Distributing Command and API calls
using the new
Management Central Java Framework

VeeFiveAreOneEmZero
Final Version

Document last changed: June 27,2001 11:25am

Preface

Graphical Client .
Endpoint Systems

) Managl ng mUItI pl e WSternS as eaw Central System
as managing a single system.” =" "

Management Central Documentation \ I

This Management Central How To... document I
is a bridge between the code you need to write
for your gpplication and the JavaDoc provided by

the Management Centrd Java Framework. To assst in your gpplication development, you should first
find the documentation listed below and take aquick look at it. Next, read this document to get ahigh

level underganding of what is available for your gpplication development with tips on design and

implementation. When you are finished reading this book, refer to the JavaDoc for the details about the

classes and interfaces discussed in this book that will gpply to your gpplication.

Management Central Web Site:
http://www.as400.ibm.com/sftsol /M gmtCentral .htm

Java Class Documentation (JavaDoc):

AS/400 Toolbox for Java:

http://www-1.ibm.com/servers/eserver/iseries/toolbox/

What This How To Book Contains

This book is organized to provide information for the GUI devel oper who wishes to make use of the
Management Centra Didributed Command Cal and Digtributed API Call interfaces. These interfaces
will dlow asingle AS400 CL Command or AP to be executed on any number of endpoint systems.

This discussion represents a very smal functiona subset of the Management Centrd Java Framework,
and since only dient-side activities are necessary to accomplish a distributed Command or API cdll, dl
sarver activities will be abstracted from this discusson. If your intent isto develop your own server Sde
gpplication using the Management Centra Java Framework as a base for your gpplication, amore
inclusive verson of this document, caled “How To... Implementing to the new Management Centrd
Java Framework” should be consulted as areference. This document can be found in the Unity Java

Institute at http://w3.rchland.ibm.com/projects/A S400-Unity/Unitylnst/Ul Courses.html .

Each mgjor section or chapter contains the follow information:
* Overview - abrief description of the topic being discussed
* Interfaces and Flows - Steps necessary for the GUI Devel oper.
* Terms, Classes, and Interfaces - atable of Javaterms, classes, and interfaces that are used
* Scenarios - commonly used development scenarios with code snippets
* Hintsand Tips - technique hints and tips when designing and developing your application

Conventions Used in this Cookbook

This book uses the following typographica conventions:

This style.... Isused for...

Fi xed width font Code eements such as classes and methods.
Fi xed width font underline Emphasis for code elements.

Bold Management Centra Classes and Interfaces.

Underlined Management Centrd Methods.

Table of Contents

INTRODUCTION . e 1
MANAGEMENT CENTRAL DISTRIBUTED TASKS 3
O BRI EW & ittt ettt ettt ittt e ettt e et e e e e e e 3
GUI D 0D e 4
KNOW YOUR MANAGEMENT CENTRAL OBJECTS 5
MANAGEMENT CENTRAL DISTRIBUTED COMMAND CALL
AP P LICATION o 8
L ===, 8
INTERFACES AND FLOWS ittt e et ettt e et e i e 8
Application DesigNer e 8
GUI DV oD e 9
Scenario 1: Create and Execute a Distributed Command Call Task 9
Scenario 2: Get list of Distributed Command Call Tasks i, 10
Scenario 3: Delete a Distributed Command Call Task _ 10
Scenario 4: Change a Distributed Command Call Task i, 11
Scenario 5: Get asynchronous status and results of a Task 11
TERMS, CLASSES, AND INTERFACES .\ ittt ettt et et et e e e et et ettt e 13
HINTS AND TIPS ot ittt et et et et e e e e e e e e e e e e e e e e 14
P ROGRAMMING B XAMPLES .ttt ittt ettt ittt ettt e et e et 15
MANAGEMENT CENTRAL DISTRIBUTED API APPLICATION 17
(===, 17
INTERFACES AND FLOWS ittt it e ettt e et et ettt et 17
Application Designer 17
GUI DB IODEr | 18
Scenario 1: Create and Execute a Distributed API Application Task 18
Scenario 2: Get a list of Distributed API Application Tasks i, 20

Scenario 3: Delete a Distributed API Task 20

Scenario 4: Change a Distributed API Task | i 21
Scenario 5: Get asynchronous status and results of a Task 21
TERMS, CLASSES, AND INTERFACES .t v vttt ettt ettt e et e e ettt ettt 23
P ROGRAMMING EXAMPLES .\ ittt ittt et et et e e et et et et ettt 25
ADVANCED FEATURES 27
SAVING ENDPOINT SYSTEMS AND SYSTEM GROUPS .+ . ittt ittt iii et eie et iie e e iiee e enns 27
Scenario 1: Creating Definition Instances 27
Scenario 2: Retrieve your Definitions e 28
Scenario 3: Deleting Definition Instances 28
Scenario 4: Changing an existing Definition Instance 29
GET ASYNCHRONOUS STATUS UPDATES FOR LIST OF TASKS .\ttt e i et ena 29

P RIVATE DESCRIPTORS ottt ittt ettt ettt e et et e et e e et e et et ettt e 30

PUBLIC DESCRIPTOR SHARING .+t ittt et et e e et et e e e e e e e e et e e e e e e e e e 31

AN 2 £ 38 [N == = 1 32
O 1= e =11 32
SCHEDULE YOUR T ASK 4ttt ittt ettt ettt ettt e e ettt e e e ettt e et ettt iae s 33
GET LIST OF SCHEDULED DISTRIBUTED TASKS vttt ittt ittt et ittt ettt e ettt iia e eenas 34
HANDLING B XCEPTIONS & ittt ittt ettt ettt ettt et et ettt ettt ettt 35
TRACING MESSAGES .+ vt ittt ettt ettt et ettt ettt et ettt e et e et et et 36

A DDITIONAL UTILTIES 4 v vttt ettt ettt et e et e et e e e et e et et et e e ettt 38

Introduction

If you are new to Management Centrd, here are a some basic principles, behaviors, and a brief history
of Management Centrd.

Principles of Management Centrd:
* Make the management of multiple systems as easy as managing asingle sysem
* Provide this management capability in the base AS/400 operating system
* Provide an easy-to-use graphica user interface to management functions

Management Centrd Application behaviors:
* Live GUI updates (automatic refresh)
* Attended or unattended
* Immediate or scheduled
* Multiple System
e Short or Long running

A little bit of higtory ...

Management Centrd is a suite of integrated systems management goplications that began to appear in
V4R3 with Client Access for Windows (5763-XD1) V3R2. When indaling Client Accessfor
Windows, you can select to perform a Custom ingtdlation and optiondly choose to ingal Management
Centrd dong with Operations Navigator.

With V4R3, Management Central provided the base for multiple syssem management with the
introduction of the Management Centrd C++ infrastructure. This infrastructure provided a horizonta
architectura approach to software development when devel oping AS/400 system management
solutions. This horizontal gpproach separates the user interface from the transport mechanism, the
gpplication from common service components, etc. AS/400 Endpoint Systems, AS/400 System
Groups, Event Log, and a Monitor gpplication provided an intuitive graphicd interface to red-time
performance information with Smple automation and noatification for management of multiple AS'400
sysems.

In V4R4, Management Central added a number of new integrated graphica gpplicationsto hep
manage AS400 systems:. Inventory Callection, Software Fix (PTF) Management, Remote Operations,
Package and Object Digtribution, and Performance Collection Services. This extended the
Management Centrd C++ horizonta infrastructure with additional common services like Bulk Data
Transfer, Discovery, and Collection Services. Management Centra is now an integrated part of
AS400 Operations Navigator in V4AR4. The Operations Navigator tree hierarchy has been enhanced
to include Task Activity, Scheduled Tasks, Definitions, Monitors, AS/400 Endpoint Systems, and
AS/400 System Groups.

InV5R1, Management Centra continues to extend its A S400 management control with additiona
goplications like enhancing historical Monitor capabilities, Product and Fix Packager, Job and Message

Resource Monitors, User Profile Management, and
Sysem Vdue Management. With dl the interest in
Management Central, areas within IBM and
externd to IBM are looking a using Management
Centrd to implement their management gpplications
and solutions. For thisreason, we have dso
developed the Management Centrd Java
Framework(jMC).

The Management Centrd Java Framework is an
extendible and pluggable infrastructure for aress
within IBM and externd sysem management

solution partners to use to their advantage when

Horizontal Architectual Design

[e————————————————————
Transport

_ Local Services

User Interfaces

Transport

p
Applications

Distributed Services

_ Rppliation Raerts

developing their suite of applications. Areas within IBM such as DASD Management, Backup
Recovery and Media Services BRMS), Clusters, and LPAR are using the jMC to build functions that
balance disk drives, backup and restore data, and build system groups based on hardware

configurations.

