IBM eServer iSecias m

WebSphere Development
Studio Client for iSeries:
Creating Java Applications

Diane Wolff
and
Larry Riggins
Virginia Western Community College

“}ﬁrginia
Sestern

The nod gencraton iSenes. . samplicity in an on demand workd

Java on the iSeries

0S/400

COBOL, RPG, Java programs

Technology Independent Machine Interface (TIMI)

System Licensed Internal Code (SLIC)

ILE and JVM support

The nod generation iSenes. . samplicity in an on demand workd

A ‘uaSuvar iSerdes

IBM WebSphere Development
Studio for iSeries (WDSc)

»1n OS/400 V5R1, many of the programs
for application development were bundled
together

s»previously sold separately

» New package, WebSphere Development
Studio for iSeries (WDSc), consolidates all
key iSeries development tools for host and
workstation

The nod gencration iScnes. .. sumplicity in an on d

“)ﬁ rginia

Vestern,

- © W 1BM eServer iSedes -

IBM WebSphere Development
Studio for iSeries (WDSc)

» Includes:

+WebSphere Studio — used for Web
development

“*VisualAge for Java — the IBM Java
development platform

++CODE/400
“VisualAge RPG
++IBM Distributed debugger

The nexd gencration iSenes. . simplicity |

IBM WebSphere Development
Studio for iSeries (WDSc)

» Tools were integrated, updated, and in
some tools totally redone
» The Java tool received major changes

“*now using Eclipse -- the “accepted” open
source development tool as its basis

» CODE/400 became simply CODE
(CoOperative Development Environment)

 The noxd gencration iSer . . ST

“}ﬂ rginia

Vestern,

I- WebSphere Development
Studio for iSeries (WDSc)

» The WebSphere test environment for Web
design was enhanced

» Enhancements were made in RPG |V, ILE
C/C++, and COBOL

» Major parts of the ADTS (Application
Development Tool Set) were integrated

 The ned generation iSeres. .. simp!

= © W 18 eserver isedes -

IBM WebSphere Development
Studio for iSeries (WDSc)

» New technologies were added

+IBM WebFacing tool — a wizard to give legacy
applications a GUI Java-based Web front

+»+Struts — standard Java tools for code re-use
+*New Web component wizards
+*Web Services
“» XML
» Integration was the key!!!

irginia
Weaitim.

The nod gencration iScercs. .. simplicity

[t ¢ T 1BM eServer iSedes -

IBM WebSphere Development
Studio for iSeries (WDSc)

» The Advanced Edition adds support for
“»Enterprise Java Beans
“+J2EE
*»Test cases
“*The portal toolkit
> NOTE: There is a related version WebSphere

Device Developer for developing Java apps
for handhelds

irginia
Weaitim.

The rod generation iSenes. . simplicity

IBM eServer iSecias m

WDSc Packaging

WebSphere Development Studio Advanced

C/C++ COBOL RPG ADTS

WebSphere Development Studio Client for iSeries

| Remote System Explorer| | iSeries Projects |

| Web Tools for iSeries| |

w

Java Tools for iSeries |

| IBM WebFacing Tool | [Classical Tools (VARPG, CODE) |

|WebSphere Studio Site Developer or Application Developer |

The nod gencraton iSenes. .. sumplicity in an on demand workd

irginia
AL

© 200 B0l Copoaacan

IBM eServer iSecias m

Eclipse is Based on Perspectives

This is the Remote Systems Explorer
perspective

Remote Systems Explorer perspective >
Debug perspective >

Java perspective >

Web perspective >

Server perspective >

Install/update perspective >

iSeries projects perspective >
WebFacing perspective >

Click on the one you want. Add new ones
with Window > Open perspective

The nod generation iSenes. . samplicity in an on demand workd

@ Remote System Explorer - WebSphere Development §

Fie Edit MNavigate Search Project Run Window Help

5-HEE &5]%-%x-%¢
o [5o oo nd -

B N New Connection
- Windows...
%@ + f} Linux...
w Fel-ni Ui, ..
#-8 Local...
9 + % iSeries. ..
B - E Local
ﬁ@ = *?D Local Files
EE = :"# Drives
+ EE& (1]
B ||e B Rochester
N]
¥ sk iseries Commands
] 58 iseries Jobs
- % TFS Fies

“}ﬁrginia
b

© 2003 B0 Coparacan

18M eServer iSecias IBM
Perspectives are created using multiple views
(different views for different perspectives)

a\ Lig
o 0
|
f:
L+ 3
L
-
;J
& .
:, editor
view
DT = -
view

Tabs for other views |

|Remote Syste... Tasks |Seres Comma,.. |Wemote Comm,.. | Seres Sor Lst Wenes Fekd Ta.., Console | SeresSource .. |

The nod gencraton iSenes. . samplicity in an on demand workd

I18M eServer iSecies IBM

Views in the Perspective

»WDSc provides default set of views and
layout for any given perspective

» Rearrange, add, or close certain views to
customize the arrangement

»We will need the perspectives in the
next set of slides.

“}Iirgiuia
(el

The nod generation iSenes. . samplicity in an on demand workd

Java Perspective

IEM

18| Package Explorer

BRI

- Cusing
19 CusingEAR
%@ CustomerInguiry
- CustomerInquiryEAR
T Diane
53 example
i exampleEAR
BB iSeries
- (3 JavaSource
= E (default package)
Customer java
41 RunCustomer java
=B iseries
91 1Fsapp.java
[1Fsapplet.java
[1nventary.java
|41 MakeDirectory.java
4] Testinventary.java
-8 serviets
) GetservietData.java
--[B sava.policy.applet
) (& WebContent
1 iSeriesJavaExample
Junk
B junkEAR
1 RemoteSystemsConnections

T aardvarkEAR Y |

x ||)] GetServletData.java X | J] [FsApplet java 8= outline dlhaw o x
1/ww A B iSeries
2 = B JavBean class representing ven import declarations
3 > ;g- Inventory
QDaGLEMQ Iey,'ou Can have itemNum : int
- o desc:String

* eMultiple files open at once

costEach : double

7public class Inventory o numinStock : int
E // Tields 8 number : int
H private int itemfum; b & money : NumberFormat
10 private String desc; - @ © Inventory)
11 private double costEach: @ © Inventory{String, double, int)
12 private int numInStock: © © Inventory{int, String, double, int)
13 private static int number; - @ a toString(
=l 14 @ setitemum{nt)
15 - o
5 smbertomac nney - smberreman.ceccurransye | COIQPEGEERLOUtINE
17 @ setluminStock(nt)
18 constructors o getltembum)
12 public Inventory() @ getDesc()
20 : @ geiCostEach()
21 3 ® gethuminStock)
2 public Inventory (String dese, double costEach,
23 :
E 24 this.desc = desc:
25 this.costEach=costEach;
26 this.numInStock=numlnStock; L
< Il | >
& console O|Bk-8 & x

