

IBM ImagePlus
VisualInfo for AS/400 IBM

Application Programming
Guide and Reference
Version 4 Release 1

 SC34-4586-00

IBM ImagePlus
VisualInfo for AS/400 IBM

Application Programming
Guide and Reference
Version 4 Release 1

 SC34-4586-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page iii.

First Edition (September 1997)

This edition applies to Version 4 Release 1 of the IBM ImagePlus VisualInfo for AS/400 licensed program, Program
Number 5733-A18, and to all subsequent releases and modifications until otherwise indicated in new editions. Make
sure you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your area. Publications are not stocked
at the address given below.

A form for readers’ comments appears at the back of this publication. If the form has been removed, address your
comments to:

Information Development
IBM Corporation
Department CGMD, Building 062
PO Box 12195
Research Triangle Park, NC 27709-2195 USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM
Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose of
enabling (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact SWS General Legal Counsel, IBM Corporation,
Department TL3 Building 062, PO Box 12195, Research Triangle Park, NC
27709-2195. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

IBM may change this publication, the product described herein, or both. These
changes will be incorporated in new editions of the publication.

Programming Interface Information
This book provides general-use application programming interfaces (APIs) for IBM
ImagePlus VisualInfo for AS/400 (VisualInfo for AS/400). It documents general-use
programming interface and associated guidance information provided for VisualInfo for
AS/400.

General-use programming interfaces let customers write programs that obtain the
services of VisualInfo for AS/400.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other
countries:

� Application System/400, AS/400
� Bar Code Object Content Architecture, BCOCA

 � BookManager
 � CICS
 � DisplayWrite
 � FlowMark

 Copyright IBM Corp. 1997 iii

 � IBM
 � ImagePlus
 � MO:DCA
� Operating System/2, OS/2
� Operating System/400, OS/400

 � Presentation Manager
 � RPG/400
 � VisualAge
 � VisualInfo
 � Writing Assistant

The following are trademarks of other companies:

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or
registered trademarks of Microsoft Corporation.

Adobe, Acrobat, Acrobat Reader, PostScript Adobe Systems Inc.
DeScribe DeScribe, Inc.
Freelance, Lotus, 1-2-3, 1-2-3/G Lotus Development Corporation
IMAGELINK and Kodak Eastman Kodak Company
WordPerfect WordPerfect Corporation

iv VisualInfo for AS/400 4.1: Application Programming Guide and Reference

About This Book

This book describes how to create or integrate image, workflow, or other applications
into an VisualInfo for AS/400 system by using the VisualInfo Client Interfaces for
Windows. These application programming interfaces (APIs) support client application
development for VisualInfo for AS/400 in the Microsoft Windows environment. The
information in this book applies to application development in a 32-bit Windows
programming environment.

This book explains the following:

� How to use the various components of VisualInfo for AS/400

� Tips for identifying application requirements as you create a VisualInfo for AS/400
application

� Ways to use the APIs to write image, workflow, or other applications that use
VisualInfo for AS/400 APIs

� The terminology used with VisualInfo for AS/400

Who Should Use This Book
If you are an application programmer responsible for developing image, workflow, or
other applications, this book provides detailed information about each function available
to you through the APIs.

If you are a systems designer or integrator who is designing a VisualInfo for AS/400
system or application, you need to understand how VisualInfo for AS/400 works and
how to create new applications for or integrate existing applications with VisualInfo for
AS/400. This book describes how each component and its corresponding functions can
meet your technical, design, and business requirements for imaging, workflow, or other
applications.

If you are a system administrator responsible for administering and supporting
VisualInfo for AS/400 implementations, you can use this books as a reference.

To successfully program with VisualInfo for AS/400, you need the following:

� Experience with the VisualBasic programming language

� Experience developing applications for Windows NT or 95 using the C
programming language

� An understanding of what your application does and how to apply imaging
technology and the VisualInfo for AS/400 library system to it

� Knowledge of online debugging techniques

 Copyright IBM Corp. 1997 v

How This Book Is Organized
This book contains the following information.

� Chapter 1, “Introducing VisualInfo for AS/400” on page 2, introduces the software
and hardware components of VisualInfo for AS/400, and the APIs available with
VisualInfo for AS/400.

� Chapter 2, “Using the OLE Automation Interface” on page 6, shows you how to
enable another Windows-based application to log on to VisualInfo for AS/400 and
perform various tasks within the Client for Windows using APIs that are based on
OLE 2.0 Automation.

� Chapter 3, “VisualInfo for AS/400 Concepts” on page 12, introduces you to
VisualInfo for AS/400 concepts and capabilities.

� Chapter 4, “Sample High-Level Programming Interface for Visual Basic” on
page 17, shows you how to enable another Windows-based application to log on
to VisualInfo for AS/400 and perform various tasks within the Client for Windows
using APIs that are based on OLE 2.0 Automation.

� Chapter 5, “VisualInfo for AS/400 Application Programming Interfaces” on
page 24, describes the VisualInfo for AS/400 common application programming
interfaces.

� Chapter 6, “Common Data Structures” on page 151, describes the common data
structures and database tables you can use to manipulate and manage objects and
classes of objects.

� Chapter 7, “Properties and Methods of OLE Objects for Windows” on page 183,
describes the properties and methods associated with all client application objects.

� Appendix A, “VisualInfo for AS/400 Terminology” on page 204, defines terms that
have specific meanings in VisualInfo for AS/400, arranged by component.

� Appendix B, “Guidelines for Search Expressions” on page 207, gives you some
guidelines to follow when you are searching the Client for Windows.

� Appendix C, “Using FlowMark with VisualInfo for AS/400” on page 211, provides
information about integrating IBM FlowMark with VisualInfo for AS/400.

� Appendix D, “Data Structures and Definitions” on page 214, describes abstract
data types, structures, and definitions that the VisualInfo for AS/400 client
high-level programming interface uses.

� Appendix E, “Return Codes” on page 217, provides information about errors that
the VisualInfo for AS/400 client high-level programming interface returns.

� Appendix F, “Predefined Content Classes” on page 220 lists the predefined
content classes for VisualInfo for AS/400.

How to Use This Book
Use Chapter 1, “Introducing VisualInfo for AS/400” on page 2 and Appendix A,
“VisualInfo for AS/400 Terminology” on page 204 to familiarize yourself with VisualInfo

vi VisualInfo for AS/400 4.1: Application Programming Guide and Reference

for AS/400. Refer to Chapter 3, “VisualInfo for AS/400 Concepts” on page 12 for
conceptual information about how to use the VisualInfo for AS/400 components.

 Style Conventions
To help you understand the text, this book uses the following conventions:

Convention Stands for

Upper- and lowercase Column names in library server database Tables (example:
Owner UserID)

UPPERCASE Column names in object server database tables Constants
Data structure names Data types Database table names
Return codes from function calls

Italic Field names in data structures Names of books as references
Parameter names in API functions Terms defined for the first
time in the book

ITALIC UPPERCASE The maximum length of a field
Bold Mixed Case API function names (example: SimLibLogon)
BOLD UPPERCASE Field values Parameter values

Where to Find More Information
The following IBM documents contain information that you might find helpful when using
VisualInfo for AS/400.

For a list of other related publications, see “Bibliography” on page 223. Request copies
of IBM publications from your IBM representative or from the IBM branch office serving
your area.

IBM ImagePlus VisualInfo for AS/400
When you order VisualInfo for AS/400, you receive the following printed publications as
part of the VisualInfo for AS/400 license.

� IBM ImagePlus VisualInfo: Client for Windows User’s Guide, SC31-9052
� IBM ImagePlus VisualInfo for AS/400: Licensing Information, GC34-4589
� IBM ImagePlus VisualInfo for AS/400: Planning and Installation Guide, GC34-4585
� IBM ImagePlus VisualInfo for AS/400: System Administration Guide, GC34-4583

The remaining books are shipped in softcopy format only.

� IBM ImagePlus VisualInfo: Messages and Codes, SC31-9065
� IBM ImagePlus VisualInfo for AS/400: Application Programming Guide and

Reference, SC34-4586

IBM ImagePlus Workfolder Application Facility for AS/400
When you order the Workfolder Application Facility feature of VisualInfo for AS/400, you
also receive the following printed publications.

� IBM ImagePlus Workfolder Application Facility for AS/400: Planning and Installation
Guide, GC34-4624

 About This Book vii

� IBM ImagePlus Workfolder Application Facility for AS/400: System Administration
Guide, GC34-4625

The remaining books are shipped in softcopy format only.

� IBM ImagePlus Workfolder Application Facility for AS/400: Designing a Work
Process, SC34-4588

� IBM ImagePlus Workfolder Application Facility for AS/400: API, SC34-4590
� IBM ImagePlus Workfolder Application Facility for AS/400: User’s Guide,

SC34-4584
� IBM ImagePlus Workfolder Application Facility for AS/400: User’s Guide for the

Work Management Builder, SC34-4587

About the Softcopy Document Library
In addition to the printed books you receive as part of the VisualInfo for AS/400
product, the entire document library is available in softcopy. Shipped on a separate
document tape or CD-ROM, the library includes books for the Workfolder Application
Facility feature. You can also purchase printed copies of any book in the library.

The library is available in the following formats:

� Portable document format (PDF)
� Hypertext markup language (HTML)

Before you can view or print PDF and HTML documents, follow the installation
instructions in either the IBM ImagePlus VisualInfo for AS/400: Planning and Installation
Guide or IBM ImagePlus Workfolder Application Facility for AS/400: Planning and
Installation Guide.

 PDF Files
Using PDF files, you can easily view documents online, as well as select one or more
pages that you want to print.

To view PDF documents, you must have a Web browser and the Adobe Acrobat
Reader. If you do not already have this tool, you can obtain it free by following the
instructions for download from the Adobe home page:

 http://www.adobe.com/prodindex/acrobat/readstep.html

A variety of national language readers are also available.

Using the Adobe Acrobat Reader, you can do the following:

� View documents that resemble printed pages.
� Easily navigate through PDF books as you would a hardcopy document.
� Use the text search capability by selecting Find from the Tools pull-down menu.
� Easily print a single page, a range of pages, or an entire document.
� Customize page size, graphics, fonts, and font sizes.

To view or print books from PDF files using the Adobe Acrobat Reader, follow these
steps.

viii VisualInfo for AS/400 4.1: Application Programming Guide and Reference

1. Start the Adobe Acrobat Reader.
2. Select Open from the File pull-down menu.
3. Select the location where you installed the document library.
4. Select the book you want to view.

 HTML Files
Using HTML files, you can use a Web browser of your choice to view and print HTML
books. These resemble printed books yet provide convenient HTML links to help you
navigate through the information.

To view or print books from HTML files, follow these steps.

1. Start your Web browser.
2. Select the Open or Open file choice (usually from the File pull-down menu).
3. Select the location where you installed the document library.
4. Select the book you want to view.

 BookManager Files
BookManager files for the VisualInfo for AS/400 document library will be available in the
first half of 1998 on CD-ROM as part of the AS/400 softcopy collection kit. To view or
print books using BookManager, refer to the books that accompany your softcopy
collection kit.

 About This Book ix

x VisualInfo for AS/400 4.1: Application Programming Guide and Reference

 Contents

Notices . iii
Programming Interface Information . iii
Trademarks . iii

About This Book . v
Who Should Use This Book . v
How This Book Is Organized . vi
How to Use This Book . vi
Style Conventions . vii
Where to Find More Information . vii

IBM ImagePlus VisualInfo for AS/400 . vii
IBM ImagePlus Workfolder Application Facility for AS/400 vii
About the Softcopy Document Library . viii

Programming Guide . 1

Chapter 1. Introducing VisualInfo for AS/400 2
A Closer Look at VisualInfo for AS/400 . 3

Chapter 2. Using the OLE Automation Interface 6
Programming with OLE Automation . 6
Client for Windows Objects . 6
Programming Tips . 8
Sample Visual Basic Program . 10

Chapter 3. VisualInfo for AS/400 Concepts 12
Understanding the Logical Data Model . 12
Understanding Work Management . 12
Getting Information about Documents and Folders 13
Supporting Case-Sensitivity . 14
Naming Folders . 15
Changing an Item’s Index Class . 15
Restricting Access to Items . 15
Migrating Objects . 16

Chapter 4. Sample High-Level Programming Interface for Visual Basic . . . 17
General Use . 17
Visual Basic Parameters and Variables . 18
Access to the Client for Windows . 18
Using Logon/Logoff with the Client for Windows 19

Programming Reference . 21

Chapter 5. VisualInfo for AS/400 Application Programming Interfaces . . . 24

 Copyright IBM Corp. 1997 xi

Compiling and Linking VisualInfo for AS/400 Applications 24
SimLibAddFolderItem (Add an Item to a Folder) 26
SimLibCatalogObject (Catalog an Object) . 29
SimLibChangeIndexClass (Change the Index Class for an Item) 34
SimLibChangeObjectSMS (Change the SMS Criteria for an Object) 36
SimLibCloseAttr (Close an Attribute Set) . 38
SimLibCloseObject (Close an Object) . 40
SimLibCreateItem (Create an Item) . 42
SimLibCreateObject (Create an Object) . 46
SimLibDeleteItem (Delete an Item) . 51
SimLibDeleteObject (Delete an Object) . 54
SimLibFree (Free Memory) . 56
SimLibGetAttrInfo (Get Attribute Information) 57
SimLibGetClassIndexes (Get Class Indexes) 59
SimLibGetClassInfo (Get Index Class Information) 61
SimLibGetItemAffiliatedTOC (Get a Table of Contents for Item Affiliates) 62
SimLibGetItemInfo (Get Item Information) . 65
SimLibGetItemSnapshot (Get a Snapshot of Item Attributes) 66
SimLibGetItemType (Get the Type of an Item) 69
SimLibGetItemXREF (Get a Cross-Reference for an Item) 70
SimLibGetSessionType (Get the Session Type) 72
SimLibGetTOC (Get a Table of Contents) . 73
SimLibGetTOCData (Get a Snapshot of Attributes for a Group of Items) 77
SimLibListClasses (List Index Classes) . 80
SimLibLogoff (Log Off) . 82
SimLibLogon (Log On) . 84
SimLibOpenItemAttr (Open Item Attributes) . 88
SimLibOpenObject (Open an Object) . 91
SimLibQueryObject (Query an Object) . 94
SimLibReadAttr (Read an Attribute) . 96
SimLibReadObject (Read an Object) . 97
SimLibRemoveFolderItem (Remove an Item from a Folder) 99
SimLibResizeObject (Resize an Object) . 101
SimLibSaveAttr (Save an Attribute) . 103
SimLibSearch (Search) . 105
SimLibSeekObject (Seek an Object) . 108
SimLibStoreNewObject (Store a New Object in an Existing Item) 110
SimLibWriteAttr (Write an Attribute) . 113
SimLibWriteObject (Write an Object) . 115
SimWmCreateWorkPackage (Create a Work Package) 118
SimWmEndProcess (End a Work Package on a Process) 120
SimWmGetWorkBasketInfo (Get Information about a Workbasket) 121
SimWmGetWorkPackage (Get the Next Work Package from a Workbasket) . . . 122
SimWmGetWorkPackagePriority (Get the Priority of a Work Package) 125
SimWmListWorkbaskets (List the Workbaskets) 126
SimWmQueryWorkPackage (Query a Work Package) 127
SimWmReturnWorkPackage (Return a Work Package to a Workbasket) 129
SimWmRouteWorkPackage (Route a Work Package) 130

xii VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimWmSetWorkPackagePriority (Set the Priority of a Work Package) 132
Ip2CloseTOC (Close a Table of Contents) . 133
Ip2GetTOCUpdates (Get the Updates to a Table of Contents) 135
Ip2ListAttrs (List the User-Defined Attributes) 136
Ip2ListContentClasses (List the Content Classes) 138
Ip2ListServers (List the Accessible Servers) . 139
Ip2QueryClassPriv (Query the Privilege String for an Index Class or View) 141
Ip2QueryPrivBuffer (Query a Privilege Buffer) 143
Ip2TOCCount (Count the Items in a Table of Contents) 147
Ip2TOCStatus (Get the Status of a Table of Contents) 149

Chapter 6. Common Data Structures . 151
AFFTOCENTRYSTRUCT (Affiliated Table of Contents Entry Structure) 151
ANNOTATIONSTRUCT (Annotation Information Structure) 152
ATTRINFOSTRUCT (Attribute Information Structure) 153
ATTRLISTSTRUCT (Attribute List Data Structure) 155
CLASSATTRSTRUCT (Class Attribute Structure) 157
CLASSINDEXATTRSTRUCT (Class Index Attribute Structure) 158
CLASSINDEXSTRUCT (Class Index Structure) 159
CLASSINFOSTRUCT (Index Class Information Structure) 159
CONTENTCLASSINFO (Content Class Information Structure) 161
HOBJ (Handle to Query Stored Object) . 162
ICVIEWSTRUCT (Index Class View Information Structure) 162
ITEMINFOSTRUCT (Item Information Structure) 163
LIBSEARCHCRITERIASTRUCT (Search Criteria Information Structure) 165
NAMESTRUCT (Name Data Structure) . 167
OBJINFOSTRUCT (Object Information Structure) 167
RCSTRUCT (Return Code Information Structure) 169
SERVERINFOSTRUCT (Server Information Structure) 171
SMS (System-Managed Storage Pointer) . 172
SNAPSHOTSTRUCT (Snapshot Information Structure) 173
TOCENTRYSTRUCT (Table of Contents Entry Data Structure) 176
USERLOGONINFOSTRUCT (User Logon Information Structure) 177
USERACCESSSTRUCT (User Access Data Structure) 178
WMSNAPSHOTSTRUCT (Work Management Information Structure) 179
WMVARSTRUCT (Work Package Variable Data Structure) 180
WORKBASKETINFOSTRUCT (Workbasket Information Data Structure) 181

Chapter 7. Properties and Methods of OLE Objects for Windows 183
Application Object . 183
Document Object . 187
Documents Object . 191
Error Object . 193
Image Object . 193
Item Object . 195
Items Collection . 201

Appendixes . 203

 Contents xiii

Appendix A. VisualInfo for AS/400 Terminology 204
General Terms . 204

Appendix B. Guidelines for Search Expressions 207
Logical Operators for Searches . 207
Relational Operators for Searches . 208

Appendix C. Using FlowMark with VisualInfo for AS/400 211
VisualInfo for AS/400 Client High-Level Programming Interface for Visual Basic . 211
Using VHLPI Functions Through the FlowMark Command Line 212
Summary . 213

Appendix D. Data Structures and Definitions 214
ADMINITEMNOTELOGOUT . 214
ATTRBPAIR . 214
INSTANCSTRUCT . 214
ITEMATTRB . 214
LFOLDERTOCDATA . 215
LISTCCINFODATA . 215
LISTFOLDERITEMATTRSTRUCT . 215
LISTICATTRDATA . 216
LWBASKETDATA . 216
SBVIITEMINFOSTRUCT . 216

Appendix E. Return Codes . 217
Internal VHLPI Return Codes . 217

Appendix F. Predefined Content Classes 220

Bibliography . 223
IBM AS/400 Publications . 223
IBM Client Access . 224
IBM ImagePlus VisualInfo . 224
IBM 3995 Compact Optical Library Dataserver 224

Glossary . 225

Index . 235

xiv VisualInfo for AS/400 4.1: Application Programming Guide and Reference

 Programming Guide

Chapter 1. Introducing VisualInfo for AS/400 2
A Closer Look at VisualInfo for AS/400 . 3

Chapter 2. Using the OLE Automation Interface 6
Programming with OLE Automation . 6
Client for Windows Objects . 6
Programming Tips . 8
Sample Visual Basic Program . 10

Chapter 3. VisualInfo for AS/400 Concepts 12
Understanding the Logical Data Model . 12
Understanding Work Management . 12
Getting Information about Documents and Folders 13
Supporting Case-Sensitivity . 14
Naming Folders . 15
Changing an Item’s Index Class . 15
Restricting Access to Items . 15
Migrating Objects . 16

Chapter 4. Sample High-Level Programming Interface for Visual Basic . . . 17
General Use . 17
Visual Basic Parameters and Variables . 18
Access to the Client for Windows . 18
Using Logon/Logoff with the Client for Windows 19

 Copyright IBM Corp. 1997 1

Chapter 1. Introducing VisualInfo for AS/400

This overview explains the ways to implement VisualInfo for AS/400 and VisualInfo for
AS/400 components. This information is a framework for you to use to determine how
to make the most of the VisualInfo for AS/400 APIs as you create your applications. It
includes an overview of the following VisualInfo for AS/400 components:

Client Application Program
The client application you use can be one of the client application programs delivered
with VisualInfo for AS/400 or an application that you develop.

Image Services

VisualInfo for AS/400 provides services for image capture, display, and printing.
Collectively, these services are referred to as image services. VisualInfo for AS/400
incorporates many of these services within the VisualInfo client application program.

VisualInfo for AS/400 APIs
VisualInfo for AS/400 APIs are high-level programming interfaces that let you access
and manipulate data stored on a host server.

Client Interfaces for Windows
The client APIs for Windows provide a programming interface you can use to
develop your own Windows-based client applications for VisualInfo for AS/400.

With VisualInfo for AS/400 you can develop a customized document management
solution that includes a host server and information-processing capabilities for multiple
media types. Using VisualInfo for AS/400, you can create image and other applications
to automate and gain control of the information your enterprise processes each day.
You can increase productivity and security, lower storage costs, and improve customer
service.

VisualInfo for AS/400 provides a wide variety of application programming interfaces
(APIs) that let you use your business applications with VisualInfo for AS/400 and
available or selected future facsimile processing and document capture complementary
offerings.

VisualInfo for AS/400 offers tailorable document processing for both large and small
organizations. VisualInfo for AS/400 lets users capture, store, and retrieve documents
online and provides document, folder, and work management capabilities. VisualInfo for
AS/400 also provides extensive data integrity and security.

VisualInfo for AS/400 consists Windows NT or 95 clients connected to an AS/400
server. It provides enterprise-wide access to document processing, storage, and
management. That way, VisualInfo for AS/400 lets multiple departments of an
enterprise, located in one or several locations, access their own documents as well as
enterprise documents.

2  Copyright IBM Corp. 1997

A Closer Look at VisualInfo for AS/400
VisualInfo for AS/400 offers a complete document management system through its
client/server architecture. Once you understand the client/server concept, you can then
take a closer look at all the key components that make up VisualInfo for AS/400.

 Client-Server Relationship
Figure 1 shows the client/server relationship in VisualInfo for AS/400. VisualInfo for
AS/400 consists of a client connected to one or more host servers.

Library Server

Client

Object Server(s)

Figure 1. The Client-Server Relationship in VisualInfo for AS/400

The host server maintains document and folder index information, document and folder
relationships, work-in-process information, and interacts with the client.

VisualInfo for AS/400 Components
VisualInfo for AS/400 consists of a client, which consists of the client application
program, a host server, and VisualInfo for AS/400 APIs. You can use VisualInfo for
AS/400 to develop additional clients.

 Chapter 1. Introducing VisualInfo for AS/400 3

The following figure shows the major components of VisualInfo for AS/400.

Figure 2. The Main Components in VisualInfo for AS/400

 Client Application
The VisualInfo for AS/400 client application provides document and folder management,
scanning support, import and export, work management, and search capabilities built
on the VisualInfo for AS/400 APIs.

The client application program provides a complete end-user interface for VisualInfo for
AS/400. You can configure the client application program to meet the specific needs of
your enterprise. User exits provide points where you can provide application-specific

4 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

processing routines to customize the client application program. After you configure the
client application program, it becomes a complete document management application.

The client application program provides APIs to let you integrate folder, work
management, and document management with your existing information systems. You
can easily integrate your custom software and other applications with the client
application program.

You can use the client application program that comes with VisualInfo for AS/400, write
your own application, or use an application available from IBM Services or Business
Partners.

VisualInfo for AS/400 APIs
If you choose to write your own application, you can use the VisualInfo for AS/400 APIs
as the primary interface between the VisualInfo for AS/400 host server and your
application.

In the VisualInfo for AS/400 data model, the most basic components are documents,
folders, workbaskets, and work packages. Documents are similar to paper documents.
Folders are similar to folders in a paper filing system and can contain other folders or
documents. A work package is an entry in a workbasket for use in work management
and contains a document or folder.

Depending on the level of access to documents, you can perform the following
operations using these APIs:

� Store a document
� Index a document or folder
� Retrieve a document or folder

The APIs support a wide range of the functions available in VisualInfo for AS/400. You
can use these APIs to create a 32-bit Windows NT or 95 client application.

VisualInfo for AS/400 Server
The VisualInfo for AS/400 server uses IBM’s relational database technology to maintain
document contents and provides data integrity by performing the following functions:

 � Manage data
� Maintain index information
� Control access to documents stored in object servers

You can develop applications to reference multiple VisualInfo for AS/400 servers.

 Chapter 1. Introducing VisualInfo for AS/400 5

Chapter 2. Using the OLE Automation Interface

Using the API provided with the VisualInfo for AS/400 client, you can enable another
Windows-based application to log on to VisualInfo for AS/400, perform document and
folder searches, display table of contents (TOC) lists for search results, folders, or
workbaskets, and even display and annotate documents. You accomplish this by using
APIs that are based on OLE 2.0 Automation.

Programming with OLE Automation
OLE automation enables an application’s command operations to be manipulated from
outside that application. The Client for Windows provides OLE automation objects that
can be manipulated from programs built using programming environments such as
Visual Basic (Version 3.0 or above), Visual C++, and PowerBuilder. To manipulate
Client for Windows objects, you need to know the properties and methods for each
object.

 Properties
Properties are similar to Visual Basic variables, except they are located inside Client for
Windows objects. Just as you can read or write variables, you can set (that is, write) or
get (that is, read) properties. Not all properties are read/write properties; some
properties are read-only and others are write-only. For example, the Visible property of
the Application object is a read/write property that can be used to find out whether the
program is currently visible on the screen. If the value of the property is set to True, the
program is currently visible. Setting the value of the Visible property to False causes
the program to be hidden. On the other hand, the Name property of the Item object is a
read-only property that contains the name, by which VisualInfo for AS/400 refers to the
item. An example of a write-only property is the Application property Password.

 Methods
Methods are similar to Visual Basic procedures or function procedures. You can call a
method to perform an operation inside the Client for Windows (that is, invoke a
command operation). For example, the OpenWorkbasket method of the Application
class displays the Open Workbasket dialog.

Client for Windows Objects
The Client for Windows OLE automation objects are designed according to Microsoft
guidelines. Therefore, as is the case with all applications that follow these guidelines,
the Client for Windows has an Application object, a Documents collection object, and a
Document object.

In addition, the Client for Windows has an Items collection object to manage multiple
Item objects, and an Item object that provides information and interfaces to VisualInfo
for AS/400 items like documents, folders, and workbaskets. Also provided is an Image
object that holds the document currently open in the image viewer.

6  Copyright IBM Corp. 1997

An information-only class called Error is provided to allow applications to determine
what errors have occurred.

Finally, the Client for Windows also supports two helper objects (EnumDocument and
EnumItem) that are needed by Visual Basic to provide object iteration, although they
are not created when programming with Visual Basic.

Collection objects are similar to arrays in the sense that they are used to hold other
objects. The Documents collection holds Document objects, while the Items collection
holds Item objects. All OLE automation collection objects share the same methods and
properties.

See “Programming Tips” on page 8 for general information about programming with
OLE automation and the objects provided with the Client for Windows.

In addition to Visual Basic, the Client for Windows OLE automation API can be used
with any programming language or fourth-generation language (4GL) that supports OLE
automation.

 Application Object
The main Client for Windows object is the Application object. Once a program obtains
access to the Application object, it can get hold of or create all other Client for Windows
objects.

The methods and properties of the Application object apply to the Client for Windows
as a whole. For example, the Logon method is invoked to log on to VisualInfo for
AS/400, and the Quit method is invoked to exit the program. Therefore, programs
designed to interface with the Client for Windows must first create the Application
object.

Once the Client for Windows is running, it can be used to interact with VisualInfo for
AS/400. You can open a TOC, which equates to a Document object in OLE automation,
you can find or create items (Item objects), and you can display documents (Image
object).

 Documents Collection
The Documents collection can be compared to a queue holding TOCs (folders, search
results or workbaskets). The TOCs are represented by Document objects.

Most Documents are opened by calling the Documents method OpenTOC, with an Item
object as a parameter.

 Document Object
Once a Document object has been created through the OpenTOC method of the
Documents collection, the object can be displayed, and a number of methods can be
executed. For example, you can query any of the items that are currently selected in
the Document TOC by the user.

 Chapter 2. Using the OLE Automation Interface 7

 Error Object
If an error occurs, all of the pertinent information for the error will be stored in this
object, including VisualInfo for AS/400 return codes.

 Image Object
The Image object represents a special document. It is the currently visible VisualInfo for
AS/400 document. The Image object is opened by calling its OpenDocument method
with an Item object as a parameter.

 Items Collection
The Items collection object is simply a list of Items that are related. For example, the
Document method Selections returns the Items collection containing all of the items that
are currently selected. It has methods that return a specific Item object from the
collection, and also has housekeeping methods to delete Item objects and the Items
collection instance.

You can have more than one Items collection defined at one time. However, it is your
responsibility to keep track of the Items collections, because the only way to get an
Items collection is when it is returned from a method.

 Item Object
The Item object represents a VisualInfo for AS/400 item like a document, folder, or
workbasket. The Item object enables you to display the item (by passing it as a
parameter to other objects), query its index class and key fields, re-index it, and
perform a number of other actions.

The Item object also contains properties describing itself.

 Programming Tips
The OLE automation API can be used to integrate the Client for Windows into your
application. To integrate the Client for Windows using this API, the development
environment for your application must be able to access OLE automation objects. For
example, Microsoft Visual Basic, Microsoft Visual C++, and PowerBuilder, as do a
number of applications like Microsoft Excel and Microsoft Access.

The following provides programming tips for programming with OLE automation,
including information on releasing objects and handling errors.

 Releasing Objects
Programming with OLE automation requires paying attention to object release;
programs that allocate objects are responsible for freeing the objects after use. For
example, a Client for Windows object is created in Visual Basic as follows:

Dim MyItem As Object
Set MyItem = MyApp.GetWorkbasket(“To be indexed”)

8 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

In this operation, the Client for Windows allocates memory to hold the Item object and
returns a pointer to the object. The pointer is stored in the MyItem variable.

To release the Item object, use a statement as follows:

Set MyItem = Nothing

In this operation, the Client for Windows releases the memory it previously allocated for
the Item object. Failure to release objects results in the Client for Windows eventually
running out of memory. Also, the Client for Windows does not actually exit if any
objects are still open.

 Handling Errors
The Client for Windows throws an exception when it detects an error. In Visual Basic,
exceptions can be caught with the OnError statement. Programs that count on
exceptions to catch errors do not need to check the return value after calling a method.

A viable strategy for processing the Client for Windows errors is to execute an On Error
Resume Next statement at program startup and to test the value of the built-in Visual
Basic Err variable upon return from a method. When Err is nonzero, an error has
occurred and the Error object can be consulted to obtain the details (the Error object
can be found as a property of the Application object). The Error object contains the
actual error codes and the error message string.

Most methods return an error status. The type of this status is VT_I4, which in Visual
Basic translates to the Long data type. The error status is either zero (successful) or
nonzero (error detected). When an error has been detected, details about the problem
can be obtained by consulting the Error object.

Property and Argument Types
The arguments and properties are listed in the Application Programming Reference,
Volume 3 These types can be translated into VisualBasic types and Visual C++ types
by consulting the following table:

 Chapter 2. Using the OLE Automation Interface 9

OLE Type VisualBasic C++ Description

VT_BSTR String Char Array, zero
terminated

An ASCII string. Can have any type of
character data, but usually holds user
readable text.

VT_DISPATCH Object IDispatch* A reference to an OLE object. Read the
method or property to determine what type
of object will be returned.

VT_VARIENT
(safe array)

Array (VB 4.0 or
greater only)

IVarient* A safe array of objects. In the areas where
safe arrays are used, the object type is
VT_BSTR.

VT_I4 Number long A long integer. Can be positive or
negative. The acceptable range is
-2 147 483 648 to +2 147 483 647.

VT_EMPTY (N/A) void No value

VT_UNKNOWN (N/A) IVarient* A structure used internally be OLE
automation.

VT_BOOL Boolean int A logical value with two possible values:
TRUE or FALSE.

Sample Visual Basic Program
This section shows the code for a Visual Basic program that starts the Client for
Windows and causes it to display the “To be indexed” workbasket. Then it displays the
first item in the workbasket, whether it is a document or a folder. To keep the example
readable, no error handling has been taken into account. The best way to learn from
this program is to type it into Visual Basic and then trace through it by repeatedly
pressing the F8 key.

’ This example invokes the Client for Windows and causes it to display the
’ To be indexed workbasket, then displays the first item in the workbasket,
’ whether it is a document or a folder.
’ Data declarations

Dim VicApp As Object
Dim Workbasket As Object
Dim Docs As Object
Dim Doc As Object
Dim Item As Object

’ Get the application objects
Set VicApp = CreateObject(“Vic.Application”)

’ Set login information
VicApp.User = “GLEND”
VicApp.Password = “PASSWORD”

’ Log into VisualInfo for AS/4ðð
 VicApp.Logon

’ Get the workbasket item
Set Workbasket = VicApp.GetWorkbasket(“To be indexed“)

’ Display the workbasket

10 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Set Docs = VicApp.Documents
Set Doc = Docs.OpenTOC(Workbasket)

’ Get next item from workbasket
Set Item = Workbasket.NextWorkbasketItem

’ Find out if the item is a folder or a document
If (Item.Type = 1) Then

’ Document! Display it.
 VicApp.Image.OpenDocument Item
 Else

’ Must be a folder. Display it.
 Docs.OpenTOC Item
 End If

’ Clean up
Set Workbasket = Nothing
Set Docs = Nothing
Set Doc = Nothing
Set Item = Nothing

 VicApp.Quit
Set VicApp = Nothing

In this example, the Client for Windows is loaded and then the user name and
password to be used while logging onto the default Client for Windows Library Server
are configured. Next, the Client for Windows log on is executed.

After getting the “To be indexed” workbasket item, the workbasket is opened using the
Documents object.

The next step is to get the next item in the workbasket and determine if it is a
document or a folder. If it is a folder, it is passed to the Documents object, while a
document is passed to the Image object.

Finally, the Client for Windows ends.

 Chapter 2. Using the OLE Automation Interface 11

Chapter 3. VisualInfo for AS/400 Concepts

This section provides an overview of the VisualInfo for AS/400 concepts, including the
logical data model. In other products of the IBM ImagePlus VisualInfo family, the term
“folder manager” identifies a subset of application programming interfaces (APIs) and
“common application programming interface” (CAPI) identifies a subset of SimLib
interfaces. In VisualInfo for AS/400, all available programming interfaces are known as
VisualInfo for AS/400 APIs.

Understanding the Logical Data Model
VisualInfo for AS/400 implements the folder manager data model, which includes
concepts such as items, objects, folders, index classes, and attributes. This model
provides your application with many capabilities for managing business objects.
Documents in VisualInfo for AS/400 are similar to paper documents. A document
consists of a set of closely related objects, such as pages in a letter or report.
Documents can contain one or more parts. These parts, known as base parts, can be
pages or illustrations in a letter, report, or other documents. Other parts associated with
documents are annotations, and notes.

An annotation part associated with a document can highlight sections of a document. A
note part associated with a document is textual information that you attach to the
document to give additional information to other users. For example, you might attach a
note to draw the reader’s attention to part of the document. An event part associated
with a document provides a historical trail of the processing you perform on the
document. You can associate only one event part with a document. Annotation has a
location, while a note does not.

Folders in VisualInfo for AS/400 are similar to folders in a paper filing system. Each
folder can contain one or more documents or other folders. Each folder has a table of
contents that lists all the documents and folders it contains. You can associate note
parts with a folder. You can place a folder in a workbasket as an item to be worked on
and assign a folder to a workbasket.

Understanding Work Management
This release of VisualInfo for AS/400 implements a subset of the work management
functions available in Workfolder Application Facility. In addition to VisualInfo for AS/400
concepts, work management introduces the following additional concepts:

Work package
Contains a single piece of work, such as a document or folder. A work package can
be placed in one or more workbaskets.

Workbasket
Collection of work packages. The VisualInfo for AS/400 system administrator defines
each workbasket so that it has a work order associated with it. When opening a
workbasket, users are automatically get the next work package based on the order.

12  Copyright IBM Corp. 1997

Work process
Set of rules for routing work packages through workbaskets. This release of
VisualInfo for AS/400 supports only ad-hoc routing, in which the application running
on the workstation routes a work package from one workbasket to the next.

Getting Information about Documents and Folders
To read the attributes of a document or folder, an application can open the item
(SimLibOpenItemAttr), read one attribute at a time (SimLibReadAttr), and close the
item (SimLibCloseAttr). You can also use SimLibGetItemSnapshot to retrieve all the
attributes and optional information. This function retrieves the system attributes,
user-defined attributes, workbasket information, checkout holder, and other data about
the folder or document. Use this function if you want all of this information and do not
need to open the item for subsequent activities.

SimLibSearch can be used to retrieve user-defined attributes for items matching a
predefined search criteria.

If the snapshot option flag includes system attributes (SIM_SYSTEM_ATTR),
SimLibGetItemSnapshot returns four attributes in the ATTRLISTSTRUCT array for the
current view in addition to user-defined attributes:

 � OIM_ID_ITEM_NAME
 � OIM_ID_CREATE_TIMESTAMP
 � OIM_ID_MODSYS_TIMESTAMP
 � OIM_ID_UID

Your application must not depend on the order of appearance of the attributes or on
whether user-defined or system attributes come first.

Instead of SimLibGetItemSnapshot , use SimLibGetTOCData to return a snapshot for
an entire list of items. The TOCENTRYSTRUCT array returned by SimLibGetTOC can
be passed directly to SimLibGetTOCData for processing as a group, if its number of
entries does not exceed SIM_TOC_MAX_ENTRY_COUNT. If the count exceeds the
maximum, pass the entries, up to the maximum, one at a time. Then, advance to the
next batch in the TOCENTRYSTRUCT array. The list pointer to SimLibGetTOCData
can reference an entry in the array, and the function begins processing at this entry.

For example, your application can have basic logic similar to the following:

ulRC = SimLibGetTOC(hSession,...);
if (ulRC != SIM_RC_OK) {

// process errors
} else {

ulCount = count returned by SimLibGetTOC
pTOC = TOCENTRYSTRUCT array pointer returned by SimLibGetTOC
while (ulCount > ð) {

i = minimum of ulCount and SIM_MAX_TOC_ENTRY_COUNT
ulRC = SimLibGetTOCData(hSession,pTOC,i,NULL,pRC);
if (ulRC != SIM_RC_OK) {

// process errors, possibly exit the loop

 Chapter 3. VisualInfo for AS/400 Concepts 13

} else {
// process results
call SimLibFree to release data returned

 }
ulCount -= i; // decrement number left to do
pTOC += i; // advance to next set, if any

 }
close the TOC from SimLibGetTOC

 }

When you are logged on, you must have sufficient privileges to get the attributes for
each item, or the SimLibGetTOC function returns an error.

You still might want to take advantage of the efficiency of SimLibGetTOCData , without
processing the entire set of items from SimLibGetTOC . SimLibGetTOCData skips an
item ID in the TOCENTRYSTRUCT that is a NULL string. Because an application might
not modify the TOCENTRYSTRUCT array returned by the SimLibGetTOC function,
copy the TOCENTRYSTRUCT array to another buffer, and then set the item ID to
NULL. You can also filter the unnecessary entries by copying the desired data to a
temporary TOCENTRYSTRUCT array and passing that to SimLibGetTOCData . If the
item ID is NULL, SimLibGetTOCData still returns an empty SNAPSHOTSTRUCT for
the item.

You can use the same approach for processing a block of items even when they are
not returned by SimLibGetTOC . Your application can generate its own list in the same
format and pass that list into SimLibGetTOCData . As an example, you can take the
results of a search (SimLibSearch) and build the TOCENTRYSTRUCT array from the
item ID list. SimLibGetTOCData requires the index class of each item in advance.
SimLibSearch does not return the index class, but if you restrict the search to a single
view, your application already knows the index class of each item returned by the
search. The index class contains the view you search.

You can also use SimLibSearch directly to retrieve user-defined or both user-defined
and system-defined attributes by using the SIM_SEARCH_USER_ATTR or the
SIM_SEARCH_USER_SYSTEM_ATTR option. (These two options are supported for
32-bit only.) This is more efficient than calling SimLibSearch to get the item IDs, and
then calling other APIs, such as SimLibGetTOCData, to retrieve attribute information.

Even though you make a TOCENTRYSTRUCT array that might look like the array from
SimLibGetTOC , you cannot use a table of contents function such as Ip2TOCUpdates
on a simulated TOC. Table of contents functions require a handle returned by
SimLibGetTOC .

 Supporting Case-Sensitivity
VisualInfo for AS/400 stores fixed- and variable-length character-string attributes exactly
as presented by the application. VisualInfo for AS/400 does not convert to uppercase
except for user ID and password.

14 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

 Naming Folders
The folder data model for VisualInfo for AS/400 does not include a folder name. A
folder name such as a customer name, customer number, case name, or other
recognizable text is an index class attribute for a class that uses a folder name. To
search for a folder by name, therefore, your application must know the relevant index
classes with folder names and construct the appropriate search.

