
RPG V5R4

Additional Material For V5R4 –
RPGIV
George Farr
IBM Toronto Laboratory
COMMON Mar 26-30,2006



Summary of RPG enhancements

EVAL-CORR: Assign matching subfields from one 
data structure to another PREFIX keyword can 
completely remove characters
Pass null-indicators with parameters
Better debugging for null indicators
XML support 

XML-SAX: Access to a SAX parser 
XML-INTO: Read directly from XML into an RPG variable

Debugging aid for XML-SAX
Free-form syntax checking (SEU and WDSc)



EVAL-CORR operation code

If you have two data structures whose subfields 
have the same names, you can use EVAL-
CORR to assign all those subfields at once 



EVAL-CORR operation code

DS1                    DS2     
name   10A             name   20A     
id      5P 0           status  1A     
addr  100A             id     10A      
status  1A          

EVAL-CORR DS1 = DS2;

Equivalent to
EVAL DS1.name = DS2.name;    
EVAL DS1.status = DS2.status;
// Note: it has no effect on “ID” or “ADDR”



More on EVAL-CORR

Subfields are assigned one by one, in the order they appear in 
the target data structure
If any subfields overlap in the target data structure, the last 
assigned value “wins”
Subfields not affected by EVAL-CORR are unchanged by the 
operation (unless some other subfield overlaps them)
If an exception (decimal data error, or invalid varying length) 
occurs while assigning a subfield, the EVAL-CORR operation will 
halt immediately with the exception.
However, if the data structures are defined with LIKEDS or 
LIKEREC so that they have the same parent data structure, then 
the EVAL-CORR operation is optimized to simply copy the 
storage from data structure to another, rather than assign the 
subfields one by one.  If any subfield has an invalid value, this 
would not be detected by the EVAL-CORR operation; assigning 
subfield-by-subfield would detect the errors.



ALWNULL considerations

EVAL-CORR is similar to a series of EVAL 
operations, but not identical.

If ALWNULL(*USRCTL) was specified, and 
there are some null-capable subfields 
involved, the null-indicators for the subfields 
are also assigned as part of the EVAL-CORR 
operation.



EVAL-CORR with NULLs

DS1: fld1 10A ALWNULL   DS2: fld1 10A ALWNULL
fld2 10A ALWNULL        fld2 10A     
fld3 10A                fld3 10A ALWNULL
fld4 10A                fld4 10a

EVAL-CORR DS1 = DS2;
Equivalent to
DS1.fld1 = DS2.fld1;    
DS1.fld2 = DS2.fld2;    
DS1.fld3 = DS2.fld3;    
DS1.fld4 = DS2.fld4;    
%NULLIND(DS1.fld1) = %NULLIND(DS1.fld1);
%NULLIND(DS1.fld2) = *OFF; 

Note: DS2.fld2 is not null-capable, so DS1.FLD2 
null-indicator is just set off.  DS1.FLD3 is not 
null-capable, so %NULLIND(DS2.FLD3) is ignored.



OPTIONS(*NULLIND)

A null-capable field has a “null-indicator” or “null-byte map” 
associated with it.  This indicator is kept in separate storage. A 
data structure having null-capable subfields has an associated 
null-byte-map data structure kept in separate storage. 
Without OPTIONS(*NULLIND), if a null-capable parameter is 
passed, the called procedure has no access to the parameter’s 
null-byte map.  If the parameter is an externally-described data 
structure or is defined with LIKEREC, and the external file has 
null-capable fields, then the called procedure would be able to 
use %NULLIND on the parameter’s subfields, but the called 
procedure would not be referencing the passed parameters null-
indicators.
When OPTIONS(*NULLIND) is specified for a parameter, the 
null-byte map is passed with the parameter, giving the called 
procedure direct access to the null-byte map of the caller's 
parameter.