Tar SAMPLE

- Samplel

Tmb SAMPLE2

5 sampleEAR
- SampleProject
| -3 SampleProject2

Output displays here

Package Explorer |Herarchy

Tasks | Cansole |

Web Perspective

IEM

= v x || @1 cetservietpata java ><|
% lpackage servliets: ~|
| B 5 example N X
3= o gexam;ea\k 31import java.io.*:
& 5 5 Series 4import javax.servlet.¥;
o | o oot et Simport Javes.sesvier.nzze.w OOUICE code
g i Tt . &import iSeries.Inventory:
default packa: -
& [S38::)¢ E;:S‘E;lr 9‘;36 Spublic class GetServletData extends HotpServlec {
K S public void doGet (EntpServietReguest red,
=] [§] RunCustomer java N
1 iSeries 10 HttpServlietResponse res)
=5] T 11 throws ServlietException, ICException
—| e 12 res.setContentType ("text/Rtml®) ;
13 int num = Integer.parselnt|reg.getParameter ("itemMum")):
14 String desc = reg.getFarameter ("desc"):
= 15 double cost Double.parseDouble (req.getParameter ("costEach™)
16 int numStock = Integer.parseInt (req.getParamecer ("numInStock™
17 Inventory inv = new Inventory (num,desc,co3t,numStock):
[E R rp—— 18 PrintWriter out res.getWritexr():
[]éWE;ch":my o 1z String title = "Inventory Information
& META-INF 20 out.println("<BODY BGCOLOR=\"#CCCCFF\">\n" +
- theme 21 <H1 ALIGN=CENTER>" + title + "</Hi>\n" +
] Master.css - S . e
LG WEB-NF 23 Item Number</S>:
- | =22 + inv.getItemNum({) + "\n" + ~|
= < i | >
&= lib
@ source 14 servers I K W ed O &F x
Iél.:iﬂifnzaxle'dass Server [status [server state
[iom-web-ext.mi vebSphere v5.0 Test Envirorment A% stopped The server should be republished
&) web.xml
Bl tnventory html
Bl Inventory jsp 3 .
I gt et Server information
-y Libraries
| v 12 iSeriesJaveExample ~l|< il >
Project Navigator | Gallery | Struts Explorer Quick Edit | Tasks | Colors | Servers | Cansole

The rnod gencraton iSenes. . samplicity in an on demand workd

irginia

I1BM eServer iSecias IBM

Web

T

o
|- % dbShapping
-2 Java Source
+- i beans
-} datsbase
=
4 [J] GetIDBCInfo.java
+ m testDE . java
+-f# presentation
+-f§ shoppingCart
=iz Web Content
H-{= META-INF
—-{z=- WEB-INF
+- (= classes
&= lib
[ibm-web-bnd.xmi
[ibm-web-ext.xmi
web,xml

Perspective (cont)

< When you open a Web app, the
correct file structure for J2EE
standards is automatically created
for you.

< Automatically packages the
application in an .ear file using J2EE
specs

*- (& images < Provides the ability to debug and

#-& Jscript test the Web app in a totally remote

i g - WebSphere Test Environment

+| eme

@* index.jsp
Wk

The rod gencration rSenes. . simplicity in an on demand workd © 3003 i Coporson
18M eServer iSecias IBM

Integrated Test Environment

* Create a new server

Falder: | Servers j

Server type: | 0. WehSphere version 5.0 -

+

Express Server

mﬁ Express Test Environment
Server

i Test Environment B

@ webSphere version 4.0
+ E@ Apache Tomcat version 4.1
== ' = =

Description: Runs J2EE projects out of the workspace on the local test
environment.

“}Iirgiuia
AL

The red generation iSenes. . simplicity in an on demand workd © 2003 B Compancon

w

I1BM eServer iSecias

Remote Systems Explorer
Perspective

Beh & = om | B

-

x

=] =g§ Mew Connection
+- 405 Windows. ..
DA Linue. ..
Unix Unix. ..
B Local...
‘ iSeries...
=B Local
=¥ Local Files

=

= =:€> Drives

=

= iSeries Objects

H [

oy

A [

Sl il

Library list
User libraries
Test

+- i itp155

+ g ito155arg
+- & iSeries Commands
+- 8 iSeries Jobs
=¥y IFS Files

+|- 2 File systems
;'.=i€> Root file system
S Home

£

-]

The nod gencraton iSenes. .. sumplicity in an on demand workd

I1BM eServer iSecies

Right-Click on a .java in IFS

B Inventory.class

Inventom

% Showny ©9T@ g
testEAR Open With 3
TestIny Browse With 2
[Testiry
WEBFA| ¢ Refresh

3 ENT

] etc

1 home

] iSeries @ Rename

] itp 120

1 jars Copy

1lib +} Move

1l ¢ Delete

1 MATTO

1 Msmith Compile 4

1 MyJava Compile (Prampt) »

1 QFPNWSST) User Actions 3

The nod gencration iSenes. . samplcity in an on demand workd

2 work with libraries. ..
S Work with objects. ..
Work with members...

< Can make connections to
various systems

<Can transfer from local
drives to IFS

transfer from Java
perspective directly to the
iSeries IFS

< The iSeries IFS provides

© 200 BRL Copon

IEM

“}ﬁrginia
ester

IBM

< Can open and edit the Java code that
is on the iSeries

< Can copy, move etc. Java programs

that are on the iSeries

€ Can compile on the iSeries from
WDSc

“}ﬁrginia
estérn

© 2003 B0 Coparacan

IBM eServar iSecdes IEMVM

Right-Click on a .class in IFS

] LAyt va
Bl L

4] Tnventory] GoTo k
4] ShowMeclz Open Vith .
testEAR 22
TestInvent ng Refrash
[J] Testlnvent

WEBFACE |

3 ENT
Jetc ER Rename
2 home
7 iSeries Capy
7 itp120 & Move
3 jars ® Delete
2 lib
il User Actions ’
3 MATTO
2 Msmith E Run remotely in iSeries view. .. 6 C_an run the Java program on the
iSeries from WDSc
1 Mylava
Frramars Witk 1
“}Iirgiuia
b A
The rod gencration rSenes. . simplicity in an on demand workd © 3003 i Coporson
IBM eServar iSeces IEM

Options for Running a Java
Program

I iseries Java Transform and Run

Select home folder, and options

Working falder: |ruchester.Ruchester:{d\anejava . .
€ Can define option

Option set: |0|JTJDH setl sets (different
parameters for different
Run remotely I Create iSeries Java program applications)
Class: ‘ Tnventary
€ Can change classpath
Casspat: | e and arguments before
runnin
Arguments: ‘ 9
Fun | Clear Cunsu|e|
Consale aut:

< Output shows here
in the Console out: —
|rgmla

estern

The red generation iSenes. . simplicity in an on demand workd © 2003 B Corporecon

3 O, ‘-!. eServer iSedes -

| know | know ...
You wanna try it yourself!!