Changing an Item’s Index Class
When you create an item, it is associated with an index class. When your application
changes the index class of the item, this entry is updated to reflect the change. This
entry always contains the current index class to which the item belongs. A number of
VisualInfo for AS/400 APIs, including SimLibGetItemInfo and
SimLibGetItemSnapshot return this information to your application. You should use
this index class within your application.

Restricting Access to Items
In the simplest example of access control, all users have access to all items in the
library. To implement this type of access control, give all users maximum privileges and
set all index class security ranges to '000'. However, there are many available levels of
restricted access. One type of restriction is to keep a subset of users from seeing
specific folders and documents.

The SimLibLogon function requires that a user have many privileges, including one to
search for items, open items, and read attribute values. Users with the super access
privilege can read any item in any index class. A typical user does not have the super
access privilege unless the system is being run without access control (the
configuration in which all users have access to all items). Therefore, the access list
contents determine whether a typical user can see a protected item.

There are two primary methods for establishing restricted access to an item’s attribute
values and contents. The first is to assign security class ranges to index classes. The
second method is to fine-tune the privilege settings. The system administration program
lets you set individual library privilege bits to create a privilege set. You can turn on
specific LibItemSearch privileges. Access control for both SimLibOpenItemAttr and
SimLibSearch depend on the specific view. For SimLibOpenItemAttr , you must have
access in the current view for the index class of the item. For SimLibSearch , you must
have access in the view provided in the function parameters.

Nonadministrative users can use the privilege string *USER that comes with VisualInfo
for AS/400. This privilege string includes all non-administrative selections from the
system administration program.

SimLibLogon returns general privileges. Ip2QueryClassPriv returns privileges for
index classes and index class views. Your application can use these privilege strings to
establish in advance whether to offer specific functional options to users. For example,

 Chapter 3. VisualInfo for AS/400 Concepts 15

your application can let a user view an item for which the user does not have delete
authority without offering the delete option.

When the object server receives a request to create an object, it returns the path name
to the client. If the path is not accessible–such as when no assigned drive exists or the
user does not have authority to the directory–the SimLibCreateObject call fails.
Because files have already been updated on the object server, the VisualInfo for
AS/400 API code sends a delete request to the server to remove the object entry and
the item entry, if only one object exists. If the privilege string for the user does not allow
deletion, the entries remain in the files. The result is an object that can never be
opened. Therefore, you should consider giving delete authority to users who have
create authority to prevent file entries that are not valid.

 Migrating Objects
The VisualInfo for AS/400 storage management function allows objects to be moved
from one medium to another–from magnetic disk to optical storage, for example–based
on controls that the administrator establishes. A collection name is assigned to each
object created in the system. A collection defines the storage management controls
associated to a group of objects that typically have similar performance, availability,
backup, and retention characteristics. An application can assign an object to a different
collection using the SimLibChangeObjectSMS API.

16 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Chapter 4. Sample High-Level Programming Interface for Visual
Basic

The VisualInfo for AS/400 client high-level programming interface is a set of frequently
used folder and document management functions. These high-level functions have a
simple call interface reflecting how users access documents and folders in VisualInfo
for AS/400. Some highlights of the VisualInfo for AS/400 client high-level programming
interface using Visual Basic are as follows:

� Approximately 30 functions for frequently used folder and document management
functions

� Single workstation logon to VisualInfo for AS/400 by means of the Client for
Windows application

� Visual Basic OLE automation source code provided

In addition, the Client for Windows can allow multiple applications to access VisualInfo
for AS/400 simultaneously.

 General Use
The VisualInfo for AS/400 client high-level programming interface interacts with the
basic components of the VisualInfo for AS/400 data model; documents, folders, and
workbaskets. A VisualInfo for AS/400 document consists of a set of closely related
objects or parts.

The VisualInfo for AS/400 client high-level programming interface provides functions to
create, view, update and delete typical VisualInfo for AS/400 documents composed of a
single base part (for example a scanned document or word processing file) and a single
note part. Use of the VisualInfo for AS/400 high-level programming interface with
documents containing multiple base parts can produce unexpected or undesired results.
For additional information about the VisualInfo for AS/400 data model, see
“Understanding the Logical Data Model” on page 12.

The Client for Windows’s OLE automation interface does provide the ability to
manipulate multiple base part documents. Because Visual Basic source code is
provided, the user might want to customize the VHLPI to handle other document
compositions.

Lists of data returned by VHLPI functions can be filtered based upon the privileges set
for the user ID that has logged on. In addition, the user should be aware that index
class and attribute names specified as parameters to VHLPI functions are normally
case-sensitive.

 Copyright IBM Corp. 1997 17

Visual Basic Parameters and Variables
All Visual Basic variables passed to VHLPI functions as parameters should be of type
Variant or Variant Array. If a Variant Array is passed, the size of the array, excluding
element index 0, should be contained in element 0 of the array.

NULL values can be set by assigning the variable to an empty string, "".

There are several global variables which are included with the VHLPI code module,
FRNWWFVB.BAS. These global variables can be accessed by any Visual Basic
program which includes FRNWWFVB.BAS. The global variables are as follows:

� VhlApplObj - Client for Windows’s Application Object
� VhlDocsObj - Client for Windows’s Documents Collection Object
� VhlErrorObj - Client for Windows’s Error Object

These global variables are created via the VbVhlLoadFuncs function and they are
freed by the VbVhlDropFuncs function. A Visual Basic program must call
VbVhlLoadFuncs before using VHLPI functions, and should call VbVhlDropFuncs
before ending to free these objects.

Once these variables have been created, the Visual Basic program can invoke methods
or get/set properties associated with them. For instance, to find out what server the
Client for Windows is logged onto, the following could be executed:

' Create Objects
ulRC = VbVhlLoadFuncs

' Get what server is logged on
Server$ = VhlApplObj.Server

' Display the server name
MsgBox "The server is " & Server$

Access to the Client for Windows
The Client for Windows can be used to maintain a constant logon session with
VisualInfo for AS/400. When started, this program logs on to VisualInfo for AS/400 and
then wait for operator commands. Once logged on, other applications through the OLE
automation interface can use the VisualInfo for AS/400 logon session established.

By using the Client for Windows’s logon session, other applications do not need to
logon to VisualInfo for AS/400, instead they must create an OLE automation Application
Object from the Client for Windows. This can be done by executing the following:

Set VhlApplObj = CreateObject("Vic.Application")

 where VhlApplObj is the global variable object included in the VHLPI code module,
FRNWWFVB.BAS.

18 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

The VbVhlLoadFuncs function does this processing, plus initializes other global data
objects. It is recommended that Visual Basic programs use the VbVhlLoadFuncs and
VbVhlDropFuncs to get and end access to the Client for Windows.

The above description pertains to the situation where the Client for Windows is started
and logged on before subsequent Visual Basic applications are executed. If this is not
the case, it will be necessary for the Visual Basic application to issue logon and logoff
commands as discussed in the next section.

Using Logon/Logoff with the Client for Windows
If the Client for Windows is not started and logged on before the Visual Basic
application is executed, the application must call VbVhlLogon instead of
VbVhlLoadFuncs . VbVhlLogon will cause the Client for Windows to be started and
then issue the Logon method to logon to VisualInfo for AS/400.

Once the Client for Windows is logged onto VisualInfo for AS/400, any subsequent
attempt to logon, even if the user ID or server information is different, does not cause
another logon attempt. All subsequent logons will simply use the original logon session
and no error indication will be provided.

The VbVhlLogoff will issue the Logoff method and close the Client for Windows, even
if other applications are using the logon session. If it is not desired to terminate the
Client for Windows, then VbVhlDropFuncs should be used to terminate access only for
the current application.

 Chapter 4. Sample High-Level Programming Interface for Visual Basic 19

20 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

 Programming Reference

Chapter 5. VisualInfo for AS/400 Application Programming Interfaces . . . 24
Compiling and Linking VisualInfo for AS/400 Applications 24
SimLibAddFolderItem (Add an Item to a Folder) 26
SimLibCatalogObject (Catalog an Object) . 29
SimLibChangeIndexClass (Change the Index Class for an Item) 34
SimLibChangeObjectSMS (Change the SMS Criteria for an Object) 36
SimLibCloseAttr (Close an Attribute Set) . 38
SimLibCloseObject (Close an Object) . 40
SimLibCreateItem (Create an Item) . 42
SimLibCreateObject (Create an Object) . 46
SimLibDeleteItem (Delete an Item) . 51
SimLibDeleteObject (Delete an Object) . 54
SimLibFree (Free Memory) . 56
SimLibGetAttrInfo (Get Attribute Information) 57
SimLibGetClassIndexes (Get Class Indexes) 59
SimLibGetClassInfo (Get Index Class Information) 61
SimLibGetItemAffiliatedTOC (Get a Table of Contents for Item Affiliates) 62
SimLibGetItemInfo (Get Item Information) . 65
SimLibGetItemSnapshot (Get a Snapshot of Item Attributes) 66
SimLibGetItemType (Get the Type of an Item) 69
SimLibGetItemXREF (Get a Cross-Reference for an Item) 70
SimLibGetSessionType (Get the Session Type) 72
SimLibGetTOC (Get a Table of Contents) . 73
SimLibGetTOCData (Get a Snapshot of Attributes for a Group of Items) 77
SimLibListClasses (List Index Classes) . 80
SimLibLogoff (Log Off) . 82
SimLibLogon (Log On) . 84
SimLibOpenItemAttr (Open Item Attributes) . 88
SimLibOpenObject (Open an Object) . 91
SimLibQueryObject (Query an Object) . 94
SimLibReadAttr (Read an Attribute) . 96
SimLibReadObject (Read an Object) . 97
SimLibRemoveFolderItem (Remove an Item from a Folder) 99
SimLibResizeObject (Resize an Object) . 101
SimLibSaveAttr (Save an Attribute) . 103
SimLibSearch (Search) . 105
SimLibSeekObject (Seek an Object) . 108
SimLibStoreNewObject (Store a New Object in an Existing Item) 110
SimLibWriteAttr (Write an Attribute) . 113
SimLibWriteObject (Write an Object) . 115
SimWmCreateWorkPackage (Create a Work Package) 118
SimWmEndProcess (End a Work Package on a Process) 120
SimWmGetWorkBasketInfo (Get Information about a Workbasket) 121
SimWmGetWorkPackage (Get the Next Work Package from a Workbasket) . . . 122
SimWmGetWorkPackagePriority (Get the Priority of a Work Package) 125

 Copyright IBM Corp. 1997 21

SimWmListWorkbaskets (List the Workbaskets) 126
SimWmQueryWorkPackage (Query a Work Package) 127
SimWmReturnWorkPackage (Return a Work Package to a Workbasket) 129
SimWmRouteWorkPackage (Route a Work Package) 130
SimWmSetWorkPackagePriority (Set the Priority of a Work Package) 132
Ip2CloseTOC (Close a Table of Contents) . 133
Ip2GetTOCUpdates (Get the Updates to a Table of Contents) 135
Ip2ListAttrs (List the User-Defined Attributes) 136
Ip2ListContentClasses (List the Content Classes) 138
Ip2ListServers (List the Accessible Servers) . 139
Ip2QueryClassPriv (Query the Privilege String for an Index Class or View) 141
Ip2QueryPrivBuffer (Query a Privilege Buffer) 143
Ip2TOCCount (Count the Items in a Table of Contents) 147
Ip2TOCStatus (Get the Status of a Table of Contents) 149

Chapter 6. Common Data Structures . 151
AFFTOCENTRYSTRUCT (Affiliated Table of Contents Entry Structure) 151
ANNOTATIONSTRUCT (Annotation Information Structure) 152
ATTRINFOSTRUCT (Attribute Information Structure) 153
ATTRLISTSTRUCT (Attribute List Data Structure) 155
CLASSATTRSTRUCT (Class Attribute Structure) 157
CLASSINDEXATTRSTRUCT (Class Index Attribute Structure) 158
CLASSINDEXSTRUCT (Class Index Structure) 159
CLASSINFOSTRUCT (Index Class Information Structure) 159
CONTENTCLASSINFO (Content Class Information Structure) 161
HOBJ (Handle to Query Stored Object) . 162
ICVIEWSTRUCT (Index Class View Information Structure) 162
ITEMINFOSTRUCT (Item Information Structure) 163
LIBSEARCHCRITERIASTRUCT (Search Criteria Information Structure) 165
NAMESTRUCT (Name Data Structure) . 167
OBJINFOSTRUCT (Object Information Structure) 167
RCSTRUCT (Return Code Information Structure) 169
SERVERINFOSTRUCT (Server Information Structure) 171
SMS (System-Managed Storage Pointer) . 172
SNAPSHOTSTRUCT (Snapshot Information Structure) 173
TOCENTRYSTRUCT (Table of Contents Entry Data Structure) 176
USERLOGONINFOSTRUCT (User Logon Information Structure) 177
USERACCESSSTRUCT (User Access Data Structure) 178
WMSNAPSHOTSTRUCT (Work Management Information Structure) 179
WMVARSTRUCT (Work Package Variable Data Structure) 180
WORKBASKETINFOSTRUCT (Workbasket Information Data Structure) 181

Chapter 7. Properties and Methods of OLE Objects for Windows 183
Application Object . 183
Document Object . 187
Documents Object . 191
Error Object . 193
Image Object . 193

22 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Item Object . 195
Items Collection . 201

 Programming Reference 23

Chapter 5. VisualInfo for AS/400 Application Programming
Interfaces

This section describes the formats and parameters of the VisualInfo for AS/400
application programming interfaces (APIs). You can recognize these APIs by their
SimLib , SimWm , and Ip2 prefixes.

These APIs are strategic to the VisualInfo for AS/400 product. Although you can
accomplish many functions through only the SimLib and SimWm APIs, most
applications are likely to need at least some of the Ip2 APIs.

All errors are logged in the VI400.LOG file.

The names of some VisualInfo for AS/400 data structures or symbolic constants might
conflict with others that your applications use. If this is the case, please adjust your
naming conventions to prevent conflicts.

For more information about the data structures for these APIs, see Chapter 6,
“Common Data Structures” on page 151.

Compiling and Linking VisualInfo for AS/400 Applications
VisualInfo for AS/400 can be accessed through the VisualInfo for AS/400 APIs. You
need the following files to build and run applications to access VisualInfo for AS/400:

EKDWSAPI.H
Work management API prototypes.

EKDWS.LIB
LIB file required to link with EKDWS.DLL.

EKDWS.DLL
All API functions.

EKDWS35I.DLL
IBM VisualAge runtime DLL.

EKDWSFRN.ERR
VisualInfo for AS/400 error numbers and descriptive names. The name is logged in
VisualInfo for AS/400 for any error detected.

FRN*
VisualInfo for AS/400 header files.

These files are installed when you install the VisualInfo Windows Client Toolkit.

Applications must access headers as follows:

#include "EKDWSAPI.H"

24  Copyright IBM Corp. 1997

If you are not using VisualAge, the LIB file must be regenerated using ILIB or an
equivalent command.

The VisualInfo for AS/400 APIs use codepage conversion tables from VisualAge. Your
installation program should install the required files for the codepages that are to be
used for any given installation. The codepage conversion files are located in the
FRNROOT\ICONV and FRNROOT\UCONVTAB directories.

You must set the LOCPATH environment variable to the directory above (FRNROOT).
You can do this in AUTOEXEC.BAT or the Registry, or your application can do it before
the call to SimLibLogon . Doing this ensures that the variable is always set, which
prevents conflicts with other products.

Client tracing and logging can be enabled to aid in problem determination. The
following environment variables below can be set to any value to control tracing.
Results are logged to VI400.LOG in the working directory or path specified in the
VI400_LOG_PATH environment variable. The file is overwritten when the first call is
made (such as to SimLibLogon) unless another process on the same machine is using
the file for logging. In that case, log records are intermingled but can be identified by
the process number.

VI400_LOG_PATH
Path for VI400.LOG

VI400_LOG_TRACE
Function entry and exit

VI400_LOG_PERFORMANCE
Trace and data transmission time

VI400_LOG_DATA
Data sent to and received from the AS/400 system

VI400_LOG_STORAGE
VisualInfo for AS/400 object storage allocation and deallocation

VI400_LOG_LOCKS
Log lock and unlock operations for each API

VI400_LOG_ALL
All trace levels

The FRNOLINT.TBL file is used to contain entries that define VisualInfo for AS/400
servers. It must be located in the path from which the program was started or the path
contained in the VI400_CONFIG_PATH environment variable. The following is an
example:

SERVER: MYVI4ðð REMOTE APPC
 LU_NAME = USIBMNR.AS4ððDS1
 TP = EKDCSð1P.EKD31ðSRC
 MODE = QPCSUPP

SERVER_TYPE = FRNLS4ðð

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 25

SimLibAddFolderItem

In this example, if the database name passed to SimLibLogon is MYVI400, the above
entry would be used to connect to the AS/400 system. If the database name is not
found in the network table, it is used as the symbolic destination name for CPI-C
communications and must be defined in the side information section of the APPC
communication product. Because the path in the VI400_CONFIG_PATH environment
variable accesses FRNOLINT.TBL, it can be placed on a shared LAN drive or in a
folder on an AS/400 that is accessed through Client Access or an equivalent product. If
the environment variable is not set, the file is accessed in the current directory–namely,
the Start in directory specified in the Shortcut page of the Properties for the icon.

EKDWSFRN.ERR should be in the path defined in VI400_CONFIG_PATH. This file is
used to log the descriptive name of each VisualInfo for AS/400 return code.

This version of the VisualInfo for AS/400 API set requires CPI-C level 1.2 support and
Client Access/400 or an equivalent product that provides access through a shared
folder. WCPIC32.DLL must be available in the path or logon will fail.

SimLibAddFolderItem (Add an Item to a Folder)

 Format

SimLibAddFolderItem(hSession, pszFolderID, pszItemID, pAsyncCtl, pRC)

 Purpose
Use the SimLibAddFolderItem function to add a document or a folder item to an
existing folder.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pszFolderID
PITEMID — input

The identifier of the folder. Use the item ID of an existing folder to which you want to
add a document or a folder item. This folder does not need to be open.

pszItemID
PITEMID — input

The identifier of an item. Use the item ID of the document or the folder item that you
are adding to the folder. The item cannot already exist in the folder. Do not use the
identifier of the same folder that you specified in the pszFolderID parameter. You
cannot add a folder to itself.

26 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibAddFolderItem

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in the
RCSTRUCT data structure:

usParam
Not used

ulParam1
Not used

ulParam2
Not used

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_ITEM_OR_FOLDER
 � SIM_RC_INVALID_PITEMIDFOLDER_PTR
 � SIM_RC_INVALID_PITEMIDFOLDER_VALUE
 � SIM_RC_INVALID_PITEMIDITEM_PTR
 � SIM_RC_INVALID_PITEMIDITEM_VALUE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PITEMIDFOLDER_NOT_A_FOLDER
 � SIM_RC_PITEM_NOT_FOLDER_OR_DOCUMENT
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Preparation
� To create a folder, use the SimLibCreateItem function.
� A document or folder can be in multiple folders at the same time.
� A folder and the items it contains can all have different index classes.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 27

SimLibAddFolderItem

 Restrictions
� You cannot add a folder to itself.

� This function does not automatically update the temporary copy of the folder table
of contents. You must use the Ip2GetTOCUpdates or Ip2GetTOC function to
update your temporary copy of the folder table of contents.

 Example
#include <windows.h> /\ Main Windows header files \/
#include <sys\types.h>
#include <stdio.h> /\ Standard I/O header files \/
#include <stdlib.h> /\ Standard library header files \/
#include <stdarg.h>
#include <stddef.h>
#include <io.h>
#include "ekdviapi.h" /\ VisualInfo for AS/4ðð \/

main ()
{

HSESSION hSession; /\ Product session handle \/
PITEMID pszFolderID; /\ ID of the folder \/
PITEMID pszItemID; /\ ID of the item to be added \/
RCSTRUCT RCStruct; /\ RC data structure \/
USHORT sResult; /\ return codes \/

 /\\\/
/\Initialize folderID and itemID \/

 /\\\/
memset (pszFolderID, '\ð', DOC_ID_SIZE); /\ set to null \/
strcpy ((CHAR \)pszItemID, (CHAR \) "Fðððððððð1");

memset (pszItemID, '\ð', DOC_ID_SIZE); /\ set to null \/
strcpy ((CHAR \)pszItemID, (CHAR \) "DA9722ðAA.AAB");

 /\\/
/\ Call SimLibCreateItem to create a new folder \/

 /\\/

sResult = SimLibAddFolderItem(
hSession, /\ ses'n handle from SimLibLogon \/
pszFolderID, /\ add item to this folder \/
pszItemID, /\ add this item to above folder \/
(PASYNCCTLSTRUCT) NULL, /\ Request SYNCHRONOUS processing\/
(PRCSTRUCT) &RCStruct /\ Pointer to RC data structure \/

);

if (sResult != SIM_RC_OK) {
printf("Add folder item failed \n");

 }
}

28 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibCatalogObject

 Related Functions
 � SimLibGetTOCData
 � Ip2GetTOCUpdates
 � Ip2TOCCount
 � SimLibGetTOC
 � SimLibRemoveFolderItem

SimLibCatalogObject (Catalog an Object)

 Format

SimLibCatalogObject(hSession, hObj, ulConCls, pSMS, pszFullFileName,
ulPriority, fCreateControl, ulVersion, lSeqAfterPart, ulAffiliatedType, pAffiliatedData,
pAsyncCtl, pRC)

 Purpose
Use the SimLibCatalogObject function to create a new object from the file that you
specify. Use this function when your data is already in a file rather than in memory.

Your application can substitute this function for the following sequence of VisualInfo for
AS/400 functions:

 � SimLibCreateObject
 � SimLibOpenObject
 � SimLibWriteObject
 � SimLibCloseObject

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hObj
HOBJ — input

The pointer to an object handle block in the HOBJ data structure. For more
information on the HOBJ data structure, see “HOBJ (Handle to Query Stored Object)”
on page 162. “Guidelines for Use” describes the effects of your input to this data
structure.

ulConCls
ULONG — input

The content class identifier for the object (see Appendix F, “Predefined Content
Classes” on page 220). The value of this parameter tells what kind of data is in the
object that you are cataloging.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 29

SimLibCatalogObject

To indicate an undefined content class, specify the value SIM_CC_UNKNOWN for
this parameter. However, if you do not use a defined content class, other applications
cannot use VisualInfo for AS/400 content class services to determine how to
manipulate the contents of objects that you store.

pSMS
PSMS — input

Pointer to a system-managed storage (SMS) structure for an object. This structure
uses only szCollectionName.

pszFullFileName
PSZ — input

The pointer to a fully qualified directory path and file name

ulPriority
ULONG — input

Not supported.

fCreateControl
BITS — input

Control option bits for the cataloging operation. Here are the valid values:

SIM_CLOSE
Closes the object on completion of the request.

SIM_OPEN
Leaves the object open in update mode.

ulVersion
ULONG — input

Not supported.

lSeqAfterPart
LONG — input

Not supported.

ulAffiliatedType
LONG — input

The type of affiliated object. The defined values are:

SIM_ANNOTATION
Indicates that the object is an annotation associated with a folder or a document.

SIM_BASE
Indicates that the object is a base object such as a Mixed Object Document
Content Architecture (MO:DCA) or Tag Image File Format (TIFF) file.

SIM_EVENT
Indicates that the object is an event associated with a folder or a document.

30 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibCatalogObject

SIM_MGDS
Indicates that the object is an MGDS (machine-generated data stream) associated
with a folder or a document.

SIM_NOTE
Indicates that the object is a note associated with a folder or a document.

pAffiliatedData
PVOID — input

The pointer to a data structure of the type ANNOTATIONSTRUCT. If the
ulAffiliatedType parameter contains the value SIM_ANNOTATION, pAffiliatedData
points to this structure, which contains additional data affiliated with the object.
Otherwise, the VisualInfo for AS/400 system ignores this parameter. For more
information on the ANNOTATIONSTRUCT structure, see “ANNOTATIONSTRUCT
(Annotation Information Structure)” on page 152.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input /output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 0.

ulParam1
Contains hObj, an HOBJ pointer to an object handle block.

ulParam2
If you specified SIM_OPEN as a flag in the fCreateControl parameter and the field is
not NULL, it contains the object access handle. This handle has the data type
HOBJACC. The value in this field identifies the current instance of the accessed
object.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_INVALID_FOPTIONS
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_LOCAL_STORAGE_MODE
 � SIM_RC_INVALID_OBJECT_HANDLE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 31

SimLibCatalogObject

 � SIM_RC_INVALID_SMS_PTR
 � SIM_RC_NOT_SUPPORTED
 � SIM_RC_OBJECT_ALREADY_EXISTS
 � SIM_RC_OPEN_FAILED
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Preparation
� The object that you catalog must exist as a file.

� To get the defined values for the ulConCls parameter, use the
Ip2ListContentClasses function.

 Effects
� This function creates an object and writes to that object the contents of the file that

you specify.

� On successful completion, this function returns an object handle that you can use
to access the object.

Your input values in the HOBJ data structure affect the results of this function.
Input values for the szItemID, ulPart, and chRepType fields in that structure are
optional.

If 0 is specified for the part number, the next sequential part number is created. If
part number is nonzero, that part number is used if it does not already exist. If it
does exist, the first available number is returned. Part number 1 is typically a base
part. This API lets you create part number 2–for example, a note–before creating
part number 1.

� If you do not specify the SIM_OPEN flag for the fCreateControl parameter, the
object is closed, but you can open it using the SimLibOpenObject function. Then
you can access the object by using the object access handle that the function
returns. You must use the object handle when referencing this object.

� Although your application can store its own affiliated types, other applications may
not be able to process those objects.

 Exceptions
The content class parameter is not validated as a defined, known content class.

 Follow-Up Tasks
� If you specify SIM_OPEN, close the object when you finish with it, using the

SimLibCloseObject function.

� After you finish using the pointer to the object handle block, free its space by using
the SimLibFree function.

32 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibCatalogObject

 Example
#include <stdio.h> /\ Standard I/O header files \/
#include <string.h> /\ Standard string header file \/
#include "ekdviapi.h" /\ VisualInfo for AS/4ðð \/

main ()
{

HSESSION hSession; // from logon
 HOBJ hObj;

HOBJ hObj2; //get pointer from catalog
ULONG ulConCls = SIM_CC_MODCA_IS2; // mod:ca object

 SMS sms;
 CHAR pszFullFileName[45];

UCHAR ulPriority = ð; // not supported
BITS fCreateControl = SIM_OPEN; //leave open-get hobjacc
ULONG ulVersion = ð; // not supported
LONG lSeqAfterPart = ð; // take default
ULONG ulAffiliatedType = SIM_BASE; // base part
PVOID pAffiliatedData = NULL; // no affil data for base part

 RCSTRUCT RC;
PRCSTRUCT pRC = &RC;
POBJ pObj; // Created object handle
HOBJACC hObjAcc; // object access handle
USHORT sResult; // return codes
// create hobj

 if(ð==(pObj=malloc(sizeof(OBJ)))) {
 return(1);
 }

(pObj)->ulStruct = sizeof(OBJ);
 strcpy((pObj)->szItemID,"");
 strcpy((pObj)->chRepType,"");

(pObj)->ulPart = ð;
hObj = pObj;

 strcpy(pszFullFileName, "d:\\spid\\modca.mda");
memset(SMS,ð, sizeof(sms)); // null out struct to get defaults

 strcpy(SMS.szCollectionName, "\DFT");

sResult = SimLibCatalogObject(
 hSession,
 hObj,
 ulConCls,
 SMS,
 pszFullFileName,
 ulPriority,
 fCreateControl,
 ulVersion,
 lSeqAfterPart,
 ulAffiliatedType,
 pAffiliatedData,
 ð,
 pRC);

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 33

SimLibChangeIndexClass

if (pRC ->ulRC == SUCCESS) {
// When only HOBJ is returned, it is in ulParam1
hObj2 = (HOBJ)pRC->ulParam1;
// Free memory allocated for HOBJ
SimLibFree(hSession, (PVOID)(hObj2), pRC);
// Mem containing the HOBJACC struct is freed by SimLibCloseObject.
hObjAcc = pRC->ulParam2; // object access handle

 }
}

 Related Functions
 � Ip2ListContentClasses
 � SimLibCloseObject
 � SimLibCreateItem
 � SimLibCreateObject
 � SimLibFree
 � SimLibOpenObject
 � SimLibWriteObject

SimLibChangeIndexClass (Change the Index Class for an Item)

 Format

SimLibChangeIndexClass(hSession, hItem, usClassId, pAsyncCtl, pRC)

 Purpose
Use the SimLibChangeIndexClass function to change the index class of an item to the
index class that you specify.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hItem
HITEM — input

The handle to a virtual item. The SimLibOpenItemAttr function returns this handle.

usClassId
USHORT — input

The identifier of the index class to change to.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

34 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibChangeIndexClass

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
The function does not use this field.

ulParam1
The function does not use this field.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HITEM_VALUE
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_PASSED_ATTRIBUTE_DATA
 � SIM_RC_INVALID_PATTRIBUTE_PTR
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_USATTRIBUTEID_VALUE
 � SIM_RC_INVALID_USCLASSID_VALUE
 � SIM_RC_NO_WRITE_ACCESS
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Preparation
Before you can use this function, you must use SimLibOpenItemAttr to open the item
for write access.

 Effects
� By changing the index class of an item, this function associates a different

user-defined attribute set with that item.

� If the item is not open for write access, the function returns error
SIM_RC_NO_WRITE_ACCESS.

� If the function fails, the VisualInfo for AS/400 system maintains the current attribute
set for this item.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 35

SimLibChangeObjectSMS

� If any index class attributes are common to both the original index class and the
new one you specify for the item, the function copies those attributes to the new
index class. Your application can then use the SimLibWriteAttr function to set the
new index class attributes to the values you want. After you specify all the required
attribute values for the new index class, you can make these values permanent by
saving changes to the item using SimLibSaveAttr or SimLibCloseAttr .

� Use SimLibGetClassInfo to determine the attributes associated with an index
class and SimLibGetAttrInfo to get details about an attribute.

 Related Functions
 � SimLibCloseAttr
 � SimLibGetAttrInfo
 � SimLibGetClassInfo
 � SimLibOpenItemAttr
 � SimLibSaveAttr
 � SimLibWriteAttr

SimLibChangeObjectSMS (Change the SMS Criteria for an Object)

 Format

SimLibChangeObjectSMS(hSession, hObj, pSMS, fChangeControl, pAsyncCtl,
pRC)

 Purpose
Use the SimLibChangeObjectSMS function to modify the system-managed storage
(SMS) criteria for an object.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hObj
HOBJ — input

The pointer to an object handle block in the HOBJ data structure. For more
information on the HOBJ structure, see “HOBJ (Handle to Query Stored Object)” on
page 162.

pSMS
PSMS — input

Pointer to a system-managed storage (SMS) structure for an object. This structure
uses only szCollectionName.

36 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibChangeObjectSMS

fChangeControl
BITS — input

Not supported.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
The function does not use this field.

ulParam1
The function does not use this field.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_FOPTIONS
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_ITEMID
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_PSMS_VALUE
 � SIM_RC_INVALID_SMS_PTR
 � SIM_RC_NEW_COLLECTION_NOT_FOUND
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PART_NOT_FOUND
 � SIM_RC_PRIVILEGE_ERROR

 Related Functions
 � SimLibCreateObject
 � SimLibQueryObject

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 37

SimLibCloseAttr

SimLibCloseAttr (Close an Attribute Set)

 Format

SimLibCloseAttr(hSession, hItem, ulDisposition, pAsyncCtl, pRC)

 Purpose
Use the SimLibCloseAttr function to release the access rights that your application
has to the folder or document you specify. You can use this function to replace the
permanent attributes of the item in the database with modifications that have been
made to the virtual item. Alternatively, you can use this function to discard
modifications to the virtual item without updating the permanent attributes.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hItem
HITEM — input

The handle to a virtual item. The SimLibOpenItemAttr function returns this handle.

ulDisposition
ULONG — input

The action to take regarding modifications to the item. The value of this parameter
determines whether the VisualInfo for AS/400 system saves or discards modifications
to the attributes of the virtual item. If the item is accessed for reading only or if none
of its attributes are changed, the VisualInfo for AS/400 system ignores this
parameter. Here are the valid values:

SIM_OPT_SAVE
Updates the permanent attributes of the item in the database by using the current
attribute settings of the virtual item. All required attributes of the index class must
be written before closing, or the function returns the error
SIM_RC_REQUIRED_ATTRIBUTE_MISSING. This value is valid only if the item is
open for update.

SIM_OPT_DISCARD
Discards modifications to the attribute settings of the virtual item without updating
the permanent attributes of the item in the database.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

38 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibCloseAttr

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
The function does not use this field.

ulParam1
The function does not use this field.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_FOPTIONS
 � SIM_RC_INVALID_HITEM_VALUE
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_USACCESSLEVEL_VALUE
 � SIM_RC_INVALID_USCLASSID_VALUE
 � SIM_RC_INVALID_USDISPOSITION_VALUE
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR
 � SIM_RC_REQUIRED_ATTRIBUTE_MISSING

Guidelines for Use

 Effects
The function closes the virtual attribute set and you can no longer use the access
handle. The function also frees the space used by the access handle.

 Related Functions
 �
 � SimLibChangeIndexClass
 � SimLibOpenItemAttr
 � SimLibSaveAttr
 � SimLibWriteAttr

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 39

SimLibCloseObject

SimLibCloseObject (Close an Object)

 Format

SimLibCloseObject(hSession, hObjAcc, fCommit, pAsyncCtl, pRC)

 Purpose
Use the SimLibCloseObject function to close an open object and end access to that
object.

You must use this function to close objects that you opened using any of the following
functions:

 � SimLibCatalogObject
 � SimLibCreateObject
 � SimLibOpenObject

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hObjAcc
HOBJACC — input

The object access handle. The value of this parameter identifies the current instance
of the accessed object.

fCommit
BOOL — input

The update commit flag. This flag applies only to objects open for update
(SIM_ACCESS_READ_WRITE). Otherwise, the VisualInfo for AS/400 system ignores
this flag. Here are the valid values:

TRUE or a nonzero value
Closes and updates the timestamp of the object.

FALSE or 0
If no changes were made to the object, closes the object without
changing the timestamp.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

40 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibCloseObject

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
The function does not use this field.

ulParam1
The function does not use this field.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_FOPTIONS
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_OBJECT_ACCESS_HANDLE
 � SIM_RC_INVALID_OBJECT_HANDLE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Effects
After successful completion of the function, you can no longer use the access handle.
The function also frees the space used by the access handle, so SimLibFree should
not be called.

 Example
#include <stdio.h> /\ Standard I/O header files \/
#include "ekdviapi.h" /\ VisualInfo for AS/4ðð \/

main ()
{

HSESSION hSession; // get from logon
HOBJACC hObjAcc; // get from catalog, open, or create
BOOL fCommit = TRUE; // keep the changes

 RCSTRUCT RC;
PRCSTRUCT pRC = &RC;
USHORT sResult; // return codes

/\Call the function\/

sResult = SimLibCloseObject(

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 41

SimLibCreateItem

 hSession,
 hObjAcc,
 fCommit,
 ð,
 pRC);
}

 Related Functions
 � SimLibCatalogObject
 � SimLibCreateObject
 � SimLibOpenObject

SimLibCreateItem (Create an Item)

 Format

SimLibCreateItem(hSession, usItemType, usIndexClass, usNumOfAttrs,
pAttributeList, ulAccessControl, pAsyncCtl, pRC)

 Purpose
Use the SimLibCreateItem function to create a new document or a new folder in the
index class that you specify. You must specify any required attributes for that index
class. You can also specify optional attributes for the item.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

usItemType
USHORT — input

The type of item you want to create. Here are the valid values:

SIM_DOCUMENT
Indicates that the item is a document.

SIM_FOLDER
Indicates that the item is a folder.

usIndexClass
USHORT — input

An index class identifier for the set of user-defined attributes to associate with this
item. This index class must exist at the time you log on.

If you do not require any user-defined attributes, use SIM_INDEX_NOINDEX, which
is a special index class created during installation and preset with user-defined

42 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibCreateItem

attributes, to indicate that the item has not yet been indexed. “Guidelines for Use”
explains why it is important to use a predefined index class.

usNumOfAttrs
USHORT — input

The number of data structures in the pAttributeList parameter array.

pAttributeList
PATTRLISTSTRUCT — input

The pointer to an array of ATTRLISTSTRUCT data structures that contain the
attributes to associate with this document or this folder. Each data structure in the
array specifies one attribute. If you set this parameter to NULL, no attributes are
associated with the item. For more information on the ATTRLISTSTRUCT data
structure, see “ATTRLISTSTRUCT (Attribute List Data Structure)” on page 155.

To add attributes to the item later, your application must first open the item and then
use separate functions to write the attributes to it.

ulAccessControl
ULONG — input

Not supported.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer. If an error occurs,
this field contains the value 0.

ulParam1
Contains a PITEMID pointer to a buffer with the item identifier (pszItemID) for the
new item.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_ATTR_NOT_FOUND
 � SIM_RC_ATTRIBUTE_READ_ONLY

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 43

SimLibCreateItem

 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_INDEX_CLASS
 � SIM_RC_INVALID_MSGID
 � SIM_RC_INVALID_PASSED_ATTRIBUTE_DATA
 � SIM_RC_INVALID_PATTRIBUTELIST_PTR
 � SIM_RC_INVALID_PATTRIBUTELIST_VALUE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_USATTRIBUTEID_VALUE
 � SIM_RC_INVALID_USITEMTYPE_VALUE
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Preparation
� Use of a predefined index class is important so that you can use the

SimLibSearch function to locate items.

� To add an item to a newly created index class, log off and then log on again before
using this function, so that the index class is in existence at logon time.

� You can also create items automatically by using the SimLibCatalogObject or
SimLibCreateObject . Use SimLibCreateItem when you have an index class with
attribute values. Then use SimLibCatalogObject , SimLibCreateObject , or
SimLibStoreNewObject to put objects into the new item.

 Follow-Up Tasks
After the function gets the item identifier, use the SimLibFree(hSession,
(PVOID)ulParam1, pRC) function to free the buffer.

 Example
#include <windows.h> /\ Main Windows header files \/
#include <sys\types.h>
#include <stdio.h> /\ Standard I/O header files \/
#include <stdlib.h> /\ Standard library header files \/
#include <stdarg.h>
#include <stddef.h>
#include <io.h>
#include "ekdviapi.h" /\ VisualInfo for AS/4ðð \/

main ()
{

HSESSION hSession; /\ Product session handle \/
ITEMID FolderItemID; /\ ItemID of new folder \/
USHORT usFoldAttrs; /\ Number of ATTRLISTSTRUCTs \/
ATTRLISTSTRUCT Folder [1] = {

44 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibCreateItem

sizeof(Folder), /\ structure size \/
"SourceName", /\ attribute value \/
SIM_ATTR_READWRITE, /\ attribute flags \/
14ð, /\ attribute ID \/
SIM_ATTR_FSTRING /\ attribute type \/

 };

USHORT usIndexClass; /\ Index class for folder \/
RCSTRUCT RCStruct; /\ RC data structure \/
USHORT sResult; /\ return codes \/

 /\\\/
/\ Initialize SimLibCreateItem Parameters. \/

 /\\\/

/\ We will create an item in the SIM_INDEX_NOINDEX Index Class. \/
/\ This index has three optional attributes. We will provide a \/
/\ value for only one of these attributes. This is done by \/
/\ initializing the attribute array "Folder" above. \/

usIndexClass = SIM_INDEX_NOINDEX;/\ Index Class of the folder \/
usFoldAttrs = 1; /\ # of attrs for the folder \/

 /\\/
/\ Call SimLibCreateItem to create a new folder \/

 /\\/

sResult = SimLibCreateItem(
hSession, /\ sessn handle from SimLibLogon \/
SIM_FOLDER, /\ Create a folder \/
usIndexClass, /\ Index class of folder \/
usFoldAttrs, /\ Number of attribute lists \/
&Folder, /\ Pointer to attribute list \/
NULL, /\ Reserved for future use \/
NULL, /\ Request SYNCHRONOUS processing\/
&RCStruct /\ Pointer to RC data structure \/

);

 /\\/
/\ If successful, copy the itemID \/

 /\\/

if (sResult == SIM_RC_OK) {
strcpy (FolderItemID, (char\)RCStruct.ulParam1;
printf("New Folder ItemID = %s\n\n", FolderItemID);

 }
 else {

/\ exception processing \/
 }
}

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 45

SimLibCreateObject

 Related Functions
 � SimLibChangeIndexClass
 � SimLibFree
 � SimLibGetAttrInfo
 � SimLibGetClassInfo
 � SimLibSearch

SimLibCreateObject (Create an Object)

 Format

SimLibCreateObject(hSession, hObj, ulConCls, pSMS, ulPriority, fCreateControl,
ulVersion, lSeqAfterPart, ulAffiliatedType, pAffiliatedData, pAsyncCtl, pRC)

 Purpose
Use the SimLibCreateObject function to create a new empty object, such as when
your data is in memory rather than in a file.

