

Multicast Routing Configuration Guide, 17.2.0

Contents

About This Guide	
Multicast Routing Overview	
IP multicast	
Multicast channels	
Multicast addresses	
Multicast routing protocols	
Types of multicast	
Internet standard multicast	
Source-specific multicast	
Supported standards	
RFCs	
MIBs	10
Multicast Configuration	11
Before you begin	
Basic PIM-SM multicast configuration	
Configure R1	
Configure R2	
Configure RP	
Multicast Routing Commands	

clear ip mroute statistics	16
clear ipv6 mroute statistics	16
interfaces interface ip multicast ttl-threshold ttl	16
monitor command mtrace-command	17
monitor protocol multicast	17
mtrace host	18
protocols multicast ip log	19
protocols multicast ipv6 log	20
protocols multicast ip log-warning warning-limit	21
protocols multicast ip route-limit route-limit	22
protocols multicast ip routing	23
protocols multicast ipv6 log-warning warning-limit	
protocols multicast ipv6 route-limit route-limit	
protocols multicast ipv6 routing	25
reset ip mroute	25
reset ipv6 mroute	25
show ip mroute	26
show ip multicast interface	27
show ip multicast mrinfo host	28
show ip rpf source	29
show ipv6 mroute	29
show ipv6 multicast interface	

show ipv6 rpf source	31
show monitoring protocols multicast	. 31
Supported Dataplane Interfaces	32
VRF support	34
VRF support for multicast	34
Command support for VRF routing instances	34
List of Acronyms	38

Copyright Statement

© 2017 AT&T Intellectual Property. All rights reserved. AT&T and Globe logo are registered trademarks of AT&T Intellectual Property. All other marks are the property of their respective owners.

The training materials and other content provided herein for assistance in training on the Vyatta vRouter may have references to Brocade as the Vyatta vRouter was formerly a Brocade product prior to AT&T's acquisition of Vyatta. Brocade remains a separate company and is not affiliated to AT&T.

About This Guide

This guide describes how to enable and configure multicast routing on AT&T products that run on the AT&T Vyatta Network Operating System (referred to as a virtual router, vRouter, or router in the guide).

Multicast Routing Overview

IP multicast

There are four types of transmission over a network:

- Unicast—In unicast transmission, a single sender transmits a message to a single receiver (one-to-one). Unicast transmission is signaled to the network by using an IP address in the unicast range. Unicast transmission is supported in both IPv4 and IPv6.
- Broadcast—In broadcast transmission, a sender transmits a message to all possible destinations ("all-hosts on this subnet") and all receivers receive a copy of the message (one-to-many). In IPv4, broadcast transmission is signaled to the network by using the "broadcast address" 255.255.255.255 or a directed broadcast address formed from the network prefix but using all binary 1s for the host portion of the address. Broadcast transmission is not supported in IPv6; instead, IPv6 defines the "all-nodes" multicast address.
- Multicast—In multicast transmission, a group of receivers interested in a particular stream forms a group (one-to-many). The sender sends the message from its unicast address to the multicast group address. The network routers are responsible for propagating the message to all interested receivers. Multicast groups are identified using a special range of addresses. In IPv4, the former class D addresses compose the multicast range of addresses. In IPv6, multicast addresses are identified from the prefix FF00::/8.
- Anycast—In anycast transmission, a message from a single sender is sent to the topologically "closest" node in a group of potential receivers (one-to-one-of-many). Anycast is used in network load balancing and in certain network protocols, such as Domain Name System (DNS).

IP multicast uses multicast transmission over the IP infrastructure, transmitting to a multicast address at the IP routing level. Networks using IP multicast deliver content to multiple users in various groups—for example, IP multicast is often used for content delivery such as streaming media and IPTV. IP multicast is described in RFC 1112, *Host Extensions for IP Multicasting*.

Note:

For specific information about the Internet Group Management Protocol (IGMP) and the Multicast Listener Discovery (MLD) protocol, see AT&T Vyatta Network Operating System IGMP and MLD Configuration Guide.

For specific information about Protocol Independent Multicast (PIM), see AT&T Vyatta Network Operating System PIM Configuration Guide.

For specific information about Multicast Source Discovery Protocol (MSDP), see AT&T Vyatta Network Operating System MSDP Configuration Guide.

Multicast channels

To receive a particular multicast data stream, hosts join a multicast group. The group is identified by its multicast address. The communication between the host and router for this purpose is managed by using the Internet Group Management Protocol (IGMP).

Hosts send an IGMP Join message to their local multicast router, signaling their intention to join the group (G), as represented by a multicast address. The source device (S) that delivers the content sends the message addressed to the multicast address of G. The multicast "channel" is the combination of the IP address of the content source and multicast address of the group—called an (S, G) pair. For messages for which the source can be any device, the S is replaced by the asterisk wildcard ("*"), which means "any source."

Multicast addresses

For IPv4, addresses in the range 224.0.0.0 to 239.255.255.255 are reserved for multicasting. In the classful addressing system, this is registered as class D. In the Classless Inter-Domain Routing (CIDR) addressing model, the prefix of this group is 224.0.0.0/4.

Within the IPv4 multicast range, address assignments are specified in RFC 5771, *IANA Guidelines for IPv4 Multicast Address Assignments*. The following table lists a summary of these assignments. Note that, of these addresses, the network address 224.0.0.0 is guaranteed not to be assigned to any group.

Table 1: Multicast address assignments

Addresses	Usage
Link Local Scope	
224.0.0.1	All systems on this subnet
224.0.0.2	All routers on this subnet
224.0.0.13	All PIM routers address group
Global Scope	
224.0.1.0 to 238.255.255.255	Allocated for multicast traffic across the Internet. SSM reserves the range 232.0.0.0/8. The addresses 224.0.1.39 and 224.0.1.40 are used for Auto-RP negotiation. You can assign the remaining IP addresses to your ISM applications.
Administrative Scope (AS)	
239.0.0.0/8	Allocated for organizations that own an AS number to multicast across the Internet. The AS number of the organization is embedded in the second and third octets of the multicast IP address. For example, AS64501 is 0xFBF5, with FB and F5 (or 251 and 245 in decimal) representing the second and third octets of the IP address, respectively. The resulting subnet 233.251.24.0 is globally reserved for AS64201 to use. These addresses are called GLOP addresses.

For IPv6, multicast addressing is specified in RFC 3513, *IP Version 6 Addressing Architecture*. In essence, IPv6 multicast addresses are derived from the FF00::/8 prefix.

Multicast routing protocols

The multicast routing protocols supported by the AT&T Vyatta vRouter are IGMP, Multicast Listener Discovery (MLD), and Protocol Independent Multicast (PIM).

- IGMP controls multicast communication between hosts and multicast routers on IPv4 networks, allowing hosts to manage membership of multicast groups. MLD performs this function on IPv6 networks.
- PIM controls multicast communication between multicast routers, so that they can track packet distribution.