So let’s work through a lab but pay
attention to the steps.

irginia
Weaitim.

The nod gencration iScnes. .. sumplicity in an on d

< ‘ﬂ_ela&vulsm -

ALWAYS Do This FIRST!!

» First you need to define a connection to
your iSeries (we will do this in lab)

“*Define the connection in the Remote Systems
Explorer Perspective

++Define connection using an arbitrary name
(ours is Rochester)

++Contains properties such as the defined
library list
“*Can be used in other perspectives as well

irginia
“?9{35.5?.'3.. :

The nexd gencration iSenes. . simplicity |

Some most Useful Views

g | =

Remte System Detals Tasts | Series Commands Log Remate Cammands iSeries o st Series Field Table View Consale | Series Sounce Prompier

*Remote System Details — details of the remote system

*Tasks — use to remind yourself of tasks you must complete

+*iSeries Commands Log — keeps track of equivalent CL commands

*Remote Commands — launches a command shell in a remote system
«iSeries Error List - ID, message, severity, line, and location of iSeries errors
*iSeries Field Table View — displays name, record, type, length and text
*Console — output to the “screen”

«iSeries Source prompter — prompts for iSeries commands

“}flrginia
b A

” The rod gencraton iSenes. . simplicity in an on demand workd 9000 ERaCowomon

Summary

»WDSc is a powerful tool for application
development

» Great for constructing a complete end-to-
end J2EE Java application and testing it
before deploying to a Web Application
server

>Itis THE IDE of choice for Java
developers (no bias on my part! ©)

“}flrginia
gstern

7 The red generation iSenes. . simplicity in an on demand worlkd S .

WDSc Java Lab
Summer School IBM 2004
Riggins/Wolff

NOTE: these are lab sections from our modules for our Java classes
Part 1. Running A Simple Program using WDSc and the iSeries

1. Start WDSc and import our jar file.
Follow the instructions in the Word document named JavaWDSc.doc.

b. Write the name of the folder where your workspace will be and click OK. (Write
the folder name somewhere it will be easy to locate if you need to refer to it!!!).

c. After WDSc opens, check that you are in the Java perspective. Look for the icon
in the vertical icon list that looks like | & .

d. Import the rochester.jar jar file.

i. First create a Project. Click on the @ icon on the menu bar, name the
project iSeriesRochester, and click on Finish.

ii. Import Rochester.jar into this project. Click on iSeries in the Package
Explorer perspective and choose File = Import = Zip file > Next.
Browse for the location of the zip file (we will give you instructions on
this location) and click Open and Finish.

2. Look at the code in Comments.java.

a. Expand by clicking the + sign in front of the package named rochester.basic.

—|-lmr iSeriesRochester

-} rochester.basic

- [J]

(] IFSapp.java
+ @ IFsapplet.java
+ @ Inventory.java
+ @ MakeDirectory java
@ TestInventory.java
+- 8 rochester.database

+

+

b. Double-click on the program named Comments. View the code. Note -- the
package name must be the top line of the code. Double-click on the program
name on the top tab to make the code display using the full screen. Double-click
on the program name again to display it in default view size.

3. Run the Comments program in my .jar file. View the output.
a. Make certain that Comments.java is selected in the Package Explorer.

b. Select Run = Run as = Java application

Project Profile ClearCase Window Help

Add/Remove 3QL1 Method Breakpoint - % - ﬂ - Cﬁf - || @ a\ m @ =
% Add/Remove SQL] Watchpaoint
= & Add/Remove Breakpaint Ctrl+5hift+8
(= 5
i lm JE add Java Exception Breakpoint gz Outline
: " ~) @ Add/Remove Method Breakpoint 2 a laz =] ‘!E 2
- 2 * Created on 1
3 * Comments e 5% add/Remove Watchpoint Hi rochester.basi
o = _:'3 Ts - | G* Comments
Thi=s i] 5 . .
5 * Diane Wolf Launch the Web Services Explarer @ * main(Stri
6 #/
- % Run Last Launched Cirl+F11
& // note that %Dehug Last Launched F11 f real code
Spackage
10 Run History 4
11 /% 5B 1 Java Applet
12 * @anthor db Run...
e Sl Sl o .. 2 Java Application
43 - N
14 * This i=s a Debug History *| B 3 Java Application in iSeries Server
. - .- Debug As o
15 * It is call £), 4 Java Bean
16 % There i Debug...
N ThEEE - S 5 JUnit Test
17| * to 0f gew Ju

You will see the output of this simple Java program show up in the Console view at
the bottom of the screen.

4. Let’s see where the program was saved.

a. Go to the folder that was created in step 1. (This is folder name that you were to
write down and store in case you needed to refer to it.)

b. Browse to this location.

c. Note that in the workspace, there is a folder created named rochester that has a
folder in it named basic (it also has one that is named database) and in the basic
folder is both Comments.java and Comments.class. The .java file is the source
code and the .class file is the compiled code. The Windows folder structure

mimics the Java package structure. Note that a package named a.b.c would be in
the workspace. The workspace is organized so that the folder named a has a
folder in it named b. This folder b has a folder in it named ¢ that contains the
java code.

5. Next we will use Comments.java, export this file to the iSeries, and run it on the iSeries.
Java programs on the iSeries are stored in the IFS (integrated file structure) files. There
will be one folder in the iSeries IFS already created for you under the root file system
with your username as the folder name.

6. Sending our file to the IFS.
a. Using the Java perspective, click Comments.java.

b. Right-click and select Copy.

c. Open the Remote System Explorer perspective (if there is not an icon

B

in the

left margin for it, select Windows = Open Perspective = Remote System

Explorer).

d. You will need a connection to the iSeries from this perspective.

7. Connect to the iSeries

a. To make a connection to the iSeries, refer to the iSeriessWDSCConnection.doc
file. We will assume that you have the software installed and the connection
created for the remainder of this exercise.

8. After making the connection, your workbench should appear as the graphic below:

5

- =H\= Mew Connection
% Windows. .,
& Linux...
Unix LInis. ..
Local...