You can also create an object using the SimLibCatalogObject function, which is
equivalent to using the SimLibCreateObject , SimLibWriteObject , and
SimLibCloseObject functions. You can also create an object using the
SimLibStoreNewObject function, which is simpler than using the combination of
functions.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hObj
HOBJ — input

The pointer to an object handle block in the HOBJ data structure. For more
information on the HOBJ data structure, see “HOBJ (Handle to Query Stored Object)”
on page 162. “Guidelines for Use” describes the effects of your input to this data
structure.

ulConCls
ULONG — input

The content class identifier for the object. The value of this parameter tells what kind
of data is in the object that you are creating (see Appendix F, “Predefined Content
Classes” on page 220). To indicate an undefined content class, specify the value
SIM_CC_UNKNOWN for this parameter. However, if you do not use a defined
content class, other applications cannot use VisualInfo for AS/400 content class
services to determine how to manipulate the contents of the objects that you store.

46 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibCreateObject

pSMS
PSMS — input

Pointer to a system-managed storage (SMS) structure for an object. This structure
uses only szCollectionName.

ulPriority
ULONG — input

Not supported.

fCreateControl
BITS — input

Control option bits for the creation operation. Here are the valid values:

SIM_CLOSE
Closes the object on completion of the request. This is the default.

SIM_OPEN
Leaves the object open in update mode.

If you do not specify this flag, the created object is closed.

ulVersion
ULONG — input

Not supported.

lSeqAfterPart
LONG — input

Not supported.

ulAffiliatedType
ULONG — input

The type of affiliated object. The defined values are:

SIM_ANNOTATION
Indicates that the object is an annotation associated with a folder or a document.

SIM_BASE
Indicates that the object is a base object such as a MO:DCA or TIFF file, and is
not an annotation, note, or event associated with a folder or document.

SIM_EVENT
Indicates that the object is an event associated with a folder or a document.

SIM_MGDS
Indicates that the object is an MGDS (machine-generated data stream) associated
with a folder or a document.

SIM_NOTE
Indicates that the object is a note associated with a folder or a document.

pAffiliatedData
PVOID — input

The pointer to a data structure of the type ANNOTATIONSTRUCT. If the

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 47

SimLibCreateObject

ulAffiliatedType parameter contains the value SIM_ANNOTATION, pAffiliatedData
points to this structure, which contains additional data affiliated with the object.
Otherwise, the VisualInfo for AS/400 system ignores this parameter. For more
information on the ANNOTATIONSTRUCT structure, see “ANNOTATIONSTRUCT
(Annotation Information Structure)” on page 152.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 0.

ulParam1
Contains hObj, an HOBJ pointer to an object handle block.

ulParam2
If the fCreateControl parameter flag was set to SIM_OPEN and this field is not null, it
contains hobjacc, the object access handle. This handle has the data type
HOBJACC. The value in this field identifies the current instance of the accessed
object.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_OBJECT_HANDLE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_SMS_PTR
 � SIM_RC_OPEN_FAILED
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR
 � SIM_RC_INVALID_USCLASSID_VALUE

48 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibCreateObject

Guidelines for Use

 Preparation
To get the supported values for the ulConCls parameter, use the
Ip2ListContentClasses function.

 Effects
� This function creates an empty object that you can write to using

SimLibWriteObject .

� On successful completion, this function returns an object handle that you can use
to access the object.

� You can create a new object within a specified item or create both the item and an
object within it. If you create the item, you cannot specify any attributes. The item
is placed in the SIM_INDEX_NOINDEX index class. You must do that later using
the SimLibOpenItemAttr , SimLibWriteAttr , and SimLibCloseAttr functions.

� Although your application can store its own affiliated types, other applications may
not be able to process those objects.

� Your input values in the HOBJ data structure affect the results of this function.
Input values for the szItemID, ulPart, and chRepType fields in this structure are
optional.

If 0 is specified for the part number, the next sequential part number is created. If
part number is nonzero, that part number is used if it does not already exist. If it
does exist, the first available number is returned. Part number 1 is typically a base
part. This API lets you create part number 2–for example, a note–before creating
part number 1.

� If the function closed the object, you can open it using the SimLibOpenObject
function.

� If the function returns the object access handle, this handle identifies the current
instance of access to the open object. This handle is different from the handle
normally used to reference the stored object. Use the object access handle
(hObjAcc), not the object handle (hObj), with the following functions:

 – SimLibCloseObject
 – SimLibReadObject
 – SimLibResizeObject
 – SimLibSeekObject
 – SimLibWriteObject

 Exceptions
� The content class parameter is not validated as a defined, known content class.

 Follow-Up Tasks
� After your application finishes with hObj, the object handle, free the space by using

the SimLibFree function.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 49

SimLibCreateObject

� Your application should not free the space used by hObjAcc, the object access
handle, because the later call to SimLibCloseObject frees the space.

 Example

#include <stdio.h> /\ Standard I/O header files \/
#include <string.h> /\ Standard string header file \/
#include "ekdviapi.h" /\ VisualInfo for AS/4ðð \/

 main()
{

HSESSION hSession; // get from logon
HOBJ hObj, hObj2;
ULONG ulConCls = SIM_CC_MODCA_IS2; // mod:ca object

 SMS sms;
ULONG ulPriority = ð; // not supported
BITS fCreateControl = SIM_OPEN; //leave open-get hobjacc
ULONG ulVersion = ð; // not supported
LONG lSeqAfterPart = ð; // not supported
ULONG ulAffiliatedType = SIM_BASE;
PVOID pAffiliatedData = NULL; // no affiliated data

 RCSTRUCT RC;
PRCSTRUCT pRC = &RC;
POBJ pObj; // Created object handle
USHORT sResult; // get rc back
HOBJACC hObjAcc; // object access handle

// create hobj
if(ð==(pObj=(POBJ) malloc(sizeof(OBJ)))) {

 return(1);
 }

(pObj)->ulStruct = sizeof(OBJ);
 strcpy((pObj)->szItemID,"");
 strcpy((pObj)->chRepType,"");

(pObj)->ulPart = ð;
hObj = pObj;

memset(SMS,ð, sizeof(sms)); // null out struct to get defaults
 strcpy(SMS.szCollectionName, "\DFT");

/\Call the function\/

sResult = SimLibCreateObject(
 hSession,
 hObj,
 ulConCls,
 SMS,;
 ulPriority,
 fCreateControl,
 ulVersion,
 lSeqAfterPart,

50 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibDeleteItem

 ulAffiliatedType,
 pAffiliatedData,
 ð,
 pRC);

if (pRC ->ulRC == SUCCESS) {
// When only HOBJ is returned, it is in ulParam1
hObj2 = (HOBJ)pRC->ulParam1;
// Free memory allocated for HOBJ
SimLibFree(hSession, (PVOID)(hObj2), pRC);
// Mem containing the HOBJACC struct is freed by SimLibCloseObject.
hObjAcc = pRC->ulParam2; // object access handle

 }
}

 Related Functions
 � Ip2ListContentClasses
 � SimLibCatalogObject
 � SimLibCloseObject
 � SimLibCreateObject
 � SimLibFree
 � SimLibOpenObject
 � SimLibReadObject
 � SimLibResizeObject
 � SimLibSeekObject
 � SimLibWriteObject

SimLibDeleteItem (Delete an Item)

 Format

SimLibDeleteItem(hSession, pszItemID, pAsyncCtl, pRC)

 Purpose
Use the SimLibDeleteItem function to delete a folder or a document from the system.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pszItemID
PITEMID — input

The identifier of an item you want to delete. This identifier is the item ID.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 51

SimLibDeleteItem

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 0. If the item is locked on the server, this field contains the value
1, to indicate that ulParam1 contains a pointer.

ulParam1
If usParam is 1, this field contains a pointer to a buffer with a
USERACCESSSTRUCT data structure. This data structure contains a user ID that
indicates who has locked the item. If any other error is returned, this field contains
the value NULL. For more information on the USERACCESSSTRUCT data structure,
see “USERACCESSSTRUCT (User Access Data Structure)” on page 178.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INUSE
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_PITEMIDITEM_PTR
 � SIM_RC_INVALID_PITEMIDITEM_VALUE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_ITEM_CHECKEDOUT
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PARENT_CHECKEDOUT
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Effects

52 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibDeleteItem

� This function removes the specified document or folder from the database. After
completion of the function, the item ID (pszItemID) associated with the item is no
longer valid.

� The function automatically removes any references to the deleted item in the table
of contents of folders or workbaskets that list it.

� For either a folder or a document, the VisualInfo for AS/400 system deletes all
objects associated with the item.

� If a folder is deleted, documents or folders in the folder are not deleted.

 Exceptions
� This function cannot delete an item if the item, or a folder containing the item, is

currently locked by a user ID other than the one you specified on the pszUserID
parameter when you used SimLibLogon to begin this VisualInfo for AS/400
session.

A folder can have more than one parent folder. If a parent folder is locked and
SimLibDeleteItem returns SIM_RC_PARENT_CHECKEDOUT, the function does
not identify the folder that is locked.

 Follow-Up Tasks
After your application no longer needs the user access information, use the
SimLibFree(hSession, (PVOID)ulParam1, pRC) function to free the buffer containing
the USERACCESSSTRUCT data structure.

 Example
#include <windows.h> /\ Main Windows header files \/
#include <sys\types.h>
#include <stdio.h> /\ Standard I/O header files \/
#include <stdlib.h> /\ Standard library header files \/
#include <stdarg.h>
#include <stddef.h>
#include <io.h>
#include "ekdviapi.h" /\ VisualInfo for AS/4ðð \/
main ()
{

HSESSION hSession; /\ Product session handle \/
PITEMID pszItemID; /\ Pointer to an item ID. \/
RCSTRUCT RCStruct; /\ RC data structure \/
USHORT sResult; /\ return codes \/

 /\\\/
/\Initialize the itemID to prepare for a call to SimLibDeleteItem\/

 /\\\/
memset (pszItemID, '\ð', DOC_ID_SIZE); /\ set to null \/
strcpy ((CHAR \)pszItemID, (CHAR \) "DA9722ðAA.AAB");

 /\\/
/\ Call SimLibCreateItem to create a new folder \/

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 53

SimLibDeleteObject

 /\\/

sResult = SimLibDeleteItem(
hSession, /\ sessn handle from SimLibLogon \/
pszItemID, /\ itemID to be deleted \/
(PASYNCCTLSTRUCT) NULL, /\ Request SYNCHRONOUS processing\/
(PRCSTRUCT) &RCStruct /\ Pointer to RC data structure \/

);

if (sResult != SIM_RC_OK) {
printf("Item %s cannot be deleted", pszItemID);

 }
}

 Related Functions
 � SimLibAddFolderItem
 � SimLibCloseAttr
 � SimLibCreateItem
 � SimLibFree
 � SimLibGetItem
 � SimLibOpenItemAttr

SimLibDeleteObject (Delete an Object)

 Format

SimLibDeleteObject(hSession, hObj, ulDeleteOption, pAsyncCtl, pRC)

 Purpose
Use the SimLibDeleteObject function to delete the object that you specify.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hObj
HOBJ — input

The pointer to an object handle block in the HOBJ data structure. For more
information on the HOBJ structure, see “HOBJ (Handle to Query Stored Object)” on
page 162.

ulDeleteOption
ULONG — input

Not supported.

54 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibDeleteObject

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 0. If the return code is locked, this field contains the value 1, to
indicate that ulParam1 contains a pointer. If the VisualInfo for AS/400 system returns
any other error, this field contains the value NULL.

ulParam1
If usParam is 1, this field contains a pointer to a USERACCESSSTRUCT data
structure. The data structure contains the user ID of the user who has locked the
item. For more information on the USERACCESSSTRUCT structure, see
“USERACCESSSTRUCT (User Access Data Structure)” on page 178.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_OBJECT_HANDLE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_ITEM_CHECKEDOUT
 � SIM_RC_ITEM_NOT_FOUND
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PART_NOT_FOUND
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Effects
When the last object in an item is deleted, the item is also deleted. To delete all the
objects in one operation, use SimLibDeleteItem , which deletes the item and all the
objects within it.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 55

SimLibFree

 Exceptions
� You cannot delete an object if the item that contains the object is locked by

someone else.

� If the item contains only the object, the item is also deleted.

SimLibFree (Free Memory)

 Format

SimLibFree(hSession, pBuffer, pRC)

 Purpose
Use the SimLibFree function to free all memory allocated and returned by the
VisualInfo for AS/400 system. Do not call this function if your application allocated the
memory. Use it only as directed.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pBuffer
PVOID — input

A pointer to a data structure of indeterminate type.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in the
RCSTRUCT data structure:

usParam
The function does not use this field.

ulParam1
The function does not use this field.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK

56 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibGetAttrInfo

 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC

 Example
ULONG ulRC;
HSESSION hsession;
RCSTRUCT RC;

ulRC ═ SimLibListClasses(hSession, ð, NULL, &RC);
if (ulRC ══ SIM_RC_OK) {

// process list of classes
SimLibFree(hSession, (PVOID)RC.ulParam1, &RC);

}

 Related Functions
 � SimLibLogon

SimLibGetAttrInfo (Get Attribute Information)

 Format

SimLibGetAttrInfo(hSession, usAttributeId, pAsyncCtl, pRC)

 Purpose
Use the SimLibGetAttrInfo function to return detailed information for a specific attribute
in the system. This function can return information for both the system-defined
attributes and the user-defined index attributes.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

usAttributeId
USHORT — input

The unique identifier assigned to an attribute. You can pass the ID of an index class
or one of the following VisualInfo for AS/400 system-defined attributes:

OIM_ID_ITEM_CREATE_TIMESTAMP
Indicates the creation time of the item.

OIM_ID_ITEM_NAME
Indicates the name of the item. This attribute is optional.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 57

SimLibGetAttrInfo

OIM_ID_SYS_MOD_TIMESTAMP
Indicates the last time the item was changed.

OIM_ID_UID
Indicates the item ID.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer. If completion is
not successful, this field contains the value 0.

ulParam1
Contains a pointer to a buffer where an ATTRINFOSTRUCT data structure provides
information about the specified attribute. For more information on the
ATTRINFOSTRUCT data structure, see “ATTRINFOSTRUCT (Attribute Information
Structure)” on page 153.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_USATTRIBUTEID_VALUE
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Follow-Up Tasks
When your application no longer needs the ATTRINFOSTRUCT data, use the
SimLibFree(hSession,(PVOID)ulParam1, pRC) function to free the buffer containing
the structure.

58 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibGetClassIndex

 Related Functions
 � Ip2ListAttrs
 � SimLibFree
 � SimLibGetClassInfo

SimLibGetClassIndexes (Get Class Indexes)

 Format

SimLibGetClassIndexes(hSession, usIndexClass, pAsyncCtl, pRC)

 Purpose
Use the SimLibGetClassIndexes() function to list each database index created for the
index class you specify.

 Parameters
hSession

HSESSION — input

The handle to the IBM ImagePlus VisualInfo for AS/400 session information. The
SimLibLogon() function creates the session information.

usIndexClass
USHORT — input

The identifier of the index class for which you want a list of database indexes.
Specify the index class ID.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer.

ulParam1
Contains a pointer to an array of CLASSINDEXSTRUCT data structures. For more
information on this data structure, see “CLASSINDEXSTRUCT (Class Index
Structure)” on page 159. If no index class indexes are found, this field contains the
value NULL.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 59

SimLibGetClassIndex

ulParam2
Contains the number of elements in the array pointed to by ulParam1, which is also
the number of indexes for this index class. If no index class indexes are found, this
field contains the value 0.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_COMPLETION_MSG_NOT_POSTED
 � SIM_RC_COMPLETION_SEM_ALREADY_POSTED
 � SIM_RC_COMPLETION_SEM_TOO_MANY_POSTS
 � SIM_RC_DOCSS_ERROR
 � SIM_RC_ERROR_RELEASING_SEMAPHORE
 � SIM_RC_ERROR_REQUESTING_SEMAPHORE
 � SIM_RC_FUNC_NOT_IN_TRANS
 � SIM_RC_GETRESPONSE_TIMEOUT
 � SIM_RC_INVALID_INDEX_CLASS
 � SIM_RC_INVALID_MSGID
 � SIM_RC_INVALID_PRC
 � SIM_RC_IP2_ENV_VAR_NOT_FOUND
 � SIM_RC_LEVEL2_DLL_LOAD_FAIL
 � SIM_RC_NOT_SUPPORTED

Guidelines for Use

 Exceptions
� Each index class has a default database index. However, this function does not

return that default index and you cannot delete it using the Ip2DeleteIndex()
function. The default database index is on the ITEMID column of the index class
attributes table.

� An index class ID with the value 0 returns SIM_RC_INVALID_INDEX_CLASS.

� An index class that does not exist returns SIM_RC_OK, just as if it were a valid
index class with no indexes.

 Follow-Up Tasks
� Your application can use this information to prompt the user for those attributes

that are indexed, leading to faster searches.

� When your application no longer needs the CLASSINDEXSTRUCT data, use the
SimLibFree(hSession,(PVOID)ulParam1, pRC) function to free the buffer. One
call to this function releases the CLASSINDEXSTRUCT data structure and any
CLASSINDEXATTRSTRUCT data structures.

60 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibGetClassInfo

 Related Functions
 � SimLibLogon()

SimLibGetClassInfo (Get Index Class Information)

 Format

SimLibGetClassInfo(hSession, usClassType, usID, pAsyncCtl, pRC)

 Purpose
Use the SimLibGetClassInfo function to return detailed information for a specific index
class or index class view defined in the system.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

usClassType
USHORT— input

The type of information that the usID parameter contains. Here are the valid values:

SIM_INDEXCLASSID
Indicates that the usID parameter contains an index class ID.

usID
USHORT — input

The ID of an index class.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer to the data area.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 61

SimLibGetItemAffiliatedTOC

ulParam1
Contains a pointer to a buffer with a CLASSINFOSTRUCT data structure.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_CLASS_TYPE
 � SIM_RC_INVALID_FOPTIONS
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_USCLASSID_VALUE
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Exceptions
The information that this function returns is subject to access control restrictions. If you
do not have access to the index class, the function fails and
SIM_RC_INVALID_USCLASSID_VALUE is returned.

 Follow-Up Tasks
When your application no longer needs the CLASSINFOSTRUCT data, use the
SimLibFree(hSession, (PVOID)ulParam1, pRC) function to free the buffer.

SimLibGetItemAffiliatedTOC (Get a Table of Contents for Item Affiliates)

 Format

SimLibGetItemAffiliatedTOC(hSession, pszItemID, usAffiliatedType, pAsyncCtl,
pRC)

 Purpose
Use the SimLibGetItemAffiliatedTOC() function to get a table of contents that lists the
affiliated objects for an item.

62 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibGetItemAffiliatedTOC

 Parameters
hSession

HSESSION — input

The handle to the IBM ImagePlus VisualInfo for AS/400 session information. The
SimLibLogon() function creates the session information.

pszItemID
PITEMID — input

The identifier of an item for which you want a table of contents listing affiliated
objects. This identifier is the item ID.

usAffiliatedType
USHORT — input

The type of affiliated object to list in the table of contents. The valid values are:

SIM_ANNOTATION
Lists annotations associated with the folder or document.

SIM_BASE
Lists base objects, such as MO:DCA or TIFF files, that are not annotations, notes,
or events associated with the folder or document.

SIM_EVENT
Lists events associated with the folder or document.

SIM_MGDS
Lists MGDS (machine-generated data streams) associated with the folder or
document.

SIM_NOTE
Lists notes associated with the folder or document.

SIM_ALL
Lists all types of objects associated with the folder or document.

If you specify that you want to return objects other than base objects, they must have
a nonzero length. Base objects are always included regardless of their length.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 63

SimLibGetItemAffiliatedTOC

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer. Otherwise, this
field contains the value 0.

ulParam1
Contains a pointer to a buffer with an array of AFFTOCENTRYSTRUCT data
structures. If no affiliated objects satisfy the usAffiliatedType filter, this field contains
the value NULL. For more information on the AFFTOCENTRYSTRUCT data
structure, see “AFFTOCENTRYSTRUCT (Affiliated Table of Contents Entry
Structure)” on page 151.

ulParam2
Contains the number of entries in the AFFTOCENTRYSTRUCT array referenced by
ulParam1. If no affiliated objects satisfy the usAffiliatedType filter, this field contains
the value NULL.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_COMPLETION_MSG_NOT_POSTED
 � SIM_RC_COMPLETION_SEM_ALREADY_POSTED
 � SIM_RC_COMPLETION_SEM_TOO_MANY_POSTS
 � SIM_RC_DOCSS_ERROR
 � SIM_RC_ERROR_RELEASING_SEMAPHORE
 � SIM_RC_ERROR_REQUESTING_SEMAPHORE
 � SIM_RC_FUNC_NOT_IN_TRANS
 � SIM_RC_GETRESPONSE_TIMEOUT
 � SIM_RC_INVALID_AFFILIATEDTYPE_VALUE
 � SIM_RC_INVALID_PITEMIDITEM_PTR
 � SIM_RC_INVALID_PITEMIDITEM_VALUE
 � SIM_RC_INVALID_PLATSESSION_TYPE
 � SIM_RC_INVALID_PRC
 � SIM_RC_ITEM_NOT_FOUND
 � SIM_RC_NOT_SUPPORTED
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Follow-Up Tasks
After you get the TOC information, use the SimLibFree(hSession, (PVOID)ulParam1,
pRC) function to clear the buffer containing the AFFTOCENTRYSTRUCT data
structures.

64 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibGetItemInfo

 Related Functions
 � SimLibFree()
 � SimLibLogon()

SimLibGetItemInfo (Get Item Information)

 Format

SimLibGetItemInfo(hSession, pszItemID, usClassId, pAsyncCtl, pRC)

 Purpose
Use the SimLibGetItemInfo function to return the following information about a
document or a folder to your application:

 � Item type
 � Item name
� Index class of the item
� Work management information
� User ID of anyone who has locked the item

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pszItemID
PITEMID — input

The identifier of an item for which you want information. This identifier is the item ID.

usClassId
USHORT — input

The identifier of an index class.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 65

SimLibGetItemSnapshot

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer to a data area.

ulParam1
Contains a pointer to an ITEMINFOSTRUCT data structure that provides the item
information. For more information on this data structure, see “ITEMINFOSTRUCT
(Item Information Structure)” on page 163.

ulParam2
Contains the value 1, indicating that the buffer referenced by ulParam1 contains 1
entry.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_ID
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_ITEM_TYPE
 � SIM_RC_INVALID_PITEMIDITEM_PTR
 � SIM_RC_INVALID_PITEMIDITEM_VALUE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Exceptions
Do not use this function to return information about a workbasket. To return
workbasket information, use SimWmGetWorkBasketInfo .

 Follow-Up Tasks
When your application no longer needs the item information, use the
SimLibFree(hSession, (PVOID)ulParam1, pRC) function to free the buffer.

 Related Functions
 � SimWMGetWorkBasketInfo
 � SimLibListClassess

SimLibGetItemSnapshot (Get a Snapshot of Item Attributes)

 Format

SimLibGetItemSnapshot(hSession, pszItemID, fReadAttrInd, pAsyncCtl, pRC)

66 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibGetItemSnapshot

 Purpose
Use the SimLibGetItemSnapshot function to return a copy of the attributes associated
with a document or a folder. Your application can substitute this function for the
following sequence of VisualInfo for AS/400 functions:

 � SimLibGetItemType
 � SimLibOpenItemAttr
 � SimLibReadAttr
 � SimLibCloseAttr

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pszItemID
PITEMID — input

The identifier of an item. This identifier is the item ID.

fReadAttrInd
BITS — input

The type of attribute values to return. Here are the valid values. You can use a
bitwise inclusive OR operator (|) to combine them.

SIM_SYSTEM_ATTR
Returns the system-defined attribute values for the document or the folder.

SIM_USER_ATTR
Returns the user-defined attribute values for the document or the folder.

SIM_WORK_ATTR
Returns the work management information for the document or the folder.

The function returns attribute values for the current view. The VisualInfo for AS/400
system gets system-defined and user-defined attribute values from the
SNAPSHOTSTRUCT data structure and returns them in the pAttr field of the
ICVIEWSTRUCT data structure. It returns priority attributes and work management
information in the pWmSnapshot field of the SNAPSHOTSTRUCT data structure.
“Guidelines for Use” contains more detail. For more information on the
ICVIEWSTRUCT and SNAPSHOTSTRUCT data structures, see “ICVIEWSTRUCT
(Index Class View Information Structure)” on page 162 and “SNAPSHOTSTRUCT
(Snapshot Information Structure)” on page 173.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 67

SimLibGetItemSnapshot

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer to a data area.

ulParam1
Contains a pointer to a SNAPSHOTSTRUCT data structure that provides the
returned attribute values.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_ID
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_ITEM_TYPE
 � SIM_RC_INVALID_PITEMIDITEM_PTR
 � SIM_RC_INVALID_PITEMIDITEM_VALUE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_READATTRIND
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR
 � SIM_RC_SESSION_DB_VIEW_MISMATCH

Guidelines for Use

 Exceptions
Your application might need to use a conversion routine such as an ASCII-to-integer
routine to change the character representation of an attribute value into the correct form
for the application.

 Follow-Up Tasks
After your application has processed the information that the VisualInfo for AS/400
system returns to the SNAPSHOTSTRUCT data structure, use the
SimLibFree(hSession, (PVOID)ulParam1, pRC) function to free the pointer to the
SNAPSHOTSTRUCT data structure.

68 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibGetItemType

 Related Functions
 � SimLibCloseAttr
 � SimLibFree
 � SimLibGetItemType
 � SimLibGetTOCData
 � SimLibOpenItemAttr
 � SimLibReadAttr

SimLibGetItemType (Get the Type of an Item)

 Format

SimLibGetItemType(hSession, pszItemID, pAsyncCtl, pRC)

 Purpose
Use the SimLibGetItemType function to return the type of an item associated with the
item identifier you specify.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pszItemID
PITEMID — input

The identifier of an item for which you want to return the type. This identifier is the
item ID.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 0.

ulParam1
Contains one of the following values indicating the type of item:

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 69

SimLibGetItemXREF

SIM_DOCUMENT
Indicates that the item is a document.

SIM_FOLDER
Indicates that the item is a folder.

SIM_WORKBASKET
Indicates that the item is a workbasket.

SIM_WORKFLOW
Indicates that the item is a workflow.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_ID
 � SIM_RC_INVALID_PITEMIDITEM_PTR
 � SIM_RC_INVALID_PITEMIDITEM_VALUE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_OUT_OF_MEMORY

Guidelines for Use

 Effects
After successful completion of this function, you can use other VisualInfo for AS/400
functions to get additional detailed information about the item. To return additional
information, use one of the following functions:

SimLibGetItemInfo
To return information about a folder or a document.

SimWmGetWorkBasketInfo
To return information about a workbasket.

 Related Functions
 � SimWmGetWorkBasketInfo
 � SimLibGetItemInfo

SimLibGetItemXREF (Get a Cross-Reference for an Item)

 Format

SimLibGetItemXREF(hSession, pszItemID, ulFilter, pAsyncCtl, pRC)

70 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibGetItemXREF

 Purpose
Use the SimLibGetItemXREF function to list the folders that contain the item you
specify and match the other criteria you specify.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pszItemID
PITEMID — input

The identifier of an item for which you want a cross reference. This identifier is the
item ID.

ulFilter
ULONG — input

The criteria to match for cross-referencing. Here are the valid values:

SIM_XREF_FOLDERS_ONLY_FILTER
Returns only folders that contain the specified item.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer. If no items match
the criteria you specify, this field contains the value NULL.

ulParam1
Contains a pointer to a buffer with an array of ITEMID strings. Each string provides
the item ID of a folder that contains the specified item. If no items match the criteria
you specify, this field contains the value NULL.

ulParam2
Contains the number of entries pointed to by ulParam1.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 71

SimLibGetSessionType

 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_ID
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_ITEM_TYPE
 � SIM_RC_INVALID_PITEMIDITEM_PTR
 � SIM_RC_INVALID_PITEMIDITEM_VALUE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_USFILTER_VALUE
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Follow-Up Tasks
After you get the item ID information, use the SimLibFree(hSession,
(PVOID)ulParam1, pRC) function to free the buffer containing the cross-reference
information.

SimLibGetSessionType (Get the Session Type)

 Format

SimLibGetSessionType(hSession, pAsyncCtl, pRC)

 Purpose
Use the SimLibGetSessionType() function to return information regarding the platform
type of the current session.

 Parameters
hSession

HSESSION — input

The handle to the IBM ImagePlus VisualInfo for AS/400 session information. The
SimLibLogon() function creates the session information.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

72 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibGetTOC

 Return Values
On successful completion, this function returns values to the following fields in the
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer.

ulParam1
Contains a PSZ to the current session type. If you have a LAN-based library session,
the session type is Ip2. Other values are platform dependent.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_OUT_OF_MEMORY

Guidelines for Use

 Follow-Up Tasks
When your application no longer needs the session type information, use the
SimLibFree(hSession, (PVOID)ulParam1, pRC) function to free the buffer.

 Related Functions
 � SimLibLogon()

SimLibGetTOC (Get a Table of Contents)

 Format

SimLibGetTOC(hSession, pszItemID, usItemType, usWipFilter, usSuspendFilter,
usNbrOfClasses, pusClassIdList, pLinkCriteria, pAsyncCtl, pRC)

 Purpose
Use the SimLibGetTOC function to return either a partial or a complete table of
contents for the workbasket or folder you specify. The table of contents contains a list
of the documents and folders in that workbasket or folder. You can specify a variety of
values for the parameters of this function to determine the entries in the table of
contents.

 Parameters

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 73

SimLibGetTOC

hSession
HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pszItemID
PITEMID — input

The identifier of workbasket or folder for which you want a table of contents. This
identifier is the item ID.

usItemType
USHORT — input

The type of item to return in the table of contents. Here are the valid values:

SIM_DOCUMENT
Returns documents.

SIM_FOLDER
Returns folders.

SIM_ALL
Returns both documents and folders.

usWipFilter
USHORT — input

Not supported.

usSuspendFilter
USHORT — input

Not supported.

usNbrOfClasses
USHORT — input

The number of index class identifiers in the list you specify as the value of the
pusClassIdList parameter. Specify the value 0 for the usNbrOfClasses parameter to
indicate that class is not a criterion for selecting items.

pusClassIdList
PUSHORT — input

The pointer to a list of index class identifiers that indicate the items to select for the
table of contents. You can specify the value NULL for the pusClassIdList parameter
only if you specify the value 0 for the usNbrOfClasses parameter.

pLinkCriteria
PVOID — input

Not supported.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

74 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibGetTOC

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the number of items in the table of contents. If no items satisfy the filter, the
field contains the value NULL.

ulParam1
Contains a pointer to a buffer with an array of TOCENTRYSTRUCT data structures.
If no items satisfy the filter, the field contains the value NULL. For more information
on this data structure, see “TOCENTRYSTRUCT (Table of Contents Entry Data
Structure)” on page 176.

Restriction: Your application must not modify the buffer containing the array of
TOCENTRYSTRUCT data structures. If your application needs to update returned
information, it must copy this information into its own memory buffer.

ulParam2
Contains the table of contents handle (hTOC). If no items satisfy the filter, the field
contains the value NULL.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_ID
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_ITEM_TYPE
 � SIM_RC_INVALID_PITEMIDITEM_PTR
 � SIM_RC_INVALID_PITEMIDITEM_VALUE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_PUSCLASSIDLIST_PTR
 � SIM_RC_INVALID_USITEMTYPE_VALUE
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 75

SimLibGetTOC

 Effects
Each time you use this function, you create a new table of contents handle. You can
use this handle later with the SimLibGetTOCData and Ip2GetTOCUpdates functions,
to specify which table of contents to process.

 Exceptions
The SimLibGetTOC function creates a table of contents that shows the current
contents of the workbasket or folder. However, the contents of the workbasket or folder
might change after you use this function. Use the Ip2GetTOCUpdates function to
return a list of the changes. Update the TOCENTRYSTRUCT, which includes
usItemStatus, to indicate changed entries.

 Follow-Up Tasks
When you no longer need a table of contents handle, free it by using the Ip2CloseTOC
function. That function frees both the table of contents handle (hTOC) and the data
pointed to by the PTOCENTRYSTRUCT pointer.

 Example
#include "ekdviapi.h" // VisualInfo for AS/4ðð
HSESSION hSession; // Handle to a VisualInfo for AS/4ðð session
PITEMID pszItemID; // Pointer to an item ID
USHORT usItemType; // The item type
USHORT usWipFilter; // WIP status of search items
USHORT usSuspendFilter; // Suspend status of search items
USHORT usNbrOfClasses; // # of index class identifiers in

 // pusClassIdList
PUSHORT pusClassIdList; // Pointer to list of index class IDs

// that indicates TOC items.
PVOID pLinkCriteria; // Not used
PASYNCCTLSTRUCT pAsyncCtl; // Pointer to asynchronous control block.
RCSTRUCT RC; // Pointer to return data structure.
USHORT usNumRows = ð; // # of returned TOC entries
PTOCENTRYSTRUCT pTocEntry; // pointer to TOC entries

usItemType = SIM_ALL; // Set up item type filter.
usWipFilter = OIM_ALL; // Set up Work-In-Process status filter

 usSuspendFilter = OIM_ALL; // Set up suspend status of search items.
usNbrOfClasses = 1; // Set up index class filter
usClassIdList[ð] = NO_INDEX;

ulRC = SimLibGetTOC(
hSession, // Handle to a VisualInfo for AS/4ðð session.
pfoldid, // Pointer to folder or Workbasket ID.
SIM_ALL, // The item type filter.
NULL, // WIP status of search items.
NULL, // Suspend status of search items.
usNbrOfClasses, // # of index class IDs in pusClassIdList.
usClassIdList, // Pointer to index class identifiers list.
NULL, // Not used; link criteria
NULL, // asynch not supported

76 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibGetTOCData

&RC // pointer to return struct
);
if (ulRC == SIM_RC_OK) {

hTOC = (HTOC)RC.ulParam2;// TOC handle
usNumRows = RC.usParam; // # of returned toc entries
pTocEntry = RC.ulParam1; // pointer to TOC entries.

 }

 /\\/
/\ ... Call other VisualInfo for AS/4ðð by using the ... \/
/\ ... session handle obtained by calling SimLibLogon ... \/

 /\\/

ulRC = Ip2CloseTOC(
hSession, // Handle to a VisualInfo for AS/4ðð session
hTOC, // TOC Handle from SimLibGetTOC
NULL, // by NULL, asynchronous call made
&RC // pointer to return struct

);
if (ulRC == SIM_RC_OK) {

/\ Ip2CloseTOC released all resource associated with hTOC \/
 }

 Related Functions
 � Ip2CloseTOC
 � Ip2GetTOCUpdates
 � Ip2TOCCount
 � Ip2TOCStatus
 � SimLibGetTOCData

SimLibGetTOCData (Get a Snapshot of Attributes for a Group of Items)

 Format

SimLibGetTOCData(hSession, pTOCEntries, ulEntryCount, fDataOptions,
pAsyncCtl, pRC)

 Purpose
Use the SimLibGetTOCData function to return a copy of the attributes associated with
a group of documents or folders.

Your application can substitute this function for a series of calls to the
SimLibGetItemSnapshot function.

 Parameters

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 77

SimLibGetTOCData

hSession
HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pTOCEntries
PTOCENTRYSTRUCT — input

The pointer to an array of TOCENTRYSTRUCT data structures that identify the items
for which you want a copy of the attributes. For more information on this data
structure, see “TOCENTRYSTRUCT (Table of Contents Entry Data Structure)” on
page 176.

ulEntryCount
ULONG — input

The number of entries in the TOCENTRYSTRUCT array. Because each entry can
result in a large amount of data, you should limit the number of entries.

fDataOptions
BITS — input

The type of data to return for each item. You must specify at least one value for this
parameter. The following are valid values. You can use a bit-wise inclusive OR
operator (|) to combine them.

SIM_TOC_SNAPSHOT_SYSTEM_ATTR
Returns the system-defined attribute values for the documents or folders.

SIM_TOC_SNAPSHOT_USER_ATTR
Returns the user-defined attribute values for the documents or folders.

SIM_TOC_SNAPSHOT_WORK_ATTR
Returns the work management information for the documents or folders.

SIM_TOC_SNAPSHOT_ALL
Returns the information specified in all the other values.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer to a data area. If
an error occurs, usParam contains the value 0.

78 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibGetTOCData

ulParam1
Contains a pointer to an array of SNAPSHOTSTRUCT data structures that provide
the returned information.

If usParam contains the value 0, ulParam1 contains the array index of the
TOCENTRYSTRUCT element that was in error. For some error conditions, the
function can identify the item that failed. If not, this field contains
SIM_TOC_MAX_ENTRY_COUNT.

ulParam2
Contains a count of the items in the returned array. This count matches the value in
the ulEntryCount parameter.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_BUFFER_NULL
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_INDEX_CLASS
 � SIM_RC_INVALID_ITEM_ID
 � SIM_RC_INVALID_ITEM_TYPE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_READATTRIND
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Effects
� This function retrieves data for any group of folders or documents that you identify

properly. It retrieves information for the items returned by the SimLibGetTOC
function, processing an entire list with one function call. Retrieving work
management information takes significantly more time than retrieving attributes.

� Effects vary with the bit values you specify in the fDataOptions parameter:

– If you specify SIM_TOC_SNAPSHOT_SYSTEM_ATTR to return
system-defined attributes, you always get data if the item is a valid document
or folder.

– If you specify SIM_TOC_SNAPSHOT_WORK_ATTR but the item is not in a
workbasket, you get a successful return code but the WMSNAPSHOTSTRUCT
data structure is null.

– If you specify 0 or an invalid combination of bit values, the function returns
SIM_RC_INVALID_DATA_OPTIONS.

� All the returned data is in a single memory block. The SNAPSHOTSTRUCT
structures appear as an array in the same order as the TOCENTRYSTRUCT

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 79

SimLibListClasses

structures. The remaining information follows in the same block, referenced by
pointers originated in the individual SNAPSHOTSTRUCT structures.

 Exceptions
� The function ignores most of the fields in TOCENTRYSTRUCT It always uses the

item ID field, and it uses the index class when you request user-defined attributes.
Therefore, you can use the function to retrieve the item types for a list of folders
and documents by preparing a TOCENTRYSTRUCT structure and using only the
SIM_TOC_SNAPSHOT_SYSTEM_ATTR value on the fDataOptions parameter.
The function returns the correct item types in the SNAPSHOTSTRUCT structure.

� Your application might need to use a conversion routine such as an
ASCII-to-integer routine to change the character representation of an attribute
value into the correct form for the application.

 Follow-Up Tasks
After your application has processed the information that the VisualInfo for AS/400
system returns to the SNAPSHOTSTRUCT data structure, use the
SimLibFree(hSession, (PVOID)ulParam1, pRC) function to free the pointer to the
SNAPSHOTSTRUCT data structure array.

 Related Functions
 � SimLibCloseAttr
 � SimLibFree
 � SimLibGetItemSnapshot
 � SimLibGetItemType
 � SimLibGetTOC
 � SimLibOpenItemAttr
 � SimLibReadAttr

SimLibListClasses (List Index Classes)

 Format

SimLibListClasses(hSession, fClassOptions, pAsyncCtl, pRC)

 Purpose
Use the SimLibListClasses function to list all existing index classes in the VisualInfo
for AS/400 database. It lists only the classes for which this user has access and which
contain attributes.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

80 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibListClasses

fClassOptions
BITS — input

Not supported.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer. Otherwise, this
field contains the value 0.

ulParam1
If ulParam2 contains a value greater than 0, this field contains a pointer to a buffer.
In the buffer, a NAMESTRUCT array provides the index class identifiers and the
associated names. For more information on this data structure, see “NAMESTRUCT
(Name Data Structure)” on page 167.

ulParam2
Contains the number of fields in the array pointed to by ulParam1.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Effects
The name information that this function returns reflects the language defined for the
current VisualInfo for AS/400 session.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 81

SimLibLogoff

 Exceptions
This function provides only the identifiers of the index classes in the system that the
current user has permission to access. Use the SimLibGetClassInfo function to
determine the index attributes in an index class.

 Follow-Up Tasks
When your application no longer needs the index class identifier list, use the
SimLibFree(hSession, (PVOID)ulParam1, pRC) function to free the buffer.

SimLibLogoff (Log Off)

 Format

SimLibLogoff(hSession, pAsyncCtl, pRC)

 Purpose
Use the SimLibLogoff function to end access to the VisualInfo for AS/400 operations
for a current application.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
The function does not use this field.

ulParam1
The function does not use this field.

ulParam2
The function does not use this field.

82 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibLogoff

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC

Guidelines for Use

 Effects
� After your application uses this function, any additional VisualInfo for AS/400

functions fail if they use the same session handle.

� All structures that a VisualInfo for AS/400 API allocates that are not released using
SimLibFree are released during logoff.

