
 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 1

Performance of the IBM ̂ ® 325 for
Scientific and Technical Applications

Douglas M. Pase, Ph.D.
IBM eServer xSeries Performance Development & Analysis
Research Triangle Park, North Carolina, USA

Abstract

The IBM® eServer™ 325, or e325, is a powerful server designed for high performance technical
and commercial computing [1]. The e325 is based on the AMD Opteron™ processor [2]. It
incorporates advanced processor and memory features that provide high performance at low
cost. In this paper we examine key features of the e325 and show how they affect performance
under scientific and technical workloads. We examine memory and processor performance, and
the effects of both Symmetric Multiprocessing (SMP) and Non-Uniform Memory Access (NUMA)
kernels on performance.

The focus of this paper is floating-point and memory-intensive workloads such as those used in
the scientific and technical community. For this reason we examine performance on standard
benchmarks. Benchmark suites used for comparison are STREAM [3], Linpack [4,5,6], and
SPEC CPU2000 [7].1

Introduction

The IBM eServer 325, or e325, is a rack-optimized 1U system based on the AMD Opteron
processor. (A “U” is a measurement of height, 1.75 inches, used to separate sets of bolts in a
standard electronic equipment rack.) The e325 is optimized for scientific and technical workloads
requiring efficient floating-point processing and high bandwidth to memory. The e325 is ideally
suited for use in high-performance clusters. It supports one or two Opteron processors and up to
12GB of DDR333 memory. Disk subsystems may be either IDE or hot-swap SCSI.

Scientific workloads may be characterized generally as heavily numeric in nature, often
dominated by 64-bit floating-point operations. Many of the codes were originally developed on
vector machines like those produced by Cray Research, Fujitsu and NEC. Vector machines have
high memory bandwidth and provide large performance gains to applications that apply the same
operation to large sections of memory using regular strides. This is very different from cache-
based scalar microprocessors, which reward possibly varying operations applied to the same
data over and over again. To make things more difficult for the system designer, many key vector
applications have been converted to run well on cache-based systems because of their attractive
pricing. This means that, for a system to do well on scientific workloads, it must have a fast
processor, high bandwidth to memory, a large cache and an affordable price.

1 Any performance data contained herein was determined in a controlled environment. Therefore,
the results obtained in other operating environments may vary significantly. Actual results may
vary. Users of this presentation should verify the applicable data for their specific environment.

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 2

Unfortunately, there is often a significant gap between the hardware peak memory performance
and the memory performance available to an application. The STREAM benchmark was created
to measure available memory bandwidth. STREAM is a simple benchmark of four loops. The first
loop, COPY, copies data from one vector into another; the second, SCALE, multiplies a vector by
a scalar value; the third loop, ADD, adds two vectors; and the fourth loop, TRIAD, combines a
scale with an addition operation. This last loop is also known as a DAXPY operation (Double-
precision A times X Plus Y). The arrays used in these four loops are required to be much larger
than the largest processor cache, so operands are always retrieved from memory. All operations
use 64-bit operands and memory accesses are stride-one (i.e., a[i], a[i+1], a[i+2], ...).

In contrast to STREAM, Linpack focuses primarily on processor Arithmetic Logic Unit (ALU)
performance rather than memory performance. Linpack is a collection of subroutines that analyze
and solve linear equations and linear least-squares problems. Originally designed for
supercomputers in the 1970s and early 1980s, Linpack solves linear systems whose matrices are
general, banded, symmetric indefinite, symmetric positive definite, triangular, and tridiagonal
square. Linpack is built upon the Basic Linear Algebra Subroutine package, or BLAS. The
Linpack benchmark uses the Linpack library to solve a general dense system of linear equations
using LU Decomposition [8]. The Linpack library has largely been replaced by Lapack, which
extends and improves upon the routines [9]. The routines have been carefully rewritten and tuned
to take advantage of processor cache, and relatively few references actually go to memory. For
our tests, we use the standard 1000 x 1000 double-precision Linpack DP benchmark. Our
benchmark implementation uses the high-performance BLAS created by Kazushige Goto [10].

STREAM and Linpack are both kernel benchmarks; that is, they focus on measuring the
performance of a small, relatively simple mathematical kernel. In so doing they give an accurate
measure of the performance of a single subsystem of the computer. To avoid the bias inherent in
kernel benchmarks, we also measure system performance using a more realistic benchmark,
SPEC CPU2000. This benchmark is actually two suites of applications. One suite, SPEC
CINT2000, consists of highly cacheable integer applications. The other, SPEC CFP2000,
contains memory-intensive, floating-point applications. SPEC CPU2000 allows the suites to be
run on a single processor to measure processor speed, or to be run on one or more processors to
measure system throughput rates. In our tests we use only the throughput measurements
because that represents the environment in which the e325 is most likely to be used.