Management Central Distributed Tasks

Overview

Tasks are long running

€3 AS /400 Dperations Mavigator
File Edit “iew Options Help

(o] >]5] SIEIS)

|Last changed: 2/10/00 256 Pk

| Central Syatem: Mahlik

| M anagement Central (Mahlik]): Task Activity Started by: Al

asynchronous operations that _

E@ M anagement Central (M ahlik) Task | Type | Status | Supstemns and Groupﬂ
can be S:hajl,.“aj md run E,) test (2] Command Completed all systems for sue, |
Unatmdw on multlple EC?BT_NBE' Tasks ESUB'S Blitz test SendFiles Faledon1of8.. al s_l,l.stems for sue

= Jeintons @Collect Ireventom Inventory Completed 1 ahilik.
remote sysems. The ' :'SD?EDDBSE . B CrmdCreatedOrMahli (2] Command Completed Mahik
o = nepoint Systems Send and Install Fikes (13] Fises Failed - stopped Bob's grouy
operator or administrator W A St B[22 P (13] atec dtopped, BebsomE
. m My 45/400 Connections Eﬁ allzct [rventarn r]ventoru omolete chasr .
generdly selects an action to

v

perform from the graphical | [38-420/8 cbieci

user interface, sdects

systems on which the actions should be performed, and then determines whether to run the action now
or scheduleit to berun at alater date and time. After the action completes at the endpoint system, it

7 "Send and Install Fixes [13])" Status
File Help

Clia

Send from: Mahlik

Status; Failed - stopped by uzer on 1 of B systems

Targ_n_et Systems and Groups IStatus |
=B Bob's group Failed - stopped by uzer on 1 of 5 systems
Rchas12a Completed
B Rchaszbdd Completed
B Rchasdim Shopped
Bl Fchas0d Comnpleted
B Rchasoa Completed
j Fichasfdd Completed
| ‘Rchazl2a' Details
Fix | Product | Releass | Fix Statuz
@ 554417 B7E9ss] wedrdrill Itstall at nest restart
|1 of 1 fives received on ‘Fchas] 24’ v

sends status information back to the central
system and can be later viewed on the
workstation.

One example of atask is the Fixes application
that was ddivered with Management Centrd in
V4R4. Onefunction of this goplication alows
the operator to distribute and instal Program
Temporary Fixes(PTFs) on other systemsin the
network. The operator would sdlect alist of
fixesto ingdl and then pick which system groups
or sysemsto ingdl them on. During the
digtribution and ingtallation process, status
information would be sent back to the centra
system. If and when the operator wanted to
check on the task, she could smply click on the

Task Activity container and view the detailed status information for that task. Taskswill dways have
some find status whether it completed successfully, failed, or was ended by the user.

Currently the Management Centrd Java Framework provides three different ways for gpplications to
implement tasks. The first method, and smplest, is to use the Distributed Command Call Application
provided with Management Centrd. The Distributed Command Call Application alows you to execute
an AS/400 CL command on agroup of systems. If dl or part of your gpplication can be performed
smply by sending a command to the remote system dl you need to do isuse the
McDistCommandDescriptor class. This class takes a CommandCal object which you construct
from the AS/400 Java Toolbox and a M cSystemGr oup to indicate where to execute the AS/400 CL

command. For more details see section Management Centra Distributed Command Call Application
on page 8.

If ingtead of calling a command you need to cal an AS/400 program or Service program, you can use
the second way to implement tasks by using the Distributed API Application. By congtructing Program
Cdl Markup Language(PCML) statements and using the ProgramCallDocument from the AS/400 Java
Toolbox, you can create tasks using the M cDistApiDescriptor class. The M cDistApiDescriptor
class a so accepts a ProgramCall class or ServiceProgramCall class from the AS/400 Java Tool box.
For more details see section Management Centra Didtributed API Applicationon page 17.

If neither of the provided applications meet your needs, then you can create a new type of task by
extending the Management Central Java Framework. However, this scenario will not be covered in this
document. If you' ve determined that smply using the functiondity supplied by the Distributed Command
and Digributed APl Call interfaces does not meet your needs, then you should view the full verson of
this How-To document. This document can be found in the Unity Java Institute at
http://w3.rchland.ibm.com/projects/A S400-Unity/Unityl nst/UI Courses.html . The full versgon of the document will
guide you in developing your own server-side gpplications, and provide ingructions on how to distribute
your task to multiple endpoint sysems usng agraphica user interface.

GUI Developer

Other than providing aesthetics, the GUI developer has two main tasks in implementing the user
interface for the application. Thefird isto connect the user interface to the Distributed Task Descriptor
class created by the gpplication developer. When using the Didributed Command Cdl or Digtributed
API Cal gpplications provided by the Management Centra Java Framework, the Descriptor classwill
be M cDistCommandDescriptor or M cDistApiDescriptor, respectively.

The second task is to decide where the user interface will resde. One possible solution could be to add
anew task container in Operations Navigator under the Task Activity branch of the Management
Centrd tree, adding a context menu option on this new container to create new tasks, and adding
context menu choices on each task to view it's properties and to perform actions (e.g.”New Based
Oon’, “View Status’, €c.).

To perform this development you will need to know how to code your user interface to interact with the
Management Central Java Framework M cDistributedTaskDescriptor, M cDistributedTaskView,
and M cDistributedTaskL istView classes, how to use the GUI hel pers provided by the Management
Centra Java Framework to display properties, select systems and groups to run, and delete your
application tasks, and aso how to create an Operations Navigator Fluginusng L istM anager and
ActionM anager interfaces. All this (and more!) will be covered in remainder of this document.

Know Your Management Central Objects

Within the Management Centra Java Framework there are severd categories of objects you' Il need to
become familiar with in order to use either of the didtributed applications provided by thejMC. Some
classes from each category were brushed upon in the preceding section; they and others will be
classified and described here.

There are three main categories to be concerned with when dedling with the JMC. Thefirg, classfied as
the Action, isthe rea mest of the gpplication. It's the server Sde code that provides the activities and
actions that define the gpplication. It resides on the endpoint system, and is the workhorse that performs
the application’ s goas on each individud system. For ingtance, in the Digtributed Command Call
application supplied by the jMC, M cEndpCommandAction isthe class that actualy providesthe
mechanism to execute or cance the command on each endpoint system.

For the GUI programmer, the most important category of Objectsin the jMC isthe View. Views
provide a bridge between the graphica client and the server-side application. By creeting and
mantaining areference to aView, many of the complexities involved with maintaining aremote
reference to the server are abstracted from the GUI programmer. For instance, the View handles dl
connection details with the Centrd System. The AS/400 that the user has specified as the centrd system
is stored within Operations Navigator, and upon construction of any View object, thisdatais retrieved,
and used to connect to the system. The interfaces that exist on the View objects are there to propagate
data from the client to the server, and to maintain the integrity of that data; that is, when dataiis changed
on the client, that change must be sent to the server to ensure the endpoint action is executed correctly.

Views come in amultitude of flavors, but at the topmost levd resides the interface dl Views must
implement, M cM anageableViewifc. Key methods from thisinterface are;

addManageabl () Allowsthe jMC to manage the data associated with this View on the
Centrd Ste. “Management” congsts of (among other things) caching the
datainto memory, persstently storing it in a database, updating created
and changed dates, and distributing the data to the endpoint systems when
instructed to do so.

changeManageable() | Updatesthe state of a presently managed object. If, after caling
addManageabl (), the data stored within the View is changed, the jMC
on the Centrd Site must be updated with the changed data. This method
provides an interface for the update.

getManageable() Allows for remote retrieva of managed objects from the Centra Siteinto
the View object. Techniques for sdecting which managed objects should
be returned will be discussed in depth in alater section.
removeManageable() | Once amanaged object is no longer needed (because the associated
Actions have completed, for instance), this method must be called on the

object to allow the jMc to clean up any data associated with the managed
object.
In addition, classM cM anageablel istView exigts to manage alist of Views. It dlowsthe user to
retrieve an entire ligt of qualifying View objects with asngle cal to the Server. Each View intheligt can
then be managed independently or as part of the LisView. Key methods from
McManagegbleListView are:

getManageableViews() Returnsalig of qudifying View objects from the
server.

removeM anagesblelist() Removes manageeblility of each View that's part
of thislist from the server. ThejMC will no
longer manage any of the dements.

It'simportant to note that none of the specific details behind View objects need be known by the GUI
developer. That is, you don’'t need to know how to manage objects within the Management Central
Java Framework; rather, you smply need to tell the Framework which objects to manage.

Thethird crucid category of objectsin the jMc is the actuad managed object. A managed object is
technicdly any object implementing the McManageable interface, but more specifically, a category of
objects called Descriptors, provided by the jMC, has aready extended the McManagesble interface,
The Descriptor contains data about the activity, and the action specific to the activity. This descriptor
must be created by the graphica client, usudly by gathering information from the user, and then placed
within aView object. When addManageable() is cdled on the View, the Descriptor is passed dong to
the Central System, and, based on data within the Descriptor, the Action can then be performed.

Animportant detail that is abstracted from the developer is the distributed nature of activities within the
JMC. When the descriptor is created on the client, a system group is defined within it. Then, when the
View object is created, it sends the descriptor to the central system (the central system isretrieved from
Operations Navigator - yet another detail abstracted from the user) where information about the activity
can be managed. When you tdll your task to exeute, the jMC handles dl communication details to
digtribute and start the activity on the endpoint systems. Similarly, the endpoints maintain areference to
central system, and the centrdl system maintains areference to the client, and therefore can propagate
gtatus and results about the endpoint activity back to the client. (See the figure on the following page for
details).

