
IBM WebSphere Development Studio Client for iSeries

Using the Remote System Explorer (RSE)
COBOL application

Version 6.0

���

IBM WebSphere Development Studio Client for iSeries

Using the Remote System Explorer (RSE)
COBOL application

Version 6.0

���

ii Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Contents

Introduction v

Chapter 1. Module 1. Starting the

product and the Remote System

Explorer 1

Exercise 1.1: Starting the product 1

Exercise 1.2: Opening the Remote System Explorer

perspective 3

Chapter 2. Module 2. Configuring a

connection to an iSeries system and

connecting to an iSeries 7

Exercise 2.1: Configuring a connection to an iSeries

system 7

Exercise 2.2: Connecting to an iSeries system . . . 10

Exercise 2.3: Viewing and accessing objects in the

Remote System Explorer perspective 14

Exercise 2.4: Opening a second source member . . 20

Exercise 2.5: Displaying an outline of a source

member 20

Chapter 3. Module 3. Editing source . . 25

Exercise 3.1: Introducing the editor 26

Exercise 3.2: Changing default editor settings . . . 26

Exercise 3.3: Entering SEU commands 29

Exercise 3.4: Requesting undo and redo operations 30

Exercise 3.5: Invoking language-sensitive help . . . 31

Exercise 3.8: Finding and replacing text 36

Exercise 3.9: Filtering lines by string 38

Exercise 3.10: Filtering lines by type 38

Exercise 3.11: Searching multiple files 40

Exercise 3.12: Comparing file differences from the

Remote Systems view 41

Exercise 3.13: Comparing files in the CODE Editor

(optional) 45

Exercise 3.14: Checking syntax 47

Chapter 4. Module 4. Verifying and

compiling source 53

Exercise 4.1: Verifying the source 53

Exercise 4.2: Compiling source remotely 55

Exercise 4.3: Submitting iSeries commands in the

iSeries table view 59

Exercise 4.4: Running commands and programs . . 61

Chapter 5. Module 5. Debugging a

program 67

Exercise 5.1: Introducing the Integrated iSeries

Debugger 68

Exercise 5.2: Starting the integrated debugger . . . 68

Exercise 5.3: Setting breakpoints 73

Exercise 5.4: Monitoring variables 76

Exercise 5.5: Stepping into a program 82

Exercise 5.6: Listing call stack entries 84

Exercise 5.7: Setting breakpoints in PAYROLLD . . 85

Exercise 5.8: Removing a breakpoint in PAYROLLD 87

Exercise 5.9: Monitoring variables in PAYROLLD . . 88

Exercise 5.10: Adding a memory monitor 90

Exercise 5.11: Setting watch breakpoints 91

Exercise 5.12: Closing the debug session 94

Chapter 6. Module 6: Exploring Remote

System Explorer 97

Exercise 6.1: More about the Remote System

Explorer 97

Exercise 6.2: Creating a library filter 98

Exercise 6.3: Creating an object filter 102

Exercise 6.4: Creating a user action 106

Exercise 6.5: Running commands from the Remote

System Explorer 111

Chapter 7. Module 7. Designing

screens 115

Exercise 7.1: Opening a DDS member in the

Remote Systems view 116

Exercise 7.2: Viewing the DDS tree 117

Exercise 7.3: Selecting the DDS object 118

Exercise 7.4: Designing the DDS screen 119

Exercise 7.5: Creating groups from existing records 120

Exercise 7.6: Creating new screens 122

Exercise 7.7: Adding fields to the subfile record . . 124

Exercise 7.8: Switching between multiple records 127

Exercise 7.9: Adding field error handling 129

Exercise 7.10: Accessing field properties 131

Exercise 7.11: Adding new keywords 133

Exercise 7.12: Verifying the source changes . . . 135

Exercise 7.13: Switching between designing and

editing the screen 137

Exercise 7.14: Compiling your source changes and

closing the Designer 138

Chapter 8. Module 8. Introducing the

product and Remote System Explorer

(optional) 141

Introducing Development Studio and Development

Studio Client 141

Introducing iSeries Application Development Tools 142

Chapter 9. Summary 147

Appendix. Notices 149

Programming interface information 150

Trademarks 151

© Copyright IBM Corp. 2001, 2005 iii

iv Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Introduction

This tutorial teaches you how to maintain a payroll application written in ILE

COBOL using the Remote System Explorer.

You will learn how to start the product and open the Remote System Explorer

perspective, use tools and views in this perspective to connect to an iSeries™

system and edit, verify, compile and debug a payroll application.

Prerequisites

To complete this tutorial, you should be familiar with:

v Basic Microsoft® Windows® operations such as working with the desktop and

basic mouse operations such as opening folders and performing drag-and-drop

operations.

It will also help if you understand:

v ILE COBOL

v DDS

The file(s) required for this tutorial are available for download at

http://ibm.com/software/awdtools/wdt400/library.

Time required

To complete the modules of this tutorial, you will need approximately 3 hours.

Learning objectives

This tutorial is divided into eight modules, each with its own learning objectives.

You can choose to skip modules 7 and 8 and you can complete modules 5, 6, 7 and

8 in any order after module 4. Each module contains several exercises that must be

completed in order for the tutorial to work properly.

Chapter 1, “Module 1. Starting the product and the Remote System Explorer,” on

page 1 teaches you about the workbench, a perspective, and specifically the

Remote System Explorer perspective. In this module, you will:

v Start the product

v Specify the workspace for your project resources

v Open the iSeries default perspective

Chapter 2, “Module 2. Configuring a connection to an iSeries system and

connecting to an iSeries,” on page 7 teaches you how to create a connection to an

iSeries server and select objects using the Remote System Explorer perspective. In

this module, you will:

v Create a connection to an iSeries system

v Connect to an iSeries system

v Add a library to your library list

v View libraries in your job’s library list from the Remote Systems view

v Find a source physical file in you library

© Copyright IBM Corp. 2001, 2005 v

v View members in a source physical file using the iSeries Table view

v Customize the columns in the iSeries Table view

v Open a member for edit from the iSeries Table view or the Remote Systems view

v Maximize the editor window

v Open another member for edit

v Switch from one edit session to another edit session

v Display a structural outline of items defined in a source member

Chapter 3, “Module 3. Editing source,” on page 25 teaches you how to use the

Remote Systems LPEX Editor to edit source. In this module, you will:

v Change the default settings of the LPEX Editor Parsers

v Change the color settings and font used by the Editor

v Change the default behavior of the Enter key

v Use SEU commands to edit source

v Undo and redo source changes

v View a list of all help contents

v Limit the search of help to specific documents

v Search the help

v Use the Find and Replace window to search for an item in your source

v Filter or subset your source

v Filter lines based on line type

v Search through members in a source physical file

v Compare different versions of a program and identify the differences

v Syntax check source by line

v View help on syntax errors

Chapter 4, “Module 4. Verifying and compiling source,” on page 53 teaches you

how to verify and compile source in the Remote Systems LPEX Editor. In this

module, you will:

v Check for semantic errors on your workstation

v Start the Program Verifier tool

v Use the iSeries Error list to locate each error in the source

v Save your source

v Re-verify source

v Change compile preferences

v Invoke the compile command

v Change the current library using the Command field in the iSeries Table view

v Start an interactive connection

v Invoke the payroll program

Chapter 5, “Module 5. Debugging a program,” on page 67 teaches you how to

debug your payroll program from the workstation. In this module, you will:

v Invoke the debugger from the Launch Configurations window

v Add a breakpoint

v Add a conditional breakpoint

v Edit a breakpoint

v Monitor a variable through the Monitors view

vi Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

v Step into your payroll program

v Show a listing view

v List the call stack entries in the Debug view

v View all breakpoints

v Remove a breakpoint

v Monitor storage

v Set a watch breakpoint

v Close the Debugger

Chapter 6, “Module 6: Exploring Remote System Explorer,” on page 97 teaches you

how easy it is to define filters, perform actions and define your own actions. In

this module, you will:

v Know the features of Remote System Explorer

v Create a filter to show specific iSeries libraries

v Change the filter to add more iSeries libraries

v Create a filter to show all the source files in a library

v Access members to edit from your filter

v Create a user action that copies a source file with data to a new source file in the

same library

v Specify user action parameters

v Specify a restriction on a user action

v Try the user action

v Run an OS/400® command from the iSeries Table view

Chapter 7, “Module 7. Designing screens,” on page 115 teaches you how to use

CODE Designer to modify a display file. In this module, you will:

v Open a DDS member for edit with CODE Designer

v Show file-level keywords and record-level keywords

v View the details of records, record-level keywords and field-level keywords

v View the design of the payroll application main menu

v Create a group from an existing record format

v Create a new group and add a subfile record and a subfile control record

v Add columns to the subfile record

v Add fields to the subfile control record

v Copy existing fields

v Set indicators to handle field errors

v View and update record and field properties

v View keywords and the properties of a keyword

v Insert a keyword

v View help for a keyword

v Check there are no semantic errors in the DDS source

v View help for an error

v Launch the editor in read mode from the error list

v Launch the editor in write mode to fix the error

v Find a keyword in the source

v Save source changes

Introduction vii

v Compile your source changes

v Close the Designer

Chapter 8, “Module 8. Introducing the product and Remote System Explorer

(optional),” on page 141 teaches you about IBM® WebSphere® Development Studio

Client for iSeries and describes its relationship to IBM WebSphere Development

Studio for iSeries. In this module, you will:

v Know the goals of the product

v Know the editions of the product

v Identify the host tools and the client tools

v List and describe the iSeries application development tools

When you are ready, begin Chapter 1, “Module 1. Starting the product and the

Remote System Explorer,” on page 1.

viii Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Chapter 1. Module 1. Starting the product and the Remote

System Explorer

This module teaches you about the workbench, the workspace, a perspective and

specifically the Remote System Explorer perspective.

In this module, you will:

v Start the product

v Set the default workspace

v Access unique tools and views targeted towards iSeries application development

tasks

Requirement: Before beginning this module, you should have the prerequisite

knowledge outlined in “Introduction” on page v.

Exercises

The exercises within this module must be completed in order:

v “Exercise 1.1: Starting the product”

v “Exercise 1.2: Opening the Remote System Explorer perspective” on page 3

Time required

This module will take approximately 10 minutes to complete.

Exercise 1.1: Starting the product

If you want to know more about the product before you get started you can read

Chapter 8, “Module 8. Introducing the product and Remote System Explorer

(optional),” on page 141.

First you must start the product. Follow these steps to start the product:

1. Click Start on the task bar of your desktop.

2. Select Programs > IBM Rational® > IBM WebSphere Development Studio

Client for iSeries V6.0 > WebSphere Development Studio Client for iSeries

If you are working with the Advanced Edition of the product you will see the

words Advanced Edition in the product name.

3. A dialog will appear. Here you specify the directory of the workspace where

your projects and other resources such as folders, subfolders and files that you

are developing in the workbench will reside.

© Copyright IBM Corp. 2001, 2005 1

4. (Optional) Change the field in this dialog and use a unique directory name, for

example, RSELABxx (where xx is a unique number).

5. Click OK to open the workbench.

6. Click the icon in the far right of the Welcome page to go to the Workbench.

2 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

7. Click the maximize button to maximize the workbench.

8. Click the X in the Welcome tab to close the Welcome view.

The workbench refers to the desktop development environment. The workbench

aims to achieve seamless tool integration and controlled openness by providing a

common paradigm for the creation, management, and navigation of workbench

resources. Each workbench window contains one or more views and an editor.

You have started the product and now you are ready to begin “Exercise 1.2:

Opening the Remote System Explorer perspective.”

Exercise 1.2: Opening the Remote System Explorer perspective

Before you begin, you must complete “Exercise 1.1: Starting the product” on page

1.

In these steps you will open the Remote System Explorer perspective.

1. Check for the name of the perspective.

Chapter 1. Module 1. Starting the product and the Remote System Explorer 3

A perspective defines the initial set and layout of views in the Workbench

window. Within the window, each perspective shares the same set of editors.

Each perspective provides a set of capabilities aimed at accomplishing a specific

type of task or working with specific types of resources. For example, the Java™

perspective combines views that you would commonly use while editing Java

source files, while the Debug perspective contains views that you would use

while debugging a program. Perspectives contain views and editors and control

what appears in certain menus and tool bars.

If you see a different perspective, not the Remote System Explorer open in the

workbench or no perspective:

2. Click Window > Open Perspective > Remote System Explorer from the

workbench menu.

The Remote System Explorer perspective opens.

You work in the Remote System Explorer perspective in the workbench. This

perspective is for an iSeries programmer to display the connections that you

have already configured, create a new connection, connect to and disconnect

from the connections that you have defined, work with iSeries files, commands,

jobs, and integrated file system files.

This perspective will be active when you start the product with a new

workspace. If you had used the workspace before then, the workbench would

come up with the perspective that you last opened. You will learn more about

the Remote System Explorer perspective in the coming exercises as this is

where you launch the iSeries programmer tools and use the views from the

workbench.

Now you are ready to review your knowledge of this module by taking the quiz.

You can also apply what you have learned in this module by completing the

practice tasks detailed in More practice.

 Quiz

1. A workspace:

a. Aims to achieve seamless tool integration and controlled openness by

providing a common paradigm for the creation, management, and

navigation of workbench resources.

b. Defines the initial set and layout of views in the Workbench window.

c. Refers to the desktop development environment.

d. Specifies where your projects and other resources such as folders, subfolders

and files that you are developing in the workbench will reside.

4 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

2. A workbench:

a. Aims to achieve seamless tool integration and controlled openness by

providing a common paradigm for the creation, management, and

navigation of workbench resources.

b. Defines the initial set and layout of views in the Workbench window.

c. Refers to the desktop development environment.

d. Specifies where your projects and other resources such as folders, subfolders

and files that you are developing in the workbench will reside.

e. A and C
3. A perspective:

a. Aims to achieve seamless tool integration and controlled openness by

providing a common paradigm for the creation, management, and

navigation of workbench resources.

b. Defines the initial set and layout of views in the Workbench window.

c. Refers to the desktop development environment.

d. Specifies where your projects and other resources such as folders, subfolders

and files that you are developing in the workbench will reside.
4. Match the perspective with its correct definition:

a. Combines tools and views that you would commonly use while editing Java

source files

b. Contains tools and views that you would use while debugging programs

c. Contains tools and views that you would use while developing Web

applications

d. Contains tools and views that you would use while maintaining iSeries

applications.
a. Java perspective

b. Web perspective

c. Remote System Explorer perspective

d. Debug perspective
5. In the Remote System Explorer perspective you can:

a. Display configured connections

b. Create a new connection

c. Connect and disconnect defined connections

d. Work with iSeries files, commands, jobs, IFS files

e. All of the above

More practice

Given your experience in opening the Remote Systems Explorer perspective, now

open the Web perspective. See the list of tools and views available to the Web

developer. Next open the Java perspective. See the list of tools and views available

to the Java developer. Now since you are supposedly in the Java perspective, open

the Web perspective. Be careful not to open another Web perspective.

Tip: Look in the workbench top-right frame for the Web perspective icon. Now

close both the Java perspective and the Web perspective.

Module recap

Chapter 1. Module 1. Starting the product and the Remote System Explorer 5

You have completed Chapter 1, “Module 1. Starting the product and the Remote

System Explorer,” on page 1. You have learned how to:

v Start the product

v Set the default workspace

v Access unique tools and views targeted towards iSeries application development

tasks

Now that you have started the product and have opened the Remote System

Explorer perspective, you can move on to getting connected to an iSeries system.

Continue to Chapter 2, “Module 2. Configuring a connection to an iSeries system

and connecting to an iSeries,” on page 7.

6 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Chapter 2. Module 2. Configuring a connection to an iSeries

system and connecting to an iSeries

This module teaches you how to create a connection to an iSeries server, find a

library in your library list, select objects from a library and finally open a member

in the Remote Systems LPEX Editor. You also learn about several views such as the

Remote Systems view, iSeries Table view, and the Outline view.

In this module, you will:

v Create a connection to an iSeries system

v Connect to an iSeries system

v Add a library to your library list

v View libraries in your job’s library list from the Remote Systems view

v Find a source physical file in your library

v View members in a source physical file using the iSeries Table view

v Customize the columns in the iSeries Table view

v Open a member for edit from the iSeries Table view or the Remote Systems view

v Maximize the editor window

v Open another member for edit

v Switch from one edit session to another edit session

v Display a structural outline of items defined in a source member

Exercises

The exercises within this module must be completed in order:

v “Exercise 2.1: Configuring a connection to an iSeries system”

v “Exercise 2.2: Connecting to an iSeries system” on page 10

v “Exercise 2.3: Viewing and accessing objects in the Remote System Explorer

perspective” on page 14

v “Exercise 2.4: Opening a second source member” on page 20

v “Exercise 2.5: Displaying an outline of a source member” on page 20

Time required

This module will take approximately 10 minutes to complete.

Exercise 2.1: Configuring a connection to an iSeries system

When you first open the Remote System Explorer, you are not connected to any

system except your local hard drive on your workstation. To connect to a remote

iSeries system, you need to define a connection. When you define a connection,

you specify the name or IP address of the remote system and you give your

connection a unique name that acts as a label in your workspace so that you can

easily connect and disconnect. When you connect to the iSeries system, the

workbench prompts you for your user ID and password on that host.

© Copyright IBM Corp. 2001, 2005 7

The first time you connect to an iSeries system, you need to specify a profile. All

connections, filters, and filter pools belong to profiles. Filters are described in a

later exercise. Profiles are discussed when you create your first connection.

Ok, let’s get started. Remember you have already opened the Remote System

Explorer perspective in the previous module.

1. In the Remote Systems view, New Connection is automatically expanded to

show the various remote systems types you can connect to through the Remote

System Explorer.

Click the plus sign + beside iSeries to configure a connection to an iSeries

system.

The Name personal profile page opens.

8 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

2. Click Next to accept the default value.

The profile defaults to the name of the workstation. Your profile will be

different from the one shown here.

The Remote iSeries System Connection page opens.

