The definitive guide to IBM Cloud Object Storage dispersed storage

Discover a cost-effective alternative to traditional storage

Why should I read the definitive guide to IBM Cloud Object Storage dispersed storage?

Is your current storage system petabyte-ready?

The Definitive Guide to IBM® Cloud Object Storage Dispersed Storage describes a new approach to solving the challenges associated with storing large volumes of unstructured data – challenges that can’t be met by traditional storage technologies.

The unstructured data explosion

According to IDC, the total amount of digital information created and replicated surpassed 4.4 zettabytes (a zettabyte is 1,000 exabytes) in 2013. The size of the digital universe is more than doubling every two years, and is expected to grow to almost 44 zettabytes in 2020.1

Although individuals generate most of this data, IDC estimates that enterprises are responsible for 85 percent of the information in the digital universe at some point in its lifecycle.2 That means organizations take on the responsibility for architecting, delivering and maintaining information technology systems and data storage systems to meet the demand.
Traditional storage approaches won’t work

Many technological advances are helping with this data growth challenge to some degree. Computing is getting faster and cheaper. Virtualization is driving up efficiency and utilization. Storage devices are growing in terms of capacity while declining in price (more bits per device at a lower cost) and recently getting faster with the advent of solid-state technologies (although not currently at a suitable price point for all workloads). Delivery mechanisms such as cloud computing are also helping to lower costs and drive efficiencies. But in some cases the advances in technology – specifically the capacity expansion of storage devices – are putting a strain on traditional methods of protecting and preserving digital information.

Traditional storage protection technologies such as RAID are simply inadequate when it comes to protecting digital information from data loss at petabyte-scale and beyond. Traditional storage architectures are not designed to scale to the petabyte range. They’re less secure. They’re less reliable. And they’re more expensive.

Consider the following challenges that traditional storage systems face once they reach petabyte-scale:

- Data integrity suffers when system size is 10 billion times larger than the bit error rate of a hard drive
- Data availability suffers when hundreds of drives fail every day and require a week to rebuild
- Data security suffers with millions of devices and multiple copies in multiple locations
Enterprises that need to store large volumes of unstructured
data must look beyond their current storage solutions and
evaluate new approaches. This guide can help you understand
how dispersed storage works and how its distinctive benefits
have helped other organizations achieve high levels of
scalability, availability and security while controlling storage
costs.

Part one
What is dispersed storage?

Dispersed storage defined
The IBM® Cloud Object Storage System (COS) uses an
innovative approach for cost-effectively storing large volumes
of unstructured data while helping ensure security, availability
and reliability. IBM COS storage technology uses Information
Dispersal Algorithms (IDAs) to separate data into
unrecognizable “slices” that are distributed via network
connections to storage nodes locally or across the world. The
collection of distributed storage appliances creates what is
called an IBM COS System. With IBM COS dispersed
storage technology, transmission and storage of data are
inherently private and secure. No complete copy of the data
resides in any single storage node, and only a subset of nodes
needs to be available in order to fully retrieve the data on the
network.

Background
By taking the methods that the Internet used for data
networking and applying them to data storage, dispersed
storage is designed to allow companies to store massive
amounts of content (video, audio, photo, text) securely and
reliably.

Much like the Internet used an open protocol (TCP/IP) based
on the improved design of packet switching in comparison to
the established telephony protocols used in older circuit-
switched networks, dispersed storage is a commercial-grade
implementation of a technology for data storage called
Information Dispersal Algorithms (also referred to as IDAs).

IDA technology transforms data into slices by using equations
such that a subset of the slices can be used to re-create the
original data. These slices, which are like packets but are for
data storage, are then stored across multiple storage
appliances (also referred to as storage nodes). Slices are
created using a combination of erasure coding, encryption and
sophisticated dispersal algorithms.

Dispersed storage systems are well-suited for storing
unstructured data like digital media of various types and sizes,
including small size documents produced by desktop
productivity applications, and server log files, which are
typically larger files. Currently available industry-standard
hardware, software and networking technologies are not cost
effective for dispersal of structured data in latency sensitive,
very high IOPS workloads like transaction-oriented databases
because of the overhead in processing associated with slicing
and dispersing.

What is information dispersal?
At the foundation of the IBM COS System is a technology
called information dispersal. Information dispersal is the
practice of using erasure codes as a means to create
redundancy for transferring and storing data.

An erasure code is a Forward Error Correction (FEC) code
that transforms a message of \(k \) symbols into a longer message
with \(n \) symbols such that the original message can be
recovered from a subset of the \(n \) symbols (\(k \) symbols).