Central System Objects: Descriptor
“When you call an activation method on your View (on or off for Services, or
execute or cancel for Tasks) the Descriptor information 15 retrieved from
persistence, and sent to each Endpoint Systerm along with the request.
Updates, such as results and status of your activity

on each Endpoint System are sent back to the client. 2

My -
<date % % Request
— — i : :

Endpoint Sy stem Objects: Descriptor, Action '

Client Objects: View, Descriptor Each Endpoint receives the Descriptor from the
Through your custormn UL instantiate a View Central Bystern, which includes information about
object containing a Descriptor. This where to locate your Action class. The Endpoint
Descriptor will be passed to the Central instantiates the Action class and inv ckes the ‘ -
Systermto be managed. requested method. Updates, such as status

and results of your activity on this Endpoint 3

Systern, are sent back to the Central Systemn.

Figure: Objects and actions within the Management Central Java Framework.

“When you call methods on your View object, the jMC interacts with the Central System to fulfill the request. Ifthe
request applies to the Endpomt Systemns, as it would if, for instance, you asked to start a service, the Central System
sends requests to each Endpoint Systern on your behalf Updates from each request flow back to the client. While the
Descriptor Hlows trom client to Central Systermn to Endp oint Systerns, othar Objects have their appointed place.

Management Central Distributed Command Call Application

Overview

In this chapter you will learn about classes provided by
the Management Centrd Java Framework that alow you
to run an AS/400 CL Command on multiple remote
AS400 endpoint systems. The
McDisstCommandDescriptor class withthe hep from ¢ pnicai et cenval System Enclocint Systems

the M cDistributedTaskView and

McDistributedTaskListView classes, provide the

Management Central Digtributed Task functions alowing a Java program to execute a non-interactive
AS400 command on multiple systems and return status and results back to the Central System and the
graphicd client.

To make this happen, the JMC uses classes from the AS/400 Java Toolbox. The CommandCall class
is used to congtruct the AS/400 CL command so that the M C can send and execute the request to the
endpoint systems. The CommandCall classis aso used to store any ASA00M essage objects that are
returned as the result of executing the command.

Interfaces and Flows

Application Designer

Y ou will first want to determine whether the M cDistCommandDescriptor class contains the
functiondity that meets your gpplication needs. Y our application would use this function if the interfaces
you are caling on the AS/400 are CL commands and you require only minima status and results about
the execution of the command.

Some of the specifications of the M cDistCommandDescriptor are:
* Canrunasingle AS400 CL command smulaneoudy on multiple sysems
* Runsasynchronoudy, meaning aonce the task is distributed to the endpoints, each endpoint
runs the task in parallel and reports status back upon completion of the task
* Reurnsalimited defined set of status values
* Returns AS/400 messages within the CommandCal object
e Command will run under the profile of the owner of the activity

GUI Developer

The following scerarios describe how to use the CommandCall, M cDistCommandDescriptor,
McDistributedTaskView, and McDistributedTaskListView classes.

Classes and Interfaces:
e com.ibm.mc.client.activity.task.command.M cDistCommandDescriptor
e com.ibm.mc.client.activity.task. McDidtributedTaskView
e com.ibm.mc.client.activity.task.McDigtributedTaskLisView
* com.ibm.mc.client.activity.McActivityDescriptorSeectionCriteria
e com.ibm.mc.client.M cManageableSd ectionCriteria
* com.ibm.as400.access.CommandCal

Scenario 1: Create and Execute a Distributed Command Call Task

It isvery easy for the GUI developer to use the M cDistCommandDescr iptor class to create and
execute a distributed command cal task. Here are the steps to get you started:
1. Create aninstance of an AS/400 Java Toolbox CommandCall object and set the command.
2. Create aningance of a Digtributed Command Descriptor specifying the Task Name, Task
Owner, Task Description, Sharing, and a System Group; then set the command using the
CommandCdl object created in step 1. Note that the getSystemGroup method used in the
Descriptor’s congtructor must be supplied by the user to retrieve the list of endpoint systems on
which to execute the command.
3. Create an ingtance of aDigtributed Task View object specifying the Distributed Command
Descriptor created in step 2.
Tdl the Digtributed Task View to add the instance of your task so thet it can be managed.
Cdl the execute method to distribute and execute the command on al the endpoint systems
specified in the System Group.

o &

McDi st ConmandDescri pt or di st CommandDesc = nul | ;
McDi stri but edTaskVi ew di st ConmandVi ew = nul | ;

/1 Step 1: Create an instance of a CommandCall object and set the conmand
CommandCal I cndToRun = new CommandCal | () ;
cndToRun. set Conmand(" CRTLI B USRLI B") ;

/'l Step 2: Create an instance of a Distributed Command Descri ptor

di st ConmandDesc = new
McDi st ConmendDescri pt or (" Command Task Nane", /1 Name
"Command Task Description", //

Descri ption

McManageabl e. NONE, /1 Sharing

get Syst enGr oup(), /1 System
Group

cnmdToRun, I
ConmeandcCal |

nul 1); /1
Cat egory

Hintsand Tips:. If you look a the Toolbox documentation for CommandCall,
you will see acongtructor that accepts an AS400 Object. In the example above, if
you supply a CommandCal containing an AS400 Object that is aready connected to
some AS/400 endpoint system, the jMC will accept it, but will overwrite the Object.
Since the AS400 is used to execute native cals on the Endpoint, the data stored
within the Object must correspond with the current system. If it does not, thejMC
will congtruct anew A 400 on the endpoint system and use that Object for command
processing.

Scenario 2: Get list of Distributed Command Call Tasks

If you need to retrieve alist of Digtributed Command Call tasks that would include the task you created
in Scenario 1, this next step will show you how. There are only afew steps needed here.

1. Set upthe sdection criteriato only get tasks of the class M cDistCommandDescriptor

2. Create an instance of the M cDistributedTaskL istViewto managethelist of tasks

3. Askthe Digributed Task Manager to return to you alist of Disgtributed Command Call Tasks

nul | ;
new Vector();

McManageabl eSel ectionCriteria selCriteria
Vect or retrievedTasks

/1l Step 1: Define selection criteria to get a list of Distributed Conmand Tasks
selCriteria = new McManageabl eSel ectionCriteria(
"comibmnr.client.activity.task.command. McDi st ConmandDescriptor", //

Cl ass

McManageabl e. ALL, // Category

nul |, /1 List of owners (only used if next parameter is
true)

fal se, /1 Include shared activities

0); /1 Last changed date of the activity

Scenario 3: Deete a Distributed Command Call Task

If you need to delete a Didtributed Command Call task, or alist of them, the Digtributed Task View and
List View classes provide the methods for you. Deleting atask removes the task from the Management
Centrd databases and is no longer amanaged task. When working with the View object, you can
amply cal removeManageable on the instance of the object itsdlf; for aList of Views, you can smply
cdl removeManagesblel igt on the LigtView instance.

/]l Step 1: Tell the Distributed Task View to renpve the instance of your task
vi ew. removeManageabl e() ;

// O, for a Distributed Task List View

Scenario 4: Change a Distributed Command Call Task

To save changes of an exigting task on the Centrd System, the Digtributed Task View provides the
method for you to use. Prior to caling change, you would have a reference to atask that you previoudy
created or retrieved from alist of tasks. With the reference to the task, you may have the end user
modify it by displaying a property page and using the appropriate set methods to update the task
ingtance. When you have the task instance up to date, you can tdll the Digtributed Task View to store
the changes. Whenworking with the task view object you can smply cal changeManageable on the
ingtance of the object itsdf.

/1 Step 1: Tell the Distributed Task View to change the instance of your task
vi ew. changeManageabl e() ;

Scenario 5: Get asynchronous status and results of a Task

Once you' ve cregted your task and caled execute, the task will run asynchronoudy with other activities.
If you want to monitor the status of the request, you will want to attach a class to handle status and
results that are returned from each endpoint sysem. This dasswill implement the

M cStatusDetailListener and M cResultDetailL istener interfaces. Note: In the example shown

bel ow, the same class implements both these interfaces so we passin this as the object to handle status
and result updates.

/'l Previously you would have retrieved a |ist of task views and selected the
/1l one task view that you want to nonitor status and results

/1 Attach to be notified when a Status or Result object is received
vi ew. attachSt at usDet ai | Li st ener (this);
vi ew. att achResul t Det ai | Li stener(this);

/'l Display a status wi ndow or dial og

/1 \When the user is done with this wi ndow or dial og, detach the status and
/'l result listeners before closing the w ndow

/'l Inmplementing the McStatusDetail Li stener interface
public void statusUpdate(MStatusEvent event) throws MException
{

/'l Get the status object out of the event information

McSt atusl fc status = event.getStatus();

/'l 1f the overall status value indicates the task has finished
if (status.getlLevel () == MStatuslfc.DistributedAct && status.isFinalized()

)

!

Hintsand Tips. The statusUpdate method will be called on a separate
thread when status is returned back to the listener. If you want your task to
appear to run synchronoudy, then you can use the suspend method after
performing the execute action and place aresume method cdl herein the
statusUpdate method. Be aware, however, that Snce results are al'so
asynchronous, you have no guarantee that results will be received before satus.

/1 Inmplementing the McResul t Detail Li stener interface
public void resultUpdate(McResult Event event) throws MException
{
/'l Get the result object out of the event information
McResultlfc result = event.getResult();

/1 Since the result object is a hierarchy of results for each Endpoint
System

/'l specified in the task, you need to get the results for the specific
Endpoi nt

// Systemto see its details.