 Example
#include <stdio.h> /\ Standard I/O header files \/
#include "ekdviapi.h" /\ VisualInfo for AS/4ðð \/

int main (void) {
ULONG ulRC; /\ Return code \/
HSESSION hSession; /\ Session handle \/
PUSERLOGONINFOSTRUCT pUserLogonInfo; /\ User logon info struct \/

 PSZ pszDBName="VI4ððLIB"; /\ Pointer to Database name \/
 PSZ pszUserId="QVIADMIN"; /\ Pointer to User Id (Name) \/
 PSZ pszPassword="PASSWORD"; /\ Pointer to User's Password \/

BITS fSessionType=1; /\ Product Session Type \/
RCSTRUCT RC; /\ RC data structure \/

 /\\\/
/\ Logon to system, and establish a normal session \/

 /\\\/
fSessionType = SIM_SS_NORMAL;
ulRC = SimLibLogon(

pszDBName, // library database
NULL, // not used; library tableset
pszUserId, // user ID
pszPassword, // user ID password
NULL, // if any, new password
NULL, // not used; proxy ID
NULL, // not used; proxy scope
fSessionType, // session access
NULL, // NULL = synchronous call
&RC // pointer to return data struct

);
if (ulRC == SIM_RC_OK

// hSession session handle and user logon info structure

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 83

SimLibLogon

// returned through RC structure.
 hSession = (HSESSION)RC.ulParam1;

pUserLogonInfo = (PUSERLOGONINFOSTRUCT)RC.ulParam2;
} else {

printf("error -SimLibLogon failed with %ld.\n",ulRC);
 exit(1);
 }

 /\\/
/\ Call other VisualInfo for AS/4ðð APIs by using the \/
/\ session handle obtained by calling SimLibLogon \/

 /\\/

 /\\/
/\ Logoff from system, and end a normal session \/

 /\\/
ulRC = SimLibLogoff(

hSession, // Session handle
NULL, // not supported
&RC // pointer to return data struct

);
if (ulRC == SIM_RC_OK) {

 /\\\\\\\\\\\\\\\\\\/
/\ Logoff success \/

 /\\\\\\\\\\\\\\\\\\/
} else {

printf("error - SimLibLogoff failed with %ld\n.",ulRC);
 exit(1);
 }
 return (ð);
 }

 Related Functions
 � SimLibLogon

SimLibLogon (Log On)

 Format

SimLibLogon(pszDBName, pszApplicationName, pszUserID, pszPassword,
pszNewPassword, pszProxyID, pszProxyScope, fSession, pAsyncCtl, pRC)

 Purpose
Use the SimLibLogon function to enable your application to access VisualInfo for
AS/400 operations. Your application must use this function before it can use any other
VisualInfo for AS/400 functions, and it must use the SimLibLogoff function when it has
finished using VisualInfo for AS/400 operations.

84 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibLogon

 Parameters
pszDBName

PSZ — input

The system name contained in FRNOLINT.TBL.

pszApplicationName
PSZ — input

Not supported.

pszUserID
PSZ — input

The NULL-terminated character string that specifies the user ID of the user to log on.

pszPassword
PSZ — input

The NULL-terminated character string that specifies the password for the user ID.

pszNewPassword
PSZ — input

Not supported.

pszProxyID
PSZ — input

Not supported.

pszProxyScope
PSZ — input

Not supported.

fSession
BITS — input

SIM_SS_NORMAL
As part of the logon process, index class and attribute information is retrieved.
This improves the performance of subsequent calls.

SIM_SS_CONFIG
Only the USERLOGONINFOSTRUCT is returned from the server.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 85

SimLibLogon

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 0, to indicate that ulParam1 contains a session handle and
ulParam2 contains a pointer to a buffer.

ulParam1
Contains an hSession parameter or NULL.

ulParam2
Not used.

ulRC
Contains one of the following return codes. “Guidelines for Use” contains more detail.

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_USERID_UNKNOWN

When the function completes successfully, it returns a value of zero (SIM_RC_OK).

Guidelines for Use

 Follow-Up Tasks
After your application gets the information from the USERLOGONINFOSTRUCT data
structure, use the SimLibFree(hSession, (PVOID)ulParam2, pRC) function to free the
memory.

 Example
#include <stdio.h> /\ Standard I/O header files \/
#include "ekdviapi.h" /\ VisualInfo for AS/4ðð \/

int main (void) {
ULONG ulRC; /\ Return code \/
HSESSION hSession; /\ Session handle \/
PUSERLOGONINFOSTRUCT pUserLogonInfo; /\ User logon info struct\/

 PSZ pszDBName="VI4ððLIB";/\ Pointer to Database name \/
 PSZ pszUserId="QVIADMIN";/\ Pointer to User Id (Name) \/
 PSZ pszPassword="PASSWORD";/\ Pointer to User's Password \/

BITS fSessionType=1; /\ Product Session Type \/
RCSTRUCT RC; /\ RC's data structure \/

 /\\\/
/\ Logon to system, and establish a normal session \/

 /\\\/
fSessionType = SIM_SS_NORMAL;
ulRC = SimLibLogon(

pszDBName, // library database

86 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibLogon

NULL, // not used; library tableset
pszUserId, // user ID
pszPassword, // user ID password
NULL, // if any, new password
NULL, // not used; proxy ID
NULL, // not used; proxy scope
fSessionType, // session access
NULL, // not supported
&RC // pointer to return data struct

);
if (ulRC == SIM_RC_OK║

// hSession session handle and user logon info structure
// returned through RC structure.

 hSession = (HSESSION)RC.ulParam1;
pUserLogonInfo = (PUSERLOGONINFOSTRUCT)RC.ulParam2;

} else {
printf("error -SimLibLogon failed with %ld.\n",ulRC);

 exit(1);
 }

 /\\/
/\ Call other VisualInfo for AS/4ðð APIs by using the \/
/\ session handle obtained by calling SimLibLogon \/

 /\\/

 /\\/
/\ Logoff from system, and end a normal session \/

 /\\/
ulRC = SimLibLogoff(

 hSession, // Session handle
NULL, // NULL indicates synchronous call
&RC // pointer to return data struct

);
if (ulRC == SIM_RC_OK) {

 /\\\\\\\\\\\\\\\\\\/
/\ Logoff success \/

 /\\\\\\\\\\\\\\\\\\/
} else {

printf("error - SimLibLogoff failed with %ld\n.",ulRC);
 exit(1);
 }
 return (ð);
 }

 Related Functions
 � SimLibFree
 � SimLibLogoff

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 87

SimLibOpenItemAttr

SimLibOpenItemAttr (Open Item Attributes)

 Format

SimLibOpenItemAttr(hSession, pszItemID, usClassId, ulAccessLevel, pAsyncCtl,
pRC)

 Purpose
Use the SimLibOpenItemAttr function to provide access to the attributes of a
document or folder that you specify. This function opens the item for either read or write
access by creating a virtual copy of the attributes associated with that item.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pszItemID
PITEMID — input

The identifier of an item that you want to open to access the attributes. This
identifier is the item ID.

usClassId
USHORT — input

The identifier of an index class. This parameter is optional, but specifying the correct
index class can improve performance. If the item has no index class or you do not
know the index class, use the value 0.

ulAccessLevel
ULONG — input

The item access mode. The value of this parameter indicates the access mode for
locking the item. Here are the valid values:

SIM_ACCESS_READ_WRITE
Locks the item. Use of this value causes the function to fail if another process has
the item locked.

SIM_ACCESS_SHARED_READ
Opens the item for read access only. Use of this value opens the item whether or
not others have locked it.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

88 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibOpenItemAttr

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 0. If the return code is SIM_RC_ITEM_CHECKEDOUT, this field
contains the value 1, to indicate that ulParam1 contains a pointer. If the VisualInfo for
AS/400 system returns any other error, this field contains the value NULL.

ulParam1
Contains an item handle with the data type HITEM, for an open item. If the return
code is SIM_RC_ITEM_CHECKEDOUT, this field contains a pointer to a
USERACCESSSTRUCT data structure. The data structure contains the user ID of
the user who has locked the item. For more information on this data structure, see
“USERACCESSSTRUCT (User Access Data Structure)” on page 178.

ulParam2
Returns the index class of the item. You can use this value to determine the index
class if you specified the value 0 or an incorrect value in the usClassId parameter.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_ASYNC_STARTED
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INUSE
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_INDEX_CLASS
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_PITEMIDITEM_PTR
 � SIM_RC_INVALID_PITEMIDITEM_VALUE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_USACCESSLEVEL_VALUE
 � SIM_RC_INVALID_USATTRIBUTEID_VALUE
 � SIM_RC_INVALID_USCLASSID_VALUE
 � SIM_RC_ITEM_CHECKEDOUT
 � SIM_RC_ITEM_NOT_FOUND
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PITEM_NOT_FOLDER_OR_DOCUMENT
 � SIM_RC_PRIVILEGE_ERROR

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 89

SimLibOpenItemAttr

Guidelines for Use

 Effects
� If your application uses this function with read access, the VisualInfo for AS/400

system makes a copy of the current attribute values in the database. Concurrent or
subsequent access by another user might change those values.

� If your application opens an item for read access while it is open for write access
by another application, the values of the item attributes are the same as those
currently in the database.

� If you already have the item open for write access, the function returns
SIM_RC_INUSE.

� This function returns a handle to the virtual item. This handle, hItem, is valid only
within the current session. It cannot be transferred to another session. To
manipulate the attributes of the item, use the item handle with the SimLibReadAttr
and SimLibWriteAttr functions. To copy the new values permanently, use
SimLibSaveAttr or SimLibCloseAttr .

 Exceptions
� If an item is locked, only the user with the locked item can work with the item.

Other users can gain read access only.

� If an item is not locked, all users can gain read access, and the first user with
proper authority to request write access gets exclusive update access.

� If another user modifies the attribute values of the item without saving them by
using the SimLibSaveAttr function, the attribute values you see can be different
from the attribute values that the other user sees.

 Follow-Up Tasks
� If you receive the SIM_RC_ITEM_CHECKEDOUT return code and your application

no longer needs the user access information, use the SimLibFree(hSession,
(PVOID)ulParam1, pRC) function to free the buffer.

� If you receive the SIM_RC_OK return code, use SimLibCloseAttr to close the item
and release the storage for the item handle. Do not use both the SimLibFree and
the SimLibCloseAttr .

 Related Functions
 � SimLibCloseAttr
 � SimLibReadAttr
 � SimLibSaveAttr
 � SimLibWriteAttr

90 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibOpenObject

SimLibOpenObject (Open an Object)

 Format

SimLibOpenObject(hSession, hObj, ulAccessLevel, ulPriority, fConflict,
fOpenControl, pAsyncCtl, pRC)

 Purpose
Use the SimLibOpenObject function to prepare an existing object for access by your
application. On successful completion, the function returns an object access handle that
you can use to access the object.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hObj
HOBJ — input

The pointer to an object handle block in the HOBJ data structure. For more
information on the HOBJ structure, see “HOBJ (Handle to Query Stored Object)” on
page 162.

ulAccessLevel
ULONG — input

The object access mode. The value of this parameter indicates the access mode for
opening the object.

Together, the ulAccessLevel parameter and the fConflict parameter establish an
access state. The VisualInfo for AS/400 system uses this access state to accept or
reject concurrent requests to access an open object. Here are the valid values:

SIM_ACCESS_READ_WRITE
Opens the object for read access and write access, at the first byte of the object.

SIM_ACCESS_SHARED_READ
Opens the object for read access only, at the first byte of the object.

ulPriority
ULONG — input

Not supported.

fConflict
BOOL — input

Not supported.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 91

SimLibOpenObject

fOpenControl
BITS — input

Not supported.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 0.

ulParam1
Contains hObjAcc, an HOBJACC object access handle. The value in this field
identifies the current instance of the accessed object.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INUSE
 � SIM_RC_INVALID_ACCESS_CODE
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_OBJECT_HANDLE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_OBJECT_CHECKEDOUT
 � SIM_RC_OPEN_FAILED
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Effects
� If the function returns the object access handle, this handle identifies the current

instance of access to the open object. This handle is different from the handle

92 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibOpenObject

normally used to reference the stored object. Use the object access handle
(hObjAcc), not the object handle (hObj), with the following functions:

 – SimLibCloseObject
 – SimLibReadObject
 – SimLibResizeObject
 – SimLibSeekObject
 – SimLibWriteObject

� If you try to open an object for write access and another user has the item locked,
the function returns SIM_RC_OBJECT_CHECKEDOUT but does not return the ID
of the user who locked the item. You can use the SimLibGetItemInfo function to
get the user ID.

 Example
SimLibLogon...

#include <stdio.h> /\ Standard I/O header files \/
#include <string.h> /\ Standard string header file \/
#include "ekdviapi.h" /\ VisualInfo for AS/4ðð \/

 main()
{

HSESSION hSession ; // from logon
 HOBJ hObj;

UCHAR ulAccessLevel = SIM_ACCESS_SHARED_READ;
UCHAR ulPriority = ð; // not supported
BOOL fConflict = ð; // not supported
BOOL fOpenControl = ð; // Not supported

 RCSTRUCT RC;
PRCSTRUCT pRC = &RC;
POBJ pObj; // Created object handle
USHORT sResult; // get rc back
HOBJACC hObjAcc; // object access handle

// create hobj
if(ð==(pObj=(POBJ) malloc(sizeof(OBJ)))) {

 return(1);
 }

(pObj)->ulStruct = sizeof(OBJ);
 strcpy((pObj)->szItemID,"DA9722ðAA.AAA");

strcpy((pObj)->chRepType,""); // take default
(pObj)->ulPart = 1;
hObj = pObj;
/\Call the function\/

sResult = SimLibOpenObject(
 hSession,
 hObj,
 ulAccessLevel,
 ulPriority,
 fConflict,

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 93

SimLibQueryObject

 fOpenControl,
 ð, // synch
 pRC);

if (pRC->ulRC == SUCCESS) {
// ulParam1 is HOBACC when call is successful.
hObjAcc = pRC->ulParam1;
// Mem containing the HOBJACC struct is freed by SimLibCloseObject.

 }
}

 Related Functions
 � SimLibCloseObject
 � SimLibReadObject
 � SimLibResizeObject
 � SimLibSeekObject
 � SimLibWriteObject

SimLibQueryObject (Query an Object)

 Format

SimLibQueryObject(hSession, hObj, pAsyncCtl, pRC)

 Purpose
Use the SimLibQueryObject function to get the information associated with the object
that you specify, such as its size and its content class and collection name. This
function allocates a buffer for an object information structure and then fills this structure
with all the information associated with the object. You do not need to open the object
to query it.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hObj
HOBJ — input

The pointer to an object handle block in the HOBJ data structure. This handle
specifies the object that you want to query. For more information on the HOBJ
structure, see “HOBJ (Handle to Query Stored Object)” on page 162.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

94 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibQueryObject

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer.

ulParam1
Contains a pointer to a buffer where an OBJINFOSTRUCT data structure contains all
the information associated with the object. For more information on this data
structure, see “OBJINFOSTRUCT (Object Information Structure)” on page 167.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_ASYNC_STARTED
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_OBJECT_HANDLE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PART_NOT_FOUND
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Effects
This function returns data in an OBJINFOSTRUCT data structure to provide the
following information about the object that you specify.

 Follow-Up Tasks
After the function gets the object information, use the SimLibFree(hSession,
(PVOID)ulParam1, pRC) function to free the buffer.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 95

SimLibReadAttr

SimLibReadAttr (Read an Attribute)

 Format

SimLibReadAttr(hSession, hItem, usAttributeId, pAsyncCtl, pRC)

 Purpose
Use the SimLibReadAttr function to return the value of a specific attribute of the open
folder or document you specify.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hItem
HITEM — input

The handle to a virtual item, the open folder or document for which you want to read
an attribute. The SimLibOpenItemAttr function returns this handle. This item can
currently be open in either read or write access mode.

usAttributeId
USHORT — input

The unique identifier assigned to an attribute.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer. If an error occurs,
this field contains the value 0.

ulParam1
Contains a pointer to a buffer in which a null-terminated string is a character
representation of the attribute value. If the attribute value is undefined, the value is
NULL.

96 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibReadObject

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HITEM_VALUE
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_USATTRIBUTEID_VALUE
 � SIM_RC_OUT_OF_MEMORY

Guidelines for Use

 Exceptions
� Attributes are always returned as a NULL-terminated string.

� Your application might need to use a conversion routine such as an
ASCII-to-integer routine to change the character representation of the value into
the correct form for the application.

� Use the SimLibGetAttrInfo function to get the data types and lengths of attributes.
Use the SimLibGetItemInfo function and the SimLibGetClassInfo function to get
the class attributes.

 Follow-Up Tasks
When you no longer need the attribute string, use the SimLibFree(hSession,
(PVOID)ulParam1, pRC) function to free the buffer.

 Related Functions
 � SimLibGetClassInfo
 � SimLibGetAttrInfo
 � SimLibGetItemInfo
 � SimLibOpenItemAttr

SimLibReadObject (Read an Object)

 Format

SimLibReadObject(hSession, hObjAcc, pBuffer, ulBytesToRead, pAsyncCtl,
pRC)

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 97

SimLibReadObject

 Purpose
Use the SimLibReadObject function to transfer the number of bytes you specify from
an object into the data buffer of your application. This function lets you manipulate an
object as a file. The function begins reading the object at the byte that the object
pointer is currently referencing.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hObjAcc
HOBJACC — input

The object access handle to the open object that you want to read into the data
buffer of your application. The value of this parameter identifies the current instance
of the accessed object.

pBuffer
PHBUF — input

The data buffer pointer. The value of this parameter represents a pointer to the first
byte of the buffer returning the read object data.

ulBytesToRead
ULONG — input

The number of bytes to read. The value of this parameter specifies the maximum
number of bytes to read from the object during the transfer operation.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer.

ulParam1
Contains a pointer to the byte immediately after the last byte written to the buffer.
Normally, this is the address of the buffer plus the number of bytes read.

98 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibRemoveFolderItem

ulParam2
Contains the actual number of bytes read.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_BUFFER_PTR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_OBJECT_ACCESS_HANDLE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_READ_PAST_EOF

Guidelines for Use

 Preparation
Before you can read the object, you must open it and obtain an object access handle.

 Effects
After successful completion of the function, the object pointer references the byte
immediately following the data that was read.

 Exceptions
If the number of bytes that you specify to be read is more than the number of bytes in
the object, the function transfers fewer bytes than you specify.

 Related Functions
 � SimLibCloseObject
 � SimLibOpenObject
 � SimLibSeekObject

SimLibRemoveFolderItem (Remove an Item from a Folder)

 Format

SimLibRemoveFolderItem(hSession, pszFolderID, pszItemID, pAsyncCtl, pRC)

 Purpose
Use the SimLibRemoveFolderItem function to remove a document or a folder item
from a folder. This function removes the reference to the item from the table of contents
of the specified folder. You need not open the folder to use the function, but the folder
must not be locked by another user.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 99

SimLibRemoveFolderItem

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pszFolderID
PITEMID — input

The identifier of a folder from which you want to remove an item. This identifier is the
item ID of the folder.

pszItemID
PITEMID — input

The identifier of an item to remove from the folder. This identifier is the item ID of a
document or a folder item.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
If the return code is SIM_RC_PARENT_CHECKEDOUT, this field contains the value
1 to indicate that ulParam1 contains a pointer.

ulParam1
Contains the value NULL. If the return code is SIM_RC_PARENT_CHECKEDOUT,
this field contains a pointer to a USERACCESSSTRUCT data structure. The
structure contains the user ID of the user who has locked the folder. For more
information on the USERACCESSSTRUCT structure, see “USERACCESSSTRUCT
(User Access Data Structure)” on page 178.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

100 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibResizeObject

 � SIM_RC_INVALID_PITEMIDFOLDER_PTR
 � SIM_RC_INVALID_PITEMIDFOLDER_VALUE
 � SIM_RC_INVALID_PITEMIDITEM_PTR
 � SIM_RC_INVALID_PITEMIDITEM_VALUE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PARENT_CHECKEDOUT
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Effects
� If the folder is locked by another user, you cannot remove an item from it. Instead,

the function returns the user ID of the user who has locked the folder.

If you have locked the folder, you can remove items from it.

� When deleting a folder, the function removes all items from the folder. The items
themselves–documents or folders–are not deleted.

 Exceptions
� This function does not automatically update a temporary copy of the table of

contents for a folder. Your application must use either the Ip2GetTOCUpdates
function or the SimLibGetTOC function to update the table of contents of this
folder.

� You can remove an item that you or someone else has locked. Only the status of
the parent folder is examined.

 Follow-Up Tasks
After your application no longer needs the user access information, use the
SimLibFree(hSession, (PVOID)ulParam1, pRC) function to free the buffer containing
the USERACCESSSTRUCT data structure.

 Related Functions
 � Ip2GetTOCUpdates
 � SimLibAddFolderItem
 � SimLibDeleteItem
 � SimLibFree
 � SimLibGetTOC

SimLibResizeObject (Resize an Object)

 Format

SimLibResizeObject(hSession, hObjAcc, ulSize, pAsyncCtl, pRC)

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 101

SimLibResizeObject

 Purpose
Use the SimLibResizeObject function to change the size, in bytes, of an object to a
new size that you specify.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hObjAcc
HOBJACC — input

The object access handle to the object that you want to resize. The value of this
parameter identifies the current instance of the accessed object.

ulSize
ULONG — input

The new object size. To truncate the object file beginning at the current position of
the object pointer, and including that byte, specify the value 0. To truncate the file to
a specific byte size, specify that byte size.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
The function does not use this field.

ulParam1
The function does not use this field.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_OBJECT_ACCESS_HANDLE

102 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibSaveAttr

 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_NO_WRITE_ACCESS
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_RESIZE_FAILED
 � SIM_RC_SEEK_ERROR

Guidelines for Use

 Preparation
Before you use this function to resize an object, the object must be open for
SIM_ACCESS_READ_WRITE access.

 Effects
� The object file pointer is set to the end of the object at the completion of this

function.

� Use this function when you want to replace an object with one that is smaller than
the original. Use SimLibWriteObject and then SimLibResizeObject to truncate at
the end of the new data.

 Exceptions
To increase the size of an object, you should use the SimLibWriteObject function to
append data to the object and increase its size at the same time.

 Related Functions
 � SimLibWriteObject

SimLibSaveAttr (Save an Attribute)

 Format

SimLibSaveAttr(hSession, hItem, pAsyncCtl, pRC)

 Purpose
Use the SimLibSaveAttr function to save the attributes of a virtual item permanently.
This function saves work that is in process on a virtual item without closing the item or
releasing access rights.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 103

SimLibSaveAttr

hItem
HITEM — input

The handle to a virtual item. The SimLibOpenItemAttr function returns this handle.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
The function does not use this field.

ulParam1
The function does not use this field.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_ATTRIBUTES_NOT_MODIFIED
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HITEM_VALUE
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_PASSED_ATTR_DATA
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_USCLASSID_VALUE
 � SIM_RC_NO_WRITE_ACCESS
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR
 � SIM_RC_REQUIRED_ATTRIBUTE_MISSING

Guidelines for Use

 Effects
� If a virtual item is open for write access and modified, this function copies the

attributes of the virtual item over the attributes in the database.

104 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibSearch

� If the index class is changed, this function saves a new set of user-defined
attributes in the new index class and deletes the old attributes.

 Related Functions
 � SimLibOpenItemAttr

 SimLibSearch (Search)

 Format

SimLibSearch(hSession, pszItemFilter, pLinkCriteria, usStatDyn, usTypeFilter,
fWipFilter, usSuspendFilter, usIndexClass, usNumCriteria, pCriteria,
ulMemListRequest, pAsyncCtl, pRC)

 Purpose
Use the SimLibSearch function to locate items in the database that match the
user-defined attribute values you specify.

This function returns items that match the search criteria to the user. If you specify an
index class, you can search on values of user-defined attributes within the index class.
If you do not specify an index class, this function searches only index classes that
contain all specified user-defined attributes. For example, in a request to search all
index classes for “account number” equal to 12345, the search is limited to those index
classes that include “account number” as a user-defined attribute. You can specify
multiple combinations of index classes and attributes.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pszItemFilter
PITEMID — input

Not supported.

pLinkCriteria
PVOID — input

Not supported.

usStatDyn
USHORT — input

Not supported.

usTypeFilter
USHORT — input

The type of items to search for. Here are the valid values:

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 105

SimLibSearch

SIM_DOCUMENT
Searches for documents.

SIM_FOLDER
Searches for folders.

SIM_FOLDER_DOC
Searches for both folders and documents.

fWipFilter
BITS — input

Not supported.

usSuspendFilter
USHORT — input

Not supported.

usIndexClass
USHORT — input

Not supported.

usNumCriteria
USHORT — input

The number of fields in the pCriteria array.

pCriteria
PLIBSEARCHCRITERIASTRUCT — input

The pointer to an array specifying the search criteria for each view you want to
search. pCriteria must point to an array of at least one field. For more information on
the LIBSEARCHCRITERIASTRUCT structure, see “LIBSEARCHCRITERIASTRUCT
(Search Criteria Information Structure)” on page 165.

ulMemListRequest
BOOL — input

This parameter controls how the search results are returned or which attribute values
are returned. The VisualInfo for AS/400 system ignores this parameter if you set the
usStatDyn parameter to SIM_SEARCH_BUILD_ONLY. Here are the valid values:

SIM_SEARCH_MEMLIST
Returns the search results in a memory buffer.

SIM_SEARCH_MEMLIST_ONE

Not supported.

SIM_SEARCH_USER_ATTR

Returns the item IDs and user attributes for the item in a memory buffer. You can
specify only one view for this option.

106 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibSearch

SIM_SEARCH_USER_SYSTEM_ATTR

Returns the item IDs, user attributes, and system attributes in a memory buffer.
You can specify only one view for this option. Only the attributes in the AVT and
SBTITEMS tables are returned.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer to a buffer. If you
set the usStatDyn parameter to SIM_SEARCH_BUILD_ONLY, or if nothing matches
the input search criteria, this field contains the value 0.

ulParam1
If you set the ulMemListRequest parameter to SIM_SEARCH_MEMLIST, this field
contains a PITEMID pointer to a buffer. In the buffer, an array provides document
and folder item IDs that match the search criteria.

If you set the ulMemListRequest parameter to SIM_SEARCH_USER_ATTR or
SIM_SEARCH_USER_SYSTEM_ATTR, this field contains a pointer to an array of
SNAPSHOTSTRUCTs containing the attribute data for items that meet the search
criteria.

ulParam2
Contains the number of items that match the criteria (the number of fields in the
array referenced by ulParam1 or the number of items in the search results folder).
The values in the ulReturnLimit field of the LIBSEARCHCRITERIASTRUCT
structures limit this number.

If you set the usStatDyn parameter to SIM_SEARCH_BUILD_ONLY, or if nothing
matches the search criteria, this field contains the value 0.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_ATTR_NOT_IN_VIEW
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_FSEARCH
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_INDEX_CLASS

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 107

SimLibSeekObject

 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_INVALID_PATTRIBUTELIST_VALUE
 � SIM_RC_INVALID_PITEMIDFOLDER_VALUE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_SEARCH_STRING
 � SIM_RC_INVALID_USATTRIBUTEID_VALUE
 � SIM_RC_INVALID_USITEMTYPE_VALUE
 � SIM_RC_INVALID_VIEWID
 � SIM_RC_NO_SEARCH_CRITERIA
 � SIM_RC_NO_SEARCH_VIEWS
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use
See Appendix B, “Guidelines for Search Expressions” on page 207.

 Effects
� If nothing matches the input search criteria, the function returns a successful return

code and the usParam, ulParam1, and ulParam2 fields all contain the value NULL.

� Specifying very explicit search criteria can narrow the number of items returned by
the search. Alternatively, specifying very general search criteria might degrade the
performance of the search.

� If you specify an all index class search, the function automatically searches only
index classes that contain those attributes specified in the expression.

 Follow-Up Tasks
If you set the ulMemListRequest parameter to SIM_SEARCH_MEMLIST, after the
function gets the search results information, use SimLibFree(hSession,
(PVOID)ulParam1, pRC) to free the buffer.

SimLibSeekObject (Seek an Object)

 Format

SimLibSeekObject(hSession, hObjAcc, ulOrigin, lOffset, pAsyncCtl, pRC)

 Purpose
Use the SimLibSeekObject function to adjust the object pointer to reference a new
position that you define. The next data transfer operation for the object begins at this
new position. Use this function to position the pointer before you change an object. This
function lets you manipulate an object as a file.

108 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibSeekObject

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hObjAcc
HOBJACC — input

The object access handle to the object in which you want to adjust the object pointer.
The value of this parameter identifies the current instance of the accessed object.
The SimLibOpenObject function returns this handle.

ulOrigin
ULONG — input

The pointer origin index. The value of this parameter indicates the initial position of
the object pointer. Here are the valid values:

SIM_POS_BEGIN
Indicates the beginning of the object.

SIM_POS_CURRENT
Indicates the current pointer position.

SIM_POS_END
Indicates the byte following the end of the object.

lOffset
LONG — input

The byte offset from the origin. The value of this parameter specifies the position in
the object for the adjusted object pointer to reference. Specify the value in relation to
the position you specify as the value of the ulOrigin parameter. This value can be
either a negative or a positive byte count.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 0.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 109

SimLibStoreNewObject

ulParam1
Contains ulOffset, the current offset, which has the data type ULONG. This value
indicates the offset, in bytes, from the beginning of the object. If the current position
is at the beginning of the object, this value is 0.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_OBJECT_ACCESS_HANDLE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_SEEK_OFFSET
 � SIM_RC_INVALID_SEEK_ORIGIN
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_RESIZE_FAILED
 � SIM_RC_SEEK_ERROR

Guidelines for Use

 Preparation
You must have opened the object and obtained an hObjAcc by calling
SimLibOpenObject before you can call the SimLibSeekObject function.

 Effects
You can adjust the object pointer to reference a position beyond the end of the object.
However, any attempt to reference a position before the beginning of the object returns
error code SIM_RC_INVALID_SEEK_OFFSET.

 Related Functions
 � SimLibOpenObject

SimLibStoreNewObject (Store a New Object in an Existing Item)

 Format

SimLibStoreNewObject(hSession, hObj, ulConCls, pSMS, pObjBuffer, ulObjSize,
lSeqAfterPart, ulAffiliatedType, pAffiliatedData, pAsyncCtl, pRC)

110 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibStoreNewObject

 Purpose
Use the SimLibStoreNewObject function to add a new object to an existing item. This
is a streamlined version of the SimLibCatalogObject function with fewer options and
data checks.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hObj
HOBJ — input

The pointer to an object handle block. For more information on the HOBJ structure,
see “HOBJ (Handle to Query Stored Object)” on page 162.

ulConCls
ULONG — input

The content class identifier for the object (see Appendix F, “Predefined Content
Classes” on page 220). The value of this parameter tells what kind of data is in the
new object.

To indicate the undefined content class, specify the value SIM_CC_UNKNOWN for
this parameter. However, if you have created an undefined content class, other
applications cannot use VisualInfo for AS/400 content class services to determine
how to manipulate the contents of the objects you store.

pSMS
PSMS — input

Pointer to a system-managed storage (SMS) structure for an object. This structure
uses only szCollectionName.

pObjBuffer
PVOID — input

The pointer to a memory buffer containing the object data.

ulObjSize
ULONG — input

The total size, in bytes, of the object.

lSeqAfterPart
LONG — input

Not supported.

ulAffiliatedType
LONG — input

The type of affiliated object to store. The defined values are:

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 111

SimLibStoreNewObject

SIM_ANNOTATION
Stores an annotation associated with a folder or a document.

SIM_BASE
Stores a base object such as a MO:DCA or TIFF file, that is not an annotation,
note, or event associated with a folder or document.

SIM_EVENT
Stores an event associated with a folder or a document.

SIM_MGDS
Stores an MGDS (machine-generated data stream) associated with a folder or a
document.

SIM_NOTE
Stores a note associated with a folder or a document.

pAffiliatedData
PVOID — input

The pointer to a data structure of the type ANNOTATIONSTRUCT. If the
ulAffiliatedType parameter contains the value SIM_ANNOTATION, pAffiliatedData
points to this structure, which contains additional data affiliated with the object.
Otherwise, the VisualInfo for AS/400 system ignores this parameter. For more
information on the ANNOTATIONSTRUCT structure, see “ANNOTATIONSTRUCT
(Annotation Information Structure)” on page 152.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
The function does not use this field.

ulParam1
The function does not use this field.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR

112 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibWriteAttr

 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_ANNOTATIONSTRUCT_PTR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_SMS_PTR
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Preparation
� To get the supported values for the ulConCls parameter, use the

Ip2ListContentClasses function.

� If 0 is specified for the part number, the next sequential part number is created. If
part number is nonzero, that part number is used if it does not already exist. If it
does exist, the first available number is returned. Part number 1 is typically a base
part. This API lets you create part number 2–for example, a note–before creating
part number 1.

 Exceptions
The VisualInfo for AS/400 system does not validate the content class parameter as a
defined, known content class.

 Related Functions
 � Ip2ListContentClasses
 � SimLibCatalogObject

SimLibWriteAttr (Write an Attribute)

 Format

SimLibWriteAttr(hSession, hItem, usAttributeId, pszAttributeValue, pAsyncCtl,
pRC)

 Purpose
Use the SimLibWriteAttr function to assign a value to an attribute associated with an
open item. You can only modify a user-defined attribute.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 113

SimLibWriteAttr

hItem
HITEM — input

The handle to a virtual item. The SimLibOpenItemAttr function returns this handle.

To use the SimLibWriteAttr function, the item must currently be open in write
access mode.

usAttributeId
USHORT — input

The unique identifier assigned to an attribute.

pszAttributeValue
PSZ — input

A null-terminated character string containing the value of an attribute. This string
contains the value you assign to the attribute you specify in the usAttributeId
parameter.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
The function does not use this field.

ulParam1
The function does not use this field.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_ATTRIBUTE_READ_ONLY
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HITEM_VALUE
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_PASSED_ATTRIBUTE_DATA
 � SIM_RC_INVALID_PATTRIBUTE_PTR
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC

114 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibWriteObject

 � SIM_RC_INVALID_USATTRIBUTEID_VALUE
 � SIM_RC_NO_WRITE_ACCESS
 � SIM_RC_OUT_OF_MEMORY

Guidelines for Use

 Preparation
Use a conversion routine such as an integer-to-ASCII routine to change numeric data
into a character string for this function.

 Effects
� This function copies the value of the pszAttributeValue parameter into the virtual

item.

� The item must be open for write access or the function returns an error,
SIM_RC_NO_WRITE_ACCESS.

� If the function fails, the VisualInfo for AS/400 system maintains the current attribute
value.

 Exceptions
� The SimLibWriteAttr function validates only SIM_ATTR_FSTRING data types. It

validates these data types by comparing maximum lengths of the attribute data
with the VisualInfo for AS/400-defined string. The SimLibCloseAttr and the
SimLibSaveAttr functions validate the attribute contents by comparing the data
with the data types configured through the SimLibWriteAttr function.

� The SimLibWriteAttr function changes only the virtual copy in memory. It does not
update the permanent database copy of the attribute. Use the SimLibSaveAttr or
the SimLibCloseAttr function to make the modifications permanent.

 Related Functions
 � SimLibCloseAttr
 � SimLibGetAttrInfo
 � SimLibGetClassInfo
 � SimLibOpenItemAttr
 � SimLibSaveAttr

SimLibWriteObject (Write an Object)

 Format

SimLibWriteObject(hSession, hObjAcc, pBuffer, ulBytesToWrite, pAsyncCtl,
pRC)

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 115

SimLibWriteObject

 Purpose
Use the SimLibWriteObject function to transfer the number of bytes you specify from
the data buffer of your application to an open object. The write operation begins at the
byte referenced by the current object pointer.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hObjAcc
HOBJACC — input

The object access handle to the object that you want to write to. The value of this
parameter identifies the current instance of the accessed object.

pBuffer
PHBUF — input

The data buffer pointer. The value of this parameter represents a pointer to the first
byte of the data to be written to the object.

ulBytesToWrite
ULONG — input

The number of bytes to write to the object. The value of this parameter specifies the
maximum number of bytes to write to the object during the transfer operation.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 0.

ulParam1
Contains the number of bytes actually written.

ulParam2
The function does not use this field.

116 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimLibWriteObject

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_BUFFER_PTR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_OBJECT_ACCESS_HANDLE
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_NO_WRITE_ACCESS
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_RESIZE_FAILED

Guidelines for Use

 Preparation
� Before you can use this function, you must open the object with

SIM_ACCESS_READ_WRITE access using one of the following functions:

 – SimLibOpenObject
 – SimLibCreateObject
 – SimLibCatalogObject

� If you are replacing an object with one that is smaller than the original, first
truncate the original object to the size of the replacement object using the
SimLibResizeObject function. Then you can replace the object using the
SimLibWriteObject function. If the replacement object is larger than the original,
resizing first is not necessary.

 Effects
On successful completion of the function, the object pointer references the byte
immediately following the data that was written.

 Example
#include <stdio.h> /\ Standard I/O header files \/
#include <string.h> /\ Standard string header file \/
#include "ekdviapi.h" /\ VisualInfo for AS/4ðð \/

 main()
{

HSESSION hSession; // get from logon
HOBJACC hObjAcc; // get from catalog, open, or create

 RCSTRUCT RC;
PRCSTRUCT pRC = &RC;
USHORT sResult; // return codes

 CHAR pBuffer[4ð96]; // buffer
ULONG ulBytesToWrite = 2ð48;

/\ fill buffer \/

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 117

SimWmCreateWorkPackage

/\Call the function\/

sResult = SimLibWriteObject(
 hSession,
 hObjAcc,
 pBuffer,
 ulBytesToWrite,
 pAsyncCtl,
 pRC);

if ((pRC->ulRC == SIM_RC_OK) &&; (ulBytesToWrite != pRC->ulParam1))
printf("not all the bytes got written");

}

 Related Functions
 � SimLibCatalogObject
 � SimLibCreateObject
 � SimLibOpenObject
 � SimLibResizeObject
 � SimLibWriteObject

SimWmCreateWorkPackage (Create a Work Package)

 Format

SimWmCreateWorkPackage(hSession, pszWorkPackageDesc, ulNumVariables,
pVariableList, usWorkPriority, pAsyncCtl, pRC)

 Purpose
This function creates a new work package that an application can use for ad-hoc work
control, allowing the application to route a work package containing a folder or
document through one or more workbaskets without the requirement for a predefined
process.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pszWorkPackageDesc
PSZ — input

Pointer to a description of the work package. It can be used as a comment about the
task or as information the application uses as a key to an application database for
more details about the work.

118 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimWmCreateWorkPackage

ulNumVariables
ULONG — input

Number of entries in the variable array. This field is ignored if the array pVariableList
pointer is NULL.

pVariableList
PMVARSTRUCT — input

Pointer to an array of WMVARSTRUCT structures containing the variable identifiers
and values for work management variables. The parameter can be NULL to reflect a
work package with no direct database references or a work package that an
application associates to an object. To associate a work package to an item in an
index class, include the variables SIMWM_INDEX_CLASS and SIMWM_ITEMID.

usWorkPriority
USHORT — input

Priority of the work to be performed. The priority affects the work sequencing as the
work package moves through a process. A larger number is a higher priority. use a
priority of zero to request the default priority.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Always zero.

ulParam1
Contains the work package ID.

ulParam2
Contains the work package instance.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_INDEX_CLASS
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_PRIVILEGE_ERROR

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 119

SimWmEndProcess

Guidelines for Use

 Preparation
You can specify variables to associate a work package with a specific library item. If
pVariableList is not specified, the calling application is responsible for associating the
work package ID to the object that is being processed. If it is specified, then the work
management interface always returns the data to the application whenever the work
package ID is referenced in an API. For example, when the calling application gets the
next work package from a workbasket, the item ID would also be returned.

 Effects
A new work package is created.

 Follow-Up Tasks
SimWmRouteWorkPackage should be called to route the work package to a
workbasket.

 Related Functions
 � SimWmRouteWorkPackage

SimWmEndProcess (End a Work Package on a Process)

 Format

SimWmEndProcess(hSession, ulWorkPackageID, ulInstanceID, pAsyncCtl, pRC)

 Purpose
This function forces an end to an active work package. It removes the work package
from workbaskets.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

ulWorkPackageID
ULONG — input

Identifier of the work package that represents the work being done, such as the
document being routed.

ulInstanceID
ULONG — input

If only one instance exists, this parameter is ignored.

120 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimWmGetWorkBasketInfo

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Not used.

ulParam1
Not used.

ulParam2
Not used.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_PRIVILEGE_ERROR

 Related Functions
 � SimWmCreateWorkPackage
 � SimWmGetWorkPackage

SimWmGetWorkBasketInfo (Get Information about a Workbasket)

 Format

SimWmGetWorkBasketInfo(hSession, pszWorkBasketID, pAsyncCtl, pRC)

 Purpose
Use this function to return information about the workbasket you specify.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 121

SimWmGetWorkPackage

pszWorkBasketID
PSZ — input

Pointer to the name of the workbasket.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1 to indicate that ulParam1 contains a pointer.

ulParam1
Contains a pointer to a buffer where a WORKBASKETINFOSTRUCT data structure
provides detailed information about the specified workbasket. For more information
on this data structure, see “WORKBASKETINFOSTRUCT (Workbasket Information
Data Structure)” on page 181.

ulParam2
Not used.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Follow-Up Tasks
When your application no longer needs the WORKBASKETINFOSTRUCT data, use
SimLibFree to free the buffer.