Simply speaking, erasure codes use advanced deterministic
math to insert “extra data” in the “original data” that allows a
user to need only a subset of the “coded data” to re-create the
“original data”.

An IDA can be made from any Forward Error Correction
code. The additional step of the IDA is to split the coded data
into multiple segments, which can then be stored on different
devices or media to attain a high degree of failure
independence. For example, using forward FEC alone on files
on your computer is less likely to help if your hard drive fails,
but if you use an IDA to separate pieces across machines, you
can now tolerate multiple failures without losing the ability to
reassemble that data.
The math behind information dispersal

Part two
How dispersed storage works

How dispersed storage works: Step-by-step

At a basic level, the IBM COS System uses three steps for slicing, dispersing and retrieving data.

Step 1
Data is virtualized, transformed, sliced and dispersed using IDAs. In the example in Figure 4, the data is separated into 12 slices. So the “width” (n) of the system is 12.

Step 2
Slices are distributed to separate disks, storage nodes and/or geographic locations. In this example, the slices are distributed to three different sites.

Step 3
The data is retrieved from a subset of slices. In this example, the number of slices needed to retrieve the data is 7. So the “threshold” (k) of the system is 7.

Given a width of 12 and a threshold of 7, we can refer to this example as a “7 of 12” (k of n) configuration.

The configuration of a system is determined by the level of reliability required. In a “7 of 12” configuration,” five slices can be lost or unavailable and the data can still be retrieved because the threshold of 7 slices has been met. With a “5 of 8” configuration, only three slices can be lost, so the level of reliability is lower. Conversely, with a “20 of 32” configuration, 12 slices can be lost, so the level of reliability is higher.

How do these IDAs work? The answer is actually quite simple. If you can remember back to high school algebra class, you may recall that when you have a system of equations with, let’s say, five variables, you can solve for those variables when you have at least five outputs from different equations using those variables.

As you can see in Figure 3 (above), we have five variables (a through e) and eight different equations that use these variables, with each yielding a different output. To understand how information dispersal works, imagine the five variables are bytes. Following the eight equations, we can compute eight results, each of which is a byte. To solve for the original five bytes, we may use any five of the resulting eight bytes.

This is how information dispersal can support any value for k and n–k is the number of variables, and n is the number of equations.
Multi-site failure example

With dispersed storage, only a subset of slices is required to retrieve the data. This allows a dispersed storage system to tolerate appliance failures both within a single site and across multiple sites.

Step 1
Data is virtualized, transformed, sliced and dispersed using IDAs. The “width” (n) of the system in this example is 12.

Step 2
Slices are distributed to separate disks, storage nodes and/or geographic locations. In the example shown in Figure 5, the slices are distributed to four geographically dispersed sites.

Figure 4: Step-by-step Data slicing, dispersal and retrieval in an IBM COS system
Step 3
The data is retrieved from a subset of slices. In this example, the number of slices needed to retrieve the data is 7. So even though failures are occurring across all three sites, the data is still available to be retrieved because the “threshold” of 7 available slices has been reached.

Figure 5: Data slicing, dispersal and retrieval in an IBM COS system to withstand failures within a single site or across multiple sites
Single-site/Multi-device failure example

A dispersed storage system can also be deployed in a single site with the ability to tolerate the failure of multiple appliances within that site.

Step 1
Data is virtualized, transformed, sliced and dispersed using IDAs. The “width” (n) of the system in the example in Figure 6 is 12.

Step 2
Slices are distributed to separate disks, storage nodes and/or geographic locations. In this example, the slices are distributed to four different racks within a single site.

Step 3
The data is retrieved from a subset of slices. In this example, the number of slices needed to retrieve the data is 7. So even though each rack has experienced one or more device failures, the data is able to be retrieved because the “threshold” of 7 slices has been met. Even with five slices unavailable, the data can be bit-perfectly re-created.

Figure 6: Data slicing, dispersal and retrieval in an IBM COS system to withstand multiple failures in a single site
Components of an IBM COS System
The IBM COS System enables the creation of storage systems using three software components – the IBM® Cloud Object Storage Manager, IBM® Cloud Object Storage Accesser® and IBM® Cloud Object Storage Slicestor®. These software components can be deployed on a wide range of compatible industry-standard hardware platforms, as virtual machines, and in the case of the IBM COS Accesser®, as an application running on a Linux-OS. Physical and virtual deployment can be combined in a single system, for example, virtual machines for the IBM COS Manager and the IBM COS Accesser® and physical servers for the IBM COS Slicestor®.