Types of multicast

In IP networks, multicast information is propagated through the use of distribution trees created by the multicast routers. Routers create source trees that provide the shortest path to each destination; these trees are called shortest path trees (SPTs). The source of the multicast message is always the root of an SPT.

Multicast depends on which of two models of multicast is in effect:

- Internet standard multicast (page 9)
- Source-specific multicast (page 9)

Internet standard multicast

In Internet Standard Multicast (ISM), a receiver can receive messages from any source and from multiple sources. In ISM, receivers are not aware of sources; they express interest in receiving a traffic stream by subscribing to the group of interest (G).

In the ISM model, the multicast router discovers and tracks all multicast sources that are sending messages to an address, maintaining information about all sources, and routing data from all sources to all interested receivers. The router does this by maintaining a state table of (S, G) entries. When the number of sources is large, the burden on the multicast router can become heavy.

Source-specific multicast

In Source-Specific Multicast (SSM), receivers are aware of sources. A receiver explicitly requests a stream from a sender in a group the receiver has joined, using a Join message that specifies the source (an (S, G) Join), and explicitly excludes the use of the wildcard for source—that is, it disallows the (*, G) Join.

Because SSM-enabled hosts track sources of the multicast transmission themselves, multicast routers do not need to discover the multicast sources themselves, and they need to store and maintain only the (*, G) state in the multicast routing table. This greatly reduces the burden on the multicast router.

For IPv4, the destination addresses must be in the range 232.0.0.0/8. For IPv6, the addresses must be in the range FF3x::/96.

SSM is specified in RFC 3569, An Overview of Source-Specific Multicast (SSM) and RFC 4607, Source-Specific Multicast for IP.

Supported standards

This section presents the following topics:

- RFCs (page 9)
- MIBs (page 10)

RFCs

The AT&T implementation of multicast routing complies with the following standards:

- RFC 1112: Host Extensions for IP Multicasting
- RFC 2236: Internet Group Management Protocol, Version 2
- RFC 2710: Multicast Listener Discovery (MLD) for IPv6
- RFC 3376: Internet Group Management Protocol, Version 3
- RFC 3569: An Overview of Source-Specific Multicast (SSM)
- RFC 3810: Multicast Listener Discovery version 2 (MLDv2) for IPv6
- RFC 4604: Using Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery
 Protocol Version 2 (MLDv2) for Source-Specific Multicast
- RFC 4607: Source-Specific Multicast for IP

MIBs

The Vyatta implementation of multicast routing supports the following Simple Management Network Protocol (SNMP) management information bases (MIBs).

- IGMP-MIB, RFC2933: Internet Group Management Protocol MIB
- IPMROUTE, RFC 2932: IPv4 Multicast Routing MIB
- MLD-MIB, RFC 3019: IP Version 6 Management Information Base for The Multicast Listener Discovery Protocol

For a list of all MIBs supported on the AT&T Vyatta vRouter, see AT&T Vyatta Network Operating System Remote Management Configuration Guide.

Multicast Configuration

Before you begin

It is assumed that routers depicted in the examples that follow are configured to provide basic connectivity. This configuration includes the host-name, Ethernet, or data plane interfaces, and gateway-address. See AT&T vRouter Quick Start Guide for information on basic system configuration.

Note: In the AT&T Vyatta vRouter, a data plane interface is an abstraction that represents the underlying physical or virtual Ethernet interface of the system. The terms Ethernet interface and data plane interface are synonymous in this guide.

Basic PIM-SM multicast configuration

This section presents a configuration example that provides PIM sparse mode multicast capability between the sender of multicast traffic (Source) and a receiver of multicast traffic (Receiver). Three routers are configured for this example: R1, R2 and RP.

R1 and R2 are configured for PIM sparse mode operation and point to RP as the rendezvous point router. RP is configured as the rendezvous point router.

Note: It is assumed that the Sender and Receiver contain software to send and receive multicast traffic.

When you have finished the example, these systems will be configured as shown in the following figure.

Source

Receiver

Configure R1

The multicast network in the example extends from R1 through the 192.0.2.0/24 LAN segment to R2 and RP. In this example, you configure R1 for PIM sparse mode multicast operation.

The following procedure creates a PIM sparse mode multicast configuration on R1.

Table 2: Creating a	PIM sparse mo	ode configuration on R1
Tuble E. Cleating a	i i illi spai se ille	ac configuration on R

Step	Command
Configure PIM sparse mode on dp0p1p1.	<pre>vyatta@R1# set interfaces dataplane dp0p1p1 ip pim mode sparse</pre>
Commit the configuration.	vyatta@R1# commit

Step	Command
View the configuration.	<pre>vyatta@R1# show interfaces dataplane dp0p1p1 ip pim { mode sparse }</pre>
Configure PIM sparse mode on dp0p1p2.	vyatta@R1# set interfaces dataplane dp0p1p2 ip pim mode sparse
Commit the configuration.	vyatta@R1# commit
View the configuration.	<pre>vyatta@R1# show interfaces dataplane dp0p1p2 ip pim { mode sparse }</pre>
Configure multicast routing.	<pre>vyatta@R1# set protocols multicast ip routing</pre>
Specify the location of the rendezvous point router.	vyatta@R1# set protocols pim rp-address 192.0.2.99
Commit the configuration.	vyatta@R1# commit
View the configuration.	<pre>vyatta@R1# show protocols multicast { ip { routing { } } pim { rp-address 192.0.2.99 { } }</pre>

Configure R2

The multicast network in the example extends from R1 through the 192.0.2.0/24 LAN segment to R2 and RP. In this example, you configure R2 for PIM sparse mode multicast operation.

The following procedure creates a PIM sparse mode multicast configuration on R2.

Step	Command
Configure PIM sparse mode on dp0p1p1.	<pre>vyatta@R2# set interfaces dataplane dp0p1p1 ip pim mode sparse</pre>
Commit the configuration.	vyatta@R2# commit

Step	Command
View the configuration.	<pre>vyatta@R2# show interfaces dataplane dp0p1p1 ip pim { mode sparse }</pre>
Configure PIM sparse mode on dp0p1p2.	vyatta@R2# set interfaces dataplane dp0p1p2 ip pim mode sparse
Commit the configuration.	vyatta@R2# commit
View the configuration.	<pre>vyatta@R2# show interfaces dataplane dp0p1p2 ip pim { mode sparse }</pre>
Configure multicast routing.	vyatta@R2# set protocols multicast ip routing
Specify the location of the rendezvous point router.	vyatta@R2# set protocols pim rp-address 192.0.2.99
Commit the configuration.	vyatta@R2# commit
View the configuration.	<pre>vyatta@R2# show protocols multicast { ip { routing { } } pim { rp-address 192.0.2.99 { } } }</pre>

Configure RP

The multicast network in the example extends from R1 through the 192.0.2.0/24 LAN segment to R2 and RP. In this example, you configure RP for PIM sparse mode multicast operation.

The following procedure creates a PIM sparse mode multicast configuration on RP.