 Related Functions
 � SimWmListWorkbaskets

SimWmGetWorkPackage (Get the Next Work Package from a Workbasket)

122 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimWmGetWorkPackage

 Format

SimWmGetWorkPackage(hSession, pszWorkBasketID, ulWorkOrder,
ulWorkPackageID, ulInstanceID, pAsyncCtl, pRC)

 Purpose
This function gets (opens) a work package that is currently in a workbasket. The work
package that is queued at the specified workbasket is then not available to other
applications. This function can get a specific work package or the next highest priority
work package currently available in the specified workbasket.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pszWorkBasketID
PSZ — input

Pointer to the name of the workbasket.

ulWorkOrder
ULONG — input

Order used for selecting an entry from the workbasket. Here are the valid values.
NULL is recommended to let the server determine the order.

SIMWM_ORDER_FIFO
Make selection based on first in, first out (FIFO) order.

SIMWM_ORDER_LIFO
Make selection based on last in, first out (LIFO) order.

SIMWM_ORDER_PRIORITY
Make selection based on the work package priority.

ulWorkPackageID
ULONG — input

Identifier of the work package that represents the work being done, such as the
document being routed. Specify zero to retrieve the next work package.

ulInstanceID
ULONG — input

Identifier of the work package instance that distinguishes one parallel path from
another within the process. Use zero to end all instances of the process.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 123

SimWmGetWorkPackage

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1 to indicate that ulParam1 contains a pointer to a data area.

ulParam1
Contains a pointer to a SNAPSHOTSTRUCT data structure that provides the
returned item and associated work management information.

ulParam2
Not used.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_EMPTY_WORKBASKET
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Effects
� If the work package ID is not specified, this function will retrieve the next work

package in the workbasket. Otherwise, the specified work package is retrieved.

� Once the specified or next work package in the workbasket is retrieved, the work
package is not accessible to other users.

 Follow-Up Tasks
� Call SimWmReturnWorkPackage to return the work package to the workbasket.

This makes the work package available to other users.

� Call SimWmRouteWorkPackage to route the work package to another
workbasket. This makes the work package available to other users at the
destination workbasket.

� When your application no longer needs the SNAPSHOTSTRUCT data, use
SimLibFree to free the buffer.

 Related Functions
 � SimWmReturnWorkPackage
 � SimWmRouteWorkPackage

124 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimWmGetWorkPackagePriority

SimWmGetWorkPackagePriority (Get the Priority of a Work Package)

 Format

SimWmGetWorkPackagePriority(hSession, ulWorkPackageID, ulInstanceID,
pAsyncCtl, pRC)

 Purpose
Use this function to determine the priority assigned to a work package in a workbasket.
The priority identifies the work order of items located in the workbasket. You can
determine the current priority of an item even if the item is locked.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

ulWorkPackageID
ULONG — input

Identifier of the work package that represents the work being done, such as the
document being routed. Specify zero to retrieve the next work package.

ulInstanceID
ULONG — input

Identifier of the work package instance that distinguishes one parallel path from
another within the process. Use zero to end all instances of the process.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1 to indicate that ulParam1 contains a pointer.

ulParam1
Contains a pointer to a TIMESTAMP buffer that provides the date and time the work
package entered the workbasket.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 125

SimWmListWorkbaskets

ulParam2
Contains the current priority of the specified work package.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK

Guidelines for Use

 Follow-Up Tasks
When your application no longer needs the TIMESTAMP data, use SimLibFree to free
the buffer.

 Related Functions
 � SimWmGetWorkPackage
 � SimWmSetWorkPackagePriority
 � SimWmRouteWorkPackage

SimWmListWorkbaskets (List the Workbaskets)

 Format

SimWmListWorkbaskets(hSession, pAsyncCtl, pRC)

 Purpose
Use this function to get the names and IDs of all workbaskets defined in the system for
which the user has authority.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

126 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimWmQueryWorkPackage

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1 to indicate that ulParam1 contains a pointer.

ulParam1
Contains a pointer to a ITEMNAMESTRUCT array.

ulParam2
Contains the number of item IDs in the array that ulParam1 points to.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK

Guidelines for Use

 Exceptions
This function does not provide detailed information about the definition of a workbasket.
To get that information, use SimWmGetWorkBasketInfo with one of the identifiers that
SimWmListWorkBasket returns.

 Follow-Up Tasks
When your application no longer needs the ITEMNAMESTRUCT array, use
SimLibFree to free the buffer.

 Related Functions
 � SimWmGetWorkBasketInfo

SimWmQueryWorkPackage (Query a Work Package)

 Format

SimWmQueryWorkPackage(hSession, ulWorkPackageID, ulInstanceID,
pAsyncCtl, pRC)

 Purpose
Use this function to retrieve the contents and attributes of a work package.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 127

SimWmQueryWorkPackage

ulWorkPackageID
ULONG — input

Identifier of the work package that represents the work being done, such as the
document being routed.

ulInstanceID
ULONG — input

Identifier of the work package instance that distinguishes one parallel path from
another within the process.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1 to indicate that ulParam1 contains a pointer to a data area.

ulParam1
Contains a pointer to a SNAPSHOTSTRUCT data structure that provides the
returned item and associated work management information.

ulParam2
Not used.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_INDEX_CLASS
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Follow-Up Tasks
When your application no longer needs the SNAPSHOTSTRUCT data, use SimLibFree
to free the buffer.

128 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimWmReturnWorkPackage

SimWmReturnWorkPackage (Return a Work Package to a Workbasket)

 Format

SimWmReturnWorkPackage(hSession, ulWorkPackageID, ulInstanceID,
usWorkPriority, pAsyncCtl, pRC)

 Purpose
Use this function to return a work package instance that is currently open in a
workbasket back to that workbasket. This is the opposite of SimWmGetWorkPackage .
After using this function, the work package instance is again available.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

ulWorkPackageID
ULONG — input

Identifier of the work package that represents the work being done, such as the
document being routed.

ulInstanceID
ULONG — input

Identifier of the work package instance that distinguishes one parallel path from
another within the process.

usWorkPriority
USHORT — input

Priority of the work to perform. The priority affects the work sequencing as the work
package moves through a process. A larger number is a higher priority. Use zero to
keep the current priority.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 129

SimWmRouteWorkPackage

usParam
Not used.

ulParam1
Not used.

ulParam2
Not used.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Effects
The application can use this function when the user is unable to complete the work and
needs to resume later. This function can also be used in combination with
SimWmGetWorkPackage to obain information about a workbasket or to update data
for a work package. SimWmGetWorkPackage opens the work package, and
SimWmReturnWorkPackage closes the package, making again available in the
workbasket.

 Related Functions
 � SimWmGetWorkPackage
 � SimWmRouteWorkPackage

SimWmRouteWorkPackage (Route a Work Package)

 Format

SimWmRouteWorkPackage(hSession, pszWorkBasketID, ulWorkPackageID,
ulInstanceID, fRoute, pAsyncCtl, pRC)

 Purpose
Use this function to assign a work package to a workbasket. This function can be used
to assign a work package (created with SimWmCreateWorkPackage) to a workbasket,
or it can be used to reassign a work package from one workbasket to another.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

130 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SimWmRouteWorkPackage

pszWorkBasketID
PSZ — input

Pointer to the name of the workbasket.

ulWorkPackageID
ULONG — input

Identifier of the work package that represents the work being done, such as the
document being routed.

ulInstanceID
ULONG — input

Identifier of the work package instance that distinguishes one parallel path from
another within the process.

fRoute
BITS — input

Not supported.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Not used.

ulParam1
Not used.

ulParam2
Not used.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_PRIVILEGE_ERROR

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 131

SimWmSetWorkPackagePriority

 Related Functions
 � SimWmCreateWorkPackage

SimWmSetWorkPackagePriority (Set the Priority of a Work Package)

 Format

SimWmSetWorkPackagePriority(hSession, ulWorkPackageID, ulInstanceID,
usPriority, pAsyncCtl, pRC)

 Purpose
Use this function to set the priority of a work package within a workbasket. This priority
can control the work order of packages in the workbasket.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

ulWorkPackageID
ULONG — input

Identifier of the work package that represents the work being done, such as the
document being routed.

ulInstanceID
ULONG — input

Identifier of the work package instance that distinguishes one parallel path from
another within the process.

usPriority
ULONG — input

Not supported.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

132 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Ip2CloseTOC

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Always zero.

ulParam1
Contains the work package ID.

ulParam2
Contains the work package instance.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_INDEX_CLASS
 � SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Follow-Up Tasks
SimWmRouteWorkPackage should be called to route the work package to a
workbasket. Use SimLibLibFree(hSession, ulParam1, pRC) and
SimLibLibFree(hSession, ulParam2, pRC) to free the buffer.

 Related Functions
 � SimWmGetWorkPackage
 � SimWmGetWorkPackagePriority
 � SimWmRouteWorkPackage

Ip2CloseTOC (Close a Table of Contents)

 Format

Ip2CloseTOC(hSession, hTOC, pAsyncCtl, pRC)

 Purpose
Use the Ip2CloseTOC function to close the specified table of contents and then release
the table-of-contents handle.

 Parameters

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 133

Ip2CloseTOC

hSession
HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hTOC
HTOC — input

The handle to the table of contents you want to close. Use the SimLibGetTOC
function to get this handle.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
The function does not use this field.

ulParam1
The function does not use this field.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_LIB_CLIENT_ERROR
 � SIM_RC_OUT_OF_MEMORY

Guidelines for Use

 Effects
After you use this function to close the table of contents, you cannot use the
table-of-contents handle (hTOC) again. Use the SimLibGetTOC function to get a new
table-of-contents handle.

134 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Ip2GetTOCUpdates

 Related Functions
 � Ip2CloseToc
 � Ip2GetTOCUpdates
 � Ip2TOCCount
 � Ip2TOCStatus
 � SimLibGetItemAffiliatedTOC
 � SimLibGetTOC

Ip2GetTOCUpdates (Get the Updates to a Table of Contents)

 Format

Ip2GetTOCUpdates(hSession, hTOC, usUpdate, pAsyncCtl, pRC)

 Purpose
Use the Ip2GetTOCUpdates function to refresh a table of contents that you received
from a previous SimLibGetTOC function.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hTOC
HTOC — input

The handle to the table of contents that you want to refresh. Use the SimLibGetTOC
function to get this handle.

usUpdate
USHORT — input

Not supported.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 135

Ip2ListAttrs

usParam
Contains the total number of items in the table of contents.

ulParam1
Contains a pointer to a buffer with an array of TOCENTRYSTRUCT data structures
which indicates the number of items that have been updated, deleted, or added. For
more information on the TOCENTRYSTRUCT data structure, see
“TOCENTRYSTRUCT (Table of Contents Entry Data Structure)” on page 176.

ulParam2
Contains the handle to the table of contents.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � OIM_INVALID_FUPDATE_VALUE
 � OIM_INVALID_HTOC_VALUE
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_ID
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_LIB_CLIENT_ERROR
 � SIM_RC_OUT_OF_MEMORY

Guidelines for Use

 Follow-Up Tasks
When your application no longer needs the table of contents, use the Ip2CloseTOC
function to close the table of contents and release the handle.

 Related Functions
 � SimLibGetTOC
 � Ip2CloseTOC
 � Ip2TOCStatus
 � Ip2GetTOCUpdates

Ip2ListAttrs (List the User-Defined Attributes)

 Format

Ip2ListAttrs(hSession, pAsyncCtl, pRC)

136 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Ip2ListAttrs

 Purpose
Use the Ip2ListAttrs function to get a list of the attributes in the system.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1 to indicate that ulParam1 contains a pointer.

ulParam1
If the ulParam2 field contains a value greater than 0, this field contains a pointer to a
buffer with a NAMESTRUCT array. Each element in this array provides the index
attribute identifiers that are associated with a specific attribute name. For more
information on this data structure, see “NAMESTRUCT (Name Data Structure)” on
page 167.

ulParam2
Contains the number of elements in the array that ulParam1 points to.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_LIB_CLIENT_ERROR
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 137

Ip2ListContentClasses

Guidelines for Use

 Effects
� Use the SimLibGetAttrInfo function to get additional information about a specific

index attribute.

� Attributes with negative IDs or those greater than 32767 are system attributes. You
cannot modify these.

 Follow-Up Tasks
When your application no longer needs the array of index attribute identifiers, use the
SimLibFree(hSession, (PVOID)ulParam1, pRC) function to free the buffer.

 Related Functions
 � SimLibGetAttrInfo

Ip2ListContentClasses (List the Content Classes)

 Format

Ip2ListContentClasses(hSession, usContentClassType, pAsyncCtl, pRC)

 Purpose
Use the Ip2ListContentClasses function to display the content class records that are
in the library server database.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

usContentClassType
USHORT — input

The type of content classes to list. The valid values are:

OIM_SA_ALL_CC
Lists both the IBM-defined content classes and the user-defined content classes.

OIM_SA_IBM_CC
Lists only the IBM-defined content classes.

OIM_SA_USR_CC
Lists only the user-defined content classes.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

138 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Ip2ListServers

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in the
RCSTRUCT data structure:

usParam
Contains the value 1, to indicate that ulParam1 contains a pointer. If no records exist
for the specified content class type, this field contains the value 0.

ulParam1
Contains a pointer to the array of CONTENTCLASSINFO data structures containing
the list of content classes. For more information on this data structure, see
“CONTENTCLASSINFO (Content Class Information Structure)” on page 161. If no
records exist for the specified content class type, this field contains the value NULL.

ulParam2
Contains the number of content classes in the library server database. If ulRC
contains an error code, ulParam2 contains the value NULL.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_CC_TYPE
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR
 � SIM_RC_QUERY_FAILED

Guidelines for Use

 Follow-Up Tasks
When you finish with the content class information, use the SimLibFree(ulParam1)
function to release allocated storage.

Ip2ListServers (List the Accessible Servers)

 Format

Ip2ListServers(pServrInfo, ulServrInfoSize, fSrchfilter, pRC)

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 139

Ip2ListServers

 Purpose
Use the Ip2ListServers() function to retrieve information about all the servers
accessible to the system. You can use this function to determine the eligible libraries to
display as part of a logon interaction.

This function is supported only in the 32-bit Windows environment.

 Parameters
pServrInfo

PSERVERINFOSTRUCT — input/output

The pointer to a buffer that contains an array of server names and types. The calling
application allocates memory for this structure.

ulServrInfoSize
ULONG — input

The size, in bytes, of the buffer allocated for the SERVERINFOSTRUCT array.

fSrchfilter
ULONG — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 1.

ulParam1
If usParam contains a value greater than 0, this field contains a pointer to an array of
SERVERINFOSTRUCT data structures. “Guidelines for Use” explains how the value
of the ulServrInfoSize parameter affects the value returned in ulParam1. For more
information on the SERVERINFOSTRUCT data structure, see
“SERVERINFOSTRUCT (Server Information Structure)” on page 171.

ulParam2
Contains the number of the servers returned by this call, though not necessarily the
number of servers in the system.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � OIM_INVALID_PSERVERINFO_PTR
 � OIM_RC_INPUTBUF_TOO_SMALL

140 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Ip2QueryClassPriv

 � OIM_RC_ISO_CONNECT_FAILED
 � OIM_RC_ISO_LISTSVR_FAILED

Guidelines for Use

 Exceptions
� Your application can connect to all the servers but not necessarily log on to all of

them. You must have a valid user ID and password to access the database on the
server.

� If the input value of ulServrInfoSize is too small to receive the data, error code
OIM_RC_INPUTBUF_TOO_SMALL is returned, and the ulParam2 field of the
RCSTRUCT data structure contains the number of servers found.

� In these environments, in addition to returning a list of servers as defined in the
client network table (FRNOLINT.TBL), this will also list the daemon FRNODAOS as
a server. It is the responsibility of the application to filter this daemon from the list
prior to exposing it to an end user.

 Related Functions
None

Ip2QueryClassPriv (Query the Privilege String for an Index Class or View)

 Format

Ip2QueryClassPriv(hSession, usClassType, usID, pAsyncCtl, pRC)

 Purpose
Use the Ip2QueryClassPriv function to return the evaluated privilege string for the
index class that you specify. The evaluated privilege string indicates your access rights
to the information in the system. You should use it with Ip2QueryQueryPrivBuffer to
determine access rights.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

usClassType
USHORT— input

Not supported.

usID
USHORT — input

The ID of an index class.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 141

Ip2QueryClassPriv

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in the
RCSTRUCT data structure:

usParam
This parameter contains the value 1 to indicate that ulParam1 contains a pointer.

ulParam1
Contains a PSZ pointer. This pointer identifies the location of a CHAR
szPrivilege[401] buffer where a data structure contains the evaluated privilege string.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_CLASS_TYPE
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_INVALID_USCLASSID_VALUE
 � SIM_RC_LIB_CLIENT_ERROR
 � SIM_RC_OUT_OF_MEMORY

Guidelines for Use

 Effects
� The privilege string is evaluated for the class with respect to the user who got the

hSession by logging on. The evaluated privilege string specifies the privileges of
that user for the specified index class as computed by the access control algorithm.

 Follow-Up Tasks
When your application no longer needs the data structure that ulParam1 points to, use
the SimLibFree(hSession,(PVOID)ulParam1, pRC) function to free the data structure.

142 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Ip2QueryPrivBuffer

Ip2QueryPrivBuffer (Query a Privilege Buffer)

 Format

Ip2QueryPrivBuffer(pszPrivilege, ulAuthority, pRC)

 Purpose
Use the Ip2QueryPrivBuffer function to determine whether a certain authority is
granted in a specified privilege buffer.

 Parameters
pszPrivilege

PSZ — input

The current privileges set for the user.

ulAuthority
ULONG — input

The general privilege to search for. The valid values are:

OIM_ACL
Determines the authority to create, update, and delete access lists.

OIM_ADD_ITEMS_TO_WB
Determines the authority to add an item to a workbasket.

OIM_ADD_ITEMS_TO_WF
Determines the authority to add an item to a workflow.

OIM_ADD_NEW_BASE_PART
Determines the authority to add a new document.

OIM_ADD_NOTE_TO_NOTELOG
Determines the authority to add a note object to the note log.

OIM_ATTRS
Determines the authority to create, update, and delete attributes.

OIM_CC
Determines the authority to create, update, list and delete content classes.

OIM_CHANGE_INDEX_CLASS
Determines the authority to change the index class of any items.

OIM_CHANGE_ITEMS_TO_WB
Determines the authority to change the priority of an item in a workbasket.

OIM_CHANGE_ITEMS_TO_WF
Determines the authority to change an item from the current workflow to a new
workflow.

OIM_CHECK_IN_OUT_ITEMS
Determines the authority to check in and check out a folder or document.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 143

Ip2QueryPrivBuffer

OIM_CLASS
Determines the authority to add and delete indexes on an index classes and query
their DLLs.

OIM_CREATE_ITEMS
Determines the authority to create a folder or document.

OIM_DB_UTILITY
Determines the authority to allow UTILITY to access the database.

OIM_DELETE_BASE_PART
Determines the authority to delete a document.

OIM_DELETE_ITEMS
Determines the authority to delete a folder or document.

OIM_EXPORT
Determines the authority to export and to send mail that includes an object.

OIM_FAXIN
Determines the authority to receive a facsimile.

OIM_FAXOUT
Determines the authority to send a facsimile.

OIM_FAXSERVER
Determines the authority of the fax server to send or receive a facsimile.

OIM_FILEROOM
Determines the authority to access an application-defined fileroom.

OIM_IMPORT
Determines the authority to import and to receive mail.

OIM_LBOS_BACKUP
Determines the authority to back up the LAN-based object server.

OIM_LIB_SERV_BACKUP
Determines the authority to back up the library server.

OIM_LIB_SERV_CONFIG
Determines the authority to control the library server configuration.

OIM_LICENSE
Determines the authority to update the license information in the database.

OIM_LINK_ITEMS
Determines the authority to add a link between items and a folder.

OIM_OCR
Determines the authority to use an optical character recognition device.

OIM_PRINT
Determines the authority to print.

OIM_PRIV_SET
Determines the authority to create, update, and delete privilege sets.

144 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Ip2QueryPrivBuffer

OIM_READ_BASE_PART
Determines the authority to read a document part.

OIM_READ_HISTORY
Determines the authority to read a history event.

OIM_READ_NOTELOG
Determines the authority to read the note log.

OIM_READ_TOC
Determines the authority to read the folder table of contents.

OIM_READ_WORKBASKET
Determines the authority to get the workbasket information.

OIM_REMOVE_ITEMS_TO_WB
Determines the authority to remove an item from a workbasket.

OIM_REMOVE_ITEMS_TO_WF
Determines the authority to remove an item from a workflow.

OIM_REMOVE_LINKS
Determines the authority to delete a link between items and a folder.

OIM_SA_NLS
Determines the authority to update the supported languages in the database.

OIM_SA_OBJSERV
Determines the authority to update the object server information in the database.

OIM_SA_USER
Determines the general logon privileges of a user.

OIM_SA_WORKBASKET
Determines the authority to create, update, and delete workbaskets.

OIM_SA_WORKFLOW
Determines the authority to create, update, and delete workflows.

OIM_SCAN
Determines the authority to scan images.

OIM_SEARCH_INDEX_INFO
Determines the authority to read user-defined attributes for all index classes and
all items in each index class.

OIM_SERVER
Determines the authority to act as a client on behalf of other clients.

OIM_SMS
Determines the authority to manage system-managed storage for a LAN-based
object server.

OIM_SNAPSHOT_ALL
Determines the authority to use the SimLibGetItemSnapshot or
SimLibGetTOCData functions on items.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 145

Ip2QueryPrivBuffer

OIM_SUPER_ADMIN
Determines the authority to bypass the access list.

OIM_SUSP_AND_ACTIVATE_ITEMS
Determines the authority to suspend and activate a folder or document.

OIM_UPDATE_AVT_INFO
Determines the authority to update user-defined attribute values for all index
classes and all items in each index class.

OIM_UPDATE_BASE_PART
Determines the authority to update a document.

OIM_UPDATE_NOTELOG
Determines the authority to update or delete notes in the note log.

OIM_USER_GROUPS
Determines the authority to create, update, and delete user groups.

OIM_USER_ID
Determines the authority to create, update, and delete user IDs.

OIM_VIEW
Determines the authority to create, update, and delete views.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in the
RCSTRUCT data structure:

usParam
Contains the value 1 if the privilege set represented by pszPrivilege contains the
specified authority. Otherwise the field contains the value 0.

ulParam1
The function does not use this field.

ulParam2
The function does not use this field.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � OIM_INVALID_PSZPRIVLEGE_STRING
 � SIM_INVALID_ULAUTHORITY

146 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Ip2TOCCount

Ip2TOCCount (Count the Items in a Table of Contents)

 Format

Ip2TOCCount(hSession, pitemidItem, usItemType, usWipFilter, usSuspendFilter,
usNbrOfClasses, pusClassIdList, pAsyncCtl, pRC)

 Purpose
Use the Ip2TOCCount function to get a count of the items in a folder or workbasket
that satisfy the filtering criteria that you specify. This function is similar to
SimLibGetTOC , except that this function returns only a count of the items rather than a
table of contents. The count includes all items, regardless of authority.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

pitemidItem
PITEMID — input

The pointer to an item ID of a folder or workbasket.

usItemType
USHORT — input

The type of items to count. Here are the valid values:

SIM_DOCUMENT
Counts documents.

SIM_FOLDER
Counts folders.

SIM_ALL
Counts all types of items.

usWipFilter
USHORT — input

Not supported.

usSuspendFilter
USHORT — input

Not supported.

usNbrOfClasses
USHORT — input

The number of index class identifiers in the list you specify as the value of the
pusClassIdList parameter. Specify the value 0 for the usNbrOfClasses parameter to
indicate that class is not a criterion for selecting items to count.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 147

Ip2TOCCount

pusClassIdList
PUSHORT — input

The pointer to a list of index class identifiers that indicate the items to count. You can
specify the value NULL for this parameter if you also specify the value 0 for the
usNbrOfClasses parameter.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 0.

ulParam1
Contains the count of items in the table of contents. If no items satisfy the filtering
criteria, this field contains the value 0.

ulParam2
Contains the value 0.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_LIB_CLIENT_ERROR
 � SIM_RC_OUT_OF_MEMORY
 � SIM_RC_PRIVILEGE_ERROR

Guidelines for Use

 Effects
If the item is not a folder or a workbasket, the function returns
SIM_RC_INVALID_ITEM_TYPE.

148 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Ip2TOCStatus

 Related Functions
 � Ip2GetTOCUpdates
 � SimLibGetTOC

Ip2TOCStatus (Get the Status of a Table of Contents)

 Format

Ip2TOCStatus(hSession, hTOC, usCheck, pAsyncCtl, pRC)

 Purpose
Use the Ip2TOCStatus function to return a value that indicates whether or not a table
of contents has been changed.

 Parameters
hSession

HSESSION — input

The handle to the VisualInfo for AS/400 session information. The SimLibLogon
function creates the session information.

hTOC
HTOC — input

The handle to the table of contents for which you want to check the status. The
SimLibGetTOC function returns this handle.

usCheck
USHORT — input

Not supported.

pAsyncCtl
PASYNCCTLSTRUCT — input

Not supported.

pRC
PRCSTRUCT — input/output

The pointer to the return data structure. For more information on the RCSTRUCT
structure, see “RCSTRUCT (Return Code Information Structure)” on page 169.

 Return Values
On successful completion, this function returns values to the following fields in an
RCSTRUCT data structure:

usParam
Contains the value 0.

 Chapter 5. VisualInfo for AS/400 Application Programming Interfaces 149

Ip2TOCStatus

ulParam1
If the table of contents has changed, this field contains the value TRUE. If there are
no changes, this field contains the value FALSE.

ulParam2
Contains the value 0.

ulRC
Contains one of the following return codes:

 � SIM_RC_OK
 � OIM_EMPTY_WORKBASKET
 � OIM_INVALID_HTOC_VALUE
 � SIM_RC_COMMUNICATIONS_ERROR
 � SIM_RC_COMPLETION_ERROR
 � SIM_RC_INVALID_HSESSION
 � SIM_RC_INVALID_ITEM_ID
 � SIM_RC_INVALID_POINTER
 � SIM_RC_INVALID_PRC
 � SIM_RC_LIB_CLIENT_ERROR
 � SIM_RC_OUT_OF_MEMORY

Guidelines for Use

 Exceptions
This function tells whether a table of contents has changed, but it does not return the
updates. After you use the function, your application can use other functions to get the
changes themselves. Because the time required for this function is nearly the same as
the time required for SimLibGetTOC or SimLibGetTOCUpdates , you should use those
functions instead, if possible.

� Use the Ip2GetTOCUpdates function to refresh the table of contents.

� Use the Ip2CloseTOC function to close the open table of contents and then use
the SimLibGetTOC function to refresh the table of contents to reflect the values in
the database.

 Related Functions
 � Ip2CloseTOC
 � Ip2GetTOCUpdates
 � SimLibGetTOC

150 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

AFFTOCENTRYSTRUCT

Chapter 6. Common Data Structures

This part provides more detailed reference information that describes the common data
structures and database tables used for VisualInfo for AS/400. The data structures are
listed alphabetically and are always in UPPERCASE in the VisualInfo for AS/400 code.
The following information is provided about each data structure:

 � Purpose
 � Valid fields
� Valid field values

 � Usage guidelines

AFFTOCENTRYSTRUCT (Affiliated Table of Contents Entry Structure)
This data structure provides information about which objects are affiliated with an item.
It consists of the following:

typedef struct _AFFTOCENTRYSTRUCT

{
ULONG ulStruct;
ANNOTATIONSTRUCT AnnotationData;
ULONG ulObjType;
OBJ Obj;
ULONG ulObjConCls;
ULONG ulObjLength;
LONG lObjSeqAfter;
ULONG ulObjFlags;
TIMESTAMP tsCreate;
TIMESTAMP tsChanged;

} AFFTOCENTRYSHOTSTRUCT, *PAFFTOCENTRYSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

AnnotationData
ANNOTATIONSTRUCT — output

The information associated with an annotation object. For more information, see
ANNOTATIONSTRUCT (Annotation Information Structure).

ulObjType
ULONG — output

The type of object. Here are the valid values:

SIM_ANNOTATION
Indicates that the item is an annotation associated with a folder or a document.

 Copyright IBM Corp. 1997 151

ANNOTATIONSTRUCT

SIM_BASE
Indicates that the object is a base object such as a Mixed Object Document
Content Architecture (MO:DCA) or Tag Image File Format (TIFF) file, and is not an
annotation, note, or event associated with a folder or document.

SIM_NOTE
Indicates that the item is a note associated with a folder or a document.

Obj
OBJ — output

The object handle data structure that identifies the object. For more information, see
HOBJ (Handle to Query Stored Object).

ulObjConCls
ULONG — output

The object content class of the object you query. The value SIM_CC_UNKNOWN
indicates the undefined content class.

ulObjLength
ULONG — output

The length of the object in bytes.

lObjSeqAfter
LONG — output

The order of the object relative to other objects in the item.

Restriction: This is the value of the unsupported lSeqAfterPart parameter of the
SimLibCreateObject function.

ulObjFlags
ULONG — output

Not supported.

tsCreate
TIMESTAMP — output

The date and time that the item or object was created.

tsChanged
TIMESTAMP — output

The date and time that the item or object was changed.

ANNOTATIONSTRUCT (Annotation Information Structure)
This data structure provides information about an annotation affiliated with an object. It
consists of the following:

typedef struct _ANNOTATIONSTRUCT

{
ULONG ulStruct;
ULONG ulPart;

152 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

ATTRINFOSTRUCT

ULONG ulPageNumber;
USHORT usX;
USHORT usY;
USHORT usT;
USHORT usAnnotUnused;

} ANNOTATIONSTRUCT, *PANNOTATIONSTRUCT;

 Fields
ulStruct

ULONG — input/output

The length of the structure in bytes, including the length of this field.

ulPart
ULONG — input/output

The part number of the object. Only positive values are valid.

ulPageNumber
ULONG — input/output

The page number that the annotation object refers to.

usX
USHORT — input/output

The X coordinate for the annotation object on the page that the value of the
ulPageNumber field references.

usY
USHORT — input/output

The Y coordinate for the annotation object on the page that the value of the
ulPageNumber field references.

usT
USHORT — input/output

Not supported.

usAnnotUnused
USHORT — input/output

A reserved field.

ATTRINFOSTRUCT (Attribute Information Structure)
This structure provides the data needed to create, modify, and list a user-defined
attribute. It consists of the following:

typedef struct _ATTRINFOSTRUCT

{
ULONG ulStruct;
BOOL fUseBidirectional;

 Chapter 6. Common Data Structures 153

ATTRINFOSTRUCT

BOOL fSymmetricSwapping;
BOOL fShaping;
LONG lMin;
LONG lMax;
BITS fTypeFlags;
USHORT usAttrType;
USHORT usHorizontalOrientation;
USHORT usVerticalOrientation;
USHORT usMode;
USHORT usNumericSelectionDefault;
CHAR szAttributeName;
CHAR achLanguageCode;

} ATTRINFOSTRUCT, *PATTRINFOSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

fUseBidirectional
BOOL — output

Always set to FALSE.

fSymmetricSwapping
BOOL — input

This is always set to FALSE .

fShaping
BOOL — input

This is always set to FALSE .

lMin
LONG — input

The meaning of lMin varies with the value of the usAttrType parameter:

� It is the minimum length of the string and must contain the value 0 or a greater
value, if usAttrType contains SIM_ATTR_FSTRING.

� When the data could be a double byte character string (DBCS), space must be
allowed for the possible use of the shift in (SI) and the shift out (SO) indicators
in a mixed string situation.

� It is the minimum value allowed if usAttrType contains SIM_ATTR_LONG.

lMax
LONG — output

The meaning of lMax varies with the value of the usAttrType parameter:

� It is the maximum length of the string and must contain a value greater than 0
and greater than lMin, if usAttrType contains SIM_ATTR_FSTRING.

154 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

ATTRLISTSTRUCT

� It is the maximum value allowed if usAttrType contains SIM_ATTR_LONG.

fTypeFlags
BITS — output

Not supported.

usAttrType
USHORT — output

In VisualInfo for AS/400, this is always set to SIM_ATTR_VSTRING.

usHorizontalOrientation
USHORT — output

Not supported.

usVerticalOrientation—
USHORT — output

Not supported.

usMode
USHORT — output

Not supported.

usNumericSelectionDefault
USHORT — output

Not supported.

szAttributeName
CHAR[SIM_ATTR_NAME_LENGTH+1] — input/output

A NULL-terminated character string containing the application-defined name of the
attribute.

achLanguageCode
CHAR[SIM_LANGUAGE_CODE_LENGTH+1] — output

The 3-character national language code for this attribute name. The values for
language codes are described in the IBM National Language Design Guide: National
Language Support Reference Manual Volume 2.

ATTRLISTSTRUCT (Attribute List Data Structure)
This data structure defines a single system-defined or user-defined attribute value to be
associated with an item. The structure is also used when creating an item, which
consists of the following:

typedef struct _ATTRLISTSTRUCT

{
ULONG ulStruct;
PSZ pszAttributeValue;
BITS fAttrFlags;
USHORT usAttrId;

 Chapter 6. Common Data Structures 155

ATTRLISTSTRUCT

USHORT usAttrType;

} ATTRLISTSTRUCT, *PATTRLISTSTRUCT;

 Fields
ulStruct

ULONG — input/output

The length of the structure in bytes, including the length of this field.

pszAttributeValue
PSZ — input/output

The pointer to a NULL-terminated character string containing the value of an
attribute.

fAttrFlags
BITS — output

Flags denoting attribute characteristics. These flags indicate whether the attribute
value is accessible for reading, writing, or both, and whether it is required for the
index class. Here are the valid values. You can use a bit-wise inclusive OR operator
(|) to combine them.

SIM_ATTR_READABLE
Indicates that the attribute is accessible for reading for this index class.

SIM_ATTR_READWRITE
Indicates that the attribute is accessible for both reading and writing for this index
class.

SIM_ATTR_WRITEABLE
Indicates that the attribute is accessible for writing for this index class.

SIM_ATTR_ALLOW_NULL
Indicates that the attribute value is not required for this index class.

usAttrId
USHORT — input/output

The unique identifier of an attribute. See the note the follows this list for a discussion
of the VisualInfo for AS/400 system-defined attributes.

usAttrType
USHORT — input/output

In VisualInfo for AS/400, this is always set to SIM_ATTR_VSTRING.

VisualInfo for AS/400 supports the system-defined attributes shown in Table 1 on
page 157.

156 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

CLASSATTRSTRUCT

Table 1. Source of Values for System-Defined Attributes

Attribute Name Description How Assigned

OIM_ID_ITEM_CREATE_TIMESTAMP The timestamp when the item
was created

System-assigned and
system-maintained automatically

OIM_ID_ITEM_NAME The name of the item You can assign when creating an
item and update when opening an
item for read and write access

OIM_ID_SYS_MOD_TIMESTAMP The timestamp for changes to
the system-assigned or
user-defined attributes of the
item

System-assigned and
system-maintained automatically

OIM_ID_ITEM_ID The item ID of the item System-assigned and
system-maintained automatically

CLASSATTRSTRUCT (Class Attribute Structure)
This data structure contains specific information about the attributes defined for an
index class. It consists of the following:

typedef struct _CLASSATTRSTRUCT

{
ULONG ulStruct;
BOOL fAttrRequiredField;
BITS fAttrAccess;
USHORT usAttrId;

} CLASSATTRSTRUCT, *PCLASSATTRSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

fAttrRequiredField
BOOL — output

A flag that indicates whether a value is required for this attribute. Here are the valid
values:

TRUE Indicates that a value is required.
FALSE Indicates that a value is not required.

Restriction: This field is valid for index classes only. It is not valid for index classes.

 Chapter 6. Common Data Structures 157

CLASSINDEXATTRSTRUCT

fAttrAccess
BITS — output

A flag that indicates the type of access for the attribute. This field is valid only for
views. It is not valid for index classes. Here are the valid values:

SIM_ATTR_READABLE
Indicates read access.

SIM_ATTR_READWRITE
Indicates read and write access. This value is a combination of
SIM_ATTR_READABLE and SIM_ATTR_WRITEABLE.

SIM_ATTR_WRITEABLE
Indicates write access.

usAttrId
USHORT — output

The unique identifier of an attribute.

CLASSINDEXATTRSTRUCT (Class Index Attribute Structure)
This data structure contains information about an attribute within an index on an index
class attributes table. It consists of the following:

typedef struct _CLASSINDEXATTRSTRUCT

{
ULONG ulStruct;
USHORT usAttrId;
USHORT usIndexSortOrder;

} CLASSINDEXATTRSTRUCT, *PCLASSINDEXATTRSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

usAttrId
USHORT — output

The unique identifier of an attribute. The attribute can be user-defined but not
system-defined, and it must be in the index class for which this index is requested.

usIndexSortOrder
USHORT — output

In VisualInfo for AS/400, this is always set to SIM_INDEX_ASCENDING.

158 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

CLASSINFOSTRUCT

CLASSINDEXSTRUCT (Class Index Structure)
This data structure contains the index class attributes that are used to create a
database index on an index class. It consists of the following:

typedef struct _CLASSINDEXSTRUCT

{
ULONG ulStruct;
BITS fIndexFlags;
PCLASSINDEXATTRSTRUCT pClassIndexAttr;
USHORT usNbrAttrIds;
SZ szIndexName;

} CLASSINDEXSTRUCT, *PCLASSINDEXSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

fIndexFlags
BITS — output

Not supported.

pClassIndexAttr
PCLASSINDEXATTRSTRUCT — output

A pointer to a ClassIndexAttrStruct data structure containing class index attribute
information. For more information, see CLASSINDEXATTRSTRUCT (Class Index
Attribute Structure).

usNbrAttrIds
USHORT — output

The number of attribute IDs in the ClassIndexAttrStruct structure.

szIndexName
SZ[SIM_INDEX_NAME_LENGTH+1] — output

The unique name of an index class database index.

CLASSINFOSTRUCT (Index Class Information Structure)
This data structure provides information about an index class. It consists of the
following:

typedef struct _CLASSINFOSTRUCT

{
ULONG ulStruct;
PCLASSATTRSTRUCT pClassAttrStruct;

 Chapter 6. Common Data Structures 159

CLASSINFOSTRUCT

USHORT usNbrAttrIds;
USHORT usMaxVersions;
USHORT usIndexClass;
USHORT usViewID;
CHAR szACLName;
CHAR achLanguageCode;
CHAR szClassName;
CHAR szDescription;
CHAR szCollectionName;
CHAR szStoreSite;

} CLASSINFOSTRUCT, *PCLASSINFOSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

pClassAttrStruct
PCLASSATTRSTRUCT — output

A pointer to an array of class attribute structures.

usNbrAttrIds
USHORT — output

The number of attribute IDs in the CLASSATTRSTRUCT array. For classes with no
attributes, this value is 0, and the pClassAttrStruct field contains the value NULL.

usMaxVersions
USHORT — output

Not supported.

usIndexClass
USHORT — output

An index class identifier.

usViewID
USHORT — output

The ID of an existing index class view.

szACLName
CHAR[SIM_ACCESS_LIST_NAME_LENGTH+1] — output

Not supported.

achLanguageCode
CHAR[SIM_LANGUAGE_CODE_LENGTH+1] — output

The 3-character national language code for this index class name or view name. The
values for language codes are described in the IBM National Language Design
Guide: National Language Support Reference Manual, Volume 2.

160 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

CONTENTCLASSINFO

szClassName
CHAR[SIM_CLASS_NAME_LENGTH+1] — output

The name of the index class or view, expressed in the specified language.

szDescription
CHAR[SIM_DESCRIPTION_LENGTH+1] — output

Not supported.

szCollectionName
CHAR[SIM_COLLECTION_NAME_LENGTH+1] — output

The default collection for new objects in the specified index class. For a view, this is
the same value as for the index class that is associated with the view. It is valid for a
view only on the SimLibGetClassInfo function.

szStoreSite
CHAR[SIM_SERVER_NAME_LENGTH+1] — output

Not supported.

CONTENTCLASSINFO (Content Class Information Structure)
This information structure provides the data you need to create and modify a content
class. It consists of the following:

typedef struct _CONTENTCLASSINFO

{
ULONG ulStruct;
USHORT usContentClsID;
CHAR szContentClsName;
CHAR szContentClsDesc;

} CONTENTCLASSINFO, *PCONTENTCLASSINFO;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

usContentClsID
USHORT — output

An unique content class ID that VisualInfo for AS/400 generates.

szContentClsName
CHAR[9] — output

The name of the content class.

szContentClsDesc
CHAR[41] — output

The description of the content class.

 Chapter 6. Common Data Structures 161

ICVIEWSTRUCT

HOBJ (Handle to Query Stored Object)
This handle identifies the stored object to query. This is actually a pointer to a data
structure that consists of:

typedef struct _OBJSTRUCT

{
ULONG ulStruct;
ULONG ulPart;
SHORT sVersion;
ITEMID szItemID;
UCHAR chRepType;
UCHAR chReserved;

} OBJ, *HOBJ;

 Fields
ulStruct

ULONG — input/output

The length of the structure in bytes, including the length of this field.

ulPart
ULONG — input/output

The part number of the object. Only positive values are valid.

sVersion
SHORT — input

Not supported.

szItemID
ITEMID — input/output

The item ID of the object.

chRepType
UCHAR[SIM_REP_TYPE] — input/output

Not supported.

chReserved
UCHAR[SIM_OBJ_RESERVED_LENGTH] — input

Reserved.