PREFIX used to remove characters 
from names
F & D specs:              PREFIX('' : number_of_characters) 

When an empty character literal (two single quotes specified with no intervening 
characters) is specified as the first parameter of the PREFIX keyword for File 
and Definition specifications, the specified number of characters is removed 
from the field names. For example if a file has fields XRNAME, XRIDNUM, and 
XRAMOUNT, specifying PREFIX('':2)on the File specification will cause the 
internal field names to be NAME, IDNUM, and AMOUNT.
If you have two files whose subfields have the same names other than a file-
specific prefix, you can use this feature to remove the prefix from the names of 
the subfields of externally-described data structures defined from those files. 

Example showing how this aids the EVAL-CORR operation:
FILE1: fields F1NAME F1IDNO
FILE2: fields F2NAME F2IDNO
* Use PREFIX to remove 2 characters from the names
D ds1          E DS          EXTNAME(file1) QUALIFIED
D                            PREFIX(’’:2) 
D ds2          E DS          EXTNAME(file2) QUALIFIED
D                            PREFIX(’’:2) 

EVAL-CORR ds1 = ds2; // assigns the NAME and IDNO subfields



XML support

RPG’s XML support currently only supports reading the 
XML documents.  There is no support for creating or 
modifying  XML documents.  RPG has two ways to get 
data from XML documents. 
XML-INTO allows the programmer to read all or part of 
the XML document directly into an RPG variable.
XML-SAX allows the programmer to get the data from 
XML document, one piece at a time. The XML data is 
passed to a user-provided procedure which may be 
called many times during the course of a single XML-
SAX operation.
RPG supports XML documents in memory (character 
or UCS-2 data) or in Integrated File System files.



XML support

In case you are unfamiliar with XML, here is a small 
XML document: 
<pet species=“dog”>    
<name>Ruff</name>    
<age>3</age>    
<agetype>dog years</agetype>   

</pet> 
Elements: pet, name, age, agetype 
Attribute: species



Brief introduction to XML

An XML document represents data in a tree structure.  The data is 
all in text form.

Here is an introduction to the syntax: 
http://en.wikipedia.org/wiki/XML#Quick_syntax_tour

There are two basic types of XML parsers: SAX and DOM.
“SAX” stands for “Simple API for XML”.  A SAX parser operates by
reading the XML document and calling a user-provided procedure 
for every “event” that the parser finds.
“DOM” stands for “Document Object Model”.  The parser creates a 
tree representing the XML document, and provides several 
functions for randomly accessing the tree.

Both facets of the RPG support use a SAX parser, but only XML-SAX 
exposes the actual XML events to the RPG programmer.  XML-
INTO hides the complexity of the SAX event handling.



%XML builtin function

%XML(document { : options })
The %XML builtin function is used to identify an XML document and specify options 

to control how the XML document is parsed. 
The first operand can be the actual contents of the XML document, or it can 
indicate the location of the XML document.  It can be a character or UCS-2 
expression, either a constant or a variable.
The second operand is optional; it allows the RPG programmer to customize 
the XML operation. It can be a character expression, either a constant or a 
variable.

The valid options depend on the operation code, XML-SAX or XML-INTO.  One 
option is common to both operations: the “doc” option, which specifies whether 
the first operand is the actual document, or the location of the document.

The options are specified as a character expression in the form ‘opt1=value1 
opt2=value2’, for example ‘doc=file ccsid=job’.

The option=value pairs are separated by blanks.
Examples:

%XML(‘<name>Bob</name>’);         // 1st operand is an XML document
%XML(‘custinfo.xml’ : ‘doc=file’);    // 1st operand is the name of an IFS file



Default values for %XML options

The valid options and valid values for each option depend on the
context (opcode) of %XML.

If you would like different default options, you can define a constant 
value with the defaults you want, and then append updates or 
additions on each operation.  (If the RPG runtime finds an option 
specified more than once, it takes the last value specified, so be 
sure to specify your defaults first.)

