriteria);

/1 Step 3: Ask the Distributed Task Manager for a list of Distributed Comand
Tasks
retrievedTasks = vi ewli st. get Manageabl eVi ews() ;

/1 Step 4: Attach this class, which inplements the McManageabl eLi st ener

interface,
/1 to handl e any notifications
vi ewLi st . att achManageabl eLi st ener (this);
}

/1 The follow ng methods are required as an inplenmentation of
McManageabl eLi st ener

public void manageabl eAdded(McManageabl eEvent event) throws MException {
/1 Insert code to handle when a new task has been created

}

public void manageabl eChanged(McManageabl eEvent event) throws MException {
/1 Insert code to handle when a definition has changed. A "change" is a

2 BN, Al e mmk ;A e mmmah ee mlemm P VO I NI S P S Dot

Scenario 5: Delete an Application Task Instance

If you need to delete atask, or alist of task, the Distributed Task View and List View classes provides
the methods for you. Deleting atask removes the task from the Management Centra databases and is
no longer amanagesble task. When working with the Distributed Task View object, you can smply

cdl removeManageable method on the instance of the object itsdlf; for aList of Views, you can smply
cdl removeManageablel igt on the LigtView ingtance.

/] Step 1: Tell the Distributed Task View to renmove the instance of your
service
di st Servi ceVi ew. renoveManageabl e() ;

Scenario 6: Change an Application Task Instance

To change an exigting task, the Didtributed Task View provides the method for you to use. Prior to
caling change, you would have areference to atask that you previoudy crested or retrieved from alist
of tasks. With the reference to the task, you may have the end user modify it by displaying property
pages and using the appropriate set methods to update the task instance. Now when you have the task
instance up to date, you can tell the Digtributed Task View to store the changes.

/1 Step 1: Change the Distributed Task Descriptor locally
di st ConmandDesc. set Descri pton("New Descri pton");

/1 Step 2: Tell the Distributed Task View to change the Descriptor on the

Scenario 7: Schedule your task

It isvery easy for the GUI developer to use the Descriptor and View classes to create and schedule a
digtributed task. This scenario is very smilar to distributing a command cal to run on multiple endpoints.
The differenceisingtead of cdling execute, you now need to gather scheduling information as the fifth
step and cal schedule as an additional step.

1. Create aningance of a Distributed Command Descriptor specifying the Task Name, Task
Owner, Task Description, Sharing, System Group and command.

2. Create an ingtance of a Didributed Task View object specifying the Distributed Command

Descriptor created in step 1.

Tell the Digtributed Task View to add the instance of your task so that it can be managed.

Construct a M cSchedulel nfo object using a description of your activity, and “execute’ asthe

scheduled method, and set the schedule information by prompting the user with the

Management Central Schedule Diadog or a supported Business Partner Scheduler.

5. Cdl the schedule method to schedule the task on the Centrd System.

> w

McDi stri but edTaskDescri ptorlfc di st ConmandDesc = nul | ;
McDi stri but edTaskVi ew di st TaskVi ew = null;

/1 Step 1: Create an instance of your Application Distributed Task Descri ptor
di st CommandDesc = new MyDi stri but edCommandCal | Descri pt or (

"MyAppTask", /1 Name

"MyAppTask Description", // Description

McManageabl e. NONE, /'l Sharing

get Syst enGroup(), /1l User nethod to get System Group
get Command()); I/ User nethod to get command

/1 Step 2: Create an instance of a Distributed Task View
di st TaskVi ew = new McDi stribut edTaskVi ew(di st ConmandDesc) ;

/1 Step 3: Tell the Managenent Central Java Framework Task Manager to add this
/1 Application Disributed Task Descriptor to manage.
di st TaskVi ew. addManageabl e();

Il Sten 4 Set the Schedule I nformtion

Scenario 8. Retrieve your scheduled tasks

If you need to retrieve alist of previoudy Scheduled Digtributed Tasks, this next step will show you
how. Refer to the previous section where you Scheduled your task to execute at alater date. If that
task is currently managed by the Management Central Java Infrastructure, it will be returned in your list
of scheduled tasks below. There are only afew steps needed here.

1

Set up the sdlection criteriato only get scheduled tasks of the class

M yDigtributedCommandCallDescriptor. Thistime you needed to use the

M cActivityDescriptor SelectionCriteria class ingtead of the

McM anageableSelectionCriteria. The activity sdection criteria extends the cgpabilities of
the manageable sdlection criteriato include satus information. This dlows you to indicate thet
you only want to receive activities that are in a particular atus, such as active, completed, or in
this case scheduled.

2. Create an ingtance of the McDistributedTaskL istViewto managetheligt of tasks

3. Ask the Didributed Task Manager to return to you alist of Distributed Command Call Tasks

McActivityDescriptorSelectionCriteria selCriteria = null;
Vector retrievedSchedTasks = new Vector();
int[] statusList = {MStatuslfc.Schedul ed};

/'l Step 1: Define selection criteria to get a |list of Schedul ed Distributed
/1 Command Cal | Tasks
selCriteria = new McActivityDescriptorSel ectionCriteriaf(

".i1bm as400. opnav. MyTaskSanpl e. MyDi stri but edConmandCal | Descri ptor",
McManageabl e. ALL, // Category

nul |, /1 OwnerlList (only valid if next parmis
true)

fal se, /'l useSharing

0, /1 1 ast changed date

statusList); /1 StatusList - ours contains only

NOTE: In addition to al the task features documented above, there are additiona advanced features
that apply to tasks that you should be aware of. Since they are features that gpply to activitiesin generd
(and some apply to definitions), they have been documented in their own chapter, affectionatdy entitled
Advanced Features, beginning on page 54.

Terms, Classes, and Interfaces

Thing Type What todo Purpose
with it
McDistributedTaskDescriptor Class Extend An application will create one (or more)

subtype(s) of this class to define how their
multi-systemtask will execute, what datawill be
associated with it, and how it will handle events
on the central system. Y our subtype(s) of this
class will describe most of the parts of your

application.

McDistributedTaskDescriptorlfc | Interface | Use Theinterface that all distributed task descriptors
will support.

McDistributedTask Class Use Objects belonging to this class represent the

actual, executing task. Y ou may operate on
distributed task objects using the McExecutable
interface.

All distributed tasks have a distributed activity
descriptor associated with them. Thetask refers
to its descriptor to get information about how it
should execute.

Y ou are not responsible for instantiating this
object. A distributed task object can be
obtained from adistributed task descriptor
object that is being managed by the
Management Central Java Framework.
McExecutable Interface | Implement Thisinterface defines the methods that you may
call on adistributed task. Useit when you want
to begin the execution of atask or to cancel an
executing task.

M cEndpointTaskDescriptor Class Extend An application will create one (or more)
subtype(s) of this classto define how their task
will execute, what datawill be associated with it,
and how it will handle events. on the endpoint.

M cEndpointTaskDescriptorlfc Interface | Use Theinterface that all endpoint task descriptors
will support.
McActionlfc Interface | Implement Y ou must provide aclass that implements this

interface to perform the endpoint action that is
part of your task. Y our object will perform the

“real work” of making the task execute on the
endpoint, and the Management Central Java
Framework will call the object at the appropriate
time.

McDistributedTaskView

Class

Use

This class bridges your application tothe MC
Java Framework functions to manipulate tasks
and provide additional capabilities that make GUI
programming easier. By using the attach and
detach capabilities, GUI classes can be notified
directly when a status has changed.

Task Actions:
- execute
- cancel

Distributed Task Manager:
- addM anageable

- getManageable

- changeM anageable

- removeManageable

Event Listeners:

- attachStatusDetail Listener
- detachStatusDetail Listener
- attachResult Detail Listener
- detachResultDetailListener
- attachConnectionListener
- detachConnectionL istener

McDistributedTaskListView

Class

Use

This class bridges your application tothe MC
Java Framework functions to manipulate lists of
tasks and provide additional capabilities that
make GUI programming easier. By using the
attach and detach capabilities, GUI classes can
be notified directly when anew task has been
added, changed, or removed from alist of tasks.

Distributed Task Manager:
- getManageableViews

Event Listeners:
- attachM anageabl eL i stener

M cM anageabl eSel ectionCriteria

Class

Use

Use this classin conjunction with the
McDistributedTaskListView to specify the type
of taskstoretrieve. The selection criteriaallows
you to specify Type, Category, Sharing, etc.

Hints and Tips

This space has been included so that you can document your own specid hints and tips.

Management Central Distributed Services

Overview

Services are long running asynchronous
operations that perform a continuous
action. Onetype of service isamonitor
that can watch over adevice or resource
on the system. Others could include
trace-like or collector-type functions.
Unlike tasks, services never redly end but
are ingtead turned on and off by the
operator or administrator.

3 AS /400 Operations Navigator
File Edit “iew DOptions Help

alee] =] ble| |7 B] SDlS|
| Central System: b ahlik | M anagement Central [Mahlik): Monitors
E@ M anagement Central [Mahlik] Mame | Statug | Description
§ T Task Activity [Sample CPU Monitor Stopped IBM-supplied =
; T2 scheduled Tasks A test Stopped
. D efinitiors [User Responze Time Stopped User Respons

(I Honitors

- Bl A5/400 Endpoint Systems
- B 45/400 Spstem Groups
- B My AS/400 Connections 4 |

|'I - 3 of 3 object(z]

One example of asarvice isthe Monitor gpplication that was delivered with Management Centrd in

‘Uzer Responze Time' Properties

General | Actions | Metrics I

MHame:

D escription: IUser Fiesponze Time Metric:

Metrics ta collect:

[w] CPL Utilization [&verage]

[C1CPU Utilization [Interactive)

[w] CPL Utilization B asic [4verage]
[v]|rteractive Responze Time [Average]
[lInteractive Response Time (M aximum)
[w] Tranzaction Rate [Average]

[Tranzaction Rate [Interactive)
[C1Batch Logizal Databaze 140

1Dk Arm Utilization [4verage)

[Dizk Arrn Utilization [k axirmun)
[1Disk Storage [verage)

[1Dizk Storage [Maximuri)

[1Disk [OP Utiization [4verage)

[1Dizk [OP Utilization [k axirmuni)

[Communications 0P Utiization [Masimum)

|»

[v] Cammunications [OF Utilization [&verage] LI
1] % I Cancel | Apply | Help |

0S/400 V4R3. These system
monitors alowed the operator to
watch over different attributes of the
system. These attributes or metrics
included CPU Utilization, Interactive
Response Time, and Transaction
Rates as just afew examples. After
the operator selected which metricsto
watch, she could then sdect the
interval to poll the resource, how to
graph the information, set thresholds
when avaue got too high or too low,
and dso perform some automation
when athreshold was reached.

When developing your own service,
you will want to think about a number
of different things. Firs, you will need
to determine what continuous

operation to perform. If it fits the monitor type of service, then what resources do you want to watch or
monitor? What happens when the user turns the service on, or off? What information do you need to
send back to the Central System and GUI to keep the user informed of the progress?

No matter what the answers are to these questions for your particular gpplication, the Management
Centra Java Framework provides you with the infrastructure to help you in your implementation.

Interfaces and Flows

Application Designer

As the gpplication designer, you will want to address alot of the questions that were posed on the
previous page:

* What continuous action is being performed?

* What happens when the user sdlects to turn the service on? off?

* What resources to watch or monitor?

e Multiple metrics or should each be different monitor types?

* How often should the information be polled or gathered?

* Doesthe resource information need to be graphed?

* Doesthe user want to set thresholds if avalue getstoo high, too low, or maybe when it changes

states?
* Allow the user to perform some action or automation when a threshold has been reached?