McResultlfc childResult = (McResultlfc)(result.findChild("systeml"));

/1 Be sure that the result object is an instance of CommandCall before
/1l perform ng ConmandCal | type methods.
if(childResult !'= null && childResult. getResultData() instanceof
ConmendCal 1)
{
/'l Get the CommandCall object our of the result object
CommandCal | cnd = (CommandCal |) chil dResul t. get Resul t Dat a() ;

if ((cnd.getMessagelList() != null) && (cnd. get MessagelList().length > 0)
{
/'l Retrieve list of AS/400 nmessages

Terms, Classes, and Interfaces

Thing

Type

Wheat to do
with it

Purpose

M cDistCommandDescriptor

Class

Use

An application will create one of these
objects to execute an AS/400 CL command
on multiple systems.

McDistributedTaskView

Class

Use

This class bridges your applicationto MC
Java Framework functions to manipulate
tasks and provide additional capabilities
that make GUI programming easier. By
using the attach and detach capabilities,
GUI classes can be notified directly when a
status has changed or when results have
been received.

Task Actions:

- execute

- displayScheduleDialog
- schedule

- cancel

Distributed Task Manager:
- addManageable

- getManageable

- changeM anageable

- removeManageable

Event Listeners:

- attachConnectionListener
- detachConnectionL istener
- attachStatusDetail Listener
- detachStatusDetail Listener
- attachResult Detail Listener
- detachResultDetail L istener

McDistributedTaskListView

Class

Use

This class bridges your applicationto MC
Java Framework functions to manipulate
lists of tasks and provide additional
capabilities that make GUI programming
easier. By using the attach and detach
capabilities, GUI classes can be notified
directly when atask has been created,
changed, updated, and deleted.

Distributed Task Manager:
- getManageableViews
- removeManageabl el ist

Event Listeners:
- attachManageabl eListener
- detachM anageabl eListener

McManageableSelectionCriteria

Class

Use

Use this classin conjunction with the
McDistributedTaskListView to specify the

typeof taskstoretrieve. The selection
criteriaalows you to specify Type,
Category, Sharing, etc.
McActivityDescriptorSelectionCriteria | Class Use Like McManageableSel ectionCriteria, you
use this classin conjunction with the
McDistributedTaskListView to specify the
type of tasksto retrieve. Thisclass
extends the base to include selection
criteriato subset activities based on their
status val ues.

CommandCall Class Use Provided by the AS/400 Java Toolbox:
Containsthe AS/400 CL command to
execute on all theremote systems. This
object will also be used to return AS/400
messages if the execution of the command
resulted in any joblog messages.

Hints and Tips

What exactly doestheexecute dofor a Distributed Command Call?

The execute tells the Management Centra Java Framework to distribute the task to every system
gpecified in the system group. Once delivered to the endpoint system, the CommandCall object will be
extracted from the task and run. If the return code vaue from the run() method indicates an error
(fdse), then McStatuslfc.Failed will be returned in the status event. If the return code vaue indicates
success (true), then avaue of McStatuslfc.Completed will be returned in the Satus event.

In either case, results are also congtructed and returned to the Centrd System and available to the client.
After the CommandCal object is run, any messages are placed in the CommandCal object. In your
resultUpdate method, you can interrogate the result information, extract the CommandCall, and check
to see if there are any messages that have been returned.

The actud execution of the command will occur in a Client Access Server job. Thisjob will run under
the user profile of the owner of the task. For more details, see the JavaDoc for CommandCall.

What exactly doesthecancel do for a Distributed Command Call?

When the CommandCall object is requested to run on the endpoint system, it will start anew Client
Access server job. The Digtributed Command Call gpplication will remember this job name. When the
cancel request is received on the endpoint system, an ENDJOB immediate command will be executed
to end the Client Access server job processing the execute request. If the ENDJOB command was
executed a McStatusl fc.Canceled status will be returned in the status event. I the execute request had
aready completed, then the cancel request will be disregarded.

Programming Examples

In CMVC there are a number of test programs available at:
as400a\v5r 1mOt.ss03\int\emve\java pgmlyps.ssi3\comiibm\agpp\client

e TestCmdCal

e TestCmdCallAttach

e TestCmdCalCance

e TestCmdCalCreate
* TestCmdCallExecute
* TestCmdCalRemove
e TestCmdCalSchedule

The TestCmdCall Javaprogramisan dl inclusive test program that will create a new task, attach for
status and result notifications, execute the task, process status and result events, and remove the task
when completed.

The rest of the test programs break the entire test into controllable pieces. The TestCmdCallCreate
Java program will create anew task. The TestCmdCallAttach Java program will associate itsdf to
the task so when the task executesit can receive status and result notifications. The
TestCmdCallExecute Java program will kick off the execution of the task and will also receive gatus
and result natifications. The TessCmdCallSchedule Java program will schedule the task to execute at
alater date and time. The TestCmdCallRemove Java program will delete the task from the
Management Central Task data base on the AS/400. The TestCmdCallCancel Java program will
attempt to cancel the running task. The TestCmdCallChange Java program will change the name of
the task.

In these examplesit isimportant to understand the M cK ey concept. When anew task is created, a
key is created to uniquely identify the task This key is made up of three parts: the task class, the task
name, and the user who ownsthe task. Inthe TestCmdCallCreate Java program the key is created
and assigned when you creste a new ingtance of your task. This happens when you indantiate a new
M cDistCommandDescriptor and perform an addManagesble.

/'l Create an instance of a Distributed Conmand Descri ptor
McDi st CommandDescri pt or di st CommandDesc = new
McDi st CommandDescri pt or (" Command Task Name", /1 Name
"Conmand Task Description", //
Descri ption

McManageabl e. NONE, /1
Shari ng

get Syst enGr oup(), /1l System
Group

cmdToRun, /1
CommandCal |

null); /1
Cat egory

Notice that when you construct anew M cDistCommandDescriptor, you specified two out of the
three essentid parts of the key:

1. Task Class = McDigtApiDescriptor

2. Task Name = "“DigApiDesc-TestTask
The owner is determined by the Management Centra Java Framework.

Now in the TetCmdCallAttach, TestCmdCallExecute, TessCmdCallCancel,
TestCmdCallChange, and TestCmdCallRemove Java programs, you can get the task again by
congructing the M cK ey and creating a new Distributed Task View.

McKey tenpKey = new McKey/(

"comibmnr.client.activity.task.comand. McDi st CommandDescri ptor",
"Command Task Nanme");

Be Aware: Thetest programs referenced above were created for the purpose of testing the
Management Central Java Framework, and no attention has been paid to quaity GUI programming
concepts. Y ou should not use these tests as guides on exactly how to set up your client, but only on
how to interact with Distributed Descriptor and View Objects within the jMC.

For ingtance, while the JMC provides asynchronous status and results from each endpoint specified in
the system group, there is no dternative method for receiving synchronous status or results. After caling
the view' s execute method, these test programs suspend the main thread until a status update has
arrived, after which the main thread is resumed, and execution completes. What this meansis that if you
use more than one endpoint system, you will lose dl status and results informeation from every systemin
your system group except the one that finishes fird.

So, while the test cases will show you how to send and receive data from your centrd sitein the
digtributed environment of the Management Centra Java Framework, it does not give advice as to how
to handle that data.

See the section on Plugging Into Operations Navigator for amore robust implementation of handling
dtatus and result updates within this asynchronous environment.

Management Central Distributed API Application

Overview

In this chapter you will learn about classes that dlow you to call an AS400 Application Programming
Interface(API) on multiple remote AS/400 endpoint systems. Y ou will use classes provided by the
AS400 Java Toolbox in conjunction with classes provided by the Management Centrd Java
Framework. The McDistApiDescriptor dasswith hep from the M cDistributedTaskView and
McDistributedTaskL istView classes provide the Management Central Distributed Task functions
alowing a Java program to run a program or service program APl on multiple groups of systems and
return status and results back to the Central System and the graphica client workstation.

Y ou may choose to use the ProgramCall, ServiceProgramCall, or ProgramCallDocument
classes from the AS/400 Java Toolbox to define and construct your API request. Passing one of these
objects to the Management Central Digtributed API Application, Management Central can send and run
the API on the endpoint systems. These classes use the A S400M essage class to return messages that
may have been logged in the job log as aresult of the APl execution. This message array will be
returned in the result for each endpoint system receiving the request.

Interfaces and Flows

Application Designer

As the application designer, you will want to determine whether the M cDistApiDescriptor class
contains the functiondity your gpplication needs. 'Y our application would use this function if the
interface you are cdling on the AS/400 is an Application Programming Interfaces(API) and you require
only minimal status and results about the execution of the AF!.

Some of the specifications of the M cDistApiDescriptor are:

e Canrunasingle AS400 APl smulaineoudy on multiple systems

* Runs asynchronoudy, meaning aonce the task is distributed to the endpoints, each endpoint
runs the task in parallel and reports status back upon completion of the task

* Returnsalimited defined set of status. It will return Completed when no messages are returned
and Failed when any message is returned.

* Returns any output parameters within the ProgramCall, ServiceProgramCall, or
ProgramCallDocument resulting object

* Returns AS/400 messages within the ProgramCal, ServiceProgramCall, or
ProgramCallDocument resulting object

e AP will run under the user profile of the owner of the activity

Gui Developer

The following scenarios describe how to use the ProgramCall, McDistApiDescriptor, and
McDistributedTaskView classes. Processng is very similar when using the ServiceProgramCall or
ProgramCallDocument AS/400 Java Toolbox classes.