% ISEries. .,
Lacal
- *’LJD Local Files

= _'ﬁ€> Crives
+ ﬁ il
- B Fodese

- %fm iSeries OI:uJEu:ts

:"ﬁ? Work with libraries. ,

i
@ @E-m-EE

+ }'b Wark with objects...
+ }? Work with members..
+ ﬁ Library list

+ ﬁb User libraries

+ ﬁb Test

- Eﬂ(iSeries Commands

_éb Your command(s)...

ﬁ'k Add library to library list
ﬁ'k Change current library
}'1'1.'? Remove library from library list
ﬁ'k Create duplicate object
}'1'1.'? testCall

eries Jobs

L Active jobs

My active jobs

My jobs

Files

File systems

oot file system

om

+

~|-E-'-

‘%*‘%—

—
S
L

:
:
:
:
H

Sk Y
:
:
H

=+
5
:
H

i@i&@i&@i

R
Haomi

< Note you can make a Windows, Linux, Unix, local,
or iSeries connection

< Use this area to get to your files on your local drive

& Our connection was named Rochester

< You can choose to work with libraries, objects,
members or your library list

< Work with your iSeries commands here

< Work with your iSeries jobs here

< Work with the iSeries IFS files here

This is where our Java programs are stored. You
will have a folder under the root file system with your
username.

9. The connection that we created in the illustration above was named Rochester. You
should see the connection that you defined on your workbench.

10. Next we will move Comments.java to the IFS, compile, and execute the program.
NOTE: in the Java perspective, when you choose Run = Run as.. > Java Application
it both compiles and executes. On the iSeries, you must perform these steps separately.

11. Running our program.

Open the Java perspective, right-click on Comments.java, and select Copy.

a8

Open the IFS folder near the bottom, open the root file system, and open your
folder (yourusername).

Open the Remote Systems Explorer (click on the icon).

Right-click on your folder and choose Paste. The files will be copied to the IFS
file structure of the iSeries. Note that we have successfully transferred these files
from the Windows machine to the remote iSeries. Double-click on the file in the
IFS. Note that the editor Window opens and you can edit the file while it is on
the iSeries as well. Close the opened window (X top right of the Window

| [J] Comments.java X)

12. Compiling the program.

Now right-click on the Comments.java file.

Choose Compile = javac. The file will be compiled and the Comments|.class
file will appear in the folder.

You should now have two files in the folder (you may need to right-click and
choose to Refresh the output), the source file (.java) and the byte code compiled
file (.class).

13. Running the program

a.

Right click on the Comments.class file and choose Run remotely in iSeries
view.

You will get a dialog box that looks like

4b |JTVO0D1E X

Q The Java dass cannot run from this directory location.

Ok | Details == |

Read the details. Remember from the beginning of this lab, that this class is in the
package itp120mod1 and therefore needs to be in a folder named itp120mod1.

Right-click on your folder name and choose New = Folder. Name the folder
rochester.

Right-click on this folder that you just created and add a folder inside named
basic.

Click Finish.
Now right-click on Comments.class and choose Copy.

Right-click on the folder that you created (the basic folder that is inside of the
Rochester folder) and choose Paste. You will get a copy of Comments.class in
the folder.

i. Right-click on Comments.class (the one that is in the correct folder for the
matching package structure) and choose Run remotely in iSeries view. The
iSeries Java Transform and Run view will show at the bottom.

j. Press the Run button. (If you do not see it, double-click on the blue toolbar to
make that view full-size.

k. You will see the output of the Java program in the Console out. It should look
like the following:
=
=» calling rochester.basic.Comments using classpath: "/rochester:/jers/jtd00.jar"

14. Right-click on this folder that you created and choose Show in Table. Note the table
view. You can click on any title to sort by that field. You can rename, copy, move, and
delete in the table view just as you do in the outline view.

Part II Using the IBM Toolbox for Java

16. Now we will look at a few toolbox examples.
a. Make certain that you are back in the Java perspective. Look for the icon in the
vertical icon list that looks like | & |
b. Open up the Rochester.basic package.

c. Double-click on the MakeDirectory.java file. The Java editor will open and you
can see the Java code for this program. Read the comments in the code to get an
understanding of the program. This program will make a directory on the IFS file
system of the iSeries (you must have permission to do this) and writes a Java file
to the directory.

d. With this file highlighted in the Project Navigator, choose Run - Run as -
Java application from the workbench menu. The program will launch.

e. You will see a window for signing on to the server. It will ask you for your
System (put in the IP address of your iSeries machine — we will provide you with
this data), your UserID, and your Password.

f. Fill these in and click OK and the program should run. The Console view at the
bottom should say “Successful!” if the connection was made and the file written.
If you get an “IO Exception occurred” message, check your connection to the
iSeries (the program could not make a connection.). NOTE: the program will
create a folder on the IFS named MyJava. It will not check to see if such a folder
already exists (it will just replace it) so if you run this multiple times or multiple
people run this file, keep this in mind.

g. You will probably have to put jt400.jar in the classpath for this project.
1. Right-click on the project and choose Properties.
il. Go to Java Build Path and choose the Libraries tab.

h.

iii. Click to Add external jar and browse to C:\JavaDrivers\jt400.jar.
iv. Click OK to add it to your classpath.

Double-click on IFSApp.java and look at the code. Run the program. The
program will launch and you will see a window for signing on to the server. It
will ask you for your System (put in the IP address of your iSeries machine), your
UserID, and your Password. Fill these in and click OK and the program should
run. The Console at the bottom will show whether the file is readable and/or
writeable and the contents of the file. If the Console view is too small, you can
double-click on its top bar to make it full screen size. Double-clicking again on
the top bar puts it back to normal size.

Repeat the instructions above with IFSApplet.java. In this case select Run =
Run as > Java Applet. The default applet window is too small for the output so
before filling in your System IP, drag the bottom right corner of the applet viewer
to make it larger in both directions. Run as above. Then click Exit to end the
applet. This size can be adjusted when applets are run in Web pages but we will
not concern ourselves with that at this time.

17. Next you will look at a JavaBean.

a.

Double click on Inventory.java. This is a JavaBean. This program does not
launch — it only defines the description of an Inventory JavaBean instance.

The program that runs is TestInventory.java so double-click on this and look at
the code.

Then run it with Run - Run as - Java application. Since this is not using the
iSeries, you will not see the panel for iSeries information. The console view will
list information about bean instances of the Inventory class. Remember - if the
Console view is too small, you can double-click on its top bar to make it full
screen size. Double-clicking again puts it back to normal size.

18. We will now transfer those to the remote iSeries IFS file system.

a.

Open the Java perspective and under the rochester.basic package, highlight both
the Inventory.java and the InventoryTest.java files (hold down the Ctrl key
between selections.)

Right-click and choose Copy.

Open the Remote System Explorer perspective and click on your folder (you used
this above).