Table 4: Creating a	PIM sparse	mode config	uration on RP

Step	Command
Configure PIM sparse mode on dp0p1p1.	<pre>vyatta@RP# set interfaces dataplane dp0p1p1 ip pim mode sparse</pre>
Commit the configuration.	vyatta@RP# commit

Step	Command
View the configuration.	<pre>vyatta@RP# show interfaces dataplane dp0p1p1 ip pim { mode sparse }</pre>
Configure multicast routing.	vyatta@RP# set protocols multicast ip routing
Specify the location of the rendezvous point router.	vyatta@RP# set protocols pim rp-address 192.0.2.99
Commit the configuration.	vyatta@RP# commit
View the configuration.	<pre>vyatta@RP# show protocols multicast { ip { routing { } } pim { rp-address 192.0.2.99 { } }</pre>

clear ip mroute statistics

Clears IPv4 statistics for multicast routing.

Syntax:

clear ip mroute statistics [group group [source source]]

When used with no option, this command clears all IPv4 statistics for multicast routing.

group

Clears statistics for the specified IPv4 multicast group in IPv4 multicast address format.

source

Used in source-specific multicast. Clears statistics for the specified IPv4 multicast source. The format is an IPv4 multicast address.

Operational mode

Use this command to clear statistics for multicast routing.

clear ipv6 mroute statistics

Clears IPv6 statistics for multicast routing.

Syntax:

clear ipv6 mroute statistics[group group [source source]]

When used with no option, this command clears all IPv6 statistics for multicast routing.

group group

Clears statistics for the specified IPv6 multicast group. The format is an IPv6 multicast address.

source source

Used in source-specific multicast. Clears statistics for the specified IPv6 multicast source. The format is an IPv6 multicast address.

Operational mode

Use this command to clear IPv6 statistics for multicast routing.

interfaces <interface> ip multicast ttl-threshold <ttl>

Sets the time-to-live (TTL) threshold for multicast packets.

Syntax:

set interfaces interface ip multicast ttl-threshold tt/

Syntax:

delete interfaces interface ip multicast ttl-threshold

Syntax:

show interfaces interface ip multicast ttl-threshold

The TTL for multicast packets is 0. The default value 0 means that all multicast packets are forwarded out to the interface.

interface

The type keyword and identifier of an interface. For detailed keywords and arguments that can be specified as interfaces, refer to Supported Dataplane Interfaces (*page 32*).

ttl

The TTL value is the hop count. The range is 0 through 255. The default is 0.

Configuration mode

```
interfaces interface {
    ip {
        multicast {
            ttl-threshold ttl
        }
    }
}
```

Use this command to configure the TTL threshold for multicast packets being forwarded from the specified interface. Only multicast packets with a TTL value greater than the threshold are forwarded.

Use the set form of this command to configure the multicast TTL value.

Use the delete form of this command to restore the default TTL value for multicast.

Use the show form of this command to show multicast TTL configuration.

monitor command <mtrace-command>

Monitors an mtrace command.

Syntax:

monitor command mtrace-command

Syntax:

run monitor command mtrace-command

mtrace-command

The mtrace command to be monitored. The mtrace command must be enclosed in quotation marks.

Operational mode.

Configuration mode

Use this command to display the output of an mtrace command. The session stays open and display information is refreshed every two seconds.

Use the run form of this command in configuration mode.

monitor protocol multicast

Sets debugging options for multicast routing.

Syntax:

```
monitor protocol multicast [[ background { start | stop }] | { enable | disable } { ip | ipv6 } [ event
| fib-msg | mrib-msg | mrt | mtrace | mtrace-detail | nsm-msg | register-msg | stats | vif ]]
```

Multicast debugging is disabled.

background

Performs debugging operations in the background.

start

stop

Stops debugging in the background. enable

Enables the specified debugging option.

Starts debugging in the background.

disable

Disables the specified debugging option.

ip	Crasifies IDv4 multicast debugging
ipv6	Specifies IPv4 multicast debugging.
	Specifies IPv6 multicast debugging.
event	Displays debugging messages for multicast events.
fib-msg	
mrib-ms	Reports all forwarding information base messages. g
_	Reports all multicast routing information base messages.
mrt	Displays debugging messages for multicast routes.
mtrace	
mtrace-	Displays multicast traceroute debugging. detail
	Displays detailed multicast traceroute debugging.
nsm-msg	Reports all Network Services Module messages.
registe	r-msg
stats	Reports all Protocol Independent Multicast (PIM) register messages.
Stats	Displays debugging messages for multicast statistics.
vif	-
	Displays debugging messages for multicast-enabled vif interfaces.

Operational mode

Use this command to enable or disable debugging for multicast and to configure multicast debugging options.

The following example starts debugging in the background for IPv4 multicast events.

vyatta@vyatta:~\$monitor protocol multicast enable ip event

The following example disables all IPv6 multicast debugging.

vyatta@vyatta:~\$monitor protocol multicast disable ipv6

mtrace <host>

Displays the route that packets take from a multicast source.

Syntax:

```
set mtrace host [ destination addr [ group group [ detail ] | detail ] | group group [ destination addr [ detail ] | detail ] | detail ]
```

Output shows routes from the source host to the host on which the command is entered.

host

The host that is the source for the trace. The host is either a name (if DNS is being used on the network) or an IPv4 or IPv6 unicast address.

addr

The host that is the destination for the trace. The host is either an IPv4 or IPv6 unicast address.

group

The multicast group to trace. The format is an IPv4 or IPv6 multicast address.

detail

Displays detailed output. This output includes IP multicast packet-rate and packet-loss information.

Operational mode

Use this command to show the path from a source to a receiver in a multicast network.

The following example displays a trace from 10.14.0.1 through 10.12.0.2 using group 226.0.0.1.

The following example displays a detailed trace from 10.14.0.1 through 10.12.0.2 using group 226.0.0.1.

```
vyatta@vyatta:~$mtrace 10.14.0.1 destination 10.12.0.2 group 226.0.0.1 detail
Mtrace from 10.14.0.1 to 10.12.0.2 via group 226.0.0.1
Round trip time 0 ms
Waiting to accumulate statistics... Results after 10 seconds:
 Source
               Response Dest Packet Statistics For
                                                     Only For Traffic
            10.12.0.2All Multicast Traffic_/ rtt0 msLost/Sent = Pct Rate
                                                     From 10.14.0.1
10.14.0.1
    v
                                                        To 226.0.0.1
10.14.0.1
10.12.0.1
                ttl 1
                                0
                                              0 pps 0
    v
                                                                      0 pps
                             RPF interface
10.12.0.2
                ++1 2
   v
10.12.0.2
               10.12.0.2
 Receiver
               Query Source
```

protocols multicast ip log

Enables IPv4 MRIB logs.