For example, if you would prefer the default for the “allowmissing” 
option for XML-INTO to be “yes”, and the “doc” option to be “file”, 
you could code like this:
D intoDfts c     ‘allowmissing=yes doc=file ’

xml-into ds %xml(xmldata
: intoDfts + ‘doc=string’);

// overrides “doc=file” with “doc=string”



XML-INTO operation code

Using the XML-INTO operation requires knowledge of the XML document’s structure.  For 
example, an RPG programmer may know that an XML document will be laid out as follows, 
with the “document element” named “cust” and two “child elements” named “name” and 
“id”:
<cust>

<name>ABC Electronics</name>
<id>1233273</id>

</cust>
The structure of the document can be represented by an RPG data structure named “cust” with 

two subfields “name” and “id”.  For example
D cust ds
D    name                    100A    varying
D    id                       15P 0

The XML document can be “assigned” directly into the data structure:
XML-INTO cust %XML(custXml : ‘doc=file’);

XML-INTO can be used to read data into a scalar variable, scalar array, or array of data 
structures.
RPG subfields can be filled with data from either an XML element or XML attribute.



XML-INTO assumptions

By default, the RPG runtime makes several assumptions about the XML 
document:
It assumes that XML element and attribute names in the document are 
the same as the names of the RPG variable and subfields, and that the 
XML names will be in lower case.
For data structures:

It assumes that there is an XML element or attribute for every RPG subfield, 
and that every XML element or attribute has a matching RPG subfield to 
receive the data.
It assumes that if one of the RPG subfields is an array, that there will be 
exactly as many repeated XML elements as there are elements in the RPG 
array.

If the target variable is not an array, it assumes that the outermost XML 
document has the same name as the RPG variable.  If the target 
variable is an array, it assumes that the outermost element contains 
several child elements with the same name as the RPG variable.

However, XML-INTO has several options that allow the RPG programmer 
to override some of these assumptions.



XML-INTO options

case: If the element and attribute names are all in upper case, 
specify ‘case=upper’; if they are in unknown or mixed case, 
specify ‘case=any’.
allowmissing: Use ‘allowmissing=yes’ if the document may not 
contain XML data to fill every RPG subfield.
allowextra: Use ‘allowextra=yes’ if the document may have XML 
data that has no matching RPG subfield to receive it.
trim: Used to control whether “whitespace” (blanks, tabs, new-
line characters) should be trimmed from the XML data before 
being assigned to the RPG subfields.  The default is “all”, 
meaning that leading and trailing whitespace is trimmed, and 
interior whitespace is reduced to a single blank; To have the 
whitespace included in the RPG subfields, use ‘trim=none’.  
(Whitespace is always trimmed before assigning to numeric, date 
etc.)
… more on next page



XML-INTO options, continued

ccsid: Used to control the CCSID that the document is parsed in.  
By default, the RPG runtime will choose the CCSID that will best
preserve the data in the document (‘ccsid=best’); if the document 
is in UCS-2, or if it is a CCSID other than the job CCSID, the 
RPG runtime will convert the document to UCS-2 before parsing.  
Otherwise, the RPG runtime will parse the document in the job 
CCSID. If the RPG programmer wants the document to be 
parsed in the job CCSID (which may involve fewer CCSID 
conversions during parsing), use ‘ccsid=job’.  If the RPG 
programmer wants the document to be parsed in UCS-2, use 
‘ccsid=ucs2’.

Restriction: The parser does not support all job CCSIDs.  When 
the document may be in an unsupported CCSID, ‘ccsid=ucs2’ 
should be used. 

… more on next page



XML-INTO options, continued

path: Used to locate the XML data within the XML document.  For 
example, option ‘path=info/num’ indicates that the outer XML element 
will be called “info” and it will have a child element called “num” which 
should be used to obtain the data for the RPG variable.  
‘path=employees/manager/address’ indicates that the outer XML 
element called “employees” will have a child called “manager” which 
itself will have a child called “address”.  The “address” XML element 
should be used to obtain the XML data for the RPG variable.

The path option can also be used to “rename” the outer XML element.  If the 
data structure’s name is ‘custinfo’, but the outer XML element is called 
“customer”, then ‘path=customer’ should be used to inform the RPG runtime 
of the actual name of the outer element.  Note: there is no way to indicate a 
different name for the XML element or attribute to match a particular 
subfield.