Software
Each of the three software components serves a specific function as a part of IBM COS:
• The IBM COS Manager is responsible for monitoring the health and performance of the system, configuring the system and provisioning storage, managing faults, and other administrative and operational functions.
• The IBM COS Accesser® is responsible for encrypting/encoding data on ingest and decoding/decrypting data when read as well as managing the dispersal of data slices resulting from this process across a set of IBM COS Slicestor® nodes.
• The IBM COS Slicestor® is responsible for the storage of data slices.

When the IBM COS Manager, IBM COS Accesser®, and IBM Slicestor® software are deployed on IBM-certified industry-standard hardware platforms, there are a number of benefits including the following:
• Significantly reduced time to production on initial deployment because hardware and software compatibility and configurations are predefined and validated by IBM COS.
• Hardware configuration optimized to help maximize the value of IBM COS.
• Increased system reliability due to monitoring and management of hardware health at a lower component level.
• Access to IBM COS support staff that is familiar with both the hardware and software components of the system.

Object storage foundations
IBM COS is based on a simple object storage approach that efficiently stores billions of data objects in a single flat namespace and exposes the data through a REST interface using the HTTP-based protocol.

The old way: File-based
Traditional storage systems organize data in a hierarchical file system and expose the data via NAS-based protocols like NFS and SMB. The file system approach tends to be ideal for human users for storing small amounts of data.

The enhanced way: Object-based

Scalability	Reach improved cost, capacity and accessibility milestones with petabyte scalability and beyond.
Security	Protect mission-critical data with zero-touch encryption and built-in carrier-grade security.
Availability	Make sure your data is always available – independent of planned or unplanned downtime.
Efficiency	Simplify management with an intuitive platform that is approximately 15 times more efficient than traditional storage operations.
Economics	Dramatically reduce long-term total cost of ownership with a premium software-based solution that runs on commodity hardware.

The dynamic data addressing capabilities of object-based storage lead to a number of advantages over traditional storage. Among them are massive scalability, improved storage efficiency and ease of data migration and movement. Object-based storage also allows for more metadata than traditional storage, making it easier to manage data tiering, security and migration.\(^1\)

Figure 7: Advantages of object-based storage over traditional storage in a petabyte-ready storage system

With file system storage, data is closely tied to its location. Object-based storage overcomes this limitation by decoupling data from its physical location in the storage system. Analyst firm Forrester Research cites valet parking as an apt analogy for object-based storage\(^1\). When you valet park your car, the attendant gives you a claim ticket that allows you to retrieve your car when needed. While the attendant has your car, he or she might move it around as needed to optimize space in the parking lot or garage. The claim ticket identifies your car, but not a particular parking space. With object-based storage, an object ID identifies a particular piece of data, but not its specific location in the storage system. Data can be moved around in the system as needed, and the object ID is the “claim ticket” needed to retrieve the data, wherever it resides.
Access methods

Object-based access methods
The underlying storage pool of a dispersed storage system can be shared and is jointly accessible by multiple access protocols. The Simple Object interface is accessed with a HTTP/REST API. Simple PUT, GET, DELETE, LIST commands allow applications to access digital content, and the resulting object ID is stored directly within the application. The IBM COS Accesser® does not require a dedicated appliance because the application can talk directly to the IBM COS Slicestor® using object IDs.

REST API access to storage
REST is a style of software architecture for distributed hypermedia information retrieval systems such as the World Wide Web. REST style architectures consist of clients and servers. Clients initiate requests to servers. Servers process requests and return associated responses. Requests and responses are built around the transfer of various representations of the resources. The REST API works in way that is similar to retrieving a Universal Resource Locator (URL). But instead of requesting a web page, the application is referencing an object.

REST API access to storage offers several advantages:
- Tolerates Internet latency
- Provides for “programmable” storage
- Provides efficient global access to large amounts of data

File-based access methods
Dispersed storage can also support the traditional NAS protocols – SMB/CIFS and NFS – through integration with third-party gateway appliances. Users and storage administrators are able to easily transfer, access and preserve data assets over standard file protocols.