On this second page you specify the information for your connection. The

cursor on this page is positioned in the Host Name field.

3. In the Host name field, type the IP address or the name of your host system.

The Connection name is automatically filled with the host name. Leave it this

way. This name displays in your Remote Systems view and must be unique to

the profile.

4. Leave the Parent profile default value. You don’t need to change it.

5. Leave the Verify host name check box selected.

Chapter 2. Module 2. Configuring a connection to an iSeries system and connecting to an iSeries 9

6. Click Finish to define your system.

You have configured a connection and now you are ready to begin “Exercise 2.2:

Connecting to an iSeries system.”

Exercise 2.2: Connecting to an iSeries system

Before you begin, you must complete “Exercise 2.1: Configuring a connection to an

iSeries system” on page 7.

After you configure a connection to an iSeries system, you can easily connect and

expand your new connection to reveal your subsystems. Subsystems are

pre-defined filters grouping the various types of remote resources that can be

explored in the remote system. There are four subsystems.

iSeries Objects

A PDM-like group, allowing access to libraries, objects and members.

iSeries Commands

Contains predefined commands and allows you to create command sets

each of which contain one or more often used commands. When run, all

commands in a command set are sent to the remote system and executed,

and the results are logged in the iSeries Commands log view.

iSeries Jobs

Allow you to see various jobs, subset by job attributes, and to perform a

number of operations on those jobs.

IFS Files

Allow you to explore folders and files in the Integrated File System of the

remote iSeries system.

To connect to an iSeries system:

10 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

1. In the Remote Systems view, your new connection is expanded to reveal your

subsystems. The iSeries Objects subsystem is the subsystem you will use most

often! It is very similar to PDM, in that it allows you to access objects in the

QSYS file system, and perform actions on those objects.

2. Notice the first three entries under the iSeries Objects subsystem are named

after the PDM options, because they have similar capabilities:

v Work with libraries (similar to WRKLIBPDM)

v Work with objects (similar to WRKOBJPDM)

v Work with members (similar to WRKMBRPDM)

In addition there are entries for working with library lists and user libraries:

– Library list (to simulate PDMs WRKLIBPDM you can start with the

pre-defined Library list filter, that when expanded lists all libraries in your

library list.)

– User libraries (allows you to work with all user libraries you can access

on that iSeries server.)

You also have more entries to work with under the connection itself and you

can see from these entries that Remote System Explorer goes well beyond

PDM! It allows you to explore iSeries jobs and commands and the IFS file

system.

Now let’s work with a library in your library list and add the library that you’ll

be using in this tutorial:

a. Right-click iSeries Objects and click Properties on the pop-up menu.

b. Select Initial Library List on the left pane.

c. Type RSELABXX where XX is a unique number in the Library field and click

Add.

Chapter 2. Module 2. Configuring a connection to an iSeries system and connecting to an iSeries 11

d. Click OK.

This will add the library RSELABxx to your library list every time you use

this connection.

Note: You can also change your library list using the pop-up menu items

Add Library List Entry or Change Current Library on the Library

list folder in the iSeries Objects subsystem. These changes are only

valid until you disconnect.
3. Expand the Library list folder.

12 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Now the connection will be activated and you will be prompted for a user ID

and password.

4. Enter your user ID and password.

5. Select the Save user ID check box.

6. Select the Save password check box.

7. Click OK.

As you know, you can use the properties of any of the subsystems to set

connection information such as adding a library to a library list.

Back in the workbench in the Remote Systems view you will see the libraries in

your job’s library list.

Chapter 2. Module 2. Configuring a connection to an iSeries system and connecting to an iSeries 13

Notice that the s400a folder now has a small green arrow in the icon to indicate

it is an active connection.

For each library, you can right-click and select from a number of actions. For

example, there is an action to create a new source file within the selected

library. Common actions like delete, move, copy, etc. are valid for all kinds of

objects.

You have connected to an iSeries system and now you are ready to begin “Exercise

2.3: Viewing and accessing objects in the Remote System Explorer perspective.”

Exercise 2.3: Viewing and accessing objects in the Remote System

Explorer perspective

Before you begin, you must complete “Exercise 2.2: Connecting to an iSeries

system” on page 10.

Now you are ready to view and access objects in your library RSELABXX.

To view and access an object:

 1. Expand library RSELABXX.

You will see all objects in this library appear in the Remote Systems view. For

each object you can right-click and select from a number of actions. The list of

actions depends on the object selected and whether you selected one or

multiple objects. For example, for a source file the pop-up menu has an action

to create a new member within the selected file.

 2. Drill-down through the files in the Remote Systems view until you find

QDDSSRC source file and then expand it.

 3. Scroll up through the files in the Remote Systems view until you find

QCBLLESRC source file and expand it as well.

14 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Now you can see and access the members in these two source files. For each

member you can right-click and select from a number of actions. The exact list

of actions depends on whether the member is a data file or source file and

whether you select one or multiple members. For a COBOL source member,

the pop-up menu actions include:

v open with

v browse with

v verify

v compile

Before you go ahead and work with these members, let’s see the members in

the iSeries Table view as well because that is similar to the view you are used

to from PDM. You use this view to display a list of items, for example,

members or objects, in a table format similar to PDM. You can also perform

actions against these items such as editing and compiling.

 4. Right-click the QDDSSRC file and then click Show in Table on the pop-up

menu.

Chapter 2. Module 2. Configuring a connection to an iSeries system and connecting to an iSeries 15

The iSeries Table view takes the selected object in the Remote Systems view as

input, and displays the contents in the table. For source physical files, this

step displays the members inside, their names, types, attributes, text

descriptions, and status.

The top of the iSeries Table view contains a lock icon

that controls the

correlation between the Remote Systems view and the iSeries Table view. If

the lock is disabled then whenever you click an object or library in the

Remote Systems view, the associated contents of that item automatically

populate the iSeries Table view. If the lock is enabled then when you click on

various items in the Remote Systems view, this view does not change the

content of the iSeries Table view. To enable or disable the lock, you can click it

once to change its state. You can click on the columns heading to sort the

view by column.

 5. In the iSeries Table view toolbar make sure the lock/unlock button

is in

the unlock position. Leave the mouse pointer over the tool button for a second

or two to display the flyover help. That way you can check if the view is

locked or unlocked.

This means now the table will automatically be updated when a different

object is selected in the Remote Systems view. This is a shortcut to open the

pop-up menu for an object in the Remote Systems view and to select Show in

Table.

16 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

You can also modify which specific columns you want to see in the iSeries

Table view.

 6. To modify the iSeries Table properties:

a. Click Window > Preferences from the workbench menu.

The Preferences Window opens.

b. In the left pane of the Preferences window, expand Remote Systems.

c. Expand iSeries under Remote Systems.

d. Click Table View under iSeries.

e. In the right pane of the Preferences window, select Last modified in the

Available columns list.

f. Click the Add button.

g. Click OK.

Now, let’s update the iSeries Table view.

h. Click the down arrow on the iSeries Table view title bar.

Chapter 2. Module 2. Configuring a connection to an iSeries system and connecting to an iSeries 17

i. Click Show columns > Customized in the pop-up menu.

Now you’ll see the extra column that you’ve added.

You can also sort the objects in the iSeries Table view by column.

j. To sort the objects in ascending order by Last modified, click on the

heading.

k. If you click the heading the second time, it will sort it in descending order.
 7. In the Remote Systems view, select QCBLLESRC.

The table shows the members in QCBLLESRC.

18 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Now you are ready to use the Remote Systems LPEX Editor to edit the

member MSTDSP found in QDDSSRC.

 8. From the Remote Systems view double-click member MSTDSP in the

QDDSSRC source file.

You can do this in the Remote Systems view or in the iSeries Table view.

The Remote Systems LPEX Editor opens. It is built right into the workbench,

with rich editing functions and is iSeries aware! It is a superset of SEU! The

syntax checker is ported from SEU, and the reference manuals are built-in and

F1 cursor sensitive.

 9. Double-click the MSTDSP tab to maximize the Editor window.

10. Double-click the MSTDSP tab again to return the view to its original size.

You have viewed and accessed objects in your library and now you are ready to

begin “Exercise 2.4: Opening a second source member” on page 20.

Chapter 2. Module 2. Configuring a connection to an iSeries system and connecting to an iSeries 19

Exercise 2.4: Opening a second source member

Before you begin, you must complete “Exercise 2.3: Viewing and accessing objects

in the Remote System Explorer perspective” on page 14.

Next let’s open a second member in the editor.

To open a second source member:

1. In the Remote Systems view, double-click member PAYROLLC in the

QCBLLESRC source file.

This member will be loaded into the editor as well.

Your Editor window will look something like:

Notice the two tabs in the Editor window.

2. Click on each tab to switch from one edit session to another edit session.

You have opened another member for edit and now you are ready to begin

“Exercise 2.5: Displaying an outline of a source member.”

Exercise 2.5: Displaying an outline of a source member

Before you begin, you must complete “Exercise 2.4: Opening a second source

member.”

The Outline view acts as an excellent resource when you want to edit RPG,

COBOL and DDS source in the Remote Systems LPEX editor. The Outline view

displays a structural outline of items defined in the file that you currently have

open in the Remote Systems LPEX editor window. With the editor active, you can

expand the file structure in the Outline view, and click various elements in the

view to jump to that location in the source itself.

To see an Outline view of your COBOL source:

1. Look at the Outline view to the right of the editor window.

Note: If you have closed the Outline view, you can reset the perspective by

selecting Window > Reset perspective from the workbench menu or

Show view > Other then expand Basic and click Outline in the Show

view dialog.

The Outline view contains your source program in a tree view without the lines

containing logic.

20 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Now you want to see more details of your source member.

2. Expand ENVIRONMENT DIVISION.

3. Expand the CONFIGURATION SECTION.

4. Expand DATA DIVISION.

5. Expand FILE SECTION.

6. Double-click on any of the entries in the Outline view.

This will position the source editor accordingly.

7. Stay in the PAYROLLC tab to get the PAYROLLC Editor window in focus for

the next module.

Now you are ready to review your knowledge of this module by taking the quiz.

You can also apply what you have learned in this module by completing the

practice tasks detailed in More practice.

 Quiz

1. When you first open Remote System Explorer, you are not connected to any

system except your local workstation. To connect to a remote iSeries system,

you need to:

a. Start Remote System Explorer communication server

b. Start a 5250 session

c. Define a connection. Specify the name or IP address of a remote system.

d. Define a profile
2. Subsystems include:

a. iSeries Objects

Chapter 2. Module 2. Configuring a connection to an iSeries system and connecting to an iSeries 21

b. iSeries Jobs

c. IFS Files

d. iSeries Commands

e. All of the above
3. The subsystem iSeries objects includes:

a. Work with libraries

b. Work with objects

c. Work with members

d. Library list

e. All of the above
4. The iSeries Table view is used to:

a. Display a list of items, for example, members or objects in a table format

similar to PDM

b. Perform actions against a list of items, such as editing and compiling

c. Both
5. The lock icon controls the correlation between the Remote Systems view and

the iSeries Table view. (T, F)

6. You can maximize the Editor window by double-clicking on its window

heading. You can get back to its original size, by double-clicking on the

heading again (T, F).

7. The Outline view:

a. Displays a structural outline of items defined in the file that you currently

have open in the editor

b. Lists structural elements

c. Shows editor specific contents and toolbar

d. All of the above

More practice

Given that you have access to your own iSeries systems, configure a new

connection and connect to this iSeries system. Now rename the connection, move

the connection up or change the properties of the connection. Then use the iSeries

objects subsystem to list the libraries in your library list. Use the iSeries Table View

to see the objects in your library. Subset objects in the iSeries Table View. Open the

Remote Systems LPEX Editor from the iSeries Table view. Use the product online

help to assist you in these tasks.

Module recap

You have completed Chapter 2, “Module 2. Configuring a connection to an iSeries

system and connecting to an iSeries,” on page 7. You have learned how to:

v Create a connection to an iSeries system

v Connect to an iSeries system

v Add a library to your library list

v View libraries in your job’s library list from the Remote Systems view

v Find a source physical file in your library

v View members in a source physical file using the iSeries Table view

v Customize the columns in the iSeries Table view

v Open a member for edit from the iSeries Table view or the Remote Systems view

22 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

v Maximize the editor window

v Open another member for edit

v Switch from one edit session to another edit session

v Display a structural outline of items defined in a source member

Now that you have a connection to an iSeries server and have opened a source

member for edit, you can learn more about the Remote Systems LPEX Editor.

Continue to the next module Chapter 3, “Module 3. Editing source,” on page 25.

Chapter 2. Module 2. Configuring a connection to an iSeries system and connecting to an iSeries 23

24 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Chapter 3. Module 3. Editing source

This module teaches you how to edit ILE COBOL source member PAYROLLC,

which should already be open, and learn about some of the Remote Systems LPEX

Editor’s language features.

In this module, you will:

v Change the default settings of the LPEX Editor Parsers

v Change the color settings and font used by the Editor

v Change the default behavior of the Enter key

v Use SEU commands to edit source

v Undo and redo source changes

v View language sensitive help for the MOVE operation code

v View a list of all help contents

v Limit the search of help to specific documents

v Search the help

v Use the Find and Replace window to search for an item in your source

v Filter or subset your source

v Filter lines based on line type

v Search through members in a source physical file

v Compare different versions of a program and identify the differences

v Syntax check source by line

v View help on syntax errors

Exercises

The exercises within this module must be completed in order:

v “Exercise 3.1: Introducing the editor” on page 26

v “Exercise 3.2: Changing default editor settings” on page 26

v “Exercise 3.3: Entering SEU commands” on page 29

v “Exercise 3.4: Requesting undo and redo operations” on page 30

v “Exercise 3.5: Invoking language-sensitive help” on page 31

v “Exercise 3.8: Finding and replacing text” on page 36

v “Exercise 3.9: Filtering lines by string” on page 38

v “Exercise 3.10: Filtering lines by type” on page 38

v “Exercise 3.11: Searching multiple files” on page 40

v “Exercise 3.12: Comparing file differences from the Remote Systems view” on

page 41

v “Exercise 3.13: Comparing files in the CODE Editor (optional)” on page 45

v “Exercise 3.14: Checking syntax” on page 47

Note: Exercises 3.6 and 3.7 do not appear as they apply only to RPG.

Time required

This module will take approximately 45 minutes to complete.

© Copyright IBM Corp. 2001, 2005 25

Tip: You might want to maximize the Editor window during this module.

Exercise 3.1: Introducing the editor

Your program editing tasks are simplified with the Remote Systems LPEX Editor.

The editor can access source files on your workstation or your iSeries system

directly. When a compilation results in errors, you can jump from the compiler

messages to an editor containing the source. The editor opens with the cursor

positioned at the offending source statements so that you can correct them.

Here is a list of some of the basic editor features that you would expect in a

workstation editor:

v Cut, copy, and paste

v Block marking of lines, characters, or rectangles with copy, move, and delete

operations

v Powerful find and replace function

v Unlimited undo and redo

In addition there are a few more functions that you may not have seen in a

workstation editor:

v Token highlighting where different language constructs are highlighted using

different colors to help identify them in a program

v SEU-like format-line rulers to show the purpose of each column for

column-sensitive languages like RPG and DDS. These rulers can automatically

update themselves to reflect the current specification.

v SEU-like specification prompting for RPG and DDS

v Sequence numbers, which allow SEU-style commands in the prefix area

v Intelligent tabbing between columns for column-sensitive languages

v Automatic uppercasing for languages that expect uppercase

v Settings for column-sensitive languages that simplify text insertions and

deletions

v On-line language reference

Now you know the features of the editor, you are ready to begin “Exercise 3.2:

Changing default editor settings.”

Exercise 3.2: Changing default editor settings

Before you begin, you must complete “Exercise 3.1: Introducing the editor.”

The LPEX Editor has predefined settings, but also has an associated preferences

page containing settings that you can modify. The name of the category is LPEX

Editor and it appears in the left pane of the Preferences window.

26 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

You will change the default settings of Appearance and User Key Actions.

Changing the editor appearance

1. In the left pane of the Preferences window, expand LPEX Editor.

2. Select Appearance under LPEX Editor.

3. Select formatLine under the Styles list.

4. Change the Foreground color to dark green.

5. Change Font to 12.

6. Change Background color to light green.

Notice how your changes are reflected in the sample edit view.

Chapter 3. Module 3. Editing source 27

7. Select currentLine under the Styles list.

This option highlights the line that the cursor is on. The option applies to all

source files opened in the editor area.

8. Change the Background color to light yellow.

9. If you don’t like the changes you made, you can click Restore Defaults to

return to the original settings.

Modifying the default behavior of the Enter key

To modify the default behavior of the Enter key to split the current line in the

source instead of creating a new line:

1. Expand LPEX Editor if not already expanded then select User Key Actions.

28 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

2. Type enter in the Key field.

Note: The Key and Action fields are case sensitive. Make sure that the values

typed in the Key and Action fields are exactly as shown above.

3. Type splitLine in the Action field.

4. Click Set.

5. Click OK on the Preferences window.

Return to the Editor window.

Seeing the results of splitLine

To see what splitLine does:

1. Place the cursor somewhere on a line and press Enter.

The text to the right of the cursor is moved to the next line.

You have changed the default editor settings and now you are ready to begin

“Exercise 3.3: Entering SEU commands.”

Exercise 3.3: Entering SEU commands

Before you begin, you must complete “Exercise 3.2: Changing default editor

settings” on page 26.

You can configure the LPEX Editor to adopt the keyboard and command

personalities of many popular editors. Most editor profiles differ only in the keys

Chapter 3. Module 3. Editing source 29

and commands used to perform various editor tasks. Some base editor profiles,

listed below, also add prefix information and a command area at the start of each

line:

v ispf

v seu

v xedit

The editor recognizes prefix commands used by these editor profiles. Depending

on which profile you are using, you can enter SEU, XEDIT, or ISPF commands

when the prefix area is active.

If you are an SEU expert you will appreciate the ability to use SEU commands.