Use the following checklist to assst you in your design.
Desgn checklist:

v" What data do you need to send to the remote endpoint systems?
Example: Name, Description, Owner, Sharing, and Monitor details

Guiddines

e Think of dataand information you need in order to perform your service. Thisinformetion
is considered the “Application Attributes’ of the service.

* Don't include System Groups, Endpoint Systems, Status, or Result information in your
sarvice. Thisisdready built into the service objects. Also, omit information available via
JMC base implementation, such as Name and Owner.

v Once you have the data a the endpoint system, what action to do want to perform?
Guiddines:

* Inyour dasstha implements the M cSwitchable you will need to decide what function to
perform in the on method and the off method. Thisiswhere your custom logic goes.

v" Wherein the Operations Navigator hierarchy do you want to see the list of your application’s
Searvices? Also, if your application creates multiple type of services do you want to filter out
some or do you want to show dl of them?

Guiddines:

* Seeyour Ul Designer for help.
v" What context menu options do you want on your Service/Monitor Container?

Guiddines
* If integrating into Operations Navigator, you will want the same behavior as other Monitor
containers. Thisincludes context menu optionsfor Explore, Open, and Create Shortcut.

v' What context menu options do you want on each Service/Monitor?

Guiddines:
* Seeyour Ul Designer for help.

Application Developer

The agpplication developer takes the design specification and will need to create at least four classes for
adigtributed service. First, you need to create a class to contain al your gpplication data and attributes.
This dasswill be termed the "Application Attributes' of your activity. The jMC will autométicaly store
these attributes persistently on the Central System. In addition, you will need to determine what
functions or actions your service needs to perform on the endpoint systems and what data or
information is needed to perform that action

The M cDistributedServiceDescriptor is provided to give you away to describe how you want your
distributed service to behave. By extending the M cDistributedSer viceDescriptor class, you cregte a
new kind of digtributed service which inherits Name, Description, Owner, and Sharing data members
and methods. 'Y ou only need to supply information specific to your gpplication.

The M cEndpoint ServiceDescriptor, like the Distributed Service Descriptor, is used to describe and
contain the data for your service. In this case, the Endpoint Service Descriptor contains the datathat is
used on the endpoint system and is used when the operator requests to turn on and off your service.
Again, the framework provides al the basic information (e.g. Name, Description, etc.). All you have
to add are any private data members you need with getter and setter methods.

The fourth class usad is the piece that performs al the service or monitor function on the endpoint
system. Cresating anew class which implements the M cActionl fc and M cSwitchable interface will
alow your digtributed service to be notified when to turn on and when to turn off.

Now, letswalk through the process of cresting a new distributed service gpplication. There are three
steps or scenarios that we will 1ook at:
1. Create anew classthat contains your gpplication data. Thisdatawill be referred to as
"Application Attributes'.

2. Create anew classthat extends the McDigtributedServiceDescriptor class
3. Create anew class that extends the M cEndpointServiceDescriptor class
4. Cregte anew class that implements the McSwitchable interface

Scenario 1: Create a new classthat containsall your application data

In this scenario you create anew Java class that represents the data or attributes for your application’s
task. This class needs to implement the javaio.Seridizable interface so it can be sent to the central
system and stored in a persistent manner.

package com i bm as400. opnav. MySer vi ceSanpl e;
import java.io.Serializable;

public final class MyMonitorData inplements Serializable

{

private String m_program

public MyMonitorData(String nane) {
m_program = nane;

}
public String getProgran() {
return m_program

}

Scenario 2: Create a new classthat extends the M cDistributedServiceDescriptor class

The McDistributedServiceDescriptor classis used to store your gpplication service data on the
Centrd System. By extending the M cDistributedServiceDescriptor class, you inherit data members
and methods for Name, Description, Owner, etc. In thisexample, al you need to provide isyour
private data members with getter and setter methods that defines your application service. Then,
implement the createEndpointData method defined in the M cDistributedActivityDescriptorlfc
interface, aparent of M cDistributedServiceDescriptor. This method iswhere you create an instance
of your Endpoint Service Descriptor and give it to the Management Centra Java Framework. The
coordinator field used to add event listenersis defined by McDistributedTaskDescriptor's superclass,
McActivityDescriptor. It refersto an event coordinator that processes events for this descriptor.

Hintsand Tips. Remember you only need to include the data
that is unique to your service. Information like System Group, Status,
and Results are dready provided for you in the Digtributed Service
Descriptor and associated classes.

package com i bm as400. opnav. MyServi ceSanpl e;

public class MyDi st Renot eServi ceDescri ptor extends MDistributedServiceDescri ptor
{
/1 Constructors
public MyDi st Renot eSer vi ceDescri ptor (
String theNane,
String theDescription,
int theSharing,
McSyst enGroup t heSyst enGr oup,
MyMoni t or Dat a applicationData) throws MException
{
super (t heNane, theDescription, theSharing, theSystenGroup, applicationData);
coordi nat or. addEvent Li st ener (new McSt at usAspect (), new
McDef aul t St at usEvent Handl er ());
coordi nat or. addEvent Li st ener (new McResul t Aspect (), new
McDef aul t Resul t Event Handl er ()) ;

}

/1 Inmplement methods fromthe MDistributedActivityDatalfc interface
public McEndpoi nt ActivityDescriptorlfc createEndpointData() throws MException

{
MyEndpRenot eSer vi ceDescri ptor eptData = new MyEndpRenot eServi ceDescri ptor (
get Name(), /1 Name
get Description(), /1 Description
get Shari ng(), /1 Sharing
get Moni t or Dat a() /1 Application attributes

)

ept Dat a. set Private(true);
return eptDat a;

)

NOTE: You may have noticed that in the code example above you're usng a
M yEndpRemoteSer viceDescriptor class which you will create next.

Scenario 3: Create a new classthat extends the M cEndpointServiceDescriptor class

Like the Didtributed Service Descriptor, this class al'so contains the data for your gpplication service. In
this case, the data is used on the endpoint system and needs to contain any information that your on and
off action methods might need. Like the previous example, you start out by defining any private data
members you need with getter and setter methods. Next, you need to implement the
getActivityActionClass method defined in the M cActivityDescriptor I fc interface. Hereis where you
tell the Management Centrd Java Framework the class which implements the M cSwitchable interface
which contains the on and off methods.

package com i bm as400. opnav. MyServi ceSanpl e;

public class MyEndpRenot eServi ceDescri ptor extends MEndpoi nt Servi ceDescri ptor
{
/| Constructors
public MyEndpRenot eServi ceDescri ptor (
String theNane,
String theDescription,
int theSharing,
MyMoni t or Dat a applicationData) throws MException
{
super (t heName, theDescription, theSharing, applicationData);
coordi nat or. addEvent Li st ener (new McSt at usAspect (), new
McDef aul t St at usEvent Handl er ()) ;
coordi nat or. addEvent Li st ener (new McResul t Aspect (), new
McDef aul t Resul t Event Handl er ());
}

Scenario 4: Create a new classthat implements the M cSwitchable interface

This scenario involves implementing methods for the M cSwitchable interface and the M cActionl fc
interface. The M cActionlfc interface includes the setObserver, setDescriptor, setThread,
descriptorChange, and descriptorRemove methods. The M cSwitchable interface includes the on and
off methods.

package com i bm as400. opnav. MySer vi ceSanpl e;

public class MyEndpRenot eServi ceAction inplenents McSwi tchable, MActionlfc

{
private MRenptelistener observer = null;
private MEndpoi nt ServiceDescriptorlfc data = null;
private MMethodThreadl fc t hr ead = nul |;

publ i c MyEndpRenpot eServi ceAction() throws MException
{} /1 Must inplement a no-argunment constructor for dynam c instantiation

private voi d doUpdate(McEvent event, String nethod) throws MException
{
try { observer.update(event); }
cat ch(Renpt eException e) {
if (e instanceof MRenpnt eException)
/1 Handl e MC generated exception. WII| nost |ikely want
/1 to construct a new McException(e) and throw to caller.
}
}

public void setObserver(MRenmpt elLi stener observer) throws MException
{ this.observer=observer; }

public void setDescriptor(MActivityDescriptorlfc data) throws MException
{
if (data instanceof MEndpoint ServiceDescriptorlfc)
this.data = (MEndpoi nt Servi ceDescriptorlfc)data;
el se
/1 handl e error

}

public void setThread(MMethodThreadlfc thd)

{

if((this.thread == null) && (thd !'= null))
this.thread = thd;

}

public void descriptorChange() throws MException
{}

public void descriptorRenove() throws MException
{}

GUI Developer

The GUI developer connects the user interface to the Distributed Service Descriptor class defined by
the application developer. One possible solution could be to add a new Monitor container in
Operations Navigator under the Monitors branch of the Management Centrd tree, adding a context
menu option on this new container to create new monitors, and adding context menu choices on each
monitor to view it's properties and to perform actions (i.e. New Based On, View Status, €tc.).

To perform this development you will need to know how to create an Operations Navigator Plug-in
usng LitManager and ActionManager interfaces, how to work with j]MC classes

M cDistributedSer viceDescriptor, McDistributedServiceView, and
McDistributedServicelL istView, and how to use the GUI helpers provided by the Management
Central Java Framework to display properties, select systems and groups, and to delete your
gpplication services.

Classes and Interfaces:
e com.ibm.mc.client.activity.service M cDistributedServiceDescriptor
e com.ibm.mc.client.activity.service McDigtributedServiceView
e com.ibm.mc.client.activity.service McDigributedServiceListView

Scenario 1: Creating Instances of your new Application Service

In scenario 1, you take your new set of service classes and explore how to create instances of them.
This would be the underlying function when aNew Service or New Monitor menu option is selected.
Basically there are three Seps in creating a new service.
1. Create an instance of your application’s distributed service descriptor. The properties of the
service would be retrieved from possibly GUI didogs or wizards prompting the user for the
information. Note that the getSystemGroup and getM onitorData methods used in the

Descriptor’s congtructor must be supplied by the user to retrieve the list of endpoint systems on

which to execute the command, and get the gpplication attributes for the service.
2. Create an ingtance of a Distributed Service View object specifying your gpplication service
descriptor.

3. Tél the Didributed Service View to add the ingtance of your service that you created in the first

step.

public void newService() throws MException

{

/] Step 1: Create an instance of the Distributed Service Descriptor
McDi stri but edServi ceDescriptorlfc data = new MyDi st Renpt eSer vi ceDescri ptor (

"MyAppTask", /1 Name

"Description", [/ Description

McManageabl e. NONE, /1 Sharing

get Syst emGroup(), /1 User nethod to get
System G oup

get Moni torData()); /1 User method to construct

dat a

/] Step 2: Create an instance of a Distributed Service View object

Scenario 2: Turn On/Off your Application Service Instance; receive Status and Results

Once you' ve created your service ingtance, you will want to have the user sart it (turnit on) and be able
to stop it (turnif off). Thisisaccomplished by cdling the on and off methods on the distributed service
view.

/1l Start your Service
vi ew. on();

/1 ... (further application processing - display a status dial ogue, etc)

/1l Stoo vour Service

Scenario 3: Get alist of your Application Service I nstances

If you need to retrieve alist of the servicesthat you created in Scenario 1, this next step will show you
how. There are only afew steps needed here.
1. Set upthe sdection criteriato only get services of class M yDistRemoteSer viceDescriptor
2. Cregte aningtance of M cDistributedServiceL istView to manage the list of services
3. AsktheDidributed Service List View to return to you alist of your gpplication's Distributed
Services

public Vector |istServices() throws MException
{
McManageabl eSel ectionCriteria selCriteria
McDi stri butedServi ceLi stView distServiceView
Vect or mySer vi celi st

nul | ;
nul | ;
nul | ;

/] Step 1: Define selection criteria to get a list of your application
sel Criteria = new McManageabl eSel ectionCriteri a(

"com i bm as400. opnav. MySer vi ceSanpl e. MyDi st Renot eSer vi ceDescri ptor",
McManageabl e. ALL, // Category

nul |, /1 List of owners (only used if next paranmeter
is true

fal se, /1 1nclude shared tasks

0); /1 Check the | ast changed date of the task

/] Step 2: Create a new Task List View to manage your application tasks

Scenario 4: Get asynchronous status and results of a Service

Once you' ve cregted and started your service, it will run asynchronoudy with other activities. If you
want to monitor the status of the request, you will want to attach a class to handle when status and
results are returned from the endpoint system to you. In Scenario 1, where you turned your service on
and off, you would probably aso want to attach a class to handle status and results before turning the
service on, and detach the class after turning the service off.