Classes and Interfaces:

com.ibm.mc.client.activity.task.gpi.McApiData
com.ibm.mc.client.activity.task.api.M cDistA piDescriptor
com.ibm.mc.client.activity.task.api.McEndpA pi Descriptor
com.ibm.mc.server.activity.task.api.McEndpApiAction
com.ibm.mc.client.activity.task.McDigributedTaskView
com.ibm.mc.client.activity.task. McDigtributedTaskLigView
com.ibm.mc.client.activity.M cActivityDescriptorSdectionCriteria
com.ibm.mc.client.M cM anageableSd ectionCriteria
com.ibm.as400.access. A SAOOM essage
com.ibm.as400.access.ProgramCall
com.ibm.as400.access. ServiceProgramCall
com.ibm.as400.data. ProgramCal | Document

Scenario 1: Create and Execute a Distributed APl Application Task

It isvery easy for the GUI developer to use the M cDistApiDescriptor classto create and execute a
distributed API task. Here are the steps to get you Started:

1
2.

»

Create an instance of an AS/400 Java Toolbox ProgramCall class and associated parameters.
Create an instance of a Distributed APl Descriptor specifying the Task Name, Task Owner,
Task Description, Sharing, System Group, and the ProgramCall object created in step 1.

Note that the getSystemGroup method used in the Descriptor’ s constructor must be supplied by
the user to retrieve the list of endpoint systems on which to execute the command.

Create an instance of a Digtributed Task View specifying the Distributed APl Descriptor
created in step 2.

Tell the Didtributed Task View to add the instance of your task so that it can be managed.

Cdl the execute method to ditribute and cdl the APl on dl the endpoint systems specified in
the System Group.

McDi st Api Descri pt or di st Api Desc
McDi stri but edTaskVi ew di st Api Vi ew

nul | ;
nul | ;

/'l Step 1: Create an instance of a ProgranCall object and set associ ated

paraneters
/1 Create and/or retrieve AS400 object
AS400 as400System = get System();

/1l Create the path to the program

QSYSOhj ect Pat hNane programName = new QSYSObj ect Pat hNanme(" QSYS", " QWCRSSTS",

"PGM") ;

/'l Create the programcall object. Assocate the object with an AS400

obj ect .
ProgranCal | api SystenStatus = new ProgranCal | (as400System) ;

/'l Create the program parameter list. This program has five
/1l paraneters that will be added to this I|ist.
ProgramParanmeter[] parmist = new ProgranmParameter[5];

/1 The AS/ 400 programreturns data in paranmeter 1.
parm ist[0] = new ProgranParaneter(64);

/1l Paraneter 2 is the buffer size of parm 1.

AS400Bi n4 bin4 = new AS400Bi n4();

I nteger i StatusLength = new Integer(64);

byte[] statusLength = bin4.toBytes(iStatusLength);
parmist[1l] = new ProgramParaneter(statuslLength);

/] Parameter 3 is the status-format paraneter.

byte[] format = McUtilities.stringToByteArray(as400System get Ccsid(),

" SSTS0200") ;
parmist[2] = new ProgranmParanmeter(format);

/1l Paraneter 4 is the reset-statistics paranmeter.

byte[] reset = MUtilities.stringToByteArray(as400System get Ccsid(),

Dk

parm ist[3] = new ProgranParaneter(reset);

/1 Paranmeter 5 is the error info paraneter.
byte[] errorinfo = new byte[32];
parm ist[4] = new ProgranParaneter(errorlinfo, 0);

"*NO

/1 Set the programto call and the paraneter list to the program call

obj ect.
api Syst entSt at us. set Program(progranmNanme. get Path(), parmist);

/'l Step 2: Create an instance of a Distributed APl Descri ptor
/1 Create the Mananenment Central Distrihuted APl Descrintor

Note: Step 1 above requires you to supply your own AS400 Object via the getSystem method.

t ask

The

only thing it isused for in this example isin converting the Strings into byte array representations. The
ASA00 Object is necessary 0 that the conversion routine knows which character set ID (CCSID) to

use on the converson. When executing on the endpoint, the AS400 Object contained within the

ProgramCall will be replaced with an object representing the current system. However, the CCSID

issue leads to some subtle complexities when dedling with this text conversion.

Firg, it means that each AS/400 endpoint system in your system group MUST have the same CCSID
as the AS400 you use to construct the ProgramParameter lit. If it does not, the ProgramParameters
may not be interpreted correctly on the endpoint system, causing your program to fail.

Second, it means that a connection must be established to retrieve the CCSID vaue for some AS400.
Y ou can do this either by retrieving the current centra system from Operations Navigator, providing an
AS/400 system name, user profile, and password with which to connect, or by creating an empty
ASA00 object, and dlowing it to prompt the user for the appropriate information.

Of course, none of these issues arise if you have no need for text-to-byte array conversion as part of
your ProgramParameter setup.

Scenario 2: Get alist of Distributed API Application Tasks

If you need to retrieve alist of Distributed API Tasks that would include the task you created in
Scenario 1, this next step will show you how. There are only afew steps needed here.

1. Set upthe sdection criteriato only get tasks of the class M cDistApiDescriptor

2. Create an ingtance of the McDidributedTaskListView to manage the list of tasks

3. AsktheDidributed Task List View to return to you alist of Distributed APl Tasks

public Vector |istTasks()

{
McManageabl eSel ectionCriteria selCriteria
McDi stri but edTaskLi st Vi ew vi ewLi st
Vect or retrievedTasks

nul | ;
nul | ;
new Vector ();

/1 Step 1: Define selection criteria to get a list of Distributed APl Tasks

selCriteria = new McManageabl eSel ectionCriteri a(
"comibmnr.client.activity.task. api.MDistApi Descriptor", // Class
McManageabl e. ALL, // Category

nul |, /1 List of owners (only used if next paraneter is
true)

fal se, /1 1Include shared activities

0); /1 Check the | ast changed date of the activity

/'l Step 2: Create a new Task List View to manage your tasks
vi ewLi st = new McDi stributedTaskListView(selCriteria);

Note: Thisexample will retrieve dl the tasks of type M cDistApiDescriptor and returnthemina

Vector. The McDistApiDescriptor classisthe same class used in Scenario 1 step 2 when you
created the task.

Scenario 3: Delete a Distributed APl Task

If you need to delete a Distributed AP task, or alist of them, the Distributed Task View and List View
classes provide the methods for you. Deleting atask removes the task from the Management Centrd

databases and is no longer a manageable task. When working with the Distributed Task View object,
you can Smply cal removeManagesble method to deleteit.

/1 Step 1: Tell the Distributed Task View to remove the instance of the task
di st Api Vi ew. rembveManageabl e() ;

// O, for a Distributed Task List View

Scenario 4: Change a Distributed API Task

To save changes of an existing task on the Central System, the Distributed Task View provides the
method for you to use. Prior to caling change, you would have a reference to atask that you previoudy
created or retrieved from aligt of tasks. With the reference to the task, you may have the end user
modify it by displaying property pages and using the appropriate set methods to update the task
ingtance. When you have the task instance up to date, you can tell the Distributed Task View to store
the changes.

/]l Step 1: Tell the Distributed Task View to change the instance of the task
di st Api Vi ew. changeManageabl e() ;

Scenario 5: Get asynchronous status and results of a Task

Once you' ve crested your task and caled execute, the task will run asynchronoudy with other activities.
If you want to monitor the status of the request, you will want to attach a class to handle when status
and results are returned from the endpoint syssem to you. This class will implement the
McStatusDetailL istener and M cResultDetailListener interfaces. Note: In the example shown
below, the same class implements both these interfaces so we passin this as the object to handle status
and result updates.

/1 Previously you would have retrieved a list of task views and sel ected the
/1 one task view that you want to monitor status and results

/1l Attach to be notified when a Status or Result object is received
vi ew. attachStatusDetail Li stener(this);
vi ew. att achResul t Detai | Li stener(this);

/'l Display a status wi ndow or dial og

/1 VWhen the user is done with this wi ndow or dialog, detach the status and
/1l result listeners before closing the w ndow

/1 Inmplementing the McStatusDetail Li stener interface
public void statusUpdate(MStatusEvent event) throws MException
{
/'l Get the status object out of the event information
McStatusl fc status = event.getStatus();

/1 If the overall status value indicates the task has finished
if (status.getlLevel () == McStatuslfc.DistributedAct && status.isFinalized()
)

!

Hints and Tips: The statusUpdate method will be called on a separate
thread when gtatusiis returned back to the listener. If you want your task to
appear to run synchronoudy, then you can use the suspend method after
performing the execute action and place a resume method cdl herein the
statusUpdate method. Be aware, however, that Since results are aso
asynchronous, you have no guarantee that results will be received before status.

/1 Inmplementing the McResul t Detail Li stener interface
public void resultUpdate(McResult Event event) throws MException
{
/'l Get the result object out of the event information
McResultlfc result = event.getResult();

/1 Since the result object is a hierarchy of results for each Endpoint
System

/'l specified in the task, you need to get the results for the specific
Endpoi nt

// Systemto see its details.