XML-INTO with repeating elements

An XML document may contain repeating XML 
elements, such as in the following example:

<customers>
<cust name=“J Smith” id=“031”/>
<cust name=“M Jones” id=“402”/>

</customers>
For this type of document, an RPG array can be 

used as the receiver variable.
D cust DS       DIM(10)
D  name      50a  VARYING
D  id        10a  
XML-INTO customers

%xml(xmldoc : ‘doc=file’);

Note the following about this example: 
The “path” option was not specified, even 
though the XML elements matching the 
RPG array are inner elements.  The 
default for an array is to assume that the 
XML elements are child elements of the 
outer element.  (This is because an XML 
document can only have one outer 
element.)
The dimension of the RPG array is 10, 
but there are only 2 repeated elements in 
the XML document.  This situation does 
not require “allowmissing=yes”, since the 
target array is not a subfield.  
The actual number of array elements set 
by the operation can be obtained from a 
new “number of XML elements” subfield 
in the PSDS.



XML-INTO with an unknown number
of repeating elements
If the number of repeating 

elements may be larger than 
the maximum number of 
elements in an RPG array 
(32767), then a more complex 
form of XML-INTO must be 
used.

Rather than read the repeating 
XML data into an RPG array 
variable, instead the parser will 
read the XML data into a 
temporary array, and call an 
RPG “XML-INTO handling 
procedure” whenever it has 
read enough XML data to fill 
the temporary array.

<band>
<member name=“John”/>
<member name=“Paul”/>
<member name=“George”/>
<member name=“Ringo”/>

</band>
If the RPG handler is capable of 

receiving 3 elements at once, 
it would be called twice, with 
the following data:

1. John, Paul, George (3 elems)
2. Ringo (1 elem)

The following slides describe the 
required RPG coding.



%HANDLER

%HANDLER(prototype : firstParameter)
The %HANDLER builtin function is used to describe a 

user-defined procedure that is to be called during 
the operation.  
The first operand is the name of the prototype for 
the handler.  The required parameters and return 
type of the handler depend on the context in which 
%HANDLER is specified.
The second operand is the parameter which is 
received by the first parameter of the handler 
procedure.



XML-INTO with %HANDLER

An XML-INTO handler has the following rules:
The return type is a 4-byte integer (10i 0).  Returning a value of 
zero indicates that parsing should continue to find XML data and
call the handler again if necessary.  Returning any other value 
indicates that parsing should stop immediately.  This will cause
an RPG exception to be issued for the XML-INTO operation.
The first parameter can be any type, passed by reference.  The 
parameter is passed as the second operand of the %HANDLER 
builtin function.
The second parameter specifies the type of the array elements to
be filled by the XML data.  It can have any type, but the DIM and 
CONST keywords must be coded.
The third parameter is for the actual number of elements passed 
in for that particular call to the handler.  (Recall the previous 
example where the first call had 3 elements (John, Paul, George)
and the second call had only 1 element (Ringo).)



XML-INTO %HANDLER example

Sample definitions required to use %HANDLER with XML-INTO:
* The definition for the data structure to receive the XML data

D cust DS        DIM(10)
D  name            50a   VARYING
D  id              10a  
* The prototype for the handler

D custHandler PR  10i 0
D  foundBlankId n
D  custs LIKEDS(cust)
D                        DIM(32767)
D  numCusts 10i 0 VALUE

The XML-INTO operation looks like this.  Note that the “path” option is required for XML-INTO with 
%HANDLER.