To enter SEU commands:

1. Move the cursor into the gray sequence number area to the left of the edit area.

2. On any sequence number type dd.

3. Go down a few lines and type dd again and press Enter.

Notice that the lines have been deleted.

4. Now type i5 in the sequence number area.

5. Make sure the cursor is within the sequence number area.

6. Press Enter.

Five new lines are inserted.

You have learned how to use SEU commands in the editor and now you are ready

to begin “Exercise 3.4: Requesting undo and redo operations.”

Exercise 3.4: Requesting undo and redo operations

Before you begin, you must complete “Exercise 3.3: Entering SEU commands” on

page 29.

The editor records each set of changes you make to a file in the Editor window.

The number of changes made since the last file save is displayed on the status line.

If you want to undo a set of changes made to a file you use the Undo operation.

You can also cancel the effects of an Undo operation by using the Redo operation.

30 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Now you are going to undo some of the changes you just made to the file. Then

you will cancel the Undo operation by using the Redo operation. Finally you will

reload the source so that it is back to its original content.

To undo and redo edit changes:

1. Click Edit > Undo from the workbench menu.

Notice that the 5 new lines disappear.

2. Press Ctrl+Z to undo the last change.

Notice that the deleted lines reappear.

3. Click Edit > Redo from the workbench menu.

Notice that the lines are deleted again.

At this point you will reload the source from the iSeries to make sure that it is

back in its original form.

4. Click File > Close on the workbench menu.

Tip: You can also click the X on the PAYROLLC tab.

A Save Resource dialog opens asking if you want to save the latest changes.

5. Click No.

6. Go back to the workbench to the Remote Systems view and open the

PAYROLLC member in the QCBLLESRC file.

You have learned how to undo and redo changes that you made to a file and now

you are ready to begin “Exercise 3.5: Invoking language-sensitive help.”

Exercise 3.5: Invoking language-sensitive help

Before you begin, you must complete “Exercise 3.4: Requesting undo and redo

operations” on page 30.

Inside the editor, there is cursor-sensitive language-reference help available.

To receive language sensitive help, press F1 in an Editor window. If the cursor is

on an operation code, you receive help for that operation code; otherwise, you

receive help for the current specification.

Accessing language sensitive help

To access language sensitive help:

 1. Position the cursor over the word MOVE in line 231 of the ILE COBOL source.

 2. Press F1.

Chapter 3. Module 3. Editing source 31

Language-sensitive help for the MOVE operation code appears in a Help

window.

Text marked in blue in the Help window contains the link to detailed

information about the topic in blue.

 3. Click the link Format 1- MOVE.

The Help page for Format 1- MOVE is displayed.

32 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

4. Play around in the Help window to see what else is available.

 5. Minimize the Help window.

 6. Select Help > Help Contents on the workbench menu to see a list of all help

that is available in the product.

Chapter 3. Module 3. Editing source 33

7. In the left pane of the Help window, click Reference.

 8. Expand Language Reference.

 9. Expand iSeries programming information.

10. Expand High-level languages.

11. Expand ILE COBOL

12. Select Language Reference.

13. Scroll down to MOVE Statement - Format 1.

Having the latest version of the manuals at your fingertips will make it easier

to find programming information. There is also the option to search the help

by specifying a search string. By default, the complete help will be searched.

Limiting the search scope

To limit the search to specific documents:

 1. Click Search scope.

The Select Search Scope dialog opens.

 2. Select Search only the following topics radio button.

34 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

3. Click New.

The New Search List dialog opens.

 4. In the List name field, type MyList for example.

Chapter 3. Module 3. Editing source 35

5. Expand Reference.

 6. Select the Language Reference check box.

 7. Click OK on the New Search List dialog.

The Select Search Scope dialog reopens again with MyList selected in the topic

list.

 8. Click OK on the Select Search Scope dialog.

 9. In the Search field, type iSeries and programming for example.

10. Searching requires a help index and it takes approximately 10 minutes to

create the index in your workspace. If you want to complete the search query,

click GO.

The search results display.

You have accessed language sensitive help and now are ready to begin “Exercise

3.8: Finding and replacing text.”

Exercise 3.8: Finding and replacing text

Before you begin, you must complete “Exercise 3.5: Invoking language-sensitive

help” on page 31.

The LPEX Editor also has a powerful find and replace text feature. You use the

Find and Replace window to search for an item. You can search for a word, a

partial word, or a sequence of such. You can also enter a pattern you want to

36 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

match, provided that the pattern follows the rules of regular expression. You can

replace the found search item. If the entered text or pattern is found, the cursor

moves to either the next or previous occurrence of the search item, according to

your chosen search direction, and replaces the found text according to your

selections.

To find and replace text:

1. Press Ctrl+Home to go to the top of the file.

Tip: When you press Ctrl+Home to go to the top of a file or Ctrl+End to go to

the bottom of a file, a quick mark is set at your cursor position. This allows

you to return to that line by pressing Alt+Q. Ctrl+Q will set a quick mark.

2. Click Edit > Find/Replace from the workbench menu or press Ctrl+F.

The Find/Replace window opens at the bottom of the Editor window.

At the bottom of this window, you will notice that you have some options to

select from, for example, search only in certain columns, etc. You want to find

the first occurrence of MSTDSP.

3. In the Find field, enter MSTDSP to find the start of a file section.

4. Make sure the Replace field is blank.

You would use this field for text replacement.

5. Click Next to go to the next location of MSTDSP in the file.

The Editor moves the active line to line 37, which contains the first MSTDSP

phrase in the file.

6. Click in the Editor window to close the Find/Replace window.

You have searched for an item in your source using the Find/Replace window and

now you are ready to begin “Exercise 3.9: Filtering lines by string” on page 38.

Chapter 3. Module 3. Editing source 37

Exercise 3.9: Filtering lines by string

Before you begin, you must complete “Exercise 3.8: Finding and replacing text” on

page 36.

The editor allows you to filter or subset your source so that you see only lines

containing a given string. Filtering lines makes it quick and easy to find lines

without having to scroll through your source.

To filter source by string:

1. Double-click the variable EMPNO in the Editor window.

2. Select Edit > Selected > Filter Selection from the workbench menu.

3. Move the cursor down a few lines to line 302.

4. Expand line 302. This expands the section up to the next instance of EMPNO.

Now you want to show the entire source again.

5. Click Edit > Show all from the workbench menu or press Ctrl+W.

Your cursor is still positioned on the same line that you moved the cursor to,

even though all lines are now showing.

You have filtered your source so that you see only lines containing a given string

and now you are ready to begin “Exercise 3.10: Filtering lines by type.”

Exercise 3.10: Filtering lines by type

Before you begin, you must complete “Exercise 3.9: Filtering lines by string.”

To help you navigate quickly through your ILE COBOL source the editor allows

you to filter lines based on the line type. Imagine you want to see where all the

divisions are defined in your source.

38 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

To filter lines by type:

1. Right-click in the Editor window with the PAYROLLC program.

2. Click Filter view > Divisions on the pop-up menu.

All source lines with divisions are displayed allowing you to move quickly and

easily to the desired division in your file.

3. Move your cursor to the line with the DATA DIVISION (line 64).

4. Expand the division to show all lines in this division.

Now you could work with the source inside this division.

5. Right-click in the Editor window and click Show all on the pop-up menu.

You have filter lines in your source by line type and now you are ready to begin

“Exercise 3.11: Searching multiple files” on page 40.

Chapter 3. Module 3. Editing source 39

Exercise 3.11: Searching multiple files

Before you begin, you must complete “Exercise 3.10: Filtering lines by type” on

page 38.

If you would like to search through the members in a source physical file or

through the files in a local directory, you can use the Search tool. The Multi-File

Search utility allows you to search for a particular string of text in many members

on the host. This function can also be used on local files.

To search multiple files:

1. Click Search > iSeries from the workbench menu.

The Search window opens.

2. In the Search string field, type ENHRS.

The Connection field should contain your iSeries server name, otherwise enter

it there.

3. Under Target in the Library field, type RSELABXX.

4. Under Target in the File field, type QDDSSRC to search all members in this

source physical file.

5. Under Target in the Member field, select *ALL.

6. Click Search.

40 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

The Multi-File Search window lists all the lines in all the files that reference

ENHRS.

7. Double-click the last line in the list.

A ENHRS 3 1 TEXT(’EMPLOYEE NORMAL WEEK HOURS’)

The member REFMST is automatically loaded into the editor and the cursor is

placed on the correct line.

8. Click the X in the REFMST tab to close the REFMST file.

You have searched through members in a source physical file and now you are

ready to begin “Exercise 3.12: Comparing file differences from the Remote Systems

view.”

Exercise 3.12: Comparing file differences from the Remote Systems

view

Before you begin, you must complete “Exercise 3.11: Searching multiple files” on

page 40.

If your product undergoes many changes, you will find the Compare utility useful.

It allows you to compare different versions of a program and find the differences.

There are two ways to do a compare: use the Compare utility in the workbench or

Chapter 3. Module 3. Editing source 41

use the Compare utility in the CODE tool. The compare in the CODE tool is more

intuitive but requires you to start the CODE Editor outside of the workbench.

Using the compare utility in the workbench you can view the differences between

two files by comparing them. You can compare different files, and you can

compare versions in the Workbench with versions in the repository or with the

local edit history.

After a comparison is carried out, the Compare Editor opens in the editor area. In

the compare Editor, you can browse through all the differences and copy

highlighted differences between the compared resources. You can save changes to

resources that are made in the comparison editor.

Using the compare utility in CODE you can also view the differences between two

files by comparing them. You enter a name of a file to compare against the file in

the CODE Editor view. You can type the name of a file, or you can select one from

the list of files already open in the editor. If you type the name of the file that is

not already open in the editor, it is loaded into the editor. If no file is specified, the

current file is compared against a new, untitled file. The current file appears on the

left side of the Compare view, and the specified file on the right. You use the

Compare menu to view the next and previous mismatch and to select options such

as ignore case, font, protect view and show mismatches only.

Note: Make sure all lines show in the source before starting the Compare tool.

To compare files in the workbench:

 1. Click Window > Preferences from the workbench menu.

The Preferences window opens.

 2. In the left pane of the Preferences window, expand LPEX Editor.

42 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

3. Click Compare under LPEX Editor.

In the right pane of the Preferences window make sure that the Ignore blanks

check boxes are selected.

 4. Click OK in the Preferences window.

 5. Back in the Editor window of the PAYROLLC member double-click the

PAYROLLC tab.

 6. Click Edit > Compare > Compare to file on the workbench menu.

The Compare window opens.

 7. Expand your connection.

 8. Expand *LIBL.

 9. Expand RSELABXX.

10. Expand QCBLLESRC.

11. Select member PAYROLLC2

12. Click OK.

Chapter 3. Module 3. Editing source 43

The editor now will show the differences of these two members PAYROLLC

and PAYROLLC2 .

You can move from mismatch to mismatch by using the Compare menu under

the Edit menu.

Mismatches in PAYROLLC and PAYROLLC2 are highlighted in different colors

so that you know where the mismatched lines are in each file.

13. Click Ctrl + Shift + N to find the next mismatch.

Next, end the compare session.

44 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

14. Click Edit > Compare > Clear from the workbench menu.

15. Double-click the PAYROLLC tab to return the Editor window to its original

size.

You have compared different versions of the program and found the differences

and now you are ready to begin “Exercise 3.13: Comparing files in the CODE

Editor (optional).”

Exercise 3.13: Comparing files in the CODE Editor (optional)

Before you begin, you must complete “Exercise 3.12: Comparing file differences

from the Remote Systems view” on page 41.

The CODE tool provides a side-by-side view of the members being compared. If

you prefer this type of view follow the steps described next. You might want to

skip this section if the Compare Tool you just used provides sufficient information

for you. Now you will open a couple of files and edit them and use the CODE

compare utility.

To compare files in the CODE Editor:

 1. In the Remote Systems view, right-click member PAYROLLC in QCBLLESRC.

 2. Click Open With > CODE Editor on the pop-up menu.

This opens the CODE Editor window with the member. It will open in browse

mode since it is locked by the LPEX Editor session.

 3. In the CODE Editor, open the PAYROLLC2 member.

 4. Click File > Open from the CODE Editor menu.

The Select file - Open for Edit dialog opens.

 5. In the left pane of the Select file - Open for Edit dialog expand the R0S400A

connection (the Remote System Explorer connection).

 6. Expand library RSELABXX.

 7. Select file QCBLLESRC.

Chapter 3. Module 3. Editing source 45

8. In the right pane of the Select file-Open for Edit dialog, select member

PAYROLLC2 from the member list.

 9. Click OK.

10. Click Actions > Compare from the CODE Editor menu.

The Compare dialog opens:

All entries are preloaded.

11. Click Compare.

The editor now has the PAYROLLC2 member loaded on the left and member

PAYROLLC loaded on the right. In between the two members are two long

vertical blue lines with horizontal yellow and red bars highlighting the

differences in these members.

12. Use the vertical scroll bars to move within the files.

As you scroll, you will see where the differences are in the members.

13. Click Ctrl + Shift + N to find the next mismatch.

46 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

14. Click Compare > Exit compare from the CODE Editor menu (which was

inserted while performing this action).

The CODE Editor window re-opens.

Close the CODE Editor.

15. Click File > Exit from the CODE Editor menu. The workbench re-opens.

Continue working in the workbench.

You have compared files using the CODE Editor and now you are ready to begin

“Exercise 3.14: Checking syntax.”

Exercise 3.14: Checking syntax

Before you begin, you must complete “Exercise 3.13: Comparing files in the CODE

Editor (optional)” on page 45.

One of the powerful features that the LPEX Editor shares with SEU is its ability to

syntax check your source. Syntax checking can be done either when the cursor

leaves each line of source or all at once on either the currently selected source or

on the entire source member.

Now you will create a syntax error and watch for the prompt to correct it.

To syntax check the file:

1. Click the PAYROLLC Editor window, click Source and then click Syntax Check

All on the workbench menu.

Chapter 3. Module 3. Editing source 47

Error messages appear to draw attention to the errors.

48 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

2. Move the cursor onto the pink error message.

3. Press F1.

This opens a window with second level help for the error.

4. Minimize the Help window.

5. Add the required left parenthesis to correct the error.

6. Move the cursor off the line you just fixed.

The error message is automatically removed from the editor.

Tip: You can toggle automatic syntax checking. Click Window > Preferences

from the workbench menu and then expand Remote Systems, iSeries, LPEX

Editor Parsers, select the language you want to change the settings for in the

left pane of the Preferences window and select the Automatic syntax checking

check box and then click OK.

Chapter 3. Module 3. Editing source 49

Now you are ready to review your knowledge of this module by taking the quiz.

You can also apply what you have learned in this module by completing the

practice tasks detailed in More practice.

 Quiz

 1. The LPEX Editor has predefined settings, but also has an associated preference

page containing settings that you can define. (T, F)

 2. LPEX Editor preferences are set in the:

a. Preferences window

b. Editor window

c. New wizard

d. Remote Systems view
 3. You can configure the LPEX Editor to adopt the keyboard and command

personalities of many popular editors. (T, F)

 4. If you want to undo a set of changes made to a file you must use the _______

operation. Name the operation.

a. Insert

b. Replace

c. Redo

d. Undo
 5. You can also cancel the effects of an undo operation by using the _______

operation. Name the operation.

a. Insert

b. Replace

c. Redo

d. Undo

50 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

6. To receive language sensitive help, press the ____ key in an Editor window.

Name the key:

a. F2

b. F3

c. F1

d. F4
 7. If the cursor is ________ an operation code, you receive help for that operation

code; otherwise, you receive help for the current specification.

a. before

b. after

c. on

d. off
 8. Instead of entering or changing code directly in the Editor window, you can

use ________.

a. Prompts

b. Filters

c. SEU commands

d. Format line

e. All of the above
 9. You use the _______ window to search for an item in the current source.

Choose the best answer.

a. Search

b. Find

c. Edit

d. Find/Replace
10. You can search for:

a. A word

b. A partial word

c. A sequence of words

d. A pattern if it follows the rules of regular expression

e. All of the above
11. The LPEX Editor allows you to ____ or subset your source so that you see

only lines containing a given string.

a. search

b. find

c. sort

d. filter
12. If you would like to search through the members in a source physical file or

through the files in a local directory, you can use the _______ tool. Choose the

best answer.

a. Compare

b. Search

c. Find

d. Edit
13. The ________ tool allows you to compare different versions of a program and

find the differences. Choose the best answer.

Chapter 3. Module 3. Editing source 51

a. Convert

b. Migrate

c. Compare

d. Search
14. There are two ways to compare files. They are Compare tool in the workbench

and the Compare tool in the CODE Editor. (T, F)

15. Syntax checking can be done either when the cursor leaves each line of source

or all at once on either the currently selected source or on the entire source

member. (T, F)

Module recap

You have completed Chapter 3, “Module 3. Editing source,” on page 25. You have

learned how to:

v Change the default settings of the LPEX Editor Parsers

v Change the color settings and font used by the Editor

v Change the default behavior of the Enter key

v Use SEU commands to edit source

v Undo and redo source changes

v View language sensitive help for the MOVE operation code

v View a list of all help contents

v Limit the search of help to specific documents

v Search the help

v Use the Find and Replace window to search for an item in your source

v Filter or subset your source

v Filter lines based on line type

v Search through members in a source physical file

v Compare different versions of a program and identify the differences

v Syntax check source by line

v View help on syntax errors

Now that you have mastered editing source, you can move on to verifying your

source to ensure you have a clean compile on the iSeries system. This approach

saves you iSeries cycles! And you perform both verify and compile from the

Remote Systems view! Continue to Chapter 4, “Module 4. Verifying and compiling

source,” on page 53.

52 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Chapter 4. Module 4. Verifying and compiling source

This module teaches you how to verify and compile RPG in the Remote Systems

LPEX Editor. When errors are found by either the verify or the compile step, the

iSeries Error List appears. The iSeries Error List is a powerful tool that manages

errors found by verify and compile utilities. You will become familiar with these

tools, the various capabilities of the iSeries Error List and the RPG program that

you have created.