McResultlfc childResult = (McResultlfc)(result.findChild("systeml"));

/1 Be sure that the result object is an instance of ProgranCall before
/'l perform ng ProgranCall type methods.
if(childResult !'= null && childResult.getResultData() instanceof
ProgramCal |)
{
/1 Get the PrograntCall object our of the result object
ProgramCall pgm = (PrograntCall)chil dResult.getResultData();

if ((pgm get MessagelList() != null) && (pgm get MessagelList().length > 0))

{
/'l Retrieve list of AS/400 nmessages

Terms, Classes, and Interfaces

Thing

Type

What todo
with it

Purpose

M cDistA piDescriptor

Class

Use

An application will create one of these
objects to run an AS/400 Application
Programming Interface (API) on multiple
systems.

McDistributedTaskView

Class

Use

This class bridges your applicationto MC
Java Framework functions to manipulate
tasks and provide additional capabilities
that make GUI programming easier. By
using the attach and detach capabilities,
GUI databeans can be notified directly
when a status has changed or when
results have been received.

Task Actions:

- execute

- displayScheduleDialog
- schedule

- cancel

View Actions:

- addManageable

- getManageable

- changeM anageable
- removeManageable

Event Listeners:

- attachConnectionListener
- detachConnectionL istener
- attachStatusDetail Listener
- detachStatusDetail Listener
- attachResult DetailListener
- detachResultDetail L istener

McDistributedTaskListView

Class

Use

This class bridges your applicationto MC
Java Framework functions to manipulate
lists of tasks and provide additional
capabilities that make GUI programming
easier. By using the attach and detach
capabilities, GUI classes can be notified
directly when atask has been created,
changed, updated, and del eted.

Distributed Task Manager:
- getManageableViews
- removeM anageabl el ist

Event Listeners:
- attachManageabl eListener
- detachM anageabl eListener

McManageableSelectionCriteria

Class

Use

Usethisclassin conjunction with the

McDistributedTaskListView to specify the
type of taskstoretrieve. The selection
criteriaalows you to specify Type,
Category, Sharing, etc.

McActivityDescriptorSelectionCriteria

Class

Use

Like McManageableSel ectionCriteria, you
use this classin conjunction with the
McDistributedTaskListView to specify the
type of taskstoretrieve. Thisclass
extends the base to include selection
criteriato subset activities based on their
status values.

ProgramCall

Class

Use

Provided by the AS/400 Java Toolbox:
Contains the AS/400 program API and
parametersto call on al the remote
systems. Output parameters will be
returned in aresulting ProgramCall object.
This object will al'so be used to return
AS/400 messages if the execution of the
API resulted in any messages.

ServiceProgramCall

Class

Use

Provided by the AS/400 Java Toolbox:
Contains the AS/400 service program API
and parametersto call on all the remote
systems. Output parameterswill be
returned in aresulting ServiceProgramCall
object. Thisobject will also be used to
return AS/400 messages if the execution of
the API resulted in any messages.

ProgramCallDocument

Class

Use

Provided by the AS/400 Java Toolbox:
Contains the AS/400 program API or
service program APl and parametersto call
on all the remote systems. Output
parameterswill be returned in aresulting
ProgramCallDocument object. This object
will also be used to return AS/400
messages if the execution of the API
resulted in any messages.

Programming Examples

In CMVC there are a number of test programs available at:
as400a\v5r 1mOt.ss03\int\emve\java pgmlyps.ssi3\comiibm\agpp\client

* TedApiPgm

* TesdtApiPgmCdlCreate
* TestApiPgmCdlAttach
* TestApiPgmCallExecute
* TedApiPgmCdlRemove

The T estApiPgm Javaprogram isan dl inclusive test program that will create a new task, atach for
status and result notifications, execute the task, process status and result events, and remove the task
when completed.

The rest of the test programs bresk the entire test into controllable pieces. The
TestApiPgmCallCreate Java program will create anew task. The TestApiPgmCallAttach Java
program will associate itsalf to the task so when it executes it can recelve status and result notifications.
The TestApiPgmCallExecute Java program will kick off the execution of the task and will dso
recelve satus and result notifications. The TestApiPgmCallRemove Java program will delete the task
from the Management Central Task data base on the AS/400.

In these examplesit isimportant to understand the M cK ey concept. When anew task is created, a
key is created to uniquely identify the task Thiskey is made up of three parts. the task class, the task
name, and the user who ownsthe task. Inthe TestApiPgmCallCreate Java program the key is
created and assigned when you create a new instance of your task. This happens when you ingantiate a
new M cDistApiDescriptor and perform an addManageable.

di st Api Desc = new McDi st Api Descri ptor (" MDi st Api Task_Nanme", /1 Name
"McDi st Api Task_Descriptor", // Description
McManageabl e. NONE, /1 Sharing
get Syst emGr oup(), /'l System G oup
api Syst entt at us, /'l Prograntal |
nul l); /'l Category

di st Api View = new McDi stributedTaskVi ew(di st Api Desc) ;
di st Api Vi ew. addManageabl e() ;

Notice that when you construct anew M cDistApiDescriptor, you specified two out of the three
essentid parts of the key:

1. Task Class = McDigtApiDescriptor

2. Task Name = “DistApiDesc-TestTask”
The owner is determined by the Management Centrd Java Framework.

Now in the TestApiPgmCallAttach, TestApiPgmCallExecute, and TestApiPgmCallRemove
Java programs, you can get the task again by constructing the M cK ey and creating a new Distributed
Task View.

McKey tenpKey = new
McKey("comibmnr.client.activity.task. api.MDistApi Descriptor"”,
"Di st Api Desc- Test Task");
di st Api Vi ew= new McDi stributedTaskVi ew(tenpKey);

Be Aware: Thetest programs referenced above were created for the purpose of testing the
Management Central Java Framework, and no attention has been paid to quaity GUI programming
concepts. Y ou should not use these tests as guides on exactly how to set up your client, but only on
how to interact with Distributed Descriptor and View Objects within the jMC.

For ingtance, while the JMC provides asynchronous status and results from each endpoint specified in
the system group, there is no dternative method for receiving synchronous status or results. After cdling
the view' s execute method, these test programs suspend the main thread until a status update has
arived, after which the main thread is resumed, and execution completes. What this meansisthat if you
use more than one endpoint system, you will lose dl satus and results informeation from every sysemin
your System group except the one that finishes fird.

S0, while the test cases will show you how to send and receive data from your centra Stein the
distributed environment of the Management Centra Java Framework, it does not give advice as to how
to handle that data.

See the section on Plugging Into Operations Navigator for a more robust implementation of handling
datus and result updates within this asynchronous environmen.

Advanced Features

The following scenarios are provided to supplement the information in each of the preceding application
sections. They are considered advanced features only because they aren’t necessary to use the
Command Call or API gpplications provided by the Management Centrd Java Framework. However,
they are quite useful, and are provided here as areference.

All examples are shown using the Command Cal Application as the base, but since these techniques
goply to dl Tasks, they are vdid features of the Api application aswdll.

Saving Endpoint Systems and System Groups

The Endpoint system and System Group concepts are key eements of any Digtributed Application
within the Management Centrd Java Framework. The jMC aso provides the tools for you to store this
data persstently on the central Site to be used or reused at alater time. Once stored on the Central
System, it can be optionally viewed, changed, removed, and shared by al the operators and
adminigtrators connecting to that Centrd System.

This peragtently stored datais caled a Definition inthejMC. Definitions are discussed in depth in the
full versgon of this How To document, but for the purposes of this discussion, we |l only cover how to
persistently store Endpoint Systems and System Groups.

Classes and Interfaces:
e com.ibm.mc.client.definition.McDefinition
e comibmmc.dient.definition.McDefinitionView
e comibm.mc.dient.definition.McEndpointSystem
e com.ibm.mc.client.definition.McSystemGroup
e com.ibm.mc.client.definition.McEndpointSystemSd ectionCriteria
e com.ibm.mc.dient.definition.M cSystemGroupSd ectionCriteria

Scenario 1. Creating Definition Instances

In Scenario 1, you create and manage an ingance of your Definition. This instance can either bea
M cEndpointSystem or a M cSystemGr oup (consult the JavaDoc for class constructor
specifications). Bascdly there are three sepsin creating anew definition:
1. Create an ingtance of your definition. This could be triggered from the user interface where the
user specifies different properties.
2. Cregte an ingance of a Definition View to manage the instance of your definition
3. Tdl the Definition View to perastently store the instance of your definition to the definition
database on the Centrd System using the addM anageable method.

public void newDefinition()
{

nul | ;
nul | ;

McEndpoi nt Syst em endpSys
McDefinitionView defnVi ew

/'l Step 1: Create an instance of the MyConmandDefinition class
endpSys = new McEndpoi nt Syst em

" Syst emNanme", /1 System Name
"System descri ption", /1l Description
McManageabl e. READ, /'l Sharing
"9.5.179.19"); /1 1P address

/1 Step 2: Create a Definition View object
def nView = new McDefinitionView endpSys);

L e T T T ot T U U T A NP O P S

Scenario 2. Retrieve your Definitions

If you need to retrieve a Definitions that you created in Scenario 1, this next scenario will give you the

basi

cs. Thereare only afew steps needed here:

1. Set upthe sdlection criteriato only get the definition that matches the name of your gpplication's
definition, M cEndpointSystem in this case. Notice that instead of using
M cM anageabl eSdlectionCriteria to salect your endpoint, you'll use
M cEndpointSystemSelectionCriteria. A Smilar class, cdled
McSystemGroupSelectionCriteria, exists for sdecting system groups.