* Parameter to pass to the handler
D hadBlank S     n
/free

hadBlank = *OFF;  // initialize the “communication” parameter
xml-into %HANDLER(custHandler : hadBlank)

%XML(xmldoc : ‘doc=file path=customers/custs’);



XML-INTO %HANDLER example

P custHandler B          EXPORT
D custHandler PI  10i 0
D  foundBlankId…
D                    n
D  custs LIKEDS(cust)
D                         DIM(32767)
D  numCusts 10i 0 VALUE
/free

for i = 1 to numCusts;
--- do something with the data -

--
if custs(i).id = ‘ ‘;

foundBlankId = *on;
endif;

return 0;
/end-free
P custHandler E

The handling procedure, 
custHandler is called repeatedly 
whenever the parser has read 
enough XML data to fill 32767 
RPG elements.  

The variable “blankId” specified as 
the second parameter of 
%HANDLER is passed directly 
by reference to the handling 
procedure by the parser. If the 
handling procedure changes 
the parameter, the changes will 
be visible to the “XML-INTO” 
procedure.

The procedure itself would normally 
do something useful with the 
data.  In this case, it illustrates 
how the first parameter is used 
for communication between the 
RPG procedure doing the XML-
INTO operation and the 
custHandler procedure.



SAX parsing

Consider this XML 
document

<cust
type=“business”>

<name>ABC 
Tools</name>

</cust>

The parsing “events” are
Start document
Start element (“cust”)
Attribute name (“type”)
Attribute value 
(“business”)
Start element (“name”)
Characters (“ABC Tools”)
End element (“name”)
End element (“cust”)
End document



XML-SAX operation

The XML-SAX operation identifies a handling 
procedure to handle the various SAX events 
generated by the parser.  The procedure will 
be called several times during the XML-SAX 
operation, once for each event.  

If the procedure needs to retain information 
about the events, it could either use static 
variables in the procedure, or it could use the 
“communication area” parameter passed by 
the procedure doing the XML-SAX operation.



%XML options for XML-SAX

doc – same as for XML-INTO, identifies whether the first operand 
is an XML document, or the location of an XML document
ccsid – indicates the CCSID for the data to be passed to the 
XML-SAX handling procedure.  The default is the job CCSID; to 
have the data passed as UCS-2, use ‘ccsid=ucs2’; to have 
another CCSID for example 1208, use ‘ccsid=1208’.  Warning: if 
a CCSID other than the job CCSID is used, and a character 
variable is used to access the data, the RPG compiler will 
assume that the character data is in the job CCSID.  This may 
cause incorrect results.  For example, if comparisons are done 
with other character data in the program, the comparison 
operands would not be in the same CCSID, and the results of the 
comparison would be incorrect.



XML-SAX events

For most events, the parameters passed to the procedure will 
include a string parameter containing the data associated with 
the event, and a string-length parameter.  This parameter is 
defined as a pointer passed by value; the pointer points at either 
character or UCS-2 data, depending on the “ccsid” option.  The 
pointer can be used as a basing pointer for a character or UCS-2 
variable.

The data may be longer than can be handled by an RPG variable.  
In that case, the RPG programmer must use some means other 
than a simple based variable to access the data; for example, it
could call a procedure in some other language.

For a few events, such as the start-document, end-document or 
exception events, there is no data associated with the event, and 
accessing the string parameter will result in an exception.



XML-SAX handler

An XML-SAX handler has the following rules:
The return type is a 4-byte integer (10i 0).  Returning a value of zero indicates 
that parsing should continue to find XML data and call the handler again if 
necessary.  Returning any other value indicates that parsing should stop 
immediately.  This will cause an RPG exception to be issued for the XML-SAX 
operation.
The first parameter can be any type, passed by reference.  The parameter is 
passed as the second operand of the %HANDLER builtin function.
The second parameter identifies the SAX event.  There are several new RPG 
special names in the form *XML_START_ELEM, *XML_ATTR_NAME etc, that 
can be used to determine which event is being handled.
The third parameter is the pointer to the data for the event, passed by value.
The fourth parameter is the length of the data, an 8-byte integer (20i 0) passed 
by value.  In cases where no data is passed, the value is -1.
The fifth parameter is only meaningful for exception events.  It gives the return 
code associated with the exception.  The meanings of the return codes are 
listed in the ILE RPG Programmer’s Guide.