Figure 8: Applications can access object based storage directly from the IBM COS Slicestor® using industry standard REST storage interfaces
Security features

Data security
IBM® COS SecureSlice™ is the technology used to help ensure confidentiality, integrity, and availability of data stored on an IBM COS System. SecureSlice combines two algorithms: an Information Dispersal Algorithm and an All-or-Nothing Transform (AONT). AONT is a mode of encryption in which the information can only be deciphered if all the information is known. The diagrams shown in Figures 9 and 10 illustrate basic write and read operations using SecureSlice.

Figure 9: Basic write operation in an IBM COS system

1. AONT is applied as a pre-processing step to the IDA. AONT is a mode of encryption that can only be deciphered if the entire package is known. Anything less than the entire package does not allow any part of the original data to be determined.
2. Data is encrypted using RC4-128 encryption with MD5-128 hash for data integrity. Also supported: AES-256 encryption with SHA-256 hash. The key is packaged along with the data.
3. The IDA creates the first K slices by splitting the AONT package, then creates (N-K) additional slices using Forward Error Correction codes.

Figure 10: Basic read operation in an IBM COS system

1. Any threshold number of slices are put through the IDA to recover the original input, in this case the AONT package.
2. With the complete AONT package, the data is decrypted.
When a segment of data is to be stored in a dispersed storage system, an integrity check value is first appended to the data. The integrity check value can be any well-known constant value, so long as its length is sufficient. This value will be checked after decoding, to help ensure that no corruption has occurred.

If any slice used in the reassembly of the data segment has been corrupted, there is a very high probability that the integrity check value will also be corrupted. The dispersed storage system will notice this corrupted value and will prevent the invalid data from reaching the user. Should the integrity check value be corrupt on a given slice, the dispersed storage system will attempt to find a valid combination of slices in order to retrieve the complete data segment.

Network security

All network traffic flowing into or out of appliances in a dispersed storage system is encrypted using TLS, SSL or SNMPv3 with AES. Storage nodes may be placed virtually anywhere without complex firewall or VPN setup.

Figure 11: Internals of All-Or-Nothing Transform (AONT) operation in an IBM COS system

Figure 12: Network security in an IBM COS system

IBM COS Accesser® Exposes HTTP REST API

IBM COS Manager

In ALL cases, Monitoring and Event management is secured via AES in SNMPv3
Device registration – Certificate Authority (CA) trust

It is not enough to simply say devices use TLS or SSL. These protocols do not prevent “man in the middle” strikes unless the connections are authenticated. Authentication with TLS/SSL requires the use of digital certificates, and these certificates must be verifiable as belonging to a valid node in the storage network. To accomplish this, nodes are given a signed digital certificate at the time they are approved into the storage network. Such approval requires an administrator to log in to the management interface, view the request, and authorize it. The administrator can see the IP address, MAC address and fingerprint of the device making the request, and verify that each is valid before accepting the device into the system. Once approved, the node will be granted a certificate signed by the certificate authority (CA) for the storage network. All devices in the storage network trust this certificate authority, and by extension, any node that owns a valid certificate signed by this CA. Appliances may, at some future time, be retired or become compromised. At this point in time, the IBM COS Manager may revoke the device’s certificate by adding it to the Certificate Revocation List (CRL), which is periodically polled by every node in the system.

Authentication Steps:
1. Device registers with the IBM COS Manager Certificate Authority (CA)
2. Certificate is sent back to the device
3. Create a separate, secure connection to each device verified against the IBM COS Manager CA
4. Authenticate the client using either username/password or PKI
5. Check password against authentication service (*)

Figure 13: Device registration and authentication in an IBM COS system
Availability features
The availability features of a dispersed storage system provide continuous error detection and correction, helping ensure bit-perfect data availability.

Integrity check on all slices and files
A dispersed storage system checks for data integrity through an intelligent background process that proactively scans and corrects errors, scans data slices for integrity, rebuilds any corrupted slices, and checks for both slice integrity and file data integrity prior to delivery. This helps ensure bit-perfect data delivery through proactive correction of bit errors as well as correction of latent soft errors that may occur during normal read/write operations. It also helps ensure that data cannot be modified without authorization and that malicious threats are detected.

![Data integrity checks in an IBM COS system for a bit perfect data availability](image1.png)

Figure 14: Data integrity checks in an IBM COS system for a bit perfect data availability

Continuous error correction
If a slice is determined to be corrupted – meaning the integrity check value is invalid – the IBM COS Slicestor® starts the distributed rebuilder technology to replace the slice with a valid slice. If the slice is missing, the distributed rebuilder technology re-creates a valid slice. Continuous error correction increases system availability because it is not waiting for data to be read to detect errors. This is crucial with long-term archives and massive digital stores where information isn’t as frequently read. The distributed rebuilder model allows for predictability – the rebuilder is “always on” at a moderated rate, making I/O performance much more predictable – as well as scalable, as the rebuilder grows with storage.