In this module, you will:

v Check for semantic errors on your workstation

v Start the Program Verifier tool

v Use the iSeries Error list to locate each error in the source

v Save your source

v Re-verify source

v Change compile preferences

v Invoke the compile command

v Change the current library using the Command field in the iSeries Table view

v Start an interactive connection

v Invoke the payroll program

Exercises

The exercises within this module must be completed in order:

v “Exercise 4.1: Verifying the source”

v “Exercise 4.2: Compiling source remotely” on page 55

v “Exercise 4.3: Submitting iSeries commands in the iSeries table view” on page 59

v “Exercise 4.4: Running commands and programs” on page 61

Time required

This module will take approximately 20 minutes to complete.

Exercise 4.1: Verifying the source

Now you get to play with one of the most powerful and unique features of the

Remote System Explorer – the Program Verifier. Before you compile your code on

an iSeries, you can make certain that there are no errors by invoking the Program

Verifier. The verifier checks for semantic (compile) errors on your workstation so

that you can guarantee a clean compile on the iSeries. Think of the host cycles

you’ll save. It is especially handy when you are writing code but you are

disconnected from an iSeries. You can do this because Remote System Explorer

ported the parsing and checking code from the iSeries system compilers to the

workstation. The iSeries Error List view lists the errors that are found and their

severity, inserts the error messages directly into the source and helps you to

navigate between the errors.

To invoke the verifier:

© Copyright IBM Corp. 2001, 2005 53

1. Click Source > Verify from the workbench menu. (Similarly, you can also use

the pop-up menu for the source member in the Remote Systems View or the

Verify tool button — you need the source in the editor for the button to

appear.)

You will need to open the COBOL source file named PAYROLLC2 to complete

this verify step.

After a moment the verifier will display an iSeries Error List below the Editor

window.

The error list shows you:

v The error message itself

v The severity

v The line number

v The source location

v The connection name

Fixing errors

Next you will fix the errors in your source.

To fix an error in your source go to the error list:

1. Double-click the error LNC1463.

You are automatically brought back into the Editor window to the line where

the error occurred. The error is caused by EMPNO not being uniquely defined.

Go to line 302 where EMPNO is defined. The variable EMPNO should be

EMPNO OF EMPSEL-I.

2. Make the change.

The next error is LNC1326.

3. Double-click LNC1326. Fix it in the editor.

4. PRCD should really be PRCDE.

Make the appropriate change on line 402.

5. Double-click LNC1329.

This error is because the array was declared with 4 elements. Go to line 606.

6. Change the index of the array from 14 to 4.

The next errors are LNC0407. You can ignore these errors as they are severity

20.

All severity 30 errors and above are now fixed. You can filter out different

severities by using the filter menu.

54 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

7. Click the arrow in the iSeries Error List title bar.

8. Click Show Severity on the pop-up menu.

9. Clear the severities you don’t want to see in the list (Warning for example).

Saving the source member

Now before you loose any of your changes, it’s a good idea to save them. Make

sure the member is selected. You then verify the source again to make sure that all

the errors are fixed.

You can save the member using one of these ways:

1. Click File > Save from the workbench menu.

2. Click the Save icon

in the workbench toolbar.

3. Press Ctrl+S.

Changes are uploaded to the iSeries.

4. Verify your source again.

Everything should be ok. You should see only severity 20 messages. You are

ready to compile the program.

You have verified your source and fixed any errors and now you are ready to

begin “Exercise 4.2: Compiling source remotely.”

Exercise 4.2: Compiling source remotely

Before you begin, you must complete “Exercise 4.1: Verifying the source” on page

53.

Chapter 4. Module 4. Verifying and compiling source 55

The remote compile capability is part of the Remote System Explorer. It gives you

a workstation interface to submit requests to compile, bind, or build objects on the

iSeries host. It allows for easy access to all the compile options available for all the

supported CRTxxx commands.

If you used the local program verifier, then your host compiles should be

successful -- no wasted iSeries cycles. However, if there are errors, the host

compiler will send the error information back to the workstation and they will be

loaded into the iSeries Error List view, which behaves just as it did when you did

a program verify.

The default for compiling programs is to submit the compile to the batch job

queue. Here in this exercise you can run the compile interactive.

Changing compile preferences

To change the preferences to run the compile interactive:

1. Click Window > Preferences from the workbench menu.

2. In the left pane of the Preferences window, expand Remote Systems.

3. Expand iSeries under Remote Systems.

4. Click Command Execution under iSeries.

5. In the right pane of the Preferences window, clear the Compile in batch check

box.

6. Click OK to return to the Remote System Explorer perspective.

56 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Invoking the compile command

You will now use the prompt for the CRTBNDCBL command to specify your

compile parameters. All entry fields pertaining to names are already filled in with

the correct information.

To compile source:

1. Right-click the PAYROLLC2 member in QCBLLESRC.

2. Click Compile (Prompt) > CRTBNDCBL on the pop-up menu.

The Create Bound COBOL Program (CRTBNDCBL) dialog opens.

3. In the Debug view list, select the *ALL parameter.

Chapter 4. Module 4. Verifying and compiling source 57

If you want to see the other parameters available, click Advanced.

4. Click OK when you are finished.

The progress bar on the workbench (bottom right corner) will indicate that the

compile runs. Then the error list will be shown, with no errors, just information

messages.

If you are not sure that the compile was successful, you can check the iSeries

Commands Log.

5. Click the iSeries Commands Log tab from the view at the bottom of the

workbench.

58 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

This log shows a list of all commands run on the remote system and the

messages returned for each command.

You have set compile preferences, invoked the compile command, checked for a

successful compile and now you are ready to begin “Exercise 4.3: Submitting

iSeries commands in the iSeries table view.”

Exercise 4.3: Submitting iSeries commands in the iSeries table view

Before you begin, you must complete “Exercise 4.2: Compiling source remotely” on

page 55.

You can use the iSeries Table view inside the Remote System Explorer to submit

commands to the iSeries. You can run commands from the Commands field

beneath the iSeries Table view, and view messages in the Messages field. After you

populate the table, you can enter a command and click either Prompt to specify

parameters and then Run or just click Run. When you run a command, the

Messages field is populated with the messages from the command. When you

select a message, the Details button is enabled. When you click this button, the

message and its help is displayed.

Also note that besides the iSeries Table view, you can also use the Remote Systems

view to run commands and programs. Which one you choose depends on your

personal preference. In the iSeries Table view, you can see the properties of all

items at the same time; they are displayed as rows across the table. In the Remote

Systems view, you have greater ease of navigation; you can work from your

Library list in the iSeries Objects subsystem, and you can see the contents of many

items before selecting the one you want to run.

In the Commands field, you select where you want to run the command. The

choices are Normal, which means that the command will run in the RSE

communication server job, Batch or Interactive.

To change the library list:

1. Click the iSeries Table View tab from the views at the bottom of the

workbench.

2. In the Command field type, CHGCURLIB RSELABXX for example.

Note: Use a library that is on your iSeries system.

3. Click Run.

Chapter 4. Module 4. Verifying and compiling source 59

If you haven’t used the iSeries Table view to show iSeries objects in this view

you will see an error message because the table view is not linked to an active

connection.

If you see this message, click OK.

a. In the Remote Systems view, right-click QCBLLESRC.

b. Click Show in Table on the pop-up menu.

The table view is now populated with the member in the selected source

file.

c. Run the CHGCURLIB command again.

The command will run on the iSeries and after completion you will see the

completion message on the bottom of the iSeries Table view.

4. Back in the workbench in the Remote Systems view, right-click Library list and

click Refresh.

60 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

5. You will see a small green asterisk beside the RSELABxx library to indicate it as

your current library.

6. You can also connect to other than iSeries systems with the Remote System

Explorer and launch commands for these systems as well, for example, your

local system, or Linux™.

You have submitted a command to change the current library in the command line

of the iSeries Table view now you are ready to begin “Exercise 4.4: Running

commands and programs.”

Exercise 4.4: Running commands and programs

Before you begin, you must complete “Exercise 4.3: Submitting iSeries commands

in the iSeries table view” on page 59.

As you know already, you can run programs and commands from the Remote

Systems view or the iSeries Table view in three ways:

1. In the Remote System Explorer communications server job.

This is the one you are using currently.

2. In a batch job.

3. In an interactive job (to test 5250 applications).

4. In a server job

Using the first option lets you run the program in the same job as the

communications server. With batch and interactive jobs, you cannot monitor the

status as easily, however, you do not tie up your communications server and you

are notified when the program command ends. Batch jobs work as you would

expect and do not require any initial setup. Interactive programs require a 5250

emulator, and you need to first run a STRRSESVR connectionName command to

associate the emulator with a particular connection in the Remote System Explorer

communications server. A multi-threaded debug session creates a new server job

and this way keeps the RSE communications server job free for other tasks.

Chapter 4. Module 4. Verifying and compiling source 61

Starting an interactive connection

To start an interactive connection:

1. Start a 5250-emulation session.

2. Sign-on to the iSeries with your User ID and password.

Note: Instead of the Enter key, you may have to use the Ctrl key in your

5250-emulation session.

3. In the command line, type the command

STRRSESVR connectionName

4. Press Enter.

The connectionName parameter is the name of your connection defined in the

Remote Systems view. This associates the interactive job with the Remote

System Explorer communications server.

Running the payroll program

Now you are ready to run the program that you just compiled.

Return to the workbench.

To run the program:

62 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

1. In the Remote Systems view, locate the PAYROLLC2 program that you

created.

 2. Right-click the PAYROLLC2 program.

 3. Click Run As > Interactive on the pop-up menu.

 4. Switch to your 5250-emulation session.

You will see the payroll program menu.

 5. Type x beside Employee Master Maintenance.

 6. Press Enter.

Chapter 4. Module 4. Verifying and compiling source 63

7. Type 234 for the Employee Number.

 8. Type A for the Action Code to add employee 234.

 9. Press Enter.

10. Type any information you like about the employee.

11. Press Enter.

12. Play in the application as much as you like.

13. Press F3 to end the applications.

14. To get control of the interactive job, right-click iSeries Objects and click

Release Interactive Job on the pop-up menu.

You can also choose to disconnect a session. You would right-click the

connection and click Disconnect on the pop-up menu.

Now you are ready to review your knowledge of this module by taking the quiz.

You can also apply what you have learned in this module by completing the

practice tasks detailed in More practice.

 Quiz

1. The ______ tool checks for semantic (compile) errors on your workstation so

that you can guarantee a clean compile on the iSeries.

a. Compile

b. LPEX Editor

c. Program Generator

d. Program Verifier
2. The ____________ view identifies each error with the severity level of the error,

the ID of the error, the message, the severity, the line in the source member that

caused the error, the location of the source member that produced the error,

and the connection name.

a. Remote Systems

b. Outline

c. Navigator

d. iSeries Error List
3. You can sort the entries in the iSeries Error List view by:

a. ID

b. Message

c. Severity

d. Line

e. Location

f. Connection

g. All of the above
4. If you used the local program verifier, then your host compiles should be

successful; no wasted iSeries cycles. (T, F)

5. A compile command can be run on an iSeries server from the Remote System

Explorer, and you can retrieve error feedback from the compile. (T, F)

6. From the iSeries Table view you can:

a. List and sort libraries, objects, and members

b. Copy, rename, delete, edit, compile and run (for programs), open with and

browse (for members) in the view from the pop-up menu

c. Transfer files from one system to another

64 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

d. All of the above
7. You can run programs and commands from the Remote Systems view or the

iSeries Table view in:

a. A Remote System Explorer communications server job

b. A batch job

c. An interactive job

d. Multi-threaded

e. All of the above
8. Interactive programs require a 5250 emulator, and you need to first run a

STRRSESVR connectionName command to associate the emulator with a

particular connection in the Remote System Explorer. (T, F)

More practice

Given your experience using the Program Verifier and Compile command, and that

you have your own source on your own iSeries system, try these new tasks: Check

out Compile (Prompt) Work with Compile commands. Assuming you receive

errors in your source (add some errors into your source if you don’t have any)

when you verify your source, choose insert all error messages into the editor from

the Error list. Use the product online help to assist you in these tasks.

Module recap

You have completed Chapter 4, “Module 4. Verifying and compiling source,” on

page 53. You have learned how to:

v Check for semantic errors on your workstation

v Start the Program Verifier tool

v Use the iSeries Error list to locate each error in the source

v Use content-assist to fix an error

v Save your source

v Re-verify source

v Change compile preferences

v Invoke the compile command

v Change the current library using the Command field in the iSeries Table view

v Start an interactive connection

v Invoke the payroll program

Now that you know how to verify and compile source from the Remote Systems

view and run the payroll program interactively, you can move onto debugging

your payroll program. Continue to Chapter 5, “Module 5. Debugging a program,”

on page 67.

Chapter 4. Module 4. Verifying and compiling source 65

66 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Chapter 5. Module 5. Debugging a program

This module teaches you how to debug a CL and ILE COBOL program.

You will learn how to start the debugger, set breakpoints, monitor variables, run

and step into a program, view the call stack in the Debug view, remove a

breakpoint, add a storage monitor, and set watch breakpoints and all from the

Debug perspective.

In this module, you will:

v Invoke the debugger from the Launch Configurations window

v Add a breakpoint

v Add a conditional breakpoint

v Edit a breakpoint

v Monitor a variable through the Monitors view

v Step into your payroll program

v Show a listing view

v List the call stack entries in the Debug view

v View all breakpoints

v Remove a breakpoint

v Monitor storage

v Set a watch breakpoint

v Close the debugger

Exercises

The exercises within this module must be completed in order:

v “Exercise 5.1: Introducing the Integrated iSeries Debugger” on page 68

v “Exercise 5.2: Starting the integrated debugger” on page 68

v “Exercise 5.3: Setting breakpoints” on page 73

v “Exercise 5.4: Monitoring variables” on page 76

v “Exercise 5.5: Stepping into a program” on page 82

v “Exercise 5.6: Listing call stack entries” on page 84

v “Exercise 5.7: Setting breakpoints in PAYROLLD” on page 85

v “Exercise 5.8: Removing a breakpoint in PAYROLLD” on page 87

v “Exercise 5.9: Monitoring variables in PAYROLLD” on page 88

v “Exercise 5.10: Adding a memory monitor” on page 90

v “Exercise 5.11: Setting watch breakpoints” on page 91

v “Exercise 5.12: Closing the debug session” on page 94

Time required

This module will take approximately 30 minutes to complete.

© Copyright IBM Corp. 2001, 2005 67

Exercise 5.1: Introducing the Integrated iSeries Debugger

The Integrated iSeries Debugger is a source-level debugger that enables you to

debug and test an application that is running on an iSeries system. It provides a

functionally rich interactive graphical interface that allows you to:

v View source code or compiler listings, while the program is running on the

iSeries system.

v Set, change, delete, enable and disable line breakpoints in the application

program. You can easily manage all your breakpoints using the Breakpoints

view.

v Set watch breakpoints to make the program stop whenever a specified variable

changes.

v View the call stack of your program in the Debug view. As you debug, the call

stack gets updated dynamically. You can view the source of any debug program

by clicking on its call stack entry.

v Step through your code one line at a time.

v Step into or step over program calls and ILE procedure calls.

v Display a variable and its value in the Monitors view. The value can easily be

changed to see the effect on the program’s execution.

v Locate procedure calls in a large program quickly and easily using the

Modules/Programs view.

v Debug multithreaded applications, maintaining separate stacks for each thread

with the ability to enable and disable any individual thread.

v Load source from the workstation instead of the iSeries – useful if you don’t

want the source code on a production machine.

v Debug client/server and distributed applications.

The Debugger supports RPG/400® and ILE RPG, COBOL and ILE COBOL, C, C++

and CL.

In the following exercises you will be given the opportunity to learn about some of

the basic features of the Debugger. For the purpose of these exercises you will

debug a CL and an ILE RPG program. Don’t worry if you don’t know RPG.

You know the basic features of the debugger and now you are ready to begin

“Exercise 5.2: Starting the integrated debugger.”

Exercise 5.2: Starting the integrated debugger

Before you begin, you must complete “Exercise 5.1: Introducing the Integrated

iSeries Debugger.”

You will be working with the COBOL program PAYROLLD.

Note: PAYROLLD is the same COBOL program as PAYROLLC2 but without

compile errors. You are using it instead of PAYROLLC2 in this exercise, to

accommodate anyone who decided to skip right to this exercise without

completing the exercises in Chapter 4, “Module 4. Verifying and compiling

source,” on page 53.

You can start the Debugger in several ways: directly from the pop-up menu of a

program or service program in the Remote Systems view, or from a Launch

Configurations window. Starting directly from the Remote Systems view doesn’t

68 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

allow you to specify parameters to be passed to the program. The Launch

Configurations window allows you to modify how the program is invoked and to

specify parameters.

To make the exercise interesting you will use CL program CLC1 to call PAYROLLD

and you will pass one parameter to CLC1.

This means you will use the Launch Configurations window.

To start the debugger:

 1. In the Remote Systems view expand the Library list filter, if it isn’t expanded

already.

 2. Expand library RSELABXX, if it isn’t expanded already.

 3. Select program CLC1 in library RSELABXX.

 4. Click the arrow beside the DEBUG icon

on the workbench toolbar.

 5. Select Debug from the list.

The Debug Launch Configurations window opens.

 6. Select iSeries: Debug Interactive Application under the Configurations list.

Chapter 5. Module 5. Debugging a program 69

7. Click New.

Note: You could also use Debug(prompt) > Interactive from the pop-up

menu.

The right pane of the Debug Launch Configurations window opens.

 8. In the Name field, type the program name CLC1.

70 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

9. Select the Update production files check box.

10. Click the How To Start tab.

The How To Start page opens.

By default, the page contains a call for the program selected in the Remote

Systems view.

11. Click Prompt.

The Call Program (CALL) window opens.

12. In the Parameters field, type ’XX’ where ’XX’ is your workstation number.

Click Add.

The parameter value will appear in the lower list.

If you forget to click Add, the parameter will be missing from the CALL

Program command and you will receive an error when the program tries to

call the payroll program.

