
WebSphere Development Studio Client for iSeries

Advanced Edition

EGL Server Guide for iSeries

Version 6 Release 0

SC31-6841-01

���

WebSphere Development Studio Client for iSeries

Advanced Edition

EGL Server Guide for iSeries

Version 6 Release 0

SC31-6841-01

���

Note

Before using this document, read the general information under Chapter 7, “Notices,” on page 31.

Second Edition (May 2005)

This edition applies to version 6, release 0 of WebSphere Development Studio Client for iSeries Advanced Edition

(product number 5724-D46) and to all subsequent releases and modifications until otherwise indicated in new

editions.

© Copyright International Business Machines Corporation 1989, 1998, 2000, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Installing and configuring

EGL Server for iSeries 1

Installing EGL Server for iSeries 1

Objects created or replaced during installation . . . 1

iSeries library and file setup 1

iSeries preparation script file FDAPREP 2

Customizing EGL 3

General considerations for EGL Server for iSeries . . 3

Using data description specifications generated by

EGL 3

Application run-time considerations 4

Chapter 2. Reviewing and preparing the

generated output 7

Outputs of generation 7

Objects generated for programs 8

Objects generated for data tables 8

Objects generated for form groups 9

Understanding preparation 9

Starting the iSeries Remote Build Server 10

Verifying the iSeries Remote Build Server 10

Launching the build plan manually 10

Preparing a DB2 application 11

Chapter 3. Running a generated

application in iSeries 13

Making EGL Server for iSeries, COBOL, and

generated modules available 13

Establishing a library list for a job 14

Running EGL applications under iSeries 15

EGL run unit concept 15

Using activation groups with run units 15

Chapter 4. Moving prepared

applications to other iSeries systems . 17

Moving prepared applications to another iSeries

system 17

Moving workstation code that is part of a EGL

application to an iSeries system 17

Maintaining backup copies of production libraries 17

Chapter 5. Diagnosing problems during

run time 19

iSeries First Failure Data Capture component . . . 19

Chapter 6. messages 21

Escape messages 21

Diagnostic and informational messages 21

Chapter 7. Notices 31

Programming interface information 33

Trademarks and service marks 33

© Copyright IBM Corp. 1989, 1998, 2000, 2004 iii

iv EGL Server Guide for iSeries

Chapter 1. Installing and configuring EGL Server for iSeries

This chapter contains general information on the installation and customization of

EGL Server for iSeries on the host and EGL on the workstation.

Installing EGL Server for iSeries

EGL Server for iSeries is available in the following WDSC plugin, which is in your

installation directory under iseries\eclipse\plugins:

 com.ibm.etools.egl.generators.cobol.iseriesruntime

In the plugin, the following binaries are included in the executables directory:

1. QEGL.zip, which contains the java parts for the gateway server. You must ftp

this file (in binary) to the iSeries™ system, and unzip the contents into an

Integrated File System directory named /QEGL

2. QEGL.SAVF, which contains the primary library for those system objects that

constitute the EGL server for iSeries. You must ftp this file (in binary) to the

iSeries system, and use the RSTLIB command to restore the contents into a

library named QEGL

Objects created or replaced during installation

The following list provides a general description of the objects created or replaced

during the installation process:

 Table 1. Objects Created or Replaced during the Installation Process

Object and library name Type Description

QEGL QSYS *LIB The primary library for those system objects that

constitute EGL Server for iSeries.

QVGN* QGPL *FILE Contains various database and source files, some

of which are used during development and run

time of EGL applications. See “iSeries library and

file setup” for a description of these files.

/QEGL DIR The Integrated File System directory where Java™

parts for the gateway server reside.

iSeries library and file setup

The outputs from generation are placed into files in the library identified in the

build descriptor option destLibrary. The default value of that option is QGPL.

You must create a set of files in that library before the preparation step can run.

The next table lists those files.

 Table 2. Generation Output Files

File name Type Description

QVGNCBLS PF-SRC EGL generation COBOL source

QVGNCLS PF-SRC EGL generation CL source

QVGNDDSS PF-SRC EGL generation DDS source file

© Copyright IBM Corp. 1989, 1998, 2000, 2004 1

Table 2. Generation Output Files (continued)

File name Type Description

QVGNEVF PF-SRC EVF parts control file

QVGNMAPG PF-DTA EGL generation form group source

QVGNTAB PF-DTA EGL generation table data

QVGNWORK PF-SRC EGL generation work file

The following commands can be used to create these files:

CRTSRCPF FILE(QGPL/QVGNCBLS) RCDLEN(92) TEXT(’EGL GENERATION - COBOL SRC’)

CRTSRCPF FILE(QGPL/QVGNCLS) RCDLEN(92) TEXT(’EGL GENERATION - CL SRC’)

CRTSRCPF FILE(QGPL/QVGNDDSS) RCDLEN(92) TEXT(’EGL GENERATION - DDS SRC’)

CRTSRCPF FILE(QGPL/QVGNEVF) RCDLEN(92) TEXT(’EGL GENERATION - VARIABLES’)

CRTSRCPF FILE(QGPL/QVGNWORK) RCDLEN(150) TEXT(’EGL GENERATION - WORK FILE’)

CRTPF FILE(QGPL/QVGNMAPG) SRCFILE(QEGL/QVGNPDDS) SRCMBR(TBLMAP) MBR(*NONE)

 TEXT(’EGL GENERATION- MAP GROUP FILE’)

 MAXMBRS(*NOMAX) AUT(*CHANGE) OPTION(*NOSRC *NOLIST)

CRTPF FILE(QGPL/QVGNTAB) SRCFILE(QEGL/QVGNPDDS) SRCMBR(TBLMAP) MBR(*NONE)

 TEXT(’VISUALGEN TABLE DATA’) MAXMBRS(*NOMAX) AUT(*CHANGE) +

 OPTION(*NOSRC *NOLIST)

To avoid member name collisions when multiple application developers are using

the same host iSeries system, it is highly recommended that you copy these

QVGN* files from the QGPL library to the application-developer user library that

is identified in the build descriptor option destLibrary.

To create libraries for multiple users, do as follows:

1. Type the following command on the command line--

 CRTLIB xxxxxx

where xxxxxx is the library name

2. Create a duplicate of the VGN files in the new library by typing this

command--

 WRKOBJ OBJ(QGPL/QVGN*) OBJTYPE(*FILE)

3. Place option=3 (copy) next to each file, then type this command--

 TOLIB(XXXX)

Alternatively, you may use the REXX program EGLSETUP in QEGL/QREXSRC to

create these files. The command is as follows:

 STRREXPRC SRCMBR(EGLSETUP) PARM(xxxxxx

xxxxxx

The library name

If you are using client server support for EGL to call non-EGL-generated programs,

locate QVGNRNCL in the QVGNSAMP file of your QEGL library. Run

CRTCLPGM on it and place it in any library that contains a non-EGL program that

will be called from an EGL-generated client. Failure to prepare this for your

non-EGL programs will result in unresolved references to QVGNRNCL.

iSeries preparation script file FDAPREP

To process the build plan successfully, the preparation script FDAPREP is invoked

on iSeries by the build server. The script normally resides in the QEGL/QREXSRC

file, but can be copied to another location and customized.

2 EGL Server Guide for iSeries

The script is invoked, by the build server, using the STRREXPRC command:

STRREXPRC SRCMBR’(FDAPREP)’ SRCFILE’(*LIBL/QREXSRC)’ ... (other parms)

Thus it is necessary to have the file containing the preparation script in a file

included in *LIBL.

The preparation script is written in standard rexx, and you may want to modify it

for customization purposes. The SYMPARM variables defined by the user in the

build descriptor at generation time are available to this program as standard rexx

variables and they can be used to influence the logic according to your needs. In

addition, some standard variables are always defined, as in the following example:

EZENLS="ENU"

EZEPID=""

EZEDATA="31"

EZEENV="ISERIESC"

EZEMBR="iTest"

EZEGTIME="08:57:38"

EZEGMBR="iTest"

EZEGDATE="02/23/04"

EZESQL="N"

EZETRAN="iTest"

EZEFUNCTION="PMN"

EZEDESTLIBRARY="TEST"

The generation step creates a variables file appname.evf, which contains the

variables and is passed to the preparation script.