This dasswill implement the M cStatusDetailL istener and M cResultDetailL istener interfaces. In
the example shown below, the same class implements both these interfaces so we passin this asthe
object to handle status and result updates.

/'l Previously you would have retrieved a |ist of service views and

sel ected
/1 the one view that you want to nonitor status and results

/1 Attach to be notified when a Status or Result object is received
vi ew. att achSt at usDet ai | Li stener (this);
vi ew. attachResul t Detai |l Li stener (this);

// Display a status wi ndow or dialog, or turn service on

/'l Inplementing the McStatusDetaillListener interface
public void statusUpdate(MStatusEvent event) throws MException

{
try
{
McStatuslfc status = event.getStatus();
System out. println("MTestService: statusUpdate
+ "Status ID: " + status.getld()

+ " Level: " + status.getLevel ()
+ " Value: " + status.getlntValue());
i f(status.getlLevel () == McStatuslfc.DistributedAct &&
(status.getlntValue() == McStatuslfc.On ||
status.getlntValue() == McStatuslfc. O f ||
status.getlntValue() == McStatuslfc. Failed))
{
/1 handl e status update
}

/1 Inplementing the McResultDetailListener interface
public void resultUpdate(MResultEvent event) throws MException
{

try

{

/1l Get the result object out of the event information
McResultlfc result = event.getResult();

/1 Since the result object is a hierarchy of results for each Endpoint

/1l System specified in the task, you need to get the results for the
/'l specific Endpoint Systemto see its details.
McResultlfc childResult = (McResultlfc)(result.findChild("systeml"));

System out. println("MTestService: resultUpdate, systenl "
+ "Result ID: " + result.getld()
+ " Level: " + result.getlLevel ()

Hintsand Tips. The getResultData used in the previous example
genericaly returns an Object of type Seridizable. Y ou can easly cast the result
data to whatever kind of an object your specific application expects.

The MC Java Framework aso alows you to easily implement your own Status and Result objects to
use for your gpplication. All you need to do is create an object that extends either M cSer viceStatus
or M cResult. If you don't implement your own status and result objects, these default types will be
used, but if you do decide you need extensons of the functiondity available, you only need to extend
what's gpplicable. For ingtance, if you're implementing a service, and only need your own status type,
you only need to extend McServiceStatus, and can use the default M cResult implementation.

Once you've created your objects, you'll need to override the createStatus and/or createResult methods
in your descriptor objects (both endpoint and distributed) to return an object of your new status or
result type. ThejMC will automatically invoke these create methods when it needs a status or result
object.

Scenario 5: Get asynchronous status updatesfor Listsof Services

By implementing the M cM anageabl el istener interface, you can be notified when anew service has
been created, changed, updated, or ddeted. Thisis most useful when maintaining alist of activities, and
you wish to be notified whenever they are added, removed, updated, or changed. Thislist of servicesis
specified usng selection criteria so that you are not notified when just any activity is created, but only
those services that meet your selection subset. This code is identical to the code used to retrieve alist
of activities based on a sdlection subset, but we add a fourth step here to attach the current class asthe
ManageableListener. Thisinterface, dong with the implemented update, change, and remove methods,
alows the Management Centrd Java Framework to send you a natification when an activity has been
updated.

public class MyServiceList inplenents McManageabl eLi st ener

{
public void getList() {

McManageabl eSel ectionCriteria selCriteria = nul |;
McDi stri butedServiceLi stView viewList = null;
Vect or retrievedTasks = null;

/1 Step 1: Define selection criteria to get a |ist of Distributed Services
selCriteria = new McManageabl eSel ectionCriteria(

"com i bm as400. opnav. MySer vi ceSanpl e. MyDi st Renpt eSer vi ceDescri ptor",

"McManageabl e. ALL", /'l category

nul |, /1 Omer List (only used when next parmis true)
fal se, /1 use sharing

0); /1 last changed date

/]l Step 2: Create a new Service List View to nanage your services
vi ewLi st = new McDistributedServiceListView(selCriteria);

/1l Step 3: Ask the Distributed Service Manager for a |list of Distributed
Servi ces
retrievedTasks = vi ewli st. get Manageabl eVi ews() ;

/'l Step 4: Attach this class, which inplenents the McManageabl eLi st ener
interface,

/1 to handl e any notifications.

vi ewLi st. att achManageabl eLi st ener (this);

}

/1 The followi ng methods are required as an inplenmentation of
McManageabl eLi st ener

public void manageabl eAdded(McManageabl eEvent event) throws MException {
/1 Insert code to handl e when a new task has been created

}

public void manageabl eChanged(McManageabl eEvent event) throws MException {
/1l Insert code to handle when a definition has changed. A "change" is a

I'l near _dirartad nranartyv ~rhannn ciirh ac ~rhanninn tha AdAafinitinn'c

Scenario 6: Delete an Application Service I nstance

If you need to delete aservice, or alist of services, the Digributed Service View and Ligt View classes
provides the methods for you. Deleting a service removes the service from the Management Centrd
databases and is no longer a managesble service. When working with the Digtributed Service View
object, you can smply call removeM anageable method on the instance of the object itsdlf; for aList of
Views, you can Smply cal removeManageablel ist on the LisView instance.

/1 Tell the Distributed Service View to rempbve the instance of your service
di st Servi ceVi ew. renoveManageabl e() ;

/Il O, for a Distributed Service List View

Scenario 7: Change an Application Service Instance

To change an existing service, the Digtributed Service View provides the method for you to use. Prior
to caling change, you would have areference to a service that you previoudy crested or retrieved from
alig of services. With the reference to the service, you may have the end user modify it by displaying
property pages and using the appropriate set methods to update the service instance. Now when you
have the service instance up to date, you can tell the Digtributed Service View to store the changes.

/1 Step 1. Change the Distributed Service Descriptor locally
di st Servi ceDesc. set Descri pton("New Description");

/'l Step 2: Tell the Distributed Service View to change the Descriptor on the

NOTE: In addition to al the services features documented above, there are additiona advanced
features that apply to services you should be aware of. Since they are features that apply to activitiesin
generd (and some gpply to definitions), they have been documented in their own chapter, affectionately
entitled Advanced Features, beginning on page 54.

Terms, Classes, and Interfaces

Thing Type What todo Purpose
with it
M cDistributedServiceDescriptor Class Extend An application will create one (or more)

subtype(s) of this class to define how their
multi-system service will run, what datawill be
associated with it, and how it will handle
events on the central system. Y our subtype(s)
of this class will describe most of the parts of
your application.

McDistributedServiceDescriptorlfc | Interface | Use Theinterface that all distributed service
descriptors will support.
McDistributedService Class Use Objects belonging to this class represent the

actual, running service. You may operate on
distributed service objects using the
M cSwitchable interface.

All distributed services have adistributed
activity descriptor associated with them. The
servicerefersto its descriptor to get
information about how it should run.

Y ou are not responsible for instantiating this
object. A distributed service object can be
obtained from a distributed service descriptor
object that is being managed by the MC
framework.

M cSwitchable

Interface

Implement

Thisinterface defines the methods that you
may call on adistributed service. Useit when
you want to start (turn on) aservice or to stop
(turn off) arunning service.

M cEndpointServiceDescriptor

Class

Extend

An application will create one (or more)
subtype(s) of this class to define how their
service will run, what datawill be associated
with it, and how it will handle events on the
endpoint.

M cEndpointServiceDescriptorlfc

Interface

Use

Theinterfacethat all endpoint service
descriptors will support.

McActionlfc

Interface

Implement

Y ou must provide a class that implements this
interface to perform the endpoint on and off
action that is part of your service. Y our object
will perform the “real work” of making the
service run on the endpoint, and the MC
framework will call the object at the appropriate
time.

McDistributedServiceView

Class

Use

Thiswrapper class extends the capability of
the McDistributedService classto provide
additional capabilities that make GUI
programming easier. By using the attach and
detach capabilities, GUI databeans can be
notified directly when a status has changed.

Service Actions:
-on
- off

Distributed Service Manager:
- addM anageable

- getManageable

- changeM anageable

- updateM anageable

- removeM anageable

Event Listeners:

- attachStatusDetail Listener
- detachStatusDetail Listener
- attachResultDetailListener
- detachResultDetail Listener

McDistributedServicelListView

Class

Use

Thiswrapper class extends the capability of
the McDistributedServiceM anager class to
provide additional capabilities that make GUI
programming easier. By using the attach and
detach capabilities, GUI classes can be notified
directly when anew service has been added,
changed, or removed from alist of services.

Distributed Service Manager:
- getManageableL ist

Event Listeners:

- attachManageabl eListener

Hints and Tips

This space has been included so that you can document your own specid hints and tips.

Advanced Features

The following scenarios are provided to supplement the information in each of the preceding sections.
They are considered advanced features only because they aren’t necessary to use the definitions or
activities provided by the Management Centra Java Framework. However, they are quite useful, and
are provided here as areference.

All examples are shown using the Digtributed Task as the base, but keep in mind that al are valid for
any activity, whether tasks or services. Also, scenarios 2-4 aso apply to definitions.

Scenario 1. Recelving connection updates

Similar to recelving status or results updates by attaching a class that implements a certain interface,
clients can a0 attach for connection updates by implementing the M cConnectionL istener interface
and implementing the connectionUpdate method. This method will return to any attached ligteners a
M cConnectionEvent update whenever the status of the connection changes. The event can then be
polled to determine the nature of the update. The following example will help get you started.

Firgt, you need to atach aclass as a connection listener. Y ou do thisby first cregting a

M cConnectionAspect object to tdl the MC Java Framework which systems you wish to receive
updates from. 'Y ou should specify the specid String constant McManageable ALL s0 even if the
central system is changed by the user, you'll il receive connection updates from the new centra
sysem. Then, invoke attachConnectionLister through its satic interface on class

M cClientConnectionM anager, supplying the aspect and the listener ingtance. Since this class will
implement M cConnectionListener, specify this as the listener instance.

/1 Attach class as the connection |listener
McConnecti onAspect aspect = new McConnecti onAspect (McManageabl e. ALL);
McCl i ent Connecti onManager . att achConnecti onLi stener(this, aspect);

/1 ... customlogic for processing your application goes here

/1 When you no | onger want connection updates, detach this

I'l i net anra aec a ~nnnartinn lictaoanar

Then, implement the connectionUpdate method. Notice that you' |l need to supply the
getCentra SystermName method used to get the current central system to compare to the connection
event. Use the M cClientConnectionM anager classto help you.

public void connectionUpdate (MConnecti onEvent event) throws MException

{

/'l For instance, could check if event represents a broken connection
if (event.contains (getCentral SystemName()) &&
(type == McConnectionEvent. MCJavaConnecti onFree ||
type == McConnectionEvent. MClJavaConnectionDrop ||
type == McConnecti onEvent. MCCPPConnecti onDrop))

/1 customlogic to close windows and notify users

I'l that ~rAannar tinn tn rantral cita hac haoan | nct

Scenario 2: Private Descriptors

By default, dl Descriptors are public. Mainly, this means that once the manageable is managed by the
JMC, it will be stored persstently in a database on the server. Any user that has gppropriate authority
can retrieve that descriptor off the server by setting up a SdlectionCriteria object that meets some
criteria of the descriptor, creating alist view with the selection criteria, and cdling

get Manageabl eVi ews ontheligView.