13. Click OK.

The complete start command for the program appears.

Chapter 5. Module 5. Debugging a program 71

14. Click Debug.

The Debug perspective opens.

If not, you may see this error message.

The Remote System Explorer communications server has been shut down in

the meantime. Go to your 5250 emulator and restart the Remote System

Explorer communications server following the instructions in the message.

You don’t have to cancel the message. It will be removed as soon as the

connection between the Remote System Explorer communications server and

the interactive session has been established. Now the Debug perspective is

loaded in the workbench.

Now that the program is active on the iSeries and stopped at the first

executable statement, the debugger displays the source.

72 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

You have started an interactive debug session and now you are ready to begin

“Exercise 5.3: Setting breakpoints.”

Exercise 5.3: Setting breakpoints

Before you begin, you must complete “Exercise 5.2: Starting the integrated

debugger” on page 68.

You can only set breakpoints at executable lines. All executables lines are displayed

in blue. One way to set a breakpoint is to right-click on the line in the Source view.

To set a breakpoint:

1. Position the cursor on line 11.

2. Right-click anywhere on line 11.

Chapter 5. Module 5. Debugging a program 73

3. Click Add breakpoint on the pop-up menu.

A dot with a checkmark in the prefix area indicates that a breakpoint has been

set for that line. The prefix area is the small grey margin to the left of the

source lines.

Now you add a conditional breakpoint to stop in the loop when it loops the

99th time.

Adding a conditional breakpoint

To add a conditional breakpoint:

1. Position the cursor on line 8.

2. Right-click on line 8.

3. Click Add breakpoint on the pop-up menu.

4. Click the Breakpoints tab in the upper right pane of the Debug perspective.

The Breakpoints view opens.

74 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

5. In the Breakpoints view right-click the breakpoint for line 8.

6. Click Edit Breakpoint on the pop-up menu.

The Edit a Line Breakpoint window opens.

7. Click Next.

Chapter 5. Module 5. Debugging a program 75

You only want to stop in the loop when it executes for the 99th time or more.

You can do that by setting the From field of the Frequency group to 99.

8. Under Frequency in the From field, type 99.

9. Click Finish.

You have added a breakpoint including a conditional breakpoint to your source

and now you are ready to begin “Exercise 5.4: Monitoring variables.”

Exercise 5.4: Monitoring variables

Before you begin, you must complete “Exercise 5.3: Setting breakpoints” on page

73.

You can monitor variables in the Monitors view. Now you will monitor the

variable &count.

To monitor a variable:

1. In the Source view, double-click the variable &count.

76 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

2. Right-click &count.

3. Click Monitor Expression on the pop-up menu.

The Monitors view opens.

The variable appears in the Monitors view. Its current value is zero.

Tip: If you quickly want to see the value of a variable without adding it to the

Monitor, leaving the mouse pointer on a variable for a second or so will

display its value in a pop-up window.

Now that some breakpoints are set, you can start to run the application.

Chapter 5. Module 5. Debugging a program 77

4. Click the Resume

icon from the Debug toolbar.

The program starts running and stops at the breakpoint at line 8. (Be patient,

the Debugger has to stop 98 times but because of the condition continues to

run until the 99th time.) Notice in the Monitors view, that &count now has the

value 99.

5. Click the Resume icon again.

The program stops at the breakpoint at line 8 again and &count now has the

value 100.

6. Click the Resume icon once more so that the program runs to the breakpoint at

line 11.

If you do not see the error message below, go to “Exercise 5.5: Stepping into a

program” on page 82.

Error Handling

If you forget to add the parameter to the CALL program command when you

debug the program, you will see this error message.

a. Click OK.

b. Click the Terminate

icon on the Debug toolbar.

The debug session terminates on the workstation but the exception waits for

input from the 5250 emulation session.

If you closed the Debug view by mistake, you will need to re-open the

Debug view and then terminate the debug session on the workstation.

78 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Click Window > Show View > Debug.

Remember to terminate the Debug view if you haven’t done so already.

Chapter 5. Module 5. Debugging a program 79

c. Go to your 5250 emulator and press Enter until the program messages

complete and the Remote System Explorer communications server screen

appears again.

d. In the workbench, click the Remove all terminated launches icon on the

Debug toolbar to clean up the Debug view.

e. Click the arrow beside the Debug icon on the workbench toolbar to start a

new debug session.

f. Select Debug from the list.

The Debug Launch Configurations window opens.

80 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

g. Click the How To Start tab.

The How To Start page opens.

By default, the page contains a call for the program selected in the Remote

Systems view.

h. Click Prompt.

The Call Program (CALL) window opens.

Chapter 5. Module 5. Debugging a program 81

i. In the Parameters field, type ’XX’ where ’XX’ is your workstation number.

Click Add.

The parameter value will appear in the lower list.

j. Click OK.

k. Click Debug.

If you did not terminate the debug session, you will see this error message.

Complete the steps shown earlier in the section called Error Handling to

terminate the debug session then start the debug session again by clicking

the arrow beside the Debug icon on the workbench toolbar and selecting

CLC1 from the list. Breakpoints and monitors are restored.

You have monitored the variable &count and now you are ready to begin “Exercise

5.5: Stepping into a program.”

Exercise 5.5: Stepping into a program

Before you begin, you must complete “Exercise 5.4: Monitoring variables” on page

76.

The Debugger allows you to step over a program call or step into it. When you

step over a program call, the called program runs and the Debugger stops at the

next executable statement in the calling program. You are going to step into the

PAYROLLG program.

To step into a program:

1. Click the Step into icon on the Debug toolbar.

82 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

The source of PAYROLLD is displayed. Depending on the option you used to

compile the program (*SRCDBG or *LSTDBG for RPG, or *SOURCE, *LIST, or

*ALL for ILE RPG), this window displays either the Source or Listing View.

If you specified an incorrect parameter for the CALL program command, you

will see this error message.

Complete the same steps as covered in the section called Error Handling in

“Exercise 5.4: Monitoring variables” on page 76.

2. Right-click anywhere in the Source view.

3. Click Switch view > Show *LISTING on the pop-up menu.

Chapter 5. Module 5. Debugging a program 83

4. Page down in the source and take a look at the expanded file descriptions.

You don’t have any /Copy member in your PAYROLLD program but these

would also be shown in a Listing view. Switch back to the Source view.

5. Right-click anywhere in the Source view.

6. Click Switch view > Show *SOURCE on the pop-up menu.

You have stepped into PAYROLLD program, switched the view from source to

listing and back to source and now you are ready to begin “Exercise 5.6: Listing

call stack entries.”

Exercise 5.6: Listing call stack entries

Before you begin, you must complete “Exercise 5.5: Stepping into a program” on

page 82.

The Debug view in the upper left pane, lists all call stack entries. It contains a tree

view for each thread. The thread can be expanded to show every program,

module, and procedure that is on the stack at the current execution point. If you

double-click on a stack entry you will display the corresponding source if it is

available. Otherwise the message No Debug data available appears in the Source

view.

In the Debug view, expand the stack entry of Thread1 if it is not expanded already.

84 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

The stack entry allows you to work with and switch between different programs

and/or ILE modules.

You have viewed the call stack entries of your program and now you are ready to

begin “Exercise 5.7: Setting breakpoints in PAYROLLD.”

Exercise 5.7: Setting breakpoints in PAYROLLD

Before you begin, you must complete “Exercise 5.6: Listing call stack entries” on

page 84.

Now you add some breakpoints in PAYROLLD.

To add breakpoints:

1. Select PAYROLLD in Thread1.

2. In the source view (also called the iSeries default editor) scroll to line 201.

3. Double-click the prefix area of line 201.

A breakpoint icon is added to the prefix area of this line to indicate that a

breakpoint is set.

4. Repeat the above step for line 206.

Chapter 5. Module 5. Debugging a program 85

5. Repeat the above step for line 218.

To view all breakpoints, select the Breakpoints tab from the top left pane.

This view shows all breakpoints currently set in your Debug session. This is a

convenient place to work with breakpoints. You can remove, disable/enable,

add, or edit a breakpoint. These tasks are available from the pop-up menu

when you right-click in the view area. Double-click any entry to show the

source where the breakpoint is set.

You have added several breakpoints to PAYROLLD and now you are ready to

begin “Exercise 5.8: Removing a breakpoint in PAYROLLD” on page 87.

86 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Exercise 5.8: Removing a breakpoint in PAYROLLD

Before you begin, you must complete “Exercise 5.7: Setting breakpoints in

PAYROLLD” on page 85.

It is also easy to remove breakpoints from the Source view.

To remove a breakpoint:

1. Right-click the prefix area of line 206.

2. Click Remove Breakpoint on the pop-up menu.

The icon is removed from the prefix area indicating that no breakpoint is set on

that line.

Now you are ready to run the PAYROLLD program.

3. Click the Resume

icon from the Debug toolbar.

The program waits for input from the 5250-emulation session.

Chapter 5. Module 5. Debugging a program 87

4. Type an X beside the Project Master Maintenance option.

5. Press Enter in the emulation session.

The program runs to the breakpoint at line 201.

You have removed a breakpoint from PAYROLLD and now you are ready to begin

“Exercise 5.9: Monitoring variables in PAYROLLD.”

Exercise 5.9: Monitoring variables in PAYROLLD

Before you begin, you must complete “Exercise 5.8: Removing a breakpoint in

PAYROLLD” on page 87.

Now lets monitor variables and change them in PAYROLLD.

To monitor variables:

1. In the source view, double-click the variable EMPAPL on line 201.

2. Right-click the variable.

3. Click Monitor Expression on the pop-up menu.

88 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

4. Click the Monitors tab in the upper right pane.

The variable appears in the Monitors view. Its value is blank because you did

not select the Employee Master Maintenance option.

5. In the same way add the variables PRJAPL on line 206 and RSNAPL on line

244 to the monitor.

Variable PRJAPL equals X because you did select the Project Master

Maintenance option.

6. In the Monitors view, double-click the variable RSNAPL.

The value changes into an entry field.

7. In the entry field, type in the new value X for the variable.

8. Press Enter.

The variable is successfully changed.

You have monitored several variables in PAYROLLD and now you are ready to

begin “Exercise 5.10: Adding a memory monitor” on page 90.

Chapter 5. Module 5. Debugging a program 89

Exercise 5.10: Adding a memory monitor

Before you begin, you must complete “Exercise 5.9: Monitoring variables in

PAYROLLD” on page 88.

Adding a memory monitor for a variable allows you to view the memory starting

with the address where the variable is located. The memory is displayed in

hexadecimal and text format.

To add a memory monitor:

1. In the Source view, double-click the variable IND-ERROR in line 219.

2. Right-click and select Monitor Storage > Memory on the pop-up menu.

A new page is added to the Memory view. The tab shows the name of the

variable.

90 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

3. Use the scroll bar on the right of the Memory view to scroll down.

You can see the current content of the memory.

4. Right-click in the view area.

5. Click Reset to Base Address on the pop-up menu to return to the starting

address.

6. Click the X on the Memory title bar to remove the Memory monitor.

You have added a memory monitor for the variable IND-ERROR and now you are

ready to begin “Exercise 5.11: Setting watch breakpoints.”

Exercise 5.11: Setting watch breakpoints

Before you begin, you must complete “Exercise 5.10: Adding a memory monitor”

on page 90.

A watch breakpoint provides a notification to the user when a variable changes. It

will suspend the execution of the program until an action is taken.

To set a watch breakpoint:

1. Go to the Line number field at the bottom of the source area. In this field enter

118 to go to that line.

Chapter 5. Module 5. Debugging a program 91

2. Double-click variable IND-TABLE to highlight it.

3. Right-click and click Add Watch Breakpoint on the pop-up menu.

The Add a Watch Breakpoint window opens. The Expression field is pre-filled

with the highlighted variable IND-TABLE.

By default the Number of bytes to watch field is set to zero, which means the

variable will be watched in its defined length.

92 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

4. Click Finish.

The watch breakpoint is now set.

5. Click the Resume button on the Debug toolbar.

The application waits for input from the 5250-emulation session.

6. In the 5250 emulation session, type 123 for Project Code and D (for delete) in

the Action Code field.

7. Press Enter. A message is displayed indicating that the variable IND-TABLE

has changed.

Chapter 5. Module 5. Debugging a program 93

8. Click OK.

9. In the Breakpoints view, right-click the Watch breakpoint and click Disable on

the pop-up menu.

You have added a watch breakpoint for the variable IND-TABLE and run the

program to see the notification that the variable has changed and you are ready to

begin “Exercise 5.12: Closing the debug session.”

Exercise 5.12: Closing the debug session

Before you begin, you must complete “Exercise 5.11: Setting watch breakpoints” on

page 91.

To close the debugger:

1. Click the Resume icon on the Debug toolbar.

The application waits for input from the 5250-emulation session.

2. Switch to the 5250 emulation session.

3. Press F3 to end the job.

4. A message Program terminated appears:

Click OK.

5. Right-click the Debug icon on the top right of the workbench.

6. Click Close on the pop-up menu to close the Debug perspective.

Now you are ready to review your knowledge of this module by taking the quiz.

You can also apply what you have learned in this module by completing the

practice tasks detailed in More practice.

 Quiz

 1. You can start the debugger:

a. From the Remote Systems view

b. Launch Configurations window

c. Both
 2. You can only set breakpoints at executable lines. (T, F)

 3. To set a breakpoint you:

a. Right-click on the line and click Add Breakpoint on the pop-up menu.

b. Double-click in the prefix area.

94 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

c. Right-click in the Breakpoints view and click Add Breakpoint on the

pop-up menu.

d. Right-click in the prefix area and click Add Breakpoint on the pop-up

menu.

e. All of the above
 4. You can change variables and indicators in the:

a. Remote Systems view

b. Debug view

c. Monitors view

d. Source view

e. All of the above
 5. The debugger allows you to:

a. Step over a program call

b. Step into a called program

c. Both
 6. The Debug view lists all call stack entries. It contains a tree view for each

thread. (T, F)

 7. You can perform which actions on breakpoints:

a. Delete

b. Add

c. Disable/Enable

d. Edit

e. All of the above
 8. Adding a storage monitor for a variable allows you to view the storage

starting with the address where the variable is located. (T, F).

 9. The Storage monitor supports these display formats:

a. Hexadecimal and text

b. Character

c. Text only

d. Decimal

e. A and B
10. A _________ breakpoint provides a notification to a user when a variable

changes. It will suspend the execution of the program until an action is taken.

a. Watch

b. Line

c. Conditional

More practice

Given your experience in working with the debugger features, in your own source,

try setting, changing, deleting, enabling, disabling line breakpoints, setting watch

breakpoints, displaying and changing variables and viewing the call stack as you

debug your program. Use the product online help to assist you in these tasks.

Module recap

You have completed Chapter 5, “Module 5. Debugging a program,” on page 67.

You have learned how to:

Chapter 5. Module 5. Debugging a program 95

v Invoke the debugger from the Launch Configurations window

v Add a breakpoint

v Add a conditional breakpoint

v Edit a breakpoint

v Monitor a variable through the Monitors view

v Step into your payroll program

v Show a listing view

v List the call stack entries in the Debug view

v View all breakpoints

v Remove a breakpoint

v Monitor storage

v Set a watch breakpoint

v Close the debugger

You have mastered debugging your program and now you learn how to define

filters and perform actions. Continue with Chapter 6, “Module 6: Exploring Remote

System Explorer,” on page 97.

96 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Chapter 6. Module 6: Exploring Remote System Explorer

This module teaches you how to use the Remote System Explorer perspective to

work with the iSeries objects that you used in the previous modules. You will learn

how easy it is to define filters, perform actions and define your own actions. In

short, you’ll see how Remote System Explorer can organize and integrate your

work and make that work easier.

In this module, you will:

v Know the features of Remote System Explorer

v Create a filter to show specific iSeries libraries

v Change the filter to add more iSeries libraries

v Create a filter to show all the source files in a library

v Access members to edit from your filter

v Create a user action that copies a source file with data to a new source file in the

same library

v Specify user action parameters

v Specify a restriction on a user action

v Try the user action

v Run an OS/400 command from the iSeries Table view

Exercises

v “Exercise 6.1: More about the Remote System Explorer”

v “Exercise 6.2: Creating a library filter” on page 98

v “Exercise 6.3: Creating an object filter” on page 102

v “Exercise 6.4: Creating a user action” on page 106

v “Exercise 6.5: Running commands from the Remote System Explorer” on page

111

Time required

This module will take approximately 15 minutes to complete.

Exercise 6.1: More about the Remote System Explorer

Most of the functions of CODE Project Organizer have been replaced by

WebSphere Studio functions with the exception of accessing ADM parts. The

Remote System Explorer is replacing PDM (Program Development Manager) on

the workstation. It currently doesn’t have all the function of PDM but will over

time eventually be a full replacement for PDM.

Remote System Explorer allows you to:

1. Simplify your work by giving you quick access to lists of iSeries libraries,

objects, members, IFS files, UNIX® files, and local files.

2. Use the context-sensitive pop-up menus on these lists to perform actions such

as start the Remote Systems LPEX Editor, CODE Designer, or Integrated

Debugger or other common iSeries actions.

© Copyright IBM Corp. 2001, 2005 97

3. Use the Work with User Actions option to create and manage your own

user-defined actions and have them appear in the pop-up menus.

4. Use the command support to increase your productivity by allowing you to

enter and repeat iSeries or local commands without switching to an emulator

session.

You have read the list of Remote System Explorer capabilities and you are ready to

begin “Exercise 6.2: Creating a library filter.”

Exercise 6.2: Creating a library filter

Before you begin, you must complete “Exercise 6.1: More about the Remote System

Explorer” on page 97.

In the Remote System Explorer perspective, you now need to get to the iSeries

objects you want to work with.

In the previous modules you have worked with the Library list. Now you will

create your own library filter. Library filters list a set of libraries from your iSeries

system in the Remote Systems view. But first let’s understand what filters are all

about.

Filters allow you to easily organize elements within your system. You use the filter

function to list iSeries native file system objects (such as libraries, objects, or

members).