Customizing EGL

If you have installed EGL Server for iSeries in a language other than the following

languages, EGL Server for iSeries creates an abbreviated conversion table in the file

QVGNSCTB of the QEGL library.

Suffix Language

ENU U.S. English

ENP Uppercase English

CHS Simplified Chinese

DEU German

DES Swiss German

ESP Spanish

JPN Japanese (Katakana)

KOR Korean

PTB Brazilian Portuguese

General considerations for EGL Server for iSeries

This section describes the general considerations for administering EGL Server for

iSeries.

Using data description specifications generated by EGL

During generation, EGL can generate data description specifications (DDS)

information from EGL record definitions that are used for file I/O operations.

Chapter 1. Installing and configuring EGL Server for iSeries 3

The DDS information generated by EGL is useful only to the iSeries system

administrator or application developer. The system administrator can use the DDS

source members, or modified versions of them, to create the files that do not

already exist on the iSeries system. Using the DDS source information to create the

files qualifies these files for iSeries data management functions, such as specifying

key fields, unique keys, and logical files.

You are not required to use the DDS source information to create files because EGL

does not require that the files an application accesses be externally described. EGL

relies on the record definition, which is built into the *PGM object, for the structure

of a record. However, using the DDS information guarantees agreement between

the application’s view of the record structure and the record data stored on the

iSeries system.

Modifying the generated DDS information

Indexed and indexed alternate specification record organizations might require that

you modify the corresponding DDS source member. Adding DDS keywords to the

file- and record-level identifiers in the DDS source member is the minimum

modification necessary. Table 3 shows the DDS keywords and the conditions under

which they are required.

You can add other DDS keywords to optimize record retrieval and simplify

application logic. For example, logical files can be used to select a subset of

physical file records. You can also to build your own DDS source member, based

on your knowledge of the EGL record definitions in the application. In this case,

individual field names and field lengths in the DDS source need not match those

of the EGL record definition. However, the record length and key field length of

the EGL record definition and the DDS source must be equal.

 Table 3. Conditions for using DDS keywords

DDS keyword Condition

PFILE(pfname) When using the DDS information to create a logical file. pfname

identifies the physical file on which the logical file is based. PFILE

is a record-level keyword.

UNIQUE When the application tests for the unique or duplicate record I/O

error conditions. UNIQUE is a file-level keyword.

Restrictions on logical files

EGL supports simple logical files that use only one record format. The DDS source

information specifies only one file on the PFILE keyword.

Changing DDS member types

EGL creates DDS source members without specifying a member type. To assist you

in modifying the DDS source information, change the member type to one of the

following:

v PF for a DDS source member describing a physical file

v LF for a DDS source member describing a logical file

Changing the member type to PF or LF enables the Source Entry Utility (SEU)

prompting to help you to modify the DDS source member.

Application run-time considerations

The following sections describe the considerations to keep in mind during

application run time.

4 EGL Server Guide for iSeries

Starting and ending commitment control cycles

To use iSeries Commitment Control Services for single-system iSeries applications,

you must explicitly start and end a commitment control cycle using the start

commitment control (STRCMTCTL) command to start the commitment control and

the end commitment control (ENDCMTCTL) command to end the commitment

control. EGL Server for iSeries does not implicitly start or end commitment control

cycles for single-system iSeries applications. However, DB2® implicitly starts

commitment control automatically for applications that use SQL I/O statements.

After commitment control is started for the job, both native database I/O and SQL

I/O can use the common commitment control that iSeries provides.

For EGL client/server applications and Web applications, commitment control is

started by the run-time CL for the application.

If necessary, the commitment control for an SQL application can be changed by

modifying the FDAPREP REXX program and is further controlled by a

user-defined SYMPARM during generation.

If no commitment control cycle is active and the application attempts to open a file

requiring commitment control, the application ends with an error condition.

Messages in the job log explain the exact nature of the error. The application ends

abnormally under these conditions because it might attempt to explicitly commit

changes to a file, but that is possible only with an active commitment control cycle.

Chapter 1. Installing and configuring EGL Server for iSeries 5

6 EGL Server Guide for iSeries

Chapter 2. Reviewing and preparing the generated output

This chapter provides an overview of the generation output files and describes

how EGL prepares the output files before running your applications.

The format and content of the output files are in COBOL, control language (CL)

source, and structured binary streams. Each output file is described in Table 4.

Outputs of generation

After you generate an application, a number of objects must be transferred to the

iSeries host system as members in various iSeries physical files. On the iSeries host

system, these members must be prepared before the application can be run.

Table 4 provides information about the types of files produced by generation,

including the following:

v Type of object produced

v Physical file name where the object is written as a member

v How the member name of the object is derived

v Whether production is controlled by a generation option

v Whether the object can be modified after generation is performed

Refer to the EGL Reference Guide for more information on controlling and

modifying generation and preparation of iSeries objects.

 Table 4. Objects transferred to an iSeries host by the EGL preparation utility

File type Physical file name

PF member name and

generated file name

EGL build descriptor

option Modifiable

Objects generated for applications

Application ILE

COBOL program

QVGNCBLS Application name applname.cbl None No

Run-time CL QVGNCLS Application name applname.clr None Yes

Objects generated for tables

Table Binary Image QVGNTAB Table name tablname.tab genDataTables No

Objects generated for form groups

Print services

program (See note

3)

QVGNCBLS Form group name

formgname.cbl

genFormGroup,

genHelpFormGroup

No

Form group module

(See note 4)

QVGNMAPG Form group name

formgnameFM.fmt

genFormGroup,

genHelpFormGroup

No

Objects generated for all member types (applications, tables, form groups)

Generation

variables file

QVGNEVF mbrname.evf None No

Objects generated for message tables

Message file QVGNMSGS Member specified when

generation was requested

tablename.msg

genDataTables Yes

Build plan not applicable applName.BuildPlan.xml buildPlan No

© Copyright IBM Corp. 1989, 1998, 2000, 2004 7

Table 4. Objects transferred to an iSeries host by the EGL preparation utility (continued)

File type Physical file name

PF member name and

generated file name

EGL build descriptor

option Modifiable

Objects generated for file creation

Data definition

specification (DDS)

QVGNDDSS File name as specified in EGL

record definitions filename.dds

genDDSFile Yes

Notes:

1. The generator produces ILE COBOL for the iSeries environments.

2. Generated application, table, and form group objects are environment dependent. All objects are generated for

one environment and cannot be used in another environment.

3. This object is produced only if the form group contains print maps.

4. This object is produced only if the form group contains terminal maps.

Objects generated for programs

The follow sections describes the objects generated for applications.

Application ILE COBOL program

The generated application is an ILE COBOL program that contains the following:

v Application control logic

v Logic for application processes, statement groups, and I/O operations

v Data for both the application and application control

Run-time CL

The run-time CL sets commitment control and adds libraries to the iSeries library

list when an application runs. The CL is generated from the templates efk24ebc.tbl

and efk24eec.tpl, which can be customized.

The name of the run-time CL is as follows:

 applname.clr

applname

Name of the application.

Data definition specification (DDS)

The generator produces iSeries data definition specifications (DDS) to create

instances of iSeries physical and logical files that the application uses. The DDS

produced is the result of the indexed, relative, serial, and alternate specification record

types used within the application member being generated. The build descriptor

option createDDS enables the production of the DDS output type. The command

file uploads the DDS files to the host system, but the command file does not

manage processing beyond that point.

Objects generated for data tables

The following section describes the objects generated for data tables.

DataTable binary image file

The dataTable binary image file contains the run-time EGL dataTable member

contents as defined by EGL. The dataTable contents are already converted to the

code page of the target run-time environment. The dataTable contents are

formatted to an application defined structure (possibly containing various data

types) and the contents are treated as binary data. You might not be able to view

the contents outside the scope of EGL and utilities.