Right-click and choose Paste. The files will be copied to the IFS file structure of
the iSeries. Note that we have successfully transferred these files from the
Windows machine to the remote iSeries.

Open up your folder on the IFS on the iSeries and right-click on the
Inventory.java file.

Choose Compile = javac. The files will be compiled and the Inventory.class file
will appear in the folder.

Repeat this step for InventoryTest.java. You should now have four files in the
folder (you may need to right-click and choose to Refresh the output), the two
source files (.java) and the two byte code compiled files (.class).

h. Remember what we learned about folders and package names and move these
compiled versions to the correct folder on the IFS (into the basic folder that is in
the rochester folder).

i. Right click on the InventoryTest.class file and choose Run remotely in iSeries
view. The iSeries Java Transform and Run view will show at the bottom.

j. Press the Run button. (If you do not see it, double-click on the blue toolbar to
make that view full-size. You will see the output of the Java program in the
Console out.

k. Repeat the above step to compile and run your First.java file that we created by
running the MakeDirectory.java class. This should be in the IFS file system in a
folder named MyJava.

1. Compile and run the program. The output will show up in the Console at the
bottom.

m. Right-click on MyJava and choose Show in Table. Note the table view. You
can click on any title to sort by that field. You can rename, copy, move, and delete
in the table view just as you do in the outline view.

Part III Database Access with Java

19. Make certain that you are back in the Java perspective. Look for the icon in the vertical
icon list that looks like L .
20. Open up the Rochester.database package

21. Run the ShowMeClassPath.java program in the rochester.database package to see the
classpath for your applications.

22. To connect to any database, three things are required (after you put the jar file in the
classpath). You must know the name of the Driver (this is supplied from the driver
supplier), you must know the address of the database server, and you must have
permissions and a userid and a password. I wrote a generic Java program named
GetJDBClnfo that will extract the first two if you indicate which database you want to
use. Look at the method named getDriver (). For the iSeries, the driver is the program
com.ibm.as400.access.AS400JDBCDriver. Look at the method getURL(). The URL
for our iSeries is "jdbc:as400:164.106.231.17". We need to change this to the [P
address for the iSeries that we are using during this class.

23. We will create the Coffee and Supplier tables from the SUN tutorial
(http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html -- T will follow it
somewhat but alter the code as needed). Run Ex1CreateTables.java. If it runs
successfully, you should see the output (what you type in is green below but use your
assigned user name and password):

Which database? (0)oracle(l)iSeries (2)SQL Server (OLD) (5) SQL Server (NEW) 1
Username: youru sername

Password: yourusername

com.ibm.as400.access.AS400JDBCDriver

Jjdbc:as400:164.106.231.17

Known drivers that are registered:

AS/400 Toolbox for Java JDBC Driver

Connection successful!

Coffee Table didn't exist

Supplier table didn't exist
Tables created
Closing the connection in finally

drivers, check your work on step 2 above. If you still get the error, make certain you can
get to the Internet from your computer. Do you have firewalls that prevent you from
hitting the iSeries?

25. Switch to the RemoteExplorer perspective and bring up your library on the iSeries (not
on the IFS).

B

a. Go to the RemoteExplorer perspective .
b. Double-click on Work with Libraries.

e

You will be able to view the library filter screen.

&

For the Library: entry, enter yourusername and click Next. On the next screen,
name your filter yourusername and click Finish.

e. An entry under iSeries objects for yourusername should be displayed.
f. See if these physical files have been added to your library.

26. Now we need to add data to the two physical database files.
a. Run Ex2PopulateTables.java.

b. Note carefully the output about what classes are really executing. Although we
refer to Connection, we can NOT make an instance of this since it is an interface.
So that can not be the class that is actually running. You can always find out what
class is actually being used by con.getClass () .getName (). Note how each
piece of data is obtained. This java program is not great since you use the column
names and types that are returned, and you may not know that.

27. Run Ex4DisplayTablesGeneric and compare it to Ex5DisplayTables. It is more
advantageous to do it generically.

28. Now run Ex6Join. Essentially you can use any valid SQL statement. Look at the API for
DatabaseMetaData (used to find out information about the underlying database) and
ResultSetMetaData (used to get information about the result set that is returned). This
second one can be used to make the output generic so you do not need to know the
column names or types.

29. Prepared statements run much faster. Run Ex7PreparedStatements. Note how prepared
statements work.

30. Very often you will want to use stored procedures. They run even faster.
a. Run StoredProcCreate IBM to create a stored procedure. Understand the code.

b. When creating stored procedures, you need a SQL statement similar to:

createString = "create procedure updateco language sgl update
coffees set price = price *2 where sup id = 101";

c. Run StoredProcCall IBM to run the stored procedure.

d. When running a stored procedure that has parameters, you need a call similar to:

ca = con.prepareCall ("{call updateco2 (150)1}");

31. Now let’s see how to port some of these programs to the IFS.

a. Right-click on CreateTables.java and hold down the CTRL-key while choosing
PopulateTables.java, GetJDBClnfo.java, and Keyboard.java.

b. Choose Copy.
Open up your folder on the IFS right-click, and paste these in with Paste.
d. Using our previous methods, compile the Keyboard and Get]DBClInfo classes.

e. Right-click on your folder and create a folder named itp120mod6. Right-click on
that folder and create a folder named database.

Move the compiled versions of Keyboard and GetJDBClnfo into this folder.
Compile the CreateTables and GetJDBClInfo source files.

5 o o

Move the compiled versions of these two into the database folder also.

—

Right-click on the CreateTables.class that was moved to the folder and choose to
Run Remotely on iSeries view.

j. Double-click the toolbar to make it full screen.

k. We have to put the jt400.jar file in the classpath before we run this.

1. T have the jt400.jar in a folder named jars in the root IFS directory.
32. Double-click on Advanced Options.

a. Click on the ENVIRONMENTAL tab.

b. In the textbox for Variable: type in CLASSPATH.

c. For the textbox for Value: type in /jars/jt400.jar.

d. Click Append to List, click SAVE, and click OK.

e. Note that this was filled in for option 1. You can store a variety of classpaths for
running different programs.

33. Now click the RUN button. CreateTables should run. Fill in 1 to choose the iSeries and
fill in your username and password. The program should complete successfully.

34. Now from the IFS, right-click on PopulateTables.class (in the database folder) and
choose to Run Remotely on iSeries view. Double-click the toolbar to make it full
screen. Choose the RUN button. Fill in 1 to choose the iSeries and fill in your username

and password. The program should complete successfully. You will see the output of
populating the COFFEES and SUPPLIERS table.