Private descriptors, on the other hand, are never stored persistently, and may not be retrieved off the
server once they’re created, even by the owner. Even if auser specifies a sdlection criteria that exactly
meatches the private descriptor, it will not be returned in their list. Thisiswhy you let the JMC default to
use the public Didributed Task Manager when creating your Distributed Task Descriptor, but you need
to specify setPrivate(true) when creating the Endpoint Task Descriptor within your Didtributed Task
Descriptor implementation. Since the endpoint descriptor is only applicable to that sSingle execution, you
wouldn't want to grant others the ability to retrieve it off the server.

In the following example, the descriptor is created as normal, but Step 1ais added to make the
descriptor private. Without this step, anyone with the appropriate authority could retrieve the task from
the server, and possible update it.

McDi st ri but edTaskDescriptorlfc di st ConmandDesc
McDi st ri but edTaskVi ew di st TaskVi ew

= null;

= null;

/1 Step 1: Create an instance of a Distributed Task Descri ptor
di st CommandDesc = new MyDi stri butedCommandCal | Descri pt or (

"Task Name", /1 Nanme

"Task Description", /1 Description
McManageabl e. NONE, /1 Sharing

get Syst enGr oup(), /1 System G oup

get Command()); // Application attributes

/1l Step la: Make descriptor private
di st ConmandDesc. set Pri vate(true);

/1 Step 2: Create an instance of a Distributed Task Vi ew object

/1 specifying the Distributed Task Descri ptor.
di at TacskVi ew = new M:Di stri hut edTaskVi ewl di st CommandDese) -

Scenario 3: Public Descriptor Sharing

In this scenario, we added Step 1ato change the Descriptor’s sharing value. Sharing lets the owner
specify whether other users can view or change the contents of the descriptor. Only public descriptors
can be shared.

McDi st ri but edTaskDescriptorlfc di st ConmandDesc
McDi stri but edTaskVi ew di st TaskVi ew

nul | ;
nul | ;

/1l Step 1: Create an instance of a Distributed Task Descri ptor
di st CommandDesc = new MyDi stri but edCommandCal | Descri pt or (

"Task Name", /1 Nanme

"Task Description”, /| Description
McManageabl e. NONE, /1 Sharing

get Syst enGr oup(), /1 System Group

get Command()); // Application attributes

/1 Step la: Enable full sharing

/1 Alternatively, this could have been specified on the constructor
above

di st CommandDesc. set Shar i ng(McManageabl e. FULL) ;

/] Step 2: Create an instance of a Distributed Task Vi ew object
By default, there is no sharing of descriptors, but by setting the sharing value of this
M cDistCommandDescriptor to McManageable.FULL, al userswill be ableto retrieve the
descriptor usng the listView's getManageabl eViews method, and will aso be able to make and store
changes to the server using the changeManageable method on the View, or even deleteit viaacal to
removeManagesble on the View.

Vdid sharing vaues and their meanings are:

Thisis the default sharing vaue. No users will be

McManagesble NONE able to view the descriptor.
McManagesble READ All ugerswﬂl be able to view but not change, the
descriptor.
All users will be ableto view and change, but not
McManageable USE delete the descriptor. Only activities (tasks and

services) may utilize this sharing value.

All users will be ableto view, change or ddete the
McManagesble FULL descriptor. Only definitions may utilize this
sharing value.

Scenario 4: Auto Increment

In this scenario, we added Step 1ato set auto increment to true. Auto increment allows the user to
creste multiple instances of atask without worrying about a name conflict. Thefirg timethisisrun, it

will create atask with a name specified by the parameter theName (ex. “MyTask”). By adding step 1a,
the second time this is run the Management Centrd Java Framework will autometically identify thet the
name’MyTask” exigs and increment the nameto “MyTask(2)”. Thethird timeit will be*MyTask(3)”
and so on. Without adding step 1a, the second time the newTask method is run an exception would be
sgnded when performing the addM anageable method call.

McDi stri but edTaskDescriptorlfc di st CommandDesc = nul | ;
McDi stri but edTaskVi ew di st TaskVi ew = null;

/1 Step 1. Create an instance of a Distributed Task Descri ptor
di st CommandDesc = new MyDi stri but edCommandCal | Descri pt or (

"Task Nane", /'l Name

"Task Description", /1 Description
McManageabl e. NONE, /'l Sharing

get Syst enGroup(), /'l System Group

get Command()); // Application attributes

/'l Step 1la: Enabl e auto-increment
di st CommandDesc. set Aut ol ncrenment (true);

/'l Step 2: Create an instance of a Distributed Task View object
11 specifying the Distributed Task Descri ptor.

Scenario 5: Categories

When the same task class needs to be used for multiple purposes, categories can be used to distinguish
between them. In this command task example, maybe you have the need for both Backup-type tasks
and Restore-type tasks. Since both types of tasks use the same descriptor class the JMC will not be
able to digtinguish between both types of tasks given only the class name. The use of Categories will
help distinguish between your different types of tasks. When you create an instance of your task, you
can specify a Category to use like “Backup-type” instead of creating a separate task class for each.
Thisisdone in Step 1ain the following example.

McDi stri but edTaskDescriptorlfc di st CommandDesc
McDi stri but edTaskVi ew di st TaskVi ew

nul | ;
nul | ;

/1 Step 1. Create an instance of a Distributed Task Descri ptor
di st CommandDesc = new MyDi stri butedCommandCal | Descri ptor (

"Task Nanme", /1 Name

"Task Description", /1 Description
McManageabl e. NONE, /1 Sharing

get Syst enGr oup(), /1 System Group

get Command()); // Application attributes

/1 Step la: Set category
di st CommandDesc. set Cat egor y(" Backup-type");

/'l Step 2: Create an instance of a Distributed Task View object
/1 specifying the Distributed Task Descri ptor.
di st TaskVi ew = new McDi stributedTaskVi ew(di st CommandDesc) ;

If you specify a category when you create an instance of your gpplication’s task, you can specify that
same category in your sdection criteria on the Manageable Sdection Criteria interface to only receive
tasks that match. Thisalowsyou to retrieve alist of only Backup-type tasks or Restore-type tasks
even though they both share the same

com.ibm.as400.0pnav.MyTaskSample. M cDistributedCommandCall Descriptor class.

public Vector listTasks()

{
McManageabl eSel ectionCriteria selCriteria
McDi stri but edTaskLi st Vi ew di st TaskVi ew
Vect or my TaskLi st

nul | ;
nul |
nul | ;

/] Step 1. Define selection criteria to get a |list of your application
selCriteria = new McManageabl eSel ectionCriteria(

"com i bm as400. opnav. MyTaskSanpl e. MyDi stri but edCommandCal | Descri ptor",

"Backup-type", /| Category

nul |, /1 List of owners (only used if next paraneter
is true

fal se, /1 Include shared tasks

0); /1 Check the | ast changed date of the task

/_(St_ep. 2 Create a_ _nt_eyv Ta§!< Li st_ V? ew t_o_. mapagfs:_ypur gppl ication tasks
If you do not specify a category when constructing your descriptor, the Management Centrd Java
Framework will create a default category for you, and use that category when storing your descriptor
on the centrd system. 'Y ou can explicitly use the default category by specifying the
McManageable. DEFAULT specid category vaue.

If your descriptor is created and stored with the default category, it can only be retrieved using the
default category (remember, if you omit a category specification, the default category will be used), or
by specifying the M cM anageable. AL L specid category vaue. Thisspecid vauetelsthejMC to
disregard the category vaue when retrieving descriptors based on your selection criteria. In the above
example, if your | i st Tasks method specifies M cM anageable. AL L asits category value, both
Backup-type and Restore-type tasks will be retrieved.

Scenario 6: Logging activity events

Upon execution of your gpplication’s Action on the server, you may find that you want to log events
persstently, so that a user interface can retrieve these events at some later date and be able to see what
has higoricaly occurred with their gpplication. Thiswould be the case with long running services,
where you would like to have the ability to start a service and then detach your user interface, only to
reattach later and view the events of the service. The MC Java Framework’ s Event Log classes can
help you with this.

To implement your own events and have them stored persstently on the centra site, you'll need to
extend the M cL oggableEventDetail class. This class heps you define the data specific to your
gpplication, aswell as aformat for the data, so your formatted data can be retrieved at a later date. As
an implementation of McL oggableEventDetail, you need to write the getEventSpecificBytes method to
return the actua data for the event, the getFormatBytes method to return the format of the actud event
data, and the getFunctionCodeBytes method to provide a function code to help the user interface to
retrieve the events from the centrd system.

In addition to the methods defined in the example, you'll need public congtructors and/or getter and
setter methods to set and retrieve the data to and from your event class.

public class MyMonitorEvent Detail extends MLoggabl eEvent Det ai |

{
public byte[] getEventSpecificBytes() throws MException

{

byte[] eventData = null;
event Data = Bi naryConverter.intToByteArray(messagel nfo. get MessageSeverity());

eventData = McUtilities. nerge(eventDat a,
McUtilities.stringToByteArray(get AS400().getCcsid(),
McUtilities.correctSize(m nessagel nfo. get MessageType(), 2)));

/1 ... process all information you want associated with the eventData
return event Dat a;

}

public byte[] getFormatBytes() throws MException

{
return McUtilities.stringToByteArray(get AS400().getCcsid(), format);

}

Hintsand Tips. Theformat and function code data members used in the
preceding example cannot be specified by the application developer creating
their own event type. They, aswdl as the event-specific bytes, are defined by a
Management Centrd API that must be adhered to. If you are using this example
to create your own event type, contact a member of the Management Central
Java Framework to help update the API to accommodate your new kind of
event.

Then, in your code that’s monitoring for certain conditionsin which you wish to generate an event, you
need to create a M cL ogEvent, containing aM cL oggableEvent, containing an instance of your
implementation of M cL oggableEventDetail, MyM onitor EventDetail. That'salot of objectsto
handle, but it provides the j]MC with a generic interface to update your centrd system with events
specific to your gpplication.

public class MyLogActi onEvent inplements Serializable

{
McRenot eLi st ener observer = null;
String gui ClassNane = "com i bm as400. opnav. MyEvent Sanpl e. MyGui Cl assEvent Handl er";

public MyLogActi onEvent (McRenpt elLi stener theObserver)
{

this.observer = theObserver;

}

public void | ogEvent (MyEndpRenot eSer vi ceDescri ptor endpDescri ptor)
throws McException, RenoteException

{
McLoggabl eEvent Detai |l eventDetail = new MyMonitorEventDetail ();
int event Type = 0;
/1l ... set data in your event detail instance
McLoggabl eEvent event = new McLoggabl eEvent (
endpDescriptor, // endpoint service descriptor for this
endpoi nt

nnnnn + ThrmaA 11 HEreR S PmAl ARt nAa F A LD nAd AF A AN

Hintsand Tips. Theobserver datamember passed into the class
congtructor can be retrieved from your Action class (the one that implements
McActionlfc). Theclass setObserver method will be caled by the MC Java
Framework to give you an ingtance of McRemotelistener. This obsarver is
smply a managed reference to your endpoint activity.

Finaly, you'll need to update both your endpoint and distributed descriptor constructors to listen for
loggable events. The endpoint descriptor will be notified when the Action class cdlls update on the
observer, and it will forward the update on to your distributed descriptor on the centra system. There,
the MC Java Framework will perastently store the event.