8 EGL Server Guide for iSeries

The build descriptor option genDataTables enables the production of the table

binary image files.

Message definitions

For message tables, the generator produces a file containing the raw message

definitions. This file is processed by the preparation script file, FDAPREP, to create

an iSeries native message file object (*MSGF type).

The build descriptor option genDataTables enables the production of the message

file, which is the iSeries implementation of the message table. Execution of the

build plan uploads the message file and invokes the preparation script to generate

the message object on iSeries.

Objects generated for form groups

The following section describes the objects generated for form groups.

Form group format module

The form group format module is a generated structure that describes the form

layout for text forms in the form group. The generator builds the structure as a

binary image file converted to the code page of the target system. This object is

produced when you specify the genFormGroup or genHelpFormGroup build

descriptor options and when the application has defined text forms in the form

group.

Understanding preparation

This section describes the preparation process for a generated application to run in

the iSeries environment. The preparation process is significantly different from that

used in VisualAge® Generator.

The preparation is accomplished by using the iSeries Remote Build Server, which is

a component of the EGL run time. For details, see “Starting the iSeries Remote

Build Server” on page 10.

When an application is generated, an xml file, called the Build Plan, is created in

the generation directory. The build plan is launched to prepare the application on

iSeries, using a Java program called the build plan launcher.

When the application is generated with the build descriptor option prep set to yes,

the build plan is launched automatically at the end of the generation. Otherwise

the build plan can be launched later manually by following the process described

later in this document.

The Build Plan Launcher uses the build plan and communicates with the Build

Server to accomplish the preparation. The build plan contains all the information

necessary to transfer the applicable generated files to iSeries and to build (compile

and bind) the application.

A key component of the preparation is the Preparation Script. This is a Rexx Script,

FDAPREP, which is installed as part of the runtime code and is described in

“iSeries preparation script file FDAPREP” on page 2.

Chapter 2. Reviewing and preparing the generated output 9

Starting the iSeries Remote Build Server

The Remote Build Server is a program, named CCUBLDS, that runs as a job on the

iSeries. It listens on a tcp/ip port. Once started, it runs continuously until the job is

canceled. Following is an example of the command to start the build server job:

SBMJOB CMD(CALL PGM(*LIBL/CCUBLDS) PARM(’-p’ ’2600’)) JOB(CCUBLDS) JOBQ(QSYS/QSYSNOMAX)

Here the server port is 2600, but any available port number can be used. The build

server must be invoked by an administrator userid that is authorized to access user

profiles.

Verifying the iSeries Remote Build Server

After the build server has started, you should verify that it is running properly. At

the Windows workstation where the prep step will be run, do as follows:

1. In the plugin named com.ibm.etools.egl.distributedbuild, locate the directory

containing the program ccubldc.exe. Add this directory to the PATH

environment variable.

2. Execute the following command form the command line:

ccubldc -h host@port -au userId -ap password -b id -r 37 -k 1252

host

IP address of the iSeries host machine

port

Port number of the build server

userId

Userid that the prep client will use

password

Login password for the userid on the iSeries host

Following is an example of the expected response:

05/03/09 14:58:56 (c) Copyright, IBM Corp. 2001 Copyright (c) 2002 Rational Software Corporation

05/03/09 14:58:57 *** Success ***

05/03/09 14:58:57

Command: id

****************** Build Script Output Follows *****************

uid=926(USERID) gid=102(GROUPID) groups=102(GROUPID)

****************** End Of Build Script Output ******************

05/03/09 14:58:58 *--

Launching the build plan manually

You may wish to create a build plan and to invoke that plan at a later time. This

case might occur, for example, if a network failure prevents you from preparing

code on a remote machine at generation time.

To launch a build plan in this case, complete the following steps:

1. Make sure that eglbatchgen.jar is in your Java classpath, as happens

automatically on the machine where you install EGL. The jar file is in the

WebSphere® Studio installation directory (like c:\myStudio), in the following

subdirectory:

wstools\eclipse\plugins\

com.ibm.etools.egl.batchgeneration_version

10 EGL Server Guide for iSeries

version

The installed version of the plugin; for example, 5.1.2
2. Similarly, make sure that your PATH variable includes the following

subdirectory of the WebSphere Studio installation directory:

wstools\eclipse\plugins\

com.ibm.etools.egl.distributedbuild_version

version

The installed version of the plugin; for example, 5.1.2
3. From a command line, enter the following command:

java com.ibm.etools.egl.distributedbuild.BuildPlanLauncher bp

bp The fully qualified path of the build plan file. For details on the name of

the generated file, see the EGL help topic Generated output (reference).

Preparing a DB2 application

When you specify an SQL table name in EGL, you can enter the table name on the

Table Specification window using either the SQL naming convention of

collection.tablename or the iSeries SYSTEM naming convention of

collection/tablename. Whichever format you use as the standard to qualify table

names, tailor the OPTION parameter on the FDAPREP script to be *SQL

(collection.tablename) or *SYS (collection/tablename). The default naming

convention is *SQL.

When you tailor the FDAPREP script, ensure that the *APOSTSQL and *QUOTE

values are part of the OPTION parameter.

Chapter 2. Reviewing and preparing the generated output 11

12 EGL Server Guide for iSeries

Chapter 3. Running a generated application in iSeries

This chapter describes the information required to run EGL applications on an

iSeries system.

Making EGL Server for iSeries, COBOL, and generated modules

available

The setup tasks that are required to run EGL applications on iSeries are simpler

than with other run-time environments because no run-time setup control

programs are produced, other than the application program itself.

EGL Server for iSeries and the generated COBOL applications use the run-time job

library list (*LIBL) to resolve all named object references

The library list must be set up by the application programmer, system

administrator, or EGL application developer before starting the application. To aid

in the library setup, Table 5 on page 14 lists the names and types of objects that

EGL might use while running in the iSeries environment. EGL searches for these

objects dynamically when the application is running by scanning the libraries

named in the library list. It is recommended that the installation library, QEGL, be

added to the library list of the end user when running EGL applications.

EGL uses the first object it finds that matches the target name in the libraries

named in the library list. This first-found object is used in all cases of object

resolution except for objects of *FILE type. In this case, EGL uses the first member

it finds that matches the target name, after the first member have been qualified

with the correct file name. Multiple files with the same name might exist in the

libraries named in the library list. EGL checks each library file until it finds the

first instance of the member name.

© Copyright IBM Corp. 1989, 1998, 2000, 2004 13

Table 5. Names and types of objects used by EGL at run time

Object and

library name Type Description

QVGN* QEGL *PGM *SRVPGM EGL Server for iSeries program and service program

objects.

OVGNMSGF

QEGL

*MSGF EGL Server for iSeries product message file.

QVGNMAPG

userlib

*FILE Members of this file contain the generated

applications 5250 form groups. Members are named

for the form group it contains.

QVGNTAB

userlib

*FILE Members of this file contain the generated

applications tables. Members are named for the table

it contains.

QVGNPRNT

QEGL

*FILE This is the standard printer device file for

application use of the Printer file. Usually, all jobs on

the system share one of these objects.

QVGMAP QEGL *FILE This standard display device file is used for

interactive applications when they display maps.

Usually, all jobs on the system share one of these

objects.

mmmmnls

userlib

*MSGF A specific application’s message table, where mmmm

is the message table prefix as defined to the

application, and nls is the value of the build

descriptor option targetNLS when the application

was generated.

calltarg userlib *PGM Any target of the call or transfer statements coded

within an application.

filetarg userlib *FILE Any file named on record definitions used by EGL

process options within an application.

Note: The designated library userlib in Table 5 indicates that the object is in a

library named by the application developer at the time the application was

developed.

The two exceptions to using the library list to resolve object references by running

applications are as follows:

v When EGL application tables and map groups reside in the iSeries IFS file

system for improved run-time performance.

v When either:

– The object (table or view) was explicitly qualified when an SQL record was

defined during development

– The object was implicitly qualified when the application using the record was

compiled.