![Continuous error correction by the IBM COS Slicestor® in an IBM COS system](image2.png)

Figure 15: Continuous error correction by the IBM COS Slicestor® in an IBM COS system
Performance optimization features

Dispersed storage uses IBM® COS SmartWrite™ and IBM® COS SmartRead™ technology to optimize writes and reads of slices, resulting in improved throughput and efficiency.

Improved performance of k of n writes

SmartWrite enables a successful write operation even if the full width of slices can’t be written – for example, if there is a failure condition at a node or within the network. SmartWrite optimistically attempts to write all slices. Once the required write threshold of slices is achieved, SmartWrite considers the write successful. The remaining slices continue to attempt to write asynchronously. If a slice write operation times out, it will be detected and rebuilt.

![Figure 16: Improved write performance due to SmartWrite technology in an IBM COS system](image)

Improved performance of k of n Reads

SmartRead predicts the optimal network routes and storage nodes to more efficiently retrieve data. Data is reassembled in segments, and for each segment, thousands – if not millions – of combinations of slices are examined to help determine the best delivery path. SmartRead ranks storage nodes by their on-demand performance and requests the optimal combination of slices to recreate the data. If a slice request is not performing, SmartRead requests a slice from another node.

![Figure 17: Improved read performance due to SmartRead technology in an IBM COS system](image)
Part three
The benefits of dispersed storage

Scalability benefits
Dispersed storage provides massive scalability with significantly reduced administrative overhead. Systems are permitted to grow more easily from terabytes to petabytes to exabytes.

Multiple drivers of scalability
To store and manage data at the petabyte, exabyte and beyond level, an architecture that can scale is crucial. With no centralized servers, capacity and performance for a dispersed storage system can be scaled independently. The object storage foundation of dispersed storage enables data mobility, scalability and storage efficiency crucial for limitless scale storage.

Dispersed storage delivers a single addressable global namespace that virtualizes all individual storage nodes – providing a single point of management. Additional benefits of utilizing a global namespace approach include the ability to open up more storage pools for larger working pools of disks, migrate data transparently and reduce the number of mount points and/or shares in an environment.

The dispersed storage protocol can be utilized within application servers or devices, each independently accessing storage nodes. This helps enable massive parallel writes and content distribution to be achieved. And it avoids the choke points of a gateway, helping improve performance in a distributed environment.

Availability benefits
Dispersed storage maintains nearly 100 percent data integrity even as millions of physical bit errors occur or as multiple drives, servers, containers or locations change or are replaced. The information that goes in is the same that comes out, completely authenticated, and the information is accessible from virtually anywhere, anytime. Data is always available with an architecture that can tolerate simultaneous failures.

Configurable availability and zero-downtime upgrades
Dispersed technology provides exceptional data protection and availability. Dispersal is significantly better than many other storage solutions, because it does not replicate data to overcome the shortfalls of other implementations and does not suffer the significant risk of data loss that other storage solutions can experience, during the rebuild process, which may take many hours – or even days – for even a single hard drive. It is configurable to provide higher levels of fault tolerance (k of n) when compared to RAID 5 (1 of N) and RAID 6 (2 of n) used in many other storage solutions. By utilizing IDAs and storing the resulting slices on independent hardware that can be either in a single site or geographically dispersed, IBM COS helps drive reliability and availability without replication.

The IBM COS System is designed to allow enterprises to tolerate entire site failures and still have seamless access to data without expensive copies. So taking a data center offline for routine maintenance does not change availability. With dispersed storage, zero-downtime upgrades are possible – rolling upgrades enable the system to remain operable with data accessible throughout the process. No scheduled maintenance window is required.

Security benefits
Dispersal helps ensure data confidentiality even when multiple drives, servers, containers or locations are compromised. Data in motion and data at rest is encrypted to help make it completely unrecognizable and inherently secure to eliminate opportunities for security breaches.