/1l The Aspect filters the | ogged events based on class nanme
McAspect aspect = new McAspect("comibmnc.client.notification. McLogEvent");

/1 The coordinator, defined in your descriptor's superclass, coordinates events

/1 In your endpoint descriptor, tell the event handler to forward the event

11 + A +thaAa AAnnt Al ~vimt Ana (4 v AN AnmA NNAT + A | An +hAa AvvAn + An thi A AuiAat Ava £ Al AR

Alternatively, on the centra system, you' Il want to toggle the boolean vaues for the
McL oggableEventHandler, because you don’'t want to update any other observer, but you do want to
log the event on the current system.

coordi nat or. addEvent Li st ener (aspect, new McLoggabl eEvent Handl er (fal se, true));

Now that the event islogged on the central system, the user interface designer will need to provide the
implementation to retrieve the events from the centrd system. Since loggable events are definitions,
you'll use the M cDefinitionL istView class to manage your list of events, and the

M cEventSelectionCriteria class to specify which eventsyou want. There are only afew steps
needed here:

String[] classTypes =
{"comibm as400. opnav. MyEvent Sanpl e. MyGui Cl assEvent Handl er"};

/1 Step 1: Specify which events to retrieve
McEvent Sel ectionCriteria criteria = new McEvent Sel ectionCriteria(

nul I, /'l category |ist
nul I, /1 owner list (valid if next parm
is true)
fal se, /1 include sharing
0, /'l 1ast changed
nul |, /1 originator list
nul |, /'l systemli st
cl assTypes, /1l application type |ist
null); /1 event Typeli st
Il Sten ?2° Create a new Definition list View ohiect to manane vour events

Many of the parameters of the M cEventSelectionCriteria condructor are smilar to the

M cM anageableSelectionCriteria congtructor discussed in earlier sections. The most important for
this exampleisthe application type list parameter. This specifies fully qudified class namesfor classes
that know how to decode the event detail that is part of the McLoggableEvent. Thisisthe same class
name as was used in the McLoggableEvent congtructor when the event was logged. In the example
shown above, a McLoggableEvent was created with the class name

"com i bm as400. opnav. MyEvent Sanpl e. MyGui Cl assEvent Handl er ", S0 if, in the example above, this
String was pecified in the M cEventSdectionCriteria, the event will be returned to you from the cdl to
getManageableViews . With the event, you can dynamicdly indantiate this class, send the event over for
decoding of the loggeble event detail, and show the loggable event in agui pand.

Call To Action

Y ou may find that you need to periodicaly invoke methods directly on your endpoint activities other
than those that are managed by the JMC. For ingtance, if you're implementing a service, the JMC will
handle the execution of the on and off methods at the agppropriate times, based on actions of the user,
but what if you need to alow the user to reset some triggered metric for that service? The Cdl To
Action methods on M cActivityView are your answer.

Two implementations exist, and they vary dightly. The cal ToActionAsync method is used to push the
method cdl onto a queue. The MC Java Framework will invoke the method in duetime asit's

de-queued from the server, and status and/or results will be propagated back to the cdler viaregistered
dtatus, results or cal ToAction listeners. The calToActionSync method, on the other hand, will directly
invoke the method, dlowing the requester to wait on that execution thread until the method is complete.
Any gatus or results will be returned directly to the caler through return vaues or exception objects.
This method invocation will follow the same execution modd as the rest of the framework, thet is, it will
be run under the user profile of the owner of the activity.

In either case, you can only cal methods defined in your Action class, that is, the class that implements
McActionlfc (and ether the McSwitchable interface for services, or the McExecutable interface for
tasks).

In this example, we Il implement a method caled manua TriggerReset to be invoked from the user
interface usng a cdl to action method. On the server, smply define the method to be invoked in your
McActionlfc class. Thisis the same class that defines the actions of your gpplication.

package com i bm as400. opnav. MySer vi ceSanpl e;

public class MyEndpRenoteService inplenments MSwi tchable, MActionlfc
{

private MRenoteli stener observer = null;
private MEndpoi nt Servi ceDescriptorlfc data = nul |;
private MMet hodThreadlfc t hr ead = nul |;

public MyEndpRenoteService() throws MException
{} /'l Must inplement a no-argunment constructor for dynam c instantiation

// define interface nethods:

/1 on, off from McSwitchable
/1 set Descriptor, setObserver, setThread,
/1 descri pt or Change, descriptorRenove from McActionlfc

/'l Step 1: define your call to action method
nithl i ¢ void manual Tri aaer Reset (VVect ar i ohl D2 hoonl ean runConmmnd St ri na

On the client, use these steps as guiddines for invoking an activity action method viaacdl to action
method:

1. Setupaview containing your implemented distributed service descriptor, and use the view to
addManagesble on the descriptor.

2. Attach the current class asthe class that’ s listening for cal to action updates. This class must
implement the M cCall T oActionL istener interface.

3. Setupthelist of parameters and parameter types required for the method you wish to cdl. For
the sake of amplicity, assume these parameters were created earlier in the code.

4. Invoketheview's cdl to action method, specifying the name of the action method you need to
cdl, the parameter ligt, the parameter type list, and the system group on which to run. Note that
the getSystems method used must be supplied by the user to retrieve the list of endpoint systems
on which to execute the method.

5. When you're through processing cal ToAction updates, detach the current instance asa
calToAction ligener.

/1 Step 1: Create an instance of the Distributed Service Descriptor
McDi stri but edServi ceDescriptorlfc data = new MyDi st Rennt eSer vi ceDescri ptor (

"MyAppTask", /1 Name

"Description", // Description

McManageabl e. NONE, /1 Sharing

get Syst enGr oup(), /1 User method to get
System G oup

get MonitorData()); /1 User nethod to

construct data

/1 Create an instance of a Distributed Service View object
/1 specifying your application service descriptor.
McDi stri but edServi ceVi ew view = new McDi stri butedServiceVi ew(dat a);

/1 Tell the Distributed Service View to add the instance of your service
vi ew. addManageabl e() ;

/'l Step 2: Attach the current class as the listener
vi ew. att achCal | ToActi onLi stener (this);

/1 Step 3: Set up parmlist and parmtypes for the call to action.
Object[] parnms = {getJoblds(), new Bool ean(true), getOwner()};

String[] parnifTypes = {"java.util.Vector",

Finaly, as part of the McCdlToActionListener interface, you must supply aresultUpdate method to
handle the cal ToAction result event:

public void resultUpdate(MCall ToActi onEvent event) throws MException
{

/'l Retrieve results fromthe nethod invocation
Obj ect data = event.getData();

/'l process results

Hintsand Tips: Ingead of implementing the Call ToActionListener interface
to receive asynchronous updates as shown above, you could have dternatively
cdled the cal ToActionSync method, which returns an object of type

McResultlfc, which would contain results returned by the invoked method.

Query Manager

Query Manager is an added utility for directly accessng database data on the Centra System. This
interface dlows the devel oper to create a query statement using SQL syntax and use it to retrieve data
directly from aserver table. The dataretrieva will be processed using the Management Central Java

Framework's user prafile"QY PSISVR", and therefore this interface will only have access to databases
where permission has been explicitly granted to the profile.

Any client code that uses thisinterface will be SQL dependent and will be dependent on the actud table
names, fields and formats on the central system. In addition, this interface should not be used to access
definitions, tasks, services, or any other Managesble objects that are stored persstently on the centra
sysem. Thisinterface should only be used to query non-Manageable data on the centrd system that is
stored in an SQL database.

In the example below, an inventory gpplication stores information about hardware and software on the
target system. The agpplication creates their own table QAY1VSY S inwhich thisdatais stored. The
example shows how to query thistable usng the Query View utility. The results returned from the
query come in the form of aVector, where each eement of the Vector is arow matching the selection
criteria. Since each row has multiple columns, each eement of the Vector is another Vector, where
each eement is a column from the table. When extracting data from each row, extract it as an Object,
as opposed to primitive types (e.g., extract text data as type String, but extract numerical values as
Integer, instead of int).

To use Query Manager, you'll need only one class, com.ibm.mc.client.M cQueryView, and itsonly
satic method, parformSalQuery.

/1 Step 1: Build SQL sel ect statenment
String select = "SELECT * FROM QUSRSYS. QAYI VSYV WHERE SYSTEM KEY = " +
key;

/1l Step 2: Execute the query.
Vector rows = McQueryVi ew. perfornSql Query(sel ect);

/]l Step 3: Retrieve results data
for(int i = 0; i < rows.size(); i++)

{

/1 get first row
Vector singleRow = (Vector)rows. el ement At (i);

/1 2nd field in DB "SYS_VALUE"
String wkValueName = (String)singleRow. el ement At (1);

/1 3rd field in DB "DATA_TYPE"
Short dbDat aType = (Short)singl eRow. el ement At (2);

if (dbDataType.intValue() == 1)
{

String valueData = " "

// aet lenath of string

Management Central Distributed Command Call Application

Overview

In this chapter you will learn about classes provided by
the Management Centrd Java Framework that alow you
to run an AS/400 CL Command on multiple remote
AS400 endpoint systems. The
McDisstCommandDescriptor class withthe hep from ¢ pnicai et cenval System Enclocint Systems

the M cDistributedTaskView and

McDistributedTaskListView classes, provide the

Management Central Digtributed Task functions alowing a Java program to execute a non-interactive
AS400 command on multiple systems and return status and results back to the Central System and the
graphicd client.

To make this happen, the JMC uses classes from the AS/400 Java Toolbox. The CommandCall class
is used to congtruct the AS/400 CL command so that the M C can send and execute the request to the
endpoint systems. The CommandCall classis aso used to store any ASA00M essage objects that are
returned as the result of executing the command.

Interfaces and Flows

Application Designer

Y ou will first want to determine whether the M cDistCommandDescriptor class contains the
functiondity that meets your gpplication needs. Y our application would use this function if the interfaces
you are caling on the AS/400 are CL commands and you require only minima status and results about
the execution of the command.

Some of the specifications of the M cDistCommandDescriptor are:
* Canrunasingle AS400 CL command a atime
* Runsasynchronoudy, meaning aonce the task is distributed to the endpoints, each endpoint
runs the task in parallel and reports status back upon completion of the task
* Reurnsalimited defined set of status values
* Returns AS/400 messages within the CommandCal object
* The command will run under the profile of the owner

GUI Developer

The following scererios describe how to use the CommandCall, M cDistCommandDescriptor,
McDistributedTaskView, and McDistributedTaskListView classes.
Classes and Interfaces:

e com.ibm.mc.dient.activity.task.command.M cDistCommandDescriptor

e com.ibm.mc.dient.activity.task.McDigtributedTaskView

e com.ibm.mc.client.activity.task.McDidtributedTaskLisView

e com.ibm.mc.client.activity.M cActivityDescriptorSelectionCriteria

e com.ibm.mc.client.M cManagesableSelectionCriteria

e com.ibm.as400.access.CommandCall

Scenario 1: Create and Execute a Distributed Command Call Task

It isvery easy for the GUI developer to use the M cDistCommandDescr iptor classto create and
execute a distributed command cal task. Here are the steps to get you Started:
1. Create aningtance of an AS/400 Java Toolbox CommandCall object and set the command.
2. Create aningance of a Distributed Command Descriptor specifying the Task Name, Task
Owner, Task Description, Sharing, and a System Group; then sat the command using the
CommandCal object created in step 1. Note that the getSystemGroup method used in the
Descriptor’s congtructor must be supplied by the user to retrieve the list of endpoint systems on
which to execute the command.
3. Create an ingtance of aDigtributed Task View object specifying the Digtributed Command
Descriptor created in step 2.
Tdl the Digtributed Task View to add the instance of your task so thet it can be managed.
Cdl the execue method to distribute and execute the command on al the endpoint systems
specified in the Sysem Group.

o &

McDi st ConmandDescri pt or di st CommandDesc = nul | ;
McDi stri but edTaskVi ew di st ConmandVi ew = nul | ;

/1 Step 1: Create an instance of a CommandCall object and set the conmand
CommandCal I cndToRun = new CommandCal | () ;
cndToRun. set Conmand(" CRTLI B USRLI B") ;

/'l Step 2: Create an instance of a Distributed Command Descri ptor

di st ConmandDesc = new
McDi st ConmendDescri pt or (" Command Task Nane", /1 Name
"Command Task Description", //

Descri ption

McManageabl e. NONE, /1 Sharing

get Syst enGr oup(), /1 System
Group

cnmdToRun, I
ConmeandcCal |

nul 1); /1
Cat egory

Hintsand Tips:. If you look a the Toolbox documentation for CommandCall,
you will see acongtructor that accepts an AS400 Object. In the example above, if
you supply a CommandCal containing an AS400 Object that is aready connected to
some AS/400 endpoint system, the jMC will accept it, but will overwrite the Object.
Since the AS400 is used to execute native cals on the Endpoint, the data stored
within the Object must correspond with the current system. If it does not, thejMC
will congtruct anew A 400 on the endpoint system and use that Object for command

Nnroarocc NN

Scenario 2: Get lis of Distributed Command Call Tasks

If you need to retrieve alist of Distributed Command Cadll tasks that would include the task you crested
in Scenario 1, this next step will show you how. There are only afew steps needed here.