Processor Architecture

The IBM e325 owes much of its performance to the novel architecture of the Opteron processor.
Opteron enjoys two major advantages over its x86 cousins, whether from Intel®, AMD or
elsewhere. First, it natively supports the x86 instruction set and the x86-64 extensions. That
allows Opteron to execute all x86 applications at full speed. No translation or emulation layer is
required to execute x86 programs. The x86-64 extensions provide 64-bit virtual addresses and an
extended register set, so 64-bit programs can also be executed on the same machine. Both Linux
and Microsoft® Windows® allow both 32-bit and 64-bit applications to be executed at the same
time with no difficulty whatsoever. An application can be compiled for 64-bit mode, that is, to use
the larger addresses and additional registers, with little more effort than to change a flag on the
compile line. The larger address space allows an application to address more than 3GB of
memory without resorting to overlays, or interfaces such as PAE36 that are slow to execute and
difficult to use. The larger register set allows a compiler to reduce the amount of memory traffic by
saving more intermediate values into registers, when appropriate. The x86 and x86-64 registers
are illustrated in Figure 1.

Because “64-bit” is such a popular term, it is important to be clear on what it means. For purposes
of this document, it means the architecture supports 64-bit virtual addresses. 64-bit integers and
64-bit floating-point operands are supported by x86 and other architectures that are considered
32-bit architectures. Such processors may also support physical addresses larger than 32-bits.

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 3

The size of the addresses used by a user application determines whether an architecture, or an
application, is 32- or 64-bit.

Figure 1. x86 and x86-64 Registers

Opteron’s second advantage over its x86 cousins is that the memory controller is integrated into
the processor. This is an advantage for two reasons. First, the memory controller is clocked at
the same rate as the processor. So, as the processor speed is increased, the memory controller
speed is also increased, reducing the latency through the memory controller, allowing faster
access to memory. Second, when a processor is added to a system, more paths to memory are
also added. As the demand for memory bandwidth increases due to the additional processor,
more bandwidth is available to satisfy that demand.

To see this more clearly, let’s consider a traditional architecture that uses a shared Front-Side
Bus (FSB), as illustrated in Figure 2. It contains two processors connected by a shared FSB.
Each processor communicates with the FSB through its Bus Interface Unit (BIU). The memory
controller is an additional component connected to the FSB. The memory controller may have
one or several channels to memory. In this diagram there are two channels. The memory
controller also routes commands and status between the I/O bus and processors, and data
between the I/O bus and memory.

There are several items worthy of note in this diagram. The most obvious is that there is a single
resource shared between the two processors, that is, the FSB. The speed of the FSB places an
upper bound on the rate at which a processor can send data to or receive data from memory. In
fact, FSB bandwidth is often tuned to match the bandwidth of available memory technology at the
time. It is expected that a single processor will not saturate the FSB over time because the
processor has a cache where data most likely to be referenced are stored. Cache reduces the
FSB pressure, so there is capacity to allow more than one processor to operate on the FSB.

Nothing in this abstract architecture inherently limits the number of memory channels, or the size
of cache, or the speed of the FSB. In the real world, the limit is its cost. For a bus to be faster, it
must be wider or it must be clocked at a faster rate. To make a cache larger requires more
transistors (i.e., more silicon). All of this adds cost to the processor or system. Common practice
today is to match the FSB bandwidth to the memory bus bandwidth. It is a cost-effective solution
that, nevertheless, impacts performance on data-intensive applications.

79 063 31 0127 0

63 31 15 7 0
In x86

Added to x86-64

GPSSE

x87

RAX
EAX AH AL

EIP

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 4

Figure 2. Shared Front-Side Bus Architecture

A typical Intel XeonTM processor-based system available today has a Front-Side Bus that is eight
bytes wide and clocked at 533MHz. Its memory controller has two channels, each 8 bytes wide,
to DDR266 memory. This gives the FSB and the memory bus 4.3 GB/s of bandwidth each.
Emerging Xeon processor-based systems have an 800MHz FSB and use DDR400 memory, for a
bandwidth of 6.4 GB/s.

Now consider the Opteron architecture as shown in Figure 3. As in the previous diagram there is
a processor core and cache. But in place of a bus interface unit and an external memory
controller, there is an integrated memory controller (MCT), an interface to the processor core
(SRQ), three Coherent HyperTransport (cHT) units and a cross bar switch to handle routing of
data, commands and addresses between them. The memory controller supports up to two 8-byte
channels to memory. The processor is able to support up to 400MHz (DDR-I 400) registered
Error Correcting Code (ECC) memory. At 333MHz (DDR-I 333), the memory bandwidth is 5.3
GB/s across both channels; at 400MHz it is 6.4 GB/s. The cHT units may be used to connect to
I/O devices or to other processors. The protocol used for routing memory traffic is somewhat
more elaborate than what is used for I/O, but the I/O protocol is a proper subset so cHT links may
be used for either purpose.

Note once again that every device within the processor package is clocked using a synchronized
clock. As the processor clock is increased from one generation or processor speed bin to the
next, the memory controller clock is automatically increased at the same rate. This has the
advantage of decreasing the latency of a memory request from the processor core to the
memory, which speeds access.

The cHT links are point-to-point connections. Links are never shared. A processor can be directly
connected to only as many processors as it has available links. In theory it can be indirectly
connected to an arbitrary number of processors in a ring, or tree or other topology, but in practice
the number of processors in a system is limited.