Syntax:

```
set protocols multicast ip log{ all| event| fib-msg| mrib-msg| mrt| mtrace| mtrace-detail| nsm-msg|
register-msg| stats| vif}
```

Syntax:

```
delete protocols multicast ip log { all | event | fib-msg | mrib-msg | mrt | mtrace | mtrace-detail | nsm-msg |
register-msg | stats | vif }
```

Syntax:

```
show protocols multicast ip log{ all| event| fib-msg| mrib-msg| mrt| mtrace| mtrace-detail| nsm-msg|
register-msg| stats| vif}
```

None

all

Enables MRIB debugging for all multicast protocol parameters.

event

	Enables MRIB debugging for all multicast events.
fib-msg	Enables MRIB debugging for only multicast FIB events.
mrib-msg	33 3 3
0	Enables MRIB debugging for only multicast RIB events.
mrt	
mtrace	Enables MRIB debugging for multicast routes.
	Enables MRIB debugging for multicast trace routes.
mtrace-d	
	Enables MRIB debugging for multicast traceroute messages.
nsm-msg	Enables MRIB debugging for multicast NSM messages.
register	
•	Enables MRIB debugging for multicast PIM register messages.
stats	
vif	Enables MRIB debugging for multicast statistics.
	Enables MRIB debugging for multicast virtual interfaces.

Configuration mode

<pre>protocols { multicast ip { log { all event fib-msg</pre>
mrib-msg
mrt
mtrace
mtrace-detail
nsm-msg
register-msg
stats
vif
}
}
}

Use the set form of this command to enable IPv4 multicast routing information base (MRIB) logs.

Use the delete form of this command to remove IPv4 MRIB logs.

Use the show form of this command to view IPv4 MRIB logs.

protocols multicast ipv6 log

Enables IPv6 MRIB logs.

Syntax:

```
set protocols multicast ipv6 log{ all| event| fib-msg| mrib-msg| mrt| mtrace| mtrace-detail| nsm-msg|
register-msg| stats| vif}
```

Syntax:

```
delete protocols multicast ipv6 log{ all| event| fib-msg| mrib-msg| mrt| mtrace| mtrace-detail| nsm-
msg| register-msg| stats| vif}
```

Syntax:

```
show protocols multicast ipv6 log { all | event | fib-msg | mrib-msg | mrt | mtrace | mtrace-detail | nsm-msg |
register-msg | stats | vif }
```


None	
all	Enables MRIB debugging for all multicast protocol parameters.
event	
fib-msg	
mrib-ms	Enables MRIB debugging for only multicast FIB events. g
mrt	Enables MRIB debugging for only multicast RIB events.
	Enables MRIB debugging for multicast routes.
mtrace	Enables MRIB debugging for multicast trace routes.
mtrace-	detail Enables MRIB debugging for multicast traceroute messages.
nsm-msg	
registe	r-msg
stats	Enables MRIB debugging for multicast PIM register messages.
vif	Enables MRIB debugging for multicast statistics.
VII	Enables MRIB debugging for multicast virtual interfaces.

Configuration mode

protocols {
<pre>multicast ipv6 {</pre>
log {
all
event
fib-msg
mrib-msg
mrt
mtrace
mtrace-detail
nsm-msg
register-msg
stats
vif
}
}
}

Use the set form of this command to enable IPv6 multicast routing information base (MRIB) logs.

Use the delete form of this command to remove IPv6 MRIB logs.

Use the show form of this command to view IPv6 MRIB logs.

protocols multicast ip log-warning <warning-limit>

Sets a warning threshold for IPv4 multicast routes.

Syntax:

set protocols multicast ip log-warning warning-limit

Syntax:

delete protocols multicast ip log-warning

Syntax:

show protocols multicast ip log-warning

If this value is not configured, the system issues a warning only when the maximum number of routes has been reached.

warning-limit

The number of IPv4 multicast routes that causes the system to generate a warning. The value configured for this argument must not exceed the value set for the maxmimum route limit that is configured by using the protocols multicast ip route-limit route-limit command. The range is 1 through 2147483647.

Configuration mode

```
protocols {
    multicast {
        ip {
            log-warning warning-limit
        }
    }
}
```

Use this command to configure the warning threshold for IPv4 routes in the multicast routing table. When this limit is exceeded, the system continues to generate a message until the maximum number of multicast routes is reached that is configured by using the protocols multicast ip route-limit route-limit command.

Use the set form of this command to configure the warning threshold for IPv4 multicast routes.

Use the delete form of this command to restore the default IPv4 warning threshold.

Use the show form of this command to show the IPv4 warning threshold configuration.

protocols multicast ip route-limit <route-limit>

Sets the maximum number of IPv4 routes that can be added to the multicast routing table.

Syntax:

set protocols multicast ip route-limit route-limit

Syntax:

delete protocols multicast ip route-limit

Syntax:

show protocols multicast ip route-limit

The maximum number of IPv4 multicast routes is 2,147,483,647.

route-limit

The maximum number of IPv4 routes that can be added to the multicast routing table. The value configured for this argument must be greater than or equal to the log warning limit that is configured by using the protocols multicast ip log-warning warning-limit command. The range is 1 through 2147483647.

Configuration mode

```
protocols {
    multicast {
        ip {
             route-limit route-limit
        }
    }
}
```

Use this command to limit the number of IPv4 routes that can be added to the multicast routing table.

Use the set form of this command to specify the IPv4 multicast route limit. Use the delete form of this command to restore the default IPv4 multicast route limit. Use the show form of this command to show the IPv4 multicast route limit configuration.

protocols multicast ip routing

Enables IPv4 multicast routing.

Syntax:

set protocols multicast ip routing

Syntax:

delete protocols multicast ip routing

Syntax:

show protocols multicast ip routing

IPv4 multicast routing is disabled.

Configuration mode

Use this command to enable the system to use multicast routing protocols for IPv4 traffic.

When this configuration node is deleted, multicast routing protocols such as the Internet Group Management Protocol (IGMP) and Protocol Independent Multicast (PIM) do not work for IPv4 traffic, even if configured.

Use the set form of this command to enable multicast routing.

Use the delete form of this command to remove the multicast routing configuration.

Use the show form of this command to display the multicast routing configuration.

protocols multicast ipv6 log-warning <warning-limit>

Sets the warning threshold for IPv6 multicast routes.

Syntax:

set protocols multicast ipv6 log-warning warning-limit

Syntax:

delete protocols multicast ipv6 log-warning

Syntax:

show protocols multicast ipv6 log-warning

If this value is not configured, the system issues a warning only when the maximum number of routes has been reached.

warning-limit

The number of IPv6 multicast routes that causes the system to generate a warning. The value configured for this argument must not exceed the value set for the maximum route limit that is

configured by using the protocols multicast ipv6 route-limit *route-limit* command. The range is 1 through 2147483647.

Configuration mode

```
protocols {
    multicast {
        ipv6 {
            log-warning warning-limit
        }
     }
}
```

Use this command to configure the warning threshold for IPv6 routes in the multicast routing table. When this limit is exceeded, the system continues to generate a message until the maximum number of multicast routes is reached that is configured by using the protocols multicast ipv6 route-limit route-limit command.

Use the set form of this command to configure the IPv6 warning threshold.

Use the delete form of this command to restore the default IPv6 warning threshold.