1. Set upthe sdection criteriato only get tasks of the class M cDistCommandDescr iptor

2. Create an ingtance of the McDistributedTaskL istViewto managethelist of tasks

3. Ask the Digtributed Task Manager to return to you alist of Distributed Command Call Tasks

nul | ;
new Vector();

McManageabl eSel ectionCriteria selCriteria
Vect or retrievedTasks

/1l Step 1: Define selection criteria to get a |list of Distributed Conmand Tasks
selCriteria = new McManageabl eSel ectionCriteria(
"comibmnr.client.activity.task.comand. McDi st ConmandDescriptor", //

Cl ass

McManageabl e. ALL, // Category

nul |, /1 List of owners (only used if next parameter is
true)

fal se, /1 Include shared activities

0); /1 Last changed date of the activity

Scenario 3: Delete a Distributed Command Call Task

If you need to delete a Didiributed Command Call task, or alist of them, the Digtributed Task View and
Ligt View classes provide the methods for you. Deeting atask removes the task from the Management
Centrd databases and is no longer amanaged task. When working with the View object, you can
amply cadl removeManagesble on the instance of the object itsdlf; for aLigt of Views, you can Smply
cdl removeManagesblel igt on the LigtView ingtance.

/1 Step 1: Tell the Distributed Task View to renmove the instance of your task
vi ew. removeManageabl e() ;

I/ O, for a Distributed Task List View

Scenario 4: Change a Distributed Command Call Task

To save changes of an exidting task on the Centrd System, the Digtributed Task View provides the
method for you to use. Prior to caling change, you would have a reference to atask that you previoudy
created or retrieved from alist of tasks. With the reference to the task, you may have the end user
modify it by displaying a property page and using the appropriate set methods to update the task
ingtance. When you have the task instance up to date, you can tdll the Digtributed Task View to store
the changes. When working with the task view object you can smply cal changeManageable on the
instance of the object itsdlf.

/1l Step 1: Change the Distributed Task Descriptor locally
di st ConmandDesc. set Descri pton("New Descri pton");

/1 Step 2: Tell the Distributed Task View to change the instance of your task

Scenario 5: Get asynchronous status and results of a Task

Once you' ve crested your task and called execute, the task will run asynchronoudy with other activities.
If you want to monitor the status of the request, you will want to attach a class to handle status and
results that are returned from each endpoint syssem. This dasswill implement the
McStatusDetailListener and M cResultDetailL istener interfaces. Note: In the example shown
below, the same class implements both these interfaces so we passin this as the object to handle status
and result updates.

/'l Previously you would have retrieved a |ist of task views and selected the
/1 one task view that you want to nonitor status and results

/1 Attach to be notified when a Status or Result object is received
vi ew. attachSt at usDet ai | Li stener(this);
vi ew. att achResul t Detai | Li stener(this);

// Display a status wi ndow or dial og

/1 \When the user is done with this wi ndow or dial og, detach the status and
/1l result listeners before closing the w ndow

public void statusUpdate(MStatusEvent event) throws MException

{

/'l Get the status object out of the event information
McStatusl fc status = event.getStatus();

/1 If the overall status value indicates the task has finished

if (status.getlLevel () == McStatuslfc.DistributedAct && status.isFinalized()
)

{

/'l Handl e <t atiie nndat e

public void resul t Updat e(McResul t Event event) throws MException

{

/'l Get the result object out of the event information

McResul tlfc result = event.getResult();

/1 Since the result object is a hierarchy of results for each Endpoint
System

/1l specified in the task, you need to get the results for the specific
Endpoi nt

/'l Systemto see its details.

McResultlfc childResult = (McResultlfc)(result.findChild("systeml"));

/1 Be sure that the result object is an instance of CommandCall before

/1l perform ng ConmandCal | type methods.

if(childResult !'= null && childResult. getResultData() instanceof
CommandcCal |)

{

/'l Get the CommandCall object our of the result object
CommandCal | cnd = (CommandCal |) chil dResul t. get Resul t Dat a() ;

if ((cnd.getMessagelList() !'= null) && (cnd. get MessageList().length > 0))

{
/'l Retrieve list of AS/400 nessages

AS400Message[] msgs = cnd. get MessagelLi st ();

Hints and Tips

What exactly does theexecute dofor a Digributed Command Call?

The execute tells the Management Centra Java Framework to distribute the task to every system
specified in the system group. Once ddlivered to the endpoint system, the CommandCall object will be
extracted from the task and run. If the return code vaue from the run() method indicates an error
(fdse), then McStatuslfc.Failed will be returned in the satus event. If the return code vaue indicates
success (true), then avaue of McStatuslfc.Completed will be returned in the Satus event.

In elther case, results are also constructed and returned to the Centrd System and available to the client.
After the CommandCall object is run, any messages are placed in the CommandCall object. In your
resultUpdate method, you can interrogate the result information, extract the CommandCall, and check
to seeif there are any messages that have been returned.

The actud execution of the command will occur in a Client Access Server job. Thisjob will run under
the user profile of the owner of the task. For more details, see the JavaDoc for CommandCall.

What exactly doesthecancel dofor a Digributed Command Call?

When the CommandCall object is requested to run on the endpoint system, it will start anew Client
Access server job. The Digtributed Command Call gpplication will remember this job name. When the
cance request is received on the endpoint system, an ENDJOB immediate command will be executed
to end the Client Access server job processing the execute request. |f the ENDJOB command was
executed a McStatuslfc.Canceled status will be returned in the status event. I the execute request hed
aready completed, then the cancel request will be disregarded.

Terms, Classes, and Interfaces

Thing Type What todo Purpose
with it
McDistCommandDescriptor Class Use An application will create one of these

objects to execute an AS/400 CL command
on multiple systems.
McDistributedTaskView Class Use This class bridges your application to MC
Java Framework functions to manipul ate
tasks and provide additional capabilities
that make GUI programming easier. By
using the attach and detach capabilities,
GUI classes can be notified directly when a
status has changed or when results have
been received.

Task Actions:

- execute

- displayScheduleDialog
- schedule

- cancel

Distributed Task Manager:
- addM anageable

- getManageable

- changeM anageable

- removeManageable

Event Listeners:

- attachConnectionListener
- detachConnectionL istener
- attachStatusDetail Listener
- detachStatusDetail Listener
- attachResult DetailListener
- detachResultDetail L istener

McDistributedTaskListView

Class

Use

This class bridges your applicationto MC
Java Framework functions to manipulate
lists of tasks and provide additional
capabilities that make GUI programming
easier. By using the attach and detach
capabilities, GUI classes can be notified
directly when atask has been created,
changed, updated, and del eted.

Distributed Task Manager:
- getManageableViews
- removeM anageabl el ist

Event Listeners:
- attachManageabl eL istener
- detachM anageabl eListener

M cM anageabl eSel ectionCriteria

Class

Use

Use this classin conjunction with the
McDistributedTaskListView to specify the
typeof taskstoretrieve. The selection
criteriaalows you to specify Type,
Category, Sharing, etc.

McActivityDescriptorSelectionCriteria

Class

Use

Like McManageableSel ectionCriteria, you
use this classin conjunction with the
McDistributedTaskListView to specify the
type of tasksto retrieve. Thisclass
extends the base to include selection
criteriato subset activities based on their
status values.

CommandCall

Class

Use

Provided by the AS/400 Java Toolbox:
Contains the AS/400 CL command to
execute on all theremote systems. This
object will also be used to return AS/400
messages if the execution of the command
resulted in any joblog messages.

Programming Examples

In CMVC there are a number of test programs available at:
as400a\v5r 1mOt.ss03\int\emve\java pgmlyps.ssi3\comiibm\agpp\client

e TestCmdCal

e TestCmdCallAttach

e TestCmdCalCance

e TestCmdCalCreate
* TestCmdCallExecute
* TestCmdCalRemove
e TestCmdCalSchedule

The TestCmdCall Javaprogramisan dl inclusive test program that will create a new task, attach for
status and result notifications, execute the task, process status and result events, and remove the task
when completed.

The rest of the test programs break the entire test into controllable pieces. The TestCmdCallCreate
Java program will create anew task. The TestCmdCallAttach Java program will associate itsdf to
the task so when the task executesit can receive status and result notifications. The
TestCmdCallExecute Java program will kick off the execution of the task and will also receive gatus
and result natifications. The TessCmdCallSchedule Java program will schedule the task to execute at
alater date and time. The TestCmdCallRemove Java program will delete the task from the
Management Central Task data base on the AS/400. The TestCmdCallCancel Java program will
attempt to cancel the running task. The TestCmdCallChange Java program will change the name of
the task.

In these examplesit isimportant to understand the M cK ey concept. When anew task is created, a
key is created to uniquely identify the task This key is made up of three parts: the task class, the task
name, and the user who ownsthe task. Inthe TestCmdCallCreate Java program the key is created
and assigned when you creste a new ingtance of your task. This happens when you indantiate a new
M cDistCommandDescriptor and perform an addManagesble.

/'l Create an instance of a Distributed Conmand Descri ptor
McDi st CommandDescri pt or di st CommandDesc = new
McDi st CommandDescri pt or (" Command Task Name", /1 Name
"Conmand Task Description", //
Descri ption

McManageabl e. NONE, /1
Shari ng

get Syst enGr oup(), /1l System
Group

cmdToRun, /1
CommandCal |

null); /1
Cat egory

Notice that when you construct anew M cDistCommandDescriptor, you specified two out of the
three essentid parts of the key:

1. Task Class = McDigtApiDescriptor

2. Task Name = "“DigApiDesc-TestTask
The owner is determined by the Management Centra Java Framework.

Now in the TetCmdCallAttach, TestCmdCallExecute, TessCmdCallCancel,
TestCmdCallChange, and TestCmdCallRemove Java programs, you can get the task again by
congructing the M cK ey and creating a new Distributed Task View.

McKey tenpKey = new McKey/(

"comibmnr.client.activity.task.comand. McDi st CommandDescri ptor",
"Command Task Nanme");

Be Aware: Thetest programs referenced above were created for the purpose of testing the
Management Central Java Framework, and no attention has been paid to quaity GUI programming
concepts. Y ou should not use these tests as guides on exactly how to set up your client, but only on
how to interact with Distributed Descriptor and View Objects within the jMC.