To create a library filter:

1. In the Remote Systems view expand the connection that connects to your

iSeries system if its not already expanded.

2. Expand iSeries Objects if its not already expanded.

3. Expand Work with Libraries. (You can also right-click iSeries Objects and click

New > Library Filter on the pop-up menu).

Expanding Work with libraries corresponds to the WRKLIBPDM command,

plus creates the filter in the Remote Systems view.

The Create a new iSeries library filter page opens:

98 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

You are going to create a filter to specify the libraries you want to work with,

so they will show in iSeries Objects. You want to create a filter that shows all

libraries on the iSeries with the name RSExxxxxx and VARxxxxxxx, xxx being

any character.

Note: You may need to select different libraries that appear on your system if

libraries with the above names do not exist.

You specify the first filter string that selects the libraries starting with RSE.

4. Type RSE* into the Library field, using the * wild card character.

5. Click Next.

The Name the new filter page opens.

Note: You can choose between creating the filter for all connections or for this

specific one only.

6. In the Filter name field, type All RSE and VARPG libraries.

Chapter 6. Module 6: Exploring Remote System Explorer 99

You give your filters a name because the Remote System Explorer saves them

for future use, unlike PDM, which does not save filters.

7. Click Finish.

Back in the Remote Systems view under iSeries Objects you will see the new

filter expanded, listing all RSE* libraries.

Now you need to add the VARPG libraries.

Changing the library filter

To change the library filter:

1. Right-click the filter All RSE and VARPG libraries and click Change.

The Change Library Filter window opens.

100 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

2. Select New filter string from the Filter strings list.

3. In the Library field, type VAR*.

4. Click Create.

The VAR* filter string is added to the list.

5. Click OK.

You are now back in the Remote Systems view.

You will see the list expanded to include your filter. Now you can work with

the libraries directly and can drill down to the object you want to work with.

Chapter 6. Module 6: Exploring Remote System Explorer 101

You have created a filter to show a specific iSeries library and changed that filter to

add more iSeries libraries and you are ready to begin “Exercise 6.3: Creating an

object filter.”

Exercise 6.3: Creating an object filter

Before you begin, you must complete “Exercise 6.2: Creating a library filter” on

page 98.

Now create an object filter. Object filters list a set of objects from your iSeries host

in the Remote Systems view.

To create an object filter:

 1. In the Remote Systems view, expand your connection and then expand iSeries

Objects if not already expanded.

 2. Expand Work with objects. You can also right-click iSeries Objects and click

New > Object filter on the pop-up menu.

Note: Expanding Work with objects corresponds to the WRKOBJPDM

command.

The Create a new iSeries object filter page opens:

Now create a filter to show all your source files in your RSELABXX library.

 3. In the Library field, type RSELABxx.

102 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

4. Click Browse beside the Object type field.

The Select Object Type window opens.

 5. Select *FILE under the Select an object type list.

 6. Click OK.

The Create a new iSeries object filter page displays with the object type

updated.

 7. Click Browse beside the Object attribute field.

The Select Object Attribute window opens.

 8. Select PF-SRC under the Select an object attribute list.

 9. Click OK.

Chapter 6. Module 6: Exploring Remote System Explorer 103

10. Click Next.

The Name the new filter page opens.

11. In the Filter name field, type My source files.

12. Click Finish.

The new object filter displays in the Remote Systems view under iSeries

Objects:

104 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Note: If you end up with too many filters, you can create filter pools. They

allow you to group filters.

Now you know how to create filters and tailor your development

environment. Filters can also be specified for non iSeries servers and your

local system.

Now you can work with the objects you have in your Remote Systems view

like you worked in PDM with a subset of libraries, objects, or members.

Let’s assume you want to edit the member PAYROLL in the source file

QRPGLESRC using this object filter.

Editing a member from your own object filter

To edit a member:

1. Expand QCBLLESRC.

2. Right-click member PAYROLLC.

3. Click Open With > Remote Systems LPEX Editor on the pop-up menu.

This will download the source member and open the editor with this member.

After you have edited the member you could save it and then compile it from

the Remote Systems view by using the pop-up menu options on this member.

You can also create your own actions in addition to the default actions.

You have created a filter to show all the source files in your library and accessed

members to edit from your filter and you are ready to begin “Exercise 6.4: Creating

a user action” on page 106.

Chapter 6. Module 6: Exploring Remote System Explorer 105

Exercise 6.4: Creating a user action

Before you begin, you must complete “Exercise 6.3: Creating an object filter” on

page 102.

In PDM you can create user actions in addition to using the pre-supplied system

actions. In Remote System Explorer you can do the same. You define user actions

through the Work With User Actions window. User actions can be defined for

iSeries libraries, objects, members and jobs as well as folders and files in any

remote UNIX, Windows, Linux, Local, or IFS system.

To open the Work with User Actions wizard:

 1. Expand your iSeries connection and expand iSeries Objects if not already

expanded.

 2. Expand the Library list filter if not already expanded.

 3. Right-click RSELABXX.

 4. Click User Actions > Work with User Actions on the pop-up menu.

The Work with User Actions window opens.

106 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

5. In the right pane of the Work with User Actions window, expand New in the

list, if it is not expanded already.

 6. Select Object action.

You want to create a user action that copies a source file with data to a new

source file called QJUNKSRC in the same library.

 7. In the Action field, type Copy source file for the user action name.

 8. In the Comment field, type Copy source files with data.

 9. In the Command field, type CRTDUPOBJ for the command to execute.

10. Click Prompt to open the command prompter for this command.

Chapter 6. Module 6: Exploring Remote System Explorer 107

This is the command you will be running:

CRTDUPOBJ OBJ(&N) FROMLIB(&L) OBJTYPE(&T) NEWOBJ(QJUNKSRC) DATA(*YES)

Specifying user action parameters

To specify user action parameters:

1. In the From Object field, type &N to indicate to use the name of the selected

object in the Remote Systems view.

2. In the From Library field, type &L to pick up the library name from the selected

object.

3. In the Object Type field, type &T to pick up the object type from the selected

object.

4. In the New Object field, type QJUNKSRC.

5. Select the All parameters check box to see the additional Duplicate data

parameter.

Now the Duplicate data parameter is also shown on the prompt window.

6. Select *YES from the Duplicate data list.

7. Click OK.

You return to the Work with User Actions window.

8. Select the Refresh after check box, so that the Remote Systems view gets

refreshed after the action has been run.

108 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Note: Clicking the Insert variable push button displays a list of valid

replacement variables with the explanation of what they do.

This user action is only valid for Source physical files. You need to specify this

restriction so this user action will only show in pop-up menus when you

right-click on a source physical file.

Specifying a restriction on a user action

To specify this restriction:

1. Under the Defined Types list box, click FILE_SRC.

2. Click Add beside the Defined Types list box.

FILE_SRC is now one of the selected types. Actually since you only selected

this one it is the only one.

3. Click Create then Close.

Now, only when you right-click on a source file, will this user action appear on

the pop-up menu. For any other object type it will not appear. Back in the

workbench and the Remote System view, give it a try.

Note: Remember to close the payroll source member if you opened it earlier.

Trying the user action

To try your user action:

Chapter 6. Module 6: Exploring Remote System Explorer 109

1. Locate your filter My source files.

2. Expand the filter My source files, if it is not already expanded.

3. Right-click the QCBLLESRC file.

4. Click User Actions > Copy source file on the pop-up menu.

The file gets duplicated and the list gets refreshed. Your new source file will

show in the list. You can check the messages of the CL commands you are

running in the RSE Communications server job by looking at the iSeries

Commands log in the right hand side bottom pane of the workbench.

5. To delete the source file QJUNKSRC that you just created, right-click

QJUNKSRC.

6. Click Delete on the pop-up menu.

The Delete Confirmation dialog opens.

7. Click Delete.

You have created a user action that copies a source file with data to a new source

file, specified user action parameters, specified restrictions on the user action and

tried the user action and you are ready to begin “Exercise 6.2: Creating a library

filter” on page 98.

110 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Exercise 6.5: Running commands from the Remote System Explorer

Before you begin, you must complete “Exercise 6.4: Creating a user action” on

page 106.

The Command entry is part of the Remote Systems view.

To run a command:

1. Check if you have an iSeries Table View tab in the bottom right pane where

your command log appeared in the previous exercise.

2. If you have it, click on it.

3. If you don’t have it:

a. In the Remote Systems view, right-click My source files filter.

b. Click Show in table on the pop-up menu.
As you have seen already you can now run commands on the iSeries server

that the table is connected to. You can enter commands in the Commands field

beneath the iSeries Table view, and view messages in the Messages field. You

can enter a command and click either Prompt to specify parameters and then

Run, or just click Run. When you run a command, the Messages field is

populated with the messages from the command. When you select a message,

the Details button is enabled. When you click this button, the message and its

help is displayed.

4. Type an iSeries command, for example ?ADDLIBLE.

The question mark is there to display a prompt screen.

Instead of specifying a question mark you could use the Prompt push button.

5. Click Run.

The Command Prompt window for the ADDLIBLE command opens.

6. In the Library field, type RSELAB00 and click OK.

Chapter 6. Module 6: Exploring Remote System Explorer 111

That will add this library to the library list of your Remote System Explorer job

on the iSeries server.

Note: You may need to add a different library if the library RSELAB00 does

not exist on your iSeries system.

The messages field will confirm the successful completion of this command. To

get to the command history, similar to F9 on the 5250 screen, select the

appropriate value from the Command list (down arrow beside the Messages

field.

You could also use the iSeries Commands subsystem in the Remote Systems

view underneath the iSeries Objects subsystem and run predefined commands

or define your own commands.

You have run an OS/400 command from the iSeries Table view.

Now you are ready to review your knowledge of this module by taking the quiz.

You can also apply what you have learned in this module by completing the

practice tasks detailed in More practice.

 Quiz

 1. The Remote System Explorer is replacing what ADTS tool:

a. Page Designer

b. CODE Designer

c. Screen Design Aid

d. Program Development Manager
 2. __________ filters list a set of libraries from your iSeries system in the Remote

Systems view.

112 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

a. Object

b. Member

c. Library

d. Job
 3. Filters allow you to easily organize elements within your system. You use the

filter function to list iSeries native file system objects (such as libraries, objects,

or members). (T, F)

 4. Expanding Work with Libraries corresponds to the _________ command.

a. WRKOBJPDM

b. WRKLIBPDM

c. WRKMEMPDM

d. All of the above
 5. You can create filters for all connections or for a specific connection. (T, F)

 6. You give your filters a specific name because the Remote System Explorer

saves them for future use, unlike PDM, which does not save filters. (T, F)

 7. __________ filters list a set of objects from your iSeries host in the Remote

Systems view.

a. Job

b. IFS

c. Object

d. Member

e. Library
 8. If you end up with too many filters, you can create filter pools. (T F)

 9. Filters can be specified for non iSeries servers and your local system. (T, F)

10. User actions can be defined for:

a. iSeries libraries

b. iSeries objects

c. iSeries members

d. iSeries jobs

e. files and folders in any remote UNIX, Windows, Linux, Local or IFS

system

f. All of the above
11. You can specify a restriction on a user action. (T, F)

12. You can run OS/400 commands from the:

a. iSeries Table View

b. iSeries Commands Log

c. Tasks view

d. iSeries Error List

e. a and b

f. All of the above

More practice

Given your own libraries on your iSeries system, create a member filter and a job

filter. Then move libraries up, down and within your library list. Finally create a

filter pool. Use the Development Studio Client for iSeries online help to assist you

in these tasks.

Chapter 6. Module 6: Exploring Remote System Explorer 113

Recap

You have completed Chapter 6, “Module 6: Exploring Remote System Explorer,”

on page 97. You have learned how to:

v Know the features of Remote System Explorer

v Create a filter to show specific iSeries libraries

v Change the filter to add more iSeries libraries

v Create a filter to show all the source files in a library

v Access members to edit from your filter

v Create a user action that copies a source file with data to a new source file in the

same library

v Specify user action parameters

v Specify a restriction on a user action

v Try the user action

v Run an OS/400 command from the iSeries Table view

Now that you know how to create filters and actions to manage your iSeries

objects you can learn how to visually design screens. Continue with Chapter 7,

“Module 7. Designing screens,” on page 115.

114 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Chapter 7. Module 7. Designing screens

This module teaches you about the various aspects of the CODE Designer while

modifying a display file to add a screen. You will step through each part of the

CODE Designer tool interface and update some DDS as well. In the workbench, in

the Remote System Explorer perspective you will use the connection that you used

in the module before.

In this module, you will:

v Open a DDS member for edit with CODE Designer

v Show file-level keywords and record keywords

v View the details of records, record-level keywords and field-level keywords

v View the design of the payroll application main menu

v Create a group from an existing record format

v Create a new group and add a subfile record and a subfile control record

v Add columns to the subfile record

v Add fields to the subfile control record

v Copy existing fields

v Set indicators to handle field errors

v View and update record and field properties

v View keywords and the properties of a keyword

v Insert a keyword

v View help for a keyword

v Check there are no semantic errors in the DDS source

v View help for an error

v Launch the editor in read mode from the error list

v Launch the editor in write mode to fix the error

v Find a keyword in the source

v Save source changes

v Compile your source changes

v Close the Designer

Exercises

The exercises within this module must be completed in order:

v “Exercise 7.1: Opening a DDS member in the Remote Systems view” on page 116

v “Exercise 7.2: Viewing the DDS tree” on page 117

v “Exercise 7.3: Selecting the DDS object” on page 118

v “Exercise 7.4: Designing the DDS screen” on page 119

v “Exercise 7.5: Creating groups from existing records” on page 120

v “Exercise 7.6: Creating new screens” on page 122

v “Exercise 7.7: Adding fields to the subfile record” on page 124

v “Exercise 7.8: Switching between multiple records” on page 127

v “Exercise 7.9: Adding field error handling” on page 129

v “Exercise 7.10: Accessing field properties” on page 131

© Copyright IBM Corp. 2001, 2005 115

v “Exercise 7.11: Adding new keywords” on page 133

v “Exercise 7.12: Verifying the source changes” on page 135

v “Exercise 7.13: Switching between designing and editing the screen” on page 137

v “Exercise 7.14: Compiling your source changes and closing the Designer” on

page 138

Time required

This module will take approximately 30 minutes to complete.

Exercise 7.1: Opening a DDS member in the Remote Systems view

Using an editor to create and maintain DDS source for your display, printer and

physical files can be a frustrating and difficult task. What would be great is a

graphical design tool that let’s you design your screens and reports visually and

then generate the DDS source for you. Well, that’s exactly what CODE Designer

does for you.

CODE Designer helps the novice DDS programmer create screens, reports and

databases quickly and easily without worrying about the details of the DDS

language, while at the same time letting the expert DDS programmer get access to

all the features and power of the language.

Note: Make sure MSTDSP is closed from the previous LPEX Editor exercises.

To open a DDS file member from the Remote Systems view:

1. Expand the Library List filter if it is not already expanded.

2. Expand the QDDSSRC file in library RSELABXX.

3. Right-click the MSTDSP member.

4. Click Open with > CODE Designer on the pop-up menu.

The member MSTDSP will be downloaded to the workstation and loaded into

CODE Designer. CODE Designer is a separate tool not integrated into the

workbench.

You have opened the DDS source member MSTDSP in the Remote Systems view

using CODE Designer and you are ready to begin “Exercise 7.2: Viewing the DDS

tree” on page 117.

116 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Exercise 7.2: Viewing the DDS tree

Before you begin, you must complete “Exercise 7.1: Opening a DDS member in the

Remote Systems view” on page 116.

What you are looking at now is basically an explorer view of the DDS. The DDS

Tree view on the left-hand side of the Designer displays the DDS source in its file,

record, field, and keyword hierarchy. It is a familiar and intuitive way to see the

overall structure of the DDS source and to navigate through it quickly. Don’t worry

if you’re not a DDS expert, everything will be explained to you.

The DDS Tree shows groups of records, which represent the screens or reports you

are designing, as peers of the file in the tree hierarchy.

In this view, you can create groups, and copy or move keys, keywords, fields, and

records. If any DDS object contains an error, the icon representing it displays a red

X.

To show file-level keywords and the record SELECT in the DDS tree:

1. Expand the <Servername>RSELABXX/QDDSSRC(MSTDSP) folder.

2. Expand the File Keywords folder.

3. Expand the SELECT record.

4. Expand the Record Keywords folder.

5. Expand the EMESS field.

The DDS tree now shows you a summary of the file-level keywords and of the

record SELECT.

Chapter 7. Module 7. Designing screens 117

You have seen the file-level keywords and the record SELECT in the DDS tree and

you are ready to begin “Exercise 7.3: Selecting the DDS object.”

Exercise 7.3: Selecting the DDS object

Before you begin, you must complete “Exercise 7.2: Viewing the DDS tree” on page

117.

In the upper right-hand side of the Designer is the Workbook with several different

tabbed pages. The Workbook is the area of the CODE Designer where you design

display files, printer or physical files. You can view this notebook on the top

right-hand side of the CODE Designer window. The top page is called Details and

it provides a detailed view of the DDS objects selected by the DDS Tree. You can

view this page in either details mode or list mode by clicking View > List from the

CODE Designer menu.

In the Details page columns display information about the selected DDS object.

You can use this page to display for example, details of all the fields in the record

SELECT or keywords and conditions of a field or record.

The Listing page is a listing of the source statements generated by the Program

Verifier.

In the bottom right-hand side of the Designer is the Utility notebook. This

notebook contains several pages: Selected DDS, Web Settings, Comments and Error

List. The Selected DDS page in the notebook shows the actual DDS source for the

currently selected item.

Note: The Web Settings page allows you to specify attributes that are used by the

WebFacing tool.

To work with the DDS record SELECT:

1. In the DDS tree click the SELECT record.

The Details page lists all the fields in the record SELECT and summarizes some

of their properties. The Selected DDS page shows the DDS for the SELECT

record.

2. In the DDS tree click Record keywords immediately below SELECT.

The Details page shows the current record-level keywords. The Selected DDS

page still shows the DDS for the SELECT record.