Use the show form of this command to show the IPv6 warning threshold configuration.

protocols multicast ipv6 route-limit <route-limit>

Sets the maximum number of IPv6 routes that can be added to the multicast routing table.

Syntax:

set protocols multicast ipv6 route-limit route-limit

Syntax:

delete protocols multicast ipv6 route-limit

Syntax:

show protocols multicast ipv6 route-limit

The maximum number of IPv6 multicast routes is 2,147,483,647.

route-limit

The maximum number of IPv6 routes that can be added to the multicast routing table. The value configured for this argument must be greater than or equal to the log warning limit that is configured by using the protocols multicast ip log-warning warning-limit command. The range is 1 through 2147483647.

Configuration mode

```
protocols {
    multicast {
        ip {
            route-limit route-limit
        }
    }
}
```

Use this command to limit the number of IPv6 routes that can be added to the multicast routing table.

Use the set form of this command to specify the IPv6 multicast route limit.

Use the delete form of this command to restore the default IPv6 multicast route limit.

Use the show form of this command to show the IPv6 multicast route limit configuration.

protocols multicast ipv6 routing

Enables IPv6 multicast routing.

Syntax:

set protocols multicast ipv6 routing

Syntax:

delete protocols multicast ipv6 routing

Syntax:

show protocols multicast ipv6 routing

IPv6 multicast routing is disabled.

Configuration mode

Use this command to enable the system to use multicast routing protocols for IPv6 traffic.

When this configuration is deleted, multicast routing protocols such as the Multicast Listener Discovery (MLD) and PIM do not work for IPv6 traffic, even if configured.

Use the set form of this command to enable IPv6 multicast routing.

Use the delete form of this command to remove IPv6 multicast routing configuration.

Use the show form of this command to display the IPv6 multicast routing configuration.

reset ip mroute

Removes IPv4 entries from the multicast routing information base of the specified group.

Syntax:

```
reset ip mroute[ group group [ source source ]]
```

When used with no option, this command deletes all routes from the multicast routing information base.

group

The IPv4 multicast group in IPv4 multicast address format. Routes are removed for the specified group.

source

Used in source-specific multicast. Removes routes for the specified IPv4 multicast source. The format is an IPv4 multicast address.

Operational mode

Use this command to remove IPv4 routes from the multicast routing and forwarding information bases.

Each multicast routing protocol has a distinct command for clearing multicast routes from the routing table for the protocol.

reset ipv6 mroute

Removes IPv6 entries from the multicast routing information base.

Syntax:

reset ipv6 mroute [group group [source source]]

When used with no option, this command deletes all routes from the multicast routing information base.

group group

Removes IPv6 routes for the specified multicast group. The format is an IPv6 multicast address.

source source

Used in source-specific multicast. Shows multicast routes for the specified IPv6 multicast source. The format is an IPv6 address.

Operational mode

Use this command to remove IPv6 routes from the multicast routing and forwarding information bases. Each multicast routing protocol has a distinct command for clearing multicast routes from the routing table for the protocol.

show ip mroute

Displays the IPv4 multicast routing table.

Syntax:

```
show ip mroute [ group group [ source source ]] [ dense | sparse | count | summary ]
```

When used with no option, this command displays information for the complete IPv4 multicast routing table.

group group

Shows IPv4 multicast routes for the specified multicast group. The format is an IPv4 multicast address. **source**

Used in source-specific multicast. Shows multicast routes for the specified IPv4 multicast source. The

dense

Shows dense-mode IPv4 multicast routes.

format is an IPv4 multicast address.

sparse

Shows sparse-mode IPv4 multicast routes.

count

summary

Shows IPv4 multicast-route and packet-count information.

Shows abbreviated IPv4 multicast route information.

Operational mode

Use this command to display the IPv4 multicast routing table.

The following example shows how to display an IPv4 multicast routing table.

```
vyatta@vyatta:~$show ip mroute
IP Multicast Routing Table
Flags: I - Immediate Stat, T - Timed Stat, F - Forwarder installed
Timers: Uptime/Stat Expiry
Interface State: Interface (TTL)
(10.10.1.52, 224.0.1.3), uptime 00:00:31, stat expires 00:02:59
Owner PIM-SM, Flags: TF
Incoming interface: wm0
Outgoing interface list:
wm1 (1)
vyatta@vyatta:~$
```

The following example shows how to display routes for multicast group 224.0.1.3 and source 10.10.1.52.


```
vyatta@vyatta:~$show ip mroute group 224.0.1.3 source 10.10.1.52
IP Multicast Routing Table
Flags: I - Immediate Stat, T - Timed Stat, F - Forwarder installed
Timers: Uptime/Stat Expiry
Interface State: Interface (TTL)
(10.10.1.52, 224.0.1.3), uptime 00:03:24, stat expires 00:01:28
Owner PIM-SM, Flags: TF
Incoming interface: wm0
Outgoing interface list:
wm1 (1)vyatta@vyatta:~$
```

The following example shows how to display packet counts for multicast routes.

vyatta@vyatta:~\$show ip mroute count

IP Multicast Statistics Total 1 routes using 132 bytes memory Route limit/Route threshold: 2147483647/2147483647 Total NOCACHE/WRONGVIF/WHOLEPKT recv from fwd: 1/0/0 Total NOCACHE/WRONGVIF/WHOLEPKT sent to clients: 1/0/0 Immediate/Timed stat updates sent to clients: 0/0 Reg ACK recv/Reg NACK recv/Reg pkt sent: 0/0/0 Next stats poll: 00:01:10 Forwarding Counts: Pkt count/Byte count, Other Counts: Wrong If pkts Fwd msg counts: WRONGVIF/WHOLEPKT recv Client msg counts: WRONGVIF/WHOLEPKT recv Client msg counts: Reg ACK recv/Reg NACK recv/Reg pkt sent (10.10.1.52, 224.0.1.3), Forwarding: 2/19456, Other: 0 Fwd msg: 0/0, Client msg: 0/0/0/0, Reg: 0/0/0 vyatta@vyatta:~\$

The following example shows how to display a summary of the multicast routing table.

```
vyatta@vyatta:~$show ip mroute summary
```

```
IP Multicast Routing Table
Flags: I - Immediate Stat, T - Timed Stat, F - Forwarder installed
Timers: Uptime/Stat Expiry
Interface State: Interface (TTL)
(10.10.1.52, 224.0.1.3), 00:01:32/00:03:20, PIM-SM, Flags: TF
vyatta@vyatta:~$
```

show ip multicast interface

Displays information about IPv4 multicast-enabled interfaces.

Syntax:

show ip multicast interface [interface]

When used with no option, this command shows information for all IPv4 multicast-enabled interfaces.

interface

Mandatory. The type keyword and identifier of an interface. For detailed keywords and arguments that can be specified as interfaces, refer to Supported Dataplane Interfaces (*page 32*).

Operational mode

Use this command to show operational information for IPv4 multicast-enabled interfaces.