For ingtance, while the JMC provides asynchronous status and results from each endpoint specified in
the system group, there is no dternative method for receiving synchronous status or results. After caling
the view' s execute method, these test programs suspend the main thread until a status update has
arrived, after which the main thread is resumed, and execution completes. What this meansis that if you
use more than one endpoint system, you will lose dl status and results informeation from every systemin
your system group except the one that finishes fird.

So, while the test cases will show you how to send and receive data from your centrd sitein the
digtributed environment of the Management Centra Java Framework, it does not give advice as to how
to handle that data.

See the section on Plugging Into Operations Navigator for amore robust implementation of handling
dtatus and result updates within this asynchronous environment.

Management Central Distributed API Application

Overview

In this chapter you will learn about classes that dlow you to call an AS400 Application Programming
Interface(API) on multiple remote AS/400 endpoint systems. Y ou will use classes provided by the
AS400 Java Toolbox in conjunction with classes provided by the Management Centrd Java
Framework. The McDistApiDescriptor dasswith hep from the M cDistributedTaskView and
McDistributedTaskL istView classes provide the Management Central Distributed Task functions
alowing a Java program to run a program or service program APl on multiple groups of systems and
return status and results back to the Central System and the graphica client workstation.

Y ou may choose to use the ProgramCall, ServiceProgramCall, or ProgramCallDocument
classes from the AS/400 Java Toolbox to define and construct your API request. Passing one of these
objects to the Management Central Digtributed API Application, Management Central can send and run
the API on the endpoint systems. These classes use the A S400M essage class to return messages that
may have been logged in the job log as aresult of the APl execution. This message array will be
returned in the result for each endpoint system receiving the request.

Interfaces and Flows

Application Designer

As the application designer, you will want to determine whether the M cDistApiDescriptor class
contains the functiondity your gpplication needs. 'Y our application would use this function if the
interface you are cdling on the AS/400 is an Application Programming Interfaces(API) and you require
only minimal status and results about the execution of the AF!.

Some of the specifications of the M cDistApiDescriptor are:

e Canrunasingle AS400 AP a atime

* Runsasynchronoudy. Meaning atask is created and status needs to be checked for completion
of the task

* Returnsalimited defined set of status. It will return Completed when no messages are returned
and Failed when any message is returned.

* Returns any output parameters within the ProgramCall, ServiceProgramCall, or
ProgramCallDocument resulting object

* Returns AS/400 messages within the ProgramCal, ServiceProgramCall, or
ProgramCallDocument resulting object

e The APl will run under the user profile of the owner.

Gui Developer

The following scenarios describe how to use the ProgramCall, M cDistApiDescriptor, and
McDistributedTaskView classes. Processng is very similar when using the ServiceProgramCall or
ProgramCallDocument AS400 Java Toolbox classes.

Classes and Interfaces:

com.ibm.mc.client.activity.task.gpi. McApiData
com.ibm.mc.client.activity.task.gpi.M cDistA piDescriptor
com.ibm.mc.client.activity.task.api.M cEndpA pi Descriptor
com.ibm.mc.server.activity.task.api.McEndpApiAction
com.ibm.mc.client.activity.task.McDistributedTaskView
com.ibm.mc.client.activity.task. McDigtributedTaskListView
com.ibm.mc.client.activity.M cActivityDescriptorSelectionCriteria
com.ibm.mc.client.M cM anageableSd ectionCriteria
com.ibm.as400.access. A SAOOM essage
com.ibm.as400.access.ProgramCall
com.ibm.asA00.access. ServiceProgramCall
com.ibm.as400.data. ProgramCal| Document

Scenario 1: Create and Execute a Distributed API Application Task

It isvery easy for the GUI developer to use the M cDistApiDescriptor classto create and execute a
distributed AP task. Here are the steps to get you Started:

1
2.

o s

Create an instance of an AS/400 Java Toolbox ProgramCall class and associated parameters.
Create an ingtance of a Distributed APl Descriptor specifying the Task Name, Task Owne,
Task Description, Sharing, System Group, and the ProgramCall object created in step 1.

Note that the getSystemGroup method used in the Descriptor’ s constructor must be supplied by
the user to retrieve the list of endpoint systemns on which to execute the command.

Creste an instance of a Distributed Task View specifying the Didtributed API Descriptor
created in step 2.

Tel the Digtributed Task View to add the instance of your task so that it can be managed.

Cdl the execute method to digtribute and cdl the AP on dl the endpoint systems specified in
the System Group.

McDi st Api Descri pt or di st Api Desc
McDi stri but edTaskVi ew di st Api Vi ew

nul | ;
nul | ;

/'l Step 1: Create an instance of a ProgranCall object and set associ ated

paraneters
/1 Create and/or retrieve AS400 object
AS400 as400System = get System();

/1l Create the path to the program

QSYSOhj ect Pat hNane programName = new QSYSObj ect Pat hNanme(" QSYS", " QWCRSSTS",

"PGM") ;

/1l Create the program call object. Associate the object with an AS400

obj ect .
ProgranCal | api SystenStatus = new ProgranCal | (as400System) ;

/'l Create the program parameter list. This program has five
/1l paraneters that will be added to this I|ist.
ProgramParanmeter[] parmist = new ProgranmParameter[5];

/1 The AS/ 400 programreturns data in paranmeter 1.
parm ist[0] = new ProgranParaneter(64);

/1l Paraneter 2 is the buffer size of parm 1.

AS400Bi n4 bin4 = new AS400Bi n4();

I nteger i StatusLength = new Integer(64);

byte[] statusLength = bin4.toBytes(iStatusLength);
parmist[1l] = new ProgramParaneter(statuslLength);

/] Parameter 3 is the status-format paraneter.

byte[] format = McUtilities.stringToByteArray(as400System get Ccsid(),

" SSTS0200") ;
parmist[2] = new ProgranmParanmeter(format);

/1l Paraneter 4 is the reset-statistics paranmeter.

byte[] reset = MUtilities.stringToByteArray(as400System get Ccsid(),

Dk

parm ist[3] = new ProgranParaneter(reset);

/1 Paranmeter 5 is the error info paraneter.
byte[] errorinfo = new byte[32];
parm ist[4] = new ProgranParaneter(errorlinfo, 0);

"*NO

/1 Set the programto call and the paraneter list to the program call

obj ect.
api Syst entSt at us. set Program(progranmNanme. get Path(), parmist);

/'l Step 2: Create an instance of a Distributed APl Descri ptor
/1 Create the Mananenment Central Distrihuted APl Descrintor

Note: Step 1 above requires you to supply your own AS400 Object via the getSystem method.

t ask

The

only thing it isused for in this example isin converting the Strings into byte array representations. The
ASA00 Object is necessary 0 that the conversion routine knows which character set ID (CCSID) to

use on the converson. When executing on the endpoint, the AS400 Object contained within the

ProgramCall will be replaced with an object representing the current system. However, the CCSID

issue leads to some subtle complexities when dedling with this text conversion.

Firg, it means that each AS/400 endpoint system in your system group MUST have the same CCSID
as the AS400 you use to construct the ProgramParameter lit. If it does not, the ProgramParameters
may not be interpreted correctly on the endpoint system, causing your program to fail.

Second, it means that a connection must be established to retrieve the CCSID vaue for some AS400.
Y ou can do this either by retrieving the current centra system from Operations Navigator, providing an
AS/400 system name, user profile, and password with which to connect, or by creating an empty
ASA00 object, and dlowing it to prompt the user for the appropriate information.

Of course, none of these issues arise if you have no need for text-to-byte array conversion as part of
your ProgramParameter setup.

Scenario 2: Get alist of Distributed API Application Tasks

If you need to retrieve alist of Distributed API Tasks that would include the task you created in
Scenario 1, this next step will show you how. There are only afew steps needed here.

1. Set upthe sdection criteriato only get tasks of the class M cDistApiDescriptor

2. Create an ingtance of the McDidributedTaskListView to manage the list of tasks

3. AsktheDidributed Task List View to return to you alist of Distributed APl Tasks

public Vector |istTasks()

{
McManageabl eSel ectionCriteria selCriteria
McDi stri but edTaskLi st Vi ew vi ewLi st
Vect or retrievedTasks

nul | ;
nul | ;
new Vector ();

/1 Step 1: Define selection criteria to get a list of Distributed APl Tasks

selCriteria = new McManageabl eSel ectionCriteri a(
"comibmnr.client.activity.task. api.MDistApi Descriptor", // Class
McManageabl e. ALL, // Category

nul |, /1 List of owners (only used if next paraneter is
true)

fal se, /1 1Include shared activities

0); /1 Check the | ast changed date of the activity

/'l Step 2: Create a new Task List View to manage your tasks
vi ewLi st = new McDi stributedTaskListView(selCriteria);

Note: Thisexample will retrieve dl the tasks of type M cDistApiDescriptor and returnthemina
Vector. The McDistApiDescriptor classisthe same class used in Scenario 1 step 2 when you
created the task.

Scenario 3: Delete a Distributed APl Task

If you need to delete a Digtributed AP task, or alist of them, the Distributed Task View and List View
classes provide the methods for you. Deleting atask removes the task from the Management Central
databases and is no longer a manageable task. When working with the Distributed Task View object,
you can Smply cal removeM anagesble method on the instance of the object itsdlf; for aList of Views,
you can Smply cal removeManageablel ist on the ListView instance.

/1 Step 1: Tell the Distributed Task View to renove the instance of your task
di st Api Vi ew. r enrbveManageabl e() ;

/Il O, for a Distributed Task List View

Scenario 4: Change a Distributed APl Task

To save changes of an existing task on the Central System, the Distributed Task View provides the
method for you to use. Prior to caling change, you would have a reference to atask that you previoudy
created or retrieved from aligt of tasks. With the reference to the task, you may have the end user
modify it by displaying property pages and using the appropriate st methods to updeate the task
ingance. When you have the task instance up to date, you can tell the Digtributed Task View to store
the changes.

/1 Step 1: Change the Distributed Task Descriptor locally
di st ConmandDesc. set Descri pton("New Descripton");

/1 Step 2: Tell the Distributed Task View to change the instance of the task

Terms, Classes, and Interfaces

Thing

Type

What todo
with it

Purpose

M cDistA piDescriptor

Class

Use

An application will create one of these
objects to run an AS/400 Application
Programming Interface (API) on multiple
systems.

McDistributedTaskView

Class

Use

This class bridges your applicationto MC
Java Framework functions to manipulate
tasks and provide additional capabilities
that make GUI programming easier. By
using the attach and detach capabilities,
GUI databeans can be notified directly
when a status has changed or when
results have been received.

Task Actions:

- execute

- displayScheduleDialog
- schedule

- cancel

View Actions:

- addManageable

- getManageable

- changeM anageable
- removeManageable

Event Listeners:

- attachConnectionListener
- detachConnectionL istener
- attachStatusDetail Listener
- detachStatusDetail Listener
- attachResult DetailListener
- detachResultDetail L istener

McDistributedTaskListView

Class

Use

This class bridges your applicationto MC
Java Framework functions to manipulate
lists of tasks and provide additional
capabilities that make GUI programming
easier. By using the attach and detach
capabilities, GUI classes can be notified
directly when atask has been created,
changed, updated, and del eted.

Distributed Task Manager:
- getManageableViews
- removeM anageabl el ist

Event Listeners:
- attachManageabl eListener
- detachM anageabl eListener

McManageableSelectionCriteria

Class

Use

Usethisclassin conjunction with the

McDistributedTaskListView to specify the
type of taskstoretrieve. The selection
criteriaalows you to specify Type,
Category, Sharing, etc.

McActivityDescriptorSelectionCriteria

Class

Use

Like McManageableSel ectionCriteria, you
use this classin conjunction with the
McDistributedTaskListView to specify the
type of taskstoretrieve. Thisclass
extends the base to include selection
criteriato subset activities based on their
status values.