ICVIEWSTRUCT (Index Class View Information Structure)
This data structure provides information about the index class or index class view
information structure. It consists of the following:

typedef struct _ICVIEWSTRUCT

{

162 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

ITEMINFOSTRUCT

ULONG ulStruct;
struct _ICVIEWSTRUCT *pNextView;
PATTRLISTSTRUCT pAttr;
USHORT usIndexClass;
USHORT usViewId;
USHORT usNumAttributes;

} ICVIEWSTRUCT, *PICVIEWSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

pNextView
struct _ICVIEWSTRUCT * — output

The pointer to the next field in the linked list of view information for the item. Each
field in this list is an ICVIEWSTRUCT data structure. For this release of VisualInfo for
AS/400, this pointer always contains the value NULL.

pAttr
PATTRLISTSTRUCT — output

The pointer to an array of ATTRLISTSTRUCT data structures. Each data structure
contains either the system-defined or the user-defined attribute ID of the current view
for this item. One data structure in the array specifies one attribute.

usIndexClass
USHORT — output

The index class identifier for the item.

usViewId
USHORT — output

The ID of an existing index class view.

VisualInfo for AS/400 supports only a single view, with the same identifier as the
index class.

usNumAttributes
USHORT — output

The number of attribute values that exist for this item. The value of this field matches
the number of ATTRLISTSTRUCT data structures that the pAttr field points to.

ITEMINFOSTRUCT (Item Information Structure)
This data structure provides the requested item information. It consists of the following:

typedef struct _ITEMINFOSTRUCT

{
ULONG ulStruct;

 Chapter 6. Common Data Structures 163

ITEMINFOSTRUCT

BOOL fSuspended;
USHORT usItemType;
USHORT usIndexClass;
ULONG ulOpenStatus;
USHORT usWipStatus;
USERID useridCheckout;
CHAR szLabel;

} ITEMINFOSTRUCT, *PITEMINFOSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

fSuspended
BOOL — output

Not supported.

usItemType
USHORT — output

The type of items retrieved using the SimLibGetItemInfo function. Here are the valid
values:

SIM_DOCUMENT
Indicates that the item is a document.

SIM_FOLDER
Indicates that the item is a folder.

SIM_WORKBASKET
Indicates that the item is a workbasket.

SIM_WORKFLOW
Indicates that the item is a workflow.

usIndexClass
USHORT — output

An index class identifier.

For the SimLibGetItemInfo function, this value specifies the index class ID for the
item you are querying.

ulOpenStatus
ULONG — output

Indicator of whether the item is open for update. Together, this parameter and the
useridCheckout parameter provide information about who has the item and for what
purpose. Here are the valid values:

SIM_ACCESS_READ_WRITE
Indicates that you have the item open for update.

164 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

LIBSEARCHCRITERIASTRUCT

SIM_ACCESS_UNKNOWN
Indicates that you do not have the item open for update.

usWipStatus
USHORT — output

Not supported.

useridCheckout
USERIDENT — output

The user ID of the person who has the item checked out. Together, this parameter
and the ulOpenStatus parameter provide information about who has the item and for
what purpose. Here are the valid values:

Your user ID
Indicates that you have the item checked out permanently and open for update, if
ulOpenStatus contains the value SIM_ACCESS_READ_WRITE. Otherwise, you
have the item checked out permanently but it is not open for update.

Other user ID
Identifies another user who has the item checked out, if ulOpenStatus contains
SIM_ACCESS_UNKNOWN.

A null string
Indicates that you have the item open for update, if ulOpenStatus contains the
value SIM_ACCESS_READ_WRITE. Otherwise, the item is not checked out.

szLabel
CHAR[SIM_LABEL_LENGTH+1] — output

A null-terminated string that contains the name or label of the item.

LIBSEARCHCRITERIASTRUCT (Search Criteria Information Structure)
This data structure provides information about which index class to search and the
search expression itself. It consists of the following:

typedef struct _LIBSEARCHCRITERIASTRUCT

{
ULONG ulStruct;
ULONG ulReturnLimit;
BITS fSearch;
PSZ pszSearchString;
USHORT usViewID;
USHORT usSearchUnused;

} LIBSEARCHCRITERIASTRUCT, *PLIBSEARCHCRITERIASTRUCT;

 Fields
ulStruct

ULONG — input

The length of the structure in bytes, including the length of this field.

 Chapter 6. Common Data Structures 165

LIBSEARCHCRITERIASTRUCT

ulReturnLimit
ULONG — input

The maximum number of items that the search returns for the index classyou specify.
If you specify SIM_SEARCH_ALLVIEWS as the value of the fSearch field, the value
of this field is the maximum number of items that the search returns per index class
from each index class you search. Specify 0 as the value of this field to return all
the items that match the search criteria for the index class you specify.

fSearch
BITS — input

The search modification indicator. The value of this field determines a modification to
the search. Here are the valid values:

SIM_SEARCH_VIEW
Searches only the view specified in the usViewID field. If you specify this value,
you must specify the ID of a valid view in the usViewID field.

SIM_SEARCH_ALLVIEWS
Searches all the appropriate current views, not just one view. If you specify this
value, you must specify 0 as the value of the usViewID field. You can specify this
value in only one of the data structures in an array of search criteria.

If you specify this value, the SimLibSearch function automatically searches only
the views that contain the attributes you specify in the expression within the
pszSearchString field.

pszSearchString
PSZ — input

A pointer to a null-terminated string. This field contains one or more expressions.
Each expression describes the search conditions on an attribute. Use logical
operators to combine expressions for the search. You can use an unlimited number
of levels and parentheses. See Guidelines for Search Expressions following this list.

usViewID
USHORT — input

The ID of an existing index class.

usSearchUnused
USHORT — input

Reserved field.

Restriction: The SimLibSearch function does not use this value.

Guidelines for Search Expressions
See Appendix B, “Guidelines for Search Expressions” on page 207.

166 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

OBJINFOSTRUCT

NAMESTRUCT (Name Data Structure)
This data structure provides the name associated with an attribute or index class view
code. It consists of the following:

typedef struct _NAMESTRUCT

{
ULONG ulStruct;
USHORT usID;
CHAR szName;
CHAR szDescription;

} NAMESTRUCT, *PNAMESTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

usID
USHORT — output

The ID of a valid attribute, an index class, or an index class view.

szName
CHAR[SIM_CLASS_NAME_LENGTH+1] — output

The name of the index class or view in the current language.

szDescription
CHAR[SIM_DESCRIPTION_LENGTH+1] — output

Not supported.

OBJINFOSTRUCT (Object Information Structure)
This data structure provides storage information about the object. It consists of the
following:

typedef struct _OBJINFOSTRUCT

{
ULONG ulStruct;
ULONG ulObjSize;
LONG lSMSRetention;
LONG lEstimateRetrieveTime;
ULONG ulAvail;
ULONG ulObjConCls;
USHORT usPageNum;
TIMESTAMP tsCreate;
TIMESTAMP tsExpiration;
TIMESTAMP tsLastRef;
TIMESTAMP tsModify;

 Chapter 6. Common Data Structures 167

OBJINFOSTRUCT

TIMESTAMP tsEnterSG;
TIMESTAMP tsEnterSC;
CHAR szCollectionName;
CHAR szObjectName;
CHAR szMgtCls;
CHAR szStgCls;
CHAR szDataCls;
CHAR szStoreSite;

} OBJINFOSTRUCT, *POBJINFOSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

ulObjSize
ULONG — output

The total size of the object in bytes.

lSMSRetention
LONG — output

Not supported.

lEstimateRetrieveTime
LONG — output

Not supported.

ulAvail
ULONG — output

Not supported.

ulObjConCls
ULONG — output

The object content class of the object you query. The value SIM_CC_UNKNOWN
indicates the undefined content class.

usPageNum
USHORT — output

Not supported.

tsCreate
TIMESTAMP — output

The date and time that the item or object was created.

tsExpiration
TIMESTAMP — output

Not supported.

168 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

RCSTRUCT

tsLastRef
TIMESTAMP — output

Not supported.

tsModify
TIMESTAMP — output

The date and time that the item or object was last modified.

tsEnterSG
TIMESTAMP — output

Not supported.

tsEnterSC
TIMESTAMP — output

Not supported.

szCollectionName
CHAR[MAXCOLNMSZ] — input

Not supported.

szObjectName
CHAR[MAXOBJNMSZ] — input

Not supported.

szMgtCls
CHAR[MAXMGTCLSNMSZ] — output

Not supported.

szStgCls
CHAR[MAXSTGCLSNMSZ] — output

Not supported.

szDataCls
CHAR[MAXDATACLSNMSZ] — output

Not supported.

szStoreSite
CHAR[MAXSTRSITENMSZ] — output

Not supported.

RCSTRUCT (Return Code Information Structure)
This data structure provides programming-interface function return code and data
information. It consists of the following:

typedef struct _RCSTRUCT

{
ULONG ulStruct;
ULONG ulRC;

 Chapter 6. Common Data Structures 169

RCSTRUCT

USHORT usReserved;
USHORT usParam;
ULONG ulParam1;
ULONG ulParam2;
ULONG ulExtRC;
ULONG ulExtReason;
PVOID pApplData;
ULONG ulApplData;
ULONG ulReserved;
HERR hErrLog;

} RCSTRUCT, *PRCSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

ulRC
ULONG — output

The function return code.

usReserved
USHORT — output

Not supported.

usParam
USHORT — output

A field that indicates whether the ulParam1 field contains a pointer to a data area.
The value 1 indicates that this is the case. Otherwise, this field contains the value 0.

ulParam1
ULONG — output

A value or a pointer to either a data structure or an array of data structures.

ulParam2
ULONG — output

A field that indicates the number of data structures in the array if the ulParam1 field
contains a pointer to an array of data structures.

ulExtRC
ULONG — output

A return code from other components that VisualInfo for AS/400 called directly or
indirectly.

ulExtReason
ULONG — output

Not supported.

170 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SERVERINFOSTRUCT

pApplData
PVOID — output

A PVOID data field that your application can use to contain application data.
VisualInfo for AS/400 does not use this data field. The value is preserved by the
programming interface function and returned. For example, your application might
use this field to point to a data structure, one that your application creates prior to
using a function that requires the data. The function could use the data in that
structure to process a user exit.

ulApplData
ULONG — output

A ULONG data field that your application can use to contain application data.
VisualInfo for AS/400 does not use this data field. The value is preserved by the
programming interface function and returned. For example, your application might
use this field to point to a data structure, one that your application creates prior to
using a function that requires the data. The function could use the data in that
structure to process a user exit.

ulReserved
ULONG — output

Not supported.

hErrLog
HERR — output

Not supported.

SERVERINFOSTRUCT (Server Information Structure)
The structure contains information about a server defined to the system. This data
structure is returned to the application that called it. It consists of the following:

typedef struct _SERVERINFOSTRUCT

{
ULONG ulStruct;
CHAR szServerName;
CHAR szServerType;

} SERVERINFOSTRUCT, *PSERVERINFOSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

szServerName
CHAR[SERVERNAME_LENG+1] — output

The name of the VisualInfo for AS/400 server.

 Chapter 6. Common Data Structures 171

SMS

szServerType
CHAR[SERVERTYPE_LENG+1] — output

The server type. Current server types include the following:

Server Type Explanation

'FRNCACHE' List manager cache

'FRNREXE' Remote utility server

'FRNCS' Configuration server

'FRNOSADM' System-managed storage server

'FRNOLM' List manager server

SMS (System-Managed Storage Pointer)
The pointer to the system-managed storage (SMS) data structure for an object. This
data structure provides the information necessary to support the SMS for an object on a
variety of object servers. This is a pointer to a data structure that consists of the
following:

� typedef struct _SMS

{
ULONG ulStruct;
LONG lSMSRetention;
CHAR szCollectionName;
CHAR szObjectName;
CHAR szMgtCls;
CHAR szStgCls;
CHAR szDataCls;
CHAR szStoreSite;
CHAR szStoreHint;

} SMS, *PSMS;

 Fields
ulStruct

ULONG — input

The length of the structure in bytes, including the length of this field.

lSMSRetention
LONG — input

The period in days that VisualInfo for AS/400 retains the object in system-managed
storage. The valid values range from 1 to 999 999 999.

szCollectionName
CHAR[MAXCOLNMSZ] — input

The ASCIIZ user-defined collection name. The value of this field references a
zero-terminated string in client data space, containing a user-defined number of

172 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SNAPSHOTSTRUCT

significant characters. This character string provides a meaningful name for the
collection being created. If you do not require a collection name, specify the value
NULL. After an object has been assigned to a collection on an object server, you
cannot change the collection assignment.

szObjectName
CHAR[MAXOBJNMSZ] — input

Not supported.

szMgtCls
CHAR[MAXMGTCLSNMSZ] — input

Not supported.

szStgCls
CHAR[MAXSTGCLSNMSZ] — input

Not supported.

szDataCls
CHAR[MAXDATACLSNMSZ] — input

Not supported.

szStoreSite
CHAR[MAXSTRSITENMSZ] — input

The name of the object server in which the object is stored.

szStoreHint
CHAR[MAXSTGHINTNMSZ] — input

Not supported.

SNAPSHOTSTRUCT (Snapshot Information Structure)
This data structure provides the view, attribute, and work management information for
an item at a specific point in time. It consists of the following:

typedef struct _SNAPSHOTSTRUCT

{
ULONG ulStruct;
PWMSNAPSHOTSTRUCT usNumWmSnapshots
USHORT pWmSnapshot;
PICVIEWSTRUCT pICView;
USHORT usNumViews;
USHORT usItemType;
ULONG ulOpenStatus;
ITEMID szItemID;
USERID useridCheckout;
TIMESTAMP tsCreate;
TIMESTAMP tsModify;

} SNAPSHOTSTRUCT, *PSNAPSHOTSTRUCT;

 Chapter 6. Common Data Structures 173

SNAPSHOTSTRUCT

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

pWmSnapshot
PWMSNAPSHOTSTRUCT — output

The pointer to the work management information data structure of the type
WMSNAPSHORSTRUCT. The SimLibGetItemSnapshot function returns this
structure when the you specify the value of the fReadAttrInd input parameter as
SIM_WORK_ATTR. Otherwise, this field contains the value NULL.

VisualInfo for AS/400 supports the existence of an item in more than one
workbasket, so it could be an array of work management information on an item.

usNumWmSnapshots
USHORT — input

The number of elements in the array of WMSNAPSHOTSTRUCT that pWmSnapshot
points to.

pICView
PICVIEWSTRUCT — output

The pointer to a linked list of view information for the item, where each element of
the list is of the data type ICVIEWSTRUCT. If the item is not associated with any
index class, or you do not retrieve system attributes, this pointer contains the value
NULL.

Currently in VisualInfo for AS/400, if the item is associated with an index class, there
is only one element in the linked list containing information about the current index
class view for the item. If the item is not associated with any index class, this pointer
contains the value NULL.

usNumViews
USHORT — output

The number of elements in the linked list pointed to by the pICView field in the
SnapshotStruct data structure.

Currently in VisualInfo for AS/400, if the item is associated with an index class, this
field contains the value 1. This value indicates that the linked list of elements of the
data type ICVIEWSTRUCT contains one element with information pertaining to the
current index class view for the item. If the item is not associated with an index class,
this field contains the value 0. In this case, however, the pICView pointer is still valid
if you retrieve system attributes.

usItemType
USHORT — output

The type of items retrieved using the SimLibGetItemSnapshot function. Here are
the valid values:

174 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

SNAPSHOTSTRUCT

SIM_DOCUMENT
Indicates that the item is a document.

SIM_FOLDER
Indicates that the item is a folder.

ulOpenStatus
ULONG — output

Indicator of whether the item is open for update. Together, this parameter and the
useridCheckout parameter provide information about who has the item and for what
purpose. Here are the valid values:

SIM_ACCESS_READ_WRITE
Indicates that you have the item open for update.

SIM_ACCESS_UNKNOWN
Indicates that you do not have the item open for update.

szItemID
ITEMID — output

An item ID.

useridCheckout
USERIDENT — output

The user ID of the person who has the item checked out. Together, this parameter
and the ulOpenStatus parameter provide information about who has the item and for
what purpose. The valid values are:

Your user ID
Indicates that you have the item checked out permanently and open for update, if
ulOpenStatus contains the value SIM_ACCESS_READ_WRITE. Otherwise, you
have the item checked out permanently but it is not open for update.

Other user ID
Identifies another user who has the item checked out, if ulOpenStatus contains
SIM_ACCESS_UNKNOWN.

A null string
Indicates that you have the item open for update, if ulOpenStatus contains the
value SIM_ACCESS_READ_WRITE. Otherwise, the item is not checked out.

tsCreate
TIMESTAMP — output

The date and time that the item or object was created.

tsModify
TIMESTAMP — output

The date and time that the item or object was last modified.

 Chapter 6. Common Data Structures 175

TOCENTRYSTRUCT

TOCENTRYSTRUCT (Table of Contents Entry Data Structure)
This data structure provides information describing an entry in a list of the documents
and folders contained in the specific folder or workbasket. It consists of the following:

typedef struct _TOCENTRYSTRUCT

{
ULONG ulStruct;
USHORT usItemStatus;
USHORT usIndexClass;
USHORT usItemType;
ITEMID szItemID;
TIMESTAMP tsItemChanged;

} TOCENTRYSTRUCT, *PTOCENTRYSTRUCT;

 Fields
ulStruct

ULONG — input

The length of the structure in bytes, including the length of this field.

usItemStatus
USHORT — input

The status of the entry after the update. Here are the valid values:

 � 0 (unmodified)
 � SIM_TOC_ADD
 � SIM_TOC_MODIFIED
 � SIM_TOC_DELETE

usIndexClass
USHORT — input

An index class identifier.

usItemType
USHORT — input

The type of items retrieved using the SimLibGetTOC function. Here are the valid
values:

SIM_DOCUMENT
Indicates that the item is a document.

SIM_FOLDER
Indicates that the item is a folder.

szItemID
ITEMID — input

An item ID.

176 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

USERLOGONINFOSTRUCT

tsItemChanged
TIMESTAMP — input

The timestamp of the item as stored in the library server.

USERLOGONINFOSTRUCT (User Logon Information Structure)
This data structure provides information about the user’s session. It consists of the
following:

typedef struct _USERLOGONINFOSTRUCT

{
ULONG ulStruct;
ULONG ulUserType;
ULONG ulUserCCSID;
PSZ pszUserDescription;
CHAR szUserLanguage;
CHAR szSessionType;
TIMESTAMP tsPasswordExpire;
CHAR szPrivString;

} USERLOGONINFOSTRUCT, *PUSERLOGONINFOSTRUCT;

 Fields
ulStruct

ULONG — input

The length of the structure in bytes, including the length of this field.

ulUserType
ULONG — input

Not supported.

ulUserCCSID
ULONG — input

Not supported.

pszUserDescription
PSZ — input

Not supported.

szUserLanguage
CHAR[SIM_LANGUAGE_CODE_LENGTH+1] — input

A fixed-length character array that indicates the language that this user prefers for
dialogs and messages. The valid value is a standard IBM 3-character language code.
The values for language codes are described in the IBM National Language Design
Guide: National Language Support Reference Manual Volume 2

 Chapter 6. Common Data Structures 177

USERACCESSSTRUCT

IBMszSessionType
CHAR[SIM_SESSION_TYPE_LENGTH+1] — input

The type of logon session. The only valid value for this field is Ip2.

tsPasswordExpire
TIMESTAMP — input

The date when the current password expires.

szPrivString
CHAR[SIM_PRIVSTRING_LENGTH+1] — input

A null-terminated character string that represents the privilege vector for the user.
This string consists of ASCII zeros and ones that correspond to the zeros and ones
in the user’s corresponding privilege vector.

USERACCESSSTRUCT (User Access Data Structure)
This data structure provides information describing the user who has checked out the
referenced item. It consists of the following:

typedef struct _USERACCESSSTRUCT

{
ULONG ulStruct;
ULONG ulAccessLevel;
USERIDENT useridCheckout;
ITEMID szItemID;

} USERACCESSSTRUCT, *PUSERACCESSSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

ulAccessLevel
ULONG — output

Not supported.

SIM_ACCESS_EXCL_READ
Not supported.

SIM_ACCESS_READ_WRITE
Opens the item or object for reading and writing. The object opens at the first byte of
the object. Use of this value causes the open to fail if another process has opened
the object for write access. This value opens the item or object for read access and
write access.

178 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

WMSNAPSHOTSTRUCT

useridCheckout
USERIDENT — output

The user ID of the person who checked out this item. If the item is not currently
checked out, this field contains the value NULL.

szItemID
ITEMID — output

An item ID.

WMSNAPSHOTSTRUCT (Work Management Information Structure)
This data structure provides information about work management. It consists of the
following:

typedef struct _WMSNAPSHOTSTRUCT

{
ULONG ulStruct;
USHORT usWIPStatus;
USHORT usReleaseType;
USHORT usPriority;
ITEMID szWorkFlowID;
TIMESTAMP tsWFEntry;
ULONG ulWorkPackageID;
ULONG ulInstanceID;
TIMESTAMP tsEnteredWB;
ITEMID szWorkBasketID;

} WMSNAPSHOTSTRUCT, *PWMSNAPSHOTSTRUCT;

 Fields
ulStruct

ULONG — output

The length of the structure in bytes, including the length of this field.

usWIPStatus
USHORT — output

Not supported.

usReleasetype
USHORT — output

Not supported.

usPriority
USHORT — output

The current priority of the item within the workbasket.

 Chapter 6. Common Data Structures 179

WMSNAPSHOTSTRUCT

szWorkFlowID
ITEMID — output

The workflow, if any, that this item is assigned to.

tsWFEntry
TIMESTAMP — output

The date and time when this item entered the listed workflow.

ulWorkPackageID
ULONG — output

Identifier of the work package that represents the work being done, such as the
document being routed.

ulInstanceID
ULONG — output

Identifier of the work package instance that distinguishes one parallel path from
another within the process.

tsEnteredWB
TIMESTAMP — output

The date and time this item entered the listed workbasket.

szWorkBasketID
ITEMID — output

The ID of an existing workbasket.

WMVARSTRUCT (Work Package Variable Data Structure)
This data structure contains the identifier and associated value of a system or
user-defined work package variable. It consists of the following:

typedef struct _WMVARSTRUCT

{
CHAR szVarName;
CHAR szVarValue;

} WMVARSTRUCT, *PWMVARSTRUCT;

 Fields
ulStruct

ULONG — input/output

The length of the structure in bytes, including the length of this field.

pszVarName
CHAR [SIMWM_VAR_NAME_LENGTH+1]— input/output

The name of the variable. The following constants represent the system variable
names:

180 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

WORKBASKETINFOSTRUCT

SIMWM_ITEMID
Items being routed.

SIMWM_INDEX_CLASS
Index class of the item.

SIMWM_PRIORITY
Priority of the work package.

SIMWM_FUNCTION
Identifier of the function or button selected by the user.

szVarValue
CHAR — input/output

Pointer to a string which contains the value of the variable.

WORKBASKETINFOSTRUCT (Workbasket Information Data Structure)
This data structure provides the information used to create and modify a workbasket. It
consists of the following:

typedef struct _WORKBASKETINFOSTRUCT

{
ULONG ulStruct;
CHAR szWorkBasketName;
CHAR chAccessListName;
USHORT usWBLoadLimit;
BOOL bRemoveAfterIndex;
BOOL bSystemCntl;
CHAR szUserFunName;
CHAR szUserDLLName;
UCHAR szWorkBasketPrivString;

} WORKBASKETINFOSTRUCT, *PWORKBASKETINFOSTRUCT;

 Fields
ulStruct

ULONG — input/output

The length of the structure in bytes, including the length of this field.

szWorkBasketName
CHAR[OIM_WB_NAME_LENGTH+1] — input/output

The name of the workbasket.

chAccessListName
CHAR[ACCESS_LIST_NAME_SIZE+1] — input/output

The name of access list for the workbasket.

 Chapter 6. Common Data Structures 181

WORKBASKETINFOSTRUCT

usWBLoadLimit
USHORT — input/output

Not supported.

bRemoveAfterIndex
BOOL — input/output

Not supported.

bSystemCntl
BOOL — input/output

A flag that indicates whether the system controls item priority within the workbasket.
Here are the valid values:

TRUE Indicates that this is a system-assigned workbasket. The system
provides the user with the next item in the workbasket when requested.
The priority of the work package and the order defined for the
workbasket–LIFO, FIFO, or priority–determines the order.

FALSE Indicates that this is not a system-assigned workbasket. The user can
choose any item in the workbasket.

szUserFunName
CHAR[OIM_WB_FUNCTION_LENGTH+1] — input/output

The name of the user exit function to call when the workbasket's overload trigger
exceeds the limit specified as the value of the usWBLoadLimit field. The DLL and
function name are for use by your application. VisualInfo for AS/400 does not call this
user exit.

szUserDLLName
CHAR[OIM_WB_DLL_LENGTH+1] — input/output

The name of a DLL that contains the user exit function. The DLL and function name
are for use by your application. VisualInfo for AS/400 does not call this user exit.

szWorkBasketPrivString
UCHAR[SIM_PRIVSTRING_LENGTH+1] — input/output

The evaluated privilege string for the user with respect to the workbasket.

182 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Chapter 7. Properties and Methods of OLE Objects for Windows

This section describes the properties and methods associated with all Windows client
application objects.

 Application Object
The Application object gets and sets application-level states, such as log on and quit.

 Properties
The Application object has the following properties.

Application
The Application property returns the Application object.

Documents
The Documents property holds a collection of Document objects. A document, in
Client for Windows terms is a Table of Contents view.

Error
The error information for the most recent method error.

Image
The Image property holds the VisualInfo for AS/400 document that is currently visible
in the image viewer. If no document is visible, Image returns NULL.

Password
The Password property is the password to be used when the Logon method is called
to log on to the VisualInfo for AS/400 library server. Refer to the description of the
Application object’s Logon method for a description of the possible values and
results.

Server
The Server property contains the name of the VisualInfo for AS/400 library server
that is logged on to when the Logon method is called. Refer to the description of the
Application object’s Logon method for a description of the possible values and
results.

User
The User property contains the user ID that is used when the Logon method is
called. Refer to the description of the Application object’s Logon method for a
description of the possible values and results.

Visible
The Visible property contains the visible status of the Windows Client frame window.
The default value is False (0). This is a read/write property.

Data Type: VT_BOOL

 Copyright IBM Corp. 1997 183

 Methods
The Application object supports the following methods.

ClassArray
The ClassArray method returns a safe array of VT_BSTRs containing the names of
all of the VisualInfo for AS/400 index classes defined at the time the Logon method
was executed. (;).

Arguments: None

Data Type: VT_VARIENT (safe array of VT_BSTR)

ClassKeyFieldArray
The ClassKeyFieldArray method returns a safe array of VT_BSTRs containing the
names of all of the key fields associated with the specified index class at the time the
Logon method was executed. The index classes are separated by semicolons (;).

Arguments: Index Class as VT_BSTR

Data Type: VT_VARIENT (safe array of VT_BSTR)

ClassKeyFieldList
The ClassKeyFieldList method returns a string with all of the key fields associated
with the specified index class at the time the Logon method was executed. The key
fields are separated by the string separator argument.

Arguments: IndexClass as VT_BSTR, Separator as VT_BSTR

Data Type: VT_BSTR

ClassList
The ClassList method returns a string with a list of all of the VisualInfo for AS/400
index classes defined at the time the Logon method was executed. The index
classes are separated by the string separator argument.

Arguments: Separator as VT_BSTR

Data Type: VT_BSTR

ContentClassArray
The ContentClassArray returns a safe array of VT_BSTRs containing the names of
all content classes that were defined at the time the Logon method was executed.

Arguments: None

Data Type: VT_VARIENT (Safe array of VT_BSTR)

ContentClassList
The ContentClassList method returns a string with all of the content classes that
were defined at the time the Logon method was executed. The content classes are
separated by the separator argument.

Arguments: Separator as VT_BSTR

Data Type: VT_BSTR

CreateDocument
The CreateDocument method returns an Item object that represents a newly created
document. It contains no objects (pages), and is indexed with a NOINDEX index

184 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

class. The source key field is filled in with the Source argument’s value, the name
key field is filled in with the contents of the User property, and the timestamp key
field is the exact time and date that the document was created.

Arguments: Source as VT_BSTR

Data Type: VT_DISPATCH (Item)

CreateFolder
The CreateFolder method returns an Item object that represents a newly created
folder. It contains no items in its TOC, and is indexed with a NOINDEX index class.
The source key field is filled in with the Source argument’s value, the name key field
is filled in with the contents of the User property, and the timestamp key field is the
exact time and date that the document was created.

Arguments: Source as VT_BSTR

Data Type: VT_DISPATCH (Item)

GetWorkbasket
The GetWorkbasket method returns the Item object associated with the workbasket
specified in the Name argument. Note that the workbasket name is not
case-sensitive.

Arguments: Name as VT_BSTR

Data Type: VT_DISPATCH (Item)

ItemID
The ItemID method returns an Item object with the item ID specified. Refer to the
Item object properties for a description of the ItemID property.

Arguments: Item as VT_BSTR

Data Type: VT_DISPATCH (Item)

KeyFieldArray
The KeyFieldArray method returns a safe array of VT_BSTRs containing the names
of all of the VisualInfo for AS/400 index classes defined at the time the Logon
method was executed. (;).

Arguments: None

Data Type: VT_VARIENT (safe array of VT_BSTR)

KeyFieldList
The KeyFieldList method returns a string with all of the key fields defined at the time
the Logon method was executed. The key fields are separated by the string
separator argument.

Arguments: Separator as VT_BSTR

Data Type: VT_BSTR

Logon
The Logon method logs on to VisualInfo for AS/400. If the User, Password, and
Server properties have all been set, a log on will be attempted with that information.
If any of the previously mentioned properties were not filled in, or the initial log on

 Chapter 7. Properties and Methods of OLE Objects for Windows 185

attempt was unsuccessful, a log on screen will be displayed for the operator to fill in
the remaining information. If the Password property is filled in prior to calling the
Logon method, but the User property was not, the password information will be
ignored.

The Server property is preinitialized with the last library server that was logged onto,
or LIBSRVR2 if no successful logon has occurred.

The return value is 0 for a successful log on, or no-zero if there was an error.

Arguments: None

Data Type: VT_I4

OpenBasicSearch
The OpenBasicSearch method displays the basic search dialog box, allowing the
operator to fill in a search. The resulting Document object is not returned.

Arguments: None

Data Type: VT_EMPTY

OpenScan
The OpenScan method displays the scan dialog box, allowing the user to select a
scanner to open. Note that the resulting Document object is NOT returned.

Arguments: None

Data Type: VT_EMPTY

OpenWorkbasket
The Workbasket method displays the Workbasket selection dialog box, allowing the
user to select a workbasket to open. Note that the Document object that results is
NOT returned.

Arguments: None

Data Type: VT_EMPTY

Quit
The Quit method ends the Client for Windows application. All open documents
(TOCs), any image viewer sessions, and all outstanding Item and Items objects are
closed.

Arguments: None

Data Type: VT_EMPTY

Search
The Search method returns an Item that represents the results of a search
conducted on the VisualInfo for AS/400 file room with an optional index class and
key field wildwood search string. The search results folder is deleted automatically
when it is closed, unless the index class is changed. The format of the search string
is defined in “LIBSEARCHCRITERIASTRUCT (Search Criteria Information Structure)”
on page 165.

When TypeFilter=1, only folders are returned.

When TypeFilter=2, only documents are returned.

186 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Any other TypeFilter value returns both documents and folders.

See Appendix B, “Guidelines for Search Expressions” on page 207 for search
criteria.

Arguments:

� IndexClass as VT_BSTR (optional)
� SearchString as VT_BSTR (optional)
� TypeFilter as VT_VARIANT (optional, usually VT_I2)

Data Type: VT_DISPATCH (Item)

WorkbasketArray
The WorkbasketArray method returns a safe array of VT_BSTRs containing the
names of all the workbaskets defined at the time the Logon method was executed.

Arguments: None

Data Type: VT_VARIENT

WorkbasketList
The WorkbasketList method returns a string with a list of all of the workbaskets
defined at the time the Logon method was executed. The workbaskets are separated
by the string separator argument.

Arguments: Separator as VT_BSTR

Data Type: VT_BSTR

 Document Object
The Document object holds information about a Table of Contents (TOC).

 Properties
Application

The Application property returns the Application object.

Count
The Count property returns the number of items that are listed in the TOC.

Item
The Item property returns the Item object that is associated with this Document
(TOC).

Page
The Page property contains the selected page number. This property is valid only for
documents, not workbaskets or folders. The default value is 0. This is a read/write
property.

Data Type: VT_I4

PageCount
The PageCount property contains the number of pages in a document. This property
is valid only for documents, not workbaskets or folders. The default value is 0. This is
a read—only property.

 Chapter 7. Properties and Methods of OLE Objects for Windows 187

Data Type: VT_I4

Parent
The Parent property returns the parent of the Document object (which is the
Documents collection object).

SelectedCount
The SelectedCount property returns the number of items that are selected in the
TOC.

Type
The Type property returns the type of item that is open in the document: a folder,
workbasket, or a document. The actual values are as follows:

� 1 - Document
� 2 - Folder
� 3 - Workbasket
� 1024 - Scan (the basic scan viewer, no other property or method works on this

type)

The default value is 0 (error). This is a read—only property.

Data Type: VT_I4

 Methods
The Document object supports the following methods.

Activate
The Activate method brings the TOC window associated with this document to the
foreground.

Arguments: None

Data Type: VT_I4

CaretIndex
The CaretIndex method returns the index of the caret item (the item that contains the
dotted-line rectangle in the grid) in a folder or workbasket.

Arguments: None

Data Type: VT_I4

ClearSelect
The ClearSelect method clears all of the current selections in the TOC.

Arguments: None

Data Type: VT_I4

Close
The Close method closes the window associated with the associated document
(TOC) and removes the document from the Documents collection. The remaining
Document objects in the collection will be shifted down to prevent gaps in the
collection.

Arguments: None

188 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Data Type: VT_I4

CloseIt
The CloseIt method is the same as the Close method. It is implemented solely to
support VisualBasic, which uses Close as a reserved word. The CloseIt method
closes the window associated with the associated document (TOC) and removes the
document from the Documents collection. The remaining Document objects in the
collection will be shifted down to prevent gaps in the collection.

Arguments: None

Data Type: VT_I4

DisplayPage
The DisplayPage method forces the page specified to be displayed in a document.
This method is valid only for documents, not workbaskets or folders.

Arguments: Page as VT_I4

Data Type: VT_I4

FirstPage
Displays the first page in a document. This method is valid only for documents, not
workbaskets or folders.

Arguments: None

Data Type: VT_I4

IndexedItem
The IndexedItem method returns a single item from Document based on its index
(specified with the Index argument) from a folder or workbasket.

Arguments: Index as VT_I4

Data Type: VT_DISPATCH (Items)

LastPage
Displays the last page in a document. This method is valid only for documents, not
workbaskets or folders.

Arguments: None

Data Type: VT_I4

Maximize
The Maximize method maximizes the Document object in the main client window,
hiding all other Document objects.

Arguments: None

Data Type: VT_I4

Minimize
The Minimize method minimizes the Document object in the main client window.

Arguments: None

Data Type: VT_I4

 Chapter 7. Properties and Methods of OLE Objects for Windows 189

NextPage
Displays the next page (current page, plus 1) in a document. This method is valid
only for documents, not workbaskets or folders.

Arguments: None

Data Type: VT_I4

PreviousPage
Displays the previous page (current page, minus 1) in a document. This method is
valid only for documents, not workbaskets or folders.

Arguments: None

Data Type: VT_I4

Restore
The Restore method restores the Document object in the main client window to its
original state (neither minimized or maximized).

Arguments: None

Data Type: VT_I4

Selections
The Selections method returns an Items collection containing all of the Item objects
that are selected in the Document (TOC).

Arguments: None

Data Type: VT_DISPATCH (Items)

SelectRange
The SelectRange method selects a range of items in the TOC. The arguments are
the zero-based index of the first and last items to be selected.

Arguments:

� First as VT_I4
� Last as VT_I4

Data Type: VT_I4

Zoom
The Zoom method changes the zoom ration of the Document object. For example, if
you set the zoom ratio to 100, the image is shown at full size, pixel for pixel. If you
set the zoom ration to 50, the image is shown in half height. Zoom only works on
documents, not folders or workbaskets.

Arguments: VT_I4

Data Type: VT_I4

ZoomFit
The ZoomFit method lets you fit the document image into the viewing rectangle. The
Type argument specifies how to fit: 1 means fit height, 0 means fit width. ZoomFit
only works on documents, not folders or workbaskets.

Arguments: None

190 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Data Type: VT_I4

ZoomRect
ZoomRect allows you to specify a rectangle to zoom to in the Document object. The
left, top, right, and bottom arguments specify the bounding rectangle to display as
large as possible in the viewing rectangle (the viewer window). The arguments are
specified in pixels. ZoomRect only works on documents, not folders or workbaskets.

Arguments:

� Left as VT_I4
� Top as VT_I4
� Right as VT_I4
� Bottom as VT_I4

Data Type: VT_I4

 Documents Object
The Documents collection object is a collection of all of the open Document objects
(TOCs).

 Properties
The Documents object has the following properties.

Active
The Active property holds the index of the Document object that currently has the
focus. This is a read-only property.

Data Type: VT_I4

Application
The Application property returns the Application object.

Count
The Count property holds the number of Document objects currently in the collection.

Parent
The Parent property returns the parent of the Documents collection object (which is
the Application object).

 Methods
The Document object supports the following methods.

_NewEnum
The _NewEnum method returns an unknown which supports the
IID_IEnumVARIANT. _NewEnum is a restricted method that cannot be invoked like
the other methods. It is used to implement loop constructs in macro languages such
as Visual Basic.

Arguments: None

Data Type: VT_UNKNOWN.

 Chapter 7. Properties and Methods of OLE Objects for Windows 191

Cascade
Cascade arranges all of the open Document objects that are not minimized in a
cascaded manor.

Arguments: None.

Data Type: VT_I4

Close
The Close method closes all windows associated with the Documents objects and
removes the Document objects from the Documents collection.

Arguments: None

Data Type: VT_EMPTY

CloseIt
NOTE: The CloseIt method is the same as the Close method. It is implemented
solely to support VisualBasic, which uses Close as a reserved word. The Close
method closes all windows associated with the Documents objects and removes the
Document objects from the Documents collection.

Arguments: None

Data Type: VT_I4

Item
The Item method returns one of the Document objects contained in the collection.

Arguments: Index as VT_I4

Data Type: VT_DISPATCH (Document)

OpenDocument
The OpenDocument method creates a new Document object for the document and
adds it to the Documents collection. If the Browse argument is set to TRUE, the
document is opened without being locked, allowing other users to open it.

Arguments:

� Index as VT_DISPATCH (Item)
� Browse as VT_VARIANT (optional, usually VT_BOOL)

Data Type: VT_DISPATCH (Document)

OpenTOC
The OpenTOC method creates a new Document object and adds it to the
Documents collection.

Arguments: Index as VT_DISPATCH (Item)

Data Type: VT_DISPATCH (Document)

Tile
The Tile method arranges all of the open Document objects that are not minimized in
a tiled manor. The Vertical argument specifies if the objects should be set primarily
vertically (nonzero) or horizontally (zero).

Arguments: Vertical as VT_I4

192 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Data Type: VT_I4

 Error Object
The Error object describes the details about any error that may have happened while
executing a method in the Client for Windows.

 Properties
The Error object has the following properties.

ErrorMessage
The ErrorMessage property contains a descriptive error code describing what went
wrong and what the Client for Windows was doing at the time.

ExtReturnCode
The ExtReturnCode property contains the VisualInfo for AS/400 extended return code
that was returned when the error was detected.

ReturnCode
The ReturnCode property contains the VisualInfo for AS/400 error code that was
returned when the error was detected.

 Methods
The Error object does not have any methods.

 Image Object
The Image object holds the currently visible VisualInfo for AS/400document.

 Properties
The Image object supports the following properties.

Application
The Application property returns the Application object.

Item
The Item property returns the Item object that is associated with this Image.

Page
The Page property contains the selected page number. This property is valid only for
documents, not workbaskets or folders. The default value is 0. This is a read-write
property.

Data Type: VT_I4

Parent
The Parent property returns the parent of the Image object (which is the Application
object).

 Chapter 7. Properties and Methods of OLE Objects for Windows 193

 Methods
The Image object supports the following methods.

Close
The Close method closes all windows associated with the Image object. If the Save
argument is True, any changes to the object are saved. If the Save argument is
False, changes are thrown away. If the Save argument is not specified, a message
box asks the user if they want to save the changes or not.

Arguments: Save as VT_BOOL

Data Type: VT_EMPTY

CloseIt
The CloseIt method is the same as the Close method. It is implemented solely to
support VisualBasic which uses Close as a reserved word. The CloseIt method
closes all windows associated with the Image object. If the Save argument is True,
any changes to the object are saved. If the Save argument is False, changes are
thrown away. If the Save argument is not specified, a message box asks the user if
they want to save the changes or not.