In either case, SQL object resolution is independent of the library list.

Establishing a library list for a job

You can establish a library list for a job in several ways, but each method involves

using an iSeries system command. You can also mix the methods. The initial

iSeries library list is contained in the job description referenced by the user profile.

For more information about the following iSeries system commands, enter the

command at a command line entry on iSeries and request command prompting.

14 EGL Server Guide for iSeries

ADDLIBLE

Adds a library list entry

CHGCURLIB

Changes the current library

CHGSYSLIBL

Changes the system library list

Running EGL applications under iSeries

To run a EGL application in the iSeries environment, call the *PGM application

object just as you would any other *PGM object on iSeries. You can run EGL

applications from menus, commands, command lines, or interlanguage program

calls. This applies to main and called EGL applications. Examples of how to run a

EGL application from an iSeries command line follow:

v To call an application without the use of arguments, use the following format:

 CALL applname

v To call a CALLED application that expects a parameter declared as CHAR(16),

use the following format:

 CALL applname (’char arg literal’)

v To call a CALLED application that expects two parameters declared as CHAR

(15) and DECIMAL (15,5), use the following format:

 CALL applname (’char arg literal’ 1234)

EGL run unit concept

EGL applications operate in a run unit much like that of ILE COBOL. EGL’s run

unit can be considered a subset of the ILE COBOL run unit because the COBOL

run unit might exist before and persist longer that EGL’s run unit.

EGL’s run unit is bounded by the first EGL application on the iSeries program call

stack for a specific job. Run units are scoped in a single job. As long as a EGL

application is on the program call stack, an EGL run unit is active. Only one EGL

run unit can be active in a job at any time. This is the most obvious difference

between EGL run units and ILE COBOL run units.

Main or called programs applications can initiate a EGL run unit. EGL man

programs can exist in a run unit only if it is the initiating application. Main

programs cannot be called from an application that initiates a EGL run unit, even

if it is called from a non-EGL program while a EGL run unit was active.

Using activation groups with run units

EGL run units normally correlate on a one-to-one basis with ILE COBOL run units

and ILE activation groups. When a EGL application initiates or begins a run unit, a

named activation group is also initiated. Using a named activation group ensures

that all EGL applications that run in the job share the same resources in terms of

ILE resource management.

If your application system consists of non-EGL programs as well as EGL

applications, you can add your non-EGL programs to the named activation group

or use a different activation group. Sharing commitment control logical units of

work and sharing database file Open Data Paths are important aspects to consider

when making your decision. To share either ILE resources, using the same

Chapter 3. Running a generated application in iSeries 15

activation group achieves the above result. Conversely, using different activation

groups keeps the ILE resources isolated in terms of EGL application use and

non-program use.

The ILE activation group name is established when EGL applications are in the

preparation phase of application development. EGL preparation templates, which

create OS/400® program objects, name the activation group in the iSeries

command template for the CRTPGM command. The keyword is ACTGRP and the

default is ACTGRP(QVGN).

16 EGL Server Guide for iSeries

Chapter 4. Moving prepared applications to other iSeries

systems

You can move a prepared application from one iSeries system to another. For

example, you might have the compiler on one host development machine but want

to run the application on several production machines.

The iSeries and EGL Server for iSeries products on the production machine must

be at the same maintenance level as, or at a higher level than, the development

machine.

Moving prepared applications to another iSeries system

After an iSeries EGL application is prepared, you can distribute that application to

other architecturally similar iSeries systems using the following procedures:

1. Use the CRTSAVF FILE(library/filename) command to create a save file.

2. Use the SAVOBJ or SAVLIB command to save all the application parts you

want to move to another system in the save file.

3. Transfer the save file to other iSeries systems by using a communications

network or by using physical media such as a tape.

4. Use the RSTOBJ (Restore Object) or RSTLIB (Restore Library) command to store

the objects from the save file.

Moving workstation code that is part of a EGL application to an iSeries

system

Moving workstation code that is part of a EGL client/server application to an

OS/400 system can be done using diskettes or shared folders.

To save the workstation code using the iSeries, do the following:

1. Copy the code to a shared folder along with EGL GUI run-time support

2. Create a save file using the iSeries command CRTSAVF

3. Issue the iSeries command SAVDLO

4. Transfer the save file to another iSeries system by using a communication

network or by using a physical media such as a tape

5. Erase the existing shared folder, if one exists

6. Restore the shared folder using the iSeries command (RSTDLO) on the

production iSeries

Maintaining backup copies of production libraries

Maintaining backup copies of your production libraries can be accomplished by

creating a save file, then issue the SAVLIB command. You can copy the save file to

tape.

© Copyright IBM Corp. 1989, 1998, 2000, 2004 17

18 EGL Server Guide for iSeries

Chapter 5. Diagnosing problems during run time

This chapter contains information to aid in diagnosing problems that you might

encounter while running your EGL applications.

EGL applications are implemented on iSeries just like other third-generation

language (3GL) applications or programs. This is important to remember, should

you or the IBM® Support Center need to collect extra ordinary problem diagnostic

information in the course of investigating a run-time error.

iSeries standard diagnostic commands are available to you when diagnosing

problems with a EGL application. These include such commands as the following:

v ADDTRC (Add Trace Statement)

v STRJOBTRC (Start Job Trace)

v ENDJOBTRC (End Job Trace)

v PRTJOBTRC (Print Job Trace Data)

v STRDBG (Start Debug)

v ENDDBG (End Debug)

In most error diagnostic cases, you need to have the following information

available when you contact the IBM Support Center:

v The run-time job log, which recorded all messages including second-level text.

To ensure that second-level text is included, change the job before starting the

failed scenario using the command CHGJOB LOG(4 00 *SECLVL). When the job

ends, the job log is spooled to the assigned output queue. Usually, the most

important information in the job log is the escape messages that initiates the

abnormal condition, which caused the EGL application to end. The program

sending the message, the program receiving the message, and the instructions

being sent to the program are the key pieces of diagnostic information. The

other messages are also important. Be sure to inspect and report the entire job

log of information.

v The ILE COBOL compiler listing, which includes the following:

– EGL annotated statements and code-production audit comments (use build

descriptor option commentLevel)

– ILE COBOL source statements (use compiler option OPTION(*SOURCE))
v Any additional spooled files that might have been created as a result of the job

ending abnormally, such as dumps or display job snapshots. You can locate all

spooled file output from a job by using the WRKJOB command to work with the

job. Then you can select the option from the job menu to display spooled

output.

iSeries First Failure Data Capture component

EGL applications are linked into the iSeries First Failure Data Capture component

when function checks (abends) occur via the iSeries System Programming Interface

(SPI) called Report Software Error (QpdReportSoftwareError). EGL uses this

function to provide run unit data dumps that can be sent to the IBM Support

Center.

EGL also uses the report software error SPI function when illogical conditions are

detected during run time that might lead to a function check (abend). In these

© Copyright IBM Corp. 1989, 1998, 2000, 2004 19

cases, a unique signature associated with the error condition is provided to the

system service. The system service can use the unique signature to scan a service

database for the same signature and possible PTFs that can be applied. This

expedites the process of problem resolution in some cases.

When job log messages indicate that the iSeries system problem log has been

updated, use the iSeries command DSPPRB (Display Problem) to view a list of the

most recent problems captured on the system; then select the option to display the

problem associated with QVGNHS. QVGNHS is the service program that

constitutes the majority of EGL Server for iSeries. A procedure of this service

program issues the SPI function to record the problem. Upon displaying the

problem, the menu selections and function keys enable you to display further

information, such as spooled files, problem history files, and APAR libraries. The

spooled files contain dump data and a copy of the job attributes at the time of the

dump.

For more information on using the system problem log in an automated manner,

refer to the SystemView® System Manager product documentation.