The following example shows how to display all IPv4 multicast interface information.

```
vyatta@vyatta:~$ show ip multicast
```

Interface Vif Owner TTL Local Remote Uptime Idx Module Address Address wlm0 0 PIM-SM 1 192.168.1.53 0.0.0.0 00:04:26 Register 1 1 192.168.1.53 0.0.0.0 00:04:26 wlm1 2 PIM-SM 1 192.168.10.53 0.0.0.0 00:04:25 vyatta@vyatta:~\$

The following example shows how to display IPv4 multicast interface information for the wIm0 interface.

```
vyatta@vyatta:~$ show ip multicast interface wlm0
```

```
Interface Vif Owner TTL Local Remote Uptime
Idx Module Address Address
wlm0 0 PIM-SM 1 192.168.1.53 0.0.0.0 00:05:17
vyatta@vyatta:~$
```

show ip multicast mrinfo <host>

Displays information about IPv4 multicast neighbors.

Syntax:

```
show ip multicast mrinfo host [ source-addr | interface ]
```

host

The host that is being queried. The host is either a name (if DNS is being used on the network) or an IPv4 unicast address.

source-addr

Optional. The source address used in the mrinfo request. If omitted, the IPv4 address of the interface on which the request is sent is used.

interface

Optional. The source address used in the mrinfo request is the IPv4 address of the interface specified. If omitted, the IPv4 address of the interface on which the request is sent is used. For detailed keywords and arguments that can be specified as interfaces, refer to Supported Dataplane Interfaces (*page 32*).

Operational mode

Use this command to show information about IPv4 multicast neighbors.

```
The following example shows how to display information about the IPv4 multicast neighbor mbone.phony.dom.net.
```

```
vyatta@vyatta:~$ show ip multicast mrinfo mbone.phony.dom.net
127.148.176.10 (mbone.phony.dom.net) [version 3.3]:
127.148.176.10 -> 0.0.0.0 (?) [1/1/querier]
```



```
127.148.176.10 -> 127.0.8.4 (mbone2.phony.dom.net) [1/45/tunnel]
127.148.176.10 -> 105.1.41.9 (momoney.com) [1/32/tunnel/down]
127.148.176.10 -> 143.192.152.119 (mbone.dipu.edu) [1/32/tunnel]
vyatta@vyatta:~$
```

show ip rpf <source>

Displays Reverse Path Forwarding (RPF) information for a specific IPv4 multicast source address.

Syntax:

show ip rpf source

source

An IPv4 multicast source address.

Operational mode

Use this command to display the RPF information for a specific IPv4 multicast source address.

```
The following example shows how to display RPF information for the source address 172.18.92.1.
```

```
vyatta@vyatta:~$show ip rpf 172.18.92.1
RPF Information for 172.18.92.1
    RPF interface: dp0p1p1
    RPF neighbor: 172.18.93.100
    RPF prefix length: 24
    RPF distance: 1
    RPF mteric: 1
vyatta@vyatta:~$
```

show ipv6 mroute

Displays the IPv6 multicast routing table.

Syntax:

```
show ipv6 mroute [ group group [ source source ]] [ dense | sparse | count | summary ]
```

When used with no option, this command displays information for the complete IPv6 multicast routing table.

group group

Shows IPv6 multicast routes for the specified multicast group. The format is an IPv6 multicast address. source source

Used in source-specific multicast. Shows multicast routes for the specified IPv6 multicast source. The format is an IPv6 multicast address.

dense

Shows dense-mode IPv6 multicast routes.

sparse

Shows sparse-mode IPv6 multicast routes.

Shows IPv6 multicast-route and packet-count information.

summary

Shows abbreviated IPv6 multicast route information.

Operational mode

Use this command to display the IPv6 multicast routing table.

The following example shows how to display an IPv6 multicast routing table.


```
IPv6 Multicast Routing Table
Flags: I - Immediate Stat, T - Timed Stat, F - Forwarder installed
Timers: Uptime/Stat Expiry
Interface State: Interface
(3ffe:10:10:11::96, ffle::10), uptime 00:00:09, stat expires 00:03:21
Owner PIM-SMv6, Flags: TF
Incoming interface list:
wm1
(3ffe:10:10:11::96, ffle::12), uptime 00:00:02, stat expires 00:03:28
Owner PIM-SMv6, Flags: TF
Incoming interface: wm0
Outgoing interface list:
wm1
ncoming interface list:
wm1
vyatta@vyatta:~$
```

show ipv6 multicast interface

Displays information about IPv6 multicast-enabled interfaces.

Syntax:

show ipv6 multicast interface [interface]

When used with no option, this command shows information for all IPv6 multicast-enabled interfaces.

interface

The type keyword and identifier of an interface. For detailed keywords and arguments that can be specified as interfaces, refer to Supported Dataplane Interfaces (*page 32*).

Operational mode

Use this command to show operational information for IPv6 multicast-enabled interfaces.

The following example shows how to display all IPv6 multicast interface information.

```
vyatta@vyatta:~$show ipv6 multicast
```

Interface Mif Owner Uptime Idx Module wlm0 0 PIM-SMv6 00:17:18 Register 1 00:17:18 wlm1 2 PIM-SMv6 00:17:18 vyatta@vyatta:~\$

The following example shows how to display all IPv6 multicast interface information for the wlm0 interface.

vyatta@vyatta:~\$show ipv6 multicast wlm0

Interface Mif Owner Uptime
Idx Module
wlm0 0 PIM-SMv6 00:19:06
vyatta@vyatta:~\$

show ipv6 rpf <source>

Displays Reverse Path Forwarding (RPF) information for a specific IPv6 multicast source address.

Syntax:

show ipv6 rpf source

source

An IPv6 multicast source address.

Operational mode

Use this command to display RPF information for a specific IPv6 multicast source address.

```
The following example shows how to display RPF information for the IPv6 source address 2036::6

vyatta@vyatta:~$show ipv6 rpf 2036::6

RPF Information for 2036::6

RPF interface: dp0p1p3

RPF neighbor: fe80::250:56ff:fe9b:5aaf

RPF prefix length: 64

RPF distance: 2

RPF mteric: 110

vyatta@vyatta:~$
```

show monitoring protocols multicast

Shows information about multicast debugging configuration.

Syntax:

```
show monitoring protocols multicast { ip | ipv6 }
```

ip

Shows what IPv4 multicast debugging options are enabled.

ipv6

Shows what IPv6 multicast debugging options are enabled.

Operational mode

Use this command to see what debugging options are currently enabled for IPv4 or IPv6 multicast routing.

The following example shows how to display the current configuration for IPv4 multicast debugging.

vyatta@vyatta:~\$show monitoring protocols multicast ip

```
Debugging status:

MRIBv4 event debugging is on

MRIBv4 VIF debugging is on

MRIBv4 route debugging is on

MRIBv4 route statistics debugging is on

MRIBv4 FIB message debugging is on

MRIBv4 PIM Register message debugging is on

MRIBv4 MSM IPC message debugging is on

MRIBv4 traceroute debugging is on

MRIBv4 traceroute debugging is on

MRIBv4 traceroute detailed debugging is on

vyatta@vyatta:~$
```


Supported Data Plane Interfaces

The following table shows the syntax and parameters of the supported types of data plane interfaces. hack: broke the first row into several rows to make page break because table width doesn't work yet.