Arguments: Save as VT_BOOL

Data Type: VT_EMPTY

DisplayPage
The DisplayPage method forces the page specified to be displayed in the image
viewer.

Arguments: Page as VT_I4

Data Type: VT_I4

FirstPage
The FirstPage displays the first page in the viewer.

Arguments: None

Data Type: VT_I4

LastPage
The LastPage displays the last page in the viewer.

Arguments: None

Data Type: VT_I4

NextPage
The NextPage displays the next page (current page + 1) in the viewer.

Arguments: None

Data Type: VT_I4

OpenDocument
The OpenDocument method opens a new VisualInfo for AS/400 document in the
image viewer. The argument Index is the item that is to be opened. An Item error will
occur if the item is not a workbasket or folder.

194 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Arguments: Index as VT_DISPATCH (Item)

Data Type: VT_I4

PreviousPage
The PreviousPage displays the previos page (current page − 1) in the viewer.

Arguments: None

Data Type: VT_I4

 Item Object
The Item object represents a VisualInfo for AS/400 item like a folder, workbasket, or
document.

 Properties
The Item object supports the following properties.

Application
The Application property returns the Application object.

CheckedStatus
The CheckedStatus property returns the user who has the item checked out, if any.

Class
The Class property is the index class of the item. Changes to the key field values are
not updated until you call the UpdateIndex method.

ItemID
The ItemID is a string that uniquely defines each item in the VisualInfo for AS/400
fileroom. This string is a 12-character alphanumeric string that can be used as an
index into a database if desired.

KeyFields
The KeyFields property is an array containing the values of all the key fields.
KeyFields has one argument: the name of the key field. Following is an example of
how you can use the KeyFields property in VisualBasic:

Dim Folder as Object

...

count = Folder.KeyFields("UseCount") ' Get value
count = count + 2
Folder.KeyFields("UseCount") = count ' Set value
Folder.UpdateIndex

When you set the index class, you must call the UpdateIndex method to confirm the
change. This is a read/write property.

Data Type: VT_BSTR

 Chapter 7. Properties and Methods of OLE Objects for Windows 195

Name
The Name property returns VisualInfo for AS/400’s name for the item. This property
is based on the key field selected as the identifier (if any) when the index class was
created. If the item is a workbasket the workbasket name is returned.

PartCount
The PartCount property returns the number of parts stored in a document.

Parent
The Parent property returns the parent of the Image object (which can be the
Application object or an Items object).

Priority
The Priority property returns the workbasket priority of the item. Valid values are 1 to
31,999, where 1 is the lowest priority. If the item is not in a workbasket, Priority
returns the class default priority, and is read-only.

SystemAssigned
Returns TRUE if the workbasket is a system-assigned workbasket.

TOCCount
The TOCCount property returns the number of items that are indexed in this table of
contents.

Type
The Type property returns the item type of the item. A value of 1 means a document,
2 means folder, and 3 means workbasket.

 Methods
The Item object supports the following methods.

Activate
The Activate method removes the suspended status from a suspended item.

Arguments: None

Data Type: VT_I4

AddPart
The AddPart method adds a file as an object to the item. You must specify a full path
and a content class.

Arguments:

� Path as VT_BSTR
� ContentClass as VT_I4

Data Type: VT_I4

AddToFolder
The AddToFolder method adds the Item to the folder specified as another Item
object.

Arguments: Folder as VT_DISPATCH (Item)

Data Type: VT_I4

196 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

ChangeNotes
The ChangeNotes method saves the string passed in as the new note log. If you
want to append to the note log, make sure you pass the whole string, not just the
new part.

Arguments: Notes as VT_BSTR

Data Type: VT_I4

CheckIn
The CheckIn method checks the item in, letting anyone modify it.

Arguments: None

Data Type: VT_I4

CheckOut
The CheckOut method checks the item out to the current user, disabling anyone else
from modifying it.

Arguments: None

Data Type: VT_I4

Close
The Close method unlocks the item previously locked with the Open method or
NextWorkbasketItem (the resulting item, not the workbasket).

Arguments: None

Data Type: VT_I4

CloseIt
The CloseIt method is the same as the Close method. It is implemented solely to
support VisualBasic, which uses Close as a reserved word. The CloseIt method
unlocks the item previously locked with the Open method or NextWorkbasketItem
(the resulting item, not the workbasket).

Arguments: None

Data Type: VT_I4

CloseNotes
The CloseNotes method unlocks the note log so other clients can open it. No
changes are saved. See the ChangeNotes method to save changes.

Arguments: None

Data Type: VT_I4

CloseParts
The CloseParts method closes all of the open part files (pages) without saving any
changes.

Arguments: None

Data Type: VT_I4

 Chapter 7. Properties and Methods of OLE Objects for Windows 197

Delete
The Delete method removes the item from the file room. This is a nonrecoverable
operation, so use this method with care.

Arguments: None

Data Type: VT_I4

DeletePart
The DeletePart method deletes the specified object (part) from the item.

Arguments: Index as VT_I4

Data Type: VT_I4

FaxItem
The FaxItem method sends the item to the fax subsystem if it is loaded. The
argument withSubFolderContents, if specified and set to True (nonzero), enables you
to fax the documents contained in folders.

Arguments: withSubFolderContents as VT_VARIANT (optional, usually VT_BOOL)

Data Type: VT_I4

GetNotes
The GetNotes method returns the text of the note log for the item or a blank string if
none exists.

Arguments: None

Data Type: VT_BSTR

GetPartContentClass
The GetPartContentClass method returns the content class name of the part.

Arguments: Index as VT_I4

Data Type: VT_BSTR

GetPartFile
The GetPartFile method retrieves a part file from VisualInfo for AS/400, stores it in a
temporary file on the local workstation, and returns the full path to the temporary file.
The Item is checked out in VisualInfo for AS/400 the first time you call this method.

Arguments: Index as VT_I4

Data Type: BSTR

GetTOCItem
The GetTOCItem method returns the Item object specified from the TOC.

Arguments: Index as VT_I4

Data Type: VT_DISPATCH (Item)

NextWorkbasketItem
The NextWorkbasketItem method returns the next available item by order of priority
in a workbasket.

198 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Arguments: None

Data Type: VT_DISPATCH (Item)

Open
The Open method locks the item. No other user can modify index information or
modify parts when the item is locked. You must use the Close or CloseIt methods to
unlock the item.

Arguments: None

Data Type: None

PrintItem
The PrintItem method sends the item to the printer. If the Setup argument is set to
TRUE (nonzero), the print setup dialog is displayed to the user first, allowing the user
to specify print options.

Arguments: Setup as VT_BOOL

Data Type: VT_I4

RefreshTOC
The RefreshTOC method re-samples the TOC of a workbasket or folder. If you did
not call this method any changes to a workbasket or folder's TOC will not be
recognized by methods in the Item class.

Arguments: None

Data Type: VT_I4

RemoveFromFolder
The RemoveFromFolder method removes the item from the folder specified as an
argument.

Arguments: Workbasket as VT_DISPATCH (Item)

Data Type: VT_I4

RemoveFromWorkbasket
The RemoveFromWorkbasket method removes the item from the workbasket
specified as an argument.

Arguments: Workbasket as VT_DISPATCH (Item)

Data Type: VT_I4

RouteToWorkbasket
The RouteToWorkbasket method adds this item to a workbasket, removing it from
any workbasket it is currently in. The workbasket is specified by its Item object. If
Force is specified as TRUE, the item is added to the workbasket, even if the
workbasket is already full.

Arguments:

� Workbasket as VT_DISPATCH (Item)
� Priority as VT_VARIANT (optional, usually VT_I4)
� Force as VT_VARIANT (optional, usually VT_BOOL)

 Chapter 7. Properties and Methods of OLE Objects for Windows 199

Data Type: VT_I4

SavePart
The SavePart method saves any changes that occurred to the part file specified and
its annotation file.

Arguments: Index as VT_I4

Data Type: VT_I4

StartWorkflow
The StartWorkflow method adds the item into the specified workflow.

Arguments:

� Workflow as VT_BSTR
� Initial Workbasket as VT_DISPATCH (Item) (optional)
� Priority as VT_I4 (optional)

Data Type: VT_I4

Suspend
The Suspend method causes the item to be suspended, pending some future event.
This event is a time and date, but could also be an item being included in a folder
item.

If Timestamp is specified, the item is suspended, pending a time event. When the
time event is triggered, the item is activated and placed in the TimeOutWorkbasket
workbasket. The Timestamp argument must be in a format like the following
example:

 1995-ð4-ð1-ð8.ð5.23.ðððððð

If Classes is specified (only valid for folder items), the item is suspended, pending a
time event or a folder event. When the time event is triggered, the item is activated
and placed in the TimeOutWorkbasket workbasket. If the folder event is triggered
before the timeout, the item is activated and placed in the ReadyWorkbasket
workbasket.

The optional Classes argument is a string containing a list of index classes separated
by semicolons (;). This list is used to indicate which index classes will trigger an
activation.

The optional Criteria argument, which is only valid for folder items, should be zero (0)
to indicate an OR condition, or one (1) to indicate an AND condition. This condition is
used when determining if one or all of the index classes specified in the Classes
argument must be indexed before the folder is activated.

Arguments:

� Timestamp as VT_BSTR
� TimeoutWorkbasket as VT_DISPATCH
� Classes as VT_BSTR
� Criteria as VT_I4
� ReadyWorkbasket as VT_DISPATCH

Data Type: VT_I4

200 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

UpdateIndex
The UpdateIndex method saves any changes that you have made to the Index Class
and/or key fields (using the Properties Class and KeyFields). Until this method is
called no changes are stored.

Arguments: None

Data Type: VT_I4

 Items Collection
The Items collection holds a list of Item objects, allowing you to access the contained
objects. An Items collection typically is a result of the Document method SelectionList.

 Properties
Application

The Application property returns the Application object.

Count
The Count property returns the number of Item objects referenced in the Items
collection.

Parent
The Parent property returns the parent of the Items collection (which is usually a
Document object).

 Methods
_NewEnum

The _NewEnum method returns an unknown which supports the
IID_IEnumVARIANT. _NewEnum is a restricted method that cannot be invoked like
the other methods. It is used to implement loop constructs in macro languages such
as Visual Basic.

Arguments: None

Data Type: VT_UNKNOWN

Close
The Close method closes the Items collection.

Arguments: None

Data Type: VT_I4

CloseIt
NOTE: The CloseIt method is the same as the Close method. It is implemented
solely to support VisualBasic which uses Close as a reserved word. The CloseIt
method closes the Items collection.

Arguments: None

Data Type: VT_I4

 Chapter 7. Properties and Methods of OLE Objects for Windows 201

Item
The Item method returns an Item object from the Items collection.

Arguments: Index as VT_I4

Data Type: VT_DISPATCH (Item)

202 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

 Appendixes

 Copyright IBM Corp. 1997 203

Appendix A. VisualInfo for AS/400 Terminology

This guide uses the following terms to help you program applications using VisualInfo
for AS/400. You can use these definitions as an introduction to VisualInfo for AS/400
concepts and then as a reference as you create applications.

 General Terms
The following terms are organized by VisualInfo for AS/400 component.

VisualInfo for AS/400
The following terms are related to VisualInfo for AS/400.

Attribute
Characteristic associated with items in an index class.

Content Class
Describes the physical format of an object stored in the object server. Applications
use it to launch an appropriate application or correctly display data.

Data Model
Provides a logical view of the organization of data in a database. The VisualInfo for
AS/400 data model provides your applications with many general document and
folder management capabilities.

Document
A type of item in VisualInfo for AS/400 and a basic part of the VisualInfo for AS/400
data model. It is similar to a paper document. In VisualInfo for AS/400, document can
be any multimedia, digital object.

Folder
A type of item and a basic part of the VisualInfo for AS/400 data model that is similar
to folders in a paper filing system and can contain other folders or documents.

Index Class
Specifies attributes common to a set of items. For example, an index class for
reports could have attributes such as author, data, or subject. When you create an
item, your application must assign an index class and supply the attribute values
required by that class. You can create separate index classes for reports,
spreadsheets, claim forms, or other kinds of documents that you use.

Item
An independent entity in the VisualInfo for AS/400 library server. It can be a
document or a folder. The VisualInfo for AS/400 APIs let your application create,
index, and locate items.

Item Part
Associated with an item and contains content such as image data, annotations, or
notes.

204  Copyright IBM Corp. 1997

Note
Text that the user enters in the VisualInfo for AS/400 client to describe the document
or folder, to record actions taken, or communicate with others when they access the
item.

Privilege
Capability that the system administrator gives to a user to either access or perform
certain tasks on objects stored in the system.

Workbasket
A container that holds work packages–which can refer to folders and documents–to
be processed in a predefine order.

 Client Application
The following terms are related to the VisualInfo for AS/400 client.

Advanced Search Settings Notebook
Lets you create and modify existing advance search profiles. You see an advanced
search setting notebook by selecting the New Search Profile icon in the Fileroom
Search container, or by selecting Open, and then Settings, when an existing search
template is highlighted. When you select an existing advanced search profile from
the Fileroom Search container, a modified Advanced Search notebook appears that
lets you enter new data values to use as search criteria for the advanced search.

Basic Search Dialog
Lets you enter simple search criteria associated with a single index class or all
classes. You see a Basic Search dialog by selecting Basic search from the Tools
menu in the main container.

Export Dialog
Lets you specify user options for exporting documents and folders from VisualInfo for
AS/400 to files. You see the Export dialog by selecting Export from the Document,
Folder, and Selected menus.

Image Window
Can display a document or an icon representing an object of an externally supported
content class.

Import Dialog
Lets you select files to include in VisualInfo for AS/400. You see an Import dialog by
selecting the Import option from the File menu.

Index Form Window
The Index window contains the current values for the key fields (attributes)
associated with the displayed item and is used to specify a new index class and
attribute values.

Logon Dialog
Appears when you start the client application. You enter a user ID and password and
select the desired library server for the session in the Logon dialog.

 Appendix A. VisualInfo for AS/400 Terminology 205

Main Container
The main container displays icons representing other containers and a menu bar that
lets you select tools and session-wide options. After logon, you see the main
container.

Note Log Window
The Note Log window contains user-written notes associated with the displayed item.
The Note Log window is implemented as an edit window, allowing easy input of text.

Print Dialog
Lets you specify user options for the printer profile you want to use, pages of
documents you want to print, and parts of documents and folders that you want to
print.

Scanner Windows
Lets you specify scanner operational controls. You see a scanner window by
selecting the Basic scan or Advanced scan options from the File menu in the main
container. A View window also might appear, based on user preferences, when the
scanner window appears. The format of the scanner window can vary depending
upon the scanner used.

Table of Contents Window
The table of Contents window displays a list of the contents in a workbasket or a
folder.

Workbaskets Container
Has entries for all workbaskets for which you have read access.

 Object Server
The following terms are related to an object server.

Collection
A collection is a group of objects with a similar set of storage management rules.

Object
An object is a stored stream of bits. An object can be an image, spreadsheet, word
processing file, note, annotation, or event associated with a document. See part.

System-Managed Storage
System-managed storage (SMS) is an approach to efficient storage management in
which the system determines document placement and an automatic data manager
handles data, movement, space, and security.

206 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Appendix B. Guidelines for Search Expressions

Included in this appendix are some guidelines to follow when you are searching a
VisualInfo for AS/400 client application.

Logical Operators for Searches
The following are the valid logical operators in order of precedence:

NOT or ^ Negate the condition that follows.

AND or & Both the preceding condition and the condition that follows must be true.

OR or | Either the preceding condition or the condition that follows is true.

The following examples illustrate the precedence rules.

W, X, Y, and Z represent expressions in the following string:

W OR X AND NOT Y AND Z

Using the default precedence rules, this string is the same as the following:

W OR (X AND (NOT Y) AND Z)

You can use parentheses to alter precedence and change the meaning of the string.
For example:

(W OR X) AND NOT (Y AND Z)

Note: You can enter the logical operators in uppercase, lowercase, or mixed case.

 Search Expressions
Each search expression takes the following form: Attribute Operator Value Element
Meaning

 Attribute
A character string of the following form:

 Annn

Where the fields have the following meanings:

A An attribute. You can enter attributes in uppercase, lowercase, or mixed case.

nnn A decimal attribute ID. This value identifies either a user-defined attribute or a
system-defined attribute as it exists in VisualInfo for AS/400.

 Operator
A relational operator. You can enter operators in uppercase, lowercase, or mixed case.
The following are the valid operators.

 Copyright IBM Corp. 1997 207

Operator Meaning
EQ or == Equal to
LEQ or <= Less than or equal to
GEQ or >= Greater than or equal to
LT or < Less than
GT or > Greater than
NEQ or <> Not equal to
IN In a list of values
NOTIN Not in a list of values
LIKE Like
NOTLIKE Not like
BETWEEN Between two values
NOTBETWEEN Not between two values

 Value
A string value, a numeric value, or the value NULL.

You must enclose string values within quotation marks. Use two quotation marks
together to specify a zero-length string. Use two blanks within two quotation marks to
specify a string of two blanks. Note that neither a zero-length string or a string of two
blanks is equivalent to the value NULL.

You can place a plus or a minus sign before a numeric value. Optionally, you can
specify a numeric value as a string.

Use the reserved word null to specify the value NULL. You can specify the value NULL
for the EQ and NEQ operators only. The following are examples of valid values:

 "XXXXX"
 null
 "123"
 +123
 123

Note: The values “123,” +123, and 123 are equivalent.

Relational Operators for Searches
When you use the following relational operators, you must specify value strings in
certain special formats:

 � BETWEEN
 � NOTBETWEEN
 � LIKE
 � NOTLIKE
 � IN
 � NOTIN

208 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

When you use either the BETWEEN operator or the NOTBETWEEN operator, you must
specify all value strings within an expression in the same format. The following are
examples of valid expressions:

A1 BETWEEN 1ðð 2ðð
A51 BETWEEN '1995-ð1-ð1' '2ð2ð-ð9-29'

 A49 BETWEEN '19ðð-ð1-ð1-ðð.ðð.ðð.ðððððð' '192ð-ð2-ð2-ðð.ðð.ðð.ððððð3'
 A5ð BETWEEN '13.ðð.ðð' '17.ðð.ðð'

A2 NOTBETWEEN "FIRST" "LAST"

When you use either the LIKE operator or the NOTLIKE operator, use the percent sign
(%) or the underscore character (_) in SQL format to specify searches for partial
strings.

Specify the percent sign to match any character. For example, the following expression
searches for any value that begins with the character S:

A3 LIKE "S%"

Specify the underscore character to match any character in a certain position. For
example, the following expression searches for any value that begins with the character
string PA, contains any character in the third position, and contains the character K in
the fourth and final position:

A8 LIKE "PA_K"

When you use either the IN operator or the NOTIN operator, you must enclose string
values within apostrophes (') and enclose the entire set of values within parentheses.
Additionally, you must place a comma (,) between any two values within an expression.
The following are examples of valid expressions:

A4 IN "('Monday','Tuesday','Wednesday')"
A5ð NOTIN "('15.3ð.ð3') "
A51 NOTIN "('1994-ð8-31') "
A49 NOTIN "('192ð-ð2-ð2-ðð.ðð.ðð.ððððð1') "
A5 NOTIN "(1,3,5,7,9)"

If you specify any attribute in an expression that does not belong to the index class you
specify for that expression in this data structure, the search method fails. In such a
case, the function fails regardless of any other correctly structured portion of the
expression.

In the following example, the function fails if the index class you specify contains only
attribute 10 and attribute 12:

(A12 == 3) OR (A38 < 5)

The expression in the preceding example causes the method to fail because the index
class you specify does not contain attribute 38.

If you specify a null string ("") as the value of the index class, the method automatically
searches only the index classes that contain the attributes you specify in the expression

 Appendix B. Guidelines for Search Expressions 209

within the search string. If that expression consists of system attribute IDs only, the
function searches all current index classes.

210 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Appendix C. Using FlowMark with VisualInfo for AS/400

The following information describes how to integrate FlowMark with VisualInfo for
AS/400. Currently, the level of integration is based on the use of the OLE automation
interface of the Client for Windows. This integration is enhanced through the VisualInfo
for AS/400 client high-level programming interface for Visual Basic, and the Windows
executable, FRNWWFFM.EXE, which enables VHLPI functions to be called from
FlowMark and sets FlowMark container variables.

VisualInfo for AS/400 Client High-Level Programming Interface for Visual Basic
The VisualInfo for AS/400 client high-level programming interface for Visual Basic is
composed of the Visual Basic code module, FRNWWFVB.BAS. You can load it into any
Visual Basic program to provide high-level function calls to the Client for Windows’s
OLE automation interface.

You can create Visual Basic applications that include the FRNWWFVB.BAS code
module to call one or more VisualInfo for AS/400 functions. Table 2 lists the functions
available with the syntax and return information.

You can write FlowMark activity programs to use one or more VHLPI functions. In
addition, these programs can be designed to read and write FlowMark container
variables. Using container variables as input/output for VHLPI functions results in a very
tight integration between FlowMark and VisualInfo for AS/400. This level of integration
is also provided by the FRNWWFFM.EXE program included with VisualInfo for AS/400.

Table 2 (Page 1 of 2). Visual Basic Function Summary

 Function Name Purpose

VbVhlAddFolderItem Adds an item to a folder.

VbVhlAdminItemNoteLog Reads, appends, replaces or deletes note logs.

VbVhlChangeItemIndex Changes the index class of an item to another index class.

VbVhlCheckInItem Unlocks the item.

VbVhlCheckOutItem Locks the item for exclusive update access.

VbVhlCloseDocViews Closes the document image window.

VbVhlCopyDoc Creates a document and copies the contents of an existing document into it.

VbVhlCreateFolder Creates a new folder.

VbVhlCreateFolderAddItem Creates a folder and adds the specified item into it.

VbVhlDeleteItem Deletes the item from VisualInfo for AS/400.

VbVhlDisplayDocView Displays a document image using the Image viewer.

VbVhlDisplayVIItem Displays a document, folder, or workbasket through the Client for Windows.

VbVhlDropFuncs End access to VHLPI functions.

VbVhlExportDocObj Creates an external file from a document base object.

VbVhlGetVIUserID Returns the user ID logged onto VisualInfo for AS/400.

VbVhlImportDocObj Creates a document base object from an external file image.

 Copyright IBM Corp. 1997 211

Table 2 (Page 2 of 2). Visual Basic Function Summary

 Function Name Purpose

VbVhlListContClasses Lists all content classes.

VbVhlListFolderItems Lists all folder items (of specified index classes).

VbVhlListFolderItemsAttr Lists all folder items and their attribute values.

VbVhlListIndexClassAttr Lists all attributes of a specified index class.

VbVhlListIndexClasses Lists all index class names.

VbVhlListItemCC Lists the content class of an item’s base object.

VbVhlListItemInfo Lists an item’s type, index class name, index attributes and values.

VbVhlListWBItems Lists all items in a specified workbasket.

VbVhlListWorkBaskets Lists all workbasket names.

VbVhlLoadFuncs Get access to VHLPI functions.

VbVhlLogoff End access to VisualInfo for AS/400.

VbVhlLogon Get access to VisualInfo for AS/400.

VbVhlRemoveFolderItem Deletes the item only from the specified folder.

VbVhlScanDoc Calls the VisualInfo for AS/400 scan facility.

VbVhlSearchAdv Returns all items which match the advanced search criteria.

VbVhlSearchItem Returns all items which match the index class and index attribute specification.

Using VHLPI Functions Through the FlowMark Command Line
FlowMark activities use registered programs to execute. Registered program
information consists of the execution characteristics of the program, including the name
of a program and any input parameters passed to the program as command line
parameters. These input parameters can be FlowMark container variables if the
parameter is registered with % characters surrounding its name, for example
%variable1%.

FRNWWFFM.EXE is a Windows executable which enables VHLPI Visual Basic
functions to be called from FlowMark activities. To accomplish this, the FlowMark
program registration would have FRNWWFFM.EXE defined as the program name with
an input parameter list containing the VHLPI Visual Basic function name followed by
any parameters used by the function. For example, to display a document whose item
ID is SSIINIR$D2G#V@04, the following would be the program registration parameters
list:

VbVhlDisplayDocView,SSIINIR$D2G#V@ð4,False

See Table 2 on page 211 for the list of VHLPI Visual Basic functions which can be
called by FRNWWFFM.EXE. FlowMark container variables can be used as parameters.
For example if the FlowMark container variable ItemId was set to the value
SSIINIR$D2G#V@04, then the following parameter list could be used:

VbVhlDisplayDocView,%ItemId%,False

212 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

When the VHLPI function calls for an array, each element of the array must be included
as a parameter. The first element of every array contains the element count of the
array. If a FlowMark container variable name is used, then the container variable must
also be an array. For example:

VbVhlImportDocObj,ItemId,c:\test.txt,TEXT,NOINDEX,1,Source,1,IMPORT
VbVhlImportDocObj,ItemId,c:\test.txt,TEXT,NOINDEX,%AttrName%,%AttrValue%

In addition to providing FlowMark command line access to VHLPI functions,
FRNWWFFM.EXE also copies all FlowMark input container variables into
corresponding output container variables. This ensures that subsequent FlowMark
activities using the output container from FRNWWFFM.EXE will have properly set
container values. This is necessary because FRNWWFFM.EXE provides a method to
set output container variables specified on the program registration parameter list.

To have FRNWWFFM.EXE set FlowMark output data container variables, the variable
name must be registered on the program parameter list prefixed with an OUT. This only
applies to VHLPI function parameters that contain return data. This lets you specify an
output container variable to receive the output data returned by VHLPI functions.
Subsequent activities can use this data for other processing.

For example, you can use FRNWWFFM.EXE in two sequential activities to first import a
document and then display the document. In FlowMark, two programs would be
registered both using FRNWWFFM.EXE as the program name. The two programs
could have the following parameter lists:

VbVhlImportDocObj,OUT.ItemId,c:\test.txt,TEXT,NOINDEX,ð,ð
VbVhlDisplayDocView,%ItemId%,False

 The first program imports a document into the NOINDEX index class and returns the
item ID to the FlowMark output container variable ItemId. By defining the output
container of the first program to be used as input to the second program, the second
program displays the document whose item ID is read from the input container variable
ItemId.

If the output parameter is an array, the FlowMark container variable must be defined as
an array and be large enough to hold all the output.

 Summary
Because FRNWWFFM.EXE sets FlowMark containers, it can only be executed as an
FlowMark program. This capability enables VHLPI functions to be called from FlowMark
without the need to create a VisualBasic program. VHLPI functions, enabled by the
Client for Windows’s OLE automation interface, provide FlowMark designers with the
capability of creating workflow models which access VisualInfo for AS/400 function
without coding customized programs.

 Appendix C. Using FlowMark with VisualInfo for AS/400 213

Appendix D. Data Structures and Definitions

This appendix describes the abstract data types, data structures, and definitions the
VisualInfo for AS/400 client high-level programming interface uses.

 ADMINITEMNOTELOGOUT

 Structure
The structure for VhlAdminItemNoteLog() output data.

typedef struct _AdminItemNoteLogOut {
ULONG ulNoteSize; /\ NoteLog text size \/
CHAR achNoteLogText[1]; /\ actual NoteLog text \/

} ADMINITEMNOTELOGOUT;
typedef ADMINITEMNOTELOGOUT \PADMINITEMNOTELOGOUT;

 ATTRBPAIR

 Structure
The structure for Index Class - attribute name and value.

typedef struct AttributePair {
PSZ pszAttrbName; /\ Pointer to Attribute Name \/
PSZ pszAttrbValue; /\ Pointer to Attribute Value \/

} ATTRBPAIR;
typedef ATTRBPAIR \PATTRBPAIR;

 INSTANCSTRUCT

 Structure
The structure containing Instance (Service) data. This is used for adding user defined
functions with the Service Broker Manager.

typedef struct InstanceDataStructure {
CHAR szService[9]; /\ SBM Service name \/
CHAR szBroker[9]; /\ SBM Broker name \/

} INSTANCSTRUCT;
typedef INSTANCSTRUCT \PINSTANCSTRUCT;

 ITEMATTRB

214  Copyright IBM Corp. 1997

 Structure
The structure for Item Id with attribute names and values.

typedef struct ItemAttributes {
ITEMID pszItemID; /\ Item Id of item \/
USHORT usNumAttrb; /\ Numb of attribute name/values in list \/
PATTRBPAIR pAttrList; /\ Attribute name/value list \/

} ITEMATTRB;
typedef ITEMATTRB \PITEMATTRB;

 LFOLDERTOCDATA

 Structure
The structure for VhlListFolderItems() output data.

typedef struct ListFolderTOCOutData {
ITEMID szItemID; /\ Item ID \/
USHORT usItemType; /\ Item Type \/
CHAR szClassName[SIM_CLASS_NAME_LENGTH+1]; /\ Index Class \/
PVOID pUserStruct; /\ Spare-NOT USED \/

} LFOLDERTOCDATA;
typedef LFOLDERTOCDATA \PLFOLDERTOCDATA;

 LISTCCINFODATA

 Structure
The structure for Content Class information output data.

typedef struct ListCCInfoData {
CHAR szName[9]; /\ Content Class name \/
CHAR szDesc[41]; /\ Content Class desc \/
PVOID pUserStruct; /\ Spare - NOT USED \/

} LISTCCINFODATA;
typedef LISTCCINFODATA \PLISTCCINFODATA;

 LISTFOLDERITEMATTRSTRUCT

 Structure
The structure for VhlListFolderItemsAttr() output data.

typedef struct _ListFolderItemAttrData {
USHORT usNbrItemIDs; /\ #ItemIDs in folder \/
SBVIITEMINFOSTRUCT aItemInfoStruct[1]; /\ ptr to ItemInfo \/

} LISTFOLDERITEMATTRSTRUCT;
typedef LISTFOLDERITEMATTRSTRUCT \PLISTFOLDERITEMATTRSTRUCT;

 Appendix D. Data Structures and Definitions 215

 LISTICATTRDATA

 Structure
The structure for Index Class attribute data.

typedef struct ListICAttrData {
CHAR szAttrName[SIM_ATTR_NAME_LENGTH+1]; /\ Attribute name \/
BOOL fRequired; /\ Required field ?? \/
BOOL fIndexKeyField; /\ Index Key Field ?? \/
BITS fIndexKeyUnique; /\ Index Key Unique?? \/
BITS fTypeFlags; /\ Data type flags \/
USHORT usAttrType; /\ Attribute type \/
LONG lMin; /\ Min values \/
LONG lMax; /\ Max values \/
PVOID pUserStruct; /\ Spare - NOT USED \/

} LISTICATTRDATA;
typedef LISTICATTRDATA \PLISTICATTRDATA;

 LWBASKETDATA

 Structure
The structure for VhlListWorkBaskets() output data.

typedef struct ListWorkBasketOutData {
ITEMID szItemID; /\ Item ID \/
CHAR szWBasketName[OIM_ITEMNAME_LENGTH+1]; /\ WorkBasket name \/
PVOID pUserStruct; /\ Spare - NOT USED \/

} LWBASKETDATA;
typedef LWBASKETDATA \PLWBASKETDATA;

 SBVIITEMINFOSTRUCT

 Structure
The structure for VhlListItemInfo() output data.

typedef struct _ItemInfoStruct {
 ITEMID szItemID; /\ ItemID \/
 USHORT usItemType; /\ Doc‘Folder‘Wbasket \/

CHAR szClassName[SIM_CLASS_NAME_LENGTH+1];/\ Index class for search \/
USHORT usNbrAttrIds; /\ input # of ret items \/
PATTRBPAIR pAttrList; /\ ptr to Attr pair struct\/
PVOID pUserStruct; /\ Spare - NOT USED \/

} SBVIITEMINFOSTRUCT;
typedef SBVIITEMINFOSTRUCT \PSBVIITEMINFOSTRUCT;

216 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

 Appendix E. Return Codes

The VisualInfo for AS/400 client high-level programming interface returns these types of
errors:

� Internal VHLPI function errors
� Other VisualInfo for AS/400 component errors

Descriptions of internal VHLPI function errors are given in the following sections. For
information on other component errors, refer to the IBM ImagePlus VisualInfo:
Messages and Codes.

Internal VHLPI Return Codes
Table 3 lists the error codes generated by the internal processing of the VisualInfo for
AS/400 high-level programming interface.

Table 3 (Page 1 of 3). Error Codes from the VisualInfo for AS/400 High-Level Programming
Interface

Error
Code Message Text Explanation

900 SBVI_FAILED A general failure of VisualInfo for AS/400
occurred.

901 SBVI_ILLEGAL_CLASSNAME The specified class name is not valid.

902 SBVI_INVALID_PARAMS An incorrect number or type of parameters
was specified.

903 SBVI_TOO_MANY_PARAMS The specified parameters were too large for
the stack.

904 SBVI_REXX_VAR_ERROR An error occurred when trying to set the
REXX variable value.

905 SBVI_BAD_INDXCLS The specified index class does not exist or
duplicates an existing index class.

906 SBVI_BAD_ATTRIBUTE The specified attribute does not exist or
duplicates an existing attribute.

907 SBVI_BAD_ITEMID The item ID does not exist or was not valid.

908 SBVI_BAD_FOLDER The folder ID does not exist or was not
valid.

909 SBVI_BAD_DOCUMENT The document ID does not exist or was not
valid.

910 SBVI_BAD_PARAM_VALUE The specified parameter value was not
valid.

911 SBVI_OPEN_FILE_ERROR An error occurred when trying to open the
file.

 Copyright IBM Corp. 1997 217

Table 3 (Page 2 of 3). Error Codes from the VisualInfo for AS/400 High-Level Programming
Interface

Error
Code Message Text Explanation

912 SBVI_READ_FILE_ERROR An error occurred when trying to read the
file.

913 SBVI_WRITE_FILE_ERROR An error occurred when trying to write to the
file.

914 SBVI_BUFFER_OVERFLOW The buffer was too small to store data.

915 SBVI_PM_ERROR A Presentation Manager error occurred.

916 SBVI_MEMORY_ERROR The needed memory could not be allocated.

917 SBVI_SEARCH_NO_MATCH No items were found that matched the
search criteria.

918 SBVI_INVALID_REXX_VAR The specified REXX variable name was not
valid.

919 SBVI_EMPTY_LIST No items were returned.

920 SBVI_REQ_OUTPUT_TOO_BIG The required output data exceeds the
maximum allowed.

921 SBVI_UNSUPPORTED_CC The specified content class is not
supported.

922 SBVI_ILLEGAL_FILENAME The specified filename is not valid.

923 SBVI_ILLEGAL_CC The specified content class is not valid.

924 SBVI_ITEM_CHECKEDOUT The item or parent folder is locked by
another user.

925 SBVI_BAD_SNAPSHOT The snapshot information that was obtained
is damaged.

926 SBVI_ITEM_NOT_CHECKEDOUT The item is not yet locked.

927 SBVI_UPDATE_NOT_ALLOWED No update access is allowed.

928 SBVI_OPEN_NOTELOG_ERROR The note log could not be opened.

929 SBVI_ZERO_BUFFER_SIZE The specified buffer size was invalid.

930 SBVI_MAXFILEHANDLE_ERROR The maximum number of file handles could
not be set.

931 SBVI_EMPTY_DOCUMENT The document contains no pages.

932 SBVI_INVALID_FLAG The flag was not Y/N and so was not valid.

933 SBVI_REQ_ATTR_MISSING The required attributes are missing.

934 SBVI_BAD_WORKBASKET The workbasket is either not defined or not
valid.

935 SBVI_INVALID_CLASSNAME The index class name is not valid.

936 SBVI_NO_ATTRIBUTE_FOUND No attributes for the index class were found.

937 SBVI_GET_ATTRIBUTE_FAILED The attribute information could not be
obtained.

218 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Table 3 (Page 3 of 3). Error Codes from the VisualInfo for AS/400 High-Level Programming
Interface

Error
Code Message Text Explanation

938 SBVI_EMPTY_NOTELOG The note log does not exist.

939 SBVI_GET_TOC_FAILED The table of contents of the item could not
be obtained.

940 SBVI_LOAD_WS_FAILED The working set could not be loaded.

941 SBVI_CREATE_THREAD_FAILED A thread could not be created.

942 SBVI_CREATE_DSP_FAILED An IS/2 window could not be created.

943 SBVI_CREATE_SEM_FAILED A semaphore could not be created.

 Appendix E. Return Codes 219

Appendix F. Predefined Content Classes

Table 4 lists the predefined content classes for VisualInfo for AS/400.

Table 4 (Page 1 of 3). Predefined Content Classes

Content Class Description

SIM_CC_ADVWRITE HP AdvanceWrite Plus format

SIM_CC_AIX_EXE AIX executable program

SIM_CC_AIXCMD AIX command file

SIM_CC_AMIPRO Ami Pro format

SIM_CC_AOCA Audio Object Content Architecture (AOCA) data only

SIM_CC_ASCII Flat ASCII text

SIM_CC_BCOCA Tiled Bar Code Object Content Architecture (BCOCA)
data only

SIM_CC_BKMGR_READ BookManager Read format

SIM_CC_BINARY Unformatted binary data

SIM_CC_DESCRIBE DeScribe text editor

SIM_CC_DIGITAL Digital DX and WPS-Plus format

SIM_CC_DWRITE DisplayWrite

SIM_CC_EBCDIC Flat EBCDIC text

SIM_CC_ENABLE Enable format

SIM_CC_EXCEL Microsoft Excel

SIM_CC_FAXGRP3 Fax image in group 3 format

SIM_CC_FRN_NOTE Application note log

SIM_CC_FRN_HISTORY Application history log

SIM_CC_FWORK Framework format

SIM_CC_GOCA Graphic Object Content Architecture (GOCA) data only

SIM_CC_IBMFFT DCA - Final Form text

SIM_CC_IBMWA IBM Writing Assistant

SIM_CC_INTER Interleaf Publisher format

SIM_CC_IOCA_FS11 Image Object Content Architecture (IOCA) data only

SIM_CC_IOCA_IRM IRM version of IOCA, non-standard

SIM_CC_IOCA_TILED Tiled IOCA only

SIM_CC_LEGACY Legacy format

SIM_CC_MacWrite MacWrite format

SIM_CC_MASS MASS 11 format

220  Copyright IBM Corp. 1997

Table 4 (Page 2 of 3). Predefined Content Classes

Content Class Description

SIM_CC_MGDS IBM machine-generated data stream (MGDS) format
(for forms, for example)

SIM_CC_RICHTEXT Microsoft Rich Text format

SIM_CC_MODCA_FORM Mixed Object Document Content Architecture
(MO:DCA) form overlay structure

SIM_CC_MODCA_IS2 MO:DCA-P document

SIM_CC_MODCA_PAGE MO:DCA page structure only

SIM_CC_MSCRIPT Lotus Manuscript format

SIM_CC_MULTIMATE Multimate** and Multimate/Advantage** format

SIM_CC_MSTSOFT Mastersoft internal format

SIM_CC_OFSWRITE Office Writer

SIM_CC_OS2EXE OS/2 Version 2 executable program

SIM_CC_OS2CMD OS/2 Version 2 command file

SIM_CC_OS2DLL OS/2 Version 2 Dynamic Link Library (DLL)

SIM_CC_OS2V12_BMP OS/2 Version 1.2 bitmap

SIM_CC_OS2V13_BMP OS/2 Version 1.3 bitmap

SIM_CC_OS2V2_BMP OS/2 Version 2.0 bitmap

SIM_CC_PCX PCX

SIM_CC_PEACH PeachText 5000 format

SIM_CC_PFS PFS:First Choice format

SIM_CC_POSTSCRIPT PostScript data

SIM_CC_PPDS Printer data stream

SIM_CC_PRS Freelance presentation

SIM_CC_PWRITE Professional Write format

SIM_CC_QAWRITE QA Write format

SIM_CC_QUATTRO Quattro Pro format

SIM_CC_RFILE Rapid File format

SIM_CC_RFT IBM RFT:DCA

SIM_CC_TARGA TARGA

SIM_CC_TEXT Text (where code page is unknown or variable)

SIM_CC_TIFF_G3_FINE Tagged Image File Format (TIFF) header, higher
resolution fax

SIM_CC_TIFF_G3_STANDARD TIFF header, standard fax

SIM_CC_TIFF_IRM IRM version of TIFF, single page

SIM_CC_TIFF_SINGLE_STRIP Raster in a single strip

SIM_CC_TIFF5 TIFF V5, multi-page allowed

 Appendix F. Predefined Content Classes 221

Table 4 (Page 3 of 3). Predefined Content Classes

Content Class Description

SIM_CC_TIFF5_PAGE TIFF V5, single page

SIM_CC_TIFF6 TIFF V6, multi-page

SIM_CC_TIFF6_PAGE TIFF V6, single page

SIM_CC_TOTALWORD Total Word format

SIM_CC_UNIPLEX Uniplex onGo format

SIM_CC_UNKNOWN Content class unknown

SIM_CC_USER Start of user-defined content classes

SIM_CC_VKS Volkswriter format

SIM_CC_WANGPC WANG PC format

SIM_CC_WG1 Graphics, from Lotus 1-2-3/G

SIM_CC_WINV3_BMP Microsoft Windows Version 3 bitmap

SIM_CC_WINWRITE Windows Write format

SIM_CC_WKS Lotus spreadsheet format

SIM_CC_WORD Microsoft Word format

SIM_CC_WORDSTAR Wordstar format

SIM_CC_WP WordPerfect format

SIM_CC_WRITENOW WriteNow format

SIM_CC_XYWRITE XyWrite format

222 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

 Bibliography

The following is a bibliography of related IBM
publications that you might find helpful while using this
book. See “Where to Find More Information” on page vii
for information about the VisualInfo for AS/400 product
library.