20 EGL Server Guide for iSeries

Chapter 6. messages

Message text can contain one or more inserts. When the message is displayed, an

insert is used to fill in names, constants, return codes, and other information. For

example, the format of the message insert might look like this: &1

The server messages can be viewed online on iSeries by using the Work with

Message Description command WRKMSGD MSGF(QEGL/OVGNMSGF).

EGL applications use the standard iSeries message handling functions to

communicate with calling programs. Diagnostic information is automatically

logged by the job log during run time.

Escape messages

These messages are sent by EGL applications to the program queue of the calling

program as iSeries ESCAPE type messages. The calling program must monitor

these messages to avoid an iSeries function check.

GEN9001 EGL Server MAIN shell cannot invoke

the target program %1.

Explanation: Diagnostic messages preceding this

message in the job log explain the nature of the error.

In most cases, the application or system programmer

will need to adjust your application system to correct

the problem.

User Response: Either print the job log or record the

messages along with the following:

v - The from program name.

v - The to program name.

v - The instruction numbers.

You can view or print the job log with the DSPJOBLOG

command. If no diagnostic messages precede this

message, ensure that your job logged all messages by

checking the ’Message Logging’ or LOG value of your

job definition or job description, depending on whether

the job is interactive or batch. For interactive jobs,

command DSPJOB OPTION(*DFNA) will display the

’Message Logging’ value.

 Contact your application or system programmer with

the information you gathered.

GEN9002 EGL Server encountered an application

error which caused the run unit to end.

Explanation: Diagnostic messages preceding this

message in the job log explain the nature of the error.

In most cases, the application or system programmer

will need to adjust your application system to correct

the problem.

User Response: Either print the job log or record the

messages along with the following:

v - The from program name.

v - The to program name.

v - The instruction numbers.

You can view or print the job log with the DSPJOBLOG

command. If no diagnostic messages precede this

message, ensure that your job logged all messages by

checking the ’Message Logging’ or LOG value of your

job definition or job description, depending on whether

the job is interactive or batch. For interactive jobs,

command DSPJOB OPTION(*DFNA) will display the

’Message Logging’ value.

 Contact your application or system programmer with

the information you gathered.

Diagnostic and informational messages

The following messages are sent as DIAGNOSTIC or INFORMATIONAL type

messages to the program queue of the calling program. These messages are

automatically posted in the job log. Programs that call EGL applications cannot

monitor the activities of these messages. Use the WRKJOB(Work with JOB)

command to view the job log. The Message Logging job attribute might filter some

or all of these messages in some way. To ensure you get all messaged posted in the

© Copyright IBM Corp. 1989, 1998, 2000, 2004 21

job log, use a message logging value of LOG(4 00 *SECLVL) in your iSeries jobs.

See the iSeries commands WRKJOB and CHGJOB (Change Job) for more

information.

GEN0002 A new level of EGL Server for iSeries is

required for program %1

Explanation: The generated COBOL program %1,

attempting to run, is not compatible with the installed

version of EGL Server for iSeries.

User Response: Contact the system administrator.

Version %2 of EGL Server for iSeries should be

installed.

GEN0005 Date entered is not valid for defined

date format %1

Explanation: Data entered into a form field defined

with a date edit either does not meet the requirements

of the format specification, or the month or day of the

month is not valid.

 It is not necessary to enter the separator characters

shown in the message, but if they are omitted, enter

leading zeros. For example, if the date format is

MM/DD/YY, you can enter 070494.

User Response: Enter the date in the format %1.

GEN0009 Overflow occurred because the target

item is too short

Explanation: The target of a move or assignment

statement is not large enough to hold the result without

truncating significant digits. The value of special

function word sysVar.handleOverflow is 1, which

specifies that the application should end if this

overflow condition occurs.

User Response: Have the application developer do

one of the following:

v Increase the number of nondecimal digits in the

target data item

v Define the application logic to handle the overflow

condition using the special function words

sysVar.handleOverflow and sysVar.overflowIndicator.

GEN0014 REPLACE attempted without preceding

UPDATE option on %1.

Explanation: A replace option was attempted against a

record that has not been successfully read by a get or

open statement. The read for update might have been

lost as the result of a commit or rollback.

 This error also occurs if a replace is associated with a

specific get or open statement, but that get or open

statement was not the one used to select the record.

User Response: Have the application developer run

this application with the test facility, tracing for process

and statement group flow, to determine the application

logic error.

GEN0021 An error occurred in application %1 on

EGL statement number %2.

Explanation: The actual error identifying the problem

is explained in messages following this message in the

job log.

User Response:

GEN0022 Map group format member %1 could

not be loaded

Explanation: The form group format member is a

generated binary file that contains attributes that

describe the format and constant fields for

character/text based maps in a form group. Form

group format members are stored as members of file

%2 and are expected to be found by searching the job’s

library list.

 Diagnostic messages preceding this message in the job

log explain the nature of the error.

User Response: Contact your application or system

programmer and report the sequence of messages

including and preceding this message.

GEN0023 The table %1 could not be loaded.

Explanation: A table is a generated binary file that

contains application data. Tables are stored as members

of file %2 and are expected to be found by searching

the job’s library list.

 Diagnostic messages preceding this message in the job

log explain the nature of the error.

User Response: Contact your application or system

programmer, and report the sequence of messages

including and preceding this message.

GEN0024 EGL conversion table %1 could not be

found

Explanation: Either the name specified on the

sysLib.convert call was not a member of the

QEGL/QEGLSCTB file or the member that was found

is not a conversion table.

User Response: Have the application developer verify

that the correct conversion table name was specified in

the sysLib.convert call. If the table name was not

correct, then change the EGL application and

regenerate it. If the table name is correct, verify that the

correct conversion table was installed. The conversion

table is a member in the file QEGLSCTB in QEGL

library.

22 EGL Server Guide for iSeries

GEN0026 A calculation caused a ″maximum value″

overflow.

Explanation: During a calculation in an arithmetic

statement, an intermediate result exceeded the

maximum value (18 significant digits). This condition

also occurs when division by zero occurs. If the

sysVar.handleOverflow switch is set to either 0 or 1, the

application ends.

User Response: Have the application developer

correct the application logic either to avoid the error or

to handle the error using the special function words

sysVar.handleOverflow and sysVar.overflowIndicator.

GEN0027 The data on character to numeric move

is not valid.

Explanation: The statement in error involves a move

from a character to a numeric data item. The character

data item contains nonnumeric data.

User Response: Have the application developer

change the application to make sure that the source

operand contains valid numeric data.

GEN0031 A call to program %1 failed.

Explanation: Called programs are expected to be

found by searching the job’s library list.

 Diagnostic messages preceding this message in the job

log will explain the nature of the error.

User Response: Contact your application or system

programmer, and report the sequence of messages

including and preceding this message.

GEN0033 Call to function %1 returned exception

code %2

Explanation: An exception code was returned on a

call to the specified function, indicating that one of the

arguments passed to the function was invalid. Refer to

the EGL reference guide for further details.

 The run unit ends.

User Response: The developer should fix the program

so that it does not pass invalid arguments to the

function.

GEN0034 Application %1 was defined as a MAIN

application and cannot be called.

Explanation: The specified application was defined as

either a main textUI program or as a main basic

program. It cannot be called by another program.

User Response: If using the call statement to invoke

application %1 is valid, have the application developer

define %1 as a called application. If application %1

must remain a main application, then have the

application developer use transfer statements to invoke

it from another main application.

GEN0035 Data type error in input - enter again

Explanation: The data in the first highlighted field is

not valid numeric data. The field was defined as

numeric.

User Response: Enter only numeric data in this field,

or press a bypass edit key to bypass the edit check. In

either situation, the application continues.

GEN0036 Input minimum length error - enter

again

Explanation: The data in the first highlighted field

does not contain enough characters to meet the

required minimum length.

User Response: Enter enough characters to meet the

required minimum length, or press a bypass edit key to

bypass the edit check. In either situation, the

application continues.

GEN0037 Input not within defined range - enter

again

Explanation: The data in the first highlighted field is

not within the range of valid data defined for this item.