2. Create an ingance of a Definition View to manage your definition.

3. Ask the Definition View to return you an endpoint system that matches the selection criteriayou
Specified in step 1.

publ i c McEndpoi nt Syst em get Syst en()

{

nul | ;
nul | ;

McEndpoi nt SystentSel ectionCriteria selCriteria =
McDefinitionView def nVi ew =
/1 Step 1: Define selection criteria for a |list of your definitions
selCriteria = new McEndpoi nt SystenSel ecti onCriteria("Systemane");

/1 Step 2: Create a new Definition List View object to manage your definitions
defnView = new McDefinitionView(selCriteria);

/'l Step 3: Ask the Definition List Viewto return objects that match your criteria
McEndpoi nt Syst emr endpSys = (McEndpoi nt Syst em def nVi ew. get Manageabl e() ;

Scenario 3: Deleting Definition Instances

If you need to delete a definition, or alist of definitions, the same View and List View wrappers provide
the methods to use. The removeM anageable for asingle definition view and removeM anageables for a

lig of definition views are methods available on the M cDefinitionView and M cDefinitionListView
classes.

/1 Step 1: Tell the Definition View to renove your Definition

11 It will be deleted fromthe persistent store on the
Central
Il System and will no | onger be avail able.

Scenario 4: Changing an existing Definition I nstance

To change an exigting definition, the View again provides the method for you to use. Prior to calling
change, you would have a reference to a definition that you previoudy created or retrieved from aligt.
With the reference to the definition, you may have the end user modify it by displaying a set of property
pages and using the appropriate set methods to update ingtance of the definition. When you have the
definition instance updated, you can tell the View to store the changes.

/]l Step 1: Call the set methods to update the Definition
endpSys. set Addr ess(" 255. 255. 255. 255");

/1 Step 2: Tell the Definition Viewto change your Definition with the updates

marde

Get asynchronous status updates for List of Tasks

By implementing the M cM anageabl el istener interface, you can be notified when anew task has
been created, changed, updated, or deleted. Thisis most useful when maintaining alist of tasks, and
you wish to be notified whenever tasks are added, removed, updated, or changed. Thislist of tasksis
specified using sdlection criteria so that you are not notified when just any task is created, but only those
tasks that meet your selection subset. This codeisidentical to the code used to retrieve alist of Tasks
based on a sdlection subset, but we add a fourth step here to attach the current class as the
ManageableListener. Thisinterface, dong with the implemented update, change, and remove methods,
dlows the Management Central Java Framework to send you a notification when a Task has been
updated.

public class MyTaskLi st inplenents McManageabl eLi st ener

{
public void getList() {

McManageabl eSel ectionCriteria selCriteria = nul |
McDi stri butedTaskLi st Vi ew vi ewLi st = null
Vect or retrievedTasks = null

/1 Step 1: Define selection criteria to get a |ist of Distributed Conmmand
Tasks
selCriteria = new McManageabl eSel ectionCriteria(

"comibmnr.client.activity.task.conmmnd. McDi st ConmandDescri ptor"

"McManageabl e. ALL", /] category

nul |, /1 Omer List (only used when next parmis true)
fal se, /1l use sharing

0); /1 last changed date

/'l Step 2: Create a new Task List View to manage your tasks
vi ewLi st = new McDistributedTaskLi stView(selCriteria);

/1 Step 3: Ask the Distributed Task Manager for a list of Distributed Comand
Tasks
retrievedTasks = viewli st. get Manageabl eVi ews() ;

/1 Step 4: Attach this class, which inplements the McManageabl eLi st ener
interface,

/1 to handl e any notifications

vi ewLi st . att achManageabl eLi st ener (this);

}

/1 The follow ng methods are required as an inplenmentation of
McManageabl eLi st ener

public void manageabl eAdded(McManageabl eEvent event) throws MException {
/1 Insert code to handle when a new task has been created

}

Private Descriptors

By default, dl Descriptors are public. Mainly, this means that once the manageable is managed by the
JMC, it will be stored persstently in a database on the server. Any user that has gppropriate authority
can retrieve that descriptor off the server by setting up a SdectionCriteria object that meets some
criteria of the descriptor, creating alist view with the selection criteria, and cdling

get Manageabl eVi ews ontheligView.

Private descriptors, on the other hand, are never stored persistently, and may not be retrieved off the
server onceit’s created, even by the owner. Even if a user specifies a selection criteria that exactly
matches the private descriptor, it will not be returned in their list.

In the following example, the descriptor is created as normal, but Step lais added to make the
descriptor private. Without this step, anyone with the appropriate authority could retrieve the task from
the server, and possible update it.

McDi st CommandDescri pt or di st CommandDesc
McDi st ri but edTaskVi ew di st CommandVi ew

= null;

= null;

/]l Step 1: Create an instance of a CommandCall object and set the conmand
CommandCal | cndToRun = new ConmandCal | () ;

cmdToRun. set Command(" CRTLI B USRLI B") ;

/] Step 2: Create an instance of a Distributed Command Descri ptor
di st CommandDesc = new

McDi st CommandDescri ptor (" Command Task Name", /1 Name
"Command Task Description”, /| Description
McManageabl e. NONE, /1 Category
get Syst enGr oup(), /1 System Group
cmdToRun, /1 CommandcCal |
Obj ect
null); /1 Category

/'l Step 2a: Make descriptor private
di st ConmandDesc. set Private(true);

Public Descriptor Sharing

In this scenario, we added Step 2a to change the Descriptor’ s sharing value. Sharing lets the owner
specify whether other users can view or change the contents of the descriptor. Only public descriptors
can be shared.

McDi st CommandDescri pt or di st ConmandDesc
McDi st ri but edTaskVi ew di st CommandVi ew

= null;

= null;

/[l Step 1: Create an instance of a CommandCall object and set the conmand
CommandCal | cndToRun = new CommandCal | () ;

cmdToRun. set Command(" CRTLI B USRLI B") ;

/]l Step 2: Create an instance of a Distributed Command Descri ptor
di st CommandDesc = new

McDi st CommandDescri ptor (" Command Task Name", /1 Name
"Command Task Description", /1 Description
McManageabl e. NONE, /1 Sharing
get Syst enGr oup(), /1 System G oup
cmdToRun, /1 CommandcCal |
Obj ect
nul l); /'l Category

/1l Step 2a: Set Sharing to Full
di st ConmandDesc. set Shari ng(McManageabl e. FULL) ;

By default, thereis no sharing of descriptors, but by setting the sharing vaue of this
McDistCommandDescriptor to McManageable.FULL, al userswill be able to retrieve the descriptor

using the ligView's getManageableViews method, and will aso be able to make and store changes to
the server using the changeManageable method on the View.

Vdid sharing vaues and their meanings are;

Thisisthe default sharing value. No users will be

McManageeple NONE able to view the descriptor.

McManagesble READ All us_;erswnl be able to view but not change, the
descriptor.

McManageable.FULL All us_;erswnl be able to view and change the
descriptor.

Auto Increment

In this scenario, we added Step 2ato set auto increment to true. Auto increment alows you to cresate
multiple instances of atask without worrying about aname conflict. Thefirg timethisis run, it will
create atask with aname of "Command Task Name'. By adding step 2a, the second time thisisrun
the Management Centra Java Framework will automatically identify that the name "Command Task
Name' dready exists and increment the name to "Command Task Name(2)". Thethird time it will be
"Command Task Name(3)" and so on.

McDi st CommandDescri pt or di st ConmandDesc
McDi stri but edTaskVi ew di st CommandVi ew

= nul |;

= nul |;

/1 Step 1: Create an instance of a CommandCall object and set the conmand
CommandCal | cndToRun = new ConmandCal | () ;

cmdToRun. set Command(" CRTLI B USRLI B") ;

/] Step 2: Create an instance of a Distributed Command Descri ptor
di st CommandDesc = new

McDi st CommandDescri ptor (" Command Task Name", /1 Name
"Conmmand Task Description”, /1 Description
McManageabl e. NONE, /1 Category
get Syst enGr oup(), /1 System Group
cmdToRun, /1 CommandcCal |
Obj ect
null); /'l Category

/1l Step 2a: Set Auto Increnment On
di st CommandDesc. set Aut ol ncrement (true);

Categories

When the same task class needs to be used for multiple purposes, categories are used to distinguish
between them. In this command task example, you may have the need for both Backup-type tasks and
Restore-type tasks. When you create an instance of your task, you can specify a Category to use like
“MyTask-Backup” instead of creating a separate task classfor each. Thisisdonein Step 2b in the
following example,

McDi st CommandDescri pt or di st ConmandDesc
McDi stri but edTaskVi ew di st ConmandVi ew

nul | ;
nul | ;

/1 Step 1: Create an instance of a CommandCall object and set the conmmand
CommandCal | cndToRun = new ConmmendCal | () ;
cmdToRun. set Conmand(" CRTLI B USRLI B") ;

/1l Step 2: Create an instance of a Distributed Command Descri ptor
di st ConmandDesc = new

McDi st CommandDescri pt or (" Command Task Nane", /1 Nanme
"Conmand Task Description", /1 Description
McManageabl e. NONE, /'l Category
get Syst emGr oup(), /'l System G oup
cmdToRun /1 CommandcCal |
Obj ect
null); /'l Category

/1 Step 2b: Set the Task Category
/1 Optionally, specify this value on the descriptor constructor above
di st CommandDesc. set Cat egory(" MyTask- Backup");

If you specify a category when you create an ingtance of your Distributed Command Cal task, you can
Specify that same category in your selection criteriato only get tasks that maich. This alowsyou to
retrieve alist of only Backup-type tasks or Restore-type tasks even though they both share the same

M cDistCommandDescriptor class.