Exceptional security for data at rest and data in motion
Dispersed Storage technology uses encryption, all-or-nothing transformation (AONT), an integrity check value and IDAs to effectively split data into inherently secure slices. Each slice is encrypted, but no external key management is required. All data is computationally secure unless a “threshold” of slices is available to decrypt it. The result is slices that do not contain any representation of the data and that require a threshold number to re-create the data bit-perfectly.
These slices are stored on independent hardware, meaning no full copy of the data exists on any storage volume. Individual servers containing slices are useless without possessing a threshold number of them, which must be taken from many different physical locations. This means the likelihood of a security breach is significantly lower and in some cases eliminated. Further, since the slices are created prior to traversing the network, the slices are protected against on-the-wire security breaches. The result is exceptional data security for both data over the network as well as data at rest.

Economic benefits

The IBM COS System delivers significantly lower total cost of ownership for storage systems at the petabyte level and beyond by significantly reducing and in many cases eliminating expensive replication and associated incremental costs. Hardware, electricity, floor space, support and management costs are also reduced.

No copies, lower costs

Dispersed technology eliminates the need for costly replication. The IBM COS System delivers the equivalent availability of up to four replicated copies of data while reducing storage requirements by up to five times when compared to traditional approaches.

As shown in Figure 18, when compared to a popular storage file service, IBM COS requires:

- Less than one third of the raw storage for data dispersal
- Almost one third of the power and cooling costs
- Almost one fourth of the floor space, and
- No additional costs for hardware, software and tape copy

<table>
<thead>
<tr>
<th>IBM COS vs. a Popular Storage File System</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM COS System</td>
</tr>
<tr>
<td>Object Protected</td>
</tr>
<tr>
<td>Popular Storage File System and IBM COS System</td>
</tr>
<tr>
<td>Current Popular Storage File System Single Copy</td>
</tr>
<tr>
<td>Current Popular Storage File System DR Protected</td>
</tr>
</tbody>
</table>

Figure 18: IBM COS vs. a popular storage file service ($/TB comparison)

Use cases

The IBM COS System is an ideal solution for enterprises who need to securely store large volumes of unstructured data with high availability and where latency is not a primary consideration.

Unstructured data delivery

With the unprecedented growth in new digital information, use cases have emerged that enable organizations to store and distribute limitless data. A distributed and decentralized storage architecture along with an object storage interface helps enable enterprises to deliver data to their users across the globe as never before. These use cases include content repository, storage-as-a-service, enterprise collaboration, backup, and archive.

Content repository storage

The IBM COS System provides one of the most reliable, scalable platforms for your business critical data.

Effectively store and protect valuable content

Consumers access content from different locations worldwide, making it a business priority to protect irreplaceable originals at scale. IBM COS's content repository solutions deliver data availability at petabyte and beyond scalability. The easily scalable IBM COS System delivers carrier-grade security for a single copy of original content before dispersing it geographically. IBM COS technology helps ensure data integrity from start to finish.

Organizations need content storage that can be distributed across their infrastructure to effectively store and distribute content. IBM COS provides a high-availability environment, long-term file integrity and access, and authentication enforcement. Whether organizations have less active, fixed, or frequently accessed content that users are collaborating on, IBM COS offers a security-rich, reliable and cost-effective approach. A shared content storage repository can be accessed in a safeguarded manner by people inside or outside of an organization, enabling collaboration across geographies.
Case study: A major league baseball team

Problem: Like many Major League Baseball teams, video means practically everything. Video photographers capture every pitch and every hit of every player at every game all year long. Those recordings prove critical for coaches. As a result, the team collects a large amount of unstructured video data to store, secure and make available to their coaches and employees.

Solution: IBM COS is an ideal solution for cloud storage, especially for archiving and backup. Its benefits include massive scalability, geographic independence, multi-tenant features and the ability to use proprietary, off-the-shelf technology, which provides additional cost savings. This major league baseball team placed IBM COS software in the backend of their system, with a controller as the local interface to the global file system for seamless data access. They promptly noticed the difference it made to the IT staff. The IBM COS solution eliminated up to 30 percent of IT professionals’ time to serve as a backup administrator and coordinate all the replication routines.

Results: IBM COS technology gave this major league baseball team the ability to have cross-site access to data from each of its data sites without sacrificing security. The IT security chief can keep all data up to date, backed up and replicated across all of their sites. The coaches, scouts and trainers have access to the content via the cloud by logging in and finding what they need to retrieve. In addition to enhanced data security and seamless data collocation, they value the systems’ transparency to the user. Based on the successes the team experienced with IBM COS’s technology, they are expanding the cloud storage system into their affiliates in the minor leagues.

Storage-as-a-service

IBM COS software helps deliver new levels of storage capacity and availability with carrier-grade data security to a company’s user base.