User Response: Enter data that conforms to the

required range, or press a bypass edit key to bypass the

edit check. In either situation, the application continues.

GEN0038 Table edit validity error - enter again

Explanation: The data in the first highlighted field

does not meet the table edit requirement defined for

the variable field.

User Response: Enter data that conforms to the table

edit requirement, or press the bypass edit key to bypass

the edit check. In either situation, the application

continues.

GEN0039 Modulus check error on input - enter

again

Explanation: The data in the first highlighted field

does not meet the modulus check defined for the

variable field.

User Response: Enter data that conforms to the

modulus check requirements, or press a bypass edit key

to bypass the edit check. In either situation, the

application continues.

GEN0040 No input received for required field -

enter again

Explanation: No data was typed in the field

designated by the cursor. The field is required.

Chapter 6. messages 23

User Response: Enter data in this field, or press a

bypass validation key to bypass the edit check. Blanks

or nulls will not satisfy the data input requirement for

any type of field. In addition, zeros will not satisfy the

data input requirement for numeric fields. The

application continues.

GEN0041 A message file prefix was not specified

for an application: EZEMNO = %1, NLS

code = %2.

Explanation: A user message was requested, but a

user message table prefix was not defined for the

application.

User Response: Have the application developer do

one of the following:

v Add the message table prefix to the application

specifications and then generate the application

again.

v Change the application to not request the message.

GEN0045 Error retrieving user application

message, EZEMNO = %1, NLS code %2.

See previous messages.

Explanation: A user message was requested. The

previous message in the job log explains the reason for

the error.

User Response: Most problems occur because the

message file or the specific message cannot be found or

access to the message file is not authorized. If the

application can not find the message file and you know

the library name that contains the message file, you can

add the library to your library list (ADDLIBLE

command). For other problems, contact your system or

application programmer.

GEN0046 Call to printer mapping services

program %1 failed.

Explanation: Printer mapping services programs are

expected to be found by searching the job’s library list.

 Diagnostic messages preceding this message in the job

log explain the nature of the error.

User Response: Contact your application or system

programmer and report the sequence of messages

including and preceding this message.

GEN0050 Number of allowable significant digits

exceeded - enter again

Explanation: The user entered data into a numeric

field that was defined with decimal places, a sign,

currency symbol, or numeric separator edits. The

number of significant digits that can be displayed

within the editing criteria was exceeded by the input

data; the number entered is too large. The number of

significant digits cannot exceed the field length, minus

the number of decimal places, minus the places

required for editing characters.

User Response: Enter a number with fewer significant

digits.

GEN0051 Map %1 was not found in map group

%2.

Explanation: The specified form name is not in the

form group.

User Response: Have the application developer

generate the form group and the application again.

GEN0057 DELETE attempted without preceding

UPDATE on record %1.

Explanation: A delete statement ran for a record that

was not successfully read by an open or get statement.

The read for update might have been lost as the result

of an commit or rollback.

User Response: Have the application developer run

this application in the EGL debugger to determine the

application logic error.

GEN0073 SQL error, command = %1, SQL code =

%2

Explanation: The SQL database manager returned an

error code for an SQL statement. Application

processing ends following an SQL request whenever

the SQLCODE in the SQL communications area

(SQLCA) is not 0, and either of the following is true:

v - No error routine is specified for the process

v - The SQLCODE indicated a hard (terminating) error

and the special function word

sysVar.handleHardIOErrors was set to 0, indicating

that the application should end on SQL error

conditions.

This message is followed by the actual DB2 message

describing the SQL error code.

User Response: Have the application developer or

system programmer determine the cause of the

problem from the SQL code and the SQL error

information. Either correct the application or the

database definition. Refer to the appropriate Database

Manager messages and codes manual for information

on the SQL code and SQL error information.

GEN0074 SQL error message: %1

Explanation: This message accompanies message

GEN0073 when an SQL error occurs. It displays the

relational database manager description of the error

and is repeated as many times as necessary to display

the complete description.

User Response: Use the information from this

24 EGL Server Guide for iSeries

message and GEN0073 to correct the error.

GEN0076 The data on character to hexadecimal

move or compare is not valid.

Explanation: The current statement involves either a

move from a character data item to a hexadecimal data

item, or a comparison between a character data item

and a hexadecimal data item. The characters in the

character data item all must occur in the following set

for the move or compare to complete successfully:

 a b c d e f A B C D E F 0 1 2 3 4 5 6 7 8 9

 One or more of the characters in the character data

item is not in this set. This condition causes an

application program error.

User Response: Have the application developer

change the application to make sure that the character

data item contains valid data when the character to

hexadecimal move compare operation occurs. To do so,

the application developer can use the hexadecimal map

edit characteristic to make sure that input from a

variable field contains valid characters.

GEN0080 Hexadecimal data is not valid

Explanation: The data in the variable field identified

by the cursor must be in hexadecimal format. One or

more of the characters you entered does not occur in

the following set:

 a b c d e f A B C D E F 0 1 2 3 4 5 6 7 8 9

User Response: Enter only hexadecimal characters in

the variable field. The characters are left-justified and

padded with the character zero. Embedded blanks are

not allowed.

GEN0086 %1 - No active SETINQ, SETUPD, or

UPDATE

Explanation: A get, get next, replace, or delete

statement cannot run because a required get or open

statement was not run previously in the same

application. All rows selected for scanning or updating

are released when an application returns to a calling

application.

User Response: Have the application developer

modify the application.

GEN0093 An error occurred in application %1,

process or group %2.

Explanation: An error occurred in the specified

application. Other information about the error is given

in the messages that follow this message.

User Response: Refer to the error messages following

this message to determine the cause of the error.

GEN0096 A mixed data operand is not valid

Explanation: An operand in a move statement

involving an item of type MBCHAR contains an invalid

mixture of double-byte and single-byte data.

User Response: Have the application developer verify

that all operands in the move statement contain valid

data.

GEN0109 FIRST MAP must be map %1, not map

%2, for application %3.

Explanation: The initial form expected by this

application is not the form identified in the message.

This error occurs when the application starts.

User Response: Record what function you were using

before the error occurred, and have the application

developer correct the arguments used to start program

%3.

GEN0111 Length of FIRST MAP %1 is not valid.

Explanation: The length of the form %1 received by

an application is not the length defined for the form in

application %2.

User Response: Have the application developer

generate both the application receiving the form and

the application that shows the form.

GEN0119 Applications %1 and %2 are not

compatible.

Explanation: An application started by a transfer or

call statement is not compatible with the initial

application in the transaction or job because the

application was generated for a different environment.

User Response: Have the application developer

regenerate one or both applications so that the target

environments for the applications are the same.

GEN0127 A requested function is not supported

for map %1, map group %2.

Explanation: An application requested an action that

is not supported for the specified form and form group.

The form group was modified after it was generated

and before the application was generated. Some aspects

of the form group when the application was generated

(for example, use of help maps or use of the msgField

property) were not in the form group when the form

group was generated.

User Response: Have the application developer

generate the form group and the application again.

Chapter 6. messages 25

GEN0137 SQL error occurred in work database

operation

Explanation: An error occurred during use of the

work database when it was implemented using SQL.

This message is accompanied by additional SQL

diagnostic messages, including GEN0073, that provide

additional information about the error.

 The run unit ends. Messages are logged.

User Response: Determine the cause of the problem

from the SQL code and the SQL error information in

related message GEN0074, and correct the database

definition.

GEN0184 Application %1 and mapping services

program %2 are not compatible.

Explanation: The specified application and mapping

services program are generated for different systems.

User Response: Have the application developer

generate the mapping services program for the same

environment as the application.

GEN0185 Length of %1 for record %2 is not valid

and conversion ended.

Explanation: Conversion of a variable length record

between the workstation format and host format cannot

be performed because of one of the following

conditions:

v - The record is longer than the maximum length

defined for the record.

v - The record data ends in the middle of a numeric

field.

v - The record data ends in the middle of a DBCHAR

character.

v - The record data ends in the middle of a SO/SI

string.