Interface Type	Syntax	Parameters
Data plane	dataplane interface-name	 <i>interface-name</i>: The name of a data plane interface. Following are the supported formats of the interface name: dpxpypz—The name of a data plane interface, where dpx specifies the data plane identifier (ID). Currently, only dp0 is supported. py specifies a physical or virtual PCI slot index (for example, p129). pz specifies a port index (for example, p1). For example, dp0p1p2, dp0p160p1, and dp0p192p1.
		 dpxemy —The name of a data plane interface on a LAN- on-motherboard (LOM) device that does not have a PCI slot, where emy specifies an embedded network interface number (typically, a small number). For example, dp0em3.
		 dpxsy—The name of a data plane interface in a system in which the BIOS identifies the network interface card to reside in a particular physical or virtual slot y, where y is typically a small number. For example, for the dp0s2 interface, the BIOS identifies slot 2 in the system to contain this interface.

Interface Type	Syntax	Parameters
		 dpxPnpypz — The name of a data plane interface on a device that is installed on a secondary PCI bus, where Pn specifies the bus number. You can use this format to name data plane interfaces on large physical devices with multiple PCI buses. For these devices, it is possible to have network interface cards installed on different buses with these cards having the same slot ID. The value of n must be an integer greater than 0. For example, dp0P1p162p1 and dp0P2p162p1.
		 dp@vrrpN — The name of a VRRP data plane interface, where N is the nth VRRP group that is created. This name is generated by the router when rfc-compatibility mode is used. The first created interface is dp0vrrp1, the second is dp0vrrp2, and so on.
Data plane vif	dataplane interface-name vif vif- id [vlan vlan-id]	<i>interface-name</i> : Refer to the preceding description. <i>vif-id</i> : A virtual interface ID. The ID ranges from 1 through 4094. <i>vlan-id</i> : The VLAN ID of a virtual interface. The ID ranges from 1 through 4094.

VRF Support

VRF support for multicast

You can configure multicast within a routing instance by using the CLI, NetConf, or SNMP. When you configure multicast on the vRouter without specifying a routing instance, the configuration applies to the default routing instance. To configure multicast for a particular routing instance, specify the instance.

All protocol-specific multicast commands can be applied to specific routing instances. For example, the following commands apply the indicated protocols to the RED routing instance.

```
vyatta@R1# set routing routing-instance RED protocols multicast ...
vyatta@R1# set routing routing-instance RED protocols pim ...
vyatta@R1# set routing routing-instance RED protocols pim6 ...
vyatta@R1# set routing routing-instance RED protocols igmp ...
vyatta@R1# set routing routing-instance RED protocols mld ...
vyatta@R1# set routing routing-instance RED protocols mld ...
```

Any multicast configuration that is applied to an interface can be referred to under a routing instance to bind it to that instance, as in the following examples. In these examples, the dp0p161p1 interface is bound to the RED routing instance.

```
vyatta@R1# set routing routing-instance RED interfaces dp0p161p1 ip pim
vyatta@R1# set routing routing-instance RED interfaces dp0p161p1 ip igmp
vyatta@R1# set routing routing-instance RED interfaces dp0p161p1 ip multicast
vyatta@R1# set routing routing-instance RED interfaces dp0p161p1 ipv6 pim
vyatta@R1# set routing routing-instance RED interfaces dp0p161p1 ipv6 mld
```

You can apply routing instances to **show** commands for supported protocols. The following example shows details about IPv6 MLD groups for the RED routing instance. If no routing instance is specified, the command applies to the default routing instance.

vyatta@vyatta:~\$ show ipv6 mld groups routing-instance RED detail

You can apply routing instances to **reset** commands. The following example shows how to clear IP BGP addresses for routing instance RED. If no routing instance is specified, the command applies to the default routing instance.

vyatta@vyatta:~\$ reset ip bgp routing-instance RED detail

Logging by multicast protocols is configured on a per routing instance basis. If no routing instance is specified, the command applies to the default routing instance. The following example shows how to enable all PIM logs in the RED routing instance.

vyatta@vyatta:~\$ monitor protocol multicast routing-instance RED pim enable

Command support for VRF routing instances

VRF allows an AT&T Vyatta vRouter to support multiple routing tables, one for each VRF routing instance. Some commands in this guide support VRF and can be applied to particular routing instances.

Use the guidelines in this section to determine correct syntax when adding VRF routing instances to commands. For more information about VRF, refer to AT&T Vyatta Network Operating System Basic Routing Configuration Guide. This guide includes an overview of VRF, VRF configuration examples, information about VRF-specific features, and a list of commands that support VRF routing instances.

}

Adding a VRF routing instance to a Configuration mode command

For most Configuration mode commands, specify the VRF routing instance at the beginning of a command. Add the appropriate VRF keywords and variable to follow the initial action (**set**, **show**, or **delete**) and before the other keywords and variables in the command.

Example: Configuration mode example: syslog

The following command configures the syslog logging level for the specified syslog host. The command does not include a VRF routing instance, so the command applies to the default routing instance.

The following example shows the same command with the VRF routing instance (GREEN) added. Notice that **routing routing-instance GREEN** has been inserted between the basic action (**set** in the example) and the rest of the command. Most Configuration mode commands follow this convention.

```
vyatta@R1# set routing routing-instance GREEN system syslog host 10.10.10.1 facility all
level debug
vyatta@R1# show routing
routing {
     routing-instance GREEN {
             system {
                     syslog {
                            host 11.12.13.2:514 {
                                     facility all {
                                              level debug
                                      }
                              }
                     }
             }
     }
}
```

Example: Configuration mode example: SNMP

Some features, such as SNMP, are not available on a per-routing instance basis but can be bound to a specific routing instance. For these features, the command syntax is an exception to the convention of specifying the routing instance at the beginning of Configuration mode commands.

The following example shows how to configure the SNMPv1 or SNMPv2c community and context for the RED and BLUE routing instances. The first two commands specify the RED routing instance as the context for community A and BLUE routing instance as the context for community B. The subsequent commands complete the configuration.

For more information about configuring SNMP, refer to AT&T Vyatta Network Operating System Remote Management Configuration Guide.

```
vyatta@R1# set service snmp community commA context RED
vyatta@R1# set service snmp community commB context BLUE
vyatta@R1# set service snmp view all oid 1
vyatta@R1# set service snmp community commA view all
```

```
vyatta@R1# set service snmp community commB view all
vyatta@R1# show service snmp community
community commA {
        context RED
        view all
}
community commB {
        context BLUE
        view all
}
[edit]
vyatta@vyatta#
```

Adding a VRF routing instance to an Operational mode command

The syntax for adding a VRF routing instance to an Operational mode command varies according to the type of command parameters:

- If the command does not have optional parameters, specify the routing instance at the end of the command.
- If the command has optional parameters, specify the routing instance after the required parameters and before the optional parameters.