Each link consists of two unidirectional paths, each 2 bytes wide, with a small number of control
lines for sending commands and status. Coherent HyperTransport links today operate at
800MHz, with speeds increasing to 1GHz and beyond in the future. Data transmissions are
“double pumped”; that is, data are transmitted on both the rising edge and on the falling edge of
the clock.

Memory Bus

Processor
Core

Cache
BIU

Memory
Controller

Processor
Core

Cache
BIU

Front-Side Bus

I/O D
IM

M
 0

D

IM
M

 1

D
IM

M
 2

D

IM
M

 3

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 5

Figure 3. Opteron Processor Block Diagram

It is this combination of integrated memory controller and point-to-point links that is one of
Opteron’s strengths. Because of this, adding more processors to a system automatically adds
memory bandwidth. Thus there is less risk of oversubscribing a shared resource like the Front-
Side Bus of the previous architecture.

System Architecture

The e325 is a 1U dual-processor Opteron system. It is rack-optimized and designed to be used
as a computational node in a scientific cluster. It supports up to 12GB of main physical memory in
six DIMM slots, two IDE or two hot-swap SCSI drives, two Gigabit Ethernet (GbE) ports, and two
100MHz PCI-X slots. Processor speeds currently range from 1.4GHz to 2.2GHz, and the system
supports memory speeds of DDR266 and DDR333. Figure 4 is a block diagram of the system.

The system must be loaded with one, two or four DIMMs on processor A, and may have any of
zero, one or two DIMMs on processor B. All memory must be of the same speed, that is, DDR266
or DDR333. Pairs of DIMMs – DIMMs 0 and 1, 2 and 3, or 4 and 5 – must also have the same
size. So, one operational configuration would be to load four 512MB DIMMs into slots 0 through
3, and two 1GB DIMMs into slots 4 and 5. This configuration gives 2GB per processor for a total
of 4GB in the system. This particular configuration is desirable for two reasons: memory is
balanced across the processors, and there is more than 1GB on processor A. (The former should
be intuitive; the latter will be explained later.)

Memory Performance by Channels

It was mentioned in the previous section that the e325 supports two channels to memory per
processor. As might be expected, two channels give better performance than one. The extent to
which two-channel performance is less than twice that of a single channel is an indication of
conflicts within the system, most likely involving the memory controller. Ideally, it is desirable to
see very few conflicts when both channels are operating at full load.

DRAM

Processor

Core

MCT

Coherent
HyperTransportTM

Coherent
HyperTransportTM

Coherent
HyperTransportTM

Memory Bus

X-Bar

SR
Q

C
ac

he

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 6

Figure 4. IBM eServer 325 System Architecture

To determine the performance loss due to internal conflicts, we performed the following
experiment. STREAM was run on a 2.0GHz system populated with DDR333 memory. Several
experiments were run using only a single thread. The first used a single processor with a single
channel populated. The next experiment was similar, but populated both channels with memory.
A third experiment used two processors, one with two channels populated, the other with only
one channel populated. Additional experiments used two threads, with one channel populated on
each processor, then both channels, then one channel on one processor, and two channels on
the other. The experiments were repeated using DDR266 memory. The results are shown in
Figure 5. Single-thread results are labeled “1T”; dual-thread results are labeled “2T.”

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5

Channels Available to Each Process (1T or 2T)

M
B

/s

1T 333 2T 333 1T 266 2T 266

Figure 5. Memory Performance of STREAM Triad for a 2.0GHz e325 by Memory Channels

The best results were obtained using two threads to drive all four channels. The performance was
about 7.3 GB/s. Each of the four channels is capable of up to 2.67 GB/s, so this represents about
69% of the hardware peak of 10.6 GB/s. When each thread had only a single memory channel,
the system performed at a little less than 4.6 GB/s, or 86% of its 5.3 GB/s hardware peak.

2 x PCI-X

Memory Bus

cHT

Memory Bus

Opteron (A) Opteron (B)

D
IM

M
 1

D
IM

M
 3

D
IM

M
 0

D
IM

M
 2

D
IM

M
 5

D

IM
M

 4

8131

8111 Video
USB
ATA

SCSI
2 x GbE

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 7

Similar, but slightly better, results are obtained using DDR266 memory. This is the expected
result since the slower memory gives the memory controller more time to clear its conflicts.

Memory Performance by Memory Frequency

All DIMMs are 8 bytes wide. Double Data Rate, or DDR, memory drives its address and
command lines at its native frequency. However, it drives the data lines at twice its native
frequency, hence the name Double Data Rate. The data rate is indicated by its name. For
example, DDR333 has a native clock speed of 166MHz and a data rate of 333MHz.

It is interesting to consider how the memory performance changes as the memory speed
changes. A simple calculation might lead to the expectation that DDR333 would be 25% faster
than DDR266; 333MHz is, after all, 25% faster than 266MHz. In fact, DDR333 is 25% faster than
DDR266 only when the channels are lightly loaded, that is, when only one channel per processor
is in use. This can be seen in Figure 6.