User Response: Have the application developer

modify the application to set the record length so that

it ends on a valid field boundary.

GEN0186 A mixed string in a conversion

operation is not valid

Explanation: Conversion of a mixed field from

EBCDIC to ASCII or from ASCII to EBCDIC cannot be

performed because the double-byte data value is not

valid.

User Response: Have the application developer

modify the application to make sure that the records to

be converted contain valid data.

GEN0187 Conversion table %1 does not support

DBCS character conversion.

Explanation: Conversion of a mixed or DBCHAR field

from ASCII to EBCDIC or EBCDIC to ASCII cannot be

performed because the specified conversion table does

not include conversion tables for double-byte

characters.

User Response: Have the application developer

modify the application to specify a conversion table

that contains the double-byte conversion tables valid

for the DBCHAR or MBCHAR data being converted.

GEN0188 Conversion Error. Function: %1, Return

Code: %2, Table: %3

Explanation: A system function was called to perform

code page conversion for data used in a client/server

program. The function failed.

 Possible causes for the failure are:

v The code pages identified in the conversion table are

not supported by the conversion functions on your

system.

v For DBCHAR conversion where the source data is in

ASCII format, the source data was created under a

different DBCHAR code page than the code page

that is currently in effect on the system.

User Response: Correct the cause of the error.

GEN0191 Application %1, generation date %2,

time %3.

Explanation: An error in application %1 has occurred.

Diagnostic messages in the job log explain the nature of

the error. Changes to individually generated

components of the application may have caused the

error.

User Response: Have the application developer verify

the generation date and time of the application with

that of other generated components.

GEN0192 Mapping services program %1,

generation date %2, time %3.

Explanation: An error in mapping services program

%1 has occurred. Diagnostic messages in the job log

explain the nature of the error. Changes to individually

generated components of the application may have

caused the error.

User Response: Have the application developer verify

the generation date and time of the mapping services

program with that of other generated components in

the application.

26 EGL Server Guide for iSeries

GEN0195 Map format member %1, generation

date %2, time %3.

Explanation: An error in map format member %1 has

occurred. Diagnostic messages in the job log explain

the nature of the error. Changes to individually

generated components of the application may have

caused the error.

User Response: Have the application developer verify

the generation date and time of the map format

member with that of other generated components in

the application.

GEN0210 EGL Server number %1 is not valid.

Explanation: An attempt was made to start an EGL

routine that does not exist or that is not valid.

User Response: Have the application developer

generate and compile the application again to ensure

the generated COBOL code has not been modified.

Afterward, run the refreshed application. If the problem

persists, have the system administrator do all of the

following:

v 1 - Record the service number from this message.

v 2 - Print the job log.

v 3 - Record the scenario under which this message

occurs.

v 4 - Obtain the COBOL listing and source for the

failing application.

v 5 - Use your electronic link with IBM Service (for

example, IBMLINK) if one is available, or contact the

IBM Support Center.

GEN0232 Map %1 in map group %2 is not

defined or is not supported.

Explanation: The specified form does not exist or is

not defined for the type of device being used.

User Response: Have the application developer either

define the form for your device type or select the

device for the form. Generate the form group again.

GEN0233 %1 error on file %2, EZERT8 = %3.

Explanation: An I/O operation failed for the specified

file. This message specifies the COBOL verb performed

and the EGL file name associated with the operation.

 sysVar.errorCode contains either the COBOL status key

value or EGL file return code.

User Response: Use the appropriate COBOL

publication or the EGL reference guide to diagnose the

error, and take the recommended corrective action.

GEN0260 %1 bytes of UI record won’t fit in %2

byte buffer.

Explanation: The program issued a statement for

presenting a UI record. There was not enough room in

the communications buffer for the record. The buffer

needs space for the record plus any message

information written using function sysLib.setError.

User Response: Modify the program to reduce the

size of the user interface record or write fewer or

smaller error messages.

GEN0261 EZEUIERR message information and

inserts won’t fit in %1 byte buffer.

Explanation: The program issued one or more calls to

the system function sysLib.setError to write messages

associated with a UI record. The information associated

with the last message written will not fit in the buffer

used by the program for communicating with user.

User Response: Modify the program to write fewer or

smaller error messages.

GEN0262 Web transaction program and user

interface record bean %1 are

incompatible.

Explanation: An action program was started with

information from a UI record bean that isn’t known to

the program or whose definition is not compatible with

the UI record declaration with which the program was

generated.

User Response: Insure that the specified bean is

defined as the inputPageRecord for the program.

Regenerate the program and the Java Beans from the

same user interface record declaration.

GEN0263 Number of occurs value %1 is out of

range for record array at offset %2

Explanation: An action program could not write a UI

record because the ″number of elements″ value set by

the program for an array was less than 0 or greater

than the maximum number of elements defined for the

array.

User Response: Correct the program logic so that it

sets the number of elements to a value within the

allowed range.

GEN0264 Input data entered by the user doesn’t

fit in user interface record.

Explanation: An action program received input data

from the Web server that doesn’t fit in the UI record.

The transaction program and the Java Bean associated

with the UI record record may have been generated at

different times with incompatible UI record

declarations.

Chapter 6. messages 27

User Response: Regenerate the program and the Java

Beans from the same definitions. Contact your IBM

representative if this doesn’t correct the problem.

GEN0265 Segmented converse is not supported

within current function stack.

Explanation: The program issued a converse

statement with sysVar.segementedMode set to 1

(segmented converse) and at least one of the functions

in the current function stack uses parameters or local

items or records. The generated program is not able to

save parameters or local storage data over a segmented

converse.

User Response: Modify the program so that the

converse statement is not used within a function that

has parameters or local data.

GEN0266 MQ function %1, Completion Code %2,

Reason Code %3.

Explanation: The MQ function did not complete

successfully, as indicated by the following completion

codes:

v 1 MQCC_WARNING

v 2 MQCC_FAILED

The reason for the completion code is set in the reason

code field by MQSeries. Some common reason codes

are:

v 2009 (Connection broken)

v 2042 (Object already open with conflicting options)

v 2045 (Options not valid for object type)

v 2046 (Options not valid or not consistent)

v 2058 (Queue manager name not valid or not known)

v 2059 (Queue manager not available for connection)

v 2085 (Unknown object name)

v 2086 (Unknown object queue manager)

v 2087 (Unknown remote queue manager)

v 2152 (Object name not valid)

v 2153 (Object queue-manager name not valid)

v 2161 (Queue manager quiescing)

v 2162 (Queue manager shutting down)

v 2201 (Not authorized for access)

v 2203 (Connection shutting down)

User Response: Please refer to the MQSeries

Application Programming Reference for further

information on MQSeries completion and reason codes.

GEN0267 Queue Manager Name %1.

Explanation: This is the name of the queue manager

associated with the failing MQ function call listed in

message GEN0266.

If the failing MQ function was MQOPEN, MQCLOSE,

MQGET, or MQPUT, the name identifies the name

identifies the queue manager specified with the object

name when the queue was opened. Otherwise, the

name is the name of the queue manager to which the

program is connected (or trying to connect).

 If the queue manager name is blank, the queue

manager is the default queue manager for your system.

User Response: Please refer to the MQSeries

Application Programming Reference for further

information on the MQSeries completion and reason

code listed message GEN0266.

GEN0268 Queue Name %1.

Explanation: This is the name of the queue object

associated with the failing MQ function call listed in

message GEN0266.

User Response: Please refer to the MQSeries

Application Programming Reference for further

information on MQSeries completion and reason codes

reported in message GEN0266.

GEN2001 The table %1 is not valid for application

%2

Explanation: The reason code is %3. The explanations

follow:

v 1 - The dataTable version is not compatible with the

current level of IBM EGL Server and the running

application.

v 2 - The dataTable was generated for an ASCII-based

EGL runtime environment.

v 3 - The data itself is corrupted.

v 4 - The dataTable could not be opened.