35. Note — when running Java on the iSeries, there are two items that you need to consider:
what optimization level you are using and which JDBC driver you choose. We used the
default optimization (level 10) and the iSeries native JDBC driver (not the one found in
the jt400.jar that we put in the jars folder). FYI — to change the optimization, there is
choice on the Transform tab that was in the Advanced Options that we saw in step 18
above. Often you use 10 or 20 to develop and 30 or 40 for deployed applications. Also —
it should be using the native JDBC driver. When making the connection,

connection = DriverManager.getConnection (url+";user="+uid +";password="+ pass
+ ";driver=native");

will use the native driver when running th program on the iSeries and the jt400.jar JDBC driver
when running on the client.

connection = DriverManager.getConnection (url, uid, pass);

will always use the JDBC drive that is in the jt400.jar file.

36.

37.

38.

39.

40.

Part IV Server-Side Web Development

Web examples are stored in .ear files — not .jar files. Included is all of the java plus the
images, JavaServerPages, html files, etc. We will import rochester.ear. The example
will have:

Inventory.html — an HTML file with FORM data used to send information about an
inventory item to the Web. When the FORM is submitted, it calls the GetServletData
java servlet that processes the data and returns an HTML file back to the user.

GetServletData.java — a servlet called by Inventory.html that returns the data back to a
Web page.

Inventory.java — a JavaBean class used to represent inventory items

Inventory.jsp — similar to the Inventory.html file except it is a JavaServer Page. When the
FORM is submitted, it calls the JSP InventoryOut.jsp.

InventoryOut.jsp — retrieves data from the JSP page named Inventory.jsp and creates an
Inventory JavaBean instance from the data. It then retrieves the data fields from this
bean and prints them out.

Importing the Web application.
a. Open up the WebSphere Development Studio Client for iSeries (take the default

location for the workspace). Then open the Web perspective @ if it is not
already opened (Window = Open Perspective 2 Web. If you do not see Web
as a choice, click Other and choose it from here).

b. Make certain that the Project Navigator tab is selected in the left window.
Then do File 2> Import > EAR file > Next.

d. On the next screen click the Browse button to browse to find where you located
the file rochester.ear and double-click on it. The EAR file name and the Project
name should now be filled in for you. Note that a default location for storing this
project is also created. This can be changed but we will leave it as it is.

e. Click Finish.

f. You should see two new folders in your Project Navigator —
iSeriesRochesterWeb and rochester.

Click on the + signs in front of each folder to investigate the contents. Inside of the
iSeriesRochesterWeb folder, you will see the programs described above. The Java files
are located in the package named servlets under JavaSource. These packages are located
in the Java Source folder. The html and JSP files are located under WebContent.

Let’s look at a Web servlet and JavaServer Page. These files must execute in a Web
application server. The Client has a Web application server built in called the
WebSphere Test Environment. This makes testing Web applications very nice since you
do not have to export them to the real Web application server to debug and test.

Let us view and run the servlet first.

a. The servlet class will be called from an HTML file named Inventory.html. This
file 1s found under WebContent.

b. Double-click on this file and study the code. Note that the FORM action calls
servlet/servlets.GetServletData. When the submit button on the form is pressed,
the form data (any data filled into the text boxes on the form) are forwarded to the
GetServletData.java program (find it under the Java Source in the package
named servlets.)

c. Double-click on the GetServletData.java file to see the construct of a servlet.
When the SUBMIT button on the html page is pressed, it executes this servlet
and calls the doGet method that retrieves the data and returns an HTML file that
was created dynamically by the servlet.

d. Servlets must be run on the Web application server. To do this, right-click on
Inventory.html and choose Run on server.

e. Ifthis has not been done before, you need to define a new server instance to use.
Click on Create a new server (the name does not matter) and choose Test
Environment - Finish. This process will take several minutes as the server is
created, opened, and launched. The Web application is bundled into an ear file
that is placed on the server and run. You can follow these steps by watching the
Console at the bottom.

f. After the server is launched, the Web page will show in the center in the internal
Web browser (which is an instance of Internet Explorer.)

g. Fill in test information (it does not matter what you enter but make certain to use
valid data) and click the SUBMIT button.

h. The form will call the servlet from the action attribute
(servlet/servlets.GetServletData) and run that program which will create an
HTML page and return it to the Web browser.

41. Now we will do a similar application with JavaServer Pages.
Look at the code for Inventory.jsp and InventoryOut.jsp.
b. Right-click on Inventory.jsp and choose Run on server.

c. Since a server has previously been created (for the above example), it will be
available for use. Choose the server that you previously created.

d. The file will launch and look similar to the HTML version.
e. Fill in the information and press the SUBMIT button.

f. This form action calls InventoryOut.jsp which will retrieve data from
Inventory.jsp and creates an Inventory JavaBean instance from the data. It then
retrieves the data fields from this bean and prints the values of the datafields. In
this case, the programmer chose to display the output in a table instead of as
bulleted items.

42. The applications from this chapter have been executed inside of the WebSphere
Development Studio Client for iSeries. Once you get your code debugged and running in
this environment on the Test server, you can move your .ear file to a WebSphere
Application Server for production deployment.

ITP120 General Laboratory Instructions
(JavaWDSC.doc)

You will need to install WDSC. The general workstation requirements are:
Windows 2000 or XP
Microsoft Internet Explorer 5.5 or higher
500 MHz process or faster recommended
512 MB RAM or more recommended
2.2 GB hard drive or larger recommended
CD ROM drive

The software will be provided on CDs for you. It will autoboot and self-install.
Take the defaults for WDSC. More details for installation can be found in the redbooks
for the software. Contact me if you need help

Starting WDSC

1. We will assume that you have successfully installed WDSC.

2. Choose Start = Programs > IBM WebSphere Studio = Development Studio
Client for iSeries. You will be asked where you would like to store your
workspace (where your projects are stored). Note the default location and take it
(click OK).

3. Wait for WDSC to open up. Look at the icons along the left edge. If you see one

J
that looks like % double-click it. This is the Java perspective. If you do not see
one, from the tool bar, choose Window = Open Perspective > Java.

New Window T
—
1 Shaw View 2
i Install/Update
Hide Editars Fg Instal/Up
Lock the Toolbars @ iseries Projects

0% e

Customize Perspective...
Save Perspective As...
Reset Perspective Sf Java Browsing

4. Every Java program (or class) must be contained in a package. A package is a
Java concept that puts “similar” programs together. For WDSC, every package
must be in a project. Although this is not a Java concept, it is used to keep similar
packages together. Therefore, when creating Java applications from scratch, we
need to first create a project — then a package — then the class or classes.

5. Java applications are imported and exported from WDSC as jar files. A .jar file
is an “intelligent” .zip file. For our concern at this point, they are essentially the

ok

7.

same (.jar files can even be opened with WinZip or other zipping software).
WDSC will do the jarring and unjarring for you.