XML-SAX handling procedure

This handler looks for an “start-element” event with the event data “name”; on the next “characters” event, it 
updates the first parameter with the character data.  If the XML document is 
<info><name>Bob</name></info>, then the “nameVal” parameter, passed by the XML-SAX operation, 
would be set to the value “Bob”.

P getName        B 
D getName        PI 10I 0
D nameVal 20A 
D event                  10I 0 VALUE
D string                   *   VALUE
D stringlen 20I 0 VALUE 
D excpId 10I 0 VALUE
D stringVal      S 65535A   BASED(string)
D hadNameElem    S N   STATIC INZ(*OFF)
/free

if event = *XML_START_ELEM and %subst(stringVal:1:stringlen) = ‘name’;
hadNameElem = *ON;

elseif hadNameElem and event = *XML_CHARS;
nameVal = %SUBST(stringVal : 1 : stringlen); // update caller’s parm

endif;      
return 0;

/end-free 
P               E



XML restrictions

For details, see the ILE RPG Programmer’s Guide.

Not all CCSIDs are supported.  See the list of supported CCSIDs in the ILE RPG 
Programmer’s Guide.  If the job CCSID is one of the unsupported CCSIDs, the option 
‘ccsid=ucs2’ should be used.
If the RPG programmer has a pointer to XML data, and the data is longer than 64K, the 
data must be copied to a temporary IFS file before it can be parsed.  There is a example 
(figure 76) in the ILE RPG Programmer’s Guide of an RPG procedure that will do this.  
(Use the HTML version of the manual to enable cut and paste.)
The parser can handle XML data up to 2 147 483 408 bytes in length.  If the document is 
being parsed in UCS-2, it can only handle up to 1 073 741 704 UCS-2 characters.  If the 
XML document is too long, the XML operation will be attempted; if the parser eventually 
requires the additional data in the document for the operation, an exception will be issued.
The parser does not replace entity references for entities defined in the DOCTYPE 
declaration.  When it encounters entity references, it simply reports the name of the 
reference.  For XML-SAX, see the *UNKNOWN_REF and *XML_UNKNOWN_ATTR_REF 
events.  For XML-INTO, the RPG variable will contain the reference in the form 
“&refname;”.
The parser does not support name spaces.  It considers the colons in element and attribute 
names to be simply part of the name.  XML-INTO cannot match an XML name in the form 
ns:name to an RPG subfield name.



Debugging aid for XML-SAX handlers

If DEBUG(*XMLSAX) is specified on the H 
spec, an array called _QRNU_XMLSAX will 
be generated into the module.  This array 
contains the names of the events.

In the debugger:
==> eval event
EVENT = 2
==> eval _QRNU_XMLSAX(event)
_QRNU_XMLSAX(event) = ‘ATTR_NAME’



Other DEBUG keyword changes

The DEBUG keyword controls the code that is generated 
by the compiler.  It does not control debug view 
information (that is controlled by the DBGVIEW 
command parameter).

The DEBUG keyword formerly had only *YES and *NO 
values.  If not specified, DEBUG defaulted to *NO; if 
specified without a parameter, it defaulted to *YES.

DEBUG(*YES) means two things:
If there is a DUMP operation, perform the formatted 
dump.
If there are unused fields on input specifications, load 
the fields anyway.



New DEBUG keyword values

The defaults for the DEBUG keyword remain the 
same.

Several new values are now allowed for the DEBUG 
keyword.
*INPUT – load unused fields on I specs
*DUMP – perform DUMP operations
*XMLSAX – generate the XML-SAX debug aid
*YES – same as *INPUT : *DUMP.  This value is 
deprecated, since *INPUT and *DUMP are both 
more descriptive and allow more granular control.
* NO – no debugging aids are generated into the 
module



Other changes

Syntax-checking of free-form calculations is 
performed in both V5R4 SEU and WDSc
6.0.1.
Free-form embedded SQL is supported.  
(This is actually an enhancement for the SQL 
precompiler for SQLRPGLE.)