You can request copies of IBM publications from your
IBM representative or the IBM branch office serving your
area.

IBM AS/400 Publications

Communications and Connectivity
� IBM AS/400 Communications: Advanced

Peer-to-Peer Configuration Guide, GG24-4023

� IBM AS/400 Communications: Advanced
Peer-to-Peer Network User’s Guide, SC41-8188

� IBM AS/400 Communications: Advanced
Program-to-Program Communication Programmer’s
Guide, SC41-8189

� IBM AS/400 Communications: User’s Guide and
Reference, SC09-1168

� IBM AS/400 Communications Configuration,
SC41-3401

� IBM AS/400 Communications Management,
SC41-3406

� IBM AS/400 Network and Systems Management,
SC41-3409

� IBM AS/400 Network Planning Guide, GC41-9861

 Languages
� AS/400 Languages: COBOL/400 User’s Guide,

SC09-1812

� AS/400 Languages: COBOL/400 Reference,
SC09-1813

� AS/400 Languages: COBOL/400 Reference
Summary, SX09-1285

� AS/400 Languages: RPG/400 User’s Guide,
SC09-1816

� AS/400 Languages: RPG/400 Reference,
SC09-1817

� ILE RPG/400 Reference Summary, SX09-1261

� ILE COBOL/400 Programmer’s Guide, SC09-1522

� ILE COBOL/400 Reference, SC09-1523

� ILE COBOL/400 Reference Summary, SX09-1260

� AS/400 Programming: Control Language
Programming, SC41-3721

� AS/400 Programming: Control Language Reference,
SC41-3722

� ILE RPG/400 Programmer’s Guide, SC09-1525

� ILE RPG/400 Reference, SC09-1526

� ILE RPG/400 Reference Summary, SX09-1261

Planning, Installation, and Migration
� IBM AS/400 Local Device Configuration, SC41-3121

� IBM AS/400: Physical Planning Guide, GA41-9571

� IBM AS/400 Software Installation, SC41-3120

� IBM AS/400 System Support: Installation Guide -
9404, SY31-9066

� IBM System Support AS/400: Installation Guide -
9406 (shipped with the product)

 Programming
� IBM AS/400 Programming: Backup and Recovery

Guide, SC41-8079

� IBM AS/400 Programming, SC41-3721

� IBM AS/400 Programming: Security Concepts and
Planning, SC41-8083

� Query/400: User’s Guide, SC41-3210

 System Use
� IBM AS/400 Getting Started on the AS/400 System,

SC41-3204

� IBM AS/400 PC Support: Technical Reference,
SC41-8091

� IBM AS/400 Q & A Database Coordinator’s Guide,
SC41-8086

� IBM AS/400 System Operation, SC41-3203

� IBM AS/400 System Operation for New Users,
SC41-3200

� IBM AS/400 System Operations: Operator’s Guide,
SC41-8082

 Copyright IBM Corp. 1997 223

� IBM AS/400 System Startup and Problem Handling,
SC41-3206

� OS/400 Infoseeker Getting Started, SC41-3001

� OS/400 Integrated File System Introduction,
SC41-3711

 System Management
� IBM AS/400 Security–Basic, SC41-3301

� IBM AS/400 Security–Reference, SC41-3302

� OS/400 Backup and Recovery–Basic, SC41-3304

� OS/400 Backup and Recovery–Advanced,
SC41-3305

IBM Client Access

 Windows
� IBM Client Access/400 for Windows: Getting

Started, SC41-3530

� IBM Client Access/400 for Windows: User’s Guide,
SC41-3532

IBM ImagePlus VisualInfo
� IBM ImagePlus VisualInfo Getting Started,

GC31-9051

� IBM ImagePlus VisualInfo Planning and Installation
Guide, GC31-7772

� IBM ImagePlus VisualInfo System Administration
Guide, GC31-7774

� IBM ImagePlus VisualInfo Application Programming
Guide for Windows, GC31-9055

� IBM ImagePlus VisualInfo Application Programming
Guide, Volume 1, GC31-9063

� IBM ImagePlus VisualInfo Application Programming
Guide, Volume 2, GC31-9061

IBM 3995 Compact Optical Library
Dataserver

 Direct-Attached
� IBM AS/400 Optical Library Dataserver Support/400:

User’s Guide and Reference, SC41-0035

� OS/400 Optical Support, SC41-4310

 LAN-Attached
� IBM 130 mm Rewritable Optical Disk Cartridge

Requirements, SA37-0261

� IBM 3995 All LAN Models Reference, GA32-0147

� IBM 3995 AS/400 Optical Library Dataserver:
Operator’s Guide Models A43, 143, 142, 043, and
042, GA32-0140

� IBM 3995 Optical Library Dataserver Products:
Introduction and Planning Guide for C-Series
Models, GA32-0350

� IBM 3995 Optical Library Dataserver Products:
Model A23 Guide to Operations, GA32-0291

� IBM 3995 Optical Library Dataserver Products:
Operator’s Guide for C-Series Models, GA32-0352

� IBM 3995 Optical Library Dataserver Products:
User’s Guide for Models 123, 122, 121, 113, 112,
111, 023, 022, 021, GA32-0141

Both Direct- and LAN-Attached
� IBM 3995 Optical Library Dataserver Products:

Introduction and Planning Guide, GA32-0121

� IBM 3995 Optical Library Dataserver Products:
Optical Disk Format, GA32-0224

� IBM 3995 Optical Library Dataserver Products:
Optical Disk Cartridge Requirements 130 mm
Write-Once 1024 Bytes/Sector, GA32-0146

� IBM 3995 Optical Library Dataserver Products:
Reference for C-Series Models, GA32-0351

� IBM 3995 Optical Library Dataserver Products:
Safety, GA32-0148

224 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

 Glossary

This glossary defines terms and abbreviations used in
this book and the product document library. Refer to the
IBM Dictionary of Computing, ZC20-1699-09, for terms
or abbreviations that do not appear here.

The following cross-references are used in this glossary:

� Contrast with. This refers to a term that has an
opposed or substantively different meaning.

� See. This refers the reader to multiple-word terms in
which this term appears.

� See also. This refers the reader to terms that have
a related, but not synonymous, meaning.

� Synonym for. This indicates that the term has the
same meaning as a preferred term, which is defined
in the glossary.

A
access list . A list consisting of one or more individual
user IDs or user groups and the privilege set associated
with each user ID or user group. You use access lists to
control user access to items in VisualInfo for AS/400.
The items that can be associated with access lists are
the data objects stored by users, index classes and
subsets, workbaskets, and workflows.

action list . In Workfolder Application Facility work
management, an approved list of the actions, defined by
a supervisor, that a user can perform on work packages.
An action list defines options, such as printing or
displaying work packages, and the function keys that are
available for use.

active case . A case that was entered and indexed,
assigned to a queue, and has been previously pended,
unqueued, assigned to a process, or assigned to a
workbasket. A case with this status can be accessed
through the Work any case, Work queued case, or
Review any case menu options.

address ID profile . A control file used in Workfolder
Application Facility that contains names and addresses.

ad hoc route . A route that is not part of a defined
Workfolder Application Facility work management
process. An ad hoc route is started when a user creates

a work package and assigns it directly to a workbasket.
The user manually routes the work package from one
workbasket to another by reassigning it.

administrator . The person responsible for system
management, controls, and security, as well as case
statistics. Synonymous with system administrator.

Advanced Peer-to-Peer Networking (APPN) . Data
communications support that routes data in a network
between two or more APPC systems that are not directly
attached.

advanced program-to-program communications
(APPC). Data communications support that allows
programs on an AS/400 system to communicate with
programs on other systems having compatible
communications support. This communications support
is the AS/400 method of using the SNA LU session type
6.2 protocol.

annotation . An added descriptive comment or
explanatory note.

APAR . Authorized Program Analysis Report.

API. Application programming interface.

application programmer . A programmer who designs
programming systems and other applications for a user’s
system.

application program interface (API) . The
formally-defined programming language interface which
is between an IBM system control program or a licensed
program and the user of the program.

APPC. Advanced program-to-program communications.

APPN. Advanced Peer-to-Peer Networking.

application program interface (API) . The
formally-defined programming language interface which
is between an IBM system control program or a licensed
program and the user of the program.

archiving . The storage of backup files and any
associated journals, usually for a given period of time.

AS/400. Application System/400.

 Copyright IBM Corp. 1997 225

AS/400 object directory profile . A control file used in
Workfolder Application Facility to identify AS/400 object
directories used for image document storage.

attribute . Used in VisualInfo for AS/400 APIs, a single
value associated with an item (document or folder). Each
index class can have up to eight attributes.

automatic importing . The process that operates in the
background to complete the importing of documents
when it is requested through the facsimile process or the
“set up automatic import only” option.

automatic indexing . The indexing process that
operates in the background to complete the indexing of
documents introduced to the system through the scan
and batch index function.

B
binary large object (BLOB) . A large stream of binary
data treated as a single object.

C
capture . In optical character recognition, to gather
picture data from a field on an input document, using a
special scan.

cartridge . (1) A storage device that consists of
magnetic tape, on supply and takeup reels, in a
protective housing. (2) For optical storage, a plastic
case that contains and protects optical disks, permitting
insertion into an optical drive. See also optical disk and
cartridge storage slots.

cartridge storage slots . An area in an optical library
where cartridges are stored.

case . A uniquely identifiable work item initiated by a
user. Cases may be: Active (open and being worked),
Pended (suspended awaiting further information), Closed
(processing is complete), New, or Not Queued.

case file . A file that contains one entry for each case.

case history file . A file that contains the history of
actions against each case.

case ID . A system-assigned identifier that is
chronological, based on the time that indexing occurred.
Every case has a unique case ID.

client application . An application written with the
VisualInfo for AS/400 APIs to customize a user interface.

closed case . A case that was closed and cannot be
reopened. A closed case is not assigned to a queue. A
case with this status can be accessed through the
Review any case menu option.

closing a case . Ending a case permanently.
Documents in a closed case may be archived for future
access.

collection . (1) In VisualInfo for AS/400, a group of
objects with a similar set of storage management rules
and contained within a storage group. Every object is
stored in a collection. (2) In Workfolder Application
Facility, it provides categories for entered documents
and is used to match incoming documents with
outstanding requests. Primarily used in case
processing, collections can also be used when indexing
documents into file cabinets.

collection point . In Workfolder Application Facility
work management, the point where work packages wait
for specific events to either occur or become
synchronized before processing can continue. A
collection point is part of a work process. For example,
a collection point is where work packages that are part
of the “open a new account” work process must wait
until credit information is verified. See also decision
point.

collection profile . A file that contains one entry for
each type of document to be processed.

content class . A number that indicates the data format
of an object, such as MO:DCA, TIFF, or ASCII.

control files . Files that govern the categories of work
performed by an operator and the types of documents
the system recognizes.

convenience workstation . A display workstation
equipped with a printer and a scanner.

cross-system importing . The process that imports
cases and documents to one Workfolder Application
Facility system from another.

cross-system exporting . The process that exports
cases and documents from one Workfolder Application
Facility system to another.

current document . A document that is being
processed.

226 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

customization . The process of designing a data
processing installation or network to meet the
requirements of particular users.

D
DASD. Direct access storage device.

DASD system ID profile . A file used to define the
roles of AS/400 processors in the Workfolder Application
Facility system.

DDM. Distributed data management.

DBCS. Double-byte character set.

decision point . In Workfolder Application Facility work
management, the point where work packages continue
on their current route or switch to an alternate route,
depending on the specific information in each work
package. Decision points are tables consisting of
variable names, values, and routes. A decision point is
part of a work process. For example, a decision point is
where work packages that are part of the “open a new
account” work process receive approval or not based on
credit information.

See also collection point.

destager . A function of the object server that moves
objects from the staging area to the first step in the
object’s migration policy or management class.

direct access storage device (DASD) . A device in
which access time is effectively independent of the
location of the data.

distributed data management (DDM) . A feature of the
System Support Program that lets an application
program work on files that reside in a remote system.

display workstation . An image processing workstation
used primarily for displaying documents that have been
previously scanned or imported into the AS/400 system.

document . (1) An item containing one or more base
parts. See also collection point. (2) Information and the
medium on which it is recorded that generally have
permanence and that humans or machines can read.
(3) A named, structural unit of text that can be stored,
retrieved, and exchanged among systems and users as
a separate unit. Also referred to as an object. A single
document can contain many different types of base
parts, including text, images, and objects such as
spreadsheet files.

document content architecture (DCA) . An
architecture that guarantees information integrity for a
document being interchanged in an office system
network. DCA provides the rule for specifying form and
meaning of a document. It defines revisable form text
(changeable) and final form text (unchangeable).

document type . Provides categories for entered
documents and are used to match incoming documents
with outstanding requests. Primarily used in case
processing, document types can also be used when
indexing documents into file cabinets.

document type profile . A file that contains one entry
for each type of document to be processed.

document working set . A set of document images
selected from a menu that Workfolder Application Facility
provides. This set of document images is sent to the
ImagePlus workstation for display.

double-byte character set (DBCS) . A set of
characters in which each character occupies two bytes.
Languages, such as Japanese, Chinese, and Korean,
that contain more symbols than can be represented by
256 code points, require double-byte character sets.
Entering, displaying, and printing DBCS characters
requires special hardware and software support.

E
empty case . A case that has no documents.

export . In Workfolder Application Facility, a process
used to write data from a document in a system folder to
a file. Export and import processes can be used to
transfer documents among Workfolder Application
Facility systems.

F
facsimile configuration profile . A control file that lets
the system administrator associate Facsimile Support for
OS/400 with Workfolder Application Facility.

fax exporting . A process that operates in the
background to send documents requested for fax
transmission to a fax server.

fax importing . The importing process that operates in
the background to forward fax documents received by
the fax server.

 Glossary 227

FIFO (first in, first out) . A queueing technique in
which the next item to be retrieved is the item that has
been in the queue for the longest time.

file cabinet . A component of Workfolder Application
Facility that provides document storage and retrieval
capabilities designed to help manage selected
documents.

file cabinet code . Acts as the file cabinet name.

first in first out (FIFO) . A queueing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time.

focus control . In Workfolder Application Facility, a
feature that lets the system administrator decide whether
Workfolder Application Facility and ImagePlus
Workstation Program or the user controls the active
window.

folder . (1) In VisualInfo for AS/400, an object that can
contain other folders or documents. (2) In Workfolder
Application Facility, the area in the AS/400 system
where images are stored after successful scanning or
importing.

folder balancing . In the AS/400, the process by which
documents are distributed evenly among the available
folders in the system.

folder manager . In VisualInfo systems other than
VisualInfo for AS/400, the term used to describe the data
model and a subset of the APIs. In VisualInfo for
AS/400, this term refers to the entire set of VisualInfo for
AS/400 APIs.

folder name . A 1- to 12-character user-defined word
that names a folder. One period (.) is allowed. If the
folder name is more than 8 characters, the ninth
character must be a period. This can be followed by a 1-
to 3-character extension.

folder path . A folder name, followed by one or more
additional folder names, where each preceding folder is
found. Each folder in the path must be separated by a
slash (/). A folder path can consist of 1 to 63 characters.

forms creation utility . A utility that allows the system
administrator to capture a preprinted form as an image
and to define the content and format of the form.

G
Group III . A compression algorithm that conforms to a
standard promulgated by the International Telegraph and
Telephone Consultative Committee (CCITT).

H
high-speed indexing . The indexing process that
operates in the background to complete the indexing of
documents that were input into the system using the
high-speed scanning function.

high-speed scanner workstation . A display
workstation equipped with a high-speed scanner.

HTML. Hypertext markup language.

I
image . (1) A single page of information; the result of
scanning, or digitizing, a single sheet of paper. (2) An
electronic representation of a picture produced by means
of sensing light, sound, electron radiation, or other
emanations from the picture or reflected by the picture.
An image can also be generated directly by software
without reference to an existing picture. See also page
image.

image data . Rectangular arrays of raster information
that define an image. Image data is often created
originally by a scanning process.

image host . The system where scanned and imported
documents are permanently stored. See also optical
library subsystem.

Image Object Content Architecture (IOCA) . A
structured collection of constructs used to interchange
and present images.

image spool file . A file that contains sorted, merged,
and completed print records ready for print.

image workstation . A programmable workstation that
can perform image functions.

import data file . An AS/400 database file that contains
data for one or more documents. Using data in the file,
Workfolder Application Facility creates documents that
can be stored and indexed just like scanned documents.

228 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

importing . A process by which documents are input
into AS/400 using files rather than the scanning process.
Imported documents can be stored in Workfolder
Application Facility on DASD and optical, and displayed
and printed, in the same manner as scanned
documents.

import page ID profile . A file that contains the form
overlay and fields specified for each page ID defined for
a document type whose data type is 01.

inbound . Pertaining to communication flowing in a
direction towards the application program from external
sources, such as a transmission from a terminal to the
application program. Contrast with outbound.

index . To associate a document with a case or
identifier.

index class . A category for storing and retrieving
objects, consisting of a named set of attributes known as
key fields. When you create an item in VisualInfo for
AS/400, your application must assign an index class and
supply the key field values required by that class. An
index class identifies the automatic processing
requirements and storage requirements for an object.

indexing . The three-step process consisting of viewing
a document, specifying an identifier for the document,
and before creating a new case, or matching the
document with an existing case.

instance . In work management, an occurrence of a
work package within a process. If the process consists
of parallel routes, multiple instances of a work package
exist.

IOCA. Image Object Content Architecture.

item . (1) Set of attributes and objects–one or more
files containing image data, annotations, notes, or other
content–that together represent a physical document,
such as an insurance claim or a folder.

See also document. (2) The smallest unit of information
that the library server administers. An item can be a
folder, document, workbasket, or workflow. Referred to
as an object outside of library server functions.

J
journal . A special-purpose file or data set that can be
used to provide a record of operator and system actions
used to recover data and to identify operator actions that
resulted in a problem.

journaling . (1) The process of recording changes
made in a physical file member in a journal. Journaling
allows you to reconstruct a physical member by applying
the changes in the journal to a saved version of the
physical file member. (2) The process of recording
information sequentially in a database.

K
key field . An attribute of an item that represents a type
of information about that item. For example, a customer
data item might have key fields for the customer’s name
and social security number.

keyword . A name or symbol that identifies a
parameter.

keyword field . A field enabled for input that provides
data for a single keyword that is defined for a file
cabinet.

keyword value . The input specified in the field for each
keyword.

L
LAN . Local area network.

language profile . A control file used in Workfolder
Application Facility to define country-specific parameters,
such as time and date formats.

last in first out (LIFO) . A queueing technique in which
the next item to be retrieved is the item most recently
placed in the queue.

library server . The component of VisualInfo for AS/400
that contains index information for the items stored on
one or more object servers.

LIFO (last in, first out) . A queueing technique in which
the next item to be retrieved is the item most recently
placed in the queue.

 Glossary 229

local area network (LAN) . A computer network located
on a user’s premises within a limited geographical area.

LU 6.2. In Systems Network Architecture (SNA), a type
of session between two application programs in a
distributed processing environment, using the SNA
character string or a structured-field data stream; for
example, an application program using CICS
communication with an AS/400 application.

M
Machine-Generated Data Structure (MGDS) . (1) An
IBM structured data format protocol for passing OCR
(Optical Character Recognition) data among various
applications. When workstations use OCR facility to
create coded data from scanned images, those coded
data are formatted into MGDS and passed to other
applications for further processing. (2) Data extracted
from an image and put into generalized data stream
(GDS) format.

magnetic storage . A storage device that uses the
magnetic properties of certain materials.

magnetic tape . A tape with a magnetizable layer on
which data can be stored.

magnetic tape device . A device for reading or writing
data from or to magnetic tape.

masking . The action of obscuring part of the image of
a document so that it is not visible to the viewer.

MGDS. Machine-Generated Data Structure.

Mixed Object: Document Content Architecture
(MO:DCA) . An IBM architecture developed to allow the
interchange of object data among applications within the
interchange environment and among environments.

Mixed Object: Document Content
Architecture-Presentation (MO:DCA-P) . A subset
architecture of MO:DCA that is used as an envelope to
contain documents that are sent to the ImagePlus
workstation for displaying or printing.

MO:DCA . Mixed Object: Document Content
Architecture.

MO:DCA-P . Mixed Object: Document Content
Architecture-Presentation.

MRI. Machine-readable information.

N
national language support (NLS) . The modification or
conversion of a United States English product to
conform to the requirements of another language or
country. This can include enabling or retrofitting of a
product and the translation of nomenclature, MRI, or
product documents.

network . An arrangement of programs and devices
connected for sending and receiving information.

network table file . A text file created during installation
that contains the system-specific configuration
information for each node for each VisualInfo for AS/400
server. Each server must have a network table file that
identifies it. The name of the network table is always
FRNOLNT.TBL.

new case . A case that was entered and indexed,
assigned to a queue, and has not been previously
pended, unqueued, assigned to a process, or assigned
to a workbasket. A case with this status can be
accessed through the Work any case, Work queued
case, or Review any case menu options.

NLS. National language support.

not queued case . A case that was entered and
indexed, and is not assigned to a queue. A case with
this status can be accessed through the Work any case
or Review any case menu options.

O
object . (1) An item upon which actions are performed.
(2) A collection of data referred to by a single name.
(3) The smallest unit within the system. For ImagePlus
systems, this is typically a single-image document.
(4) Any binary data entity stored on an object server. In
the VisualInfo for AS/400 data model, object specifically
refers to a document’s contents or parts.

object authority . The right to use or control an object.

object directory . A control file used in Workfolder
Application Facility to identify AS/400 object directories
used for image document storage.

object server . The component of IBM ImagePlus
VisualInfo for AS/400 that physically stores the objects
or information that client applications store and access.

230 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

OCR. Optical character recognition.

operator . The person who handles daily system
administrative tasks.

optical . Pertaining to optical storage.

optical cartridge . A storage device that consists of an
optical disk in a protective housing. See also cartridge.

optical character recognition (OCR) . Character
recognition that uses optical means to identify graphic
characters.

optical disk . A disk that contains digital data readable
by optical techniques. Synonymous with digital optical
disk.

optical drive . The mechanism used to seek, read, or
write data on an optical disk. An optical drive may reside
in an optical library or as a stand-alone unit.

optical drive profile . A control file used in Workfolder
Application Facility to define the optical controller used
for the optical storage of documents.

optical libraries . Software used to store image data on
optical platters. Only direct-attached optical systems
contain optical libraries.

optical library subsystem . The hardware and software
that provides the long-term storage of the image data.
See also image host.

Optical Storage Support . Software that supports
communication between stand-alone optical disk drives,
the optical library, and VisualInfo for AS/400 and
Workfolder Application Facility. The software runs on the
System/36 5363 unit serving as the optical controller.

optical system profile . A file used to define the optical
controller used for the optical storage of documents.

optical systems . Hardware used to store image data
on optical platters. Only direct-attach optical systems
contain optical libraries.

optical volume . One side of a double-sided optical
disk containing optically stored data.

OS/2. Operating System/2.

OS/400. Operating System/400.

outbound . Pertaining to a transmission from the
application program to a device. Contrast with inbound.

output class . A unique name assigned to a specific
time frame when faxes are eligible to be transmitted.

output profile . A file that defines the content of each
output form.

override . A parameter or value that replaces a
previous parameter or value.

P
page . A single physical medium; for example, an
8.5-inch by 11-inch piece of paper.

page image . The electronic representation of a single
physical page. The bounds of a page image are
determined by the electromechanical characteristics of
the scanning equipment, along with the image capture
application specifications in the receiving data
processing system.

page scan . The electromechanical process of scanning
a physical page (paper) to create a bit image of the
page.

pan . Progressively translating an entire display image
to give the visual impression of lateral movement of the
image.

PDF. Portable document format.

pend . To suspend a case while awaiting additional
information or action, such as a particular document type
or date.

pended case . A case that was pended through
casework, waiting for more information. A pended case
is not assigned to a queue. A case with this status can
be accessed through the Work any case or Review any
case menu options.

pending . Awaiting further information or action on a
case.

platter . See optical disk.

prefix . (1) A code dialed by a caller before being
connected. (2) A code at the beginning of a message
or record.

Presentation Text Object Content Architecture
(PTOCA). An architecture developed to allow the
interchange of presentation text data.

 Glossary 231

primary processor . In a group of processing units, the
main processing unit and its internal storage through
which all other units communicate.

printer workstation . A display workstation equipped
with a printer.

priority . A rank assigned to a task that determines its
precedence in receiving system resources.

privilege . An authorization for a user to either access
or perform certain tasks on objects stored in VisualInfo
for AS/400. The system administrator assigns privileges.

privilege set . (1) In VisualInfo for AS/400, collection of
privileges for working with system components and
functions. The system administrator assigns privilege
sets to users (user IDs) and user groups. (2) In the
work management system in Workfolder Application
Facility, an approved list of the actions, defined by a
supervisor, that a user can perform on work packages.
An privilege set defines options, such as printing or
displaying work packages, and the function keys that are
available for use.

process item . Item used as a building block in a work
process.

profile . A file that governs the categories of work
performed and the types of users recognized by the
system.

program temporary fix (PTF) . A temporary solution or
bypass of a problem diagnosed by IBM as resulting from
a defect in a current unaltered release of the program.

PTF. Program temporary fix.

PTOCA. Presentation Text Object Content Architecture.

Q
queue . A line or list of items waiting to be processed;
for example, cases to be worked or messages to be
displayed.

queue ID profile . A file that contains one entry for
each active case. Each case is indexed by queue ID,
queue type, and creation date and time.

R
reindexing . The process of indexing documents that
were previously indexed incorrectly. This process is the
same as the indexing process.

render . To take data that is not typically image-oriented
and depict or display it as an image. In VisualInfo for
AS/400, you can render word-processing documents as
images for display purposes.

resolution . In computer graphics, a measure of the
sharpness of the image, expressed as the number of
lines and columns on the display screen or the number
of pels per unit of area.

rotate . A function of the document display window and
the scan document display window. The orientation
depends on the option selected.

route . In work management, a set of steps that move
work between workbaskets, collection points, and
decision points.

S
SBCS. Single-byte character set.

scan overlap . The process by which a document is
scanned while a previously scanned document is stored
on DASD.

scanner . A device that examines a spatial pattern one
part after another and generates analog or digital signals
corresponding to the pattern. (I)

scanner workstation . A display workstation equipped
with a scanner.

scanning . A physical process that enters documents
into an ImagePlus workstation. After a document has
been scanned, it can be stored permanently.

scanning and batch indexing . An efficient scanning
and indexing option that overlaps the scanning of a
document with the storing of another document, while an
indexing process operates automatically in the
background.

search criteria . In VisualInfo for AS/400, the text
string used to represent the logical search to be
performed on the library server.

232 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

secondary processor . In a group of processing units,
any processing unit other than the primary unit.

server . On a local area network, a data station that
provides facilities to other data stations; for example, a
file server, a print server, a mail server.

side by side . A function on the document display
window that displays two pages of a multipage
document next to each other.

single-byte character set (SBCS) . A set of characters
in which each character occupies one byte.

slot . (1) A position in a device used for removable
storage media. (2) A space in an optical library where
an optical cartridge is stored. See optical cartridge.

SMS. System-managed storage.

spool file . A file that holds output data waiting to be
printed or input data waiting to be processed by a
program. Workfolder Application Facility can convert a
spool file to an import data file.

spool writer . The part of the System Support Program
that prints output saved in the spool file.

staging . The process of moving a stored object from
an offline or low-priority device back to an online or
higher priority device, usually on demand of the system
or on request of a user. When a user requests an object
stored in permanent storage, a working copy is written to
the staging area.

stand-alone . Pertaining to an operation that is
independent of any other device, program, or system.

step number . In work management, the numbers that
specify the order in which route commands are
processed. Each step number must have an associated
command telling the route what action to take.

storage . The action of placing data into a storage
device.

storage class . A storage class, in combination with an
optical system identifier, defines the set of optical
volumes upon which documents can be stored.
Documents with the same storage class and optical
system ID are stored on the same optical volume.

storage method . In Workfolder Application Facility, a
means of grouping documents together for storage to an
optical disk. Workfolder Application Facility provides the

following storage methods: file cabinet, collection,
prioritized, and system assigned (optical distribution).

storage system . A generic term for storage in
VisualInfo for AS/400.

subsystem . A secondary or subordinate system, or the
programming support part of a system that is usually
capable of operating independently of or asynchronously
with a controlling system.

suspend a case . To end case processing temporarily.

system administrator . The person who manages the
ImagePlus workstation, the Optical Library Subsystem,
and the departmental processor. The system
administrator helps with problem determination and
resolution. Synonymous with administrator.

system ID profile . A control file used in Workfolder
Application Facility to define the roles of AS/400
processors in the system.

system-managed storage (SMS) . The VisualInfo for
AS/400 approach to storage management. The system
determines object placement, and automatically
manages object backup, movement, space, and security.

System Support Program (SSP) . A group of
IBM-licensed programs that manage the running of other
programs and the operation of associated devices, such
as the display station and printer. The SSP also contains
utility programs that perform common tasks, such as
copying information from diskette to disk.

T
tape . See magnetic tape.

tape cartridge . See cartridge.

U
user . (1) Anyone requiring the services of VisualInfo
for AS/400. This term generally refers to users of client
applications rather than the developers of applications,
who use the VisualInfo for AS/400 APIs. (2) In
Workfolder Application Facility, the individual who
performs input and case processing.

user activity file . A file that contains one entry for
each user. It contains item counts and productivity
statistics.

 Glossary 233

user exit . (1) A point in an IBM-supplied program at
which a user exit routine may be given control. (2) A
programming service provided by an IBM software
product that may be requested during the processing of
an application program for the service of transferring
control back to the application program upon the later
occurrence of a user-specified event.

user exit routine . A routine written by a user to take
control at a user exit of a program supplied by IBM.

user fields . Data fields defined within the user exit
programs. The user exit programs process the data and
values passed into these fields.

user ID profile . A file that contains one entry for each
user. The entries contain information such as processing
eligibility.

V
volume . A certain portion of data, together with its data
carrier, that can be handled conveniently as a unit.

W
workbasket . In work management in Workfolder
Application Facility for AS/400, a container that holds
work packages. Workbaskets can be used as parts of
process definitions or ad-hoc routes. In VisualInfo for
AS/400, a logical location within the VisualInfo for
AS/400 system to which work packages can be assigned
to wait for further processing.

A workbasket definition includes the rules that govern
the presentation, status, and security of its contents.

workbasket privilege set . A list that specifies which
options and function keys operate on indexing and work
with work package panels.

work management . A system that lets an enterprise
define a work process and environment to automate
workflow and control business processes.

work management case . A case that was entered and
indexed, and has been assigned to either a process or a
workbasket. A work management case is not assigned
to a queue. A case with this status can be accessed
through the Review any case, Work with workbaskets, or
Search for work packages menu options.

work order . The sequence of work packages in a
workbasket.

work package . The work that is routed from one
location to another. A work package can consist of an
unindexed document, a file cabinet document, a
Workfolder Application Facility case, or a user-defined
collection of objects. It can also be empty, such as when
you first create it and before it contains any work items.
Work packages can be routed automatically by defined
processes, or users can manually route work packages
in an ad-hoc manner to workbaskets they specify.

work process . In work management, the series of
steps, events, and rules through which a work package
flows. A work process is a combination of the route,
collection point, and decision point through which a
predefined type of work package must progress.

workflow . A sequence of workbaskets that a document
or folder travels through while it is being processed.

working set . A set of pages residing in the workstation,
which can constitute one or more documents.

workstation . A computer processor unit, image display
unit, scanners, and printers with which the user performs
input, indexing, and printing.

234 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

 Index

A
add an item to a folder (SimLibAddFolderItem) 26
advanced search settings notebook 205
AFFTOCENTRYSTRUCT 151
annotations 29, 46, 62
ANNOTATIONSTRUCT 152
APIs 24
application programming interfaces (APIs) 2
attribute 204

case sensitivity in VisualInfo for AS/400 14
reading document and folder attributes 13

attribute information, getting (SimLibGetAttrInfo) 57
attribute set, closing (SimLibCloseAttr) 38
ATTRINFOSTRUCT 153
ATTRLISTSTRUCT 155

B
basic search dialog 205
BookManager (softcopy) for this book ix

C
catalog an object (SimLibCatalogObject) 29
change SMS criteria for an object

(SimLibChangeObjectSMS) 36
change the index class of an item

(SimLibChangeIndexClass) 34
changing an item’s index class 15
CLASSATTRSTRUCT 157
CLASSINDEXATTRSTURCT 158
CLASSINDEXSTRUCT 159
CLASSINFOSTRUCT 159
close a TOC (Ip2CloseTOC) 133
close an attribute set (SimLibCloseAttr) 38
close an object (SimLibCloseObject) 40
collections 206
containers in client application 206
CONTENTCLASSINFO 161
create an item (SimLibCreateItem) 42
create an object (SimLibCreateObject) 46
cross reference for an item, getting

(SimLibGetItemXref) 70

D
data model 204

definition 204
in VisualInfo for AS/400 12

database indexes for classes, getting
(SimLibGetClassIndexes) 59

definitions 204
delete an item (SimLibDeleteItem) 51
delete an object (SimLibDeleteObject) 54
document 204

definition 204
getting information about 13

E
events 29, 46, 62
export dialog 205

F
folder 204

definition 204
folder management concepts 12
folder manager 2

case sensitivity 14
changing an item’s index classes 15
getting information about documents and folders 13
logical data model 12
migrating objects 16
naming folders 15
restricting access to items 15

free memory (SimLibFree) 56

G
get a cross-reference for an item

(SimLibGetItemXref) 70
get a snapshot of attributes for a group of items

(SimLibGetTOCData) 77
get a snapshot of item attributes

(SimLibGetItemSnapshot) 66
get a TOC (SimLibGetTOC) 73
get a TOC for item affiliates

(SimLibGetItemAffiliatedTOC) 62
get attribute information (SimLibGetAttrInfo) 57

 Copyright IBM Corp. 1997 235

get index class information (SimLibGetClassInfo) 61
get item information (SimLibGetItemInfo) 65
get session type (SimLibGetSessionType) 72
get the type of an item (SimLibGetItemType) 69
get TOC updates (Ip2GetTOCUpdates) 135
getting database indexes for classes

(SimLibGetClassIndexes) 59
getting information about documents and folders 13

H
HOBJ 162
HTML (softcopy) for this book ix

I
ICVIEWSTRUCT 162
image window 205
import dialog 205
index class 204

definition 204
for items 15

index class attributes, definition 204
index classes, listing (SimLibListClasses) 80
index form window 205
Ip2CloseTOC 133
Ip2GetTOCUpdates 135
Ip2ListAttrs 136
Ip2ListContentClasses 138
Ip2ListServers() 139
Ip2QueryClassPriv 141
Ip2QueryPrivBuffer 143
Ip2TOCCount 147
Ip2TOCStatus 149
item 204

changing index classes 15
definition 204
part 204
restricting access 15

item affiliates, getting a TOC for
(SimLibGetItemAffiliatedTOC) 62

item cross-reference, getting (SimLibGetItemXref) 70
item information, getting (SimLibGetItemInfo) 65
item type, getting (SimLibGetItemType) 69
ITEMINFOSTRUCT 163
items in TOC, counting (Ip2TOCCount) 147

L
LIBSEARCHCRITERIASTRUCT 165
list accessible servers (Ip2ListServers) 139
list content classes (Ip2ListContentClasses) 138
list index classes (SimLibListClasses) 80
list user-defined attributes (Ip2ListAttrs) 136
logging off (SimLibLogoff) 82
logging on (SimLibLogon) 84
logical data model 12
logon dialog 205

M
main container 206
memory, freeing (SimLibFree) 56
migrating objects 16

N
NAMESTRUCT 167
naming folders 15
note 205
note attributes 96, 113
note log window 206
notes 29, 46, 51
notes, TOC of 62

O
object 206

definition 206
migrating 16

object information 94
OBJINFOSTRUCT 167
open an object (SimLibOpenObject) 91
open item attributes (SimLibOpenItemAttr) 88

P
PDF (softcopy) for this book viii
print dialog 206
privileges 205

Q
query a privilege buffer(Ip2QueryPrivBuffer) 143
query an object (SimLibQueryObject) 94
query privileges for index class or view

(Ip2QueryClassPriv) 141

236 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

R
RCSTRUCT 169
read an attribute (SimLibReadAttr) 96
read an object (SimLibReadObject) 97
remove an item from a folder

(SimLibRemoveFolderItem) 99
resize an object (SimLibResizeObject) 101
restricting access to items 15
retrieving information about documents and folders 13

S
save an attribute (SimLibSaveAttr) 103
scanner windows 206
search (SimLibSearch) 105
seek an object (SimLibSeekObject) 108
SERVERINFOSTRUCT 171
servers, listing accessible (Ip2ListServers) 139
SimLibAddFolderItem 26
SimLibCatalogObject 29
SimLibChangeIndexClass 34
SimLibChangeObjectSMS 36
SimLibCloseAttr 38
SimLibCloseObject 40
SimLibCreateItem 42
SimLibCreateObject 46
SimLibDeleteItem 51
SimLibDeleteObject 54
SimLibFree 56
SimLibGetAttrInfo 57
SimLibGetClassIndexes() 59
SimLibGetClassInfo 61
SimLibGetItemAffiliatedTOC() 62
SimLibGetItemInfo 65
SimLibGetItemSnapshot 66
SimLibGetItemType 69
SimLibGetItemXref 70
SimLibGetSessionType() 72
SimLibGetTOC 73
SimLibGetTOCData 77
SimLibListClasses 80
SimLibLogoff 82
SimLibLogon 84
SimLibOpenItemAttr 88
SimLibOpenObject 91
SimLibQueryObject 94
SimLibReadAttr 96
SimLibReadObject 97
SimLibRemoveFolderItem 99

SimLibResizeObject 101
SimLibSaveAttr 103
SimLibSearch 105
SimLibSeekObject 108
SimLibStoreNewObject 110
SimLibWriteAttr 113
SimLibWriteObject 115
SMS 172
SMS (system-managed storage) 206
SMS, changing criteria (SimLibChangeObjectSMS) 36
snapshot of attributes for a group of items, getting

(SimLibGetTOCData) 77
snapshot of item attributes, getting

(SimLibGetItemSnapshot) 66
SNAPSHOTSTRUCT 173
softcopy for this book

BookManager format ix
HTML format ix
PDF format viii

softcopy format for this book viii
store a new object (SimLibStoreNewObject) 110
store an object (SimLibCatalogObject) 29
system-managed storage (SMS) 206

T
table of contents window 206
terminology 204
TOCENTRYSTRUCT 176

U
USERACCESSSTRUCT 178
USERLOGONINFOSTRUCT 177

V
VisualInfo for AS/400 application programming

interfaces 24

W
WMSNAPSHOTSTRUCT 179
WMVARSTRUCT 180
workbasket 205

definition of 205
WORKBASKETINFOSTRUCT 181
workbaskets container 206
write an attribute (SimLibWriteAttr) 113

 Index 237

write an object (SimLibWriteObject) 115

238 VisualInfo for AS/400 4.1: Application Programming Guide and Reference

Please Tell Us What You Think!

IBM ImagePlus
VisualInfo for AS/400
Application Programming
Guide and Reference
Version 4 Release 1

Publication No. SC34-4586-00

We hope you found this book useful and informative. If you like what we've done, please let us
know; if not, please tell us why. We'll use your comments to make the book better.

Please use one of the methods listed below to send your comments to IBM. Whichever method
you choose, make sure you send your name, address, and telephone number to receive a reply.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate, without obligation.

� To send comments by mail or fax, use the form titled “What Do You Think?” on the following
page.

If you're mailing from a country other than the United States, you can give the form to the
local IBM branch office or IBM representative for postage-paid handling.

To fax the form, use this number: (919) 254-0206.

� To send comments electronically, use one of the following network IDs:

IBM Mail Exchange USIB5DNQ at IBMMAIL
Internet KFRYE@CARVM3.VNET.IBM.COM

Thank you! Your comments help us make the information more useful for you.

What Do You Think?

IBM ImagePlus
VisualInfo for AS/400
Application Programming
Guide and Reference
Version 4 Release 1

Publication No. SC34-4586-00

We're in business to satisfy you. If we're succeeding, please tell us; if not, let us know how we can do
better.

Overall, how satisfied are you with this book?

How satisfied are you that the information in this book is:

Name Address

Company or Organization

Phone No.

Very
Satis-
fied

Satis-
fied

Neither
Satis-
fied
nor

Dissatis-
fied

Dissat-
isfied

Very Dissat-
isfied

No
Opinion

Accurate

Complete

Easy to find

Easy to
understand

Well organized

Applicable to
your tasks

Cut or Fold
Along Line

Cut or Fold
Along Line

What Do You Think?
SC34-4586-00

IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Attn: Information Development
Department T71B Building 062
PO Box 12195
Research Triangle Park, NC 27709-2195

Fold and Tape Please do not staple Fold and Tape

SC34-4586-00

IBM

Program Number: 5733-A18

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-4586-ðð