ALL Java programs are contained in a Java class (we will discuss the details of
this later) and the source code (the “English-like language”) will be stored in a file
named ClassName.java where ClassName is the name of the class. When the
program is compiled (or converted to byte code — one level above machine
language — see page 40 in your text), it must be stored in a file named
ClassName.class.

Creating a Java Application from Scratch

Complete steps 1-3 above to open up WDSC.

Find the icons on your tool bar that look like & & & & .

First we must create a Java package. Click on the first icon above (the one with
the J — this is the icon for creating a new Java package.)

On the window that comes up, give it a unique package name and click Finish.
Next we must create a package. A package s a group of related Java classes.
Single-click on your project name in the left Package Explorer and then double-
click on the icon that looks like the second one from the left in #2 above (it looks
like a package!!). You will see a screen where the project name is filled in and it
is waiting for you to supply a package name. Package names in Java should be
all small letters — no spaces! Type in the package name and press Finish.

Now we will create a Java application (a class). Single click on your package
name in the left Package Explorer and then double-click on the icon that looks
like the far right one from #2 above (it has the letter C on it for class). You will
see the New Java Class screen like below (it will have your project and package
name instead of mine).

4 New Java Class

Java Class
Create a new Java dlass,

Source Folder: ‘ FirstProgram Browse...

Package: [test Browse...

I™ Enclosing type: |

Name: [1
Modifiers: % public " default - v
I abstract [final r

Superdass: | java.lang. Object

Interfaces: Ad

o)

‘Which method stubs would you like to create?
¥ public static void main{String[] args)
I~ Constructors from superclass

¥ Inherited abstract methods

]|

a
oy
a
o

Fill in the name for your Java class. Java classes MUST be named correctly.
Typically use only letters (maybe with a number at the end) and if the name

is made up of more than one word, capitalize each word in the name. For
instance, the following class names are correct: MyFirstProgram, Test, Test2,
Hello, DatabaseProgram --- but not myFirstProgram, test, Databaseprogram.

If you want your program to execute, leave the default check mark in front of the
choice to add the “public static void main” stub (we will discuss this later) and if
it is only a description of an object but not executable, uncheck this open. Click
Finish.

Double-click on your class name in the left Package Explorer. You are ready to
work on your application.

Adding a New Java Class to an Existing Package

Since the project and package are already present in the Package Explorer on the

left, just follow steps 6-9 above.

Adding an Existing Java Class (from outside of WDSc) to an Existing Package

9]

1. The project and package will already be present in the Package Explorer on
the left.

2. Single-click on this project name in the left Package Explorer and then from
the menu, choose File = Import > File system = Next. On the next screen,
browse to find the location of the .java files and click on it. Click Open. Put a
check mark in front of the Java files that you want to bring in (you can bring
in more than one at a time). You will see the import screen. The “From
directory:” and the “Into folder:” should be filled in. Click Finish.

3. The Java classes that you added now probably need to be slightly changed.
The first line of a Java file needs to be the name of the package. Since you
brought this file in from an external source, the package name is probably
wrong. Double-click on the file and change (or add if it does not have a
package statement) the very top line to be package xxx; where xxx is the
name of the package that you imported these files into.

Importing an Existing Application from a .jar File

Complete steps 1-3 at the very top of this document to open up WDSC.

Find the icons on your tool bar that look like & & O & .

First we must create a Java project. Click on the first icon above (the one with the
J — this is the icon for creating a new Java project).

On the window that comes up, give it a unique project name and click Finish.
Single-click on this project name in the left Package Explorer and then from the
menu, choose File = Import = Zip file > Next. (Even though it is a jar file, we
import it as a zip). On the next screen, browse to find the location of the jar file
and click on it. Click Open. You will see the import screen. The “From zip file:”
and the “Into folder:” should be filled in. Click Finish.

Double-click on your class name in the left Package Explorer. You are ready to
work with your application.

Exporting a Application into a .jar File

After working on your application, you may want to export it from WDSC into a
Jar file (this is how you will be submitting your work to me). Click on the project
name that you want to export in the left Package Explorer on the left.

From the menu, choose File > Export > jar file > Next.

You will see a screen similar to the one below.

4 JAR Export X
JAR Package Specification
Define which resources to package into which JAR. @

Select the resources to export:

G m[FFirstProgram A] .clssspath
-] iSeries B project
-8 junk

#-[]&# sample1

#-[]ia# sampleProject

#-] sampleFroject2
#-[J&# stockQuoteProj
#-[]&# stockQuoteProjwieb
#-)i stockQuoteProjivebt
w9 test

+ DQJ ToolBoxExamples 2
v

W Export generated class files and resources

W Export java source files and resources

Select the expart destination:

JAR file: ‘C:ﬁunk'-banksim.jal j Erowse...

Options:
¥ Compress the contents of the JAR file

[T Overwrite existing files without warning

< Back | Mext > | Finish Cancel |

MAKE CERTAIN THAT THERE IS A CHECK MARK I N FRONT OF
“Export java source files and resources.”

Below the “Select the export destination”, either type in the name of the jar file
that you want to create, or browse for the location and type in the name. Click
Finish. If this is an application that you will send to me, NAME THE JAR
FILE (ex dwolffmodx.jar except use the first letter of your name followed by
your last name. x = which module. So if your name is Sam Smith, and you
are sending me the lab for module 3, it would be ssmithmod3.jar. The
package name should also be ssmithmod3 — we will see how to change it.)
So, for instance, if Sam has an a: drive and want to store his module 2 jar file
here, type in a:ssmithmod2.jar. MAKE CERTAIN THE EXTENSION IS .jar.
Click Finish and wait for the export to finish.

REMEMBER ---- IMPORT ZIP----EXPORT JAR!!!!

Changing Package Names

If I supply you a jar file and you are to make changes to it and send it back to me

as your assignment, you will need to change the package name to follow the rules above.
For instance, it you are working on module 3, the file I supply will be named
itp120mod3.jar and the package name will be itp120mod3. You need to send it back to
me with the package name as given in the instructions above. So, if your name is Mike
Miller, you will need to change the package name to mmilermod3 and send it to me as
mmilermod3.jar

To change a package name after importing it, in the Package Explorer, right-

click on the package name and choose Refactor = Rename and the Rename window
will come up. Fill in your new package name and click OK. The package name will be
changed both on the workbench and in the code for every class in the package.

Running Java Applications

For a Java application to run, it must have a method with the construct of :
public static void main(String [] args)

{
}

We will discuss this later, but this is the method that runs first. This is created by
putting the check mark in front of this choice when creating the class (see
instructions above). To run this class, single click on this class name in the left
Package Explorer. Then from the tool bar, choose Run - Run as - Java
Application. The program will run and any Console output will show at the
bottom of the screen in the Console view.