25%
23%

25%

19%

0%

5%

10%

15%

20%

25%

30%

1 ch 1t 2 ch 1t 2 ch 2t 4 ch 2t

Im
pr

ov
em

en
t 2

66
 to

 3
33

Figure 6. Memory Performance Improvement of a 2.0GHz e325 on STREAM Triad

When each thread uses only one channel, memory commands are processed and passed
through the memory controller at its most rapid rate. There are plenty of resources within the
controller to handle DDR333 memory speeds. When two threads each use a single channel, the
cHT links become involved, but the loss is very slight. When a single thread uses two channels
on the same processor, again, the efficiency is only slightly below that of DDR266 memory. The
performance loss is compounded as all channels become active. The total performance is
greatest, but the efficiency is lower for DDR333 memory than for DDR266. Memory performance
improves only by 19% instead of the full 25%.

This result has significance for understanding how Opteron will behave with DDR400 memory.
The normal mode of operation is to use both channels on both processors. It gives much better
total performance than using fewer channels. But the efficiency declines as the memory gets
faster. There is a slight decline when the HyperTransport is used (the “2 channel, 2 thread” case)
and a marginally greater decline when a single controller is saturated (the “2 channel, 1 thread”
case). The decline increases sharply when both are combined, as in the “4 channel, 2 thread”
case, indicating a possible compounding effect.

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 8

This suggests less than perfect scaling going from DDR333 to DDR400 on 2.0GHz Opteron
processors. However, the scaling should improve as the processor clock is increased above
2.0GHz, as the next section will discuss.

Memory Performance by Processor Frequency

In this section, we quantify the contribution of processor frequency to memory performance. In a
previous section, we mentioned that the Opteron processor has an integrated memory controller,
and that the controller is clocked in sync with the processor. As the processor clock speed
increases, the clock rate of the memory controller also increases. As the memory controller clock
speed increases, the path through the memory controller takes less time and memory
performance increases. Memory latency becomes shorter, and memory throughput increases as
Figure 7 shows.

5500
5750
6000
6250
6500
6750
7000
7250
7500
7750

1200 1400 1600 1800 2000 2200 2400

CPU Frequency (MHz)

M
B

/s

Figure 7. STREAM Triad Performance by Processor Frequency

Figure 7 shows the memory performance for processor frequencies ranging from 1.4GHz through
2.2GHz. Throughput increases in roughly a straight line from 1.4GHz to 2.0GHz. Over this range,
the frequency increases by 600MHz, and the throughput increases by just over 1,200MB/s. That
gives approximately 2MB/s throughput improvement for each 1MHz processor clock
improvement.

Notice, however, there is a dip from the 2.0GHz processor to the 2.2GHz processor. The
explanation for the dip is subtle. The memory interface has a synchronous design. In other words,
to reduce the design complexity and to increase performance, the clock driving the memory must
be synchronous with the processor clock. Since the memory clock (e.g., 166MHz for DDR333) is
much slower than the processor clock (e.g., 2.2GHz), one or both of them must be changed until
the slower clock is a multiple of the faster. AMD decided to slow the memory frequency until it
evenly divides the processor clock.

Dividing 166MHz into 2,000MHz yields an even 12, but 166MHz does not evenly divide
2,200MHz. To find a divisor of 2,200MHz, the memory clock must be slowed to 157MHz, which is
6% slower than its native speed of 166MHz. But our measured score is only 1% slower, not 6%
slower. Where is the difference? The 2.2GHz processor clock is 10% faster than the 2.0GHz
clock. If memory were able to operate at full speed, this would contribute about 5% to the memory

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 9

performance. But about 6% is lost because the memory cannot operate at full speed, hence, the
1% performance loss we measured.

Notice that the fact that processor clocks are not even multiples of 166MHz causes a ratchet
effect in memory performance. At 1.4GHz, the data rate of DDR333 must be slowed to 311MHz.
At 1.6GHz, it must be slowed to 320MHz. At 1.8GHz, it must be slowed to 327MHz, and at
2.0GHz, it operates at a full 333MHz speed. But at 2.2GHz it drops down to 314MHz and begins
the climb again.

While this ratchet effect occurs with DDR266 and DDR333 memory, it does not occur with
DDR400. The native speed of DDR400 is 200MHz, and Opteron clock frequencies are always
integer multiples of 200MHz. Thus, there is no loss due to synchronizing memory to processor.

Memory Performance by DIMMs per Channel

The next analysis concerns the amount of parallelism available within a memory channel. The
Opteron processor uses registered ECC memory. Registered memory places a latch, or a
register, between DRAM and the memory bus. This allows communication to take place on the
memory bus while the DRAM inside the DIMM is executing some other operation, such as a read
or a write. Some DIMMs are also divided into banks, usually four banks to a DIMM, and
operations on one bank can occur independently of operations on another bank.

It is worth noting that a BIOS setting may also play a role here. Under Advanced Settings in the
BIOS, there is an entry called DRAM Interleave, which should always be set to AUTO. This field
allows the user to select whether cache lines are stored within a single bank (i.e., disabled) or
each line is striped across all banks. The advantage to striping is that every fetch and store of a
cache line draws upon the full parallelism available within the DIMM. We have not yet found any
disadvantage to striping cache lines in this way.