Example: Operational mode examples without optional parameters

The following command displays dynamic DNS information for the default routing instance.

vyatta@vyatta:~\$ show dns dynamic status

The following command displays the same information for the specified routing instance (GREEN). The command does not have any optional parameters, so the routing instance is specified at the end of the command.

vyatta@vyatta:~\$ show dns dynamic status routing-instance GREEN

Example: Operational mode example with optional parameters

The following command obtains multicast path information for the specified host (10.33.2.5). A routing instance is not specified, so the command applies to the default routing instance.

vyatta@vyatta:~\$ mtrace 10.33.2.5 detail

The following command obtains multicast path information for the specified host (10.33.2.5) and routing instance (GREEN). Notice that the routing instance is specified before the optional **detail** keyword.

vyatta@vyatta:~\$ mtrace 10.33.2.5 routing-instance GREEN detail

Example: Operational mode example output: SNMP

The following SNMP **show** commands display output for routing instances.

vyatta@vyatta:~\$ show snmp routing-instance Routing Instance SNMP Agent is Listening on for Incoming Requests: Routing-Instance RDID

RED							
	,						
vyatta@vyatta:~\$ show snmp co SNMPv1/v2c Community/Context Community ()							
	RED' BLUE'						
	bLUE default						
ueva	uerauit						
vyatta@vyatta:~\$ show snmp tu	ap-targ	et					
SNMPv1/v2c Trap-targets:	- F						
Trap-target	Port	0			-	/	
1.1.1.1		'RED'				-	
1.1.1.1		RED		Le	SL		
<pre>vyatta@vyatta:~\$ show snmp v3 SNMPv3 Trap-targets:</pre>	s trap-t	arget					
Trap-target	Port	Protocol	Auth	Priv	Туре	EngineID	Routing-
Instance User							
2.2.2.2	11621	'udp'	'mdE		'infon		'BLUE'
'test'	102	uup	iius		THEOL		BLUE
lest							

List of Acronyms

Acronym	Description	
ACL	access control list	
ADSL	Asymmetric Digital Subscriber Line	
АН	Authentication Header	
AMI	Amazon Machine Image	
API	Application Programming Interface	
AS	autonomous system	
ARP	Address Resolution Protocol	
AWS	Amazon Web Services	
BGP	Border Gateway Protocol	
BIOS	Basic Input Output System	
BPDU	Bridge Protocol Data Unit	
CA	certificate authority	
ССМР	AES in counter mode with CBC-MAC	
СНАР	Challenge Handshake Authentication Protocol	
CLI	command-line interface	
DDNS	dynamic DNS	
DHCP	Dynamic Host Configuration Protocol	
DHCPv6	Dynamic Host Configuration Protocol version 6	
DLCI	data-link connection identifier	
DMI	desktop management interface	
DMVPN	dynamic multipoint VPN	
DMZ	demilitarized zone	
DN	distinguished name	
DNS	Domain Name System	
DSCP	Differentiated Services Code Point	
DSL	Digital Subscriber Line	
eBGP	external BGP	
EBS	Amazon Elastic Block Storage	
EC2	Amazon Elastic Compute Cloud	
EGP	Exterior Gateway Protocol	
ECMP	equal-cost multipath	
ESP	Encapsulating Security Payload	
FIB	Forwarding Information Base	
FTP	File Transfer Protocol	
GRE	Generic Routing Encapsulation	
HDLC	High-Level Data Link Control	
I/O	Input/Output	
ICMP	Internet Control Message Protocol	
IDS	Intrusion Detection System	
IEEE	Institute of Electrical and Electronics Engineers	

Acronym	Description	
IGMP	Internet Group Management Protocol	
IGP	Interior Gateway Protocol	
IPS	Intrusion Protection System	
IKE	Internet Key Exchange	
IP	Internet Protocol	
IPOA	IP over ATM	
IPsec	IP Security	
IPv4	IP Version 4	
IPv6	IP Version 6	
ISAKMP	Internet Security Association and Key Management	
	Protocol	
ISM	Internet Standard Multicast	
ISP	Internet Service Provider	
KVM	Kernel-Based Virtual Machine	
L2TP	Layer 2 Tunneling Protocol	
LACP	Link Aggregation Control Protocol	
LAN	local area network	
LDAP	Lightweight Directory Access Protocol	
LLDP	Link Layer Discovery Protocol	
MAC	medium access control	
mGRE	multipoint GRE	
MIB	Management Information Base	
MLD	Multicast Listener Discovery	
MLPPP	multilink PPP	
MRRU	maximum received reconstructed unit	
MTU	maximum transmission unit	
NAT	Network Address Translation	
NBMA	Non-Broadcast Multi-Access	
ND	Neighbor Discovery	
NHRP	Next Hop Resolution Protocol	
NIC	network interface card	
NTP	Network Time Protocol	
OSPF	Open Shortest Path First	
OSPFv2	OSPF Version 2	
OSPFv3	OSPF Version 3	
PAM	Pluggable Authentication Module	
PAP	Password Authentication Protocol	
PAT	Port Address Translation	
PCI	peripheral component interconnect	
PIM	Protocol Independent Multicast	
PIM-DM	PIM Dense Mode	
PIM-SM	PIM Sparse Mode	
PKI	Public Key Infrastructure	
PPP	Point-to-Point Protocol	
РРРоА	PPP over ATM	

Acronym	Description	
PPPoE	PPP over Ethernet	
PPTP	Point-to-Point Tunneling Protocol	
PTMU	Path Maximum Transfer Unit	
PVC	permanent virtual circuit	
QoS	quality of service	
RADIUS	Remote Authentication Dial-In User Service	
RHEL	Red Hat Enterprise Linux	
RIB	Routing Information Base	
RIP	Routing Information Protocol	
RIPng	RIP next generation	
RP	Rendezvous Point	
RPF	Reverse Path Forwarding	
RSA	Rivest, Shamir, and Adleman	
Rx	receive	
S3	Amazon Simple Storage Service	
SLAAC	Stateless Address Auto-Configuration	
SNMP	Simple Network Management Protocol	
SMTP	Simple Mail Transfer Protocol	
SONET	Synchronous Optical Network	
SPT	Shortest Path Tree	
SSH	Secure Shell	
SSID	Service Set Identifier	
SSM	Source-Specific Multicast	
STP	Spanning Tree Protocol	
TACACS+	Terminal Access Controller Access Control System	
	Plus	
TBF	Token Bucket Filter	
ТСР	Transmission Control Protocol	
ТКІР	Temporal Key Integrity Protocol	
ToS	Type of Service	
TSS	TCP Maximum Segment Size	
Tx	transmit	
UDP	User Datagram Protocol	
VHD	virtual hard disk	
vif	virtual interface	
VLAN	virtual LAN	
VPC	Amazon virtual private cloud	
VPN	virtual private network	
VRRP	Virtual Router Redundancy Protocol	
WAN	wide area network	
WAP	wireless access point	
WPA	Wired Protected Access	