Editing or Creating Java Code

Whether you start your own class by the methods described above, or you
want to edit one of my programs, double click on the class name in the left
Package Explorer and the code will show up in the center editor window. Make
your changes as you see fit. After you have made any changes, the name on the
tab at the top of the editor window will have an * to indicate that changes have
been made. Hold down the CTRL while hitting the S (for save) to save the file.
The changes will be saved and the * will go away. If there are errors in the code,
the line where the error occurs will be underlined red either as you type it or when
you save it. Hover your cursor over it (or over the yellow light bulb in the left
margin) to see help on the error. Correct the errors and save again. After all of
the errors are gone, run the application as above.

Note — as you are typing Java code, you may want the editor view to fill
the whole screen so you can see more lines of code at once. To do so, double-
click on the program name on the tab at the top of the editor window (actually you
can click anywhere on the top area) and to make it back to normal size, double-
click there again.

Deleting Projects from WDSC

After you export and save your .jar file, you may want to delete the project from
the WDSC workbench Package Explorer to keep this area neat (and to make WDSC

execute faster). To do so, right-click on the project name and choose Delete. You will
see the dialog box

4k Confirm Project Delete P§|

@ Are you sure you want to delete project ‘iSeriesJavalL'?

{~ Also delete contents under 'C:\Documents and Settings\administrator My Documents\IBM \wdsc\workspace \iSeriesJavaDL'

{* Do not delete contents

Most times you want to choose the top one which removes the contents both from
the workbench and the actual file system on your computer (make certain you have a
good .jar copy before you do this!!). If you do not, when you try to import it next time,
it will indicate that that project already exists.

Starting an iSeries Connection in WebSphere Development Studio for iSeries
(iSeriesWDSCConnection.doc)

After you have installed the software, click Start - Programs - IBM
WebSphere Studio = Development Studio Client for iSeries. You will be asked
where you would like to store your workspace. Note the default and click OK. Wait for
the integrated development environment to open.

If you are using the program to access your iSeries, you will need to define a
connection. After you have opened the workbench, you need to make certain that you are
in the Remote System Explorer perspective so that you can define a connection to a
server. Check the title bar of your workbench, which indicates the perspective you are in.

a2

If it does not show the words Remote System Explorer, then check to see if the icon
for this perspective is in the left margin. If not:

1. Click Window - Open Perspective > Other.

2. Click Remote System Explorer, and click OK.

i New Window & -
[~ Openperspecte 1 [T
1 Show View 4 o
Install Update
Hide Editors e f=F
Lock the Toolbars % iseries Data Perspective Customized
Series Project
Customize Perspective... Eﬁl FrIES FroECE
Save Perspective As... %’ Java
Reset Perspective Sf Java Browsing

T a (O Profiing and Logging

Close All Perspectives .
¥ Remote System Explorer

keyboard Shortcuts »
! H Server

The first time you connect to an iSeries server, you need to define a profile. All
connections, filters, and filter pools (collections of filters) belong to profiles. Profiles help
you partition data when you have a lot of connections or filter pools. You use profiles to
group connections, share connections, or keep them private, and they help you partition
data if you have a lot of connections or filter pools.

Your first profile will be for your local workstation connected to the iSeries. As you
complete the steps for your first connection, you can decide whether to use your initial
profile, or a team profile so that you can share resources and information with other
people.

To configure your first connection:
1. Switch to the Remote System Explorer perspective by clicking on the icon in the

B

left margin.

7.

8.

In the Remote Systems view, New Connection is automatically expanded to
show the various remote systems types you can connect to through the Remote
System Explorer. Expand iSeries to configure a connection to an iSeries server.
If you are defining your first connection, you will see the New - Name personal
profile dialog. Enter a name for your first profile and click Next. You will see
the following dialog box.

& New E]
Remote iSeries System Connection

Define connection information

Parent profile: || ochester ﬂ
Connection name: |

Host name: 164.106.231. 1 j
Description: |

¥ verify host name

| | | Cancel

Click the Parent profile drop-down list.

o To keep your files private, select the default profile you created in the

previous step.

o To share your resources, select the Team profile.
Enter a connection name. This name displays in your tree view and must be
unique to the profile. Use alphanumeric characters for your connection name; you
might encounter problems if, for example, your connection name contains DBCS
characters. But it does not matter what name you choose.
In the Host Name field, enter the name or TCP/IP address of your remote iSeries
server, for example, PROD400. We need to use 164.106.231.17.
(Optional) Enter a Description; this appears in the Properties view after the
connection is created.
Click Finish to define your system.

Note: If you are running the iSeries server remotely, to check your port number, right-
click your connection or subsystem from the Remote Systems view and select
Properties. Click Subsystem to see the relevant information. You will see that the port is
"0," which means that your Remote System Explorer communications server will pick
any free port on the iSeries server. You can specify a specific port number if you need to,
for example, to work with a firewall.

After you create a connection to an iSeries server, you can easily connect and disconnect.
To connect:

1.

In the Remote Systems view, expand your new connection to reveal your
subsystems.

- x
B gh s
+ =H\= Mew Connection
- Local
- % Local Files
= }:b Drives
+ b% cl
- % Rochester
- g:". iseries Ohjects
}:b Wark with libraries. ..

+
+ }:b Wark with objects...
+ }:b Wark with members. ..
+ ﬁ Library list

+ ﬁb User libraries

+ ﬁb Test

+|-jh itp155

+|- v itp1550rg

+ Bk iSeries Commands
+ % iseries Jobs
+- Ty IF5 Files

2. (Optional) If this is the first time you are connecting to the remote server, right-
click one of the subsystems, such as iSeries Objects, and select Verify
Connection. Enter your user ID and password for the iSeries server to verify the
connection. This action checks if you are missing any PTFs.

3. To connect to any of the subsystems, right-click one of them, such as iSeries
Objects, and select Connect. You can also click the plus beside any of the
subsystems to connect.

4. Enter your user ID and password when prompted and click OK. Select Save
password if you want the workbench to remember your password. See the related
link for more information about passwords.

You can monitor and change the properties of your connection in the Properties view of
the Remote System Explorer perspective. Some values are read-only, and you can change
others, such as the description or the server name. Although each Remote System
Explorer subsystem maintains its own list of properties, three properties (connected or
disconnected, port, and user ID) are shared among all iSeries subsystems. If you change
any of these properties in one subsystem, the other subsystems reflect the change. Select
a subsystem and check the Properties view to see the shared properties for all of your
subsystems. For example, the Connected value is Yes or No for all of your subsystems
under one connection.