In this comparison we run STREAM Triad on a single CPU using two DIMMs (one per channel),
then again with four DIMMs (two per channel), to see how performance improves. The results,
shown in Figure 8, are broken out by memory speed and size. It was expected that the
differences would be small, less than 2%, which turned out to be the case. What was not
expected was that the advantage decreased with memory size, and became slightly negative
(0.25%) for 1GB DDR333 DIMMs. However, this last result is so small that it may be an anomaly.

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

256 MB DIMMs 512 MB DIMMs 1024 MB DIMMsIm
pr

ov
em

en
t o

f 4
 D

IM
M

s
ov

er
 2

 D
IM

M
s

DDR266 DDR333

Figure 8. Parallelism between DIMMs on a 2.0GHz e325 (STREAM Triad)

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 10

As part of this same analysis, we examined whether placement of DIMMs had any impact on
performance. We found no difference whatsoever. We placed two DIMMs in slots 0 and 1, and
ran the results. We then placed the same two DIMMs in slots 2 and 3, and compared the results
to the former runs. We tried this for all DIMM sizes and speeds. We found no difference in any of
our experiments.

Operating System Performance

We mentioned in an earlier section that the e325 has a NUMA design. To take advantage of this
design, the operating system must be aware of the design and respond appropriately. In general
there are three challenges associated with NUMA-aware operating systems. First, a thread
should have much stronger affinity to a processor than is required for symmetric multiprocessing
(SMP) systems. Second, physical memory should be allocated close to the thread. Third, I/O
buffering must be done to minimize data traffic through the system. This last requirement is not a
problem with the e325 because all I/O devices are attached to the processor that owns low
memory, which is where I/O buffers are traditionally placed.

In an SMP system, when a thread migrates from one processor to another, at most, the contents
of the processor cache may have to be reloaded from memory. If a thread is active, that may be
an unnecessary cost that should be incurred infrequently or not at all. If the thread has been
asleep for a while, perhaps while waiting for I/O, the cache contents have been flushed anyway
and any choice of processor is as good as the next.

When scheduling threads to processors in a NUMA system, the cost of accessing memory must
be accounted for as well as the cost of reloading cache. In theory this can be a difficult problem,
balancing processor load against the distance to memory. In practice it is often the case that a
thread is simply locked to a processor and never migrated. This solves the processor and
memory affinity issues together. And while inefficiencies can still result, it is often better than any
of the alternatives.

A NUMA system must allocate physical memory close to the processor where the thread is
running. By definition, in a NUMA system some physical memory is near and some is far, and
there are performance advantages to using near memory. The operating system must decide
where to allocate physical memory. To do this the operating system must have a mechanism for
recognizing how physical memory is mapped to processors and for allocating memory
appropriately when requested.

The mechanism for mapping physical memory to processors is found in the BIOS. It is called the
ACPI Static Resource Allocation Table, or SRAT. It contains entries that describe the mapping of
physical memory address ranges to processors. It must be enabled or the operating system does
not know what memory is local to a processor and what memory is remote.

A related concern that arises in NUMA operating systems is that memory allocation for the kernel
and for user space have different needs. User threads need to be assigned to a processor and
rarely, if ever, migrated to another processor. Kernel threads may be invoked at any time from
either processor, and thus no assignment of data to memory can always be local. Unfortunately,
we have observed that some NUMA kernels boot only on a single processor. By itself this is not a
problem, except that they use the same local memory allocation scheme as is used for allocating
physical memory to user threads. This has the effect of allocating all kernel physical memory on
the boot processor, or CPU A. For this reason it is desirable to have at least 2GB of memory on
CPU A so that there is room for user threads in addition to the kernel.

Given the complexity of NUMA kernels and the many opportunities to get important details wrong,
we wanted to understand which kernels performed well, which performed poorly, and how much

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 11

difference there was between them. We ran our tests on eleven different Linux kernels, nine from
SUSE LINUX and two from Red Hat. The SUSE LINUX set includes kernels from the SLES 8
standard release, SLES 8 Service Packs 2 and 3, and 9.0 Professional. The Red Hat kernels
include AS 3.0 Gold and the AS 3.0 NUMA update. The results are presented in Figure 9 and
Tables 1 and 2.

0
1000
2000
3000
4000
5000
6000
7000
8000

Copy Scale Add Triad

M
B

/s

k_smp-2.4.19-249 k_numa-2.4.19-249 k_smp-2.4.19-191 k_numa-2.4.21-60
k_numa-2.4.19-201 k_numa-2.4.19-256 k_smp-2.4.19-256 k_smp-2.4.21-60
RH 2.4.21-4 RH 2.4.21-9 k_smp-2.4.21-102

Figure 9. Linux Kernel Performance on a 2.0GHz e325

Figure 9 demonstrates that the kernels we tested fall into two very clearly differentiated groups.
There is very little performance difference between kernels within each group, but there is a
noticeable difference in performance between groups. The higher-performing group is aware of
and takes advantage of the system’s NUMA characteristics. The lower-performing group does
not, and, in fact, includes several that are true SMP kernels.