McManageabl eSel ectionCriteria selCriteria = null;
McDi stri but edTaskLi st Vi ew vi ewLi st = null;
Vect or retrievedTasks = new Vector();

/1l Step 1: Define selection criteria to get a list of Distributed Command
Tasks
selCriteria = new McManageabl eSel ectionCriteri a(

"comibmunr.client.activity.task.command. McDi st CommandDescri ptor",
"MyTask- Backup", // Category

nul |, /1 Omner List (only valid if next parmis true)
fal se, /'l use sharing
0); /'l last changed date

Schedule Your Task

It isvery easy for the GUI developer to use the M cDistCommandDescriptor classto create and
schedule a distributed command cal task. To do this we added steps 5 and 6 to what has previoudy
been covered.
1. Create aninstance of an AS/400 Java Toolbox CommandCall object and set the command.
2. Create aningance of a Digtributed Command Descriptor specifying the Task Name, Task
Owner, Task Description, Sharing, and a System Group; then set the command using the
CommandCall object created in step 1.
3. Create an ingtance of aDigtributed Task View object specifying the Distributed Command
Descriptor created in step 2.
Tdl the Digtributed Task View to add the instance of your task so thet it can be managed.
Construct a M cSchedulel nfo object using a description of your activity, and “execute” asthe
scheduled method, and set the schedule information by prompting the user with the
Management Centra Schedule Dialog or a supported Business Partner Scheduler.
6. Cdl the schedule method to schedule the task on the Central System.

o &

Note: This scenario isvery smilar to digtributing a command call to run on multiple endpoints. The
differenceisingead of caling execute, you now need to gather scheduling information as the fifth step
and cdl schedule as an additional step.

McDi st CommandDescri pt or di st CommandDesc = nul | ;
McDi stri but edTaskVi ew di st ConmandVi ew = nul | ;

/1 Step 1: Create an instance of a CommandCall object and set the conmand
CommandCal | cndToRun = new ConmmendCal | () ;
cmdToRun. set Conmand(" CRTLI B USRLI B") ;

[/l Step 2: Create an instance of a Distributed Command Descri ptor
di st ConmandDesc = new

McDi st CommandDescri pt or (" Command Task Nane", /1 Nanme
"Conmand Task Description", /1 Description
McManageabl e. NONE, /'l Category
get Syst emGr oup(), /1 SystenmGroup
cmdToRun, /1 CommandcCal |
Obj ect
null); /'l Category

/]l Step 3: Create an instance of a Distributed Task Vi ew object
/1 specifying the Distributed Conmand Descri ptor.
di st CommandVi ew = new McDi stri butedTaskVi ew(di st CommandDesc) ;

/1l Step 4: Tell the Management Central Java Framework Task Manager to add this

/1 Di stributed Conmand Descriptor to manage.
di st ConmandVi ew. addManageabl e() ;

Get list of Scheduled Distributed Tasks

If you need to retrieve alist of previoudy Scheduled Digtributed Tasks, this next step will show you
how. Refer to the previous section where you Scheduled your task to execute at alater date. If that

task is currently managed by the Management Centra Java Infrastructure, it will be returned in your list
of scheduled tasks below. There are only afew steps needed here.

1. Set upthe sdection criteriato only get scheduled tasks of the class
M cDistCommandDescriptor
2. Create an ingtance of the M cDistributedTaskL istViewto managethelist of tasks
3. Ask the Digributed Task Manager to return to you alist of Distributed Command Call Tasks

McActivityDescriptorSelectionCriteria selCriteria = null
Vector retrievedSchedTasks = new Vector ()
int[] statusList = {MStatuslfc.Schedul ed};

/1 Step 1: Define selection criteria to get a |list of Schedul ed Distributed
I Command Cal | Tasks
selCriteria = new McActivityDescriptorSelectionCriteria(

"comibmnr.client.activity.task.command. McDi st ConmandDescri ptor",
McManageabl e. ALL, // Category

nul |, /1 OmnerlList (only valid if next parmis
true)

fal se, /'l useSharing

0, /1 last changed date

statusList); /'l StatusList - ours contains only

Note: Thistime you needed to use the M cActivityDescriptor SelectionCriteria class ingtead of the
McM anageableSelectionCriteria. The activity sdection criteria extends the capatiilities of the
managesble salection criteriato include status information. This dlows you to indicate that you only
want to receive activities that are in aparticular satus, such as active, completed, or in this case
scheduled.

Handling Exceptions

In this scenario, acom.ibm.mc.client.util.M cException is caught and interrogated to determine the
cause of an error. If, for whatever reason, an Exception is thrown during processing, the Management
Central Java Framework will dways atempt to catch the Exception, whether it was thrown initidly by
some jMC method or by any other Java method, and package it into a McException. This

M cException may then be caught and re-thrown with additiona information from the cdler of the errant
message, and so on until the Exception isfindly re-thrown remotely to the dient. Therefore, when this
McExceptionis returned to the client, it may have multiple nested Exception objects within it.

In your catch block, you may interrogate the M cException with the containsErrorlD method of
McException to determineif a particular error ID. Thisidentifier must be either an 1D defined in the
M cService class, or aclass name of apredefined Java Exception class. (McService refersto the
logging of service messages, or job logging on the AS400, and is not to be confused with the services
we' ve defined as activitiesin the JMC). Alternatively, the error can be output to the client for
informationa purposes with the printStack Trace method. Consult the JavaDoc on McException for

further information on how to use the McException class, and McService to view predefined error 1D
grings.

try
{

}
catch(McException e)

{

vi ew. addManageabl e() ;

if(e.containsErrorld("java.sql.MCIS_MGBL_DUPKEY"))
return "Key Error";

else if(e.containsErrorld("java.io.|OException"))
return “1/O Error";

el se

{

Tracing Messages

The Management Centrd Java Framework provides a default tracing mechanism to make it eesier for

you to trace messages. Using class M cTrace in package com.ibm.mc.dient.util, tracing messagesto a

file becomes a one-step process. For instance, when retrieving instances of your Distributed Command

Tasks off the server (as you did in the Distributed Command Call Application Section of this document,

Scenario 2), you may want to trace certain elements of the execution. Only afew steps are needed here:
1. Initidize trace with the file name you wish to trace to, and the leve of datayou would like to

trace. Vdid vauesfor levd are Error, Warning, Information, and Diagnogtic. If tracelevd is

det to Error (the default), only messages with Error severity will be logged; if trace levd is

Information, al Informationa, Warning, and Error messages will be logged.

Execute your Management Centrd function.

3. Check trace level, and trace appropriate messages

N

McManageabl eSel ectionCriteria selCriteria = null;
Vect or retri evedTasks = new Vector();

// Step 1: Initialize trace

String fName = "C:\\MGTC. Java. Service. Log";

McTrace. set Fi | eName(McManageabl e. MCCOMPONENTNAME, f Nanme) ;
McTrace. set TraceLevel On(McTr aceabl e. | NFORMATI ON) ;

/1 Step 2: Execute Managenent Central Function

/1 Define selection criteria to get a list of Distributed Command Tasks

selCriteria = new McManageabl eSel ectionCriteri a(
"comibmunr.client.activity.task.command. McDi st CommandDescriptor", //

Cl ass

McManageabl e. ALL, // Category

nul |, /1l List of owners (only used if next parameter is
true)

fal se, /1 Include shared activities

0); /1 Last changed date of the activity

/'l Create a new Task List View to nanage your tasks
McDi stri but edTaskLi stView vi ewLi st = new MDistributedTaskLi stView(selCriteria);

/'l Step 3: Tracing an informational message
if(McTrace.isTracelnformationOn())

McTrace. | ogl nformation(getClass().getName(), "Executing getList from
server");
try {

retrievedTasks = viewlLi st. get Manageabl eVi ews() ;

} catch(MException nce) {
/1 Steon 3: Tracina an Error nmessaae

Thiswill trace the number of Distributed command Cdl Tasks that were found on the server, and that
match your sdection criteria, or aternatively, if an exception occurs, then the exception will be traced.

Additional Utilities

Many convenience classes and methods exit to dlow you to do common tasks within the Management
Centrd Java Framework. All classes discussed here reside in the com.ibm.mc.dient.util package. If
you find you' re writing your own convenience methods for tasks you need to execute in multiple places
within your code, conault the JavaDoc for these classes - chances are you'll find exactly what you're
looking for.

McUtilities Contains data management utilities. Some make byte array
manipulation easer for the user; some smplify seridization and
deseridization; some are for data conversion.
McMethodThread Useful for applications that that wish to process method
requests on a privately maintained thread but wish to abstract
the details of thread management. Class can be used to
gueue, de-queue and invoke methods.

McM ethodQueue Provides a default method queuing mechanism. Used done, it
only provides standard queue functiondity, but when used in
conjunction with aMcMethodThread, queued methods can
be automaticdly invoked by thejMC.