Delivering storage capacity and availability

Being able to sell capacity to customers on a centralized infrastructure is a must for service providers and large enterprises. IBM COS helps these organizations implement storage-as-a-service solutions that consolidate users and customers onto a single platform. IBM COS helps streamline management and efficiently scale storage to meet their demands. With secure multi-tenancy, zero-touch encryption and robust management APIs, IT can build a storage offering that is as scalable and reliable as it is easy to manage and cost-efficient.

Case study: A leading data storage integrator

Problem: A leading data storage integrator, decided to expand their managed, hosted, data storage services. Aware that many of their potential customers were operating in hyper-growth environments, they realized that the platform they were reselling fell short. In order to serve these customers and grow their business, they needed a new storage-as-a-service offering.

Solution: IBM COS reliably stores a large amount of data cost-effectively making it well suited for the cloud. After a thorough evaluation, this data storage integrator selected the IBM COS System to provide a competitive data storage-as-a-service solution that is more cost efficient and easier to deploy than public cloud providers.

Results: The IBM COS System has allowed this data storage integrator to provide storage services with data reliability that is greater than 9 nines (99.9999999%) while still competing with public cloud pricing. The simple pricing model is particularly attractive to potential customers in hyper-growth environments. The easy-to-manage IBM COS System also enables this data storage integrator to provide customers with rich data and insights such as performance reports, capacity consumption reports and technology updates that are not typically available from public cloud offerings.
Enterprise collaboration
IBM COS provides security-rich, distributed access to valuable content, making it easier to enable workplace productivity across the globe.

Collaboration and productivity
Today’s workforce is constantly on the move, with businesses reaching across the globe. To be successful, employees need seamless access to mission-critical data from virtually anywhere, at anytime. The IBM COS solution delivers a data hub that allows business to provide global access to data. By simultaneously protecting it on-premises with zero-touch encryption, they provide security-rich, distributed data access that enables enterprise collaboration and improves productivity.

Case study: A leading global marketing and implementation agency
Problem: A leading global marketing and implementation agency, produces advertising and marketing communications for clients across all media and all languages. The company was growing quite rapidly, with each campaign consuming a lot of storage space in the production environment. Their IT team was looking for a storage solution that would cost-effectively address their expanding amount of unstructured data. They also needed a solution that would enable their international workforce to collaborate globally and without interruption.

Solution: Optimized for storing high volumes of data-driven content, the IBM COS solution met this agency’s requirements and was implemented in all of their main studios. With a single addressable global namespace, IBM COS delivers a unified, single point of management and access that can scale beyond the limits of traditional centralized metadata servers. All of their employees can now write to it and any of the end offices can pull the data back up to their systems as needed. With the majority of their production studios connected, productivity has increased across the company.

Results: IBM COS helps their staff to archive much more aggressively and limits the amount of expensive production storage they use. IBM COS also allows their staff to collaborate more easily between offices and gives their clients easier, safer, and more reliable access to the assets they need to help ensure regulatory compliance.

Backup
The IBM COS System provides scalable backup and always-on data availability for dependable recovery and security up to 80 percent lower infrastructure cost.

Cost-effective, security-rich and accessible storage
It is a challenging task for IT to collect and back up data from diverse application servers and user machines. Storing this data long-term and at scale is even more difficult. IBM COS Backup Solutions provide a cost-effective, easier to access storage platform for long-term data protection. SecureSlice zero-touch encryption protects data before cost-effectively distributing it across multiple sites, helping ensure long-term, bit-perfect protection at scale. The IBM COS System enables faster access to data once it’s backed up – speeding business recovery time in the event of a disaster.

Case Study: Major retailer
Problem: For a major retailer, the steady production of unstructured data including videos, photos and more, was increasing at a phenomenal rate. At the same time, IT storage platforms were struggling to scale without dramatically increasing in price and decreasing in reliability.

Solution: IBM COS enables business to efficiently store, manage and access data at petabyte scale and beyond. Using erasure coding, a type of forward error correction, the IBM COS solution offers far higher data resiliency than other storage solutions and requires far less storage capacity than standard object storage solutions. IBM COS demonstrated the scalability, efficiency, security and simplicity of their object software storage and the retailer’s upper management was quickly on board.

Results: The retailer is on track to hit roughly a half petabyte, or 500 terabytes, of storage by the end of 2015. The IBM COS Backup Solution stores mountains of video and visuals more easily and economically. The major driver for the move to IBM was cost-efficiency and the savings were quick. The retailer realized about a 50 percent savings (per byte) compared to its previous storage vendor. IBM COS’s method of slicing and structuring data makes it virtually impossible to damage or steal critical information, helping ensure the data is protected.
Active archive
The IBM COS System keeps content accessible with a scalable, reliable and security-rich long-term data archive.