It is difficult to see from Figure 9 which kernels performed well and which did not, simply because
the data is grouped so tightly. For that reason we have included Tables 1 and 2. Table 1 shows
the kernels we tested that behaved like NUMA-enabled kernels; Table 2 shows those with SMP
behavior. Note that some kernels labeled “SMP” perform well, and some that are labeled “NUMA”
perform poorly. Names can be misleading. In these tables, Max is the best result obtained out of
10 trials. Spread is the relative gain of the best result when compared to the worst, that is, (max –
min) / min.

 Copy Scale Add Triad
 Max Spread Max Spread Max Spread Max Spread

Red Hat 2.4.21-9.ELsmp 7077 2.4% 7310 2.6% 7332 2.7% 7331 2.6%
k_numa-2.4.19-201 7080 0.1% 7314 0.1% 7324 0.1% 7329 0.2%
k_numa-2.4.19-249 7090 0.1% 7313 0.1% 7319 0.1% 7320 0.1%
k_numa-2.4.19-256 7090 0.2% 7313 0.2% 7321 0.2% 7319 0.1%
k_smp-2.4.19-249 7080 0.1% 7316 0.1% 7324 0.1% 7328 0.2%
k_smp-2.4.19-256 7084 0.1% 7311 0.2% 7320 0.1% 7317 0.1%

SUSE
LINUX

k_smp-2.4.21-102 6975 0.1% 7196 0.1% 7194 0.1% 7198 0.1%
Table 1. NUMA-Enabled Kernels

It is difficult to differentiate performance between NUMA kernels using only this test. The most
important information in this table, however, is what kernels are included in the set. A person who

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 12

prefers SUSE LINUX might choose k_smp-2.4.19-249 from Service Pack 2. (Of the SUSE LINUX
kernels, this is the one that we prefer.) A person who prefers Red Hat might choose 2.4.21-
9.ELsmp. Both perform well and memory performance doesn’t appear to be a distinction between
them.

Table 2 shows how SMP kernels behave on this system. A somewhat greater performance
differentiation exists between SMP kernels than between NUMA-aware kernels, but not a lot.
There is a clear difference between the SMP kernels and the NUMA kernels. So, if performance
is a consideration, a NUMA kernel should be chosen over an SMP kernel for use on this system.

 Copy Scale Add Triad
 Max Spread Max Spread Max Spread Max Spread

Red Hat 2.4.21-4.ELsmp 3508 3.9% 3564 2.1% 3532 0.3% 3593 1.8%
k_numa-2.4.21-60 3728 9.0% 3814 6.4% 3646 2.2% 3694 2.2%
k_smp-2.4.19-191 3725 9.4% 3798 6.8% 3611 4.8% 3690 3.0%

SUSE
LINUX

k_smp-2.4.21-60 3679 8.4% 3759 6.4% 3620 2.3% 3677 2.9%
Table 2. SMP-Enabled Kernels

The previous experiments ran STREAM 10 times on each kernel, with all channels populated and
two threads active. The value selected for comparison was the best run from each set. The
spread between the best and worst results is also given. This gives a sense of overall
performance, but it does not give a good indication of how variable a kernel is at scheduling
tasks. The data appeared to be consistent, but this was not tested rigorously.

To create a rigorous test, a single kernel, k_smp-2.4.19-249, was chosen. The system was set up
so that two memory channels were populated on CPU A, and only one channel was populated on
CPU B. STREAM was then run using only a single thread. The expectation was that if the kernel
assigned the thread to CPU A and left it there, the performance would match the two-channel
value. If it assigned the thread to CPU B and left it there, the performance would match the
single-channel value. If the thread migrated between the two CPUs, that would indicate poor
scheduling. The performance would fall somewhere between the one- and two-channel values if
the memory were local to CPU A, and it would be worse than the single-channel results if
memory were local to CPU B. This experiment would amplify any variability due to memory
allocation or task scheduling.

The results of this experiment are shown in Figure 10. Out of 10 runs, the kernel scheduled half
on CPU B (experiments 1 through 5) and half on CPU A (experiments 6 through 10). Those
scheduled on CPU B show very little variation from the single-channel, single-processor result
(left-most bar), whereas those scheduled on CPU A show very little variation from the dual-
channel, single-processor result (right-most bar). This suggests that, at least in this kernel,
scheduling and memory allocation are handled well.

Processor Performance

So far we have focused extensively on memory performance. Memory throughput determines
how effectively data can be fed from memory to the processors. The fastest processor can
operate only as quickly as it receives data to process. Scientific and technical applications are
especially sensitive to memory performance. Next we examine the e325’s processor
performance. Specifically we examine processor frequency scaling on several processor-
intensive workloads.

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 13

2x1024MB + 1x1024MB, 1 Thread

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 2 3 4 5 6 7 8 9 10

Experiment

M
B

/s
 (T

ri
ad

)

1 ch 1p 2 ch + 1 ch 2 ch 1p

Figure 10. Quality of NUMA Schedule for SUSE LINUX Kernel k_smp-2.4.19-249

When we describe a workload as processor-intensive, we mean that, to a large degree, the
processing speed of the Arithmetic Logic Unit (ALU) is the limiting factor to performance. The
ALU is the core intelligence of the processor. It is the portion of the processor that does all of the
integer and floating-point calculations. It computes where data is stored in memory, and
sometimes, where a program should next begin executing.