118 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

3. In the DDS tree click the EMESS field.

The Details page shows its field-level keywords. The Selected DDS page now

shows the DDS for the EMESS field.

Even this relatively small and simple DDS source member demonstrates how

much easier it is to use the Designer to navigate through your DDS source. The

syntax is being interpreted in intuitive graphical ways making it an ideal tool

for learning DDS. But to get orders of magnitude improvement in your

productivity what you really need is to work with your screens and reports in

a WYSIWYG fashion, completely independent of the DDS required to make

things appear the way they do. You need the Design Page.

You have seen the details of the record SELECT, the record-level keywords and the

field-level keywords and you are ready to begin “Exercise 7.4: Designing the DDS

screen.”

Exercise 7.4: Designing the DDS screen

Before you begin, you must complete “Exercise 7.3: Selecting the DDS object” on

page 118.

You will spend most of your time creating, updating, and designing your DDS

screens and reports in the Design page. The Design pages allow you to design

your screens or reports visually using an intuitive graphical user interface. The

Design page shows the DDS source as it would appear on either a screen (for

Chapter 7. Module 7. Designing screens 119

display files) or a printed page (for printer files). It allows you to design your

application’s screens or reports by laying out records and fields in a graphical user

interface.

On the Design page, you can easily create, edit, resize, and move DDS objects

graphically. You can create new records, fields, and constants directly on the

Design page by using the palette push buttons to the left of the Design area or

from the pop-up menus. The toolbar above the Design area allows quick access to

many of the editing features as well as information about the currently selected

object.

1. Click the MAIN-MENU tab in the workbook.

In order to understand where MAIN_MENU came from, you need to understand

the concept of a group. A group is simply a collection of one or more DDS records

that represent how a screen or report would be assembled at runtime. It allows

you at development time to work with screens or reports as they would appear

when they get assembled by your programs at runtime. To work with groups in

CODE Designer you need to tell CODE Designer which record formats make up a

screen. In this case this has been done for the screen you see in the Design page. A

group MAIN_MENU has been created for you and CODE Designer has saved this

information in the DDS source in comment lines. Any groups that you create are

persisted as comment lines in the DDS so you can re-use these groups in

subsequent CODE Designer sessions.

The groups you create will appear in the tree view as well as in the workbook as a

Design page tab for each group defined, to allow quick access to each group of

records.

You have seen the concept of a group, specifically the MAIN_MENU group and

you are ready to begin “Exercise 7.5: Creating groups from existing records.”

Exercise 7.5: Creating groups from existing records

Before you begin, you must complete “Exercise 7.4: Designing the DDS screen” on

page 119.

If you are working with existing DDS, you will want to create groups that will

correspond to how the records are being used. In this example you will create a

group for the next screen, where the user selects which employee in the payroll

database to maintain. The screen is made up of the record format EMPSEL.

120 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

To create a new group:

1. Scroll to the bottom of the DDS tree and expand the MAIN_MENU group.

The SELECT record appears as the only record in this group.

2. Right-click the MAIN-MENU group.

3. Click Insert group on the pop-up menu.

A Group Properties notebook opens and a blank Design page for the group

SCREEN1 also opens.

The Properties notebook lets you view and update the properties of the

currently selected DDS object. You can open this notebook from any view,

pop-up menu, or menu of the CODE Designer. The Properties notebook is

modeless. When you change an object’s properties, the selected object changes

immediately.

4. In the Group Properties notebook, select the EMPSEL record from the Available

list and click the

button.

For simplicity this is the only record you will add for now. The Design page

now shows you what the record EMPSEL looks like.

5. In the group field, type EMPL_SELCT over SCREEN1 to rename the group.

Chapter 7. Module 7. Designing screens 121

6. Close the Group properties notebook. Click the X in the top right corner of the

Group properties notebook.

You have finished creating a group. You could now work in the Design page

with the record formats contained in this group. Instead you’ll create a new

record format.

It appears that this is one of those unusable applications where you have to

know the employee number ahead of time instead of being able to browse

what is in the database. What we really need is a subfile. But aren’t those

difficult to code, you ask? Not with CODE Designer.

You have inserted a new group using the existing record EMPSEL and you are

ready to begin “Exercise 7.6: Creating new screens.”

Exercise 7.6: Creating new screens

Before you begin, you must complete “Exercise 7.5: Creating groups from existing

records” on page 120.

To create a new record screen on the Design page you need to create a group that

will create an empty page you can work with.

To create a new group:

1. Right-click the new EMPL_SELCT group in the DDS tree.

2. Click Insert group on the pop-up menu.

A Group properties notebook appears and a blank Design page for the group

SCREEN1 also appears.

122 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

3. Rename the group to EMPL_LIST and close the Group properties notebook.

4. You can create things on the Design page by selecting the appropriate tool from

the palette on the left-hand side and then click on the Design page where you

want it to be created. Right now, most things are disabled in the palette

because there is no record in which to create fields. The only two buttons

available are Create standard record and Create subfile record. If you leave

the mouse over a button for a second or two, flyover help will appear

describing the indicated button.

5. Click the Create subfile record button and then click in the dark gray area.

A subfile and a subfile control record pair are created.

Chapter 7. Module 7. Designing screens 123

You have created a new record screen and you are ready to begin “Exercise 7.7:

Adding fields to the subfile record.”

Exercise 7.7: Adding fields to the subfile record

Before you begin, you must complete “Exercise 7.6: Creating new screens” on page

122.

Now you add some columns to the subfile using the Design page. The subfile

should be positioned on row eight. You use the cursor to specify the location of the

part you want to put on the screen, in this case your subfile.

To add fields on the subfile:

1. Click the Create named field button

and then click somewhere on row 8.

Six fields appear in a vertical column. This is because the subfile you created,

currently specified a SFLPAGE (visible list size) of six.

2. Click the top field and hold the mouse button down and move it to row 8,

column 5.

Note the current row and column appear just above the field as you move it.

3. Move the cursor over to the right edge of the field. It turns into a

double-headed arrow. Hold down the mouse button and move it to the left.

The size of the field will be reduced. The current size will appear just above the

field. When the size is 3, let go of the mouse button.

124 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

The toolbar at the top of the Design page is a very convenient place to monitor

and manipulate the currently selected parts.

4. Rename the record from RECORD1 to EMPLSTSFL and the field from FIELD1 to

OPCODE by typing over the text in each list.

5. Click the Color palette

button and select pink to change the color of the

field.

6. Click the

button to change the usage of the field to input.

Now you will create an additional column in the subfile.

Creating an additional output column

Now you want to create an output column.

To create an additional output column:

 1. Position the cursor at row 8, column 9.

Note: The bottom right of the CODE Designer window shows the current

cursor position

.

If you can’t see the field with the cursor position on your screen, click the

Maximize button in the top right corner of the screen. You can use the cursor

keys or the mouse to move the cursor.

 2. If you are creating a long field with an exact length, the SDA syntax can be

easier. Type:

 +O(30)

and then press the back arrow (not Backspace!) to select the text you created.

Notice from the Selected DDS page that you have created a text constant

containing +O(30).

 3. Click the Convert string to field

button on the toolbar or press F11 to

convert the SDA syntax into a character output field of length 30.

 4. Rename the new field to ENAME using the toolbar. This will show the name of

the employee.

Chapter 7. Module 7. Designing screens 125

5. Position the cursor to 8, 41.

 6. Now you will add a field for the employee’s salary. Type

 $666,666.66

and then press the back arrow.

Now wouldn’t it be better if we could just tell the Designer what we wanted

the number to look like and then have Designer generate all the cryptic

EDTCDEs to make it happen?

 7. Press F11 to convert this field into an output numeric field with comma

delimiters, two decimal positions, a currency symbol and no sign. Look at the

Selected DDS page to see what was generated for you. Impressive!

 8. Rename the field to SALARY and change its color to yellow, using the toolbar.

 9. The subfile seems compacted to the left. It would be better to space it out

evenly. Just select a field and click the space horizontally

button on the far

right side of the toolbar. The other alignment buttons will align fields, left,

right, center and top.

126 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Just below the palette on the left there are three spin buttons. The top one,

Subfile size, specifies the total number of entries in the list that will be filled

in by the application. The second one, Subfile page size, is how many entries

appear on the screen.

10. In the Subfile size field, type 300.

11. In the Subfile page size field, type 9.

12. Click in the Design page.

The Design page is updated accordingly.

You have added some columns to the new subfile record screen and now you are

ready to begin “Exercise 7.8: Switching between multiple records.”

Exercise 7.8: Switching between multiple records

Before you begin, you must complete “Exercise 7.7: Adding fields to the subfile

record” on page 124.

Now let’s fix up the Subfile control record. The group you created contains 2

records. You can verify this by looking at the record list in the toolbar:

1. Change the current record by selecting RECORD1CTL from the record list or

click next record

or press Alt+End.

The fields in the subfile still appear so that column heading can be lined up,

but they appear at half-intensity so that they can be distinguished from the

fields of the current record.

Chapter 7. Module 7. Designing screens 127

2. Rename the record to EMPLSTCTL using the toolbar. Let’s provide a ’Position to’

entry in the subfile control header.

3. Position the cursor at 4, 9 and type:

 Position to:

Now you need an employee name field.

You could create a named field with the right characteristics like you did in the

subfile, or you could create a source reference using the Create source reference

field

button in the palette, or you could reference the original database field

using either the Create database reference field button or the

Create

database reference field(s) by selection

button. But there is an even simpler

way. Use copy and paste!

Copying the employee name field

To copy the employee name field:

1. In the DDS tree expand the EMPMNT record.

2. Click the ENAME field and press Ctrl+C.

128 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

(The pop-up menu or Edit menu shows the Copy menu item as well).

3. Position the cursor to 4, 23 and press Ctrl+V. Now that was easy!

4. Click the field and change the name from ENAME to POS_TO.

You have fixed up the subfile records to add an employee name field with a

position to entry opposite this field and you are ready to begin “Exercise 7.9:

Adding field error handling.”

Exercise 7.9: Adding field error handling

Before you begin, you must complete “Exercise 7.8: Switching between multiple

records” on page 127.

Let’s put in some error handling for the ’position to employee name’ field. If the

employee name is not found in the database, the program will set on indicator 60.

Chapter 7. Module 7. Designing screens 129

In this case the field should turn red, reverse image and position the cursor to it.

Now wouldn’t it be better if you had something easier to remember than some

arbitrary number from 1 to 99.

To set indicators:

1. Click the Change named indicator sets

button on the Design page toolbar

(or press F7.)

The Named indicator sets window opens.

2. In the Settings name field, type: Not Found.

3. Click Create.

4. Select the check box next to 60 and click OK.

The Not found indicator set is now in effect. The Design area is shown as if

indicator 60 was on and all other indicators were off. The Design page toolbar

shows the current indicator set in the Select named indicator set list on the

bottom left.

5. Now select the POS_TO field.

6. On the toolbar, select the color red and the display attributes reverse image

and position cursor. (The set of toolbar buttons representing the current

display attributes is found just below the color button).

The toolbar should look as follows:

7. Examine the DDS generated in the Selected DDS page.

130 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Notice that all the new keywords were created with a condition of 60. (The

DSPATR(PR) was pasted with the field originally).

8. Now let’s try it out! From the Select named indicator sets list, select All

indicators are off.

Wow! This really works!

9. From the Select named indicator sets list, select Not found.

The field appears red and reverse imaged.

You have added error handling to the position to employee name field and you are

ready to begin “Exercise 7.10: Accessing field properties.”

Exercise 7.10: Accessing field properties

Before you begin, you must complete “Exercise 7.9: Adding field error handling”

on page 129.

Second to the direct manipulation and the toolbar on the Design page, the easiest

and quickest ways of getting access to the properties of a field, record, or entire file

is the Properties notebook.

The Properties notebook lets you view and update the properties of the currently

selected DDS object. You can open this notebook from any view, pop-up menu, or

menu of the CODE Designer.

The Properties notebook is modeless. When you change an object’s properties, the

selected object changes immediately.

You can get to a Properties notebook from the Selected menu, by pressing F4, or

double-click on anything in the DDS tree or the Details page or Design page.

To open the Properties notebook:

Chapter 7. Module 7. Designing screens 131

1. In the DDS tree, click the record SELECT and press F4 to see the Record

properties.

As you select different items, the Properties notebook will continuously update

itself to show you the properties of the selected item.

2. Click the *DATE field in the SELECT record. (You may have to move the

Properties notebook out of the way.) This field has a different set of pages

describing its properties.

3. Change the year from 2 to 4 digits. Select the Length of year check box.

4. Select 4 digits from the list.

Notice how the sample is updated on the Properties notebook.

5. To test the Design page, click the MAIN_MENU tab in the workbook and look

at the upper right corner of the screen. The year now has 4 digits.

6. Click the EMPAPL field in the SELECT record. On the Field properties

notebook click the Basics tab.

132 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

On this page you can change the field’s name, usage, length, type, and screen

position. The other pages give you quick access to other properties of this field.

You have seen the record properties for the record SELECT and changed the length

of year to 4 digits and you are ready to begin “Exercise 7.11: Adding new

keywords.”

Exercise 7.11: Adding new keywords

Before you begin, you must complete “Exercise 7.10: Accessing field properties” on

page 131.

CODE Designer helps you manage the visual aspects of your displays and reports.

But you also need to access the full power of DDS. You need to access keywords.

To add keywords:

1. Click the EMPAPL field in the DDS tree.

2. Press F5 or right-click and click Insert keywords on the pop-up menu.

You see the Details page for the EMPAPL field and the Create keywords tab is

added to the Utilities notebook. This page shows you the subset of keywords

that are allowed for the selected file, record or field and it takes into account

the field’s type, usage, shift and what record it is in. It is very powerful to

know exactly what your options are. This information cannot be quickly

ascertained from the Reference manual.

Chapter 7. Module 7. Designing screens 133

3. With the EMPAPL Properties notebook at the Basics page, click the numeric

field

button to change the field to numeric type.

Notice that the list of keywords in the Create keywords page has changed.

4. Click the

button to change the field back to alphanumeric.

Notice that the list of keywords in the Create keywords page has changed

again.

5. Click the ALIAS keyword and press F1.

The DDS Reference help for the ALIAS keyword appears.

Tip: CODE Designer has lots of on-line help. Press F1 anywhere you want to

see help for an item, icon or notebook. You will see help relevant to what you

are currently trying to do. From the Help menu you have quick access to the

DDS Language Reference as well as several other useful sources of information.

134 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

6. Minimize the Help window.

7. In the Create keywords page, double-click the INDTXT keyword. (You may

have to scroll to the right to find it).

The keyword is created with default values which can be changed when you

want.

8. Double-click the INDTXT keyword again.

The keyword is created with the same default values creating a conflict.

9. Close the Keyword Properties dialog.

You have seen the help on the ALIAS keyword, added INDTXT keywords and you

are ready to begin “Exercise 7.12: Verifying the source changes.”

Exercise 7.12: Verifying the source changes

Before you begin, you must complete “Exercise 7.11: Adding new keywords” on

page 133.

You have just added a new record and some new fields to your DDS source.

Everything that the CODE Designer adds to your DDS source is certain to have the

correct syntax. Now you need to make sure that there are no semantic errors. You

just introduced one in the last exercise by creating two INDTXT keywords

describing the same indicator.

To verify your source:

1. Click Tools > Verify file (or click the verify

button on the main toolbar) on

the CODE Designer menu.

Chapter 7. Module 7. Designing screens 135

The DDS source is checked using the same verifier that the CODE Editor or

LPEX Editor uses. A message appears on the status line at the bottom of the

Designer stating that the verify process completed with errors.

2. In the DDS tree, there is a trail of red x’s leading to the problem.

The file icon has a red x, as does the SELECT record, the EMPAPL field and

finally the second INDTXT keyword.

3. Click the MAIN_MENU tab in the workbook.

The EMPAPL field is highlighted in red.

4. Click the Listing tab in the workbook.

This page shows you the listing generated by the most recent program verify. A

warning message is buried somewhere in the listing but it’s not easy to find.

5. If there are problems, they will show up in the Error list page in the Utility

notebook. It behaves exactly like the Error list in the CODE Editor or LPEX

Editor. Click the Error list tab.

6. Double-click the warning DDS7861 in the Error list. (Press F1 to see detailed

help on the message).

The Source page appears and the cursor is placed exactly where the error is in

the source. The Source page is a tokenized read-only view of the current state

of the DDS source. Read-only? Wouldn’t it be great if you could just clear the

error right here. There are some things that are just plain faster in the editor

and many others that are faster in the visual environment. It would be great to

switch between the two modes at the push of a button. Well, let’s just do that.

136 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

You have verified your DDS source and have identified an error in the source and

you are ready to begin “Exercise 7.13: Switching between designing and editing the

screen.”

Exercise 7.13: Switching between designing and editing the screen

Before you begin, you must complete “Exercise 7.12: Verifying the source changes”

on page 135.

To switch between the Design mode and the Edit mode:

1. Click the Edit DDS source

button or click File > Edit DDS Source from the

Editor menu.

You now have access to the full power of the editor.

2. Explore the Edit and View menu items.

3. Press Ctrl-F to open the Find/Replace window.

4. In the Find field, type INDTXT and click Find.

5. Press Ctrl-N to find the next occurrence.

6. Delete the second INDTXT line. Type D in the number column and press Enter.

Chapter 7. Module 7. Designing screens 137

You have edited the source to fix the error by switching to the editor and you are

ready to begin “Exercise 7.14: Compiling your source changes and closing the

Designer.”

Exercise 7.14: Compiling your source changes and closing the

Designer

Before you begin, you must complete “Exercise 7.13: Switching between designing

and editing the screen” on page 137.

Now you will compile the source on the iSeries just as you did in the Remote

Systems LPEX Editor and then close the Designer.

To compile your source:

1. Click File > Save from the Designer menu to save your source to the iSeries.

2. Click Tools > Compile from the Designer menu and then click No prompt (or

click the compile

button on the CODE Designer toolbar).