User Response: Have the application developer

replace dataTable %1 with a correctly generated

version.

 If the reason code indicates that the table data is

corrupted, ensure that the table was transmitted to the

host system as a binary image file.

 If the reason code indicates the table was generated for

an ASCII-based host system, ensure that the table is

regenerated for the same target system as the

application attempting to use it.

 If the reason code indicates the table could not be

opened see previous messages in the job log.

GEN2002 EGL Server does not support DBCS data

type.

Explanation: EGL Server does not support the

DBCHAR data type because COBOL does not support

DBCHAR.

User Response: Have the application developer

28 EGL Server Guide for iSeries

change EGL DBCHAR primitive types to MBCHAR

data types and regenerate the application.

GEN2004 Character conversion from CCSID %1 to

%2 is not supported

Explanation: Character conversion is not supported

between the two Coded Character Set IDs (CCSID) %1

and %2.

User Response: Have the application developer verify

that the specified Coded Character Sets IDs (CCSID)

are valid and that conversion between the two CCSIDS

is supported. The EGL application may have to be

regenerated.

GEN2005 Error %1 occurred when converting

record %2.

Explanation: sysLib.convert encountered error code

%1 during the call.

User Response: Have the application developer verify

that the application logics record %2 with data that

matches its definition. The EGL application then needs

to be regenerated.

GEN2006 The map group %1 is not valid for

application %2.

Explanation: The reason code is %3. The explanations

follow:

v 1 - Reserved.

v 2 - Reserved.

v 3 - The form group data is corrupted.

v 4 - The form group could not be opened.

User Response: Have the application developer

replace form group %1 with a correctly generated

version.

 If the reason code indicates that the form group data is

corrupted, ensure that the form group was transmitted

to the host system as a binary image file.

 If the reason code indicates the form group could not

be opened see previous messages in the job log.

GEN2007 Press Enter to continue.

Explanation:

User Response:

GEN7025 Error encountered allocating memory.

Explanation: An error was encountered while

allocating memory. The system has run out of memory.

User Response: Make sure that you have enough

memory on your system as specified in the

Software/hardware requirements for the product. Stop

the execution of some of your other applications on

your system.

 Do as follows:

1. Record the message number and the message text.

(The error message includes the information on

where the error occurred and the type of internal

error.)

2. Record the situation in which this message occurs.

3. Contact your IBM representative.

GEN7030 The format of the data descriptor is

incorrect. The hex value of the data

descriptor in error is %1.

Explanation: The format of the data descriptor is

incorrect. A header descriptor is found within the data

descriptor.

User Response: Do as follows:

1. Record the message number and the message text.

(The error message includes the information on

where the error occurred and the type of internal

error.)

2. Record the situation in which this message occurs.

3. Contact your IBM representative.

GEN7035 The format of the data descriptor is

incorrect.

Explanation: The format of the data descriptor is

incorrect. An End Of Description descriptor is not

found.

User Response: Do as follows:

1. Record the message number and the message text.

(The error message includes the information on

where the error occurred and the type of internal

error.)

2. Record the situation in which this message occurs.

3. Contact your IBM representative.

GEN7040 The format of the data descriptor is

incorrect. An unknown data code %1

was found.

Explanation: The format of the data descriptor is

incorrect. An unknown data code was found in the

data description.

User Response: Do as follows:

1. Record the message number and the message text.

(The error message includes the information on

where the error occurred and the type of internal

error.)

2. Record the situation in which this message occurs.

3. Contact your IBM representative.

Chapter 6. messages 29

GEN7055 The Conversion Descriptor structure is

not valid.

Explanation: The Conversion Descriptor structure

CMCVOD required by the conversion routine is

incorrect.

User Response: Do as follows:

1. Record the message number and the message text.

(The error message includes the information on

where the error occurred and the type of internal

error.)

2. Record the situation in which this message occurs.

3. Contact your IBM representative.

GEN7065 The data descriptor for parameter %1 is

not valid.

Explanation: The data descriptor for the parameter is

not valid.

User Response: Do as follows:

1. Record the message number and the message text.

(The error message includes the information on

where the error occurred and the type of internal

error.)

2. Record the situation in which this message occurs.

3. Contact your IBM representative.

GEN9003 EGL Server encountered a critical

internal processing error.

Explanation: A critical internal processing error was

detected. This may include such things as corrupted

run unit control blocks, an unexpected return code

from an internal function, or illogical code path entry.

 Diagnostic messages preceding this message in the job

log explain the nature of the error. In most cases, the

application or system programmer will need to adjust

your application system to correct the problem.

User Response: Either print the job log or record the

messages along with the following:

v - The from program name.

v - The to program name.

v - The instruction numbers.

You can view or print the job log with the DSPJOBLOG

command. If no diagnostic messages precede this

message, ensure that your job logged all messages by

checking the ’Message Logging’ or LOG value of your

job definition or job description, depending on whether

the job is interactive or batch. For interactive jobs,

command DSPJOB OPTION(*DFNA) will display the

’Message Logging’ value.

 Contact your application or system programmer with

the information you gathered.

GEN9004 EGL Server COBOL error handler was

invoked to end the run unit.

Explanation: A function check has caused the run unit

to end. A database rollback has been issued and heap

storage released.

 Diagnostic messages preceding this message in the job

log explain the nature of the error. In most cases, the

application or system programmer will need to adjust

your application system to correct the problem.

User Response: Either print the job log or record the

messages along with the following:

v - The from program name.

v - The to program name.

v - The instruction numbers.

You can view or print the job log with the DSPJOBLOG

command. If no diagnostic messages precede this

message, ensure that your job logged all messages by

checking the ’Message Logging’ or LOG value of your

job definition or job description, depending on whether

the job is interactive or batch. For interactive jobs,

command DSPJOB OPTION(*DFNA) will display the

’Message Logging’ value.

 Contact your application or system programmer with

the information you gathered.

30 EGL Server Guide for iSeries

Chapter 7. Notices

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure

restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1989, 1998, 2000, 2004 31

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

32 EGL Server Guide for iSeries

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 2000, 2004. All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information is intended to help you create application

software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

v DB2

v IBM

v iSeries

v OS/400

v SystemView

v VisualAge

v WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product or service names, may be trademarks or service marks of

others

Chapter 7. Notices 33

34 EGL Server Guide for iSeries

����

Program Number: 5724-D46

Printed in USA

SC31-6841-01

	Contents
	Chapter 1. Installing and configuring EGL Server for iSeries
	Installing EGL Server for iSeries
	Objects created or replaced during installation
	iSeries library and file setup
	iSeries preparation script file FDAPREP
	Customizing EGL
	General considerations for EGL Server for iSeries
	Using data description specifications generated by EGL
	Modifying the generated DDS information
	Restrictions on logical files
	Changing DDS member types

	Application run-time considerations
	Starting and ending commitment control cycles

	Chapter 2. Reviewing and preparing the generated output
	Outputs of generation
	Objects generated for programs
	Application ILE COBOL program
	Run-time CL
	Data definition specification (DDS)

	Objects generated for data tables
	DataTable binary image file
	Message definitions

	Objects generated for form groups
	Form group format module

	Understanding preparation
	Starting the iSeries Remote Build Server
	Verifying the iSeries Remote Build Server
	Launching the build plan manually
	Preparing a DB2 application

	Chapter 3. Running a generated application in iSeries
	Making EGL Server for iSeries, COBOL, and generated modules available
	Establishing a library list for a job

	Running EGL applications under iSeries
	EGL run unit concept
	Using activation groups with run units

	Chapter 4. Moving prepared applications to other iSeries systems
	Moving prepared applications to another iSeries system
	Moving workstation code that is part of a EGL application to an iSeries system
	Maintaining backup copies of production libraries

	Chapter 5. Diagnosing problems during run time
	iSeries First Failure Data Capture component

	Chapter 6. messages
	Escape messages
	Diagnostic and informational messages

	Chapter 7. Notices
	Programming interface information
	Trademarks and service marks