Notice that a program may use 100% of the available CPU time and still not be ALU-intensive.
STREAM is a good example of that. STREAM spends most of its time waiting for data to arrive
from memory, so the ALU is mostly idle. A faster processor does not give a faster STREAM result
unless it also gives faster access to memory. Network- and disk-bound benchmarks may also use
100% of the CPU without being ALU-bound. In general, I/O-bound benchmarks tend to be limited
by memory performance (among other things) just as STREAM is. This happens because I/O
devices and device drivers spend much of their time copying data from one location in memory to
another.

The workloads we chose are each relevant to the scientific and technical community. We chose
Linpack, SPEC CINT2000 Rate, and SPEC CFP2000 Rate. Aside from their general familiarity
and relevance as benchmarks, they were selected because each exercises a different aspect of
the system. Linpack exercises the floating-point capabilities of the processor almost exclusively.
It retrieves most of its data from registers or from processor cache, and thus does not place
heavy demands on the memory subsystem. SPEC CINT2000 Rate is a suite of desk top
applications combined to form a composite benchmark. Like Linpack, it retrieves most of its data
from cache. But, instead of floating-point processing, it makes heavy use of the processor integer
units. SPEC CFP2000 Rate is also a suite of applications combined to form a single benchmark.
However, it is important because it uses a realistic mix of integer, floating-point and memory
operations in its execution.

We ran Linpack 10 times on a single processor using a single-threaded version of the library, and
selected the best results out of the 10 runs. The problem size was the standard 1000 x 1000
elements, but the calculation was repeated enough times within a timing interval so that we would
not have invalid measurements resulting from the granularity of our clock. We then ran the

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 14

problem again on both processors using a parallel version of the code. The results are shown in
Figure 11.

0

1000

2000

3000

4000

5000

6000

7000

1200 1400 1600 1800 2000 2200 2400

CPU Frequency (MHz)

Li
np

ac
k

1K
 x

 1
K

 M
FL

O
P/

s

191 1P 249 1P 191 2P 249 2P

Figure 11. Linpack Performance

These experiments were run using two different SUSE LINUX kernels. The first to be used was
k_smp-2.4.19-191, which does a poor job of maintaining memory locality on this system. The
experiments were repeated using k_smp-2.4.19-249, which maintains memory locality well. The
results obtained under k_smp-2.4.19-191 are effectively identical to those obtained under k_smp-
2.4.19-249. This confirms that Linpack is not strongly affected by memory performance. It also
points out that SMP kernels, such as 191, may be suitable on NUMA systems when the
applications are highly cache-optimized.

Now notice, in Figure 11, that the one- and two-processor Linpack results scale with near perfect
linearity. This is expected because the components used most heavily by this benchmark are all
governed by the same clock. Speeding up the clock makes each of the components work faster
by an amount that is proportional to the speed increase of the clock; therefore, the benchmark
scaling is linear. (Although this result may be intuitive, it is still important to confirm that there are
no hidden bottlenecks.)

A similar effect occurs with SPEC CINT2000 Rate (see Figure 12). Again, this occurs because,
for the most part, application data may be stored and retrieved from processor cache. The
greatest challenge of using a NUMA system effectively is to avoid fetching data from a remote
processor. Both Linpack and SPEC CINT2000 Rate do this by maintaining most of their data in
cache.

On the other hand, SPEC CFP2000 Rate does not fit most of its data working set into cache. Our
experience has been that its performance is affected by cache size, processor speed and
memory speed. Effective frequency scaling for this benchmark depends on a combination of
processor and memory subsystem designs. If either is deficient – there is a bottleneck in the ALU
or the memory speed becomes insufficient – the performance will level out even as the processor
frequency increases. We use this benchmark for this reason, that is, to check that the memory
subsystem remains adequate even as the processor speed increases. If the balance is there, the
benchmark will scale linearly. If it is not, the performance may rise for a while, but it will ultimately
level out into a plateau.

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 15

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1200 1400 1600 1800 2000 2200 2400

Processor Frequency

SP
EC

in
t_

ra
te

20
00

 (2
P)

Figure 12. SPEC CINT2000 Rate Performance. All results were measured but have not been
reviewed by SPEC, and so are considered estimates.

Figure 13 shows that the benchmark performance scales quite linearly with increasing processor
frequency; that is, processor and memory subsystems are well-matched for this workload, and
the memory subsystem does not become a bottleneck.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

1200 1400 1600 1800 2000 2200 2400

Processor Frequency

SP
EC

fp
_r

at
e2

00
0

(2
P)

Figure 13. SPEC CFP2000 Rate Performance. All results were measured but have not been
reviewed by SPEC, and so are considered estimates.