3. A message indicates when the compile is complete. Click OK in the Message

dialog. If you re-compile and run the payroll program, you will see the 4 digit

year change you made to the opening screen of the program.

Note: You will also see the message CPD7886W Field overlaps another field

with no conditions specified. You can ignore this message.

To close the Designer:

1. Click File > Exit from the Designer menu.

Now you are ready to review your knowledge of this module by taking the quiz.

You can also apply what you have learned in this module by completing the

practice tasks detailed in More practice.

 Quiz

1. There is a graphical design tool that let’s you design your screens and reports

visually and then generate the DDS source for you. This tool is named:

a. Page Designer

b. CODE Designer

c. Screen Design Aid

d. None of the above
2. Match the item with its correct description.

a. Utility notebook

b. Design page

c. Properties notebook

d. Group
a. Contains several different tabbed pages

b. For visually designing screens

c. A collection of one or more DDS records that make up a single screen or

report

d. Access properties of a field, record, or entire file
3. The Utility notebook contains:

a. Selected DDS page

138 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

b. Error List page

c. Web Settings page

d. Comments page

e. All of the above
4. On the Design page, you can easily:

a. Create DDS objects

b. Edit DDS objects

c. Resize DDS objects

d. Move DDS objects

e. Create records

f. Create fields

g. Create constants

h. All of the above
5. Grouping records together allows you to work on one record while still seeing

the related records in the background. (T, F)

6. The Properties notebook is modeless. When you change an object’s properties,

the selected object changes immediately. (T, F)

7. The DDS source is checked using the same verifier that the LPEX Editor or

CODE Editor uses. (T, F)

8. You can switch between design mode and edit mode in CODE Designer. (T F)

9. You can compile source on the iSeries just as you do in the LPEX Editor. (T, F)

More practice

Given your experience in using the CODE Designer from the Remote Systems

view, try creating a printer report. You can use the physical file specification

REFMST in member QDDSSRC in library RSELABXX. Take time to explore the

fields and information for this physical file. You may want to refer back to the

exercises in this module as you create your report. When you are familiar with the

file REFMST, you can create your printer file. Use the product online help to assist

you in this task.

Module recap

You have completed Chapter 7, “Module 7. Designing screens,” on page 115. You

have learned how to:

v Open a DDS member for edit with CODE Designer

v Show file-level keywords and record-level keywords

v View the details of records, record-level keywords and field-level keywords

v View the design of the payroll application main menu

v Create a group from an existing record format

v Create a new group and add a subfile record and a subfile control record

v Add columns to the subfile record

v Add fields to the subfile control record

v Copy existing fields

v Set indicators to handle field errors

v View and update record and field properties

v View keywords and the properties of a keyword

Chapter 7. Module 7. Designing screens 139

v Insert a keyword

v View help for a keyword

v Check there are no semantic errors in the DDS source

v View help for an error

v Launch the editor in read mode from the error list

v Launch the editor in write mode to fix the error

v Find a keyword in the source

v Save source changes

v Compile your source changes

v Close the Designer

You have learned about various aspects of the CODE Designer while modifying a

display file and now can learn more about the product and how it is packaged.

This is an optional module. Continue to Chapter 8, “Module 8. Introducing the

product and Remote System Explorer (optional),” on page 141.

140 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Chapter 8. Module 8. Introducing the product and Remote

System Explorer (optional)

This modules teaches you about IBM WebSphere Development Studio for iSeries

and its relationship to IBM WebSphere Development Studio Client for iSeries. You

learn which product makes up the host components and which product makes up

the workstation components. You recognize the iSeries application development

tools included with Development Studio Client for iSeries programmers. You then

are introduced to Remote System Explorer the launching point for iSeries

application development tools.

In this module, you will:

v Know the goals of the product

v Know the editions of the product

v Identify the host tools and the client tools

v List and describe the iSeries application development tools

Exercises

The exercises within this module must be completed in order:

v “Introducing Development Studio and Development Studio Client”

v “Introducing iSeries Application Development Tools” on page 142

Time required

This module will take approximately 15 minutes to complete.

Introducing Development Studio and Development Studio Client

Development Studio Client is the ideal set of workstation development tools for

creating, testing, deploying and maintaining traditional and e-business applications

for your iSeries server. Development Studio Client is included with the

compiler-based server product, WebSphere Development Studio. The following

diagram illustrates the interaction between host and client tools:

© Copyright IBM Corp. 2001, 2005 141

Development Studio Client is designed to help you:

1. Develop and maintain iSeries applications using the Remote System Explorer.

2. Develop Web-enabled front-ends to iSeries business logic.

3. Create GUI front-ends to iSeries business logic.

Both Development Studio Client and Development Studio Client Advanced Edition

are built on the Rational Software Development Platform. This platform offers a

fresh look and feel for the Eclipse workbench, and helps make it easier for you to

build, integrate, and extend your applications. The Rational Software Development

Platform offers a tutorials gallery and a samples gallery, to help you get up and

running with the product as quickly as possible. The platform also offers user

roles, which you can select from bottom-right corner of the Welcome view, (and

from Window > Preferences > Workbench > Capabilities) that customize and

simplify the user interface according to your programming role. These are just

some of the new features provided in the Rational Software Development Platform.

The product comes in two editions for iSeries programmers. Both editions of the

product are packaged with an additional base Rational product:

v Development Studio Client is packaged with Rational Web Developer. Rational

Web Developer includes support for Web services, XML development tools, and

core support for Java and Web development tools.

v Development Studio Client Advanced Edition is packaged with Rational

Application Developer. This base product provides end-to-end support for the

creation and maintenance of J2EE applications and Web services. It also provides

extensive support for Enterprise JavaBeans™, EGL, and for Java messaging

services

You have reviewed the goals of the product and the product editions and you are

ready to begin “Introducing iSeries Application Development Tools.”

Introducing iSeries Application Development Tools

Before you begin, you must complete “Introducing Development Studio and

Development Studio Client” on page 141.

142 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Now, you know what the two flavors are of Development Studio Client and why

you would want to use each one. Next let’s look at those next generation iSeries

server application development tools. What are they and what do they do?

Remote System Explorer

You can manage your development tasks in the Remote System Explorer. This is an

enhanced and more flexible workstation version of Program Development Manager

(PDM). You can create and manage development projects on your iSeries system

from your Windows-based workstation with the Remote System Explorer and

iSeries projects. With these tools, you can connect to an iSeries remote host, view

iSeries libraries, files, and members. You can also launch the host compilers, the

workstation editor, a program verifier and various debuggers all from the Remote

System Explorer. This tool also supports other system types, such as UNIX(R),

Linux, and Windows.

LPEX Editor

Your program editing tasks are simplified with the Remote Systems LPEX Editor.

This is a powerful language-sensitive editor that you can customize. Token

highlighting of source makes the various program elements stand out. It has

SEU-like specification prompts for RPG and DDS to help enter column-sensitive

fields. Local syntax checking and semantic verification for your RPG, COBOL and

DDS source makes sure it will compile without errors on an iSeries system. If there

are verification errors, an Error List lets you locate and resolve problems quickly.

On-line programming guides, language references, and context-sensitive help make

finding the information you need just a keystroke away.

Shells and commands in the Remote Commands view

You can use the Remote Commands view to run and interact with commands and

command shells on universal systems. A universal system includes Windows,

Linux, and UNIX system types. Specifically, you use the view to:

v Run commands in a command shell

v Display and interpret the output of a program

v Enter input to a program

v Display and manage different commands and shells from the same view.

Multiple commands can be run in a single shell (one command at a time per

shell), multiple shells may be run on a single system, and multiple systems may

be running shells.

Whenever a command shell is launched or a command is run from the Remote

System Explorer, the Remote Commands view displays the output and provides a

way to work with that output.

Program Verifier

One of the most powerful and unique features of the Remote System Explorer is

the Program Verifier. Before you compile your code on an iSeries system, you can

ensure that there are no errors by invoking the Program Verifier. The verifier

checks for semantic (compile) errors on your workstation so that you can

guarantee a clean compile on the iSeries. Think of the host cycles you’ll save. It is

especially handy when you are writing code but you are disconnected from an

iSeries system. You can do this because Remote System Explorer ported the parsing

and checking code from the iSeries host compilers to the workstation. The Error

Chapter 8. Module 8. Introducing the product and Remote System Explorer (optional) 143

List window lists the errors that are found and their severity, inserts the error

messages directly into the source and helps you to navigate between the errors.

iSeries Debugger

With the Integrated iSeries debugger you can debug an application that is running

on an iSeries system. It provides an interactive graphical interface that makes it

easy to debug and test your iSeries programs. It is fully integrated into the

workbench. You can also set breakpoints before running the debugger, by inserting

breakpoints directly in your source while editing. The Integrated iSeries debugger

client user interface also enables you to control program execution. For example,

you can run your program, set line, watch, and service entry point breakpoints,

step through program instructions, examine variables, and examine the call stack.

You can also debug multiple applications, which may be written in different

languages, from a single debug window. Each session you debug is listed

separately in the Debug view.

CODE Designer

Using an editor to create and maintain DDS source for your display and printer

files can be a frustrating and difficult task. What would be great is a graphical

design tool that lets you design your screens and reports visually and then

generate the DDS source for you. Well, that’s exactly what the CODE Designer

does for you.

The CODE Designer interface was designed to help the novice DDS programmer

create screens, reports and databases quickly and easily without worrying about

the details of the DDS language, while at the same time letting the expert DDS

programmer get access to all the features and power of the language. CODE

Designer is not fully integrated into the workbench, but you can launch it as a

separate tool from the workbench.

 You have identified the host tools and the client tools as well as the iSeries

application development tools and now you are ready to review your knowledge

of this module by taking the quiz.

Quiz

 1. WebSphere Development Studio for iSeries:

a. Includes all four host compilers

b. Includes all four host compilers and the workstation-based tools named

Development Studio Client

c. Includes only the workstation-based tools named Development Studio

Client
 2. WebSphere Development Studio Client for iSeries includes:

a. Rational Web Developer

b. Cooperative development environment (CODE)

c. VisualAge® RPG

d. Java tools

e. Web tools

f. WebFacing tool

g. All of the above
 3. WebSphere Development Studio Client for iSeries Advanced includes:

144 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

a. Rational Application Developer

b. Cooperative development environment (CODE)

c. VisualAge RPG

d. Java tools

e. Web Tools

f. WebFacing Tool

g. All of the above
 4. Rational Application Developer includes support for:

a. Creation and maintenance of J2EE applications

b. Creation and maintenance of Web services

c. Enterprise Java Beans

d. Java Messaging Services

e. All of the above
 5. Rational Web Developer includes support for:

a. Web services

b. XML development tools

c. Java tools

d. Web tools

e. All of the above
 6. The editor can access source files on your workstation or on your iSeries

system directly. When a compilation or verify action results in errors, you can

jump from the compiler messages to an editor containing the source. The

editor opens with the cursor positioned at the offending source statements so

that you can correct them. (T, F)

 7. You can debug your program running on the iSeries system from your

workstation using the Integrated iSeries Debugger. (T, F)

 8. Before you compile your code on an iSeries system, you can ensure that there

are no errors by invoking the:

a. The Remote System Explorer

b. CODE Designer

c. The IBM WebFacing tool

d. The LPEX Editor

e. The Integrated iSeries Debugger

f. Program Verifier
 9. You can use the Remote Commands view to:

a. Run commands in a command shell

b. Display and interpret the output of a program

c. Enter input to a program

d. Display and manage different commands and shells from the same view

e. All of the above
10. The Integrated iSeries Debugger enables you to run your program, set line,

watch, and service entry point breakpoints, step through program instructions,

examine variables, and examine the call stack. (T, F)

11. The graphical design tool that lets you design your screens and reports

visually and then generates DDS source for you is:

a. The Remote System Explorer

b. CODE Designer

Chapter 8. Module 8. Introducing the product and Remote System Explorer (optional) 145

c. The IBM WebFacing tool

d. The LPEX Editor

e. The Integrated iSeries Debugger

Module recap

You have completed Chapter 8, “Module 8. Introducing the product and Remote

System Explorer (optional),” on page 141. You should now understand:

v What components make up Development Studio and Development Studio Client

editions

v What components are included in Rational Application Developer and Rational

Web Developer

v What tools you use to manage your development cycle tasks

v What the benefits are of Remote System Explorer

Finish your tutorial by reviewing the materials in Chapter 9, “Summary,” on page

147.

146 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Chapter 9. Summary

This tutorial has taught you how to maintain a payroll application using the

Remote System Explorer. You learned how to start the product and open the

Remote System Explorer perspective and how to use tools and views in this

perspective to connect to an iSeries system and edit, verify, compile and debug the

payroll application.

Completed Learning Objectives

If you have completed all of the modules, you should now be able to:

v Start the product and open the Remote System Explorer perspective

v Create a connection to an iSeries and select iSeries objects from this connection

v Use the Remote Systems LPEX Editor to edit source

v Verify and compile source in the Remote Systems LPEX Editor

v Debug your interactive payroll application from the workstation

v Modify a display file

v Recognize the product features and packaging

More information

For more information on the product and the Remote System Explorer, see

http://ibm.com/software/awdtools/iseries.

Quiz answers

Here are the answers to each module quiz.

 1 2 3 4 5 6 7 8

1d 1c 1d 1d 1c 1d 1b 1b

2e 2e 2T 2d 2T 2c 2 aa, bb,

cd, dc

2g

3b 3e 3a 3g 3e 3T 3e 3g

4 aa, bd,

cb, dc

4c 4T 4T 4c 4b 4h 4e

5e 5T 5d 5T 5c 5T 5T 5e

6T 6c 6d 6T 6T 6T 6T

7d 7b 7e 7e 7c 7T 7T

8c 8T 8T 8T 8T 8f

9c 9a 9T 9T 9e

10a 10a 10f 10T

11b 11T 11b

12T 12e

13d

14e

15d

© Copyright IBM Corp. 2001, 2005 147

16c

17b

18c

19T

20T

148 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

Appendix. Notices

Note to U.S. Government Users Restricted Rights — Use, duplication or disclosure

restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2001, 2005 149

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario

Canada

L6G 1C7

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1992, 2005. All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information is intended to help you create application

software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

150 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks

IBM

iSeries

OS/400

RPG/400

Rational

VisualAge

WebSphere

 Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

ActiveX, Microsoft, SourceSafe, Visual C++, Visual SourceSafe, Windows, Windows

NT®, Win32, Win32s and the Windows logo are trademarks of Microsoft

Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix. Notices 151

152 Development Studio Client: Using the Remote System Explorer (RSE) COBOL application

����

Printed in USA

	Contents
	Introduction
	Chapter 1. Module 1. Starting the product and the Remote System Explorer
	Exercise 1.1: Starting the product
	Exercise 1.2: Opening the Remote System Explorer perspective

	Chapter 2. Module 2. Configuring a connection to an iSeries system and connecting to an iSeries
	Exercise 2.1: Configuring a connection to an iSeries system
	Exercise 2.2: Connecting to an iSeries system
	Exercise 2.3: Viewing and accessing objects in the Remote System Explorer perspective
	Exercise 2.4: Opening a second source member
	Exercise 2.5: Displaying an outline of a source member

	Chapter 3. Module 3. Editing source
	Exercise 3.1: Introducing the editor
	Exercise 3.2: Changing default editor settings
	Exercise 3.3: Entering SEU commands
	Exercise 3.4: Requesting undo and redo operations
	Exercise 3.5: Invoking language-sensitive help
	Exercise 3.8: Finding and replacing text
	Exercise 3.9: Filtering lines by string
	Exercise 3.10: Filtering lines by type
	Exercise 3.11: Searching multiple files
	Exercise 3.12: Comparing file differences from the Remote Systems view
	Exercise 3.13: Comparing files in the CODE Editor (optional)
	Exercise 3.14: Checking syntax

	Chapter 4. Module 4. Verifying and compiling source
	Exercise 4.1: Verifying the source
	Exercise 4.2: Compiling source remotely
	Exercise 4.3: Submitting iSeries commands in the iSeries table view
	Exercise 4.4: Running commands and programs

	Chapter 5. Module 5. Debugging a program
	Exercise 5.1: Introducing the Integrated iSeries Debugger
	Exercise 5.2: Starting the integrated debugger
	Exercise 5.3: Setting breakpoints
	Exercise 5.4: Monitoring variables
	Exercise 5.5: Stepping into a program
	Exercise 5.6: Listing call stack entries
	Exercise 5.7: Setting breakpoints in PAYROLLD
	Exercise 5.8: Removing a breakpoint in PAYROLLD
	Exercise 5.9: Monitoring variables in PAYROLLD
	Exercise 5.10: Adding a memory monitor
	Exercise 5.11: Setting watch breakpoints
	Exercise 5.12: Closing the debug session

	Chapter 6. Module 6: Exploring Remote System Explorer
	Exercise 6.1: More about the Remote System Explorer
	Exercise 6.2: Creating a library filter
	Exercise 6.3: Creating an object filter
	Exercise 6.4: Creating a user action
	Exercise 6.5: Running commands from the Remote System Explorer

	Chapter 7. Module 7. Designing screens
	Exercise 7.1: Opening a DDS member in the Remote Systems view
	Exercise 7.2: Viewing the DDS tree
	Exercise 7.3: Selecting the DDS object
	Exercise 7.4: Designing the DDS screen
	Exercise 7.5: Creating groups from existing records
	Exercise 7.6: Creating new screens
	Exercise 7.7: Adding fields to the subfile record
	Exercise 7.8: Switching between multiple records
	Exercise 7.9: Adding field error handling
	Exercise 7.10: Accessing field properties
	Exercise 7.11: Adding new keywords
	Exercise 7.12: Verifying the source changes
	Exercise 7.13: Switching between designing and editing the screen
	Exercise 7.14: Compiling your source changes and closing the Designer

	Chapter 8. Module 8. Introducing the product and Remote System Explorer (optional)
	Introducing Development Studio and Development Studio Client
	Introducing iSeries Application Development Tools

	Chapter 9. Summary
	Appendix. Notices
	Programming interface information
	Trademarks