Scalable, reliable and security-rich archive storage
Many organizations are seeking an archival solution that provides their users with rapid access to their data. IBM offers an archive storage solution that combines virtually limitless availability with one of the highest levels of data integrity and confidentiality.

Proactive error correction is crucial to keeping a long-term archive healthy, since information isn’t as frequently read. IBM COS employs an intelligent background process that scans storage nodes, checking for and correcting errors.

Deployments of the IBM COS solution can span multiple data centers. An archive distributed across multiple offsite locations helps protect data against a potential single location failure or catastrophic disaster, making it more securely accessible for long-term retention. Because it is not tied to a specific server or storage device, and the data is automatically reconstituted as new storage nodes are installed in the system. The IBM COS Archive Solution is designed to enable organizations to meet their compliance requirements and long-term preservation goals.

Case study: An internet-based photo publishing service
Problem: With an active archive of billions of photos in constant motion, and continuously growing, this company faced significant challenges to make sure it could keep pace with its customers’ needs and maintain the same levels of performance, availability and reliability. At petabytes of raw storage and a double-digit growth rate, the cost to store this data was growing rapidly too. They had to find alternatives ways to drive down the cost of storage and make it easier to manage.

Solution: The IBM COS approach to ingesting and storing data inherently solved their most critical criteria – to eliminate single points of failure and deliver high levels of fault tolerance. An IBM COS solution also had a number of properties that made the management of their image archives much simpler. Advanced erasure coding techniques disassociate the performance and reliability of individual components from application level performance and reliability. This allows the company to have continuous availability of its data, making it far less susceptible to potential hardware and software problems in its storage tier.

Results: Presently this company has over 150PB of storage in production and is growing rapidly with a limitless capacity to scale. The company is realizing significant power consumption and management cost savings across the board. They are now able to manage the entire storage platform containing billions of objects and over 150PB of capacity with only three part-time storage administrators.

Part five
Conclusion
Enterprises that need to store large volumes of unstructured data must look beyond their current storage solutions and evaluate new approaches. Dispersed storage is one such innovative approach for cost-effectively storing large volumes of unstructured data while helping ensure security, availability and reliability.

The Definitive Guide to IBM Cloud Object Storage
Dispersed Storage described the features and benefits of dispersed storage in five critical areas:
- **Availability** – Data is always available – whether or not there is planned or unplanned downtime.
- **Scalability** – Systems are easily able to grow from terabytes to petabytes to exabytes.
- **Security** – Data confidentiality is maintained even when multiple drives, servers, containers or locations are compromised.
- **Economics** – The need for costly replication is eliminated, significantly lowering the total cost of ownership for storage systems at the petabyte level and beyond.
- **Efficiency** – More easily manage 10s of petabytes of storage per administrator.

For these reasons, dispersed storage is an ideal solution for enterprises who need to store large volumes of unstructured data and where latency is not a primary consideration. Enterprises with content storage, active archive and/or content distribution needs should evaluate dispersed storage as a different technology option.
Is dispersed storage right for your organization?
Use the following checklist to determine whether your organization could benefit from dispersed storage:

- Do you have applications that require long-term retention of data?
- Does the data consist of large, unstructured objects such as images, movies, and documents?
- Do you have 500 usable terabytes or more of this data?
- Do you have requirements for data security, availability, scalability, and cost-effectiveness?
- Do you have the infrastructure required to support dispersed storage, including:
 - Network connectivity?
 - High-quality bandwidth (if geo-dispersed)?

About IBM Cloud Object Storage
IBM Cloud Object Storage provides organizations the flexibility, scale and simplicity required to store, manage and access today’s rapidly growing unstructured data in a hybrid cloud environment. Relied upon by some of the world’s largest repositories, our proven solutions turn storage challenges into business advantage by reducing storage costs while reliably supporting both traditional and emerging cloud-born workloads for enterprise mobile, social, analytics and cognitive computing. IBM Cloud Object Storage is built on technology from object storage leader Cleversafe, acquired by IBM in 2015.

For more information
Please call: 312-423-6640 or email: sales@cleversafe.com or visit the Cleversafe website: www.cleversafe.com.

To learn more about IBM Cloud computing, please visit http://www.ibm.com/cloud-computing/infrastructure/object-storage/