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 16

Conclusions

The AMD Opteron processor-based IBM eSeries 325 is a powerful 1U system. It supports high
memory bandwidth and throughput because of its integrated memory controller and NUMA
architecture. The memory bandwidth scales with the number of processors; that is, a second
processor adds more bandwidth to the system, reducing memory bottlenecks.

Based on our experiments, we make the following conclusions:

1. The memory controller achieves approximately 70% of the hardware peak performance when
all four channels are driven at full capacity using DDR333 memory. It achieves greater than 85%
of peak when only one channel per processor is driven to capacity.

2. Memory frequency scaling is nearly perfect from DDR266 to DDR333 when only one channel
per processor is driven, but is reduced to 19% out of a possible 25% when all four channels are
driven. This indicates that the memory controller might have some difficulty with DDR400 memory
when the processor speed is 2.0GHz. But 2.4GHz or 2.6GHz processors would have faster
memory controllers, and that would reduce conflicts that arise from using DDR400 memory on a
2.0GHz processor.

3. The integrated memory controller is very effective at increasing memory performance as
processor clock rates are increased. Memory throughput increases at about 2MB/s for every
1MHz that the processor clock increases. However, there is also a ratchet effect that reduces
performance when the memory native clock speed does not evenly divide the processor clock
speed, as is the case with DDR266 and DDR333 memory. This ratchet effect would not occur
with DDR400 memory.

4. Parallelism within a memory channel can improve performance by up to 1.5% when 256MB or
512MB DIMMs are used within the same channel. This would represent memory configurations
with four 256MB or four 512MB DIMMs on CPU A. But there may be a small loss of performance,
around 0.25%, when four 1GB DIMMs are used. CPU B is not affected.

5. The selection of operating system kernel has a major impact on memory performance, based
on its ability to keep memory references local. SMP kernels do run on the e325 but have just
slightly better than half the performance of tuned NUMA kernels. SUSE LINUX and Red Hat
Linux each produce at least one kernel that performs well. The SUSE LINUX kernel scheduler
was also quite stable.

6. The processor performance increased linearly with processor clock on ALU-intensive
workloads. Scaling was nearly perfect for both Linpack and SPEC CINT2000 Rate, which fetch
most of their data from processor cache. Because of the high bandwidth to memory, the scaling
was also nearly perfect for SPEC CFP2000 Rate, which has a strong memory component as well
as a strong floating-point component to its performance.

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 17

References

1. IBM eServer 325, ftp.software.ibm.com/pc/pccbbs/pc_servers_pdf/e325spec.pdf.
2. AMD Opteron Processor Data Sheet, http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/23932.pdf.
3. STREAM: Sustainable Memory Bandwidth in High Performance Computers,
www.cs.virginia.edu/stream/.
4. J. J. Dongarra, “The Linpack benchmark: An explanation,” in A. J. van der Steen, editor,
Evaluating Supercomputers, pages 1-21. Chapman and Hall, London, 1990.
5. J.J Dongarra, Cleve B. Moler, G. W. Stewart, Linpack User’s Guide, Society for Industrial &
Applied Mathematics, June 1979.
6. Linpack, www.netlib.org/linpack/index.html.
7. SPEC CPU2000, www.spec.org/cpu2000/.
8. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, "LU Decomposition and Its
Applications," §2.3 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.
Cambridge, England: Cambridge University Press, pp. 34-42, 1992.
9. E. Anderson, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenhaum, S.
Hammarling, A. McKenney, Sorensen D., Zhaojun Bai, Christian H. Bischof, Lapack User’s
Guide, 3rd edition, Society for Industrial & Applied Mathematics, 2000.
10. Kazushige Goto, “High-Performance BLAS,” www.cs.utexas.edu/users/flame/goto/.

 Performance of the IBM eServer 325 for Scientific and Technical Applications

 March 2004 18

© IBM Corporation 2004

IBM Systems and Technology Group

Department 5MX

Research Triangle Park NC 27709

Produced in the USA.

3-04

All rights reserved.

IBM, the IBM logo, the eServer logo, and eServer are
trademarks or registered trademarks of IBM Corporation
in the United States and/or other countries.

Intel, Itanium and Xeon are trademarks or registered
trademarks of Intel Corporation.

AMD and Opteron are trademarks or registered
trademarks of Advanced Micro Devices, Inc.

Red Hat is a registered trademark of Red Hat, Inc.

SPEC, SPEChpc, SPECchem, SPECfp, SPECint,
SPECrate, HPC2002, SPECenvM2002, and
SPECchemM2002 are registered trademarks of
Standard Performance Evaluation Corporation.

Other company, product, and service names may be
trademarks or service marks of others.

IBM reserves the right to change specifications or other
product information without notice. References in this
publication to IBM products or services do not imply that
IBM intends to make them available in all countries in
which IBM operates. IBM PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Some
jurisdictions do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this
statement may not apply to you.

This publication may contain links to third party sites that
are not under the control of or maintained by IBM. Access
to any such third party site is at the user's own risk and
IBM is not responsible for the accuracy or reliability of any
information, data, opinions, advice or statements made
on these sites. IBM provides these links merely as a
convenience and the inclusion of such links does not
imply an endorsement.