ProgramCall

Class

Use

Provided by the AS/400 Java Toolbox:
Contains the AS/400 program API and
parametersto call on al the remote
systems. Output parameters will be
returned in aresulting ProgramCall object.
This object will al'so be used to return
AS/400 messages if the execution of the
API resulted in any messages.

ServiceProgramCall

Class

Use

Provided by the AS/400 Java Toolbox:
Contains the AS/400 service program API
and parametersto call on all the remote
systems. Output parameterswill be
returned in aresulting ServiceProgramCall
object. Thisobject will also be used to
return AS/400 messages if the execution of
the API resulted in any messages.

ProgramCallDocument

Class

Use

Provided by the AS/400 Java Toolbox:
Contains the AS/400 program API or
service program APl and parametersto call
on all the remote systems. Output
parameterswill be returned in aresulting
ProgramCallDocument object. This object
will also be used to return AS/400
messages if the execution of the API
resulted in any messages.

Programming Examples

In CMVC there are a number of test programs available at:
as400a\v5r 1mOt.ss03\int\emve\java pgmlyps.ssi3\comiibm\agpp\client

* TedApiPgm

* TesdtApiPgmCdlCreate
* TestApiPgmCdlAttach
* TestApiPgmCallExecute
* TedApiPgmCdlRemove

The T estApiPgm Javaprogram isan dl inclusive test program that will create a new task, atach for
status and result notifications, execute the task, process status and result events, and remove the task
when completed.

The rest of the test programs bresk the entire test into controllable pieces. The
TestApiPgmCallCreate Java program will create anew task. The TestApiPgmCallAttach Java
program will associate itsalf to the task so when it executes it can recelve status and result notifications.
The TestApiPgmCallExecute Java program will kick off the execution of the task and will dso
recelve satus and result notifications. The TestApiPgmCallRemove Java program will delete the task
from the Management Central Task data base on the AS/400.

In these examplesit isimportant to understand the M cK ey concept. When anew task is created, a
key is created to uniquely identify the task Thiskey is made up of three parts. the task class, the task
name, and the user who ownsthe task. Inthe TestApiPgmCallCreate Java program the key is
created and assigned when you create a new instance of your task. This happens when you ingantiate a
new M cDistApiDescriptor and perform an addManageable.

di st Api Desc = new McDi st Api Descri ptor (" MDi st Api Task_Nanme", /1 Name
"McDi st Api Task_Descriptor", // Description
McManageabl e. NONE, /1 Sharing
get Syst emGr oup(), /'l System G oup
api Syst entt at us, /'l Prograntal |
nul l); /'l Category

di st Api View = new McDi stributedTaskVi ew(di st Api Desc) ;
di st Api Vi ew. addManageabl e() ;

Notice that when you construct anew M cDistApiDescriptor, you specified two out of the three
essentid parts of the key:

1. Task Class = McDigtApiDescriptor

2. Task Name = “DistApiDesc-TestTask”
The owner is determined by the Management Centrd Java Framework.

Now in the TestApiPgmCallAttach, TestApiPgmCallExecute, and TestApiPgmCallRemove
Java programs, you can get the task again by constructing the M cK ey and creating a new Distributed
Task View.

McKey tenpKey = new
McKey("comibmnr.client.activity.task. api.MDistApi Descriptor"”,
"Di st Api Desc- Test Task");
di st Api Vi ew= new McDi stributedTaskVi ew(tenpKey);

Be Aware: Thetest programs referenced above were created for the purpose of testing the
Management Central Java Framework, and no attention has been paid to quaity GUI programming
concepts. Y ou should not use these tests as guides on exactly how to set up your client, but only on
how to interact with Distributed Descriptor and View Objects within the jMC.

For ingtance, while the JMC provides asynchronous status and results from each endpoint specified in
the system group, there is no dternative method for receiving synchronous status or results. After cdling
the view' s execute method, these test programs suspend the main thread until a status update has
arived, after which the main thread is resumed, and execution completes. What this meansisthat if you
use more than one endpoint system, you will lose dl satus and results informeation from every sysemin
your System group except the one that finishes fird.

S0, while the test cases will show you how to send and receive data from your centra Stein the
distributed environment of the Management Centra Java Framework, it does not give advice as to how
to handle that data.

See the section on Plugging Into Operations Navigator for a more robust implementation of handling
datus and result updates within this asynchronous environmen.

Advanced Features

All the advanced features (documented in the Advanced Features section on page 54) plusdl the
actions that can be taken on Tasks (documented in the Tasks sections on page 34) aso apply to the
digtributed command and distributed APl gpplications. For instance, the DigtributedCmdCall can be
scheduled, or, the DistributedApiDescriptor object can be constructed to auto-increment the name. Al
of the flexibility of Tasks can be applied to these two Task implementations.

Utilities

The following scenarios are provided to supplement the information in each of the preceding application
sections. They are considered “ utilities’ only because they aren't core functions provided by the
Management Central Java Framework, and are not necessary to develop a distributed activity.
However, they are quite useful, and most didtributed activities wouldn't be very useful without them.
Therefore, they are provided here as areference.

Handling Exceptions

In this scenario, acom.ibm.mc.client.util.M cException is caught and interrogated to determine the
cause of an error. If, for whatever reason, an Exception is thrown during processing, the Management
Centrd Java Framework will ways attempt to caich the Exception, whether it was thrown initidly by
some jMC method or by any other Java method, and package it into a McException. This

M cException may then be caught and re-thrown with additional information from the caler of the errant
message, and so on until the Exception isfindly re-thrown remotely to the client. Therefore, when this
McExceptionis returned to the dlient, it may have multiple nested Exception objects within it.

In your catch block, you may interrogate the M cException with the containsErrorl D method of
McException to determineif aparticular error ID. Thisidentifier must be either an ID defined in the
M cSer vice class, or aclass name of a predefined Java Exception class. (McService refersto the
logging of service messages, or job logging on the AS400, and is not to be confused with the services
we ve defined as activitiesin the jMC). Alternatively, the error can be output to the client for
informationd purposes with the printStack Trace method. Consult the JavaDoc on M cException for
further information on how to use the M cException class, and McService to view predefined error 1D
grings.

try
{

}
catch(MException e)

{

vi ew. addManageabl e() ;

if(e.containsErrorld("java.sql.MCIS_MGBL_DUPKEY"))
return "Key Error";

else if(e.containsErrorld("java.io.|OException"))
return "1/0O Error";

el se

{

Tracing Messages

The Management Centrd Java Framework provides a default tracing mechanism to make it easier for
you to trace messages. Using class M cTrace in package com.ibm.mc.client.util, tracing messagesto a
file becomes a one-step process. For instance, when retrieving instances of your Digtributed Command
Tasks off the server (as you did in the Digtributed Command Call Application Section of this document,
Scenario 2), you may want to trace certain lements of the execution. Only afew steps are needed here:
1. Initidize trace with the file name you wish to trace to, and the level of datayou would like to
trace. Vaid vauesfor leve are Error, Warning, Information, and Diagnogtic. If traceleve is
det to Error (the default), only messages with Error severity will belogged; if trace leve is
Information, al Informationd, Warning, and Error messages will be logged.
Execute your Management Centra function.
3. Check trace level, and trace appropriate messages

McManageabl eSel ectionCriteria selCriteria
Vect or retrievedTasks

N

nul | ;
new Vector();

/1 Step 1: Initialize trace
String fNane = "C:\\ MGTC. Java. Servi ce. Log";

/'l specify a descriptive conponent nane here. You'll be able
/1 to filer trace nessages based on your conponent nane.
McTrace. set Fi | eName(" MySof t war eConponent ", f Nane);

McTrace. set TraceLevel On(McTraceabl e. | NFORMATI ON) ;

/1 Step 2: Execute Managenent Central Function

/'l Define selection criteria to get a list of Distributed Command Tasks

selCriteria = new McManageabl eSel ectionCriteria(
"comibmnr.client.activity.task.command. McDi st ConmandDescriptor", //

Cl ass

McManageabl e. ALL, // Category

nul |, /1 List of owners (only used if next parameter is
true)

fal se, /1 1Include shared activities

0); /'l Last changed date of the activity

/1 Create a new Task List View to manage your tasks
McDi stri but edTaskLi stView vi ewLi st = new McDistributedTaskLi stView(selCriteria);

/'l Step 3: Tracing an informational message
if(McTrace.isTracel nformati onOn())

McTrace. | ogl nformation(getClass().getName(), "Executing getList from
server");
try {

retri evedTasks = vi ewLi st. get Manageabl eVi ews();

} catch(MException nce) {

Thiswill trace the number of Didtributed command Call Tasks that were found on the server, and that
match your sdection criteria, or aternatively, if an exception occurs, then the exception will be traced.

Service Log

The Management Centrd Java Framework also provides you with a mechanism to joblog messages on
the server. This scenario makes use of the M cSer vice class to log the message, and theM cException
classe to build the data to be logged. Documented steps are as follows:

1. Build an Object array that contains subgtitution Strings for the message you wishto log. The
subgtitution is defined for the specific M cService message that is being logged. If you supply
your own messages, you' |l need to determine if subdtitution text is required for thet type of
message.

Build a M cException using your specific McService or supplied message, and substitution text.
3. Tdl the MC Java Framework to log the data. The message will be logged to the job that the

JMC sarver is executing in. Thisjob will have a unique system number, but will dways have a

job name of QY PSISVR and will be running under user QY PSISVR.

N

try
{

/] execute code here

}
catch(MException e)

{
// Step 1: Build a MException with substitution data

Obj ect[] subs = {"evaluate", getClass().getName()};

/1 Step 2: Create the MException object to |og using the

11 MCJS_METHOD | NVOKEFAI L nessage from M Service

McException el = new McException(MService. get Message(
McSer vi ce. MCJS_METHOD_| NVOKEFAI L,
McSer vi ce. DI AGNOSTI C, subs), e);

Asagened rule, anything that gets service logged should aso be traced, checking if traceison asin
the previous example. Additiondly, you don’t need to log messages only when exceptions occur. Any
time you fed is gppropriate, you can generate a M cM essage usng McService s getM essage method,
or by condructing your own, and logging the McM essage with the log method.

Additional Utilities

Many convenience classes and methods exigt to alow you to do common tasks within the Management
Centrd Java Framework. All classes discussed here reside in the com.ibm.mc.dient.util package. If
you find you' re writing your own convenience methods for tasks you need to execute in multiple places
within your code, consult the JavaDoc for these classes - chances are you'll find exactly what you're
looking for.

McUTtilities Contains data management utilities. Some make byte array
meanipulation easier for the user; some smplify seridization and
deseridization; some are for data conversion.

M cPr ocess Thisclass, located in com.ibm.mc.server.util, is dependent on
the ASA400 operating system, and can be used to configure a
process externa to the Management Central Java environment
McMethodThread Useful for applications that that wish to process method
requests on a privatey maintained thread but wish to abstract
the details of thread management. Class can be used to
queue, de-gqueue and invoke methods.

McM ethodQueue Provides a default method queuing mechanism. Used done, it
only provides standard queue functiondity, but when used in
conjunction with aMcMethodThread, queued methods can
be autometicdly invoked by the jMC.

AS/400 Deployment

Now that you've created your application plug-in for running within the Management Centra Java
Framework, how will the framework find your classes? Easy. Just cregte or update a System level
environment variable, named specificaly QY PS] APP_CLASSPATH with the IFS path to your
classes. When garting the Management Central Java server, it will gppend the value of this new
vaiabletoit's preexiging classpath, dlowing it to find your classes. Contact your system administrator
for ingtructions on how to set the environment variable.

